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Abstract 

Stephen Paul Cotterell 

FISH LANDINGS, DISCARDS AND BENTHIC MATERIAL FROM DEMERSAL 
TRAWLING IN THE WESTERN ENGLISH CHANNEL (ICES VIle) 

This study examined the impact of inshore single boat otter trawling from Newlyn, Looe, 
Plymouth and Salcombe and pair boat demersal trawling from Looe and Plymouth on the 
benthic environment off the SW peninsula of the UK between 1998 and 2000. 

Fish and shellfish species (54 and ll species respectively) were measured at sea and 
the non-fish material (124 species) was analysed later. Overall 79.8% of the sample was 
landed fish and shellfish, 15.8 %was discarded fishes and 4.4 % was invertebrates and 
other material (by weight). 

Related information about the substrate and tide were generated from British 
Geological Survey data and a computer simulation of the maximum mean tidal strength. 

In agreement with the different abiotic regime, the dominant fishes were different in 
Newlyn and the other ports. According only to port, the Looe and Plymouth samples 
were not significantly different, either as full samples or for their fish and non-fish 
components. The Salcombe samples were not significantly different to those from Looe 
or Plymouth for the non-fish part of the sample. Including the type of trawling meant that 
the greatest similarity was for the non-fish part of the sample although the relative 
amounts of the components varied. The pair trawling samples contained more landed, 
less discarded and less non-fish material than their single boat equivalents. Pair trawl 
samples also contained fewer examples of large invertebrate species. 

Several within and between-species relationships were explored to assess the wider 
interpretation of the fish community data. This examined size of Raja spp., several 
predator-prey relationships and the utility of Marthasterias g/acia/is as an indicator of 
fishing disturbance. 

Disturbance as measured by Abundance Biomass Comparison was similar whether 
according to the non-fish or full sample, and suggested that the whole region was 
relatively undisturbed (with Newlyn apparently the most impacted area). 

Analysis of the relative contribution of selected groups to taxonomic diversity showed 
the derived conservation priorities for 'orders' of fishes were Elasmobranches > 
Pleuronectiformes > Gadiformes. In general, the fact of 'losing' orders of fishes was 
more important for single rather than pair trawl samples, which suggests that single boat 
samples were collected from structurally more complex areas supporting a wider 
taxonomic diversity. The analysis of groups for conservation priority was also carried 
into the invertebrates with echinoderms being highly influential for Newlyn. Taxonomic 
diversity (~ + and A l was also proposed as an addition to the definition of 'Good 
Environmental Status' according to the proposed EU Marine Strategy Directive. 

When examining the abiotic and biotic data sets, the fish species bore the closest 
similarity to the abiotic data suggesting that much of the study area was dominated by 
similar invertebrate species that tended to be scavengers and in most analyses the positive 
influence of the voluntary Inshore Potting Agreement management regime was evident. 

In a novel analysis, there was broad agreement between the data and literature sources 
for the location of the fishes in relation to the substrates and for eight of the most 
commonly occurring species it was possible to be more precise in their substrate 
preferences than suggested from the literature. 

The landed fish part of the sample was shown to be a statistically good approximation 
of the landed part of the haul (for which the commercial data was known) in > 95 % of 
the hauls. Finally, data on the commercial landings for each port show that the boats 
sampled in this study were representative of these ports. 
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Chapter I 

Chapter 1 

1 General introdu·ction 

1.1 Introduction 
Fishing is arguably the most widespread human exploitative activity (Jennings & Kaiser, 

1998). Using old estimates of primary production Vitousek et al., (1986) concluded that 

fishing had few fundamental effects on the structure or function of marine ecosystem 

apart from those on fished species, though this view is now discredited. More recently 

Pauly & Christensen, ( 1995) suggested that 20 % of primary production was required to 

sustain fisheries in many shallow coastal areas. They estimated 30 % for the North Sea. 

This is just one example where long held beliefs about the impacts of fishing have 

changed. 

The views expressed by Vitousek et al., (1986) were in keeping with their time, 

being derived from management via the assessment of single species, (Smith, 1994). 

Marine fisheries research has shifted its attention from population based to ecosystem 

based research (Auster et al., 1996;Langton et al., l996;Laffoley et al., 2004), and the 

moves towards a Marine Bill (DEFRA, 2006) has accelerated the ecosystem approach to 

management (Rogers et al., 2005). This thesis continues this theme in assessing various 

indices of ecosystem effects of fishing, in the context of a detailed description of the 

fishery, through on board sampling of fish landings, discard and benthic material otter 

trawled in the western English Channel and linking direct sampling with indirectly 

acquired environmental data. 
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1.2 Historical perspective 
The comparatively recent flurry of activity, growth of research activities, and shift in 

scientific philosophy on impacts of fishing should not be thought of as truly novel. The 

infliction of "damage" or disturbance (Hall, 1994;Hall et al., 1994;Gislason & Rice, 

1998) as it is referred to today has long been recognised. The famous 'wondyrchoun', 

(quoted in Graham, 1955, p 14) was documented in the reign ofEdward III, (1312-77). 

Graham, (1955) for fishing and Smith, (1994) for its effects are excellent sources for the 

historical aspects. Research from early last century (Garstang, 1903) recognised, and 

tried to evaluate allegations surrounding the depletion of the trawling grounds. At this 

time area-based management of fishing was already occurring. According to a plan of 

fishing grounds off the South Devon coast, (Garstang, 1903, Annex) trawling was 

prohibited in areas in which it is allowed today. Had he seen the modem scale of activity 

of today's fishing, certainly in terms of weight of gear, it is more likely that Garstang 

would have unequivocally attributed the "impoverishment of the sea" to the activities 

associated with fishing. In contrast Holme, (1983) with a life time of studying the sea 

floor around the western English Channel saw that the fluctuations of benthic species 

were " ... still largely unrelated to man's activities." However, he qualified this by noting 

the profound effects of fishing and thought that given time, " ... [the] man-made influences 

could become paramount in determining the nature of the bottom fauna in more heavily 

fished parts of the western Channel." Supporting evidence came from work by 

Southward, (1980; 1983) which details the inconsistency of the western English Channel 

ecosystem and the range of long-term monitoring underway with attempts to further 

comprehend more recent declines in catch per unit effort. 
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More recently still, these same long-term data sets have been used for testing true 

ecosystem models. There are many of these, though that of Anderson & Williams, 

( 1998) for carbon deserves attention, as it is derived from local data. The importance of 

this approach lies in its attempt to explain the seasonal cycle of dissolved organic carbon, 

(DOC). DOC is a major part of the total dissolved organic matter, (DOM) and DOM, in 

surface waters, typically exhibits a carbon rich seasonal increase, (Williams, 1995), 

lagged after by chlorophyll peaks, (lttekkot, 1982;Wafar et al., 1984). The ecosystem 

model of Anderson & Williams, (1998) describes the change in rate of breakdown of the 

DOM pool, which is governed by the rate that biological and other processes act to break 

it down. It is this breakdown rate which is likely to be modified by the activity of fishing 

and which has surprisingly far-reaching effects. Models such as this may have the 

potential to assess ecosystem health, (Sherman, 1994), given the known relation between 

production and biomass, (Alien, 1971 ). They may also have a role in separating the 

effects of fishing from other anthropogenic disturbances, such as pollution, (Rees, 1983). 

Finally mention should be made here of the contribution of Daan, (1991) who theorised 

the evaluation of ecosystem effects of fishing based upon production/biomass ratios of 

benthos and estimates of fishing mortality based on effort calculations. At the time it was 

not clear why this idea had not gained a wider acceptance (Daan pers corn.) given its 

ability to provide a "quick and dirty" guide, which is based neither on extrapolations from 

limited observations of discards or by-catch, (Alverson & Hughes, 1996;Hall, 1996) nor 

detailed in situ studies, although recent effort has been directed in this area (Jennings et 

al., 2001 ;Jennings et al., 2002). 

In some cases, the impetus for research on ecosystem effects of fishing has come 

from liaison with the fishing industry. The ICES investigations stem from its 58th 

Council Meeting in 1970, where "Members of the Gear and Behaviour Committee [were] 

urged to take action on the Liaison Committee's request for information about the effect 

of trawls and dredges on the sea bed," (ICES, 1970). The basis of this resolution came 
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from French delegates to ICES who were complaining that Dutch sole beam trawlers with 

heavy chain mats were causing permanent damage to the seabed. Before this date 

complaints, (also see below) were, so called, colloquial and brought by inshore fishermen 

who discovered that they could not trawl successfully as before after their grounds had 

been visited by heavy trawlers, (Bridger, 1970). This resolution brought the matter to the 

notice of the fisheries laboratories, bordering the North Sea, which had seemingly not 

noticed (De Groot, 1984). 

The creation of the ICES Working Group on Ecosystem Effects of Fisheries has 

brought together many scientists with surprisingly diverse interests and the themes of the 

ICES symposia mirror the development in understanding. The themes of the 1998 

Symposium on 'Marine Benthos Dynamics: Environmental and Fisheries Impacts' 

explored direct (Anon, 1992b) and indirect (Anon, 1993a) effects of fishing and the 

difference between anthropogenic and natural disturbance events. The 1999 Symposium 

addressed 'Marine Ecosystems and Fisheries Management' described effects of fishing 

on species and groups, effects at the ecosystem level, theoretical and practical measures 

to quantifying effects and ecosystem objectives. The development of new ideas in this 

area has been very rapid as demonstrated by the subjects covered by the 2005 

'Quantitative ecosystem indicators for fisheries management.' In the preamble Cury & 

Christensen, (2005) say: "We have moved a long way towards an ecosystem approach to 

fisheries within a relatively short time ... " with the themes moving onto describing and 

evaluating "indicators of the structure and functioning of ecosystems in time and space, 

and in turn how fisheries influence them." In this way, the subject area has moved from 

describing pattern to examining process which illustrates a level of subject maturity 

(Paine, 1969), although an 'unobstructed view' (Hall, pers corn.) of the seafloor is still a 

dream. 
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1.3 Scientific investigations 
The publication of studies concerned with the effects of fishing gear on the seabed and 

benthic communities has grown rapidly. Figure 1.1 summarises the historical and likely 

future trends. 
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Figure 1.1. Numbers of published items on the effects of fishing gear on the seafloor and 
benthic communities. Source: Kenchington, (2002). 

It can be seen that the subject is a product of the 1990s though it has a historical 

component. Caddy, (1973) presents some of earliest direct observations of the tracks of 

dredges and hauls. He used a submersible, so while shallow these observations can be 

described of as in situ. Earlier Ketchen, (1947) investigated the destruction of grounds by 

otter trawling " ... along a 400 yard stretch of beach, partly covered by eel grass." The 

course was laid out so that the trawling took place at high water the observation of its 

effects could be seen at low tide. He observed it was the otter doors, which created the 

disturbance, while little effect, apart from some flattening of the seagrass from the light 

footrope, (extremely so compared to today's rock-hopper gear for example). Ketchen 

finished his paper asking for suggestions regarding how his experiments could be 
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extended into deeper, more representative waters. This was the first research paper 

detailing the direct effects of fishing on other parts of the ecosystem than the target 

species. 

Intertidal, or high and low water trawling experiments have proved successful for 

a variety of trawling methods and direct impact experiments. These have ranged from 

studying fisheries which are prosecuted intertidally, e.g. Brylinsky et al., (1994) or for 

gaining a better picture of the performance of difficult to observe parts of gear. Stewart 

(pers corn) described trials of different types of footropes by dragging them behind a 

tractor along a beach just south of Aberdeen. 

Commonly experiments to investigate both direct and indirect effects of fishing 

(Hall, 1999) have been conducted on more typically exploited subtidal areas. There are 

vast numbers of studies of this type, though focus here will be limited to discussing some 

aspects of scale, disturbance, succession, scavenging behaviour, the search for indicator 

species and developments in experimental design that have come from other areas of 

research, particularly pollution studies. However, attention will be first centred on 

examining some general principles. 

Auster & Langton, (1999) reviewed 67 studies of both direct and indirect effects 

of fishing which divide as follows: 

• Twenty-eight studies that examined the impacts of fishing gear on the structural 

components of fish habitats. These include beam trawls, otter trawls, scallop 

dredges, and hydraulic clam dredging, and cover a large range habitat types and 

locations. 

• Fourteen studies that examined the short-term impacts of fishing gears on benthic 

communities. These have looked at varied taxa, with some authors reporting on only 

a few components, others more; and at a variety of locations, mainly around the UK, 

Europe, USA and Australia. 

• Twenty-five that examined the long-term impacts of fishing on benthic communities. 
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These fall into a variety of types, either data or experimentally based, or a 

combination of the two. Some of the more review based types have examined 

changes over long periods of time, up to I 00 years for Rei se, ( 1982), while the more 

intensively experimental being limited to a few months to about ten years. 

One particularly useful and relevant outcome from their review was a conceptual fishing 

gear impact model (also presented in Auster, 1998) and illustrated here as Figure 1.2. 
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16 
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1 
1 
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Level of Fishing 4 

Effort 

Piled Boulders 
Dispersed boulders-cobble 

Pebble-Cobble with Epifauna 
Pebble-cobble 

Shell Aggregates 

Biogenic Structures 

Bedforms 

Habitat 
Categories 

Figure 1.2. Conceptual fishing gear impact model. The range of fishing effort increases 
from left to right along the x axis with 0 as a pristine condition and 4 as a maximally 
impacted state. They axis is a comparative index of habitat complexity, (source: Auster, 
1998). 

The model in Figure 1.2 indicates the response of the range of sea floor habitat types to 

increased fishing effort. Each habitat type, along the z axis starts at values of unimpacted 

complexity, (y axis) and proceeding from none to maximally affected, decreases this 

complexity. There are some habitats, where the model shows no significant reductions, 

such as gravel areas, with very little epifauna settlement. As the complexity of 

unimpacted areas increases, the drop in complexity towards a fully impacted state 

becomes larger. The model should be widely applicable as these habitat types are widely 

distributed worldwide and impacts are described consistently in the literature, (Auster et 
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al., 1996). 

The model m Figure 1.2 serves two purposes. Firstly, it provides a holistic 

summary of the range of gear impacts across a variety of habitats. Secondly, it points the 

way for future research. While it might currently be possible to determine the ends for 

each line, i.e. to know the complexity of a particular habitat subjected to none and full 

levels of impact, the slope of the line remains unknown at the level of fishing effort 

required to produce specific rates of change. Responses may be linear or non-linear and 

there may be thresholds or "tipping points" of disturbance beyond which changes are 

irreversible. Regardless, responses will most likely be habitat specific and there are 

several habitat types which are not covered by the model, in particular deepwater coral or 

other fragile ecosystems (Koslow et al., 2000). 

The model in Figure 1.2 is useful, as it does not make a distinction between the 

direct or the indirect effects of fishing, merely describing the outcome of a certain 

application of effort on a habitat that has a level of complexity. There are a number of 

other important aspects that are not covered by the model though require some 

explanation for understanding the effects of fishing and determining how it is to be 

measured. These are especially time, type of disturbance, succession and scale. 

The time component. Cushing's match-mismatch hypothesis, (Cushing, 1975) 

has been applied to explain variation in fish stocks and something similar is needed to 

explain recruitment variation in this model. Recovery time is usually considered as the 

maximum life span of the longest lived species in the habitat, (Hall, 1994) but this does 

not explain recovering succession. 

The model does not take into consideration the different types of disturbance; 

nominally types I and 2. Type 1 are small disturbances within a generally more complex 

area while type 2 are chronic disturbances over most, but not all of an area. Type I 

disturbances have recovery rates that are generally faster because they are subject to 
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immigration-dominated recovery, versus the dependence on larval recruitment for 

recovery of type 2 disturbances. 

Succession, (Dean & Hurd, 1980;Arntz & Rumohr, 1982) deserves a special 

mention as this is the means by which, through time, recovery occurs between impacts. 

Succession is not readily predictable, though it can be measured. Essentially earlier 

colonists can have a positive, (Clements, 1916), null or negative effect of the success of 

later colonists. Positive to negative influences should be viewed as extremes of a 

continuum, and the strengths and directions of these interactions could vary within a 

successional sequence, (Connell et al., 1987). 

Both types of disturbances require a scale, as does much else in understanding 

fishing impacts and other disturbances (Guichard & Bourget, 1998). Rijnsdorp et al., 

(1998) describing the micro-distribution of effort based on satellite tracking, report their 

findings as the number of visits by boats to I xI nm boxes. The authors also discuss the 

merits of using other sizes of boxes, 3x3, 10x10 and 30x30 nm and unsurprisingly, as the 

box-size increase the patchiness of occurrence within the box increases and the chance of 

random distribution decreases. 

Any successful examination of the direct or indirect effects of fishing must 

consider these factors in addition to the impact itself. One useful example of the 

difficulty in studying the effects of fishing is the study of the scavenging behaviour 

related to fishing. 

The scavenging of the benthos by fishes has been explored by repeat trawling 

experiments (e.g. Ramsay et al., 1997a;Ramsay et al., 1998) but to some extent almost all 

demersal fishing is repeated scavenging trawling (Kaiser & Spencer, 1994). The 

dependant factors being time and space as no area truly accessible to fishing is not fished. 

Older fishermen talk of working ground to improve catches, a notion often dismissed by 

scientists because of the real uncertainty of reapplication of effort on the micro

distribution scale of effort - relevant to the gear. However, the mobility of scavenging 
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consumers, (Breitburg, 1996) whether fishes, (Hall et al., 1990;Kaiser & Spencer, 1994) 

invertebrates, (Ramsay et al., 1998;Ramsay & Kaiser, 1998;Bergman & van Santbrink, 

2000;Jenkins et al., 2004), or indeed avian, (Fumess, 1984;Fumess et al., 1988) may lead 

to a situation where the fishermen's generalities can apply. 

Scavenging behaviour while 'directly' measurable is also undoubtedly playing a 

part in modifying energy flow, which is more related to indirect effects. The division of 

effects into direct and indirect with direct effect being 'easy' to measure and indirect 

being 'difficult' has been a feature of the science of understanding exploited, disturbed or 

polluted habitats and communities and not least the effect of fishing. However, even 

earliest studies examined both. Caddy, (1973) noted the density of predatory fishes in 

recently trawled areas was 3-30 times that in adjacent un-fished areas. Similarly Hall et 

al., ( 1994) report gadoids congregating around recently dug pits in soft sediments. There 

are also true shifts in diet. Kaiser & Spencer, (1994) reported that adult queen scallops 

(Aequipecten opercularis L.) do not normally occur in the stomachs of whiting but 

analysis revealed the distinctive orange gonads in their stomachs after repeat trawling. 

Gurnards tend to eat large prey items such as shrimps, Crangon spp. and swimming 

crabs, Liocarcinus spp. though will switch, to feeding on Ampe/isca spp. (an amphipod 

that lives infaunally, but close to the surface and is thus vulnerable to passing gear). 

Therefore, the effects of fishing should be studied as a whole, though tools are required to 

manage the complexity of interactions. 

The search for indicator species has come about because of this complexity in 

understanding the whole system. Indicator species are used in many branches of 

biological monitoring, particularly pollution studies. Chosen species must be suitably 

responsive to change, but not so sensitive that they are made extinct by a dramatic 

alteration (Hiscock et al., 2004). Much attention has been placed on using Arctica 

islandica, a large and long-lived bivalve to examine the intensity of trawling, (Klein & 

Witbaard, 1993). A. islandica live in the upper layers of soft to medium hard sediments. 
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It tends to poke out from the top of the substrate and is thus vulnerable to fishing, 

(Witbaard & Duineveld, 1990). The passage of gear chips its thick shell and this damage 

is retained as scars in the shell, which can be read, (Ropes, 1987). Its longevity means 

that older individuals often have several scars and by knowing the density of A. islandica 

estimates of the fishing intensity can be made, (Witbaard & Klein, 1994). Rumohr & 

Krost, (1991) used this method though Witbaard, (1996) demonstrated that particularly 

temperature and suspended sediment load to a lesser extent can dramatically alter growth 

rates and shell thickness. A. islandica is also not common in the Irish Sea or English 

Channel, (Kaiser, pers corn.). Glycymeris glycymeris has been seen as a promising boreal 

replacement by Ramsay et al., (2000a) though it does not grow as large, and tends to 

occur deeper in the sediment so there must be a range of indicator species to suit a range 

of activities and habitats. 

Finally Hall, ( 1999) made the very obvious point that detecting changes in 

communities due to fishing is important but as fishing is so ubiquitous an activity there 

are few areas that can be said not to have been impacted by gear. Disturbances to 

communities occur through non-anthropogenic sources, such as from storms 

(V anBlaricom, 1982;Churchill, 1989), ice scour and even the feeding practises of whales 

and other mega-fauna (Oliver et al., 1983;0liver & Slattery, 1985). It is thus important to 

think of fishing as one anthropogenic source of disturbance within a non-equilibrium 

system (Anon, 1992). 

1.4 Background to work plan: the state of the 

art 
Much of the work in understanding the changes in ecosystems has recently come from 
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pollution studies, where intensive analysis usually comes only after an incident has 

occurred. Provided there is some monitoring of a representative site before an impact 

then a before, after, control, impact (BACI) study can be conducted, (Stewart-Oaten et 

al., 1986; Waiters et al., 1988). This aims to assess the effect of a change in an ecosystem 

through the use of a statistical model that incorporates the change, (Smith et al., 1993). 

To improve the sensitivity of the model samples may be taken at a control site as well as 

that receiving the impact. Thus, there are two treatments 'before-after', which is of 

primary interest and 'control-impact', which is of secondary interest. While this provides 

a powerful tool, care must be taken in the design and implementation of the experiment to 

meet the assumptions of the model, to sample correctly, and to reduce confounding 

factors, (Underwood, 1991; 1992). These experiments are expensive and sound design 

requires both a good statistical model and an understanding of the underlying biological 

processes, (what to measure) and careful planning, (how to measure it well). However, 

as discussed in section 1.3 there are few such 'control' or 'pre-treatment' sites available 

for assessment of fisheries effects. The increased attention being paid to Marine 

Protected Areas (Gray, 1997;Auster et al., 2001;Hall, 2001;8lyth et al., 2002) suggests 

that this is a real growth area of study. This type of comparative study often is just as 

intensive and therefore expensive as a BACI type. 

1.5 Development of work programme 
Irrespective of the desired goal, studies proceed by assessing the effects of different types 

and intensities of disturbance; comparing effects of fishing of different types and 

intensities. The expense of treatment and control type investigation can be offset by 

developing a sound sampling strategy and detecting and attributing differences in 

observed findings to pre-determined factors. This approach is also no less amenable to 
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being rigorously tested. 

Much of the work investigating the direct and indirect effects of fishing has been 

conducted in the North Sea, and the English Channel is a qualitatively different 

environment. This is because of the differences in commercial stocks, (Pawson, 1995), 

geology, (King, 1954;Evans, 1990) and noted differences in biological representation as 

described by Hayward & Ryland, (1990a;b). This meant that the local environment is a 

mixed resource that warranted investigation. There is also an urgent need to evaluate the 

human influence on the structure and functioning of the biotic components and this must 

be done in a local context. There was therefore a need to examine the current status of 

the fish and benthic environment in the western English Channel, which was the goal of 

this work. Rather than design a manipulative experiment it was decided to examine the 

activity of the commercial sector. The SeaFish Industry Authority had recently 

completed a feasibility study of discarding practises in the ICES area d and e (Course et 

al., 1996) and these general methods were developed for this study. Part of the 

development was to describe the relationship between the sample and the total catch and 

to examine the association between the vessel and the Market at its port of landing. 

In order to address the study's goal the following Aims were set: 

1.6 Thesis aims 
There were three aims to this thesis: 

I. Describe the incidental capture of benthic invertebrates in the local (ICES area VIle) 

otter and pair trawl fishery. Relate this incidental capture to the landed and discarded 

fishes. Examine the biological diversity of the samples and assess the suitability of 

species to act as indicators of trawling. This Aim is described in Chapters that relate 

to the Sample Theme. 
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2. Investigate the relationship between catch composition on abiotic parameters of the 

trawl locations. This Aim is described in Chapters that relate to the Environment 

Theme 

3. Evaluate the sampling method for its ability to relate the sample with the haul and the 

haul to the market data through the four ports of Newlyn, Looe, Plymouth and 

Salcombe. This Aim is described in Chapters that relate to the Haul & Market 

Theme. 

1.6.1 Sampling objectives 

In order to collect a cohesive data set to address the aims (outlined in section 1.6, page 

13, above) three sampling objectives were set: 

To sample from the four ports ofNewlyn, Looe, Plymouth, and Salcombe. 

2 At each port to sample once a quarter of the year for one year, (quarter I =January to 

March, quarter 2 = April to May, quarter 3 = June to August, and quarter 4 = 

September to December), with each trip to comprise at least two hauls. 

3 To sample single and pair boat trawling from both Looe and Plymouth. 

1. 7 Rationale for boat choice 
It is recognised that while otter trawling is not considered the most destructive fishing 

practise (Anon, 1992) it nevertheless has documented impacts (Smith et al., 2000). 

Historically and locally it has been a very widely used method (Dickinson, 1987;Boon, 

1992) and its use currently continues (MAFF/DEFRA, 1990-2001;Gray, 199S;Pawson, 

199S;Course et al., 1996;Lart, 2002;Pawson et al., 2002) and is likely to do so for the 

foreseeable future. 
14 
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Also, important was the structure of the southwest English Channel industry. 

Many local boats are owner skippered, and this represents a situation often recognised as 

being optimal from a safety point of view (Findlay pers corn.). The owner-skippered 

boats also tend to be those most interested in conservation and the long-term future of the 

industry and these skippers were keen to participate in this work. 

1.8 Sampling model and thesis layout 
Clarke & Warwick, (200 I a ,page 1-1) propose a convenient four-stage analysis which 

was followed here: 

Represent assemblages by graphical description of the relationships between the 

biota in the various samples. 

2 Discriminate sites/conditions based on their biotic composition. 

3 Determining levels of 'stress' or disturbance, by attempting to construct biological 

measures from the community data which are indicative of disturbed conditions. 

4 Linking to environmental variables. 

To follow this path a conceptual model of the sample and the haul was developed as 

shown in Figure 1.3. 
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Figure 1.3. Diagrammatic representation of the sampled components and their 
relationship to the haul. 

This conceptual model brings together the relationships between terms used in this study. 

The smaller square on Figure 1.3 represents the sample taken by a 38 kg fish basket, 

(Figure 2.6, page 30, below). The sample comprises three parts; " I" is the proportion that 

the fishermen intend to land. Generally, this included both fish and shellfish species, "d" 

represents the proportion of the sample intended to be discarded. Again this included 

both fish and shellfish species. Together "1" and "d" comprise the fishes and shellfish. 

"n" represents the proportion of the haul that was made up from other non-fish or non-

shellfish species that were the invertebrates and other material. Analysis of the sample is 

the principle theme of this thesis. The large square on Figure 1.3 represents the whole 

haul (Figure 2.5, page 29, below) that proportionally was divided in the same way as the 

sample; "L" represents the proportion of the haul that was landed by the fishermen and 

this is commonly termed the landed part of the haul. "D" represents the proportion of the 

haul that was discarded. Together "L" and "D" comprise the fishes. "N" represents the 
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proportion of the haul that was made up from non-fishes that were the invertebrates and 

other material. 

The shellfishes are really a special group of invertebrate species in that they are 

generally relatively large, common and edible. In some analyses (parts of Chapter 3, and 

most of Chapter 9 and Chapter 1 0) the analysis is conducted along the lines of the model 

presented in Figure 1.3. Other analyses (parts of Chapter 5, Chapter 6, Chapter 7, and 

most of Chapter 8) were more taxonomic in nature therefore the distinction between the 

teleost fishes (whether landed or discarded) and shellfish was required as the fact that the 

shellfish were landed as edible invertebrates was not important. 

Figure 1.4 bring together the Aims, Themes and Chapters, and aids the following 

explanation of the thesis layout. 

Chapter layout 
1 Introduction 

l 
2 Methods 

-----------------------l----------t ----------------------------------------· 
.--------_::--_::-~~_:-_:-rl __ , l Samplt' ~ils 

4 Envdata I 5 :--J::'· 
AIM 1 

7 Biotic & abiotic 

l AIM 2 
8 Species & substrates 

---------------------------------- ----------------------------------------· 
9 Sample to haul 

l AIM 3 
__,-- 10 Haul to market 

11 Conclusions 

Theme 

I Environment I I Haul & market I 
Figure 1.4. Layout of Chapters according to Aims and Themes. 
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The activities in terms of the haul sampling, subsequent laboratory processing and initial 

data storage is presented in Chapter 2, 'Field and laboratory methods.' Chapter 3 

describes the 'Characteristics of the sample,' which is principally concerned with 

describing the number and locations of the sampled hauls, though it also describes the 

encountered species, variation in the sample weight and its causes and how the sample 

composition of landed and discarded fishes and non-fishes (components of small square 

on Figure 1.3) varied. Whilst Chapter 3 is placed within Aim I on Figure 1.4, it presents 

data that feed into all areas of this study. 

'Derivation of abiotic data', is the subject of Chapter 4. It principally describes 

the abiotic data used to characterise trawl locations, and their apparent pattern of 

similarity. 

The next two Chapters describe the sample data. Chapter 5 'Spatial, temporal, 

disturbance and species analysis of the sample' employs graphical and multivariate 

analytical techniques to highlight patterns of similarity within the sample and species 

information. It also makes use of these data to assess the locations of the samples for 

their degree of anthropogenic disturbance and several interpretations of the fish 

community data to understand better the relationships between species. Chapter 6 

'Within and between sample taxonomic diversity' assess the relatedness of the species 

within the samples through taxonomic distinctness measures to determine how modern 

definitions of biodiversity vary over space and time. It also addresses which higher order 

taxonomic groups are important as priorities for conservation to preserve taxonomic 

diversity. Together Chapter 3, (see above), Chapter 5 and Chapter 6 address Aim 1, 

Sample Theme (Figure 1.4). 

The next two Chapters explore the relationship between the abiotic (environment) 

and biotic (sample) data (Aim 2). Chapter 7, 'The relationship between the samples and 

abiotic data' employs standard B/0-ENV techniques to examine the association between 

sites. Chapter 8 'Relating the fish species and the substrate' describes the production and 
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analysis of a novel technique. It examines the site:species matrices according to the 

species dimension. This analysis compares and contrasts the substrate preferences of 

fishes in this study to the published literature. Together, these two Chapters, with the 

data from Chapter 4 address Aim 2, (the Environment Theme). 

The last two analytical Chapters scale up the sample data and together address 

Aim 3, Haul and Market Theme, (Figure 1.4). Chapter 9, 'Relationship between the 

sample and the haul based on their species composition' assesses the quality of the 

relationship between the landed sample ("!") and haul ("L"), and Chapter I 0, 'The 

relationship between the haul species composition and commercial market data' measures 

how representative the sampled boats were to the market data of their respective ports. 

Finally, Chapter 11 'Conclusions and future directions' synthesises the various 

threads from all the proceeding analyses. 

Several Chapters have appendices, which are denoted by letters rather than 

numbers. Table 1.1 summarises these. This coding sequence extends to figure legends 

and table titles. 
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Table 1.1. Summary of Chapter numbers, Appendix letters and their titles. 

Chapter Aooendix 
Chapter 1 General introduction ' 
Chapter 2 Field and laboratory methods Appendix A Sample accuracy 
Chapter 3 Characteristics of the samples Appendix B Generated length to weight conversion data 

Appendix C Full species list 
Appendix D Total sample weight and its variation 

Chapter4 Derivation of abiotic data sets Appendix E Test of the validity of tidal information 
Appendix F Comparison of trawl length by ArcMap and according to speed, 

distance and time calculations 
Chapter 5 Spatial, temporal, disturbance and species analysis of the sample Appendix G Transformations appropriate for the PRIMER analysis 

ChapterS Within and between sample taxonomic diversity Appendix H Development of the aggregation file 
Appendix I Branch length weighting 

Chapter 7 The relationship between the samples and abiotic data 
Chapter 8 Relating the fish species and the substrate 
Chapter 9 Relationship between the sample and the haul based on their Appendix J Raising the sample weight to the haul: a choice of two methods 

species composition Appendix K 
1 
Transforming the sample and haul data 

Appendix L ! Raw Graphs 
Chapter 10 The relationship between the haul species composition and 

commercial market data 
Chapter 11 Conclusions and future directions 
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Chapter 2 

2 Field and laboratory methods 

The composition of the trawl was determined by taking samples on board fishing vessels 

within the study area according to the aims (section 1.6) and objectives (section 1.6.1). 

This Chapter describes the methods used in sampling at sea and afterwards in the 

laboratory, specifically: 

• Haul meta data (section 2.2.1)- details the recording scheme employed to document 

the sampling activities, localities and times. 

• Onboard sampling (section 2.2.2) - details the on board sampling, which fitted around 

the activities of the crew. 

• Laboratory processing (section 2.3) - describes how the non-fish samples were 

conserved, sorted and subsequently measured. 

• Species meta data (section 2.4) - shows how the taxonomic structure of the 

encountered species was constructed and recorded. 

Chapter 3 describes the results that relate to these descriptions. It covers which of the 

sampling objectives were met, which samples could be used and which could not and 

their specific locations. It also examines the sample size and its variation and describes 

the major compositional analysis based on Figure 1.3 (page 16, above). 
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2.1 Sampling locations and fishing vessels 
Figure 2.1 shows the study region, locations of sampled ports and extent of ICES areas. 

•.r 
~ 51.0 

50.5 

50.0 

49.5 

49.0 

48.5 

48.0 ...... (<) 
I I C';l 

Figure 2.1. Map showing study area and location of ports. 

Boon, (1992) and Gray, (1995) describe the activity and range of vessels at these ports 

prior to this study and the similar description by Pawson et al., (2002) was concurrent in 

time. Sections 1 0.2.1.1 and 1 0.2.1.2 describe the throughput and nature of the ports in 

more detail. Chapter 4 describes the environment of the region though of particular 

interest is the Inshore Potting Agreement (Kaiser et al. , 2000;Blyth et al. , 2000; 2004) 

which is a zoned voluntary management agreement that aims to deconflict mobile and 

static fishing gear in the water up to - 15 km from Salcombe. 

Whilst the port of Newlyn is within ICES area VIIf most of the sampled fishing 

from this port occurred in ICES area VIle or crossed the boundary at 50~. The location 

ofhauls is presented in Chapter 3, (Figure 3.1, page 47, below). 

The sampling from Newlyn took place on one 21 m (70 ft) vessel of 500 Hp. This 

was a stem wheelhouse vessel, built from wood and had been converted to a shelter deck 

design. Two vessels were used for sampling each from Looe and Plymouth. Both Looe 
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vessels were 10 m (33 ft) 200 Hp forward wheelhouse Cygnus vessels of fibreglass 

construction. These were sampled independently as both single vessels and when they 

pair trawled together. Both vessels from Plymouth also operated as single and pair 

trawlers though they differed in size. The smaller was another 10 m (33 ft) 220 Hp 

forward wheelhouse Cygnus built from fibreglass, though the larger was 11.5 m (38 ft) 

250 Hp forward wheelhouse steel vessel. Only one vessel from Salcombe was used for 

sampling. It was also a I 0 m (33 ft) forward wheelhouse Cygnus built from fibreglass, 

though only had ISO Hp. Table 2.1 summarises the main details of the fishing gear based 

on Bridger et al., ( 1981 ). 

Table 2.1. Main details of single and pair trawling fishing gear according to vessels from 
Newlyn, Looe, Plymouth and Salcombe. 

I 
' ' 

Newlyn Looe 

I 
Plymouth Salcombe 

I I 

gear I single pair I single pair 

otter Merge I Lightweight 100 kg I Vee 100 kg Custom I 
doors Polyvalent Bison (size weight 

l 
weight Lexter 

500 kg 6 1/2) 
- - - .. --- - ----

wire 100 ftm 120 ftm 200 ftm 10 
l 225 ftm 10 100 ftm I 120 ftm ' 

single bridle combi bridle mm bridle combi bridle mm bridle , combi bridle 
20 ftm splits 1 0 ftm splits 30 ftm 10 ftm splits 30 ftm ; 1 0 ftm splits 

combi splits combi splits I 
-- -- --· ' 

ground 27m (90ft) 8 ftm (14 m) 16 ftm (29 10 ftm (21 16 ftm (29 I 8 ftm (14 m) 
gear with 8 and with light m) with 8" m) with 8" m) with 6 I 6 and 8" 

12" hoppers hoppers hoppers hoppers and 8" I hoppers 
hoppers I 

net Pioneer High lift Strachan 16 Cosalt 290 Strachan i High lift i 

ground trawl ftm pair Butterfly medium j ground trawl 
trawl with trawl 440" fishing I 

extensions circle I 
mesh 

85 85 86 85 85 I 85 
(mm) I 

Table 2.1 shows the overall similarity between the Looe, Plymouth and Salcombe single 

and Looe and Plymouth pair boats and gear. Although the gear and vessel from Newlyn 

was larger, the haul size across the ports was not significantly different (section 9.3.1, 

page 276, below). 
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2.2 Haul sampling 
The procedure for haul sampling was developed from methods used by the Sea Fish 

Industry Authority (SFIA), (Course et al., 1996) and Emberton et al., (1995) which were 

expanded for this study. 

2.2.1 Haul meta-data 

The following information was recorded for each haul. 

• Trip number. A trip was any number of days (usually between one and three days, 

but up to one week) spent aboard a fishing vessel. 

• Sailing and landing date and port. 

• Haul number. Within each trip, the hauls were consecutively numbered (though 

subsequently each haul (and sample) was given a unique number). 

• Date and time of start (shoot) and haul, and thus the duration of the haul. Start 

(shoot) time was when the winch man reported he had finished paying out the gear, it 

was attached to the boat's tow point and the gear had begun to fish properly. Haul 

time was when shortening the warps began which could be I 5 - 20 minutes before 

the haul was emptied onboard. This scheme of work is that generally adopted 

(Course et al., 1999; Searle, pers corn.) although Wallace & West, (2006) point out 

the extent to· which gear continues to fish after haul back has begun. This tends to be 

related to depth and here depth was comparatively constant (mean and s.d. = 71.1 m, 

± 11.8, n = 88). Also generally hauls lasted around 4 hours (mean and s.d. = 272 min 

(4 h 32 min), ±40 min, n = 88), therefore the different depth effect due to haul back 

was minimal. 
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• Start and haul position. The boat's position at these times was determined by vessel 

GPS. Additional intermediate positions were also recorded where a significant 

alteration of course was made, for example due to a change in the tide. The recorded 

positions are explained further with reference to general direction of tow. 

• Depth, determined by the vessel's echosounder. An average of the shoot and haul 

depth was taken. In addition, the watchkeeper was asked whether there had been an 

alteration in depth. 

• Direction of tow (related to cardinal points). This seemingly innocuous piece of 

information was very useful in that it helped to test the reliability of shoot and haul 

positions; it helped reference the tow with the tide and with speed, distance time 

calculations helped with plotting complex trawl paths (see Figure 2.2, below and 

Figure 2.3, below). The usefulness of knowing the general direction of the tow also 

aided determining the substrate over which the trawl passed (see Chapter 4). 

• Speed of tow as an average of the vessel's speed over the ground. 

• The sample composition (section 2.2.2). 

• The haul composition to be landed was also recorded with the assistance of the crew, 

and further information about this is presented in section 9.2.1, (page 270, below). 

This is the basis of the haul (Chapter 9) and market analysis (Chapter l 0), (Aim 3). 

• Volume retained. This summary statistic was recorded as the size of the haul as 

numbers of six stone baskets. These data form the basis for one of the methods of 

raising the sample to the haul (Chapter 9), (see also Appendix J, starting on page 

392, below). 

The skippers were assured of data confidentially, though all were very happy to 

cooperate, but most asked for their activities to be anonymously attributed. 

All of the tows were plotted on Admiralty charts (Anon, 1972; 1978; 1984; l992a; 

1999) as the first stage in subsequent analysis of sediment maps (section 4.2.1.1) and tidal 

25 



Chapter2 

maps (section 4.2.1.2). Figure 2.2 and Figure 2.3 shows the conventions used. Figure 2.2 

shows a mixture of single and pair trawl tracks. 
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Figure 2.2. Eight trawl tracks plotted on Anon, (1984). Black lines denote a series of 5 
single boat trawls and the red lines are pair boat trawl tracks Eddystone Rocks can be 
seen near the north. 

Some of the trawl tracks on Figure 2.2 were represented by solid lines, as there was a 

strong likelihood that these tracks were truly representative of the path taken and the 

distance between the shoot and haul positions strongly agreed with the conclusions of the 

speed/distance/time calculations. Dashed lines were used when the trawl tracks could not 

be plotted with the same degree of certainty as applied to the generally straight-line tows. 

Figure 2.2 and Figure 2.3 both show the usefulness in recording intermediate positions. 
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Most of the tracks on Figure 2.3 were validated with speed, distance, time calculations, 

and were plotted with dashed lines. When plotted in ArcMap 8.3 (ESRI, 1999) (Figure 

3. 1) only the shoot, intermediate and haul positions were used rather than the 

interpolation as shown on Figure 2.3 . The curves may look a little unrealistic, though 

Figure 2.4 shows actual plots of boat tracks from a GPS plotter. 
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Figure 2.4. Photograph of the screen of a fishing boat's GPS plotter. 

The lines on Figure 2.4 were tracks (hauls 77 and 84, see Figure F.2 and others) though 

the same principle applied to those from Newlyn. Sections 4.2.1.1 and 4.2. 1.2 further 

discuss the plotting of trawl tracks in relation to deriving the sediment and tidal abiotic 

data set, respectively. 

2.2.2 Onboard sampling procedure 
Sampling fitted around the cycle of haul processing by the crew. Single boat operations 

were the most straightforward. Pair trawling operations usually meant moving from one 

vessel to the other since each usually took turns to process the haul. 

The sample was taken from the fish pound though not usually until the gear was 

again shot away or made secure if this was the last haul of a trip (Course et al., 1999). 

Figure 2.5 show examples of hauls from Newlyn and Looe based vessels. 
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Figure 2.5. (Top). A good-sized haul from the Newlyn vessel. The white stripe in the 
top left corner is a 55 cm measuring board. (Bottom). A good haul on a boat from Looe 
(taken at night). For scale, the head of the anglerfish next to the crew's leg was - 40 cm 
across. 

Prior to taking the sample, any unusually large or dangerous objects or fish were 

removed. Examples included car or van tires, or large rocks or pieces of coal that might 
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roll around dangerously or particularly large conger eels, monkfish or cod that were much 

too large to fit within the sample volume, and would have introduced severe bias. 

The sample was taken with a typical six stone (38 kg) fish basket, (Figure 2.6). 

Figure 2.6. Fish basket used for sampling the haul. The white object in the foreground is 
the 55 cm fish measuring board. 

The internal dimensions were 0.42 m 13 at the top, 0.34 m 13 at the base and 0.35 m depth, 

giving a volume of 0.42 m3
• A spring balance (Salter™ N2 4; 100 lbs max in Y2 lb 

increments and tared with the empty fish basket) was carried on all trips and the added 

length of rope between the handles allowed the approximate weight of the sample (or a 

part of it) to be taken. These approximate weights were compared to the calculated 

weights derived from length to weight conversions for each fish species and this 

procedure acted as a useful error check on the derived data, (see Figure A.l , Appendix 

A). Additionally spring balance weights were used to test the reliability of derived 

weight from length according to species, (see Appendix B). Also visible on Figure 2.6 

are lengths of yellow cord attached at intervals up the side of the basket. These divided 

the basket into 6 x 1 stone (6.3 kg) portions, allowing estimation of partial values. The 
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marking of the fish basket proved to be a useful and fishermen-independent measure of 

volume and weight. Combined with the spring and quayside balance the marked fish 

basket was used to estimate amounts of species collected for haul composition, (see 

Chapter 9). 

The aim in taking the sample was to collect a vertical 'virtual shovel' through the 

centre of the haul in the pound to mitigate size and shape bias in the sampling, (reduce 

the 'Brazil nut effect', Weiss, 2001). Bias caused by taking samples from different part 

of the fish pound was investigated by Heales et al., (2000) and while no significant effect 

was detected amongst the fishes some differences were detected with the invertebrates. 

The sample was generally collected employing a small scoop or shovel or by 

hand. Inevitable some species present in the haul did not also occur in the sample. 

Heales et al., (2003) describes the requirement in sampling a relatively large proportion 

of the haul if the sampling is to include even moderately rare species. 

Once collected, a crewmember divided the fish and shellfish parts of the sample 

into the landed and discarded portions. Having a crewmember divide the sample meant 

this was done expertly as to whether a market existed for a species at the port of landing, 

(for example gumards are sold at Newlyn but not Plymouth) and also takes into account 

other practises such as high grading (Kingsley, 2002). Although minimum landing size 

have largely disappeared (Anon, 2000) the fishermen engaged in sampling observed the 

pre 2000 state of affairs. After processing the landed part of the sample, the discarded 

part of the sample was divided into fishes and non-fish components. 

The landed part of the sample was weighed collectively (by spring balance) and 

each individual fish was measured to the cm below on a standard measuring board (see 

Figure 2.6). The discarded fish were measured in the same manner. These were 

discarded at sea rather than brought back for analysis, as in other studies, e.g. (Course et 

al., 1996;Cotter et al., 1999) as this removed the requirement to obtain a licence and 
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reduced the volume of material brought back to the laboratory for analysis, though 

greatly extended the sample processing time. 

The non-fish component of the sample was weighed, and notes were taken before 

it was double labelled, double bagged and stored on ice in the fish room until the end of 

the trip. Once ashore it was transferred to the laboratory in large cool boxes. Where 

starfish were present in the sample they were, as far as possible, stored separately in 

plastic bags. This was done because they tend to disintegrate during transport, and 

otherwise it was impossible to determine which arm had come from which organism. 

Collected jellyfish (e.g. Chrysaora hysoscella L.) were not brought back, being 

impossible to store onboard. Octopuses (either Octopus spp. or Eledone spp.) where 

possible were returned alive to the sea. A standard weight of 750 g was used for these 

groups. 

Emberton et al., (1995) and Course et al., (1996) discuss the volume of sample 

taken in relation to size of the haul and Lart (pers corn.) suggested that a full single basket 

was a good compromise between the time needed to process the sample and the volume 

required for the sample to be representative. Section 9.3.2.2 shows that there were not 

significantly more species absent from the sample when compared to the haul for the pair 

trawl samples than the similar single boat samples. Also, in this study, the analysis of 

one sample basket was found to be a suitable sample volume in that the time required to 

process the sample usually matched the crew work cycle, although this was not always 

the case. 

Commonly hauls were taken approximately every four hours and the crew 

required thirty minutes to an hour to process the haul. Further analysis on the proportion 

of the haul that was sampled is contained in Appendix J (and especially Figure J.3, page 

398, below). 
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Collective weights and individual length data according to species were recorded 

directly into a waterproof surveyor's notebook. After each haul, the data were transferred 

into another logbook thus maintaining two sets of records. 

2.2.2.1 Data storage 
Fish data collected on board (both those landed and discarded) were entered into a 

spreadsheet. Fish lengths were converted to weights using the equation: 

Where: 

W= weight. 

L =length (as measured on board). 

a = length:weight relationship and 

b = exponent. 

W =aL~ 

The data for a and b came from Coull et al., (1989) and Lart (pers com.). See Table 3.3, 

page 51 (below) for further information and data. 

2.3 Laboratory processing 
Where possible the non-fish parts of the samples were processed immediately upon return 

to the laboratory, otherwise the samples were frozen. 

When required the bags were opened and both the sample and the bags were 

gently rinsed over a 500 J.lm sieve, to dislodge and retain small items, such as pieces of 

Cel/aria spp., or other small specimens. Next, individual components were laid out in 

large, shallow plastic trays lined with absorbent paper to remove excess water and aid 

comparative identification. 
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Preservation was restricted to material intended for a reference collection, which 

was kept in accordance with Smaldon & Lee, (1979). 

Weight and dimension(s) of each non-fish individual specimen was recorded as 

follows: 

2.3.1 Weight 

Wet weight was recorded to± 0.1 g, using an Acculab LT7200 and individual items< 0.1 

g were disregarded. Batch weighing was used where several examples of the same small 

(::0 0.1 g) species were found together thus < 0.1 g weights could be recorded by dividing 

the batch weight by the number of individuals. 

2.3 .2 Dimensions 

Given the diverse shapes of invertebrates, it was necessary to take a range of 

measurements to describe adequately the size of the specimens. In essence, where an 

organism was one-dimensional its length was recorded. Two-dimensional organisms had 

two lengths or a length and a breadth recorded. Three-dimensional organisms were 

measured in three dimensions however the exact measurements depended on the type 

(classification) of organism. The following sections detail these and bulleted points 

indicate specific features that were noted or measurements that were taken. 

2.3.2.1 Notes of precision 

The precision with which dimensional measurements were taken depended on the 

organism under scrutiny. The following levels show the range encountered and explains 

where and why they were used. Three categories were: 
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• To the nearest I cm was used for starfish arm length and disc diameter, where a 

degree or distortion could be expected in the specimen. 

• To the nearest I mm was used for hard-part measurements including sea urchin 

diameters, and scallop shell lengths. This level of precision was that used most 

commonly. 

• To the nearest 0.05 mm was only used on hard-part measurements. Examples 

include the carapace length and breadth of crustaceans. 

The size of the organism had no bearing on the precision with which it was measured. 

The only sacrifice was that the Vernier style callipers (checked against graph paper for 

accuracy) could only gape to - 150 mm, thus larger measurements were recorded to the 

nearest 1 mm using a ruler. 

2.3.3 Measurements 

2.3.3.1 Kingdom Animalia 

2.3.3.1.1 Phylum PORIFERA, CNIDARIA, ANNELIDA 

Commonly only weight was recorded for the Porifera. A single length and weight was 

recorded for the Cnidarians (super-class Hydrozoa) although where species grow in the 

form of a stolonal colony, with several Hydrocaulii distinctly emanating from the 

Hydrorhiza, see Hayward & Ryland, (1996 Fig 4.4, p72), the number of Hydrocaulii were 

counted and termed 'tillers' as in terrestrial ecology (Williams pers com.). Most super

class Anthozoa were recorded as weight and two lengths only (e.g. Caryophyllia smilhii 

Gosse) though where a third length dimension was obvious (e.g. Alcyonium digitatum L.) 

this was also recorded. Most Annelids were recorded for length and weight, though 

where the species had an obvious second dimension (for example Aphrodita aculeata L.) 

this was also recorded. 
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accuracy) could only gape to - 150 mm, thus larger measurements were recorded to the 

nearest I mm using a ruler. 

2.3 .3 Measurements 
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2.3.3.1.1 Phylum PORIFERA, CNIDARIA, ANNELIDA 

Commonly only weight was recorded for the Porifera. A single length and weight was 

recorded for the Cnidarians (super-class Hydrozoa) although where species grow in the 

form of a stolonal colony, with several Hydrocaulii distinctly emanating from the 

Hydrorhiza, see Hayward & Ryland, (1996 Fig 4.4, p72), the number ofHydrocaulii were 

counted and termed 'tillers' as in terrestrial ecology (Williams pers corn.). Most super

class Anthozoa were recorded as weight and two lengths only (e.g. Caryophyllia smithii 

Gosse) though where a third length dimension was obvious (e.g. Alcyonium digitatum L.) 

this was also recorded. Most Annelids were recorded for length and weight, though 

where the species had an obvious second dimension (for example Aphrodita acu/eata L.) 

this was also recorded. 
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2.3.3.1.2 Phylum CHELICERA TA 

The marine Chelicerata (class Pycnogonida) are all small and only weight was recorded. 

2.3.3.1.3 Phylum CRUSTACEA (higher) 

All the crustaceans could be analysed by one general method, which is set out below. 

• Identification to species level, except where damage to identifying features prevented 

this. 

• Sex, either male of female and whether berried if female. 

• Carapace breadth and carapace length to the nearest 0.05 mm. 

Crothers & Crothers, (1988) advise that in species where the front projects forward well 

between the eyes the front becomes the rostrum. Nevertheless, the carapace length was 

still recorded whether or not there was a rostrum. The only difference was that for 

species such as Macropodia deflexa the carapace length was recorded as rostra! length 

while for species such as Necora puber it is carapace length. 

• Wet weight to the nearest O.lg. 

• The degree of completeness ofthe pereiopods, (Cotterell, in prep). 

• Nature and type of epibiotic coverage, described according to lngle, ( 1996, appendix 

p 195-212), Crothers & Crothers, ( 1988), and Manuel, ( 1988, 177). 

2.3.3.1.4 Phylum MOLLUSCA 

Measurement of the molluscs is best described by taking one of each of the three main 

classes encountered. 
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Class GASTROPODA 

For example Aporrhais pespelecani, (pelicans foot shell), or Buccinum undatum, 

(common whelk), see Figure 2.7. 

shell length 

25mm 

shell width 

Figure 2.7. Measurements taken of Buccinum undatum. Shell length and width are both 
maxima. The operculum diameter looks rather indistinct here, though this measurement 
was taken on the operculum (maximum diameter on more oval examples) attached to the 
foot of the mantle and not the shell. Source: Hayward & Ryland, ( 1990b, p687). 

Figure 2.7 shows how: 

• Length, second and third dimensions were taken. 

• Where possible both mantle and shell weights were taken. 

For small species such as Crepidula fornicata and Trivia arctica only the weight, shell 

length and width were measured, (as individuals of these species are small). 

• The nature and type of any epibiotic coverage was described in a similar fashion to 

that of the crustaceans (see page 36, above) and Hayward & Ryland, (1996, Fig 10.3 

p492) was used to describe their location. 

Class PELECYPODA, the bivalves 

Hayward & Ryland, ( 1996, p573) was used to orientate the specimen. 
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• Shell length was taken as the dimension from the hinge to the opposite (ventral) side 

and the shell width was taken as the maximum dimension at right angles to this as 

shown in Figure 2.8. 

'-
shell width' -.._ 

3 cm 

'-...... 
'•. 

Mya arcnana 

projectmg chondrophore 

venlral margiu shell length 

Figure 2.8. Measurements taken of bivalve molluscs. Taken and adapted from Hayward 
& Ryland, (1990b, p733). 

• The nature and type of any epibiotic coverage was described in a similar fashion to 

that of the crustaceans (see page 36, above) and Figure 2.8 was used to describe their 

location. 

Class CEPHALOPODA, the squids and cuttlefishes 

• Mantle length was recorded for all squid and cuttlefish. 

2.3.3.1.5 Phylum BRYOZOA 

In the description of the bryozoan, the form of the specimen was used to define which 

measurements were taken. For example within the class Gymnolaemata, order 

Cheilostomatida, and family Hippoporinidae examples of Pentapora fascia/is had 3 

length measurements and weight of the colony recorded while examples of the family 

Cellariidae, (Cellaria sp) had only their weight taken, due to the fragility of the latter. 
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Examples of the family Flustridae (e.g. Flustrafoliacea) had a single length measurement 

and their weight recorded. 

2.3.3.1.6 Phylum ECHINODERMATA 

Echinoderms are morphologically varied therefore, each major type required different 

methods of measurement. Below this is detailed according to families and common 

species; with the classification taken from Howson & Picton, ( 1997), and further, 

clarifying, amendments from Hayward & Ryland, ( 1996). Their ease of repeatable 

measurement enabled many dimensions to be recorded and they were important to this 

study as echinoderms are large, benthic and relatively slow moving. 

Class Asteroidea 

Family Asteriidae, the starfish, (e.g. Asterias rubens L.). 

The description of starfish was complex because of their use by other researchers 

(Jenkins et al. , 200l ;Ramsay et al. , 2001a; 200 lb;Rogers et al., 200 1) as measures of 

trawling intensity. Starfish also tended to be both abundant and a significant component 

ofthe non-fish part ofthe san1ple, and thus were of particular interest. 

• Weight was recorded and the diameter of the central disk was measured to the 

nearest cm. 

Next, each arm was measured. The possible completeness categories were: 

• Separate arm. 

• Central disk, (likely to be from a specimen that had been totally smashed apart). 

• Central disc and one arm up to central disc with all arms intact i.e. the lowest unit 

capable of being counted as a starfish up to a whole specimen. 

The first two categories were not as useful as the third. The third category was especially 

useful, as from this it was possible to compare the numbers of intact specimens to those 
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damaged in quantifiable manner. Intact or nearly complete specimen could also more 

easily be examined for previous arm loss and regeneration. 

Marthasterias glacial is was analysed identically to A. rubens, as were members of 

the order Paxillosida, family Astropectinidae. Order Paxillosida, family Luidiidae were 

also analysed the same except that Luidia ci/iaris has seven arms, as were specimens 

from order Valvatida, family Poraniidae, (e.g. Porania pulvillus) and family 

Goniasteridae (e.g. Hippasteria phrygiana). Specimens of order Valvatida family 

Solasteridae (e.g. Crossaster papposus) were only measured according to maximum 

diameter because these are regular and do not appear to be particularly susceptible to 

damage; therefore measuring every arm (as for A. rubens) was unnecessary. 

Class Ophiuroidea, the brittle stars 

• All the Ophiuroidea were analysed the same as for the description of the fami ly 

Asteriidae. 

Class Holothurioidea, the sea cucumbers 

The Holothurians (e.g. Holothuria forskali) where individually bagged due to their 

tendency to spoi l other items with which they may come into contact. 

• They were measured according to their oral - aboral length (to the nearest cm) and 

weighed (to the nearest g). 

Class Echinoidea, the sea urchins 

These are considered separately as regular or irregular echinoids, (Hyman, 

1955;Lawrence, 1978). 

Order Echinoida, the regular echinoids 

The following measurements were taken: 
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• Echinoid length. This is analogous to oral-aboral length in the holothurians, and as 

such is actually the height of the echinoid, when in its usual attitude. 

• Echinoid width (measured at the widest part). 

• The oral test diameter. 

When recording weight it was important to ensure the specimen was fully thawed if 

previously frozen. 

Order Spatangoida, the irregular echinoids 

These are the family Spatangidae (Hayward & Ryland, 1996) or the order Spatangoida 

(Howson & Picton, 1997). The commonest examples are the heart urchins (e.g. 

Spatangus purpureus O.F. MUller). The following measurements were taken: 

• Echinoid length. Again, this is analogous to oral-aboral length in the holothurians, 

and as such is actually the height of the echinoid, when in its usual attitude. 

• Major and minor axis lengths were also taken to describe the irregular nature of the 

animal. 

• Oral test diameter. 

• Weight was recorded as for the regular Echinoids. 

2.3.3.2 Kingdom Plantae 

2.3.3.2.1 Phylum CHLOROPHYCOTA, 

CHROMOPHYCOTA,RHODOPHYCOTAand 

ANGIOSPERMAE 

Specimens of these groups were recorded as weight and length. Encrusting organisms 

were also noted. Only Zostera marina (L.) was included as an Angiosperm (see below). 

41 



Chapter 2 

2.3.3.3 Group Anthropogenica, Geologica and other 

Plantae 

Anthropogenica relates to all human derived material. Examples of these include fishing 

litter (line, bits of netting etc) and general litter (drink cartons, plastic packaging, shoes, 

car tires and pieces of coal and clinker). Geologica relates to substrate items, such as 

stones. Other Plantae were generally leaves washed into the sea. Weight and appropriate 

length measurements were taken of all these items. Additionally encrusting epibionts 

were also recorded. 

2.3.4 Data storage 

Data about the invertebrates and other (non-fish) material was also stored in an Excel 

spreadsheet with each row recording the information for one item. This approach 

allowed application of data filters, forms or pivot tables within Excel™, or enabled easy 

export of the data to Access™ or PRIMER-E (Clarke & Warwick, 2001a) and was based 

on those features described in the measurement of invertebrates from haul sampling, and 

laboratory processing, (pages 35 to 42, above). 

2.4 Species meta-data 
The species meta-data describes the taxonomic classification of the encountered species. 

The relevance of this was to enable the taxonomic relationship between different species 

to be determined. This forms the basis of the analysis in Chapter 6, though also runs 

through all analyses involving species, genera, family, order or classes of encountered 
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species. Table 2.2 shows records of two species to illustrate the development of the 

species meta-data. 

Table 2.2. Species meta-data. 

descriptor example1 example2 
genus Liocarcinus Marthasterias 
species holsatus g/acialis 
genus species Liocarcinus ho/satus Marthasterias glacia/is 
taxon-ID 826700 ZB2000 
taxon-name holsatus glacialis 
taxon-level 18 18 
parent 826660 ZB1990 

taxon taxon taxon 
name level name 

' 
# Name # 

kingdom 1 
phylum 2 CRUSTACEA (higher) S1 ECHINODERMATA ZBO 
sub-phylum 3 
super-class 4 
class 5 EUMALACOSTRACA 8350 ASTEROID EA ZB310 
sub-class 6 EUCARIDA 821180 
super-order 7 
extra-order 8a 
order 8 DECAPODA 821440 FORCIPULATIDA ZB1870 
sub-order 9 PLEOCYEMAT A 821680 
infra-order 10 BRACHYURA 825110 
section 11 BRACHYRHYNCHA 826500 
super-family 12 PORTUNOIDEA 826510 
family 13 Portunidae 826520 Asteriidae ZB1880 
sub-family 14 Polybiinae 826590 
tribe 15 
genus 16 Liocarcinus 826660 Marthasterias ZB1990 

sub-genus 17 
extra-species 18a 
species 18 ho/satus 826700 g/acia/is ZB2000 

sub-species 19 
variety 20 
[spare] 21 
synonym 22 

The classification was developed from Howson & Picton, (1997) and Picton & Howson, 

(1999). The later publication contains four electronic versions of the Species Directory 

though relevant here was the Access97™ file "SpeciesA.mdb" and the SPDIR table in 

particular. This table contains 14,874 taxonomic records and each record consists of four 

data: Taxon-ID, taxon-name, taxon-level and parent. The process of how the 

classification was developed is illustrated with the example of Liocarcinus holsatus 
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shown in Table 2.2. The taxon-name holsatus (taxon-m S26700) exists at a taxon-level 

of 18, (species). Taxon-ID has as a parent a taxon number of S26660, which exists at a 

taxon level of 16 (genus). Taxon-ID S26660 relates to a taxon name of Liocarcinus. 

Taxon-ID S26660, (Liocarcinus) has as a parent taxon-ID S26590, (Polybiinae) which 

exists at a taxon-level of 14, (sub-family). Taxon-ID S26590 has as a parent taxon-ID 

S26520 (Portunidae) which exists at a taxon-level of 13 (family). Thus, it was possible to 

construct a database query that would construct the classification of any taxon name 

(from its number) and link up each taxon-ID with its parent. This created a species to 

phylum classification tree containing 8,561 species, (but which could also be truncated at 

any ofthe 14,874 points) and which was entirely based on Picton & Howson, (1999). 

The query was constructed in such a way as to skip empty taxon levels whilst 

maintaining the pathway and deposit taxon-names and taxon-IDs at the correct taxon

level, and as shown by the two examples in Table 2.2 both the number of present names 

and their locations can be varied . The generated classification formed the basis of the 

aggregation file for the biodiversity of samples analysis in Chapter 6 (starting on page 

155, below). 

For this study two species needed to be added; Liocarcinus vernalis (Risso), 

(Ingle & Clark, 1998) for which the species L. vernalis was given a taxon-LD of S26735. 

The second species that needed to be added was rather surprisingly Zoslera marina L. 

The classification for this species was acquired from Picton (pers com.) and the suggested 

taxon-ID for L. vernalis was taken up in return. 
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3 Characteristics of the samples 

This Chapter presents general results of the sample collection. As shown on Figure 1.4 

(page 17, above) this Chapter is within the Sample Theme and covers Aim I however, 

many of the areas feed into later analyses, specifically: 

• Pattems within and between samples according to port and type of trawling, (Chapter 

5) and the taxonomic biodiversity (Chapter 6) of the samples, (Aim I , San1ple 

Theme). 

• Relationship between the samples and environmental (or abiotic) factors (Chapter 7 

and Chapter 8), {Aim 2, Environment Theme). 

• Relationship between the sample and the haul data (Chapter 9), (first presented in the 

conceptual diagram of Figure 1.3, on page 16 (above) and the relationship between 

these sampled boats and their respective markets (Chapter I 0), (Aim 3, Haul & 

Market Theme). 

The first section describes meta-data relating to the location and number (section 3. I) of 

sampling. 

The next three sections relate to the species. Section 3.2 (with particular links to 

Appendix C) presents the encountered species. It shows those classed as landed or 

discarded and which were amalgamated together in the haul data (the subject of Chapter 

9). Section 3.3 shows the most dominant species overall and according to port and type 
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of trawling. Section 3.4 presents an accumulation curve of all the species encountered 

with sample number to help determine the extent of the sampling effort (Willott, 2001). 

When collecting the sample its total weight inevitably varied. Section 3.5 

investigates this variability and addresses whether, and to what extent it constituted bias. 

Finally, section 3.6 examines the degree to which the landed and discarded fishes and 

non-fish part of the sample (Figure 1.3, page 16, above) varied across all the samples, 

according to port and type of trawling and the degree to which other factors contributed 

to the variation. 

3.1 Location and number of sampled hauls 
Figure 3.1 shows the location of all the hauls according to port and type of trawling. 
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Figure 3.1. Colour coded location of all hauls according to port and type of trawling. 
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Port and type of trawling 
-- N ewtyn single boat 

-- L.ooe single boat 

L.ooe pal r boat 

-- Plymouth single boat 

--- ---- Plymouth pair boat 

-- Salcombe single boat 
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The Newlyn hauls on Figure 3.1 denoted by let1ers ("aa" and "bb") were those that did not 

have accompanying samples, and are not included in the analysis. Only haul position was 

recorded for the Newlyn trip during Q2, '98 (see Table 3.2 on page 49 below). These 

hauls are shown by point symbols rather than as tracks on Figure 3.1. 

The coloW' coding of trawl track according to port and type of trawling, as shown 

on Figure 3.1 continues throughout the thesis. 

The full data set comprised 92 samples from 26 trips to sea, (see Table 3.1 ). 

Table 3.1. Number of hauls by port and type of trawling. 

port #of hauls 
type of trawling 

single boat pair boat total 
Newlyn 46 0 46 
Looe 11 9 20 
Plymouth 8 8 16 
Salcombe 10 0 10 
total 75 17 92 

Eighty-eight of the 92 hauls as described in Table 3.1 were usable in the analyses. Those 

not usable were hauls 7 and 8 from Newlyn on 29 August 1998 because of safety 

considerations (an electrical problem). Haul 11 on the same trip was not considered usable 

because the gear came fast after two and a half hours, and was found to be very badly 

damaged on hauling. Finally, very rough weather prevented sampling of haul 5 from 

Newlyn on 28 July 1999. 

The 88 hauls from which samples were taken were numbered sequentially (see page 

24, above) according to the order through time they were taken and along with the dates 

and numbers of usable samples are shown in Table 3.2. This sequential numbering was the 

key to the haul numbering throughout the study; on maps (Figure 3 .I , page 4 7, above) 

MDS plots (Figure 5.3, page 116 and Figure 5.4, page 118 below), and plots of taxonomic 

distinctness (Figure 6.1 , page 167 and Figure 6.2, page 169, below). 
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Table 3.2. Number of hauls by port and type of trawling (N- = Newlyn, L- = Looe, P- = 
Plymouth, S- = Salcombe; -S = single boat trawling, -P = pair boat trawl ing) according to 
year and quarters of the year; quarter I = January to March, quarter 2 = April to May, 
quarter 3 = June to August, and quarter 4 = September to December. Dates are the date on 
which the trip started. Also shown (below each trip details) are the sequential haul 
numbers. 

port type year and quarter with date and number of hauls 
1998 1999 2000 

2 3 4 1 2 3 4 1 
date # date # date # date # date # date # date # date 

N s 24-May 10 29-Aug 13 5-May 8 26-Jul 1 
28-Jul 10 

3 to 12 18 to 30 37 to 44 56 to 66 
L s 21-Apr 2 24-Jul 5 1-0ct 2 25-Feb 2 

1,2 13 to 17 31 ,32 35, 36 

# 

L p 23-Jun 2 7-Jul 3 21-0ct 2 18-Jan 2 
49,50 53,54,55 75,76 82,83 

p s 25-May 2 3-Sep 2 17-Nov 2 23-Mar 2 
45,46 69,70 80,81 87,88 

p p 10-Feb 2 7-Jun 2 5-Aug 2 6-0ct 2 
33,34 47,48 67,68 73,74 

s s 24-Jun 2 15-Sep 2 29-0ct 3 20-Jan 1 
21 -Jan 2 

51 ,52 71 ,72 77,78,79 84,85,86 

Table 3.2 shows that the first trip to Salcombe of 2000, (20 January 2000) only sampled 

one haul. Thjs was due to the gear becoming stuck fast and damaged during the first tow. 

The damage was substantial forcing the boat to return to port to make repairs. The 

sampled haul was taken during the afternoon. In order to meet objective 2 (section 1.6. 1) 

the following day' s fishing was also sampled. All three of these hauls were used in the 

analysis. A similar situation occurred for the hauls from Newlyn during the third quarter 

of 1999, though in this instance it was bad weather that forced the boat to return to port, 

(26 July 1999 - setting out again on 28 July). 
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The total species list is shown in Appendix C, (Table C.1 , page 348 and Table C.2, page 

349, below). The groups in these tables are presented according to the taxon identification 

code (Howson & Picton, 1997;Picton & Howson, 1999) and show the varying resolution 

(usually species) to which the taxonomy was classified. Left to right on these tables are 

the fine to coarse (species to kingdom) classification as illustrated by the examples shown 

in Table 2.2, (page 43, above). 

3.2.2 Landed and discarded fishes (including the 

shellfish) 
Table 3.3 shows 66 fish and shellfish species encountered in the landed or discarded part of 

the sample, with scientific and common names, and the taxon identification code according 

to Howson & Picton, ( 1997) and Picton & Howson, ( 1999). 
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Table 3.3. Fish and shellfish species encountered showing whether considered a landed or discarded (or both) species, and 
whether removed from the haul before processing. The list i sorted according to sample species code. Shellfish species are 
light! y highlighted. 

where found species cadet 

length: 
"0 weight gutted Q) 

"0 "0 Q) 
relationship exponent weight ... Ci Q) ea 

3 "0 u 
taxon ID E 3 genust speciest "a" t "b" t ratiot ea c en ea ea common name 

.s= .!!l '6 en .s= 

• ZG620 ANC Engraulis encrasicolus anchovy 0.0065 2.981 1 
• ZG890 ARG Argentina sphyraena argentine 0.0053 3.05 1 

• • ZG2180 BIB BIB Gadus luscus pout, whiting (pouting) 0.0038 3.3665 1 
• ZG8630 BLL BLL Scophthalmus rhombus brill 0.0055 3.3047 1.05 
• • ZF1350 BLR RAY Raja brachyura blonde ray 0.0218 2.955 1.12 
• ZG4730 BSE BSE Dicentrarchus /abrax bass 0.0074 3.0963 1 
• • ZG1730 COD COD Gadus morhua cod 0.007 3.087 1.17 

• ZG220 CON Conger conger conger 0.001 3.45 1 

• • S26460 CRE CRE Cancer pagurus edible crab 0.08593 3.117 1 
• • W23930 CTL CTL Sepia officina/is cuttlefish 0.47 2.73 1 
• • ZF1430 CUR RAY Raja naevus cuckoo ray 0.00089 3.486 1.13 
• • ZG8910 DAB DAB Limanda limanda dab 0.00545 3.195 1.07 

• ZG6990 DET Cal/ionymus spp . dragonet 0.003 3.2639 1 
• • ZG8990 FLE FLE Platichthys flesus flounder 0.0087 3.0978 1.08 

• ZF410 GSD Scyliorhinus stellaris greater spotted dogfish I 0.0035 3 1 
bullhuss. 

• • ZG4080 GUG GUX Eutrigla gurnardus gurnard (grey) 0.0062 3.1003 1 

• ZG4040 GUL GUX Aspitrigla obscura gurnard (long-finned) 0.0045 3.228 1 
• • ZG4210 GUS GUX Trigloporus lastoviza gurnard (streaked) 0.0045 3.228 1 
• • ZG4160 GUT GUX Trigla lucema tub gurnard 0.008 3.061 1 
• • ZG4030 GUX GUX Aspitrigla cuculus gurnard (red) 0.0045 3.228 1 
• • ZG1820 HAD HAD Melanogrammus aeglefinus haddock 0.015 2.8268 1.16 
• • ZG490 HER HER Clupea harengus herring 0.0059 3.0904 1 
• • ZG2240 HKE HKE Merluccius merluccius hake 0.0047 3.099 1.16 
• • ZG5080 HOM HOM Trachurus trachurus scad, horse mackerel 0.0034 3.2943 1 
• • ZG3160 JOD JOD Zeus faber John Dory 0.0229 2.9343 1 
• • ZG8950 LEM LEM Microstomus kitt lemon sole 0.00756 3.142 1.04 
• • ZG1960 UN UN Molva molva ling 0.00407 3.07 1.15 
• • ZF400 LSD LSD Scyliorhinus canicu/a lesser spotted dogfish 0.0035 3 1 
• • ZG8000 MAC MAC Scomber scombrus Atlantic mackerel 0.003 3.29 1 
• • ZG8500 MEG MEG Lepidorhombus whiffiagonis megrim 0.00245 3.321 1.05 
• ZG1350 MOB MON Lophius budegassa black-bellied angler 0.0257 2.8866 3 
• ZG1360 MON MON Lophius piscatorius monkfish I anglerfish 0.0153 2.9979 3 

• ZG5760 MUG Mugilidae spp . grey mullets 0.0148 2.9034 1 
• • ZG5680 MUR MUR Mu/Ius surmuletus red mullet 0.0047 3.3088 1.13 

• W25160 OCT Octopus I Eledone spp . octopus 0.04 3 1 
• ZG2190 PCO Trisopterus minutus poor cod 0.0092 3.0265 1 

• • ZG530 PIL PIL Sardinia pilchardus pilchard (sardine) 0.00213 3.4746 1 
• • ZG9030 PLE PLE Pleuronectes platessa plaice 0.0089 3.053 1.07 

• ZG4480 POG Agonus cataphractus pogge 0.0196 2.6139 1 
• ZG2090 POK Pollachius virens blackjack, saithe, 0.0099 2.99 1.19 

coalfish, coley, drummer 
• • ZG2080 POL POL Pollachius pollachius Pollack 0.0099 2.99 1.14 
• • ZG8730 SCA none Arnoglossus laterna scaldfish 0.008 3 1 

• ZG8720 SCI Arnoglossus imperialis imperial scaldfish 0.008 3 1 

• ZG18050 sea Aequipecten opercu/aris queen scallop 0.174 3 1 
• S25530 SCR Maja squinado spider crab 0.554 2.886 1 

• • W18090 sex sex Pecten maximus scallop 0.174 3 1 
• ZG6860 SDL Ammodytes tobianus lesser sand eel 0.00097 3.32 1 

• ZF1410 SEA RAY Raja microocellata small-eyed ray 0.0099 3.2051 1.13 
• ZG430 SHD SHD Alosa sp shad 0.0096 2.981 1 

• ZG830 SME Osmerus eperlanus smelt 0.07 2.9694 1 
• ZF550 SMH Mustelus mustelus smooth hound 0.004 3 1 

• • ZG9290 SOL So/ea so/ea Dover sole 0.00762 3.068 1.05 
• ZF1420 SPO SOL Raja montagui spotted ray 0.0027 3.23 1.13 
• ZG570 SPA Sprattus sprattus sprats 0.00194 3.4746 1 

• • W24300 sac sac Loligo sp squid (unspecified) 0.041 3 1 
• W24310 SaC( F) sac Loligo forbesii squid (commercial) 0.041 3 1 
• • W24320 SaC( V) sac Loligo vulgaris squid (commercial) 0.041 3 1 

• W24350 SaF;J: Alloteuthis :J: sp squid (non-commercial) 0.04 3 1 
• ZF560 SSH Mustelus asterias starry smooth hound 0.002 3.1164 1 

• ZF1460 STR RAY Raja radiata starry skate (Amblyraja 0.0409 2.8965 1 
radiata) on FishBase 

• • ZF1360 THR RAY Raja clavata thornback ray 0.0187 3.0062 1 
• • ZF1470 UDR RAY Raja undulata undulate ray 0.0099 3.2051 1.13 
• • ZG1900 WHB WHG Micromesistius poutassou blue whiting 0.0075 3.027 1 
• • ZG1860 WHG WHG Merlangius merlangus whiting 0.00556 3.104 1.13 
• • ZG5860 WRA WRA unspecified unspecified wrasses 0.0048 3.3175 1 

• ZG3210 ZUL Capros aper zulu (boarfish) 0.22 1.97 1 

t See Appendix C (Table C.l , page 348 and Table C.2, page 349, below) for higher classification levels. 'a' and 'b' values and 
the gutted weight ratio are from Coull et al. , (1989) and Lart (pers corn.) and are shown to the precision provided. 

i Alloteuthis sp (SQF) was included here (though this species was always discarded) as it was measured at sea and later 
converted to weight. It is highlighted as a non-fish species, (see Table 3.4, page 54 and Table 3.5, page 56, below). 
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The first three columns in Table 3.3 detail the fate (landed or discarded) of each species. 

Two species (conger, Conger conger and saithe Pollachius virens) were found in the haul 

but were absent from the samples (therefore are absent from Table 3.4 and Table 3.5. 

Large size was the reason for not sampling conger as described in section 2.2.2 (see 

Figure 2.5 , page 29, above). Saithe was not sampled simply because it did not occm in 

the sampled volumes. Indeed saithe was quite a rare fish species, being the third most 

rare across the whole of the haul weight (these species are included Table 3.3 as they 

were analysed in Chapter 10 (when relating the haul data with the market throughput). 

Column four shown the taxon ID according to Picton & Howson, ( 1999). Column 

five shows the codes for each species, arranged in alphabetical order of the generally 

three-letter species codes. These codes were largely derived from those employed by The 

SeaFish Industry Authority (e.g. as used by Course et al. , 1996) These are meant to be 

self explanatory, though they are not scientific terms, and care needs to be taken to ensure 

there is no confusion between species and operators; between this study and others. The 

species codes on landing data (column six) shows the codes assigned to species in the 

haul composition. It can be seen that many of these are the same as for column five, but 

importantly they show which species were combined together by the fishermen and are 

treated together for analysis. Examples of this practice were common for the gumards, 

squids, and rays, and less commonly for monkfish, and whiting, where occasionally a 

black-bellied monkfish or blue whiting respectively was included in the haul. Fmther 

examination of these categories is presented in Chapter 9 and Chapter 10. 

The scaldfish has "none" for its haul code because while it did occm in a sample 

designated to be landed these fish were discarded by crews. The next three colwnns 

describe the classification (as genus and species) and common narne(s) of the species. 

The last three columns detail the length:weight relationship, exponent and gutted 

weight ratio. Most of these data were acquired from Coull et al., (1989) or Lart (pers. 

corn). These values did not appear to generate reliable weight from length data for the 
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dragonet (Calliony mus sp ) via the batch weighting of species the conversion values were 

not available for the starry smooth hound (Mustelus asterias). Appendix B describes how 

these data were acquired. The 8 shellfish species were included in Table 3.3 as when 

these occurred in the landed part of the sample they were measured at sea and these data 

were converted to weight. Without these shellfishes, there were 54 fish species. 

3.3 Species composition in the sample 

3.3 .1 Species composition across all samples 

Table 3.4 shows the rank-order of species across all samples by weight. 
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Table 3.4. The rank-order of species from all samples, showing their individual weight contribution (g), and individual (% 2 d.p. ) and cumulative contribution, (% 2 d.p. ) for all species. Lines demarcate those 
species that cumulatively contribute to 95 % and the most dominant 60 species. Species that occurred onJy in the non-fish part of the sample are strongly highlighted and shellfish species are lightly highlighted in 
yellow. Items described in section 2.3.3.3, 'Group Anthropogenica, Geologica and other Plantae' are highlighted in blue. Some genus names (marked *) have been shortened for clarity. 

# species wt % c% # species wt % c% # species wt % C 0/o # species wt % c% 

1 Aspitrigla cuculus 408,854.6 13.95 13.95 49 Me/anagram• aeglefinus 2,167.0 0.07 99.10 97 Engraulis encrasicolus 86.3 0.00 99.97 145 Halarachnion 1/gulatum 2.6 0.00 100.00 

2 Merlang/us merlangus 366,308.2 12.50 26.45 50 C/upea harengus 1,737.5 0.06 99.16 98 Corystes cassive/aunus 68.0 0.00 99.97 146 Lafoea dumosa 2.6 0.00 100.00 

3 Trisopterusluscus 231 ,652.3 7.90 34.35 51 Aspitrigla obscura 1,513.9 0.05 99.21 99 Flustra fo/iacea 67.3 0.00 99.97 147 Obelia dichotoma 2.5 0.00 100.00 

4 Gadus morhua 189,020.4 6.45 40.80 52 Aequipecten opercularis 1,455.6 0.05 99.26 100 Nemertesia antennina 63.8 0.00 99.97 148 Polysiphonia elongata 2.2 0.00 100.00 

5 Zeus faber 178,091.6 6.08 46.87 53 Scyliorhinus stellaris 1,396.2 0.05 99.31 101 Ophiura ophiura 63.8 0.00 99.98 149 Macropodia linaresi 1.9 0.00 100.00 

6 Loligo vulgaris 174,266.5 5.95 52.82 54 Luidia ciliaris 1,296.2 0.04 99.35 102 bone 62.7 0.00 99.98 150 Obe/iasp 1.9 0.00 100.00 

7 Microstomus kill 174,159.5 5.94 58.76 55 litter 1,269.8 0.04 99.40 103 Echinussp 53.6 0.00 99.98 151 Abietinaria ablelina 1.7 0.00 100.00 

8 Scyliorhinus canicula 126,225.4 4.31 63.07 56 Labridae 1,017.9 0.03 99.43 104 Fucus seffBtus 45.3 0.00 99.98 152 Anomia ephippium 1.7 0.00 100.00 

9 Loligosp 91,660.7 3.13 66.19 57 coal 1,000.9 0.03 99.47 105 Liocarcinus sp 37.6 0.00 99.98 153 Diphasia pinaster 1.6 0.00 100.00 

10 Pleuronectes platessa 88,659.5 3.02 69.22 58 Gel/aria sp 961.5 0.03 99.50 106 Pentapora fascia/is 31.0 0.00 99.99 154 Caryophylfia smlthii 1.5 0.00 100.00 

11 Trachurus trachurus 83,298.4 2.84 72.06 59 Echinus elegans 933.3 0.03 99.53 107 Acanthocardia echinata 30.3 0.00 99.99 155 Abietinaria filicu/a 1.3 0.00 100.00 

12 Marthasterias glacialis 76,562.1 2.61 74.67 60 Sardina pilchardus 931 .6 0.03 99.56 108 Botryllus schlosseri 24.7 0.00 99.99 156 Mastocarpus stellata 1.3 0.00 100.00 

13 Loligo fortJesii 70,038.3 2.39 77.06 61 Buccinum undatum 817.3 0.03 99.59 109 Atrina tragi/is 23.2 0.00 99.99 157 Sertularella gayi 1.3 0.00 100.00 

14 Scomber scombrus 61,670.2 2.10 79.17 62 Arnoglossus /sterna 734.6 0.03 99.62 110 Ophiura affinls 22.4 0.00 99.99 158 Ectocarpus siliculosus 1.2 0.00 100.00 

15 Raja brachyura 59,459.1 2.03 81 .19 63 Sprattus sprattus 719.1 0.02 99.64 111 Nemertesia ramosa 22.0 0.00 99.99 159 Delesseria sangulnea 1.1 0.00 100.00 

16 Limanda limanda 58,952.0 2.01 83.21 64 Astropecten irregularis 716.2 0.02 99.66 112 Luidiasp 21.4 0.00 99.99 160 Galathea dispersa 1.1 0.00 100.00 

17 Raja clavata 52,531 .9 1.79 85.00 65 T rigloporus lastovim 715.5 0.02 99.69 113 Sertularel/a po/yzonias 18.8 0.00 99.99 161 Ha/urus equisetifolius 1.0 0.00 100.00 

18 Lophius piscatorius 48,119.3 1.64 86.64 66 Liocarcinus marmoreus 567.3 0.02 99.71 114 Eunicella verrucosa 17.2 0.00 99.99 162 K/rchenpaueria pinnata 0.9 0.00 100.00 

19 Lepid* whiffiagonis 31,394.9 1.07 87.71 67 Porania pulvillus 553.6 0.02 99.73 115 Anseropoda placenta 15.4 0.00 99.99 163 Membranipora membranacea 0.9 0.00 100.00 

20 Raja naevus 27,777.8 0.95 88.66 68 stone 497.9 0.02 99.74 116 Ascophyllum nodosum 14.1 0.00 99.99 164 Halecium bean/i 0.8 0.00 100.00 

21 Raja radiata 23,536.6 0.80 89.46 69 Arnoglossus imperialis 494.8 0.02 99.76 117 Halecium haleclum 13.0 0.00 99.99 165 Palliolum tigerinum 0.8 0.00 100.00 

22 Sepia officina/is 23,060.1 0.79 90.25 70 Alcyonium digilatum 467.0 0.02 99.78 118 Macropodia tenuirostris 12.9 0.00 99.99 166 Cal/ophyllis /aciniata 0.5 0.00 100.00 

23 Merluccius mer/uccius 22,676.1 0.77 91.02 71 Micromesistius poutassou 464.3 0.02 99.79 119 Aporrhais pespe/ecani 12.3 0.00 99.99 167 Fucus ceranoides 0.5 0.00 100.00 

24 Eutrigla gurnardus 21 ,380.4 0.73 91.75 72 Echlnus acutus 435.5 0.01 99.81 120 leaf 12.0 0.00 99.99 168 Rhlzocaulus verticillatus 0.5 0.00 100.00 

25 Platichthys flesus 21,045.2 0.72 92.47 73 G/ycymeris glycymeris 389.3 0.01 99.82 121 Macropodia deflexa 10.6 0.00 99.99 169 Achaeus cranchii 0.4 0.00 100.00 

26 Trisopterus minutus 20,641 .6 0.70 93.17 74 Raja montagui 372.0 0.01 99.83 122 Polyclinum aurantium 10.6 0.00 99.99 170 Galathea strigosa 0.4 0.00 100.00 

27 Pollachius pol/achius 19,086.3 0.65 93.82 75 Alloteuthis subulata 332.1 0.01 99.85 123 Himanthalia elongata 9.0 0.00 99.99 171 Gelidium crinale 0.4 0.00 100.00 

28 Cancer pagurus 16,158.8 0.55 94.38 76 Liocarcinus corrugatus 328.5 0.01 99.86 124 Pagurus prideaux 8.8 0.00 100.00 172 Macropodia rostrata 0.4 0.00 100.00 

29 Raja microocel/ata 14,986.9 0.51 94.89 77 Alosa sp 322.8 0.01 99.87 125 Crepidula fomicata 7.8 0.00 100.00 173 Sertularella tenella 0.4 0.00 100.00 

30 Calfionymus sp 14,143.4 0.48 95.37 78 Crossaster papposus 269.1 0.01 99.88 126 Akera bullata 7.5 0.00 100.00 174 Amph/sbetla operculata 0.3 0.00 100.00 

31 Scophthalmus rhombus 13,281.4 0.45 95.82 79 Aphrodita aculeata 233.6 0.01 99.88 127 Sertularia cupressina 7.4 0.00 100.00 175 Obelia bidentata 0.3 0.00 100.00 

32 Asterias rubens 13,277.0 0.45 96.27 80 Liocarcinus verna/is 201.4 0.01 99.89 128 Calliblepharis ciliata 7.0 0.00 100.00 176 Polyslphonia nigra 0.3 0.00 100.00 

33 Echinus esculentus 10,942.9 0.37 96.65 81 Pagurus bemhardus 194.9 0.01 99.90 129 Pisidia longicomls 6.5 0.00 100.00 177 Securiflustra securifrons 0.3 0.00 100.00 

34 Mustelus aster/as 10,722.9 0.37 97.01 82 Spatangus purpureus 193.8 0.01 99.90 130 Ammodytes tobianus 6.2 0.00 100.00 178 Trivia arctica 0.3 0.00 100.00 

35 Dicentrarchus labrax 9,021.5 0.31 97.32 83 Argentina sphyraena 188.9 0.01 99.91 131 Stefligera stuposa 5.9 0.00 100.00 179 Utva lactuca 0.3 0.00 100.00 

36 Mu/Ius surmuletus 6,903.5 0.24 97.56 84 DECAPODA 167.3 0.01 99.92 132 S. canicu/a (eggcase) 5.6 0.00 100.00 180 Zostera marina 0.3 0.00 100.00 

37 Pecten maximus 6,686.8 0.23 97.79 85 Mugilsp 150.5 0.01 99.92 133 Scrupocel/aria sp 5.5 0.00 100.00 181 Diphasia rosacea 0.3 0.00 100.00 

38 Trigla /ucerna 5,135.8 0.18 97.96 86 Chaetopterus varlopedatus 146.4 0.00 99.93 134 Ophiura sp 5.1 0.00 100.00 182 Diphasia a/ala 0.2 0.00 100.00 

39 Maja squinado 4,883.4 0.17 98.13 87 Osmerus eperlanus 142.2 0.00 99.93 135 Palmaris palmata 4.8 0.00 100.00 183 Heterosiphonia plumosa 0.2 0.00 100.00 

40 Molva molva 4,137.9 0.14 98.27 88 Agonus cataphractus 129.5 0.00 99.94 136 Diphasia attenuata 4.4 0.00 100.00 184 Perinereis cultrifera 0.2 0.00 100.00 

41 Liocarcinus depurator 3,898.0 0.13 98.40 89 Holothuria forska/1 123.8 0.00 99.94 137 Obelia longisslma 4.1 0.00 100.00 185 Pteroc/adia capil/acea 0.2 0.00 100.00 

42 Liocarcinus ho/satus 3,387.5 0.12 98.52 90 Hippasteria phrygiana 114.9 0.00 99.94 138 lnschus /eptochirus 3.9 0.00 100.00 186 Actin/a equina 0.1 0.00 100.00 

43 Raja undu/sta 3,023.2 0.10 98.62 91 lnachus dorsettensis 108.7 0.00 99.95 139 Uocarcinus pus/1/us 3.7 0.00 100.00 187 Aglaophenis kirchenpaueri 0.1 0.00 100.00 

44 Lophius budegasss 2,574.3 0.09 98.71 92 Capros aper 103.8 0.00 99.95 140 Hydral/man/a falcata 3.6 0.00 100.00 188 Enteromorphs sp 0.1 0.00 100.00 

45 Necora puber 2,459.3 0.08 98.79 93 Rossla macrosoma 100.4 0.00 99.96 141 Lytocarpia myriophyffum 3.3 0.00 100.00 189 Monotheca ob/iqua 0.1 0.00 100.00 

46 So/ea soles 2,417.3 0.08 98.87 94 PORI FE RA 100.0 0.00 99.96 142 Ga/athea intermedis 3.0 0.00 100.00 190 Pycnogonum littorsle 0.1 0.00 100.00 

47 Octopodidse 2,250.0 0.08 98.95 95 Loliginidae 99.2 0.00 99.96 143 Eudendrium ramosum 3.0 0.00 100.00 191 Tsmarisca tsmar/sca 0.1 0.00 100.00 

48 Chrysaora hysoscella 2,250.0 0.08 99.03 96 Polybius henslowii 95.8 0.00 99.97 144 Chondrus crispus 2.8 0.00 100.00 
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Table 3.4 shows that the most abundant fish species in the sample were the red gurnard 

followed by whiting, bib, cod, John Dory, European squid, lemon sole, lesser spotted 

dogfish, unspecified (usually damaged) squid then plaice. These 10 species or groups 

comprised nearly 70% ofthe sample. 

Table 3.4 also shows that across all the samples only one non-fish species (M 

g/acia/is, rank 12) occurred in the top 30 which made up > 95 % of the sample. A further 

two species within the top 30, Loligo vulgaris and L. forbesii (rank 6 and 13 respectively) 

were shellfishes. Loligo sp, (rank 9) was where the identification could not be carried to 

species level. 

The prominence of M g/acialis in Table 3.4 was due to its large size. The mean 

weight of the fishes was 275 g across all the samples although the average weight of 

complete M. glacialis across all of the samples was 505 g and including damaged 

specimen, this was 201 g. 

3.3.2 Species composition according to port and type 

of trawling 
Table 3.5 shows the rank-order by weight of species in the sample by port and type of 

trawling. 
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Table 3.5. The rank-order of species by weight from all samples according to p01t and type of trawling, and showing their individual (% 1 d.p.) and 
cumulative contribution, (% 0 d.p.) for the top 70 specie . Lines demarcate those species that cumulatively contribute to 95 % and the most dominant 60 
species. Species that occurred only in the non-fish part of the sample are strongly highlighted and shellfi h species are lightly highlighted in yellow. Items 
described in section 2.3.3.3, 'Group Anthropogenica, Geologica and other Plantae' are highlighted in blue. Some genus names (marked *) have been 
o h.nrt.:: .. ·~-.o.rl .f.,.... .. -J.::l.....;_;.,, <J ·-- --- - ,-- · ---- ---- - ~---·-·--

0.0 100 litter 0.0 100 Ophlura ophiura 0.0100 itter 0.0 100 Liocarcinus corrugatus 0.01 Liocarcinus corrugatus 
0.0 100 Spatangus purpureus 0.0 100 phrodita aculeata 0.0100 Liocarcinus vemalls 0.0 100 gonus cataphractus 0.01 ~stropecten irregularis 

0.0 100 Chaetop• variopedatus 0.0 100 1/oteuthis subulata 0 .0100 Echinus e/egans 0.0 100 iocarcinus vemalis 0.010 lnachus dorsettensis 

0.0 100 Porania pulvillus 0.0 100 Chaetop• variopedatus 0.0100 Glycymeris glycymeris 0.0 100 0.01 O~Col)lstes cassivelaunus 

uccinum undatum 0.0 100 PORIFERA 0.0 100 0.0100 Pagurus bemhardus 0.0 100 0.0 10 DECAPODA 

Glycymeris glycymeris 0 .0 100 0.0 100 0.0 100 o.o10d canthocardia echinata 

1/oteuthis subulata 0.0 100 0 .0 100 Uocarcinus vemalis 0.0 100 Nemertesia antennina 0.010 

0 .0 100 0.0 100 scophy/lum nodosum 0.0 100 DECAPODA 0.010 Nemertesia antennina 

0.0 100 0.0 100 Pagurus bemhardus 0.0 100 Col)lstes cassivelaunus 0.010 porrhals pespelecani 

0.0 100 0.0 100 Sertularella po/yzonias 0.0100 Col)lstes cassivelaunus 0.0 100 ·ocarcinus marmoreus 0.010 gonus cataphractus 

0.0 100 0.0 100 Nemertesla ramosa 0.0100 0.0 100 lnachus dorsettensls 0.010 loteuthls subulata 

0.0 100 0.0 100 /nachus dorsettensis 0.0 100 Loliginidae 0.010 

Rossia macrosoma 0.0 100 0.0 100 Macropodia tenuirostris 0.0100 trina tragi/is 0.0 100 Flustra foliacea 0.010 Ophiura affinis 

equipecten opercularis 0.0 100 0 .0 100 Himanthalia elongata 0.0100 Sprattus sprattus 0.0 100 Sertularella polyzonias 0.010 ~kera bul/ata 
patangus purpureus 0.0 100 0 .0 100 Fucus serratus 0.0100 Ophlura ophiura 0.0 100 Diphasia attenuata 0.010~repidu/a fomicata 

0.0 100 lnachus dorsettensis 0 .0 100 Nemertesia antennina 0.0100 1/oteuthis subulata 0.0 100 Macropodia def/exa 0.01 o~can;bleplwls cUJa" 
0.0 100 Uocarcinus corrugatus 0.0 100 Stelligera stuposa 0 .0100 Halecium haleclum 0.0 100 Nemertesia ramosa 0.010 mmodytes tobianus 

0.0 100 Cellaria sp 0.0 100 Ophiura affinls 0.0100 Loliginidae 0.0 100 Obelia longlssima 0.01 OOPalmaria palmata 

0.0 100 Capros aper 0.0 100 Ophiura sp 0 .0100 Pagurus prideaux 0.0 100 Stel/igera stuposa 0.010~/ocarcinus pus/1/us 
0.0 100 Nemertesia antennina 0.0 100 0 .0100 Nemertesia ramosa 0.0 100 Halecium halecium 0.010~acropodia deflexa 
0.0 100 canthocardla echinata 0.0 100 0 .0100 Flustra foliacea 0.0 100 H drallmania falcata 0.010 Chaeto terus vario edatus 
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Table 3.5. The rank-order of species by weight from all samples according to port and type of trawling, and showing their individual (% 1 d.p.) and 
cumulative contribution, (% 0 d.p.) for the top 70 pecies. Lines demarcate tho e specie that cumulatively contribute to 95 % and the most dominant 60 
species. Species that occurred only in the non-fi h part of the sample are strongly highlighted and shellfish species are lightly highlighted in yeiJow. Items 
described in section 2.3.3.3, 'Group Anthropogenica, Geologica and other Plantae' are highlighted in blue. Some genus names (marked *) have been 
shortened for clarity. 

Newtyn 

Microstomus kitt 
Marthasterias glacialis 
Trachurus trachurus 

Loligo vulgaris 

Merfuccius merluccius 
Merlangius merfangus 

Scophthalmus rhombus 

Looe single 

21.9 22 erlangius merfangus 

12.6 34 spitrigla cucu/us 
12.1 47 Trisopterus luscus 

6.5 53 oligo vulgaris 
6.2 59 Microstomus kilt 
5.5 65 Limanda limanda 
4.8 70 Scomber scombrus 

3 .8 73 Scyliorhinus canicu/a 
2.8 76 Pleuronectes platessa 

2.8 79 Trachurus trachurus 

2 .5 81 Raja brachyura 

1.9 83 Loligo forbesii 

1.9 85 Raja clavata 
1.8 87 eus faber 

1.8 89 Marthasterias glacialis 
1.5 90 Gadus morhua 

1.1 91 Eutrigla gumardus 
1.0 93 Raja microocellata 

1 .0 94 Platichthys flesus 

-t:-=::.=c.=c.==::.=c=-----'0:..:.. 9::_.-=-94-'--!Raja undulata 

uidia ciliaris 

Ca/1/onymus sp 

ocarcinus holsatus 

Raja montagui 

uccinum undatum 
Glycymeris glycymeris 

1/oteuthis subulata 

0.7 95 Dicentrarchus labrax 
0.6 96 Lophius budegassa 

0 .5 96 Cancer pagurus 
0.5 97 Callionymus sp 
0 .3 97 Ra·a naevus 

0.3 97 sterias rubens 
0.3 98 Pollachius pollachius 

0 .2 98 Mu/Ius surmuletus 
0.2 98 Trisopterus minutus 

0.2 98 Pecten maximus 
0.1 98 Lophius piscatorius 

0.1 98 Uocarcinus depurator 

0.1 99 Echinus esculentus 
0.1 99 
0.1 99 epid• whiffiagonis 

0 .1 99 olva molva 
0.1 99 

0.1 99 
0.1 99 
0.1 99 Sepia officina/is 

0.1 99 stropecten irregularis 
0.1 99 Trigla lucema 

0.1 99 Maja squinado 
0.0 99 Loligo sp 

0.0 100 Echinus elegans 

0.0 100 oal 

0.0 100 

0.0 100 
0.0 100 
0.0 100 itter 

0.0 100 patangus purpureus 

0.0 100 Chaetop• variopedatus 
0.0 
0.0 

0.0 100 

0.0 
0.0 100 
0.0 100 

0 .0 100 
0.0 100 

0 .0 100 

0.0 100 Pagurus bemhardus 

0.0 100 Glycymeris glycymeris 

0 .0 100 phrodita aculeata 

0 .0 100 lnachus dorsettensis 
0.0 100 Uocarcinus corrugatus 

0.0 100 Gel/aria sp 
0.0 100 Capros aper 
0.0 1 00 Nemertesia antennina 

0.0 100 canthocardia echinata 

% c% 

16.3 16 

11 .9 28 
11.4 40 

9.7 49 

8.6 58 

Looe pair 

ecies 

Merfangius merfangus 

oligo vulgaris 

spitrigla cuculus 
5.6 64 Pleuronectes platessa 
4.9 68 Scyliorhinus canicula 

4.1 73 Trisopterus minutus 
4 .0 77 Limanda limanda 

2.6 79 Loligo sp 
1.8 81 Gadus morhua 

1 .5 83 Callionymus sp 

1.5 84 eus faber 
1.5 85 Scomber scombrus 

1.4 87 Platichthys flesus 
1.2 88 Trachurus trachurus 

1.2 89 Loligo forbesii 
0.8 90 

0.8 91 
0.7 92 Lepid• whiffiagonis 

0.7 92 Trigla lucema 
0 .7 93 Raja naevus 
0 .6 94 Eutrigla gumardus 
0.6 94 Liocarcinus depurator 
0.5 95 Mu/Ius surmuletus 

0.5 95 Dicentrarchus labrax 
0.4 96 Marthasterias g/acialis 

0.4 96 Sprattus sprattus 
0.4 96 

0.4 97 
0.3 97 
0 .3 97 

0.3 98 

terias rubens 

0.2 98 rnoglossus imperialis 
0.2 98 Liocarcinus holsatus 

0.2 98 Echinus esculentus 

0.2 99 So/ea so/ea 

0.1 99 itter 

0.1 99 Gel/aria sp 
0.1 99 Engraulis encrasicolus 

0.1 99 Necora puber 
0.1 99 stropecten irregularis 

0.1 99 Liocarcinus corrugatus 

0.1 99 Pecten maximus 

0.1 99 moglossus latema 
0.1 99 Uocarcinus marmoreus 
0.1 99 

0.1 100 
0.1 100 
0.0 100 
0 .0 100 

0.0 100 

Sepia officina/is 
lcyonium digltatum 

Ophiura ophiura 
phrodlta acu/eata 

lloteuthis subulata 
0.0 100 Chaetop• variopedatus 

0.0 100 Capros aper 

0.0 100 
0.0 100 Uocarcinus vemal/s 

0.0 100 scophyl/um nodosum 
0.0 100 Pagurus bemhardus 

0.0 100 Sertularella polyzonias 

0.0 100 Nemertesla ramosa 

0.0 100 /nachus dorsettensis 

0 .0 100 Macropodia tenuirostris 

0.0 1 00 Himanthalia e/ongata 

0.0 1 00 Fucus serratus 
0.0 1 00 Nemertesla antennina 
0 .0 1 00 Stelligera stuposa 
0.0 1 00 Ophiura affinis 

0.0 100 Ophiura sp 
0.0 100 

0.0 100 

% c% 

41 .0 41 

10.6 52 

7.2 59 
5.2 64 

Plymouth single 

4.8 69 icrostomus kilt 
4.0 73 spitrigla cuculus 
3.0 76 Scyliorhinus canicula 

2.2 78 aja clavata 

% c% 

11.3 11 

10.8 22 

8.3 30 
6.9 37 

6 .0 43 

Plymouth pair 

ecies 

Merlangius merfangus 
spitrigla cuculus 

5.9 49 Trisopterus luscus 
5.1 54 icrostomus kitt 

5.1 59 Scomber scombrus 

2.2 80 Limanda limanda 4.1 63 Scyliorhinus canicu/a 
2.2 82 Lophius piscatorius 3.5 67 Lophius piscatorius 

2.0 85 Gadus morhua 3.4 70 Sepia officina/is 

1.8 86 Mustelus asterias 3.2 74 Trachurus trachurus 
1.7 88 Sepia officina/is 2.9 76 Loligo forbesii 

1.5 90 Raja brachyura 2.7 79 eus faber 

1.5 91 2.5 82 Raja clavata 

Salcombe 

% c% ecies 

24.9 25 Mertangius mertangus 
8.5 33 Loligo vulgaris 

6.3 40 Trisopterus luscus 
5.6 45 Scy/iorhinus canicula 

5.5 51 Raja brachyura 
5.0 56 spitrigla cuculus 
4.5 60 Loligo forbesli 
4.4 65 Pleuronectes platessa 

1.4 2.2 84 Gadus morhua 1.9 88 Trisopterus minutus 
1.0 2.2 86 Eutrigla gumardus 1.8 90 Raja clavata 

0.8 1.9 88 Raja brachyura 1.7 91 Se ia officina/is 

0.7 1.4 89 Platichthys flesus 1.6 93 Eutrigla gurnardus 

0.7 96 Trisopterus minutus 1.2 91 p====-==='------'-1:..:.3:......::9_,4 Umanda limanda 
0.5 96 Callionymus sp 1.1 92 1.0 95 Callionymus sp 
0.5 97 arthasterias glacialis 1 .0 93 0.8 96 epid• whfffiagonis 
0.5 97 Cancer pagurus 0.7 93 
0.4 97 0.7 94 

0.4 98 F-=:=.:.=::....:-===---~0:..:... 7--=9..::.5-1 
0.3 98 0.5 95 
0.3 98 0.5 96 

0.2 0.5 96 

0.2 elanogram• aeglefinus 0.4 97 

0.1 99 Platichthys flesus 0.3 97 
Q1 ~ ~ 

0.1 Q3 ~ 

0.1 99 0 .3 98 Buccinum undatum 
0.1 99 0.3 98 Echinus esculentus 
0.1 99 0.2 98 Loligo sp 

·ocarcinus holsatus 

0.1 100 oligo forbesli 
0.0 100 Echinus esculentus 
0.0 100 Liocarcinus depurator 

0.0100 
0.0100 

0.0100 

0.0100 
0.0100 

0.0100 
0.0100 stropecten irregularis 

0.0100 
0.0 100 equipecten opercularis 
0.0 100 litter 

0.0 100 iocarclnus vemalls 

0.0 100 Echlnus elegans 
0.0 100 G/ycymeris g/ycymeris 

0.0 100 Pagurus bemhardus 

0.0 100 hrodita aculeata 

0.0 100 trina tragi/is 

0.0100 Sprattus sprattus 

0.0100 Ophiura ophiura 
0.0100 
0.0100 
0.0 100 oliginidae 

0.0 100 Pagurus prideaux 
0.0100 emertesia ramosa 

0.0 100 Flustra foliacea 
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0.2 98 Pecten maximus 

0.2 99 Raja naevus 

0.2 99 Micromesistius poutassou 

0.2 99 
0.1 99 e 
0.1 99 

0.1 99 
0.1 99 

0.1 99 chinus elegans 
0.1 1 00 Crossaster papposus 

0.1 100 lloteuthis subulata 
0.1 100 

0.0 100 
0.0 100 
0.0 100 
0.0 100 

0.0 100 ·ocarcinus vemalis 

0.0 100 idia ciliaris 
0.0 100 stropecten irregularis 

0.0 100 Ophiura ophlura 
0.0 100 Nemertesia antennina 
0.0 1 00 DECAPODA 

0.0 100 Corystes cassivelaunus 

0.0 100 Uocarcinus marmoreus 

0.0 100 lnachus dorsettensis 

0.0 100 Loliginidae 

0.0 100 Flustra foliacea 

0.0 100 ertularella polyzonias 
0.0 100 /phasia attenuata 

0.0 100 Macropodia deflexa 
0.0 100 Nemertesia ramosa 
0.0 100 Obelia longissima 
0.0 100 Stelligera stuposa 

0.0 100 Halecium halecium 
0.0 100 dra/lmania falcata 

0.3 98 Marthasterias glacialis 

0.2 98 equipecten opercularis 

0 .2 98 Lophius piscatorius 

0.2 98 Uocarcinus holsatus 

0.2 99 Pecten maximus 
0 .2 99 Echinus esculentus 
0.2 99 So/ea so/ea 

0.2 99 Maja squinado 

0.1 99 tone 
0.1 99 itter 

lcyonium digitatum 

Merfuccius meriuccius 

Trigloporus lastoviza 
Raja undulata 

0.0 1 Necora puber 

0.01 O~Uocarc/nus marmoreus 
0.010 Mugil sp 
0.010 Uocarcinus depurator 

0.010 Polybius henslowii 
0.010 Gel/aria sp 

Porania pulvillus 

phrodlta acu/eata 

0.01 Ophiura affinis 

0.01 O.Akera bullata 

0.01 oo!crepidula fomicata 

0.0 1! OdGa/1/blepharis cl/lata 
0.01 mmodytes tobianus 
0.01 Palmaria palmata 

0.010 Liocarcinus pusillus 
0.010 Macropodia deflexa 

0.010 Chaet terus vario 

14.7 
11 .9 

11 .8 
10.9 

9.9 
6.9 

3.4 
2.2 

1.5 

1.2 

1.0 

1.0 

1.0 

0.8 

0.7 

0.5 

0.5 

0.4 
0.4 
0.4 
0.3 

0.3 

0.3 

0.3 

0.3 

0.2 

0.1 
0.1 
0.1 

0.1 
0.1 
0.1 
0.1 

0.1 
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Table 3.5 illustrates similar dominant species to Table 3.4 across all hauls based on port 

and type of trawling. In terms of the fish species, the first notable feature was the marked 

similarity between the most abundant fish species sampled from Looe and Plymouth and 

to a lesser extent Salcombe and the difference between these samples and those from 

Newlyn. The Newlyn boat principally targeted John Dory. This species ranked third in 

the samples (taken during the second and third quarters of the year) though it is a high 

value, non-pressure stock species and the skipper of this boat made an economic decision 

to fish where he expected this species to be found. The pattern of exploitation during the 

sampling from Newlyn was coincidental with where this species was commonly caught 

(Dunn, 2001 ). John Dory was not similarly targeted by the boats from other ports and 

while present was seen as a valuable species that was incidentally caught, not a target. 

The most abundant species in the Newlyn samples was the red gurnard. Until 

relatively recently this species was discarded, though forward thinking skippers are 

landing this species as more modern markets (with international links) are selling 

gurnards. Principally this species is for foreign consumption though there is an 

increasing trend for the larger gurnards, especially, to be sold into the domestic restaurant 

trade. All the gurnard species have a varied diet (Blanc & Hureau, 1979;Hureau, 

1986;Bauchot, 1987;Fischer et al., 1990;Richards & Saksena, 1990) though the red 

gurnard is the most active predator (Wheeler, 1978). Crabs make up a large proportion of 

its food and it is an important predator of other scavenging species, (Wheeler, 1978). The 

lowest rank this species attained was sixth in the single boat samples from Plymouth. 

Cod ranked second in abundance from the Newlyn samples, much higher than 

from any other port. This species is an important mainstay of the Newlyn boat. Cod's 

abundance decreased to the east of the study area. The fourth highest-ranking species 

from Newlyn was bib, which was generally discarded. This species was consistently 

abundant in all of the samples and represents a greatly under used resource. While its 

flesh is soft and spoils quickly (Wheeler, 1978) it can be turned into fish meal. 

57 



Chapter 3 

The squid ranked fifth, ninth and eleventh from Newlyn The Newlyn trips largely 

missed the main squid season though this was early in 1998 peaking in September and 

October (MAFF/DEFRA, 1990-2001). Some samples from other ports coincided well 

with the squid season while others did not though this was lost in Table 3.5. 

Lemon sole were consistently in the top ten of the samples by port and type of 

trawling. Peak abundances occur in the spring in both the sample and market data 

(MAFF/DEFRA, 1990-2001) though this species can be found at almost any time of the 

year, especially further offshore (Hawke pers com. ). Lemon sole are a mainstay for the 

local fishing industry; boats pairing for whiting during the early part of the year often fish 

independently for lemon sole later. 

Whiting was the most abundant fish sampled from Looe, Salcombe, Plymouth 

pair boat trawls and second only to bib from Plymouth single boat samples, while whiting 

only ranked eighteenth from Newlyn. Both dogfish and horse mackerel occur in all of 

the samples by port and type of trawling and except in the Newlyn samples dogfish were 

more abundant than horse mackerel. 

In terms of the non-fish part of the sample, the highest ranked species was M 

glacialis from Newlyn, which contributed 4.8 % of the total sample. Only from Newlyn 

does Echinus esculentus feature in the top cumulative 95 % rank, as species 21, and 

contributed 0.7% of the total weight of the sample. In the single boat hauls from both 

Looe and Plymouth M glacialis and A. rubens featured in the list with the former 

contributing more (1.4 to 0.5 from Looe and 1.0 and 0.7 % from Plymouth). Neither of 

these species ranked very highly in the Salcombe samples (both contributing only 0.3 %). 

These two species did not feature in the top cumulative 95 % (M g/acialis 0.3 and A. 

rubens 0.2 %) from Looe pair trawled hauls, and only M. glacialis features in the top 

cumulative 95 % from Plymouth pair trawled samples, (M. glacialis 1.3 %) though A. 

rubens falls just out of the list contributing 0.5 %. This seems to suggest that large (or 
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common) invertebrate species were actually less likely to be dominant in pair trawled 

hauls, see section 3.6 and Table 3.6 (page 64, below). 

3.4 Accumulation of species 
Species accumulation curves were calculated from the PRIMER-E (Clarke & Warwick, 

2001 a) species-area plot, where area was converted to sequential hauls. Species 

accumulation curves (Figure 3.2) were calculated for the full sample, also the landed and 

discarded fishes, and the non-fish material. 
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Figure 3.2. Species-accumulation curves, across the full number of samples (n = 88). 
Total is the full sample and component parts of the sample (based on Figure 1.3, page 16, 
above) are shown in colour coordinated lines. 

The curves in Figure 3.2 were generated using 999 random permutations to produce 

smoothed lines. While it is apparent that the curve for the total sample does not fully 

flatten to an asymptote it was the number of non-fish species responsible for the 

continuing increase in number of different species encountered. In contrast, the 
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asymptote was closely approached for the fish species to be landed and, to a lesser extent, 

the discarded fishes due to the occasional encountering of quite rare fish, (such as 

Argentine, Argentina sphyraena, and blue whiting Micromesistius poutassou). 

Whilst it might be tempting to extrapolate the number of species encountered to 

determine those species expected in, for example, the northern (UK) part of ICES area 

VIle, Foggo et al., (2003) show how variable and uncertain this exercise can be. 

Nevertheless, the shape of the line for all species in Figure 3.2 does not appear to be 

especially steep when compared to the slopes found in other studies (Gage, 1975;Rumohr 

et al., 2001 ;Ugland et al., 2003) which employed other sampling methods (core sampling 

and van Veen grabs respectively). This suggests that the sampling techniques in this 

study were as robust in this respect as those employed by others. Considerably fewer 

new species were encountered above ~ sample 40 which was in general agreement with 

Rumohr et al., (2001 Fig. 6.) and Ugland et al., (2003 Fig I a and b). 

The purpose of describing the species accumulation curves as shown in Figure 3.2 

was not to carry further the ideas of area sampled and species richness to community 

diversity indices (Thompson & Withers, 2003;Thompson et al., 2003) as these methods 

do not hold where the sampled area is either not constant or cannot be accurately 

ascertained and compensated for. Instead, Figure 3.2 illustrated that the accumulation of 

species was approaching an asymptote. Common diversity indices cannot be applied to 

trawl data of this sort though there are methods that are robust to changing sample size 

and these are examined in considerable detail in Chapter 6. 

3.5 Total sample weight and its variation 
As described by the conceptual model (Figure 1.3, page 16, above) and as set out in the 

'Haul sampling' (section 2.2) the basic sampling unit was the contents of one 38 kg (6 
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stone) fish basket. While it was always attempted to fi ll the basket inevitably the derived 

sample weight varied. Figure 3.3 shows as a frequency histogram the total sample weight 

by haul derived from length to weight converted data. The average sample weight (± 

s.d.) across all the hauls was 33.3 kg, (± 5.1 kg, n = 88). 
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Figure 3.3. Frequency histogram of total derived sample weight (g) for all samples (n = 
88). The dashed line denotes the nominal basket weight. 

Figure 3.3 shows no samples weighed less than a half fu ll basket(< 19 kg). There were 

seven samples (8 %) in the third quartile (19 to < 29 kg); and the majority (sixty-one, or 

69 %) in the fourth quartile, (29 to < 39 kg); and twenty in the fifth quarti le (39 to 48 kg) 

and no samples were heavier than this, (the maximum weight was - 45.3 kg). 

It was important to determine whether the variability in the sample weight was 

caused by a bias in the sampling. The accuracy with whjch the specimens in the samples 

were determined from their length measurement is presented in Appendix A, which 

shows that the length to weight derived weights were highly related to the spring balance 

weights: 

y = l.030x - 87.029, R2 = 0.9791 
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Sources of variability in the total sample weight by a variety of factors are 

examined in Appendix D. The most relevant of these was the difference according to 

port and type of trawling though the only significant difference was between the Newlyn 

and Plymouth pair samples. Section 0.3.5 showed that the most likely reason for the 

variability in total sample weight was related to the packing of items in the sample. The 

samples from Newlyn comprised the greatest number of the largest fish by species 

(according to both length and weight) and Salcombe the smallest with Looe and 

Plymouth fitting along the trend. 

3.6 Landed and discarded fishes, and non-fish 

(invertebrate) components of the samples 
Figure 3.4 shows the average and 95% confidence intervals (chosen to allow comparison 

with other data sets; Dytham, 1999, p49) of the landed "1", and discarded "d" fishes 

(including shellfishes) and invertebrates and other material "n" across all hauls. 
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Part of sample 

•landed fishes • discarded fishes • non-fishes (invertebrates) 

Figure 3.4. Average and 95% confidence intervals for the three parts of the sample; 
landed "1" and discarded "d" fishes and shellfish, and non-fishes (invertebrates) and other 
material "n" in the sample. 

It is apparent from Figure 3.4 that most (79.8 %) of the sample were landed fish; that 

discarded fish was a very much smaller component (15.8 %) and the invertebrates and 

other non-fish material was generally a very small component (4.4 %). Overall, there 

was little variation in these proportions. 

Table 3.6 examines the influence of sampling variables on the components of the 

samples through GLM analysis. 
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Table 3.6. Full factor GLM for components of the sample by weight (g) as dependent 
variables tested against: wind = wind speed (knots) encountered, dur = duration of tow 
(mins), dep = depth of haul (m), speed = speed of tow (ms.1

), vol-bas = haul size as 
number of baskets of fish, trip # = sequential trip aboard that particular boat, sample # = 
sequential sample number (I to 88), port & type = port of operation and type of trawling 
(pair or single boat), d/n/t =time of haul (day/night/twilight), q =quarter of the year, and 
interactions. Time of haul (day/night/twilight), port (of sailing), ty = type of trawling 
(pair or single boat) and interactions. Note that covariances are not dealt with as 
interactions, and that the interaction of port & type * d/n/t * q returned zero d. f. To aid 
clarity associations that were significant at the 5 % level are highlighted. 

source df dependent variables 
landed discarded non-fish 

F value Pvalue F value Pvalue F value Pvalue 
corrected model 37 3.793 < 0.001 6.696 < 0.001 1.804 0.026 
intercept 1 0.273 

' 
0.604 17.625 < 0.001 0.567 0.455 

wind 1 0.794 0.377 0.572 0.453 0.036 0.851 
dur 1 3.167 0.081 0.203 0.654 0.371 0.545 
dep 1 8.055 0.007 22.116 < 0.001 2.713 0.106 
speed 1 0.003 0.954 0.149 0.701 0.297 0.588 
vol-bas 1 0.090 0.766 2.478 0.122 3.135 0.083 
trip# 1 0.880 0.353 3.028 0.088 0.068 I 0.796 
sample# 1 2.799 0.101 0.114 0.737 0.047 0.829 
port & type 5 3.212 0.014 4.784 0.001 0.492 0.781 
dlnlt 2 0.750 

' 
0.478 1.483 0.237 0.480 0.622 

q 3 3.579 0.020 5.119 0.004 
.~ 

0.892 0.409 
port & type • d/n/t 3 0.741 I 0.533 2.246 0.094 0.101 0.959 I 

port & type • q 12 4.789 < 0.001 10.508 < 0.001 0.507 0.900 
d/n/t • q 4 2.438 0.059 1.633 0.181 1.059 0.387 
port & type • d/n/t • q 0 • • • • • • 
error 50 
total 88 
corrected Iota I 87 

The results shown by Table 3.6 well described the variability in the GLM; R2 (landed)= 

0.737; R2 (discarded)= 0.832; R2 (invertebrates etc.)= 0.572, however the model is only 

strictly valid in terms of the Levene's test for equality of error variance for the discarded 

component (P = 0.428) with the other values being P (landed) = 0.002, and P 

(invertebrates etc) = 0.018. This is examined next; nevertheless, Table 3.6 shows 

significant associations with depth, port and type of trawling and quarter of the year and 

interactions involving the last two, but only for the landed and discarded fishes. The 

general similarity of these patterns does lend credibility to the model for the landed part 

of the sample. 

None of the sampling variables had any significant influence on non-fish weights. 

In addition, sampling variables that had influence on landed weights also had a 
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significant influence on discarded weights. These two results suggest that the weights of 

landed and discarded fish were inversely correlated. To test this, the Spearrnan's rank

order correlation of the landed and discarded part of the sample was calculated. The 

resultant negative correlation was highly significant (rs = - 0.364, n = 88, P < 0.00 I). 

This test was chosen because while landed weights did approximate a normal distribution 

according to the Anderson Darling (A-D test, Dytham, 1999, p72); (A2 = 0.415, n = 88, P 

= 0.328) though the weight of the discarded fishes did not, (A2 = 4.314, n = 88, P < 

0.001). 

The significant relationship between depth and the weight of the landed and 

discarded parts of the sample (though not with the invertebrates and other material) is 

explained by the Newlyn samples being generally deeper (see Figure 4.8, page 95, below) 

and smaller in weight (see Table D.2, page 352, below). 

Another significant relationship shown in the GLM of Table 3.6 (above) was 

between the weight of the landed and discarded fishes with port and type of trawling. 

This relationship is of particular interest in describing the characteristics and ecosystem 

influences of the southwest English Channel trawl fishery, and is examined in detail in 

following Chapters. 

Figure 3.5 shows the sample weight according to landed, discarded and non-fish 

components by port and type of trawling. 
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Figure 3.5. Average weight (kg) and 95 % confidence intervals of landed "l" and 
discarded "d" fishes and non-fishes (invertebrates) and other material "n" according to 
port, N- = Newlyn, L- = Looe, P- = Plymouth, S- = Salcombe and type of trawling -S = 

single boat trawling, -P = pair boat trawling. 

Figure 3.5 reinforces the inverse proportionality of landed and discarded weight. The 

Newlyn samples were smaller overall (Table D.2, page 352, below). It is also interesting 

to observe that on average the Looe and Plymouth pair trawled samples contained more 

landed, less discarded fishes, and less invertebrates and other material by weight (or as a 

proportion of the sample) when compared to the equivalent single boat samples as shown 

in Table 3.7. 

Table 3.7. Weight (kg) and proportion of landed, discarded and non-fish (invertebrate) 
components of the sample by single and pair boat samples for Looe and Plymouth. 

trawl weight (kg) proportion 
non-fish non-fish 

landed discarded (invertebrate) landed discarded (invertebrate) 
single 25.5 7.7 1.2 0.727 0.238 0.035 
pair 30.5 6.0 0.9 I 0.815 0.163 0.022 

The raw data behind the averages in Table 3.7 consistently did not approximate normal 

distributions according to the A-D test and only the above described trend for the non-

fish (invertebrate) was significant (according to one-tailed Man-Whitney tests), as shown 
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in Table 3.8. 

Table 3.8. Results of two-tailed Man-Whitney test for the weight and proportion of the 
components of the single and pair boat samples according to the hypotheses described 
above. 

weight I proportion 
component hypothesis w p I w p 

landed pair > single 302 0.060 327 0.224 
discarded pair < single 352 0.500 367 0.317 
non-fish (invertebrate) pair < single 407 0.041 419 0.010 

Although these trends were not universally significant they suggest that pair trawling was 

more selective, or that the pair trawling was conducted in structurally more simple and 

therefore less species rich areas, and as shown on page 58 (above) pair trawl samples 

contained fewer large invertebrates which may indicate an ecosystem effect of fishing 

(Jennings, 2005). Ideas around these themes are further explored when examining the 

composition and biodiversity of the sample, (Chapter 6). 

The GLM shown in Table 3.6 (above) also indicated a significant relationship 

between landed and discarded weights with the sample and the quarter of the year in 

which the san1ples were taken. This temporal variability will be explored in subsequent 

Chapters (particularly Chapter 5 and Chapter 6) particularly with reference to the Newlyn 

samples as these were collected during equivalent times of subsequent years in similar 

areas (Figure 3.1, page 47, above). 
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Chapter 4 

4 Derivation of abiotic data sets 

4.1 Introduction 
This Chapter explains the derivation of abiotic datasets to describe each trawl location, and 

for use in later analyses relating the sample datasets to the environment. lt is also 

important to understand the major influences on the environment and analysis was 

undertaken to determine to what extent this was evident for the locations sampled. 

The two most important derived abiotic data sets concerned: 

How the sediment information was related to the trawl tracks. This was considered 

of prime importance due to the influence of the substrates on the biota and vice versa 

(Gray, 1974;Snelgrove & Butman, 1994), and 

2 How the tidal strength varied. The data of interest here were not the tidal strength at 

the time of trawling but instead the maximum tidal strength expected at the location of 

trawling. Again, this was considered important because of the influence of the tide on 

both substrates and biota (as shown by Rees et al., (1999) Figure 3c). 

This section additionally describes a third data set, 

3 How the wind speed data was acquired. This information describes the conditions 

found while sampling, as a proxy for sea state and its influence on sampling, in terms 

of the practicalities of working at sea. 

This section also describes how the timing of the haul was converted to a factor, 

describing, 
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4 How time was converted to the factors of day, night and twilight. The purpose of this 

was because while time is not a particularly amenable piece of information whether a 

haul was collected during the day, night or twilight is important. 

This information was needed for investigations into the relationship between the sample 

and the substrate and other environmental factors (covered in Chapter 7 and Chapter 8). 

The contents of this chapter were also used to describe internal and external effects. 

• Internal effects detail potential artefacts of the sampling such as examining whether 

the wind speed or time of day affected the validity of the sample volume. In general, 

internal effects were unwelcome and where present point to features of the sampling 

that should be improved. 

• External effects detail potential causative properties between the sample data and 

derived abiotic factors. External effects point to interesting relationships between the 

biotic and abiotic data set. 

Section 4.2.1 shows how each of the four data groups were derived. A redundancy 

analysis (section 4.2.2) describes whether any of the subsets within all the groups display 

features that were sufficiently similar so that one may be substituted for another without 

losing information. This approach simplifies subsequent analyses, and " ... makes the 

resulting PCA plot easier to interpret," (Quinn & Keough, 2002, p444). Also retaining 

redundant variables introduces bias in the form of undue weighting. 

Section 4.3 describes the final set of parameters selected and their individual 

attributes and section 4.3.3 (page 89, below) draws together these across all sample 

locations. 
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4.2 Methods 

4.2.1 Derivation of datasets 

4.2.1.1 Sediment information 

Chapter 4 

Trawl tracks were overlaid on 1 :250,000 Sea Bed Sediments charts prepared by the British 

Geological Survey, (BGS). In order to determine the sea bed sediment types covered by 

each trawl the following charts were used: Haig Fras (50° to 51 °N, 006° to 008°W), 

(Anon, (1986); Land's End (50° to 51°N, 004° to 006°W) Anon, (1987); Portland (50° to 

51°N, 002° to 004°W), Anon, (1983b); Scilly (49° to 50°N, 006° to 008°W), Anon, 

(1982); and Lizard (49° to 50°N, 004° to 006°W), Anon, (1983a). Various technologies 

were used in generating these charts. The following text was taken and adapted from the 

chart legends to describe their construction. "The sediment divisions were based on 

particle size analysis of Shipek Grab samples supplemented by analysis of the topmost 

parts of shallow cores where these were available. Divisions between sediment types were 

determined by separately contouring the gravel percentage and the sand:mud ratio. The 

combination of the two sets of contours defined the fields of the various sediment types 

and these boundaries were modified where appropriate to take into account bathymetric 

and sidescan sonar data." The basis of the classification was the triangular diagram at the 

top of Figure 4.1. 
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Figure 4.1. Legend from British Geological Survey 1 :250,000 series showing sea bed 
sediments. This particular legend was taken from Anon, (1983b) and only those substrate 
types on this chart were coloured in the legend. 

See Folk, (1954; 1965; 1980) for more information on the textual classification in Figure 

4.1. Figure 4.4, (page 79, below) shows the substrates encountered in the study area. In 
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addition to the soft sediments described on Figure 4.I, there were areas of hard substrate 

within the study area. These are portrayed in grey on the BGS chart (see to the west and 

east of the Salcombe Estuary on Figure 4.4 (below). They are described on Figure 4.I as 

"Outcrop[s] of bedrock on the sea bed with only very thin patchy sediment cover. 

When overlaying the trawl tracks onto the BGS charts and working out which of 

the I6 sediment types were present, it was not possible to examine the relative proportion 

of each type passed over with each trawl. This was because the boundaries between 

sediment types were created by interpolation and contouring (as described on page 70, 

above) and as such are approximates. Instead, they were described on a simple 

presence/absence basis, whereby if a trawl track passed over a particular sediment type 

then this was regarded as a presence. This method was supported by Fennessy, (pers 

com.); as in tennis, a line (boundary) was considered 'in'. 

In order to calculate the substrates passed over when sampling the Newlyn trips 

during Q2 '98 (for which only the haul position was known) trawl tracks were determined 

from direction, speed and duration of tow as described in section 2.2.1. 

4.2.1.2 Tidal information 

Tidal strength information as maximum tidal strength was generated from a customised run 

of the VICTOR model (George, pers corn). This model was constructed around a grid 

between 5 I o 04' and 49° 40' N and 006° 30.0 and 002° 56.4 W. The model generated 

I3,9I2 tidal vectors spaced at 0°00.20' of latitude and 0°01.20' of longitude, which 

corresponds to a spacing of I ,492 m. Each point included three pieces of data, a position 

as eastings and northings in OSGB36 datum and the (directionless) value of the maximum 

tidal strength at the location in knots. The magnitude was converted into ms·' and the 

positionai data was read into ArcMap 8.3 (ESRI, 1999) and converted into decimal degrees 

(WGS84 datum) to correspond with the trawl tracks, (Abbott and Jones pers corn). 
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A test of the validity of the magnitude of the tidal vectors was undertaken by 

comparing VICTOR generated data with the maxima of several Admiralty tidal streams 

represented by charted tidal diamonds and the model was shown to be valid, (see Appendix 

E for details). 

A coastline (I ones pers cam) was added into the ArcMap model and a Triangulated 

Irregular Network (TIN), layer derived as shown in Figure 4.2. 
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Figure 4.2. Tinned cells of maximum tidal strength (ms-1
) from the waters off Plymouth 

overlaid with a gee-referenced coastline. Each maximum tidal strength point is regularly 
spaced 1,492 m apart. 

This TIN layer contained a continuous array of cells with tidal strength information rather 

than a point and allowed subsequently plotted trawl tracks to be overlaid and interrogated 

along their length for values of tidal strength within the cell (see below). 

As shown on Figure 4.5, below 10 hauls from Newlyn (# 3 to 12) were positioned 

to the south of the limit of the VICTOR model (49° 40' N). Maximum tidal strength for 

these hauls was instead taken from consulting Anon, (1973 ; 1978) and these ten hauls were 

given a maximum tidal strength value of0.52 ms·' (converted from knots). 
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The trawl tracks were superimposed onto the maximum tidal strength mosaic model 

by creating a layer in ArcMap 8.3 (ESRI, 1999) comprising their start, haul and 

intermediate positions (as described on page 25, and Figure 2.2, page 26, and Figure 2.3, 

page 27, above). Once overlaid each track was interrogated at its start (shoot position), 

every 1 ,500 m along its length (which was approximately the resolution of the tidal model) 

and at its end (haul position), as is shown in Figure 4.3 . 
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Figure 4.3. Details of example trawl tracks against a backdrop of maximum tidal strength. 
Tick marks on the trawl lines show the start and haul position and distances of 1,500 m 
along their lengths. The arrow shows the direction of the tow. 

Figure 4.3 shows that haul 71 was begun in an area of higher tidal maxima than it finished. 

The reverse was the case for haul 72. This GIS analysis allowed the maximum, minimum, 

average and range of maximum tidal strength values to be generated for each haul. 

4.2.1.2.1 Analysis of trawl track length 

The creation of the ArcMap trawl tracklayer enabled the comparison of the trawl track 

length by GIS and according to speed, distance and time. This is presented in Appendix F. 
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4.2.1.3 Wind speed 
Wind speed data was collected from NOAA, (Anon, 2002). This source provided two 

types of data. Mean wind speeds (knots) were the average across the whole of the day and 

maximum sustained wind speed, which was the highest level maintained for a period of ten 

minutes continuously. The former data were used since fishing often took place across 

much of the day and the record for a ten-minute period did not influence the cancellation 

of, or alteration to a trip. 

4.2.1.4 Day/night/twilight from time 

While the time the sampling took place was a function of fishing rather th!_ln directly an 

environmental factor, it was nevertheless important to determine to what extent it was 

responsible for shaping the pattern in the sample for both ecological and operational 

reasons. 

The time at which the hauls were started and finished was noted, as described in 

Chapter 2. Casey & Myers, (1998) suggest that without prior knowledge it is difficult to 

tell whether a haul was taken during the day or at night, although there are known size and 

species relationships (Benoit & Swain, 2002). Time is not in itself a very amenable piece 

of information to analyse as a factor, though whether an operation took place during the 

day or at night is far more relevant. Whether hauls were considered as occurring during 

the day or night was determined from an evaluation copy of TideWizard 1.3.2, (Anon, 

2003). The software was configured to include daylight parameters and British Summer 

Time. All calculations were taken from the port of Plymouth. D = a daytime haul. N = a 

nighttime haul. T = a twilight haul based on the following conventions: 

• Hauls were classed as day or night if their entirety was during the day or night. 

• If dawn occurred during the first third of the duration then the haul was a daytime one. 

• If dusk occurred during the first third of the duration then the haul was a nighttime one. 
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• If dawn occurred during the last third of the duration then the haul was a nighttime one. 

• If dusk occurred during the last third of the duration then the haul was a daytime one. 

• Hauls were considered twilight when either dawn or dusk occurred during the middle 

third ofthe haul's duration. 

4.2.2 Redundancy analysis 

The results (section 4.3.1) present each of the derived abiotic data sets in isolation. Prior to 

examining these together, redundant variables (or those that can be substituted without loss 

of information) were removed. The analysis was performed by generating a Draftsman 

Plot in PRIMER-E (Ciarke & Warwick, 200la) and validated by examination of the 

correlation coefficients between non-presence/absence datasets. Where there was a high 

correlation between factors then one can be substituted for the other(s) without effective 

loss of information. Clarke & Gorley, (2001, p54) advocate that a correlation coefficient r 

> 0.95 is used to indicate valid examples of redundancy, though this is only a guide. 

Lower correlation coefficient values between factors describe interactions that show little 

or no internal trend and these factors should be retained. 

Presence/absence data cannot be examined via draftsman plots. Instead, it was 

possible to examine the correlation coefficients between various substrates according to 

their presence in the samples and apply the same rule as described above as necessary. It 

was not relevant to include the 0/N/T factor into the redundancy analysis. Instead, its 

influence in describing the composition of the samples (through an ANOSIM) was used to 

determine how useful it was in further analyses. See section 5.2.1 for a description of the 

sample dataset. 
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4.2.3 Analysing trends in derived abiotic datasets 
In order to assess patterns of similarity with the abiotic data sets a matrix of the 88 sites by 

the remaining derived abiotic variables was constructed, which contained both the 

presence/absence and non-presence/absence type data. The matrix was analysed for 

patterns relating to port and type of trawling, to correspond with similar analyses based on 

sample composition in Chapter 3, Chapter 5 and Chapter 6, and combined in Chapter 7. It 

was analysed via normalised, and correlation based Principal Component Analysis (PCA) 

using Minitab, (Minitab, 2000) although the plots were generated in PRIMER-E (Clarke & 

Warwick, 2001a). 

In addition to the PCA the overall separation into port and type of trawling of the 

abiotic data was summarised by a one-way ANOSIM (PRIMER-E, Clarke & Warwick, 

200la), based on the suite of data after the redundancy analysis. The similarity matrix 

underlying the ANOSIM was created using normalised Euclidian distances from 

untransformed, standardised abiotic data. 

4.3 Results 

4.3 .1 Derived datasets 

4.3.1.1 Sediment Information 

Each of the BGS charts carries a note on sediment type and thickness. The following text 

was made up from combining and rewording (for clarity) all of these notes, thus it forms a 

general description of the area in total. 'Typically the sea bed sediments consist of rock 

and mineral detritus derived from the bedrock on the sea bed and adjacent land areas. The 

thickness of superficial sediments over most of the areas covered by the five BGS sheets 

used here is < I m overlaying comparatively smooth bedrock. Thicker sediments occur as 
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sand banks and ridges, which are subjected to strong tidal currents, which as a result 

fashion their shape. Bedrock is exposed mainly in areas scoured by strong tidal currents 

and also in areas ofhigh topographic relief.' For each track, the presence of each ofthe 16 

sediment classes was determined by spatial overlay on BGS charts as described earlier. 

Individual groups were the combinations of all different substrate groups passed over by 

the trawl. Major substrate types are the unqualified substrates (without modification). 

It was not possible to illustrate the passage of the trawl tracks over the sediment on 

the actual charts used (Anon, 1982; 1983a; 1983b; 1986; 1987) due to their scale. Instead, 

(for illustrative purposes) the trawl tracks were plotted onto a geo-referenced chart of the 

whole study area (Figure 4.4). The geo-referencing (ESRJ, 1999) was made onto an 

extract of the I: I ,000,000 scale sediment map (NERC, 1987) and the four geo-referencing 

'tic' points were the mouth of Little Petherick Creek, Padstow, Land's End, Lizard Point 

and Start Point and the substrate chart (Figure 4.4) does not differ qualitatively from a 

mosaic of (Anon, 1982; 1983a; I 983b; I 986; I 987). 

Table 4.1 shows the data as both individual groups and major substrate types 

(according to individual hauls) and these are arranged according to port and type of 

trawling as shown in Table 3.2, (page 49, above). Individual groups are the combinations 

of all different substrate groups passed over by the trawl; as an example the first haul from 

Newlyn passed over gravely sand, gravel and sandy gravel thus is described as gS.G.sG. 

Major substrate types are the unqualified substrates. The same haul from Newlyn passed 

over a sandy and two gravely substrates thus is described as SG. 
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Figure 4.4. Plot of trawl tracks with geo-referenced substrate map. See Figure 4.1, (page 71 , above) for an explanation of the substrate codes. 
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Table 4.1. Major substrate types and particular substrates which comprise them according to individual hauls and port and type of trawling, N- = Newlyn, L- = Looe, P- =Plymouth, S- = Salcombe; -S =single 
boat trawling, -P = pair boat trawling. 

year and quarter 

1998 1999 2000 

2 3 4 1 2 3 4 1 
Q) V) V) V) V) V) V) V) .0 V) a. .0 Q) .0 

~ 
.0 

~ 
.0 Q) .0 Q) .0 

~ 
.0 Q) ~ ~ :::l n; :J :J :J n; :J n; :J :J n; :J 

V) V) CO V) CO V) V) V) CO V) V) ~ 

"" !:; .Q. ~ 
.... .... .... 

.~~ 
.... 

.~~ 
.... .... 

.Q. ~ t:: 3 .Q. ~ V) iii .~~ iii .Q. ~ iii iii iii .Q. ~ iii iii 
coa. .0 coa. .0 coa. .0 coa. .0 coa. .0 coa. .0 coa. .0 coa. .0 

0 CO :J :J :J :::l :J :J :J :J a. .c ~ E~ V) ~ E~ V) ~ E~ V) ~ E~ V) ~ E~ V) ~ E~ V) ~ E~ V) ~ E~ V) 

NS 1 03 SG gS.G.sG 18 SG 37 SG (g)S.gS.G.Sg 56 SR S.(g)S.R 

1 57 SGR (g)S.gS.sG.R 

2 04 SG gS.sG 19 SG gS.G.sG 38 SG gS.G.sG 58 SG gS.G.sG 

3 05 SG gS.sG 20 SG gS.sG 39 s (g)S.gS 59 SG gS.G.sG 

4 06 SG gS.G.sG 21 SG gS.sG 40 SGR gS.G.sG.R 60 SG gS.G.sG 

5 07 SG gS.G.Sg 22 s (g)S.gS 41 SGR gS.G.sG.R 

6 08 SG gS.G.sG 23 s (g)S.Gs 42 SG (g)S.gS.Sg 61 SG gS.sG 

7 09 SG gS.G.sG 43 SG gS.sG 62 SG gS.G.sG 

8 10 SG gS.sG 44 SGR (g)S.G.sG.R 63 SG (g)S.gS.sG 

9 11 s (g)S.gS 24 SG gS.msG.sG 64 SGR gS.G.sG.R 

10 12 s (g)S.gS 25 SG (g)S.gS.Sg 65 SG gS.sG 

11 66 SG gS.G.sG 

12 26 SG (g)S.gS.sG 

13 27 SG (g)S.gS.sG 

14 28 SG (g)S.gS.sG 

15 29 SG gS.sG 

16 30 SGR (g)S.gS.G.sG.R 

LS 1 01 s S.gS 13 s S.(g)S 31 SGR S.(g)S.sG.R 35 SGR S.(g)S.sG.R 

2 02 SG S.gS.sG 14 s S.(g)S 32 s S.(g)S 36 SGR S.sG.R 

3 15 s S.(g)S.gS 

4 16 s (g)S.gS 

5 17 s S.(g)S.gS 

LP 1 49 s S.(g)S 53 s S.(g)S 75 SG S.gS.sG 82 SG S.Sg 

2 50 s S.(g)S 54 s S.(g)S 76 SG S.Sg 83 SG S.Sg 

3 55 s (g)S 

PS 1 45 SG S.gS.sG 69 SGR S.mS.gS.sG.R 80 s S.(g)S 87 s s 
2 46 SG S.gS.sG 70 SG S.mS.gS.sG 81 s S.(g)S.gS 88 s s 

pp 1 33 SGR mS.gS.sG.R 47 SG mS.gS.sG 67 s s 73 s s 
2 34 SG mS.gS.sG 48 SG mS.gS.sG 68 s S.(g)S 74 s s 

ss 1 51 s (g)S.gmS.gS 71 s S.(g)S.gS 77 s gS 84 s gS 

1 85 SR S.(g)S.gS.R 

2 52 s (g)S.gmS.gS 72 s S.(g)S 78 s (g)S.Gs 86 s S.(g)S.gS 

3 79 s S.(g)S.gS 
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Figure 4.4 and Table 4.1 show that the majority of the Newlyn derived trawls were over 

gravely sand and sandy gravel, though there were many occasions where additional 

substrates, including rock, were encountered. The majority of the Plymouth, Looe and 

Salcombe hauls featured sand, though closer inshore the trawls extended into patches of 

gravely sand, sandy gravel as well as other mixed substrate types and again included 

rock. 

4.3.1.2 Tidal Information 
Figure 4.5 shows directionless maximum tidal strength values generated by the VICTOR 

model classified into 0.2 ms·1 bins (but not further smoothed) and colour coded for 

clarity, with the labelled trawl tracks superimposed. 
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Figure 4.5. Full extent of the VICTOR model (as colour-coded and smoothed values) of maximum tidal strength (ms·\ with trawl tracks superimposed. 
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Figure 4.5 shows that the lowest values of maximum tidal strength were found close 

inshore along the north coast of the UK southwest peninsula and throughout the largest 

bays along the south coast. Higher magnitudes were found further offshore with peak 

values around Trevose Head near Padstow, The Wra Stone, near Cape Cornwall, and off 

The Lizard and Start Point. The greatest values of all were around Hartland Point near 

Bideford. 

Table 4.2 shows the average maximum tidal strength (± range) along each trawl 

track. The tracks on Table 4.2 are arranged according to port and type of trawling (as 

Table 4.1, page 80, and Table 3.2, page 49, above). Table 4.2 also shows the average by 

trip. 
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Table 4.2. Average maximum tidal strength (ms.1
) by individual hauls and according to port and type of trawling, N- = Newlyn, L- = Looe, P- =Plymouth, S- = Salcombe; -S =single boat trawling, -P =pair 

boat trawling, (± =range of data). 

~ year and quarter 
t::OI 3 1998 1999 2000 oa. IQ 
a..;?;- .c 2 3 4 1 2 3 4 1 
NS 1 03 0.52 . 18 0.75 ± 0.19 37 0.72 ± 0.16 56 0.75 ± 0.23 

1 57 0.70 ± 0.04 
2 04 0.52 19 0.75±0.18 38 0.69 ± 0.15 58 0.73 ± 0.14 
3 05 0.52 20 0.68 ± 0.20 39 0.67 ± 0.14 59 0.74±0.13 
4 06 0.52 21 0.62 ± 0.12 40 0.73±0.17 60 0.71 ± 0.10 
5 07 0.52 22 0.65 ± 0.12 41 0.77 ± 0.22 
6 08 0.52 23 0.65 ± 0.12 42 0.62 ± 0.23 '61 0.61 ± 0.19 
7 09 0.52 43 0.66 ± 0.17 62 0.79 ± 0.10 
8 10 0.52 44 0.85 ± 0.30 • 63 0.59 ± 0.25 
9 11 0.52 24 0.56 ± 0.10 : 64 0.74 ± 0.18 

10 12 0.52 25 0.65 ± 0.15 65 0.64 ± 0.16 
11 66 0.68 ± 0.09 
12 26 0.65 ± 0.18 
13 27 0.66 ± 0.16 
14 28 0.68 ± 0.20 ! 
15 29 0.70±0.15 

i 

16 30 0.79±0.31 ' 

average 0.52 0.68 ± 0.17 0.71 ± 0.19 0.69 ± 0.19 
LS 1 01 0.33 ± 0.04 13 0.48 ± 0.01 31 0.23 ± 0.08 35 0.24 ± 0.08 ' 

2 02 0.29 ± 0.04 14 0.53 ± 0.10 32 0.25 ± 0.05 36 0.25 ± 0.09 
3 15 0.56 ± 0.05 
4 16 0.53 ± 0.11 
5 17 0.47±0.10 

average 0.31 ± 0.04 0.51 ± 0.07 0.24 ± 0.07 0.25 ± 0.09 
LP 1 49 0.48 ± 0.13 53 0.49 ± 0.10 75 0.27 ± 0.07 82 0.27 ± 0.04 

2 50 0.49 ± 0.11 54 0.50 ± 0.05 76 0.26 ± 0.08 83 0.27 ± 0.03 
3 55 0.50 ± 0.07 

average 0.48 ± 0.12 0.49 ± 0.07 0.26 ± 0.07 0.27 ± 0.04 
PS 1 45 0.37 ± 0.04 : 69 0.37 ± 0.18 80 0.52 ± 0.30 87 0.51 ± 0.11 

2 46 0.38 ± 0.03 i 70 0.36 ± 0.19 81 0.61 ± 0.32 88 0.51 ± 0.10 
average 0.38 ± 0.04 0.37 ± 0.19 0.57 ± 0.31 0.51 ± 0.11 
pp 1 33 0.35 ± 0.10 47 0.33 ± 0.10 . 67 0.47 ± 0.12 73 0.46 ± 0.15 

2 34 0.35 ± 0.07 48 0.33 ± 0.10 68 0.50 ± 0.07 74 0.45 ± 0.16 
average 0.35 ± 0.09 0.33 ± 0.10 0.49 ± 0.10 0.46 ± 0.16 
ss 1 51 0.83 ± 0.13 71 0.74 ± 0.21 77 0.89 ± 0.31 84 0.90 ± 0.31 

1 85 0.88 ± 0.10 
2 52 0.82 ± 0.16 72 0.73 ± 0.19 78 0.89 ± 0.07 86 0.85 ± 0.10 
3 79 0. 78 ± 0.27 

average 0.83 ± 0.15 0.74 ± 0.20 0.85 ± 0.22 0.87 ± 0.17 
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The values on Table 4.2 were not those encountered when the samples were taken; instead 

they were those maxima expected from the locations of the sampling. The range values 

give an indication of the heterogeneity of the trawls in terms of their locations. The Looe 

and Plymouth single and pair trawls were from areas which generally have similar values 

of maximum tidal strength (rarely > 0.5 ms·', and had relatively low variability as 

expressed in their range. The two exceptions to these situations were hauls 80 and 81 

(Plymouth single boat samples taken during 17/11/1999). These also had larger variability 

as expressed in their range. This was due to their proximity to the strong tidal stream area 

towards Salcombe (see Figure 4.5, page 82, above and Figure F.2, page 368, below). All 

the Salcombe hauls were in quite high tidal stream areas and had larger ranges. The 

Newlyn samples (which were between those from Looe or Plymouth and Salcombe in 

magnitude) were also relatively similar in terms of average maxima (given their similarity 

of location) except those during Q2 '98 which were more geographically distant. These 

values were also derived differently and do not have ranges as only their haul positions 

were recorded during their collection. 

4.3.1.3 Wind speed 

Table 4.3 shows how the wind speed varied across the sampling period. 

Table 4.3. Average wind speed (ms·', ± range where applicable) according to port and 
type of trawling and year and quarter of the year. 

ear and quarter 
QJ 

port and Cl 
IX) (1) 0 ~ 

type (1) (1) 0 
(1) (1) 0 QJ 
~ ~ N > m 

2 3 4 1 2 3 4 1 
NS 7±2 7±6 9±2 7±6 7 
LS 13 5±1 9 7 8 
LP 4 7 13 3 7 
PS ! 6 2 5 10 6 
pp 9 7 7 4 7 
ss 

' 
4 10 9 5±1 7 

average 8 6 9 6 7 7 : 6 6 7 
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Table 4.3 shows that on average the wind conditions were quite constant across the 

sampling period, though expected longitudinal variation was evident (higher averages in 

quarters 1 and 4), although according to port and type of trawling there was very little 

difference overall. 

4.3.1.4 Day/night/twilight from time 

Table 4.4 shows how the hauls were arranged based on the time of shoot and haul 

converted to the factor of day, night and twilight. 

Table 4.4. Numbers of day (D), twilight (T) and night (N) hauls from which usable 
samples were collected according to port and type of trawling and year and quarter of the 
year. 

year and quarter 
port <X) en 0 

and en en 0 total m en 0 

type D/NfT ..... ..... N 

2 3 4 1 2 3 4 1 
D 4 8 5 8 25 

NS T 3 1 2 1 7 
N 3 4 1 2 10 
D 2 3 1 1 7 

LS T 1 1 1 3 
N 1 1 
D 2 3 2 2 9 

LP T 0 
N 0 
D 2 2 2 2 8 

PS T 0 
N 0 
D 2 2 2 6 

pp T 0 
N 2 2 
D 2 2 2 3 9 

ss T 1 1 
N 0 

total 12 18 2 4 16 20 9 7 88 

Table 4.4 shows that sampling from Newlyn generated an appreciable number (24 %) of 

nighttime hauls and quite a few (17 %) twilight hauls. Amongst the other ports and types 

of trawling few nighttime hauls were sampled. 
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4.3.2 Redundancy analysis 
Table 4.5 shows the correlation coefficients of the presence/absence based substrate data 

across each haul. 

Table 4.5. Correlation coefficients (r) between substrates as presence/absence data. S = 
sand, mS = muddy sand, (g)S = slightly gravely sand, gmS = gravely, muddy sand, gS = 
gravely sand, G =gravel, msG =muddy, sandy gravel, sG = sandy gravel, and R = rock. 
The mean value = - 0.034. Blue highlighted values are± 1 standard deviation of the mean. 
Yellow highlighted values are± 2 standard deviations ofthe mean. 

s -0.042 0.150 - 0.127 - 0.632 - 0.089 
mS -0.041 0.166 -0.029 
(g)S 0.163 - 0.195 - 0.1 00 
gmS 0.093 - 0.016 
gS 0.066 
G -0.054 

msG 
sG 

mS (g)S gmS gS G msG 

____,..,..,..,,.,._.., 

0.089 

sG 

0.044 
0.141 
0.061 

- 0.063 
- 0.105 

0.186 
-0.045 

13 
R 

No correlation values between the substrates approach the point (~ > 0.950) where 

duplication (and therefore redundancy) was apparent, so all sediment variables were 

retained. The largest values on Table 4.5 were negative correlations; these were between 

gravely sand and sand (r = - 0.632) and sandy gravel and slightly gravely sand (r = -

0.520). 

The most commonly eo-occurring substrate types have a degree of gravel in them, 

for example sandy gravel and gravel (r = 0.422); sandy gravel and gravely sand (r = 

0.373); and gravel and gravely sand (r = 0.247). 

Table 4.6 shows the correlation coefficients (r) produced from the draftsman plot 

for the non presence/absence data. 
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Table 4.6. Correlation coefficients (r) of non-presence I absence abiotic data. Data are: 
wind = wind speed (ms-1

); av max.t.s. = average maximum tidal strength, min max.t.s. = 
minimum maximum tidal strength, max max.t.s. = maximum maximum tidal strength, and 
range m.t.s. = range of average maximum tidal strength (ms-1

); and depth (m). 
Correlations 2: 0.900 are highlighted. See text for*. 

av max.t.s. -0.071 
min max.t.s. -0.105 
max max.t.s. -0.048 

0.966 
0.976 0.897* 

0.211 range m.t.s. 0.080 0.444 0.621 

depth .___,-0'-".07-'1'-74 __ ......:::0~.2~6::::,3 --...,..=.:0·=22~7~ _ ____,0'-".3==2~0~_......:::0"".3""0-'-7-
wind av max.t.s. min max.t.s max 

max.t.s. 
range 

max.t.s. 

The high correlation values in Table 4.6 (above the r = 0.95 threshold) suggest that the 

inclusion of the absolute maximum, and minimum tidal strengths as abiotic measures were 

duplications. This was confirmed by the fact that the correlation was also high (r = 0.897) 

between the absolute minima and maxima for each haul. The correlation coefficients were 

not particularly high for the measures of tide and the ranges of maximum tidal strength 

along the trawl track, (r = 0.621 between range and absolute maxima, and r = 0.211 

between range and absolute minima) suggesting that the measure of range cannot be 

substituted for another and it should be retained. Depth could not be substituted for 

another measure and was retained, though its influence as a measure of the geographical 

distribution of the trawl track will be explored later, (see Figure 4.8, page 95 below). 

Table 4.6 showed that the wind strength correlated without pattern to the other 

measures (r mean ± s.d. = - 0.032 ± 0.035). Also, this measure was a function of the 

collection of the data rather than a feature of the environment therefore it was removed 

before further analysis. 

Table 4.7 shows the results of the ANOSIM on the full sample according to time of 

trawling. 
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Table 4.7. ANOSIM as pair-wiseR-values for all the full sample data according to day 
(D), night (N) and twilight (T) timing of the haul. Not significantly different pair-wise 
associations are highlighted. Global R = 0.190. 

D 0.046 
N - 0.040 0.046 I 

T D 

According to its global R value time of trawling was overall not at all a good descriptor for 

the full sample and Table 4.7 shows that the full samples were not separable by D/N/T, and 

all the combinations between the factors were not significantly different. 

A quarter of the samples from Newlyn were nighttime, though these samples too 

could not reliably be distinguished by D/N/T, as shown in Table 4.8. 

Table 4.8. ANOSIM as pair-wiseR-values for the Newlyn full sample data according to 
day (D), night (N) and twilight (T) timing of the haul. Not significantly different pair-wise 
associations are highlighted. Global R = 0.132. 

D 0.046! 
I 

N - 0.040 i 0.046 
T D 

Despite this outcome the most different time groupmg (day and night) were not 

significantly similar although this could have been due to the low global R-value. 

4.3 .3 Trends in derived environmental datasets 
Section 4.3.2 showed that the abiotic measures of absolute maximum, and minimum tidal 

strengths were redundant and that wind strength had little influence on the data. Section 

4.3.2 also showed that the factor of D/N/T was not a good descriptor of the sample. The 

finalised abiotic datasets were: 

• Continuous data; average and range of average maximum tidal strength (ms-1
), depth 

(m). 
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• Presence/absence data; substrate, S = sand, mS = muddy sand, (g)S = slightly gravely 

sand, gmS = gravely, muddy sand, gS =gravely sand, G = gravel, msG = muddy, 

sandy gravel, sG = sandy gravel, and R = rock. 

Figure 4.6 shows the PCA plot based on the finalised abiotic datasets. 

4 

3 ~. NS 

2 ~75 .. • LS 
'ij' 

1 

'~ • • LP 
1J 

0 n • N 

w~~ • # • PS -1 

-2 ,~.f ~ PP 

-3 • • ss 
-4 

-3 -2 -1 0 1 2 3 4 

PC1 

Figure 4.6. Normalised (correlation-based) PCA plot of abiotic data (according to port and 
type of trawling, N- = Newlyn, L- = Looe, P- = Plymouth, S- = Salcombe; -S = single boat 
trawling, -P = pair boat trawling) based on the finalised datasets (described on page 89, 
above). 

The 'arch' on Figure 4.6 was very pronounced suggesting that concentrating only on those 

factors directly related to the environment has stretched out the samples along their 

gradient of variables (despite this PCA being conducted on standardised and normalised 

data. Part of the reason for this was due to 9 out of the 12 abiotic variables being substrate 

related. Whlle all the data were standardised the dominance of the presence/absence 

substrate information is apparent. 
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The Newlyn abiotic datasets exist towards one end of the range. Next along the 

continuum generally were the Salcombe samples and at the other end were the Looe and 

Plymouth samples. Despite 9 out of the 12 abiotic,samples being related to substrate the 

influence of tide is consistent with this pattern. 

Table 4.9 describes the separation of the finalised abiotic datasets described on 

page 89 (above) according to port and type of trawling. 

Table 4.9. ANOSIM as pair-wise R-values based on the finalised abiotic data (described 
on page 89, above) untransformed, standardised data environmental data according to port 
and type of trawling, N- = Newlyn, L- = Looe, P- = Plymouth, S- = Salcombe; -S = single 
boat trawling, -P = pair boat trawling. The similarity matrix was created using normalised 
Euclidian distances. Not significantly different pair-wise associations are highlighted. 
Global R = 0.437. 

NS 0.450 0.476 0.508 0.582 0.552 
LS 0.033 0.136 ' 0.262 0.259 I 
LP 0.104 I 0.191 0.312 
PS -0.007 0.178 
pp 0.285 

LS LP PS pp ss 

The global R-value suggests that the ANOSIM featured in Table 4.9 is not a very good 

descriptor of the similarity of the sites, though this may be due in part to the combination 

of presence/absence and continuous data, in spite of the normalisation. The abiotic data 

associated with the Newlyn samples were overlapping but clearly separable from the 

locations of the other samples. Other locations were not separable. In total, four of the 

interactions on Table 4.9 were not significantly different, though only two of the 

interactions were well above the 5 % level. These strongly similar groups were between 

the single and pair trawled hauls from the same port; (Looe P = 0.24 and Plymouth P = 

0.38). It was perhaps surprising that the greatest similarity was geographical rather than 

between gear types, though this suggests that despite some overlap, the region is 

demarcated into areas exploited by Looe and Plymouth fishermen. This was supported by 

anecdotal information.' This relationship is examined in more detail in section 4.3.4. 
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The first axis of the plots on Figure 4.6 can be interpreted as a contrast between 

sand (0.495), gravely sand ( -0.420), depth ( -0.353) and average maximum tidal strength (-

0.349). The second axis is influenced by slightly gravely sand ( -0.50 I), sandy gravel 

(0.480), muddy sand (0.421) and average maximum tidal strength ( -0.400). How these 

parameters contribute to the variation of the first and second axes and influence the 

construction of the PCA plot of Figure 4.6 is shown in Figure 4.7. 
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Figure 4.7. Influence of variables on normalised (correlation-based) PCA plot of abiotic data (according to port and type of trawling, N- = Newlyn, L- = 
Looe, P- =Plymouth, S- = Salcombe; -S =single boat trawling, -P =pair boat trawling) based on the fmalised datasets (described on page 89, above). The 
presence of bubbles relate to the presence/absence of a) sand, b) muddy sand, c) slightly gravely sand, d) gravely muddy sand, e) gravely sand, f) gravel, g) 
muddy sandy gravel, h) sandy gravel i) rock and magnitude of j) average, and k) range of maximum tidal strength and l) depth. 
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Figure 4.7 illustrates the influence of the finalised abiotic variables on the overall PCA 

plot. Interpreting the PCA plot (Figure 4.6) and the bubble plots (Figure 4.7) is aided by 

examining the overall substrate distribution, shown on Figure 4.4 (above) which shows the 

area in sufficient detail. 

It is clear from Figure 4. 7 how the data were arranged according to the 

presence/absence of sand and gravely sand. In addition, how the gradient of depth and 

average maximum tidal strength have been accommodated. 

The primary split of the first axis on the top row of Figure 4.7 is clear. Almost all 

of the Newlyn hauls did not coincide with sand (a), the only one being number 56 that was 

close inshore to the southern tip of Land's End. The other samples not coincident with 

sand were some (numbers 33, 34, 47 and 48) which were close to Rame Head, off 

Plymouth, and several (numbers SI, 52, 77, 78 and 84) offSalcombe. Figure 4.7 (b) shows 

the general ubiquity of gravely sand (in 64 samples or 73 %). Gravely sand was more 

prevalent in samples coincident with headlands (and stronger tidal maxima) being present 

in 96 and 90 % of samples from Newlyn and Salcombe respectively and more often absent 

in the various Looe and Plymouth samples (averaging only 42 % of these hauls). Gravel 

(G) was also confined to Newlyn. 

The horizontal split for the bubble plots on the middle row of Figure 4. 7 is also 

clear, though this is less obvious for the presence of muddy sand. Nevertheless, this 

substrate type was present in the passage of the six trawl tracks that were all Plymouth 

based trawls, which passed through an area close to Rame head. 

Gravely muddy Sand (g) was only trawled over from Salcombe although this 

sediment is found more to the east of the region. Muddy sandy Gravel (h) was only 

coincidental with one Newlyn sample. Rock (i) was found in 13 samples and these areas 

of rock were located to the west of Land's End, south of Gribbin Head Gust off Fowey), 

and on the hard ground close to Salcombe, (see Figure 4.4, above). While rock only 
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contributes minimally to the variation in the first two axes it contributed- 0.718 to the third 

axis thus its importance was quite separate to the soft substrates. 

As mentioned above the average maximum tidal strength G) was both the fourth 

largest contributor to the first and second axes. Figure 4.7 (bottom row) shows how the 

variation was shared across the continuous data factors, range (k) and depth (l), with the 

larger values in the negative x and y quadrant of the graphs. Comparing the average 

maximum tidal strength G), and depth (l), (on Figure 4.7) it appears that the deeper samples 

also have the greater values of the average maximum tidal strength. Figure 4.8 shows this 

relationship. 

~ ... 
C) 
c 

1 

~ 0.8 

fti 
"C 
;:; 0.6 
E-
::I ";'C/) 

E E 
·~ - 0.4 
E 
Cl) 

~ 0.2 
Cl) 
> 
c( 

y = 0.0113x- 0.2353 

R2 = 0.5258 

0 +------.------.------.------.------.------~----~ 

0 20 40 60 80 100 120 140 

Depth (m) 

• Newlyn - headland A Newlyn - deep • Looe • Plymouth • Salcombe 0 Salcombe - shallow 

Figure 4.8. Average maximum tidal strength (ms-1
) against depth (m). The fitted trend 

includes neither the deeper and more distant Newlyn samples (black triangles, n = 1 0) nor 
the very close inshore samples from Salcombe (open blue circles, n = 2), which were also 
close to a headland. 

The relationship described by the trend in Figure 4.8 was very highly significant, (P > 

0.001). Including the outliers from Salcombe the relationship was still very highly 

significant, (P > 0.001) though the fit was less good (R2 
= 0.3045). Including all the points 

on Figure 4.8 the trend was significant (P = 0.013), though the fit was poor (R2 
= 0.0691). 

None of the three regressions were strictly valid as their residuals did not approximate a 
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normal distribution according to the A-D test; (A 2 = 1.488, n = 76, P = 0.001, as shown on 

Figure 4.8; A2 = 1.796, n = 78, P < 0.001, including the Salcombe outliers and; A2 = 0.959, 

n = 88, P = 0.015 all data). 

4.3 .4 Looe and Plymouth samples in more detail 
Figure 4.6 and Table 4.9, (above) shows the strong similarity between the abiotic datasets 

for Looe and Plymouth. As shown on Figure 3.1, (page 47), and Figure 4.4, (page 79, 

above) these trawls generally ran east west and from close inshore to ~ 20 run from land. 

The samples from Looe appear to be divisible into those closer inshore and those further 

offshore represented as those areas sampled from the north or the south of Eddystone 

Rocks. According to Figure 4.4, the Plymouth hauls do not appear so separable into 

distinct geographical areas. Table 4.10 shows how these trawls were assigned as inshore 

or offshore for both ports. 

Table 4.1 0. Haul number and type of trawling operation according to port whether 
considered inshore or offshore, data are taken from Table 3.2, page 49, above, Figure 4.4, 
page 79, above. 

Looe Plymouth 
inshore i offshore Inshore offshore 1 

haul# type I haul# type haul# type haul# type 
1 s 13 s 33 p 45 s 
2 s 14 s 34 p 46 s 

31 s 15 s 47 p 67 p 

32 s 16 s 48 p 68 p 

35 s 17 s 69 s 73 p 

36 s 49 p 70 s 74 p 
75 p 50 p 80 s 
76 p 53 p 81 s 
82 p 54 p 87 s 
83 p 55 p 88 s 

A PCA analysis was run on only the Looe and Plymouth hauls as described in section 4.2.3 

though the additional factor of inshore/offshore was included. 
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Figure 4.9 shows the PCA plot as according port and type of trawling and to 

whether the trawls were classed as close inshore or further offshore (according to Table 

4.1 0) which should be consulted with reference to the distributional map of the Looe and 

Plymouth samples, (see Figure 3.1 and Figure 4.4). 
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Figure 4.9. Normalised (correlation-based) PCA plot of environmental data showing split 
into pre-determined inshore and offshore samples (according to port ofLooe and Plymouth 
only) based on (continuous data) average and range of average maximum tidal strength 
(ms-1

), and depth (m), and by (presence/absence of) substrate, S =sand, mS =muddy sand, 
(g)S = gravely sand, gS = gravely sand, sG = sandy gravel, and R = rock. G = gravel, gmS 
= gravely, muddy sand, and msG = muddy, sandy gravel were not present in the samples 
from Looe or Plymouth. 

The split of location (inshore/offshore) was well described by the PCA plot in Figure 4.9. 

Only samples 45 and 46 appearing to have been incorrectly classified, since while these 

samples were collected south of Eddystone Rocks (actually mostly to the west, see Figure 

3.1, page 47, above, and Figure 4.4, page 79, above) they classify as inshore samples 

according to the PCA plot in Figure 4.9. 

The factor of location (inshore/offshore) in the PCA was the single biggest factor 

(at 0.814) for describing the distribution of the points in the PCA plot of in Figure 4.9. 
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4.4 Discussion 
Sampling at sea on board commercial vessels precluded gathering first-hand, reliable and 

transferable abiotic data. This Chapter has presented and analysed important parameters 

that relate to each trawl location. This process enabled an understanding of the 

environment from which the samples were taken, and this knowledge will feed into further 

analysis between the biotic and abiotic data, (Chapter 7 and Chapter 8). 

Although a generalisation, most of the trawl tracks were parallel to the coastline, 

which mirrors the 'prevailing' tidal flow; tows from Newlyn were north/south tracks and 

Looe, Plymouth and Salcombe tracks were east/west. The Looe and Plymouth samples 

were collected from where the tidal strength was lowest and least variable in its maxima 

and the substrates were sandy offshore though more complex inshore. The area sampled 

from Newlyn was more tidally dynamic and the substrates were coarser. The areas 

sampled from Salcombe were the most tidally dynamic and the substrates were very 

'heterogeneous. 

The practise of determining the boats' track from recording its position when 

shooting and hauling the gear and other (intermediate) positions at changes in the boats' 

direction has produced meaningful and validated trawl tracks (Appendix F). An 

improvement to the method would be to download the GPS positional track straight into a 

GIS although shoot, intermediate and haul positions gave sufficient positional resolution, 

relative to the scale of abiotic information (sediment information and !idal model grid 

size). Better methods have nevertheless been employed with considerable success by 

Rijnsdorp et al., (1998) where the data set was larger. The alternative would have been to 

use a handheld GPS receiver. Acquiring the positional data at a finer resolution will 

become more important as similarly scaled information about the sediment is also more 

widely available. 

The explanation for the largest correlation values being negative when examining 

only the presence/absence of substrate values across all hauls was due to the general split 
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between the western (Newlyn) based hauls that were predominantly over gravely sand and 

sandy gravel, and the other more eastern hauls from the other three ports where (on 

presence/absence terms) sand dominates the substrates as was shown on Figure 4.4, 

(above). 

The most commonly occurring substrates were the coarsest substrates. There may 

be a degree of pattern modification by fishing gear here; in that the finer sediments once 

lifted up into the water column will move further than the coarsest, although overall the 

disturbance by the natural process of storms was calculated (Hamilton et al., 1980) to have 

the ability to entrain medium-sized particles, greater than the average in the western 

English Channel, (Evans, 1990) at depths greater than in this study. Therefore, it is likely 

that overall, naturally caused physical disturbance has a greater impact than anthropogenic 

(fishing) disturbance on the distribution of the sediments, though there are likely to be 

areas where the reverse is true. Importantly the sources used to generate the substrate data 

suffer from being collected over a long period of time ( 1971 to 1985 for the British 

Geological Survey data) and it is likely that this timescale could mask subtle changes due 

to chronic disturbance events. Targeted studies would be required to gather the detailed 

derived datasets required to examine this further, and this was outside the scope and 

resources available here. 

The outcome of narrowing down the non-presence/absence suite of abiotic 

parameters showed that the minima and maxima of maximum tidal strength were 

redundant and could be represented by just the average maximum tidal strength without 

loss of information. This was largely due to the similar lengths of trawl tracks and 

relatively large range overall of average maximum tidal strength values. Had a larger 

range of different fishing methods been studied then this may not have been the case. 

Although not directly comparable none of the substrate presence/absence data could 

be considered as redundant and all were necessary to fully describe the trawled areas. 

Exactly which relate most strongly to the biotic data is explored in Chapter 7. 
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The reason for the positive trend between depth and maximum tidal strength (as 

shown on Figure 4.8, above) was likely to be due to the prevalence of the generally deeper 

samples being from Newlyn (average depth= 79.63 m, 95 % C.l. = 2.21, n = 32) which 

were close to the Land's End Peninsula and therefore generally have stronger tides 

(average maximum tidal strength= 0.69 ms-1
, 95% C.I. = 0.02, n = 32). Conversely the 

samples from Looe, Plymouth and Salcombe were mostly taken from within the bay 

between Dodman and Start Point where the water is more shallow (average depth = 64.88 

m, 95% CJ. = 3.20, n = 44) and the tides were weaker (average maximum tidal strength= 

0.48 ms-1
, 95 % C.l. = 0.05, n = 44). That these values for Looe, Plymouth and Salcombe 

had a greater range in their values was probably due to their larger geographical extent. 

Given that tidal strength diminishes with depth, and friction with the seabed plays 

an important part in this (Huntley pers corn.), the expected tidal strength near the sea floor 

would be much lower than that recorded (or modelled) at the surface. This has important 

consequences for the general stability of the seabed when compared to the average surface 

tidal movement as measured here, though this could not be examined here. 

The particular similarity of the substrates trawled over separately by the Looe and 

Plymouth boats showed the strong geographical constraint for all these boats and their 

activity. 

Although not explored here it was recognised that the dominance of the 

presence/absence substrate data has produced an artefact in the PCA plot. Ways to 

mitigate this involve down weighting the importance of each individual presence/absence 

factor, such that the influence of the tide and the substrate each have half the total power of 

influence. This was not done here, as it was not known a priori if this would generate an 

outcome that was more 'correct'. 
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5 Spatial, temporal, disturbance 

species analysis of the sample 

5.1 Introduction 

Chapter 5 

and 

Chapter 3 described the quantity and location of the sampled hauls and introduced the 

species encountered in the samples. It was evident from Chapter 3 that the samples were 

gathered over a relatively large spatial extent and that there were both similarities and 

differences in the species sampled according to port and type of trawling. The sample data 

(Aim I, Sample Theme, Figure 1.4, page 17, above) is the mainstay for analysis in this 

study as shown in the conceptual diagram in Figure 1.3, page 16, above. This Chapter is 

the first of two (together with Chapter 6) which examine the sample data. There are three 

parts to the analysis in this Chapter: 

Patterns of similarity in trawled assemblages between ports and type of trawling. 

2 Measures of degree of disturbance to the trawled areas. 

3 Interpretation of the fish community data to understand the relationship between 

species. 

The first of these represents the full sample dataset then according to port and type of 

trawling and in increasing levels of resolution (from the full sample then into its fish and 

non-fish components). The second determines the level of disturbance that is apparent 
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from the sample data set. The third part delves a little deeper into the sample data to assess 

some of the within and between species patterns. 

5 .1.1 Patterns in trawled assemblages between ports 

and type of trawling 
Chapter 4 principally presented the derived sediment and tidal data and showed how the 

complexity of the sample locations could be resolved according to port and type of 

trawling though also how other factors were important. The related aim of this section is 

to similarly (though separately) resolve the biotic assemblages into a depiction of how the 

samples (by port and type of trawling) interrelate and are different, through graphical and 

formal testing of the patterns. This is examined according to the full sample and the 

contribution of the fishes (whether landed or discarded) and the non-fishes (invertebrate) 

species. While the shellfish were landed here, they were treated as part of the non-fish 

species. 

Aspects of this analysis feed into Chapter 6 and the relationship between this 

analysis and the derived environmental data are brought together in Chapter 7. 

5 .1.2 Degree of disturbance to the trawled areas 
The second theme in this Chapter uses the species level resolution of the sample data to 

examine the Degree of disturbance to the trawled areas. The purpose of this analysis was 

to ascertain whether this trawling data provides a useful method of determining 

environmental disturbance, and whether the analysis can be expanded from the typical 

macrobenthic samples (Agard et al., 1993;Warwick & Clarke, 1994) to include the fishes 
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and what implications this generates. This analysis was achieved through an Abundance

Biomass Comparison (ABC). 

ABC has a theoretical background in classical evolutionary theory of r- and K

selection. Undisturbed communities, under stable conditions are characterised by large 

and long-lived (K-selected) species. These are rarely numerically abundant though 

dominate the biomass. Under disturbance (or pollution) stress, these K-selected species 

become replaced by r-selected species that are opportunistic in nature. r-selected species 

characteristically are short-lived and numerically dominant though they do not represent a 

large proportion of the biomass. 

ABC curves are simultaneous plots of k-dominance curves (Lambshead et al., 

1983) of species in rank-order of abundance or biomass (x axis) and cumulative percentage 

dominance (y axis). In undisturbed communities, the biomass of the few K-selected 

species lies above the low abundance line. In sites of moderate disturbance, the biomass 

and abundance lines lie close together (or crossing) and in communities defined as more 

disturbed (or polluted) the abundance line lies above the biomass one. 

Simultaneous plots were first devised by Warwick, ( 1986). Clarke, ( 1990) 

suggested improvements which mitigate the disadvantage of the original method (over 

dependence on the single most dominant species) though the many (n = 88) samples here 

and expected variability preclude assessment at the single sample level. The method 

advocated by Warwick & Clarke, (1994) has the advantage that it includes the Clarke, 

(1990) 'W' (for Warwick) test statistic, (IWl:'Sl) which is a useful single summary statistic 

and enables comparisons between a large number of simultaneous ABC curves, although 

representing the assemblage by a single statistic inevitably means that information is lost. 

In general, W > 0 for undisturbed; W:::: 0 for moderately disturbed and W < 0 for grossly 

disturbed (or polluted) assemblages. Further information is contained in Clarke & 

Warwick, (200la p8-6, 8-7 & 8-12). 
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The use of the W-test statistic has been widespread in pollution and disturbance 

studies of the benthos however, it is more common and arguably much more appropriate to 

employ a sampling method that does not suffer from peculiarities associated with size 

selection, which is an inevitable artefact of trawling. This is recognised in this study by 

first examining the non-fish (invertebrate) part of the sample, then carrying out a size 

spectra analysis before expanding the ABC analysis into the full sample. ABC also 

required a reasonably large data set and this analysis was undertaken with sensitivity to the 

species accumulation curve (Figure 3.2, page 59, above). 

The most commonly quoted size-spectrum (Schwinghamer, 1981) has a 

characteristic bimodal distribution with the peaks being associated with the categories of 

meiofauna and macrofauna. The bimodal distribution has also been criticised by Ramsay 

(pers corn), who suggests that it is an artefact from sampling methods, and Manly, (1996), 

who questions (posing as many further questions as he answers) the fundamental 

distribution of body size. Nevertheless the earlier work by Warwick, (1984) makes a 

compelling case for the bimodal distribution. 

Analysis of fish together with macrobenthos was first carried out by Penczak & 

Kruk, (1999). Warwick (pers corn) has supported the calculation of W-test statistics for 

complete samples and suggested that there is nothing intrinsic in the samples collected in 

this study to invalidate the calculation of the W-test statistic. More recently Blanchard et 

al., (2004);Shin et al., (2005);Yemane et al., (2005) have examined fishing effects on 

diversity, and ecosystem effects of fishing employing ABC. 
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5 .1.3 Interpretation of the fish community data to 

understand the relationship between species 
Detecting the effects of fishing has employed methods across a wide range of spatial 

scales. At the smallest scale are techniques (grab samples and box corers, Mudroch & 

. 
Azcue, 1995;Eieftheriou & Mclntyre, 2005) that gather very detailed samples over small 

areas. Methods which cover the largest area include acoustic seabed classification system 

(e.g. RoxAnn), sidescan sonar and video-sledges (Humborstad et al., 2004). These latter 

methods suffer in that they do not collect biological samples. Between these are trawl and 

dredge sampling techniques (Kaiser, 2003), which cover large spatial scales and collect 

biological samples, though suffer in that they tend not to retain examples of the smallest 

species (Biyth et al., 2004). Nevertheless, trawl sampling, whether scientific or 

commercially based is a valuable research tool. 

Other areas of Chapter 5 and Chapter 6 assess the degree of disturbance apparent 

from the sample data. Neither Chapter however takes into account relationships between 

individual species in assessing further patterns in the fish community data, which is the 

subject of this section. The three parts to this section examine different types of 

relationships between species. 

5.1.3.1 Ray species 

Due to their life history (Stevens et al., 2000) and extensive exploitation, ray species (Raja 

spp.) are particularly vulnerable (Dulvy & Reynolds, 2003), and as a group are proposed as 

reference points of understanding ecosystem effects of fishing (ICES, 2005). Walker & 

Hislop, (1998), hypothesized that ray species occur in abundance according to their 

replacement mortality, (Walker & Hislop, 1998, Table 3). They suggested that an increase 

in total mortality would lead to a decline in species abundance in the order of R. batis, R. 

clavata, R. montagui, R. naevus then R. radiata. Thus, in essence, the common skate (R. 
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batis) is most susceptible to fishing and the starry skate (R. radiata) is the least. Whilst 

Walker & Hislop, (1998) concentrated their assessment on the central and north-western 

North Sea it is suggested that it is nevertheless possible to test whether the rankings 

observed in this study mirror those hypothesized by Walker & Hislop, (1998). 

Two further species, the shagreen ray (R. fullonica) and the blonde ray (R. 

brachyura) could not be included in the list compiled by Walker & Hislop, (I 998) as they 

had insufficient data. Therefore, in addition to examining whether the order of those 

species in this study agreed with those in Walker & Hi slop, ( 1998) it was attempted to 

extend the analysis to include these and any other ray species present. 

5.1.3.2 Predator-prey interactions 

According to Veale et al., (2000) the three most common predators of Pecten maximus 

were A. rubens, Pagurus spp. and Liocarcinus spp. They found that when damaged and 

undamaged by-catch specimens of P. maximus were placed in front of a time-lapse video 

system in an area closed to fishing off the Isle of Man these species constituted 78 % of the 

recorded predation events. 

Across all samples in this study (Table 3.4) by biomass P. maximus ranked 37 and 

A. rubens ranked 32. All Liocarcinus sp combined together would rank 36 (between D. 

labrax and M surmuletus) and together all Pagurus spp. would rank 81 (where P. 

bernhardus was situated). According to port and type of trawling, (Table 3.5) A. rubens 

occurred in the top 30 species and P. maximus had an average rank of37. The Liocarcinus 

spp. also featured prominently in Table 3.5 especially in the Looe and Plymouth samples; 

therefore, all these species were among those well represented across all the samples 

though they were not ubiquitous in all samples. Whilst no visual evidence of predation by 

A. rubens, Pagurus spp. and Liocarcinus spp. on P. maximus was recorded in the samples, 

on the basis of the evidence from Veale et al., (2000) the analysis is concerned with the eo

occurrence of these species in relation to their individual occurrence in samples. 
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5.1.3.3 Impacts on echinoderms 

As shown on Table 3.4 a greater weight of M glacialis were collected in the sample than 

A. rubens. E. esculentus ranked 33 overall, (one place below A. rubens). Generally this 

was consistent across ports and type of trawling (Table 3.5) except for Salcombe where M 

glacialis ranked between A. rubens and E. esculentus, which is in agreement with the 

previously documented range of this species (rarely occurring to the east of Start Point, 

Ager, 2003). Locally these three species are dominant and together they would have 

ranked 9 across the full sample. 

These 3 common species occur on a wide variety of substrates. MarLIN (MarLIN, 

2004) lists these species' preferred substrates as: M glacialis: " ... found in a variety of 

habitats from sheltered muddy sites to wave exposed rock faces," (Ager, 2003). "A. rubens 

occurs in varying abundance upon a variety of substrata that include coarse and shelly 

gravel and rock," (Budd, 2001), and E. esculentus is" ... found on rocky substrata from the 

sub littoral fringe to circa 40 m, although it may be fourid at depths of I 00 m or more," 

(Tyler-Walters, 2003). 

Damage to A. rubens has long been used as an indicator of fishing (Kaiser, 

1996;Ramsay et al., 2001). Given these three species' near ubiquity here, it was decided to 

determine whether M glacialis or E. escu/entus might offer any benefits as indicators. 

This was undertaken as an assessment of the frequency of arm loss in M glacialis and A. 

rubens, or general damage in E. esculentus. 

Arm loss in M g/acia/is and A. rubens (as well as other asteroids) is not confined to 

damage or disturbance caused by fishing. Ramsay et al., (2000b) demonstrated a 

significant positive correlation between predator density and arm loss in both of these 

species in an environment from which anthropogenic disturbance events could be 

"virtually eliminated." In this study disturbance was the method of gathering data, though 

107 



Chapter 5 

it was possible to ascertain whether the presence of the predators of M glacialis and A. 

rubens might be responsible for some of the arm loss of these species here. 

5.2 Methods 

5 .2.1 Patterns in trawled assemblages between ports 

and type of trawling 
Initial examination of the sampled assemblages was carried out via non-Metric 

Multidimensional Scaling (nMDS, or MDS) in PRIMER-E (Ciarke & Warwick, 200la) of 

the full sample data according to port. For this and all subsequent analyses each MDS plot 

was based on a similarity matrix generated from the site/species matrix of weight by 

sample and species. The similarity matrix were calculated using the Bray-Curtis measure 

(Digby & Kempton, l987;Southwood & Henderson, 2000;Waite, 2000) on double square 

root transformed data This transformation was chosen as it best balanced the contributions 

between the common and rare species. Appendix G presents the rationale for and results 

of the transformation analyses. 

The next MDS analysis examined relationships of similarity by port and type of 

trawling. Following this, the combined landed and discarded fish component of the sample 

was examined according only to port; then the type of trawling was added. The data used 

in this Chapter were the sum of weights by sample for each species and it was not relevant 

to know whether the individual fish were intended to be landed or discarded. 

When a sub-set of the full data set was analysed sites or species were removed from 

the full matrix and a new similarity matrix was generated from the sub-set. The same 

transformation and measure was applied to generate this subset as described in Appendix 

G. 
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Next, the contribution to the pattern of the non-fish species was examined by port 

then according to port and type of trawling. 

The relationships illustrated in the MDS plots were tested for significance of the 

groups according to the chosen factor (port, or port and type of trawling) by analysing the 

similarity matrices using the ANOSIM routine (again in PRIMER-E, Clarke & Warwick, 

200Ia). Each ANOSIM tested the null hypothesis that there were no assemblage 

differences between groups of samples and generated global R and pair-wise R statistics. 

The global R (IRI:SI) though generally (RE[O,I]) is a measure of the validity of the chosen 

factor in explaining patterns for the analysis as a whole. R = I if all replicates within sites 

are more similar to each other than any replicate from different sites and R "'" 0 where the 

similarities between and within sites are the same on average (Clarke & Warwick, 2001a). 

The pair-wise R (IRIS I) though generally R (RE [0, I]) statistic gives an absolute measure of 

how well separated the particular groups are on a scale of 0 (indistinguishable) to 1 (all 

similarities within groups were less than any similarities between groups). Clarke & 

Gorley, (2001, p60) interpret these pair-wiseR-values as; R> 0.75 =well separated, R> 0.5 

= overlapping but clearly different and R< 0.25 barely separable at all. Where pair-wise 

comparisons showed the data were not significantly different by groups, using the < 5 % 

level (Clarke & Gorley, 200I) the pairs are highlighted. 

The MDS plot for the samples according to port (see Figure 5.3), and port and type 

of trawling (see Figure 5.4) are structurally the same, and only differ in their labels. While 

all the ANOSIMs are presented not all MDS plots according only to port are shown. 

Having analysed the full sample and its components, the relationship between the 

sites to determine the relative influence of each component on the overall pattern was 

undertaken by RELATE in PRIMER-E (Clarke & Warwick, 200la). This uses the non

parametric Spearman's rank-order correlation (r5) coefficient to assess the similarity 

between similarity matrices. 
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5.2.1.1 Spatial and temporal analysis of the Newlyn 

samples 
The Newlyn samples were collected at similar times of successive years and over a 

relatively small geographical area (Figure 5.1 ). 

Newlyn hauls 

• Q2 98 (25/05198) 

-- 03 98 (29108/98) 

Q2 99 (05105199) 

-- 03 99 single haul (26/07199) Nautical Miles 

-- 03 99 majority (28/07199) 6 3 0 6 12 

~1 J 
.A 

~ 
~0 

i 
~2 i 

Figure 5.1. Location of Newlyn hauls (colour coded) according to year and quarter, and 
numbered according to their sequential haul number (Table 3.2, page 49, above). Only 
haul position was recorded for Q2-'98. 

Temporal pattern analysis could therefore be carried out to examine whether, within the 

scope of the data, there was a consistent pattern between quarters 2 and 3 of the 2 

subsequent years' sampling, (see Table 3.2, page 49, above). The temporal analysis 
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followed the same route of ANOSIM by year and quarter, which was illustrated by MDS 

as undertaken for all the samples. As for the spatial analysis, the temporal examination of 

the Newlyn samples began with the full sample and examined the fish and the non-fish 

(invertebrate) components using the same techniques as described above. Additionally, the 

contribution of the invertebrate and non-shellfish species was also investigated. 

5 .2.2 Degree of disturbance to the trawled areas 
Given that the accumulation of species sampled in this study (Figure 3.2, page 59, above) 

appeared to approach an asymptote (especially for the fishes) the data were considered 

suitable to examine the degree of disturbance to the trawled areas through plotting 

Abundance-Biomass Comparison (ABC) curves. 

The derived pattern in the environmental factors (Figure 4.6, page 90, above) and 

species abundances (Table 3.5, page 56 above) and relatedness (Figure 5.4, page 118, 

below) patterns in disturbance were examined first on the full sample then according to 

port and type of trawling, (as combinations of individual samples). 

5.2.2.1 ABC curves 

The two matrices used for the ABC analysis were the site (sample) species matrices for 

both biomass (weight) and numbers of individuals (counts). In the counts matrix colonial 

organisms were treated as a single individual of that species. In addition, the weight of 

each organism was not corrected for its degree of completeness (section 2.3.3), though 

none of the following were included in the analysis: individual arms of starfishes or brittle 

stars; smashed examples of echinoids or crabs; lone appendages of crabs or squid; empty 

gastropod or bivalve shells. 

The ABC curves were generated according to Clarke & Warwick, (200la). 

Dominance Plot in PRIMER-E allows ABC curves (and W-test statistics) to be calculated 
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on any sub group of the samples (e.g. individual samples, all samples collected each 

trip/day, all those from each port) that is defined at 'factor level' or by user generated 

'subset' and the same applies to the variables (species). In section 5.3.2.1 and 5.3.2.3, the 

W-test statistics for a variety of ABCs are presented. Rather than create sub groups in 

PRIMER for the component under scrutiny the sub group was reported as the average of 

the W-test statistics of samples that comprised this level rather than create a sub group and 

test this. The reason for this was that this study is a collection of related though 

independent samples taken from hauls therefore the analysis must be carried out at the 

level of the sample. Only for the summary descriptions (non-fish part of the sample for all 

samples and full sample for all samples) were ABC curves and W-test statistics generated 

for larger groups. 

As mentioned above, in keeping with the traditional use of ABC the first analysis 

examined only the non-fish species (the invertebrates). In extending the analysis into the 

fishes the weight (g) of individual fishes was used based on their measured length (to the 

nearest cm below, see section 2.2.2), though since only the sample not the haul specimens 

were included no gutted to un-gutted conversion was required. 

5.2.2.2 Size spectra 

Commonly plots of size spectra take the form of lo& transformed plots of biomass against 

Equivalent Spherical Diameter (ESD) (Sheldon et al., 1972;Schwinghamer, 1981 ;Ramsay 

et al., 1997). Ramsay et al., ( 1997b) suggest that for categories where clearly defined 

measurements have been made over a long period of time (e.g. length in fishes) these data 

can be carried forward for analysis rather than converting values to ESD. In this study, 

since both fishes and a wide variety of invertebrate growth forms were included in the 

samples, data for all species were converted from wet weight to ESD. Duplisea, ( 1988, 

Figure 3) provides direct estimates of this conversion, which were extrapolated to 

encompass the range of weights encountered in this study (Figure 5.2). The conversion 
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also included a density factor (Ram say et al., 1997b, pI, 719); based on Schwinghamer, 

(1981), to compensate for differences in density across the range of sampled organisms, 

ideally however, a different density factor should be applied for different types of 

organisms. 
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Figure 5.2. Conversion factor between wet weight (g) and Equivalent Spherical Diameter 
(EDS) (mm) according to data from Duplisea, (1988), (closed data points direct estimates 
of conversion between wet weight and ESD). Open data points are extrapolations 
necessary to encompass wet weights for the data range in this study. 

The straight line on Figure 5.2 permitted a degree of confidence in extrapolating the line to 

include data of the range of wet weights found in this study and enabled comparison with 

other data sets where other methodologies (e.g. sieving) were employed in sampling a 

habitat. These include the deep-sea, (She! don et al., 1972); intertidal infauna, 

(Schwinghamer, 1981); and stream benthos (Ramsay et al., 1997). 

Commonly biomass, as transformed values of mass per unit area or volume is 

plotted against ESD values. Biomass values (as weight per unit area) are difficult to 

quantify and cross compare in trawl sampling as the weight of material is selected by the 

gear from that on or just above the seabed and the area (or more correctly the volume) is 
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(despite being able to calculate the area swept by the gear) always an approximation. 

Therefore, frequency of numbers in size classes was used instead of biomass. 

CurveExpert 1.3 (Hyams, 2000) was used to generate the equation of the line for 

frequency against size (as log2 ESD) and the best equation was the minimum order 

polynomial that generated a fit that was better than any other method (e.g. sinusoidal, or 

reciprocal quadratic). 

5.2.3 Interpretation of the fish community data to 

understand the relationship between species 

5.2.3.1 Ray species 

In the haul data, the ray species were aggregated to a single group (Table 3.3). Though 

unfortunate for analysis, it is commonly how this group is often recorded in discard studies 

(Course et al., 1996) and market data (MAFF/DEFRA, 1990-2001). In the sample data, 

length for each specimen by species was recorded and weights estimated as described in 

section 2.2.2.1. The rank-order of species and average length data in this study was 

compared to the replacement mortality rank in Walker & Hi slop, ( 1998). 

A further notable point is the division of caught rays according to whether they 

were likely to be mature. Maturity was not assessed at sea, therefore this analysis was 

concerned with those larger or smaller than literature values (McEachran & Dunn, 

1998);Walker & Hislop, 1998;Froese & Pauly, 2003) for their length at maturity. 

5.2.3.2 Predator-prey interactions 

This analysis compared the number of samples that contained the predator, its prey, both, 

or neither of these species. Veale et al., (2000) did not discriminate between any Pagurus 
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spp. and Liocarcinus spp. due to that study being video-based. Similarly, here sample 

containing a whole representative of these species was acceptable. 

5.2.3.3 Impacts on echinoderms 

Section 2.3.3.1.6 outlined the method of describing the degree to which specimens of the 

echinoderms were damaged. This analysis centres on describing the difference in weight 

between all (any amount of damage) and complete only specimens of the three species in 

order to determine the degree to which the differences in weight was apparent between the 

groups. 

Ramsay et al., (2000b) found that possible predators of M g/acialis and A. rubens 

include other starfish; Luidia ciliaris (Phililli), So/aster endeca L., Crossaster papposus L., 

the crabs Cancer pagurus L. and Hyas araneus L. and these authors were able to quantify 

the relative density of both predatory and prey species. This was not possible for this 

study. Instead, the hypothesis tested was that the proportion of undamaged M g/acialis 

and A. rubens was negatively correlated with the number of their predators in the sample. 

Neither the numbers of predators nor the proportion of undamaged specimens was 

normally distributed as shown by Table 5.1. 

Table 5.1. Results of Anderson-Darling (A-D) tests of normality on number of predators 
and % of undamaged specimens for both Asterias rubens and Marthasterias glacialis. 

A. rubens M. glacialis 
% % 

number of undamaged I number of undamaged 
measure predators specimens predators specimens 

A2 6.193 4.818 ' 2.406 2.195 
n 51 51 

' 
55 55 

p < 0.001 < 0.001 ' < 0.001 < 0.001 

Due to the outcome of the A-D test shown in Table 5.1 and in agreement with Ramsay et 

al., (2000b) the correlations between the number of predators and % of undamaged 
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specimens were examined using the non-parametric KendaU's 't (tau) rank-order 

correlation. 

5.3 Results 

5.3 .1 Patterns in trawled assemblages between ports 

and type of trawling 

5.3.1.1 All ports 

5.3.1.1.1 The full sample 

Figure 5.3 shows the MDS plot of trawled assemblages of the full sample data according to 

port of trawling. 

S1ress: 0 2 

• • N 

• 57 

• • • \2 u • • '(lW \~ . ... 
.~ .. <: fv~ u(:~ • 3] w • I • • u3Juw • .. '- :!J UJ' • • 

• l 

• p 

• 8 • ~ 

• • 
Figure 5.3. MDS plot of--./--./ transformed data by site, according to port of trawling, (N = 
Newlyn, L = Looe, P = Plymouth and S = Salcombe). Data points are labelled according 
to haul number, (Table 3.2, page 49, above) and the stress value is shown on the figure. 
ANOSIM global R = 0.672, P < 0.001 . 
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The two dimensional MDS plot shown in Figure 5.3 was an acceptably good representation 

of the data as the stress value was 0.2, and the choice of port was a good factor at 

describing the data according to the global R value. It is apparent from Figure 5.3 that for 

the full sample the hauls from Newlyn were quite different to those from the other ports. 

Also, there was a degree of consistency in the hauls from Salcombe in that they cluster in 

one part of the plot, though these seem to be divisible further into two groups. Those hauls 

away from the main group (hauls 77, and 84; top left on Figure 5.3) were located the 

closest inshore (see Figure 3.1, page 47, above) so regardless of other factors there appears 

to be a degree of geographical distribution in these data. It is also apparent that pairs of 

hauls sampled on the same day tend to cluster together. Examples of this are hauls 16 and 

17, and 35 and 36, single boat trawls from Looe; 51 and 52 from Salcombe, 69 and 70 

single boat trawls from Plymouth; 75 and 76 pair boat trawls from Looe, see Figure 5.4, 

page 118, below. This was regardless of their spatial or temporal distribution, suggesting 

that the similarity between these trawls was higher than the similarity with reference to 

other factors. It is also apparent that there was considerable overlap in the hauls from Looe 

and Plymouth and this is supported by the pair-wise ANOSIM values in Table 5.2. 

Table 5.2. ANOSIM as pair-wise R-values between full samples according to port, N = 
Newlyn, L = Looe, P = Plymouth and S = Salcombe. Not significantly different pair-wise 
associations are highlighted. 

N 0.806 0.818 0.911 
' ~ 

L 0.046 i 0.183 
p 0.326 

L P S 

Table 5.2 shows that the full samples from Newlyn were well separated (R > 0.75) from all 

other ports supporting the interpretation of the MDS. Full samples from Looe and 

Plymouth were not significantly different. The Salcombe samples overlapped but were 

clearly different to those from Plymouth, though the Salcombe and Looe samples were 

barely separable at all. 
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Figure 5.4 shows the MDS plot of the full sample according to port and type of 

trawling. 
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Figure 5.4. MDS plot of--.J--.J transformed data by site, according to port (N- = Newlyn, L- = 
Looe, P- =Plymouth and S- = Salcombe) and type (-S =single boat and -P =pair boat) of 
trawling. Data points are labelled according to haul number, (Table 3.2, page 49, above) 
and the stress value is shown on the figure. ANOSIM global R = 0.671 , P = 0.001. 

There is virtually no effect on the global R-value by considering type of trawling as a 

factor. The Plymouth pair trawl samples on Figure 5.4 cluster together and in between two 

areas of Plymouth single boat samples indicating considerable overlap. This split of the 

Plymouth single boat samples was reflected in their geographical placement; those lower 

on Figure 5.4 were to the east and south of Eddystone Rocks. In contrast, the Looe single 

and pair boat samples did not similarly clump together. The pair-wise ANOSIM for the 

port and type of trawling data for the full sample is shown in Table 5.3. 
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Table 5.3. ANOSIM as pair-wise R-values between full samples according to port (N- = 
Newlyn, L- = Looe, P- =Plymouth and S- = Salcombe) and type (-S =single boat and -P 
=pair boat) of trawling. Not significantly different pair-wise associations are highlighted. 

NS 0.834 0.837 0.811 0.833 0.911 
LS 0.277 0.205 -0.036 0.163 
LP 0.313 0.170 0.385 
PS 0.150 0.412 
pp 0.202 

LS LP PS pp ss 

It is apparent from comparing Table 5.3 with Table 5.2 that most of the similarity between 

the full samples from Looe and Plymouth was actually between the single boat samples 

from Looe and the pair boat samples from Plymouth. The Plymouth single and pair trawl 

full samples were the only other sets that were not significantly different. The Looe single 

and pair boat samples were overlapping but just separable and the single boat samples from 

Plymouth and Looe were barely separable (R = 0.205) as were the pair samples from the 

same ports (R = 0.170). 

The clearest message from Table 5.3 and Table 5.2 was that Newlyn was different 

from all other ports. ANOSIM comparing samples confirmed this; global R = 0.729, P < 

0.001). 

5.3.1.1.2 Fish species part of the sample 

Figure 5.5 shows the MDS plot of trawled assemblages of landed and discarded fishes, 

(though not the shellfish) abundance of species by sample according to port and type of 

trawling. The MDS plot according only to port was not shown, as it was structurally the 

same as Figure 5.5 (only differing in labels). 

119 

• 



Chapter 5 
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Figure 5.5. MDS plot of ..J..J transformed data by site for the fish only part of the sample 
according to port (N- = Newlyn, L- = Looe, P- =Plymouth and S- = Salcombe) and type(
S = single boat and -P = pair boat) of trawling. Data points are labelled according to haul 
number, (Table 3.2, page 49, above) and the stress value is shown on the figure. Global R 
= 0.596, p = 0.001. 

Figure 5.5 and Figure 5.4 (above) appear quite similar, suggesting that the fish species 

formed a dominant part of the overall description of the sample. This was borne out by the 

degree to which the two underlying similarity matrices were similar (RELATE, rs = 0.918). 

Removing the non-fish part of the sample has reduced the global R-value so some 

explanatory power has also been lost. This similarity was perhaps not surprising since the 

biomass of the fishes generally dominated the sample (see section 3.3 and 3.6). This 

similarity was borne out by the ANOSIM of the fish only part of the sample, which is 

shown by port only in Table 5.4, and by port and type of trawling in Table 5.5 (below). 

Table 5.4. ANOSIM as pair-wise R-values between the fish only part of the sample 
according to port, N = Newlyn, L = Looe, P = Plymouth and S = Salcombe. Not 
significantly different pair-wise associations are highlighted. Global R = 0.612, P = 0.001. 

N 0.740 0.754 0.846 
L 0.033 0.169 
p 0.316 

L P S 
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None of the differences in pair-wiseR-values > 0.1 reinforcing the fact that the fish form a 

strong component of the sample and that again there was no significant difference between 

Looe and Plymouth. The clear separation of the Newlyn samples was maintained. 

Table 5.5 shows the ANOSIM pair-wise R- values for the fish only part of the 

sample according to port and type of trawling. 

Table 5.5. ANOSIM as pair-wise R-values between the fish only part of the sample 
according to port (N- = Newlyn, L- = Looe, P- =Plymouth and S- = Salcombe) and type(
S = single boat and -P = pair boat) of trawling. Not significantly different pair-wise 
associations are highlighted. Global R = 0.596, P = 0.001. 

N S 0.765 0.748 0.761 0.747 0.846 
L S 0.157 0.147 . -0.063 0.129 
LP 0.247 0.131 0.294 
p s 0.128 0.375 
PP 0.~ 

LS LP PS pp ss 

The ANOSIM pair-wiseR-values in Table 5.5 were generally lower (in 14 out of 15 cases) 

than in Table 5.3, above (showing the ANOSIM for the full sample) though only between 

the Looe single and Looe pair trawling was the difference > 0.1. This suggests that 

concentrating only on the non-fish species did not greatly reduce the degree of separation, 

or overlap, of the samples according to port and type of trawling, though this was at the 

expense of removing 132 species of invertebrates and the four types of other material and 

concentrating only on the 54 fish species (see Table 3.3, page 51, above). While the pair-

wise R-values were not very different between Table 5.3 and Table 5.5, the decrease in 

global R-values between the full and the fish only part of the sample suggests that the 

degree of discrimination of groups is less clear for the sub-group of fish when compared to 

the full sample. 
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5.3.1.1.3 Non-fish (invertebrate) part of the sample 

Figure 5.6 shows the MDS of the non-fish (shellfish and other invertebrate species) data 

according to port and type of trawling. 
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Figure 5.6. MDS plot of -'-/-'-/ transformed data by site for the non-fish part of the sample 
according to port (N- = Newlyn, L- = Looe, P- =Plymouth and S- = Salcombe) and type(
S = single boat and -P = pair boat) of trawling. Data points are labelled according to haul 
number, (Table 3.2, page 49, above) and the stress value is shown on the figure. Global R 
= 0.429, p = 0.001. 

The sample data for Newlyn Figure 5.6 still appeared quite distinct to the rest although this 

was less obvious than in the previous analysis. Also, that the hauls from Salcombe were 

still broadly in two groups which corresponded to those closer inshore and those further 

offshore, and the hauls from Looe and Plymouth were quite variedly distributed. Table 5.6 

shows the ANOSIM values for the non-fish part of the sample according to port of 

trawling. The results of this ANOMSIM were included so that the comparison with the 

analysis in Table 5.2 and Table 5.4 (above) can be made. 
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Table 5.6. ANOSIM as pair-wiseR-values between the non-fish only (invertebrate) part of 
the sample according to port N = Newlyn, L = Looe, P = Plymouth and S = Salcombe. Not 
significantly different pair-wise associations are highlighted. Global R = 0.404, P = 0.00 1. 

N 0.462 0.513 0.569 
L 0.037 . 0.022 i 

p 0.162 
L P S 

According to Table 5.6 Looe and Plymouth, and Looe and Salcombe were not significantly 

different according to the non-fish only part of the sample by port. Also after removing the 

fish species, the Newlyn samples were much less distinct as borne out in the MDS plot in 

Figure 5.6. Overall, the pair-wise R-values between Newlyn and the other ports were 

reduced by 0.330. 

Table 5.7 expands the analysis shown in Table 5.6 to include type of trawling in 

addition to port. It is the ANOSIM to represent Figure 5.6. 

Table 5.7. ANOSIM as pair-wise R-values between non-fish (invertebrate) part of the 
sample according to port (N- = Newlyn, L- = Looe, P- =Plymouth and S- = Salcombe) and 
type ( -S = single boat and -P = pair boat) of trawling. Not significantly different pair-wise 
associations are highlighted. Global R = 0.429. 

N S 0.468 0.549 0.517 0.512 0.569 .. . I 
L S 0.312 0.172 0.069 ~ 0.139 
L P 0.250 0.162 0.298 
p s 0.082_J 0.364 
pp 0.097 

LS LP PS PP ss 

Including type of trawling in addition to port for the non-fish part of the sample shows 

similarities with the previous example (Table 5.6) but there are quite distinct differences to 

the fish only (and the full sample). The global R was a little higher for the ANOSIM 

presented in Table 5.7 than Table 5.6 suggesting that it is relevant to include the type of 

trawling to better explain the distribution of the non-fish species. This is the first time that 

the port and type of trawling has been better resolved than the data only according to port. 

Table 5.7 shows it is still the case that the hauls from Newlyn were quite different to the 

other ports, which was in keeping with the fish only and full sample analysis and given 
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their geographical distribution, this was not unexpected. Overall, the Looe and Plymouth 

and Salcombe samples were barely separable for the non-fish (invertebrate) species. Table 

5.7 also shows that in addition to the strong similarity within port, there was a high degree 

of similarity between types of trawling across port. 

The relationships between the similarity matrices for the full sample, fish and non-

fish (invertebrate) species is shown in Table 5.8. 

Table 5.8. Level of similarity (according to RELATE) between the similarity matrices for 
the full sample, fish and non-fish (invertebrate) parts of the samples according to 
Spearman's rank-order (r5) correlation. 

full sample 
fish 

0.918 0.648 
0.347 

fish non-fish 
(Invertebrates) 

Table 5.8 reinforces the strength of the fish part of the sample in describing the full sample, 

and dissimilarity between the fish and non-fish. 

5.3.1.2 Spatial and temporal analysis of the Newlyn 

samples 
Section 5.3.1.1 concentrated on examining differences between the ports and types of 

trawling. In these analyses, the samples from Newlyn were both numerous (n = 42, 47% 

of the samples) and were well separated from the others shown on Figure 5 .l (page 11 0, 

above). They were also collected at similar times of subsequent years and over a relatively 

small geographical area. This analysis explores the degree to which there was measurable 

seasonality in the samples for the same time of each year. Figure 5. 7 shows the MDS plot 

based on the full samples from the Newlyn hauls according to the year and quarter of the 

year they were taken. 
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Figure 5.7. MDS plot of ...J...J transformed data for the Newlyn hauls (based on the full 
sample). Data points are labelled according to quarter and year (Figure 5.1 , page 110, 
above) and haul nwnber, (Table 3.2, page 49, above). The stress value is shown on the 
figure. Global R = 0.498, P < 0.001 . 

The stress value of Figure 5.7 (at 0.28) is sufficiently high to warrant a deal of scepticism 

in the precise arrangement of the data, though since the value is < 0.3 the arrangement 

cannot be considered as arbitrary (Clarke & Warwick, 2001a). Nevertheless, there was a 

high degree of difference (or separation) between the four trips shown in Figure 5.7 

(despite the geographical overlap). Table 5.9 shows the formal separation of the groups 

according to an ANOSIM. 

Table 5.9. ANOSIM as pair-wise R-values for full samples between trips from Newlyn 
according to quarter of the year. 

98-2 0.461 0.505 0.641 
98-3 0.438 0.404 
99-2 0.604 

98-3 99-2 99-3 

Table 5.9 shows that the groups (trips by quarter of the year) were overlapping but clearly 

different so overall there was no consistency across years, although the greatest separations 

were between '98-2 and ' 99-3, which were spatially and temporally different, and between 

' 99-2 and '99-3 which were only temporally different. The average between year, (same 
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quarter) average pair-wise R-value (R = 0.455) was lower than the average within year 

(different quarter) R-value (R = 0.536). 

Figure 5.8 shows the MDS plot for the fish only part of the sample for the hauls 

from Newlyn. 

Figure 5.8. MDS plot of --J--J transformed data for the Newlyn hauls (based on the fish only 
part of the sample). Data points are labelled according to quarter and year (Figure 5.1 , 
page 110, above) and haul number, (Table 3.2, page 49, above). The stress value is shown 
on the figure. Global R = 0.317, P = 0.001. 

It is apparent that the separation into groups according to the trip (for the fish only part of 

these samples, Figure 5.8) was less distinct when compared to the full sample (Figure 5.7). 

The ANOSIM (Table 5.10) shows this numerically. 

Table 5.10. ANOSIM as pair-wiseR-values for the fish only part of the sample between 
trips from Newlyn according to quarter of the year. 

98-2 0.119 0.260 0.327 
98-3 0.416 0.322 
99-2 0.519 

98-3 99-2 99-3 

Earlier, (section 5.3.1.1) it was noted that the pair-wiseR-values between the full samples 

(Table 5.3) were generally higher than between the fish only parts of the sample for the 
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other ports and types of trawling (Table 5.5). That situation is maintained here suggesting 

that there were components of the non-fish part of the sample (excluded here) which 

contribute to the distinctness between the samples, as the full samples (Table 5.9) are more 

distinctly separated than the fish only part of the sample (Table 5.1 0). Again, the average 

between year, (same quarter) average pair-wise R-value (R = 0.291) was lower than the 

average within year (different quarter) R-value (R = 0.345). 

Sample 5 (sample 3 from 24/05/98) contained very little non-fish material except 

litter. This sample was removed from the non-fish analysis, as it was an outlier. 

Removing this sample resolved the MDS as shown in Figure 5.9. 

Stress: 0.24 .. NS19982 

• •• • • T N S 1998 3 

• ••• • ... .. • • ... . . • .. . ....... • N S 1999 2 

... .. .. .. .. .. .. 
• N S 1999 3 .. 

Figure 5.9. MDS plot of ...J...j transformed data by site for the Newlyn only hauls (based on 
the non-fish part of the sample) according to the quarter of the year they were sampled. 
Haul 5 (sample 3 from 24/05/98) has been removed. Data points are labelled according to 
haul number, (Table 3.2, page 49, above) and the stress value is shown on the figure. 
Global R = 0.466, P = 0.001. 

Again the stress value on Figure 5.9 suggests care must be exercised in interpreting the 

data though the arrangement cannot be considered as arbitrary (Ciarke & Warwick, 200la). 

Only the hauls during the Q2 '99 occupied a small region of the MDS plot suggesting they 

were more similar to each other though there were other hauls from different trips in this 
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region that were similar in terms of their non-fish composition. Table 5.11 shows the 

ANOSIM based on the data set of the MDS plot shown in Figure 5.9. 

Table 5.11. ANOSIM as pair-wiseR-values for non-fish (invertebrate) parts of the sample 
between trips from Newlyn according to quarter of the year (with haul 5, sample 3 from 
24/05/98, removed). 

98-2 0.730 0.615 0.253 
98-3 0.620 0.217 
99-2 0.435 

98-3 99-2 99-3 

According to Table 5.11, the samples from Q3-99 were barely separable from the others in 

the similar location except those from Q2-99. Otherwise, the samples by quarter and year 

were all well separated. 

Figure 5.10 shows the MDS plot for the non-fish and non-shellfish part of the 

Newlyn samples from which sample 5 has been removed. 

Stress: 0.21 

• • • • NS19982 

• . .... • • • .. NS 19983 • • • • .. • ... I . .... • • NS19992 .... .. 
~ . 

• • NS19993 • 
Figure 5.10. MDS plot of..J..J transformed data by site for the Newlyn only hauls (based on 
the non-fish part of the sample, without the shellfish) according to the quarter of the year 
they were sampled. Haul 5 (sample 3 from 24/05/98) has been removed. Data points are 
labelled according to haul number, (Table 3.2, page 49, above) and the stress value is 
shown on the figure. Global R = 0.178, P = 0.001 . 
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The separation of the groups on Figure 5.10 is much less distinct. Table 5.12 shows the 

ANOSIM results for the non-fish and non-shellfish species. 

Table 5.12. ANOSIM as pair-wiseR-values for non-fish (invertebrate) and without the 
shellfish parts of the sample between trips from Newlyn according to quarter of the year 
(with haul 5, sample 3 from 24/05/98, removed). Not significantly different association are 
highlighted. Global R = 0.178. 

98-2 0.151 0.418 0.188 
98-3 0.206 0.092 
99-2 0.125 

98-3 99-2 99-3 

While the global R-value for the non-fish and non-shellfish part of the sample was quite 

low it is nevertheless the case that much of the degree of separation for the non-fish species 

was due to the shellfish. The lowest pair-wise R-values on Table 5.12 representing the 

most similar samples by year and quarter were for the same geographical area regardless of 

the time of year. 

5.3 .2 Degree of disturbance to the trawled areas 
To follow the traditional use of the techniques the results first present the ABC for the non-

fish material. Next is the size spectra analysis to establish the validity of extending the 

ABC into the full sample. 

5.3.2.1 ABC curves- non-fish species 

Figure 5.11 shows the ABC curves for all invertebrates, n = 88. 
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Figure 5.11. Abundance-Biomass Comparison (ABC) curve for all invertebrates (non-fish 
part of the sample and all hauls, (n = 88). 

The shape and position of the curves and W test statistic shown in Figure 5.11 suggest that 

generally the whole region can be categorised as towards undisturbed. The convergent 

nature of the abundance and biomass curves with increasing species rank, and dominance 

of the first few species' biomass was due to their large size. The frrst four of these were 

squids and M glacialis (see Table 3.4, page 54, above). 

Rather than present all 88 individual plots for each sample Figure 5.12 shows the 

frequency histogram of the W-test statistic from all samples. 
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Figure 5.12. Frequency histogram of W-test statistic for all invertebrate samples, n = 88. 

Figure 5.12 describes the distribution of the W-test statistic according to average of the 

sample by sample analysis and shows that the average value for W was highly positive 

with only two values representing samples from particularly disturbed areas (samples 20 

and 21 Q3, 99 from Newlyn). However, the value for all the averaged data (see Figure 

5.11 above) was :::: 0.2 rather than the mode value of 0.5 on Figure 5.12, and the 

distribution on Figure 5.1 2 was left skewed (g1 =- 0.451). Importantly too, the frequency 

distribution described in Figure 5.12 was based on all hauls while the trends and values in 

Figure 5. 11 were averaged for each trip thus the negative values were smoothed. 

Figure 5.13 shows the means and 95% confidence intervals of W by port and type 

of trawling. 
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Figure 5.13. Mean and 95 % confidence intervals for the W-test statistic for the non-fish 
part of the sample according to port and type of trawling N- = Newlyn, L- = Looe, P- = 
Plymouth, S- = Salcombe. -S = single boat trawling, -P = pair boat trawling. 

Figure 5.13 suggests that the areas trawled by boats from Newlyn and Looe were more 

disturbed than areas similarly trawled by boats from Plymouth and Salcombe based on the 

W-test statistic for invertebrates. None of the values of the W-test statistic from all samples 

for the non-fishes approximated normal distribution according to the A-D test (A2 = 0.913, 

n = 88, P = 0.0 19) and while by port and type of trawling they almost all did (except P S, 

A 2 = 0.671, n = 8, P = 0.049), the W-test statistics (according to Figure 5.13) did not satisfy 

the equality of variance required by ANOVA (Dytham, 1999, p192) according to the 

Levene's test (L = 3.394, d.f.1 = 5, d.f.2 = 82, P = 0.008). Therefore, the W-test statistics 

according to port and type of trawling was examined by the K-W test. Table 5.13 shows 

the results. 
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Table 5.13. Kruskal-Wallis test of median of W-test statistic for the non-fish part of the 
sample according to port and type of trawling, N- = Newlyn, L- = Looe, P- = Plymouth, S
= Salcombe; -S =single boat trawling, -P =pair boat trawling. H = 14.48, d.f. = 5, P = 
0.013 (adjusted for ties). 

port and type of average 
trawling n median rank z 
NS 42 0.355 39.0 -1.94 
LS 11 0.334 39.9 -0.64 
LP 9 0.332 33.3 - 1.39 
PS 8 0.430 54.0 1.10 
pp 8 0.487 69.0 2.84 
ss 10 0.447 55.8 1.48 
overall 88 I I 44.5 J 

Table 5.14 shows the further analysis, by post hoc Dunn's Test for Multiple Comparisons 

ofthe significant outcome ofthe K-W test in Table 5.13. 

Table 5.14. Results ofKruskai-Wallis post hoc Dunn's Test for Multiple Comparisons (Q) 
of median W-test statistic for the non-fish part of the sample according to port and type of 
trawling, N-· = Newlyn, L- = Looe, P- = Plymouth, S- = Salcombe; -S = single boat 
trawling, -P = pair boat trawling according to 2 d.p. K = 2.94 and significantly different 
pairs are highlighted. 

N S 0.10 0.61 1.52 . 3.04 i 1.87 
L S 0.57 1.19 2.45 1.42 
LP 
PS 
pp 

LS 

1.67 2.88 1.92 
1.17 0.15 

1.09 
LP PS PP SS 

Table 5.14 shows that the only significant interaction was between the Newlyn and 

Plymouth pair trawl samples. Nevertheless, the hypothesis that the pool of the Newlyn and 

Looe (single and pair) W-test statistics (pool I) were significantly smaller than the pool of 

Plymouth (single and pair) and Salcombe (pool 2) could not be rejected at the 5 % level 

(according to a lower-tailed Mann-Whitney test, W = 23 74.5, P < 0.00 I). This test was 

chosen as while the W-test statistic for pool I approximated a normal distribution 

according to the A-D test (A2 = 0.344, n = 62, P = 0.478) pool 2 did not (A2 = 0.745, n = 

26, p = 0.046). 

The difference between the average W-test statistic according to port and type of 

trawling (W = 0.365) and the outcome for all invertebrates (as shown in Figure 5.11) was 
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because as always with an ABC curves the abundance and biomass do not necessarily refer 

to values for the same species; instead the rank-ordering was performed separately for 

abundance and biomass on each occasion. 

5.3.2.2 Size spectra 

Figure 5.14 shows the frequency of log2 ESD (mm) for the non-fish, fish only and the full 

sample. 
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Figure 5.14. Frequency distribution of lo~ ESD (mm). The class interval of lo~ ESD 
(mm) was 0.1 See Figure 5.2, page 113 above, for a conversion between wet weight (g) 
and log2 ESD (mm). The R2 values are shown on the figure. The polynomial equations for 
the fitted curves are: full sample y = 0.528x5 

- 13.542x4 + 128.451x3 
- 555.7831 + 

1093.899x- 742.551 ; fish only y = -0.9626x6 + 39.452x5 
- 661.661x4 + 5797.662x3 

-

27969.9231 + 70450.042x- 72433.903; non-fish y= 1.1331x6
- 27.3 1 Ox5 + 258.154x4 

-

1212.471f + 2948.215x2
- 3468.231x + 1557.400. 

The polynomial equations for the fitted curves on Figure 5.14 are only valid within the 

range of lo~ ESD (mm) data shown in the figure : full sample 1.3 to 8.5; non-fish 1.3 to 

7.1; fish only 4.4 to 8.5. Also the curves for the non-fish part of the sample and the full 

sample appear to underestimate frequency at low values, (2.5 to 3.5 lo~ ESD (mm) which 

corresponds to 0.1 to 1.0 g) and over estimate at higher values, (around 4 log2 ESD (mm) 
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which corresponds to - 2.3 g). Despite this, the distributions for the full sample and the 

non-fish part of the sample in Figure 5.14 do show characteristic bimodal distributions 

though the trend line for non-fish part of the sample was the poorest fit, and the trend for 

the full sample was good. The curve for the fish part of the sample was well fitted since 

this was a more "normal" curve though it also encompassed a low number of small fishes. 

The most abundant size across the full sample was a log2 ESD value of - 6.2. This 

corresponded to a wet weight of- 220 g that represented a relatively large weight for the 

non-fish and a relatively low weight from amongst the fish species. The most abundant 

size across the non-fish only part of the sample was a log2 ESD value of - 5.5. This 

corresponded to a wet weight of- SO g, which approximately equates to the weight of a 

swimming crab. The low peak and trough of both the full sample and non-fish only parts 

of the sample were log2 ESD value of- 3.5 and- 2.2 which corresponded to wet weights 

of- 0.8 and - 0.05 g respectively. The most abundant size across the fish only part of the 

sample was a lo~ ESD value of- 6.8, which corresponds to a wet weight of- 935 g. 

The results presented in this section have showed that the abundances (numbers 

according to species by sample) and biomass values (as summed weight according to 

individual species by sample) generated reliable trends in size-spectra therefore it was 

considered valid to extend the ABC analysis, initially undertaken on just the non-fish part 

of the sample to encompass the full sample. 

5.3.2.3 ABC curves- full sample 
Figure 5.15 shows the ABC curves for the full sample. 
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• Abundance 

• Biomass 

Figure 5.15. Abundance-Biomass Comparison (ABC) curve for the full sample and all 
hauls, (n = 88). 

Across all samples and for the full sample on the ABC curves (Figure 5.15) the biomass 

line was above the abundance one which suggests graphically, that the region again can be 

categorised as towards undisturbed, and the overall value of the W-test statistic was very 

similar to when only the non-fish part of the sample were examined. The curves on Figure 

5.15 differed from Figure 5.11 (above) in that there was less dependence on the most 

dominant species when considering the whole sample. 

Figure 5.16 shows the frequency distributions of the W-test statistics for the full 

sample and the non-fish only part of the sample. 
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c:=Jnon-fish -+-full sample 

Figure 5.1 6. Frequency histogram of W-test statistic for invertebrates and fish and 
invertebrates only, n = 88. 

While the frequency distribution shown in Figure 5.16 look quite similar the W-test 

statistics between the full sample data and non-fish only were significantly different 

between pairs of W-test statistic values from the same sample according to the Wilcoxon 

Signed Ranks Test; (Z = -3.558, n = 88, P < 0.001 ), with the average W-test statistic for the 

full sample being higher. This test was chosen in preference to the paired t-test because 

neither the W-test statistics for the full sample (A2 
= 1.320, n = 88, P = 0.002) nor the non-

fish only part of the sample (see page 132, above) approximated a normal distribution. 

Figure 5.17 shows the mean and 95 % confidence intervals for the W-test statistic 

for the full sample according to port and type of trawling. 
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Figure 5.17. Mean and 95% confidence intervals for the W-test statistic for the full sample 
according to port and type of trawling N- = Newlyn, L- = Looe, P- = Plymouth, S- = 
Salcombe. -S = single boat trawling, -P = pair boat trawling. 

On Figure 5.17 the average W-test statistic is lowest for the Newlyn samples, higher for the 

Looe single boat samples and relatively constant for the others, thus while apparently 

relatively undisturbed overall the Newlyn samples appeared to be the most impacted, next 

were the Looe single boat samples and the others possess somewhat similar levels of 

relatively low disturbance. 

Much of the spread in the average W-test statistic by port and type of trawling 

across the full time period of the study was due to the variability caused by the pair 

trawling and the Q2 '99 trip from Newlyn appeared to have generated a particularly low 

average ( W = 0.164). 

The largest difference among the W-test statistics by port and type of trawling 

between the full (Figure 5.17) and non-fish (Figure 5.13, above) part of the sample was the 

relative increase for Looe pair trawls and relative decrease for the Plymouth pair trawls 

when the analysis was expanded. Not all of the W-test statistics by port and type of 

trawling for the full sample approximated normal distributions (N S, A2 = 0.899, n = 42, P 
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= 0.020) therefore (as for the non-fish part of the sample) analysis by port and type of 

trawling was by the K-W test. Table 5.15 shows these results. 

Table 5.15. Kruskal-Wall is test of median of W-test statistic for the full sample according 
to port and type of trawling, N- = Newlyn, L- = Looe, P- =Plymouth, S- = Salcombe; -S = 
single boat trawling, -P = pair boat trawling. H = 11.25, d.f. = 5, P < 0.047 (adjusted for 
ties). 

port and type of average 
trawling n median rank z 
NS 42 0.399 35.7 -3.10 
LS 11 0.406 44.7 0.03 
LP 9 0.468 51.3 0.85 
PS 8 0.501 57.4 1.50 
pp 8 0.440 55.2 1.24 
ss 10 0.504 56.3 1.55 
overall 88 J I 44.5 I 

While Table 5.15 suggests there was a significant differences between the medians of the 

W-test statistic according to port and type of trawling this was not detected by the post hoc 

Dunn's Test for Multiple Comparisons. The largest difference was between Newlyn and 

Salcombe, Q = 2.29 against K = 2.94. 

5.3 .3 Interpretation of the fish community data to 

understand the relationship between species 

5.3.3.1 Ray species 

In this study, 124 examples of seven species of ray were collected in the samples. Their 

overall rank-order was shown in Table 3.4, (page 54, above) and this was not in agreement 

with Walker & Hislop, (1998). Figure 5.18 shows the average length with appropriate 

confidence intervals for the ray species. 
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Figure 5.18. Average and (usually) 95 % confidence intervals of total length in 7 species 
of skate. R. microocellata (SER =small eyed ray, n = 3, 66% C.I.). R. radiata (STR = 
starry skate, n = 5). R. naevus (CUR= cuckoo ray, n = 42). R. brachyura (BLR = blonde 
ray, n = 35). R. montagui (SPO =spotted ray, n = 1). R. clava/a (THR = thomback ray, n 
= 36). R. undulata (UDR= undulate ray, n = 2, 50 % C.I.). On the figure numbers after 
the species name (and highlighted data) refers to the order of sensitivity with I being the 
least sensitive to fishing and 4 being the most (of the species here) according to Walker & 
Hislop, (1998). 

Figure 5.18 shows that for the species encountered in this study and for which Walker & 

Hislop, (1998) were able to calculate their sensitivity to fishing the least sensitive rays 

were found to be the longest in length. Expanding this to the species which Walker & 

Hislop, (1998) were not able to include in their sensitivity ranking it is suggested that small 

eyed ray (R. microocellata) is least sensitive to fishing the blonde ray (R. brachyura) is 

more so and the undulate ray (R. undulata) is most sensitive to fishing. R. fullonica was 

not encountered in this study. 

Table 5.16 shows the number and percentage of mature or immature rays according 

to species. 
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Table 5.16. Number and percentage of immature and mature rays according to species. 
Length at maturity from Walker & Hislop, (1998) except*= data from Froese & Pauly, 
(2003); (McEachran & Dunn, 1998). In the table numbers after the species name (and 
highlighted data) refers to the order of sensitivity with I being the least sensitive to fishing 
and 4 being the most (of the species here) according to Walker & Hislop, (1998). 

name number ' % 
' ' - Q) ' ~ m,2;o ~ ' 

::1 
~ ' 

::1 Q) .c "i:: - - ~ 

-::~ m ::1 m ::1 m- 19 E - E -cm m m 
species code .J!!E 0 E E E E common -
R. microocel/ata small eyed SER *44 3 0 3 0 100 
R. radiata starry STR "1" I 40 5 0 5 0 100 
R. naevus cuckoo CUR"2" 59 42 33 9 79 21 
R. brachyura blonde BLR 92 35 35 0 100 0 
R. montagui spotted SP0"3" 56 1 1 0 100 0 
R. clavata thomback THR"4" 72 36 36 0 100 0 
R. undulata undulate UDR *56 2 2 0 100 0 

Amongst those species which were ranked by Walker & Hislop, (1998) all the R. radiata 

were likely to be mature. Approximately one fifth of the R. naevus were likely to be 

mature, though none of the R. montagui or R. claval a were likely to be mature. Amongst 

those encountered species not analysed by Walker & Hislop, (1998) that R. microocel/ata 

might be least sensitive to fishing was borne out by the fact that all these rays were likely 

to have been mature. The position of R. undulata towards the sensitive end of the 

continuum is supported by the fact that all examples of this species in the sample were 

likely to be immature. The analysis for R. brachyura suggests it was also a less sensitive 

species however, according to Stehmann & Biirkel, (1984) the length at maturity for R. 

brachyura was 61 cm which would have meant 33 or 94 % of this species was likely to be 

mature. While it is possible that this older data illustrates a degree of recruitment over 

fishing, nevertheless, this earlier data supports the positioning of this species towards the 

middle of the continuum. Thl!s the ordering of the ray species according to their length 

closely matches the hypothesis of Walker & Hislop, ( 1998) as does their ordering as 

described by maturity. Nevertheless, a larger sample size would improve the confidence 

that can be applied to these data. 
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5.3.3.2 Predator-prey interactions 

Figure 5.19 shows as a Venn diagram (with predator species on the left) how many of the 

88 hauls sampled here contained both, either or neither P. maximus and A. rubens, Pagurus 

spp. and Liocarcinus spp. 

Neither A. mbens nor P. maximus = 
34 or 39% of hauls 

Neither Pagums sp. nor P. maximus = 
53 or 60% of hauls 

Pagums sp. 
12 

80% 

Neither Uocarcinus sp. nor P. maximus = 
24 or 27% of hauls 

Figure 5.19. Venn style diagram showing the number and percentage of hauls containing 
or not containing the predator Asterias rubens, Pagurus spp., Liocarcinus spp. (on the left) 
and/or the prey species Pecten maxim us. 

Figure 5.19 shows that P. maximus was found in 23 samples. When present A. rubens was 

also present in 70 % of these although A. rubens was not ubiquitous in the samples. It was 

not present in 39 % of the samples and when it did occur, it was only also found with P. 

maximus in 34 % of samples. Pagurus spp. were not commonly found in this study (being 

present overall in only 17 % of samples). P. maximus did not commonly eo-occur with 

Pagurus spp. Amongst the three groups in this investigation, Liocarcinus spp. was present 
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in the most number of samples. Its pattern of eo-occurrence with P. maxim us was similar 

to that described for A. rubens suggesting it too is an active predator. 

5.3.3.3 Impacts on echinoderms 
Figure 5.20 shows the average weight and 95 %Cl for all (complete plus any amount of 

damage) and complete only specimens of M glacia/is, A. rubens and E. esculentus 

according to all the samples and by port and type of trawling. 
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Figure 5.20. Weight (g) and (generally) 95 % C.l. of all examples of species and only 
complete specimens of (a), Marthasterias glacialis, (b), Asterias rubens; and (c), Echinus 
esculentus, according to port and type of trawling. No confidence intervals are shown for 
Looe pair and Salcombe trawled complete M glacialis, (n = 1); 50 % C.l. are used for 
Looe pair trawled, complete Plymouth single trawled and complete Salcombe trawled E. 
escu/entus, (n = 2). 66% C. I. are used for other Salcombe E. escu/entus (n = 3). 

According to Figure 5.20 the largest complete M g/acialis were recorded from the west of 

the region with size (as weight) decreasing towards the east. In the classification of ' all' 

on Figure 5.20 are those M glacia/is for example which were complete and those which 
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comprised a central disk and four arms, a central disk and three arms etc down to the 

occurrence of single arms. 

Newlyn again recorded the largest A. rubens though it is much harder to argue that 

to the east size of complete examples of this species became smaller. As far as the 

difference between the average of the complete and the 'all' category are concerned A. 

rubens seemed to be far more robust than M glacialis. Taking the average weight of~ 

500 g for an average complete M glacialis then the average 'all' weight (200 g) would 

suggest that many are damaged being generally found as two-armed starfish. However, the 

average complete weight of A. rubens was- 147 g and the average weight of the 'all' 

category was ~ 110 g suggesting that if damaged A. rubens was likely to still be three 

quarters complete or had lost only one (or two) arms. 

In several cases on Figure 5.20, complete only averages were smaller than all 

examples. This was due to there being many examples of relatively small specimen. 

The 1 correlations between % compete starfish and number of predators was 

significant such that the % compete starfish decreased as the number of predators increased 

both for A. rubens 1 = -0.410, n =51; P = 0.001 and M glacialis 1 = -0.421, n =55; P < 

0.001, though the species of predators differed in that here neither H araneus nor S. 

endeca were encountered. 

5.4 Discussion 

5.4.1 Patterns in trawled assemblages between ports 

and type of trawling 
As was shown on both Figure 5.3 and Table 5.2, and Figure 5.4 and Table 5.3 the Newlyn 

hauls were quite distinct from all the others, and the Salcombe hauls were more similar to 

145 



Chapter 5 

the Plymouth pair hauls than the others for analysis of the full sample. The next highest 

similarity was to the Looe single boat hauls. Including the split of type of trawling for 

Looe and Plymouth was useful as while it did not improve the overall explanation of the 

data through ANOSIM global R-value, it revealed that the greatest similarity was between 

single boat samples from Looe and the pair boat samples from Plymouth. There was no 

temporal overlap between these though Table 3.5 shows that 9 of the top 10 species by 

rank-order were the same. 

The overall picture portrayed by the full sample was unsurprisingly well retained 

when the fish-only part of the sample was analysed with a strong (and significant) 

similarity between the Looe and Plymouth samples and a similarity (though not 

significant) between Looe and Salcombe. Including the type of trawling again helped to 

explain the situation, however the generally lower ANOSIM pair-wise R-values between 

the full sample and the fish parts of the sample strongly suggests that there were 

components of the non-fishes (excluded here) which contributed to the strength of the 

similarity between hauls according to port. This similarity and difference between the full 

and fish only part of the sample points at a similar pattern of inter-annual species 

distributions since the Looe single boat samples were collected mostly in 1998 while all 

the Plymouth single and 75 % of the Plymouth pair-boat samples were collected in 1999 

with 25% of the latter being taken in March 2000. 

In analysing the non-fish part of the sample, the similar overall pattern was evident 

although it appeared that this part showed less overall dissimilarity. There were not 

particularly high similarities between single and pair trawling for Looe (perhaps due to 

temporal differences, (see Table 3.2) but possibly also due to differences in environmental 

factors (see Chapter 7) but the single and pair trawled samples from Plymouth were much 

more similar. There also appeared to be a geographical gradient here with the Salcombe 

hauls being more similar to the Plymouth ones than those from Looe, although this could 
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alternatively be due to the temporal spread of the sampling as the Salcombe based hauls 

were collected more closely in time with the Plymouth rather than the Looe samples. 

Table 5.17 summarises the global R-values. 

Table 5.17. ANOSIM global R statistic for parts of the sample (full, fish only, and non
fish) by all ports and all ports and type of trawling, and only Newlyn samples. Non-fish 
for only Newlyn samples is presented after the removal of the outlying haul 5. 

factor part of sample 
full sample fish only non-fish 

all ports 0.672 0.612 0.404 
all ports {and type of trawling} 0.671 0.596 0.429 
only Newlyn samples 0.498 0.317 0.466 

In Table 5.17, the fishes were nearly as good a descriptor of the overall pattern as for the 

full sample (having nearly as large global R statistic). Just as importantly, for the full and 

the fish only parts of the sample port is a better descriptor than port and type of trawling. 

Only in the non-fish part of the sample does type of trawling improve discrimination, 

though it has been shown that they are important in revealing patterns within the single-

and pair-boat samples. 

The Newlyn samples maintain the pattern described for the other ports between the 

full sample and the fish only although uniquely the non-fish were a better descriptor 

overall that the fishes only. 

The location of the Newlyn trips suggested that the skipper has favourite areas to 

fish and despite the compact nature of most of the trips, the samples from Newlyn were 

statistically separate. This was more apparent from the full sample rather than the fishes. 

The non-fish were also quite separate though it was only after removing the shell fish 

species that seasonality in the samples was evident; samples taken during the third quarter 

of the year were most similar and this was reflected in their geographical similarity. Trips 

taken during the second quarter of the year were geographically distant. 
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5.4.2 Degree of disturbance to the trawled areas 
There was little difference in the W-test statistics between the non-fish and the full 

samples, although for the non-fish analysis (Figure 5.11) there was still a considerable 

effect due to the dependence on the single most dominance species. This was despite the 

methods in PRIMER-E (Ciarke & Warwick, 2001a) employing the improvements 

proposed by Clarke, (1990). This feature was not apparent when examining the full 

sample so by this measure analysis of the full sample seemed more complete, therefore the 

aim in extending the assessment from the non-fish to include the fishes was successful. 

There was a smaller spread in the W-test statistics according to port and type of 

trawling and quarter of the year between the full sample (Figure 5.16) when compared to 

the non-fish only part of the sample (Figure 5.12, page 131, above), though these figures 

appear similar overall. That the W-test statistic (and thus relative degree of apparent 

disturbance) differed was evident from the frequency histogram of the two data sets as 

shown in Figure 5.16. 

Despite overall W::::; 0.2 it should be noted, that there was bound to be a degree of 

size selection in the collection of the data in that the material was sampled by a net. 

Although almost all samples were collected from an 85 mm codend mesh (with the 

exception of the Looe pair samples were an 86 mm mesh was used, Table 2.1) it was more 

likely to be in the application and operation of the gear that there were differences rather 

than its makeup, though the small differences in the ground gear may also be important. 

This was reflected in the apparent though not significant difference (shown visibly in 

Figure 3.5, page 66, above, though tested in Table 3.6, page 64, above) between single and 

pair trawling. The ground gear of the pair trawl was simply two single ground gears 

connected together, though the action of the sweeps may be significant in the species 

composition of the non-fish material rather than its abundance. Thus, perhaps the absolute 

value of the W test statistic should be treated with a degree of caution, as it might be an 

overestimate. 
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Figure 5.13 and Figure 5.17 generally support the assertion that ICES area VIle 

appeared to be more disturbed in the west than the east. This was supported in that the 

areas trawled by the boats from Looe and Plymouth overlap to an extent, in terms of type, 

but less so in terms of port, (see Figure 3.1, page 47, above). Thus supposing that the 

operation of the boats from Looe and Plymouth (and to a lesser extent from Salcombe) was 

similar then the similarity of the W-test statistic between single and pair boat trawling 

(Figure 5.13) for all fishing types was due to the location of trawling rather than the type of 

fishing. 

However, the areas trawled by boats from Newlyn and Salcombe were quite 

different (see Figure 3.1, page 47, above). There was a particular density in the position of 

the Newlyn based hauls that was not evident in those from Salcombe, with (apart from the 

southern most trip from Newlyn, (Figure 3.1) many hauls from Newlyn being made in a 

relatively small area. It is of course not known whether had so many hauls been taken 

from boats operating out of Salcombe as from Newlyn then the same concentration would 

have been evident, but the few Salcombe vessels do not operate at the same scale, (usually 

operating day trips) when compared to the Newlyn boats (operating for several days at a 

time). At a fleet level the further offshore trawls from Salcombe are also areas fished by 

other boats and gear types, particularly beam trawlers from Brixham (Boon, 1992). 

Clarke & Warwick, (200 la) suggest that reference to spatial or temporal control 

sites is not required though is desirable. This is not required since the two curves act as 

'internal controls', though is desired from good experimental practice. Comparison with 

other studies is always open to error due to differences in methods. While Kaiser et al., 

(2000) used a variety of beam trawl and anchor dredges to study the lP A area near 

Salcombe, thus spatially relevant here, these authors plot ABC curves though do not quote 

W-test statistics. The authors also standardised their data and determined biomass by 

drying to a constant weight, which was not possible in this study. Blanchard et al., (2004) 

used a beam trawl to survey areas off the French Atlantic coast and determined ABC 
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curves from number and wet weight as here. Both sets of results support the original 

theory (Warwick, 1986) though the difference in gear types makes direct comparisons 

difficult. 

Furthermore in a demersal fisheries context, differences in resulting W-test statistics 

may reflect changes in the relative abundance of large and small species in assemblages, 

and/or changes in size composition (Yemane et al., 2005). There were two important ways 

this may be manifest in this study. 

The Jack of representation of small or infaunal species due to the method of sampling. 

2 The particular representation of scavenger species amongst the invertebrates which 

often tend to be large; thus repeat trawling whilst causing a greater level of disturbance 

might actually be represented by a higher W-test statistic. 

Both of these present interesting challenges. The first requires a better understanding of 

the poorly understood (Austen et al., 2002) relationship between biodiversity and 

community stability across the sediment water interface. The second might be examined 

from simulating theoretical assemblages or additional experimental work as this effect has 

been demonstrated experimentally (Savage et al., 2001) albeit in brief though intense 

periods of disturbance rather than the suggested chronic disturbance here. This may also 

establish greater confidence in ranges of W-test statistics to describe more than the three 

typical ecosystem states of undisturbed moderately disturbed or grossly disturbed. 

ln this study, a size spectra analysis suggested it was valid to expand the ABC 

analysis from the non-fish material to the full sample (thus including the fish species was 

biologically relevant). Figure 5.14 (on page 134, above) did show characteristic bimodal 

distributions for the invertebrates though typically these peaks are classified (Ramsay pers 

corn) as meiofauna and macro (epi-) fauna and the size range as shown in Figure 5.14 do 

not encompass values of ESD this small. The meiofaunal peak presented by 

Schwinghamer, (1981) was a log2 ESD of -3, which corresponds to a wet weight of 

approximately 1.1 Jlg, and his peak of macro fauna is a log2 ESD of 4, which corresponds to 
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a wet weight of approximately 2.3 g. Instead the peaks present on Figure 5.14 suggest the 

split into large numbers of macroinvertebrates and fishes as described with the smaller 

peak representing a mixture of epiphytic organisms (e.g. Crepidula fornicata, Galathea 

intermedia and Pisidia longicornis) as well as large numbers of hydroids. The trough on 

Figure 5.14 represented the tailing off of numbers of hydroids and the gradual increase in 

numbers of decapods as values of ESD increased. 

The curve for the full sample on Figure 5.14 was both more amenable to 

description and valid in terms of the ABC curves for scientific as well as statistical reasons 

(in that it more closely approximated a normal distribution). Analysis according to both 

the non-fish part of the sample and the full sample appeared to be valid for assessing the 

degree of disturbance and each of these analyses generated similar results overall. 

However, including the fish species masked subtleties only present in the non-fish data and 

it is recommended that where possible (where non-fish material is also recorded in 

sampling) it is important to retain the ability to examine these data separately. 

5.4.3 Interpretation of the fish community data to 

understand the relationship between species 

5.4.3.1 Ray species 

In absolute terms rays made up a relatively small proportion of the contents of the sample 

(~ 1.2 %) nevertheless, employing a direct comparison with literature values their 

hypothesized sensitivity to fishing of four of these species was the same in the study area 

here to the central and north-western North Sea. Data gathered in this study has enabled a 

further three species to be provisionally ranked according to their sensitivity to fishing. 

The inconsistency between the abundances of the ray species in this study with the 

order described by Walker & Hislop, (1998) may be due to the sample size being too small 
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here or could be due to differences in local species abundances. The study area described 

in Walker & Hislop, (1998) was the central and north-western North Sea which only 

extended as far south as 51°N. Rees et al., (1999) showed substrate (and other 

environmental and biological conditions and communities) to be quite different between 

the North Sea and the English Channel with the western English Channel being most 

similar in terms of substrate and benthic biodiversity to the west coast of southern England 

and Wales (Rees et al., 1999, figures 7 & 8). Stehmann & Biirkel, (1984) point out that the 

ray species described here generally "feed on all kinds of benthic animals," though 

Wheeler, (1978) reports marked differences between preferences in both diet and favoured 

habitat which might account for differences in distribution which will affect local 

abundances and species composition. Further analysis on habitat preferences of the Raja 

sp is contained within Chapter 8 (between page 246 and 247, below). 

5.4.3.2 Predator prey interactions 

A relatively simple sample presence based analysis of those species that commonly predate 

P. maximus has revealed some interesting features. It appeared that A. rubens while not 

ubiquitous generally eo-occurred with P. maximus. This is consistent with this predators 

known scavenging behaviour (Ramsay et al., 1998). That Pagurus spp. were not 

especially common in the samples may be due to their small size. Ramsay et al., ( 1996) 

found that P. bernhardus was more responsive to the effects of fishing, in that it migrated 

into and took better advantage of the disturbance caused by beam trawling than P. 

prideaux although both species have similar dietary characteristics. This is consistent with 

the relative abundance of the two species in this study where P. bernhardus ranked 81 

while P. prideaux ranked 124 and this pattern may be due to repeat trawling rather than 

natural abundance. Kaiser et al., (2005) describes a limiting though subtle effect of fishing 

in that it causes damage to empty whelk shells that are preferred by hermit crabs. As 
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shown in Table 3.4 Buccinum undatum ranked 61 though was only occurred in 4 samples 

(mostly Plymouth pair trawls) and no empty shells were recorded for this species. 

The presence of Liocarcinus spp. in the trawl samples was similar in abundance to 

that of A. rubens. Both decapod crustaceans and A. rubens are themselves highly 

susceptible to mortality induced by fishing, especially if damaged (see section 5.3.3.3) and 

while A. rubens are more transient in their residence in recently trawled areas decapods are 

generally a more attractive prey item to other species (Groenewold & Foods, 

2000;Bergmann et al., 200 I ;Bergmann et al., 2002). 

5.4.3.3 Impacts on the Echinodermata 

The difference between the size of 'complete' and 'all' M glacialis and A. rubens was 

relatively consistent across the study areas in that there were consistently larger difference 

in these categories for M glacialis than A. rubens according to Figure 5.20. This suggests 

that while A. rubens might make a reasonable indicator of disturbance due to fishing in 

some areas (Kaiser, 1996;Ramsay et al., 2001), where it is present (such as the west of the 

UK) M. glacialis may prove to be more sensitive; just as the distributional use of species to 

indicate disturbance has also been extended to Arctica islandica L (Rumohr & Krost, 

1991; Witbaard & Klein, 1994; Witbaard et al., 1997). However while the biology of A. 

rubens has long been understood (Vevers, 1949), Verling et al., (2003) point out that 

" ... despite the reputation of Marthasterias glacialis as a ubiquitous asteroid and a 

voracious predator, it has been the subject of surprisingly few quantitative ecological 

studies." This may compromise its utility as an indicator, until there is a better 

understanding of its ecology. 

Although there was a significant negative correlation between the relative 

proportion of complete specimens of M glacialis and A. rubens and the number of 

predator present in the sample, it was not know if the number of predators was exhaustive. 

Also, it is not suggested (as it is not known) whether a particular predatory species has a 
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preference for' either M glacialis or A. rubens or whether they were coincidentally present 

and predating other species. It would appear however, that A. rubens suffered a greater 

rate of arm attrition (as described as a decrease in the % of complete specimens) than M 

glacialis as predator numbers increased in the samples. 

In this respect, A. rubens may again prove to be less suitable as a measure of 

disturbance than M glacialis since the effect of predators may confound the effect of 

disturbance. 

E. escu/entus only occurred in the top 95 cumulative % for Newlyn (Table 3.5. 

Nevertheless, 'all' (Figure 5.20, lower) E. escu/entus encountered were only marginally 

smaller (5 % by weight) than those which were complete. This is not surprising since E. 

esculentus are quite fragile (Macdonald et al., 1996) and damaged E. esculentus are likely 

to quickly be predated therefore there was a greater potential bias in that damaged urchins 

are under-represented. 
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Chapter 6 

6 Within and between sample taxonomic 

diversity 

6.1 Introduction 
Descriptions of the samples so far have followed two broad areas. Firstly, by the rank

order of species across all the samples (analyses related to Table 3.1), and then according 

to their port and type of trawling, (analyses related to Table 3.2). This analysis focused 

only on the more abundant fish and non-fish species and consequently did not examine the 

influence of rarer species. Secondly, by the relatedness of the full sample (or its 

components) in terms of port and type of trawling (Chapter 5). Chapter 5 also examined 

the degree of disturbance of the fished locations and several species level effects within the 

fish community data. 

This Chapter deals with the taxonomic diversity of the samples, both in general and 

according to their port and type of trawling and completes the Sample Theme, Aim 1 (see 

Figure 1.4, page 17, above). The outcome is an assessment of whether the sampled 

assemblages display meaningful patterns in biodiversity in space or through time, and 

whether these patters are in keeping with the outcomes as described in Chapter 3 and 

Chapter 5. Relationships between the biodiversity and other aspects (such as substrate and 

other environmental features) are explored in Chapter 7 and Chapter 8. 
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6 .1.1 Background to measures of biodiversity 
The concept of biodiversity has expanded away from the 'number of species per unit area' 

or measures of their abundance. UNEP, (1992) defined biodiversity as: "the variability 

among living organisms including ... marine and other ecosystems and ecological 

complexes to which they belong: this includes diversity within species, between species 

and diversity of ecosystems". Van der Spoel, (1994) defined biodiversity as "the sum of 

taxonomic, or numerical diversity, and the ecological, genetic historical and phylogenetic 

diversity." The increased complexity required of biodiversity assessment has increased the 

complexity of measures of assessment. 

Warwick & Clarke, (200 I p21 0-211) make the case for taxonomic distinctiveness 

as a "means of weighting species in respect of priorities for conservation" and taxonomic 

distinctness which is an assessment of the "properties of an assemblage and measure[s] 

features of its overall taxonomic spread. Comparisons are made of one assemblage with 

another, with the primary motivation of environmental assessment and monitoring of 

biodiversity change ... " Whilst taxonomic distinctiveness measures (e.g. Root weight and 

Phylogenetic diversity) look appealing, Warwick & Clarke, (2001) suggest that these 

methods have not had any success in generating 'priorities' for conservation of marine 

resources, though recently their use has gained greater acceptance in terrestrial 

conservation (Keith et al., 2005). Taxonomic distinctness measures, such as average 

taxonomic distinctness (AvTD, 6. +, see below) however, are more widely tried and tested 

in the marine realm (Hall & Greenstreet, 1998;Leonard et al., 2006) and have been shown 

(Salas et al., 2006) to be most useful in assessing ecological status. 

6.1.1.1 Average taxonomic distinctness (AvTD, A+) 

The average taxonomic distinctness (AvTD, 6.+) of a species assemblage (derived from a 

sample) is the average taxonomic distance apart of all its pairs of species, which satisfies 
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the more modem (UNEP, 1992;Van der Spoel, 1994) definitions of biodiversity in that it 

conveys more information about the sample than traditional diversity indices, and 

importantly is applicable to situations where the sample size changes. Comparatively 

higher values of !l + derive from less perturbed communities in later stages of succession 

and comprise a wider range of more distinct species belonging to an increased number of 

taxonomic groups, (Warwick & Clarke, 2001). 

It is also possible to establish a species or group's potential or importance for 

conservation only employing taxonomic distinctness measures through removing the group 

under scrutiny from the dataset and examining how the taxonomic distinctness measure 

(e.g. !l +) changes. The individual importance of taxonomically relevant constituent parts 

of the sampled dataset is examined in this way in section 6.2.3. 

6.1.1.2 Variation in taxonomic distinctness (VarTD, A+) 

As shown in Figure 3.1, (page 47, above) the trawls covered about 12 nm and thus each 

sample includes a degree of habitat heterogeneity (see Figure 4.4, page 79 and Figure 4.5, 

page 82, above). This is likely to influence diversity patterns, which may mask 

anthropogenic effects. Clarke & Warwick, (2001b) suggest that under anthropogenic 

disturbances the species that tend to disappear first are those of higher taxa that are 

relatively species poor. The remaining species are then from a smaller number of groups 

which tend to be relatively more species-rich. It is possible for this species removal to 

occur without affecting !l +(see Clarke & Warwick, 2001 b, Fig 2), though it will affect the 

'evenness' of the distribution of taxa across the hierarchical taxonomic tree. The measure 

that describes this evenness is the variation in taxonomic distinctness (VarTD, A+); which 

is the variance in taxonomic distances in the tree and can be thought of as an index of the 

complexity ofthe hierarchical tree, (high A+= high complexity and uneven taxonomy). 
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6.1.1.3 Advantages and interpretation of AvTD (A+) and 

VarTD (A+) 

The strong advantage of taxonomic distinctness measures is their ability to produce indices 

that are not sample-size dependent. Thus, while the sample size in this study did not vary 

according to changes in port or type of trawling (being a fixed volume, see Figure 3.3 page 

61 and Table D. I, page 351 below) the proportion of the haul sampled did (see Table 3.6, 

page 64, above and Figure 3.5). Despite the fact that the species accumulation curve 

(Figure 3.2, page 59, above) seemed no less complete than for other studies which employ 

techniques where the sampling methods, the sample size and the habitat are carefully 

controlled, in trawl surveys it is inevitable that the area covered by the gear and the amount 

it retains will vary. This makes the use of traditional biodiversity measures, based on the 

number of species present of no value, as these indices are very sample size dependent 

(Warwick & Clarke, 200 I, Figure I) and therefore taxonomic distinctness measures are 

particularly appropriate to trawl sampling. 

Another advantage of calculating taxonomic distinctness is that it is possible to test 

whether a species list from one location has the same or similar structure as the overall 

'master' list of the region. Comparing the value of taxonomic distinctness for the specific 

location (sample) to the region thus allows an estimation of whether the biodiversity of the 

location is above or below the level that is expected (for the region), against the null 

hypothesis that a location is proportionally as biologically diverse as the region. 

This is manifest in plots of /',. + values against the number of species in a sample. 

Plots of /',. + against the number of species in PRIMER-E vS include the data and a 

theoretical mean /',. + value (derived from a large number of simulated random selections of 

sub-lists of numbers of species. A flat (p = 0) slope of the theoretical mean /',. + value 

confirms the unbiased nature and therefore comparability of/',.+ value for widely differing 

degrees of sampling effort (of species number). Also present on the plots generated by 

PRIMER-E, vS are upper and lower 95% probability limit for 11+ values from a single sub-
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list of specified size from the master list (for the number of species in each sample). 

Samples possessing !1. + values between the upper and lower 95 % limits of !1. + are within 

the null region of the plot and (for the number of species present) the sample has an 

expected level of diversity compared to the region. Plots of VarTD (A l against the 

number of species are also assessed for departure from expected values in the same way. 

11.+ and A+ can be assessed separately however, Warwick & Clarke, (2001) suggest their 

combination is a statistically robust summary of taxonomic relatedness pattern and 

PRIMER-E, vS can generate combined plots of A+ against !1. + complete with various levels 

of probability limits. 

In addition to the overall description (!1. + in section 6.1.1.1, and A+ in section 

6.1.1.2) Clarke & Warwick, (200lb) suggest that low !1.+, and low to normal A+ were 

indicative of degraded locations and normal !1. + and high A+ represented pristine 

conditions, although the latter assertion was from relatively few sampling events and has 

not been validated more widely. 

In Clarke & Warwick, (2001b) high A+ values were generated for nematode 

popu1ations from a pristine location in the Isles of Scilly although the it is suggested that 

the lack of estuaries greatly restricted fine substrates offshore, which in turn precluded 

species that favour soft habitat types. The resulting taxonomic tree was highly uneven and 

generated high A+ values for this location. More recently Mouillot et al., (2005) found that 

coastal lagoons with higher levels of eutrophication possessed higher levels of A+ as the 

unevenness resulted from the complexity of the taxonomic tree. It is therefore equally 

important to determine the cause of the evenness in addition to its extent as this is 

important for understanding the consequences. 

Rogers et al., ( 1999) generated !1. + for coastal fish communities around the UK, and 

their methods form the basis of those used here. Clarke & Warwick, ( 1999) investigate the 

weighting of branch lengths, which tends to alter the magnitude of !1. + and A+ though both 

measures are qualitatively robust (see Appendix I for an analysis here). 
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The sampling and analysis theories do not lead to an intrinsic relationship between 

11 +(or A} and the number of species (since P = 0 of the theoretical mean 11 + value with 

increasing number of species) though this does not prevent there being an observed 

relationship. An observed positive correlation between 11 + and the number of species 

implies an assemblage structure where large communities are more 'averagely distinct' 

(Ciarke & Warwick, 2001a, p 17-9) than small ones. The relationship between A+ and the 

number of species can similarly be investigated as can apparent correlations on combined 

plots of A+ against 11 + (Ciarke & Warwick, 2001 b). 

In section 6.1.1, the advantages and disadvantages of calculating taxonomic 

distinctiveness measures were described. In order to. determine the ecological implications 

of targeting a particular taxonomic collection through taxonomic distinctness measures, the 

contribution of higher order taxonomic levels can be scrutinized by exploring the effect 

that removing the particular taxonomic group had on the resulting 11 + value. This is the 

subject of 6.2.3. Conducting this analysis has implications on the scheme of choice for 

branch weighting and this is discussed in Appendix I. 

6.2 Methods 
Biodiversity measures of average taxonomic distinctness, (AviD, 11) and variation in 

taxonomic distinctness (VarTD, A+) were calculated by combining the master data 

aggregation file (of taxonomy) and sample data (the site species biomass matrix) using the 

Taxdtest routine in PRIMER-E (Ciarke & Warwick, 2001a). Both matrices included all 

anthropogenic material (litter as a single category) as well as all the algae. The sainple 

dataset was the biomass site (as sample) species matrix initially introduced within the 

methods section of Chapter 5, (section 5.1.3). Appendix H describes the conversion of the 

species list in Appendix C, from Picton & Howson, (1999) into the master data aggregation 
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file and Appendix I for a description of how the chosen method of branch length 

weighting. The Taxdtest routine also includes the power transformation needed to remove 

skew. 

Three types of analysis were examined. 

6.2.1 Analysis of average taxonomic distinctness (~ +) 

and variation in taxonomic distinctness (A+) 

Firstly, ll + for the full group of samples was calculated; this was then examined according 

to port and type of trawling. Next, followed a similar though separate analysis of A+. 

Values of ll + and A+ were then brought together for further analysis. 

Trends in ll + and A+ against the number of species and A+ against ll +, (as well as 

the significance of the relationships) were examined through appropriate correlations. The 

Anderson Darling (A-D test) was used to examine whether the Pearson product moment (r) 

or more conservative (Dytham, 1999, p 158) Spearman's rank-order (rs) correlation was 

most appropriate to investigate the trend. 

Rogers et al., (1999) and Warwick & C1arke, (2001) show that differences in 

factors (in this case the port and type of trawling) can be explored by one-way ANOV A. 

However, here the grouped ll + values according to port and type of trawling do not always 

approximate normal distributions and Dytham, ( 1999 p 192) includes, as an assumption of 

all ANOV A tests that the data are normally distributed, (though it is really the equality of 

variance in the samples and approximation of normality of the residuals which are more 

important). The advantage of applying an ANOV A is that its post hoc test (for example, 

Fisher's Least Significant Difference test) identifies where is or are the significantly 

different group or groups. In applying the slight~y more conservative, non-parametric 

Kruskal-Wall is (K-W) test post hoc testing is not directly possible according to Dytham, 
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( 1999 p 108) though this can be explored by examining the summary statistics. Zar, ( 1999) 

suggests using Dunn's Test for Multiple Comparisons. Additionally, the numbers of 

samples varied according to port and type of trawling (as well as when considering other 

factors) and some of the categories have low frequencies, which further strengthening the 

case for the more conservative K-W test. 

6.2.2 Seasonality in the taxonomic distinctness of the 

samples 

Figure 5.1 (page 110, above) shows the Newlyn samples were collected at similar times of 

subsequent years and over relatively small geographical area. Additionally each of these 

trips included a large number of samples (see Table 3.2, page 49, above). This analysis 

explores the degree to which there was a degree of seasonality in the samples for the same 

time of each year. The analysis was undertaken firstly on the Newlyn samples (in a similar 

manner to that presented in section 5.3.1.2) then across the wider spatial and temporal 

range of the Looe, Plymouth and Salcombe samples. 

6.2.3 Contribution of higher taxonomic levels to 

biodiversity 

While sections 6.2.1 and 6.2.2 were self-explanatory in nature, this was a very much more 

complex investigation. As a basis Rogers et al., ( 1999) show the usefulness when 

interpreting regional differences in fish distribution to identify which taxa have contributed 

most to patterns in average taxonomic distinctness. ln this study, the taxonomy was far 

wider such that in addition to examining the fishes the taxonomic contribution of 

invertebrate phyla was examined. 
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Table 6.1. Categories of fishes (as orders) for contribution of higher order taxonomic levels to biodiversity. Category 4 is the benchmark category. 

sample category detailed description of composition 
# name category name species or groups removed 

1 full the full and complete sample none 
2----iloil-fish-- · oilfy the n-ail-=-fis_h_ i>ariofti1esample- -- no super class GNATHOSTOMA TA - - -- - --- - -

3 fisti+ ____ - -· . ···- itie-fisties +the shellfisti.-super class- all other non-fish groups (see fable 3.4, page 54, above) 
shellfish GNATHOSTOMA TA, (sub classes TELEOSTEI 

and ELASMOBRANCHII) plus the shellfishes_ 

4 fish
shellfish 

(family Loliginidae, Cancer pagurus, 
Aequipecten opercularis and Pecten maximus 
and family Octopodidae),-=:-:--=--~----'i ~e~hes~~o~~e~elffi~. Superda~ ~w~~~o~u~tt~h~e~s~h~e~lffi~~~h~e~s-.~(S~q~U7~~s-;7~~m~~~L~o~l~~7in~id~a~e~.~c~~~b~s~:~c~a-n_re_r_p_a_g_u_ru_s_,_s_ca~l~lo_p_s_;~A-e-qu-i~p-ec~t~e-n~ 
GNATHOSTOMA TA (or the sub classes opercularis and Pecten maximus ;~mily Octopodidae and Sepiidae) 
TELEOSTEI and ELA~I\.IIQ~.Bf\1\!CJ:t!!L __ 

1--5 fish (no gur) only the fishes without the gurnards. ~ - orderSCORPAEilifFORMES, Agonus cataphracius, Aspitrigla cuculus, Aspitrigla obscura, Eutrigla 

6 fish (no herr) 

7 fish (no per) 

.... -·- .... ·-'" 

8 fish (no pie) 

9 fish (no dor) 
10 fish (no gad) 

only the fishes without the herrings 

only the fishes without the perches 

only the fishes wlthoutihe flatfishes-

only the fishes without the dories 
only the fishes without the gadoids 

f gurnardus,Tfigla lugern~ ancJ Triglopo_ru_sJ~stoviza ... 
order CLUPEIFORMES, A/osa sp, Clupea harengus, Engrau/is encrasico/us, Sardina pilchardus, 
and Sprattus sprattus 
order PERCIFORMES, Ammodytes tobianus, Ca/lionymus sp, Dicentrarchus labrax, Labridae 

__ _ _______ (ui1~P.~~ifiefJ_IJ'.Ira~~~~)._ fv1ygil sp, Mu/Ius surmule_tu_s, $_combe_r scombru~. and Trachurus trachurus_ __ 
order PLEURONECTIFORMES, Amog/ossus imperialis, Amog/ossus laterna, Lepidorhombus 
whiffiagonis, Limanda limanda, Microstomus kitt, Platichthys flesus, Pleuronectes p/atessa, 
Scophthalmus rhombus and So/ea so/ea 
order ZEIFORMES, Capros aper and Zeus faber 
order GADIFORMES, Gadus morhua, Melanogrammus aeglefinus, Merlangius merlangus, 
Merluccius merluccius, Micromesistius poutassou, Molva molva, Pollachius pol/achius, Trisopterus 

_ _ .. ______ .. ... lys_gu_~. a_11d T_risop_t(ft_fL}!S_f!!in_utt.J_s __ _ __ _ _ _ _ _ . ... ... .. _ . 
11 _ fishj~-~"-.g)_ onliitie fishes without the a-nglerfishes - order LOPHIIFORMES, Lophius budegassa and L. piscatorius 
12 __ fish (no sal)_ on!y~itiefish~s __ ~Titi(,~U~Tsafrn()~ids ~- .-- -- orc:ier sA:CiV16NTFoRMEs~ osmeruseperfanus- - -........ .. ··················· _ ... _ - _ _ 
13 fish- elasmo only the teleost fishes without the sub-class ELASMOBRANCHII, i.e. without orders CARCHARHINIFORMES and RAJ I FORMES 

elasmobranches (see 14 and 15) 
14 fish (no d&h) only the fishes without the dogfish and smooth order CARCHARHINIFORMES, Mustelus asterias, Scy/iorhinus canicula and Scyliorhinus stellaris 

hounds ···-"-···-··---·--··-""'"" _______ ···-·•· .. ·····---· ,,_,,_., ___ ,, _______ .. ,,., .............. ,., _______________ _ 

only the fishes without the rays 15 fish (no ray) order R.AJlFORMEs: Ra]abrachyura;Ffciiivaia;Ff~-m/Crooceilata:R. moniagui,ifnaevus~R. -----· 
1 radiata and R. undu/ata 
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Category 1, 2 and 3 describes the full sample and assess the contribution of the full sample 

made from the fishes, and the shellfish. In terms of the analysis of the fishes, category 4 

(highlighted on Table 6.1) was the benchmark category. This is the fishes without the 

shellfishes. All the subsequent (higher numbered) categories were derived from this one. 

Categories 5 to 15 were created by removing the various orders of fishes in turn. Some of 

these orders contain few species (category 12 only removed one species) while others 

contain many more; there were nine Pleuronectiformes species and ten Elasmobranchii 

species. The species belonging to each order is included in the description of each 

category (Table 6.1) and each order was 're-added' before the next was removed therefore 

the D.+ values on Figure 6.10 (page 187, below), between categories 5 and 15 are for the 

removal of these groups of species alone. Resultant D.+ values could then be compared to 

D.+ from the full sample. 

6.2.3.2 Non-fishes (invertebrates) (by phyla) 

Expanding the removal of taxonomic groupings into the non-fish part of the sample was 

undertaken in a similar manner. These categories are described in Table 6.2. 

165 



Chapter 6 

Table 6.2. Categories of non-fishes (as phyla) for contribution of higher order taxonomic 
levels to biodiversity. Category 4 is the benchmark category. 

sample category detailed description of composition 
# name category name groups or phyla removed 
1 full the full and complete none 

sample {as category 1 
for Table 6.1 

2 non-fish only the non-fish part of no super class 
the sample GNATHOSTOMA TA), as category 

2 for Table 6.1 
-- ---- ---- .. ---- ----

3 non-fish - shell fish non-fish part of the without the shellfishes, {Squids; 
sample - the shellfishes family Loliginidae, crabs; Cancer 

pagurus, scallops; Aequipecten 
opercularis and Pecten maximus 

- - ----- ""-
1 ;family Octopodidae and Sepiidae} _ 

4 non-fish - anthro, litter, non-fish part of the without anthropogenically derived 
angio sample material and also non-resident 

flowering plant material {though 

--~ -- includes the shellfishes) 
5 non-fish - algae the non-fish part of the without the algae {phyla 

sample CHLOROPHYCOTA, 
CHROMOPHYCOTA and 

-- - - RHODOPHYCOTA) 
6 non-fish - Cnidaria the non-fish part of the without the phylum CNIDARIA 

sample 
7 non-fish - Mollusca the non-fish part of the without the phylum MOLLUSCA 

samJ>Ie ______ 
8 non-fish - Crustacea the non-fish part of the without the phylum CRUSTACEA 

sample 
9 non-fish - Echinodermata the non-fish part of the without the phylum 

sample_ ECHINODERMATA 
10 non-fish - Annelida the non-fish part of the without the phylum ANNELIDA 

sample 
11 non-fish - Bryozoa the non-fish part of the without the phylum BRYOZOA 

sample 

Category I,· 2 and 3 for the non-fish analysis describes the full sample and assess the 

contribution of the full sample made from the fishes, and the shellfish. One difference 

between the categories on Table 6.2 and Table 6.1 was that there were too many species in 

each of the categories on Table 6.2 to list them all here as was done for the fishes (Table 

6.1, above), though the complete species list is shown in the aggregation file (Appendix C, 

Table C.l, page 348 and Table C.2, page 349, below). Again, category 4 was the 

benchmark for the non-fish analysis and similarly to the analysis of the fish part of the 

sample each group (typically phyla here) was re-added before the next one was removed 

and the /', + values calculated. 
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6.3 Results 

6.3 .1 Analysis of 1:!,. +and A+ 

6.3.1.1 Average taxonomic distinctness (A+) 

Figure 6.1 show a plot of l:!t. + against number of species. 
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Figure 6.1. Average taxonomic distinctness values, (l:!t.l plotted against the observed 
number of species for all the samples. The dashed line indicates the simulated mean l:!t. + 
value for 1,000 selections of a random number of species from the master list of 188 
species. Intervals within which the 95 % of the simulated l:!t. + lie (the expected range of l:!t. + 

for a given number of species) are constructed for each sub-list (random sample) and 
represented as a probability funnel (continuous lines). 

Only 10 out of the 88 samples lie within the 95 % probability limit around the theoretical 

mean. The rest were below the lower limit and no samples were above the upper limit. 

Thus, the majority of the samples were from disturbed locations. The average l:!t. + = 81 

from a theoretical mean of:::: 89. The distribution of the l:!t. +with number of species did not 

approximate a normal distribution according to the A-D test, (A2 = 0.793, n = 88, P = 

0.038) although the positive relationship between l:!t.+ and number of species was very 

highly significant according to the Spearman's rank-order correlation (rs = 0.779, d.f. = 87, 
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P < 0.001 ). This suggests that across the full range of the sites the samples with greater 

species richness were from the less disturbed locations. 

Figure 6.2 breaks down the overall pattern presented m Figure 6.1 into the 

categories of port and type of trawling. 
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Figure 6.2. Average taxonomic distinctness values, (ill plotted against the observed 
number of species for the full sample according to port and type of trawling. Here the 
order of the plots shows the single boat trawling on the left and their pair boat counterpart 
on the right. The dashed line indicates the simulated mean !::. + value for I ,000 selections of 
a random number of species from the master list of 188 species. Intervals within which the 
95 % of the simulated il + lie (the expected range of!::.+ for a given number of species) are 
constructed for each sub-list (random sample) and represented as a probability funnel 
(continuous lines). Note that the same axes have been used here as on Figure 6.1. 

Figure 6.2 shows a gradual increase average !::. + from west to east of the region according 

to the samples. This was most pronounced as low !::. + values for Newlyn (average !::. + = 
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77.9), which stand out as being species poor and all were below the lower 95% probability 

limit. The highest 6. + value were from Salcombe (average 6. + = 87.8). There was a plateau 

for Looe and Plymouth though the geographical trend continued; average 6. + value 

according to port were Looe = 81.4 and Plymouth= 82.8. Also noteworthy was the fact 

that the pair trawled samples have lower average 6. + values (though also show more 

variation) than the single boat trawled samples. The average pair trawled 6. + value = 81.0 

against the average single boat value for Looe and Plymouth= 83.2 and across all ports= 

83.1. All but 2 of the Salcombe samples and 3 of the most species rich Looe single boat 

samples on Figure 6.2 were within the 95 % probability limits, though none of the other 

were. 

Not all of the 6.+ values according to port and type of trawling approximated normal 

distributions therefore these data were examined with non-parametric methods. Table 6.3 

shows (according to the K-W test) the differences between (median) average taxonomic 

distinctness according to port and type of trawling. 

Table 6.3. Kruskal-Wallis test of median (average) taxonomic distinctness (6.+) according 
to port and type of trawling, N- = Newlyn, L- = Looe, P- =Plymouth, S- = Salcombe; -S = 
single boat trawling, -P = pair boat trawling. H = 45.65, d.f. = 5, P < 0.001 (adjusted for 
ties). 

port and type of average 
trawling n median rank z 
NS 42 78.86 28.1 -5.76 
LS 11 82.52 55.1 1.48 
LP 9 83.12 43.7 -0.10 
PS 8 83.80 61.0 1.92 
pp 8 83.28 53.0 0.99 
ss 10 87.62 82.5 5.00 
overall 88 I I 44.5 I 

The significance in Table 6.3 across the samples was explored with the post hoc Dunn's 

Test for Multiple Comparisons. 
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Table 6.4. Results of Kruskai-Wallis post hoc Dunn's Test for Multiple Comparisons (Q) 
of (median) average taxonomic distinctness (~} according to port and type of trawling, N
= Newlyn, L- = Looe, P- = Plymouth, S- = Salcombe; -S = single boat trawling, -P = pair 
boat trawling according to 2 d.p. K = 2.94 and significantly different pairs are highlighted. 

NS 3.12_j 1.66 l3.34 j 2.53 6.05 
L S 1.00 0.50 0.18 2.45 
LP 1.39 0.75 3.31 
p s 0.63 1.77 
pp 2.43 

LS LP PS pp ss 

Table 6.4 shows that the average taxonomic distinctness (~} values for the Looe and 

Plymouth hauls (whether single or pair trawled) were not significantly different. The 

Newlyn samples were different to all the other single boat samples, though not the pair 

samples. The Salcombe samples were different to the Looe pair and Newlyn samples. 

Many of the clusters on Figure 6.2 show strong positive correlations between ~ + 

and number of species for Newlyn, Looe pair trawled samples and (to a lesser extent) 

Plymouth pair trawled samples. Table 6.5 shows the Spearman's rank-order correlations 

by port and type of trawling. 

Table 6.5. Value and significance of Spearman's rank-order correlation (rs) between 
average taxonomic distinctness (~} and number of species according to port and type of 
trawling. 

Spearman's 
port and type rank-order significance 

of trawling correlation (r,) [P) value d.f. 
full sample 0.779 < 0.001 87 

NS 0.604 < 0.001 41 
LS 0.765 0.006 10 
LP 0.883 0.005 8 
PS 0.610 0.108 7 
pp 0.929 0.001 7 
ss -0.226 0.454 9 

The Newlyn samples show the lowest positive association between ~ + and the number of 

species but this was very highly significant. It seems likely that the larger number of 

samples for this port was responsible for the (comparatively) low correlation coefficient 

and this was visible in the cloud of points in Figure 6.2 for this port, nevertheless the 
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positive correlation was also highly visible. lt was also apparent that the Newlyn samples 

were generally the most species poor having an average of only 17.5 species against the 

average for all the other ports of 32.2 species. 

While the Looe single boat samples show a strong association (as described in 

Table 6.5) there was a wide range of species from these samples though the range in !l + 

was small. These samples appear to fall into two grouping based on the number of species 

they contain though here the addition of species was throughout the taxonomic level rather 

than at the fine or coarse extremes. This cannot be said to be the case for the Looe pair 

trawl samples where the species poor samples have low values of !l + implying the addition 

of species was at the coarse end of the taxonomic spectrum. 

The Plymouth single boat samples mirror those already described for the Looe 

single boat samples both in terms of their grouping and location on the !l + axis, although 

their clustering into the two groups was more evident. The Plymouth pair samples show 

similarities to the Looe pair samples in terms of their distribution though it is speculative 

whether the formers' species poor samples are also taxonomically poor at the finer levels. 

Most of the samples described so far fall below the solid lines on Figure 6.1 and 

Figure 6.2 indicating that many of the samples were more taxonomically poor than might 

be expected by selecting species at random; and that this was indicative of degraded 

locations. This cannot be said to be the case for the samples from Salcombe which were 

unique amongst those on Figure 6.2 also in that their correlation (rs) was negative, though 

not statistically significantly so. Their position on the !l + axis suggests that richness was 

added at fine taxonomic levels that were already well represented and though not 

significant it is suggested that the negative (rs) correlation indicates that as more species 

are added in these samples these additions continue to be new underrepresented taxonomic 

branches so even here the species sampling is not exhaustive as was evident from the 

species accumulation curves (Figure 3.2, page 59, above). 
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6.3.1.2 Variation in taxonomic distinctness (A+) 

Figure 6.3 shows the full sample data of variation in taxonomic distinctness (A l against 

the numbers of species in each sample across all the samples. 

OL---------r---------r---------r---------r-------__, 
10 20 30 40 50 60 

Number or species 

Figure 6.3. Variation in taxonomic distinctness values, (A l plotted against number of 
species for all of the samples. The dashed line indicates the simulated mean A+ value for 
1 ,000 selections of a random number of species from the master list of 188 species. 
Intervals within which the 95 % of the simulated A+ lie (the expected range of A+ for a 
given number of species) are constructed for each sub-list (random sample) and 
represented as a probability funnel (continuous lines). 

All samples except one (# 77) were above the theoretical mean A+ on Figure 6.3 and 46 

samples were above the 95 % probability funnel. The theoretical A+ = 250 and the actual 

mean was 428. This suggests that the taxonomic tree was highly irregular or complex and 

uneven with many underrepresented higher-order taxonomic groups. While the 

relationship between !!. + values and the number of species for all the samples was positive 

the equivalent relationship for A+ values was negative; the Spearman's rank-order 

correlation (r,) =- 0.298, d.f. = 87, P < 0.005. This suggests that the more even taxonomic 

trees also contained the largest number of species. Figure 6.4 divided the data points of 
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Figure 6.3 into port and type of trawling. Table 6.6 shows the value and significance of the 

Spearrnan's rank-order correlation (r,) according to port and type of trawling. Figure 6.3 

and Table 6.6 are described together. 
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Figure 6.4. Variation in taxonomic distinctness values, (A) plotted against the observed 
number of species for the full sample according to port and type of trawling. Here the 
order of the plots shows the single boat trawling on the left and their pair boat counterpart 
on the right. The dashed line indicates the simulated mean A+ value for 1,000 selections of 
a random number of species from the master list of 188 species. Intervals within which the 
95 % of the simulated A+ lie (the expected range of A+ for a given number of species) are 
constructed for each sub-list (random sample) and represented as a probability funnel 
(continuous lines). Note that the same axes have been used here as on Figure 6.3. 
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Table 6.6. Value and significance of Spearrnan's rank-order correlation (rs) between the 
variation in average taxonomic distinctness (A+) and number of species according to port 
and type of trawling. 

Spearman's 
port and type rank-order significance 

of trawling correlation (rs) (P)value d.f. 
full sample -0.298 0.005 87 

NS - 0.118 0.458 41 
LS - 0.501 0.116 10 
LP -0.583 0.099 8 
PS - 0.171 0.686 7 
pp -0.357 0.385 7 
ss 0.463 0.171 9 

Table 6.6 shows that none of the Spearrnan's rank-order correlations for the A+ values 

were significant according to their port and type of trawling, also and that the r, are lower 

for the A+ values than was the case for!:!.+. 

The Newlyn samples have a consistently high value of A+ with 18 out of the 42 

samples being above the 95 % probability funnel. Though not too clear from Figure 6.4 

the hauls away from the main sampling area (sample numbers 3 through to 12, see Figure 

5.1, page 110, above) lie around the middle of the cluster on Figure 6.4, (average A+ values 

~ 475). 

The single and pair boat samples from Looe appear quite similar on Figure 6.4 and 

both have similar correlation coefficients (Table 6.6); so too did the Plymouth single and 

pair samples though the latter had a smaller range of species and lower correlation 

coefficients. Despite these samples containing many more species than the Newlyn 

samples, the A+ values are higher than the 95 % probability funnel. 

Moving further east, the association between !:!. + and the number of species for the 

Salcombe samples was previously uniquely negative (Table 6.5). Here (Table 6.6), the 

association between A+ and the number of species was uniquely positive. Furthermore all 

but three samples appear to be within the 95 % probability funnel. 

Only from the Looe and Salcombe single boats were there more samples within the 

probability funnel than above it, so overall there was a consistent pattern separately from 

176 



Chapter 6 

Table 6.7 shows the results of the K-W test applied to A+ according to port and type 

of trawling. 

Table 6.7. Kruskai-Wallis test of (median) vanatmn in taxonomic distinctness (A} 
according to port and type of trawling, N- = Newlyn, L- = Looe, P- = Plymouth, S- = 
Salcombe; -S =single boat trawling, -P =pair boat trawling .. H = 16.81, d.f. = 5, P < 
0.001 (adjusted for ties). 

port and type of average 
trawling n median rank z 
NS 42 468.1 49.4 1.72 
LS 11 419.4 40.7 -0.52 
LP 9 463.8 56.9 1.54 
PS 8 464.9 49.0 0.52 
pp 8 401.7 41.3 -0.38 
ss 10 358.1 15.9 -3.76 
overall 88 I I 44.5 I 

The values of Z on Table 6.7 appears to show that only the Salcombe samples (based on 

the A+ values) are significantly different from the combined Plymouth and Looe samples. 

Table 6.8 shows the permutation results of the post hoc Dunn's Test for Multiple 

Comparisons. 

Table 6.8. Results of Kruskal-Wallis post hoc Dunn's Test for Multiple Comparisons (Q) 
of (median) variation in taxonomic distinctness (A+) according to port and type of trawling, 
N- = Newlyn, L- = Looe, P- = Plymouth, S- = Salcombe; -S = single boat trawling, -P = 
pair boat trawling according to 2 d.p. K = 2.94 and significantly different pairs are 
highlighted. 

NS 1.01 0.80 0.04 0.82 l 3.73 : 
LS 1.41 0.70 0.05 2.22 
LP 0.64 1.26 ! 3.49 J 

PS 0.60 2.73 
pp 2.01 

LS LP PS pp ss 

Table 6.8 shows that the A+ values according to port and type of trawling for the Looe and 

Plymouth were all not significantly different. Also, the Newlyn samples can be added to 

this pool. The importance of this fact is that while the Newlyn samples were less species 

and taxonomically rich, or diverse, overall they were not significantly more uneven than 
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the pool of Looe and Plymouth sampled areas. The Salcombe samples were only 

significantly different to the Newlyn and Looe pair samples. 

6.3.1.3 Combination of A+ and A+ 

The wider implications of these results are presented later though it is useful to examine 

how the combined values of A+ and !!:. + varied. Figure 6.5 shows the plot of expected and 

actual values of A+ against !!:. + for all of the samples. 

Figure 6.5. Variation in taxonomic distinctness (A) against average taxonomic 
distinctness (!!:.") for all (n = 88) of the taken samples (green triangles, labelled with sample 
number and number of species) and probability of null or expected values. The inner 
yellow region is 60 % and each outer region is l 0 % lower. The same axes ranges are used 
as on Figure 6.1 and Figure 6.3. 

As expected the majority of the cloud of points on Figure 6.5 represent lowered levels of 

!!:.+and elevated levels of A+, and only 8 out of the 88 hauls lie within the 50% probability 

region of expected values. Figure 6.5 also does show the strongly negative association 

between the two variables. As above the Speannan's rank-order correlation was used as 

both!!:.+ and A+ do not always approximate a normal distribution), r5 =- 0.627, d.f. = 87, P 
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< 0.00 I between the full sample oft-/ and A+ values. On Figure 6.5, only those samples 

with the higher /',. + and lower A+ values are close to the expected range of these variables, 

which would represent taxonomically diverse and even samples. Figure 6.6 breaks down 

Figure 6.5 into port and type of trawling to show which subset more closely approximates 

the expected distribution between /',. + and A+ values. 
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Figure 6.6. Variation in taxonomic distinctness (A l against average taxonomic 
distinctness (6l for all of the samples (green triangles, labelled with sample nwnber and 
nwnber of species) according to port and type of trawling and probability of null or 
expected values. Here the order of the plots shows the single boat trawling on the left and 
their pair boat counterpart on the right. The regions are: N-S, 10, 20, 30 %; L-S, I 0, 20, 
30, 40, 50%; L-P, 10, 20, 30, 40, 50%; P-S, 30, 40, 50%; P-P, 20, 30, 40, 50%; S-S, 20, 
30, 40, 50%. The same axes ranges are used as on Figure 6.1 and Figure 6.3. 

The information shown in Figure 6.6 is a combination of Figure 6.2 and Figure 6.4. 

However, Figure 6.6 does show differences in the combined plots for port and type of 
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trawling. Only 2 of the Newlyn samples (5 %) were within the 20% of expected values. 3 

(27 %) of the Looe single and 4 (44 %) of the Looe pair samples were within the similar 20 

% though the 'tail' of these samples away from the null region is also interesting. The 

single boat samples were more uneven though not less species rich while the pair samples 

were species poor though not more uneven. This supports the assertion that the pair trawls 

were sampled from less structurally complex habitats with lower overall species richness 

though the sample size was small. The Plymouth samples describe a similar trend of 

overall !!. + and A+ values and appear to share the same relationship in their 'tail' though 

this is less obvious. Finally Figure 6.6 shows that the Salcombe samples were all within 

their 20 % expected range such that they were composed from a broad and well 

constructed sub-list of the master species list (high !!. + values) and the branches of the 

taxonomic tree were evenly weighted (lower A+ values). The (non-parametric) 

correlations between !!. + and A+ for the Salcombe samples was negative though this 

association was particularly "poor" (Table 6.9); the reason being the data cluster closest to 

the null region. 

Table 6.9. Value and significance of Spearman's rank-order correlation (r5) between the 
variation in taxonomic distinctness (A l and average taxonomic distinctness (!!.. +) according 
to port and type of trawling. 

Spearrnan's 
port and type rank-order significance 
of trawling correlation (rs) (P) value d.f. 
full sample -0.627 < 0.001 87 

NS -0.473 0.002 41 
LS -0.827 0.002 10 
LP -0.767 0.016 8 
PS -0.738 0.037 7 
pp -0.643 0.086 7 
ss -0.358 0.310 9 

The deviation from the samples, (according to port and type of trawling) comprising a well 

constructed sub-list of the master species list (high !!. + values) and the branches of the 

taxonomic tree being (relatively) evenly weighted (lower A+ values) increases with 
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distance from the Salcombe areas of sampling and region populated on Figure 6.6. This is 

borne out by the 'tail' of decreasing f).+ and increasing A+ values in the Plymouth, then 

Looe then Newlyri samples. All of these associations are also negative and all except that 

for the Plymouth pair trawled samples are significant (see Table 6.9). 

6.3.2 Seasonality in the biodiversity of the samples 

42 of all the samples were from Newlyn. Except for the second quarter 1998 hauls, which 

were well south of both The Isles of Scilly and the tip of Cornwall most of the hauls from 

Newlyn were from a small geographical area between Cornwall and the Isles of Scilly, as 

shown in Figure 3.1, page 47, above. Figure 6.7 shows these in their individual trips and 

shows plots of (actual and expected) A+ against f).+ values and also in which quarter of the 

year they were sampled. 

182 



- --

Chapter 6 

Newtyn 98Q2 Newlyn 98Q3 

800 BOO 

B(17) 

"~'' c. 60 4 4(1B) 600 

(; 
5(11) 3(12t d~j!l (; 24~!1 ) 4 

3 4 (111111~ 3 

~ 
400 11~0) ... 1 ~21) g: 400 :?A 

Q) 4 
+ + 

200 200 

0 I 0 
60 65 70 75 BO B5 90 95 60 65 70 75 BO B5 90 95 

Delta+ Delta+ 

Newtyn 99 Q2 Newtyn 99 QJ 

BOO 800 

37~2) ~~ 600 600 64 ~ 
(; 3~~ c (; ~ ) 
3 41 ~14) ) 3 

5~r.1) g: 400 38~~~~·> • g: 400 
Q) Q) 

1~2) + + 

200 200 

0 0 I 
60 65 70 75 BO B5 90 95 60 65 70 75 BO B5 90 95 

Delta+ Delta+ 

Figure 6.7. Variation in taxonomic distinctness (A~ against average taxonomic 
distinctness (~ ~ for all of the Newlyn collected samples (green triangles, labelled with 
sample number and number of species) according to year and quarter of the year, and 
probability of null or expected values. The regions are: 98-Q2 10, 20, 30 %, 98-Q3 10, 20, 
30 %, 99-Q2 10, 20 %, 99-Q3 10, 20, 30 %. The same axes ranges are used as on Figure 
6.1 and Figure 6.3 . 

It would appear that those Newlyn trips taken later in the year (Q3) show both an average 

taxonomic distinctness and variation in taxonomic distinctness closer to the expected or 

null values, (where the data is similar in nature to the Salcombe based hauls on Figure 6.6). 

The Newlyn sample ~ + values were highly significantly different between quarters 2 and 3 

(pooling years) according to a Mann-Whitney test (W = 82; P = 0.001), though not 

between years (pooling quarters) W = 499, P = 0.919). A+ values were neither 

significantly different between quarters 2 and 3 (pooling years) W = 375; P = 0.770 nor 

between years (pooling quarters) W = 476; P = 0.649, according to Mann-Whitney tests, (n 

= 42 in all cases). 

Figure 6.8 shows the plot of A+ against ~ + for the pool of the Looe, Plymouth and 

Salcombe samples which were sampled across 4 quarters of the year from 1998 to 2000. 
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Figure 6.8. Variation in taxonomic distinctness (A) against average taxonomic 
distinctness (~) for the pool of Looe, Plymouth and Salcombe samples (green triangles, 
labelled with sample number and number of species) showing the probability of null or 
expected values. The regions are: 1 0 to 60 %. The same axes ranges are used as on Figure 
6.1 and Figure 6.3. 

Figure 6.8 shows a much smaller range in ~ + values for the majority of the Looe, Plymouth 

and Salcombe samples than was evident for the Newlyn samples (Figure 6.6, top left). The 

data are also generally closer to the null (or expected) range and this is borne out by the 

fact that the highest null level for the whole of the Newlyn samples was 30 % (Figure 6.6, 

top left) whereas Figure 6.8 includes values up to 60 %, and that 29 (63 %) of samples 

were within the 20 % null region. Figure 6.9 shows the pool of Looe, Plymouth and 

Salcombe samples according to the quarter of the year in which the samples were taken. 
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Figure 6.9. Variation in taxonomic distinctness (/\) against average taxonomic 
distinctness (~) for the pool of Looe, Plymouth and Salcombe samples (green triangles, 
labelled with sample number and number of species) according to quarters of the year 
showing the probability of null or expected values. The regions are: Q l , 20, 30, 40, 50 %; 
Q2, 10, 20, 30, 40, 50 %; Q3, 10, 20, 30, 40, 50, 60 %; Q4, 20, 30, 40, 50 %. The same 
axes ranges are used as on Figure 6.1 and Figure 6.3. 

The first feature to notice from Figure 6.9 is that (compared to Figure 6.7) the samples 

from Looe, Plymouth and Salcombe do not exhibit the same shift of increasing ~ + values 

from earlier to later in the year. Thls is borne out by the results of a KruskaJ-Wall is test of 

pooled Looe, Plymouth and Salcombe ~ + values between the four quarters of the year, 

which are shown in Table 6.1 0. 

Table 6.1 0. Kruskal-Wallis test of pooled average taxonomic distinctness (AvTD, ~ +) 
values from Looe, Plymouth and Salcombe by quarter of the year. H = 5.47, d. f. = 3, P = 

0.140. 

quarter of the average 
year n median rank z 
1 11 72.07 27.7 1.20 
2 10 70.46 21.9 - 0.43 
3 14 68.31 17.5 - 2.01 
4 11 72.42 28.4 1.38 
overall 46 I I 23.5 I 
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The H value for the K-W test in Table 6.10 was not significant and the average ranks 

shown are not greatly different. A post-hoc Dunn's test (Table 6.11) shows where these 

non-significant differences were least and greatest. 

Table 6.11. Results ofKruskal-Wallis post hoc Dunn's Test for Multiple Comparisons (Q) 
of pooled average taxonomic distinctness (AvTD ~+) values from Looe, Plymouth and 
Salcombe by quarter of the year to 2 d.p. K = 2.64 and there are no significantly different 
pairs. 

1 1.00 1.86 0.12 
2 0.79 1.11 
3 2.02 

2 3 4 

Although not significant the more temporally distant quarters (quarters 1 and 3, and 

quarters 2 and 4) were more dissimilar than adjacent quarters (including quarters 1 and 4 

where the difference is the smallest) although the largest differences were between the 

third and fourth quarters' samples. 

6.3.3 Contribution of higher taxonomic levels to 

biodiversity 

6.3.3.1 Fishes (by order) 

Figure 6.10 shows the average ~ + value for the full sample according to the sample 

categories described in Table 6.1 (page 164, above) and according to port and type of 

trawling. 
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The category l t/ values on Figure 6.10 according to port and type of trawling were the 

same as those on Figure 6.2 (mean ll + = 80. 76) and have the general increase, west to east, 

in ll+ values (ll+ N S = 77.9; ll+ SS= 87.8) and with the single boat samples being higher 

than the similarly based pair trawl samples, as shown in 6.3.1. 

The ll+ values for the non-fish part of the sample (category 2 on Figure 6.10) were 

higher on average than for category l (except for Looe single boat samples where the ll + 

value decreased by - 0.64) though the differences were not generally large; the average 

increase in ll + values between category I and 2 = l. 78. 

There was a marked drop in ll+ values between categories 2 (average ll+ = 84.14) 

and 3 (average ll + = 66.83). Category 3 was the fishes and the shellfish species. The 

largest levels of variability (as 95 % Cl) were in categories described so far. This was due 

to some of these samples having very few of the groups making up these categories. 

The plateau on Figure 6.10 between categories 4 and 15 was created by removing 

various orders of fishes in turn (see Table 6.1, above). Removing the six gurnard species, 

category S, (which contributed significantly to the sample biomass) has lowered the ll + 

values by - 1.01 on average and (due to their near ubiquity) this reduction was fairly 

uniform across all ports and types of trawling. 

The removal of the eight species of Perciforrnes, category 7 (which were not so 

abundant, though still very important, within the sample) reduced the average ll +value by-

1.23 though this order was most significant to the Looe samples (average ll + value reduced 

by - 1.65) and least to the Newlyn ones (average ll + value reduced by - 0.87) compared to 

category 4. 

Removal of the nine Pleuronectiformes species (category 8) produced generally 

small negative changes in the ll + values (average decrease - 0.60) except for the Looe 

single boat hauls where the removal produced a positive change in the ll + values. This 

order was the most important for Newlyn (ll + value reduced by - 1.17) and Looe pair 

samples were ll + was reduced by - 1.26. 
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The taxonomic importance of the two species of dories, category 9, (though only 

Zeus faber was commonly recorded; Capros aper being both rare and absent from the 

Plymouth and Salcombe samples) is shown in that their exclusion produced a drop in ll + 

value of - - 0.55 though the Newlyn samples produced the largest reduction {ll + value 

reduced by- 1.00). The anglerfishes (category 11) were similar to the dories in that one 

species Lophius piscatorius was commonly recorded (only absent in Looe pair trawl 

samples) while the other species L. budegassa was only recorded in the Looe single boat 

samples. Nevertheless the exclusion of the order LOPHIIFORMES only resulted in a 

decrease in ll +of-- 0.19. 

Exclusion of the species poor Clupeid (category 6) and Salmonid (category 12) 

groups was not particularly important as these only decreased the ll + values by - 0.09 and < 

- 0.01 respectively from the benchmark ll + values of category 4. 

Removal of the gadoids (category 10), had (after the Perciformes, category 7) the 

largest effect of any of the teleost fish groups (with an average increase in ll + values = 

1.03), and this was most noticeable for the single boat samples. These values were N S = 

2.75, L S = - 0.07, LP= 0.22, P S = 2.48, P P =- 0.20 and S S = 1.45. Gadoids were 

generally the targeted group though there are also several discard species amongst this 

order. Figure 6.10 shows that exclusion of this group also produced the largest range in ll + 

values as expressed in their Cl values. The elevated ll + values that resulted from the 

exclusion of gadoids, for some ports and types of trawling, indicate the taxonomic 

similarity of this group within the sample. 

All these differences in ll + values for the removal of the orders of the teleost fishes 

are small when compared to the removal ofthe elasmobranches (category 13). An average 

reduction in ll + values of- 4.56 from category 4, though - 7.25 for the Salcombe based 

samples. The levels of variability (as 95 % Cl) were not even for category 13 with low 

variability for Newlyn and Looe hauls (2.76 %) and higher variability for Plymouth and 

Salcombe hauls (4.76 %). This reflects the relative distribution of species according to the 
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ports and types of trawling. Also, the reductions in ll + values were much larger for the 

single boat trawls (ll + reduced by - 5.14) than the pair boat trawls (ll + reduced by- 3.40) 

which may reinforce the habitat preference of this group as a whole (see Chapter 8). 

According to the ll+ values the removal of the order Carcharhiniformes (category 14) was 

greater (ll+ down by- 2.17) than the order Rajiformes (category 15), where the average ll+ 

value was reduced by - 1.18. 

6.3.3.2 Non-fishes (invertebrates) (by phyla) 

In addition to examining the removal of various orders of fishes the taxonomic range in 

this study was sufficiently wide to allow a similar exclusion exercise to be carried out on 

the non-fish part of the sample. Figure 6.11 shows this. 
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The first feature to notice on Figure 6.11 (above) is the general trend in ll.+ values for the 

six categories of port and type of trawling. With a few exceptions (described later}, there 

was more constancy for the Plymouth and Looe based samples where ll. + values range 

between 75 and 85. The ll. + values for the Salcombe based samples are generally higher 

(with ll. + values between 80 and 90) representing more finely filled taxonomic branches. 

Conversely, the Newlyn samples have lower ll. + values (generally between 70 and 80). 

These represent taxonomic branches that are not so well filled towards their tips (species) 

but are well populated at their coarser end. 

The variability expressed as 95 % Cl was generally lower for the Salcombe and 

Plymouth samples(± 2.33) and higher for the Looe and Newlyn ones(± 3.93) and across 

all the categories the single boat samples were more variable than equivalent single boat 

samples though there are exceptions to this general situation. 

Next, Figure 6.11 shows the general trend in ll. + values for categories I and 2. 

These were described above for Figure 6.1 0, (page 187, above). The variability of 

categories 1 and 2 were also as described above. 

The removal of the shellfish species (category 3) only had a minimal effect on the 

ll. + values (increasing them by - 1.25) and while the variability of these samples remained 

relatively unchanged from those of category 2 the variability was greater for Newlyn and 

Looe pair trawled samples. The increase in the ll.+ values was due to the relatively small 

taxonomic range of the shellfish species. The removal of category 4 was carried out 

because it can be argued that these removed groups were not so important to the overall 

picture of taxonomic distinctness or range. Here category 4 was again the benchmark non

fish part of the sample in the same way that category 4 was the benchmark fish part of the 

sample as it is the category from which exclusion (here at the phylum level) were taken. 

Importantly, the two-benchmark categories were quite different in that for the fish part of 

the sample the ll.+ values were at the bottom of the plateau while for the non-fish part of the 

sample there is no such distinction. This marked difference shows the fundamental reason 
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for sampling both the fish and the non-fish material. Here, for the non-fish part of the 

sample, category 5 (the non-fish material without the algae) could be classed as another 

possibly unimportant group however the effect of its removal was most noticeable in the 

Salcombe samples; !1 + values decreased by- 4.15, compared to category 4. 

Removal of the phylum CNIDARIA (category 6) reduced the average !1+ values by 

- 2.14 when compared to the benchmark of category 4. There was only a relatively small 

taxonomic range of Cnidarian species from the Newlyn samples resulting in a decrease in 

!1+ values by- 0.59. The largest decrease in !1+ values resulting from the exclusion of the 

Cnidarians was in the Looe based samples, (- 3.34 overall), though they had a greater 

diversity in the single (!1 + reduced by- 5.21) rather than pair boat samples (l'i + reduced by 

- 3.41). There was a peak in variability (as 95% Cl in the Looe (single particularly) and 

Newlyn hauls. 

The other two phyla whose removal did not result in large reductions in !1 + values 

were the Annelids (category 10, !1+ down by - 0.40 on average) and the Bryozoans 

(category 11 !1 +down by- 1.26 on average), compared to category 4. 

The removal of the Molluscan, Crustacean and Echinoderm Phyla (categories 7, 8 

and 9 respectively) created some very large reductions in the !1 + values as shown in Figure 

6.11. The averages reductions were- 3.89 (category 7),- 1.30 (category 8) and - 3.99 

(category 9) from the benchmark category 4, although there were marked differences 

according to port and type of trawling. 

Amongst the molluscs are important species of shellfishes and their significance 

was reflected in the removal of this category resulting in a !1 + value of 70.71 for the 

Newlyn samples (!1+ reduced by- 7.70) though there were also reduction- 4.56 for Looe 

single and Plymouth pair trawled samples. 

Removal of the crustaceans resulted in a greater decrease in !1 + values for the pair 

boat compared to the single boat samples, though the situation is complex. The changes 

(compared to category 4) were L S = 4.00, LP=- 5.58, PS=- 0.51 and PP=- 2.71. The 
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11+ values for Newlyn was reduced by- 3.12 though this removal had little effect on the 

Salcombe samples (where the average 11 + value was increased by only 0.15) compared to 

category 4. 

The largest single decrease in any of the non-fish with the removal of an 

invertebrate phylum (according to port and type of trawling) was for the removal of 

Echinoderms for the Newlyn samples (11 +down by 11.93, 11 + = 66.47) which is towards the 

range of 11 + values found in the fish analysis. This removal also generated the largest 

amount of variability (± 6.80). The variability for all these categories was again larger for 

the Newlyn and Looe samples than the others. 

6.4 Discussion 

6.4.1 Analysis of average taxonomic distinctness (~ +) 

and variation in taxonomic distinctness (A+) 
The strength of examining the biodiversity of the samples using the indices of taxonomic 

distinctness is that the results are not dependent on sample size. This is particularly 

important when the number of sampling opportunities cannot be tightly controlled and the 

operation of the various vessels meant that different numbers of samples could be 

collected. These measures also work well between different studies. Here they enabled 

the detection of subtle differences between operations from different ports and using single 

and pair trawling gear where, though it was not the intention to alter the size of the sample, 

inevitably the area trawled and the amount of material retained by the gear varied greatly 

and meant that comparisons using other indices of assessment may be flawed. These 

methods are no longer in their infancy though it is only with their wider application that 

their strengths and weaknesses can be explored. 
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One of the features of tl + is its robustness to alteration by manipulating either the 

taxonomic groups sampled, or the resolution to which the taxonomic tree is taken. 

Therefore, altering the former might have altered the magnitude of the values of tl +, which 

being from the kingdom level are much larger than reported by Rogers et al., (1999), (who 

examined only fish) though would not have altered the position of the probability funnel to 

include more samples. However in order to be comparable between studies it is suggested 

that the same coarse level of kingdom is always used and that where the removal and 

reintroduction of taxa is undertaken the compromise of even ·(fixed) branch lengths is 

preferable to assigning values based on t~e master species list, (see Appendix I for more 

details). It is also recommended that it is sensible to report differences in tl + due to 

removal of taxonomic groups relative to the benchmark category. 

The positive correlation in Figure 6.1 described a situation where added richness 

came from filling in more species at coarse taxonomic levels that were not already present. 

In other words, completely 'new' taxonomic branches were added and those already 

present were not added to as equally. Values of tl + which fall below the 95 % funnel 

usually represent samples from localities which have a lower than expected taxonomic 

spread (Clarke & Warwick, 1998). Thus, it would appear that many of the samples 

collected here could be described as being from taxonomically impoverished locations, or 

that this might be an artefact of the collection of these samples. The ambivalent nature of 

this statement can be offset against the species accumulation curves (Figure 3.2, page 59, 

above) though it is recognised that trawl gear may not be an ideal method of sampling all 

benthic species whether or not they are fishes. Nevertheless, the disturbed indication of the 

Newlyn samples was also supported by the ABC in Chapter 5. 

Values of A+ are more difficult to interpret than those of !!+, (see Clarke & 

Warwick, 200 I b) however variation in taxonomic distinctness reflects the degree of 

evenness of the taxonomic tree within the sample. Low A+ values represent taxonomically 

even sites, for example, a list in which all species are from different families but the same 
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order. A+ increases as the number of intermediate taxonomic levels increases (for the same 

value of 6.\ For example a site with a higher A+ might have several different orders 

represented only by a single species, but also some genera which are very species rich, (see 

Clarke & Warwick, 2001 b, figure 2). The ecological implication of this is that sites with 

higher A+ may not be so resilient to disturbance. In a study of eutrophication in lagoons on 

the French Mediterranean coast Mouillot et al., (2005) found that as the stress level 

increased taxonomic lineages were constrained by the environment and A+ values were 

higher. It is possible that here similar constraints are being imposed by disturbance or loss 

of habitat. 

The high A+ values from the Newlyn samples shows that the taxonomic tree of the 

species in these samples was more uneven than might be expected, within the size range of 

organisms retained in the trawl. The exact size range retained within the samples was 

explored in Chapter 5, (specifically in relation to Figure 5.14, page 134, above). 

Nevertheless, the link between higher A+ values and environmental impact may be 

supported by the relatively small geographical extent of the sampling effort, (Figure 3 .I, 

page 47, above) and the anecdotal information from the boat skipper and crew that this was 

a favourite area in which to fish. The hauls away from the main sampling area (sample 

numbers 3 through to 12 on Figure 3.1) were in the middle ofthe cluster on Figure 6.4 (top 

left), which suggests that further offshore areas may well overall be similarly disturbed as 

portrayed by measures of biodiversity, though more sampling would be required to carry 

this assessment further. Nevertheless, their greater depth does not appear to have protected 

them from being equivalently impacted to the more closely inshore (and shallower) areas. 

The Looe single boat samples on Figure 6.4 roughly divided into the more species 

rich, and more taxonomically even inshore samples and the less species rich, and 

taxonomically uneven samples collected south of Eddystone Rocks, (see Figure 3.1, page 

47, above and Figure 4.4, page 79, above). The pair trawl samples from Looe were not 

similarly distributed in terms of their taxonomy although further offshore samples are 
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roughly more species poor. The pattern in the Plymouth samples was more similar to the 

Looe pair samples though while it does not seem possible to divide these into 

offshore/inshore or taxonomically even/uneven sites from these samples, the Plymouth 

sites appear less impacted overall. 

The position of the Salcombe samples within the 95 % probability funnel for A+ 

values on Figure 6.4 suggests that the taxonomy contained in these samples was more even 

and these samples were from less environmentally impacted sites. It is suggested that the 

proximity of these sites to the Inshore Potting Agreement's temporarily closed areas (see 

Blyth et al., 2004, Fig 1) may be responsible. Significantly, samples 77 and 84 were 

within the temporarily closed areas and while these samples were not the most species rich, 

they did possess the lowest A+ values for Salcombe and only one other haul had a lower A+ 

value than #84. It is unlikely that the close proximity of some of these samples to the 

shore cannot alone be responsible (although > 12 m vessels are prohibited from fishing 

within 6 nm of both Devon and Cornwall, Anon, l993b) as although other samples close to 

land were relatively taxonomically even they were generally more species rich. Blyth et 

al., (2004) examined the implication of the seasonal closure on the waters around 

Salcombe and found that longer closed areas had increased numbers of both attached and 

free species and in sampling close to the temporarily closed areas and the Salcombe 

samples. Here the 11 + generally decreased with increasing distance from Salcombe. 

Also noteworthy was the fact that the pair trawled samples had lower average 11 + 

values (though also show more variation according to Figure 6.2 than their single boat 

trawled samples, thus there may be consistent features of the gear arrangement that make 

single boat trawling better at capturing the greater range of taxonomy than from pair 

trawling. However, it might also be that the single boats were trawling in more structurally 

complex areas where there was likely to be a greater range of habitats and therefore a 

greater taxonomic range. Nevertheless, this strengthens the case for the west to east 

geographical distribution of increasing average taxonomic distinctness (11 +) values, which 
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was evident from Figure 6.2. In addition, perhaps, that the Newlyn samples share some of 

the gear-related features (mentioned above) of the pair trawled samples. Interpreting the 

average A+ values Figure 6.3 was more complex however almost all of the samples have a 

A+ value well above the theoretical mean of :::: 260 with about half of the samples 

(according to Figure 6.3) have A+ values above the simulated 95% probability funnel. 

Here, the relatively high A+ values (above the mean and also often above the 95 % 

confidence region) was interpreted as a result of environmental impact (Warwick pers 

com) rather than as an example of a pristine ecosystem limited in its habitat diversity 

(Clarke & Warwick, 200 I b) because of the diversity in the substrates and tide of the region 

(see Table 4.1, page 80, and Table 4.2, page 84, respectively). The only possible corollary 

for the case presented in Clarke & Warwick, (200 I b) (in that the samples could have been 

collected from pristine locations) was that despite the variable nature of the habitats the 

collection of the samples through trawling generated a size-selection bias thus the 

generated A+ was biased towards being irregular and complex in that the sampling has 

missed parts of the biodiversity. While it is inevitable that some (especially small sized) 

diversity components were missed in the sample collection this argument is ameliorated by 

both the large number of species encountered (Figure 3.2, page 59) and their broad size 

distribution (Figure 5.14, page 134). Furthermore, the idea that the taxonomically more 

uneven nature of the samples (greater A l is representative of disturbance rather than of 

low diversity but pristine habitat is supported by the generally good correlation with low 

!':!. + values. Finally, the disturbance interpretation is supported by the generally negative 

correlation between A+ and numbers of species such that only the most species rich 

samples possessed A+ values approaching or within the null region except for the 

Salcombe samples that appear to be from considerably less disturbed locations. 

The plots of A+ against !':!. + (Figure 6.5 and Figure 6.6) were particularly useful as 

considerable additional information is available which was undetectable from comparing 

the examining each independently. After bringing together the !':!. + and A+ values the (r,) 
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correlations of the single boat samples (Table 6.9, page 181, above) were greater (and 

more negative) than those of similarly based pair trawled samples suggesting that there 

was a consistent gear-related feature in the distributions of the D.+ and A+ values. This is 

shown in Figure 6.6 in that the 'tail' described above is skewed towards similar D.+ and 

increased A+ values for the single boat samples (though this is more evident from Looe 

than Plymouth) and decreasing D.+ though more stable A+ for the pair trawled samples. 

Again, this is more evident in the samples from Looe than from Plymouth. This supports 

the above assertion that the pair trawled samples in the 'tail' are from species (or 

taxonomically) poorer sites (or that this was a feature of their collection) and the similar 

single boat samples were from more heavily impacted locations though their taxonomy 

remains more complete. Finally, the 'tail' samples from Looe and Plymouth are 

predominantly those further offshore (see Figure 3.1, page 47, above). The distance 

offshore of these locations brings them into the operating range of beam trawlers however; 

with this data set, it is not possible to take this idea further. 

The management implications of assessing D.+ and A+ of trawl samples has yet to be 

fully realised, though the above described advantages of the techniques lend themselves to 

these data types and sources. The planned EU Marine Strategy Directive sets out a 

requirement to achieve '"Good Environmental Status' (GEnS) of the marine environment 

by 2021 ," (COM, 2005, pS). Laffoley et al., (2006) sets out to define GEnS considerations 

though missing from this list is an assessment of taxonomic diversity (D.+) and resilience to 

disturbance (A+). It is hoped that a taxonomic index can complement the others that have 

been proposed. 
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6.4.2 Seasonality in the taxonomic diversity of the 

samples 

That most of the hauls from Newlyn were from a small geographical area between 

Cornwall and the Isles of Scilly (Figure 3.1, page 4 7, above) and those away from this area 

show similar features means it was unlikely that the patterns observed on Figure 6. 7 result 

from spatial distribution. Instead, the cause might be physical or biological in nature. 

Some possible seasonality in the samples from Newlyn was demonstrated, within the scope 

of this dataset, in that those collected in the earlier part of the year (Q2) were shown to 

have significantly lower!:!.+ values than those in Q3. This suggests that these samples have 

a fairly coarse taxonomic spread comprising major groups and that later in the year 

additional fine taxonomic resolution is added though the evenness of these samples did not 

change. In an experimental colonization study Arntz & Rumohr, (1982) found a seasonal 
' 

oscillation in species diversity and it is possible that the same pattern was detected here. 

The feature of seasonality of increasing !:!. + values (for similar A+ values) is not 

evident from the much wider temporally and spatially sampled area of pooled Looe, 

Plymouth and Salcombe samples. Instead, for the pool of non-Newlyn samples higher !:!. + 

values were found at the beginning and end of the calendar year. Despite the sampling 

period spanning three years that more temporally distant quarters (quarters 1 and 3, and 

quarters 2 and 4) were more dissimilar than adjacent quarters (including quarters 1 and 4 

where the difference was the smallest) suggests that there may be a marked change 

between these periods which has been detected in the taxonomy of the samples, though 

here the difference between adjacent quarters may be linked to the level of biological 

activity rather than the level of taxonomic distinctness. 

It is possible that the pair and single boat samples for Looe particularly mirror the 

seasonality apparent in the Newlyn samples. 
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6.4.3 Contribution of higher taxonomic levels (fish 

orders and non-fish phyla) to biodiversity 
Interpreting the fish part of the sample the small differences between the category 1 and 2 

on Figure 6.10 suggests that the removal of the fishes was barely detectable on taxonomic 

distinctness grounds in that this group (or the super class GNA THOSTOMAT A branch of 

the full 188 species within the taxonomic tree) was reasonably evenly populated when 

compared to its appropriate non-fish part. The explanation for this is due to the twin facets 

of the equivalent taxonomic fineness of the fish and non-fish parts of the sample but also 

the choice of Kingdom as the 'ground level' for the taxonomic tree. 

The large drop in the !::J. + values between categories 2 and 3 on Figure 6.10 was 

unsurprising since in category 3 much of the taxonomic tree has been removed leaving 

only the sub classes TELEOSTEI and ELASMOBRANCHII, the commercial crab species 

(Cancer pagurus), a few cephalopods (squids, and octopus) and the King and Queen 

scallops. The !::J. + values are lower because most of the connectivity is at the super-class 

level with only a little across phyla. Nevertheless, the Salcombe samples again possessed 

the richer fine level of taxonomy of the fishes and shellfish as the !::J. + value = 71.62 against 

the average for this category, of 66.83. The taxonomic relevance of the shellfish is 

revealed when comparing category 3 with category 4 (where the average !::J. + value = 

56.82). Category 4 is only the teleost and elasmobranch fishes though again the Salcombe 

based hauls have the highest fine taxonomic resolution (highest !::J. + value = 58.61 ). 

Despite different magnitudes in !::J. + values (due largely to the extension here of the 

classification into coarser groupings) Rogers et al., (1999) discuss similar findings for the 

removal of the elasmobranches and other groups and demonstrate, as here, that the 

exclusion of similarly numerically sized components can have greatly different effects on 

taxonomic distinctness and that "In the event of perturbations caused by either human 
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impact or changing environmental conditions Tilman, ( 1996) claims that the taxonomic 

range of an assemblage will be important for maintaining the stability of the ecosystem," 

(Rogers et al., 1999, p 780). 

In tenns of the fish species the results from this study are in broad agreement to 

those gathered by Rogers et al., ( 1999). It is important for ecological stability to retain 

taxonomic richness, especially derived from the elasmobranches, but also made up from 

the other species rich target groups (such as the Pleuronectifonnes and Gadoids). 

Although category 5 of the non-fish analysis might be relatively unimportant, it 

shows that while still too deep to naturally include algal species, it is likely that these 

groups were sampled because of either human or natural disturbance closer inshore. 

The Cnidarians (removed in category 6) are a very diverse group though the 

majority of the species sampled were Hydroids belonging to the families Plumulariidae and 

Sertulariidae. These are species-rich families of erect colonies (Come! ius, 1995) prone to 

being caught in mobile gear and it is likely that the single boat trawling in more variable 

habitats was responsible for the greater reduction in l'!i + values caused by this phylum's 

exclusion. 

All of the Annelids sampled (removed in category 1 0) were Polychaetes for which 

trawl gear is not a very ideal method of sampling, though this group was most significantly 

caught from Salcombe. 

The most abundant Bryozoans (removed as category 11) were Cellaria spp. which 

was quite ubiquitous by port and type of trawling except from Newlyn, though far more 

commonly encountered when pair trawling than when single boat trawling. Unique to the 

Newlyn samples and the only bryozoan in these samples was Pentapora fascia/is. This 

large colonial animal is described in Hayward & Ryland, (1996, p 657) as being 'locally 

quite common.' Patzold et al., (1987) analysed the rate of growth (and longevity) of this 

species showing the large specimens were quite old - a 20 cm diameter colony being at 

least 3 years old and Stebbing, ( 1971) described larger colonies which were at least 12 
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years old. The lack of P. fascia/is except in the Newlyn samples may be due to several 

reasons. It could be the lack of suitable hard substrates to which it attaches. However, 

there are areas of hard substrate close to or within areas sampled by the Looe, Plymouth or 

Salcombe boats. Alternatively the life history characteristics of this species coupled with 

events of fishing disturbance may mean it is simply too rare to have been encountered. 

According to the National Biodiversity Network (NBN), (Anon, (2004) the distribution of 

P. fascia/is is restricted to around The Isles of Scilly, the Eddystone Rocks, and along the 

coast from the Plymouth Breakwater through Bigbury Bay to Salcombe. This study found 

P. fascia/is from other areas suggesting that the National Biodiversity Network lists are not 

complete but also that P. fascia/is is not recorded in the area covered by boats operating 

from Looe, Plymouth and Salcombe despite the outcrops of hard substrate that suggests its 

distribution may be restricted by the activity of fishing. 

The alterations of f...+ values for the removal of the molluscs (category 7) and 

crustaceans (category 8) are particularly influential since all the crustaceans were within 

the order Decapoda level, while the molluscs were from three classes and ten orders. The 

preferred habitat, feeding and behavioural ecology of decapod crustaceans is extremely 

complex (lngle, 1996, p20-28) and while it is difficult to know why this group, as a whole, 

was under represented in the Salcombe samples, despite the Salcombe sample generally 

being the most species rich they retained the fewest (6) decapod species. It is suggested 

that the reason may be due to the dominance of the edible Cancer pagurus filling the 

niches that might otherwise be occupied by other species. According to port and type of 

trawling the others were N S = I 0; L S = 9; L P = 9; P S = 9; P P = 24. 

That the largest fall in any of the non-fish f...+ values was due to the removal of the 

echinoderrns from Newlyn, which shows the importance of this group to this area. This 

was also reflected in the variability (± 6.80). Removal of the Echinoderrns for other ports 

and types oftrawling were as important in terms of reducing the f...+ value as the removal of 

category 6; phylum Cnidaria. The removal of the phylum Mollusca for the non-Newlyn 
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samples was more important in taxonomic distinctness terms reducing the 1:1 + values by 

3.13. 

Warwick & Clarke, (1993) suggest that the relative numbers of species in the four 

major taxa of marine macrobenthos generally following the sequence polychaetes > 

molluscs > crustaceans > echinoderms. After pollution or disturbance, they are reduced in 

the reverse sequence: echinodenns > crustaceans > molluscs > polychaetes. Figure 6.11 

showed how the action of these removals in isolation would affect the taxonomic diversity 

(according to Ill. Figure 6.12 shows the effect of these removals in sequence. 
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Figure 6.12. Effect of sequential removal of Echinoderms, Crustaceans, Molluscs and 
Annelids on average taxonomic distinctness (!ll of category 4, (benchmark non-fishes). 

It is clear from Figure 6.12 that the removal of selected phyla would be most significant for 

the location of the Newlyn samples. Therefore it would appear that although possessing 

relatively low levels of overall biodiversity (according to !ll the locations of sample 

collection might be suitable for monitoring the occurrence of echinodenn species 

(particularly) as this group was both relatively species-rich and important for maintaining 

biodiversity. 
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Expanding the assessment of /), + to include the non-fish species contained in the 

sample is a novel approach and it highlights the importance of maintaining species-rich 

aggregations in terms of conserving biodiversity and the fate in terms of distinctiveness if 

taxonomic groups are lost. It also highlights the validity of sampling the non-fish material 

in that it contributes to a much greater range of taxonomic distinctiveness than present in 

just the fish species alone. This points towards assessing fishing grounds according to a 

much wider biodiversity perspective than can be gathered either from the analysis of 

landed fish, caught fish or the intermediate compromise offered by examining stomach 

contents, although it would be highly beneficial to complement the methods employed here 

with a suitable fishery independent (or complementary) investigations. While useful here 

Somerfield et al., (2006) concluded that analysis at the phylum level was rather too coarse 

to be useful in detecting differences between sites of dredging and disposal around the UK. 

It is expected that an even clearer and more useful picture can be gathered by examining 

these data at a finer resolution or by functional groups. 

Analysis of this type also has a perceived role m determining taxonomic or 

functional compartments of quality assessment of environmental status (GEnS) as 

described by the indices of Laffoley et al., (2006}, and the analysis presented in Figure 

6.12 is a first step. 

Regardless of the taxonomic groups included in samples it is recommended that the 

broadest range of classification is used in order that the generated biodiversity measures 

can be comparable between studies. In this study 15 of the total 24 taxonomic levels, 

catalogued by Picton & Howson, (1999) were used. Five ofthose not used (numbers 7, 8a, 

15, 17 and 18a) are extremely infrequently employed, being reserved for the crustaceans. 

Where classification is carried through to species levels is it necessary also to make into a 

species those coarser levels where classification stopped. It is also necessary to fill in the 

gaps between those taxonomic levels used for a particular species or group, and it is 
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Chapter 7 

7 The relationship between the samples 

and abiotic data 

7.1 Introduction 
In keeping with the thoughts of Clarke & Ainsw~rth, (1993) the derived, abiotic 

infonnation (see Chapter 4), and biotic or sample data have been analysed separately (see 

Chapter S and Chapter 6). This was both for the whole dataset and by spatial and temporal 

groups and according to fish and non-fish components of the sample and it is apparent that 

there was some commonality in the patterns derived. The advantage of examining these 

separately is that avoids the circularity of deciding whether the abiotic factors are 

responsible for the biota or vice versa. 

Many previous studies have established that there is a strong relationship between 

sediments and fish and non-fish fauna (Gray, 1974;Basford et al., 1990;Snelgrove & 

Butman, 1994;Taylor, 1998;Rees et al., 1999) and it is important to establish whether the 

abiotic factors are useful predictors of the biotic distributions. This Chapter compares 

those derived distributions to detennine which factors might drive patterns in the sample 

assemblages. 

Chapter 8 takes the relationship between the environmental and biotic data further 

examining individual species for their degree of expected association with particular 

individual or groups of substrates and together these Chapters (with the initial description 
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of the abiotic data in Chapter 4) address the Environment Theme of Aim 2 (see Figure 1.4, 

page 17, above). 

7.2 Methods 
At its simplest relating the biotic and abiotic data involves a procedure whereby two 

similarity or dissimilarity matrices are compared by computing a correlation coefficient 

between the two matrices, (Mantel, 1967, cited in Clarke & Warwick, 2001 a). This 

procedure (e.g. RELATE in PRIMER-E Clarke & Warwick, 2001a) and Matrix comparison 

in NTSYS-pc (Rohlf, 1988) can compare any two similarity based matrices, only requiring 

that the cells within the matrices have the same labels. A more informative approach is to 

compare a suitably transformed biotic similarity matrix with an iterative selection of 

abiotic factors, to see which individual or combination of factors best explains the 

observed biological data. PRIMER-E (Clarke & Warwick, 200la) offers the B/0-ENV and 

BVSTEP routines, which are essentially similar analyses, only differing in that BVSTEP 

circumvents the exponential escalation in the number of abiotic variables and as such 

reduces the computation time where there are many abiotic factors. 

7 .2.1 Abiotic data sets 
Prior to running the analysis the full suite of abiotic factors was reduced to those which 

were truly features of the environment. The redundancy analysis described in Chapter 4 

demonstrated that minimum and maximum maximum tidal strength could be removed as 

the influence of these factors were adequately explained by including the average 

maximum tidal strength only. 
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Also, the preliminary analysis in section 4.3.1.4 showed that whether the hauls 

were collected during the day, the night or the twilight was not a good descriptor of the 

sample, (see Table 4.7, page 89, above), therefore the D/Nff factor was not included in this 

analysis. 

The following factors were included: 

• Characteristics of water: av.m.t.s., (average maximum tidal strength); r.m.t.s., (range 

of maximum tidal strength), (see Table 4.2, page 84, above); depth (see Figure 4.8, 

page 95, above); 

• Characteristics of the substrate: S, (sand); mS, (muddy sand); (g)S, (slightly gravely 

sand); gmS, (gravely muddy sand); gS, (gravely sand); G, (gravel); msG, (muddy 

sandy gravel); sG, (sandy gravel) and R, (rock), (see Figure 4.4, page 79, and Table 

4.1, page 80, above). 

Therefore, the source matrix was the same 88 sites and 12 factors generated in section 

4.3.3. In generating the similarity matrix, the abiotic factors were standardised to allow for 

the different units of measure and the derived similarity matrix was based on non

transformed, normalised Euclidian distances. Chapter 4 describes the potential bias when 

so many of the abiotic data sets are presence/absence in nature. It was decided to maintain 

the same analysis method for the abiotic data so that the comparability of the analysis here 

with that in Chapter 4 was evident. 

7 .2.2 Biotic data sets 
As described in Chapter 5 the similarity matrix for the biotic data was generated from the 

full 88 site (sample) and 190 species (group) matrix of biomass according to each species 

in each sample by non-standardised, double square root transformation using the Bray

Curtis measure (see Appendix G, starting on page 369, below). Divisions of the sample 

according to the fish or non-fish species were in keeping with Table 3.4, (page 54, above). 
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7 .2.3 Analysis 

The first analysis examined the overall correlation between the similarity matrices for the 

full abiotic and biotic data sets using RELATE in PRIMER-E Clarke & Warwick, 200la). 

Next the BIO-ENV analysis was performed. When presenting these and subsequent results 

the best single factor was reported and then the best combinations (as two, then three etc) 

of factors which improved the fit to a maximum. Following this further best combinations 

were generated until the quality of the fit decayed back to the level of the initial single 

factor. • 
The full sample was then divided into the fish and non-fish species (Table 3.4) to 

determine how well patterns with each were predicted by the abiotic factors, as above. 

The global R-values of the full species, fish only and non-fish ANOSIMs in section 

5.3.1.1 decreased in the order described and this was the case whether only by port or also 

included type of trawling (see Table 5.17, page 147, above). Several reasons for this trend 

were described in Chapter 5 although a major cause was the low abundance of many 

species. In sample datasets where the size frequency distribution is strongly right skewed 

Field et al., (1982) and Clarke & Warwick, (2001a) advise the selection of the most 

dominant species to remove some of the apparent noise in the data and generate more 

robust BIO-ENV outcomes. In this analysis, four subsets of data were chosen: 

• The 60 species that possessed the greatest abundance. Across all the samples this 

represented::::: 30% of all the species (Table 3.4, page 54, above) and according to port 

(inferable from Table 3.5, page 56) this represented all but the tail of the very least 

abundant species). 

• Those species that separately contributed at least 5, 10 and 20 % of the total 

abundance by weight. 
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Previous analysis in section 5.2.1 (see Figure 5.3, page 116, above) showed that the 

characteristics of the samples from Newlyn were qualitatively different from the other 

ports, and this was apparent, but less clearly so for the abiotic factors (Figure 4.6, page 90, 

above). It was therefore important to determine if a similar situation was evident in the 

relationship between the biotic data and abiotic factors. This was achieved by generating a 

BIO-ENV for the Newlyn samples and another for the combined Looe, Plymouth and 

Salcombe ones and comparing the resulting correlation coefficients. Before examining 

only the Newlyn samples substrates of mS and gmS were removed as these were not 

present in these samples, and in order to run the comparative analysis on the Looe, 

Plymouth and Salcombe samples the categories of msG and G had to be removed. 

7.3 Results 

7.3 .1 Full samples - all factors 
The comparison of similarity matrices for the biotic and abiotic matrix comparison by 

RELATE generated a relatively poor Spearman's rank-order correlation of rs = 0.215. 

Overall, for the full sample and the full suite of abiotic factors the best single abiotic 

descriptor was the presence of sand as shown in Table 7.1. 

Table 7.1. BIO-ENV output asp (correlation coefficient) for the best single factor to the 
best (highlighted) multiple combination, then declining back down to the level provided by 
the best single factor for the full sample. The factors are described on page 209, above. 

# p factors 
1 0.327 s 
2 0.397 av.m.t.s. s - --~-----

i 3 0.406 av.m.t.s. s msG 
4 0.402 av.m.t.s. s msG sG 
5 0.395 av.m.t.s. r.m.t.s. s msG sG 
6 0.385 av.m.t.s. r.m.t.s. s gS msG sG 
7 0.372 av.m.t.s. r.m.t.s. s gmS gS msG sG 
8 0.347 av.m.t.s. r.m.t.s. s (g)S gmS gS msG sG 
9 0.323 av.m.t.s. r.m.t.s. s (g)S gmS gS G msG sG 
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Table 7.1 shows that the combination of abiotic factors which best predicted biotic 

similarity was sand, muddy sandy gravel and the average maximum tidal strength. The 

decay of the correlation coefficients generally was because of the increase in noise due to 

the addition of extra substrates. As shown in Figure 4.6, (page 90, above) sand was the 

principal component of axis I and divided the samples according to Newlyn ai_td the other 

ports (Figure 4.7(a)). The ANOSIM in Table 5.2 (page 117, above) which showed the split 

of the biotic data also showed the separation into the Newlyn and other ports so the 

outcome in Table 7.1 was not surprising. Depth did not figure in any of the top 

combinations, (its first inclusion was with ten factors). Table 7.1 also shows that the B/0-

ENV yielded a better result than correlating the similarity matrices. Nevertheless, the B/0-

ENV output as described in Table 7.1 was rather crude in that it attempted to produce an 

overall picture across different components of the sample, and different geographic areas. 

This is borne out in the inclusion of muddy sandy gravel which Figure 4.7(h) shows was 

only present in one Newlyn sample though this substrate was situated at the extreme end of 

the 'arch' and therefore may have had an undue influence on the selection in the B/0-ENV. 

A breakdown of the full analysis is given in the following sections. 

7.3 .2 Fish component 
The comparison of similarity matrices for the fish only component and all the abiotic 

factors generated a Spearman's rank-order correlation of r 5 = 0.253, which was marginally 

higher than generated for the full sample. Table 7.2 shows the B/0-ENV for fish-only 

component. 
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Table 7.2. B/0-ENV output asp (correlation coefficient) for the best single factor to the 
best (highlighted) multiple combination, then declining back down to the level provided by 
the best single factor for the fish only part of the sample. The factors are described on 
page 209, above. 

# IJ factors 
1 0.324 s 
2 0.405 av.m.t.s. s 
3 0.422 av.m.t.s. s msG 
4 0.420 av.m.t.s. s msG sG 
5 0.419 av.m.t.s. r.m.t.s. s msG sG 
6 0.402 av.m.t.s. r.m.t.s. s gmS msG sG 
7 0.385 av.m.t.s. r.m.t.s. s gmS gS msG sG 
8 0.367 av.m.t.s. r.m.t.s. s mS gmS gS msG sG 
9 0.345 av.m.t.s. r.m.t.s. s mS (g)S gmS gS msG sG 

Again sand was the best single factor in Table 7.2 and the best overall explanation (p = 

0.422) was the combined three factors of average maximum tidal strength, sand and muddy 

sandy gravel. The best, combined correlation coefficient for fish only was slightly better 

than for the full sample suggesting that removing non-fish material removed complexity. 

Table 5.8, (page 124, above) showed a very strong similarity between the fishes and the 

full sample to the pattern in Table 7.2 and Table 7.1 was as expected. 

7.3 .3 Non-fish component 
The comparison of similarity matrices for the non-fish biotic part of the sample and all the 

abiotic factors generated a very low and negative Spearman's rank-order correlation of r 5 = 

- 0.042. Table 7.3 shows the results of the B/0-ENV for the non-fish material. 

Table 7.3. B/0-ENV output asp (correlation coefficient) for the best single factor to the 
best (highlighted) multiple combination, then declining back down to the level provided by 
the best single factor for the non-fish part of the sample. The factors are described on page 
209, above. 

# fJ_ factors 
1 0.184 s 
2 0.227 . s ______ _g§ -

- - ----- - --

3 0.221 s gS sG 
4 0.217 av.m.t.s. s gS sG 
5 0.206 av.m.t.s. s (g)S gS sG 
6 0.188 av.m.t.s. r.m.t.s. s (g)S gS sG 
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Sand was again the best single abiotic factor, though the correlation was not as good as in 

either of the previous two analyses. The best, combined set was for the two factors of sand 

and gravely sand. Despite the correlation coefficient being low, these substrates were the 

two most important in the first axis of the PCA (see Figure 4.7(a) and (b). The low 

correlation may be because, while sand was a good descriptor for the sample sites between 

Newlyn and the other ports, in this analysis the factors associated with the tidal velocity 

were not so important. This at first may appear rather surprising since it might be expected 

that the tide would have had an important impact on the non-fishes, as they were more 

benthic in habit than many of the fish species. The influence of the tide diminishes with 

depth however, and here the substrates (sand and gravely sand) were more important for 

describing the non-fishes. This strengthens the case that the fishes were in fact more 

distinctly distributed with reference to particular abiotic factors (which will be further 

examined in Chapter 8) while the non-fishes were more ubiquitously distributed according 

to the substrate factors, which is supported by the very low correlation values. However, 

the portrayal of both tidal factors on Figure 4.7(j) and (k) were most important across the 

second axis so it is possible that the low correlation was due to these factors cancelling out. 

7.3 .4 Most dominant species and examination by port 
The best single set of factors according to various parts of the sample and combinations of 

samples by ports is shown in Table 7.4. 
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Table 7.4. B/0-ENV output as the best p (correlation coefficient) and set of abiotic factors 
for various parts of the sample and groups of samples according to ports (full = all the 
samples; N = Newlyn; L-P-S = Looe and Plymouth and Salcombe; and individual ports). 
Factors are the best overall combination and are described on page 209, above. 

parts of 
I 

port 
sample features full N I L-P-S I L p I s 

p 0.406 1 o.334 0.266 l 0.398 0.334 0.651 
all factors av.m.ts., I msG, sG r.m.t.s., av.m.t.s. av.m.t.s., (g)S 

S,msG sG r.m.t.s., sG 
p 0.422 0.373 0.303 0.384 0.302 0.593 

fish factors av.m.t.s., msG, sG r.m.t.s., av.m.t.s. av.m.t.s., (g)S 
S,msG sG ; r.m.t.s., sG 

p 0.227 0.152 0.068 
i 

0.207 0.251 0.243 i 
non- ; 

fish factors S,gS av.m.t.s. r.m.t.s. 
I 

r.m.t.s., sG depth, av.m.t.s., 
(!l)S, !lS r.m.t.s., sG 

p 0.395 0.342 0.296 I 0.405 0.369 0.654 
n=60 factors r.m.t.s., msG, sG r.m.t.s., ' av.m.t.s. r.m.t.s., gS (g)S 

S,msG sG I 
p 0.407 0.349 0.306 I 0.423 0.334 0.702 

n=5% factors r.m.t.s., . msG, sG r.m.t.s., ! av.m.t.s. av.m.t.s., av.m.t.s., 
S,msG sG 

i r.m.t.s., sG r.m.t.s. i 
p 0.411 0.387 o.258 1 0.284 0.282 0.755 

n= 10% factors av.m.t.s., S,msG, av.m.t.s. i av.m.t.s. gS, sG av.m.t.s., 
S,msG sG , r.m.t.s. ! r.m.t.s. 
0.390 0.375 0.205 ' 0.395 0.302 0.666 p i 

n=20% factors r.m.t.s., av.m.t.s., av.m.t.s. i av.m.t.s., depth, gS, av.m.t.s., 
S, gS, sG msG , r.m.t.s. I r.m.t.s., sG sG r.m.t.s. 

In selecting the top 60 species from across the full sample the best correlation was slightly 

lower than from across the full sample, which was surprising. The two substrate groups 

remained unchanged though the average maximum tidal strength was substituted for the 

range. Figure 4.7G) and (k) (page 93, above) showed that these two factor were similarly 

distributed so the substitution was not surprising. Selecting only those species that 

contributed to 5 and I 0 % of the biomass (36 and 26 species respectively) across the full 

sample improved the correlation and the substrate types remained the same. Expanding 

this to those (17) species which contributed 20 % of the biomass probably was too coarse. 

Nevertheless the substrates of sand, gravely sand and sandy gravel had the largest 

eigenvectors overall. 

Examining only the Newlyn samples showed a similar pattern to that for the full 

sample overall in respect of the correlation coefficients in Table 7.4. Again, the fishes 

dominated the full sample and there was a switch between modified gravels for the full 

sample and fishes and average maximum tidal strength for the non-fishes. 
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Across the other ports Looe, Plymouth and Salcombe combined the pattern in the 

correlation coefficient was similar to the Newlyn and full samples though selecting only 

those species which contributed 5 % of biomass best described the combined pattern in the 

B/0-ENV. This was most likely due to the variability and species richness in these 

samples in that fewer species dominated the samples to the same extent. There were 31, 21 

and 11 species, which comprised 5, 10 and 20 % respectively of the biomass. The greater 

spatial extent of all these samples was perhaps responsible the correlation coefficients 

being lower overall and for tidal factors being important, especially as species number 

decreased. While sand was important as a separator into the Newlyn and non-Newlyn 

samples its relative ubiquity in the non-Newlyn samples means that it was not useful for 

examining within this group, similarly depth was not important since depth was relatively 

constant in these samples. Sandy gravel was the most important substrate and this 

reflected the inshore/offshore split of these samples so while there may have been other 

con-specific factors the split was manifest in this substrate. 

Individually Looe and Plymouth have higher correlation coefficients than they did 

when combined with Salcombe. Average maximum tidal strength was most important for 

Looe. This was probably due to the Looe samples being placed along the second PCA axis 

on Figure 4.6 and Figure 4.7. While slightly sandy gravel and sandy gravel were largely 

responsible for this axis (s)G was quite common in the Looe samples (Table 4.1, page 80, 

above) therefore sG was a more important discriminating factor. The Plymouth correlation 

coefficients were similar in pattern to those from Looe. Again, tidal influences were 

important as the Plymouth samples were also distributed along the second PCA axis on 

Figure 4.6 and Figure 4.7, though substrates were also important. In addition, these 

substrates were important Eigenvectors on the second PCA axis. Depth was important for 

the non-fishes and those species that contributed to 20% of the biomass. 

The Salcombe samples had the highest correlation coefficient from any of the 

analyses in as shown in Table 7.4. The Salcombe samples were in the lower part of Figure 
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4.6, therefore any abiotic factor that was well divided along second PCA axis would be 

important. This explains why slightly gravely sand was important. Figure 4.5 (page 82, 

above) shows that that the Salcombe samples were in a region of high tidal strength and as 

the sample size was reduced the tide has been a greater influence. 

7.4 Discussion 
Many of the 810-ENV correlations were low though were within the range produced from 

other studies, (Giberto et al., 2004, Table 6;Hemandez Arana et al., 2005, Table 7;Lu, 

2005, Table 3). In addition, this method is far superior to manually selecting factors, 

generating similarity matrices and testing their degree of relatedness. 

Overall, it would appear that where the samples were taken from a small 

geographical area substrates are more important than tide as variables that correlate more 

closely with biotic data, and vice-versa. The exception to this was around Salcombe, 

which was the most heterogeneous. Depth plays a rather surprisingly small part in 

describing any of the variation, possibly due to the generally similar depths over which the 

samples were taken, (see Figure 4.8, page 95, above). 

It is possible that for the purposes of examining the combined influences of the 

contents of the sample and its principle environmental correlations, the division of the 

sample into the two (fish or non-fish) categories is rather arbitrary. Instead, examining the 

influence of the most dominant species (regardless of their classification) was particularly 

useful. Where n = 60 are retained the correlations were similarly as good as the full 

sample suggesting that this reduction is a reasonable way of better resolving the overall 

pattern. Restricting the retained number of species still further to species which each 

contribute at least 5% of the biomass of the sample, (n "" 40, but varies on a case-by-case 

' 
basis) further improved the correlation coefficient and the most important factors were 
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generally the same. Where the cut-off is raised to those species contributing at least I 0% 

of the biomass of the sample (n"" 25, but again varies on a case by case basis) the fit was 

generally better still; higher than the case for the full sample but not better than for the fish 

only part of the sample. Finally where only the species which contribute at least 20% of 

the sample are retained (n :::: 15, but again varies on a case-by-case basis) the fit between 

the abiotic and biotic factors is generally worse than where n = 60, and the best abiotic 

factors are similar to those for the sub-sample where n = 5%. 

Above it was suggested that the division of the sample data into the fish and non

fish part of the sample might not be very valuable in terms of describing the relationship 

between the abiotic and biotic factors. This is reinforced by the fact that the fish 

(generally) made up such an overwhelmingly large component of the sample, (on average 

95% by weight). However when comparing the B/0-ENV correlation coefficients for the 

fish and non-fish parts of the sample with the full sample and the most important 60 

species it is evident that the fish species were more closely tied to particular substrates (or 

groups of substrates and tidal regime thereof) than the non-fish part of the sample. 

Therefore, the non-fish part of the sample seems to have a greater general distribution, or 

alternatively a distribution that is not as constrained by abiotic factor as monitored here. 

The reason for this is that many of the commonly occurring invertebrate species which 

contribute to much of the non-fish species were found across many samples. This is likely 

to be due to the extensive nature of the fishing footprint in the area and from a biological 

point of view the generalist, predominately scavenging, lifestyle adopted by many of the 

most commonly sampled and thus abundant (epifaunal) species. In order to examine this 

further it is proposed to analyse these data by functional groups of invertebrates, though 

the work developed in Chapter 8 (when this is expanded to describe the invertebrates) may 

shed light on the lack of strong relationships in this B/0-ENV, (as there, the substrates are 

classified different according to the full, fish and non-fish parts of the sample for one 

analysis). 
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The substrate type of rock was shown to be not well described within the PCA 

plots, Figure 4.6 and Figure 4.7 (above) though it was the most important factor in the third 

axis of the PCA. Rock did not feature as important in the B/0-ENV either. Many of the 

B/0-ENV outcomes were strongly influenced by the same patterns that were evident in the 

PCA (due to the standardisation and normalisation of the data) though it was also apparent 

how the biotic data was important. Neither in this analysis nor that in Chapter 4 was the 

factors of the substrate and variables of the tide and depth weighted as to their 'real' 

influence as this is not known. The significance of rock in determining the relationship 

between fishes and the substrate is one small part of Chapter 8. 
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Chapter 8 

8 Relating the fish • species and the 

substrate 

8.1 Introduction 
The previous Chapter examined the relationship between the biotic (fish and non-fish) and 

abiotic (environment and substrate) data and while it showed which of the environmental 

data were best correlated with which components of the abundance data this analysis was 

limited to examining the relationship for ports, major compositional parts of the sample or 

the most dominant species present. This Chapter takes the Theme 2 analysis further by 

examining the relationship between particular species and substrates. 

The last decade has seen the emergence of and attempts to comply with the 

Essential Fish Habitat (EFH, Benaka, 1999) provisions of the Sustainable Fisheries Act in 

the United States (Baird, 1999); a process which will probably further develop in the UK 

with the progress towards a Marine Bill (DEFRA, 2006). In attempting to define EFH it is 

necessary to understand first the association between fishes and their habitat. Here the aim 

is to establish whether the occurrence of particular fish species is consistent with where the 

literature suggests that they are found in terms of the substrate over which they were 

trawled and to augment this knowledge where possible. This analysis deals with the 

association amongst adult specimens. It does not include species' spawning activities and 
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early development, which while a relatively small proportion of fishes life histories 

(Cushing, 1975) are nevertheless important in determining entire EFHs. 

The analysis is also limited to the fishes because their literature sources are both 

more mature and comprehensive. FishBase (Froese & Pauly, 2003) and Wheeler, (1978) 

were consulted for relevant information and the latter was generally more comprehensive. 

In keeping with the instructions of Froese & Pauly, (2003): " ... data taken from FishBase 

[are] cited by main or data reference of the respective record to give due credit to the 

original authors." 

This Chapter also prepares the ways to begin describing the relationship between 

non-fish species and the substrates with which they are associated as part of the post hoc 

(Class 3) analysis (see Figure 8.3, page 235, below). The analysis for these relationships is 

not included in this study because despite much work examining the presence of local 

species, perhaps best represented by MBA, (1957) its current form (MarLIN) only includes 

detailed substrate information for 11 0 species (Tyler-Waiters pers corn.). 

Studies have identified the relationship between species and the substrate, 

particularly with the flatfishes (Gibson & Robb, 1992;Rogers, 1992, and see 

Pleuronectiformes references between pages 254 and 256, below). Habitat complexity 

(which is a function of surface topography and sessile epifauna that grows on it, (Kaiser et 

al., 1999) seems more important however, in the survival of round fishes (Gotceitas et al., 

1995;Borg et al., 1997;Thrush et al., 2002). Thus, the advantage of extending the analysis 

to include the non-fish species will enable this relationship to be better understood. 

The encountered fish species (see Table 3.3, page 51, above) exist on a continuum 

between those with a strong attraction for a particular substrate or group of substrate types 

and at the other extreme those species without, or possessing only a very superficial 

affinity for the sea floor in general or specific substrate types in particular. FishBase 

(Froese & Pauly, 2003) and Wheeler, (1978) suggest some fishes are understood to have an 

intelligible and logical relationship with one or more types of substrate. At the high-
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affinity end of the continuum are species whose occurrence would be expected over 

particular substrate types and which would not be expected to occur if this substrate or 

substrates were not eo-occurring with the passage of the fishing gear. Obviously this 

depends on the type, rigging and deployment of the gear, though for the range of otter or 

pair-trawls sampled here, high affinity species include the small eyed ray Raja 

microocellata " ... particularly common on sandy grounds," (Wheeler, 1978) and the lesser 

sand eel Ammodytes tobianus as " ... always found close to clean, rather fine sand ... " 

There are also many species that might be described as strongly benthic but found over a 

range of substrate types. These include cod (Gadus morhua) which Wheeler, (1978) 

described as " ... widely distributed in a variety of habitats ... " In the middle of the 

continuum are those species with a passing preference to a particular substrate or ranges of 

substrates since features in their behavioural or feeding ecology might predispose them to 

be present over some substrate or groups of substrates. Into this category fall the great 

majority of the typically benthic fishes. Reference to the collective sources of FishBase, 

(Froese & Pauly, 2003) and Wheeler, (1978) revealed statements such as: " ... both in mid

water ... and inhabits sandy as well as muddy bottoms," for whiting, Merlangius merlangus. 

"It occurs close to the bottom and in mid-water," for poor cod Trisopterus minutus, and 

"pelagic to benthopelagic, mostly close to shore over hard bottoms," pollack Pollachius 

pollachius respectively from Cohen et al., (1990), and obviously only the benthic portion 

of these species ranges' can be examined here. Finally, those species with the lowest 

benthic affinity are generally pelagic and this includes species such as mackerel Scomber 

scombrus, and herring Clupea harengus. 

There is general agreement between the collective references contained in 

FishBase, (Froese & Pauly, 2003) and Wheeler, (1978) though there are conflicts, for 

example John Dpry Zeus faber was described by Kailola et al., ( 1993) " ... found in areas 

close to the sea bed," while Wheeler, (1978) described this species as " ... inshore ... though 

exceptionally ... reported close to the surface." 
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Species abundance in samples acts to modify this continuum of expected presence 

or absence of fishes' affinity with substrate presence or absence. At one extreme are 

species such as the red gurnard Aspitrigla cuculus and the lemon sole Microstornus kitt, 

which were nearly ubiquitously caught. Any expected association with a particular 

substrate or groups of substrates is likely to be masked by these species' capture over most 

of the substrate types. However the former species is described as being " ... found on a 

variety of different sea-beds, usually on sand, or sand and gravel, but also on mud and even 

rocks," and the latter as " ... liv[ing] on a wide range of bottoms from mud (exceptionally), 

and sand, gravel, even rocky grounds ... ," (both from Wheeler, 1978) and as these are 

frequently occurring substrates, this may account for their commonness. At the opposite 

extreme are fishes that were rarely encountered, such as the hooknose Agonus 

cataphractus or bass Dicentrarchus /abrax. These species may have been truly rare or 

under represented in trawling gear because of their small size, or there may be other 

features of trawling which might significantly under represent them in the haul. These 

factors include those associated with species which might be more pelagic in nature, or 

which are able to extend their range into brackish water. 

Given that a continuum exists in the affinity of species to the substrate, and that this 

continuum may be modified by a species' expected abundance, a sequential two-part 

question was therefore proposed in undertaking this analysis. 

I. Are there patterns in the distribution of species, which are associated with the patterns 

in the substrate? 

2. If so, where these occur are they in keeping with the expectation presented from the 

literature? 
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8.2 Methods 
The first part of the analysis was to identify whether an association should be expected 

between the presence/absence pattern of the species across the substrates. Next to identify 

whether this state was observed in the presence/absence pattern of the species across the 

substrates. 

In order to undertake these analyses four areas require explanation. These are: 

I. The way the substrates were classified (section 8.2.1) 

2. The format for the species data (section 8.2.2). 

3. The analysis method (section 8.2.3) for the substrate and species data. For the fish 

species there was also a validity test for species presence and a scoring system for the 

outcomes (section 8.2.3.2). 

4. Definitions of Classes of analyses and amalgamation of fully unique substrate groups 

(section 8.2.4). 

8.2.1 Substrate data 
As explained in Chapter 4 the substrate information, which related to the trawl track was 

obtained by analysing the plotted path of the gear on a chart of substrate types from the 

British Geological Survey, (shown illustratively on Figure 4.4, page 79, above) and 

recording each as presence/absence. A trawl may have passed over only one or may have 

integrated catch from several substrate types. For example haul SS (a pair trawled sample 

from Looe) passed over the single substrate type of slightly gravely sand, whereas hauls 5 I 

and 52 (both from Salcombe) passed over slightly gravely sand, gravely muddy sand and 

gravely sand. 

In order that the species composition of each haul can be assessed in relation to the 

substrate type or types passed over, the 88 tows were classified into groups, each 

containing a number of samples categorised by the same substrate type or types. These 
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groups form the basis of the analysis though subsequent groupings of these individual 

hauls can later be defined according to various requirements of the data and the analysis. 

The 88 hauls were initially classified into 27 'unique substrate groups' according to those 

types passed over. These are shown in Table 8.1. 

Table 8.1. List of 'unique substrate groups' (based on BGS classification) showing which 
sediment types comprise each substrate group, their major (unqualified) substrate types, 
the sample numbers associated with each group and their origin in terms of port and type 
of trawling. See page 232 and 234 (below) for further details and description of yellow 
and grey highlighted groups. 

~ Q) 
Q)CO'It: -CO 
::J ~ -0. 0~ .Q"~ ::J 

substrates ·nr ..c 8. sample number(s) port and type of trawling c ::J e 
_::J 1/) Ol E~~ 

1 (g)S s 55 LP 
2 (g)S.gmS.gS s 51, 52 ss 
3 (g)S.gS s 11, 12, 16, 22,23,39, 78 NS --

... 4 (g}S.G.sG.R SGR 44 NS 
5 (g)S.gS.G.sG SG 37 NS 

.-
6 (g)S.gS.G.sG.R SGR 30 ~ s - • 

7 (g)S.gS.sG SG 18,25,26,27,28,42,63 NS 
--

8 (g)S.gS.sG.R SGR 57 NS -
9 gS s - 77, 84 ss 

10 gS.G.sG SG 3,6, 7, 8, 9, 19,38, 58, 59, 60, NS 
62,66 

11 S.G.sG.R SGR 40,41,64 NS 
12 - gS.msG.sG SG 24 NS 
13 gS.sG SG 4,5, 10,20,21 , 29, 43,61,65 NS 

-

14 mS.gS.sG SG 34,47, 48 pp 

15 mS.gS.sG.R SGR 33 pp 
16 s s 67, 73,74, 87,88 pp 
17 S.(g)S s 13, 14, 32, 49, 50, 53, 54, 68, 3xL S, 4xl P, 1xP S, 1xP 

72,80 P, 1xS S 
18 S.(g)S.gS s 15, 17, 71, 79, 81, 86 2xl S, 1P S, 3xS S -
19 S.(g)S.gS.R SR 85 ss 
20 S.(g)S.R SR 56 NS 
21 S. g)S.sG.R _ SG~ 31, 35 LS 
22 S.gS s 1 LS 
23 S.gS.sG SG 2,45,46, 75 1xL S, 1xl P, 2xP S 
24 S.mS.gS.sG SG 70 PS 

,- 25 I~ =------ SGR- 69 -p·s S.mS.gS.sG.R 
26 S.sG SG 76,82, 83 LP 

I--I.7 S.sG.R SGR 36 LS 

The 27 'unique substrate groups' in Table 8.1 form the basis for assessing whether the 

presence or absence of a particular species is significantly related to the presence or 
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absence of a particular substrate. It can be seen that some of these were exclusive to 

different ports and types of trawling. 

8.2.2 Species data 
Species abundance was recorded as counts and weight derived from the length of each 

specimen. Weight of species in each haul has an inherent bias since it does not take into 

account the size of the organism. Thus, ten specimens of small fish might have a similar 

weight to one specimen of a generally large species. This bias would be removed if the 

analysis was based around the alternative measure of counts. This measure was acceptable 

for the fish species but introduces other bias when applied to the non-fish species due to 

the recording of colonial species, but more importantly where damaged or incomplete 

organisms were found. In order to apply the data to all groups avoiding these sources of 

bias the analysis was undertaken as the presence/absence of species against the 

presence/absence of substrate types. 

8.2.3 Analysis of species and substrate data 

This analysis compared the frequency distribution of presence/absence for each species 

and the frequency distribution of presence/absence of same substrate groups of which there 

were twenty seven at most (Table 8.1 ). The test of choice was the one-tailed Chi-Squared 

test of independence (Dytham, 1999, p61) as the analysis compared the expected and 

observed frequencies of species in different substrates and the hypothesis was that there 

was no significant difference in the presence of a species in samples based on the grouping 

of these samples by their substrate composition. Table 8.2 shows a simplified arrangement 

of the contingency table created for cod. 
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Table 8.2. Example Chi-squared test of independence for cod (Gadus morhua), based on 
only four substrate groups (for clarity). The highlighted box is discussed with reference to 
Table 8.3, (page 233, below). 

species Gadus morhua 

observed present 12 33 1 9 55 
absent 22 8 1 2 33 

expected present 21.3 25.6 1.3 6.9 55 
absent 12.7 15.4 0.7 4.1 33 

sum of columns 34 41 2 11 88 
Sum of rows 

substrate types s S.G S.R S.G.R 

Chi-squared number 18.283 
Degrees of freedom 3 
Pvalue < 0.001 

Table 8.2 shows that of the 88 samples 34 were sand, S, 41 were sand and gravel, S.G, 2 

were sand and rock, S.R, and 11 were sand and gravel and rock, S.G.R, thus samples were 

grouped according to their substrate. Cod was present in 55 samples and if there was no 

substrate preference, it should be present in proportion to the relative frequencies of 

substrates. Cod was present in many fewer sand only (S) samples (12) than expected 

(21.3) though more commonly than expected in sand and gravel (S.G) samples, (observed 

in 33; expected in 25.6). In addition, cod was more commonly found than expected in 

mixed sand and gravel and rock (S.G.R) than expected. These unbalanced frequencies are 

reflected in the Chi-squared test, x?- = 18.283, d.f. = 3, P < 0.001 (Table 8.2), though it was 

only through examining the raw data that it was possible to comment on whether the 

expected association with particular substrate types were observed. 

8.2.3.1 Procedure 
The key to this analysis was the ways in which the substrates (Table 8.1) were classified 

into different amalgamation. There were 3 major Classes of these and 9 in total. These are 

described in section 8.2.4 (starting on page 230, below). All species (both fish and non-

fish) were examined for their association with the substrates using the method described 

above for all the 9 substrate classifications. 

227 



Chapter 8 

The Results (section 8.3) presents these data as a summary of all species and the 

major components of the sample (fish and non-fish) (section 8.3.1, page 241). Also on a 

species-by-species basis for the fish species only (section 8.3.2, page 244). 

For all the species the numbers and % of significant associations (separately where 

P < 0.05 > 0.01 = *; P < 0.01 = **)were calculated. The highly significant associations 

(where P < 0.01) were included given the deviation away from the ideal use of the Chi

squared test and numerous occasions where the number of expected frequencies were not 2: 

5, therefore including these present a more stringent level of statistical significance. 

The fish species (section 8.3.2) were examined in a more comprehensive manner by 

analysing the associations between each species and substrate presence/absence data for 

the same levels of significance and across the same 3 Classes (section 8.2.4): 

• according to each species, 

• according to the literature information, and, 

• according to whether each relationship was considered valid. 

8.2.3.2 The validity test for fish species presence and 

scoring system for outcomes 
A qualifying criterion was required to assess the validity of the match between the species 

and substrate data. Figure 8.1 shows the frequency histogram of all the fish species based 

on the percentage of samples in which they were observed. 
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% of samples containing each species 

Figure 8.1. Frequency histogram of species (n = 54) based on the percentage of samples 
containing each species. 

Figure 8.1 shows a typically right skewed frequency distribution. It was decided to analyse 

the relationship between the species and substrates for all species but treat those where the 

species were present in :=:; I 0 % of samples with caution and consider these associations as 

not necessarily valid. There were 28 species of this type. The analysis of those species 

present in> I 0 % of samples (n = 26) was considered valid. 

Figure 8.2 shows the scoring system for valid (with confidence) and non-valid 

(without confidence) decisions around whether association were expected and 

subsequently observed. 
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not present in> 10% samples= not valid (without confidence) 

Figure 8.2. Scoring system based around expected and observed patterns of association 
with validity for the fish species. 

The sconng system presented in Figure 8.2 shows that if an association was either 

expected and observed (E&O), or not expected and not observed (E&O) then this fish 

species scored a positive value. Conversely, if an association was expected but not 

observed (E&O) or not expected but one was observed (E&O) then this fish species scored 

a negative value. Figure 8.2 also shows this application of the validity threshold. 

8.2.4 Classes of analyses and amalgamation of 

substrate groups 

The question of how many categories of substrate to use for the analysis; that is whether to 

combine any or some of the 27 categories of Table 8.1 is complex. The number of 

categories has implications for the number of degrees of freedom for the Chi-squared test, 

its goodness of fit, (Burridge pers com) and the number of expected values in each 

category. Fowler & Cohen, (1996, p71) state that expected frequencies should> 5 and that 
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where this is not the case similar categories with low frequency of counts should be 

aggregated until the threshold of 5 is reached. Greenwood & Nikulin, (1996, p39) 

formalised this problem based on the equation of Sturges, (1926) given as: 

r = [1 + logn]= I+ 2.303log 10 n 

where r = the chosen number of classes and n = the number of initial categories. This 

suggests the fully unique 27 groups should be amalgamated into -5 categories. This 

seriously weakens the analysis since it means that around five of the unique groups must 

be amalgamated into each of those to satisfy this rule. Burridge (pers corn) suggested that 

the number of categories appropriate for analysis was actually " ... a problem which 

biologists worry about far more than statisticians [in that] the '5' rule errs on the side of 

caution- but it can be useful." Bearing this in mind, the approach taken was to carry out a 

suite of analyses with 'unique substrate groups' amalgamated into several different Classes 

according to different criteria. There were three large Classes of these, which are 

described below. 

Class 1 - The full range 

This analysis comprised the full twenty-seven fully unique groups. It was essentially an 

ideal situation though its interpretation was subjective as the number of expected 

frequencies was commonly < 5. This analysis however provided a useful 'baseline' 

measure against which to test the usefulness of all the other analysis methods. 

Class 2- Major substrate types 

The second class of analyses were a priori in nature. Five of these were undertaken and in 

these a variety of amalgamations of the 'unique substrate groups', (Table 8.1, page 225, 

above) was performed. These were based on an assessment of which substrates should 

amalgamate well, based on their apparent similarity, as described below. 
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Class 2,a - Major substrate type part 1 

In this analysis each of the 27 'unique substrate groups' shown in Table 8.1 were classed 

according to their 'major type' and these are shown in column 2 of Table 8.1. The 'unique 

groups' were not evenly distributed into these 'major types': sand (8}, sand and gravel (9), 

sand and rock (2), and sand and gravel and rock (8). Amalgamating the 'unique groups' 

into these 'major substrate types' produced few categories though these most closely relate 

to those broadly described by FishBase, (Froese & Pauly, 2003) and Wheeler, (1978). 

Class 2,b - Major substrate type part 2 

Due to the fact that there were only two sand and rock (S.R) major substrate types (groups 

19 and 20 on Table 8.1) and that both of these were groups developed from only one 

sample each (number 85, from Salcombe and number 56 from Newlyn) it was decided that 

in the second 'major type' these were amalgamated with the sand and gravel and rock 

(S.G.R.) group. This created three major substrate types; S, 8; S.G, 9; S.G.R 10. This 

meant that there was a single major group holding all the samples containing rock, which 

might be important for habitat preference. 

Class 2,c - Large categories alone 

This group consists only the seven 'unique groups' highlighted in yellow on Table 8.1 

which each contained five or more samples. Between them, they account for 56 or - 64 % 

of the all the samples and well represent the S, or S.G sites however do not at all represent 

those containing rock. As shown by the substrate PCA plots (Figure 4.7(i), page 93, 

above) rock was not well represented by the presence of other substrates. 

Class 2,d - Large categories with other groupings, part 1 

This comprised the seven groups which contain five or more samples (described for Class 

2,c) with the addition of the remaining 32 samples amalgamated in 'intermediate 
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categories' containing at least 5 samples so that similar substrate types were amalgamated 

together as far as possible. This was achieved by overlaying each 'unique groups' on 

copies of Folk's triangle (Folk, 1954, and Figure 4.1, page 71, above) and then classifying 

these so that each 'intermediate category' occupied similar regions of the whole triangle. 

Ensuring that each 'intermediate category' contained 5 samples did not ensure that the 

minimum number of expected frequencies for each new group exceeded 5, though it did 

produce a compromise between this and the number of categories. Five 'intermediate 

category' were produced as shown in Table 8.3 and for this analysis they were added to the 

7 groups described for Class 2,c. 

Table 8.3. Amalgamation (based on BGS classification) of 'unique substrate groups' (see 
Table 8.1) into their 'intermediate category' showing substrate composition, major 
substrate type, sample number and port and type of trawling. 

Q) -.!l! 
.2! u- .2! Gli::' Q)IU=II: Eo m 

~ .l:l "a. ~en o-P port and type of 
rrcn~ .!!!! ·~ 1l Q) ·c: -g e 

~!:: rl substrates m~a. sample number(s) trawling 
-~ en en Ecn.?;-

1 8 (g)S s 55 LP 
2 (g)S.gmS.gS s 51, 52 ss 
9 gS s 77, 84 ss 

22 S.gS s 1 LS 

4 9 (g)S.G.sG.R SGR 44 NS 

5 (g)S.gS.G.sG SG 37 NS 
6 (g)S.gS.G.sG.R SGR 30 NS 

8 (g)S.gS.sG.R SGR 57 NS 

11 gS.G.sG.R SGR 40,41,64 NS 

12 10 gS.msG.sG SG 24 NS 
14 mS.gS.sG SG 34,47,48 pp 

15 mS.gS.sG.R SGR 33 pp 

19 11 S.(g)S.gS.R SR 85 ss 
20 S.(g)S.R SR 56 NS 
21 S.(g)S.sG.R SGR 31,35 LS 
27 S.sG.R SGR 36 LS 

23 12 S.gS.sG SG 2,45,46, 75 1xL S, 1xL P, 2xP S 

24 S.mS.gS.sG SG 70 PS 
25 S.mS.gS.sG.R SGR 69 PS 

26 S.sG SG 76,82,83 LP 

The Chi-squared analysis for Class 2,d was undertaken on the seven groups (those groups 

highlighted in yellow on Table 8.1) plus the five 'intermediate categories' as shown on 
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Table 8.3, making 12 in total. Table 8.3 also shows how these categories were divided 

according to port and type of trawling. 

Class 2,e - Large categories with other groupings, part 2 

The aim here was to establish whether the presence or absence of rock was biologically 

relevant to the classification of substrates in their relation to the preference of fish species. 

The first 'intennediate category' (from column 2 in Table 8.3) comprised a set of samples 

that were from the same major substrate type of sand although the other categories were 

not similarly, equally comprised. While it appears sensible that the groups should be 

drawn from similar major substrate types it is difficult to establish exactly which samples 

should be amalgamated together to facilitate this. This analysis (Class 2,e) employs the 

same 7 groups which were highlighted in yellow on Table 8.1, above though this time the 

additional 32 samples are divided into two groups according to whether or not they 

included rock. Those 'unique substrate groups' including rock were: 4, 6, 8, 11, 15, 19, 20, 

21, 25 and 26. These comprised 13 samples and were highlighted in grey on Table 8.1. 

Those 'unique substrate groups' not containing rock were: 1, 2, 5, 9, 12, 14, 22, 23, 24, and 

26 (19 samples in total) and are not highlighted on Table 8.1. Additionally it should be 

noted that none of the large groups (highlighted in yellow on Table 8.1 above contain rock. 

Above it was shown that samples containing rock are diverse in other respects (as each 

type was generally few in number) and the presence of rock was not well described by the 

other substrate types (Figure 4.7(i), page 93, above). 

Class 3 

All the Class 2 methods for amalgamating the substrate groupings attempted to best 

represent the species preferences for particular substrates based on an a priori assessment 

of which substrate types might best describe those species that show a degree of similarity. 

The amalgamations of substrates must always be undertaken before the analysis is carried 
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out with these groups however all the Class 2 methods do not take into consideration the 

degree to which the species profile, or the presence and absence of all the species was 

apparently similar or different between the various substrate types. In addition, the Class 1 

and 2 analyses made no distinction between whether the species in question were or were 

not fish . The Class 3 analyses reverse this. In these analyses, the species were better able 

to tell their own story and was termed post hoc. Figure 8.3 shows how the model was 

developed for the Class 3 analyses. 

p 

A 

1 

species 

p 0 0 0 1 1 1 

A111000 

substrates 1 

2 
substrates 

species 

p 0 0 0 1 1 0 

A11100 1 

2 

3 

species 

p 1 1 1 0 0 0 

A000111 

3 

Figure 8.3. Model developed for the class 3 analyses. The top part shows the observed 
presence (P) and absence (A) values for a single species. The red box is equivalent to that 
on Table 8.2, (page 227, above) for one species across a variety of substrates. See text 
(below) for additional information. 

The depth (or third dimension) on Figure 8.3, was generated through stacking of all the 

species, thus this model was built as a three dimensional matrix and the Class 3 analyses 

uses the profile of all the species under scrutiny compared according to substrate. Figure 

8.3 (lower part) shows this. In the model, the presence and absences of all (nominally six) 

species were compared for substrate I and 2. In this example, five of the six species have 

the same presence and absence scores while these values were not the same for the sixth 
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species. The likelihood of this would be that substrates I and 2 could be amalgamated. 

This process was then repeated with additional substrate types until all the similar 

substrates had been identified and amalgamated. The process was then restarted with a 

new substrate and the species profile was compared to the others. On Figure 8.3, although 

the species profiles for substrates I and 2 were similar, the species profile of substrate 3 

was markedly different and due to the presence/absence of the species substrates 1 and 2 

would not group with substrate 3. The outcome of this process was that groups of 

substrates with similar species profiles were formed and each amalgamated group was 

comprised from different species profiles. Three separate analyses were undertaken for 

Class 3. These were: 

Class 3,a- All the species, (190 species). 

Class 3,b- Only the fish species, (54 species). 

Class 3,c- The non-fish species, (136 species or groups). 

Each of these analyses was carried out in the same manner. Several modelling methods 

were explored but the simplest and most amenable method was to examine the similarity 

percentage both in respect of contribution to average similarity within a group and average 

dissimilarity between groups, where the groups were the initial 'unique substrate groups' 

(see Table 8.1 ). This was achieved using the SIMPER routine in PRIM ER-E, (Clarke & 

Warwick, 2001a). The SIMPER routine was run on presence/absence non-standardised 

values. The SIMPER dissimilarity output was converted to a similarity matrix and the 

similar and dissimilar species profiles according to 'unique substrate groups' were 

identified formally using a combination of cluster and non-metric multi-dimensional 

scaling (MDS) analyses (again in PRIMER-E, Clarke & Warwick, 200la). Both clustering 

and MDS were employed as each suffers from flaws making reliance on one method alone 

prone to errors. These are described in turn. Cluster analysis (Figure 8.4, Figure 8.6, and 

Figure 8.8, below) is not best suited to organising data into groups where (like here) the 

groups fall along a continuum. Where the categories are along such a continuum the 
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outcome can often produce a dendogram with a high degree of 'chaining.' Some chaining 

is evident in Figure 8.6 (below) though where an unacceptable amount was evident the 

dendogram was produced by complete rather than grouped average linkage which usually 

reduces this. MDS plots (Figure 8.5, Figure 8.7 and Figure 8.9, below) suffer from being a 

two-dimensional portrayal of a higher dimensional picture. As such, objects may appear 

close together which may be far apart in a non-plotted dimension. The opposite can also 

occur where object may appear far apart on the MDS plot though if they are on a similar 

plane to one of the plotted dimensions their distance apart, as portrayed on the MDS plot, 

is truly their separation and perhaps they should be grouped together. 

Figure 8.4 shows the cluster analysis plot and Figure 8.5 shows the MDS plot for 

Class 3,a, which was the analysis of all the species. 
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Figure 8.4. Group average-based cluster dendogram based on percentage similarity 
between 'unique substrate groups' (as numbers; Table 8.1, above) of all species. 
Superimposed in red (as letters) are the amalgamated groupings. The relevance of the 50 
and 60 % lines are given in the text. 
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Figure 8.5. MDS plot based on percentage similarity between 'unique substrate groups' 
(as numbers, Table 8.1, above) of all species. Superimposed in red (as letters) are the 
amalgamated groupings. 

Superimposed on Figure 8.4 and Figure 8.5 are the fully unique substrate groups (see Table 

8.1, above) which both analytical methods amalgamate together. The rationale for making 

the groups was to keep separate those 'unique substrate groups' which were less than 50% 

similar and generally amalgamate those more than 60% similar. Where the cut off point 

between two groups fell between the 50 and 60 % similarity level reference was made to 

the appropriate MDS plot and the distance examined in both the 2d and 3d plot before a 

decision was made. The cluster and MDS analyses shown in Figure 8.4 and Figure 8.5 

produced 13 amalgamated groupings. 

Figure 8.6 and Figure 8.7 show the cluster and MDS plots (respectively) for the 

Class 3,b (fish only) part of the sample. 
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Figure 8.6. Group average-based cluster dendogram based on percentage similarity 
between 'unique substrate groups' (as numbers; Table 8.1, above) of the fish only species. 
Superimposed in red (as letters) are the amalgamated groupings. The relevance of the 50 
and 60 % lines are given in the text. 

Stress: 0.15 

Figure 8.7. MDS plot based on percentage similarity between ' unique substrate groups' 
(as numbers, Table 8.1, above) of the fish species. Superimposed in red (as letters) are the 
amalgamated groupings. 

The cluster and MDS analyses shown in Figure 8.6 and Figure 8.7 for the Class 3,b (fish 

only) part of the sample produced eleven amalgamated groupings. The fish-only species 

show an interesting example where the MDS plot (Figure 8.7) contains non-contiguous 
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'unique substrate groups' in the amalgamated group 'J'. It was necessary to examine the 

relevant cluster analysis (Figure 8.6) to determine the correct amalgamation. 

Figure 8.8 and Figure 8.9 show the equivalent plots for the Class 3,c (non-fish) part 

of the sample. 
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Figure 8.8. Complete linkage-based cluster dendogram based on percentage similarity 
between 'fully unique substrate groups' (as numbers; Table 8.1, above) of the non-fish 
species. Superimposed in red (as letters) are the amalgamated groupings. The relevance of 
the 50 and 60 % lines are given in the text. 

Stress: 0.16 

Figure 8.9. MDS plot based on percentage similarity between 'unique substrate groups' 
(as numbers, Table 8.1, above) of the non-fish species. Superimposed in red (as letters) are 
the amalgamated groupings. 
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The cluster and MDS analyses shown in Figure 8.8 and Figure 8.9 for the Class 3,c (non

fish) part of the sample produced 10 amalgamated groupings. The cluster dendogram for 

the Class 3,c, (non-fish) part of the sample (Figure 8.8) was created using the complete 

linkage method as the group-average method produced too much chaining. 

The Class 3 analyses were undertaken in the same way as the others (Class I and 2) 

though the categories for the Chi-squared test of independence (Table 8.2) were the 

amalgamated groupings (of 'unique substrate groups', Table 8.1 above), shown as red 

letters on Table 8.5 and Figure 8.5 for Class 3,a; and Figure 8.6 and Figure 8.7 for Class 

3,b; and Figure 8.8 and Figure 8.9 for Class 3,c. 

8.3 Results 
As described in section 8.2.3.1 (page 227, above) the results present the data in two forms. 

Firstly according to all species (section 8.3.1) for the relationships between species and 

substrates as numbers and % of significant associations (separately where P < 0.05 > 0.0 I, 

and < 0.01 ). This is followed by the comprehensive examination of the fish species 

(section 8.3.2). 

8.3.1 All species overview 

The outcome of the 3 Classes of analysis (9 in total) are summarised in Table 8.4. 
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Table 8.4. The number of species and number of interactions between the presence/absence of a species and the substrate which are significant (according 
to the Chi-squared test of independence), where P > 0.05, < 0.01 and where P < 0.01 for the full species list, those just fish and those non-fish in nature for 

the three Classes of analyses. Percentages are highlighted. 

Class 
1 2,a 2,b 2,c 2,d 2,e 3,a 3,b 3,c 

full range large cat large cat large cat large cat large cat all fish non-fish 

species outcome (27 grp) only only only (7 grp) (7 grp) 
(4 grp) (3 grp) (7 grp) yel on yelon 
S, S.G, S, S.G, S.R yelon Table 8.1) Table 8.1) 

S.R, S.G.R +S.G.R Table 8.1 +5 +2 intermed 
intermed rock or not 

#sp 190 190 190 165 190 190 190 190 190 
# sig. sp 66 26 23 39 50 40 61 57 67 
% sig. sp 35 14 12 24 26 21 32 30 35 
# sig. s·p •• (where P < 0.01) 43 14 10 25 24 20 41 37 
# sig. sp • (where P > 0.05, < 0.01) 23 12 13 26 20 20 20 
% sig. sp •• (where P < 0.01) 23 7 5 13 11 22 19 

(ij % s· . s • where P > 0.05, < 0.01 12 6 7 11 11 11 

#sp 54 54 54 54 54 
# sig. sp 8 8 13 19 15 
% s!g. sp 15 15 24 35 28 
# sig. sp •• (where P < 0.01) 10 5 7 14 12 
# sig. sp * (where P > 0.05, < 0.01 9 3 6 5 3 

~ % sig. sp- (where P < 0.01) 19 10 13 27 23 en 
lo:: % s· . s • where P > 0.05, < 0.01 17 6 11 9 6 

#sp 136 136 136 136 136 
# sig. sp 47 18 42 35 52 
% sig. sp 35 13 31 26 38 

~ 
# sig. sp ** (where P < 0.01) 33 9 27 28 33 

en # sig. sp • (where P > 0.05, < 0.01) 14 9 11 14 15 14 24 lo:: 
I 

% sig. sp- (where P < 0.01) 24 7 15 11 10 20 15 21 c: 
0 c: %si . s • where P > 0.05, < 0.01 10 7 9 14 10 11 10 18 
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Examining Table 8.4 shows that the Class 1 -The full range has 66 (or 35 %) of all the 

species with a significant relationship between their presence/absence and various substrate 

types. Class 2,a - Major substrate type part 1, and Class 2, b - Major substrate type part 2, 

revealed low numbers of species (n = 26 and 23 respectively) with a significant 

relationship between their presence/absence and various substrate types. Class 2,a and 2,b 

were the categories definable directly from the British Geological Society charts and it is 

likely that the four (or three) categories are too coarse to best show the relationship 

between the presence/absence of species and various substrate types, and this is reinforced 

as there were fewer numbers of significant associations for Class 2,b (three categories) 

than Class 2,a (four categories). Class 2,c- Large categories alone, comprised only those 

substrate groups which contained five or more samples. This class generated 39 significant 

relationships between the presence/absence of species and various substrate types though 

25 species (1 0 fish and 15 non-fish) could not be included in the analysis since they were 

only present in samples not included in this Class. 

Class 2,d - Large categories with other groupings, part 1, produced the highest 

number of species (n = 50) with a significant relationships between the presence/absence 

of species and various substrate types. The composition of the substrate groups (in 

addition to the large groups) in this class was aimed at best producing significant 

relationships between the presence/absence of species and various substrate types and this 

appears to have been achieved by the a priori amalgamation of the infrequently occurring 

'unique substrate groups', (those not highlighted in yellow on Table 8.1, above). In 

contrast Class 2,e - Large categories with other groupings, part 2, showed that combined 

with the large categories featured in Class 2,c and Class 2,d the presence or absence of 

rock was not so important in producing significant relationships between the 

presence/absence of species. 

The pattern of the species significance were even divided between the fish and non

fish species such that Class 2,d produced the highest proportion of significant relationship 
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and the presence or absence of rock was not so important in producing significant 

relationships between the presence/absence of species. 

In all of the Class 3 analyses, the substrates and species are more able to tell their 

own story though the amalgamations of 'unique substrate groups' was, as with the Class 1 

and 2, carried out before the analysis of relationship between presence/absence of species 

and substrate was undertaken. According to the numbers of significant interactions 

between the presence/absence of the species and the substrates (Table 8.4) all of the Class 

3 analyses best approach that of the Class 1 - The full range though as expected the Class 

3,b - Fish only, best explains the fish species with a significant relationship between the 

presence/absence of this group and the substrates in 41 % of cases (n = 22). Similarly, 

Class 3,c - Non-fish only, produced a significant relationship between the 

presence/absence of this group and the substrates in 38 % of cases (n = 52). Class 3, a -

All species, performed less well overall in each or its target (fish or non-fish) groups but 

closely matched the Class 1 - The full range, situation. These examples on Table 8.4 are 

highlighted in red. The significance of these does show the utility of the Class 3 methods 

in that they used many fewer categories than the Class 1 method though they produced 

outcomes that were similar. Also, they show that the substrates should be classified 

separately when analysing the fish and non-fish species, and this was not carried out for 

Class 2. 

8.3 .2 Fish species analysis 
The fishes are listed according to their taxonomy (class, order, family, genus and species), 

with the common name and three-letter species code. The 'conclusion' with each species 

description details whether or not an association with the presence/absence data was 

expected, whether significant associations were observed (* where P < 0.05, > 0.01, and ** 

where P < 0.01), across the 3 Classes of analysis, whether similarities exist in terms of 
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expected substrate types and whether the conclusions were or were not considered valid. 

Citations from FishBase, (Froese & Pauly, 2003) are accredited to their main or data 

reference ofthe respective record and precede those from Wheeler, (1978) in the text. 

Class Chondrichtbyes, order Carcharhiniformes, family Scyliorhinidae 

Scyliorllimts canicula, Lesser Spotted Dogfish, LSD. FishBase (Compagno, 1984): 

"Found on sandy, coralline, algal, gravel or muddy bottoms ... " Wheeler, (1978): "It 

inhabits sandy bottoms, fine gravel and even mud." Conclusion: Expected over a wide 

range of substrates. No significant associations with presence/absence data observed. 

Valid as species was common (present in 65% of samples). 

Scyliorlrinus stellaris, Greater spotted dogfish/ Bullhuss, GSD. FishBase (Compagno, 

1984): " ... over rough, even rocky or coralline ground and algal-covered bottoms." 

Wheeler, (1978): "It usually lives on rough or rocky grounds." Conclusion: Expected 

over hard substrates. No significant associations observed with presence/absence data. 

However observed rarely (~ I % of samples) and expected substrates not coincident with 

samples, therefore conclusions were not considered valid however, lowest Chi-squared P 

value with Class 2,e which features the presence of rock. 

Family Triakidae 

Mustelus asterias, Starry Smooth Hound, SSH. FishBase (Compagno, 1984): "Prefers 

sandy and gravely bottoms." Wheeler, (1978): " ... seems to be most common on sand and 

gravel grounds." Conclusion: Association not expected since this species preferences are 

coincident with general area of sampling and lack of knowledge of full extent of substrate 

preference. Observed rarely however ( ~ 2 % of samples and therefore not valid) and no 

significant associations observed with presence/absence data in any class but only 

coincident with sand or sand and gravel substrates as expected. 

Mustelus mustelus, Smooth Hound, SMH. FishBase (Compagno, 1984): No specific 

information. "Sometimes in mid water but prefers to swim near the bottom." Wheeler, 
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(1978): "[As] only recently ... distinguished from the more common M asterias, ... [the] 

information compiled ... could have applied to either species." Conclusion: No association 

expected (see above) and no significant associations observed with presence/absence data 

in any class. Observed rarely however (I % of samples) and only coincident with plain 

sand. Lack of association observed but not valid. 

Family Rajidae 

Raja bracllyura, Blonde Ray, BLR. FishBase (Brito, 1991): "Found on sand and sand

rock bottoms." Wheeler, (1978): "It is not found in estuaries and usually young specimens 

only are encountered in very shallow water. It lives mainly on sandy bottoms." 

Conclusion: Relatively common (present in 21 %of samples, therefore valid). Expected 

on sand and significant associations with presence/absence data for Class 1(*); 2,d(**); 

2,e(**); 3,a("'*); 3,b(**) and 3,c(**) analyses. These significant associations are 

commonly with the sandy gravel and sandy rocky substrates. 

Raja clavata, Thornback ray, THR. FishBase (Brito, 1991): "Found on sand and sand

rock bottoms." Wheeler, (1978): " .. .it is found on muddy, sandy, or gravely bottoms, 

rarely even on rough grounds." Conclusion: The literature suggests this species is found 

over a variety of substrates. Present in 16 %of samples (therefore valid) and no significant 

associations with any presence/absence data. Lowest Chi-squared P value with Class 3,b. 

Raja microocellata, Small-eyed ray, SER. FishBase (Stehmann & BUrkel, 1984): "Found 

on sandy bottoms." Wheeler, (1978): "It seems to be particularly common on sandy 

grounds, and in the English Channel at least it is found mainly in certain sandy bays and 

outer estuaries." Conclusion: Although rarely observed (present in 3 % of samples, 

therefore not valid) significantly associated with most classes of presence/absence data, 

(not 2,c; 2,e; or 3,b). Observed samples were qualified sand in nature. 

Raja montagui, Spotted ray, SPO. FishBase (Stehmann & Bilrkel, 1984): No specific 

information. "Found in shelf waters ... " Wheeler, (1978): "It is most common on sandy 

bottoms but is occasionally caught on rough grounds." Conclusion: Very rarely observed 
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(present in - l % of samples, therefore not valid). Highly variable association with 

presence/absence data. The significant associations were l(**); 3,a(**); 3,b(**). 

Expected substrate pattern was not observed. 

Raja naevus, Cuckoo Ray, CUR. FishBase (Stehmann & BUrkel, 1984): No specific 

infonnation. Wheeler, (1978): No specific infonnation. " ... bottom-living ... found in 

shallow water. .. " Also, " ... feed[s] on amphipods and shrimps, and nereid wonns ... eats 

increasing numbers of fishes (chiefly herring, gadoids, sandeels and dragonets) as it 

grows." Conclusion: Feeding preferences included as these suggest a highly varied 

substrate coverage without particular preferences. No significant associations observed 

with any presence/absence data as expected. Valid as found in a quarter (26 %) of the 

samples. 

Raja radiata, Starry ray, STR. FishBase (Stehmann & Blirkel, 1984): "Found on all 

kinds of bottoms." Wheeler, (1978): "It prefers sandy or muddy bottoms, but is 

occasionally found on shell or gravel." Conclusion: Though only found in 6 % of the 

samples (therefore not valid) no pattern expected and no significant associations between 

presence/absence data of species with substrate. 

Raja undulata, Undulate ray, UDR. FishBase (Stehmann & BUrkel, 1984): "Found on 

sandy bottoms ... " Wheeler, (1978): " ... found on sandy bottoms ... " Conclusion: 

Expected over sand but highly variable association observed with presence/absence 

substrate data according to class due to being rarely observed, (present in only 2 % of 

samples, therefore not valid). The significant associations were 1(**); 2,a{**); 3,c(*). 

Expected substrate pattern was not observed. 

Class Osteichthyes, order Clupeiformes, family Clupeidae 

Alosa sp, e.g. A. fa/lax, Shad, SHD. FishBase (Whitehead, 1985, p 199): No spec. info. 

"Enters tidal part of rivers ... to spawn there or a little above. Eggs are demersal, scattered 

over gravel or sand." Wheeler, (1978): No specific infonnation. " ... migrates[s] into the 

tidal reaches of rivers." Conclusion: No association expected between substrate and 
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species presence/absence data. None observed however, species very rarely observed also. 

Clupea harengus, Herring, HER. FishBase (Whitehead, 1985, pll5): Probably various 

as primarily pelagic. Wheeler, (1978): Lack of specific information except spawns over 

gravel. Conclusion: No association expected between species and substrate 

presence/absence. Significant associations observed for classes l(**); 2,d(*); 3,b(*) and 

3,c(*), though coincident with a range of sand, sand gravel and sand gravel rock sites. 

Present in 8 % of the samples, therefore not valid. 

Sardina pilchardus, Sardine, SAR. FishBase (Whitehead, 1985, p55): No specific 

information. Wheeler, (1978): No specific information. Conclusion: No association 

expected between species and substrate presence/absence data. Only significant 

associations observed for class 2,e(*) (non-rock section) though species rarely observed, 

(present in - 1 % of samples, therefore not valid). 

Sprattus sprattus, Sprats, SPR. FishBase (Whitehead, 1985, p49): No specific 

information. " ... sometimes entering estuaries ... " Wheeler, (1978): No specific 

information. " ... found in estuaries and arms of the sea." Conclusion: Association 

unlikely between species and substrate presence/absence data. Variable association 

(Classes 2,c(*); 2,d(*) and 2,e(*)) and species infrequently observed (in 6% of samples) as 

might be expected. Lack of association not valid. 

Family Engraulididae 

Engraulis encrasicolus, Anchovy, AN C. FishBase (Whitehead et al., 1988, p316): "Can 

enter estuaries. Substrate probably relatively unimportant." Wheeler, (1978): "[lives] in 

surface waters ... and estuaries." Substrate is likely to be relatively unimportant. 

Conclusion: Only significant associations with substrate presence/absence data with class 

I(**). Species rarely observed as expected (in only 2 % of samples) but lack of 

association not valid. 

Order Gadiformes, family Gadidae 

Gadus morltua, Cod, COD. FishBase (Cohen et al., 1990): " ... widely distributed in a 
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variety of habitats ... " Wheeler, (1978): " ... widely distributed in a variety of habitats ... " 

Conclusion: Observed in 64 % of samples (therefore valid) and significantly associated 

with substrate presence/absence data in all classes !(*); 2,a;(**); 2,b;(**); 2,c;(**); 

2 d·(**)· 2 e·(**)· 3 a·(**)· 3 b·(**) and 3 c(**) Significant associations due to data ' ' ' ' ' ' ' , ' , ' , . ' 

which suggests this species occurs less commonly over plain sand and much more 

commonly over areas of mixed substrates where sand is also present than is expected by 

chance alone. 

Melanogrammus aeg/ejinus, Haddock, HAD. FishBase (Cohen et al., 1990): " ... over 

rock, sand, gravel or shells ... " Wheeler, {1978): No specific information. Conclusion: 

Apparently, no association with substrate expected. Significant associations with 

presence/absence substrate data observed with classes 3,a(**) and 3,b(*). Observed in 6% 

of samples but lack of association not valid. 

Mer/angius merlangus, Whiting, WHG. FishBase (Cohen et al., 1990): " ... mainly on 

mud and gravel bottoms, but also on sand and rock." Wheeler, ( 1978): " ... both in mid-

water. .. and inhabits sandy as well as muddy bottoms." Conclusion: Seemingly widely 

distributed therefore no association with substrate presence/absence data expected. 

Observed in 66 % of samples (therefore valid) and highly significantly associated with 

substrate presence/absence data in all classes. Significant associations due to data, which 

suggest this species occurs much more commonly over plain sand and much less 

commonly over sand with gravel than expected by chance alone. 

Micromesistius poutasso11, Blue whiting, WHB. FishBase (Cohen et al., 1990): No 

specific information. "Found over the continental slope.... Makes vertical migrations: 

surface waters at night and near the bottom during the day." Wheeler, (1978): No specific 

information. " ... oceanic ... living mainly in mid-water over the edge of the continental 

shelf." Conclusion: No association with substrate presence/absence data expected. 

Highly significant associations observed with class 1; 3,a and 3,b however too rarely 

observed (in only 2 % of samples) as might be expected given distribution. Lack of 
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association not valid. 

Molva molva, Ling, LIN. FishBase (Frimodt, 1995): "Occurs mainly on rocky 

bottoms ... " Wheeler, (1978): " ... most common on rocky grounds, but also colonizes the 

numerous wrecks found in inshore waters." 

Conclusion: Association with substrate presence/absence data expected, though significant 

associations observed only with class 2,d{*). Data suggests however, species observed 

more commonly then expected when substrates contain rock {class 2,a; 2,b and 2,e) though 

rocky substrates generally poorly covered by trawl gear. Present in 11 % of samples 

(therefore valid) suggesting this species makes forays away from hard substrates or 

structures and results are valid. Expected association not observed. 

Pol/aclrius pol/aclrius, Pollack, POL. FishBase (Cohen et al., 1990): "Pelagic to 

benthopelagic, mostly close to shore over hard bottoms." Wheeler, (1978): "Large fish are 

most abundant near rocks or on rough ground ... smaller specimens tend to be less restricted 

and occur over sandy shores and even in estuaries." Conclusion: Association with 

substrate presence/absence data not expected. No significant associations observed with 

any class. Result valid as species present in 17 %of samples. 

Trisopterus /use us, Pout whiting (pouting), BIB. FishBase (Cohen et al., 1990): No 

specific information. "Lives mostly on the outer shelf, but moves inshore ... for spawning." 

Wheeler, ( 1978): " ... particularly in rocky areas where large schools form about reefs or 

wrecks. Small bib are very abundant in shallow water over sand." Conclusion: 

Association with substrate presence/absence data not expected. Significant associations 

observed with class 3,a(*) and 3,b(**). However, species commonly observed (in 78 % of 

samples). It is thought important that species is even distributed across all encountered 

substrate types. 

Trisopterus minutus, Poor cod, PCO. FishBase (Cohen et al., 1990): " ... on muddy or 

sandy bottoms ... " Wheeler, (1978): No specific information. "It occurs close to the 

bottom and in mid-water." Conclusion: Favouring soft sediment therefore association 
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with substrate presence/absence data expected despite venturing into the water column 

(outside sampling here). Significantly associated with substrate presence/absence data in 

class I(*); 2,c;(**); 2,d;(**); 2,e;(**); 3,a;("'*); 3,b;(*"') and 3,c(**). Present in 60 % of 

samples though less commonly found in samples containing rock therefore expected 

association observed. 

Family Merlucciidae 

Merluccius merluccius, Hake, HKE. FishBase (Cohen et al., 1990): No specific 

information. "Lives close to the bottom during the day-time, but moves off-bottom at 

night." Wheeler, (1978): No specific information. " ... lives near the bottom rather than on 

it and makes feeding forays into mid-water at night." Conclusion: Literature suggests no 

association with substrate presence/absence data expected. Association observed with 

class I(*)· 2 c·(**)· 2 d·("'*)· 2 e·(**)· 3 a·(**)· 3 b·(**) and 3 c(**) and present in 60% of ,,, ,,, ,,, ,,, ,,, ' 

samples. Less commonly observed than expected with complex substrates. No association 

expected but one observed and valid. 

Order Lopbiiformes, family Lopbiidae 

Lopltius budegassa, Black-bellied angler, MOB. FishBase (Caruso, 1986): No specific 

information. Wheeler, ( 1978): " ... usually on sandy bottoms ... " 

Conclusion: Association expected though none observed with any class however, species 

was found in only I %of samples therefore not valid. 

Lopltius piscatorius, Monkfisb-Anglerfisb, MON. FishBase (Gothel, 1992): "Occurs on 

sandy and muddy bottoms .... May also be found on rocky bottoms." Wheeler, (1978): "It 

lives on sandy, shell, or gravel bottoms and is found less abundantly on muddy or rough 

grounds." Conclusion: Mainly expected on a wide range of mid-type substrates and not 

on particularly soft or hard sediments and since these were the substrates commonly 

sampled therefore no association expected. Observed in 24 % of samples though no 

association observed with substrate presence/absence data for any class. Despite this not 

eo-occurring with rock; also more commonly observed than expected with gravel and less 
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so on plain sand. Lack of expected association observed and valid. 

Order Perciformes, family Ammodytidae 

Ammodytes tobianus, Lesser sand eel, SOL. FishBase (Bauchot, 1987): "especially 

sandy bays and beaches, including the intertidal zone and estuaries; rarely offshore. 

Alternates between lying buried in the sandy substrates and swimming in schools in the 

water mass." Wheeler, (1978): "It is always found close to clean, rather fine sand in which 

it burrows with great rapidity." Conclusion: Expected over sand despite also inhabiting 

water column. Species rarely observed (only I % of samples) and only significantly 

associated with substrate presence/absence data for class I(*). Expected association not 

valid and lack of observation may be due to pelagic behaviour and small size. 

Family Callionymidae 

Callionymus sp, Dragonet, DET. FishBase, (Wheeler, 1979): "Occurs on sand and 

muddy bottoms ... " Wheeler, (1978): " ... particularly over sandy or muddy bottoms ... " 

Conclusion: Association expected and significantly associated with substrate 

presence/absence data in class 2,a(*); 2,b(**); 2,c;(**); 2,d;(**); 2,e;(*); 3,a;(**); 3,b;(**) 

and 3,c(**). More commonly observed than expected on plain sand and less so in 

combination with gravel. Expected association observed. Valid as observed in 42 % of 

samples. 

Family Carangidae 

Traclturus traclturus, Scad horse mackerel, HOM. FishBase (Smith-Vaniz, 1986): 

"Forms large schools in coastal areas with sandy substrates." Wheeler, (1978): No specific 

information. Conclusion: Area of study was generally sandy in nature and species 

location dominated by feeding therefore no significant associations expected. Present in 

74 % of samples and only significant associations with substrate presence/absence data in 

class 3,b(*), however, species was under-represented in samples where rock eo-occurred. 

Lack of expected association observed and valid. 
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Family Labridae 

Labrus sp e.g. L. bergylta, Wrasses, WRA. FishBase (Quignard & Pras, 1986): 

" ... around rocks, offshore reefs and seaweed." Wheeler, (1978): " ... may be common 

locally especially close to rocks ... " Conclusion: Literature suggests expected association 

though with substrate not generally encountered. Significant associations only observed 

with class 1 {*) however species only observed in 2 % of samples, therefore association not 

valid. 

Family Mugilidae 

Mugil sp, Grey mullets, MUG. FishBase (Billard, 1997): No specific information. 

Wheeler, (1978): " ... particularly common close inshore in harbour mouths, estuaries, in 

sandy bays and in the channel of saltings." Conclusion: No association expected. Only 

present in 1 % of samples and no significant associations with substrate presence/absence 

data in any class. Lack of expected association not valid. 

Family Mullidae 

Mu/Ius surmuletus, Red mullet, MUR. FishBase (Hureau, 1986a): "Occurs on broken 

and rough grounds but also found over sand and soft bottoms ... " Wheeler, (1978): 

" ... lives in small schools on sandy or muddy bottoms ... although it also occurs on rocky 

grounds." Conclusion: Literature suggests this species is expected over a wide variety of 

substrates therefore no association expected. No association observed with substrate 

presence/absence data in any class. Observation of lack of expected association valid as 

species present in 16 % of samples. 

Family Percichthyidae 

Dicentrarclrus labrax, Bass, BSE. FishBase (Smith, 1990): "Inhabits the littoral zone on 

various kinds of bottoms on estuaries, lagoons and occasionally rivers." Wheeler, ( 1978): 

" ... commonly entering estuaries ... upstream into almost freshwater [also] ... usually found 

in close proximity to reefs." Conclusion: Association not expected since while this 

species occurs close to reefs sampling did not take place close to this habitat type. No 
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significant associations with substrate presence/absence data in any class. Present in only 

7 % of samples. Therefore, lack of association not valid. 

Family Scombridae 

Scomber scombrus, Atlantic mackerel, MAC. FishBase (Collette & Nauen, 1983): No 

specific information. Wheeler, (1978): No specific information. " ... seasonally close 

inshore, as well as over offshore banks, but is highly migratory ... " Conclusion: Literature 

suggests no association expected. Significant associations with substrate presence/absence 

data in class 1(*); 2,c;(*); 2,d;(*); 3,a;(*); and 3,b;(*). Observed in 27 % of samples 

(therefore valid) and significance of association due to data, which suggest this species was 

observed more commonly than expected over plain sand. Therefore, lack of association 

not borne out by data. 

Order Pleuronectiformes, Family Bothidae 

Arnoglossus imperialis, Imperial scald fish, SCI. FishBase (Bianchi et al., 1993): "Found 

on sand, mud, shell and corals." Wheeler, (1978): "It lives mainly on sandy or muddy 

grounds." Conclusion: No association expected and no significant associations with 

presence/absence data in any class. Present in 8 % of samples therefore lack of association 

not considered valid though lowest P value;::: 0.4. 

Arnoglossus Jaterna, Scaldfish, SCA. FishBase (Nielsen, 1986a): "Lives on mixed or 

muddy bottoms." Wheeler, ( 1978): "It lives most abundantly on sandy bottoms ... " 

Conclusion: No association expected and no significant associations with 

presence/absence data in any class. Present in only 5 % of samples therefore lack of 

association difficult to prove (considered not valid) though lowest P value;::: 0.6. 

Family Pleuronectidae 

Limanda limanda, Dab, DAB. FishBase (Cooper & Chapleau, 1998): "Lives mainly on 

sandy bottoms ... " Wheeler, (1978): " ... shallow, sandy grounds ... " Conclusion: 

Association expected and significant associations observed with substrate 

Presence/absence data in class 1(**)· 2 b(*)· 2 c·(**)· 2 d·(**)· 2 e·(*)· 3 a·(**)· 3 b·(**) ,, ,,, ,,, ,,, ,,, ,,, 
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and 3,c(**). Data show species much more commonly observed than expected on plain 

sand and less so in combination with gravel. Expected association observation and valid as 

species present in 43 %of samples. 

Microstomus kilt, Lemon sole, LEM. FishBase (Cooper & Chapleau, 1998): "Lives 

mostly on stony bottoms." Wheeler, ( 1978): " .. .lives on a wide range of bottoms from 

mud (exceptionally), and sand, gravel, even rocky grounds ... " Conclusion: Literature 

suggests that no association should be expected between this species and the substrate 

presence/absence data. Much of the substrate in the area is suitable though this species 

prefers generally more gravely sediments than other flatfishes. Significant associations 

observed for class 1(*) and 3,b(**). These are due to this species being more commonly 

observed than expected over gravely and sand and gravel and rock categories in class I and 

3,b. This species was commonly observed (present in 89 % of samples). Lack of expected 

association not upheld though data is more precise than literature. 

Platic/rtltys jlesus, Flounder, FLE. FishBase (Cooper & Chapleau, 1998): No special 

information. "Juveniles live in shallow coastal water and estuaries which are also the 

summer feeding grounds of the adults. Nocturnal and burrowing." Wheeler, ( 1978): 

" ... Also penetrating into freshwater. It lives on sandy and muddy bottoms." Conclusion: 

Association expected and significant associations with substrate presence/absence data in 

class I(**); 2,d(**); 2,e;(*); 3,a;(**); 3,b;(**) and 3,c(**). Generally less observed than 

expected in complex substrates (combining sand with gravel and rock) than over plain 

sand. Expected association observed and valid as present in 16 % of samples. 

Pleuro11ectes p/atessa, Plaice, PLE. FishBase (Cooper & Chapleau, 1998): "Lives on 

mixed bottoms." Wheeler, (1978): " ... most abundant on sandy bottoms, but also found on 

muddy bottoms and gravel..." Conclusion: Literature suggests no association expected 

though data show highly significant associations with substrate presence/absence data in 

all classes. Significant associations are due to species being much more commonly 

observed over plain sand than might be expected. Lack of expected association not evident 
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from data. Outcome valid as observed in 51 % of samples. 

Family Scophthalmidae 

Lepidorlwmbus wltifjiagonis, Megrim, MEG. FishBase (Nielsen, 1986b): "Occurs on 

soft bottoms." Wheeler, (1978): "mo~t abundant on muddy bottoms, although not confined 

to that type ... " Conclusion: Association expected and significant associations with 

substrate presence/absence data in class I{*); 2,a(*); 2,b(*); 2,c;(**); 2,d;(*); 2,e;(**); 

3,a;(**); 3,b;(*) and 3,c(**). Generally more commonly observed over complex qualified 

sand (with gravel or mud) and less so over plain sand sediments though the pattern 

between expected and observed occurrences is complex. Present in 41 % of samples. 

Expected association observed and valid. 

Scoplttltalmus rltombus, Brill, BLL. FishBase (Bauchot, 1987): "Lives on sandy or 

mixed bottoms ... " Wheeler, (1978): "It is most common on sandy bottoms, but is 

occasionally caught on gravel and mud." Conclusion: Literature suggests an association 

expected. Significant associations observed with substrate/presence data in class 3,a(**) 

and 3,b(**). This species was rarely observed (present in only 5% of the samples) though 

most of these were plain sandy gravel. Expected association observed though not valid. 

Family Soleidae 

So/ea so/ea, Dover Sole, SOL. FishBase (Desoutter, 1992): "Burrows into sandy and 

muddy bottoms." Wheeler, (1978): "It is common on sandy and muddy grounds." 

Conclusion: Association expected and significant associations observed with substrate 

presence/absence data in class 2,e(*); 3,b(*) and 3,c(**). These significant associations 

due to greater than expected number of observations of this species over sand and fewer 

than expected observations over complex sediments (containing rock in class 2,e). 

Expected association observed and valid as found in 11 % of samples. 

Order Salmoniformes, family Argentinidae 

Argentina spltyraena, Argentine, ARG. FishBase (Cohen, 1990): No special 

information. Wheeler, ( 1978): "A relatively common, even locally abundant fish on 
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muddy depths of 55 - 200 m." Conclusion: No association expected and no significant 

associations observed with substrate presence/absence data in any class. As expected 

however, this species was rarely observed (only present in I % of samples). Lack of 

association not valid. 

Family Osmeridae 

Osmerus eperlanus, Smelt, SME. FishBase (Konelat, 1997): No specific information. 

" ... spawns on sandy or gravely bottoms." Wheeler, (1978): No specific information. 

" ... most common close to river mouths and in estuaries themselves." Conclusion: No 

association expected and no significant associations observed with substrate 

presence/absence data in any class. As expected however, this species was rarely observed 

(only present in 1 %of samples). Lack of association not valid. 

Order Scorpaeniformes, family Agonidae 

Agonus cataplrractus, Pogge, POG. FishBase (Gall-Le, 1969): " ... preferring sandy 

bottoms, rarely with stones." Wheeler, (I 978): "A common fish in inshore waters 

especially on sandy or muddy shores." Conclusion: Association expected however, no 

significant associations observed with substrate presence/absence data in any class. 

Expected association not evident (or valid) as infrequently observed (present in 7 % of 

samples). 

Family Triglidae 

Aspitrigla cuculus, Gurnard (Red), GUX. FishBase (Blanc & Hureau, 1979): "Found 

over sand and gravel, crag and rocks in the continental shelf." Wheeler, (1978): "It is 

found on a variety of different sea-beds, usually on sand, or sand and gravel, but also on 

mud and even rocks." Conclusion: The literature suggests that no association expected 

and also that this species should be common since it favours substrate types commonly 

found in the region. A significant associations was observed with substrate 

presence/absence data in class 3,a(*) and 3,b(**). This species was present in almost all 

samples (98 %) and the significant associations appear to be due to the ubiquity of this 
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species producing large X2 values in turn producing significant P values with this number 

of degrees of freedom. This is likely to be responsible since there are few differences 

between observed and expected frequencies in any occasion. Lack of association found 

and valid. 

Aspitrigla obscura, Gurnard (Long-finned), GUL. FishBase (Hureau, 1986b): 

" .. .inhabits soft bottoms and fallen rocks." Wheeler, (1978): " ... mainly on rough rocky 

grounds." Conclusion: The literature suggests that an association should be expected 

though none was found in any class. This species was not commonly observed (present in 

only 2 % of samples) and its preferred habitat may be outside that generally trawled here. 

Association not found though also not valid. 

Eutrigla gumardus, Gurnard (Grey), GUG. FishBase (Bauchot, 1987): "Common on 

sandy grounds, sometimes on rocky bottoms, and also on mud ... " Wheeler, (1978): 

" ... most common on sandy bottoms but also occurs, with decreasing frequency, on mud, 

shell, and rocky bottoms." Conclusion: This species occurs on a wide variety of substrates 

therefore no association expected and no association was observed with substrate 

presence/absence data in any class. Lack of association evident and valid as observed in 

half of the samples. 

Trigla lucerna, Tub gurnard, GUT. FishBase (Richards & Saksena, 1990): "Inhabits 

sand, muddy sandy or gravel bottoms." Wheeler, (1978): " ... on mud and muddy-sand 

bottoms." Conclusion: Association unlikely as species inhabits a variety of sediment 

types, though significant associations observed with substrate presence/absence data in 

class 2,d(*). This significant associations was due to greater number of observed than 

expected occurrences of this species over sand and gravel substrates in class 2,d. Lack of 

association generally evident and valid as this species was present in 13 % of samples. 

Trigloporus lastoviza, Gurnard (Streaked), GUS. FishBase (Fischer et al., 1990): 

"Found over rocks and sand ... " Wheeler, (1978): "It seems to inhabit sand and muddy 

grounds, especially where they are interspersed with rocky patches." Conclusion: This 
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species occupies quite complex habitats, which are similar to those preferred by Aspitrigla 

obscura. Again, an association should be expected though no significant associations 

observed with substrate presence/absence data in any class. It is possible that this species' 

preferred habitats were not generally sampled here and this species was rarely observed 

(present in only 3 % of samples). Despite this expected association not observed though 

situation not valid. 

Order Zeiformes, family Caproidae 

Capros aper, Zulu (Boarfish), ZUL. FishBase (Quero, 1986): "Found over rock or coral 

but also trawled over sandy grounds." Wheeler, (1978): "It is thought to live among the 

yellow and pink coral growing on the rock faces in these depths. However, it is 

occasionally captured in large numbers on sandy grounds ... " Conclusion: Association 

expected though no significant associations observed with substrate presence/absence data 

in any class however, only observed from 6 % of the samples. Expected association not 

evident though not valid. 

Family Zeidae 

Zeus faber, John Dory, JOD. FishBase (Kailola et al., 1993): No specific information. 

"Found in areas close to the sea bed." Wheeler, ( 1978): No specific information. 

" .. .inshore ... though exceptionally ... reported close to the surface." Conclusion: The 

literature suggests that no association should be expected for this species. However, 

various significant associations observed with substrate presence/absence data in all classes 

1(*); 2,a{*); 2,b(*); 2,c;(*); 2,d;(*); 2,e;(*); 3,a;(*); 3,b;(**) and 3,c(**). The significance 

of these association are generally due to this species being less commonly observed than 

expected over plain sand. Conversely, this species was observed much more commonly 

than expected over all types of qualified sand particularly those containing rock. Strong 

association evident when none expected and this is valid as this species was observed in 69 

% of samples. 
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8.3.2.1 Summary of species by species analysis 

Table 8.5 shows the species (and totals) for which positive (1) and negative (-1) 

associations were produced between the species and substrate presence/absence data. 

Table 8.5 also shows which of these can be classed as valid (with confidence) or not valid 

(lacking confidence) and for which the associations were either expected (E) or not 

expected (E), and subsequently observed (0) or not observed (0). 
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Table 8.5. Numbers of valid and non valid associations, whether expected (E) or not expected (E), and subsequently observed 
(0) or not observed (0) between species and presence/absence substrate data according to taxonomy (class, order, family, and 
genus and species) and species code. Open and filled circles are described on page 262. 

0 Order Family Genus and species code category and score Di 
Ill 
Ill 

valid non-valid 
I 

m m ,m m m m m m 
Qo Qo ;SI<> Qo Qo Qo Qo Qo 
0 0 10 0 0 0 0 0 

1 1 ' -1 -1 1 1 i -1 -1 
(") Carcharhiniformes Scyliorhinidae Scy/iorhinus canicula LSD • I 

! ::T 
Scyliorhinus ste//aris GSD I 0 I • ::J 

I I 
a. Triakidae Mustelus asterias SSH • ::::!. 
0 Mustelus mustelus SMH • ::T 
~ 

::T Rajiformes Rajidae Raja brachyura BLR • '< 
CD 

Raja clavata THR (J) • 
Raja microocellata SER • 
Raja montagui SPO I • i 
Raja naevus CUR • I ! 
Raja radiata STR 

I • I 
Raja undulata UDR I I • 

0 Clupeiformes Clupeidae A/osa sp e.g. A. fa/lax SHD 
I • 

(J) 

C/upea harengus HER iD 

I 

• o· Sardina pilchardus SAR • ::T 
::r Sprattus sprattus SPR • '< 
CD 

Enqraulididae Engraulis encrasicolus ANC I I (J) • 
Gadiformes Gadidae Gadus morhua COD I I 

I 0 I 
Melanogrammus aeglefinus HAD I • i 

Merfangius merfangus WHG 0 

Micromesistius poutassou WHB • 
Molva molva LIN • 
Pollachius pol/achius POL • 
Trisopterusluscus BIB • I I Trisopterus minutus PCO • 

Merlucciidae Merfuccius merfuccius HKE I 0 I 
Lophiiformes Lophiidae Lophius budegassa MOB 

I I • 
Lop_hius piscatorius MON • 

Perciformes Ammodytidae Ammodytes tobianus SOL 
I 

I 
' • 

Callionymidae Callionymus sp DET • 
I Carangidae Trachurus trachurus HOM • 

Labridae Labrus sp e.g. L. bergylta WRA • 
Mugilidae Mugil sp MUG • 
Mullidae Mu/Ius surmuletus MUR • 
Percichthyidae Dicentrarchus /abrax BSE • 
Scombridae Scomber scombrus MAC I 0 

Pleuronectiformes Bothidae Amog/ossus imperialis SCI 

I 
• 

I Amoa/ossus latema SCA • 
Pleuronectidae Limanda limanda DAB • ! 

Microstomus kitt LEM I 0 

Platichthys flesus FLE e 

I Pleuronectes p/atessa PLE I 0 

Scophthalmidae Lepidorhombus whiffiagonis MEG • 
I I Scophtha/mus rhombus BLL • 

Soleidae So/ea so/ea SOL • I 
Salmoniformes Argentinidae Argentina sphyraena ARG I • 

Osmeridae Osmerus eperlanus SME • 
Scorpaeniformes Agonidae Aaonus cataphractus POG I I • 

Triglidae Aspitrigla cuculus GUX • 
Aspitrigla obscura GUL • 
Eutrigla gurnardus GUG • 
Trigla lucerna GUT • 
Trigloporus /astoviza GUS • 

Zeiformes Caproidae Capros aper ZUL I • 
Zeidae Zeus faber JOD I 0 I 

Total by category 7 11 
I 

1 7! 3 131 9 3 
Total by score 18 8, ('11) 16 12 
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The totals by score on Table 8.5 show that of the 54 species analysed there were 18 which 

have a positive and valid (see Figure 8.2, above) agreement between substrate affiliation 

expected from the literature and observed in this study. These were comprised of7 species 

where the association was expected and observed (E&O) and 11 where the opposite was 

the case (E&O). The fact that amongst the positive associations, there were more which 

were not expected and not observed (E&O) than expected and observed (E&O) was 

interesting however this pattern was related to features of the individual species and 

suggests that amongst the species that were present in > 10 % of samples more can be 

classed as habitat generalists than specialists. 

According to the model presented in Table 8.2 species whether E&O, or E&O 

scored 1. Conversely there were 8 species with a valid and negative association (either 

E&O, or E&O) and these species in contrast scored -1, (Figure 8.2) meaning they did not 

match the expected association with the substrate. According to the total by score shown 

in Figure 8.2 the examination of species can be considered a success though not in 

statistically significant terms, since if taken that the null hypothesis was that there was no 

particular reason to suggest that positive (I) scores should be more common than negative 

(-1) ones (despite attempting to best examine the association between the presence/absence 

of species and substrates). A Chi-squared test of independence between the positive and 

negative scores did not show these to be significantly different (_t! = 3.115, d. f. = l, P = 

0.078, with the Yates' correction applied). 

Only l negative score was produced where an expected association was not 

observed (E&O) and this species (ling) was found more commonly than expected when 

substrates contain rock (as expected for this species), though these substrates were poorly 

covered by the trawl gear. 

There were 7 species (cod, whiting, hake, mackerel, lemon sole, plaice, and John 

Dory) for which a negative association between substrate and species presence/absence 

data was produced (observed) though where one was not expected (E&O) from the 
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literature. These species are shown as open circles on Table 8.5. In all of these occasions 

(with the possible exception for lemon sole) no association between the species and the 

substrate presence/absence data was expected based on interpreting both FishBase (Froese 

& Pauly, 2003) and Wheeler, (1978) though one was observed and generally many of these 

associations were highly significant across many classes of analysis (see their descriptions 

which start on page 248, cod; page 248, whiting; page 249, hake; page 25 I, plaice page 

255 and, John Dory page 259 in section 8.3.2). Lemon sole was included in this group 

because Wheeler, (1978) asserts it " ... lives on a wide range of bottoms from mud 

(exceptionally), and sand, gravel, even rocky grounds ... " Significant associations were 

observed for class I(*) and 3,b(**) therefore the lack of expected association not upheld 

however, the significance of these associations were due to this species being more 

commonly observed than expected over gravely and sand and gravel and rock categories in 

keeping with the comments from FishBase (Collette & Nauen, 1983) on this species. 

Mackerel (description on page 252, above) was included in this group since while 

no association was expected, associations were observed in 5 of the 9 Classes and this 

species was observed more commonly than expected over plain sand, despite this species 

being highly migratory and residing in the water column. There are however, two reasons 

to suggest that mackerel does not fully deserve inclusion in the E&O category. Firstly, it 

was by far the most uncommon amongst these species (present in only 27 %) of samples, 

and secondly all of its associations were significant at the 5 % level. Had mackerel been 

classed in the E&O category then there would have been significantly more positive than 

negative associations according to the Chi-squared test of independence (_r = 4.652, d.f. = 

I, P = 0.031, with the Yates' correction applied). 

The importance of these 7 species stems from their representation in the samples. 

The data for mackerel is given above. The remainder, as ordered on Table 8.5 (and above) 

were present in 64, 66, 60, 89, 5 I and 69 % of samples and were all amongst the most 

abundant 11 species by presence in the samples (and by biomass (Table 3.4, page 54, 
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above) ranked in the top 23). As such the observed associations with particular substrates 

when the literature suggested that no such association should exist should be taken as 

creditable, especially as these species often had many statistically highly significant results 

from the Chi-squared tests of independence across the three Classes of analyses, (again see 

their descriptions in the Results: lemon sole is shown on page 255). Thus, the 7 species, of 

E&O associations, just described can be regarded as special cases. Treating them as such 

reveals 18 species where the association between species and substrate presence/absence 

was considered as valid and where the expected pattern was observed (E&O, or £&0) 

against only I species where the similar association was not as expected (E&O). 

While there were more positive than negative non-valid associations between the 

species and substrate presence/absence data the nature of their analysis means that it is 

unwise to analyse these numbers in greater detail, nevertheless this result might suggest 

that the method is robust even on infrequently observed species. All that can be drawn 

from the association between the species and substrates which were considered as non

valid is that like the valid associations, there appears to be more habitat generalists (£&0, 

n = 13) than specialists (E&O, n = 3). Also that using the valid, positive totals by category 

as contingency expected frequencies and the non-valid positive totals by category as 

observed frequencies a Chi-squared test of independence between the observed values and 

expected contingency frequencies suggests that the ratios are not significantly different (X2 

= 1.516, d.f. = I, P = 0.218, with the Yates' correction applied). 

8.4 Discussion 
This Chapter has presented a novel technique to compare the distributions of fish species 

from commercial trawling with that of substrate data from relatively small-scale sediment 

maps. It was also possible to significantly compare whether a particular association of a 
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fish species with specific or general substrates should be expected from consulting 

literature sources and identifying whether this was observed. 

In undertaking this analysis, several decisions were taken that influenced outcomes. 

The first was to decide upon basing the analysis on the presence/absence of species within 

samples. Inevitably, this down weighted the common and up weighted the rare species 

though this was offset by establishing the requirement that a species had to be present in I 0 

% of samples before its association was considered as valid. The only alternative would 

have been to use the counts of individuals (as weight was inappropriate here) though 

presence/absence analysis matched the pooling of substrate data. In choosing the score for 

expected and observed patterns the same value was given to an observed pattern which was 

expected and the lack of expected pattern which was not observed (as was the case for 

expected pattern which was not observed and vice versa). In theory, it is unlikely that all 

these outcomes were wholly, equally likely though this scoring means that the expected 

values in the Chi-squared test of association are easier to calculate since the null hypothesis 

was that there was no significant difference between the numbers of positive and negative 

valid associations. Additionally, in practise, mitigation is built into the Chi-squared test as 

it is both distribution free and because of the application of Yates' correction which makes 

it more conservative. 

Creating the classes of analysis proved to be useful. Having the Class I method 

with which to compare against the others allowed subtleties in the data to be identified 

which could not be picked up using the others. The a priori, Class 2 groups enabled 

comparisons with the classification of sediment types employed by the British Geological 

Survey to be made in explaining the distribution of some species. Useful though Class 2 

was in general it would have been more beneficial to have surveyed a much broader range 

of substrate types though this could not be accomplished with trawl gear and would 

introduce inevitable gear related factors. Class 2 was also useful in that it offered a 

biologically relevant group (Class 2,d) and a separate group (Class 2,e) that separated out 
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those samples which contained rock which was shown (Figure 4.7, page 93, above) not to 

be well described by the particulate substrates. Class 3 employed PRIMER-E in a novel 

method by using the SIMPER routine coupled with MDS and clustering produced groups 

with the greatest inherent chance of showing significant associations between species and 

substrate presence/absence data. This was shown to be the case as described by the red 

highlighted areas on Table 8.4. 

Finally, having all nine Classes enabled occasiOns where highly variable 

associations between species and substrate presence/absence data to reinforce the not-valid 

status of un-commonly sampled species. Examples of these species are the spotted and the 

undulate ray and their descriptions start on pages 246 and 247 in section 8.3.2. 

Substrate association for non-fish species were not tested in this analysis. While it 

has identified groups of unique substrate categories best suited to this task (Class 3,c) this 

procedure is waiting for detailed knowledge to be more widely available. Databases of 

invertebrate distributions (e.g. the Marine Life Identification Network; and the National 

Biodiversity Network) are being developed to the point where they are suitable for this task 

and, being expanded in terms of their detail and scope. Increasing emphasis is being 

placed on species level analysis with environmental information (e.g. Hiscock et al., 2004) 

as a means of understanding the wider importance of species assemblages. This analysis is 

in preparation and will have the advantage however, that most of the non-fish species 

sampled are more truly benthic in nature. 

Other areas where this analysis can be advanced will be the inclusion of abundance 

to replace presence/absence in the species data and to generate a better understanding of 

the substrate data such that these can be generated as relative amounts. 
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Chapter 9 

9 Relationship between the sample and the 

haul based on their species composition 

9.1 Introduction 
All the previous Chapters have dealt with the description of the sample data (Aim 1) or its 

relationship with abiotic data (Aim 2) through the Sample and Environment Themes 

(Figure 1.4, page 17, above). In order to scale the sample into a larger and wider context, 

it is necessary to relate the sample data to the haul. The description around Table 0.1, 

page 351 and Table 3.6, page 64 (above) account for the artefacts in the data responsible 

for the variation in total sample weight and the composition of samples in terms of the 

fishes; landings "1", discards "d" and non-fish material "n", Chapter 5 and Chapter 6 also 

explored the relationship within the samples. The next step is to describe how well the 

sample landings data "I" describes the landed haul composition "L" and this is the aim of 

this Chapter. Figure 1.3, page 16 (above) shows the conceptual model for this. The 

rationale was to establish how well the landed sample taken describes the landed haul 

based on the species composition of both. The output from this analysis allows the 

comparison of the haul to the throughput of the market to be made, (which is the subject of 

Chapter 1 0) to assess how representative were the sampled boats to their respective 

markets. Therefore, this Chapter provides the link between the analysis at the sample scale 

and the commercial market data scale. 
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The reason for this sample to haul and haul to market data analysis is that it is only 

at the sample scale where both discarded fishes and non-fish material were assessed. It is a 

future expectation that the discarded fishes and non-fish material are quantified at a much 

larger scale and this will only be possible if the sample is a good representation of the haul 

and the limits of this relationship can be described and evaluated. 

Section 9.2 introduces the haul data and proposes a model (section 9.2.2) to 

investigate how well the haul data was explained by the sample data. As part of the model 

a raising factor (see Appendix J, starting on page 392, below) is applied to the sample data. 

Two were proposed; these are compared and a choice made, as neither is perfect. 

Circumstances where the chosen raising factor might be flawed are also described. 

Potential artefacts in the sample data were explored elsewhere (around Table 0.1, page 

351 and Table 3.6, page 64, above). The haul composition data is similarly explored for 

artefacts and the performance of the pair trawling is compared to the single boat trawling 

in the results, (section 9.3). In addition, the outcome of the model analysis is presented and 

it, and the compromises that were required are discussed. In applying the sample and haul 

data to the model a decision regarding transforming the data is required. This is important 

as transforming the data compromise the full data set, meaning that some of it could not be 

used. The choice of whether to transform the data and criteria it had to meet are also 

appended to this chapter (Appendix K, starting on page 400, below). The implications of 

the compromised data set are also discussed. 

In proposing the model, it is recognised that some species may be under- or over

represented. The extent to which this occurred according to individual species is explored 

in section 9.2.2.5. 

The analysis in this Chapter is parametric in nature, however for comparison an 

equivalent and much simpler non-parametric analysis (described in section 9.2.3) is 

presented so that the suitability of the parametric analysis can be quantified and its 

performance assessed. 
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The relationship between the sample and haul in tenns of their species composition 

has also been examined in a separate study (Peach & Cotterell, in prep). 

9.2 Methods 
The sample data to be compared to the haul data was introduced in Chapter 5 and comprise 

the species by species weight by haul. As introduced in the Haul meta-data (see section 

2.2.1, page 25, above) species level infonnation on the haul composition was recorded 

with the compliance and active help of the skipper and crew. These data were recorded 

once the haul had been sorted into species or groups; gutted, washed and placed in baskets 

on deck prior to these baskets being lowered down into the fish hold and stored in square 

boxes on ice. The fishennen commonly recorded the amounts (weights) of various species 

in stones, and since the fish baskets when full hold six stones this could be checked 

visually, by tipping the contents into the marked fish basket, (Figure 2.6, page 30, above) 

or using the spring balance. The validity of the weights and volumes in the fish basket is 

presented Appendix A however the histogram (Figure K.16, page 419, below) does show 

there were features of the haul composition data due to the way they were collected. All 

the weights for the sample components were calculated in grams and the haul composition 

"L" weights in stones were first converted to grams, taking 6,364 g per stone. 

Table 3.3, (page 51, above) illustrates the fish species described by the skipper and 

crew, and which species were grouped by them for simplicity, (e.g. the gurnards and the 

rays). This produced thirty-one species or groups shown in column six ('species code, 

haul') of Table 3.3 and since the weight of these fish by species were recorded once the 

fish had been gutted, it was first necessary to raise the weights from gutted to ungutted, so 

that both groups of fish were 'round'. This factor was also shown on Table 3.3. 
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9.2.1 Haul data 
Table 2.1, (page 23, above) described the trawl gear. While there was some variability in 

the gear and amongst the vessels, it was important to determine whether these resulted in 

significant differences in the haul size. Section 3.5 (and associated Appendix D) explored 

variation in sample weight. Here the first analysis (section 9.3.1) was a similar GLM 

based analysis, which examined variation in the landed part of the haul. 

9.2.2 Description of the model and testing the data 

This section covers four areas. 

This description firstly portrays the individual sample and haul data (section 9.2.2.1 ). 

2 Next is described the raising factor that was required to standardize one set of data, 

and in order to assess the performance of the model between individual sample and 

haul data (section 9.2.2.2). 

3 This is followed by a brief description of the transformations required to enable the 

model to be valid (section 9.2.2.3). 

4 Finally, the mechanics of the testing of the model between individual sample and haul 

data is presented (section 9.2.2.4). 

9.2.2.1 Basis of model 

The model centred on a haul by haul regression of the weight by species found in the 

sample "I" against the weight by same species found in the haul composition "L" (Figure 

1.3, page 16, above). Figure 9.1 shows a graphical representation of the regression model 

populated by 'illustrative' species. 
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Figure 9.1. Graphical representation of the regression model showing weight of raised 
landed sample "I" against weight of landed component of haul "L" for eight 'illustrative' 
species, grouped according to type. 

The species as shown in Figure 9.1 were classed into four types and these are described by 

their legend and type of fish. 

The three demersal round fish species ( •, cod, whiting and gurnard) were well 

represented by the model. The raising (see section 9.2.2.2) of the sample weight to the 

haul weight produced a trend line (where y = x) and the fit of the line was very good. The 

flat fish species (o; lemon sole and plaice) were not well described by the model, with 

plaice over represented in the haul compared to the sample and the lemon sole being under 

represented in the sample compared to the haul. Nevertheless, it was expected that these 

should, to some extent, balance each other out as the model was fitted by a least squares 

regression (section 9.2.2.5 describes this more fully). 

The 'shellfish, A' represent species not present in either the sample or the haul. In 

the model, squid were found in the haul but not the sample. It is not unexpected that this 

occurred; as if it had not then the sampling would have been exhaustive, although the 

unpaired nature of these data skews the model. In contrast, crab occurred in the sample but 

not in the haul. This generated an unacceptable situation, though could occur if items were 
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overlooked in the haul composition. The case for including or excluding these data is 

examined in more detail below (see Appendix K, Table K.l and Table K.2, and associated 

text). 

The model relies on a particular species being present in both the sample and the 

haul. Section 9.3.2.2 details the occasions where species removals, due to their unpaired 

nature in the sample and the haul, were required and also tests the hypothesis that on 

average examples of larger species were more likely to require removal from the haul as 

they were under represented (and unpaired) in the sample. 

Lastly, the pelagic round fish (o; pilchard) did not occur in this haul or sample. 

The trend only represents species present therefore the line is not forced through the origin. 

9.2.2.2 Raising factors 

A model as described in Figure 9.1 was generated for each pair of sample and haul 

datasets. However in order to pool different sample and haul models together or compare 

one haul with another, or any number of others, it was necessary to scale (or raise) one set 

of data so that the slope (~) of the regression (described in Figure 9 .I) approximated I. 

This was achieved by raising the sample data. Details and evaluation of two different 

raising factors are included in Appendix J, starting on page 392, below) and all regressions 

of raised landed sample weight "I" against landed component of the haul "L" according to 

all species occurring in both are presented in Appendix L (Figure L.l to Figure L.6). 

9.2.2.3 Transformations 

After raising the sample data, transformations were applied to both the sample and haul 

data sets. Applying any common transformation compromised further analysis being 

based on the full data set due to the skew imposed by species present in the haul but not the 

sample therefore transformations that did not require the exclusion of some of the data 

were explored first. Also, common transformations were assessed for homogeneity of 
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variance and fit of model against the untransformed data by testing their performance 

against an idealised situations of double Box-Cox transformations (Sokal & Rohlf, 1981, 

p423-426 & 544) which resulted in the log(IO)(+l) being most suitable. The procedure for 

choosing and applying the transformation and the detailed criteria that the transformed data 

had to satisfy are described in Appendix K. 

9.2.2.4 Testing the data 

Once raised and transformed, the sample and haul data were each pooled and individual 

hauls were compared to the pool of all the others. This was. achieved by generating a 

regression of the raised landed sample weight "1" against the landed component of the haul 

"L" for one haul (e.g. haul 1). This regression was then compared to assess whether it was 

significantly difference in both slope and intercept to a regression of the raised landed 

sample weight "I" against the landed component of the haul "L" for all the other hauls (e.g. 

hauls 2 - 88). In other words, each haul was compared to the average of all the others. 

Although this process meant each haul was compared to a slightly different pool of the 

other hauls it meant that the haul under scrutiny did not occur in the population of hauls to 

which it was compared. 

The regression slopes and intercepts were compared using ANCOV A in 

Statgraphics (Manguistics, 2000) and the validity of these regressions was examined by 

testing the residuals for approximating a normal distribution according to the A-D test. 

9.2.2.5 Species over/under representation in the model 

In proposing the model as described in Figure 9.1 (above) it was recognised that certain 

species would be over- or under-represented and on Figure 9.1, the flat fishes demonstrated 

this. The hypothesis tested was whether, by species, the shape of the fish, its average size, 

its habit or its classification were responsible for it being over- or under-represented. 
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Whether particular species were systematically over- or under-represented, when 

comparing the sample and the haul data for the full data set of hauls, was investigated by 

examining the residual values of the model regressions pooled according to each species. 

The formal testing of the regression residuals (the over- or under-representation) was 

carried out through GLM analysis with the residual values being the dependent variable. 

The factors and covariates that were examined were: 

• The shape of the fish (according to both the "a" and "b" values in the equation W = 

aLb). "a" and "b" values were taken from Table 3.3, (page SI, above). Where several 

species formed one group on Table 3.3 (e.g. the gurnards) averages were taken of both 

"a" and "b" values as required. 

• The average length of the species. This was calculated from average length per 

species (or group of species e.g. gurnards and rays) of the landed component of the 

sample "I". 

• Whether the species were demersal, pelagic or shellfish. Table 10.1, (page 303, 

below) was used for this data. 

• The classification of the species, family, order, and class. Picton & Howson, ( 1999) 

and Appendix C (Table C. I, page 348 and Table C.2, page 349, below) were used for 

this data. 

Given that each of these factors or covariates are independent each group were analysed 

separately. 

9.2.2.6 Number of species removed as unpaired in the 

haul and sample 
Heales et al., (2003) investigated the effect of different sizes of sub samples on the 

probability that species in the haul would be missed in the sample. Here, the number of 

species in the haul that were unpaired in the sample was investigated as a function of the 

total haul size to determine whether the sampling strategy (to collect a fixed sample 

274 



Chapter 9 

volume from a variable haul size was robust. This was undertaken as a regression analysis 

of hauls size against number of species removed, and as a factor analysis of the number of 

removals according to port and type of trawling. 

9.2.3 Non-parametric analysis 
This model described in Figure 9.1 (page 271, above) being based on regression analysis 

was parametric in nature. The parallel non-parametric analysis was undertaken to assess 

its performance. Two analyses were used. 

PRIMER-E (Ciarke & Warwick, (2001a) offers a matrix comparison test, based 

around the Mantel test (Mantel, 1967;Rohlf, 1988). This conceptually simple test using the 

RELATE feature produces a Mantel statistic (M) which is a correlation (or matching) 

coefficient, although PRIMER-E generates a non-parametric Spearman's rank-order 

correlation (r,). 

The starting point for this analysis was the two site species matrices, which require 

at least one example of commonality between the two of the landings component of the 

fish basket sample "I" and the landed part of the haul "L". To be consistent the sample 

data was raised (see section 9.2.2.2, (above) and Appendix J, starting on page 392, below) 

to the haul data (though this process would not have adjusted the rank-order within the 

matrix). RELATE in PRIMER-E (Ciarke & Warwick, 2001a) is based on comparing the 

similarity matrices rather than the initial site species matrices. The similarity matrices 

were created using the Bray-Curtis similarity measures and based on double square root 

transformed data (in keeping with Appendix G). 

The second non-parametric analysis was a corollary to the ANCOV A comparison 

of the regression lines. This was a rank-order analysis of the species present in both the 

sample and the haul and employed the Wilcoxon signed ranks test (Zar, 1999, p 165). 
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Dytham, (1999, p75) further suggests, " ... a minimum of six pairs of data [are] required 

before the test can be carried out." 

The performance of the parametric model was compared to the non-parametric 

analysis (for those hauls which the assessment was possible) through examination the 

significance values (as correlations) of the parametric and non-parametric models, since it 

was expected that hauls well described by their sample in the parametric model should also 

similarly be well described in terms of the non-parametric analysis. 

9.3 Results 

9.3 .1 Haul data 
Table 9.1 shows the possible reasons (from a full factor GLM) for variation in the size of 

the landed component "L" according to a variety of factors and covariates. 

Table 9.1. Full factor GLM testing the size of the landed component "L" for: wind = wind 
speed (knots) encountered, dur =duration of tow (mins), dep =depth of haul (m), speed= 
speed of tow (ms.1

), d/n/t =time of haul (day/night/twilight), trip#= sequential trip aboard 
that particular boat, port & type = port and type of trawling (pair or single boat) and 
interaction factors. Note that covariances are not dealt with as interactions, and no 
interactions generated zero d. f. Significant interactions are highlighted. 

source d.f. Fvalue Pvalue 
corrected model 40 4.359 < 0.001 
intercept 1 0.429 0.516 
wind 1 2.376 0.130 
dur 1 0.159 0.692 
dep 1 0.461 0.500 
speed 1 0.043 0.836 
trip# 3 1.548 0.215 
d/n/t 2 1.696 0.194 
port & type 5 6.447 < 0.001 
trip # * d/n/t 6 0.810 0.567 -
trip # * port & type 14 3.181 0.001 
d/n/t * port & type 3 0.488 0.692 
trip # * d/n/t * port & type 2 0.105 0.901 
error 47 
total 88 
corrected total 87 
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Only port and type of trawling, (and relationships involving this factor) generated 

significant interactions for the total size of the landed component. The Levene's test of 

equality of error variance returned P < 0.001 and suggests that the variance was not evenly 

distributed for the chosen factors; therefore, Table 9.1 should be interpreted with a degree 

of caution. Nevertheless, none of the other results in Table 9.1 were close to the P = 0.05 

level of significance. R2 = 0.788 for the GLM in Table 9.1, though the adjusted R2 = 0.607 

suggesting the model is well described by the data. Figure 9.2 shows the total landed 

component of the haul for the four ports and two types of fishing. 
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Figure 9 .2. Average and 95 % confidence intervals of total landed component (kg) of the 
haul according to port and type of trawling, N- = Newlyn, L- = Looe, P- =Plymouth, S- = 
Salcombe; -S = single boat trawling, -P =pair boat trawling. 

As expected the pair boat trawling yielded the greatest landed component with a degree of 

similarity amongst the average weight by haul of the single boat operations, though if the 

average total weight was calculated by boat, (i.e. the values for pair boat trawling are 

halved) then the result are as depicted by Figure 9.3. 
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Figure 9.3. Average and 95% confidence intervals of total landed component (kg) 
according to the number of boats involved according to port and type of trawling, N- = 
Newlyn, L- = Looe, P- = Plymouth, S- = Salcombe; -S = single boat trawling, -P = pair 
boat trawling. 

Figure 9.3 shows that the largest average landed component (Newlyn) came from the 

largest boat (with by far the greatest engine power, see section 2.1), although this did not 

result in significant differences. Also, that pair boat trawling was less productive (as 

measured by the landed component) than single boat trawling. 

Table 9.2 shows the results of the GLM where the landed component was halved 

for the pair boats operations. 
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Table 9.2. Full factor GLM testing the size of the landed component "L" per number of 
boats involved for: wind= wind speed (knots) encountered, dur =duration of tow (mins), 
dep = depth of haul (m), speed = speed of tow (ms-1

), trip # = sequential trip aboard that 
particular boat, d/n/t =time of haul (day/night/twilight), port= port of sailing, type =type 
of trawling (pair or single boat) and interaction factors. Note that covariances are not dealt 
with as interactions and the interactions of d/n/t * type, trip # * dlnlt * type, d/n/t * port * 
type, and trip# * d/n/t * port * type generated zero d. f. 

source d.f. Fvalue Pvalue 
corrected model 40 1.234 0.243 
intercept 1 1.990 0.165 
wind 1 1.510 0.225 
dur 1 0.304 0.584 
dep 1 0.193 0.662 
speed 1 0.002 0.963 
trip# 3 1.463 0.237 
dlnlt 2 0.567 0.571 
port 3 1.074 0.369 
type 1 0.009 0.924 
trip # • d/n/t 6 0.821 0.559 
trip# • port 9 1.615 0.138 
dlnlt • port 3 0.575 0.634 
trip # • dlnlt • port 2 1.297 0.283 
trip# • ty 3 0.824 0.487 
port • ty 1 0.828 0.367 
trip # • port • type 2 0.191 0.827 
error 47 
total 88 
corrected total 87 

Table 9.2 shows that after dividing the landed part of the hauls by the number of boats 

involved in the operation there were no significance difference in the size of the landed 

component. This GLM was valid as P = 0.652 according to the Levene's test of equality 

of error variance and the R2 = 0.5 12. The great difference in the Levene's test between this 

GLM and Table 9.1 suggested that much of the variance in the above GLM was due to the 

very different size of the landed part of the haul according to whether the operation was 

from single or pair boats: 

The GLM in Table 9.2 adequately showed there were no artefacts in terms of the 

factors and covariates that bias the relative size of the landed component of the haul "L" 

according to the number of boats in the operation. This is important as it confirmed the 

lack of difference in landed part of the haul. Interactions involving type of trawling 

returned zero d.f. due to the inability to nest type of trawling within port of sailing (as 

explained on page 351 below). 
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9.3 .2 Model output 
Figure K.l4 (page 417, below, in Appendix K) shows the full set of raised and log 

transformed landed sample weight data (employing the more simple raising factor 2, 

validated in Appendix J) against the adjusted (gutted to ungutted) weight of landed species 

within the haul for species present in both the sample and the haul; (y = 0.85 17x + 0.609, 

R2 = 0.5349. 

Figure 9.4 shows the same data though arranged to present the model output for 

haul I, (the first of two hauls taken on board a single trawl boat from Looe on 24/04/98) 

and the regression for the data in haul I compared to hauls 2 to 88 inclusive. Thus, it 

shows the full data set split into the haul under scrutiny (haul I) and all the others (hauls 2 

to 88). 
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Figure 9.4. Weight as log10 (g) of raised landed sample "1" against weight as log (g) of 
landed component of haul "L" showing the data and slope for hau11, (n = 9) compared to 
the data and slope for all other (2- 88) hauls, (n = 768). 

The comparison of the two regressiOn lines described in Figure 9.4, carried out in 

Statgraphics, (Manguistics, 2000) suggested that the regressions were not significantly 

different for intercept, or slope, (ANCOVA intercept P = 0.840; slope P = 0.442, d.f. = 1). 

Figure 9.4 illustrated the model for one haul. Rather than show all individual 

comparisons in this way Figure 9.5 shows a scatter plot of the intercept and slope 

AN COV A P values for all hauls, (n = 88) generated when comparing the regression of 

landed sample species "1" against landed haul species "L" for each haul (haul 1, haul 2 

... haul 88) compared to the pool of all the others (haul 2 to 88, haul 1 and 3 to 88 ... haul I 

to 87). 
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Figure 9.5. Scatter plot showing slope and intercept P values, results of ANCOVA 
(comparison of slopes) between weight as log10 (g) of raised landed sample "1" against 
weight as log (g) of landed component of haul "L" for each individual haul (n = 1) and the 
sum of all the others (n = 87). The data are numbered by sequential hauls (Table 3.2, page 
49, above and labelled according to port and type of trawling, N- = Newlyn, L- = Looe, P
= Plymouth, S- = Salcombe; -S = single boat trawling, -P = pair boat trawling. 

The two red lines on Figure 9.5 denote values of P = 0.05 for slope and intercept. Only on 

two occasions were the slopes of the regression lines between particular hauls and the pool 

of all the others significantly different (hauls 60 and 69) and on three occasions were 

intercepts similarly significantly different (hauls 12, 84 and 87). There was also one haul 

(# 56) that was significantly different to the rest for both slope and intercept and there did 

not appear to be a trend evident in the scatter of Figure 9.5 in terms of port and type of 

trawling. Figure 9.5 does show that for the majority of hauls (96% of them) the species 
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composition of the samples was not significantly different to the species composition of 

the haul itself; therefore, these hauls were well described (statistically significant) by their 

sample. Section 9.3.3 further describes the hauls that were not significantly well described 

by their samples. 

Figure 9.5 represented a compact way of illustrating this rather than showing all 88 

graphs similar to that shown in Figure 9.4, above. Appendix L (Figure L.l to Figure L.6) 

presents the untransformed weight of raised landings against weight of haul composition 

for the 88 hauls. These graphs display only those species present in both the sample and 

the haul, and are complete with regression statistics and r2 values. These figures also show 

the range of the fit between the two plotted data sets, though as the size of the haul varied 

the axes scales also differ. 

There were 10 hauls (numbers 4, 7, 23, 27, 33, 38, 44, 68, 70 and 86, denoted with 

an asterisk on Figure 9.5) where the regression model was not strictly valid in that the 

regression residuals did not approximate a normal distribution (according to the A-D test at 

the 5 % level), though for all of these hauls mentioned there was not a significant 

difference between either the intercept or slope ANCOV As for the model outcome. 

9.3.2.1 Species over/under representation in the model 

Figure 9.6 shows (according to species) the average and (generally) 95 % C.l. of the 

residuals from the regression of eo-occurring raised (and transformed) landed sample data 

"1" against gutted to ungutted transformed landed haul data "L" (derived from the 

regression shown in Figure K.l4). 
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Figure 9 .6. Average and 95 * % C.I. of residuals according to species (in order of average 
residual values) present in both the sample and the haul. See Table 3.3 (page 51, above) 
for a list of species and codes, (*66% C.I. are shown for herring, scallops, crabs and brill, 
and averages only for pilchards, shad, and wrasse). 

Ling was the most under-represented species in the sample "1" when compared to the haul 

"L" and brill was the most over-represented species, though the over-representation was 

generally smaller (by species) than the under-representation according to species. The 

formal testing of over and under representation of species are summarised in the GLM 

outputs in Table 9.3. 

Table 9.3. Significance and validity (only for factors and not covariates) of the residuals 
against the shape of the fish ("a" and "b" values), the average length according to species, 
whether the species were demersal, pelagic or shellfish and the species' classification. 

factor* or covarlate1 
significance, validity, (P value from Levene's 

(P value) test of equality of variance) 
"a" value' 0.237 * 
"b" value' 0.517 * 

length of fish' 0.783 * 
demersal, pelagic or shellfish* 0.219 0.913 
family* 0.841 0.229 
order* 0.801 0.180 
class* 0.673 0.466 
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None of the factors or covariates described in section 9.2.2.5 produced significant 

interactions as shown in Table 9.3 suggesting the under-and over-representation of species 

present in both the sample and the haul was not due to shape or size of fish, functional type 

of the fishes or according to taxonomic classification. 

9.3.2.2 Number of species removed as unpaired in the 

haul and sample 
Figure 9.1 (above) graphically displayed the rationale (maintaining a good line of best fit) 

for excluding species present in the haul but not present in the sample and Figure K.6 

(page 408, below) showed that this was indeed necessary and Table K.l (page 402, below) 

showed how many data were excluded for this analysis. The exclusion however removed a 

proportion of the sample data which while justified in the analysis and expected because 

the sample was a sub-set of the haul it was nevertheless large (35 %). Figure 9.7 shows a 

frequency histogram of the number of species removed for all 88 hauls. 
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Figure 9. 7. Frequency of the species removed from each haul due to being present in the 
haul "L" but not in the sample "1", n = 270. 

285 



Chapter 9 

It is apparent from Figure 9.7 that for 7 hauls no species needed to be removed and the 

most common number or removals was 4. As evident the distribution in Figure 9.7 is right 

skewed (g1 = 0.621), and large numbers of removals of species(;::: 5) were very uncommon. 

How these removals break down according to species present in the landed part of the haul 

but not present in the landed part of the sample is shown in Table 9.4. 

Table 9.4. Number of times species (or groups) were removed for analysis because they 
occurred only in the haul and not in the sample. See Table 3.3, on page 51 (above) for a 
list of species and species codes. 

I 
# #in # #in 

sp removed both o/o sp removed both o/o 
RAY 31 38 82 MUR 6 12 50 
LIN 22 6 367 PLE 6 44 14 
MON 22 22 100 BIB 4 49 8 
SOL 20 5 400 BSE 4 6 67 
HOM 17 26 65 DAB 4 23 17 
LSD 16 25 64 HAD 4 5 80 
COD 15 51 29 sac 4 77 5 
MEG 15 30 50 CTL 2 6 33 
POL 13 14 93 FLE 2 13 15 
CRE 11 3 367 PIL 2 1 200 
WHG 11 56 20 GUX 1 82 1 
BLL 9 3 300 HER 1 3 33 
sex 9 3 300 MAC 0 15 0 
LEM 7 75 9 SHD 0 1 0 
HKE 6 32 19 WRA 0 1 0 
JOD 6 50 12 TOTAL 270 777 

The order of the species (or groups) in Table 9.4 was according to the numbers removed, 

and it is clear that rays, then ling and monkfish occurred most commonly in the haul but 

not in the sample. Conversely, there was only one occasion on which gurnards were found 

in the haul but not in the sample. While much rarer in the haul herring were only once 

missed in the sample when present in the haul. Shad and wrasses were rare too but never 

missed when sampling. 

Examining the list of groups in Table 9.4 it appear that physically larger species or 

groups more often occurred in the haul but were not present in the sample. This was 

shown to be the case by a (two-tailed) Spearman's rank-order correlations between the 

average fish length by species and the number of times that species was unpaired, (r, = 
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0.448, n = 31, P = 0.008). The (two-tailed) Speannan's rank-order correlations was chosen 

since while the average length of fishes in Table 9.4 approximated a normal distribution 

according to the A-D test (A2 = 0.435, n = 31, P = 0.281) the number of removals do not 

(A2 = 1.059, n = 31, P = 0.008). 

A further degree of bias was evident in the sample to haul analysis. The number of 

unpaired species in the sample and the haul increased as the haul size increased according 

to the relationship /og10 y = 0.036x = +5.184, R2 = 0.144, where y = the total haul weight 

and x = the nwnber of species removed so that only paired species remained. While the 

equation explains only 14 % of the variation in the total haul size, the result was 

nevertheless significant (P < 0.001). Total haul size was log transformed as with this 

transformation the residuals approximated a normal distribution according to the A-D test 

(A2 = 0.593, n = 88, P = 0.118). According to the K-W test, there were no significant 

differences between in the number of species removed according to port and type of 

trawling (H = 9.13, d.f. = 5, P = 0.104, adjusted for ties). The K-W test was chosen as the 

number of removals did not approximate a normal distribution according to the A-D test 

(A 2 = 1.453, n = 88, P < 0.005). Indeed the average number of species removed for all the 

pair trawl samples (mean ± s.d. = 3.65 ± 1.22, n = 17) was less than the number for the 

equivalent (Looe and Plymouth) single boat hauls (mean± s.d. = 2.42 ± 1.57 n = 19). 

9.3.3 Non-parametric analysis and comparison with 

parametric analysis 

RELATE in PRIMER-E (based on comparing the Bray-Curtis derived and double square 

root transformed data (in keeping with Appendix G) of the similarity measures (the landed 

sample and landed haul data rather than the initial site species matrices) produced r 5 = 

0.715, P = 0.001, showing that the two matrices were significantly similar. The 

comparable (Sokal & Rohlf, 1995, p817-818;Dytham, 1999, pl69) parametric, multiple R, 
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of the model in Figure K.14 417 (below) was slightly higher at R = 0. 731, though both 

procedures produced superficially similar significance levels P = 0.001 and P < 0.001 

respectively. 

Limiting the Wilcoxon signed ranks test to occasions where there were 6 or more 

species in both the landed sample and landed haul meant that only 82 hauls could be 

examined with numbers 13, 18, 37, 50, 77, 87 being excluded. There were however often 

more species present in both the landed part of the sample and haul (mean ± s.d. = 8.8 ± 

2.4). Figure 9.8 shows the outcome of the Wilcoxon signed ranks tests comparing the 

order of species eo-occurring in both the landed part of the sample and haul. 
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Figure 9.8. Frequency histogram of P values from Wilcoxon signed ranks tests between 
the landed species in the sample and haul where n (number of species in both) 2. 6 (n = 82). 

Figure 9.8 shows that in only 3 out of the tested 82 hauls(~ 4 %) were the rank-order of 

the species common to both the landed part of the sample and landed part of the haul 

significantly different according to the Wilcoxon signed ranks tests. Figure 9.8 can be 

thought of as a !-dimensional representation of the 2-dimensional plot in Figure 9.5. 

While there were no sample to hauls analyses which were not analysable by the 

parametric method 6 hauls failed to satisfy the criteria (Dytham, 1999, p75) for comparing 
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the eo-occurring landed sample and haul data according to species so it appears that the 

non-parametric methods were robust and reliable, however the correlation between the P 

values for either slope or intercept when compared to the P values as generated by the non

parametric Wilcoxon signed ranks test were low; (slope and non-parametric rs = - 0.131, n 

= 82, P = 0.239; intercept and non-parametric rs = 0.120, n = 82, P = 0.339). Thus, while 

the non-parametric method seemed superficially better in some respects it has failed to 

accurately describe the data. This is borne out by examining the hauls that the parametric 

model suggested were significantly different to the pool of all the others. Figure 9.9 shows 

the six hauls which were not significantly well described by their sample. 
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Figure 9.9. Weight as log10 (g) of raised landed sample "l" against weight as log (g) of 
haul composition/landed component of haul "L" showing the data and slope for [left, top to 
bottom] hauls 12, 84 and 87 and [right, top to bottom] hauls 60, 69 and 56. Each haul is 
compared to the pool of all the other. Regression equations for the haul are top left and for 
the pool are bottom right on each figure. 

290 



Chapter 9 

The left side of Figure 9.9 shows three hauls (numbers 12, 84 and 87). The parametric 

model suggested these hauls were significantly different to the pool for intercept. The 

right side of Figure 9.9 shows two hauls (numbers 60 and 69) and the parametric model 

suggested these hauls were significantly different to the pool for slope. Also on the right is 

the single haul (number 56) which the parametric model suggested was significantly 

different to the pool for both intercept and slope. In examining the plots on Figure 9.9, it 

was generally obvious that the hauls differed to the pool as described. Table 9.5 shows the 

outcome of the non parametric Wilcoxon signed ranks tests for these hauls. 

Table 9.5. Wilcoxon signed ranks test statistic (Z), number of observations and 
significance (P) value for the same hauls as shown in Figure 9.9. The data are also 
arranged in the same order as was shown in Figure 9.9. 

# I z n p # z n p 

12 
I 

-1.067 11 0.286 60 -0.845 7 0.398 
84 -0.524 6 0.600 69 -0.943 13 0.345 
87 I • 4 • 56 -0.169 7 0.866 

According to Table 9.5 the Wilcoxon signed ranks test was not able to detect a significant 

difference between the rank-order of eo-occurring species in the sample and haul data. 

Haul 87 did not have sufficient eo-occurring species for the test to be conducted. 

It appears therefore that while the derived non-parametric matrix comparison of the 

sample and haul may be valid it is not acceptable to compare the rank-order of species 

present in each when a parametric method can be applied. 

9.4 Discussion 

9.4 .1 Haul data 
The haul data showed that pair trawling did generate about twice the landed haul of single 

boat trawling. Importantly though, according to the number of vessels there was no 
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significant difference in the landed part of the haul by port and type of trawling. However 

many other factors may influence skippers' decisions as whether to pair trawl, or operate 

independently. In my experience, (and supported by Gray, 1995;Pawson et al., 2002) the 

skippers in this study preferred to operate independently and only tended to pair trawl for 

two reasons. Firstly, if they expected the fishing yield to be relatively poor and by pairing 

they split the risk (and return). This was most commonly found during the period early in 

the New Year when whiting were the target species. Also during the late summer when 

there were few aggregations of fish and squid may become more plentiful. The second 

reason was if the boats are short of crew. Here rather than requiring one crewmember per 

boat, they only really need one crewmember between the boats, though this means that 

everyone in the pair team is required to work very hard. In addition, there is the added 

complication and potential hazard of possibly transferring the crewmember between boats 

to work on the haul, or lifting and processing the haul onto only one boat. One-man 

operation of a fishing boat (however it is engaged) is very hazardous. Fishermen in this 

study told me of several accidents which were due to the one-man operation of fishing 

boats though when operating as a pair some of these risks are reduced. 

9.4.2 Model output 
The minimum number of species present in both the landed part of the sample and haul 

was 4. This was relevant since this is the minimum number of points required to 

accurately describe a regression or apply a confidence interval, thus Figure 9.4, on page 

281 and Figure 9.5, page 282 (above) derived from it and Appendix L (Figure L.l to 

Figure L.6) display regression plots which are valid in this feature. 

The variability of the raised landed sample values against the landed haul 

composition data was expressed (according to each haul) in r2 < l. The lack of goodness 

of fit of the model was due to the over or under representation of sampled species when 
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compared to the haul, though this was not related to features of the fishes' shape, size, life-

style or taxonomy. 

That physically larger species or groups more often occurred in the haul but were 

not present in the sample suggested a not unexpected bias in the fish basket sampling 

method. Also, that the number of species removed was positively (though poorly) related 

to the size of the landed part of the haul showed another bias in the method, although 

trends in the number of species removed did not suggest that the basket method of 

sampling was unrepresentative for the size of samples and hauls in this study. 

9.5 Conclusions 
This section has described how effective the sub-sampling of the haul has been and that, 

generally, a sub-sample of one basket of fish from the cod end was a statistically 

significantly similar representation of the haul for 97 % of the samples when the 

AN COV A model described above is examined for slope only. This dropped to 95 % 

where the sample was a statistically significantly similar representative of the haul for 

intercept only. 94 % of the samples were statistically significantly similar to the haul for 

both intercept and slope of the model as described above. 

This analysis has required several components of the data to be removed, though 

this has been justified, and analysis was made on the removed data. Additionally, two 

raising factors were compared for their ability to describe the data. In addition, several 

transformations were compared though the best transformation of the data turned out to be 

the log10 (x+ l) and this was rigorously tested. 

The analysis carried out in this Chapter was important because, in scale, it was 

positioned between the small scale of the sample (Chapter 5 and Chapter 6) and the 

throughput of the market (see Chapter 10). It was necessary to describe the relationship 

293 



-
I' 

' 

' ' - • • ~ -. - I . I I -; , I 

!J?:!!tw"e~•.the' C~mposition'l ~fjspecies :fn;~til~ ·Sl;lffipib: ailct tfie ihatil ,tolj~iJ:i.i the~e t\VO; disparate 
I , I " • _ I 

294 

\' ... 
' 

I 

I 



Chapter 10 

Chapter 10 

10 The relationship between the haul 
• species composition and commercial 

market data 

10.1 Introduction 
Chapter 5 and Chapter 6 examined the sample and Chapter 9 showed that in most cases the 

sample was a good descriptor of the haul. This chapter explores the larger scale of the 

relationship between the landed part of the haul and the market data, asking the question: 

how representative were sampled boats to the throughput of their respective ports? The 

outcome of this analysis will allow a future examination of discarding at the level of the 

Market though here it completes the scaling of the sampling Aims in describing the region 

(ICES VIle). 

Market sampling does not feature strongly in the published literature though its 

obvious time and cost benefits (Agger et al., 1974) suggest that it would be useful to link 

the operation of a vessel with the activity of the market. Using market statistics to derive 

information about the features of the stock are rare (Bromley, 2000; 2003) and there are no 

published sources where individual hauls are compared to the market throughput, although 

being able to make this link may allow predictions on the market data to be made from 

sampling relatively few representative vessels or conversely, knowledge of the impact of 

trawling to be determined from market throughput. The aim of this Chapter was to 
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determine how representative were the studied vessels to their respective markets to 

determine whether these scaling-up or scaling-down assessments can be made. The four 

ports studied here also differed qualitatively in their use and quantitatively in their size; 

therefore, it was also possible to assess the scale of the relationship. 

10.2 Methods 
This aim of this Chapter was achieved through a pair-wise analysis of species (or 

aggregated groups of species) between commercial landings from market data and a list 

from boats sampled in this study. 

The first part of the Methods (section I 0.2.1) describes the data sources and 

compares and contrasts the character of each port and describes their demersal, pelagic and 

shellfish components. In order to generate a paired relationship between the species in the 

sample and market data a two-stage examination of the species composition was required 

(section 10.2.2 and 10.2.3). Section 10.2.4 presents the resulting species list and section 

I 0.2.4.1 analyses whether it was best to compare the haul data with quarterly or monthly 

derived market data. The fmal part (section I 0.2.5) describes a process whereby the bias in 

the market data due to the presence of types of fishing boat not sampled in this study was 

considered. 

1 0. 2.1 Data sources 
The landed part of the haul was introduced in Figure 1.3 and described in detail in Chapter 

9. In order to relate these data to the throughput of the fish markets data at two scales of 

resolution were employed. 
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• Annual landings data for Newlyn, Looe, Plymouth and Salcombe from 1990 to 200 I 

inclusive. This was to provide a broad historical overview of the performance and 

inter-annual variability of the four ports. 

• Monthly data from the same four ports during 1998, 1999 and 2000 (the period of this 

study). This was the finest scale data available. 

The main source for annual data by port was MAFF/DEFRA, (1990-2001) which were 

whole numbers of tonnes (quantity) or pounds (value). 

The ports included in MAFF/DEFRA, (1990-2001) varied over time. Only 

Plymouth and Newlyn were included for the entire period. Looe first appeared in the data 

in 1993 though Salcombe, (not being in the top fifty ports by quantity of landings) was 

combined into "Other South Coast Ports." The reasons for the exclusion of both Salcombe 

and Looe, (until 1993) is contained in explanatory notes seven and eight (MAFF/DEFRA, 

1990-200 I, p 1) which detail some of the shortfalls of using these data. These explanatory 

notes are included and rationalised below: 

Explanatory note seven 

"There is no statutory requirement for owners of vessels 10 metres and under overall 
length to declare their catches. Information for this Sector is collected with the co
operation of the industry: it comprises log sheets and landings declarations voluntarily 
supplied by fishermen and assessments of landings derived from market sources and by 
correspondents located in these ports. Also full documentation is not required for most 
fishing for non-TAC species, including shellfish, and summary records are compiled using 
information supplied voluntarily by the industry, from a variety of local sources and 
surveys run by Sea Fisheries Committees. Where assessments are made, the information 
may not be fully disaggregated by port. At the most detailed level, the figures shown may 
not therefore be complete." 

Vessels 10 metres and under in overall length vary in the significance to which they 

contribute in the ports of Newlyn, Plymouth, Looe, and Salcombe, (their contribution 

increasing in order as listed (Gray, 199S;Pawson et al., 2002). 
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Explanatory note eight 

"Certain ports have been combined geographically to safeguard commercial 
confidentiality." 

This statement is of particular relevance to the port of Salcombe of the four studied here, 

where on average approximately 600 tonnes of crabs are landed annually (see Figure I 0.2, 

page 300, below), by the potting fleet, which are by far the majority of the boats using the 

port. In comparison, a few tonnes of demersal fish are landed by a handful of trawlers 

operating as day boats, (Devon Sea Fisheries pers corn.). 

Annual data for 1990 to 200 I for Salcombe and 1990 to 1992 for Looe was 

obtained directly from the Fish Statistical Unit of DEFRA, (London, pers corn.). The list 

of species described in MAFF/DEFRA, (1990-2001) were slightly different to those as 

supplied by DEFRA with the species list supplied by DEFRA being more comprehensive. 

Also, the species list in MAFF/DEFRA, (1990-2001) changed over time, from 1990 to 

1993 inclusive having a few less common species added to them, but from 1994 to 200 I 

they remained unchanged. In order to allow comparability between ports the lists were 

adapted so that they all featured the same species list of the later years, with the additional 

data being again supplied by the Fish Statistical Unit of DEFRA, (London, pers corn.). 

The next section describes the market throughput of the ports and their demersal, 

pelagic and shellfish composition. 

10.2.1.1 Port throughput 

Figure I 0.1 shows that of the four ports sampled two can be described as large and the 

other two as small. 
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Figure 10.1. Annual total throughput of four ports (Newlyn, Looe, Plymouth and 
Salcombe) from 1990 to 2001. Source, MAFF/DEFRA, (1990-2001) and London (pers 
corn). 

There was also considerable variation in the landings through Plymouth (evident on Figure 

10.1 and explained below) though there is a greater degree of stability in the data reported 

for the other ports. 

10.2.1.2 Individual ports 
The landings composition according to totals of demersal, pelagic and shellfish groups 

(Figure 1 0.2) for the same years as described in Figure 10.1 shows how these ports differ 

in their constituent components. 
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Figure 10.2. Annual landings data (tones) for (top to bottom) Newlyn, Looe, Plymouth 
and Salcombe as total demersal, total pelagic and total shellfish. Note the different scales 
for Newlyn and Plymouth, and Looe and Salcombe. Source, MAFF/DEFRA, (1990-2001) 
and London (pers com). 
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The display of ports in Figure 1 0.2 are in the order they are generally shown; 

geographically from west to east. However, given the general similarity between Newlyn 

and Plymouth, and Looe and Salcombe here are discussed in this order. 

Figure 10.2 shows that landings into Newlyn was dominated by demersal species, 

though this group has generally been declining between 1990 and 2001. Numerically and 

consistently there have been larger landings of shellfish than pelagic species and the 

amount of these latter two groups has increased so that the overall landing (by weight) 

through the market has remained relatively static (average across the 12 years from 1990 to 

2001 = 10,375 t; 95% C.l. = 911 t). The port ofNewlyn is dominated by a beam-trawl 

fleet (Gray, 1995 ;Pawson et al., 2002), though the change in numbers of these vessels over 

time has influenced the species composition through the market (Hawke,pers corn.). 

Landings into Plymouth conversely were dominated by fluctuating levels (around 

10,000 t to 14,000 t) of pelagic fish, with much less throughput of shellfish. Demersal fish 

landings are consistently smaller in magnitude. The fluctuation in the weight of pelagic 

fishes through Plymouth also dominated the total annual landings (Figure 10.1 ), and was 

due to varying numbers of non-resident vessels landing into the port. Overall, vessels 

landed more fishes into Plymouth than Newlyn, (average across the 12 years from 1990 to 

2001 = 13,934 t; 95% C.l. = 1,880 t). 

Looe has seen quite regular three-yearly cycles of better and worse landings of 

demersal fishes, though there has been a general decline in the period shown in Figure 

1 0.2. The landing of pelagic fishes was the next largest component and these have been 

increasing, occasionally eclipsing the landings of demersal fishes. This was most likely 

due to the increasing popularity of handlining for mackerel, which can yield 1,200 kg per 

man per day, (Pawson et al., 2002). Generally, fewer shellfish were landed than pelagic 

fishes. The decline in demersal fishes coupled to the increase in pelagic and trend in 

landings of shellfish has kept the total landings (Figure I 0.1) relatively constant (average 

across the 12 years from 1990 to 2001 = 2,097 t; 95 % C.L = 188 t). 
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Landings into Salcombe were dominated by shellfish. Up to 1996, these landings 

were quite stable around 600 t, though after 1997 levels have doubled. In comparison the 

landings of pelagic and demersal fishes were very small, with approximately, three times 

the landings of demersal (18 t) to pelagic (6 t). 

1 0.2.2 Species composition across all ports: Initial 

species aggregations 
Table I 0.1 shows the full demersal, pelagic and shellfish species list (as common names) 

reported by MAFF/DEFRA, (1990-2001). 
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Table 10.1. Species list (to be read in newspaper style columns) as common names for landings from MAFF/DEFRA, (1990-2001). Species in blue (e.g. 
Bass are those re orted. S cies in black e. . Dabs are subdivided further into those s ecies coloured in red e. . Lon Rou Dabs and Dabs . 

Bass Megrim Roes WRASSES Spider Crabs 
Blue Ling Monks or Anglers Other Demersal WRECKFISH Stone Crab 
Sea Breams Mullet ALFONSINO (BERYX) Total Demersal Velvet Crabs 
Brill Grey Mullet BLACK SEABREAM Herring King Crab 
Catfish Red Mullet BAUAN WRASSE Horse Mackerel Lobster 
Cod Plaice BLACK SCABBARD FISH Mackerel Lobsters 
Conger Eels Pollack EELS Pilchards Lobster - Squat 
Dabs Redfishes DEEP-WATER CARDINAL FISH Sprats Mussels 

Long Rough Dabs Saithe TOPE Other Pelagic Nephrops 
Dabs Sandeels FORKED BEARD ALBACORE Oysters 

Dogfish Sharks JOHN DORY ANCHOVY Native Oysters 
Birdbeak Dogfish Angel Shark LUMPFISH GARFISH Pacific Oysters 
Black Dogfish Blue Shark LIVERS - OIL SHAD Portuguese Oysters 
Blackmouth Dogfish Frilled Shark LIVERS- RAW SILVER SMELT Winkles 
Greater Spotted Dogfish Great Lantemshark LOPHIUS PISCATORIUS (BSDB) SUNFISH Queen Scallops 
Knifetooth Dogfish Greenland Shark MIXED DEMERSAL SWORDFISH Scallops 
Lesser Spotted Dogfish Kitefin Shark (Darkie Charfie) NORWAY POUT Total Pelagic Shrimps/Prawns 
Longnose Velvet Dogfish Leafscale Gulper Shark RABBIT FISH(RATIAIL) Clams Brown Shrimps 
Portuguese Dogfish (Shark) Sailfin Roughshark (SharpbacJ() BLUEMOUTH (BLUE MOUTH REDFISH) Clams (M. arenaria) CLS Deep Sea Shrimps 
Spurdog Sharks ROUGHEAD GRENADIER Clams (M. mercenaria) CLH Mixed Shrimps 
DogfiSh (Scyflorhinidae) Srx-Gilled Shark GRENADIER Clams (V.decussata) CTG Pink Shrimps 
Umdentified Dogfish Mako Shark SALMON Manilfa Clam CLM European Squid 

Flounder or Flukes Porbeagle GILT HEAD SEABREAM Mtxed Clams CLX Squid 
Gurnard Skates and Rays RED (BLACKSPOT) SEABREAM Cockles Mixed Squid 

Gumards- Grey Sole RED SCORPION FISH Crabs Squid 
Gumards- Red Sand Sole SMOOTHHOUND Crabs - Other Whelks 
Gumard And Latchet Sole SAND SMELT Crabs (C. p. Female) Other Shellfish 

Haddock Torsk STURGEON Mixed Crabs ENGLISH PRAWNS 
Hake Turbot ROCKLING Crabs (C. p. Male) CRAWFISH 
Halibut Whiting PANTAGONIAN TOOTHFISH Crabs (C. p. Mixed Sexes) CUTILEFISH 
Halibut-Mock Blue Whiting TRIGGER FISH Deepwater Red Crab OCTOPUS 
Lemon Sole Pout Whiting SEA TROUT Green Crab RAZOR CLAM 
Lin Witch GREATER WEEVER Hermit Crab Total Shellfish 
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The importance of Table I 0.1 is that it shows the many species for which direct 

comparisons with the landed species (see Table 3.3, page 51, above) from boats in this 

study can be made. There are however, difficulties in making direct comparisons for 

species that were not recorded separately (whether part of the market or haul data) but 

form a part of combined groups. 

It was therefore necessary to aggregate some species in the sample data set to allow 

comparisons with the market data. It is likely that for some groups this was not very 

important, for example whilst there were several species of gumards grouped together in 

the landings data similar species were found onboard the boats studied. However, the 

multi-species groupings of "Other. .. " particularly "Other demersal" (in Table I 0.1) is such 

that the prominence of John Dory for example cannot easily be established, therefore 

including this species (which was significant in the sample and the haul data) was a greater 

challenge. 

Thus for the species described in blue in Table I 0.1 it was simply necessary to 

compare their proportion of the hauls. The species highlighted in red (on Table 10.1) 

required analysis on a case by case basis which is described below. Most of the 

commercial data (MAFF/DEFRA, 1990-2001) did not include the subdivided (more 

detailed) species, therefore the analysis can only be conducted on a relatively small number 

of cases for data acquired from London (pers com). These groups are explained in the 

order they occurred in Table l 0.1. 

10.2.2.1 Demersal fishes 

Table l 0.1 showed that commercial landings for dabs were a combined group of the 

common dab Limanda limanda and the long rough dab Hippoglossoides platessoides, 

though the latter was not recorded in this study. Therefore the question is how much of the 

recorded landings of dab were attributed to H. platessoides and how much to L. limanda? 
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Between 1990 and 2001 inclusive no commercial landings were recorded for H 

platessoides therefore, dabs were taken to represent L. limanda entirely. 

Commercial landings of dogfish consisted of 11 species or groups on Table 10.1, of 

which spurdog (Squalus acanthias) accounted for 81 %, lesser spotted dogfish 

(Scyliorhinus canicula) for 12% and unidentified dog fish 6 %. No spurdog were landed 

in this study therefore to retain this category, dogfish landings were classed as dogfish 

(code LSD) and adjusted accordingly to retain 12% of the initial value. 

Commercial market data for Gurnards comprised the common red gurnard 

Aspitrigla cuculus, and the grey gumard Eutrigla gurnardus. Latchet (Pterygotrigla sp) 

were nominally included but can safely be ignored as while these fish look similar they are 

geographically distinct (Richards & Jones, 2002). The landings data was not separated 

into these sub groups so this group can be included as a whole. 

Mullet consisted of the grey mullet (Muglidae sp) which was not landed from boats 

studied here (it was a discarded species) and the red mullet (Mullus surmuletus) which was 

generally quite rare. Commercially these species divided up as 4 % grey mullet and 96 % 

red mullet. To retain this group it was classed as red mullet (code MUR) and adjusted to 

retain 96 % of the initial value. 

No landings which fit into the category of sharks were sampled from boats in this 

study therefore this category can remain in the data in its entirety, though it was not 

required in the analysis. It is worth pointing out that all skates and rays (Order Rajiformes) 

were treated by the market as a single group. This was the same for the haul composition 

of the sampled boats. 

The market data for sole comprised two species, the sand sole (So/ea /ascaris) and 

the common or Dover sole (So/ea so/ea). The commercial landing for these species 

divided into 0.01 % sand sole and 99.9 % common sole, therefore this species were 

presumed to be common sole. 
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The most complex group of market data was that of the "Other Demersal" species 

which (according to Table 10.1) was made up from thirty-six species or groups. While this 

group was large across all ports and years, it only comprised ~ 2.5 % of the total demersal 

landings. In order of composition, the largest group by weight within "Other Demersal" 

was mixed demersal ( 69 % ). This group is occasional landings of mixed species which are 

lumped together to comprise a box of fishes that on their own are not marketable, though 

are when grouped together, (Hawke, pers corn.). While it might be thought that this 

category could be used to hide fishes from inclusion in quotas it is not in the fishermen's 

interest to do this, as this category generally fetches a much lower price than these fishes 

would if landed as single species. After mixed demersal the next most significant 

component of "Other demersal" was John Dory (Zeus faber) at 27 %. The ballan wrasse 

(Labrus bergy/ta) made up 4 %; the next largest category. Two other species made up 

measurable levels though these are below I %; tope (Ga/eorhinus galeus) 0.4 % and 

salmon (Salmo salar) 0.02 %. Many of the group classed as "Other demersal" were zero 

values. While the proportion of the largest single fish species (John Dory) was only 

around a quarter of the total, and there may be other species which contributed a larger 

(though undefined) proportion for analysis here the category of "Other demersal" was 

renamed John Dory (code JOD) and its magnitude adjusted accordingly to represent 27% 

of its initial value. While this process might be problematical for the reason given above, it 

is the only way that the landings of John Dory can be introduced into the analysis. This 

species was important as it was, overall, the fifth most dominant species in the samples 

contributing 6.1 %, (see Table 3.4, page 54, above) and was always in the top 15 species of 

the sample by port and type of trawling, (Table 3.5, on page 56, above). 

10.2.2.2 Pelagic fishes 

There were only five pelagic species landed and all of these except shad (A/osa spp.) were 

accounted for individually. Shad was included in the "Other pelagic" group though this 
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does not comprise nearly as many species as "Other demersal" (only 7). Shad only made 

up< 0.05% of"Other pelagic" therefore this group remained unaffected. 

10.2.2.3 Shellfishes 

Amongst the shellfish there were five types of clams, though no clams were sampled in 

this study therefore this groups can remain unaffected. 

There were twelve species or groups together called crabs. Amongst these the most 

abundant (at 61 %) was female Cancer pagurus, followed by mixed sexes C. pagurus (32 

%) then male C. pagurus (6 %). Spider crabs (Maja spp.) only comprised I %. No regard 

to the sex of edible crabs was recorded in this study. Therefore, since the Cancer spp. 

made up such an overwhelming dominance of this group, it is taken to be crabs, (code 

CRE). 

Lobsters, oysters, and shrimps were not encountered in this study therefore there 

are no problems with these categories. Squid were taken to refer to Loligo spp, (code 

SQC) and amongst the "Other shellfish" the dominant group (98 %) was cuttlefish, (Sepia 

sp). This group was taken to represent cuttlefish in its entirety, (code CUT) and was not 

adjusted. 

1 0.2.3 Further 
0 

spectes removals, additions and 

aggregations 
Conger (Conger conger) and saithe (Pollachius virens) were removed from the species 

lists in the Sample theme (Chapter 3, Chapter 5 and Chapter 6). Also in the analysis of the 

sample and the haul (Chapter 9) because conger eels were too large to be included in the 

sample (see Figure 2.5, page 29, above) and saithe were not sampled in the fish basket 

therefore these species did not exist in a paired relationship and had to be excluded. These 

two species were included in the landed part of the haul and do occur in the market data 
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(see Table 10.1, above) and were reintroduced in this analysis. 

As described above shad were included in the "Other pelagic" group and therefore 

have to be removed from the boats' landings data as they do not have an equivalent 'pair' 

in the market data. The removal of shad was minor since they only contributed 0.6 kg to 

the entire sum of landed hauls (18,824 kg). The situation was similar for wrasse which 

was an unknown component of "Other demersal" category although it was recorded (3.1 

kg) as landed from the studied boats. Wrasses were a tiny fraction ( ~ 0.0 I %) of the sum 

of landed hauls. 

Sprats were not recorded as market landings in sufficiently large numbers to appear 

as a value from any of the four ports. Also, they were only categorised as discards in the 

sample of the haul and were not landed as a distinct species. 

Finally, combining whiting (Merlangius merlangus, WHO) and blue whiting 

(Micromesistius poutassou, WHB) was a simple process since WHB was only landed in a 

sufficiently large amount in year 2000, quarter 1 into Plymouth where 19 t (0.43 %) were 

landed in comparison to 23 t (0.52 %) ofWHG. 

1 0.2.4 Choice of test statistic, and threshold of 

analysis 

The above described species aggregations left 31 species for which the comparison of 

landed fish from boats in this study to the commercial throughput of the port can be made. 

These are presented in Table 10.2 by rank-order of market data across three timescales. 

These three timescales are: 

• According to all quarters and ports; the annual period of 1998 - 2000 inclusive. 

• According to the quarter and year of sampling (Table 3.1, page 48, above) for which 

each trip was undertaken according to port, and 

308 



Chapter 10 

• According to the month and year of sampling (Table 3.1, page 48, above) for which 

each trip was undertaken according to port. 

The last column in Table 10.2 presents the sum of all landed hauls by weight (n = 88). 

Table 1 0.2. Rank-order of species by weight from market data and all the sampled boats. 
Full market data are the totals by quarter of the year for 1998 to 2000 inclusive across all 
four ports sampled. Valid quarter market data include only those quarters of the year 
(according to port) from which samples were taken. Valid month market data includes 
only those actual months of the year (again according to port) from which samples were 
taken. Sampled boats are the sum of all landed hauls by weight, (n = 88). See Table 3.3, 
page 51 (above) for an explanation of the species codes. 

valid quarter valid month sampled boat 

.lll: market data market data landings 
c species 
l! % code % 
1 18.7 GUX 15.9 
2 PIL sex sex 16.9 WHG 14.0 
3 sex MEG MEG 9.5 sac 8.4 
4 CRE MON MON 9.3 RAY 7.9 
5 MON PIL PIL 6.6 COD 7.3 
6 MEG CRE RAY 5.0 MON 6.2 
7 HOM 4.0 RAY 4.5 LIN 4.2 BIB 6.1 
8 LIN 2.9 LIN 4.4 CRE 4.1 5.1 
9 POL 2.7 HKE 3.3 HKE 3.3 LSD 4.6 

10 CTL 2.6 COD 2.6 COD 2.7 LEM 4.6 
11 WHG 2.4 LEM 2.5 LEM 2.6 HOM 3.1 
12 RAY 2.4 POL 2.0 WHG 2.1 PLE 3.1 
13 . LEM 2.1 WHG 1.9 PLE 1.9 HKE 1.8 
14 COD 1.8 CTL 1.8 POL 1.9 1.5 
15 HKE 1.7 PLE 1.8 HOM 1.9 MEG 1.4 
16 PLE 1.6 HOM 1.8 CTL 1.9 DAB 1.4 
17 SOL 1.3 SOL 1.5 SOL 1.5 LIN 1.4 
18 HAD 0.7 CON 0.9 CON 1.1 POL 1.0 
19 CON 0.6 sac 0.8 sac 0.7 CTL 0.8 
20 sac 0.6 HAD 0.7 GUX 0.7 CON 0.8 
21 BIB 0.6 GUX 0.6 HAD 0.6 CRE 0.8 
22 HER 0.5 BIB 0.5 POK 0.6 SOL 0.6 
23 BSE 0.4 POK 0.5 BIB 0.5 FLE 0.6 
24 GUX 0.4 BLL 0.4 HER 0.4 BSE 0.4 
25 POK 0.4 0.4 0.4 MUR 0.4 
26 BLL 0.3 BSE 0.3 BLL 0.4 sex 0.3 
27 0.2 HER 0.3 BSE 0.2 BLL 0.3 
28 0.2 MUR 0.2 MUR 0.2 HAD 0.2 
29 0.1 LSD 0.1 LSD 0.1 HER 0.1 
30 0.1 DAB 0.1 DAB 0.1 PIL 0.1 
31 < 0.1 FLE < 0.1 FLE < 0.1 POK < 0.1 

It is apparent from Table 10.2 that some of the same species (e.g. whiting and rays, shown 

in yellow) rank highly across both the market data and sampled boats while others are 
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commonly low down in the ranking, (e.g. brill and red mullet, shown in blue). This 

suggests some similarity within the market data regardless of its temporal scale, although 

there are some (e.g. mackerel and John Dory, in green) whose ranking was not similar at 

all. 

The data in Table 10.2 were strongly right skewed and do not approximate normal 

distributions according to A-D tests (full market data, A2 = 4.401, n = 31, P < 0.001; valid 

quarter market data, A2 = 3.488, n = 31, P < 0.001; valid month market data, A 2 = 3.566, n 

= 31, P < 0.001; sampled boats. A2 = 2.557, n = 31, P < 0.001). Therefore, although the 

species were paired between the boat landing data and the market data parametric statistics 

cannot be used in this analysis. 

The weights in both the boat (landings) and market (throughput) were very different 

in scale. The market data was available (MAFF/DEFRA, 1990-2001) and London, pers 

corn.) as tonnes while the landings data was recorded in kg. This is borne out in Table 10.3 

which shows the sampled boat's landed data for haul 1 (21/04/98) compared to the valid 

quarter of the year (April98- June 98) and the valid month of the year (April98). 
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Table 10.3. Market data as valid quarter of the year and valid month of the year. Also 
total landed data. All data are kg. 

market data, valid market data, valid boat data, 
species quarter of the year month of the year haul1, 
code (Apr 98 - Jun 981 (Apr 981 21/04/98 
BIB 6,000 I 2,000 12.7 
BLL 0 0 0 
BSE 0 0 0 
COD 5,000 1,000 14.9 
CON 1,000 0 0 
CRE 0 0 0 
CTL 14,000 5,000 0 
DAB 0 ! 0 1.7 
FLE 0 0 0 
GUX 3,000 1,000 19.1 
HAD 2,000 1,000 0 
HER 0 0 0 
HKE 1,000 0 0 
HOM 2,000 2,000 0 
JOD 3,240 1,080 0 
LEM 81,000 35,000 33.1 
LIN 4,000 3,000 11.0 
LSD 0 0 0 
MAC 1,000 0 0 
MEG 1,000 0 0 
MON 9,000 2,000 0 
MUR 960 0 0 
PIL 0 

I 
0 0 

PLE 14,000 5,000 8.5 
I 

POK 0 0 0 
POL 1,000 1,000 14.5 
RAY 4,000 1,000 27.6 
sex 18,000 1,000 3.2 
SOL 0 0 0 
SQC 3,000 

I 
1,000 31.8 

WHG 52,000 22,000 18.0 

Combining the non-normal distribution of the weight data and large difference in absolute 

size between the haul and market meant the obvious analysis was to examine only the 

rank-order of species from most to least abundant in the market and boat data, thus 

removing the large data range in the data as shown in Table 10.3. Two-tailed Spearman's 

rank-order correlations (r5), (Dytham, 1999, p l 58) was the test of choice to which pair-

wise exclusions (where values of zero in one or both data sets meant the pair was 

excluded) were applied. It was decided satisfactory if SO % or more of the hauls according 

to port and type of trawling were significantly correlated (r5). 
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10.2.4.1 Most appropriate temporal scale of the market 

data 
· The first species list in Table I 0.2 (full market data) describes the rank-order of those 

species across the four ports and between 1998 - 200 I. The second species list in Table 

10.2 (valid quarter) comprised only those quarters of the 1998 - 200 I period for particular 

ports sampled and the valid month market data narrows the quarter periods to the particular 

months (and particular ports) sampled. Thus, the valid quarter and month does take into 

consideration that the samples were taken during specific quarters or months of the year 

whereas the full market data was the sum by quarter of the year throughout the sampling 

period. 

It might be expected that the correlation between the quarterly market data and 

landed haul would not be as high as between the monthly market data and landed hauls 

given the seasonality of landings that might be expected to occur over a three month 

period. However, a degree of smoothing is created when combining three month's data 

into the quarterly type that might ameliorate fluctuations caused by atypical landings of the 

sampled boats. For example (from Table 10.3) the monthly market data for both bib 

(2,000 t) and gumard (1,000 t) equalled a third of the quarterly market data for these 

species (6,000 and 3,000 t respectively). In Table 10.3 there were a total of four (non-zero) 

examples where the quarterly market data equalled three times the monthly market data, 

though there are seventeen (non-zero) occasions where the quarterly data did not equal 

three times the monthly data for this haul alone. This suggests that while the quarterly data 

broadly described the market data the monthly data better resolved the situation. 

This. was tested by examining the average Spearman's rank-order correlation and 

also the number of significant and non-significant association between landed haul data 

and the monthly and quarterly market data. 

Figure 10.3 shows the frequency of Spearman's rank-order correlations (r,) 

comparing the market data as quarter of the year and market data as monthly data with the 
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sampled boat landings for all hauls, comparing each one to the equivalent monthly or 

quarterly market data. 

25 

20 
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Spearman's rank-order correlation 

• Quarterly • • 0 · ·Monthly 

Figure I 0.3. Frequency histogram of Spearman' s rank correlation (rs) comparing market 
data as quarter of the year and market data as monthly data with the sampled boat landings, 
(n = 88). Note the bin size in 0.1. 

It is apparent from Figure I 0.3 that the correlation between the monthly market data to the 

sampled boat data was generally better than the correlation between the quarterly market 

data and the sampled boat data. Figure 10.3 shows this visually while Table 10.4 shows 

this based on the number of significant correlations. 

Table 10.4. Numbers (and%) of variously significant Spearman's rank-order correlations 
(rs) (based on P values) comparing quarterly and monthly market data with sampled boats, 
n= 88. 

quarterly 
levels of significance n I % 

monthly 
n I % 

not significant (P ~ 0.05) 60 68 52 59 - --- -- - - - - - -- -- --- -

significant (P < 0.05 to~ 0.01) 15 17 17 19 
highly significant (P > 0.01) 13 15 19 22 
Total significant 28 32 36 I 41 
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While it is apparent from Table 10.4 the number of non-significant correlations 

outweighed the significant ones there were more significant and also more highly 

significant correlations between the monthly market data and the sampled boat data than 

between the quarterly market data and the sampled boat data. Thus ·the degree of 

seasonality embedded within the quarterly data was greater than the fluctuation potentially 

caused by unusual landings or other short-term factors. Also, the degree of smoothing 

offered by the correlation of the sampled boat data with the quarterly rather than the 

monthly data was unhelpful. This was tested by comparing the differences between the 

paired (according to haul) quarterly market and monthly market Spearrnan's rank 

correlations (r,) to the sampled boat data. Firstly, both sets of r, values do approximate 

normal distributions according to the A-D test. A2 = 0.252, n = 88, P = 0.731 for the 

quarterly and A2 = 0.267, n = 88, P = 0.680 for the monthly derived r, values therefore in 

comparing the paired data the parametric paired t-test can be employed. The results of the 

(two-tailed) paired t-test (P < 0.001, 87 d.f.) suggests that the monthly derived market data 

described the sampled boat data to a very highly significantly better degree. 

1 0.2.5 Further analysis for Newlyn and Plymouth: 

'intelligent' species removal 

In an effort to account for the known bias in the market data due to the dominance of non

resident pelagic trawlers and scallop dredges featuring in the Plymouth market data, and 

resident though clearly different beam trawlers landing into Newlyn (Gray, l99S;Pawson 

et al., 2002) a breakdown of the landings into these ports was sought that would divide the 

fleet into the local trawler fleet (studied here) and the others. Plymouth Fish Market 

initially released a sample of this data however, they subsequently requested that it should 

not be used. Newlyn Market said it could not make this data available. Therefore, an 

alternative approach had to be undertaken. 
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Instead, species were removed that were particularly dominant in the market data 

but only due to the presence of the other fishing methods in the market data. In total four 

sets of species deletions were undertaken. These are described in section 1 0.3.2 

10.3 Results 

1 0. 3 .1 Major compositional analysis of the landed part 

of the haul and market data 

Figure I 0.4 shows the relationship across the ports and types of trawling of the Spearman 's 

rank-order correlation between the rank-order of species in the sampled boats' landed hauls 

and their equivalent monthly market data. 
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Figure 10.4. Average (and 95 % C.I.) Spearman' s rank-order correlation (rs) between 
monthly market data and sampled boats according to port and type of trawling, N- = 
Newlyn, L- = Looe, P- = Plymouth, S- = Salcombe; -S = single boat trawling, -P = pair 
boat trawling. 
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It is apparent from Figure 10.4 that the correlation (rs) between the monthly derived market 

data and the sampled boats according to port and type of trawling was higher for the 

smaller ports of Looe and Salcombe. That the described correlation was best for Looe was 

not surprising since this port is both quite small and dominated by trawling boats (though 

other, smaller fishing vessels do use the port, they are unlikely to be represented in the 

commercial market data as explained by explanatory note 7, (page 297, above). 

That the described correlation was good for Salcombe was also not surprising since 

while this port was dominated by the landings of crabs, ~ 97 % of the annual market data 

from 1990 to 2001 was C. pagurus (MAFF/DEFRA, 1990-2001) in rank-order correlation 

the dominance of any one species, is unlikely to greatly influence the final outcome. 

Figure 10.4 also shows that the previously defined correlations were not so good for the 

ports of Plymouth and Newlyn, though interestingly for Plymouth and Looe the pair 

trawling boats were more closely correlated to the monthly market data than the single 

trawling operations. That the correlations were not so strong for the ports of Newlyn and 

Plymouth was because these ports were dominated by beam trawling for Newlyn and non-

resident pelagic trawling and scallop dredging boats for Plymouth. 

The proportion (as %) of significant, highly significant and non-significant 

correlations (r5) between the monthly derived market data and the sampled boat is shown 

in Table 10.5. 

Table 10.5. Proportion (as %) of significant, highly significant and non-significant 
Spearrnan's rank-order correlations (r5) between the monthly derived market data and the 
sampled boats according to port and type of trawling, N- = Newlyn, L- = Looe, P- = 
Plymouth, S- = Salcombe; -S = single boat trawling, -P = pair boat trawling. Highlighted 
ports and type of trawling satisfied the 50% significant level. 

port and type of trawling 
NS LS LP PS pp ss 

levels of significance n I% n % nl % n % n % n % 
_11~t slgnific_!nt (P_ i!: O~QS) 36 J 86 1 9 0 0 7 87 6 75 2 20 

. - - -- --

significant (P < 0.05 to i!: 0.01) 6 14 4 36 2 22 1 13 2 25 2 20 
highly significant (P > 0.01) 0 0 6 55 7 78 0 0 0 0 6 60 
Total significant 14 14 10 91 9 100 1 13 2 25 8 80 
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Table 10.5 shows that from Looe only 9 % of the hauls, actually only one haul, number 2 

(in which none of the top five species were similar) did not significantly correlate with the 

monthly derived market data, though all the Looe pair boat hauls correlated significantly. 

80% of the hauls from Salcombe did correlate significantly, with only 2 hauls failing. One 

of these was haul 77 of which only 3 groups of the monthly market data for October 1999 

were landed by the sampled boat. The other, haul 79, was similarly different to its 

corresponding monthly derived market data. Therefore, without any further analysis the 

sampled hauls from Looe and Salcombe meet the validity threshold as set out on in Section 

I 0.2.4. 

10.3.2 Further analysis for Newlyn and Plymouth: 

'intelligent' species removal 

While Table 10.4, above (and the results of the paired Hest) showed that the monthly 

derived market data better described the sampled boat data than the quarterly data there 

were still many (n = 52 out of 88, or 59 %) hauls {Table 10.4) for which the monthly 

market data did not correlate significantly with the landed haul data. However as Table 

10.5 showed 49 (or 94)% of these were Newlyn or Plymouth hauls. 

Table 10.6 shows the Spearrnan's rank-order correlations for Newlyn, and, 

Plymouth single and pair boat trawls between the sampled boat data (as averages for all 

hauls) and monthly derived market data (as averages from equivalent months). 
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Table 10.6. Spearrnan's rank-order correlations (rs) and associated significance (P) value 
for the Newlyn and, single and pair boat trawling from Plymouth showing the rank-order 
of species and abundance (as%) based on the average for all hauls (from the sampled boat 
species) and the average from monthly derived market data. In calculating rs pair-wise 
deletions are used. Mackerel, pilchards and scaJlops are flagged with 1 across the three 
groups. Megrim, monkfish and scallops are flagged with I and horse mackerel, scallops, 
John Dory and gumard are flagged with I for Newlyn and pilchards, scallops and dogfish 
are flagged with I for the Plymouth pair boat. The relevance of these highlights is 
discussed in section 10.3.2.1 , (page 321, below). 

'· 0.294 0.111 0.285 
p 0.108 0.552 0.12 
p&t Newlyn Plymouth single boats Plymouth pair boats 

average average average 
from from from 

average for monthly average for monthly average for monthly 
all sampled derived all sampled derived all sampled derived 

data hauls market data hauls market data hauls market data 
sp sp sp sp sp sp 

rank code % code % code % code % code % code % 
1 Guxt 24 scx1J 20 WHG 12 MAC1 55 WHG 24 MAC1 34 
2 COD 12 MEGI 16 RAY 9 scx1 13 GUX 8 PIL11 27 
3 JODI 10 MO NI 15 BIB 9 PIL1 11 MON 7 scx1 14 
4 SQC 9 RAY 8 MON 8 CRE 4 SQC 6 HOM 8 
5 RAY 8 UN 7 GUX 8 CTL 3 PLE 6 CRE 2 
6 MO NI 8 HKE 6 LEM 7 HOM 2 LSDI 5 CTL 2 
7 BIB 5 COD 4 COD 6 HER 2 MAC 5 PLE 2 
8 HOM 5 LEM 3 PLE 6 PLE 2 RAY 5 POL 1 
9 LEM 4 POL 2 CTL 5 SOL 1 HOM 4 SOL 1 

10 LSD 3 CRE 2 SQC 4 POL 1 COD 4 LEM 1 
11 MEGI 2 PLE 2 LSD 4 WHG 1 DAB 4 WHG 1 
12 HKE 2 MAC1 2 MAC1 4 MON 1 BIB 3 MON 1 
13 WHG 2 SOL 2 POL 4 BIB 1 CTL 3 BIB 1 
14 CON 1 CON 2 DAB 2 LEM 1 LEM 3 RAY 1 
15 POL 1 HAD 1 CRE 2 RAY 1 JOD 2 COD 1 
16 UN 1 POK 1 BSE 2 UN 1 HKE 2 BSE 1 
17 PLE 1 CTL 1 HKE 1 BSE < 1 UN 2 UN 1 
18 BLL < 1 WHG 1 HAD 1 SQC < 1 FLE 2 SQC 1 
19 SOL < 1 GUxJ 1 CON 1 COD < 1 SOL 1 GUX < 1 
20 MUR < 1 SQC 1 HOM 1 MUR < 1 MEG 1 MUR < 1 
21 HAD < 1 JODI 1 SOL 1 BLL < 1 MUR 1 MEG < 1 
22 scx1 < 1 BLL 1 FLE < 1 GUX < 1 CRE 1 BLL < 1 
23 CRE < 1 BIB < 1 UN < 1 CON < 1 PIL1 < 1 CON < 1 
24 HER < 1 MUR < 1 MEG < 1 DAB <1 POL < 1 DAB <1 
25 BSE 0 LSD < 1 POK < 1 MEG < 1 scx1 < 1 HKE < 1 
26 CTL 0 DAB < 1 MUR < 1 JOD < 1 BLL < 1 JOD < 1 
27 DAB 0 HER < 1 JOD < 1 LSD < 1 BSE < 1 LSD < 1 
28 FLE 0 BSE 0 BLL 0 HKE < 1 CON 0 FLE < 1 
29 MAC1 0 FLE 0 HER 0 FLE 0 HAD 0 HAD < 1 
30 PIL1 0 HOMI 0 PIL1 0 HAD 0 HER 0 POK 0 
31 POK 0 PIL1 0 scx1 0 POK 0 POK 0 HER 0 

While none of the correlations in Table 10.6 were significant it is relevant to note that 

correlations within the haul and market data were. These were: Plymouth single boat haul 

data to Plymouth pair boat haul rs = 0. 731, P < 0.001 ; Plymouth single boat market data to 
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Plymouth pair boat market data rs = 0.872, P < 0.001. That both of these correlations were 

very highly significant suggests that the haul data were not significantly different whether 

fished by single and pair boat trawling. Also, that the market data for these various months 

were similarly not significantly different. While it was possible to demonstrate this 

similarity within both haul and equivalent market data between single and pair boat 

trawling for Plymouth it was not possible to demonstrate this for Newlyn since only one 

type of trawling was sampled here. However, all the hauls from Newlyn were sampled 

either during the second or third quarters of 1998 and 1999 and it was possible to examine 

(at the trip level) the correlation between the sampled boats and equivalent monthly 

derived market data on this basis. 

Examining these correlations was undertaken as a full permutation; between market 

and boat data within quarters (highlighted in grey); separately between boats and between 

market data (highlighted in yellow), and separately across boat and market data 

(highlighted in blue). Table 10.7 shows the results. 
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Table 10.7. Full permutation of Spearman's rank-order correlations, r5 (first data value) 
and significance (P) value (second data value) between combinations of sampled boat(= b) 
and equivalent monthly derived market data(= m) according to date of haul. Thus ' b - m, 
0.272, 0.138' on 24/05/98 represents a Spearman's rank-order correlation of0.272 between 
the sampled boat data and the equivalent monthly derived market data; (grey highlights = 
boat and market data comparison). This correlation is not significant since the P value is 
0.138. Also, ' b, 0.878, < 0.001 , b' represent a Spearman's rank-order correlation of0.878 
between the sampled boat data of 24/05/98 and the sampled boat data of 29/08/98 and this 
correlation is very highly significant; (yellow highlights = separate boat to boat and market 
to market data comparison; blue highlights = separate boat to market and market to boat 
data comparisons). 

24/05/98 ('98 Q2) 29/08/98 ('98 Q3) 05/05/99 ('99 Q2) 26/07/99 ('99 Q3) 
b - m, 0.363, 0.045 b - m, 0.329, 0.070 

b, 0.878, < 0.001 I b 
m, 0.846, < 0.001 , m 

b, 0. 795, < 0.001 1 b 
m, 0.890, < 0.001 , m 

b, 0.401 , 0.025, m I 
m, 0.176, 0.343, b I 

b, 0.835, < 0.001 , b 
m, 0.875, < 0.001 , m 
b, 0.774, < 0.001 , b 

m, 0.899, < 0.001, m 
b, 0.904, < 0.001 1 b 

m, 0.943, < 0.001 , m 
b, 0.684, < 0.001 I b 

m, 0.973, < 0.001 , m 

b, 0.356, 0.049, m .I 
m, 0.271 , 0.140, b 1. 

b, 0.354, 0.051 , m 
m, 0.149, 0.424, b 
b, 0.295, 0.107. m I 
m, 0.318, 0.081 , b I 

b, 0.329, 0.071, m 
m, 0.383, 0.033, b 

i b, 0.380, 0.053, m 
l_ m, 0.270, 0.142, b 

I 
I 

Firstly there were significant correlations between the boat and market data for two of the 

four trips, 29/08/98 ('98 Q3) and 05/05/98 ('99 Q2). These are shown on the top data line 

of Table 1 0. 7, (highlighted in grey). The importance of this was that summing the haul 

data into trips has reduced the bias between the sample and market data, as individually 

only 14 % (Table 1 0.5, on page 316, above) of the correlations were significant though by 

trip 50 % were. 

All the correlations within sampled boat or market data (top full permutations on 

Table 10.7, highlighted in yellow) were highly significant. This was similar to the within 
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sampled boat data and within equivalent monthly derived market data for the single and 

pair boat sampling from Plymouth. However, the importance here was with the timing of 

these hauls (as trips) both between and within the years in which they were sampled. Only 

three (out of the possible twelve) correlations between the sampled boat and market data 

(shown in the lower part of Table 10.7, highlighted in blue) are significant. That fewer of 

these correlations are significance than the 50 % of those between date (the sampled boat 

and market data by trip) was not surprising since these correlations test the relationship 

between the permutations of boat samples and market data between trips (at different times 

of the year and between years). It is also relevant to note that two of the three significant 

correlations are between quarters 2 of years 98 and 99 and quarters 3 of 98 and 99 showing 

a degree of seasonality in the data and similarity between the sampled boat and market 

data. The seasonality of these sample data was previously explored, in terms of their 

biodiversity, in section 6.2.2 and section 6.3.2, (Chapter 6). 

10.3.2.1 Species adjustment 

The above described pattern of significant, and non-significant, correlations for Newlyn 

and Plymouth hauls (and trips) suggests that despite the bias in the market data due to the 

variety of boats operating from these ports (which were not subject to sampling) there were 

clear grounds for proposing a degree of relationship in the full species data set and that the 

pattern of bias (in terms of species, see Table 10.6, above) in that the market data can be 

attributed to the types of boats not sampled here. Thus, the adjustment to the species 

should attempt to overcome this based on known conditions about the respective fisheries. 

The adjustment to species' rank-order was achieved by removing mackerel, 

pilchards and scallops from both the sampled boat and market data. These species are 

highlighted (with a 1
) in Table 10.6, above and were removed as they were not targeted by 

the trawlers studied here. 
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Figure 10.5 shows the average and 95 %confidence intervals of Speannan's rank-

order correlation between sampled boat data and equivalent monthly derived market data 

according to port and type of trawling for Newlyn and Plymouth before and after the 

species adjustment 1
• 
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Figure 10.5. Average (and 95 % confidence intervals) of Speannan's rank-order 
correlation according to port and type of trawling, N- = Newlyn, P- = Plymouth; -S = 
single boat trawling, -P =pair boat trawling (for Newlyn and Plymouth) based on the full 
and adjusted e removed MAC, PIL and SCX) species list. 

1n all cases demonstrated in Figure 10.5 the removal of mackerel, pilchards and scallops 

improved the correlation between the sampled boat and market data. Also, for Newlyn and 

Plymouth single boat trawling the 95 % confidence intervals were smaller for the full, 

when compared to the adjusted species list, though the opposite was the case for the 

Plymouth pair trawled data. Table 10.8 shows how these correlations were distributed 

according to their significance. 
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Table 10.8. Proportion (as %) of non-significant, significant, highly significant 
Spearman's rank-order correlations (rs) between the sampled boat and monthly derived 
market data for the full and corrected species, according to port and type of trawling, N- = 
Newlyn, P- =Plymouth; -S =single boat trawling, -P = pair boat trawling, (for Newlyn and 
Plymouth). Highlighted ports and type of trawLing satisfied the 50 % level. 

port and type of trawling 
NS PS pp 

full corrected full corrected full corrected 
levels of significance list list 1 list list 1 list list 1 

not significant (P ~ 0.05) 86 81 88 25 75 75 
significant (P = 0.05 to~ 0.01) 14 12 13 50 25 25 
highly significant (P > 0.01) 0 7 0 25 0 0 
Total significant 14 19 13 75 0 0 

Table 10.8 shows that the removal of mackerel, pilchards and scallops (adjustment 1
) 

improved the Spearrnan's rank-order correlations most for Plymouth single boat trawls. 

After adjustment 1 75, rather than 13 % of the correlations (r5) were significant. Also, there 

were now highly significant correlations for Newlyn which there were not before 

adjustment 1
, though the situation for Plymouth pair boat trawls has remained unchanged, 

overall. Overall, is important since there were instances where the rank-order correlations 

became less strong after the removal of mackerel, pilchards and scallops, and instances 

where correlations were significant before these species were removed and which are not 

after adjustment 1
• 

Taking into consideration the twin facts that after adjustment 1 some of the 

correlations were less strong though many were better the obvious test was to compare the 

means or medians of the before (full species), after (adjustment 1) list according to port and 

type of trawling, treating each haul as a pair of values. To see whether mean or medians 

should be tested the Spearrnan' s rank-order correlation values (rs) of full and removed 

species lists according to port and type were tested for normality using the A-D test. The 

results are show in Table 10.9. 
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Table 10.9. P values from Anderson-Darling test of normality for Spearman's rank-order 
correlations (rs) for the full species list and after removal of mackerel, pilchards and 
scallops 1

, according to port and type of trawling, N- = Newlyn, P- =Plymouth; -S =single 
boat trawling, -P = pair boat trawling. 

port and type of trawling 
species list NS PS pp 

full 0.521 0.339 0.640 
after adjustment 1j_removal of MAC, PIL, SCX_l 0.239 ~ 0.005 i 0.795 

Table 10.9 shows that for comparing the Spearman's rank-order correlations for Newlyn, 

and Plymouth pair boat trawls the rank-order correlations approximated a normal 

distribution and the paired /-test can be employed. However, after adjustment 1 the (rs) 

correlations from Plymouth single boat do not approximate a normal distribution so the 

non-parametric equivalent of the paired /-test, the Wilcoxon signed ranks test (Dytham, 

1999, p75) was used, despite the full species list for Plymouth single boat approximating a 

normal distribution. The hypothesis being tested was that the removal of the three species 

had, ovemll, improved the correlations therefore this should be a one-tailed test however, 

SPSS only reports both the paired /-test and the Wilcoxon signed ranks test as 2-tailed. 

According to the paired /-test P = 0.005 for Newlyn and P = 0.031 for Plymouth pair 

trawled and according to the Wilcoxon signed ranks test P = 0.017 so the removal of the 

three species has significantly improved the (r5) correlations though this has not been 

manifest in changed the proportions of significant correlations. Further analysis of the 

Plymouth pair boat sampled boat to market data follows the analysis for the Newlyn hauls 

since these hauls were used to show the additional analysis method. 

10.3.2.2 Additional analysis ofNewlyn based hauls 
The most significant improvement from the full species to adjusted species list (1

) was 

evident for the hauls from Newlyn, though as Table 10.8 (above), shows there were still 

more than 80 %, or in excess of thirty of the hauls from this port for which a significant 

correlation between the sampled boat and equivalent monthly market data was not 

apparent. Table 10.8 (above) showed that the removal of mackerel, pilchards and scallops 
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(adjustment 1
) preferentially favoured the port of Plymouth, which was landed into by 

many pelagic trawlers and scallop dredgers that are non-resident in nature. Conversely, 

Newlyn is dominated by beam trawlers and its equivalent monthly derived market data 

reflects this. Reinstating mackerel, pilchards and scallops and examining the three most 

dominant species amongst the market data (which proved successful in improving the 

correlations for Plymouth) suggests that based on species removal scallops, megrim and 

monk-fish (adjustment I> should be applied as these species dominated the equivalent 

monthly derived market data. However, this approach was not very successful at 

improving the degree of correlation (r,) between the sampled boat and monthly derived 

market data. Based on the full species list the average correlation r, = 0.232, n = 42. This 

average across all the hauls from Newlyn rose to r, = 0.251 after removing scallops, 

mackerel and pilchards (adjustment 1
), though the average across all hauls from Newlyn 

fell to r, = 0.238 where the species' deletions were scallops, megrim and monkfishes 

(adjustment 1>. In fact because mackerel and pilchards were absent from the sampled boat 

landings (thus being removed anyway in pair-wise deletions) and scallops contributed < 1 

% of the sampled boat landings their deletion may not have made much difference to the 

(r,) correlations although through adjustment I (removal of megrim, monk-fish and 

scallops) these species were more significant (contributing 2, 8 and < 1 % respectively), 

and the average (r,) correlation reflected this. 

So far the majority of the correlations between the sampled boat and equivalent 

monthly derived market data have been significantly similar for the ports of Looe and 

Salcombe and the removal of species has been based on a rationale according to the type 

and nature of fishing and has been successful in ensuring 50% or more of the Spearman's 

rank-order correlations at the haul level for Plymouth although gaining a similar proportion 

of statistically significant (r5) correlations for the Newlyn hauls has not been possible, 

although it has been possible to produce 50 % statistically significant correlations at the 

trip level. In attempting to bolster the number of statistically significant (r,) correlations 
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between the sampled boat and equivalent monthly derived market data at the haul level 

from Newlyn it was insufficient simply to remove the most dominant species from the 

market data. Instead, examining the rank-order of species in Table 10.6, it was apparent 

that in addition to the disparity between the dominant market to sampled boat data, the 

most abundant species in the sampled boats (gumards, cod and John Dory) did not feature 

strongly (with the exception of cod at 4 %) in the monthly derived market data. Therefore 

a twin track approach was required examining both components of the data. Table 10.10 

shows the rank-order of species from all the Newlyn hauls in the sampled boat and 

equivalent monthly derived market data according to their difference. 
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Table 10.10. Rank of species from all Newlyn hauls (n = 42) according to their proportion 
(as%) from the sampled boats and equivalent monthly derived market data. The species 
are listed in the order of the difference between the two lists of ranks. 

11) rank-order rank-order of difference 
Gl from equivalent between the two u 
Ill sampled monthly derived rank,.orders Q. 
11) boat market data (without sign) 

CON 14 14 0 
DAB 27 26 1 
FLE 28 29 1 
LEM 9 8 1 
PIL 30 31 1 
RAY 5 4 1 
BSE 25 28 3 
HER 24 27 3 
MON 6 3 3 
BLL 18 22 4 
MUR 20 24 4 
COD 2 7 5 
WHG 13 18 5 
HAD 21 15 6 
HKE 12 6 6 
PLE 17 . 11 6 
POL 15 9 6 
SOL 19 13 6 
CTL 26 17 9 
MEG 11 2 9 
LIN 16 5 11 
CRE 23 10 13 
LSD 10 25 15 
POK 31 16 15 
BIB · 7 23 16 
SQC 4 20 16 
MAC 29 12 17 
GUX 1 19 18 
JOD 3 21 18 
sex 22 1 21 
HOM 8 30 22 

The species in Table 10.10 were in the order of the difference between the two ranks 

(column 4). Based on Table 10.10 the most appropriate species to be removed were horse 

mackerel, scallops, John Dory and gurnard 1. The latter two share equal rank and so in this 

instance the adjustment concerned four species. Table 10.11 shows how the (r5) 

correlations were distributed according to their significance level for adjustment I and 1. 
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Table 10.11. Proportion (as %) of significant, highly significant and non-significant 
Speannan's rank-order correlations (rs) between the sampled boat and monthly derived 
market data for the Newlyn hauls based on two adjustments <I and I> of species removals. 
This table should be viewed as a continuation of Table 1 0.8, above. Highlighted ports and 
type of trawling satisfied the 50% significant level. 

adjustment_l_ adjustment 1 
(MEG, MON and sex (HOM, SeX, JOD and GUX 

levels of slgnfficance removed) removed) 
not significant (Pi!: 0.05) 88 ' 48 
significant (P = 0.05 to i!: 0.01) 12 19 
highly significant (P > 0.01) 0 I 33 

~ . . -
Total significant 12 .·52 

Table l 0.11 shows how much more successful adjustment I (the species deletions of horse 

mackerel, scallops, John Dory and gurnard were compared to those from adjustment I 
(removal of megrim, monk-fish and scallops); in that after adjustment I > 50 % of the (rs) 

correlations were significant. Also that the Newlyn samples should not be treated in the 

same manner as the Plymouth single boat samples. 

Whilst adjustment I (removal of horse mackerel, scallops, John Dory and gumard) 

was not strictly based on the difference between the actual sampled boats and the 

difference that might be expected by removing the influence caused by the many beam 

trawling boats which land into Newlyn it is nevertheless the case that beam trawlers do not 

routinely catch horse mackerel and John Dory and the proportion of gurnards in their 

landed part of the haul might not be as high (at 24 %) as in the sampled boats from 

Newlyn. Also, scallops did not contribute a large proportion of any of the sampled boat 

data, therefore the removal of these four species, while, by the very nature of the way in 

which they were selected were bound to improve the degree of (rs) correlation between the 

sampled boat and equivalent monthly derived market data, their removal can also be 

justified according to the pattern evident in comparing Newlyn to the other ports sampled 

here and with knowledge of and sensitivity to the predominant use of this port. 
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10.3.2.3 Additional analysis of Plymouth pair boat hauls 

The same process to that carried out for the Newlyn hauls was undertaken on the Plymouth 

pair hauls. Table 10.12 shows the rank-order of species from all the Plymouth pair boat 

hauls in the sampled boat and equivalent monthly derived market data according to their 

difference. 

Table I 0.12. Rank of species from all Plymouth pair trawled hauls (n = 8) according to 
their proportion (as % from the sampled boats and equivalent monthly derived market data. 
The species are listed in the order of the difference between the two lists of ranks. 

en rank-order rank-order of difference 
Gl 

from equivalent between the two ·c:; 
Gl sampled monthly derived rank-orders a. 
en boat market data (without sign) 

HAD 29 29 0 
LIN 17 17 0 
BIB 12 13 1 
HER 30 31 1 
MEG 20 21 1 
MUR 21 20 1 
POK 31 30 1 
PLE 5 7 2 
BLL 26 22 4 
LEM 14 10 4 
COD 10 15 5 
CON 28 23 5 
HOM 9 4 5 
MAC 7 1 6 
RAY 8 14 6 
CTL 13 6 7 
HKE 16 25 9 
MON 3 12 

I 

9 
FLE 18 28 10 
SOL 19 9 10 
WHG 1 11 10 
BSE 27 16 I 11 
JOD 15 26 I 11 
DAB 11 24 

I 
13 

SQC 4 18 14 
POL 24 8 16 
CRE 22 5 I 17 
GUX 2 19 

I 
17 

LSD 6 27 21 
PIL 23 2 21 
sex 25 3 I 22 

As was the case for Table I 0.1 0, (above) the species in Table I 0.12 are in the order of the 

difference between the two ranks. Based on Table I 0.12 the most appropriate species to be 
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removed were dogfishes (lesser spotted), pilchards and scallops (J). Two of these species 

(MAC and PIL) remain unchanged from the first e) example of removals. The relevant 

rationale for removal of LSD is that on many occasions, this species was discarded, though 

depending on the boat and time of year (as sometimes dogfish are landed to act as bait but 

this is common only during the height of the crab potting season). Gurnard, too, (as was 

seen for Newlyn) often falls into this category and the occasional landing of a species to 

act as bait may produce a false representation of this species in the sampled boat to market 

data at a variety of scales, (and ranks) which perhaps was also evident from the Newlyn 

based hauls. 

Examining the Spearman's rank-order correlations (r5) between the sampled boat 

and equivalent monthly derived market data for the Plymouth pair boat trawled hauls based 

on the difference between the rank-order of species for this port and type of trawling (J) 

has meant that 50 % of the correlations were not significant, 25 % were significant and 25 

% were highly significant. Thus altering the removed species from MAC, PIL and SCX e) 
to LSD, PIL and SCX (J) improved the proportion of significant correlations (r5) to the 50 

% level. 

Table 10.13 draws together the various methods employed m producing the 

significant correlations. 

Table 10.13. Proportion (as%) of significant (P = 0.05 to 2: 0.01), highly significant (P > 
0.01), and non-significant (P 2: 0.05) Spearman' s rank-order correlations (r5) between the 
sampled boat and monthly derived market data for the full and variously adjusted species 
lists, according to port and type of trawling, N- = Newlyn, L- = Looe, P- = Plymouth, S- = 
Salcombe; -S = single boat trawling, -P = pair boat trawling. Mackerel, pilchards and 
scallops are flagged with across Newlyn, Plymouth single and pair boat trawls. Megrim, 
monk-fish and scallops are flagged with I and horse mackerel, scallops, John Dory and 
~ard are flagged with I for Newlyn and pilchards, scallops and dogfish are flagged with 
I for the Plymouth pair boat. 50% or more significant correlations (at whatever level) are 
also highlighted. 

port and type NS LS LP PS pp ss 
species list full 1 _j_ I full full full 1 full ~ I full 
not significant 86 81 88 48 9 0 87 25 75 75 50 20 
significant 14 12 12 19 36 22 13 50 25 25 25 20 
highly significant 0 7 0 33 55 78 0 25 0 0 25 60 
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Table 10.13 allows the proportion of significant correlation (rs) to be compared for the 

various methods. It also shows that after the four groups of species deletions were carried 

out 50% or more of the correlations were significant by port and type of trawling. 

10.4 Summary 
In order to compare the boats sampled here with commercially available data on landings it 

was necessary to group together some species and also to acquire further non-public 

domain data to ensure that groups not normally represented in the commercial data can be 

included in this type of assessment. 

The sampled boat data was correlated against equivalent quarter and equivalent 

monthly derived market data, with the latter providing significantly higher correlations; 

thus the increased resolution in the monthly data outweighs the smoothing in the quarterly 

data. This result is interesting in that it shows the good relationship between the chosen 

vessels and their markets. 

Without further manipulating the species lists it was possible to show that the boats 

sampled from the smaller ports of Looe (both single and pair trawl boats) and Salcombe 

did significantly correlate (rs) with their equivalent monthly derived market data. This was 

despite Salcombe being predominately landed into by crab potting boats however, in using 

the Spearman's rank-order correlation the dominance of a particular species is reduced. 

In attempting to significantly correlate the sampled boats from the larger ports of 

Plymouth and Newlyn some rationally based manipulation of the species lists was required 

after these Markets would not allow their data to be used. Instead, for the Plymouth single 

boats this involved the relatively straightforward task of reducing the influence of the 

pelagic trawling and scalloping boats through removing the mackerel, pilchards and 
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scallops. Landings into Newlyn were dominated by beam trawlers and the species removal 

based on the same species as removed for Plymouth was not successful. Instead, a method 

of removing those species which were the most disparate in the rank-orders between the 

sampled boat and monthly derived market data was adopted. While bound to improve the 

degree of correlation overall the removal of John Dory, horse mackerel, gurnards (and 

scallops, due to statistical reasons) can also be justified on biologically relevant grounds. 

A similar and successful process to that described for Newlyn was undertaken on 

the Plymouth pair trawled hauls. This removed dogfish, pilchards and scallops and again 

the removal of these species (though bound to increase the degree of correlation) was 

justified on biological grounds. 
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11 Conclusions and future directions 
This study examined the impact of inshore single boat otter trawling from Newlyn, Looe, 

Plymouth and Salcombe and pair boat demersal trawling from Looe and Plymouth on the 

benthic environment off the SW peninsula of the UK. 

Sampling of the commercial fleet occurred between 1998 and 2000 with at least 

one trip being undertaken per technique per quarter of the year. Onboard, prior to any 

disturbance by the crew, a- 38 kg sample of the haul was taken. All fishes and shellfish 

(54 and 11 species respectively) were identified and measured at sea and the non-fish 

material (124 species) was analysed later. In addition to individual length measurements, 

components of the sample were weighed at sea to test the reliability of derived weight 

from length both at species and component level. 

Overall (by weight) 79.8 %of the sample was landed fish and shellfish, 15.8 % 

was discarded fishes and 4.4 % was invertebrates and other material. Although each 

sample was a full basket the samples from Newlyn were the lightest, though this was due 

to them packing less well as they contained the largest fish according to species. 

In general, pair trawling samples contained more landed, less discarded and less 

non-fish material than their single boat equivalents. Pair trawl samples also contained 

fewer examples of large invertebrate species. This may be gear related or it may be due 

to the pair trawling taking place in less structurally complex areas than the single boat 

fishing. 
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Related information about the substrate and tide were generated from British 

Geological Survey data and a computer simulation of the maximum mean tidal strength. 

Newlyn derived trawls were over mainly gravely sand and sandy gravel, though 

there were many additional substrates, including rock. The majority of the Plymouth, 

Looe and Salcombe hauls featured sand, though closer inshore the trawls extended into 

patches of gravely sand, sandy gmvel as well as other mixed substrate types and again 

included rock. Unmodified gravel was confined to Newlyn. 

The Looe and Plymouth single and pair trawls were from areas which generally 

have similar values of maximum tidal strength (rarely > 0.50 ms-1
), and had relatively 

low variability as expressed in their range. This was largely due to the trawls being 

around 4h 30 min and being generally in east west directions. Higher values ~ 0.82 ms" 1 

were generated from trawls that passed close to headlands; these were typically the trawls 

from Salcombe. 

The Newlyn samples (which were between those from Looe or Plymouth and 

Salcombe in magnitude, ~ 0.65 ms-1
) were also relatively similar in terms of average 

maxima (given their similarity of location) except those during Q2 '98 which were more 

geographically distant. 

A classification based on the abiotic factors showed greater similarity between 

ports rather than between type of trawling for Looe and Plymouth, which suggested that 

the sampled vessels have favoured areas in which they fish and this was supported by 

anecdotal information. 

After undertaking a redund~cy analysis the abiotic data of nine substrate types, 

two factors of the tide and depth were retained for subsequent analyses. Although these 

data were dominated by the substrate, the Principal Component Analysis (PCA) was not 

adjusted to take into consideration the likely influence of these groups as this varies 

unpredictably. Most of these factors were well described by two axes of a PCA, although 

the presence of rock was very important in the third axis. Substrate data for this region 
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has been collected over a long timescale therefore, it is possible that fishing has altered 

the substrate and this is not reflected in the data. 

Overall, the full sample was well represented by the fish species. The top I 0 

species (Aspitrigla cuculus, Merlangius merlangus, Trisopterus luscus, Gadus morhua, 

Zeus faber, Loligo vulgaris, Microstomus kill, Scyliorhinus canicula, Loligo spp., and 

Pleuronectes platessa) comprised nearly 70% of the sample by weight. 

In agreement with the different abiotic regime, the dominant fishes were different 

in Newlyn compared to the other ports. According only to port, the Looe and Plymouth 

samples were not significantly different, either as full samples or for their fish and non

fish components. The Salcombe samples were not significantly different to those from 

Looe or Plymouth for the non-fish part of the sample. Including the type of trawling in 

the groups analysed meant that the greatest similarity was for the non-fish part of the 

sample, although the relative amounts of the components varied (see above). 

A spatial and temporal analysis of the Newlyn samples revealed that there was 

some similarity across successive years for the non-fishes though only after the removal 

of the shellfishes. The greatest similarity was spatially and suspected seasonal trends 

were not significant. 

Abundance Biomass Comparison (ABC) analysis as a method of estimating 

disturbance within the fished assemblages for the non-fish part of the sample and the full 

sample were similar and before extending this analysis to include the fishes the size 

spectra of the sample was analysed. ABC analysis suggested that the whole region was 

relatively undisturbed though it is recognised that mobile scavengers (which are often 

large) may be responsible for raising the W-test statistic. According to just the non

fishes, this analysis suggested that Newlyn and Looe were the most disturbed area though 

extending the analysis into the full sample only Newlyn seemed to have suffered the 

greatest amount of disturbance. This was supported by findings of an assessment of 

average (~ +) and variation (A+) in taxonomic distinctness. 
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Taxonomic distinctness analyses also showed that according to both the non-fish 

or the whole sample the areas pair trawled had greater variability in disturbance than the 

single boat samples. The pair trawl samples also had lower average taxonomic 

distinctness than the single boat samples. 

Several within and between-species relationships were explored to assess the 

wider patterns apparent in the fish community data. Whilst the relative abundance of the 

Raja spp. did not match the replacement mortality order suggested by Walker & Hislop, 

( 1998), (which may be due to the small sample size as rays made up only 1.2 % of the 

total) their average length was in keeping with the order of resilience hypothesized by 

Walker & Hi slop, ( 1998). 

An investigation of three common predators (described by Veale et al., 2000) on 

Pecten maximus according to their eo-occurrence in the sample showed similar trends for 

A. rubens and Liocarcinus spp. in that while P. maximus was not ubiquitous, where it was 

found there was a 2:1 and 3:1 chance that A. rubens and Liocarcinus spp respectively 

would be eo occurring. The third group investigated was Pagurus spp. They were both 

not common and not commonly occurring in the sample though their small size may have 

been responsible. 

This study showed that M glacialis may be a better indicator of the impacts of 

trawling than A. rubens. In agreement with Ramsay et al., (2000b), the data from this 

study suggest that M glacial is has a lower incidence of arm loss when it was also present 

in the samples with known examples of its predators. It is also easier to detect arm loss in 

M glacial is than A. rubens from weight which may have benefits for examples that have 

regenerated arms or where batch processing is undertaken, although in order to develop 

this idea further there is a need to understand its ecology and life history better. 

Other areas of the taxonomic distinctness analysis revealed that the samples from 

close to the Inshore Potting Agreement area, while not the most species rich, were 

amongst the most undisturbed and had the most even taxonomic distinctness, suggesting 
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that there may be a degree of leakage from this voluntarily protected area. The practical 

usefulness of this is that Salcombe may be regarded as a reference area for the region. 

Thus while it was not an aim of this study to establish 'control' or 'impact' areas it 

appeared both from examining 6. + and A+ that the Salcombe area and its management 

could be a model for the whole of the study area and perhaps beyond. Additionally that 

6. + and A+ appear to be both sufficiently sensitive and robust to detect the trends in 

diversity where methods that are more traditional may not be. 

There was evidence of seasonality in the Newlyn samples shown by some 

increase in average taxonomic distinctness later in the year, which was consistent with 

theories of settlement or successional changes though this was not consistent for the other 

ports. 

The plot of 6. + against number of species in this study was in general agreement 

with the analysis by Rogers et al., (1999). Analysis of the relative contribution of 

selected groups to taxonomic diversity showed the derived conservation priorities for 

orders of fishes were Elasmobranches (Rajiformes and Carcharhiniformes) > 

Pleuronectiformes > Gadiformes. In general, the fact of 'losing' orders of fishes was 

more important for single rather than pair trawl samples, which reinforces the view that 

single boat samples were collected from structurally more complex areas supporting a 

wider taxonomic diversity. 

This analysis of groups for conservation priority was also carried into the 

invertebrates and showed that the echinoderms had the greatest influence on the 

taxonomic distinctness for Newlyn. The study of samples from this port would be a 

useful contribution to the understanding of disturbance monitoring. Also, it is recognised 

that the analysis of these data by phyla is unrefined. It is proposed to reanalyse this 

information by finer taxonomic classification, by its sensitivity to fishing (Macdonald et 

al., 1996) and according to functional groups. 
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When examining the abiotic and biotic data sets, the arrangement of the abiotic 

factors according to their ordination was closely followed, and removing the species of 

low abundance generally improved the correlation though care was required for the 

removal not to be too severe. Those species contributing S or I 0 % biomass yielded the 

highest correlations. Surprisingly perhaps, the fish species bore the closest similarity to 

the abiotic data suggesting that much of the study area was dominated by similar 

invertebrate species. Given that the most common invertebrates tend to be scavengers it 

is not surprising that, though categorised as moderately disturbed to moderately 

undisturbed, the occurrence in the samples of examples of long lived and slow growing 

invertebrates species (see page 202, above) and fish species that do not become mature 

until they have reached SO cm or more (Table 5.16, page 141, above) suggests that 

fishing is not evenly distributed. 

An assessment of the location of the fishes in relation to the substrates was 

compared to the literature. There was general agreement between the data and the 

literature, which suggests that the novel method developed here, can be more widely 

applied to commercial catch data if the trawl track (and therefore the substrates 

encountered) are known. Additionally, for eight of the most commonly occurring species 

it was possible to be more precise in their substrate preferences than suggested from the 

literature. In recent years, there has been a consolidation of knowledge on the habitat 

preferences of the invertebrates and it is proposed to widen this analysis to take 

advantage of this information. The benefit of undertaking this is that while the analysis 

presented here confirmed and added to the relationship between fish species and 

substrates, habitat complexity is a function of surface topography and sessile epifauna. 

The latter is important in the survival of round fishes, particularly (Gotceitas et al., 

199S;Borg et al., 1997;Thrush et al., 2002) whereas substrate properties alone may be 

more important for flatfishes (Gibson & Robb, 1992;Rogers, 1992). 
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Gutting the fishes is a major part of processing the catch. It was recognised that 

the collection and analysis of fish stomachs is extremely useful in describing trophic 

relationships and while there are several examples of this analysis for the North Sea 

(Daan, 1989;Hislop, 1997) the more species diverse English Channel is far less well 

studied. Trophic relationships are highly location specific and it is recommended that 

future studies of this nature should include a component of stomach contents analysis, 

especially since samples could be easily taken and stored onboard for later processing. 

The landed fish part of the sample was shown to be a statistically good 

approximation of the landed part of the haul (for which the commercial data was known) 

in > 95 % of the hauls. In part, it was the species-rich nature of the fish populations, in 

the study area, which enabled this analysis to be undertaken. Other features were the 

cooperation of the skippers who allowed the catch data to be known and the size of the 

sample that meant relatively few species were unpaired between the sample and the haul. 

In addition, data on the commercial landings for each port show that the boats sampled in 

this study were representative of these ports. 

The use of logbook data to infer spatial and other type of data is becoming more 

widespread (Ragnarsson & Steingrimsson, 2003). A future goal would be to develop the 

ideas in this study such that a model of the impact of fishing at species or community 

level could be generated, based on knowledge of the spatial and temporal activity of 

fishing effort. Whilst the methods in Chapter 9 and Chapter I 0 are simple, they describe 

the process of scaling up the sample data to that of the haul and that of the market 

respectively. Given that an economic value is placed onto the landed part of the haul and 

the relationship between the landed part of the sample and the landed part of the haul has 

been shown to be reliable the goal would be to complete the model set out in Figure 1.3, 

(on page 16, above). By ground-truthing market to haul to sample data more fully (Peach 

& Cotterell, in prep) it is hoped that an economic and ecological model of the effects of 

fishing can be generated. It is also hoped that this can be incorporated into the future 
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management regime of European fisheries, which are due to be updated to incorporate the 

Maximum Sustainable Yield (MSY) concept (COM, 2006, p21), though this is currently 

the only proposed mechanism to reduce over-fishing. 

The proposed EU Marine Strategy Directive sets out a requirement to achieve 

"'Good Environmental Status' (GEnS) of the marine environment by 2021," (COM, 

2005, pS), though the assessment unit of this will be according to proposed 'marine eco

regions' (EC, 2006, p19) which are generally very large. Laffoley et al., (2006) sets out 

to define GEnS considerations and amongst these are nineteen headline indicators, 

divided into function and process, and habitat and species that attempt to address 

ecosystem health. Some of these headline indicators (such as the fish index, the sharks, 

skates and rays index, and the seabed disturbance index) mirror those employed here 

though others are beyond the scope of this study. Comparative assessment however, with 

larger data sets may provide useful information to be included into the trophic index, the 

species index and the habitats condition index. 

Missing from the indices of Laffoley et al., (2006) as measures of ecosystem 

health are measures of taxonomic diversity (~ + and A l as described in Chapter 6. These 

measures, proposed together as a 'taxonomic index' have here been shown to posses 

ecologically meaningful relationships in terms of taxonomic diversity (~ +) and resilience 

to disturbance (A+). Importantly too, the employment of the proposed taxonomic index 

can be undertaken at a far higher spatial resolution than in the proposed 'marine eco

regions' (EC, 2006, pl9) although samples from a 12 nm seabed swathe have the 

advantage of not being regarded as 'point sources. Another advantage of the taxonomic 

index would be in its application to both ecosystem functional groups and the 

contribution that particular taxonomic groups have to overall diversity. In order to 

examine the usefulness of a taxonomic index, ~ + and A+ should be generated for a 

broader range of trawl surveys than was available to Rogers et al., (1999). 
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Overall this work has provided a comprehensive and detailed picture of the trawl 

fishery of the southwest English Channel particularly in terms of geographical variation 

in catch composition, abiotic drivers of this and relative disturbance of the fished 

assemblages. In doing this, it has tested a range of methodologies and extended their 

application into different taxonomic components, principally from the inclusion of non

fish material with typically landed and discarded fish species. It has also improved the 

understanding of single species of fishes, of invertebrates, their communities and their 

ecology. The utility of the sampling methods in providing snapshots of the hauls and 

approximating the typical catch of the ports was also demonstrated. 

oOo 
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A Sample accuracy 

Recording the raw weight of both the landed and discarded part of the sample by spring 

balance allowed these data to be compared to the value subsequently calculated by 

converting then summing each length to weight according to individual species. The 

comparison is shown by the regression in Figure A.l. 
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y = 1.0295x- 87.029 

R2 = 0.9791 

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 

Spring balance weight (g) 

<>sum of landed fishes C sum of discarded fishes 

Figure A. I. Calculated weight by summing all fish per species and summing all species 
and spring balance weight taken on board, n (landed fishes) = 88 and n (discarded fishes) 
= 88. 
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The regression shown in Figure A. I was very highly significant (P < 0.001) though the 

regression was not strictly valid as the residuals did not approximate a normal distribution 

according to the A-D test; (A2 = 2.047, n = 176, P < 0.001). This was due to the bimodal 

nature of the data since Figure A.1 shows the values for the landed and discarded part of 

the sample nevertheless as is evident from Figure A.1 the two differently derived 

measurements are highly related. Not only does this suggest that the measurements were 

accurately collected but the generated weight from length calculations can be trusted. 
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B Generated length to weight conversion 

data 

Through testing, it was discovered that the values for dragonet (Callionymus sp) were 

unreliable. A sample (n = 31) of male dragonet (Callionymus lyra) were collected at sea, 

brought back to the laboratory and were measured to the nearest 0.1 cm and 0.1 g. Figure 

B. I shows the data. 
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20.0 25.0 30.0 

Figure B. I. Length:weight relationship for the dragonet (Callionymus lyra), n = 31. The 
specimens were collected out of Plymouth (06/06/1999, n = 26) and Looe (07/0711999, n = 
5). The values of a, b (and R2 are shown on the graph). 
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The linear regression of log-weight on log-length .was very highly significant P < 0.001, 

log(y) = 2.867/og(x) -1.982, R2 = 0.974, and this regression was valid with the residuals 

approximating a normal distribution according to the A-D test, (A2 = 0.648, n = 31, P = 

0.082). 

It was not possible to find length:weight relationship and exponent for the starry 

smooth hound (Mustelus asterias). Lart (pers cam) provided the data for the smooth 

hound (M. mustelus), (see Table 3.3, above), though there are differences in shape and size, 

as well as colouration in these species. Wheeler, ( 1978) described the smooth hound as 

being " ... slender-bodied ... " attaining " ... a maximum length of 1.6 m, more usually 

between 1 and 1.2 m." Also, he describes the starry smooth hound as being "a moderately 

slender-bodies shark" grow[ing] to a maximum length of 1.8m; averag[ing] near 1.2m." 

For balance Miller & Loates, (1997) notes the smooth hound as growing larger than the 

starry smooth hound. When available a sample (n = 15) of starry smooth hound (M. 

asterias) were collected at sea, (Newlyn 05/0511999) brought back to the laboratory and 

were measured to the nearest 0.1 cm and 0.1 g. Figure B.2 shows the data. 
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Figure 8.2. Length:weight relationship for the starry smooth hound (Mustelus asterias), n 
= 15. The specimens were collected out ofNewlyn (05/05/1999). The values of a, b (and 
~are shown on the graph). 

The linear regression of log-weight against log-length was very highly significant, P < 

0.001, log(y) = 3.116/og(x) -2.698, ~ = 0.959, and this regression was valid with the 

residuals strongly approximating a normal distribution according to the A-D test, (A2 = 

0.157,n= 15,P=0.939. 
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Appendix C 

Table C. I. Classification (across fifteen levels and including Taxon ID) of encountered species, part I; Phylum PORIFERA to Ophiura ophiura. 
ITuon ID s~les Genus Subfaml!l Famll~ Suj!!rfaml!)! Sactlon lnf- Suborder Order Subclass Class Su~rclass SubPhl!um Phi:! urn Kingdom 
C1 PORIFERA PORIFERA PORIFERA PORIFERA PORIFERA PORIFERA PORIFERA PORIFERA PORIFERA PORIFERA PORIFERA PORIFERA PORIFERA PORIFERA Animalia 
C4080 Stel/igera stupose Stelligera Hemiaslerellidae Hemlastorellidae HADROMERIDA HADROMERIDA HADROMERIDA HADROMERIOA HADROMERIDA TETRACTINOMDRPHA DEMOSPONGIAE PORIFERA PORIFERA PORIFERA Animatia 
010240 Alcyonium digitBium Ak:yonium AJcyoniidae Alcyoniidae ALCYONACEA ALCYONAJ;EA ALCYONACEA ALCYONACEA ALCYONACEA OCTOCORALLIA OCTOCORALLIA ANTHOZOA CNIDARIA CNIDARIA Animalia 
010430 Euniceua venvcosa Eunk:ella Plexauridae Plexauridae GORGONACEA GORGONACEA GORGONACEA GORGONACEA GORGONACEA OCTOCORP.l.LIA OCTOCORALLIA ANTHOZOA CNIDARIA CNIDARIA Animalia. 
011510 Actinia equina Actinia Actiniidae Acti~dae NYNANTHEAE NYNANTHEAE NYNANTHEAE NYNANTHEAE ACnNIARIA HEXACORALLIA HEXACORALLIA ANTHOZOA CNIDARIA CNIDARIA Animalia 
013700 Caryophyflis sm;thii Caryophyf5a CmyophyiHidae Caryophylliidae SCLERACTINIA SCLERACTINIA SCLERACTINIA SCLERACTINIA SCLERACTINIA HEXACORALLIA HEXACORALLIA ANTHOZOA CNIDARIA CNIDARIA Animatia 
02380 Eudendn·um ramosum Eudendrium Eudendriidae Eudendriidae FILIFERA FILIFERA FILIFERA FILIFERA FILIFERA ANTHOATHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Anlmalia 
05160 Lsfoea dumosa Laloea laloeidae Lafoeidae LAFOEOIDEA LAFOEIDA LAFOEIDA LAFOEIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animalia 
05250 Halecium beanti Haledum Haleciidae HBI9Cildae HALECIOIDEA HALECIIDA HALECIIDA HALECIIDA CONICA LEPTOTHECATAE LEPTOUDA HYDROZOA CNIDARIA CNIDARIA AnimaJia 
05260 Ha/ecium halecinum Halecium Hateciidae Haleciidae HALECIOIDEA HALECIIDA HALECIIDA HALECIIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animalia 
05520 Aglaophenia l<irchenpaueri Aglaophenia Aglaopheniidae Aglaophenlldae PLUMULARIOIDEA PLUMULARIIDA PLUMULARIIDA PLUMULARIIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animalia 
05660 Lytocatpia myriophyflum Lytocsrpia Aglaopheniidae Ag\aopheniidae PLUMULARIOIDEA PLUMULARIIDA PLUMULARIIDA PLUMULARIIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animalia 
05850 Kirchenpaueria pinnala Kirchenpaueris Kirdlenpauenlnae Plumulariiclae PLUMULARIOIDEA PLUMULARIIDA PLUMULARIIDA PLUMULARIIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animalia 
05910 Monotheca cbflqua MonctfJeca Plumularfnae Plumulariidae PLUMULARIOIDEA PLUMULARIIDA PLUMULARIIDA PLUMULARIIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animelia 
05970 NemerleSiB antennina Nemertesia PILmUiariinae Plumularildae PLUMULARIOIDEA PLUMULARIIDA PLUMULARIIDA PLUMULARIIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIOARIA Anlmalia 
05990 Nemertesia ramose Nemerlesia Plumulariinae Plumulariidae PLUMULARIOIDEA PLUMULARIIDA PLUMULARIIDA PLUMULARIIDA CONI CA LEPTOTHE<:ATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Anima!ia 
06260 Abietinaria abielina Abielinaria Sertulariidae Sertulariiclae SERTULARIOIDEA PLUMULARIIDA PLUMULARIIDA PLUMULARIIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animalia 
06270 Abietinaria fdicula Abietinaria Sertulariidae Sertulariidae SERTULARIOIDEA PLUMULARIIDA PLUMULARIIDA PLUMULARIIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animal is 
06320 Amphisbetia operculata Amphisbetia Sertulariidae Sertutanldse SERTULARIOIDEA PLUMULARIIDA PLUMULARIIDA PLUMULARIIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animalia 
06370 Diphasia a/ala ()jphasia Sertutatiidae Sertutariidae SERTULARIOIDEA PLUMULARIIDA PLUMULARIIDA PLUMULARIIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animal is 
06380 Diphasia anenuata Diphas;s Sertulariidae Sertulariidae SERTULARIOIDEA PLUMULARIIDA PLUMULARIIDA PLUMULARIIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Anirnalia 
06420 DiphasiB plnaster Diphasia Sertulariidae Sertulariidae SERTULARIDIDEA PLUMULARIIDA PLUMULARIIDA PLUMULARIIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animalia 
06430 Diphasia rosacea Diphasia Sertulan1dae Sertulariidae SERTULARIOIDEA PLUMULARIIDA PLUMULARIIDA PLUMULARIIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animalia 
06530 HydraHmania falcata Hydrallmania Sertulanldae Sertulariidae SERTULARIOIDEA PLUMULAFIIIDA PLUMULARIIDA PLUMULARIIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Anlmalia 
06670 Serlularella gayi Serlularelfa SertuWiidae Sertulariidae SERTULARIOIDEA PLUMULARIIDA PLUMULARIIDA PLUMULARIIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animalia 
06690 Sertularelfa fXJ{yzonias Serlularelfa Sertulan1dae Sertulariidae SERTULARIOIDEA PLUMULARIIDA PLUMULARIIDA PLUMULARIIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animal is 
06710 Serlufarelfa teneJJa Serlufarella Sertutarftdae Sertulsriidae SERTULARIDIDEA PLUMULARIIDA PLUMULARIIDA PLUMULARIIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animal is 
oono Sertularia cupressina Serlularia Sertulariidae Sertulariidae SERTULARIOIDEA PLUMULARIIDA PLUMULARIIDA PLUMULARIIDA CONICA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animalia 
06890 Tamariscatamarisca Tamarisca Sertulan-tdae Sertulariidae SERTULARIOIDEA PLUMULARIIDA PLUMULARIIDA PLUMULARIIDA CONICA LEPTDTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animalia 
0700 Chrysaoro hysoscella Chf)'S80ra Petagiidae Pelagfidae SEMAEOSTOMEA SEMAEOSTOMEA SEMAEOSTOMEA SEMAEOSTOMEA SEMAEDSTOMEA SCYPHOMEDUSAE SCYPHOMEDUSAE SCYPHOZOA CNIDARIA CNIDARIA Animalia 
07280 Obefia sp Obelia Obeliinae Campanulariidae CAMPANULARIOIDEA CAMPANULARIIDA CAMPANULARIIDA CAMPANULARIIDA PROBOSCOIDA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Ani m alia 
07290 Obefia bidentata ObehB Obeliinae Cempanulariidae CAMPANULARIOIDEA CAMPANULARIIDA CAMPANULARIIDA CAMPANULARIIDA PROBOSCOIDA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animalia 
07300 ObefiB dichotoma Obelia Obeliinae Campanulariidae CAMPANULARIOIDEA CAMPANULARIIDA CAMPANULARIIDA CAMPANULARIIDA PROBOSCOIDA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animalia 
07320 Obelia longissima Obela Obeliinae Cempanulariidae CAMPANULARIOIDEA CAMPANULARIIDA CAMPANULARIIDA CAMPANULARIIOA PROBOSCOIDA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Anlmalia 
07430 Rhizocaulus verlicillatus Rhizocaulus campanulariinae Campanulariidae CAMPANULARIOIOEA CAMPANULARIIDA CAMPANULARIIDA CAMPANULARIIDA PROBOSCDIDA LEPTOTHECATAE LEPTOLIDA HYDROZOA CNIDARIA CNIDARIA Animalia 
P13750 Chaetopterus variopedatus Chaetopterus Chaetoptericlae Chaetopteridae CHAETOPTEROIDEA SPIONIDA SPIONIDA SPIONIDA SPIONIDA POLYCHAETA POLYCHAETA ANNELIDA ANNELIDA ANNELIDA Animalia 
P270 Aphrodita aculeata Ap/Jrod4a Aphroditidae Aphfoditidae APHRODITOIDEA PHYLLODOCIDA PHYL.l.ODOCIDA PHYLLODOCIDA PHYLLODOCIDA POLYCHAETA POLYCHAETA ANNELIDA ANNELIDA ANNELIDA Animal is 
P8420 Perineteis cultrifera Perinereis Nereididae Nereididae NEREIDOIDEA PHYLLODOCIDA PHYLLODOCIDA PHYLLODDCIDA PHYLLODOCIDA POLYCHAETA POLYCHAETA ANNELIDA ANNELIDA ANNELIDA Animalia 
0750 Pycnogonum littorale Pycnogonum Pytnogonidae PycnogorUdae PYCNOGONIDA PYCNOGONIDA PYCNOGONIDA PYCNOGONIDA PYCNOGONIDA PYCNOGONIDA PYCNDGONIDA CHELICERA TA CHELICERA TA CHELICERA TA Animalia 
521440 DECAPODA DECAPODA DECAPODA DECAPODA DECAPODA DECAPODA DECAPODA DECAPODA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animalia 
S24S50 Paguros bemhardus Pagurus Paguridae Paguridae PAGURDIDEA ANOMURA ANOMURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Anima\ia 
S24700 Paguros prideau~ Paguros Paguridae Paguridae PAGUROIDEA ANOMURA ANOMURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animalia 
S24850 Galathea dispersa Galathea Galatheldae Galatheidae GALATHEOIDEA ANDMURA ANOMURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animalia 
S24860 Galathea intermedia Galathea Galatheidae Galatheidae GALATHEOIDEA ANDMURA ANOMURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animelia 
S24900 Ga/athea strigosa Gala/Ilea Galatheidae Galatheid3e GALATHEOIDEA AND MU RA ANOMURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animalia 
S25020 Pisidia fongicornis PJsidiB Porcellanidae Porcellanidae GALATHEOIDEA ANOMURA ANOMURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Anirnalia 
S25530 Maja squinado Maja Majinae Majidae MAJOIDEA OXYRHYNCHA BRACHYURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animalia 
S25660 Achaeus cr.mchi Achaeus lf"'8d'Knae Majidae MAJOIDEA OXYRHYNCHA BRACHYURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Anima\ia 
S25760 lnachus dorsettensis fnachus lnachinae MaJidae MAJOIDEA OXYRHYNCHA BRACHYURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animalia 
S25770 lnachus leptochirus tnachus lnachinae Majidae MAJOIDEA OXYRHYNCHA BRACHYURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animalia 
S25830 Macropodia deflexa Macropodia lnachinaa Majidae MAJOIDEA OXYRHYNCHA BRACHYURA PLEOCYEMATA DECAPDDA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animalia 
S25840 Macropodta linaresi Macropodia tnachinae Mafldae MAJOIDEA OXYRHYNCHA BRACHYURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animalia 
S25850 Macropodia rcstrata Macropodia lnachinae Majidae MAJOIDEA OXYRHYNCHA BRACHYURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animalia 
S25860 Macropodia tenuri'cstris Macropodia lnachinae Majidae MAJOIDEA OXYRHYNCHA BRACHYURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Anlmalia 
S26200 Cotystes cassivefaunus Corystes Corystidae Corystidae CANCROIDEA CANCRIDEA BRACHYURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animalia 
S264SO Cancer pagurus Cancer Cancridae Cancridae CANCROIDEA CANCRIDEA BRACHYURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animalia 
S26660 Uocardnus sp Uocara'nus Potybiinae Portunidae PDRTUNOIDEA BRACHYRHYNCHA BRACHYURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animal is 
S26680 Uocardnus corrugatus Liocaldnus Potyb{inae Portunidae PORTUNOIDEA BRACHYRHYNCHA BRACHYURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACDSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animal la 
S26690 Uocardnus depuralot /...iocarcinus Polybiinae Portunidae PORTUNOIDEA BRACHYRHYNCHA BRACHYURA PLEOCYEMA TA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animalia 
S26700 Uocarcinus holsatus l..iocan:inus Polybiinae Por1unidae PORTUNOIDEA BRACHYRHYNCHA BRACHYURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animalia 
S26710 l.Jocarr:inus marmoreus Liocatdnus Polybiinae Portunidae PORTUNOIDEA BRACHYRHYNCHA BRACHYURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animalia 
S26720 Necora puber /VeconJ Polybiinae Pcr1unidae PORTUNOIDEA BRACHYRHYNCHA BRACHYURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Animelia 
S26730 Liocarc:inus pusJJJus Uoaur:inus Polybiinae Portunidae PORTUNOIDEA BRACHYRHYNCHA BRACHYURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA ArUmalia 
S26735 Uocarcinus vemalis l...iccarcinus Polybiinae Portunidae PORTUNOIDEA BRACHYRHYNCHA BRACHYURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA Anlmalia 
S26840 Polybius henslo'Mi Polybiw Polybiinae Portunidae PORTUNOIDEA BRACHYRHYNCHA BRACHYURA PLEOCYEMATA DECAPODA EUCARIDA EUMALACOSTRACA CRUSTACEA CRUSTACEA CRUSTACEA AnimaJia 
W10940 Akera buffata Akera Akeridae Akeridae APLYSIACEA ANASPIDEA ANASPIDEA ANASPIDEA ANASPIDEA GASTROPODA GASTROPODA MOLLUSCA MOLLUSCA MOLLUSCA Animalia 
W17170 Glycymeris glycymetis Gfycymeris Giycymerididae Glycymerididae LIMOPSACEA ARCOIDA ARCOIDA ARCOIDA ARCOIDA PELECYPOOA PELECYPODA MOLLUSCA MOLLUSCA MOLLUSCA Animalia 
W17250 Atrina fragllis Aln·na PiMidae Pimidae PINNACEA PTERIOIDA PTERIOIDA PTERIOIDA PTERIOIDA PELECYPOOA PELECYPODA MOLLUSCA MOLLUSCA MOLLUSCA Animalia 
w1nso Pai!IO!um tigerinum Palliolum Pectinidee Pectinidae PECTINACEA OSTREOIDA OSTREOIDA OSTREDIDA OSTREOIDA PELECYPDDA PELECYPODA MOLLUSCA MOLLUSCA MOLLUSCA Animalia 
W18050 Aequipecten opercularls Aequipecten Pedinidae Pectinidae PECTINACEA OSTREOIDA OSTREOIQA DSTREOIQA OSTREOIDA PELECYPOOA PELECYPODA MOLLUSCA MOLLUSCA MOLLUSCA Animal la 
W18090 Pecten msximus Pecten Pectinidae Pectinidae PECTINACEA OSTREDIDA OSTREOIDA OSTREOIDA OSTREOIQA PELECYPODA PELECYPODA MOLLUSCA MOLLUSCA MOLLUSCA Animalia 
W18150 Anomia ephippium Anomla Anomlldae Ancmiidae ANOMIACEA OSTREOIDA OSTREOIDA OSTREOIDA OSTREOIDA PELECYPODA PELECYPODA MOLLUSCA MOLLUSCA MOLLUSCA Animalia 
W19690 Acanthocatdla echinata Acanthocardla Cardiinae Card!idae CARDIACEA VENEROIDA VENEROIDA VENEROIDA VENEROIDA PELECYPDDA PELECYPODA MOLLUSCA MOLLUSCA MOLLUSCA Animalia 
W23930 Sepia o/ficjnalis Sepia Sepiidae Sepiidae SEPIOIDEA SEPIOIDEA SEPIOIDEA SEPIOIDEA SEPIOIDEA CEPHALOPODA CEPHALOPODA MOLLUSCA MOLLUSCA MOLLUSCA Animalia 
W24190 Rossia macrosoma Rossia Rossiinae Sepiolldae SEPIOIDEA SEPIOIDEA SEPIOIDEA SEPIOIDEA SEPIOIDEA CEPHALOPODA CEPHALOPODA MOLLUSCA MOLLUSCA MOLLUSCA Ani m alia 
W24290 loliginidae loliginidae loligirridae lollginidae TEUTHOIDEA TEUTHOIDEA TEUTHOIDEA TEUTHOIDEA TEUTHOIDEA CEPHALOPODA CEPHALOPODA MOLLUSCA MOLLUSCA MOLLUSCA Animalia 
W24300 Loligo sp Lo/igo loliginidae loliginidae TEUTHOIDEA TEUTHOIDEA TEUTHOIDEA TEUTHOIDEA TEUTHOIDEA CEPHALDPODA CEPHALOPODA MOLLUSCA MOLLUSCA MOLLUSCA Animalia 
W24310 Loligo forbesii Lohgo lohginidae Loliginidae TEUTHOIDEA TEUTHOIDEA TEUTHOIDEA TEUTHDIDEA TEUTHOIDEA CEPI-W...OPODA CEPHALOPODA MOLLUSCA MOLLUSCA MOLLUSCA Animalia 
W24320 Loligo vulgaris Lohgo Loliginidae Lolig1nidae TEUTHOIDEA TEUTHOIDEA TEUTHOIDEA TEUTHDIDEA TEUTHOIDEA CEPHALOPODA CEPHALOPODA MOLLUSCA MOLLUSCA MOLLUSCA Animalia 
W24350 Alloteuthis sp Alloteuthis Lotiginfdae Lollg1nidae TEUTHOIDEA TEUTHOIDEA TEUTHOIDEA TEUTHOIDEA TEUTHOIDEA CEPHALOPODA CEPHALOPODA MOLLUSCA MOLLUSCA MOLLUSCA Anirnalia 
W24370 AJ/oteuthis subulata Alloteuthis lotiginidae Loliginidae TEUTHOIDEA TEUTHOIDEA TEUTHOIQEA TEUTHOIDEA TEUTHOIDEA CEPHALOPOOA CEPHALOPODA MOLLUSCA MOLLUSCA MOLLUSCA Animelia 
W25160 Octopodidae Octopodidae Odopodidae Ocl:opodidae OCTOPODA OCTOPODA OCTOPODA OCTDPODA OCTOPODA CEPHALOPI)DA CEPHALOPODA MOLLUSCA MOLLUSCA MOLLUSCA Animalia 
WlDOO Aporrhais pespelecani Aporrhals Aporrhaiidae Aporrhalidae STROMBACEA MESOGASTROPODA MESOGASTROPODA MESOGASTROPOOA MESOGASTROPODA PROSOBRA ~CHIA GASTROPODA MOLLUSCA MOLLUSCA MOLLUSCA Animalla 
Wl260 Crepidula fomicata Crepidula Calyplraeidae Calyptraeidae CALYPTRAEACEA MESOGASTROPODA MESOGASTROPODA MESOGASTROPODA MESOGASTROPODA PROSOBRA~CHIA GASTROPODA MOLLUSCA MOLLUSCA MOLLUSCA Animalia 
W7370 Trivia arctica Trivia Triviinae Trivfrdae LAMELLARIACEA MESOGASTROPODA MESOGASTROPODA MESOGASTROPODA MESOGASTROPODA PROSDBRANCHIA GASTROPODA MOLLUSCA MOLLUSCA MOLLUSCA Animaiia 
W8440 Buccinum undatum Buccinum Buccininae Buccinidae MURICACEA NEOGASTROPODA NEOGASTROPODA NEOGASTROPODA NEOGASTROPODA PROSOBRANCHIA GASTROPODA MOLLUSCA MOLLUSCA MOLLUSCA Animalia 
YJ510 Pentapora fascia/is Pentapora Hippoporinidae Hippopon-nidae SCHIZOPORELLOIDEA LEPRALIOMORPHA LEPRALIOMORPHA ASCOPHORIHA CHEILOSTOMATIDA GYMNOLAEMATA GYMNOLAEMATA BRYOZOA BRYOZOA BRYOZOA Animaiia 
Y6640 Membranipora membranacea Membranipora Membraniporidae Membraniporidae MEMBRANIPOROIOEA MALACOSTEGINA MALACOSTEGINA MALACOSTEGINA CHEILOSTOMA TIDA GYMNOLAE.I!ATA GYMNOLAEMATA BRYOZOA BRYOZOA BRYOZOA Animalia 
Y6940 Flustra foliacea Flustra Flustridae Flustndae FLUSTROIDEA NEOCHEILOSTOMATINA NEOCHEILOSTOMATINA NEOCHEILOSTOMATINA CHEILOSTOMATIDA GYMNOLAEMATA GYMNOLAEMATA BRYOZOA BRYOZOA BRYOZOA Animalia 
Y7100 Securiflustra securlfrons Securfflustra Fluslridae Fluslridae FLUSTROIDEA NEOCHEILOSTOMATINA NEOCHEILOSTOMATINA NEOCHEILOSTOMATINA CHEILOSTOMATIDA GYMNOLAEMATA GYMNOLAEMA TA BRYOZOA BRYOZOA BRYOZOA Anirnalia 
Y8110 Cellaria sp Cellaria Cellariidae Cellariidae CELLARIOIDEA NEOCHEILOSTOMATINA NEOCHEILOSTOMA TINA NEOCHEILOSTOMATINA CHEILOSTOMATIDA GYMNOLAEMATA GYMNOLAEMA TA BRYOZOA BRYOZOA BRYOZOA Animalia 
Y8360 ScrupoceHaria sp SctupoceHaria Candidae Candidae BUGULOIDEA NEOCHEILDSTOMATINA NEOCHEILOSTOMATINA NEOCHEILOSTOMATINA CHEILOSTOMATIDA GYMNOLAEMATA GYMNOLAEMA TA BRYOZOA BRYOZOA BRYOZOA Animalla 
ZB1010 Porania puMnus Porania Poraniidae PoraniKiae VALVATIDA VALVAnDA VALVATIDA VALVATIDA VALVATIDA ASTEROIDEA ASTEROIDEA ECHINODERMATA ECHINODERMATA ECHINODERMATA Animalia 
ZB1190 Anseropoda placenta Anseropoda Asterinidae Aslerinidae VALVATIDA VALVATIDA VALVATIDA VALVATIDA VALVATIDA ASTEROIDE4 ASTEROIDEA ECHINODERMATA ECHINODERMATA ECHINODERMATA Animalia 
ZB1490 Crossaster papposus Crossaster Solasteridae Solaslericlae VELATIDA VELATIDA VELATIDA VELATIDA VELATIDA ASTEROIDEA ASTEROIDEA ECHINODERMATA ECHINODERMATA ECHINODERMATA Animalia 
ZB1900 Asterias rubens Asterias Asteriidae Asleriidae F ORCIPULA TIDA FORCIPULATIDA FORCIPULATIDA FORCIPULATIDA FORCIPULATIDA ASTEROIDEA ASTEROIDEA ECHINODERMATA ECHINODERMATA ECHINODERMATA Animalia 
ZB2000 Marlhasterias glacialis Marlhasterias Astenldae Asteriidae FORCIPULATIDA FORCIPULATIOA FORCIPULATIDA FORCIPULATIDA FORCIPULATIDA ASTERDIDEA ASTEROIDEA ECHINODERMATA ECHINODERMATA ECHINODERMATA Animalia 
ZB3110 OphiiJra sp Op/Hura Ophft.Jridae Ophiuridae OPHIURIDA OPHIURIDA OPHIURIDA OPHIURIDA OPHIURIDA DPHIUROIDM OPHIUROIDEA ECHINODERMATA ECHINODERMATA ECHINODERMATA Animalia 
ZB3120 Ophiura afflnis Ophiura Ophiuridae Ophiuridae OPHIURIDA OPHIURIDA OPHIURIDA OPHIURIDA OPHIURIDA OPHIUROIDEA OPHIUROIDEA ECHINODERMATA ECHINODERMATA ECHINODERMATA Animalia 
ZB3150 Ophiura ophiura Ophiura Ophiuridae Ophiuridae OPHIURIDA OPHIURIOA OPHIURIOA OPHIURIDA OPHIURIDA OPHIUROIDEA OPHIUROIDEA ECHINODERMATA ECHINODERMATA ECHINODERMATA Animalia 
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Appendix C 
Table C.2. Classification (across fifteen levels and including Taxon ID) of encountered species, part 2; Echinus sp to Zostera marina etc. 

Taxon ID a~les Genua Subfaml~ Faml~ S~rfamllr: Section lnfraorder Sul>onler Order Subclass Clasa Sul!,!n::laaa SubPh):lurn Phl!um KJnsdom 
ZB3590 Echinus sp Echinus Echinidae Echinidae ECHINOIDA ECHINOIDA ECHINOIDA ECHINOIDA ECHINOIDA ECHINOIDEA ECHINOIDEA ECHINODERMATA ECHINODERMATA ECHINODERMATA Animalia 
ZB3600 Echinus acutus Echinus Echinidae Echinidae ECHINOIDA ECHINOIDA ECHINOIDA ECHINOIDA ECHINOIDA ECHINOI.DEA ECHINOIDEA ECHINODERMATA ECHINODERMATA ECHINODERMATA Animalia 
ZB3610 Echinus elegans Echinus Eehinidae Echinidae ECHINOIDA ECHINOIDA ECHINOIDA ECHINOIDA ECHINOIDA ECHINOIDF.A ECHINOIDEA ECHINODERMATA ECHINODERMATA ECHINODERMATA Animalia 
ZB3620 Echinus esculentus Echinus Echinidae Echinidae ECHINOIDA ECHINOIDA ECHINOIDA ECHINOIDA ECHINOIDA ECHINOIDEA ECHINOIDEA ECHINODERMATA ECHINODERMATA ECHINODERMATA Animalia 
ZB4010 Spatangus purpureus Spatangus Spatang;d"" Spatangidaa SPATANGOIDA SPATANGOIDA SPATANGOIDA SPATANGOIDA SPATANGOIDA ECHINOIDEA ECHINOIDEA ECHINODERMATA ECHINODERMATA ECHINODERMATA Animalia 
ZB410 Astropecten irregularis Astropecten Astropectinidae Astropectinidae PAXIllOSIDA PAXIllOSIDA PAXIllOSIDA PAXIllOSIDA PAXIllOSIDA ASTEROIDOA ASTEROIDEA ECHINODERMATA ECHINODERMATA ECHINODERMATA Animal! a 
ZB4521l Ho/othuria forskali Holothuria Holothuriidae Holotturiidae ASPIDOCHIROTIDA ASPIOOCHIROTIDA ASPIDOCHIROTIDA ASPIOOCHIROTIDA ASPIDDCHIROTIDA HOLOTHURIOIDEA HOLOTHURIOIDEA ECHINODERMATA ECHINODERMATA ECHINODERMATA Animalia 
ZB660 Luidia sp Luidia luidijdae luidiidae PAXIllOSIDA PAXIllOSIDA PAXIllOSIDA PAXIllOSIDA PAXIllOSIDA ASTEROIDEA ASTEROIDEA ECHINODERMATA ECHINODERMATA ECHINODERMATA Animalia 
ZB670 Luidia ciliarls Luidia luidlidae Luidiidae PAXIllOSIDA PAXILLOSIDA PAXIllOSIDA PAXIllOSIDA PAXIllOSIDA ASTEROIDEA ASTEROIDEA ECHINODERMATA ECHINODERMATA ECHINODERMATA Animalia 
ZB950 Hippasteria phrygiana Hippasterla Goniasteridae Goniasteridae VALVATIDA VALVATIDA VALVATIDA VALVATIDA VALVATIDA ASTEROIDEA ASTEROIDEA ECHINODERMATA ECHINODERMATA ECHINODERMATA Animalla 
ZD2090 Botryllus schlosseri llol.yflus Styekdae Slyalidaa STOLIDOBRANCHIATA STOLIOOBRANCHIA TA STOLIDOBRANCHIATA STOLIOOBRANCHIATA PlEUROGONA ASCIDIACEA ASCIDIACEA TUNICA TA TUNICA TA CHORDA TA Animafia 
Z0340 Polyclinum au/ilntium Polyclinum Polydinidae PolydiOOaa APLOUSOBRANCHIATA APLOUSOBRANCHIATA APLOUSOBRANCHIATA APLOUSOBRANCHIATA ENTEROGONA ASCIDIACEA ASCIDIACEA TUNICA TA TUNICA TA CHORDA TA Animalia 
ZF1350 Raja brachyura Raja Rajidae Rajidae RAJ/FORMES RAJ/FORMES RAJ/FORMES RAJ/FORMES RAJ/FORMES ElASMOBRANCHII CHONDRICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animal is 
ZF1360 Rajadavata Raja Rojidae Rajidae RAJ/FORMES RAJ/FORMES RAJ/FORMES RAJ/FORMES RAJ/FORMES ELASMOBRANCHII CHONDRICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZF1410 Raja miCroooellata Raja Rajidaa Rajidae RAJ/FORMES RAJ/FORMES RAJ/FORMES RAJ/FORMES RAJ/FORMES ElASMOBRANCHII CHONDRICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZF1420 Raja montagui Raja Rajidaa RajKiaa RAJ/FORMES RAJ/FORMES RAJ/FORMES RAJ/FORMES RAJ/FORMES ElASMOBRANCHII CHONDRICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animal is 
ZF1430 Raja naevus Raja Raj;daa RajKiae RAJ/FORMES RAJ/FORMES RAJ/FORMES RAJ/FORMES RAJ/FORMES ElASMOBRANCHII CHONDRICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animatia 
ZF1460 Raja racJiata Raja Rajidae Rajidae RAJ/FORMES RAJ/FORMES RAJ/FORMES RAJ/FORMES RAJ/FORMES ELASMOBRANCHII CHONDRICHTHYES GNATHOSTOMA TA PISCES CHOROATA Animal is 
ZF1470 Raja undulata Raja Rsjidae Rajidae RAJ/FORMES RAJ/FORMES RAJ/FORMES RAJ/FORMES RAJ/FORMES ELASMOBRANCHII CHONDRICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZF400 Scyliorhinus canicula Scyfiorhinus Scyliorhinidaa Scyliofhinidae CARCHARHINIFORMES CARCHARHINIFORMES CARCHARHINIFORMES CARCHARHINIFORMES CARCHARHINIFORMES ElASMOBRANCHII CHONDRICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animatia 
ZF410 Scyliortlinus ste!laris Scyliorhinus Scyliorhinidae Scyliorhinidae CARCHARHINIFORMES CARCHARHINIFORMES CARCHARHINIFORMES CARCHARHINIFORMES CARCHARHINIFORMES ElASMOBRANCHII CHONDRICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animal is 
ZFSSO Mustelus mus/elus Mustetus Triakidae Triakidae CARCHARHINIFORMES CARCHARHINIFORMES CARCHARHINIFORMES CARCHARHINIFORMES CARCHARHINIFDRMES ElASMOBRANCHII CHONDRICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animal is 
ZF560 Muste/us asterias Mustelus Triakidae Triakidae CARCHARHINIFORMES CARCHARHINIFORMES CARCHARHINIFORMES CARCHARHINIFORMES CARCHARHINIFORMES ElASMOBRANCHII CHONDRICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animal is 
ZG1090 Alepocephalus bmrdi Alepocephalus Alepocephcilidae Alepocephalidae SALMON/FORMES SALMON/FORMES SALMON/FORMES SALMON/FORMES SALMON/FORMES TELEOSTEI OSTEICtmiYES GNATHOSTOMA TA PISCES CHORDA TA Animal is 
ZG1350 Lophius budegassa Lophius lophiidae Lophiidae LOPHIIFORMES lOPHIIFORMES lOPHIIFORMES LOPHIIFORMES lOPHIIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animal is 
ZG1360 Lophius piscatorius Lophius lophiidae Lophiidae LOPHIIFORMES LOPHIIFORMES lOPHIIFORMES lOPHIIFORMES lOPHIIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG1730 Gadus morhua Gadus Gaclidae Gadidae GAD/FORMES GAD/FORMES GAD/FORMES GAD/FORMES GAD/FORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMATA PISCES CHORDA TA Ani m alia 
ZG1820 Melanogrammus aegfefinus Melanogrammus Gadidae Gadidae GAD/FORMES GAD/FORMES GAD/FORMES GAD/FORMES GAD/FORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animal is 
ZG1860 Merlangius merlangus Merlangius Gad- Gadidae GADIFORMES GAD/FORMES GAD/FORMES GAD/FORMES GAD/FORMES TELEOSTEI OSTEICtmiYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG1900 Micromesistius poutsssou Mictomesislius Gad- Gad- GAD/FORMES GAD/FORMES GAD/FORMES GADIFORMES GAD/FORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZGI960 Molva mo/va Molva Gadidae Gad- GAD/FORMES GAD/FORMES GAD/FORMES GAD/FORMES GAD/FORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMATA PISCES CHORDA TA Animalia 
ZG20BO Poflachius pollachius Pollachius Gadidae Gadidae GAD/FORMES GAOIFORMES GAD/FORMES GAD/FORMES GAD/FORMES TELEOSTEI OSTEICHTHYES GNATHDSTOMATA PISCES CHORDA TA Animalia 
ZG2090 Pollachius virens Pollachius Gadidae Gadidae GAD/FORMES GAD/FORMES GAD/FORMES GAD/FORMES GAD/FORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES· CHORDA TA Animalia 
ZG2180 Trisopterus luscus Trisoplerus Gadidae Gadldaa GAD/FORMES GAD/FORMES GADIFORMES GAD/FORMES GAD/FORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG2190 Trisopterus minutus T risopterus Gadidae Gadidae GAD/FORMES GAD/FORMES GAD/FORMES GAD/FORMES GAD/FORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animatia 
ZG221l Conger conger Conger Congridae ~ ANGUilliFORMES ANGUII.LIFORMES ANGUILLIFORMES ANGUilliFORMES ANGUilliFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG2240 Merluccius merlua:::ius Merl/JCOus Merlucciidae Mer1ucciidae GAD/FORMES GAD/FORMES GAD/FORMES GAD/FORMES GAD/FORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG3160 Zeus faber Zeus Zeidae Zeidae ZEIFORMES ZEIFORMES ZEIFORMES ZEIFORMES ZEIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG3210 Capros aper Capros Caproidae Caproidae ZEIFORMES ZEIFORMES ZEIFORMES ZEIFORMES ZEIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMATA PISCES CHORDA TA Animalia 
ZG4030 Aspitrigla cuculus Aspilrig/a Trigbdae Triglidae SCORPAENIFORMES SCORPAENIFORMES SCORPAENIFORMES SCORPAENIFORMES SCORPAENIFORMES TELEOSTE/ OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG4040 Aspdrigla obscura Aspltrigta Trigbdae Triglidae SCORPAENIFORMES SCORPAENIFORMES SCORPAENIFORMES SCORPAENIFORMES SCORPAENIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG4080 Eutrigla gumardus Eutngla Triglidae Trig>- SCORPAENIFORMES SCORPAENIFORMES SCORPAENIFORMES SCORPAENIFORMES SCORPAENIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animatia 
ZG4160 Trigfa lucema Trig/a Tngtidae Triglidae SCORPAENIFORMES SCORPAENIFORMES SCORPAENIFORMES SCORPAENIFORMES SCORPAENIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA AnVnatia 
ZG4210 Trigloporus lastoviza Trigloporus Trighdae Triglidae SCORPAENIFORMES SCORPAENIFORMES SCORPAENIFORMES SCORPAENIFORMES SCORPAENIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animaha 
ZG430 Alosa sp Alosa Ctupeidae Clupeidae ClUPEIFORMES ClUPEIFORMES ClliPEIFORMES ClUPEIFORMES CLUPEIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMATA PISCES CHORDA TA Animalia 
ZG4480 Agonus cataphradus Agonus Agonidae Agonidae SCORPAENIFORMES SCORPAENIFORMES SCORPAENIFORMES SCORPAENIFORMES SCORPAENIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animatia 
ZG4730 Dfcentrarchus labraJt. Olcentrarchus Percichthyidae Percichthyidae PE RC/FORMES PERCIFORMES PE RC/FORMES PERCIFORMES PERCIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG490 Clupea harengus C/upea Cl-- Clupeidae CLUPEIFORMES ClUPEIFORMES ClUPEIFORMES CLUPEIFORMES ClUPEIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG5080 Trachurus trachurus Trachurus Carangidae Carangidae PERCIFORMES PERCIFORMES PERCIFORMES PERCIFORMES PERCIFORMES TELEOSTEt OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG530 Sardms pilchsrdus Sarctina Clupe~dae Clupeidae ClUPEIFORMES CLUPEIFORMES CLUPEIFORMES ClUPEIFORMES ClUPEIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG5680 Mullus surmuletus Mullus Mulhdae Mulhdae PERCIFORMES PERCIFORMES PERCIFORMES PERCIFORMES PERCIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animal is 
ZG570 Spratrus spratrus Sprattus Clupeidae Clupeidae ClUPEIFORMES CLUPEIFORMES ClUPEIFORMES CLUPEIFORMES CLUPEIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG5840 Mugilsp Mug•l MugiHdae Mugilldae PERCIFORMES PERCIFORMES PERCIFORMES PERCIFORMES PERCIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG5860 labtidae Labridae Labridae Labridae PERCIFORMES PERCIFORMES PERCIFORMES PERCIFORMES PERCIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG621l Engraulis enctasicolus Cngrau/15 Engrautic:fldae Engraulididae ClUPEIFORMES CLUPEIFORMES ClUPEIFORMES ClUPEIFORMES CLUPEIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG6860 Ammodytes tobianus Ammodytes Ammodylidaa Ammodytidaa PERCIFORMES PERCIFORMES PERCIFORMES PERCIFORMES PERCIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG6990 Callionymus sp Callionymus Callionyrnidae Callionymidae PERCIFORMES PERCIFORMES PE RC/FORMES PERCIFORMES PE RC/FORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZGBOOO Scomber scombrus Scomber Scombridae Scombridae PERCIFORMES PERCIFORMES PE RC/FORMES PE RC/FORMES PE RC/FORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG830 Osmerus eperlanus Osmerus Osmeridae Osmeridae SALMON/FORMES SALMON/FORMES SALMON/FORMES SALMON/FORMES SALMON/FORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animatia 
ZG8500 Lepidorhombus whrffiagonis Lepidorhombus Scophthalmidae Scophthatmidae PlEURONECTIFORMES PlEURONECTIFORMES PlEURONECTIFORMES PlEURONECTIFORMES PlEURONECTIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZGB630 Scophthalmus rhombus Scophthalmus Scophthalmidae Sc:ophlllaJmidae PLEURONECTIFORMES PlEURONECTIFORMES PLEURONECTIFORMES PLEURONECTIFORMES PlEURONECTIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG8721J AmogJossus imperiafis Amoglossus Bothida& Bothldae PLEURONECTIFORME S PlEURONECTIFORMES PlEURONECTIFORMES PlEURONECTIFORMES PlEURONECTIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHDRDATA Animalia 
ZG8730 Amoglossus latema Amoglossus Both- Bothidae PlEURONECTIFORMES PlEURONECTIFORMES PLEURONECTIFORMES PLEURONECTIFORMES PlEURONECTIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animalia 
ZG8910 Umenda limanda Limanda Pleuronectidae Pleuronectidae PlEURONECTIFORMES PlEURONECTIFORMES PlEURONECTIFORMES PlEURONECTIFORMES PlEURONECTIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMATA PISCES CHORDA TA Animalia 
ZG8950 Microstomus kilt Microstomus Pleuroneclidae Pleuronectidae PlEURONECTIFORMES PlEURONECTIFORMES PlEURONECTIFORMES PlEURONECTIFORMES PlEURONECTIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Ani m alia 
ZG8990 Platichthys flesus Platichthys Pleuroneclidae P/euroneclidae PlEURONECTIFORMES PlEURONECTIFORMES PlEURONECTIFORMES PlEURONECTIFORMES PLEURONECTIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animal! a 
ZG9030 Pleuronecles platessa Pfeuronectes Pleuronectidae Pleuroneclidae PlEURONECTIFORMES PlEURONECTIFORMES PlEURONECTIFORMES PlEURONECTIFORMES PLEURONECTIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA AnimaJia 
ZG9290 So/ea soles So/ea Soteidae Sofeidae PlEURONECTIFORMES PlEURONECTIFORMES PlEURONECTIFORMES PlEURONECTIFORMES PlEURONECTIFORMES TELEOSTEI OSTEICHTHYES GNATHOSTOMA TA PISCES CHORDA TA Animatia 
ZM10390 Heterosiphonia plumosa HetafOSiphonia Oasyaceae Dasyaceae CERAMIALES CERAMIALES CERAMIALES CERAMIALES CERAMIALES FlORIDEOPHYCIDAE RHODOPHYCEAE RHODOPHYCOTA RHOOOPHYCOTA RHODOPHYCOTA Plantaa 
ZM11050 Polysiphonia elongata Polysiphonia Rhodomelaceae Rhodomelaceae CERAMIAlES CERAMIALES CERAMIALES CERAMIALES CERAMIALES FLORIDEOPHYCIDAE RHODOPHYCEAE RHODOPHYCOTA RHODOPHYCOTA RHODOPHYCOTA Plantae 
ZM11160 Polysiphonia nigra Polysiphonia Rhodomelaceae Rhodomelaceae CERAMIALES CERAMIALES CERAMIALES CERAMIALES CERAMIALES FlORIDEOPHYCIDAE RHODOPHYCEAE RHODOPHYCOTA RHODOPHYCOTA RHODOPHYCOTA Plantae 
ZM2155 Gelidium crinafe Gehdium Ge~diace.ae Gelidiaceao GEliD/AlES GEliD/AlES GEliD/AlES GEliD/AlES GEliD/AlES FlORIDEOPHYCIDAE RHOOOPHYCEAE RHODOPHYCOTA RHODOPHYCOTA RHODOPHYCOTA Ptantae 
ZM2230 Pterodadia cspi/lacea Prerodadla Ge~diaceae Gelid:iaceae GEliD/AlES GEliD/AlES GEliD/AlES GEliD/AlES GEliD/AlES FlORIDEOPHYCIDAE RHOOOPHYCEAE RHODOPHYCOTA RHODOPHYCOTA RHODOPHYCOT A Plantae 
ZM2420 Palmaria palmats Pafmaria Patmariaceae Patmariaceae PALMAR/AlES PALMAR/AlES PAlMAR/AlES PALMAR/ALES PALMAR/AlES FLORIDEOPHYCIDAE RHOOOPHYCEAE RHODOPHYCOTA RHODOPHYCOTA RHODOPHYCOTA Plantae 
ZM3230 Callophyllis laciniata CaHophyllis Kallymeniaceae Ka!lyrneniaceae GIGARTINALES GIGARTINALES GIGARTINALES GIGARTINALES GIGARTINALES FLORIDEOPHYCIDAE RHOOOPHYCEAE RHODOPHYCOTA RHOOOPHYCOTA RHODOPHYCOT A Ptan1ae 
ZM6050 Mastocarpus stellatus Mastocarpus Phyllophoraceae Phyllophoraceae GIGARTINALES GIGARTINALES GIGARTINALES GIGARTINALES GIGARTINALES FlORIDEOPHYCIDAE RHOOOPHYCEAE RHODOPHYCOTA RHODOPHYCOTA RHODOPHYCOTA Ptarnae 
ZM6110 Chondrus crispus Chondrus Gigartinaceae Gigartinacsae GIGARTINALES GIGARTINALES GIGARTINALES GIGARTINALES GIGARTINALES FlORIDEOPHYCIDAE RHODOPHYCEAE RHODOPHYCOT A RHODOPHYCOTA RHODOPHYCOTA Plantaa 
ZM6480 Hslarachnion frgufatum Halarachnion Furcellariaceae Furcellariaceae GIGARTINALES GIGARnNALES GIGARTINALES GIGARTINALES GIGARTINALES FlORIDEOPHYCIDAE RHODOPHYCEAE RHODOPHYCOTA RHOOOPHYCOTA RHODOPHYCOT A Plantae 
ZM6820 Cafhb/epharis ciliata Calhb/epharis Cystodoniaceaa Cyslodoniaceaa GIGARTINALES GIGARTINALES GIGARTINALES GIGARTINALES GIGARTINALES FlORIDEOrHYCIDAE RHOOOPHYCEAE RHODOPHYCOTA RHODOPHYCOTA RHODOPHYCOT A Plantae 
ZM8560 HalunJS equisetifollus Halurus Ceramiaceae Ceramiaceae CERAMIALES CERAMIALES CERAMIALES CERAMIALES CERAMIALES FlORIDEOPHYCIDAE RHOOOPHYCEAE RHODOPHYCOTA RHODOPHYCOTA RHODOPHYCOTA Plantaa 
ZM9550 Delesseria sanguinea Delesseria Oelesseriaceae Delesseriaceae CERAMIALES CERAMIALES CERAMIALES CERAMIALES CERAMIALES FLORIDEOPHYCIDAE RHOOOPHYCEAE RHODOPHYCOTA RHODOPHYCOTA RHODOPHYCOTA Plantse 
ZR320 Ectocarpus siliculosus Edocarpus Eelocarpaceae Ectocarpaceae ECTOCARPALES ECTOCARPALES ECTOCARPALES ECTOCARPALES ECTOCARPALES PHAEOPHYCEAE PHAEOPHYCEAE CHROMOPHYCOTA CHROMOPHYCOTA CHROMOPHYCOTA Plantaa 
ZR6640 Ascophyllum nodosum Ascop/Jyllum Fucaceae Fucaceae FUCALES FUCALES FUCALES FUCALES FUCALES PHAEOPHYCEAE PHAEOPHYCEAE CHROMOPHVCOTA CHROMOPHYCOTA CHROMOPHYCOTA Plantaa 
ZR6690 Fucus ceranoides Fucus Fucaceae Fucaceae FUCALES FUCALES FUCALES FUCALES FUCALES PHAEOPHYCEAE PHAEOPHYCEAE CHROMOPHYCOTA CHROMOPHYCOTA CHROMOPHYCOTA Plantaa 
ZR6740 Fucus semttus Fucus Fucaceae Fuca08B<I FUCALES FUCALES FUCALES FUCALES FUCALES PHAEOPHYCEAE PHAEOPHYCEAE CHROMOPHYCOTA CHROMOPHYCOTA CHROMOPHYCOTA Plantae 
ZR6870 Himanlhalia elongala Himanthaha H1manlhaliaceae Himanthaliaceae FUCALES FUCALES FUCALES FUCALES FUCALES PHAEOPHYCEAE PHAEOPHYCEAE CHROMOPHYCOTA CHROMOPHYCOTA CHROMOPHYCOTA Plantae 
ZS2110 Enteromorpha sp Enteromorpha UIYaceaa Ulvaceae UlVAlES ULVALES UlVAlES UlVAlES UlVAlES ULVOPHYCtAE UlVOPHYCEAE CHLOROPHYCOTA CHLOROPHYCOTA CHLOROPHYCOTA Ptantaa 
ZS2450 Ulva lactuca Ulva Ulwceae Ulvaceae UlVAlES ULVALES UlVAlES UlVAlES UlVALES ULVOPHYCEAE UlVOPHYCEAE CHLOROPHYCOT A CHLOROPHYCOTA CHLOROPHYCOT A Plantae 
ZX9597 Zostera marina Zostera Zosteraceae Zosteraceae POTAMOGETONALES POTAMOGETONALES POT AMOGETONALES POTAMOGETONALES POTAMOGETONALES LILIOPSIOA llliOPSIDA ANTHOPHYTA ANTHOPHYTA ANTHOPHYTA Plant as 

anth02 coal coal coal coal coal coal coal coal coal coal coal ooal coal coal ooal Anthropogenica 
anth03 z-lrash z-trash z-trash Z·traSl"l z-trash z-trash z-trash Z.Uash z-trash z-trash z-trash z-trash z-trash z-trash z-trash Anttvopogenica 
natu01 leaf tea1 laa1 DICOTYLEDONAE DICOTYLEDONAE DICOTYLEDONAE DICOT'IlEDONAE DICOT'ILEDONAE DICOT'IlEDONAE DICOTYLEDONAE DICOT'ILEOONAE ANGIOSPERMAE ANTHOPHYTA ANTHOPHYTA ANTHOPHYTA Plantaa 
natu02 stone stone s1one SI one stone stone stone SI one Slona 51008 Slona stone si one &lone stone Geologica 

ZK160 bone bone bona Phocidae Phocidae PINNIPEOIA PINNIPEDIA PINNIPEOIA PINNIPEOIA PINNIPEDIA MAMMALIA MAMMALIA CHORDA TA CHORDATA CHORDA TA Animalia 
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Appendix D 

Appendix D 

D Total sample weight and its variation 

D.l Introduction 
There were several reasons why the total sample weight (shown in Figure 3.3, page 61, 

above) might have varied. Clearly, the simplest explanation relates to the basket not being · 

full; potentially the case since the majority of basket weights (n = 68) or 77 % were < 38 

kg. Only 23 % of the samples (n = 20 were > 38 kg. Although plausible this was highly 

unlikely since the aim of the study was to analyse a full fish basket. Alternatively, the 

packing of the basket may have been important. Relatively soft and small items, such as 

squid would be expected to pack better than large or hard objects, such as large cod, or 

urchins. The hypothesis was that there should be no significant difference between total 

sample weight, although the distribution shown in Figure 3.3 suggests that there was 

indeed a marked degree of variability in this measure. 

D.2 Methods 
In order to explore the variability in the total sample weight in greater detail, a General 

Linear Model (GLM) of total sample weight was constructed for a range of meta-data 

factors and variables, which may be responsible for the variation. Significant interactions 
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were then further examined. 

D.3 Results 
The results of the GLM are presented in Table 0.1. 

Table 0.1. Full factor GLM testing total sample weight (g) to the factors of: wind = wind 
speed (knots), dur = duration of tow, (mins), dep = depth of haul, (m), speed = speed of 
tow (ms'1), vol-bas =haul size as number of baskets of fish, trip#= sequential trip aboard 
that particular boat, sample # = sequential sample number (1 to 88), port & type =port of 
operation and type of trawling (pair or single boat), d/n/t = time of haul 
(day/night/twilight), q =quarter of the year, and interactions. Note that covariances are not 
dealt with as interactions, and that the interaction of port & type * d!nlt * q returned zero 
d.f. Significant interactions are highlighted. 

source d.f. Fvalue Pvalue 
corrected model 37 3.190 1 < o.oo1 
intercept 1 11.583 I Q.QQ6 

wind 1 0.291 I 0.592 I 

dur 1 4.841 0.032 
dep 1 < 0.001 0.997 
speed 1 0.111 0.741 
vol-bas 1 1.303 0.259 
trip# 1 4.380 0.041 
sample# 1 4.514 0.039 
port & type 5 3.199 0.014 
d/n/t 2 0.194 r 0.825 
q 3 4.071 0.012 
port & type • d/n/t 3 1.138 

I 
0.343 

port & type • q 12 1.638 0.111 
d/n/t • q 4 1.181 I 0.330 
port & type • d/n/t • q 0 ' 
error 50 
total 88 
corrected total 87 

In the GLM port of sailing and type of trawling were not kept separate (as two factors) but 

were treated as a single one (containing six categories) as it was not possible to nest these 

since pair trawling was not sampled from Newlyn and Salcombe. Table 9.2 (page 279, 

above) describes the results of a GLM where port of sailing and type of trawling had to be 

treated separately and interactions of type of trawling generated zero d.f.). 
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The model as depicted by Table D. I is on the borderline of being valid since the 

Levene's test for equality of error variance returned P = 0.049, thus the output of the GLM 

should be treated with caution. Nevertheless it appears that duration of tow, the trip 

number (number of times onboard each boat), the sequential haul number, the port and 

type of trawling and the quarter of the year produced a significant interaction with the total 

sample weight, if the GLM described by Table D.l is considered valid. These significant 

interactions are presented in order of their relevance. 

D.3.1 Variation in total sample weight with port and 

type of trawling 
According to port and type of trawling total sample size data did not universally 

approximate normal distributions according to the A-D test; (N S, A2 = 0.791, n = 42, P = 

0.037; and PP, A2 = 0.708, n = 8, P = 0.039). The degree to which the averages of total 

sample weight· according to port and type of trawling required further analysis with the 

Kruskal-Wall is (K-W) test. Table D.2 shows the results of the medians of total sample 

weight according to port and type of trawling. 

Table D.2. Kruskal-Wallis test of median of total sample weight (g) according to port and 
type of trawling, N- = Newlyn, L- = Looe, P- =Plymouth, S- = Salcombe; -S =single boat 
trawling, -P =pair boat trawling. H = 28.03, d. f.= 5, P < 0.001 (adjusted for ties). 

port and type of average 
trawling n median rank z 
NS 42 29,963 31.1 -4.69 
LS 11 35,289 44.5 0.01 
LP 9 34,060 58.2 1.70 
PS 8 34,978 58.3 1.60 
PP 8 39,931 73.4 3.35 
ss 10 33,200 54.1 1.26 
overall 88 I I 44.5 I 

Table D.2 shows that sample medians from Newlyn were smaller and those from pair 

trawled Plymouth samples larger, compared to the rest. The significance of this was 
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confinned by the post hoc Dunn's Test for Multiple Comparisons (see Table 0.3). 

Table 0.3. Results of Kruskal-Wallis post hoc Ounn's Test for Multiple Comparisons (Q) 
of median total sample weight (g) according to port and type of trawling, N- = Newlyn, L
= Looe, P- = Plymouth, S- = Salcombe; -S = single boat trawling, -P = pair boat trawling 
according to 2 d.p. K = 2.94 and significantly different pairs are highlighted. 

N S 1.55 2.89 2.76 . 4.29 ; 2.56 
LS 1.19 1.16 2.43 0.86 
L P 0.01 1.22 0.35 
p s 1.18 0.35 
pp 1.~ 

LS LP PS pp ss 

Table 0.3 shows that only the median total sample sizes from Newlyn and Plymouth pair 

trawled samples were significantly different (despite P = 0.014 for this interaction from the 

GLM in Table D.l, above) though the values for Newlyn were consistently (though not 

significantly) different to the others. This is perhaps the most important interaction from 

the GLM described in Table 0.1 (above) and described in more detail (on page 357) 

below. 

Duration of tow was a covariable in the GLM (in Table 0.1, above) therefore its 

relationship with total sample weight can be further explored . by regression analysis. 

Figure 0.1 shows a plot of total sample weight against duration of tow. 
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Figure D. I. The relationship between total sample weight (g) and duration of tow 
(minutes), n = 88. Filled points represent Newlyn samples, open represent all others. The 
trend line is fitted through all data. 

· Figure D.l shows that there was a negative relationship of total sample weight against 

duration of tow. Also, while this fit was low as shown by the R2 value on Figure D.l the 

regression was nevertheless very highly statistically significant, P < 0.001 and valid with 

the residuals of the regression approximating a normal distribution according to the A-D 

test; (A 2 
= 0.494, n = 88, P = 0.21 0). The interactive relationship between relatively long 

tow duration and relatively small total sample weights for the samples collected from 

Newlyn is also apparent from Figure D.!. 

D.3.2 Variation in total sample weight with duration 

of tow 
Like total sample weight tow duration according to port and type of trawling does not 

universally approximate normal distributions according to the A-D test; (N S, A2 = 

0.2.459, n = 42, P < 0.005; P S, A2 
= 1.080, n = 8, P < 0.005) therefore this single factor 

also required analysis with the K-W test. Table D.4 showed the results of the medians of 
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tow duration according to port and type of trawling. 

Table 0.4. Kruskal-Wallis test of tow duration (min) according to port and type of 
trawling, N- = Newlyn, L- = Looe, P- = Plymouth, S- = Salcombe; -S = single boat 
trawling, -P =pair boat trawling. H = 31.98, d. f.= 5, P < 0.001 (adjusted for ties). 

port and type of average 
trawling n median rank z 
NS 42 300.0 58.2 4.80 
LS 11 300.0 51.0 0.90 
LP 9 240.0 24.6 -2.47 
PS 8 240.0 21.8 -2.64 
pp 8 247.5 27.7 - 1.95 
ss 10 247.5 29.5 -1.97 
overall 88 I I 44.5 I 

Table 0.4 reinforces the pattern observed in Figure 0.1. Table 0.5 shows the permutation 

results of the post hoc Ounn's Test for Multiple Comparisons. 

Table 0.5. Results ofKruskal-Wallis post hoc Ounn's Test for Multiple Comparisons (Q) 
of median total sample size according to port and type of trawling, N- = Newlyn, L- = 
Looe, P- = Plymouth, S- = Salcombe; -S = single boat trawling, -P = pair boat trawling 
according to 2 d.p. K = 2.94 and significantly different pairs are highlighted. 

N S 0.83 . 3.58 3.69 3.09 3.19 
L S 2.30 2.46 1.96 1.93 
L P 0.23 0.25 0.42 
p s 0.46 0.64 
pp 0.15 

LS LP PS PP SS 

Table 0.5 shows that tow duration for the Newlyn hauls were significantly different 

(longer) to all the others (except the Looe single boat hauls). This explains 

interrelationship between tow duration, total sample weight and port and type of trawling 

with port and type of trawling being the link between the others and with the significance 

as shown in Table 0.1, above due to the Newlyn hauls being longer in duration but 

resulting in smaller total sample weights. Table 0.1, above did not examine the 

interrelationship between these values, as tow duration was a covariate (not a factor) in the 

GLM. 
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D.3.3 Variation in total sample weight with quarter of 

the year 

Table 0.1, above showed a significant association between total sample weight and quarter 

of the year. This suggests a degree of seasonality in the total sample weight 

measurements. Table 0.6 shows the results of a K-W test on total sample weight and 

quarter of the year as the factor. 

Table 0.6. Kruskal-Wallis test of quarter of the year according to port and type of 
trawling, N- = Newlyn, L- = Looe, P- = Plymouth, S- = Salcombe; -S = single boat 
trawling, -P =pair boat trawling. H = 20.85, d.f. = 3, P < 0.001. 

quarter of the average 
year n median rank z 
1 11 39,483 62.7 2.53 
2 28 32,967 46.1 0.40 
3 38 30,045 32.3 -3.89 
4 11 35,536 64.2 2.73 
overall 88 I I 44.5 I 

Table 0.6 appears to show that the samples taken during the middle two quarters of the 

year were much smaller. Table 0.7 shows the permutation results of the post hoc Ounn's 

Test for Multiple Comparisons. 

Table 0.7. Results of Kruskai-Wallis post hoc Dunn's Test for Multiple Comparisons (Q) 
of median total sample weight (g) according to quarter of the year in which the sample was 
taken. Data are shown to 2 d.p. K = 2.94 and significantly different pairs are highlighted. 

1 1.83 3.48 0.14 
2 2.17 1.99 
3 r 3.65 

2 3 4 

Table 0.7 shows as expected significant differences between total sample weight between 

quarters 1 and 3, and 3 and 4, (though not between quarters 1 and 2, and 2 and 4 as might 

have been expected). Nevertheless it appears that it was the influence of the generally 

smaller sample weights taken onboard boats operating from Newlyn, which were only 
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sampled during quarters 2 and 3 (see Table 3.2, page 49, above). 

It seems likely that the generally smaller sample weights taken onboard boats 

operating from Newlyn was also responsible for the significant association between total 

sample weight and sequential sample number in the GLM described in Table D.l above. 

D.3.4 Variation in total sample weight with trip 

number and sequential haul number 
Whilst Table 0.1, above showed significant interactions between both total sample weight 

with trip number (number of times onboard a boat) sequential haul numbers these 

interaction are spurious. Total sample weight according to trip number all approximate 

normal distributions according to the A-D test therefore the variation in total sample 

weight according to trip number was examined by one-way ANOV A. F = 2.02, d.f. = 3, P 

= 0.117 therefore this interaction was not significant. Similarly whilst Table 0.1, above 

showed a significant interaction between the total sample weight and sequential haul 

number this was due to the distribution of the generally smaller total sample weights from 

Newlyn being taken relatively early on through the whole sampling period (see Table 3.2, 

page 49,above). The next section examines the Newlyn samples in more detail. 

D.3.5 Explanation for difference in total sample 

weight between Newlyn and the other ports 
Table 0.2 (page 352, above) shows that the hauls taken from Newlyn were amongst those 

with the smallest total sample weight, and that those samples from the other four ports 

group more closely. To emphasize this, the mean weights from the four ports were: 

Newlyn = 30,643g, n = 42; Looe = 34,643g, n = 20; Plymouth = 37,352g, n = 16; 
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Salcombe = 35,363g, n = I 0. The reason for the average sample weight from Newlyn 

being smaller than from other ports could be explained by two reasons. Firstly, the 

generally more rough conditions experienced further offshore might mean that it was more 

difficult to fill, and keep full, the fish basket. Also that it might be harder to move the 

weight about on deck, however this was unlikely and supported by the lack of significant 

interaction between total sample weight and wind speed as described by the GLM in Table 

D.l, above. The alternative idea is based around the hypothesis that the further offshore 

fishes were larger; as suggested by Cushing, ( 1975) but based on much earlier ideas 

(Heincke, 1913) and thus the fish did not pack so well into the fish basket. This analysis 

was based on the 26 species, which were present in samples from all of the four ports. 

Table 0.8 shows the average length and weight of those species that are arranged 

alphabetically by species code. 

358 



Appendix D 

Table 0.8. Average length "1" (cm) and weight "w" (g) of twenty-six species (present in 
samples from all ports) according to port. The data are shown to 0 d.p. See Table 3.3, 
page 51, above for an explanation of the species codes. 

Newlyn I 
Looe Plymouth Salcombe 

species I w I w I w I w 
BIB 24 243 I 27 302 26 282 26 275 

l 

BLR 42 1,384 1 42 1,469 41 1,611 41 1,521 
CRE 18 804 . 20 1,105 25 1,957 24 1,814 
CTL 8 162 9 227 17 1,273 12 582 
CUR 47 882 46 708 39 435 31 187 
DAB 21 91 25 182 24 159 19 73 
DI::T 23 92 22 73 22 78 24 125 
GUG 26 168 24 122 23 122 26 206 
GUX 25 159 . 23 126 23 125 24 144 
HKE 31 208 33 254 35 310 36 313 
HOM 25 160 23 112 24 130 22 92 
JOD 30 708 27 569 27 504 37 1,050 
LEM 26 218 29 351 27 266 29 359 
UN 43 426 31 165 36 244 37 276 
LSD 56 760 46 392 49 487 52 573 
MEG 35 383 30 275 37 404 32 301 
MON 44 1,518 44 1,293 56 2,950 39 901 
PCO 14 31 15 37 17 54 15 36 
PLE 37 608 34 445 30 320 30 337 
POG 14 19. 15 23 13 15 11 10 
SOL 34 381 27 229 22 131 18 99 
sac 15 191 16 321 17 211 21 460 

SQC(F) 18 262 19 325 19 310 20 367 
SOCM 18 335 19 315 21 440 22 530 

THR 38 1,625 43 1,867 44 1,821 32 893 
WHG 31 271 31 269 30 231 33 323 

The data in Table 0.8 were averages of the measurement according to each haul. These 

were then averaged by each haul from each port. Table 0.9 shows which of these 

measures (by port) do or do not approximate a normal distribution according to the A-D 

test. 

Table 0.9. Results of Anderson-Darling test of normality on the length and weight 
measurements for all species present in Table 0.8 according to port, (n = 26 in all cases). 

Newlyn Looe Plymouth Salcombe 
I w I w I w I w 

A2 0.246 1.911 0.432 2.635 0.691 3.420 0.190 1.746 
p 0.733 < 0.001 0.282 < 0.001 0.063 < 0.001 0.890 < 0.001 

Table 0.9 shows that the weight data do not approximate a normal distribution according 

to port. Transforming these data did not improve the fit. Table 0.9 also shows that the 
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length data did approximate a nonnal distribution. Also the variances are not significantly 

different for the length measurements according to Bartlett's test (Be = 1.032, d.f. = 3, P = 

0.794) therefore length can be analysed by ANOVA while weight required the K-W test, 

however, neither the average length nor median of weight for one port were significantly 

different to the others; F = 0.08, d.f. = 3, P 0.973 for length and H = 0.09, d.f. = 3, P = 

0.994 for weight, though the mean average length values by port and species were greatest 

for Newlyn at 28.57 cm. The other values were Looe, 27.66; Plymouth, 28.51 and 

Salcombe, 27.47 cm. 

Table D.l 0 shows the tally of rank-order of average length and weight of all species 

described in Table 0.8 according to port. These were generated by ranking the average 

length and weight by each species across the four ports. 

Table D.l 0. Tally of rank-order of length and weight of each species across the four ports, 
N = Newlyn, L = Looe, P = Plymouth and S = Salcombe. The most common rank-orders 
are highlighted. 

Newlyn I Looe i Plymouth I Salcombe 
rank size I w I w I w i I w 

largest 1 9 9 ! 4 6 I 6 4 I 7 7 
i ' I 

! 2 3 3 ' 11 9 7 10 5 4 

! 3 7 7 I ; 7 7 : 6 I 5 6 
' ' 

smallest 4 7 7 4 6 6 9 9 

Table D.l 0 shows that for the both the length and weight measurements Newlyn had the 

greatest number of the largest specimens according to species. The most common size 

ranking for Looe was size 2 according to both length and weight. The situation for 

Plymouth is similar for weight but two sizes (rank 2 and 3) both shared the mode. These 

species were most commonly the smallest in rank from the Salcombe samples, thus while 

it is not possible to statistically show why the Newlyn samples were smaller in total weight 

they did most commonly contain the largest individuals on a species by species basis. 
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E Test of the validity of tidal information 

E.l Methods 
In order to validate the VICTOR tidal model the magnitude of the tidal strengths at thirty

three tidal diamonds from Charts 1148 (n = 14), (Anon, 1999); Chart 1267 (n = I 0), (Anon, 

1984); and Chart 1613 (n = 9) (Anon, 1992) were compared to their nearest available 

position given by the VICTOR model. Where the position of an Admiralty tidal diamond 

was equidistant between two positions on the VICTOR grid the southerly or westerly 

position on the VICTOR grid was chosen. In order to account for potential differences in 

the model due to the quarter diurnal the distance from the Admiralty tidal diamond position 

to the nearest point of land was additionally recorded. The nearest point of land was taken 

as the nearest surveyed continuous coastline as described in section IC of Anon, ( 1991 ). 

Thus drying heights or outcrops of rock, (such as The Manacles, Eddystone Rocks, (Figure 

3.1, page 47, above), or the Great Mewstone off Plymouth) do not count for this purpose. 

The magnitude given for the Admiralty tidal diamond was in knots, which were converted 

to ms-1
• Table E.l shows these data. 
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Table E.l. Comparative positions and velocity magnitudes of thirty-three Admiralty tidal 
diamonds (see text for details of the charts) and comparative positions on the VICTOR 
grid. 

"*' c 
0 

:;:::; 
"iii 
0 a. 

"*' t 
nl 

.s::: 
0 

Admiralty tidal diamond 

long I distance 
lat degree degree & I to land 

0 & minute minute (n m) 

11 1148 L 49 
8 1148 H 49 

14 1148 p 49 
7 1148 G 50 
9 1148 J 49 

10 1148 K 49 
5 1148 E 50 

18 1267 D 50 
15 1267 A 50 
12 1148 M 49 
2 1148 B 50 

22 1267 H 50 
25 1613 A 50 
23 1267 J 50 
26 1613 B 50 

6 1148 F 50 
21 1267 G 50 
16 1267 Bl 50 
32 1613 Hi 50 
13 1148 Nj 49 
30 1613 F: 50 

3 1148 c! 5o 
4 1148 Dl 50 

17 1267 c 50 
33 1613 J I 5o 
24 1267 K' 50 
31 1613 G

1 
50 

19 1267 Ei 50 

28 1613 DE I' 5500 
29 1613 
20 1267 F) 50 

1 1148 Acl 5o 
27 1613 50 

55.8 I -s 13.3 
59.3 1 -s 12.2 
46.3 -6 19.5 
00.2 -5 46.6 
58.5 -5 48.5 
57.0 -6 05.8 
07.2 -5 49.5 
08.5 -5 01.5 
02.4 -5 02.3 
54.1 -6 19.0 
15.1 -6 09.9 
18.3 -4 10.8 
18.3 -4 10.8 
18.3 I -4 07.7 
18.3 I -4 07.7 
03.5 . -6 04.5 
17.0 -4 26.6 . 
02.5 -4 58.7 
28.5 I -3 22.5 
53.0 ' -5 54.9 

~~:~ I ~~ ~~:~ 
08.0 I -6 15.0 

02.7 -4 54.81 
18.0 -3 20.0 
12.5 -4 05.2 ' 
17.0 -3 35.0 
08.0 -4 52.3 
07.8 -3 55.2 
10.0 -3 38.8 
12.1 -4 30.0 
19.0 -5 52.0 
12.5 -4 05.2 

1.2 
2.6 
7.0 
4.2 
1.2 
5.7 
4.5 
0.3 
1.0 
6.2 

19.2 
0.7 
0.7 
0.9 
0.9 
9.0 
3.2 
3.1 
4.1 

12.9 
0.9 

10.6 
9.2 
5.5 
7.5 
5.4 
2.1 
4.1 
6.4 
3.1 
7.3 

12.8 
5.2 

velocity 
(kt) I (ms.1

) 

2.9 1.49 
2.3 1.18 
1.9 0.98 
2.5 1.29 
2.2 1.13 
2.0 1.03 
2.5 1.29 
0.8 0.41 
1.7 0.88 
1.7 0.88 
1.7 0.88 
1.0 0.52 
1.0 0.52 
0.9 0.46 
0.9 0.46 
1.5 0.77 
0.9 0.46 
1.3 0.67 
1.1 0.57 

' 1.2 0.62 
2.5 1.29 
1.7 0.88 
1.3 0.67 
1.1 0.57 

I 1.5 o.11 
1.0 0.52 
1.2 0.62 
0.7 0.36 
1.4 0.72 
2.1 1.08 
0.5 0.26 
1.4 0.72 
1.0 0.52 

VICTOR position 

long 
lat degree degree & 
& minute minute 

49 
49 
49 
50 
49 
49 
50 
50 
50 
49 
50 
50 
50 
50 
50 
50 
50 
50 
50 
49 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 

56.0 
59.2 
46.4 
00.0 
58.4 
56.8 
07.2 
08.8 
02.4 
54.4 
15.2 
18.4 
18.4 
18.4 
18.4 

03.21 
16.8 

02.41' 
28.8 
52.8 
12.8 
09.6 
08.0 
o2.4 I 
17.6 I 

12.8 i 

16.8 
08.0 
08.0 
10.4 
12.0 
19.2 
12.0 

-6 13.2 0.82 
-6 12.0 0.58 
-6 19.2 0.51 
-5 46.8 0.83 
-5 48.0 0.68 
-6 06.0 0.59 
-5 49.2 0.93 
-5 01.2 0.07 
-5 02.4 0.55 
-6 19.2 0.60 
-6 09.6 0.62 
-4 10.8 0.31 
-4 10.8 0.31 
-4 07.2 0.26 
-4 07.2 0.26 
-6 04.8 0.58 
-4 26.4 0.28 
-4 58.8 0.49 
-3 22.8 0.40 
-5 55.2 0.47 
-3 37.2 1.14 
-5 58.8 0.73 
-6 15.6 0.54 
-4 55.2 0.46 
-3 20.4 0.71 
-4 04.8 0.47 
-3 34.8 0.59 
-4 52.8 0.34 
-3 55.2 0.76 
-3 38.4 1.13 
-4 30.0 0.32 
-5 51.6 0.82 
-6 04.8 0.64 

These tidal magnitudes were compared using the paired /-test (Dytham, 1999, p73), though 

prior to this the data were tested for approxi~ation to a normal distribution using the 

Anderson-Darling (A-D test), (Dytham, 1999, p72) and the variances of the two data sets 

were compared using the F-test (Fowler & Cohen, 1996). 
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E.2 Results 
Both the Admiralty tidal diamond data and the data generated by the VICTOR model 

approximated normal distribution according to the A-D test; (A2 = 0.629, n = 33, P = 0.093 

for the Admiralty data, and A2 = 0.31 0, n = 33, P = 0.538 for the VICTOR model). Also 

the variances of the two data sets were not significantly different (F = 1.636, d.f. = I, P = 

0.169). According to the paired t-test the pairs of magnitudes at each location were 

significantly different, (t = 5.96, n = 33, P < 0.00 I). Figure E. I shows a frequency 

histogram of the two data sets. 
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Figure E. I. Frequency histogram of the tidal strengths from the Admiralty tidal diamonds 
and the VICTOR model, (n = 33). 

Figure E. I shows that there was some similarity between the distributions though they 

were offset. Given that the data were not meant not to be significantly different, an 

explanation was needed. Table E.2 shows the key differences between the two data sets. 
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Table E.2. Average, minimum and maximum values of maximum tidal strengths (ms"1
) of 

the thirty-three tidal diamond locations and their nearest position according to the VICTOR 
model. 

measure Admiralty VICTOR I difference 
average 0.77 0.57 -0.20 
minimum 0.26 0.07 -0.67 
maximum 1.49 1.14 0.13 

It can be seen from Table E.2 and Figure E. I that on average the VICTOR model produced 

values consistently lower than the on the Admiralty chart. Several explanations were put 

forward. The Hydrographic Office (Webb pers corn) suggested that the tidal strengths 

generated by them may have some degree of overestimation, thus it would not be expected 

that there could be tidal values larger than displayed on the chart, thus they should be 

towards the upper extreme of possible Spring Tides. George (pers corn) suggested that the 

comparison was made complicated due to the quarter diurnal tides which have a greater 

significance of effect when comparisons are made between points which are close to 

salient points on the land. The suggesting put forward by (Webb pers corn) was difficult to 

test though Figure E.2 graphically shows the test of suggestion put forward to George (pers 

corn.). 
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Figure E.2. The difference between the Admiralty tidal diamond and data generated from 
the VICTOR model as a function of distance from the land (in nautical miles), n = 33. 
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Figure E.2 shows that there was a degree of association as proposed by George (pers corn.) 

between the difference between the Admiralty tidal strengths and the tidal strengths 

generated by the VICTOR model with distance from shore with the difference diminishing 

with distance from the land although the regression as described on Figure E.2 was not 

significant, P = 0.141, though valid as the residuals of the regression approximated a 

normal distribution according to the A-D test, (A2 = 0.440, n = 33, P = 0.247). 

The greatest differences between the two data sets occurred for diamonds L, H, P, 

G, J, K, and E on Chart 1148. These points are all around The Isles of Scilly. The points 

which differ the next most greatly are D then A on Chart 1267. These locations refer to 

near The Manacles and the entrance to Falmouth. In contrast those locations which differ 

the least from the Admiralty tidal diamonds to the data generated by the VICTOR model 

include Diamond Don chart 1613, in the area of West Rutts, (5.2 nm offshore), diamond A 

on Chart 1148 (12 nm NW of Cape Cornwall and diamond F on Chart 1267 (south of 

Middle rocks and 7.3 nm south ofDownend point). 

Dividing the thirty three points into those that differ the most (n = 16) and those 

that differs least, (n = 17) reinforces the picture as described in Figure E.2 as those that 

differ the most have an average distance from land of 4.1 nm, while those that differ the 

least have an average distance from land of 6.1 nm, so there does at least seem to be some 

relationship between the difference between the two data sets and the influence of the 

quarter diurnal. 
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F Comparison of trawl length by ArcMap 

and according to speed, distance and 

time calculations 

The creation of the ArcMap trawl track layer enabled the comparison of the trawl track 

length by GIS and according to speed, (v), distance (d) and time (t) to be made (where d = 

v.t). The trawl track lengths determined by calculated difference and by GIS were 

compared by a non-parametric paired Wilcoxon signed ranks test, (Dytham, 1999, p75). 

Figure F.1 shows a frequency histogram of trawl track length according to the data 

generated by the GIS (ESRI, 1999) and according to calculated distance. 
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Figure F.l. Frequency histogram of trawl track length according to the GIS layer and by 
estimation by speed distance calculation, (n = 78). 

Figure F.1 shows general agreement in trawl track length between the two methods in 

calculation though note that only 78 of the hauls had could be assessed in this way. The 

trawl track length data by GIS approximated a normal distribution according to the A-D 

test, (A2 = 0.509, n = 78, P = 0.193), though the trawl track length according to calculated 

distance did not (A2 = 1.222, n = 78, P = 0.003). According to the Wilcoxon's signed 

ranks test Z = - 1.462 (2 tailed), n = 78, P = 0.144), and therefore the two methods for 

generating the trawl track lengths has not produced values that overall are significantly 

different. 

The greatest difference between the trawl track length according to the GIS and the 

speed distance calculation were the two circular hauls off Salcombe; haul 77 (Salcombe, 

29 October 1999 number I) 6,406 m according to the GIS and 17,594 m according to the 

speed, time calculation, and haul 84 (Salcombe, 20 January 2000, number 1 ), 6,087 

according to the GIS, and 16,371 m according to the speed, time calculation. The reason 

for this was because the trawl length consisted of many circles (as shown on Figure 2.4, 

page 28 above) while the GIS plot only has sufficient points to cross the large range in 

maximum tidal strength, see Figure F.2. 
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Figure F.2. Trawl tracks for hauls 77 and 84 just south of Salcombe. 

It was perhaps surprising that the plotted and calculated trawl track lengths did not 

generate significantly different values since the speed of vessel used to calculate the 

distance was infrequently recorded (though additional observations were taken to 

determine whether there had been much change in speed. Often the boat speed was 

recorded off the boat' s GPS, thus recording speed over the ground. The usual practice of 

trawling with the prevailing tide means that a generally consistent speed of towing was 

observed. 
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G Transformations appropriate for the 

PRIMER analysis 

G.l Introduction 
Chapter S and Chapter 6 examine patterns between and within the sample; Chapter 7 and 

Chapter 8 explored the relationship between the biotic and abiotic data; and Chapter 9 

focused on comparing the sample data with the hauls data. In these analyses (and others 

using the PRIMER-E (Clarke & Warwick, 2001a) suite of routines) it was necessary to 

apply transformations to the data. PRIMER-E offers a variety of transformations and 

these were explored and rigorously evaluated. The log 10(x+ I) (hereafter called the log in 

the text but more correctly log 10(x+ I) in figure legends) was shown to be the best at 

preserving the underlying pattern in the data while reducing heteroclasticity. The 

employment of data transformation in this instance was for the purpose of validating the 

statistical assumptions for parametric techniques. Analysing the biomass data for 

patterns in fish and benthos between port, type (and other factors) and combining this 

with the influence of the environmental data requires that transformations again are 

examined. PRIMER-E offers a range of power transformations and Clarke & Warwick, 

(2001a p9-l) offers advice on transformation. In avoiding "data snooping" they warn 

against using a different transformation for different sub-groups of data, (such as different 
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transformations for data collected from different sites) and that the requirements of a 

transformation are to remove "gross departures of parametric assumptions" rather than 

"precisely stabilising variance" or totally removing non-normality, (Ciarke & Warwick, 

2001a, p9-l). However, the purpose of transformation in multivariate analysis (on rank

order data) "is the separate, (but equally important) role in ... defining the balance between 

contributions from common and rarer species in the measure of similarity of two 

samples." Clarke & Warwick, (200la, p9-2). 

G.2 Finding the appropriate transformation 

the full sample 
Clarke & Warwick, (200Ia) suggest a method to determine an appropriate transformation 

regardless of whether the data is to be examined by univariate (parametric or non

parametric tests) or multivariate (non-parametric rank-order analysis). They advocate 

examining the resultant slope (p) of the plot between log standard deviation against log 

mean of the raw data. They show that, approximately, if the power transformation 

function is set roughly equal to I - p, the transformation data will have a constant 

variance. That is a slope of zero implies no transformation (only the commoner species 

contribute to the similarity in rank-order analysis); 0.5 implies the square root, (allows the 

intermediate abundance species to play a part in rank-order analysis); 0.75 the fourth root 

(../../); and, I the log10 (or more correctly log10(x+l)) transformation (which takes some 

account of the rarer species in rank-order analysis). These latter two transformations are 

considered together for rank-order analysis because there is no practical difference in 

cluster and ordination results between these two, though the double square root should be 

preferred over the log transformation when the Bray-Curtis measure is employed, (Clarke 
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& Warwick, 2001a, p9-3). Table G. I shows the categories and break points between the 

various slope (~) values. 

Table G .1. Values and the ranges of slopes and equivalent transformations. 

slope (p) values 
lower value mid-point upper value 

0 • < 0.250 
0.250 0.500 < 0.625 
0.625 0.750 < 0.875 
0.875 • 1.000 

preferred 
transformation 

None 
.J 

.J.J 
log1o or log1o(x+1) 

The values in Table 0.1 are derived so that the categories are equally spaced around the 

advocated mid-points. Figure G. I shows the log standard deviation against log mean for 

the landed component of the haul and raised landed part of the sample. 

5 

0 

(haul site) y = 0.8326x + 0.9439 R2 = 0.7013 

(haul species) y = 0.685x + 1.3903 R2 = 0.9711 

(lan site) y = 0.8287x + 1.0495 R2 = 0.6511 

(lan species) y = 0.7126x + 1.3842 R2 = 0.9617 

2 3 4 5 

Log mean 

0 haul site [] haul species l:l. lan site 0 lan species 

Figure G .1. Log10(x+ 1) standard deviation against log10(x+ 1) mean for the haul 
composition (haul) and raised landed part of the sample (lan), by site (haul) and variable 
(species) including trend lines. 

This analysis of the data by site (haul number) suggests that the choice of log 

transformation is well made, although this was chosen by other means. Analysis of the 

data by variables (species) suggests that the more appropriate transformation would be 

through the square root. 
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Most of the analysis of the ranked data is on the sample rather than the total haul 

data. There are very many more species encountered in the sample (which includes the 

invertebrate benthos in addition to the fish (also, some of which were grouped for 

analysis), see the species accumulation curves, Figure 3.2 (page 59, above) and 

associated text The same process as described above and shown in graphically Figure 

G .1 was undertaken for the sample data to choose an appropriate transformation for the 

up- or down-weighting of rare species. Figure 0.2 shows the log standard deviation 

against log mean for the sample data according to site. 
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Figure G.2. Log10(x+ 1) standard deviation against log10(x+ I) mean for sample data 
according to site, n = 88. 

The fit for the data in Figure G.2 is low although the regression is statistically significant 

(P = 0.00 l ), though not strictly valid as the residuals do not approximate a normal 

distribution according to the A-D test, (A2 = 1.071 , n = 88, P = 0.008). The reason for 

this is because the sample size was a fixed volume, with the aim that its weight should be 

fairly constant. Figure 3.3 (on page 61 , above) shows a frequency histogram of the 

sample weight, for comparison. Nevertheless, the slope of the line in Figure G.2 is 0.471 

suggesting that (according to Table G.l) a square root transformation is the most 
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appropriate for examining the sample data, according to sites, further. The log mean 

against log standard deviation data according to species is shown in Figure 0.3. Unlike 

Figure G.l , above, which shows both set of data these are split as separate graphs because 

of the very different scale of the data according to species. 
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Figure 0.3. Log10(x+l ) standard deviation against log10(x+l) mean for sample data 
according to species, n = 191 . 

The slope of the trend line on Figure 0 .3 is close to one, therefore when comparing the 

sample data by species, (rather than sites) the log, or log10(x+ 1) transformation should be 

used. 

G.3 Finding the appropriate transformation 

sub-sets of the data 
Further dividing the sample data in the PRIMER-E analysis is primarily carried out into 

the fish and non-fish material. Employing this division is useful to see which category is 
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more responsible for producing the pattern between the various factors of the haul and 

their locations. The fish material is irrespective of whether the fish were to be landed or 

discarded and the non-fish material is the benthic invertebrates and other material. Again 

the data are examined to decide whether, and if so which, transformation is appropriate. 

Figure G.4 shows the fish only data by sample and Figure G.5 shows the fish only data by 

species. Again these plots are shown separately due to the different scales of the data. 
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Figure G.4. Log10(x+ 1) standard deviation against Iog10(x+ I) mean for the fish only part 
of the sample data according to site, n = 88. 
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y = 0.8149x + 0.9016 
4 R2 = 0.9687 
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Figure G.5. Logw(x+ 1) standard deviation against logw(x+ 1) mean for the fish only part 
of the sample according to species, n = 59. 

Figure G.4 and Figure G.5 show that for the fish only part of the sample it is appropriate 

to use the double square root transformation for examining the data by site and also by 

species. Figure G.6 shows the non-fish part of the sample by site and species. 
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Figure G.6. Log10(x+l) standard deviation against logw(x+l) mean for the non-fish only 
part of the sample according to site, n =59, and species, n = 128. 
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For the non-fish part of the sample Figure 0.6 suggests that the best transformation for 

the non-fish part of the sample is the log. 

G.4 Summary of transformations 
Table 0.2 summarises all the data groups and transformations discussed above. 

Table 0.2. Type of data, (as whether by site or by species) showing the value for slope 
and resultant transformation of the data according to Clarke & Warwick, (2001a). 

type measure haul sample 
(raised 

(haul landed part of full fish non-fish 
. composition) the sample) sample only only 

data by slope 0.833 0.828 0.471 0.692 0.992 
site transformation "" "" I " "" log,o(x+1) 

data by slope 0.685 

I 
0.713 I 0.900 0.815 0.898 

species transformation "" "" log,0(x+1) 
"" log,o(x+1) 

Table 0.2 shows that there are a variety of transformations which are most appropriate to 

different aspects of the data. Importantly it shows that in dividing the full sample into the 

fish only and the non-fish components there are different factors which are influential. 

Firstly considering the data by site the fish-only part of the full sample is more influential 

than the non-fish part of the sample. It is likely that this is due to the relative proportions 

according to the weight, (see Figure 3.4, on page 63, above). Secondly the reverse is true 

for the data by species; the most appropriate transformation is the same for the full 

sample and the non-part of the sample, and a different transformation (the double square 

root) is most appropriate for the fish only. 
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G.5 Choosing the most suitable 

transformations 
There are two contradictory factors at work in relation to these transformations. Firstly, 

the most appropriate transformation yields the best up- or down-weighting of the data; 

however, as stated it is not ideal to choose different transformations for different sub-sets 

of the data, and this is the greater driving factor. These incongruous factors need to be 

resolved. As described above there are good statistical reasons for choosing the double 

square root over the log transformation in multivariate analyses and for this type of 

analysis no great difference in the output from cluster or ordination methods. The logical 

step is to analyse all data where the above figures had suggested that the most appropriate 

transformation to be log as double square root values. This means using the same 

transformation for all data by species in the multivariate analyses, leaving only the data 

by site (full sample) to be ideally transformed by single square root, or to employ the 

double square root transformation in keeping with the other transformations. The 

rationale for this decision is now explored, based on whether using the double square root 

transformation (making all transformations the same) produces a markedly different (in 

fact unacceptably different) picture to that obtained by the most appropriate (square root) 

transformation). While Clarke & Warwick, (200la) warn against a circular process of 

'snooping' into the data to search for patterns which explain why the data shows what it 

does it is necessary to determine, (by a robust method) which of the two transformations 

are appropriate. 

Broadly it was decided to compare the various transformations for the fish only 

part of the sample (for which the double root transformation is appropriate) with the full 

sample to see if similar trends were evident between the various transformations. If the 

trends can be considered similar then there is no particular reason for not choosing the 

double square root transformation for all data sets, rather than retain different 
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transformations because they describe the data differently. Two tests were undertaken 

and are described below. 

The first measure under scrutiny was the stress values generated from MDS plots 

for the four transformations (none, square root, double square root and log) between the 

two. data sets. These are shown in Table G.3. 

Table G.3. Comparison of transformations for multidimensional scaling (MDS) based on 
resulting stress value, according to data type and MDS view. 

MDS transformation 
data type none I ..J ..J..J loQ1o(x+1) 
full 3d 0.16 0.15 0.16 0.16 

sample 2d 0.21 0.20 0.20 0.21 
fish 3d 0.15 0.15 0.15 0.16 
only 2d 0.21 0.20 0.20 0.21 

The stress values for the 3d MDS plots is included because it is usually possible for this 

type of MDS plot to better explain the data and it usually has a lower stress value. It 

appears from Table G.3 that the double square root transformation is no less appropriate 

in terms of portraying the data (in terms of MDS) than the square root transformation. 

The reason behind this is because while the plot of log standard deviation against log 

mean produced a slope of 0.4 71 this was largely due to the fact that the samples were all 

(approximately, and intentionally) the same size, thus flattening the slope of Figure G.2, 

above. The process of transforming, calculating the similarity matrix between sites and 

ordination of this data for the MDS plot has negated this feature. Thus, it is likely that 

any similar multivariate process undertaken on the rank-order of the data will have 

similar outcomes. 

The second test was to examine the similarities between the ports and types of 

trawling at the different (as used above) transformations. This was undertaken according 

to the ANOSIM routine in PRIMER-E. It is not intended to fully explain what the results 

show here, instead the intention is to examine whether the square root transformed data 

explains the data better than the double square root transformation to the detriment of 
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using the same transformation for all the data. Again the benchmark was the fish only 

part of the sample (for which the double root transformation is appropriate) with the full 

sample to see if similar trends were evident between the various transformations. Simply 

the ANOSIM calculates the similarity between different parts of the sample according to 

various criteria; as above those chosen here were the port and type of trawling. The 

ANOSIM was generated according to the port and type of trawling, the four 

transformations and the two data sets. In total then eight ANOSIMs were generated. 

Table 0.4 shows two of these, for single and double square root transformed data for the 

fish only set of the data. Also included are the mean, median, lower and upper quartile 

values for these ANOSIMs. 

Table 0.4. [Left] average ANOSIM (%) values (to 1 d.p.) and descriptive values 
according to two different transformations, and [right] permutation of ANOSIM (%) 
values according to port and type of trawling, N- = Newlyn, L- = Looe, P- = Plymouth, 
S- = Salcombe; -S = single boat trawling, -P = pair boat trawling to similar ports and 
types. 

transformation measure value port & type to port & type ANOSIM value 
NS 0 0 0 0 0 

mean 5.21 LS 0.7 2.1 58.4 6.2 
..; median 0.30 LP 0.2 4.2 0.2 

lower quartile 0.15 PS 3.9 0.3 
upper quartile 29.05 PP 2.0 

NS 0 0 0 0 0 
mean 6.98 LS 1.1 3.3 75.7 3.9 

..;..; median 0.50 LP 0.5 2.8 0.2 
lower quartile 0.25 PS 14.9 0.2 
upper quartile 37.60 pp 2.1' 

LS LP PS pp ss 

Table 0.4 shows that some of the better described (or more similar (higher) ANOSIM 

values) according to port and type categories grossly affect the upper quartile, while 

leaving the other values relatively unaltered, although the average of the " 

transformations = 5.2 while the average of the "" transformations = 7.0. Figure 0.7 

shows the average ANOSIM values across alJ ports and types of trawling for the two data 

groups according to the four transformations .. 
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Figure 0.7. Average% ANOSIM level for the four transfonnations (none, square root, 
double square root and log10(x+ 1) according to the two data groups (full and fish only). 

It is apparent from Figure 0.7 that there is a marked difference in the outcome of the four 

transfonnations for the double square root and log transfonnation suggesting that the 

square root transfonnation is better, since there is a degree of difference between the 

higher order transfonnations, however the higher order transfonnations may 'explain' the 

data better, but there is also greater variation in raw data as described in Table 0.4. 

Being wary of expressing parametric confidence intervals of non-pararnetrically derived 

data it is nevertheless necessary to describe this variation- the upper quartile was chosen 

because this feature describes the "best fit" part of the model which rises above the 

generally noisier part of the matrix shown in Table 0.4. Table 0.5 shows the full data set 

for mean, median, lower and upper quartiles for the two data sets. 
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Table G.S. Mean, median, lower and upper quartile ANOSIM (%) values according to 
port and type of trawling for the full sample and fish only part of the sample according to 
four (none, -.J, -.J-.J, and log10(x+ I) transformations. 

data type measure transformation 
none ..J ..J..J lo ox+ I 

mean 4.91 5.31 5.31 5.68 

full median 0.40 0.30 0.30 0.30 
lower quartile 0.20 0.15 0.15 0.15 
u er uartile 23.55 33.95 32.20 30.60 
mean 4.93 5.21 6.98 8.14 
median 0.30 0.30 0.50 1.10 
lower quartile 0.15 0.15 0.25 0.55 

fish only 

upper quartile 15.15 29.05 37.60 38.00 

Table G.S shows that for all the transformations the median and lower quartiles do not 

vary much. The situation for the means is explained in Figure G.7, (above), but it is the 

upper quartile that expresses the alteration in the data the most and this is effectively due 

to outliers or parts of the data which the ANOSIM describes as being most similar. This 

is due to the improved fit of the data, though taken together with the representation of the 

MDS plot, (through the stress value) it is deemed that in conclusion the case for 

maintaining the use of the double square root transformation is stronger than striving for 

the most appropriate fit, (as described in Table G.2, above). 

Lastly, there is the possibility that regardless of the transformation an inconclusive 

picture may subsequently be reached. In this case advice from Field et al., (1982) is 

taken. Field et al., ( 1982) suggest that before the data are transformed the rarer species 

are removed. Though what they proposed is rather arbitrary they recommend removing 

all species which never constitute more than a certain (small) percentage of the total 

whether abundance or biomass of any sample where the actual value is chosen to retain 

SO or 60 species with the highest total abundance Clarke & Warwick, (200la) advises 

that" ... this [process] is preferable to retaining the SO or 60 species with the highest total 

abundance across all samples since the latter strategy may result in omitting several 

species which are key constituents of a site which is characterised by a low total number 

of individuals." This additional process is stated here though its validity cannot easily be 

demonstrated. Instead it can be employed as necessary prior to a transformation. 
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H Development of the aggregation file 

Appendix C (Table C. I, page 348 and Table C.2, page 349, above) show the full species 

list and taxonomy used to create the master data aggregation file for Primer-E. This was 

based on the Access97 "SpeciesA.mdb" file (Picton & Howson, 1999) and the 

classifications was built up according to the parent child method described with reference 

to Table 2.2, page 43, above, though as this section made clear not all classification levels 

are present for all species. Also, the identification of some items could or were not 

carried to the species level. This was the case, for example, for the phylum PORIFERA; 

all items of the bryozoan Cellaria sp that were only identified to the genus level; and 

wrasses were only identified to the family Labridae level. Table H. I shows a simplified 

version of the data used to populate the Primer-E aggregation file arranged using the 

taxonomic levels present for the two species featured on Table 2.2, above and the three 

groups mentioned above. 
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Table H. I. Taxonomic level and number for five groups, part I: initial situation. Used taxonomic levels are highlighted. 

taxonomic examples of groups 
1 2 3 4 5 

level # PORIFERA Uocarcinus holsatus Cellaria sp Marthasterias glacialis Labridae 

kingdom 1 Animalia Animalia Animalia Animalia Animalia 
phylum 2 PORIFERA CRUSTACEA (higher) BRYOZOA ECHINODERMATA CHORDA TA 
sub-phylum 3 PISCES 
super-class 4 GNATHOSTOMA TA 
class 5 EUMALACOSTRACA GYMNOLAEMATA ASTEROIDEA OSTEICHTHYES 
sub-class 6 EUCARIDA TELEOSTEI 
super-order 7 
extra-order Sa 

--~------------- ------
order 8 DECAPODA CHEILOSTOMATIDA FORCIPULATIDA PERCIFORMES 
sub-order 9 PLEOCYEMATA NEOCHEILOSTOMATINA 
infra-order 10 BRACHYURA 
section 11 BRACHYRHYNCHA 
super-family 12 PORTUNOIDEA CELLARIOIDEA 
family 13 Portunidae Cellariidae Asteriidae Labridae 
sub-family_ 14 ------- __ EQiy_Q[iDae __ 
tribe 15 --- - --------- --- -- ----- -- --- ---- ----- --- ------ --- --- -------- ---

_genus 16 Liocarcinus Cell aria ~!Jj)asterias ___ -- -- -- -- -

sub-genus 17 
extra-species 18a --1-- ·-
species 18 Holsatus _glacialis -- - - - -

sub-species 19 
variety 20 
[spare] 21 
synonym 22 
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It should be noted that Table H.l and its subsequent derivatives are transposed in 

orientation to the final aggregation matrix shown in Appendix C (Table C.l, page 348 and 

Table C.2, page 349, above). The purpose of this was for display clarity. 

The purpose of the aggregation file is to allow the path length to be mapped 

between any two species (or items) and therefore to work correctly there must not be any 

blanks along any path. Three solutions presented themselves which are described along 

with their strengths and weaknesses. 

Solution 1: 

Only use those levels of classification which were present in all groups. Applying this 

method would use kingdom, phylum, class, order, family, genus and species for those 

groups which were identified to species level (number 2 and 4 shown on Table H.l ). 

Despite the calculation of various biodiversity measures (such as average taxonomic 

distinctness, AvTD, ~ l, being quite robust to the any chosen taxonomic levels 

(Somerfield, pers corn.) much information would be lost using this system. It would also 

create a difficult situation for groups I, 3 and 5 on Table H.l, though this method would be 

useful where all the species came from the same class such as was the case for Rogers et 

al., ( 1999). 

In order to be included in the aggregation file all groups have to be present in the 

finest taxonomic level which was the species level (taxonomic number 18 here). Therefore 

in order to retain these groups it was necessary to fill down from the finest level present on 

Table H.1 to the species level. This potentially made phylum Porifera, genus Cellaria and 

family Labridae into species. This was not a particular problem since it meant that higher 

level taxon names (and taxon ID numbers) became species as well as also being present at 

coarser taxonomic levels. Table H.2 shows the simplified aggregation file with all 

examples carried down to species. The arrows on Table H.2 show the direction of the 

filled levels. 
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Table H.2. Taxonomic level and number for five groups, part 2: all groups carried to species level. The arrow shows the direction of the filled levels. 
Used taxonomic levels are highlighted. 

taxonomic examples of groups 
1 2 3 4 5 

level # PORIFERA Liocarcinus holsatus Cellaria sp Marthasterias glacialis Labridae 
kingdom 1 Animalia Animalia Animalia Animalia Ani m alia 
phylum 2 PORIFERA! CRUSTACEA (higher) BRYOZOA ECHINODERMATA CHORDA TA 
sub-phylum 3 PORIFERA! PISCES 
super-class 4 PORIFERA! GNATHOSTOMA TA 
class 5 PORIFERA! EUMALACOSTRACA GYMNOLAEMATA ASTEROID EA OSTEICHTHYES 
sub-class 6 PORIFERA! EUCARIDA 

- ---- -------~ - -- - ---·-- TELEOSTEI 
- ------ - ---- - --. -----

super-order 7 
extra-order Sa 

-~--- ----------- ·----· --
order 8 PORIFERA! DECAPODA CHEILOSTOMATIDA FORCIPULATIDA PERCIFORMES 
sub-order 9 PORIFERA l PLEOCYEMATA NEOCHEILOSTOMATINA 
infra-order 10 PORIFERA! BRACHYURA 
section 11 PORIFERA! BRACHYRHYNCHA 
super-family 12 PORIFERA! PORTUNOIDEA CELLARIOIDEA 
family 13 PORIFERA! Portunidae Cellariidae Asteriidae Labridae! 
sub-family 14 _ POR1FERA_L _ _EQ!y_biina~ ________ ----- ·------------- -- ----------- -

Labridae! 
tribe 15 -----·····-··------ ······-··-·---- ---------------------· -·---- ------------ ---- --~-~-----------

genus 16 PORIFERA! Uocarcinus Cellaria L __ _ _ Marthasterias Labrida_~_j 
--- ---------------- ~--- - ... -- ----------- --

sub-genus 17 
_extrct~cies 18a 

- -- ~-------- - ------------- 1·- --------- ---- ---------
_§J:lecies _____ 18 _!'ORIE_E_R;\ ___ Ho/satus 

----
Cell aria _glacialis _ _ _ _ _ Labridae -- ----- - -----·-- ----------

sub-species 19 
variety 20 
[spare] 21 
synonym 22 
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The embryonic aggregation file shown in Table H.2 requires the remaining gaps to be 

populated. There are two ways to do this. 

Solution 2: 

Somerfield (pers com.) suggested using the present taxonomic levels and filling the gaps in 

between in both directions. While this method best retains the purity of the taxonomic 

structure it has the drawback in that taxonomic levels are encountered before they should 

be (though where there was one gap between two populated levels this need not be the 

case). Table H.3 shows a small example of this. 

Table H.3. Taxonomic level and number for two groups (3 and 4), part 3: Somerfield's 
method for populating the aggregation file. The arrow shows the direction of the filled 
levels. Levels with "•" are at their correct level. Used taxonomic levels are highlighted. 

taxonomic examples of groups 
3 4 

level # Gel/aria sp Marthasterias g/acialis 

kingdom 1 Animalia • Animalia • 
phylum 2 BRYOZOA • ECHINODERMATA • 
sub-phylum 3 BRYOZOA! ECHINODERMATA! 
super-class 4 GYMNOLAEMATA i ASTEROIDEA i 
class 5 GYMNOLAEMATA • ASTEROIDEA • 
sub-class 6 GYMNOLAEMATA! .. ASTEROID_EA ! 
super -order 7 
extra-order Ba -- - - ~ - - .. - ----------- - --
order 8 CHEILOSTOMATIDA • FORCIPULATIDA • 
sub-order 9 NEOCHEILOSTOMATINA • FORCIPULATIDA! 
infra-order 10 NEOCHEILOSTOMATINA! FORCIPULATIDA! 
section 11 CELLARIOIDEA i Asteriidae i 
super-family 12 CELLARIOIDEA • Asteriidae t 
family 13 Cellariidae • Asteriidae • 
sub-f(!l!lily ____ 14 _ _C_!!IIarii~ae L_ 

- -- -· - Asteriidae ! 
tribe 15 - - - - ------ ------ --- ------- ----
genus 16 Gel/aria • Marthasterias • 

It was decided that this method was generally too complex and despite the robustness of 

the approach overall this method contradicts the filled down examples described above. 
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Solution 3: 

The alternative method was to populate the aggregation file only by filing each level from 

above (the coarser level). Table H.4 shows this, for the same data presented in Table H.3. 

Table H.4. Taxonomic level and number for two groups (3 and 4), part 4: the chosen 
method for populating the aggregation file. The arrow shows the direction of the filled 
levels. Levels with "•" are at their correct level. Used taxonomic levels are highlighted. 

taxonomic examples of groups 
3 4 

level # Gel/aria sp Marlhasterias glacialis 

kingdom 1 Anlmalia • Animalia • 
phylum 2 BRYOZOA• ECHINODERMATA • 
sub-phylum 3 BRYOZOA! ECHINODERMATA! 
super-class 4 BRYOZOA! ECHINODERMATA! 
class 5 GYMNOLAEMATA • ASTEROIDEA • 
sub-class 6 GYMNOLAEMATA! ASTEROID~! 
super-order 7 
extra-order Ba 
order 8 CHEILOSTOMATIDA • FORCIPULATIDA • 
sub-order 9 NEOCHEILOSTOMATINA • FORCIPULATIDA! 
infra-order 10 NEOCHEILOSTOMATINA! FORCIPULATIDA! 
section 11 NEOCHEILOSTOMATINA! FORCIPULATIDA! 
super-family 12 CELLARIOIDEA • FORCIPULATIDA! 
family 13 Cellariidae • Asteriidae • 
sub-family 14 Cellariidae ! Asteriidae l 
tribe 15 
genus 16 Gel/aria • Marlhasterias • 

The method shown in Table H.4 treated all examples of groups equally (regardless of their 

finest taxonomic level) and importantly ensures that taxonomic levels are not encountered 

until their correct level is reached. 

Compared to the study by Rogers et al., (1999) the species encountered here came 

from a wider taxonomic range. While it could be argued that the presences of certain 

components of the sample are non native to the location of the sample (for example 

angiosperm leaves) the taxonomy maintained the kingdom Plantae due to the inclusion of 

Zostera marina and various red, brown and green algae. Thus fifteen taxonomic levels 

were retained as shown in Appendix C (Table C.l, page 348 and Table C.2, page 349, 

above), and these were highlighted (where relevant) on Table H.l, Table H.2, Table H.3 

and Table H.4. Taxonomic levels 7, 8a, 15, 17, 18a and 19-22 (named on Table H.l) 
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were never used here as these levels remained empty throughout the entire classification. 

Different assemblages of species might include these less-used taxonomic levels however 

those which are unused here at not essential in describing the taxonomy and are not 

generally required if the classification of by Picton & Howson, (1999) is employed. 
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Appendix I 

I Branch length weighting 

1.1 Background 
Rogers et al., ( 1999) used a weighted branch length (Ciarke & Warwick, 1999) in 

preparing their !:!. + values and justify doing this because "there is a degree of arbitrariness 

about a constant path length of one unit between each taxonomic level." However, their 

study while species rich (n = 93) examined species from only two classes. This study 

collected examples from twenty-one classes and employing the otherwise sensible measure 

of Rogers et al., (1999, table l.) would unfavourably skew branch lengths across very 

distant parts of the taxonomic tree therefore the arbitrary branch length of one unit was 

retained since it is not currently possible to use different branch length values for different 

part of the taxonomic tre!l between the same taxonomic levels. The alternative method is 

to allow the T AXDTEST routine to calculate the taxon richness based on the actual species 

count. This method was not chosen since as groups of species were excluded and 

reintroduced (see Figure 6.10 and Figure 6.11, above) changes occur in the remaining 

taxon richness each time. If this method had been adopted then without the path length 

between two species altering the !:!. + value (or any other similar measure) would not be 

fixed, but would change as other species were excluded and reintroduced around them. 

The outcome describes the quantitative and qualitative differences between the two 

methods of branch length weighting. 
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1.2 Outcome 
The choice of weighting the branch Length affects the resulting null and generated !l + and 

A+ values which has further important implications for comparing the data set with those 

of other studies. Figure 1.1 portrays the plot of nuLL (expected) and generated average 

taxonomic distinctness (A vTD, !l) values and comparable variation in taxonomic 

distinctness (VarTD, A) values based around the fixed branch length values of 1 and 

where the weightings were generated by the master species list. 

Branch length = r 
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Figure 1.1. Average taxonomic distinctness, (!l+, top), and variation in taxonomic 
distinctness (A) values (bottom) plotted against the observed number of species for the 
full sample according to two different methods of weighting of branch lengths; branch 
Length = 1 (Left) and branch length is determined by the taxon richness from the master 
species list (right). The dashed line indicates the simulated mean !l + or A+ value for 1,000 
selections of a random number of species from the master list of 188 species. Intervals 
within which the 95 % of the simulated !l + or A+ lie (the expected range of !l + or A+ for a 
given number of species) are constructed for each sub list (random sample) and 
represented as a probability funnel (continuous lines). Note that a differenty axis scale has 
been used on the !l + plots to those displayed in Chapter 6. 
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Figure 1.1 shows that employing the weighting of fixed branch lengths generally resulted in 

higher null (expected) average taxonomic distinctness (~ +) values and lower variation in 

taxonomic distinctness (A+) values when compared to weighting branch lengths according 

to the variable taxon richness based around the master species list when the two methods 

are compared using the same full sample data. The produced ~ + and A+ values are 

similarly affected by the two weighting methods. The ~ + values are generally larger 

though occupy a smaller range employing fixed branch length weighting when compared 

to the variable taxon richness based around the master species list. However, regardless of 

the method the relationship is relatively fixed for ~ + values between samples. In other 

words for average taxonomic distinctness the two methods produce plots of ~ + values 

against numbers of species (Figure 1.1, top row) where the samples retain their orientation 

to each other whichever branch length weighting is used though each method introduces a 

skew to the data. 

There is a greater qualitative difference in generated variation m taxonomic 

distinctness values depending on which weighting method was chosen. Figure 1.1 (bottom) 

shows that fixed branch lengths resulted in more samples falling outside and above the null 

funnel of expected A+ values such that more samples appeared to be uneven from a 

taxonomic point of view though the relationship for the A+ values between samples is far 

more complex than was the case for the ~ + values. This is borne out by the differences 

between the average A+ values on Figure 1.1 (bottom) being not great. Mean and 95 % 

confidence intervals for A+ values where the branch length was 1 = 437 ± 19 while where 

the master species list derived the branch length the similar average and variability were 

440 ± 16. 
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Appendix J 

J Raising the sample weight to the haul: a· 

choice of two methods 

J.l Introduction 
In order to be able to examine the species presence and abundance in individual sample 

and haul dataset (see Figure 9.1) and compare one species I haul dataset with another (or a 

number of others) it was necessary to raise the sample dataset so that the resulting model 

regression would have generated a slope tending towards p = l. The reason for this was 

that although the sample size (of landed and discarded fish and non-fish material) was 

ideally a fixed volume (though it did vary) the amount of the landed fishes within the 

sample varied. Additionally, the amount of landed part of the haul varied depending on the 

success of the boat, its size and whether single or pair trawling was being undertaken. The 

application of the raising factor also needed to ensure that deviation of the slope from one 

could occur equally with the slope becoming steeper or shallower as on a haul by haul 

basis as species were over or under represented. 

Two types of raising factors were calculated. These are first briefly described then 

a more detailed analysis is presented including the advantages and disadvantages of each, 

enabling a rational choice to be made, as neither was perfect. 
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J.2 Methods 
l. The first raising factor relied on knowing the estimated number of baskets in the 

landed component of the haul and calculating the proportion of the landed component 

of the sample, "I". 

2. The second raising factor is simpler and only requires knowing the weights of the 

species in the sample "I" the haul "L" and the sum of all species in the haul. 

J.2.1 Raising factor 1 
The first raising factor was calculated as follows: 

LAN = ( 
1 

J xlanxb 

"LJ+d+n 

Where LAN = the raised weight for a particular species. 

I= the weight of the landed component of the sample, "1". 

d = the weight of the discarded component of the sample, "d". 

n =the weight of the non-fish component of the sample, "n". 

/an= the weight of a particular species in the in the landed component of the sample "I". 

b = the estimated number of full baskets of fish landed. 

The following example shows the raising of 4,150 g of BIB to 24,459 g (to the nearest 

gram) encountered in haul l, where a total of 5 baskets of fish were landed. 

l 
24,459 = X 4,150 X 5 

( 
30,927 J 

~)0,927 +4,541 +991 
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J.2.1.1 Examination of raising factor 1 

A possible source of error in the above equation is that while all the values of fishes were 

ungutted examples or were gutted fishes whose weight was raised to be ungutted the 

number of baskets was an estimate of gutted fishes. Whilst this may indeed have induced 

an error the estimated the number of baskets was almost always (n = 72, or 84%) a whole 

number and was generally estimated up, which may help account for the difference 

between the gutted and the ungutted weight. 

Chapter 3, page 350 to 360 (above), (including Figure 3.3, page 61) describe the 

sample size or fullness of the fish basket used to sample the haul. In a similar manner, it 

was possible to examine the fullness of the estimated number of baskets of landed fish to 

the overall size of the gutted component of the landed part of the haul. The simplest way 

to examine this was to generate a frequency histogram (Figure J.l) of the average weight 

of the estimated fish basket, worked out by dividing the total weight of the landed 

component by the number of estimated baskets. 
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Figure J. l. Frequency histogram of the estimated weight (g) per basket for all samples, (n 
= 88). Note that the bin size is I ,000 g and the values on the x axis are the upper level of 
the bin. 
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The average estimated weight was surprisingly close to 38 kg at 37,915 g, with a minimal 

value of 28,059 g and a maximum of 51,750 g. It may seem that the maximum values are 

very high indeed, but it must be remembered that these values were only estimated, and 

that 97% of the values are within I 0 kg of the average. Figure J.l shows that for very few 

hauls the estimated sample size was more than 10 kg away from the expected average 

weight of a fish basket though suggests that the estimate is generally within about 75% of 

the full 38 kg fish basket. Whether the large outliers (Seber, 1977) are included the 

histogram in Figure J.l has positive skew, (g1 = 0.626 with outliers and g1 = 0.272 

without). Again, this may negate the fact that the estimates of basket size are gutted rather 

than ungutted fishes. 

1.2.2 Raising factor 2 
The alternative (second type of raising factor) was simpler and used only data about the 

haul and sample and does not include any estimation. The second raising factor was 

calculated as follows: 

L"L" 
LAN="" xlan 

.L.., tl/11 

Where LAN = the raised weight for a particular species. 

I= the weight of the landed component of the sample, "1". 

L =the weight of the landed component of the haul, "L". 

/an= the weight of a particular species in the in the landed component of the sample "I". 

The following example shows the raising of 4, ISO g of BIB to 26,312 g (to the nearest 

gram) encountered in haul I. 

26 312 = 
196

•
1 07 

X 4 ISO 
' 30,927 ' 
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J.2.2.1 Examination of factor 2 

The advantages of this raising factor were due to its simplicity in that it relies on neither 

the estimated number of baskets caught nor the proportion of the sample weight that was 

the landed component. Instead, it uses the weights directly. Also, it is comparing ungutted 

fish in the sample with gutted to ungutted calculated weights of fish. The important and 

significant disadvantage of this raising factor however, is that it employs the sum of the 

weights in the landed component, "L" for both the weight of the landed component of the 

haul, (obviously) but also the sum of the raised weight in the landed component of the 

sample "I". In other words plotting the weight by species of raised landed fish in the 

sample against the weight by species of the landed component in the haul "L" would 

automatically approximate a slope of I. 

J.2.3 Comparison of the performance or raising factors 

1 and 2 
Ideally raising factor I would be chosen over ratsmg factor 2 because the former's 

advantages outweigh those of the latter. Figure J.2 shows the difference in these two 

raising factors according to all the hauls. 
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Figure J.2. Weight of raised landed sample "1" against weight of landed component of 
haul "L", for all hauls, n = 88. The trend line equations are shown as close as possible to 
the lines themselves. 

Figure J.2 suggests that raising factor 1 overestimated the raised weight at low levels and 

underestimates the raised weight at higher weight when compared to raising factor 2. The 

preference of raising factor 1 exists only if the trend lines as described in Figure J.2 are not 

significantly different for intercept and more importantly slope. A comparison of 

regression lines, undertaken in Statgraphics, (Manguistics, 2000) shows that the intercepts 

of the trend lines in Figure J .2 are not significantly different for intercept, but they are 

significantly different for slope (ANCOVA intercept P = 0.0839; slope P < 0.001 , d.f. = 1). 

Thus raising factor 2 was chosen in preference. 

It could be argued that the axes as shown in Figure J.2 (above) could be the other 

way around. Dytharn, (1999, p163) points out that " . .. if it is difficult to decide which is 

the dependent and which the independent variable then linear regression [and analysis 

based on this] is almost certainly not appropriate." The orientation of the axes are as 
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shown on Figure J.2 with the landed component of the haul "L" as the independent 

variable both because this data was altered less in magnitude, only being corrected from 

gutted to ungutted weights, but also raising the sample data depends on the independent 

haul data. The dependent variable thus was the weight of the raised landed component of 

the sample "1". 

As described above raising factor 2 was chosen. However, it might not always be 

the method of choice, particularly if the weight of the landed component in the sample "I" 

is particularly small when compared to the weight of the landed component of the haul 

"L". Figure J.3 shows how this might be the case for data from this study. 
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Figure J.3. Values for raising factor 2 (as ratio of weight of landed component of haul "L" 
to landed weight of sample "I") against raising factor l (as number of estimated baskets), 
(n = 88). The outlier (filled) was not included in the trend line. Had this been the case the 
trend equation would bey= 0.7331x + 4.2197. R2 = 0.1887. 

Figure J.3 shows that for by far the majority of the hauls the two raising factors did not 

produce qualitatively different results. This is illustrated by the trend line equation being 

fairly close toy = x, as described above. The outlier (shown in light blue on Figure J.3) 

was haul 79. This haul was quite unlike the others in that the sample comprised much less 

landed than discarded fish (landed = 25,646 g; discarded = 2,749 g). This is in stark 
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contrast to the majority picture described by Figure 3.4, page 63 (above) and Figure 1.3. 

The trend for the 87 points described by the equation in Figure J.3 was very highly 

significant P < 0.001 and this regression is valid as the residuals approximate a normal 

distribution according to the A-D test; (A2 = 0.577, n = 87, P = 0.130). 
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K Transforming the sample and haul data 

K.l Introduction 
This appendix sets out to describe whether and if so, which data transformations were 

required for the parametric analysis in Chapter 9. 

This appendix begins by examining the features of the dataset through presenting 

the full data set. Next, the data that represent species present in the sample but not in the 

haul, present in the haul but not in the sample and absent from both were examined. A 

transformation which retained the data representing the species present in the haul but 

absent from the sample is described and it is shown why this could not be the basis for 

further analysis and these data had to be excluded. It is also shown that a data 

transformation was required based on regression assumptions. Outlying data points were 

examined to establish whether their exclusion may be more appropriate though this idea 

was rejected on data integrity grounds. 

Once the data set had been finalised a transformation rationale is described where 

the benchmark was to produce a transformation which produced a better fit than with the 

non-transformed equivalent data set though yielded less alteration in variance with increase 

in the predicted values than initially present. A weighted least squared regression was 

applied (which had the advantage of allowing the full data set to be utilised though this was 

not found to be useful. 
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In order to establish the best transformation Box-Cox transformations were 

generated on both the sample and haul data and while their application on both the 

dependent and independent data was not strictly valid this method enabled appropriate 

transformations to be identified and critically evaluated. Finally an artefact present in the 

haul data is explored. 

K.2 Dataset examination 
Figure K.l shows the full dataset. 
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Figure K.1. Weight of raised landed sample " I" against weight of landed component of 
haul "L", n = 2,728. 

As described above (according to Figure 9.1) the data points in Figure K.1 on y = 0 are fish 

included in the haul which were not included in the sample. Likewise (according to Figure 

9.1) data points on Figure K.l where x = 0 are fish found in the sample but which did not 

occur in the haul. While the former are acceptable, the latter are not. By plotting the data 
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sets as the double log(to)(+I) the extent of the bias introduced by these features can be seen 

in the data. This is shown in Figure K.2. 
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Figure K.2. Weight as log10(+ I) of raised landed sample "1" against weight as log10(+ I) of 
landed component of haul "L", n = 2,728. 

Summing the 88 hauls and 33 species or groups of species produced a possible 2,728 cells 

for the two site-species matrices, one for the hauls composition "L" and one for the sample 

composition "1". Unsurprisingly these matrices were not fully populated. Table K.I shows 

how many cells were occupied from the two site-species matrices. 

Table K.l . The population of cells in the two site species matrices. 

haul sample 
composition composition number of 

"L" "I" occurrences 
0 0 1,676 
0 1 5 
1 0 270 
1 1 777 

total 2,728 

The 1,676 empty cells, equates to 61% of the matrix being empty. The 270 occurrences 

where fish are found in the haul but not the sample (which is equivalent toy= 0 on Figure 
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9.1, Figure K.l and Figure K.2 (above) are not a major problem. It would be more 

surprising if in every case all the species recorded in the haul were also found in the 

sample. The opposite situation with fish found in the sample but not in the haul 

(equivalent to x = 0 Figure 9.1, Figure K.l, and Figure K.2 (above) was more serious. 

Table K.2 shows the five data in more detail. 

Table K.2. The five examples of species encountered in the sample where there was no 
corresponding data in the haul. 

weight in weight lengths 
sequential haul weight in in in 

haul date, port and species composition, raised landed sample sample 
number haul code uln(g) sample "I" (g) (g) (cm) 

5 24/05/1998 N 3 BLL 0 43,292 5,416.96 58,46 
11 24/05/1998 N 9 HER 0 3,695 422.97 28,24,26 
20 29/08/1998 N 3 LSD 0 12,792 1,590.15 60,62 
38 05/05/1999 N 2 sex 0 2,157 231.59 11 
39 05/05/1999 N 3 sex 0 1 243 174.00 10 

Looking at the data in Table K.2 the first thing to notice is that all the data came from 

Newlyn hauls. Next, the oversight of the brill (BLL) was most important. There were 

only two fish of this species encountered in the sample and it is possible that they were the 

only two brill caught. Brill made up about 7% of the weight of this sample but is it highly 

unlikely that this species comprised the same proportion of the haul. There is no 

suggestion of deliberate misreporting here but it is odd that these two large fish were 

unobserved. It is easier to explain the oversight of the other items in Table K.2. It is not 

difficult to overlook three herrings (HER). Similarly, dogfish (LSD) were commonly 

landed from Newlyn and Salcombe, but this species was usually only sold locally for bait, 

so the inclusion of this species in the landed component did not always happen. Scallops 

(SCX) were almost as likely to be landed as discarded. Like the herring, it was not 

surprising that two scallops were found in the sample basket across two hauls and yet they 

were overlooked in records of the haul. Therefore the removal of these five points at x = 0 

is acceptable on the ground of satisfying the model. 
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The trend line shown in Figure K.l (above) included all 2,728 points. While on 

Figure K. l the trend line is not forced through the origin of the graph it effectively is 

however due to the 1,676 points at x = 0, y = 0. Removing these (and the five points at x = 

0) produces a situation as shown in Figure K.3. 
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Figure K.3. Weight of raised landed sample " I" against weight of landed component of 
haul " L", n = 1,047. 

As expected, the fit as described in Figure K.3 was not as good as in Figure K.l , (above). 

This is of course due to the loss of the points at x = 0, y = 0, which inevitably relaxed the 

forcing of the trend through the origin. 

There were now essentially two versions of the data set. The smaller (n = 777) 

comprised positive weights in both the sample " I" and the haul "L" . The larger dataset (n 

= 1,04 7) included the additional 270 data points with positive weights in the haul "L" but 

which were not found in the sample "1". This distinction is important in the analysis 

below. 

In order that the relationship between the raised landed weight in the sample and 

the landed haul composition could be examined for its validity, it was necessary to test 

whether the slope and intercept for each haul significantly differed from the average. 
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Rather than compare the fit of each haul to the hypothetical trend line where y = x, which 

while the ideal according to raising factor and the model depicted in Figure J.2 and Figure 

9.1 (above) it was significantly different to the average trend line as shown in Figure J.2, 

for slope, but not for intercept, (AN COV A slope P = 0.001; intercept P = 0.901, d.f. = I). 

In order to be correct in comparing the trend lines for each haul in Appendix L to the 

hypothetical it would have to be not significantly different to y = x for both slope and 

intercept, and particularly slope. 

Instead, the slope (and intercept) for each haul was tested for difference against the 

average for all the other hauls as described in Figure 9.4, page 281, above. However, prior 

to this, there were two additional hurdles. 

Firstly, so far all the analysis has been conducted on the normal, untransformed 

dataset. However as Figure K.4 shows (which shows a plot of the residuals against the 

predicted values of the regression plotted in Figure K.3) there may be a good reason to 

conduct a transformation, or at least explore the increased possibility in the data that 

transformations would afford. Secondly, the regression for the raised weight in the sample 

to the haul composition must be significant and valid. Transformation of the data may help 

in this situation. 
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Figure K.4. Residuals of the linear regression shown in Figure K.3 against the predicted 
values, n = 1,047. 

The plot of residuals against predicted values in Figure K.3 does not have the typical 

"band" of uniform width that would be expected. Instead, the variance of the residuals 

increased with the predicted values. The cone-shaped nature of the cloud on Figure K.4 is 

more pronounced when ignoring the values towards the larger predicted values of Figure 

K.1. One of the assumptions of regression is that there is the same variation in y for all 

values of x , (Dytham, 1999, p 164;Zar, 1999, p332-333, 353), and it appears that this is 

violated in Figure K.4. Additionally, there are a number of particularly large residuals 

(outliers), which were values that the model has either over or under estimated. Seber, 

(1977, p165) described a procedure to reject the most extreme residuals. The essence of 

his method is to reject values where the residual is more than three times the x-value (in 

this case the haul composition) provided n > 20. Seber, (1977) also describes the empirical 

solution to this problem. Figure K.5 shows a frequency histogram ofthe residuals divided 

by the haul composition weights. 
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Figure K.S. Frequency histogram of residuals divided by weight of landed component of 
haul "L", n = 1 ,047. Note that the bin size is 0.5 and the label represents the upper level of 
each bin. 

Figure K.S shows an extremely right skewed (g1 = 3.863) distribution and it is in this 

skewed portion where the outliers lie, though only n = 42 of the values (n = 1 ,047) fall 

outside the range (~ 3) suggested by Seber, ( 1977), thus fall into the category of being 

outliers according to this definition. This equates to - 4 % of the residuals being classed as 

true outliers. While so described these were retained in the data set because removing 

them at this stage may prejudice the significance of the regressions haul by haul against the 

average. Nevertheless, the skew in Figure K.S suggests the increase in variance with 

increasing weight in the haul composition "L" both suggest a transformation of the data 

should be undertaken. 

Figure K.6 shows a double log10(+1) transformation of the larger (n = 1,047) data 

set. 
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Figure K.6. Double log ( + 1) transformed raised sample weight against haul weight, n = 
1,047. 

Figure K.6 shows that the removal of the 270 points where y = 0 (occurrence of species in 

the haul but not corresponding in the sample) was necessary before a transformation could 

be undertaken. This is an unfortunate disadvantage as there was no reason to presuppose 

these data points were any more " incorrect" than any other and they are real in every sense 

of the word and were not collected with any less degree of precision. Merely they are a 

product of the sampling estimation of the haul. However, for this analysis to be carried 

further it was necessary to exclude these data here, though non-parametric matrix analysis 

(contained within Chapter 9) allows these data, as well as the other data removed here to 

be retained. 

K.3 Transformation rationale 
After removal of they = 0 the benchmark was to produce a transformation which produces 

a better fit than produced with the non-transformed small (n = 777) data set (Figure K.7) 
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and less alteration in variance with increase in the predicted values than shown in Figure 

K.8. 
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Figure K.7. Weight of raised landed sample " l" against weight of landed component of 
haul "L" for all positive values, n = 777. The regression equation and fit is shown on the 
figure. 

The fit is better in Figure K. 7 than Figure K.8 (below) due to the removal of the points at y 

= 0. 
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Figure K.8. Residuals of a linear regression against the predicted values n = 777. 

Although the axes scales of Figure K.4 and Figure K.8 are the same the differences 

between these two plots are subtle though evident. 

K.4 Initial examination: weighted least squares 
Two types of transformation were undertaken. As pointed out by Seber, (1977, p 178) 

" . .. in choosing between linearizing the regression and stabilizing the variance the first 

usually has preference." The original data possessed a reasonably strong linear 

relationship, R2 = 0.6934 so firstly, an alternative regression (weighted least squares) 

which maintains the original data was tried. While this alternative method of regression 

using the original data set could have retained the 270 points where y = 0 these are left out 

so that this method can be compared to the other methods employing data transformation. 

The weighted least squares regression is appropriate where there is not 

homogeneity of variances. In this method, a common variance is produced based on each 

410 



Appendix K 

separate value of the independent variable. SPSS (SPSS, 2003) generated a weight 

function according to the equation: 

where: 

f(w) =weight function. 

I 
f(w)=-

varP 

var =weight variable (the independent variable). 

p= power. 

The process employed a range of values (-3 to 3, step 0.1) and produced a power value of 

1.10. These weights were applied and the regression carried out. Table K.3 shows the 

regression results and Figure K.9 shows the residual plot. 

Table K.3. Weighted least squares regression, see text for details. The regression equation 
is lan = 2228 + 1.06 haul. 

predictor coefficient coefficient S.E. T p 

constant 2227.7 379.1 5.88 < 0.001 
haul 1.056 0.034 30.68 < 0.001 
s 66.51 
~ 0.548 
~ (adj) 0.548 
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Figure K.9. Residuals against predicted values for original data and weighted least squared 
regression, n = 777 in both series. The data points are shown smaller in this figure than 
Figure K.4 and Figure K.8 for clarity. 

The weighted least squared regression has a less good fit than the original data (according 

to the adjusted f2 value in Table K.3) and the residuals plot (Figure K.9) was not greatly 

better. In fact, the weighted least squared regression has only apparently applied a slight 

rotation to the residual data. 

The inability of the weighted least squares regression to satisfy the assumptions of 

the linear regression strongly suggest that a transformation must be applied and that for this 

analysis the data at y = 0 must not be included. 

K.5 Generation of 'ideal' transformation 
The most appropriate transformation for both the portion of the haul to be landed "L" and 

raised component of the sample "l" were calculated separately by a Box-Cox 

transformation (Sokal & Rohlf, 1981, p423-426 & 544) in Minitab (Minitab, 2000). 

Figure K.1 0 shows the output. 
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Figure K.IO. Box-Cox plot for landed component of haul "L" (cc) [left] and raised landed 
sample "I" (lan) [right] for all positive values, based on n = 777 samples. For 'cc' last 
iteration info (A. then a) low: 0.056, 13, lOO; best 0.113, 13,1 00; high 0.170, 13,100. For 
'lan' last iteration info (A. then a) low: 0.055, 15,300; best 0.112, 15,300; high 0.169, 
15,300. 

Figure K.IO shows that the best fit for lambda(/..)= 0.113 for the haul (cc) and for lan A.= 

0.112. These are both quite close to zero. Choosing zero gives natural logarithms as the 

best transformation, though zero is outside the 95% confidence interval of the A. values. 

The data was transformed appropriate to the A. value for each axis according to the 

equation: 

Z=( AAA-I) 

where: 

A = the original data. 

Z = transformed output. 

A.= Box-Cox function. 

The application of the Box-Cox transformation on both axes is not strictly correct, 

however. The Box-Cox transformation should only be applied to the dependent axis, 

although in this case it generates a severe deviation from linearity in the model as shown in 

Figure K.ll. 
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0 
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Figure K.ll . Accurate depiction of the Box-Cox transformation, n = 777. Note that the 
fitted trend line is logarithmic. 

The advantage of this method is that the transformation is correctly fitted according to the 

equation: 

y=( x'A-IJ 

where: 

y = the dependent variable. 

x = independent variable 

A. = Box-Cox function. 

However, the important disadvantage was that the comparison of regressiOn lines 

(ANCOVA, described above on page 273) cannot be undertaken on non-linear regressions. 

Also, the true application of the Box-Cox transformation does not satisfy the assumption of 

the variance of the residuals not increasing with the predicted values as shown in Figure 

K.l2. 
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Figure K.12. Residuals against predicted values for the accurate depiction of the Box-Cox 
derived transformation, n = 777. This figure is derived from the regression as shown in 
Figure K.ll. 

The residuals plot based on the regression according to the Box-Cox transformation 

(Figure K.12) while no longer being cone-shaped shows a curvature of the densest part of 

the plot indicating an inadequate model, (Seber, 1977, p 165). 

K.6 Comparison of 'ideal' and other 

transformations 
This application of the Box-Cox transformation was inappropriate though the double 

application of the transformation (while not a correct procedure) nevertheless illustrated 

the ideal transformation. As described above the 95% confidence intervals for A. are 

outside the value (zero) appropriate for employing the natural logarithm as a 

transformation function, (Sokal & Rohlf, 1981, p423-426). The alternative was to use 
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log10( + 1 ). These two transformations were tested against the ideal as described by the 

different A. value for each axis. Figure K.13 shows this graphically. 
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Figure K.13. Comparison of double lo&1o), double natural log (In) and double Box-Cox 
transformation for weight of raised landed sample "1" against weight of landed component 
of the haul "L", n = 777 for each series. 

The data points are shown smaller on this figure than on previous ones (e.g. Figure K.3 and 

Figure K.7) for clarity only. The slopes and intercept were compared (ANCOVA) to each 

other and Table K.4 shows the results. 

Table K.4. Comparison of regression lines as slope and intercept (as shown in Figure K.3) 
for double Box-Cox, double Jog(IO) and double natural logarithms. 

comparison type 
Box-Cox Box-Cox 109(10) 

to to to 
Pvalues log,1ol In In 
Intercept < 0.001 < 0.001 < 0.001 
slope 0.906 0.805 > 0.999 

Table K.4 is important in that it shows the best transformation is lo&Io), as it is closest to 

the ideal according to the double Box-Cox. Figure K.l4 shows the double lo&1o) 

transformed data. 
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Figure K.l4. Weight as log (g) of raised landed sample "l" against weight as log (g) of 
landed component of haul "L", n = 777. 

The fit as shown in Figure K.l4 was not as good as the untransformed data (Figure K. 7, 

page, 409, above) but the variance problem was now largely resolved, as demonstrated in 

the plot (Figure K.IS) of residuals against predicted values. 
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Figure K.15. Residuals against predicted values for the double log transformed regression 
of weight of raised sample " I" against weight of landed component of haul "L", n == 777. 

The majority of the data points in Figure K.15 approximate a band in the centre of the 

figure. Evident are slights "tails" to the data but these are comprised of relatively few data 

points. 

The conclusion was to use the double log(IO) values, however this was formally 

assessed by examining the Durbin-Watson test statistic which measures autocorrelation, or 

assesses how random were the data. A value of 2 is the most ideal and Table K.S shows 

the values and the difference from the ideal situation. 

Table K.S . Comparison of Durbin-Watson test statistic, and differences from the ideal 
value of 2 for three data transformations and untransformed data. 

Durbin- difference 
Watson from 

test "ideal" 
data transformation statistic value 
double Box-Cox 1.974 0.026 
double log (10l 1.969 0.031 
double natural log (In) 1.930 0.070 
untransformed data 2.170 0.170 

418 



Appendix K 

Table K.5 shows that while the double Box-Cox transformation yielded the best value as 

described above it was not strictly valid, and the double log transformation is most 

appropriate. 

On both Figure K.14 and Figure K.l5 (and other figures which show all or parts of 

the pooled haul data, such as Figure 9.4 and Figure 9.9 the presence of some ofthe data in 

vertical bands is evident. These bands were due to the haul composition "L" data falling 

into discrete categories according to the raising factor, see Figure K.l6. 
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Figure K.16. Frequency histogram of weight in both weight of species in the haul and 
raised weight of species in the sample. The bin size is weight (g) as 0.1 log00), converted 
back as 10"' for clarity in understanding the data. The label on the range is the upper level 
of each bin. 

Both of the distributions in Figure K.16 were reasonably symmetrical, though Figure K.16 

shows transformed values, and neither data set approximates a normal distribution; (A2 = 

1.075, n = 30, P = 0.007 for the log raised sample weights, and A2 = 3.333, n = 30, P < 

0.001) for the log weights in the haul according to the Anderson-Darling test. The raised 

sample weights are right skewed though not very much, g1 = 0.246, though the weight of 

species in the haul is more so g1 = 1.547. Also, the two raised sample weight is nearly as 

platykurtic (y2 = -1.452) in distribution as the haul weights are leptokurtic (y2 = 1.347). 
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The reason for the large steps in Figure K.I6 (particularly apparent in "L") was due 

to the presence of many similar values in the hauJ composition. Typically, these weights 

were half or one stone, which were more likely than a value of 0.49 or 0.51 stones, for 

example and came about because essentially these weights are estimates generated from 

the graduated fish basket. 
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Figure L.l. Sequential plots of weight (g) of raised landed sample "1" against weight (g) of landed component of haul "L" showing all species present in 
both. Plots also show: date; haul within trip; port and type of trawling, (N- = Newlyn, L- = Looe, P- =Plymouth, S- = Salcombe; -S =single boat trawling, 
-P =pair boat trawling); quarter of the year; and trip number (of times on particular boat). 
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Figure L.2. Sequential plots of weight (g) of raised landed sample "1" against weight (g) of landed component of haul "L" showing all species present in 
both. Plots also show: date; haul within trip; port and type of trawling, (N- = Newl)'1l, L- = Looe, P- =Plymouth, S- = Salcombe; -S =single boat trawling, 
-P =pair boat trawling); quarter of the year; and trip number (of times on particular boat). 
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Figure L.3. Sequential plots of weight (g) of raised landed sample "1" against weight (g) of landed component of haul "L" showing all species present in 
both. Plots also show: date; haul within trip; port and type of trawling, (N- = Newlyn, L- = Looe, P- =Plymouth, S- = Salcombe; -S =single boat trawling, 
-P =pair boat trawling); quarter of the year; and trip number (of times on particular boat). 
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Figure LA. Sequential plots of weight (g) of raised landed sample "1" against weight (g) of landed component of haul "L" showing all species present in 
both. Plots also show: date; haul within trip; port and type of trawling, (N- = Newlyn, L- = Looe, P- =Plymouth, S- = Salcombe; -S =single boat trawling, 
-P =pair boat trawling); quarter of the year; and trip number (of times on particular boat). 
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Figure L.S. Sequential plots of weight (g) of raised landed sample "1" against weight (g) of landed component of haul "L" showing all species present in 
both. Plots also show: date; haul within trip; port and type of trawling, (N- = Newlyn, L- = Looe, P- =Plymouth, S- = Salcombe; -S =single boat trawling, 
-P =pair boat trawling); quarter of the year; and trip number (of times on particular boat). 
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