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Anti-predator behaviour in the freshwater gastropod 

Lymnaea stagna/is 

By Sarah Dalesman 

Abstract 

The freshwater gastropod Lymnaea stagna/is was used as a model organism to 

investigate the mechanisms employed by prey species to fine-tune anti-predator 

behaviour to match their environment. Lymnaea stagna/is was found to exhibit both 

genetic adaptation of innate responses and also induced responses to predator cues. 

Snails were also capable of responding to predation cues via associative learning 

dependent on recent experience. Constitutive responses were found to differ between 

populations depending on the predator regime that the population experienced in the 

wild. Artificial selection produced in only two generations a difference in the magnitude 

of response between high and low response selected lines equal to those seen between 

field populations in two generations. At the same time these selected lines maintained 

phenotypic plasticity and responded to exposure to predator cues during development. 

This developmental plasticity led to an increased response to predation cues in the low 

selected line equivilent to that in the high response selection line; a lack of induced 

change in behaviour in the high response selection line suggested a physiological 

limitation on the maximum anti-predator response. The response in the low selection 

lines indicates that plasticity in anti-predator behaviour could allow individuals with 

low innate responses to compensate with high levels of induced response. Finally, L. 

stagna/is was able to utilise alarm cues from prey guild members (i.e. other freshwater 

gastropods) to assess predation risk, a response that was dependent on the phylogenetic 

relationship between L. stagna/is and the species producing the alarm cue. However, 



this response was dependent on whether the species was found sympatrically ( co­

habiting the same water body) with L. stagna/is. Together, the rapid microevolution of 

constitutive responses in L. stagna/is, its ability to show induced responses and 

associative learning indicates that this species may be able to respond rapidly to a novel 

predation environment, and therefore allow colonistion of new habitats or identification 

of novel predators. 

11 



Contents 

Abstract ............. ........ .... ................ ................... ............ ............ .... ...... .......................... v 
Contents .............. .... .............. ........ .. ... .................................................. ....................... iii 
Figures ................. .... ................ .............. ...... ................ ........... .. .......... ............ ... ..... .. .... v 
Tables ................ .. ...... .............. ............. ... ...... ......... .......... ................................ ........... vi 
Acknowledgements .............................. ........ .... .. ......... ..... ....... .................. ............... viii 
Authors Declaration ..... .............. .. ........ .... ....... ...... .. .... .......................... ...... ............. ... x 

Introduction ..................... ............. .. .......... .. ............... ..... ............. .................................. .. 1 
Evolution of predator defence ......... .... ............... ....... ........... .... .................................. 1 
Ecology of predator defence ....................................................................................... 3 
Basis for behavioural responses ........ ................ ...... ................ .... ..... .... .......... ........ .... 7 
Aquatic Gastropods as prey ............................ .... ........... ..... ..................................... 11 
Study Species ................. ....................................................... ..................... ................ 13 

The Prey: The great pond snail, Lymnaea stagna/is (L) ..................................... 13 
The Predator: tench, Tinea tinea (L) ........ .......................... ................................. 16 

Field Sites ........................... .... ............ ...... ..... ............................................... ............. . 18 
Overview ...................... : .......... ............ ......... ........................................ ...... ... ... ....... 18 
Gastropod community ...... .... .. ................. ...... ......................................................... 19 
Fish community .. .. ................. ............ .......... ...... ............................................ ......... 20 
Environmental data ...... .. .. .. .... .............. ... ............... ................. ................ ............... 21 
Assemblage analysis ............ .. ............. ........ ... ......................................................... 22 

Animal Husbandry .............. ............................... .. ..................................................... 27 
Thesis Aims ..................................... ......................... ... .................. .... ......................... 30 

Cue association and anti-predator behaviour in a pulmonate snail, Lymnaea 
stagna/is ................ .. ............ ........................... ............................................ .... ............. .... 33 

Abstract ................................................................... ............................................ ....... 34 
Introduction ............................................... ......... .... ......... ............................... ........ ... 35 
Methods .... .......................... ... ..... ............... ...... .............. ..... ............................... ........ . 37 

Study Organisms ................................................................................... ................. 3 7 
Odour Production ................................. ....................... .......................................... 3 8 
Behavioural Assay .......... .. ................................... ...... .................................. ........... 39 
Risk Level and A voidance Behaviour .................................................................. . 40 
Cue Association ...... .................. ............................................................. ........ ......... 40 
Persistence of Cue Association .............. ............................................................. ... 41 
Data Analysis ........ .... .... ....................................................................... ................... 41 

Results ........ .... .......................... .... .. .......... ...... ............................................................ 42 
Risk Level and Avoidance Behaviour ................................................................... 42 
Cue Association .............................................................. ................. .... ...... .... ......... 45 
Persistence of Cue Association .............................................................................. 48 

Discussion .... ............ ......................................................................... ..... ..................... 51 
Predator regime influences innate anti-predator behaviour in the freshwater 
gastropod Lymnaea stagna/is . ............ .... .. ................................ .......... ............. ..... ........ 57 

Abstract .. ......................... ....... .................. ................................................. ................. 58 
Introduction ... ..... ..... ...... ..... .... ... .... ........ .... .. ...... .... .......... .... ........................ ............. . 59 
Methods .......................................... .............. .............................. ............ .. .... .............. 63 

Field collection sites ............................... ........ ............ .............. ............ ....... ........... 63 
Odour production ....... ........ ........ ............. ....... ............ ...... ...................... .. .. ... ......... 64 
Behavioural Assay ........ .. ............. ......... ................................................................. . 65 
Data Analysis ............. ........... .. ............... .................... ............................................ . 66 

Results ....... ...... ................. .......... ... ........... ....... .. ...... .................. ......... ................ ........ 66 
Discussion ........ ..................................... .............................................. ...................... .. 69 

111 



Adaptation of anti-predator behaviour in an aquatic gastropod: insights from 
artificial selection ... ...... .... ........ ...... ........... ...... ........... ............. ...... ................................ 73 

Abstract .......................... ..... ..... .. ......... .......... ..................... ........ ... .. .... ... ..... ............... 74 
Introduction ............... .... ............. ......... .... ... .... ........ .... ................ ..... .... .... .............. .... 75 
Methods .................... ...... ......... ...... ...... .. .............................. .... ............... ...... ... ........... 78 

Selection of response lines .... .. ............ ................... .... ... .. .. .... ...... ............ .. ....... ...... 79 
Behavioural trials ..... .............. .. ................. .......... ........ .. .............. ......... .................. 80 
Data analysis .............. .......... ................ ... ................. ..... .. ...... ............... .... ............ .. 80 

Results .......... .. ...... ..... ................... ..... ...... ... .. .. .. .......... .. ............. ........ ......... .... ....... ..... 81 
Behaviour of the Fl generation ... ....... ..... ........ ...... ..... ... .................. ....... ......... .. .. . 81 
Time spent crawled out following selection ........... .. ...... ......... .... ....... ........... .... .... 84 
Latency to crawl out following selection ............. ...... .... ... .......... .. .... ... ....... ... ...... .. 87 
Variance and heritability of the response .. .... .............. .. .... .. ........................ .. ....... 89 

Discussion ................ ... .. ............... ..... ... ... .. .... ...... .... ..................... .................. ..... .. ..... . 89 
Conservation of induced anti-predator responses following experimental selection 

93 
Abstract .... ..... ...... ...... .... ... ..... ................... ...... .... .. ........... ..... .. .............. ........... ........... 94 
Introduction ........................ ... .................... .. .............. ... .. .... .... .............. ....... ..... ......... 95 
Methods .... ..................... .... ...... .. .. ... .......... ........ ..... ..... ..... .... ........ ................ .. ... .......... 98 

Exposure protocol ...... .. ..... ...... ....... .............. ........................ .......... .... .......... ..... ..... 99 
Behavioural trials ............ ........ ................... ...... ........... .. ...... ................. ............... .. . 99 
Data Analysis ............ ............ ..................... ..... .... ....... .. ... .. ....... ........ ...................... 99 

Results ................ .. ............ ......................... ............................................................ ... 1 00 
Discussion ..... ... ......... ......... ............ ........................................... ....... ..... ......... .... ...... 1 04 

Phylogenetic relatedness and ecological interactions determine anti-predator 
behaviour . ... ...... ........ .............. .. .... ... .......... .... ............ .... ....... .... ............ ...... .... .. .. .. ..... .. 109 

Abstract. .............................. ......... .. .... .. ... ................... ....... .. .. .... ............. ... .. ............. 110 
Introduction .................. ...... .. ......... .. ...... ...... .... ....................... ... ..... ..... ... ... .... ........ .. 111 
Methods ......... ...... ............ ................ ..... ........ ............ .. .... .... ........... .. ..... .................... 114 

Study Organisnts ... .... ................ ... ... .. .. ...... .................... .... ....... ............ ........... .. ... 114 
Odour production ................ ................................................................. .. .............. 115 
Behavioural Assay ...................... ........ ..... .... .. ..... ...... .................. ............. .. .......... 117 
Data Analysis ......... ... ............... ......... ..... ............... ... ..... .... ..................... ............. . 118 

Results ..... .... ........... ....................................................... ........................................... 118 
Discussion ....... ....... ... ... ........... ... .... ......... ....... .... .... .. .............. ................. .. ... ............ 122 

Discussion ............... .... ........... ............. .. ...... ....... .......... .... .. ...... ........... ............. .. .......... 127 
Conclusions ..... ... ..... ... .. .. ................. .. ....... ... ..... .. ... .. ............................... .... ... ........... 138 
Appendices .... .... .... ........... .................. ..... .... .. ....... ......... ... .... .. .... ............. ...... .......... . 141 

Appendix] ................... .. ........ ....... ....... ..... ....... ..... .. ...... ............. ..... .. ........ ..... ....... 142 
Appendix 2 ..... .... .............. ......... ............... ........ ... .. .. .. .................... ............ .... .. ...... 143 
Appendix 3 ....... ... ...... .. ........... ...... .......... ....... ... ..... ...... ...... ...... ................ .. ............ 146 

References .... .... ....... .... ........ ...... .. .. ..... ... ... ....... ...... ... .. ... ................... ........ .. .. .... ........ 149 
Publications .. .......... ... ... ... ..... ....... ....... .......... .... ..... .. .. ... ................... ............. .. ........ . 163 

IV 



Figures 

Figure 1.1 A laboratory reared adult great pond snail, Lymnaea stagna/is . .... ............... 13 
Figure 1.2: A tench, Tinea tinea . ............................ .................................. ...... .... .. .... .... . 16 
Figure 1.3 Multi-dimensional scaling (MDS) of assemblage data (stress value = 0.17). 

Sites are shown as either fish (black symbols) or no fish (red symbols), with the 
same shaped symbol indicating that two sites are found in close geographic 
proximity (i.e. the two site labelled with squares, South Drain and Chilton, are in 
closer proximity to one another that any other sites) with the exception of N. Moor 
small drain which is as close to North Moor Main Drain as Wistaria and has no 
predatory fish. Clustering of fish sites (solid line) and no-fish sites (dashed line) is 
indicated . ..... .................... .. ................ .................... ......... .. .... ...... ........ .......... .. ........ . 25 

Figure 2.1 The mean(± S.E.) proportion; (a) latency to crawl-out and (b) time spent out 
of the water by L. stagna/is in response to different treatments during behavioural 
assay (duration 2 hours): control (C), alarm cues alone (A), predator odour alone 
(T) and alarm plus predator cues (A&T) .... .... ................ .. ...... .... .. .. ........................ 44 

Figure 2.2: The mean(± S.E.) proportion; (a) latency to crawl-out and (b) time spent out 
of the water by L. stagna/is responding to control (dark bars) and predator cue 
(light bars) during behavioural assays (duration 2 hours), following prior exposure 
to: control (C), alarm cues alone (A), predator odour alone (T) and alarm plus 
predator cues (A&T) . ..... ... ..................................................................... ........ .... ..... 47 

Figure 2.3: The mean(± S.E.) proportion; (a) latency to crawl-out and (b) time spent 
crawled out by L. stagna/is during behavioural assays (duration 2 hours), 24 hours 
(light bars), 4 days (hatched bars) and 8 days (dark bars) following prior exposure 
to control (C) or alarm plus predator cues (A&T) in response to either control (C) 
or predator cue (T) during behavioural assays .. .......... .................................. ...... .. .. 50 

Figure 3.1: Locations of collection sites on the Somerset Levels ................................... 64 
Figure 3.2: The mean(± s.e.) crawl out response ofF1 L. stagna/is from populations 

with low (Wistaria; Chilton; Little Hook) and high (N. Moor Main Drain; South 
Drain; Sowy River) predatory fish regimes responding to different treatment levels, 
showing a) proportion oftime spent crawled out and b) latency to crawl out. N=24 
for each treatment combination ....... .. .............................................................. .. .... . 68 

Figure 4.1: The mean(± s.e.) crawl out response ofF1 Lymnaea stagna/is from Chilton 
and South Drain responding to four different treatment levels (control, C, tench 
cue, T, alarm cue, A and tench paired with alarm cue, A&T) showing a) proportion 
of time spent crawled out and b) latency to crawl out. N=24 for each treatment 
combination ........ ... ... .................. ................ ........... ...... .................................. .... .. .. .. 83 

Figure 4.2: The mean(± s.e.) proportion of time spent crawled out by F2 and F3 
Lymnaea stagna/is from low, random and high selected lines responding to four 
different treatment levels (control, C, tench cue, T, alarm cue, A and tench paired 
with alarm cue, A&T) showing a) Chilton population and b) South Drain 
population. N=24 for each treatment combination ......................... .................. .. .... 86 

Figure 4.3: The mean(± s.e.) proportion latency to crawl out by F2 and F3 Lymnaea 
stagna/is from low, random and high selected lines responding to four different 
treatment levels (control, C, tench cue, T, alarm cue, A and tench paired with alarm 
cue, A&T) showing a) Chilton population and b) South Drain population. N=24 for 
each treatment combination . .. .................... ...................................... ... ............. ...... . 88 

Figure 5.1: Proportion of time spent crawled out of the water in response to 4 treatments 
following exposure to either control (clear columns) or tench cue (shaded columns) 
during development following selection for a) low, b) random or c) high response 
to predation cues ....... ................... .................... ... .. ...... .......................... ...... .......... 1 02 

V 



Figure 5.2: Latency to crawl out in response to 4 treatments following exposure to either 
control (clear columns) or tench cue (shaded columns) during development 
following selection for a) low, b) random or c) high response to predation cues. 103 

Figure 6.1: The relationship between genetic relatedness and sympatry/allopatry in the 
anti-predator response of Lymnaea stagnalis to tench and alarm cues combined. 
Individual symbols show the mean response(± s.e.) towards each species ( • = 

sympatric species, o = allopatric species), with lines indicating the trend in 
relationship between behaviour and Kimura 2-parameter geneti~ distance for (a) 
Proportion of time spent crawled out of the water. (b) Proportion latency to crawl 
out. N = 24 for each data point. ........ .. .... ...... .. ...................................................... 121 

Tables 

Table 1.1 Location of sites used in this study on the Somerset Levels and gastropod 
species present at each site* ................................... ........ .. ............................ ........... 20 

Table 1.2 Environmental Data: maximum, mean and minimum values for 
environmental variables measured. Data shown is separated between sites 
containing predatory fish (n = 3) and sites not containing predatory fish (n = 4) .. 22 

Table 2.1 Latency to crawl-out and proportion of total time spent crawled out in 
response to exposure to tench cues and alarm cues. N = 24 for all treatment 
combinations ............. ...... ............... .... ......... ........ .......... ........ ................ ... ....... ........ 43 

Table 2.2 Latency to crawl-out and proportion of total time spent crawled out in 
response to exposure to tench cues following previous exposure to tench and/or 
alarm cues 24 hours prior to behavioural assays. N = 24 for all treatment 
combinations ................... ...... ...... ....... .............. .......... ..................................... ........ 46 

Table 2.3: Latency to crawl-out and proportion of time spent crawled out in response to 
exposure to tench cues following pre-exposure to tench plus alarm cues at varying 
durations, 24 hours, 4 days and 8 days prior to behavioural assay. Trial is excluded 
from model as no significant effect was found using a General Linear Model. N = 

23 for all treatment combinations ........... .................. .................. ...... ...................... 49 
Table 3.1: Results from 4-way nested ANOV A on time spent crawled out of the water 

and latency to crawl out. Factors used are: habitat type (predatory fish/no predatory 
fish), population (nested in habitat type), alarm cue (presenUabsent) and tench cue 
(presenUabsent). N = 24 for all treatment combinations . ..................................... .. 67 

Table 4.1: Results from 3-way AN OVA on F1 generation snails, showing time spent 
crawled out and latency to crawl out. Factors included are: population 
(Chilton/South Drain), alarm cue (presenUabsent) and tench cue (presenUabsent). 
N = 24 for all treatment combinations ................. ........................ ............. ........... ... 82 

Table 4.2: Results from 5-way ANOV A on F2 and F3 generation snails, showing time 
spent crawled out and latency to crawl out. Factors included are: generation 
(F2/F3), population (Chilton/South Drain), selection (low/random/high) alarm cue 
(presenUabsent) and tench cue (presenUabsent). N = 24 for all treatment 
combinations .. ............... ................................. ........ .. .. ....... ....... ................... ............ 85 

Table 5.1 : Results from 5-way ANOV A, showing time spent crawled out and latency to 
crawl out. Factors included are: population (Chilton/South Drain), selection 
(low/random/high), exposure to tench kairomones during development 
(presenUabsent), alarm cue during behavioural trial (presenUabsent) and tench 
kairomone during behavioural trial (presenUabsent). N = 15 for all treatment 
combinations .............. ..... ............................. .. ............. ...... .. .................. .......... .... .. 101 

V1 



Table 6.1: Gastropod species used to produce alarm cue. Location where adult stocks 
were collected and Genbank accession number for the source of 18S sequence data 
used to calculate Kimura 2-pararneter genetic distance is shown. Species found 
syrnpatrically to the Lymnaea stagna/is population used as responders are shown as 
originating from South Drain. Nomenclature follows Anderson (Anderson 2005). 

···· ··························· ············ ··· ······························· ················· ······ ··· ················· ······· 116 
Table 6.2: Results from 4-way AN COV A using genetic distance as the covariate. 

Results for proportion of total time spent crawled out and latency to crawl-out in 
response to genetic distance, environment (syrnpatry/allopatry), alarm cue and 
tench cue. N = 24 for all treatment combinations . ...... ..... ... ... .... ..... .. ..... ..... ..... .. ... 119 

Table A2.1 : Results of pair-wise comparisons using ANOSIM between sites. R values 
for each pair-wise comparison are below the diagonal and P values above the 
diagonal (bold = significant difference) .. ..... . . . ...... . . .. . .. . .. . . ... .. ... ..... . . .. 143 

Table A2.2: Pearson correlation value (upper number in each cell) and associated P­
value (lower number in each cell) between environmental variables measured at 
six sites on the Somerset Levels. Bold font = significant correlation between 
variables . ... .. . .. ............ ... ... ... . ... .. . .. ...... ... .. . .. . ... . . ..... . . .. ..... .. . . . .. ... 144 

Table A2.3 : BIOENV results, correlation value for individual environmental variables 
with assemblage . . . .. .. .. ... . . . . . .. .... . . .. ..... .. .. . .... .. ... . . . . . . .... . . .. . .. . .. . ..... .. 145 

Table A3 .1 : Results from 4-way ANOV A on time spent crawled out of the water and 
latency to crawl out. Factors used are: temperature (15°C/20°C), population (South 
Drain/Chilton), alarm cue (present/absent) and tench cue (present/absent). N = 24 
for all treatment combinations ... . ......... . .. . . .... ..... ... .. .. .. .. .. . .......... . .. . . .. 147 

vu 



Acknowledgements 

I am grateful to the University of Plymouth for providing funding for this work in the 

form of a PhD studentship. 

I would like to thank Simon Rundle and Pete Cotton for their incredible support over 

the duration of my PhD. They have both provided me with the space to develop my own 

ideas, and encouragement and advice whenever I needed it. I really couldn't have asked 

for anything more in a supervisory team. I'd also like to thank Simon for pulling me out 

of a muddy ditch when I got very stuck, I'm sure that isn' t in the job description! 

I thank Ross Coleman for supervision during the earlier stages of my PhD. Without his 

input the ANOV As would almost certainly have not been done with confidence, and 

definitely not with the ambition of obtaining 5-way interactions! In the absence of Ross, 

Andy Foggo, despite being extremely busy with his own students, has taken the time 

out to help me with data analysis on several occasions, for which I am extremely 

grateful. I'd also like to thank several anonymous reviewers and Professor John Bruno 

who provided useful comments on the chapters accepted for publication. 

A big thank-you goes to Dave Bilton, who advised me on phylogenetic analysis, and 

has proved an extremely useful source of knowledge in almost every aspect of 

freshwater ecology. His enthusiasm for leaping in F.E.S.H.s whilst being watched by 

bemused cows is not a sight easily forgotten. 

I've had some extremely helpful fieldworkers over the last couple of years, and those 

deserving a special mention are Ann Torr, Paul Glendenning, Tom Wycherley, Richard 

Vlll 



Ticehurst and Roger Haslam, and I also thank the various land owners and the 

Environment agency for letting me carry out electro-fishing on the Somerset Levels. For 

laboratory assistance I'd like to thank Ann Torr and Jenny Smirthwaite who helped in 

the never ending task of looking after my snails, and Andy Fisher and Kevin Soloman 

helped me analyse water samples. 

I'd like to thank my friends and family for their support over the last few years. A 

particular mention is deserved by my parents, Liddy and John Dalesman, I dread to 

think how much money I've cost them since deciding to embark on a career as a 

scientist (though I know my dad has some value in mind). Hopefully I'll get a proper 

job now? 

And finally .. .. .I'd like to thank the hundreds of random people I've met over the 

duration of my PhD whom, on finding out I work with snails, have without fail asked 

"Do you eat them?". The answer is a resounding NO. And if in doubt as to whether this 

is a good stance to take I will defer to the expert opinion of the eminent conchologist 

Dr. Victor Sterki, who stated in one of his articles referring to things a conchologist 

should never do with snails, that "they should be dried, but not fried" (Sterki 1890). 

lX 



Authors Declaration 

At no time during the registration for the degree of Doctor of Philosophy has the author 

been registered for any other University award without prior agreement of the Graduate 

committee. 

This study was financed with the aid of a studentship from the University of Plymouth. 

Relevant scientific conferences were regularly attended at which work was often 

presented. 

Publications: 

Dalesman, S., Rundle, S. D., Coleman, R. A. & Cotton, P.A. 2006. Cue association and 
anti-predator behaviour in a pulmonate snail, Lymnaea stagna/is. Animal 
Behaviour, 71, 789-797. 

Dalesman, S., Rundle, S. D., Bilton, D. T. & Cotton, P.A. 2007. Phylogenetic 
relatedness and ecological interactions determine anti-predator behaviour. 
Ecology. In Press. 

Dalesman, S., Rundle, S. D. & Cotton, P.A. 2007. Predator regime influences innate 
anti-predator behaviour in the freshwater gastropod Lymnaea stagna/is. 
Freshwater Biology. In Press. 

Dalesman, S., Rundle, S. D. & Cotton, P. A. In review. Adaptation of anti-predator 
behaviour in an aquatic gastropod: insights from artificial selection. Oecologia. 

Dalesman, S., Rundle, S. D. & Cotton, P.A. In prep. Conservation of induced anti­
predator responses following experimental selection. 

X 



Conference participation and presentations: 

2007 Dalesman S., Cotton P ., Bilton D. and Rundle S. "Ecological and phylogenetic 
basis for the response to predation" ASAB Easter meeting, 28th - 30th March. Oral 
presentation. 

2006 Dalesman S., Cotton P., Bilton D. and Rundle S. "How do ecological and 
phylogenetic relationships shape anti-predator behaviour?" Chemical Ecology in 
Aquatic Systems international workshop. 16-18 October. Oral Presentation. 

2006 Dalesman, S., Cotton, P.A. Bilton, D.T. Rundle, S.D. "Ecological and 
phylogenetic basis for response to predation in the great pond snail, Lymnaea stagna/is" 
BES Annual Meeting 5 - 7 September. Oral presentation. 

2006 Dalesman, S., Cotton, P.A. Bilton, D.T. Rundle, S.D. "Relatives and neighbours: 
Ecological and phylogenetic basis for responses to predators." 11th International 
Behavioural Ecology Congress 23-29 July. Poster presentation. 

2005 Dalesman, S., Rundle, S. D., Coleman, R. A. & Cotton. "Cue association and anti­
predator behaviour in a pulmonate snail, Ly mnaea stagna/is." ASAB Easter meeting, 4-
6 April. Poster presentation. 

Word count of main body ofthesis: 33,570 

Si~ed .. ~ ...................... . 
Date ...... U-b./.Q~./.zg;;F:1. ............... . 

XI 





Chapter 1 

Introduction 

Predation has severe consequences for fitness, both in terms of the direct costs ofbeing 

predated, but also indirect costs associated with induced responses to predator presence 

reducing potential for growth and reproduction (Lima and Dill 1990). As such, a prey 

organism will be under strong selection to respond appropriately to predation threats. 

The way in which an organism responds may include morphological, physiological and 

behavioural defences or changes in life history to avoid encountering predators. In this 

thesis I am interested in exploring the variety of different mechanisms an organism uses 

to fine-tune anti-predator behaviour. 

Evolution of predator defence 

Predator defence traits have evolved through strong selection pressure on prey 

organisms to respond to potential predators. Prey are considered to be ahead in the arms 

race between themselves and their predators due to a disparity in the fitness 

consequences of this interaction; for prey a predation event results in losing their lives, 

whereas for predators failing to consume a prey item is the loss of a meal (Dawkins and 

Krebs 1979). This disparity in evolutionary adaptation can be illustrated by the 

reciprocal plasticity occurring in one aquatic predator-prey system. The prey, a 

hypotrichous ciliate Euplotes octocarinatus, grows 'wings' to increase body size and 

reduce predation by a predatory ciliate Lembadion bullinum; in response to this induced 

defence L. bullinum increased cell and gape size to enable it to engulf the enlarged prey 

(Kopp and Tollrian 2003). This counter response is not fully adaptive as the defence is 
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still effective in reducing predation rates, nor does it increase net energy intake for the 

predator due to the increase in energy required for the extra growth. This suggests that 

currently at least, E. octocarinatus is winning the evolutionary arms race (Kopp and 

Tollrian 2003). Morphological adaptation in prey to counter predation risk is thought to 

have shaped the evolution of several taxa, one example being the decrease in the 

proportion of gastropod taxa with weak shell designs eo-occurring with an increase in 

shell crushing predators (Vermeij 1987). 

Interactions between predators and prey species will be controlled by a number of traits 

of both the predators and prey, including life history, morphology, physiology and 

behaviour. Phenotypic integration between traits may occur under selection, where the 

values of different traits have been altered to provide the best selective response within 

given environmental conditions (Pigliucci 2003). However, this linkage of traits may 

reduce the adaptive potential of an organism under novel environmental conditions. 

There are frequently tradeoffs between defence traits and other aspects of organismal 

biology, for example Lymnaea stagna/is increases vulnerability to pathogens by 

exhibiting avoidance behaviour (Rigby and Jokela 2000), and predator induced traits in 

other taxa have been found to result in reductions in growth and reproductive potential 

(Crowl and Covich 1990, Van Buskirk 2000, McPeek 2004). Where tradeoffs exist the 

degree to which prey can adapt to predation risk may be limited. 

The effect of predator species on prey evolution is currently not clear, however there is 

evidence that predator presence is driving trait divergence between populations (Laurila 

et al. 2006, Fisk et al. 2007), and also between allopatric ecotypes (V amosi and Schluter 

2004). There are also patterns of divergence within phylogenies which appear to suggest 

that adaptation to predator regime may drive divergence between closely related species 

2 



(Schluter 2001 ). The maintenance of this divergence may occur if species subsequently 

overlap in distribution and if the hybrids then demonstrate reduced fitness. 

In aquatic systems chemicals released by predators appear to give the earliest warning 

system to prey species about their presence and identity. As such it seems surprising 

that predators have not evolved mechanisms to mask odour, in a similar manner to the 

way crypsis masks visual cues. Indeed, the only example of an apparent lack of 

chemical recognition of a predator in the aquatic environment is that of tailed frog 

tadpoles, Ascaphus truei, which respond to chemical cues from other fish predators, but 

fail to respond to cues from shorthead sculpin, Cottus confusus, possibly because the 

sculpin is masking its scent (Feminella and Hawkins 1994). Chemicals tend to be 

predator specific, so perhaps carry out other vital roles in allowing predator species to 

identify one another to allow mate recognition or establishment of territory. The fitness 

benefits associated with these other roles may outweigh the costs of letting prey species 

know they are present. 

Ecology of predator defence 

In predator-prey systems it is generally assumed that there is a link between predator 

and prey abundance, such that prey abundance limits predator abundance by limiting 

their food intake, and predators limit prey due to a positive relationship between prey 

abundance and the number of prey eaten (Morin 1999). In reality this link is more 

complex as predators are likely to take a number of different prey taxa in a system, such 

that both the predator identity and density and relative abundance and quality of other 

prey available will also affect this relationship. Other environmental variables including 
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food availability to prey, substrate type and numerous other abiotic factors will also 

influence prey vulnerability (e.g. Ramcharan et al. 1992, Dodson et al. 1994). 

Predators can significantly influence the community structure in which they live, and 

such predators have been termed 'key-stone predators' (Paine 1969). These are 

generally predators that target competitively dominant prey species, preventing them 

from out-competing the competitively inferior species which tend to be better at 

surviving predation threat due to evolutionary trade-offs (Paine 1969, Navarrete and 

Menge 1996, Morin 1999). This targeting of competitively dominant species may occur 

because these species are likely to be abundant in the habitat, and by targeting dominant 

species predators may lead to an increase in the diversity of prey taxa (Morin 1999). 

Predators that don' t feed selectively may also alter community structure, but they tend 

to reduce the diversity of taxa rather than increase it. For example mosquito larvae, 

Wyeomia smithii feed on protists in pitcher plants, and tend to reduce protist diversity in 

plants where they are present (Addicott 1974). In this example there is little competition 

amongst protist and a generalist predator decreases the number of species by chance by 

reducing overall abundance. 

Predators may also alter community structure by causing a switch in the type of prey 

taxa present. For example in freshwater aquatic systems large zooplan.kton tend to 

dominate in the absence of predatory fish, whereas small zooplan.kton dominate in the 

presence of predatory fish (Brooks and Dodson 1965). This is possibly due to 

competitive exclusion by large zooplankton, but evidence points towards selective 

feeding on large bodied plankton by predators and possibly also feeding of large 

zooplank:ton on smaller individuals (Dodson 1974). Trophic cascades may also affect 

species on other trophic levels than the predator and prey (Carpenter and Kitchell 1993). 
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For example predator consumption may result in fewer herbivores and consequently an 

increase in plant biomass (e.g. Bronmark 1994, Beklioglu and Moss 1998, Peacor and 

Werner 2001). Meta-analysis of freshwater trophic cascades suggests the presence of 

freshwater fish decreases the biomass of zooplankton, leading to an increase in 

phytoplankton biomass, though the response of phytoplankton was only very strong in a 

third of the studies reviewed (Brett and Goldman 1996). 

The examples so far have outlined a few of the direct effects of predators through 

reductions in prey density within an ecosystem (density-mediated interactions), 

however indirect effects (trait-mediated interactions) may also occur via predator 

induced changes in prey traits. Changes in habitat use and feeding behaviour result in 

reduced impact ofherbivores (e.g. Turner 1997, Wemer and Peacor 2003), indeed the 

effects of indirect interactions may be greater than those of direct consumption on 

community dynamics (Preisser et al. 2005). Trophic cascades due to trait-mediated 

interactions may have both positive and negative effects on plant biomass by shifting 

the habitat use of herbivores, favoured plants may suffer reduced herbivory, whereas 

ones used as refuges from predators may experience increases in herbivory (Schmitz et 

al. 2004). 

Chemical cues and predator-prey interactions 

Chemical cues used by prey species may include predator cues, disturbance cues, alarm 

cues and dietary cues (Wisenden 2000). The response to alarm cues (particularly in 

combination with predator cues) is found in numerous taxa, suggesting that the ability 

to use such cues has adaptive benefits in many species. Chemical cues are likely to be 

available to potential prey species before contact with the predator occurs (Kats and Dill 
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1998), and hence may provide an early warning system of potential threat before visual 

or tactile cues are available. 

Chemical cues may be used to identify a predator, for example the herbivorous 

gastropod, Tegulafunebralis, crawls out of the water in response to predatory starfish, 

but not in response to non-predatory starfish (Y arnall 1964 ). When a prey species gains 

information about a predator they do not necessarily have any information about 

whether a predator has detected them (Kats and Dill 1998), or if the predator is currently 

foraging. Hence the use of alarm cues in combination with predator cues may provide 

information on the current foraging activity of that predator, and can be a reliable 

indicator of risk (Chivers and Smith 1998). 

Frequently there is little, if any, response to alarm cues alone, potentially due to the lack 

of information contained about the nature of the threat, which may mean there is 

potential for the prey species to show inappropriate responses. Induced morphological 

responses to alarm cues alone are not found frequently, a review by Chivers and Smith 

(1998) could only find one example of an induced morphological response, in the 

crucian carp, Carassius carassius (Stabell and Lewin 1997). Life history characteristics 

appear more sensitive to alarm cues presented in isolation. Responses have been found 

in gastropods (Crowl and Covich 1990) and amphibians (Chivers and Smith 1998). 

However, what is clear from numerous studies is that alarm cues interact with cues from 

predators to produce the strongest responses in behaviour, morphology and life history 

in the majority of taxa studied (reviewed in: Dodson et al. 1994, Chivers and Smith 

1998), and that in several cases this combination of responses is necessary to elicit a 

response. 
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In the aquatic environment the ability to utilise vision may be hindered by turbidity and 

habitat complexity, hence many aquatic species rely on chemical information to assess 

potential predator presence (Dodson et al. 1994, Kats and Dill 1998). The use of 

chemical cues has been found both in the identification of a potential predator (Chivers 

et al. 1996, Bemot and Turner 2001, Brown 2003), but can also be utilised to assess the 

threat posed by that predator (Kats and Dill 1998, Van Buskirk and Arioli 2002, Ferrari 

et al. 2006). Predator released kairomones (Dicke and Sabelis 1988) or disturbance and 

alarm cues from other aquatic organisms potentially give the earliest warning systems 

for prey species, and may be of particular importance to species with limited mobility 

compared to their predators (Wisenden 2000). 

The term kairomone used in this thesis refers to chemicals released by one animal, 

received by another, that provides benefit to the receiver, but may be of no benefit to the 

sender (Dodson et al. 1994). The more general term ' cue' (when referring to chemicals 

released by tench or other predators) is also used interchangingly with kairomone. 

Alarm cue in this thesis always refers to chemicals released by damaged conspecifics; 

' disturbance cue' is used as the terminology for signals given off by an animal in the 

presence of a predator without any damage having occurred. 

Basis for behavioural responses 

Behavioural modification in response to predator cues may occur at an innate level 

either through genetic adaptation to behave in a particular way on first encountering 

predator cues (Lively et al. 2000) or through transgenerational modification where 

parents induce developmental responses that alter the way an animal responds to 

predation threat {Agrawal et al. 1999). Alternatively, an organism may change 
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behaviour via experience, exhibiting phenotypic plasticity during its development in 

response to environmental cues, either by increasing the level of response seen or 

altering type of response seen (Tollrian and Harvell 1999). 

Diet information (i.e. cues released from a predator following consumption of the prey) 

or pairing of predator cues with damaged conspecifics can allow an organism to learn to 

recognise a potential predator through cue association or give an indication of current 

predator foraging activity. Prey can then adjust their responses appropriately. Increased 

responses to predator cues following experience of predation events has been noted in 

several aquatic invertebrates including: damselflies, Enallagma spp. (Chivers et al. 

1996), crayfish (Hazlett et al. 2002), whelks, Buccinum undatum (Rochette et al. 1998) 

and a flatworm, Dugesia dorotocephala (Wisenden and Millard 2001). In these cases it 

was unclear as to whether the prey species were learning to identify a potential predator 

per se, or whether the association between cues was providing information about the 

perceived risk from the predator. 

In freshwater systems a number of studies have demonstrated strong responses to 

predation cues (Reviewed in: Dodson et al. 1994, Chivers and Smith 1998, Lass and 

Spaak 2003, Werner and Peacor 2003), however many aquatic prey species occupy a 

wide variety ofhabitats and experience varying levels of predation threat, such that a 

single mode of behavioural response is unlikely to be an effective method of avoiding 

all potential predators. As such, it might be predicted that anti-predator behaviour would 

vary between populations with different predator regimes to closely match the type and 

level of predation threat present (McPeek 1990). Local adaptation to predation threat is 

likely to occur in relatively sedentary species with low dispersal abilities, whereas 

induced responses are more likely in species which have potential for high dispersal 

8 



between generations, as parents and offspring are more likely to encounter alternate 

predator regimes (Kawecki and Ebert 2004). Adaptation may also be favoured where: i) 

plastic responses are costly if the lag between expressing one phenotype or its 

alternative is too far behind the changes in the environment (Padilla and Adolph 1996); 

ii) information gathering to produce the correct phenotype is costly (DeWitt 1998); or 

iii) costly responses to non-threatening species are likely (Langerhans and DeWitt 

2002). Adaptation through natural selection has been shown to account for divergence 

between aquatic populations experiencing differing predation pressure (Cousyn et al. 

2001, O'Steen et al. 2002, Meyer et al. 2006). 

Alternatively prey may exhibit induced defences (Tollrian and Harvell 1999), a form of 

phenotypic plasticity, where the expression of the genotype varies depending on the 

environmental conditions (Bradshaw 1965). A meta-analysis of data from studies into 

the impact of predators on prey populations demonstrated that more than 50% of the 

impact on prey demographics from predators is due to induced defences, such as 

requction of activity and feeding time, rather than direct effects from consumption 

(Preisser et al. 2005). Genetic variation for plasticity exists (Stinchcombe et al. 2004), 

and plastic responses can be selected for both for the mean response within a particular 

environment and also the degree of plasticity in response to alternate environments 

(Scheiner 1993, 2002, Garland and Kelly 2006). Behavioural responses tend to have a 

very short lag time between the expression of one phenotype and the next, and could 

therefore be very flexible in how they are expressed (Gabriel et al. 2005). Plasticity 

may occur during development, with the phenotype expressed in adulthood resulting 

from environmental cues earlier in life (Relyea 2001 , Alvarez and Nicieza 2002) or 

environmental cues may effect the developing organism at any stage of development 

(Laurila and Kujasalo 1999, Laforsch and Tollrian 2004, Griffith and Sultan 2006). 
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Plasticity may confer advantage to organisms that have to deal with changes in their 

environment, or potentially enable them to survive in a novel environment (Parsons and 

Robinson 2006, Nussey et al. 2007). The ability to respond plastically to predatory 

threats may reduce the negative impact on fitness on encountering a novel predator, and 

therefore allow the animal to adapt further to increase fitness (Latta et al. 2007). 

However, there is also an increasing body of evidence that plasticity in a trait can also 

incur fitness costs (DeWitt 1998, Agrawal et al. 2002, MeriUi. et al. 2004, Stinchcombe 

et al. 2004, Teuschl et al. 2007), and may also lead to incorrect assessment of predation 

risk from organisms not previously encountered (Langerhans and DeWitt 2002, 

Schlaepfer et al. 2005). 

As well as using conspecific alarm cue to recognise predation threat organisms can also 

respond to heterospecific cues through 'eavesdropping' (Stowe et al. 1995, Bradbury and 

Vehrencamp 1998). Eavesdropping on alarm cues from heterospecific intraguild members has 

been found in several species and may be used to provide additional information about 

potential predation risk (Stenzler and Atema 1977, Mirza and Chivers 200 I a, Hazlett and 

McLay 2005, Schoeppner and Relyea 2005). In predator-prey systems, recognition of alarm 

cues from closely related species is not considered communication as there is no benefit to the 

signaller (Bradbury and Vehrencamp 1998), however it may be ofbenefit to the receiver to 

assess predation risk accurately and, hence, may reduce the high fitness costs associated with 

predation (Lima and Dill 1990). There is considerable evidence that alarm cues are conserved 

within phylogenetic groups (Pfeiffer 1977), with responses to alarm cues from closely related 

species generally being stronger than from those more distantly related (Snyder 1967, Stenzler 

and Atema 1977, Brown et al. 2003, Vilhunen and Hirvonen 2003), though the nature of the 

relationship between phylogenetic distance and response has only been investigated for the 
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tadpole Hyla versicolor (Schoeppner and Relyea 2005). Snyder (1967) proposed that 

responses to alarm cues from heterospecific species sharing a common predator would be 

advantageous to a prey species regardless of taxonomic relationships. This theory would 

suggest that the effect of phylogenetic relatedness might be modified via the effects of 

sympatry or allopatry. There have been several studies which suggest that sympatry may 

modify responses to alarm cues from heterospecific species, however, these studies either 

used wild caught individuals and so could not rule out the effects of experience (Stenzler and 

Atema 1977, Chivers et al. 1997, Rochette and Dill 2000, Sullivan et al. 2003, Hazlett and 

McLay 2005) or used too few species to investigate any interaction with the effects of 

phylogenetic relatedness (Laforsch et al. 2006). 

Aquatic Gastropods as prey 

Aquatic gastropods have limited mobility relative to many of the predatory species they 

encounter; as such it might be predicted that they rely primarily on chemical cues to 

give early warnings in their assessment of predation risk. Aquatic gastropods have good 

chemosensory ability (Croll 1983), and have been shown to respond to a variety of . 
predator-related chemosensory cues including conspecific and heterospecific alarm cues 

(Snyder 1967, Stenzler and Atema 1977) as well as showing differential responses to 

alternate predation threats both related to the type (Snyder 1967, Turner et al. 1999, 

Turner et al. 2000, Hoverman et al. 2005) and proximity (Turner and Montgomery 

2003) of predators. Learning through cue association has also been shown to influence 

the degree of response to predator cues shown by aquatic gastropods (Rochette et al. 

1998, Dalesman et al. 2006, Turner et al. 2006), and morphological responses have been 

demonstrated to be plastic (Trussell2000a, Rundle and Bronmark 2001 , Turner and 

Montgomery 2003, Cotton et al. 2004); the degree of such responses may also vary with 
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resource availability such as food (Wojdak and Luttbeg 2005) or calcium concentration 

(Rundle et al. 2004). 

The freshwater gastropod, the great pond snail, Lymnaea stagna/is (Gastropoda: 

Basommatophora) was used as a model prey organism in this study to investigate the 

mechanisms controlling anti-predator behaviour. This species was chosen as a model as 

it is known to respond both behaviourally and morphologically to predator cues (Snyder 

1967, Rigby and Jokela 2000, Rundle and Bronmark 2001, Rundle et al. 2004), and 

although morphological responses are known to be induced by exposure to predator 

cues there is very little known about the way in which behavioural responses are 

controlled, other than they may be reduced when morphological defences increase 

(Rundle and Bronmark 2001 , Rundle et al. 2004). It is relatively easy to obtain adult L. 

stagna/is from a variety of locations which differ in the predator regime they 

experience, and they may be reared through several generations in controlled laboratory 

conditions, producing a large number of offspring (see below). This ability to laboratory 

rear experimental animals meant that it was possible to explore the mechanisms 

controlling the behavioural responses seen, both in terms of the \nnate responses, and 

also how cue association learning or induced behaviours can alter these innate 

responses. In the following chapters I use L. stagna/is to address the various control 

mechanisms for anti-predator behaviour, discuss the implications of these mechanisms 

in terms of ecology in the aquatic environment, and how they could affect adaptation to 

environmental changes. 
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Study Species 

The Prey: The great pond snail, Lymnaea stagna/is (L.) 

Figure 1.1 A laboratory reared adult great pond snail, Lymnaea stagna/is. 

Lymnaea stagna/is is a common freshwater gastropod, found in drainage ditches, 

canals, lakes and slow flowing rivers throughout England (Kemey 1999). As a 

pulmonate this species is 'air breathing' , moving to the water surface to take air into the 

mantle cavity. Oxygen can also be absorbed across the cuticular membrane, particularly 

via the triangular tentacles which have a large number of blood veins to absorb oxygen. 

Being air breathing means that they are able to easily move above the water surface, but 

do risk desiccation after prolonged periods of exposure. Lymnaea stagna/is eyes are 

well adapted for a semi-aquatic lifestyle and can see equally well above and below 

water (Gal et al. 2004). 

Ly mnaea stagna/is has an average life span of around 2 years (McDonald 1969, Dillon 

2000), unlike many of the freshwater pulmonates that are semelparous and only live 

through a single breeding season (Reavell 1980). Adults are simultaneous 

hermaphrodites, and normally mature at around 3 months old at temperatures of 15-
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20°C, reaching 25-55mm spire height at maturity. Egg masses contain 50-120 eggs 

(Nichols et al. 1971 ), and a single snail can lay one egg string every 2-4 days when 

reproductively active (Noland and Carriker 1946, Brown 1979). Under natural 

conditions breeding occurs between April and October, during which time snails are 

active, but during winter months they bury in the muddy bottoms and go into a period of 

torpor (Boycott 1936). In laboratory conditions (12:12light:dark cycle), however, L. 

stagna/is will produce eggs all year round (McDonald 1969). Juvenile snails hatch out 

at about 1.3mm long (Noland and Carriker 1946, Dillon 2000), and growth of L. 

stagna/is occurs between 11 °C and 28.2°C, with the lowest mortality occurring between 

15.7°C and 20.1 °C (Vaughn 1953). The optimum constant temperature for hatching 

eggs and growth of young L. stagna/is was found to be 20°C (Vaughn 1944, cited in: 

McDonald 1969). 

Abiotic conditions can affect the growth and survival of L. stagna/is. Calcium is 

commonly thought to be one of the most important environmental requirements for L. 

stagna/is, which is classified amongst ' hard water' species of freshwater gastropods 

(Macan 1977). The distribution of L. stagna/is was found to relate to calcium 

availability, it is not found in less than 20mg/l (Boycott 1936), and orientates towards 

calcium rich environments in a choice chamber (Piggott and Dussart 1995). Lymnaea 

stagna/is tends to be more reliant on environmental calcium than other species such as 

Radix balthica, a soft water species, which may acquire the majority of its calcium 

requirements from food sources rather than environmental (i.e. in dilution in the water) 

calcium (Piggott and Dussart 1995). In soft water, towards the lower end of its 

environmental requirements, it is likely that L. stagna/is is physiologically stressed 

(Piggott and Dussart 1995). Although it may persist under such conditions, growth and 

reproductive output may be diminished. Temperature can also impact on the survival 
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and fecundity of L. stagna/is (Dillon 2000), high temperatures (i.e. >30°C) result in 

mortality, as does freezing, though there may be some local adaptation; populations 

from small water bodies that can experience higher summer temperatures are better at 

coping with increased temperature regime in the laboratory (Brown 1979, Janse et al. 

1988). In general, temperatures up to 20°C increase the growth rate and reproductive 

output in L. stagna/is, at greater temperatures both growth and reproduction start to 

decrease (Brown 1979). 

There is little evidence for competition between freshwater gastropod species 

(Bronrnark et al. 1991 ), with abiotic factors, food availability and predator presence 

considered to be the main limiting factors on distribution and abundance (Boycott 1936, 

McDonald 1969, Bronmark 1988, Dillon 2000). Density of gastropods is positively 

related to the abundance and diversity of macrophytes (Bronmark 1988), though this 

may be related to substrate availability as well as food source. The natural diet of L. 

stagna/is includes diatoms and detritus (Reavell 1980) as well as encrusting algae and 

macrophytes, and on occasion has been found to include carrion (McDonald 1969). 

Despite this apparently varied diet, L. stagna/is can be raised successfully through to 20 

generations in the laboratory on lettuce alone (McDonald 1969). 

Freshwater aquatic pulmonates have a large number of potential predators; birds and 

mammals will consume gastropods at or near the surface (Boycott 1936, McDonald 

1969), but they are also consumed by a large number of other aquatic organisms 

including Osteichthyes, Coleoptera, Hirudinea , Hemiptera, Trichopteran larvae and 

Dipteran larvae (Hyman 1967, McDonald 1969, Gilinsky 1984, Bronmark 1988). In the 

aquatic environment the ability to detect potential predators via vision is diminished, so 

many species use chemosensory signals to detect predation threat (Dodson et al. 1994). 
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Lymnaea stagna/is has good chemosensory ability (McDonald 1969, Croll 1983) and, as 

such, it is thought that it will rely on this to detect aquatic predators. They can use both 

behavioural and morphological defences to avoid predation (Rundle and Bronmark 

2001 , Chapter 2: Dalesman et al. 2006), though the defence method used will vary 

depending on the nature of the threat. In the field morphology may differ significantly 

between populations of L. stagna/is, a difference which disappears under laboratory 

conditions (Arthur 1982), indicating that differences between populations are due to 

induced changes in growth (Rundle et al. 2004). In aquatic gastropods predator induced 

crawl out response may result in high mortality due to desiccation (Turner et al. 2006), 

and morphological defences can also be costly in terms of growth reduction (DeWitt 

1998). 

Tile Predator: tench, Tinea tinea (L.) 

Figure 1.2: A tench, Tinea tilrca. 
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Tench, Tinea tinea, is a temperate Cyprinid freshwater fish, commonly found in slow­

flowing and stagnant water bodies (Fitter and Manuel 1986). They are active from 

spring to autumn, breeding between May and July in the U.K. (Maitland and Campbell 

1992), and during the winter they bury into the mud in the bottom of rivers and lakes, 

remaining inactive until spring (Altindag et al. I998). Tench are omnivorous, when 

hunting they are benthic predators feeding on invertebrates and have barbels present on 

the underside oftheir jaw to assist with finding prey (Fitter and Manuei I986). Tench 

posses pharyngeal teeth, adapted for consuming hard bodied organisms (Weatherley 

1959). Gut content analysis of wild caught tench showed that molluscs were not eaten 

until individuals reached 6.I-8cm, and the number eaten then steadily increased with 

fish size (Weatherley 1959). For fish in the I1.7-20.2 cm range, pulmonate molluscs 

were found in the majority of stomach contents analysed and therefore were thought to 

be the preferred food source when available. Evidence of the impact of tench on benthic 

invertebrate populations suggest that they can significantly reduce the number of 

molluscs in an area, but have no significant effect on the non-molluscan invertebrates 

(Bronmark 1988, 1994, Beklioglu and Moss 1998). This molluscivorous diet made them 

an ideal species to utilise as a predatory threat for L. stagna/is as they will feed readily 

on this species, and may severely impact on the snail population as they overlap in their 

distributions. I predicted that L. stagna/is would have adapted to respond to reduce the 

impact of tench predation in their life history, morphology and behaviour. 

In the cue production I 0± I mm fish were used to provide predator cues. This size of fish 

feed readily on molluscs (Weatherley 1959), and has a gape size that will allow them to 

consume the 6mm snails utilised for the behavioural trials (Osenberg and Mittelbach 

1989, Shelton et al. 1995). Three fish were placed in 4 1 of water for an hour. This 
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length of time was chosen as preliminary trials indicated that there was no effect of cue 

production time on crawl-out behaviour between 5 minutes and 24 hours (Appendix 1). 

Field Sites 

Overview 

The field sites used to source gastropod populations for rearing in the laboratory were 

Exeter canal, Exeter, U.K. (50.69N 3.50W), seven canals/ditches on the Somerset 

levels, an extensive wet meadow system in the Southwest U.K. (grid refernces in Table 

1.1), Clyst St Mary (50.71N 3.46W) where Galba truncatula were collected and 

Bodmin Moor (50.56N 4.67W) where Omphiscola glabra were collected. The Exeter 

canal population was used for the first study to investigate the effects oflearning on 

anti-predator behaviour (Chapter 2: Dalesman et al. 2006). However this field site did 

not allow the environmental comparisons between populations required for the rest of 

the studies presented in this thesis, and so was not used for further experiments. For this 

reason the abiotic environmental data collected for the sites on the Somerset levels were 

not collected for the Exeter canal site. Exeter canal is very similar in size to South 

Drain, and contained a similar assemblage of gastropod species (pers. ohs.) as well as 

predatory fish (including tench). A comparison of the crawl-out behavioural response to 

tench and conspecific alarm cues between the Exeter canal population (Chapter 2: 

Dalesman et al. 2006) and the South Drain population (Chapter 3: Dalesman et al. 

2007b) indicates that these populations experiencing similar communities of predators 

and heterospecific gastropods behave in a very similar way in response to tench 

predation cues. 
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Gastropod community 

The gastropod species present at the seven different sites on the Somerset levels were 

identified by qualitative sampling between March 2005 and September 2006 (Table 

1.1 ). Presence/abundance data utilised to test the relationship between assemblage and 

environment were collected using semi-quantitative sampling (along with abiotic 

environmental data) on four separate dates during the field season in 2006 (7th April, 

22"d May, 181
h July and 21st September), with the exception of North Moor small drain, 

for which species abundance data were only collected on the first three sampling trips. 

Gastropod presence and abundance was assessed by sampling a lOm stretch ofbank by 

vigorous sweep netting for 10 minutes. The efficacy of this method was confirmed by 

continuing to net for a further 5 minutes at the same location during the first sampling 

session, which yielded very few further individuals and no new species. All material 

collected was sorted in the field and any gastropods present were identified and counted. 

Where identification could not be made accurately in the field snails were brought back 

to the laboratory for dissection to confirm the species. The species present at each site 

differed consistently over the sampling period (Table 1.1 ). 
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Table 1.1 Location of sites used in this study on the Somerset Levels and gastropod 
species present at each site*. 

Site Location Predatory Species present 
fish 

South Drain 51.18N Yes L.s., R.a., R.b., P.a., A.f, A. v., P.c. , 
2.88W P.ca., Vv., B.t. 

Sowy River 51.07N Yes L.s., R.a., R.b., P.a., A.f, A.v., P.ca. , 
2.88W Vv., B.t. 

N. Moor Main 51.07N Yes L.s., L.f, R.b. , P .f, A. v., P.c., P.ca., 
Drain 2.96W B.t. 
Chilton 51.19N No L.s. , L.f, R.b., A. v., P.c., P.p., P. ca., 

2.88W B.t. 
Little Hook 51.06N No L.s., L.f, R.b., A.v., P.c., P.p ., P.ca., 

2.87W B.t. 
Wistaria 51.07N No L.s., L.f, R.b., A. v., P.c., P.ca., B.t. 

2.98W 
N. Moor small 51.08N No L.s., L.f, R.b., A.v., P.c., P.ca. , B.t. 

2.96W 
* Spectes code: L.s. (Lymnaea stagna/is), L.f (Lymnaeafusca), R.a. (Radix 

auricularia), R.b. (Radix balthica), P .f (Physafontinalis), P.a. (Physella acuta), A.f 

(Ancylusjluviatilis), A.v. (Anisus vortex), P.c. (Planorbarius corneus), P.p. (Planorbis 

planorbis), P.ca. (Planorbis carinatus), V v. (Vivipar.us viviparus), B.t. (Bithynia 

tentaculata). 

N .B. Omphiscola glabra and Galba truncatula, used to provide cues in Chapter 6 were 

never found at the sampling sites listed and were collected at Bodmin Moor (50.56N 

4.67W) and Clyst St. Mary (50.71N 3.46W) respectively. 

Fish community 

The presence of predatory fish, including tench, at three of the sites (South Drain, Sowy 

River and North Moor Main Drain) was confirmed using data from the Taunton 

Angling Association (pers. corn.). Electro-fishing using 240vDV equipment (Severnside 

Industrial, U.K.) was carried out on 14th June 2006 to confirm the absence of predatory 

fish in the small ditches (Chilton, Little Hook, Wistaria and North Moor small drain). 

Permission for electro-fishing was obtained from the Environment Agency (licence 

numbers: B/NW/090506/E20 to BINW/090506/E23, B/NW/180506/Rl) and the 

landowners before sampling was carried out. Tench actively feed during June (Billard 
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and Monod 1997), and also reproduce at this time of year (Breder and Rosen 1966), so 

there is potential for both adult and larval fish to be present. A minimum of a 20m 

stretch of each site was sampled for 30 minutes. The only fish species present at all four 

sites was the nine spined stickleback (Pungitius pungitius L.). This species eats small 

planktonic and benthic invertebrates, but has not been found to feed on molluscs (Scott 

and Crossman 1973, Maksimenkov and Tokranov 1995, Thiel et al. 1996). 

Environmental data 

Environmental data from the Somerset levels were collected from each of the sites on 

four dates during the field season in 2006 (7th April, 22nd May, 18th July and 21st 

September), with the exception of North moor small drain, for which environmental 

data were only collected on the first three sampling trips. Width and depth were 

estimated at each site (mean of 5 measurements). Temperature (°C), conductivity (J.LS 

adjusted for temperature), salinity (p.p.t.) and dissolved 0 2 (mg/1 and % saturation) 

were measured on site using Solomat 520 C probe (Zellweger Analytics, Poole, U.K.). 

Two water samples were taken from each site in acid washed polypropylene bottles for 

analysis of nutrient and metal ions. pH of each water sample was measured in the 

laboratory using a HI 9023 microcomputer (Hanna Instruments Ltd., U.K.). Nitric acid 

(at 1% concentration) was then added to the water samples taken to assess metal ion 

content to ensure the metal ions remained in solution, and samples were frozen on the 

day of collection until they could be analysed. Nitrate and phosphate concentration 

(mgll) were analysed using a Dionex autoanalyser (Camberley, U.K.), [Ca2+] and 

[Mg2+] using atomic absorption spectroscopy (Varian SpectrAA SOB: Varian Inc. USA). 

The mean, minimum and maximum values for all the environmental data are presented 

separately for sites containing predatory fish and sites lacking predatory fish (Table 

1.2). 
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Table 1.2 Environmental Data: maximum, mean and minimum values for 
environmental variables measured. Data shown are separated between sites 
containing predatory fish (n = 3) and sites not containing predatory fish (n = 4). 

Variable measured Predatory fish present No predatory fish 

maximum mean minimum maximum mean minimum 

[Mg2+] mgll 11.80 6.77 2.90 27.20 9.89 3.20 

[Ca2+] mgll 147.6 76.7 35.4 184.6 86.7 23.7 

Nitrate mgll 10.83 4.13 0.14 1038.60 135.20 0.10 

Phosphate mgll 0.764 0.296 0.032 0.864 0.143 <0.001 

Width (m) 22.00 14.70 6.00 2.90 2.10 1.80 

Depth (cm) 130.00 103.33 70.00 70.00 56.67 45.00 

pH 8.80 7.90 7.45 8.20 7.45 7.10 

%02 101.30 49.59 2.20 58.80 30.08 3.90 

0 2 mgll 11.14 5.02 0.19 6.30 3.08 0.380 

uS (adj. for temp.) 849.0 704.4 564.0 1170.0 828.8 650.0 

Temperature (°C) 25.70 16.74 10.10 27.40 15.08 7.20 

Salinity p.p.t. 0.410 0.352 0.300 0.600 0.410 0.300 

Assemblage analysis 

Interrelationships between sites in terms of their snail assemblages and physiochemistry 

were explored using multivariate data analysis performed using PRIMER v.5 

(PRIMER-E Ltd. Plymouth Marine Laboratory. U.K.). Similarities of the gastropod 

assemblage between sites were analysed using fish (presence/absence), date of 

collection and field site as factors. Due to the large amount of variability in abundance 

data (from 1 to >500 individuals) data were fourth root transformed, the most robust 

transformation found to downweight the effects of very abundant species (Clarke and 

Warwick 2001 ). A Bray-Curtis (Bray and Curtis 1957) similarity matrix (on percentage 
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differences) was calculated on the abundance/presence data. Multi-dimensional scaling 

(MDS: Kruskal1964, Clarke and Warwick 2001) was used to calculate the relative 

position of each data point for visual interpretation of the data. Dispersion was 

calculated using multivariate dispersion indices (MVDISP: Warwick and Clarke 1993) 

to give a comparison of how dispersed the data are between site with and without 

predatory fish. Analysis of similarities (ANOSIM: Clarke and Green 1988) was used to 

test for similarities between assemblages based on the factors date of collection, site of 

collection and presence/absence of predatory fish. A Kruskal stress value of 0.17 

(Kruskal 1964) was calculated for the positioning of these points by MDS, suggesting 

that the relative positioning of the points calculated can be viewed with confidence. The 

gastropod assemblage differed significantly between sites (Figure 1: ANOSIM: R = 

0.404, P = 0.001: Appendix 2: Table A2.1), and also differed significantly depending on 

whether predatory fish are present at the site (Figure 1.3: ANOSIM: R = 0.185, P = 

0.003), but there was no signifcant effect of sampling date. The dispersion ofthe data 

was greater at sites without predatory fish (1.128) than at sites containing predatory fish 

(0.797: Figure 1.3). 

The greater dispersion of assemblage at the sites lacking predatory fish indicates that 

these sites differ to a greater extent in their environment both between sites and also 

temporally (Figure 1.3). This is particularly evident at the Chilton and North Moor 

small drain sites, both of which have a greater within site dispersion in their 

assemblages than is found between the sites containing predatory fish. This may be due 

to high disturbance levels at these sites as small drains are cleared sporadically 

removing all vegetation and deepening the water channel, whereas the larger sites do 

not undergo such broad scale disturbance. 
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The effect of environmental variables on gastropod assemblages was also calculated. 

Variables measured for comparison were: [Mg2+], [Ca2+], nitrate, phosphate, pH, Oz 

mgll, J.!S (adj . for temperature), temperature C0C), p.p.t. , channel width and channel 

depth. Spearman Rank Correlation was used to compare biotic (assemblage) and 

environmental variables (BIO-ENV: Clarke and Ainsworth 1993). Many of the 

environmental variables were highly intercorrelated, apart from nitrate concentration 

which was not correlated with any other environmental variables (Appendix 2: Table 

A2.2). Magnesium concentration (mgll) had the highest correlative value with 

assemblage, with pH explaining the next greatest degree of variation (Appendix 2: 

Table A2.3). Temperature also explained about a quarter of the variation between 

assemblages, though this was discounted from the final combination due to strong 

intercorrelation between temperature and Magnesium concentration (Appendix 2: Table 

A2.2). Of the environmental variables, [Mi+l and pH provided the best combination of 

variables, not confounded by intercorrelations, to explain the variation between 

assemblages (t = 2.555, P = 0.017, n = 25). 
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Figure 1.3: Multi-dimensional scaling (MDS) of assemblage data (stress value= 

0.17). Sites are shown as either fish (black symbols) or no fish (red symbols), with 

the same shaped symbol indicating that two sites are found in close geographic 

proximity (i.e. the two sites labelled with squares, South Drain and Chilton, are in 

closer proximity to one another that any other sites) with the exception of N. Moor 

small drain which is as close to North Moor Main Drain as Wistaria and has no 

predatory fish. Clustering of fish sites (solid line) and no-fish sites (dashed line) is 

indicated. 
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The variation in gastropod assemblages between sites containing predatory fish and 

those not containing predatory fish may be due to overall differences in other 

environmental variables as well as the direct effects of fish predation. Fish predation has 

been found to have a significant influence on the abundance of gastropods, with tench 

predation dramatically reducing the abundance of pu1monates (Bronmark 1988, 1994 ). 

However abiotic factors can also influence the presence of gastropods, indeed the 

calcium concentration is thought to be a major factor dictating the distribution of 

aquatic gastropods, with calciphiles such as Lymnaea stagna/is absent where [Ca2l 

drops below 20 mgr1 (Boycott 1936). The general cleanliness of the water, such as the 

extent of eutrophication can also significantly affect gastropod distributions (Boycott 

1936). In this study [Mg2+] and pH were found to be good indicators of assemblage, 

both these variables showed strong intercorrelations with other environmental variables 

(Appendix 2: Table A2.2). The pH was higher at the sites containing predatory fish (t = 

3.54 P = 0.002 DF = 20), but the [Mg2+] didn' t differ significantly between sites with 

and without predatory fish. This suggests that [Mg2l is acting independently on the 

gastropod assemblage, potentially as a general indicator of water hardness (Baird 1995). 

The lack of effect of environmental calcium may be due to the fact that calcium has a 

limiting effect on calciphilic gastropod assemblage below 20mg/l (Boycott 1936). From 

the field data the minimum calcium concentration found at any sites in this study was 

23mg/l, with fluctuations to considerably higher levels during most of the year (Table 

1.2). Whilst levels this low may affect shell growth (Rundle et al. 2004), it is not going 

to affect the assemblage found. Indeed the ubiquitous presence of hard water species 

such as Lymnaea stagna/is, Bithynia tentaculata and Anisus vortex (Macan 1977) at all 

the sites acts as an indicator that calcium is not limiting on the Somerset levels. 
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AuUrnnalllusbandry 

A full list of the gastropod species used during this study and the locations where they 

were caught are shown in this chapter (Table 1.1) and Chapter 6 (Table 6.1 ). Husbandry 

techniques were similar in the majority of cases, and variations in husbandry techniques 

are explained below. Wild collected adults of each species used (except Ga/ba 

truncatula, see below) were collected by sweep netting in the macrophyte vegetation at 

the collection sites then returned to the laboratory in containers with damp vegetation to 

retain humidity. Galba truncatula was collected by picking individual adults by hand 

from the mud and vegetation surface around indents caused by cow trampling. Adults 

were retained in single species groups in plastic aquaria in 4 I of aerated artificial pond 

water (ASTM 1980) as tap water may contain copper ions which may be toxic to L. 

stagna/is, even when strongly diluted (Noland and Carriker 1946). Aeration was used as 

it has been found to increase egg laying rate (Brown 1979), so potentially decreases 

physiological stress. Snails were held at 15°C in a 12:12 light: dark cycle, except G. 

truncatula and L. stagna/is for the work presented in chapters 4 & 5 (see below). It was 

found that G. truncatula did not survive or reproduce well at 15°C, and so this species 

was held in a separate laboratory at 20°C where growth, survival and reproduction were 

greatly improved; all other variables were kept the same as the other species held at 

15°C. Lymnaea stagna/is was maintained at 15°C to produce Fl generation juveniles to 

carry out behavioural trials for chapters 2, 3 and 6, however due to the need to reduce 

gene~ation time for selection experiments they were maintained at 20°C for the studies 

in chapters 4 & 5. 

The density at which adults were held in aquaria depended on the species as some 

gastropod species do very poorly at high density, with reduced growth, survival and 
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reproduction (Noland and Caniker 1946, McDonald 1969). Fast growing species that 

may go through more than one generation in a season, such as Radix balthica, Lymnaea 

Jus ea, Omphiscola g labra , Bithynia tentaculata, Planorbis planorbis and the physids 

tended to survive well and reproduce quickly at high density, and as many as fifty adult 

snails may be held in a 4 1 tank. Slower growing species which only go through one 

generation a year under natural conditions, such as Radix auricularia, Planorbarius 

corneus and Lymnaea stagnalis survived and reproduced better at lower densities of 

eight to ten adults per 4 1 of water (McDonald 1969, Brown 1979, Janse et al. 1988). 

Adults lay egg strings, which vary in size depending on the species used, the exact rate 

ofproduction was only measured qualitatively inL. stagna/is using casual observations. 

Following egg laying, adults were transferred to a new tank. This reduced the stress on 

juvenile snails by reducing adult waste products, so improving water quality (McDonald 

1969) and reduced juvenile mortality. It also reduced the potential for the transfer of 

parasites from adults to hatchlings, which was particularly important in the case of 

Lymnaea stagna/is as parasitic infection has been shown to affect the anti-predator 

behaviour in another pulmonate snail, Physa integra (Bernot 2003). Other techniques 

used to reduce the possibility of parasite transmission included sterilising cleaning nets 

between cleaning each tank, and using separate nets for laboratory reared and wild 

caught snails. 

All snails used for both behavioural trials and alarm cue production were at least F 1 

generation laboratory reared individuals, and on occasion F2 or F3 generation. This 

demand for laboratory-reared snails meant that conditions had to be maintained in such 

a way as to maximise reproductive potential. As well as the issues of density and water 

cleanliness, calcium and food availability were also considered. Egg production in 

Radix balthica is promoted by feeding spinach (Dillon 2000), possibly due to the 
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relatively high calcium content of this leaf, so both iceburg lettuce and spinach were fed 

to the laboratory populations. Food was fed ad libitum as over-crowding on food has 

been found to reduce growth (McDonald 1969). The selection for spinach versus lettuce 

differed between snail species and also between juveniles and adults, though both were 

eaten to some extent in all cases. Though a pattern was not noted in the consumption it 

has been previously found that calciphiles such as L. stagna/is rely more heavily on 

environmental calcium, whereas soft water species such as Radix balthica gain a large 

proportion of their calcium from food sources (Piggott and Dussart 1995), so it is 

possible that this factor alters the food preferences of different species. 

Calcium can affect both the adult growth rate (energy budget) and also egg production. 

For example, egg production by the pulmonate snail, Biomphalaria glabrata, rose with 

environmental calcium availability from practically no egg production in [Ca2+] Omgll, 

rising steadily to a maximum at 80 mgll (Thomas et al. 1974). Although hard water 

species such as L. stagna/is may be found in environments with [Ca2+] levels above 

20mgll (Boycott 1936), availability has also been shown to affect the growth potential 

of L. stagna/is (Rundle et al. 2004), so it was provided at a level of90mgll in the water 

in both holding tanks and during behavioural trials. This level is about half the 

maximum concentration experienced by the snail populations on the Somerset levels 

(184.6 mgll), but considerably higher than the minimum experienced (23.7 mgll) and is 

close to the average [Ca2+] they experience of 75-90 mgll (Table 1.2). 
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Thesis Aims 

In this thesis I investigate the mechanisms that govern the way an animal responds 

behaviourally to the threat of predation. Many studies demonstrate that animals from 

different populations differ in the way they respond to predation, or differ in 

morphology between populations which is presumed in part to be due to predator 

presence. There is, however, still relatively little known about whether these responses 

have a fixed genetic basis or whether the animal has evolved induced defences that 

respond to current environmental conditions. I used the gastropod Lymnaea stagna/is as 

a model organism to investigate these questions. This is a relatively easy species to 

obtain and rear in the laboratory in large numbers that has a simple set of possible 

behavioural responses to predation cues, allowing relatively complex questions about 

the behavioural mechanisms to be tested in a simple experimental set up. The specific 

questions addressed in this thesis are detailed in the following chapters (2-6) and brief 

outlines are provided below: 

Chapter 2. Here I addressed firstly whether juvenile L. stagna/is demonstrate an innate 

response to cues associated with predation threat and then asked whether recent 

experience of cues associated with a predation event can alter this innate response. An 

actively foraging predator was predicted to represent more of a risk to L. stagna/is than 

one not foraging, so it was predicted that the innate response to predator cues would be 

intensified following experience of predation cues. 

Chapter 3. In this chapter I asked whether the innate responses found in Chapter 2 

varies between populations depending on the local predator regime. I considered it 

necessary to account for population variation in this study as different populations are 
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exposed to different predators and so may exhibit local adaptation to their environment, 

therefore, results obtained from one population could not be generalised across the 

species as a whole. An investigation of innate differences between populations would 

also give insight into whether local adaptation had occurred. 

Chapter 4. The general aim of this chapter was to investigate how rapidly a population 

might respond to altering predator regimes. I firstly address whether the population 

differences found in chapter 3 were due to local genetic adaptation for a fixed innate 

response or transgenerational induction. Secondly, I tested how rapidly the differences 

seen between wild caught populations in chapter 3 could be selected for. 

Chapter 5. In this chapter I ask whether plasticity in behaviour occurred alongside fixed 

genetic responses. I also investigated whether induced responses were inherited along 

with the mean of an innate behaviour, or if they act independently, and discuss the 

potential implications for species invasions or colonisation on recognition of a predator. 

Chapter 6. Here I investigated the relationship between Lymnaea stagna/is and other 

gastropod prey, addressing the questions of whether L. stagna/is is able to use alarm 

cues from prey guild members to assess predation risk, whether the recognition of alarm 

cues has a phylogenetic and ecological basis, and if there are potential implications of 

local adaptation. 
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CHAPTER2 

Cue association and anti-predator behaviour in a pulmonate snail, 

Lymnaea stagnalis. 

Published as: 

Dalesman, S., S. D. Rundle, R. A. Coleman, and P.A. Cotton. 2006. Cue association 
and anti-predator behaviour in a pulmonate snail, Lymnaea stagna/is. Animal Behaviour 
71 :789-797. 

• 
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Abstract 

Associative learning may help to offset costs of unnecessary escape behaviour by 

providing accurate information about the current risk to potential prey. Here I 

demonstrate cue association learning in nai"ve gastropods. Juvenile laboratory reared 

great pond snails, Lymnaea stagna/is (L.) showed an innate ability to respond with anti­

predator behaviour to odour from a natural predator, tench, Tinea tinea (L.). The main 

anti-predator behaviour of L. stagna/is to a high perceived predation risk from T tinea 

was to crawl above the water line (crawl-out response). The crawl-out response of snails 

was significantly increased in the presence of fish cues, but maximum response 

occurred when alarm cues (crushed conspecifics) were also present. However, a second 

experiment demonstrated that, following pre-exposure to tench odour and alarm cues, 

responses to tench cue alone were similar to those seen in response to tench plus alarm 

cues presented together during the first experiment. Hence, L. stagna/is are apparently 

capable of relating potential predation risk to recent experience. A final experiment 

showed that this raised level of avoidance persisted for at least eight days, suggesting 

that this behaviour may be retained over time scales relevant to predation risk in the 

natural environment. The ability of organisms to modify anti-predator behaviour based 

on recent experience, as found in L. stagna/is, would allow costs associated with 

unnecessary response to be reduced whilst effectively avoiding active predators . 

• 
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Introduction 

Failure to respond to a potential predator may be fatal , however unnecessary escape 

behaviour may have direct energetic costs as well as costs associated with reduced 

opportunity to feed or reproduce (Lima and Dill 1990). Sensory information obtained 

about a predator may assist an organism in assessing the potential risk accurately and 

therefore reduce these costs (Lima and Dill 1990, Chivers and Smith 1998). A range of 

sensory inputs can be used in predator detection; however, where other cues are 

impaired by environmental or physiological constraints, for instance visual cues in an 

aquatic system, chemical cues may provide an alternative (Dodson et al. 1994). Predator 

released kairomones (Dicke and Sabelis 1988) can give information about the presence, 

proximity, physiological state and diet of potential predators (Kats and Dill 1998). 

Injury released chemical cues from conspecifics frequently induce an anti-predator 

response in aquatic taxa (Wisenden 2000). However, although a good indication of 

potential threat in isolation, these types of cue may not provide accurate information 

about the nature of current risks, and so may elicit inappropriate anti-predator responses. 

Several studies have demonstrated that combining alarm cues produced by 

injured conspecifics with predator kairomones elicits the greatest anti-predator response 

in organisms, suggesting that this represents the greatest perceived risk. This 

combination of cues either takes the form of the predator feeding on conspecifics 

(Crowl and Covich 1990, Loose and Dawidowicz 1994, Sib and McCarthy 2002, Turner 

and Montgomery 2003, Jacobsen and Stabell2004) or predator cues paired with crushed 

conspecific, thought to simulate a predation event (Turner 1997, DeWitt et al. 1999, 

Rundle and Bronmark 2001 , Cotton et al. 2004). Some prey organisms that respond to 

predator cues paired with conspecific cues have been found to lack response to predator 
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cues alone (Turner 1996, Jacobsen and Stabell2004). An important question is whether 

this is due to either an inability to recognise the predator, or due to a lower perceived 

risk from a non-feeding predator. The ability of gastropods to differentiate between the 

types of predator present from cues paired with injured conspecific suggests that the 

latter may be the case in some predator-prey systems. For instance, the freshwater snails 

Physella gyrina and P. integra are able to differentiate between cues from different 

predators, crayfish, Orconectus rusticus and pumpkinseed fish, Lepomis gibbosus, when 

presented with crushed conspecific snail, and respond with appropriate anti-predator 

behaviour (Turner et al. 1999, Bernot and Turner 2001). 

Experience of predation cues has been demonstrated to be an important element 

in the development of anti-predator behaviour in a wide range of vertebrates as well as 

invertebrates. Learning from prior experience of predation has been found to be integral 

to most fish species' ability to recognise predators (Brown 2003, Kelley and Magurran 

2003). For instance, fathead minnows, Pimephales promales, learn to recognise a 

potential predator, northern pike, Esox lucius, from chemical cues produced by pike 

feeding on minnows (Mirza and Chivers 2001 b). Learning about predators through diet 

information, or pairing of predator cues with damaged conspecifics, has also been noted 

in several invertebrates including: damselflies, Enallagma spp. (Chivers et al. 1996), 

crayfish (Hazlett et al. 2002), whelks, Buccinum undatum (Rochette et al. 1998) and an 

aquatic flatworm, Dugesia dorotocephala (Wisenden and Millard 2001). 1n these cases 

it was unclear as to whether the prey species were learning to identify a potential 

predator p er se, or whether the association between cues was providing information 

about the perceived risk from the predator. 
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The great pond snail, Lymnaea stagna/is (L.), is slow moving relative to many 

molluscivorous predators, and lives in an aquatic environment where visual information 

may often be hindered by turbidity or dense vegetation. Prior studies have shown that L. 

stagna/is responds to chemical cues from potential predation risk by either sheltering in 

crevices or crawling above the water line (Snyder 1967, Rundle and Bronmark 2001 ). 

As such it is predicted that L. stagna/is will use chemical cues as an important source of 

information about predators (Wisenden 2000), which makes it an ideal model organism 

to study the way in which chemical cues can be used to assess predation risk. The aims 

of this study were to use naive lab-reared snails to: (1) determine the extent of innate 

responses to predator cues, (2) assess the ability of L. stagna/is to form cue associations, 

(3) determine the effect of these associations on behavioural responses, and (4) 

determine the longevity of these associations. I predicted that: (1) L. stagna/is would 

respond to higher risk by displaying a stronger anti-predator response, (2) the perceived 

risk from predator cues would be enhanced by cue association with a simulated 

predation event, and (3) perceived risk would diminish over time since exposure to a 

simulated predation event. 

Methods 

Study Organisms 

Adult L. stagna/is were collected from Exeter canal, U.K. (50° 69' N 03° 50' W) in 

April 2004. In the laboratory adults were kept in 6 1 Savic plastic aquaria (Aquatics 

online, U.K.) in 41 of aerated artificial pond water (ASTM 1980) with 90mgr1 [Ca2+] 

(Rundle et al. 2004). They were maintained at 15±1 °C under ambient light levels, and 
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fed on Iceberg lettuce. Experimental snails were bred from egg masses laid a minimum 

of two months post collection, to minimise the potential influence of adults experience 

on juvenile development and behaviour. Juvenile snails were then maintained separately 

in the same conditions as the adults. Individuals with a standard spire height of 6±0.5 

mm were used for behavioural experiments. 

Tench, Tinea tinea, were taken from a laboratory stock originally obtained from 

Emperor Tropicals & Water Garden Centre, Plymouth, U.K. They were maintained in 

aerated and filtered water at 15± 1 °C under ambient light levels in 25 I tanks at a 

stocking density of 12 fish per tank (0.006 kgr1
). Gravel substrate and shelters 

positioned in the tank were used to mimic natural conditions. The tench were fed Nutri­

flake (Hozelock Cyprio, U.K.), which contains no mollusc extracts, and hence avoided 

potential dietary cues affecting the trials. No experimental manipulations were carried 

out on these fish and the welfare of the fish was carefully considered throughout. 

Following cessation of the trials the tench were retained as laboratory stock. 

Odour Production 

Predator and alarm cues were produced in the same way in all the experiments. 

T tinea were used to produce predator cue as they are a known natural predator of 

freshwater gastropods (Bronrnark 1994). Predator cue water was produced by placing 

three T tinea (length 1 0± 1 cm) into 4 1 of aerated artificial pond water for 1 hour. 

Alarm cue was produced by mixing three crushed juvenile L. stagna/is (6±0.5 mm) into 

41 of aerated artificial pond water. Predator plus alarm cue was produced by mixing 

three crushed L. stagna/is (6±0.5 mm) into 41 of tench cue water. 
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Behavioural Assay 

Behavioural trials were carried out in the same way for all experiments under 

laboratory conditions analogous to the conditions in which the snails were maintained. 

Behavioural chambers consisted of a of a white plastic dish, 165mm diameter x 60mm 

depth (A.W.Gregory & Co. Ltd., U.K.), with a longitudinally sectioned white PVC pipe, 

36mm long, 30mm diameter, attached open side down to the centre using non-toxic 

sealant to provide a refuge. Juvenile snails were acclimated to behavioural chambers for 

24 hours in 630ml of artificial pond water prior to behavioural assays. 70ml of cue 

water was added to each chamber at the start of the behavioural assay to give a 10% 

fmal concentration of cue water. Preliminary trials using predator cue alone 

demonstrated that this was adequate odour strength to initiate an anti-predator response 

in L. stagna lis. 

The position of each snail within the behavioural chambers was recorded every 5 

minutes for 2 hours foUowing cue addition. Crawl-out behaviour (where the snail 

moved above the waterline) was found to be the main anti-predator response of L. 

stagna/is to the predator, with the refuge not used, hence only results from crawl-out 

behaviour are presented here. Crawl-out behaviour was analysed using two variables: 

the proportion of total time spent crawled out ofthe water; and the latency to crawl-out, 

calculated as the proportion of total time during the trial before crawl-out behaviour was 

observed (Cotton et al. 2004). Proportion of total time spent crawled out was used in 

conjunction with the time at crawl-out as snails returned beneath the water line on 

occasion. The results of a power analysis on our preliminary study indicate that using 20 

or more individuals per treatment gives an 80% or higher probability of detecting an 

effect of treatment. 
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Risk Level and Avoidance Behaviour 

Following acclimation to behavioural chambers, four treatments were used to 

assess the response of L. stagna/is to varying degrees of predation risk: (i) control 

(untreated artificial pond water), (ii) alarm cues alone (crushed conspecifics), (iii) 

predator odour alone and (iv) predator odour plus alarm cues. It was predicted that the 

control would represent the lowest risk level, predator plus alarm cues the highest, with 

predator or alarm cues presented individually being perceived as an intermediate risk. 

Individuals were randomly assigned to a treatment level such that equal numbers of 

snails were exposed to each treatment per trial. Twenty-four snails were used for each 

treatment combination. 

Cue Association 

To assess whether a simulated predation event (predator and alarm cues 

together) increased the perceived risk from a predator, snails were exposed to a 

conditioning treatment where both cues were presented together, followed by exposure 

to predator cues alone during the behavioural assay. This would represent experience of 

a predation event in the environment followed by the predator returning to the 

environment without subsequent predation occurring. 

Juvenile snails were pre-exposed for 48 hours, maintained in 1 1 of water in 1.6 1 

Savic tanks in one of four conditioning treatments: (i) control (untreated artificial pond 

water), (ii) alarm cues alone (crushed conspecifics), (iii) predator odour alone and (iv) 

predator odour plus alarm cues. Cue water was produced as in behavioural assays and 

again added at a concentration of 1 0% by volume. 
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Following pre-exposure individual snails were randomly allocated and 

acclimated to behavioural arenas in control water for 24 hours. Prior to behavioural 

assays, either control water or predator cue was added to the behavioural arena, so that 

for each trial half of the snails that had been conditioned to each treatment were exposed 

to control or predator cue. A total of one hundred and eighty-four snails were used, 

forty-six were exposed to each conditioning treatment, and then half of each group was 

exposed to predator odour during behavioural assays and half to control resulting in a 

total of twenty-three snails for each treatment combination. 

Persistence of Cue Association 

To assess the persistence of cue association, juvenile snails were pre-exposed as 

before for 48 hours in either (i) control (artificial pond water only) or (ii) predator odour 

plus alarm cues. They were then either: (i) acclimated in behavioural arenas for 24 

hours, (ii) placed into control water for 3 days and then acclimated for 24 hours or (iii) 

placed into control water for 7 days then acclimated for 24 hours. This resulted in total 

periods of 1, 4 and 8 days since cue exposure prior to behavioural assay. Snails were 

randomly allocated to a behavioural arena, and exposed to either control or predator 

odour during the behavioural assay. Twenty-four snails were used for each treatment 

combination. 

Data Analysis 

Data were analysed as balanced ANOVAs using GMA V5, except in the case of 

the cue association experiment which was initially analysed using a General Linear 

Model procedure in MINIT AB 13 due to an unbalanced design between data collection 

trials. As no significant effect of trial was found, trial was removed as a factor and 

further analysis was carried out using a balanced ANOVA in GMA V5. All proportion 

41 



data were square-root arcsine transformed prior to analysis (Underwood 1997). Student­

Newman-Keuls tests (SNK) were used for post-hoc comparisons. 

Log likelihood tests (G-tests) were used to assess the number of snails crawling 

out in response to different treatments, data were N+ 1 transformed when zeros were 

present, and adjusted by Williams' correction (Sokal and Rohlf 1995). a was corrected 

using the Bonferroni correction to a' < 0.025 to test cue association and a' < 0.0125 to 

test the persistence of cue association as multiple comparisons were required to analyse 

the data (Sokal and Rohlf 1995). 

Results 

Risk Level and A voidance Behaviour 

The number of L. stagna/is crawling out differed significantly between treatment levels 

(G-test: 0 3 = 66.750, P < 0.001): no snails crawled out in either the control or alarm cue 

treatments; however 15 snails crawled out in response to predator alone, and 21 snails 

crawled out in response to predator plus alarm cues. 

Latency to crawl-out was significantly shorter in response to predator plus alarm 

cues compared to predator cue alone, indicating a more rapid response with increased 

risk (Table 2.1; SNK test: P < 0.05: Fig. 2.1a). The proportion of time spent crawled out 

of the water was significantly greater in response to predator cue paired with alarm cue 

than to predator cue alone (Table 2.1; SNK test: P < 0.05: Fig. 2.1 b). 
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Table 2.1 Latency to crawl-out and proportion of total time spent crawled out in 
response to exposure to tench cues and alarm cues. N = 24 for all treatment 
combinations 

Latency Proportion of time 

Source DF MS F p MS F p 

Trial (Tr) 2 565. 7 1.53 0.225 701.0 2.49 0.089 

Alarm cue (Al) 1 2600.4 6.99 0.010 6511.9 23.17 <0.001 

Tench cue (Te) 1 52921.6 142.16 <0.001 31123.6 110.74 <0.001 

TrxAl 2 647.5 1.74 0.182 127.2 0.45 0.638 

TrxTe 2 565.7 1.52 0.225 701.0 2.49 0.089 

AI xTe 1 2600.4 6.99 0.010 6511.9 23.17 <0.001 

Trx Al x Te 2 647.5 1.74 0.182 127.2 0.45 0.638 

Total 95 

43 



a) 

§ 1.0 -
I 

] 0.8 !-

0 
+-' 

g 0.6 
Q) 

ctS 

r- T 
1 - 0.4 § 

·e 
~ 0.2 
~ 

,... 

T 
!-

1 

0.0 
c A T A&T 

Treatment 

b) 
~ 
0 1.0 t-

"'0 
Q) 

~ 
0.8 § r-

5 
~ 0.6 

.§ 
+-' 

l 
1 

~ 
0 0.4 
s:: 
0 

l 0.2 T 
1 

0.0 
c A T A&T 

Treatment 

Figure 2.1The mean(± S.E.) proportion; (a) latency to crawl-out and (b) time 
spent out of the water by L stagna/is in response to different treatments during 
behavioural assay (duration 2 hours): control (C), alarm cues alone (A), predator 
odour alone (T) and alarm plus predator cues (A&T) 
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Cue Association 

Cue association was found to significantly affect the response of L. stagna/is to 

predator cues (Fig. 2.2). SNK tests (P < 0.05) showed the effect of pre-conditioning to 

predator plus alarm cue significantly decreased the latency to crawl-out compared to 

control or either cue presented alone (Table 2.2: Fig. 2.2a). There was a significant 

effect of trial on latency to crawl-out (Table 2.2). However this was only significant in 

two pair-wise tests between trials so is not considered to have an overall impact on the 

results found. The proportion oftime spent crawled out was significantly greater in 

response to predator cue during behavioural assays when L. stagna/is had been pre­

conditioned to predator paired with alarm cue than when individuals had been pre­

conditioned to control or either cue alone (Fig. 2.2b; Table 2.2; SNK test: P < 0.05). 

There was a significant effect of trial, though this was found to be caused by a change in 

the magnitude of response on only one out of the eight trials on individuals that had 

been pre-conditioned to alarm cues, so is not considered to have an overall effect on the 

results (Table 2.2; SNK test: P < 0.05). 

Overall, significantly more snails crawled out when exposed to predator cue 

during behavioural assays than those exposed to control conditions during behavioural 

assays (G-test: G1 = 30.974, P < 0.001). The number of snails crawling out in both 

control and predator cue during behavioural assays was significantly greater when they 

had been pre-exposed to alarm plus predator cue compared to control or either cue 

presented alone (Control; G-test: G3 = 10.307, P = 0.016: Predator; G-test: G3 = 30.324, 

p < 0.001). 
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Table 2.2 Latency to crawl-out and proportion of total time spent crawled out in 
response to exposure to tench cues following previous exposure to tench and/or 
alarm cues 24 hours prior to behavioural assays. N = 24 for all treatment 
combinations 

Latency Proportion of time 

Source DF MS F p MS F p 

Trial (Tr) 7 1594.82 2.91 0.007 817.16 2.90 0.008 

Pre-exposure to alarm cue 
1 14437.83 26.37 <0.001 12500.61 44.44 <0.001 (PrA) 

Pre-exposure to tench cue 
1 8885.48 16.23 <0.001 11009.90 39.14 <0.001 (PrT) 

Tench cue during behavioural 
1 25262.17 46.15 <0.001 13111.73 46.61 <0.001 

assay (Te) 

Trx PrA 7 1048.81 1.92 o.on 774.09 2.75 0.011 

Trx PrT 7 441.83 0.81 0.583 263.74 0.94 0.480 

TrxTe 7 447.94 0.82 0.574 298.71 1.06 0.392 

PrAx PrT 1 5206.34 9.51 0.003 7548.35 26.83 <0.001 

PrAx Te 1 3148.68 5.75 0.018 4556.87 16.20 <0.001 

PrT x Te 1 2242.74 4.10 0.045 4800.66 17.06 <0.001 

TrxPrAxPrT 7 245.29 0.45 0.870 143.28 0.51 0.826 

Trx PrAx Te 7 504.09 0.92 0.493 327.93 1.17 0.327 

Trx PrTx Te 7 306.20 0.56 0.788 218.58 0.78 0.608 

PrA x PrT x Te 1 1487.72 2.72 0.102 2985.55 10.61 0.001 

Tr x PrA x PrT x Te 7 237.55 0.43 0.879 170.45 0.61 0.750 

Total 191 
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Figure 2.2: The mean(± S.E.) proportion; (a) latency to crawl-out and (b) time 
spent out of the water by L stagna/is responding to control (dark bars) and 
predator cue (light bars) during behavioural assays (duration 2 hours), following 
prior exposure to: control (C), alarm cues alone (A), predator odour alone (T) and 
alarm plus predator cues (A&T). 

47 



Persistence of Cue Association 

Latency was always decreased when predator cues were present during the 

behavioural assay compared to control, irrespective of the conditioning treatment (Fig. 

2.3a; Table 2.3 ; SNK test: P < 0.05). However, pre-exposure to predator plus alarm cues 

significantly decreased the latency to crawl-out in response to predator cue during 

behavioural assays up to and including the eight days duration compared to individuals 

pre-exposed to control (Fig. 2.3a; Table 2.3; SNK test: P < 0.05). Pre-exposure 

treatment had no significant effect when snails were exposed to control during the 

behavioural assay, and duration since pre-exposure to cues did not significantly affect 

the latency to crawl-out (Table 2.3). 

The proportion of time spent crawled out was significantly greater in response to 

predator cue when L. stagnalis had been previously exposed to predator plus alarm cues 

compared to any of the other treatments (Fig. 2.3b; Table 2.3; SNK test: P < 0.05). This 

significant increase in crawl-out response to predator cues persisted for 8 days 

following exposure to alarm and predator cues compared with the other treatments. 

However, the magnitude of the response seen decreased with duration from pre­

exposure, with the proportion of time spent crawled out being significantly lower 8 days 

following pre-exposure compared to only 24 hours following pre-exposure (Table 2.3; 

SNK test: P < 0.05). The number of individuals showing crawl-out behaviour in both 

control and predator groups showed no significant decline between 24 hours and 8 days 

(control followed by control; G-test: G2 = 5.565, P = 0.062: control followed by 

predator cue; G-test: G2 = 0.208, P = 0.901: alarm plus predator followed by control; G­

test: G2 = 1.013, P = 0.602: alarm plus predator followed by predator; G-test: G2 = 

2.672, p = 0.263). 
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Table 2.3: Latency to crawl-out and proportion of time spent crawled out in 
response to exposure to tench cues following pre-exposure to tench plus alarm cues 
at varying durations, 24 hours, 4 days and 8 days prior to behavioural assay. Trial 
is excluded from model as no significant effect was found using a General Linear 
Model. N = 23 for all treatment combinations 

Latency Proportion of time 

Source DF MS F p MS F p 

Duration (Du) 2 1691.19 2.97 0.053 1403.60 4.07 0.018 

Pre-exposure to alann plus 1 12189.19 21.40 <0.001 7067.22 20.51 <0.001 

tench cue (Pr) 

Tench cue during behavioural 1 57709.32 101.33 <0.001 25736.90 74.71 <0.001 

assay (Te) 

Du xPr 2 247.89 0.44 0.648 950.91 2.76 0.065 

DuxTe 2 653.22 1.15 0.319 1353.53 3.93 0.021 

Prx Te 1 8583.39 15.07 <0.001 6589.99 19.13 <0.001 

Du xPrx Te 2 225.54 0.40 0.674 1452.64 4.22 0.016 

Total 275 
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Figure 2.3: The mean(± S.E.) proportion; (a) latency to crawl-out and (b) time 
spent crawled out by L stagna/is during behavioural assays (duration 2 hours), 24 
hours (light bars), 4 days (hatched bars) and 8 days (dark bars) following prior 
exposure to control (C) or alarm plus predator cues (A&T) in response to either 
control (C) or predator cue (T) during behavioural assays. 
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Discussion 

The anti-predator response of naive laboratory reared Fl L. stagna/is to predator cue 

alone demonstrates that this snail species has an innate ability to recognise T. tinea 

kairomones and respond using anti-predator behaviour. Innate responses to predator 

threat can be due to genetic adaptation to recognise potential predators (Abjornsson et 

al. 2004) or transgenerational influence on offspring (Agrawal et al. 1999). The duration 

that adults were held in the laboratory prior to production ofF I juveniles for 

experimentation potentially reduced the effect of maternal experience on the offspring 

behaviour. However, transgenerational effects of maternal exposure to a dipteran 

phantom midge predator, Chaoborus flavicans, on offspring morphology have been 

found to persist in the F2 generation of Daphnia cucullata (Agrawal et al. 1999). 

There was no anti-predator response to alarm signals from crushed conspecifics 

alone (Fig. 2.1 ), as found in previous studies on gastropod molluscs (McCarthy and 

Dickey 2002, lchinose et al. 2003). Alarm cues may not provide enough information 

about the type of risk to L. stagna/is to induce a response, alternatively they may not be 

perceived as being associated with a risk of predation at all. However, there was an 

increase in the proportion of individuals crawling out, as well as time spent out of the 

water when alarm cues were presented in combination with predator cues compared 

with predator cue alone. This shows that alarm cues can be identified by L. stagna/is, 

and probably increases the perceived risk in combination with predator cues compared 

to predator cues alone. An increase in anti-predator response with perceived risk has 

been found in a number of aquatic species in relation to the predator threat, such as 

predator density (Ramcharan et al. 1992, Wiackowski and Staronska 1999), distance 

from prey (Turner and Montgomery 2003), number of prey consumed in the immediate 
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environment (Van Buskirk and Arioli 2002), size of the predator (Kusch et al. 2004) 

and also with prey vulnerability {Alexander and Covich 1991, Ramcharan et al. 1992, 

DeWitt et al. 1999, Rundle and Bronmark 2001 , Cotton et al. 2004). These factors may 

combine to increase the accuracy of the anti-predator response in relation to the risk to 

the prey. 

Previous experience of crushed conspecific (alarm cues) plus predator odour 

from T tinea induced an increase in anti-predator behaviour on subsequent 

presentations ofT tinea cue alone, equivalent to that seen in response to tench plus 

alarm cues combined during the first experiment (Figs. 2.1 & 2.2). No significant 

increase in anti-predator behaviour was seen in response to pre-exposure to alarm cues 

or predator cues alone prior to behavioural assays. This suggests that L. stagna/is forms 

a cue association between predator cue and an alarm substance, which then increases the 

perceived risk associated with T tinea kairomones on subsequent encounter. Cue 

association between predator kairomones and damaged conspecifics may provide a 

more accurate assessment of potential risk from a predator, as it gives information about 

the current diet of that predator. For instance, the whelk, Buecinum undatum increased 

its escape response over a period of four days exposure to a starfish, Leptasterias 

polaris, feeding on whelks compared to exposure to control or L. polaris cues alone 

(Rochette et al. 1998). The juvenile B. undatum used were wild caught, so in this case it 

is impossible to determine whether there was an innate response to the predator cue. It 

is likely that they had previously encountered L. polaris in the field; hence the 

laboratory experiment was potentially re-enforcing previous experience. 

Cue association may be necessary in order that a prey species is able to 

recognise accurately the threat of predation. The flatworm, Dugesia dorotoeephala, 
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demonstrates anti-predator behaviour in response to injured conspecifics, but not to a 

potential predatory fish, Lepomis macrochirus (Wisenden and Millard 2001). However 

following exposure to damaged conspecifics plus L. macrochirus odour, D. 

dorotocephala showed anti-predator behaviour in response to L. macrochirus odour 

alone two days later. As L. stagna/is responded to predator cues to a lesser extent 

without cue association being necessary, it seems likely that this population relies on 

cue association to give current information on predator risk rather than to identify the 

predator per se. 

Cue association has also been shown to be an integral part of predator defence in 

most fish species studied (Utne and Bacchi 1997, Mirza and Chivers 2001b, Brown 

2003, Kelley and Magurran 2003, Larson and McCormick 2005), though Arctic charr, 

Salvelinus alpinus, have been shown to demonstrate innate as well as learnt recognition 

of potential predators (Vilhunen and Hirvonen 2003). Na1ve Physella virgata showed 

induced morphological changes in response to cues from six different sunfish species, 

which were thought to be in part due to changes in behaviour (Langerhans and DeWitt 

2002). However, they were unable to respond differentially to predators depending on 

their potential risk as they were unable to differentiate between molluscivorous and non­

molluscivorous species. 

Other studies that have found a response to predator cues alone usually concern 

wild caught animals, where the history of chemical exposure is unknown, or the animals 

respond to predator known to be present in their environment (Hopper 2001, Dahl and 

Peckarsky 2002, Abjomsson et al. 2004, Keppel and Scrosati 2004). As many species 

are capable of learning about potential predators, observed responses may be due to past 

experience. 
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Cue association appeared strongest at 24 hours post-exposure, and showed a 

slight decline over time from 24 hours to 8 days post-exposure. At 8 days post-exposure 

the proportion of time spent crawled out was still significantly greater in the group 

previously exposed to predator plus alarm cues, suggesting that memory of the learned 

cue association persists for at least 8 days following exposure. Although the encounter 

rate between T tinea and L. stagna/is in the source population is unknown, it seems 

feasible that 8 days is an ecologically relevant time scale in the field. The response to 

pumpkinseed fish, Lepomis gibbosus by Physa aeuta declined with both distance from 

the predator and cue age (Turner and Montgomery 2003). However, it is not known 

whether the decline with cue age, showing a mean behavioural lifetime of 41 hours, was 

due to an increase in perceived time since a predation event or due to a decline in cue 

concentration per se. The decline over time in anti-predator response by L. stagna/is 

implies a reduction in the perceived risk from T tinea with time since experience of 

predation cues. This is potentially due to the simulated rate of predation on conspecifics 

affecting the risk perceived by L. stagna/is (Van Buskirk 2002). 

The ability to learn about potential predators may be important in responding to 

invasive predators, or to a new predator regime if the prey species is expanding their 

range or simply when a predator has not been previously encountered. The crayfish, 

Oreoneetus virilis, Proeambrus clarki.i, 0. rustieus and Austropatmobius pal/ipes were 

all found to be able to form cue association between a pseudopredator, the common 

goldfish, Carassius auratus, and damaged conspecifics (Hazlett et al. 2002). The 

duration of this cue association varied between species, but in P. clarkii was still present 

after 3 weeks. Individuals that had not been exposed to C. auratus cue in combination 
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with damaged conspecific showed no anti-predator response to C. auratus cue on 

subsequent exposure. 

A response caused by a random pairing of unrelated cues inducing anti-predator 

behaviour could prove very costly to prey species. Potentially this is why an anti­

predator response declines over time, when no re-enforcement of the cue association 

occurs. There is also the potential to prevent cue association through learned 

irrelevance, where cues are presented in a random order so that the organism learns that 

they are not associated prior to concurrent presentation (Baker et al. 2003, Hazlett 

2003 ), though so far there is no evidence that this would occur in response to a natural 

predator. 

Lymnaea stagna/is has been used previously to demonstrate the neuronal basis 

of cue association learning (lto et al. 1999, Benjamin et al. 2000), although these 

authors used highly artificial stimuli rather than predator cues occurring in the natural 

environment. L. stagna/is has also been used previously to examine the effects of 

predator cues on anti-predator behaviour and phenotypic plasticity (Rundle and 

Bronmark 2001 , Rundle et al. 2004), however this is the first study to demonstrate the 

ability of a freshwater gastropod to learn about predation risk. The results of this study 

concur with those of Rochette et al. ( 1998) who examined the response of a marine 

gastropod to cue association, although their study did not consider the effect of prior 

exposure to alarm cues alone or the prior experience of their wild-caught snails. The 

present data therefore indicate that the mechanism of cue association learning may be 

similar in these diverse gastropod taxa. 
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Cue association learning, combined with variation in response to different types 

of cue, as demonstrated in this study, could allow individuals to assess real and 

immediate risks from potential predator species in their environment. The observed 

decline in response with lack of re-enforcement would also allow organisms to exhibit 

avoidance behaviours only in the face of active predators and high predation risk, and to 

reduce costs associated with unnecessary escape behaviour. Such fine tuning of 

behavioural responses to environmental cues may be highly adaptive, and the precise 

mechanisms involved represent an intriguing area for future research. 
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CHAPTER3 

Predator regime influences innate anti-predator behaviour in the 

freshwater gastropod Lymnaea stagna/is. 

Dalesman, S., Rundle, S. D. & Cotton, P. A. 2007. Predator regime influences innate 
anti-predator behaviour in the freshwater gastropod Lymnaea stagna/is. 
Freshwater Biology. In Press. 
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Abstract 

Predation incurs high fitness costs in aquatic organisms either through direct 

consumption or inappropriate avoidance responses that reduce time for activities such as 

feeding and reproduction. Hence, avoidance responses of aquatic organisms should vary 

to closely match the predation threat in their environment. The freshwater gastropod 

Lymnaea stagna/is occurs in a variety of environments which vary in the presence or 

absence of predatory fish. I used nai"ve snails reared from six populations of this species 

experiencing different predator regimes (three eo-occurring with molluscivorous fish 

and three without) to assess whether populations differed in the type and degree of their 

avoidance behaviours. Innate behavioural responses to four treatments (control, 

conspecific alarm cues, fish (Tinea tinea) kairomones, and fish kairomones paired with 

alarm cue) were compared in laboratory trials. The primary anti-predator behaviour of 

L. stagna/is in response to fish kairomones was to crawl out of the water rather than 

seek refuge under water. This response was strongest when fish kairomones were paired 

with alarm cues, and varied depending on population origin; snails reared from 

populations eo-occurring with predatory fish showed a stronger response than those 

raised from populations not experiencing such predators. In addition, populations eo­

occurring with predatory fish responded to the fish kairomones presented alone. Our 

findings suggest that the degree of innate anti-predator behaviour shown by L. stagna/is, 

both in terms of the level of risk to which it responds and the degree of response, varies 

depending on the predator regime experienced by field populations. Together with 

previous work on cue association, this demonstrates that this species of gastropod is 

able to match its avoidance behaviour very closely to short and long term predation 

threats within its habitat. 
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Introduction 

Predators can impose high fitness costs on their prey species, both directly through 

predation events and also indirectly, either by modifying prey behaviour reducing 

opportunities to feed or reproduce (Lima and Dill 1990) or by imposing costs through 

plastic morphological responses (DeWitt 1998, Caramujo and Boavida 2000, Van 

Buskirk 2000). Changes in morphology and behaviour in response to one predator may 

also make prey organisms more vulnerable to alternative predator species (Sih et al. 

1998). In freshwater systems a number of studies have demonstrated strong responses to 

predation cues (Reviewed in: Dodson et al. 1994, Chivers and Smith 1998, Lass and 

Spaak 2003, Wemer and Peacor 2003), however many aquatic prey species occupy a 

wide variety ofhabitats and experience varying levels of predation threat, such that a 

single mode of behavioural response is unlikely to be an effective method of avoiding 

all potential predators. As such, I would predict that anti-predator behaviour would vary 

between populations with different predator regimes to closely match the type and level 

of predation threat present (McPeek 1990). 

Local adaptation to predation threat is likely to occur in relatively sedentary species 

with low dispersal abilities, whereas induced responses are more likely in species which 

have potential for high dispersal between generations, as parents and offspring are more 

likely to encounter alternate predator regimes (Kawecki and Ebert 2004). Adaptation 

may also occur where plastic responses are costly if the lag between expressing one 

phenotype or its alternative is too far behind the changes in the environment (Padilla 

and Adolph 1996), information gathering to produce the correct phenotype is costly 

(DeWitt 1998) or costly responses to non-threatening species are likely (Langerhans and 

DeWitt 2002). 
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In freshwater organisms induced responses to predation cues have been found where 

species have terrestrial stages allowing dispersal between alternate habitats. For 

example mayfly larvae from fishless streams exhibit behavioural responses (Baetis 

rhodani (Pictet, 1844): Tikkanen et al. 1996) and alter their life history traits (Baetis 

bicaudatus Dodds, 1923: Peckarsky et al. 2002, Ephemerella invaria (Walker, 1853): 

Dahl and Peckarsky 2003) in response to fish cues. However, in tadpoles of wood frogs, 

Rana sylvatica LeConte, 1825 (Relyea 2002b), red-legged frogs, Rana aurora Baird 

and Girard, 1852 (Kiesecker and Blaustein 1997), and moor frogs, Rana arvalis 

Nilsson, 1842 (Laurila et al. 2006) population adaptation to predator regimes occurred 

despite the potential of adults to disperse between habitats. Laurila (2000) found no 

innate differences between populations in tadpoles responses to predator cues of the 

common frog, Rana temporaria Linnaeus, 1758. He suggested that the reliance on 

plastic responses in this species may be due to a lack of genetic variation on which 

selection could act, variability in the predation regime that populations are exposed to or 

possibly due to adult dispersal between popu1ations preventing local adaptation. 

Local adaptation to predators has also been shown in freshwater species with low 

dispersal abilities, where the offspring experience the same environment as the parent. 

For example the Trinidadian guppy, Poecilia reticulata Peters, 1859, shows adaptive 

responses to food levels (Bashey 2006) and predator regime (O'Steen et al. 2002) and 

Gammarus pulex (Linnaeus, 1758) shows innate behavioural variation between 

populations exposed to differing predator regimes (Abjornsson et al. 2004). Induced 

responses have also been found in species with low dispersal, for example some fish 

species demonstrate an ability to learn about potential predation threat rather than 

demonstrating local adaptation and innate recognition (Reviewed in: Brown 2003), 
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possibly because the costs of information gathering are lower than those of producing 

inappropriate fixed responses (DeWitt 1998). 

Gastropods have been utilised extensively to study the responses to predation threat in 

aquatic systems. Previous studies do suggest their ability to respond to both conspecific 

and heterospecific alarm cues (Snyder 1967, Stenzler and Atema 1977) as well as 

showing differential responses to alternate predation threats both related to the type 

(Snyder 1967, Turner et al. 1999, Turner et al. 2000, Hoverman et al. 2005) and 

proximity (Turner and Montgomery 2003) of predators. Experience has also been 

shown to influence the degree of response to predator cues shown by aquatic gastropods 

(Chapter 2: Rochette et al. 1998, Dalesman et al. 2006, Turner et al. 2006), and 

morphological responses have been demonstrated to be plastic (Trussell 2000a, Rundle 

and Bronmark 2001, Turner and Montgomery 2003, Cotton et al. 2004); the degree of 

such responses may vary with resource availability such as food (Wojdak and Luttbeg 

2005) or calcium concentration (Rundle et al. 2004). 

Freshwater gastropods have limited dispersal ability, as they are only able to spend 

short periods emersed without risking desiccation. As such it may be predicted that 

populations will be under selection dependent on the predator regime they experience, 

and this prediction is supported by empirical data (Covich et al. 1994, McCarthy and 

Fisher 2000, Bernot and Whittinghill 2003). However, these studies have not explicitly 

tested for differences between populations across replicate sites differing in their 

predator status. Also, this previous work has used wild-caught animals, which means 

that any differences between populations may reflect plastic responses rather than local 

adaptation. Previous studies using laboratory reared animals does suggest that the anti-
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predator response in freshwater gastropods has an innate element, but can also vary with 

experience (Chapter 2: Dalesman et al. 2006, Turner et al. 2006). 

The great pond snail, Lymnaea stagna/is, inhabits a wide range of freshwater habitats, 

including those with and without predatory fish and might be predicted to exhibit 

adaptation in response to these differing predator regimes. This species has been 

demonstrated to have both innate and learnt components in its behavioural response to 

predator cues (Chapter 2: Dalesman et al. 2006). Here I investigate whether the innate 

aspects of this behaviour vary between populations experiencing differing predator 

regimes. Fl-generation snails were tested for their responses to cues from a known 

gastropod predator, tench, Tinea tinea (Bronmark 1994), that commonly overlaps in 

distribution with L. stagna/is. Responses to fish kairomones were tested both on their 

own and concurrently with crushed gastropod cues to simulate a predation event. Hence, 

I was able to assess how populations differed in their response to the type of cue 

presented and in the degree of response shown. Adaptation through natural selection has 

been shown to account for divergence between aquatic populations experiencing 

differing predation pressure (Cousyn et al. 2001, O'Steen et al. 2002, Meyer et al. 2006). 

As such I predicted that populations that co-existed with predatory fish would have 

adapted to show higher innate responses than those that did not experience such 

predation risk. 
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Methods 

Field collection sites 

Adult L. stagna/is used to produce experimental snails were collected between 

September 2005 and May 2006 from six sites on the Somerset Levels, an extensive wet 

meadow system in the southwest UK, covered by a series of interlocking drainage 

ditches and channels (Figure 3.1). The three sites with predatory fish present (South 

Drain - 51.18N 2.88W, Sowy River- 51.07N 2.88W, North Moor- 51 .07N 2.96W) 

were large channels (width: 6-22m, depth: 0.7-l.lm).lnformation from the local 

angling club, Taunton Angling Association (pers. corn.), was used to confirm the 

presence of tench at these sites. The three other sites (Chilton Moor- 51.19N 2.88W, 

Little Hook- 51.06N 2.87W, Wistaria Farm- 51.07N 2.98W) were small ditches 

(width: 1.8-2.9m, depth: 0.45-0.7m); electro-fishing was used to confirm the absence of 

molluscivorous fish. Large and small sites were located in a pair-wise fashion such that 

each small site was closer to.a large site than to the nearest small site and vice versa to 

reduce any potential influence of geographic location. Repeated sampling at all the sites 

between March 2004 and September 2006 indicated that L. stagna/is is common at 

these sites for most of the year. 

Study Organisms 

In the laboratory, adult L. stagna/is were maintained in aquaria with 4 I of aerated 

artificial pond water (ASTM 1980) with 90 mgr' [Ca2+] (Rundle et al. 2004) at 15±1 °C 

under a 12: 12 light:dark cycle, and fed on Iceberg lettuce and spinach. To minimize the 

influence of adult experience on juvenile development and behaviour, the Fl snails 

(6±0.5rnm spire height) used as responders were bred from egg masses laid a minimum 

of two months post collection. They were then maintained separately in the same 
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conditions as the adults. Tench used to produce predator cue were kept in analogous 

condition to the snails, and fed Nutri-flake (Hozelock Cyprio, U.K.), which contains no 

mollusc extracts, and hence avoided potential dietary cues affecting the trials. 

Collection sites 
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Figure 3.1: Locations of collection sites on the Somerset Levels. 

Odour production 

Predator kairomones and alarm cues were produced in the same way in all the 

experiments (Chapter 2: Dalesman et al . 2006). Four exposure treatments were used: (i) 

fish kairomone water, produced by placing three tench (length 1 0±1 cm) into 4 I of 

aerated artificial pond water for 1 hour; (ii) alarm cue, produced by mixing three 

crushed snails (6±0.5 mm) into 41 of aerated artificial pond water; (iii) fish kairomone 

64 



plus alann cue, produced by mixing three crushed snails (6±0.5 mm) into 41 of tench 

cue water; and (iv) the control which was aerated artificial pond water. 

Behavioural Assay 

Behavioural trials were carried out in the same way for all experiments under laboratory 

conditions analogous to those in which the snails were maintained (Chapter 2: 

Dalesman et al. 2006). 24 individuals were used for each treatment combination, giving 

a total of96 individuals per population, 576 in total. Behavioural chambers consisted of 

a white plastic dish, 165mm diameter x 60mm depth (A.W.Gregory & Co. Ltd., U.K.), 

with a longitudinally sectioned white PVC pipe (36mm long, 30mm diameter) attached 

open side down to the centre using non-toxic sealant (Wickes Ultimate Sealant and 

Adhesive, Wickes Building Supplies Ltd., U.K.) to provide a refuge. Juvenile snails 

were acclimated to behavioural chambers for 24 hours in 630ml of artificial pond water 

prior to behavioural assays. 70ml of cue water was added to each chamber at the start of 

the behavioural assay to give a final concentration of I 0% cue water. The position of 

each snail within the behavioural chambers was recorded every 5 minutes for 2 hours 

following cue addition. Crawl-out behaviour has been found to be the main anti­

predator response of L. stagna/is to tench cue by snails originating from a population 

with fish predators present (Chapter 2: Dalesman et al. 2006), however use of a refuge 

by L. stagna/is may occur in response to fish predators (Rundle and Bronmark 2001), so 

both types ofbehaviour were analysed here using two variables: the proportion of total 

time spent in avoidance behaviour; and the latency to avoidance, calculated as the 

proportion of total time during the trial before an avoidance behaviour was observed 

(Cotton et al. 2004). 
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Data Analysis 

Data were analysed using ANOVA in GMA V5 (Institute of Marine Ecology, University 

of Sydney, Sydney, Australia). Alarm cue, tench cue, habitat type (predatory fish 

present or absent) and population (nested within habitat type) were used as factors in the 

analysis. Both time spent in avoidance and latency to avoidance were calculated as 

proportions of total duration, and were arcsine-square root transformed prior to analysis 

(Sokal and Rohlf 1995). Student-Newrnan-Keuls (SNK) tests were used to carry out 

post-hoc pair-wise comparisons. 

Results 

The treatment with a combination of tench kairomones plus alarm cue produced the 

greatest avoidance response, with the longest time spent crawled out for all populations. 

This response was significantly higher for individuals bred from adults that originated 

from populations experiencing fish predation (Fig. 3.2a, Table 3.1: F1,4 = 16.66, P = 

0.015, SNK: P<O.Ol ). In addition, snails originating from populations experiencing fish 

predation also showed a significant response to the fish cue treatment, though this was 

significantly lower than the response to combined cues (SNK: P<0.05); individuals 

from populations where no fish predators were present showed no significant crawl-out 

response to fish cues alone. None of the populations showed a significant crawl-out 

response to alarm cues in isolation. 

The latency to crawl-out was significantly shorter in response to tench kairomones and 

alarm cues combined compared with either cue presented alone for all the populations 

tested, and did not differ depending on habitat origin (Fig 3 .2b: table 3.1 : F t ,4 = 194.13, 

P<O.OOl). However, the response to tench kairomones presented alone did differ 

significantly between habitats, with latency being significantly lower in populations 
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originating from areas with fish predators present (Fig. 3.2b: table 3.1: F 1,4 = 76.08, P = 

0.001: SNK: P<0.01). 

The time spent under the refuge significantly decreased in response to the presence of 

tench cue (ANOVA: main effect of tench cue: F 1,4 = 13.90, P = 0.020) but was not 

affected by any other factors. 

Table 3.1: Results from 4-way nested AN OVA on time spent crawled out of the 
water and latency to crawl out. Factors used are: habitat type (predatory fish/no 
predatory fish), population (nested in habitat type), alarm cue (present/absent) and 
tench cue (present/absent). N = 24 for all treatment combinations. 

Proportion of time Latency 
Source d.f. Mean F p Mean F p 

square square 
Habitat type (Ha) 1 3.41 27.76 0.006 4.10 30.61 0.005 
Population nested 4 0.12 1.94 0.103 0.13 1.27 0.282 
in habitat_(Po) 
Alarm cue (A) 1 14.61 266.87 <0.001 13.91 248.47 <0.001 
Tench cue (T) 1 24.62 222.23 <0.001 31.16 416.26 <0.001 
Ha* A 1 0.73 13.27 0.022 0.35 6.25 0.067 
Ha*T 1 3.72 33.57 0.004 5.70 76.08 0.001 
A*Po 4 0.05 0.86 0.486 0.06 0.53 0.714 
T*Po 4 0.11 1.75 0.138 0.07 0.71 0.586 
A*T 1 14.24 355.51 <0.001 14.05 194.13 <0.001 
Ha*A*T 1 0.67 16.66 0.015 0.13 1.80 0.25 1 
A*T*Po 4 0.04 0.63 0.640 0.07 0.69 0.602 
Total 575 
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Figure 3.2: The mean (± s.e.) crawl out response of Fl L stagna/is from 
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treatment levels, showing a) proportion of time spent crawled out and b) latency to 
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Discussion 

All the populations used in this study showed a degree of innate anti-predator response 

to predator kairomones presented in combination with alarm cues by crawling above the 

water line. This indicates that the populations not experiencing fish predation are still 

able to recognise the predation threat from tench and respond with appropriate 

behaviour. The response seen from fishless populations, however, is significantly lower 

that seen from populations exposed to predatory fish, however, suggesting that the 

innate perceived threat is lower in the fishless populations. The populations from 

habitats with predatory fish present also demonstrated an innate response to tench cues 

alone, not seen in the populations without any predatory fish in their natural habitat. The 

decrease seen in use of the refuge in response to tench cues is most likely to be an 

artefact of the increase in crawl out response to this cue, confirming that crawl out 

behaviour is the main response to tench kairomones shown by L. stagna/is as found in a 

previous study (Chapter 2: Dalesman et al. 2006). 

The difference found between high and low risk populations in a laboratory reared Fl 

generation suggest that adaptation to local predator regimes has occurred in the six 

populations studied. This result concurs with results on responses from other freshwater 

organisms with limited dispersal such as Gammarus pulex (Abjornsson et al. 2004) and 

the Trinidadian guppy, Poecilia reticula (O'Steen et al. 2002), which also showed 

divergence in the degree of innate response to predatory fish cues relative to the 

predators present in their environment. As all three of these species have relatively low 

dispersal abilities these results support the theory that species with low dispersal 

capabilities adapt to local predator regimes rather than relying purely on plasticity to 

alter phenotype (Kawecki and Ebert 2004). 
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The reduced response to fish cues from populations not normally exposed to predatory 

fish suggest that L. stagna/is does not have a general anti-predator response to all 

potential predator species it could encounter, as these populations showing low 

responses to predatory fish cues are exposed to large numbers of invertebrate predators 

(Dalesman, pers. obs.) whose numbers would be reduced by predatory fish elsewhere 

(Abjornsson et al. 2002). Indeed, it has been previously demonstrated that aquatic 

gastropods are able to vary their response depending on predator identity (Snyder 1967, 

Turner et al. 2000), so potentially populations may lose their response to one type of 

predator without reducing their response to another (Mikolajewski et al. 2006). This 

may eventually result in the complete loss of the ability to respond to a potential 

predator by a prey species if they no-longer come into contact (Stoks et al. 2003). The 

reduced avoidance response in low risk populations suggests that there may be costs 

associated with retaining anti-predator behaviour towards fish. Traits linked with an 

increased tendency to respond to fish cues may incur costs when expressed in fishless 

environments, for example the loss of sexual ornamentation in fish (Magurran 1999, 

Basolo and Wagner 2004) or the costs associated with maintaining systems to show 

plastic responses (DeWitt 1998). 

Assuming that costs are associated with maintaining the high degree of anti-predator 

behaviour in response to fish cues when predatory fish are not present, it seems 

perplexing that the response is retained at all in the low risk populations studied here. 

One explanation may be that fishless environments can be invaded by predatory fish 

during times of flooding, as the fish and fishless populations used here are in relatively 

close proximity (< llcm), and on a flood plain, there is a possibility that this may occur. 

The high and low response populations are connected by a series of drainage ditches so 
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there is also potential for gene flow to occur between populations preventing a complete 

loss of anti-predator behaviour from the fishless populations. As the fitness 

consequences of not responding to fish correctly are likely to be much higher than 

occasional inappropriate behaviour when fish are not present, then it is possible that 

even infrequent encounters with predatory fish may result in the behaviour being 

retained. An alternative explanation would be that at least part of the response seen to 

predatory fish cues is due to a general sensitivity to predators rather than a predator 

specific response, or linked within a suite of behavioural syndromes (Sih et al. 2004). In 

this case the ' low risk' populations are still exposed to an assortment of invertebrate 

predators including beetles, bugs and leeches (Dalesman, pers. obs.), and elements of 

the response seen to fish kairomones may be included in the anti-predator response to 

these other taxa. 

The nature of the environment in which the snail populations used in this study live, 

with the close proximity and potential for migration along linked water systems, 

suggests that the differences seen will be under strong selection, both for high response 

under threat of predation, but also to lose responses when that threat is no longer 

present. The degree of variation seen in both population groups, with a few individuals 

from the populations lacking predatory fish showing a high response to fish and alarm 

cues, and vice versa, indicates potential within the population to react rapidly to a 

change in predatory threat (Fisher 1930). Rapid microevolution causing divergence 

between conspecific populations (Hendry and Kinnison 1999) has been demonstrated 

elsewhere as a result of natural selection caused by predators (Cousyn et al. 2001, 

O'Steen et al. 2002, Losos et al. 2004, Meyer et al. 2006, Nosil and Crespi 2006). 
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In summary this study suggests that innate differences in behaviour and morphology 

found in other aquatic species (O'Steen et al. 2002, Abjomsson et al. 2004) may be 

generalised across freshwater taxa with poor dispersal abilities. The inability to move 

from areas of high predation risk to low predation risk may be promoting adaptive 

responses to local predator regimes. I have previously demonstrated that L. stagnalis is 

able to alter risk perception of a known predator based on recent experience (Chapter 2: 

Dalesman et al. 2006). Such abilities to associate predation cues with perceived risk to 

fine-tune the innate recognition of predation threat in the short term, alongside the long 

term adaptive response to predators demonstrated in the present study, suggest that 

freshwater snails such as L. stagnalis are able to closely match their anti-predator 

behaviour to their environment. 
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Chapter 4 

Adaptation of anti-predator behaviour in an aquatic gastropod: 

insights from artificial selection. 

Dalesman, S., Rundle, S. D. & Cotton, P. A. In Review. Adaptation of anti-predator 
behaviour in an aquatic gastropod: insights from artificial selection. Oecologia. 
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Abstract 

Adaptation to predation through changes in life history, physiology, morphology or 

behaviour often occurs in populations experiencing stable predator regimes. Artificial 

selection can be used to assess the heritability of these traits and, hence, how they may 

respond to natural selection. The freshwater gastropod Lymnaea stagna/is varies 

between populations in its innate anti-predator behaviour dependent on the local 

predator regime by increasing innate crawl out responses to fish cues in populations 

where predatory fish are present. I used artificial selection to investigate whether such 

divergence in behaviour between populations is due to local adaptation or 

transgenerational induction. Lymnaea stagna/is responded rapidly to selection for high 

and low responses to predator cues; divergence in anti-predator behaviour between high 

and low selection lines over two generations was similar to the range found in natural 

populations, and heritability for crawl-out behaviour (h2 = 0.33) was comparable to that 

for behavioural traits found in other taxa. I conclude that differences in innate anti­

predator behaviour between high and low risk populations are due to local adaptation, 

and that such divergence has the potential to evolve within only two generations. 
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Introduction 

Local adaptation will occur when a heritable trait, or a suite of traits, gives an organism 

a higher fitness relative to alternate genotypes within a particular environment 

(Brakefield 2003). Selection for particular genotypes may be expressed in one of two 

ways in the phenotype of an individual, either by controlling the plasticity in response 

stimuli (Tollrian and Harvell 1999), or potentially by producing a fixed phenotype 

irrespective of environment (Canner and Agrawal 2005). For example, Polygonum spp. 

show a plastic response by increasing internode distance in response to increased 

density, and a fixed response in that the node number remains constant (Griffith and 

Sultan 2006). Genetic adaptation for fixed traits is likely to be favoured where the 

environment is stable, either temporally or spatially, relative to the distribution of the 

responding species (Kawecki and Ebert 2004), whereas adaptation favouring plastic 

traits is more likely in a variable environment where a fixed response is costly to 

produce or maintain in the absence of necessity (Pettersson and Bronmark 1999, Rigby 

and Jokela 2000, Langerhans and DeWitt 2002). 

Predation incurs high, direct fitness costs on prey organisms, and potentially indirect 

costs due to inappropriate responses in the absence of a genuine threat (Lima and Dill 

1990). Predator presence has also been found to alter prey community dynamics, for 

example by driving trait divergence between ecotypes in natural populations 

(Gasterosteus aculeatus: Vamosi and Schluter 2004, Timema spp.: Nosil and Crespi 

2006), and decreasing the impact of competition by reducing prey density (Meyer and 

Kassen 2007). Hence, there is likely to be strong selection on an organism to respond 

appropriately to predators in their environment either through local adaptation in fixed 

innate responses or by exhibiting appropriate induced defences. 
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Differences between natural conspecific populations are frequently described as being 

due to alternate predator regimes. There is currently a glut of studies documenting 

phenotypic plasticity in response to varying predator regimes as a potential cause for 

these differences (reviewed in: Tollrian and Harvell 1999, Lass and Spaak 2003, Benard 

2004, Miner et al. 2005). However, the responses of naive individuals give an indication 

that such differences may also be due to local adaptation. For example, innate hiding 

behaviour of laboratory reared male crickets, Gryllus integer, responding to novel cues 

has a longer duration in a population naturally exposed to ~gher predation rates 

(Hedrick and Kortet 2006). The aquatic gastropod, Lymnaea stagna/is (Chapter 3: 

Dalesman et al. 2007b) and Daphnia pulex (Abjornsson et al. 2004) also show stronger 

innate responses to fish cues when reared from populations naturally exposed to 

predatory fish. However, all of these studies used Fl generation laboratory reared 

animals, so there is also potential that transgenerational induction may account for 

behavioural differences between populations (Agrawal et al. 1999). 

There are some examples of where predation has been found to drive rapid divergent 

evolution between conspecific populations under natural selection. For example, 

average limb length in the lizard, Anolis sagrei, was found to change in only a few 

generations following the introduction of a predatory lizard, Leiocephalus carinatus 

(Losos et al. 2006). In Poecilia reticulata (Trinidadian guppy) behavioural adaptation to 

high and low predator environments has been found to occur rapidly under natural 

conditions in 26-36 generations (O'Steen et al. 2002), brightness of colour spots changes 

significantly after 10 generations (Endler 1980) and alteration of growth rates in 

response to low predator regimes occurs within 13 years (Arendt and Reznick 2005). 

76 



Similarly, rapid evolution in anti-predator responses can be artificially selected for in 

laboratory conditions. The duration of death feigning in beetles, Tribolium castaneum 

(Miyatake et al. 2004) and in Callosobruchus chinensis (Ohno and Miyatake 2007) 

responds to artificial selection, and increased duration has been shown to reduce 

vulnerability to predators. Susceptibility to parasites and parasitoids also responds to 

artificial selection, for example in the gastropod, Biomphalaria glabrata (W ebster and 

Woolhouse 1999) and in the fruit fly, Drosophila melanogaster (Kraaijeveld et al. 

2001). This type of selection experiment can give an insight into the mechanism by 

which traits diverge in natural populations, and also give an indication of the potential 

for adaptation in response to changing environments in natural populations (Brakefield 

2003, Fuller et al. 2005). 

In aquatic gastropods, evidence has been found for plastic responses to predation cues, 

in terms of both morphological (DeWitt 1998, Trussell 2000b, Rundle and Bronmark 

2001) and behavioural responses (Rochette et al. 1998, Chapter 2: Dalesman et al. 2006, 

Turner et al. 2006), though there appears to be an innate element to the behaviour as 

well (Chapter 2: Dalesman et al. 2006, Turner et al. 2006). Innate responses to predation 

cues by L. stagna/is have been found to vary significantly between populations exposed 

to differing predator regimes (Chapter 3: Dalesman et al. 2007b). However, it is unclear 

whether this variation was due to local adaptation or transgenerational induction of cues 

(Agrawal et al. 1999) as the behavioural trials were carried out on the Fl lab reared 

generation. 

Here I use artificial selection to investigate the mechanism by which populations of the 

pulmonate gastropod, Lymnae~ stagna/is (L.) differ in anti-predator behaviour. 

Individuals sourced from two wild populations were used to produce selection lines as 
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there is evidence that conspecific populations may respond differently to uniform 

selection pressure (Cohan and Hoffmann 1989). If the initial population differences are 

due to genetic adaptation for a fixed response, then the response to predator cues in the 

population should persist at a similar level in the laboratory in the absence of selection, 

but that the rapidity ofinducation and duration anti-predator behaviour could be 

manipulated by selecting for either high or low responding individuals to produce high 

and low response selection lines respectively. 

Methods 

Adult great pond snails Lymnaea stagna/is (Gastropoda: Pulmonata: Basommatophora) 

were collected from two adjacent sites on the Somerset Levels, U.K.: South Drain 

(51.18N 2.88W) and Chilton Moor (51.19N 2.88W) in September 2005. In the 

laboratory, adults were kept in aquaria with 4 1 of aerated artificial pond water (ASTM 

1980) with 90 mgr1 [Ca2+] (Rundle et al. 2004). Following acclimation to laboratory 

conditions at 15°C for three weeks they were transferred into 20± 1 °C under a 12:12 

light:dark cycle, and fed on Iceberg lettuce and spinach. Egg masses used to raise the 

initial F1 generation were collected a minimum of2 weeks following transfer into 

20±1 °C, and maintained in similar conditions to the adults following hatching until 

juveniles reached 6±0.5mm when they were used for behavioural trials. 

Tinea tinea (tench) were used to produce fish kairomones as this species overlaps in 

distribution and habitat requirements with L. stagna/is, and is a known gastropod 

predator (Bronmark 1994). Fish were maintained in analogous laboratory conditions to 

L. stagna/is and fed Nutri-flake (Hozelock Cyprio, U.K.), which contains no mollusc 

extracts, and hence avoided potential dietary cues affecting the trials. 
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Selection of response lines 

Fl, laboratory-reared snails were used in selection trials to produce the high response 

and low response lines to breed the F2 generation. Snails were selected based on their 

responses during a single 2 hour behavioural trial, responding to a combination of tench 

kairomones and conspecific alarm cue (see 'behavioural trials' below). Individuals were 

considered 'low response' if they demonstrated no crawl-out behaviour on exposure to 

combined cues during the 2 hour period, and 'high response' individuals if they crawled 

out of the water within the first 60 minutes of the trial and did not re-enter the water 

before the end of the 2 hour trial. From each original population, 24 individuals were 

chosen based on their response during the behavioural trial for each of the low and high 

response lines to provide adequate mate choice in producing the F2 generation. Twenty­

four individuals were also selected randomly from each of the populations to provide an 

unselected line against which the selected lines could be compared. Allowing mate 

choice rather than using restricted pairs may mimic the breeding within a small 

population more closely and prevents inbreeding depression affecting behavioural 

responses (Fry 2003, Fuller et al. 2005). 

Behavioural trials on F2 generation snails were carried out as for Fl snails, using 

combined cues, to select individuals to produce the F3 generation. In this case only low 

response individuals were taken from the low response selection lines, and high 

response individuals from the high response selection line for each population, with the 

unselected line continued using randomly chosen offspring from the randomly selected 

Fl group. 
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Behavioural trials 

Trials were carried out to assess the behavioural response of each selection line in each 

generation to predatory fish kairomones and alarm cues. The behavioural trials and cue 

production followed the methodology outlined in detail by Dalesman et al. (2006, 

Chapter 2), with 24 individuals exposed to each of 4 treatments: i) control (artificial 

pond water alone), ii) alarm cue (crushed conspecific snail), iii) tench kairomone or iv) 

tench kairomone plus alarm cue. The position of each snail in individual behavioural 

chambers was recorded for 2 hours following cue addition and crawl-out behaviour was 

analysed as the main anti-predator response of L. stagna/is to fish predation threat 

(Chapters 2&3 : Dalesman et al. 2006, Dalesman et al. 2007b ). Both the time spent 

crawled out during the behavioural trial, and the latency to crawl out calculated as the 

proportion of total time during the trial before crawl-out behaviour was observed 

(Cotton et al. 2004), were analysed as the main anti-predator responses of L. stagna/is 

responding to predation cues from tench (Chapters 2&3: Dalesman et al. 2006, 

Dalesman et al. 2007b). 

Data analysis 

Behavioural data from the Fl generation were analysed, using a 3-way ANOV A, with 

population origin (Po: South Drain vs. Chilton), alarm cue (A: presence vs. absence) 

and tench cue (T: presence vs. absence) used as factors, to assess whether the 

populations were showing similar responses prior to selection. The F2 and F3 

behavioural trials were analysed using a 5-way ANOV A, factors included in the 

analysis were population origin (Po), generation (Ge: F2 vs. F3), selection line (Se: high 

vs. unselected vs. low), alarm cue (A) and tench cue (T), to assess the responses to 

selection. Both time spent in avoidance and latency to avoidance were calculated as 

proportions of total duration, and were arcsine-square root transformed prior to analysis 
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(Sokal and Rohlf 1995). All ANOVAs were analysed in GMAV5 (Institute of Marine 

Ecology, University of Sydney, Sydney, Australia), using Student-Newman-Keuls 

(SNK) tests to carry out post-hoc analyses. 

In order to assess whether the effects of inbreeding or genetic drift had occurred 

following selection the variance in behavioural responses was analysed using Levene' s 

test for equal variances for both latency to crawl out and time spent crawled out in each 

population. The conservation of variance between generations would imply that there is 

still variation on which selection can act (Fisher 1930). 

Heritability (h2
) of the crawl out response was calculated using the formula: 

h2 = R/S 

where R is the response to selection (the per generation change in the mean of the trait) 

and S is the selection differential (difference between the mean for the entire measured 

population and the mean response of those selected; (Conner 2003). Heritability was 

calculated as the mean response over two generations for each population. 

Results 

Behaviour of the Fl generation 

For F1 generation snails the time spent crawled out and latency to crawl out did not 

differ between populations (see Fig 4.1.), however there was a significant effect of 

treatment; the time spent crawled out was significantly greater and latency to crawl out 

was significantly shorter in response to both cues presented together compared to 

control or either cue presented alone for both populations (Fig. 4 .1: Table 4.1: A *T: for 
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a) time spent crawled out: F 1,184 = 60.44, P < 0.001; b) latency to crawl out: F 1,184 = 

43 .01, p < 0.001 ). 

Table 4.1: Results from 3-way ANOVA on Fl generation snails, showing time 
spent crawled out and latency to crawl out. Factors included are: population 
(Chilton/South Drain), alarm cue (present/absent) and tench cue (present/absent). 
N = 24 for all treatment combinations. 

Proportion of time Latency 

Source d. f. Mean square F p Mean square F p 

Population 1 0.015 0.17 0.677 0.068 0.62 0.431 

Po) 

Alarm cue 1 5.587 66.62 <0.001 5.354 48.95 <0.001 

~) 

Tench cue 1 7.474 89.13 <0.001 8.289 75.77 <0.001 

fr) 
Po*A 1 0.007 0.09 0.768 0.001 0.01 0.941 

Po*T 1 <0.001 <0.01 0.969 <0.001 <0.01 0.991 

A*T 1 5.068 60.44 <0.001 4.705 43.01 <0.001 

Po*A*T 1 0.039 0.47 0.495 0.085 0.78 0.379 

Total 191 
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Figure 4.1: The mean (± s.e.) crawl out response of Fl Lymnaea stagna/is from 
Chilton and South Drain responding to four different treatment levels (control, C, 
tench cue, T, alarm cue, A and tench paired with alarm cue, A&T) showing a) 
proportion of time spent crawled out and b) latency to crawl out. N=24 for each 
treatment combination. 
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Time spent crawled out following selection 

As with the Fl generation the greatest proportion of time spent crawled out of the water 

was in response to alarm and tench cues presented together, however the direction of 

selection significantly affected the level of response to combined cues in both the F2 

and F3 generations for both populations, with the high response selected line spending 

significantly longer and the low selected lines spending significantly less time crawled 

out of the water compared with the non-selected line, (Fig. 4.2: Table 4.2: Se* A *T: 

F2, II04 = 4.05, P = 0.018). Selection also affected the time spent crawled out in response 

to alarm cue alone, with the response significantly increased in the high selection line, 

but only in the F3 generation for both populations (Fig. 4.2: Table 4.2: Ge*Se* A: F2, 1044 

= 4.67, P = 0.01 0). There was no significant effect of population on the effects of 

generation or selection, however the South Drain population showed a significantly 

higher response to tench cue alone compared to the Chilton population (Fig. 4.2: Table 

4.2: Po*T: F 1,1104 = 1 0.04, P = 0.002). 
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Table 4.2: Results from 5-way ANOV A on F2 and F3 generation snails, showing 
time spent crawled out and latency to crawl out. Factors included are: generation 
(F2/F3), population (Chilton/South Drain), selection (low/random/high) alarm cue 
(present/absent) and tench cue (present/absent). N = 24 for all treatment 
combinations. 

Proportion of time Latency 
Source d.f. Mean square F p Mean ~quare F p 
Generation (Ge) 1 0.072 0.71 0.398 0.074 0.49 0.483 
Population (Po) 1 0.481 4.76 0.029 0.298 1.98 0.160 
Selection (Se) 2 4.029 39.91 <0.001 5.789 38.44 <0.001 
Alarm cue(A) 1 37.388 370.40 <0.001 41.031 272.46 <0.001 
Tench cue (T) 1 29.339 290.66 <0.001 34.253 227.45 <0.001 
Ge*Po 1 0.017 0.16 0.685 0.149 0.99 0.320 
Ge*Se 2 0.565 5.59 0.004 0.232 1.54 0.214 
Ge*A 1 0.263 2.61 0.107 0.269 1.78 0.182 
Ge*T 1 0.256 2.54 0.111 0.309 2.05 0.152 
Po*Se 2 0.001 0.01 0.986 0.024 0.16 0.851 
Po*A 1 <0.001 <0.01 0.997 0.420 2.79 0.095 
Po*T 1 1.013 10.04 0.002 1.533 10.18 0.002 
Se* A 2 2.266 22.44 <0.001 1.472 9.78 <0.001 
Se*T 2 1.186 11.75 <0.001 0.753 5.00 0.007 
A*T 1 16.246 160.95 <0.001 8.227 54.63 <0.001 
Ge*Po*Se 2 0.003 0.03 0.969 0.077 0.51 0.602 
Ge*Po*A 1 0.029 0.28 0.595 0.101 0.67 0.414 
Ge*Po*T 1 0.028 0.28 0.600 0.009 0.06 0.805 
Ge*Se*A 2 0.471 4.67 0.010 0.521 3.46 0.032 
Ge*Se*T 2 0.111 1.10 0.335 0.235 1.56 0.210 
Ge*A*T 1 0.175 1.73 0.189 0.133 0.88 0.348 
Po*Se*A 2 0.040 0.40 0.670 0.131 0.87 0.418 
Po*Se*T 2 0.060 0.60 0.552 0.305 2.02 0.133 
Po*A*T 1 0.123 1.21 0.271 0.099 0.65 0.419 
Se*A*T 2 0.409 4.05 0.018 0.031 0.21 0.812 
Ge*Po*Se*A 2 0.096 0.95 0.387 0.515 3.42 0.033 
Ge*Po*Se*T 2 0.066 0.65 0.522 0.141 0.94 0.392 
Ge*Po*A*T 1 0.225 2.23 0.135 0.249 1.66 0.198 
Ge*Se*A*T 2 0.022 0.22 0.807 0.042 0.28 0.758 
Po*Se*A*T 2 0.095 0.94 0.390 0.190 1.26 0.284 
Ge*Po*Se* A *T 2 0.013 0.12 0.883 0.203 1.34 0.261 
Total 1151 
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Figure 4.2: The mean (± s.e.) proportion of time spent crawled out by F2 and F3 
Lymnaea stagna/is from low, random and high selected lines responding to four 
different treatment levels (control, C, tench cue, T, alarm cue, A and tench paired 
with alarm cue, A&T) showing a) Chilton population and b) South Drain 
population. N=24 for each treatment combination. 
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Latency to crawl out following selection 

The latency to crawl out was significantly reduced in response to alarm cue following 

selection for individuals in the high response selected line compared to the low response 

selected line in the F2 generation for both populations; however this directional 

difference between high and low selection lines was increased in the F3 generation for 

the Chilton population, but was not apparent in the F3 generation for the South Drain 

population (Fig. 4.3 : Table 4.2: Ge*Po*Se*A: F2,ll04 = 3.42, P = 0.033). The response 

to tench cue was increased by selection in the high response selected lines relative to the 

low response selection lines, irrespective of generation or population (Fig. 4.3: Table 

4.2: Se*T: F2,1104 = 5.00, P = 0.007). 

Latency to crawl out was significantly shorter in response to combined tench 

kairomones and alarm cue compared to controls or either cue presented alone (Fig. 4.3: 

Table 4.2: A*T: FI ,II04 = 54.63, P < 0.001). As with the time spent crawled out, the 

response to tench cue was greater in the South Drain population compared with the 

Chilton population, with significantly shorter latency to crawl out in the South Drain 

population compared to the Chilton population (Fig. 4.3: Table 4.2: Po*T: F1,1104 = 

1 0.18, p = 0.002). 
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Figure 4.3: The mean(± s.e.) proportion latency to crawl out by F2 and F3 
Lymnaea stagna/is from low, random and high selected lines responding to four 
different treatment levels (control, C, tench cue, T, alarm cue, A and tench paired 
with alarm cue, A&T) showing a) Chilton population and b) South Drain 
population. N=24 for each treatment combination. 
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Variance and heritability of the response 

The variance in response to alarm and tench cue presented together did not differ 

significantly following selection for either high or low response in either the time spent 

crawled out (Levene's test: Chilton: F = 1.353, P = 0.246; South Drain: F = 0.884, P = 

0.494) or latency to crawl out (Levene' s test: Chilton: F = 0.639, P = 0.670; South 

Drain: F = 0.822, P = 0.536). The mean heritability for crawl out behaviour did not 

differ significantly between the Chilton (h2 
= 0.33±0.09) and the South Drain (h2 

= 

0.33±0.04) populations. 

Discussion 

Selection for crawl out behaviour in Lymnaea stagna/is in response to tench kairomones 

paired with alarm cues resulted in a rapid change in behaviour of the high-selected and 

low-selected lines within two generations. This magnitude of this change is similar to 

that seen in response to artificial selection on parasite resistance in another aquatic 

gastropod, Biomphalaria glabrata (Webster and Woolhouse 1999), and also to that 

found in several other taxa under selection for traits that may have high fitness 

consequences, such as: migration behaviour in the blackcap Sylvia atricapilla (Berthold 

and Helbig 1992), parasitoid resistance in Drosophila melanogaster larvae (Kraaijevt(ld 

et al. 2001), death feigning in Cucujiform beetles (Miyatake et al. 2004, Ohno and 

Miyatake 2007) and nest building in mice, Mus domestica (Bult and Lynch 2000). The 

strong response to selection found in this study suggests that the innate variation in anti­

predator behaviour between L. stagna/is populations experiencing different predator 

regimes (Chapter 3: Dalesman et al. 2007b) has a fixed genetic basis rather than being a 

response caused by transgenerational induction (Agrawal et al. 1999). 
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The divergence between high and low response lines in crawl out behaviour by the F3 

generation of L. stagnalis was similar to the divergence in innate crawl out response in 

natural populations of this species experiencing high and low predation risk (Chapter 3: 

Dalesman et al. 2007b ). This response to artificial selection indicates that populations of 

this gastropod have the potential to respond quickly to changes in predator regime, 

potentially within two generations. The homogenous laboratory conditions in which 

selection was carried out here may have resulted in the crawl out response evolving 

more rapidly than it would in natural conditions. Variation in the natural environment 

may alter the ability of an organism to respond to selection (Wilson et al. 2006), 

limiting the effects of selection for a particular trait. Indeed, the evolution of natural 

populations often happens at a much slower rate than that potentially driven by artificial 

selection in the laboratory (Reznick et al. 2001). 

Traits that respond to artificial selection may be negatively correlated with other fitness 

traits preventing the selected traits from reaching similar levels in the natural 

population. For example, increased duration in death feigning, shown to decrease 

predator vulnerability in the bean beetle, Callosobruchus chinensis was negatively 

correlated with flight ability in both artificially selected lines and in 21 natural 

populations (Ohno and Miyatake 2007). Similarly, responses of domesticated masu 

salmon (Oncorhynchus masou) to predator cues appears to have been selected against 

by selecting for fast growth, which favours responding to food but not to predators 

(Y amamoto and Reinhardt 2003). Negative effects may also occur under natural 

selection for defensive traits, for instance the loss of song in male field crickets, 

Teleogryllus oceanicus, makes them less vulnerable to parasitic flies but also prevents 

them from being able to ~ttract females (Zuk: et al. 2006). In the case of the behavioural 

traits selected for in this study, the responses to selection in the high and low lines had 
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no apparent negative effects on fitness, however the controlled conditions in the 

laboratory may mask potential difficulties that L. stagna/is may experience in field 

conditions. 

The L. stagnalis populations selected in this study came from different environments 

with different predator regimes (Chapter 3: Dalesman et al. 2007b ), and this may 

account for the slight variability in their response to selection. Previous adaptation to 

their respective environments is likely to have resulted in genetic divergence between 

the populations (Bult and Lynch 2000). The differences between the populations in the 

response to tench cue alone also indicates that selection for the response to combined 

cues may be acting on different alleles controlling predator detection and anti-predator 

behaviour in each population (Endler et al. 2001 ). 

Heritability estimates for crawl out behaviour in response to predation (h2 
= 0.33) did 

not differ between the populations, and this value is close to those found for other 

behavioural traits with high fitness-related consequences, for example the onset of 

migratory activity in blackcaps, Sylvia atricapilla (Pulido et al. 2001) and anti-predator 

behaviour in dumpling squid, Euprymna tasmanica (Sinn et al. 2006). This degree of 

heritability is also close to the mean for behavioural traits calculated from a review of a 

large number of published studies (Stirling et al. 2002). The lack of difference in 

heritability between populations suggests that they both retain similar underlying 

variability in the genes controlling crawl out behaviour. 

The amount of phenotypic variation retained in the F3 generation indicates that there 

may still be potential for behavioural avoidance to evolve (Fisher 1930). However, if 

the phenotype is strongly influenced by the environment experienced during 
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development (i.e. high levels of developmental plasticity), then a lower heritability of 

traits and slower response to selection may be expected (Brakefield 2003). Though this 

is not always the case, a positive relationship between the rate of change in a trait 

responding to natural selection and plasticity of that trait has been found in mosquito 

fish, Gambusia a./finis (Steams 1983). Induced morphology can also alter behaviour, 

showing a trade-offbetween energy investment in morphological and behavioural 

defences (Rundle et al. 2004). Longer term exposure to predator cues may induce 

morphological or behavioural change altering the selection strength on innate 

behavioural responses. 

Adaptation by L. stagna/is to environmental conditions as demonstrated both by the 

variation between populations exposed to different predator regimes (Chapter 3: 

Dalesman et al. 2007b), and also by the strong response to selection for anti-predator 

behaviour shown here, would allow this species to show an innate response to predators 

on the first encounter. I have also shown that recent experience can provide further 

information about predator risk and potentially increase behavioural responses towards 

active predators (Chapter 2: Dalesman et al. 2006). In this way L. stagnalis will be able 

to fine-tune innate responses to predator recognition developed through selection to 

match the current predator activity in their environment. 

92 



CHAPTERS 

Conservation of induced anti-predator responses following 

experimental selection 

Dalesman, S., Rundle, S. D. & Cotton, P.A. In Prep. Plastic snails: how induced 
responses may counteract the effects of selection. 
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Abstract 

The way in which an organism responds to environmental stimuli may be controlled by 

a fixed adaptive (constitutive) response or by a plastic response induced by prior 

experience. The aquatic gastropod Lymnaea stagna/is has been shown to have 

constitutive behavioural responses towards cues from a predatory fish, Tinea tinea, 

which respond to artificial selection; however it has not yet been tested whether anti­

predator behaviour also has induced elements. Here I exposed L. stagna/is from three 

experimental selection lines to predator cues from T. tinea added every four days from 

when the egg masses were layed. Juvenile snails that came from lines exhibiting low 

levels of constitutive anti-predator behaviour respond to exposure to fish cues by 

increasing anti-predator behaviour to the same level as that seen in lines selected for 

high constitutive responses. However, high response snails showed no significant 

change in anti-predator response following developmental exposure to fish cues, 

suggesting that there may be a ' ceiling effect', potentially a physiological limitation, 

dictating the maximum level of crawl-out behaviour L. stagna/is can show. The results 

are discussed in terms of the ability of L. stagna/is to cope with changes in predator 

re gun e. 
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Introduction 

Predation imposes high fitness costs, and as such prey taxa are under strong selection to 

evolve effective anti-predator traits (Lima and Dill1990, Lass and Spaak 2003, Benard 

2004). These traits may be constitutive, so they are expressed whether populations of 

prey species experience the predator or not (Lively et al. 2000). Alternatively, prey may 

exhibit induced responses (Tollrian and Harvell 1999), a form of phenotypic plasticity, 

where the expression of the genotype varies depending on the environmental conditions 

(Bradshaw 1965). A meta-analysis of data from studies into the impact of predators on 

prey populations demonstrated that more than 50% of the impact on prey-demography 

is due to induced defences, such as reduction of activity and feeding time, rather than 

direct effects from consumption (Preisser et al. 2005). Genetic variation for plasticity 

exists (Stinchcombe et al. 2004), and plastic responses can be selected to alter both the 

mean response within a particular environment and also the degree of plasticity in 

response to alternate environments (Scheiner 1993, 2002, Garland and Kelly 2006). 

Plasticity is thought to be favoured by selection in variable environments (Kawecki and 

Ebert 2004, Zhang 2006), and selection for greater trait plasticity can occur rapidly, for 

example in the great tit, Parus major, plasticity in laying time has increased 

significantly in response to variability in the timing of food availability (Nussey et al. 

2005). In this case the increased plasticity appears to be correlated with an innate earlier 

laying date, however it is still not clear whether selection for plasticity is under the same 

control as selection for the mean of the trait, or is selected for separately as a trait in its 

own right (Via et al. 1995). What is clear is that the same traits can be selected both for 

the mean response, and also for the degree of plasticity about that mean as expressed in 

different environments (Noach et al. 1997, Sexton et al. 2002). Plastic traits in 
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themselves may, potentially, have more than one heritable component, in both the 

magnitude of the response as shown in the above examples, and on triggers for the 

induced response to occur (Scheiner and Lyman 1991 ). Selection for recognition of the 

cues that induce a plastic response has been found. Rana aurora, for example, evolved 

to recognise the invasive predatory bullfrog, R. catesbeiana in less than 70 years 

(Kiesecker and Blaustein 1997), and Gammarus pulex adapt to respond with induced 

defences towards predatory fish when co-existing with them (Abjornsson et al. 2004). 

Behavioural responses tend to have a very short lag time between the expression of one 

phenotype and the next, and could therefore be very flexible in how they are expressed 

(Gabriel et al. 2005). Selection may favour behavioural defence mechanisms where 

there are fitness benefits to responding rapidly to a predation threat. Innate behavioural 

responses may evolve where the correct response on first encountering a novel 

predatory threat can have high fitness consequences, whereas plastic responses may 

evolve where information gathered allows the response to be fine-tuned to 

environmental variation. Plasticity can occur during development, with the phenotype 

expressed in adulthood resulting from environmental cues earlier in life (Relyea 2001, 

Alvarez and Nicieza 2002) or environmental cues may effect the developing organism 

at any stage of development (Laurila and Kujasalo 1999, Laforsch and Tollrian 2004, 

Griffith and Sultan 2006), and demonstrate reversibility (Relyea 2003). 

Theoretically, directional selection will favour plastic traits which alter phenotype in the 

same direction as selection on the mean (Garland and Kelly 2006). However, this is not 

always the case, selection on mean traits values may be correlated with plasticity, 

however the direction of the relationship may differ between selection lines (Scheiner 

and Lyman 1991). Traits under strong selection on the mean response can also exhibit 
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the greatest degree of plasticity (Steams 1983, Van Buskirk and Relyea 1998), though 

plasticity for a trait can evolve independently of the population mean for that trait 

(Garland and Kelly 2006). 

Plasticity may confer advantage to organisms that have to deal with changes in their 

environment, or potentially enable them to survive in a novel environment (Parsons and 

Robinson 2006, Nussey et al. 2007). The ability to respond plastically to predatory 

threats may reduce the negative impact on fitness on encountering a novel predator, and 

therefore allow the animal to adapt further to increase fitness (Latta et al. 2007). 

However, there is also an increasing body of evidence that plasticity in a trait can also 

incur fitness costs (DeWitt 1998, Agrawal et al. 2002, MeriUi. et al. 2004, Stinchcombe 

et al. 2004, Teuschl et al. 2007), and may also lead to incorrect assessment of predation 

risk from organisms not previously encountered (Langerhans and DeWitt 2002, 

Schlaepfer et al. 2005). 

The aquatic gastropod Lymnaea stagna/is is able to respond rapidly to artificial 

selection for anti-predator behaviour, producing levels of divergence found in innate 

behaviour between high and low risk environments in just two generations (Chapters 

3&4: Dalesman et al. 2007b, in review). Lymnaea stagna/is is also able to alter 

perceived risk from a predator based on cues that could indicate the foraging activity of 

the predator (Chapter 2: Dalesman et al. 2006). It has also been shown that prolonged 

exposure of L. stagna/is to predatory fish kairomones can induce changes in shell 

morphology, though this is dependent on calcium availability (Rundle et al. 2004). Such 

morphological responses may result in trait compensation, where individuals that show 

strong morphological defences reduce their behavioural response (Rundle and 

Bronmark 2001, Cotton et al. 2004, Rundle et al. 2004), or alternatively traits may eo-
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vary, such that prey which show strong induced morphological responses also 

demonstrate increased anti-predator behaviour (DeWitt et al. 1999). 

This study utilised F3 generation snails selected for high and low levels of constitutive 

anti-predator behaviour (Chapter 4: Dalesman et al. in review), to test whether the 

behaviour selected for is plastic under different environmental conditions. In this case I 

varied the developmental conditions by growing snails in the presence or absence of 

fish kairomones from a known gastropod predator, Tinea tinea (Bronmark 1994). I 

investigated whether plastic behavioural responses are linked to selection on the mean 

innate response. I predicted that plasticity in the high response selection lines would be 

higher relative to the low response selection line due to a generalised increased 

responsiveness to predatory fish kairomone (Ruther et al. 2002). 

Methods 

Great pond snails, Lymnaea stagna/is from two source populations on the Somerset 

Levels, U.K ., South Drain (51.18N 2.88W) and Chilton Moor (51.19N 2.88W) were 

selected for either high or low behavioural responses to fish predation cues (fish 

kairomones plus conspecific alarm cues) over three generations in the laboratory, and a 

randomly selected line was also bred from each population to control for effects of 

laboratory rearing (See Chapter 4: Dalesman et al. in review for details of selection 

criteria). In the laboratory, adults were kept in aquaria with 4 l of aerated artificial pond 

water (ASTM 1980) with 90 mgr1 [Ca2+] (Rundle et al. 2004) at 20±1°C under a 12:12 

light:dark cycle, and fed on Iceberg lettuce and spinach. 
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Exposure protocol 

F3 egg masses were collected from F2 adult tanks on the day they were laid and 

transferred into individual tanks with 11 of artificial pond water maintained at 20± 1 °C 

under a 12:12 light: dark cycle. A total of 3 tanks per population/selection line 

combination were used for the predator exposure treatment (fish kairomones) and 3 

tanks for each of the controls (artificial pond water). Fish kairomone was produced by 

placing 3 tench (1 0± 1 cm) in 4 1 of water for one hour. Kairomone water or control was 

then added at a 1 0% concentration to each of the tanks every 4 days. On hatching the 

number in each tank was reduced to 20 individuals to control density and they were 

maintained in otherwise analogous conditions to the F2 adults except that 

kairomone/control addition continued every 4 days in treatment tanks until snails 

reached 6±0.5mm, at which point they were used for behavioural trials. 

Behavioural trials 

The behavioural trials and cue production followed methodology outlined in detail in 

Chapter 2, with 15 individuals exposed to each oftreatment: i) control (artificial pond 

water alone), ii) alarm cue (crushed conspecific snail), iii) tench kairomone or iv) tench 

kairomone plus alarm cue. The position of each snail in individual behavioural 

chambers was recorded for 2 hours following cue addition and crawl-out behaviour 

analysed as the main anti-predator response of L. stagna/is to fish predation threat 

(Chapter 2: Dalesman et al. 2006). 

Data Analysis 

Data were analysed as arcsine-square root proportions (Sokal and Rohlf 1995) of time 

spent crawled out and latency to crawl out in a 5-way ANOV A in GMA V (Institute of 

Marine Ecology, University of Sydney, Sydney, Australia) using population origin (Po: 
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Chilton /South Drain), selection line (Se: low/random/high), kairomone exposure during 

development (Ex: present/absent), alarm cue addition during behavioural trials (A: 

present/absent) and tench kairomone addition during behavioural trials (T: 

present/absent) as factors. Post-hoc analyses of pair-wise differences were carried out 

using Student-Newman-Keuls (SNK) tests in GMA V. 

Results 

There were no significant differences between the two populations in any of the 

treatment combinations tested (Table 5.1). Time spent crawled out of the water was 

strongest in all cases in response to tench kairomones paired with alarm cue; in the 

group that had not been exposed to tench kairomones during development the response 

to combined cues differed significantly depending on which selection line the snails 

came from such that strength of response high selection line > random line > low 

selection line. However, following exposure to tench kairomones during development, 

the effect of selection on the response to combined cues was eliminated, and all 

selection lines responded at the high response level (Fig. 5.1: Table 5.1 : Se* Ex* A *T: 

F2,612 = 3.89, P = 0.021; SNK: P < 0.01). Exposure to tench kairomones during 

development also significantly increased the response to alarm cue alone in both the 

randomly selected group and the high response selection line (Fig. 5.1: Table 5.1: SNK: 

p < 0.05). 

Latency to crawl out was shortest when snails were exposed to tench kairomones paired 

with alarm cue irrespective of selection line or exposure during development (Fig. 5.2: 

Table 5.1: A *T: F 1,672 = 52.34, P < 0.001 ; SNK: P < 0.01 ), though latency was also 

significantly reduced relative to controls in response to either cue presented alone 
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(SNK: P < 0.01). Selection for high response to predation and exposure to tench 

kairomones during development both significantly reduced the latency to crawl out 

(Fig. 5.2 : Table 5.1: Se main effect: F2, 672 = 19.21, P < 0.001; Ex main effect: F 1,672 = 

11.92, p < 0.001). 

Table 5.1: Results from 5-way ANOV A, showing time spent crawled out and 
latency to crawl out. Factors included are: population (Chilton/South Drain), 
selection (low/random/high), exposure to tench kairomones during development 
(present/absent), alarm cue during behavioural trial (present/absent) and tench 
kairomone during behavioural trial (present/absent). N = 15 for all treatment 
combinations. 

Proportion of time Latency 
Source d.f. Mean F p Mean F p 

square square 
Population (Po) 1 0.160 1.09 0.298 0.004 0.03 0.874 
Selection line (Se) 2 2.547 17.24 <0.001 3.337 19.21 <0.001 
Developmental 1 2.369 16.04 <0.001 2.072 11.92 <0.001 
exposure (Ex) 
Alarm cue (A) 1 32.913 222.84 <0.001 27.350 157.43 <0.001 
Tench kairomones (T) 1 30.653 207.54 <0.001 26.741 153.92 <0.001 
Po*Se 2 0.029 0.19 0.824 0.068 0.39 0.675 
Po*Ex 1 0.073 0.49 0.483 0.199 1.15 0.285 
Po*A 1 0.043 0.29 0.589 0.050 0.29 0.592 
Po*T 1 0.178 1.21 0.272 0.017 0.10 0.755 
Se*Ex 2 0.121 0.82 0.441 0.116 0.67 0.512 
Se* A 2 0.429 2.91 0.055 0.207 1.19 0.304 
Se*T 2 0.454 3.07 0.047 0.155 0.89 0.411 
Ex* A 1 1.677 11 .35 0.001 0.532 3.06 0.081 
Ex*T 1 0.389 2.63 0.105 0.320 1.84 0.175 
A*T 1 16.757 113.45 <0.001 9.093 52.34 <0.001 
Po*Se*Ex 2 0.130 0.88 0.415 0.452 2.60 0.075 
Po*Se*A 2 0.083 0.56 0.571 0.145 0.83 0.435 
Po*Se*T 2 0.017 0.12 0.891 0.011 0.07 0.936 
Po*Ex*A 1 <0.001 <0.01 0.999 0.045 0.26 0.610 
Po*Ex*T 1 0.111 0.75 0.387 0.072 0.41 0.521 
Po*A*T 1 0.053 0.36 0.551 0.036 0.20 0.652 
Se*Ex*A 2 0.126 0.85 0.428 0.068 0.39 0.678 
Se*Ex*T 2 0.532 3.60 0.028 0.346 1.99 0.138 
Se*A*T 2 0.094 0.64 0.530 0.502 2.89 0.056 
Ex*A*T 1 0.194 1.31 0.252 0.004 0.02 0.875 
Po*Se*Ex*A 2 0.129 0.87 0.419 0.034 0.20 0.822 
Po*Se*Ex*T 2 0.310 2.10 0.123 0.303 1.74 0.176 
Po*Se*A*T 2 0.311 2.11 0.122 0.287 1.65 0.193 
Po*Ex*A*T 1 0.004 0.03 0.870 0.048 0.28 0.599 
Se*Ex*A*T 2 0.574 3.89 0.021 0.452 2.60 0.075 
Po*Se*Ex* A *T 2 0.035 0.24 0.787 0.017 0.10 0.908 
Total 719 
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Figure 5.1: Proportion oftime spent crawled out of the water in response to 4 
treatments following exposure to either control (clear columns) or tench cue 
(shaded columns) during development following selection for a) low, b) random or 
c) high response to predation cues. 
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Figure 5.2: Latency to crawl out in response to 4 treatments following exposure to 
either control (clear columns) or tench cue (shaded columns) during development 
following selection for a) low, b) random or c) high response to predation cues. 
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Discussion 

Ly mnaea stagnalis, in both the low avoidance response and randomly selected lines 

demonstrated plasticity to exposure to tench kairomone during development. The 

magnitude of the induced effect was negatively correlated with the innate behavioural 

response, such that there was a large induced behavioural response in the low selection 

line and no such induced response in the high selection line. Genes controlling plasticity 

in behaviour may be linked directly to those controlling the innate response, such that 

genes coding for a low innate response are linked to those producing a large plastic 

response and vice versa (Via 1993, Via et al. 1995). Selection for body size at 

metamorphosis in the yellow dung fly, Scathophaga stercoraria, correlated with 

changes in plasticity, where large selected individuals showed induced reductions in 

metamorphic body size under low food conditions, but small selected lines did not, 

indicating that selection for large size may also have selected for increased plasticity 

(Teuschl et al. 2007). 

Alternatively the plastic response may not be linked to the innate response. Instead all 

the selection lines in this study could have genetic potential to show induced responses 

to developmental exposure to tench kairomones, but a ' ceiling effect' limits the 

maximum level of crawl out response seen in the population (Garland and Kelly 2006). 

If this is the case then the high response selection line may mask any induced response 

to environmental cues by having an equally high constitutive behavioural response. The 

ceiling effect may be caused by a physiological limitation on the time that L. stagnalis 

can spend crawled out, or may be related to some underlying mechanism that is 

associated with crawl-out behaviour. The ceiling effect has been proposed as a limiting 

the degree of plasticity of size at metamorphosis in Rana temporaria responding to 
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pond drying conditions (MeriHi et al. 2004). It was also proposed as an alternative 

explanation as to why no plastic size reduction was seen in the small selected lines of 

Scathophaga stercorari (Teuschl et al. 2007). In both cases it was proposed that there is 

a physiological minimum size at which metamorphosis can occur successfully. 

The level of plasticity shown in the populations used for this study may reflect past 

micro-evolution resulting from the conditions in which they are found. Migration 

between populations found in distinct habitats, in this case with different predator 

regimes, may favour the evolution of plasticity in traits responding to the differences 

between the habitats (Kingsolver et al. 2002). Plastic response in this case may reduce 

the effect of natural selection in the field in individuals moving into fish habitats by 

reducing selection pressure (Fordyce 2006), such that if eggs are laid in a habitat with 

fish predators offspring will produce higher levels of anti-predator behaviour. It has 

been proposed that the ability to show plastic responses may contribute towards the 

invasive ability of a species (Parsons and Robinson 2006, Richards et al. 2006). 

Gastropod species within the family Lymnaeidae vary considerably in their ability to 

colonise different habitats, potentially in part due to slow responses to different predator 

regimes in each environment. Species comparisons within this clade on how responses 

to environmental cues during development affect behavioural responses to potential 

predatory species may shed light on why some lymnaeid species are common in several 

different habitats (e.g. Lymnaea stagna/is and Radix balthica), whilst others appear 

more specialist and are restricted in the habitat type they can colonise (e.g. Radix 

auricularia and Omphiscola glabra). 

Costs of plasticity can include maintaining sensory and regulatory systems to produce a 

plastic response, the need to obtain information from a potentially risky environment to 
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produce the correct response or constraints on adaptation of an optimal phenotype 

(DeWitt 1998, Relyea 2002a, MeriHi et al. 2004). Lag times may occur between 

variation in the environment and expression of a phenotype, resulting in a costly mis­

match (Padilla and Adolph 1996, Gabriel 2006, Hoverman and Relyea 2007). There 

may also be costs associated with inappropriate responses to novel species (Langerhans 

and DeWitt 2002, Schlaepfer et al. 2005). These costs are thought to result in selection 

against plasticity in traits in populations where it is not required. The lack of difference 

between populations found here indicates that this selection against plasticity is not 

occurring under natural conditions as the populations come from high (South Drain) and 

low (Chilton) risk environments with respect to fish predation (Chapter 3: Dalesman et 

al. 2007b ). The plastic response is retained at a high level in populations not exposed to 

predators, possibly as selection against a plastic response in the absence of predators is 

weak, and the high level of response seen in crawl out behaviour here may be restricted 

from increasing any further by other physiological limitations unassociated with 

predator recognition or the response. 

The increase in behavioural avoidance following exposure to tench kairomones 

contradicts the findings ofRundle et al. (2004) who found that Smm L. stagna/is 

reduced their behavioural avoidance of fish kairomones following exposure to 

kairomones during development. They proposed that this was due to an increase in shell 

thickness providing increased morphological protection resulting in trait compensation. 

This contradiction may be due to a difference in kairomone exposure between the two 

studies: in Rundle et al. (2004) exposure was constant, whereas in this study kairomone 

addition only occurred every four days. Alternatively it may be due to exposing L. 

stagna/is to predator cues from an earlier stage of development. Morphological defences 

are potentially more costly than behavioural defences (DeWitt 1998, Trussell and 
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Nicklin 2002), and may also incur further costs if they lag behind environmental change 

(Padilla and Adolph 1996, Gabriel et al. 2005, Hoverman and Relyea 2007), as such 

they may only be induced under constant predation threat. Cue strength decays 

exponentially over time (Turner and Montgomery 2003), therefore the snails in this 

study will not have been under constant exposure to kairomones. Although laboratory 

rearing has not affected the behavioural responses between F 1 and F3 generations, there 

is also the possibility that the morphological response, or the relationship between 

morphology and behaviour, has been affected by rearing successive generations under 

controlled conditions. 

These results indicate that selection for the constitutive elements of anti-predator 

behaviour is under a different control mechanism to the induced response from 

prolonged exposure to tench kairomones during development. To untangle the 

relationship between the level of innate response and the degree of plasticity in the 

response shown in L. stagna/is crawl out behaviour, further work is required where 

selection for plasticity rather than for the value of the constitutive response is carried 

out. The relative ease with which selection for behavioural traits can be carried out, and 

the potential for plastic responses in morphology (Rundle et al. 2004) as well as 

behaviour (Chapter 2: Dalesman et al. 2006), make L. stagna/is and ideal model to test 

the relationship between plastic and constitutive responses. 

I have previously demonstrated that exposure to predation cues increased the perceived 

risk to tench kairomones alone (Chapter 2: Dalesman et al. 2006). Here I demonstrate 

that prolonged exposure to tench kairomones during development can increase the anti­

predator behaviour of a population, generally showing a low response to predation cues. 

Combined with differences in the innate response between populations (Chapter 3: 
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Dalesman et al. 2007b), which is due to genetic adaptation (Chapter 4: Dalesman et al. 

in review), these data indicate that L. stagna/is has evolved to utilise all available 

information to identify potential predators in their environment and respond 

appropriately. 
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CHAPTER6 

Phylogenetic relatedness and ecological interactions determine anti­

predator behaviour. 

Dalesman, S., Rundle, S. D., Bilton, D. T. & Cotton, P.A. 2007. Phylogenetic 
relatedness and ecological interactions determine anti-predator behaviour. 
Ecology. In Press. 
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Abstract 

Interspecific recognition of alarm cues among guild members through 'eavesdropping' may 

allow prey to fine-tune anti-predator responses. This process may be linked to taxonomic 

relatedness, but might also be influenced by local adaptation to recognize alarm cues from 

sympatric species. I tested this hypothesis using anti-predator responses of Lymnaea 

stagna/is (L.) to alarm cues from damaged conspecific and ten heterospecific gastropod 

species. As predicted, the magnitude of anti-predator response decreased significantly with 

increasing phylogenetic distance, but increased when species were naturally sympatric 

(defined as species co-habiting in the same water body) with the source population of L. 

stagna/is. The responses to sympatric species were higher overall, and the relationship 

between genetic distance and alarm cue response was stronger when tested with sympatric 

species. This is the first study to demonstrate that population sympatry influences innate 

anti-predator responses to alarm cues from intraguild members and suggests that responses 

based on phylogenetic relationships can be modified through local adaptation. Such 

adaptation to heterospecific alarm cues suggests that species could be at a disadvantage 

when they encounter novel intraguild members resulting from species invasion or range 

expansion due to a reduction in the presence of reliable information about predation risk. 
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Introduction 

Biological signals produced by organisms are generally intended to communicate only 

with conspecific individuals conferring benefit to the signaller, but may be intercepted 

by heterospecific individuals through 'eavesdropping' (Stowe et al. 1995, Bradbury and 

Vehrencamp 1998). Eavesdropping implies no benefit to the signaller, but may be of 

benefit to the receiver, for example in locating resources or identifying potential 

competitors, and has been found to be important in a wide variety of taxa (Catchpole 

and Leisler 1986, Stowe et al. 1995, Taga and Bassler 2003, Symonds and Wertheim 

2005, Runyon et al. 2006). Eavesdropping on alarm cues from heterospecific intraguild 

members has been found in several species and may be used to provide additional 

information about potential predation risk (Stenzler and Atema 1977, Mirza and Chivers 

2001a, Hazlett and McLay 2005, Schoeppner and Relyea 2005). 

In communication systems where it is beneficial to both signaller and receiver to 

respond to related heterospecifics, phylogenetic relationships generally appear to 

explain the patterns observed, for example, the similarity of chemical aggregation 

signals in closely related Drosophila spp. (Symonds and Wertheim 2005) or attraction 

of Aplysia spp. to heterospecifics during egg laying (Cummins et al. 2005). In these 

cases, there is a benefit to all individuals to oviposit in the same site, irrespective of 

their species. The interaction between evolutionary history and local adaptation in 

shaping interspecific communication has also been investigated in relation to sexual 

signals, where it has been shown that differences between signalling systems are more 

pronounced in sympatric species pairs (Ryan and Rand 1995, Symonds and Elgar 

2004). Phylogeny is not a good predictor of the degree of divergence seen between 

sexual signals when species are found sympatrically, though exceptions have been 

found (Smith and Florentino 2004). The importance of sympatry in shaping sexual 
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signals suggests that local adaptation to avoid heterospecific interactions is acting on 

this signalling system, and in many cases counteracting the effects of phylogenetic 

relatedness. 

In predator-prey systems, recognition of alarm cues from closely related species is 

not considered communication as there is no benefit to the signaller (Bradbury and 

Vehrencamp 1998), however it may be ofbenefit to the receiver to assess predation risk 

accurately and, hence, may reduce the high fitness costs associated with predation (Lima 

and Dill 1990). There is considerable evidence that alarm cues are conserved within 

phylogenetic groups (Pfeiffer 1977), with responses to alarm cues from closely related 

species generally being stronger than from those more distantly related (Snyder 1967, 

Stenzler and Atema 1977, Brown et al. 2003, Vilhunen and Hirvonen 2003), though the 

nature of the relationship between phylogenetic distance and response has only been 

investigated for the tadpole Hyla versicolor (Schoeppner and Relyea 2005). Snyder (1967) 

proposed that responses to alarm cues from heterospecific species sharing a common 

predator would be advantageous to a prey species regardless of taxonomic relationships. 

This theory would suggest that the effect of phylogenetic relatedness might be modified via 

the effects of sympatry or allopatry. There have been several studies which suggest that 

sympatry may modify responses to alarm cues from heterospecific species, however, they 

either used wild caught individuals so could not rule out the effects of experience (Stenzler 

and Atema 1977, Chivers et al. 1997, Rochette and Dill 2000, Sullivan et al. 2003, Hazlett 

and McLay 2005) or used too few species to investigate any interaction with the effects of 

phylogenetic relatedness (Laforsch et al. 2006). 

In aquatic systems chemical cues often provide the most reliable source of information 

about a predator where other information, such as visual cues, may be impaired by poor 
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visibility (Dodson et al. 1994). Information from predator diet or injured conspecifics can 

be used to assess current predator feeding activity and hence associated risk from a 

potential predator (Chapter 2: Dalesman et al. 2006), or to learn to identify a previously 

unrecognized predation threat (Chivers and Smith 1998). With strong selective forces 

operating on prey species to respond correctly to predation threat it seems probable that the 

relationship between phylogenetic distance of intraguild members from a responder and 

anti-predator response to alarms cues will be modified by local adaptation. 

Here I investigated the innate response of a freshwater gastropod, Lymnaea 

stagnalis (L.) to alarm cues from heterospecific prey guild members, presented with cues 

from a fish, (tench, Tinea tinea L.) known to feed on gastropods (Bronmark 1994). I used 

ten heterospecific freshwater gastropods at differing phylogenetic distance from L. 

stagna/is, five of which are found sympatrically to the source population of L. stagna/is 

used during behavioural trials, and five of which are allopatrically distributed. In this case 

species were considered allopatric if they were not found in the same body of water (South 

Drain) as the L. stagna/is population (Dalesman, unpublished data), allopatric species in 

some cases came from a site less than 1km away. I tested the following hypotheses: (1) that 

the innate anti-predator response of L. stagna/is to alarm cue, paired with predatory fish 

cues, would decrease with increasing phylogenetic distance of the heterospecific snail 

species used to produce alarm cue; and (2) that the response to alarm cue from species 

found sympatrically to the L. stagna/is population would induce stronger anti-predator 

behaviour than alarm cue from species found allopatrically distributed relative to the L. 

stagna/is population. 
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Methods 

Study Organisms 

Adult L. stagna/is used to establish the snail culture for behavioural trials were collected 

from South Drain, a drainage canal on the Somerset Levels, U.K. (51.18N 2.88W) in 

September 2005. Repeated field sampling between June 2004 and June 2006 identified 

which gastropod species were present at the South Drain site. In the laboratory, adults were 

kept in aquaria with 41 of aerated artificial pond water (ASTM 1980) with 90 mgr1 [Ca2+] 

(Rundle et al. 2004). They were maintained at 15±1 °C under a 12:12light:dark cycle, and 

fed on Iceberg lettuce and spinach. To minimize the influence of adult experience on 

juvenile development and behaviour, the Fl snails used during behavioural trials were bred 

from egg masses laid a minimum of two months post collection and were then maintained 

separately in the same conditions as the adults. Heterospecific adult snails were collected 

from several locations (Table 6.1) to raise F1 snails that were crushed to produce alarm cue. 

All snails used had a standard spire height of 6±0.5m.m except in the case of ramshorn 

species (Planorbis planorbis and Planorbarius corneus) where spiral diameter measured 

6±0.5mm. 

Genetic distance between species was calculated using a 370bp section of 18S rDNA 

obtained from Genbank (Table 6.1 ). Sequences were aligned using ClustalX 1.83 

(Thompson et al. 1997) and a pair-wise distance matrix calculated in TREE CON 3.0 (V an 

de Peer and De Wachter 1993) using the K.imura two-parameter model (K.imura 1980), with 

the transition/ transversion ratio estimated from the data and insertions/deletions taken into 

account. As no 18S rDNA sequence is currently available for Lymnaeafusca, the sequence 

for L. palustris was used as a closely related species within the sub-genus Stagnicola; 

Lymnaea palustris is the only other British species found in the subgenus (Anderson 2005), 
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and is known to be very closely related to L. Jus ea based on ITS-2 sequence data (Bargues 

et al. 2001 ). 

Odour production 

Predator and alarm cues were produced in the same way in all the experiments (Chapter 2: 

Dalesman et al. 2006). Tench, Tinea tinea, were used to produce predator cue as they are a 

known natural predator of freshwater gastropods (Bronmark 1994). The tench were fed 

Nutri-Flake0 (Hozelock Cyprio, U.K.), which contains no mollusc extracts, and hence 

avoided potential dietary cues affecting the trials. Predator cue water was produced by 

placing three tench (length 1 0± 1 cm) into 4 1 of aerated artificial pond water for 1 hour. 

Alarm cue was produced by mixing three crushed snails (6±0.5 mm) into 41 of aerated 

artificial pond water. Predator plus alarm cue water was produced by mixing three crushed 

snails (6±0.5 mm) into 4 1 of tench cue water. The control was the addition of aerated 

artificial pond water with no cues added. Crushed snails were used as opposed to feeding 

snails to tench to ensure that the alarm cue concentration paired with tench cue was kept at 

a similar level for all behavioural trials, the strong behavioural response in the paired cue 

treatment in a previous study suggested that L. stagna/is responds to alarm cue from 

crushed snails paired with tench cues as a predation threat (Chapter 2: Dalesman et al. 

2006). 
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Table 6.1: Gastropod species used to produce alarm cue. Location where adult 
stocks were coUected and Genbank accession number for the source of 18S 
sequence data used to calculate Kimura 2-parameter genetic distance is shown. 
Species found sympatricaUy to the Lymnaea stagnalis population used as 
responders are shown as originating from South Drain. Nomenclature foUows 
Anderson (2005). 

Order and Gastropod Original Genbank Kimura 2-
Family Species population Accession parameter 

location distance from L. 
stagna/is 

Basommatophora Lymnaea stagna/is South Drain Z73984 0 
Lymnaeidae (Linnaeus, 1758) 51.18N 2.88W 

Lymnaeafusca (C. North Moor Z73983 0.543 
Lymnaeidae Pfeiffer, 1821) * 51.07N 2.96W 

Omphiscola glabra Bod.min Moor Z73982 1.094 
Lymnaeidae (Milller, 1774) 50.56N 4.67W 

Galba truncatula Clyst St Mary Z73985 3.645 
Lymnaeidae (Miiller, 1774) 50.71N 3.46W 

Radix auricularia South Drain Z73980 5.265 
Lymnaeidae (Linnaeus, 1758) 51.18N 2.88W 

Radix balthica South Drain Z73981 5.552 
Lymnaeidae (Linnaeus, 1758) 51.18N 2.88W 

Physa fontinalis North Moor AY577486 8.259 
Physidae (Linnaeus, 1758) 51.07N 2.96W 

Physella acuta South Drain AY282600 8.561 
Physidae (Draparnaud, 51.18N 2.88W 

1805) 
Planorbis Chilton Moor AY577497 9.081 

Planorbidae planorbis 51.19N2.89W 
(Linnaeus, 1758) 
Planorbarius South Drain AY577494 10.022 

Planorbidae comeus (Linnaeus, 51.18N 2.88W 
1758) 

Mesogastropoda Bithynia South Drain AF367675 12.497 
Hydrobidae tentacu/ata 51.18N 2.88W 

(Linnaeus, 1758) 

* Sequence used is for Lymnaea palustris (Muller, 1774) which is very closely 

related to Lymnaeafusca (Bargues et al. 2001). 
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Behavioural Assay 

Behavioural trials were carried out between January and May 2006 in the Experimental 

Aquatic Ecology Laboratory, University of Plymouth in conditions analogous to those 

in which the snails were maintained (Chapter 2: Dalesman et al. 2006). 24 individuals 

were used for each treatment combination, with each snail used once only, giving a total 

of 1056 snails. Behavioural chambers consisted of a white plastic dish, 165mm diameter 

x 60mm depth (A.W.Gregory & Co. Ltd., U.K.), with a longitudinally sectioned white 

PVC pipe, 36mm long, 30mm diameter, attached open side down to the centre using 

non-toxic sealant (Wickes Ultimate Sealant and Adhesive0
, Wickes Building Supplies 

Ltd., U.K.) to provide a refuge. Twenty-four chambers were set up for each behavioural 

trial, and juvenile snails were acclimated to behavioural chambers for 24 hours in 630ml 

of artificial pond water prior to behavioural assays. 70ml of cue water was added to 

each chamber at the start of the behavioural assay to give a final concentration of 10% 

cue water, with 6 chambers having each of the four cue treatments added on each day. 

To avoid cross-contamination, alarm cue from a single species was used on each day, 

resulting in four behavioural trials in total for each snail species. The position of the 

chambers in which each treatment level was added was fully randomized within the 24 

chambers for each behavioural trial. The position of each snail within the behavioural 

chambers was recorded every 5 minutes for 2 hours following cue addition. Crawl-out 

behaviour is the main anti-predator response of L. stagna/is to tench (Chapter 2: 

Dalesman et al. 2006), hence only results from crawl-out behaviour are presented here. 

Crawl-out behaviour was analyzed using two variables: the proportion of total time 

spent crawled out of the water; and the latency to crawl-out, calculated as the proportion 

of total time during the trial before crawl-out behaviour was observed (Cotton et al. 

2004). 
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Data Analysis 

Data were analyzed as an unbalanced ANCOV A design using General Linear Model 

(GLM) in Minitab13. Alarm cue, tench cue and environment (whether snails were 

found sympatrically or allopatrically) were treated as fixed factors, and pair-wise 

genetic distance between L. stagnalis and each of the species used to produce alarm cue 

was used as the covariate. Both time spent crawled out and latency to crawl out were 

calculated as proportions of total duration, and were arcsine-square root transformed 

prior to analysis (Sokal and Rohlf 1995). Post-hoc tests on response means versus 

genetic distance were carried out using a regression analysis in Minitab13. 

Results 

The principal anti-predator behaviour of Lymnaea stagna/is, crawling above the water 

line, was greatest in response to alarm and tench cue combined, both in the mean 

proportion of time spent out of the water and the mean latency to crawl out. The effects 

of genetic distance or sympatry/allopatry were not seen in response to the control or 

either cue presented alone. However, in response to combined cues (alarm and tench 

cue) the proportion of time spent crawled out declined significantly with genetic 

distance between L. stagna/is and the heterospecific snail. This trend was modified 

depending on whether the snail species used is found allopatrically or sympatrically to 

the responding population of L. stagna/is; the response to allopatric species was 

significantly lower than that to sympatric species, with a weaker decline with increasing 

genetic distance (Fig.6.1 a: Table 6.2: AN COV A: 4-way interaction: F 1,1040 = 4.84, P = 

0.028). In response to combined cues the latency to crawl out was significantly longer 

with increased genetic distance; this response was again modified by whether 
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heterospecifics used to produce alarm cue were found sympatrically to the L. stagna/is 

population, with a significantly shorter latency to crawl out when crushed snails were 

found in sympatry (Fig. 6.1 b: Table 6.2: ANCOV A: 4-way interaction: F 1,104o = 3.95, P 

= 0 .047). 

Table 6.2: Results from 4-way ANCOV A using genetic distance as the covariate. 
Results for proportion of total time spent crawled out and latency to crawl-out in 
response to genetic distance, environment (sympatry/aUopatry), alarm cue and 
tench cue. N = 24 for aU treatment combinations. 

Proportion of time Latency 

Mean Mean 
Source d.f. F p F p 

square square 

Kimura 2-parameter 
I 5.53 I05.34 <O.OOI 7.23 74.26 <O.OOI 

genetic distance (Dis) 

Environment (Env) 1 3.04 57.94 <0.001 3.77 38.72 <0.00 

Alarm cue (AI) 1 7.19 136.75 <0.001 5.83 59.85 <0.001 

Tench cue (Te) 1 15.35 292.21 <0.001 20.16 207.09 <O.OOI 

Env*Dis 1 0.90 17.14 <0.001 1.34 I3 .80 <O.OOI 

Al*Dis 1 2.15 40.85 <0.001 1.18 12.15 0.001 

Te*Dis 1 4.64 88.29 <0.001 3.78 38.84 <0.001 

Env*AI 1 1.30 24.80 <O.OOI 1.69 17.31 <0.001 

Env*Te 1 2.89 54.9I <0.001 3.06 31.48 <O.OOI 

Al*Te I 7.92 I50.79 <0.001 8.13 83.53 <O.OOI 

Env*AI*Dis I 0.29 5.53 O.OI9 0.58 5.99 0.015 

Env*Te*Dis I 0.87 I6.46 <0.001 1.20 12.36 <O.OOI 

Al*Te*Dis 1 2.39 45.42 <O.OOI 1.84 18.94 <O.OOI 

Env*AI*Te I l.I9 22.69 <0.001 1.22 I2.63 <O.OOI 

Env* AI*Te*Dis I 0.25 4.84 0.028 0.38 3.95 0.047 

Total 1055 
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Post-hoc analysis of the response to combined cues (alarm and tench cue together) 

showed that when alarm cue was produced by sympatric species there was a highly 

significant relationship between genetic distance and strength of the response for both the 

proportion of time crawled out (Fig. 6.1a; R2(adj) = 0.90, P = 0.003) and latency to crawl 

out (Fig. 6.1b; R2(adj) = 0.94, P = 0.001). However, this relationship was not apparent 

when the species used to produce alarm cue were allopatric, with a weaker non-significant 

relationship between genetic distance and proportion of time spent crawled out (Fig. 6.1 a; 

R2(adj) = 0.63, P = 0.070), and no apparent relationship between genetic distance and 

latency to crawl out (Fig. 6.1 b; R2(adj) < 0.01 , P = 0.396). 
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Figure 6.1: The relationship between genetic relatedness and sympatry/allopatry in the anti­
predator response of Lymnaea stagna/is to tench and alarm cues combined. Individual symbols 
show the mean response(± s.e.) towards each species (• = sympatric species, o = allopatric species), 
with lines indicating the trend in relationship between behaviour and Kimura 2-parameter genetic 
distance for (a) Proportion of time spent crawled out of the water. (b) Proportion latency to crawl 
out. N = 24 for each data point. 
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Discussion 

This study demonstrates that the magnitude of innate avoidance responses shown by 

Lymnaea stagna/is to heterospecific alarm cues paired with predator cues declines with 

phylogenetic distance. This declining response concurs with findings on innate tadpole 

behaviour (Hyla versicolor) where timing of evolutionary divergence was compared with 

response level (Schoeppner and Relyea 2005). Although the relationship between genetic 

distance and anti-predator response of L. stagna/is is very strong when the responding 

population is found sympatrically to the species used to produce alarm cues, this 

relationship is weaker and not significant when considering the response to allopatric 

species, particularly in the latency to crawl out. This is the first evidence to demonstrate 

that the effect of relatedness on prey responses to heterospecific alarm cues may be 

modified by ecological context and may disappear if the species used are allopatric to the 

responding population. 

The agreement between my findings for sympatric species and those of other studies 

(Mirza and Chivers 2001 a, Schoeppner and Relyea 2005, Kelly et al. 2006) suggests that 

the influence of phylogenetic relatedness may indeed be widespread in chemical alarm 

signalling. This relationship between response and genetic distance indicates there may be a 

gradual mode of evolution in either the signalling chemicals or the way in which they are 

detected (Jovelin et al. 2003, Symonds and Wertheim 2005, Kelly et al. 2006). The lack of 

response by L. stagna/is to alarm cues presented in isolation alone concurs with previous 

findings for this species (Chapter 2: Dalesman et al. 2006), and may reflect the general 

unreliability for prey species of using alarm cues alone, as it provides no information about 

the nature of the threat (Chivers and Smith 1998). 

The significant effect of sympatry on intensifying anti-predator response suggests 

that L. stagna/is has either conserved its response relative to allopatric species or elevated it 

towards sympatric species. This type of adjustment has been demonstrated previously in 
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response to predator cues where individuals from environments with high numbers of 

predators show a greater innate response to predator cues than those from low risk 

environments (Boersma et al. 1998, Magurran 1999, Abjornsson et al. 2004), although this 

may be due to transgenerational effects as well as local adaptation (Agrawal et al. 1999). 

However, our study is the first where sympatry has been shown conclusively to affect the 

innate anti-predator response to alarm cues from heterospecifics. Previous studies that 

inferred evidence for an effect of sympatry did not control adequately for either the effects 

of experience, by using wild caught individuals (Stenzler and Atema 1977, Chivers et al. 

1997, Rochette and Dill2000, Sullivan et al. 2003, Hazlett and McLay 2005), or used too 

few species to draw strong conclusions (Laforsch et al. 2006). Together these factors may 

account for the bias towards the importance of phylogenetic relationships affecting the 

response to alarm cues in the current literature. 

Although tench are likely to represent the main predation threat to aquatic 

gastropods in the site where our responding population was sourced, it is likely that L. 

stagna/is and co-habiting gastropod species will encounter other predator threats. The 

presence of generalist predators or specialist predators that focus on the taxonomic group 

including the prey species of interest, is likely to increase selection to respond to 

heterospecific cues, whereas specialist predators that focus on other taxonomic groups 

would select against costly induced responses to heterospeciflc cues. The degree to which a 

taxonomic group is represented in the predator' s diet will affect the degree to which a 

response to heterospecific alarm cues is appropriate. For example, both crayfish, 

Paeifastacus leniusculus, and tench, Tinea tinea, consume a large number of gastropods, so 

there is a high probability that when they are actively foraging in an area all gastropod 

species have a high risk of predation (Bronmark 1994, Nystrom et al. 2001). However, if a 

rainbow trout (Oncorhynehus mykiss) which specializes on aquatic insects, happens to 

consume an aquatic gastropod, it is unlikely that they will pose a significant threat to other 
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gastropods in the vicinity (Nystrom et al. 2001). This may have two effects on the response 

to alarm cues from heterospecifics: firstly the response may be predator specific, such that 

the prey species only responds to heterospecific cues when paired with cues from specific 

predators', secondly, the selection to respond to heterospecific species may only occur 

when there are predators present that predate several species within a taxonomic group. 

A general reliance on heterospecific cues to indicate the level of predation risk in 

the environment may be detrimental if invasive intraguild species move into the habitat 

whose alarm cues are not recognized. In this case the responding species may under­

estimate the risk of predation resulting in a reduced anti-predator response and potentially 

increased vulnerability to predation. Likewise, if a species colonizes a novel habitat it may 

encounter new intraguild members. The phylogenetic relationship between the responding 

species and the novel intraguild members is likely to influence the potential for recognition 

of alarm cues as demonstrated in this study. Adaptive responses to a novel species appear to 

have occurred historically in the population of L. stagna/is used as responders. I found that 

L. stagnalis exhibits an elevated response to the invasive gastropod Physella acuta. This 

response to a syrnpatric alien is elevated relative to that for a closely related native British 

species, Physafontinalis found allopatrically distributed relative to the South Drain L. 

stagna/is population. 

Differences between populations in response to alarm cues have previously been 

suggested to occur through learning (Brown 2003), however there is good support for 

genetic differentiation in response to predators (Abjornsson et al. 2004, Kawecki and Ebert 

2004) and it would therefore seem highly likely that prey species would also show adaptive 

variation in response to alarm cues. It appears, in my study, that individuals from the 

population used as responders have modified their response towards sympatric species. As 

my responders were naive lab reared snails I am able to rule out effects of experience, 

which have been used previously to explain strong responses to sympatric species (Brown 
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2003). Here it is clear that local adaptation rather than behavioural plasticity is important. 

My study demonstrates for the first time that syrnpatry can enhance innate responses to 

heterospecific alann cues and how this interacts with phylogenetic relationships to fine-tune 

anti-predator behaviour. 
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CHAPTER 7 

Discussion 
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The individual chapters in this thesis present detailed discussions ofhow the results 

relate to other studies, therefore in this chapter I will concentrate on how the findings in 

the separate chapters synthesise to provide a general picture of howL. stagna/is 

modifies its anti-predator behaviour to match its environment. The general aims of this 

thesis were to ask whether L. stagna/is possess innate elements in its anti-predator 

behaviour, and if innate behaviour could be altered through learning about current 

predation risk. I investigated whether innate elements of the behaviour showed local 

modification to predator regime. A selection experiment was then used to find out if 

population differences were due to genetic adaptation for a constitutive response, and 

how rapidly this response may evolve under selection. Utilising the selection lines, I 

then investigated whether there was also a plastic response when snails underwent 

development under exposure to predator cues. Finally, I addressed the question of 

whether L. stagna/is was able to utilise information from intraguild members to assess 

predation risk, and whether this response depended on phylogenetic relationships or co­

habitation. 

The aquatic gastropod Lymnaea stagna/is was found to fine-tune its behavioural 

responses to predator cue paired with alarm cues to match the predator regime it 

experiences. Lymnaea stagna/is was adapted to exhibit an elevated innate response to 

predation cues from tench when originating from a population naturally encountering 

these predators (Chapter 3&4: Dalesman et al. 2007b, Dalesman et al. in review). 

Populations varied in the degree of flexibility to predator presence in the environment 

following long term exposure to predator kairomones (Chapter 5: Dalesman et al. in 

prep.). Lymnaea stagna/is may also increase perceived risk through cue association 

learning in response to cues indicative of predator foraging activity (Chapter 2: 

Dalesman et al. 2006). As well as information on predator presence, L. stagnalis is able 
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to use alarm cues from heterospecific gastropods in combination with predator 

kairomones to assess risk levels, and this perception of risk is higher when species are 

found in the same water body as the responding population (Chapter 6: Dalesman et al. 

2007a). 

The degree to which L. stagna/is is behaviourally adapted to its local environment is not 

unexpected as predators may have both a direct impact on fitness through predation, but 

can also have an indirect effect on fitness through lost opportunities to feed or reproduce 

(Lima and Dill 1990). The relatively low dispersal abilities of freshwater gastropods, 

due to the fact that most species are only able to tolerate short periods out of the water 

due to the risk of desiccation, means that these organisms are unable to escape predation 

by moving to a less risky environment. Therefore, in order to reduce the chance of 

predation, L. stagna/is needs to adapt to match the local predation risk as closely as 

possible and to minimise fitness costs. 

Lymnaea stagna/is has been found in previous studies to show an induced 

morphological response to the presence of predator cues (Rundle et al. 2004). However, 

morphological responses in gastropods are often costly, both in terms of energy diverted 

from soft body growth and sexual development towards shell excretion (Brookes and 

Rochette 2007), the costs of carrying a heavier shell, and the potential reduction in 

space available for soft tissues (Trussell 2000b, Turner 2004, Brookes and Rochette 

2007). Therefore using morphological defence as an innate response may be costly if 

predators are not encountered. Behavioural defences may also have associated costs in 

terms of maintaining the sensory systems to respond to predators when they are 

encountered (DeWitt 1998), but relative to morphological defences these costs are likely 

to be low. Behavioural responses also have very little lag time between induction and 
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display of the response, and are potentially easily reversed, so in a fluctuating 

environment they can respond rapidly to changes in risk (Gabriel et al. 2005). The rapid 

changes in perceived risk, both in the rapid increase in anti-predator behaviour in 

response to predator kairomones, and also a rapid decline in this response, provide an 

example of the speed with which behavioural changes can respond to the predation 

environment (Chapter 2: Dalesman et al. 2006). 

Innate responses were found to some degree in anti-predator behaviour in all the 

populations of L. stagna/is, however, the responses to tench cues paired with alarm cues 

were stronger in populations found naturally co-habiting with predatory fish (Chapter 3: 

Dalesman et al. 2007b ). This increased innate response indicates, as expected, that there 

is selective pressure on animals co-habiting with predatory fish to respond with anti­

predator behaviour on their first encounter with these predators, and that these costs 

outweigh costs of maintaining the sensory and response systems necessary. The innate 

response toward predation (combined) cues was also present in populations that do not 

normally encounter predatory fish, though the response to fish cues alone was not. This 

indicates that either the mechanism to respond to fish cues alone is separate from that 

used to respond to combined cues, or that there is a threshold in sensory perception that 

needs to be passed before responses are seen to fish cues alone. Results from a selection 

experiment, selecting over two generations for high and low crawl out responses in two 

populations from high (South Drain) and low (Chilton) predator regimes seemed to 

support the former explanation. The innate response to combined cues was increased to 

a similar level to that seen in the populations naturally encountering predatory fish, 

however the response to tench cue alone did not increase in response to this selection in 

either population (Chapter 4: Dalesman et al. in review). This suggested that the 

response to tench cue alone is not linked to the response to combined cues, but has been 
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selected for separately. The generally lower level of response to tench cue alone 

suggests that a non-foraging fish is less of a predation risk than a foraging one. 

In this case, selection was used to understand the mechanism for differences between 

the populations showing different levels of innate behaviour in the Fl generation. Fl 

behaviour may be affected by transgenerational induction based on the parental 

environment (Agrawal et al. 1999) or may be due to genetic adaptation as found in the 

morphological response of a proportion of the population of an intertidal barnacle, 

. 
Chthamalus anisopoma, responding to the presence of a predatory crab (Lively et al. 

2000). Manipulation of the response level, by selecting out high and low responding 

individuals, indicated that there is a strong genetic basis for the degree of crawl-out 

response seen and that levels of divergence between high and low responding 

populations can be selected for in only two generations, indicating that rapid 

microevolution ofpopulations is possible (Chapter 4: Dalesman et al. in review). 

This adaptation for a fixed response was altered by exposure to feeding tench, i.e. tench 

and alarm cues paired together, raising the perceived risk associated with tench cue over 

short periods. However, exposure to predator cues may not always be paired with alarm 

cues from conspecifics, or recognised heterospecifics (Chapter 6: Dalesman et al. 

2007a). For example, tench may feed on other invertebrate taxa such as insects and 

crustaceans when gastropods are at iow abundance in the environment. Furthermore, 

tench are dormant and do not feed during winter months, so it is possible that L. 

stagna/is may be exposed to tench cues for considerable periods of time without those 

cues being paired with recognised alarm cues. To test the potential effect of exposure to 

tench cue alone, F3 L. stagna/is from each of the selection lines were exposed to tench 

cues from laying onwards (Chapter 5: Dalesman et al. in prep.). The effect of exposure 
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to tench kairomones was to increase the crawl-out response in the low and randomly 

selected lines, but not in the high selection line. This suggested that either the plastic 

response to exposure to tench kairomones during development is linked to the mean 

innate response, such that inheritance of a higher innate response occurs alongside 

inheritance of a reduced plasticity in the response or, more likely, that there is a ' ceiling 

effect' occurring (Teuschl et al. 2007), so that the response seen in the high response 

line is the maximum crawl-out response possible. 

The ability to show this type of plastic response to exposure during development means 

that L. stagna/is is not dependent on genetic adaptation of constitutive responses to 

allow it to respond in a novel environment, but can demonstrate plasticity in response to 

tench kairomones. The persistence of the plastic response in both low selection lines, 

and also in a population not naturally exposed to predatory fish (Chilton), indicated that 

maintaining the ability to show this type of plasticity does not carry high fitness costs, 

or it is likely it would have been lost from the population (Relyea 2002a, b, Boeing et 

al. 2006). Potentially there is little cost in maintaining the sensory/recognition systems 

required to respond to cues, indicating that the presence of predatory fish is a reliable 

indicator that those fish will be around for at least part of the snail ' s lifetime. The loss 

of the innate response in environments where predatory fish are not found, indicates that 

this does have associated costs, possibly relating to physiological adaptation which is 

not beneficial when predatory fish are absent. 

Cues associated with predator presence also induced responses, even in populations 

which normally demonstrated a lower innate anti-predator response. This suggests that 

L. stagna/is can maintain flexibility in their anti-predator behaviour following local 
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adaptation. This type of flexibility potentially allows L. stagna/is to persist in a novel 

environment to enable adaptation to occur. 

The maintenance of a plastic response to predators not currently co-existing with the 

population may depend on L. stagna/is having overlapped at some point in their 

evolutionary history with that predator, and is not necessarily the case for species never 

previously encountered by L. stagna/is. The effect ofphylogeny on cue evolution may 

affect the ability to recognise predatory species as it does with recognition of 

heterospecific alarm cues (Chapter 6: Dalesman et al. 2007a). There is some evidence 

that responses to predator threat in other gastropods is related to phylogenetic 

relationships between the predatory species. For example Langerhans and DeWitt 

(2002) found that Physel/a virgata responded morphologically to several different 

species of sunfish (Lepomis cyanel/us, L. gibbosus, L. macrochirus, L. megalotis, L. 

microlophus, Micropterus salmoides) despite only some of these species being 

molluscivorous. In this case the response is mal-adaptive asP. virgata suffers from 

reduced growth needlessly; however, in encounters with potential predators such a 

response may enhance survival. There is also the possibility that the use of cue 

association to enhance the perceived risk from tench cue may also be used to identify 

predators that have not previously been encountered. This is common in fish species 

(Chivers and Smith 1998, Brown 2003, Kelley and Magurran 2003) and has also been 

found in crustaceans (Hazlett 2003), but has not yet been tested in aquatic gastropods. 

Lymnaea stagna/is would prove a useful model to assess how gastropods may respond 

to invasive species as both these hypotheses would be easily tested using the 

methodology developed here. 
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As suggested so far, the ability of an animal to show induced responses, or to utilise cue 

association to recognise previously unknown predatory threat, may allow successful 

colonisation. In freshwater pulmonates there is a high degree of variation in the habitat 

specialisation between closely related species. Some species are widely distributed 

between habitats with differing predator regimes (e.g. L. stagnalis and Radix balthica), 

whereas other are very specialised, such as Radix auricularia, which is only found in 

large water bodies, and Omphiscola glabra that is only found in small temporary water 

bodies. The inability of some of these species to colonise different habitats, as well as 

the ability to cope with varying abiotic conditions, may in part be due to slow responses 

to different predator regimes in each environment. Species comparisons of how 

responses to cue during development affect behavioural responses to potential predatory 

species may shed light on why some lymnaeid species are widespread, whereas others 

are restricted. Comparisons across the phylogeny may be used to shed light on the 

evolution of mechanisms controlling anti-predator behaviour within this taxonomic 

group. 

So far this work has concentrated on interactions between two species, L. stagna/is and 

tench, however there are many other organisms living in the same environment which 

have potential to affect or be affected by predatory interactions. Previous studies have 

shown strong linkages between gastropod prey, their fish predators and macrophyte 

abundance (Bronmark 1994, Turner 1997), showing that the relationship between 

predator and prey may affect relationships at other trophic levels. If co-habiting 

organisms share a common predator then it may be predicted that they will evolve to 

utilise cue from other intraguild members to assess predation risk in the same way that 

they use conspecific cues (Snyder 1967). This theory was tested using alarm cues from 

a number of gastropod species at differing phylogenetic distances from L. stagnalis, 
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some found allopatrically and some sympatrically relative to the source population of L. 

stagna/is (Chapter 6: Dalesman et al. 2007a). Alarm cues from phylogenetically close 

species cause stronger behavioural responses than those of more distantly related 

species. This relationship between response and genetic distance indicates there may be 

a gradual mode of evolution in either the signalling chemicals or the way in which they 

are detected (Jovelin et al. 2003, Symonds and Wertheim 2005, Kelly et al. 2006). 

However, sympatric species also induced a stronger response than allopatric species, 

indicating that local adaptation has occurred to enable L. stagnalis to respond more 

strongly to co-habiting species (Chapter 6: Dalesman et al. 2007a). 

The data presented here provide a considerable body of evidence for the behavioural 

adaptation of L. stagna/is to local environmental conditions, both in terms of predator 

regime (Chapter 3: Dalesman et al. 2007b) and also in terms of responses to alarm cues 

from intraguild members (Chapter 6: Dalesman et al. 2007a). This indicates that L. 

stagna/is may suffer reduced fitness due to a decrease in the accuracy of assessing 

predation risk associated with encounters with unfamiliar species. This may occur 

during invasions of predators or intraguild members into its habitat, or when L. 

stagna/is colonises a new habitat. This may be true for other taxa with limited 

distribution, and may be particularly relevant for freshwater organisms lacking 

terrestrial dispersal stages. 

However, L. stagna/is also appears able to respond to changes in its predator 

environment. Selection on crawl-out behaviour in response to tench cues has the 

potential to occur rapidly, as has adaptation in response to heterospecific intraguild 

members. It appears that adaptation to a novel intraguild member has already occurred 

in the South Drain population of L. stagna/is as it responds more strongly to alarm cues 
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from the invasive snail, Physella acuta, now found living sympatrically with this 

population, than to a closely related native species, Physafontinalis, which is allopatric. 

Other evidence for local adaptation having occurred within the South Drain population 

is that they show a low response to Lymnaeafusca, a closely related allopatric species, 

despite this species living sympatrically with another L. stagna/is population (Chi! ton 

Moor) less than 1 km away. 

When maintained at 20°C an unexpected result from the selection experiment was the 

lack of a difference in the F1 behavioural responses between the South Drain (high risk) 

and Chilton (low risk) populations as might have been predicted from the differences 

between these populations found at 15°C (Chapter 3: Dalesman et al. 2007b ). Analysis 

ofthe crawl out response comparing the two populations at 15°C and 20°C show that 

the crawl out response decreased with an increase in temperature in the South Drain 

population, and increased in the Chilton population (Appendix 3). It is impossible to 

tell, based on the data presented, whether the difference in crawl out response in each 

population between l5°C and 20°C is a response to development under different 

temperature regimes, or a response to the temperature purely during the behavioural 

trials. However it is clear that temperature can, potentially, have a significant effect on 

the way in which L. stagna/is responds to potential predation threats. 

One way in which temperature may affect crawl out behaviour is that dissolved oxygen 

decreased significantly between 51.4% at 15°C and 48.9% at 20°C (t = 2.84, P = 0.01 0, 

d.f. = 21 ). As L. stagna lis is an air breathing pulmonate it may spend more time at the 

waters surface in response to hypoxic conditions, where dissolved oxygen makes 

respiration via the membrane less affective. The metabolic rate is also likely to increase 

at higher temperatures, increasing respiratory rates (Sidorov 2005), which would then 
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increase oxygen demand and surfacing behaviour, and may explain the increase in 

crawl-out behaviour in the Chilton population. A previous study by Sidorov (2003) on 

the effects of temperature on respiration and defensive behaviour found that above 14-

160C despite increases in respiration and locomotion, defensive behaviour was 

inhibited. This reduction in defensive behaviour was suggested to be due to 

temperature-dependent reactions in the neurons underlying the behaviour. This is 

potentially the reason for the reduction in defensive crawl out behaviour seen in the 

South Drain population at the higher temperature. 

Lymnaea stagna/is populations may have evolved divergent physiological responses to 

increased temperature resulting in different behavioural responses. Physiological stress 

has been demonstrated to alter anti-predator behaviour significantly, either altering the 

level of anti-predator behaviour (Nicieza 2000, Sidorov 2003), or altering the type of 

behaviour seen (Villagra et al. 2002). What is clear from these results, and also those of 

Rundle et al. (2004) is that abiotic factors can have a strong influence on anti-predator 

traits in L. stagna/is. The reduction in crawl-out behaviour demonstrated by the South 

Drain population suggests that an increase in summer temperatures may affect the 

ability of this species to demonstrate anti-predator behaviours, and hence may impact on 

the population. 

Aquatic gastropods provide an ideal taxonomic group in which to investigate how the 

mechanisms used to control behavioural and morphological defences may affect the 

way in which an animal can adapt to differing environments, both in terms of 

interactions with novel species and their ability to cope with a changing abiotic 

environment. The interspecific variation in their colonisation abilities and a relatively 

well defined phylogehy means that cross-species comparisons can be used to investigate 
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the evolution of various traits. The work presented in this thesis provides a number of 

novel ways to utilise a simple experimental design to investigate the genetic adaptation 

and plasticity of anti-predator behaviour in pulmonates, which could easily be extended 

to provide cross species comparisons. 

Conclusions 

The work presented here demonstrates that Lymnaea stagna/is has evolved to fine-tune 

its behavioural responses to the predation environment it experiences. Individuals 

exhibited genetic adaptation for fixed responses on first encounter with a potential 

predator, which relates to the predator regime experienced in their natural populations 

(Chapter 3: Dalesman et al. 2007b). This adaptation has the potential to occur within 

just two generations which may allow rapid micro-evolution within populations on 

encountering novel conditions (Chapter 4: Dalesman et al. in review). Lymnaea 

stagna/is also demonstrated a more rapid induced response to the presence of predators, 

both through exposure to fish cues during development (Dalesman et al. in prep.), and 

in increased perception of risk relating to cues associated with predator foraging activity 

(Chapter 2: Dalesman et al. 2006). These induced responses may allow them time to 

adapt on entering an environment with an alternate predator regime, and also potentially 

allow recognition of predators not previously encountered in their evolutionary history. 

As well as the ability to utilise predator cues, L. stagna/is can also use alarm cues from 

heterospecifics to identify predation risk from species with a common predator (Chapter 

6: Dalesman et al. 2007a). This ability appears to have also undergone local adaptation, 

such that responses to sympatric species are stronger than those to allopatric species, 

though the mechanism controlling this needs further investigation. 
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L. stagna/is demonstrates many of the features shown in other aquatic species of local 

adaptation and induced behavioural responses from cue exposure. These results apply 

particularly where organisms are restricted in their distribution to isolated water bodies, 

and therefore cannot escape predation by dispersal, but have to find other means of 

reducing predation pressure through changes in behaviour, morphology and life history. 

Lymnaea stagna/is has proven to be a good model to investigate the mechanisms behind 

these adaptations to life with restricted distribution, and provides insight into how well 

such organisms may cope with change in their environment. The relative ease with 

which pulmonate snails can be obtained and reared in the laboratory suggests they will 

provide good model species to investigate aspects of local genetic adaptation and 

plasticity further. 
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Appendix 1 

Strength of tench cue used. 

The production of tench odour was tested to assess how long tench needed to be left in a 

tank to produce sufficient odour to result in Lymnaea stagna/is producing an anti­

predator response. Three tench of approximately 1 Ocm long were placed in 4 litres of 

artificial pond water for either 5 minutes, one hour or 24 hours. Juvenile L. stagna/is 

from Matford Park, 6±0.5mm shell height, were acclimated to the behavioural chambers 

in 630ml of artificial pond water for 1 hour prior to behavioural trials. Thirty-six snails 

were tested on each of 3 days, with 9 snails randomly assigned to one of four treatments 

(giving a total of27 snails per treatment). 70ml was added to each chamber (to give 

1 0% odour addition), either from 5 minute cue, 1 hour cue, 24 hour cue or control 

(artificial pond water with no tench). Position of individual snails was then noted every 

5 minutes for 3 hours. Crawl out behaviour was used to analyse the anti-predator 

behaviour of L. stagna/is as it has been found to be their primary anti-predator response 

to tench cue. 

No significant difference was found between the 3 odour treatments in either latency to 

crawl out, the proportion of time spent crawled out or the number of individuals that 

crawled out. Odour production of 1 hour was chosen as the most convenient time period 

for all future experiments. 
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Appendix2 

Table A2.1: Results of pair-wise comparisons using ANOSIM between field sites (see 

Chapter 1 ). R values for each pair-wise comparison are below the diagonal and P values 

above the diagonal (bold= significant difference). 

N. 

South Sowy Main Chilto Little Wistari Small 

Drain River Drain n Hook a drain 

0.029 0.029 0.029 0.029 

0.029 0.286 0.286 

Drain 0.865 0.438 0.400 0.029 

Chilton 0.49 0.219 0.657 

Little Hook 0.781 0.563 0.563 

0.76 0.083 0.021 0.156 

0.833 0.167 0.685 -0.148 0.519 
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Table A2.2: Pearson correlation value (upper number in each cell) and associated P-value (lower number in each cell) between 
environmental variables measured at six sites on the Somerset Levels. Bold font = significant correlation between variables. 

Variable [Mi+J [CaL+J Nitrate Phosphate Width Depth pH %0 2 02 !lS adj . for Temperature 
(mg/1) (mgll) (mgll) (mgll) (m) (cm) mgll temperature (oC) 

[CaL+] (mg/1) 0.690 
<0.001 

Nitrate (mg/1) -0.141 -0.052 
0.484 0.796 

Phosphate -0.417 -0.238 0.268 
(mg/1) 0.030 0.232 0.177 
Width (m) -0.222 0.003 -0.212 0.145 

0.266 0.990 0.288 0.469 
Depth (cm) -0.201 -0.004 -0.214 0.161 0.896 

0.316 0.985 0.283 0.422 <0.001 
pH -0.050 0.110 -0.308 -0.113 0.678 0.662 

0.806 0.585 0.118 0.575 <0.001 <0.001 
%02 0.319 0.470 -0.106 -0.347 0.456 0.504 0.635 

0.105 0.013 0.600 0.076 <0.001 0.007 <0.001 
02 mg/1 0.374 0.543 -0.095 -0.368 -0.235 0.463 0.578 0.984 

0.054 0.003 0.639 0.059 <0.001 0.015 0.002 <0.001 
uS adj. for 0.712 0.660 -0.048 -0.170 -0.235 -0.222 -0.214 0.103 0.168 
temperature <0.001 <0.001 0.811 0.396 0.239 0.266 0.283 0.608 0.402 
Temp.(°C) -0.462 -0.612 -0.052 0.334 0.171 0.163 0.178 -0.296 -0.441 -0.421 

0.015 0.001 0.798 0.088 0.394 0.418 0.374 0.134 0.021 0.029 
Salinity p.p .t. 0.618 0.594 -0.111 -0.135 -0.214 -0.202 -0.295 0.066 0.130 0.952 -0.447 

0.001 0.001 0.582 0.503 0.285 0.314 0.135 0.743 0.517 <0.001 0.019 
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Table A2.3: BIOENV results, correlation value for individual environmental 

variables with assemblage. 

Environmental Correlation 

variable 

[Mgz+] (mgll) 0.304 

pH 0.275 

Temperature ec) 0.267 

Width (m) 0.184 

Depth (cm) 0.165 

[Caz+] (mgll) 0.143 

Salinity p.p.t. 0.135 

%02 0.063 

flS (adj . for temp.) 0.050 

0 2 (mg/1) 0.031 

Phosphate (mgll) -0.094 

Nitrate (mgll) -0.192 
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Appendix3 

The effects of temperature on crawl out behaviour. 

It was noted during the Fl behavioural trials at 20°C the differences seen in the degree 

of crawl out behaviour did not differ between the high risk (South Drain) and low risk 

(Chilton) populations. This result appeared to contradict the previous findings that the 

innate behaviour ofFl L. stagna/is differs depending on the predator regime 

experienced by the population of origin (Chapter 3: Dalesman et al. 2007b ). To test the 

responses from the Fl behavioural trials at 20°C were compared with the results from 

behavioural trials ofF1 South Drain and Chilton populations done for population 

comparison at 15°C. A four-way ANOVA carried out in GMA V on both time spent 

crawled out and latency to crawl out was used analyse differences between the two 

temperatures, with post-hoc Student-Newman-Keul (SNK) tests used to assess the 

direction of these differences. 

The effect of rearing snails in 20°C as opposed to l5°C significant} y altered the F 1 

crawl out behaviour, and the way in which the behaviour was changed differed 

depending on the source population (Chapters 3&4: Dalesman et al. 2007b, in review). 

Overall the time spent crawled out in response to combined cues was significantly 

greater than to either cue presented alone, and was significantly greater in the 

population originating from South Drain compared to the population originating from 

Chilton, as predicted from the predator regime each population experiences (Table 3.1; 

ANOVA: population*A*T: FI ,368 = 6.14, P = 0.014; SNK: P<0.05). However the effect 

of temperature on the response the tench cue differed between the populations; the time 

spent crawled out decreased in the South Drain population in 20°C compared to 15°C, 

whereas it increased in the Chilton population following development at 20°C (Table 

A3.1; ANOVA: temperature*population*T: F1,368 = 15.91, P<O.OOl ; SNK: P<0.05). The 
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latency to crawl out was shortest in response to combined cues, but did not differ 

significantly between the populations {Table A3.1; ANOV A: A *T: F 1,368 = 93.58, 

P<0.001). However, at 15°C the latency to crawl out in response to tench cue was 

significantly shorter in the South Drain population, as predicted by the predator regime 

experienced, but at 20°C there was no difference in latency between the South Drain 

and Chilton populations in their response to tench cue {Table A3.1; ANOV A: 

temperature*population*T: F1,J68 = 7.58, P = 0.006). 

Table A3.1: Results from 4-way ANOVA on time spent crawled out of the water and 
latency to crawl out. Factors used are: temperature (15°C/20°C), population (South 
Drain/Chilton), alarm cue (present/absent) and tench cue (present/absent). N = 24 for all 
treatment combinations. 

Proportion of time Latency 
Source d.f. Mean F p Mean F p 

square square 
Temperature 1 0.062 0.85 0.357 0.208 1.97 0.162 
(Temp) 
Population (Pop) 1 1.105 15.14 <0.001 0.945 8.93 0.003 
Alarm cue (A) 1 10.299 141.13 <0.001 9.647 91.10 <0.001 
Tench cue (T) 1 17.238 236.21 <0.001 19.955 188.42 <0.001 
Temp*Pop 1 1.493 20.46 <0.001 1.799 16.98 <0.001 
Temp* A 1 0.018 0.24 0.622 0.028 0.26 0.609 
Temp*T 1 0.082 1.12 0291 0.157 1.48 0.225 
Pop* A 1 0.291 3.98 0.047 0.081 0.77 0.382 
Pop*T 1 1.197 16.40 <0.001 0.812 7.67 0.006 
A*T 1 9.851 134.99 <0.001 9.910 93.58 <0.001 
Temp*Pop*A 1 0.175 2.40 0.122 0.102 0.96 0.327 
Temp*Po_p*T 1 1.161 15.91 <0.001 0.802 7.58 0.006 
Temp*A*T 1 0.002 0.03 0.868 0.007 0.06 0.805 
Pop*A*T 1 0.448 6.14 0.014 0.313 2.96 0.086 
Temp*Pop* A *T 1 0.152 2.08 0.150 0.022 0.20 0.653 
Total 383 
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Associative learning may help to offset costs of unnecessary escape behaviour by providing accurate infor­
mation about the current risk to potential prey. We investigated innate antipredator behaviour and cue 
association learning in naive gastropods. juvenile laboratory-reared great pond snails, Lymnaea stagnalis 
(L.), were exposed to odour cues from a natural predator, tench, Tinea tinea (L.), and crushed conspecifics. 
The snails showed an innate antipredator behaviour to odour from T. tinea, by crawling above the water 
line (crawl-out response). This crawl-out response was significantly increased in the presence of alarm 
cues (crushed conspecifics). In a second experiment, juvenile L. stagnalis were exposed to tench odour 
and alarm cues in aquaria before being tested in behavioural assays. The behavioural responses to tench 
cue alone were similar to those seen in response to tench plus alarm cues presented together during the 
first experiment. Hence, L. stagnalis is apparently capable of relating potential predation risk to recent ex­
perience. In a final experiment snails were removed from pre-exposure cues for periods of 1, 4 and 8 days 
prior to behavioural assays. A raised level of avoidance persisted for at least 8 days, suggesting that this be­
haviour may be retained over timescales relevant to predation risk in the natural environment. The ability 
of organisms to modify antipredator behaviour based on recent experience, as found in L. stagnalis, would 
allow costs associated with unnecessary responses to be reduced while still allowing the organisms to avoid 
active predators. 

e 2006 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. 

Failure to respond to a potential predator may be fatal; 
however, unnecessary escape behaviour may have direct 
energetic costs as well as costs associated with reduced 
opportunity to feed or reproduce (Lima & Dill 1990). Sen­
sory information obtained about a predator may assist an 
organism in assessing the potential risk accurately and 
therefore reduce these costs (Lima & Dill 1990; Chivers & 
Smith 1998). A range of sensory inputs can be used in pred­
ator detection; however, where other cues are impaired by 
environmental or physiological constraints, for instance 
visual cues in an aquatic system, chemical cues may pro­
vide an alternative (Dodson et al. 1994). Predator-released 
kairomones (Dicke & Sabelis 1988) can give information 
about the presence, proximity, physiological state and 
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diet of potential predators (Kats & Dill 1998). Injury­
released chemical cues from conspecifics frequently induce 
an anti predator response in aquatic taxa (Wisenden 2000). 
However, although a good indication of potential threat in 
isolation, these types of cue may not provide accurate in­
formation about the nature of current risks, and so may 
elicit inappropriate antipredator responses .. 

Several studies have shown that combining alarm cues 
produced by injured conspecifics with predator kairo­
mones elicits the greatest antipredator response in organ­
isms, suggesting that this represents the greatest perceived 
risk. In experiments, this combination of cues either takes 
the form of the predator feeding on conspecifics (Crowl & 
Covich 1990; Loose & Dawidowicz 1994; Sih & McCarthy 
2002; Turner & Montgomery 2003; jacobsen & Stabell 
2004) or predator cues paired with crushed conspecific, 
thought to simulate a predation event (Turner 1997; De­
Witt et al. 1999; Rundle & Bronmark 2001; Cotton et al. 
2004). Some prey organisms that respond to predator 
cues paired with conspecific cues do not respond to pred­
ator cues alone (1\.lrner 1996; jacobsen & Stabell 2004). An 
important question is whether this is due to an inability to 

0003- 3472/06/S30.00/0 e 2006 The Association for the Study of At1/mal Be/10viour. Published by Elsevier Ltd. All rigllts reserved. 
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recognize the predator or to a lower perceived risk from 
a nonfeeding predator. The ability of gastropods to differ­
entiate between the types of predator present from cues 
paired with injured conspectfics suggests that the latter 
may be the case in some predator-prey systems. For in­
stance, the freshwater snails Pllysella gyrina and P. integra 
are able to differentiate between cues from different pred­
ators, crayfish, Orconectus msticus, and pumpkinseed fish, 
Lepomis gibbosus, when presented with crushed conspe­
cific snail, and respond with appropriate antipredator be­
haviour (Turner et al. 1999; Bemot & Turner 2001). 

Experience of predation cues is an important element in 
the development of an tipredator behaviour in a wide range 
of vertebrates as well as invertebrates. Learning from 
experience of predation is integral to most fish species' 
ability to recognize predators (Brown 2003; Kelley & Ma­
gurran 2003). For instance, fathead minnows, Pimepllales 
promales, learn to recognize a potential predator, northern 
pike, Esox lucius, from chemical cues produced by pike feed­
ing on minnows (Mirza & Chivers 2001). Learning about 
predators through diet information, or pairing of predator 
cues with damaged conspecifics, has also been noted in sev­
eral invertebrates including damselflies, Enallagrna spp. 
(Chivers et al. 1996), crayfish (Hazlett et al. 2002), whelks, 
Buccinum undatum (Rochette et al. 1998) and an aquatic 
flatworm, Dugesia dorotocephala (Wisenden & Millard 
2001). In these cases, it was unclear whether the prey spe­
des were learning to identify a potential predator per se, 
or whether the association between cues was providing in­
formation about the perceived risk from the predator. 

The giant pond snail, Lymnaea stagna lis (L.), is slow mov­
ing relative to many mollusdvorous predators, and Jives in 
an aquatic environment where visual information may 
often be hindered by turbidity or dense vegetation. It 
responds to chemical cues from potential predation risk 
by either sheltering in crevices or crawling above the water 
line (Snyder 1967; Rundle & Bronmark 2001). As such 
L. stagna lis is predicted to use chemical cues as an important 
source of information about predators (Wisenden 2000), 
which makes it an ideal model organism to study the way 
in which chemical cues can be used to assess predation 
risk. Our aims in this study were to use naive laboratory­
reared snails to (I) determine the extent of innate responses 
to predator cues, (2) assess the ability of L. stagna/is to form 
cue associations, (3) determine the effect of these associa­
tions on behavioural responses, and (4) determine the lon­
gevity of these associations. We predicted that (1) L. 
stagna lis would respond to higher risk by displaying a stron­
ger anti predator response, (2) the perceived risk from pred­
ator cues would be enhanced by cue association with 
a simulated predation event, and (3) perceived risk would 
diminish over time from exposure to a simulated predation 
event. 

METHODS 

Study Organisms 

Adult L. stagna/is were collected from Matford Park ca­
nal, U.K. (5 °42'N, 03°31'W) in April 2004. In the labora­
tory, adults were kept in 6-litre Savic plastic aquaria 

(Aquatics online, Bridgend, U.K.) in 4litres of aerated arti­
fictal pond water (ASTM 1980) with 90 mg/litre [Ca2+] 
(Rundle et al. 2004). They were maintained at 15 ± 1 oc 
under ambient light levels, and fed on Iceberg lettuce. Ex­
perimental snails were bred from egg masses laid at least 2 
months after collection, to minimize the potential influ­
ence of adult experience on juvenile development and be­
haviour. Juvenile snails were then maintained separately 
in the same conditions as the adults. Individuals with 
a standard spire height of 6 ± 0.5 mm were used for be­
havioural experiments. 

Tench, Tinea tinea, were taken from a laboratory stock 
originally obtained from Emperor Tropicals & Water Gar­
den Centre, Plymouth, U.K. They were maintained in aer­
ated and filtered water at 15 ± 1 oc under ambient light 
leve.ls in 25-litre tanks at a stocking density of 12 fish 
per tank (0.006 kg/litre). Gravel substrate and shelters po­
sitioned in the tank were used to mimic natural condi­
tions. The tench were fed Nutri-flake (Hozelock Cyprio, 
Aylesbury, U.K.), which contains no mollusc extracts, 
and hence avoided potential dietary cues affecting the tri­
als. No experimental manipulations were carried out on 
these fish and the welfare of the fish was carefully consid­
ered throughout. After the trials, the tench were retained 
as laboratory stock. 

Odour Production 

Predator and alarm cues were produced in the same way 
in all the experiments. We used T. tinea to produce the 
predator cue because they are a known natural predator 
of freshwater gastropods (Bronmark 1994). We produced 
predator cue water by plactng three T. tinea (length 
10 ± 1 cm) into 4 litres of aerated artificial pond water 
for 1 h, alarm cue by mixing three crushed juvenile L. stag­
na/is (6 ± 0.5 mm) into 4litres of aerated artificial pond 
water, and predator plus alarm cue by mixing three 
crushed L. stagnalis (6 ± 0.5 mm) into 4litres of tench 
cue water. We killed the snails for the alarm cue by instant 
crushing in a pestle and mortar, as physical methods of 
killing are thought to be the least distressing for the ani­
mal (Close et al. 1996). Owing to the small size of the 
snails, the ease with which their shells can be crushed 
and the potential alteration of chemical cues with other 
methods, we considered this the most appropriate way 
to kill the snails. 

Behavioural Assay 

We carried out behavioural trials in the same way for all 
experiments under laboratory conditions analogous to the 
conditions in which the snails were maintained. Behav­
ioural chambers consisted of a white plastic dish (165 mm 
in diameter x 60 mm deep; A.W. Gregory & Co. Ltd., Lon­
don, U.K.), with a longitudinally sectioned white PVC 
pipe (36 mm long, 30 mm in diameter) attached open 
side down to the centre with nontoxic sealant to provide 
a refuge. Juvenile snails were acclimatized to behavioural 
chambers for 24 h in 630 ml of artifidal pond water prior 
to behavioural assays. We added 70 ml of cue water to 
each chamber at the start of the behavioural assay to 



give a 10% final concentration of cue water. Preliminary 
trials with predator cue alone showed that this was an ad­
equate odour strength to initiate an antipredator response 
in L. stagna/is. 

We recorded the position of each snail within the 
behavioural chambers every 5 min for 2 h after adding 
the cue. Crawl-out behaviour (where the snail moved 
above the water line) was the main antipredator re­
sponse of L. stagna/is to the predator, with the refuge 
not used; hence only results from crawl-out behaviour 
are presented here. To analyse crawl-out behaviour we 
used two variables: the proportion of total time spent 
crawled out of the water; and the latency to crawl-out, 
calculated as the proportion of total time during the 
trial before crawl-out behaviour was observed (Cotton 
et al. 2004). Proportion of total time spent crawled out 
was used in conjunction with the time at crawl-out be­
cause snails occasionally returned beneath the water 
line. The results of a power analysis on our preliminary 
study indicate that using 20 or more individuals per 
treatment gives an 80% or higher probability of detect­
ing an effect of treatment. 

Risk Level and Avoidance Behaviour 

After acclimatization of the snails to the behavioural 
chambers, we used four treatments to assess the response 
of L. stagnalis to varying degrees of predation risk: (1} con­
trol (untreated artificial pond water); (2) alarm cues alone 
(crushed conspeci.fics); (3) predator odour alone; and 
(4) predator odour plus alarm cues. We predicted that 
the control would represent the lowest risk level and pred­
ator plus alarm cues the highest, with predator or alarm 
cues presented individually being perceived as an interme­
diate risk. We randomly assigned individuals to a treat­
ment level such that equal numbers of snails were 
exposed to each treatment per trial (N = 24 snails per 
treatment combination). 

Cue Association 

To assess whether a simulated predation event (predator 
and alarm cues together) increased the perceived risk from 
a predator, we exposed snails to a conditioning treatment 
where both cues were presented together, followed by 
exposure to predator cues alone during the behavioural 
assay. This would represent experience of a predation 
event in the environment followed by the predator 
returning to the environment without subsequent pre­
dation occurring. 

juvenile snails were pre-exposed for 48 h, maintained in 
1litre of water in 1.6-litre Savic tanks in one of four con­
ditioning treatments: (1) control (untreated artificial 
pond water); (2) alarm cues alone (crushed conspeci.fics); 
(3) predator odour alone; and (4) predator odour plus 
alarm cues. Cue water was produced as in the behavioural 
assays and again added at a concentration of 10% by 
volume. 

After pre-exposure, individual snails were randomly 
allocated and acclimatized to behavioural arenas in con­
trol water for 24 h . Before the behavioural assays, we 
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added either control water or predator cue to the behav­
ioural arena, so that for each trial half of the snails that 
had been conditioned to each treatment were exposed 
to the control or predator cue. We used 192 snails; 48 
were exposed to each conditioning treatment, and then 
half of each group was exposed to predator odour during 
behavioural assays and half to a control, resulting in 24 
snails for each treatment combination. 

Persistence of Cue Association 

To assess the persistence of cue association, we pre­
exposed juvenHe snails as before for 48 h to either control 
water (artificial pond water only) or predator odour plus 
alarm cues. They were then either acclimatized in behav­
ioural arenas for 24 h, placed into control water for 3 
days and then accLimatized for 24 h, or placed into control 
water for 7 days then acclimatized for 24 h. This resulted 
in total periods of 1, 4 and 8 days since cue exposure be­
fore the behavioural assay. Snails were randomly allocated 
to a behavioural arena, and exposed to either control wa­
ter or predator odour during the behavioural assay (N = 23 
snails per treatment combination). 

Statistical Analysis 

We analysed data as balanced ANOVAs using GMAV5 
(Institute of Marine Ecology, University of Sydney, 
Sydney, Australia) except in the case of the persistence 
of cue assodation experiment which was initially analy­
sed with a general linear model procedure in MINITAB13 
(Minitab Ltd., Coventry, U.K.) owing to an unbalanced 
design between data collection trials. As no significant 
effect of trial was found, we removed trial as a factor and 
carried out further analysis using a balanced ANOVA 
in GMAV5. All proportion data were square-root arcsine 
transformed before analysis (Underwood 1997). Student­
Newman- Keuls tests (SNK) were used for post hoc 
comparisons. 

Log-likelihood tests (G tests) were used to assess the 
number of snails crawling out in response to different 
treatments; data were N + 1 transformed when zeros 
were present, and adjusted by Williams' correction (Sokal 
& Rohlf 1995). a. was corrected using the Bonferroni cor­
rection to a.' < 0.025 to test cue association, and 
a.' < 0.0125 to test the persistence of cue association, as 
multiple comparisons were required to analyse the data 
(Sokal & Rohlf 1995). 

RES ULTS 

Risk Level and Avoidance Behaviour 

The number of L. stagna/is crawling out differed signifi­
cantly between treatment levels (G test: G3 = 66.750, 
P < 0.001): no snails crawled out in either the control or 
alarm cue treatments; however, 15 snails crawled out in 
response to the predator cue alone, and 21 snails crawled 
out in response to predator plus alarm cues. 

Latency to crawl-out was significantly shorter in 
response to predator plus alarm cues compared to the 
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Table 1. Latency to crawl-out and proportion of total time spent crawled out in response to exposure to tench cues and conspecific alarm cues 

Latency 

Source df Mean square F 

Trial (Tr) 2 565.79 1.53 
Alarm cue (AI) 1 2600.47 6.99 
Tench cue (Te) 1 52921 .62 142.16 
Tr*AI 2 647.53 1.74 
Tr*Te 2 565.79 1.52 
AI*Te 1 2600.47 6.99 
Tr*AI*Te 2 647.53 1.74 

Total 95 

N = 24 for all treatment combinations. 

predator cue alone, indicating a more rapid response with 
increased risk (SNK test: P < 0.05; Table 1, Fig. la). The 
proportion of time spent crawled out of the water was sig­
nificantly greater in response to the predator cue paired 
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Figure 1. The mean ± SE (a) latency to crawl-out as a proportion of 
the 2-h assay and (b) proportion of time spent out of the water by 
L. stagna/is in response to different treatments: control (C), conspe­
cific alarm cues alone (A), predator odour alone (T) and alarm plus 
predator cues (A&T). 

Proportion of time 

p Mean square F p 

0.225 701.01 2.49 0.089 
0.010 6511 .94 23.17 <0.001 

<0.001 31123.61 110.74 <0.001 
0.182 127.22 0.45 0.638 
0.225 701.01 2.49 0.089 
0.010 6511 .94 23.17 <0.001 
0.182 127.22 0.45 0.638 

with alarm cue than to the predator cue alone (SNK test: 
P < 0.05; Table 1, Fig. lb). 

Cue Association 

Cue assodation significantly affected the response of 
L. stagna/is to predator cues (Fig. 2). SNK tests (P < 0.05) 
showed that the effect of preconditioning to predator 
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Figure 2. The mean ± SE (a) latency to crawl-out as a proportion of 
the 2-h assay and (b) proportion of time spent out of the water by 
L. stagna/is responding to control <•> and predator cues (0) after 
exposure to: control (C), conspecific alarm cues alone (A), predator 
odour alone (T) and alarm plus predator cues (A&T). 



plus alarm cue significantly decreased the latency to crawl­
out compared to the control or either cue presented alone 
(Table 2, Fig. 2a). There was a significant effect of trial on 
latency to crawl-out (Table 2). However, this was signifi­
cant only in two pai.rwise tests between trials, so is not 
considered to have an overall impact on the results. The 
proportion of time spent crawled out was significantly 
greater in response to the predator cue during behavioural 
assays when L. stagna/is had been preconditioned to the 
predator paired with alarm cue than when individuals 
had been preconditioned to the control or either cue 
alone (SNK test: P < 0.05; Table 2, Fig. 2b). There was a sig­
nificant effect of trial, although this was caused by 
a change in the magnitude of response on only one of 
the eight trials on individuals that had been precondi­
tioned to alarm cues, so is not considered to have an over­
all effect on the results (SNK test: P < 0.05; Table 2). 

Overall, significantly more snails crawled out when 
exposed to the predator cue during behavioural assays 
than when exposed to the control during behavioural 
assays (G test: G1 = 30.974, P < 0.001). The number of 
snails crawling out in response to both the control and 
predator cue during behavioural assays was significantly 
greater when they had been pre-exposed to the alarm 
plus predator cue compared to the control or either cue 
presented alone (G test: control: G3 = 10.307, P = 0.016: 
predator: G3 = 30.324, P < 0.001). 

Persistence of Cue Association 

Latency was always decreased when predator cues were 
present during the behaviowal assay compared to the 
control, regardless of the conditioning treatment (SNK 
test: P < 0.05; Table 3, Fig. 3a). However, pre-exposwe to 
predator plus alarm cues significantly decreased the la­
tency to crawl-out in response to the predator cue during 
behaviowal assays up to, and including the 8 days 
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dwation compared to individuals pre-exposed to the con­
trol (SNK test: P < 0.05; Table 3, Fig. 3a). Pre-exposure 
treatment had no significant effect when snails were ex­
posed to the control during the behaviowal assay, and du­
ration since pre-exposwe to cues did not significantly 
affect the latency to crawl-out (Table 3). 

The proportion of time spent crawled out was signifi­
cantly greater in response to the predator cue when 
L. stagna/is had been exposed to predator plus alarm 
cues compared to any of the other treatments (SNK test: 
P < 0.05; Table 3, Fig. 3b). This significant increase in 
crawl-out response to predator cues persisted for 8 days af­
ter exposwe to alarm and predator cues compared to the 
other treatments. However, the magnitude of the response 
decreased with duration from pre-exposwe, with the pro­
portion of time spent crawled out being significantly 
lower 8 days after pre-exposwe compared to only 24 h 
after pre-exposwe (SNK test: P < 0.05; Table 3). The num­
ber of individuals showing crawl-out behaviour in both 
control and predator groups showed no significant declirte 
between 24 h and 8 days (control followed by control; G 
test: G2 = 5.565, P = 0.062; control followed by predator 
cue: G2 = 0.208, P = 0.901; alarm plus predator followed 
by control: G2 = 1.013, P = 0.602: alarm plus predator 
followed by predator: G2 = 2.672, P = 0.263). 

DISCUSSION 

Risk level and Avoidance Behaviour 

The antipredator response of naive laboratory-reared F1 
L. stagnalis to the predator cue alone shows that this snail 
species has an innate ability to recognize T. tinea kairo­
mones and responds with antipredator behaviow. Innate 
responses to predator threat can be the result of genetic ad­
aptation to recognize potential predators (A.bjomsson et al. 
2004) or a transgenerational influence on offspring 

Table 2. latency to crawl-out and proportion of total time spent crawled out in response to exposure to tench cues after exposure to tench 
and/or conspecific alarm cues 24 h prior to behavioural assays 

latency Proportion of time 

Source df Mean square F p Mean square F p 

Trial (Tr) 7 1594.82 2.91 0.007 817.16 2.90 0.008 
Pre-exposure to alarm cue (PrA) 1 14437.83 26.37 <0.001 12500.61 44.44 < 0.001 
Pre-exposure to tench cue (PrT) 1 8885.48 16.23 <0.001 11 009.90 39.14 < 0.001 
Tench cue during behavioural assay (Te) 1 25 262.17 46.15 <0.001 13111.73 46.61 < 0.001 
Tr*PrA 7 1048.81 1.92 0.072 774.09 2.75 0.011 
Tr*PrT 7 441.83 0.81 0.583 263.74 0.94 0.480 
Tr*Te 7 447.94 0.82 0.574 298.71 1.06 0.392 
PrA*PrT 1 5206.34 9.51 0.003 7548.35 26.83 < 0.001 
PrA*Te 1 3148.68 5.75 0.018 4556.87 16.20 < 0.001 
PrT*Te 1 2242.74 4.10 0.045 4800.66 17.06 < 0.001 
Tr"PrA*PrT 7 245.29 0.45 0.870 143.28 0.51 0.826 
Tr*PrA*Te 7 504.09 0.92 0.493 327.93 1.17 0.327 
Tr*PrT*Te 7 306.20 0.56 0.788 218.58 0.78 0.608 
PrA*PrT*Te 1 1487.72 2.72 0.102 2985.55 10.61 0.001 
Tr*PrA*PrT*Te 7 237.55 0.43 0.879 170.45 0.61 0.750 

Total 191 

N = 24 for all treatment combinations. 
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Table 3. latency to crawl-out and proportion of time spent crawled out in response to exposure to tench cues after pre-exposure to tench plus 
conspecific alarm cues at varying durations, 24 h, 4 days and 8 days prior to behavioural assay 

Latency Proportion of time 

Source df Mean square F p Mean square F p 

Duration (Du) 2 1691.19 2.97 0.053 1403.60 4.07 0.018 
Pre-exposure to alarm 1 12189.19 21.40 <0.001 7067.22 20.51 < 0.001 
plus tench cue (Pr) 
Tench cue during 57709.32 101 .33 <0.001 25 736.90 74.71 < 0.001 
behavioural assay (Te) 
Du*Pr 2 247.89 0.44 0.648 950.91 2.76 0.065 
Du*Te 2 653.22 1.15 0.319 1353.53 3.93 0.021 
Pr*Te 1 8583.39 15.07 <0.001 6589.99 19.13 < 0.001 
Du*Pr*Te 2 225.54 0.40 0.674 1452.64 4.22 0.016 

Total 275 

Trial is excluded from the model as no significant effect was found using a general linear model. N = 23 for all treatment combinations. 

(Agrawal et al. 1999). The long time for which adults were 
held in the laboratory prior to production of F1 juveniles 
for experimentation in our study potentially reduced the 
effect of maternal experience on offspring behaviour. 
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Figure 3. The mean ± SE (a) latency to crawl-out as a proportion of 
the 2-h assay and (b) proportion of time spent crawled out by 
L. stagna/is 24 h (0), 4 days (D) and 8 days <• > after exposure 
to control (C) or conspecific alarm plus predator cues (A&T) in re­
sponse to either control (C) or predator odour alone (T) during be­
havioural assays. 

However, transgenerational effects of maternal exposure 
to a dipteran phantom midge predator, Chaoborus flavicans, 
on offspring morphology have been found to persist in the 
F2 generation of Daphnia cucullata (Agrawal et al. 1999). 

There was no antipredator response to alarm signals 
from crushed conspecifics alone (Fig. 1), as found in previ­
ous studies on gastropod molluscs (McCarthy & Dickey 
2002; lch inose et al. 2003). Alarm cues may not provide 
enough information about the type of risk to L. stagnalis 
to induce a response; alternatively they may not be per­
ceived as being associated with a risk of predation at all. 
However, there was an increase in the proportion of indi­
viduals crawling out, as well as in the time spent out of the 
water when alarm cues were presented in combination 
with predator cues compared to the predator cue alone. 
This shows that alarm cues can be identified by L. stagna­
lis, and they probably increase the perceived risk in com­
bination with predator cues compared to predator cues 
alone. An increase in anti predator response with perceived 
risk has been found in a number of aquatic species in re­
lation to a predator threat, such as predator density (Rarn­
charan et al. 1992; Wiackowski & Staronska 1999), 
distance from prey (Turner & Montgomery 2003), number 
of prey consumed in the immediate environment (Van 
Buskirk & Arioli 2002), size of the predator (Kusch et al. 
2004) and prey vulnerability (Alexander & Covich 1991; 
Ramcharan et al. 1992; DeWitt et al. 1999; Rundle & Bran­
mark 2001; Cotton et al. 2004). These factors may com­
bine to increase the accuracy of the antipredator 
response in relation to the risk to the prey. 

Cue Association 

Experience of crushed conspecifics (alarm cues) plus 
predator odour from T. tinea induced an increase in anti­
predator behaviour on subsequent presentations of the 
T. tinea cue alone, equivalent to that seen in response to 
the predator plus alarm cues combined during the first ex­
periment (Figs 1, 2). No significant increase in anti predator 
behaviour was seen in response to pre-exposure to alarm 
cues or predator cues alone prior to the behavioural assays. 
This suggests that L. stagna lis forms an association between 
the predator cue and an alarm substance, which then 



increases the perceived risk associated with T. tinea kairo­
mones on subsequent encounter. Cue assodation between 
predator kairomones and damaged conspectfics may pro­
vide a more accurate assessment of potential risk from 
a predator, because it gives information about the current 
diet of that predator. For instance, whelks, B. undatum, in­
creased their escape response over a period of 4 days expo­
sure to a starfish, Leptasterias polaris, feeding on whelks, 
compared to exposure to a control or to L. polaris cues alone 
(Rochette et al. 1998). The juvenile B. undatum used were 
wild caught, so in this case, it is impossible to determine 
whether there was an innate response to the predator cue. 
It is likely that they had encountered L. polaris in the field; 
hence the laboratory experiment was potentially reinforc­
ing previous experience. 

Cue association may be necessary for a prey spedes to 
recognize the threat of predation accurately. The flatworm 
D. dorotocepha/a shows anti predator behaviour in response 
to injured conspecifics, but not to a potential predatory 
fish Lepomis macrochinlS (Wisenden & Millard 2001). How­
ever, after exposure to damaged conspecifics plus L. macro­
ehinlS odour, D. dorotocephala showed antipredator 
behaviour in response to L. macrochinlS odour alone 2 
days later. As L. stagna/is responded to predator cues to 
a lesser extent without cue association being necessary, it 
seems likely that this population relies on cue assodation 
to give current information on the risk of predation rather 
than to identify the predator per se. 

Cue association is an integral part of predator defence in 
most fish species studied (Utne & Bacchi 1997; Mirza & 
Chivers 2001; Brown 2003; Kelley & Magurran 2003; Lac­
son & McCormick 2005). However, Arctic charr, Salvelinus 
alpinus, show innate as well as learnt recognition of poten­
tial predators (Vilhunen & Hirvonen 2003).1nnate recogni­
tion of predators has also been found in a gastropod, 
Physel/a virgata, which changed its morphology in response 
to cues from six sunfish spedes (Langerhans & DeWitt 
2002). These changes in morphology included a reduction 
in growth and a more rotund shape in the snails exposed to 
predator cues, which were thought to be in part the result 
of changes in behaviour. However, the snails were unable 
to respond differentially to predators in relation to their po­
tential risk, as they were unable to differentiate between 
molluscivorous and nonmolluscivorous species. 

Other studies that have found a response to predator 
cues alone usually concern wild-caught animals, where 
the history of chemical exposure is unknown, or the 
animals respond to a predator known to be present in 
their environment (Hopper 2001; Dahl & Peckarsky 2002; 
Abjornsson et al. 2004; Keppel & Scrosati 2004). As many 
species are capable of learning about potential predators, 
observed responses may be the result of experience. 

Persistence of Cue Association 

Cue association appeared strongest at 24 h postexposure, 
and showed a slight decline over time from 24 h to 8 days 
postexposure. At 8 days postexposure, the proportion of 
time spent crawled out was still significantly greater in 
the group previously exposed to predator plus alarm cues, 
suggesting that memory of the learned cue assodation 
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persists for at least 8 days after exposure. Although the en­
counter rate between T. tinea and L. stagna/is in the source 
population is unknown, it seems feasible that 8 days is an 
ecologically relevant timescale in the field . The response 
to pumpkinseed fish, L. gibbosus, by the snail Physa acuta 
declined with both distance from the predator and age of 
the cue (Turner & Montgomery 2003). However, it is not 
known whether the decline with age of the cue, with 
a mean behavioural lifetime of 41 h, was due to an increase 
in perceived time since a predation event or to a decline in 
cue concentration per se. The decline over time in anti pred­
ator response by L. stagna/is implies a reduction in the per­
ceived risk from T. tinea with time since experience of 
predation cues. This is potentially caused by the simulated 
rate of predation on conspedfics affecting the risk per­
ceived by L. stagna/is (Van Buskirk 2002). 

The ability to learn about potential predators may be 
important for a species responding to invasive predators or 
to a new predator regime if the prey species is expanding its 
range or simply when a predator has not been previously 
encountered. The crayfish Oreonectus virilis, Procambrus 
clarkii, 0 . n1sticus and Austropatmobius pallipes were able 
to form cue association between a pseudopredator, the 
common goldfish, Carassius auratus, and damaged conspe­
dfics {Hazlett et al. 2002). The duration of this cue associa­
tion varied between species, but in P. clarkii was still present 
after 3 weeks. Individuals that had not been exposed to the 
C. auratus cue in combination with damaged conspecifics 
showed no antipredator response to the C. auratus cue on 
subsequent exposure. 

A response caused by a random pairing of unrelated 
cues indudng antipredator behaviour could prove very 
costly to prey species. Potentially, this is why an antipred­
ator response declines over time, when the cue association 
is not reinforced. There is also the potential to prevent cue 
association through learned irrelevance, where cues are 
presented in a random order so that the organism learns 
that they are not associated before cues are presented 
together (Baker et al. 2003; Hazlett 2003), although so far 
there is no evidence that this would occur in response to 
a natural predator. 

Lymnaea stagna/is has been used in studies to show the 
neuronal basis of cue association learning (lto et al. 1999; 
Benjarnin et al. 2000), although with highly artificial stim­
uli rather than predator cues occurring in the natural envi­
ronment, and to examine the effects of predator cues on 
antipredator behaviour and phenotypic plasticity (Rundle 
& Bronmark 2001; Rundle et al. 2004}; however, ours is 
the first study to show the ability of a freshwater gastropod 
to learn about predation risk. Our results concur with those 
of Rochette et al. (1998) who examined the response of 
a marine gastropod to cue assoctation, although their study 
did not consider the effect of prior exposure to alarm cues 
alone or the experience of their wild-caught snails. Our 
data therefore indicate that the mechanism of cue assoda­
tion learning may be similar in these diverse gastropod taxa. 

Cue association learning, combined with variation in 
response to different types of cue, as shown in this study, 
could allow individuals to assess real and immediate risks 
from potential predator species in their environment. The 
observed decline in response with lack of reinforcement 
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would also allow organisms to show avoidance behaviours 
only in the face of active predators and high predation 
risk, and to reduce costs assodated with unnecessary 
escape behaviour. Such fine tuning of behavioural re­
sponses to environmental cues may be highly adaptive, 
and the predse mechanisms involved represent an in­
triguing area for future research. 
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Predator regime influences innate anti-predator 
behaviour in the freshwater gastropod Lymnaea stagnalis 
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Introduction 

SUMMARY 

1. Predation incurs high fitness costs in aquatic organisms either through direct 
consumption or through avoidance responses that reduce time for activities such as 
feeding and reproduction. Hence, avoidance responses of aquatic organisms should vary 
to match closely the predation threat in their environment. 
2. The freshwater gastropod Lymnaea stagna/is occurs in a variety of environments which 
vary in the presence or absence of predatory fish. We used na'ive snails reared from six 
populations of this species experiencing different predator regimes (three eo-occurring 
with molluscivorous fish and three without) to assess whether populations differed in the 
type and degree of their avoidance behaviours. Innate behavioural responses to four 
treatments (control, conspecific alarm cues, fish kairomones and fish kairomones paired 
with alarm cue) were compared in laboratory trials. 
3. The pfi!nary anti-predator behaviour of L. stagna/is in response to fish kairomones was to 
crawl out of the water rather than seek refuge under water. This response was strongest 
when fish kairomones were paired with alarm cues, and varied depending on population 
origin; snails reared from populations eo-occurring with predatory fish showed a stronger 
response than those raised from populations not experiencing such predators. ln addition, 
populations eo-occurring with predatory fish responded to the fish kairomones presented 
alone. 
4. Our findings suggest that the degree of innate anti-predator behaviour shown by 
L. stagna/is, in terms of both the level of risk to which it responds and the degree of 
response, varies depending on the predator regime experienced by field populations. 
Together with previous work on cue association, this demonstrates that this gastropod is 
able to match its avoidance behaviour ve.ry closely to short and long term predation threats 
within its habitat. 

Keywords: alarm cue, chemical communication, gastropod, induced defences, local adaptation 

Predators can impose high fitness costs on their 
prey species, directly through predation events but 
also indirectly, either by modifying prey behaviour 
so as to reduce opportunities to feed or reproduce 
(Lima & Dill, 1990) or by imposing costs through 

plastic morphological responses (DeWitt, 1998; Cara­
mujo & Boavida, 2000; Van Buskirk, 2000). Changes 
in morphology and behaviour in response to one 
predator may also make prey organisms more 
vulnerable to alternative predator species (Sih, 
Englund & Wooster, 1998). A number of studies 
have demonstrated strong responses to predation 
cues in freshwater systems (Reviewed in: Dodson 
et al., 1994; Chivers & Smith, 1998; Lass & Spaak, 
2003; Werner & Peacor, 2003). However, many 
aquatic prey species occupy a wide variety of 
habitats and experience varying levels of predation 
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threat, such that a single mode of behavioural 
response is unlikely to be an effective method of 
avoiding all potential predators (McPeek, 1990). 
Hence anti-predator behaviour should vary between 
populations with different predator regimes to 
match closely the type and level of predation threat 
present. 

Local adaptation to predation threat is likely to 
occur in relatively sedentary species with low disper­
sal abilities, whereas induced responses are more 
likely in species which have potential for high 
dispersal between generations, when parents and 
offspring are more likely to encounter alternate 
predator regimes (Kawecki & Ebert, 2004). Adaptation 
may also be favoured where plastic responses are 
costly if the lag between expressing one phenotype or 
its alternative is too far behind the changes in the 
environment (Padilla & Adolph, 1996), where infor­
mation gathering to produce the correct phenotype is 
costly (DeWitt, 1998) or where costly responses to 
non-threatening species are likely (Langerhans & 
DeWitt, 2002). 

Gastropods have been utilized extensively to study 
the responses to predation threat in aquatic systems. 
Freshwater gastropods have limited dispersal ability, 
as they are only able to spend short periods emersed 
without risking desiccation. As such it may be 
predicted that populations will be under selection 
dependent on the predator regime they experience, 
and this prediction is supported by empirical data 
(Covich et al., 1994; McCarthy & Fisher, 2000; Bernot 
& Whittinghill, 2003). However, these studies have 
not explicitly tested for differences between popula­
tions across replicate sites differing in their predator 
status. Also, this previous work used wild-caught 
animals, which means that any differences between 
populations may reflect plastic responses rather than 
local adaptation. Previous studies using laboratory 
reared animals suggest that the anti-predator 
response in freshwater gastropods does have an 
innate element, but can also vary with experience 
(Dalesman et al., 2006; Turner, Turner & Lappi, 2006). 

The great pond snail, Lymnaea stagnnlis (Linnaeus, 
1758), inhabits a wide range of freshwater habitats, 
including those with and without predatory fish and 
might be predicted to exhibit adaptation in response 
to these differing predator regimes. This species has 
been demonstrated to have both innate and learnt 
components in its behavioural response to predator 

cues (Dalesman et al., 2006). Here, we investigate 
whether the innate aspects of this behaviour varies 
between populations experiencing differing predator 
regimes. F1-genera tion snails were tested for their 
responses to cues from tench, Tinea tinea (Linnaeus, 
1758), a known gastropod predator (Br6nmark, 1994) 
that commonly overlaps in distribution with L stag­
na/is. Responses to fish kairomones were tested both 
on their own and concurrently with cues from 
crushed gastropods to simulate a predation event. 
Hence, we were able to assess how populations 
differed in their response to the type of cue presented 
and in the degree of response. Adaptation through 
natural selection has been shown to account for 
divergence between aquatic populations experiencing 
differing predation pressure (Cousyn et al., 2001; 
O'Steen, Cullum & Bennett, 2002; Meyer et al., 2006). 
As such we predicted that populations that co-existed 
with predatory fish would have adapted to show 
higher innate responses than those that did not 
experience such predation risk. 

Methods 

Field collection sites 

Adult L stagna/is used to produce experimental snails 
were collected between September 2005 and May 2006 
from six sites on the Somerset Levels, an extensive wet 
meadow system in the southwest U.K., covered by a 
series of interlocking drainage ditches and channels. 
The three sites with predatory fish present (South 
Drain - 51.18N 2.88W, Sowy River- 51.07N 2.88W, 
North Moor - 51.07N 2.96W) were large channels 
(width: 6-22 m, depth: 0.7-1.1 m). Information from 
the local angling club, Taunton Angling Association 
(S. Dalesman, pers. corn.), was used to confirm the 
presence of tench at these sites. The three other sites 
(Chilton Moor- 51.19N 2.88W, Little Hook- 51.06N 
2.87W, Wistaria Farm - 51.07N 2.98W) were small 
ditches (width: 1.8-2.9 m, depth: 0.45--0.7 m); electro­
fishing was used to confirm the absence of mollus­
civorous fish. Sites with and without predatory fish 
were located in a pair-wise fashion such that each site 
lacking predatory fish was closer to a site with 
predatory fish than to the nearest site without such 
fish and vice versa to reduce any potential influence of 
geographic location. The mean distance between sites 
with and without predatory fish was 960 m (range 
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from 865-1036 m). Repeated sampling at all the sites 
between March 2004 and September 2006 indicated 
that L. stagna/is is common at these sites for most of 
the year. 

Study organisms 

In the laboratory, adult L. stagna/is were maintained 
in aquaria with 4 L of aerated artificial pond water 
(ATSM, 1980) with 90 mg L -I [Ca2+] (Rundle et al., 
2004) at 15 ± 1 oc under a 12 : 12 light : dark cycle, 
and fed on Iceberg lettuce and spinach. A minimum 
of 12 adults were collected from each source 
population to breed the F1 generation to ensure 
juveniles used for behavioural trials were represen­
tative of the population of origin. To reduce the 
influence of adult experience on juvenile develop­
ment and behaviour, the F1 snails (6 ± 0.5 mm spire 
height) used as responders were bred from egg 
masses laid a minimum of 2 months post collection. 
They were then maintained separately in the same 
conditions as the adults. Tench used to produce 
predator cue were kept in analogous condition to 
the snails, and fed Nutri-flake (Hozelock Cyprio, 
Birmingham, U.K.), which contains no mollusc 
extracts, and hence avoided potential dietary cues 
affecting the trials. 

Odour production 

Predator kairomones and alarm cues were produced 
in the same way in all the experiments (Dalesman 
et al., 2006). Four exposure treatments were used: (i) 
fish kairomone water, produced by placing three 
tench (length 10 ± 1 cm) into 4 L of aerated artificial 
pond water for 1 h; (ii) alarm cue, produced by 
mixing three crushed snails (6 ± 0.5 mm) into 4 L of 
aerated artificial pond water; (iii) fish kairomone plus 
alarm cue, produced by mixing three crushed snails 
(6 ± 0.5 mm) into 4 L of tench cue water; and (iv) the 
control which was aerated artificial pond water. 
During a single behavioural trial six individuals were 
exposed to each of the four treatments and the same 
odour treatment was used for all six individuals (i.e. 
tench odour was only produced once for each beha­
vioural trial). To complete each treatment x popula­
tion combination four behavioural trials were 
required, and odour treatments were produced sep­
arately for each trial. 
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Behavioural assay 

Behavioural trials were carried out in the same way 
for all experiments under laboratory conditions anal­
ogous to those in which the snails were maintained 
(Dalesman et al., 2006). Twenty-four individuals were 
used for each treatment combination, giving a total of 
96 individuals per population, 576 in total, with no 
individual snail used more than once during beha­
vioural trials. Behavioural chambers consisted of a 
white plastic dish, 165 mm diameter x 60 mm depth 
(A.W. Gregory & Co. Ltd., London, U.K.), with a 
longitudinally sectioned white PVC pipe (36 mm 
long, 30 mm diameter) attached open side down to 
the centre using non-toxic sealant (Wickes Ultimate 
Sealant and Adhesive; Wickes Building Supplies Ltd., 
Northampton, U.K.) to provide a refuge. Juvenile 
snails were acclimated to behavioural chambers for 
24 h in 630 mL of artificial pond water prior to 
behavioural assays. Seventy millilitres of cue water 
was added to each chamber at the start of the 
behavioural assay to give a final concentration of 
10% cue water. The position of each snail within the 
behavioural chambers was recorded every 5 min for 
2 h following cue addition. Crawl-out behaviour has 
been found to be the main anti-predator response to 
tench cue by L. stagna/is originating from a population 
with fish predators present (Dalesman et al., 2006). 
However, use of a refuge by L. stagna/is may occur in 
response to fish predators (Rundle & Bronmark, 2001), 
so both· types of behaviour were analysed here using 
two variables: the proportion of total time spent in 
avoidance behaviour; and the latency to avoidance, 
calculated as the proportion of total time during the 
trial before an avoidance behaviour was observed 
(Cotton, Rundle & Smith, 2004). 

StatistiCill analysis 

Data were analysed using ANOV A in GMA VS (Insti­
tute of Marine Ecology, University of Sydney, Sydney, 
Australia). Initially each population was analysed 
separately to test for an effect of trial on the response 
to alarm and tench cues, however as no effect of trial 
was found in any of the six populations trial was 
excluded from further analyses. Alarm cue, tench cue, 
habitat type (predatory fish present or absent) and 
population (nested within habitat type) were used as 
factors in the analysis. Both time spent in avoidance 
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and latency to avoidance were calculated as propor­
tions of total duration, and were arcsine-square root 
transformed prior to analysis (Sokal & Rohlf, 1995). 
Student-Newman-Keuls (SNK) tests were used to 
carry out post hoc pair-wise comparisons. 

Results 

The treatment with a combination of tench kairo­
mones plus alarm cue produced the greatest avoid­
ance response, with the longest time spent crawled 
out for all populations. This response was signifi­
cantly higher for individuals bred from adults that 
originated from populations experiencing fish preda­
tion (Fig. la, Table 1; F1,4 = 16.66; P = 0.015; SNK; 
P < 0.01). In addition, snails originating from popu­
lations experiencing fish predation also showed a 
significant response to the fish cue treatment, though 
this was significantly lower than the response to 
combined cues (SNK; P < 0.05); individuals from 
populations where no fish predators were present 
showed no significant crawl-out response to fish cues 
alone. None of the populations showed a significant 
crawl-out response to alarm cues in isolation. 

The latency to crawl-out was significantly shorter in 
response to tench kairomones and alarm cues com­
bined (F1,4 = 194.13; P < 0.001) compared with either 
cue presented alone for all the populations tested, and 
did not differ depending on habitat origin (Fig. 1b; 
Table 1). However, the response to tench kairomones 
presented alone differed significantly between habi­
tats, with latency being significantly lower in popu­
lations originating from areas with fish predators 
present (Fig. 1 b; Table 1; F1,4 = 76.08; P = 0.001; SNK; 
p < 0.01). 

The time spent under the refuge significantly 
decreased in response to the presence of tench cue 
(ANOV A: main effect of tench cue; F1,4 = 13.90; P = 
0.020) but was not affected by any other factors. 

Discussion 

All the populations used in this study showed a 
degree of innate anti-predator response to predator 
kairomones presented in combination with alarm cues 
by crawling above the water line. This indicates that 
the populations not experiencing fish predation are 
still able to recognize the predation threat from tench 
and respond with appropriate behaviour. The 
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Fig. 1 The mean (±SE) crawl out response of F1 L. stagna/is from 
populations with low (Wistaria; Chilton; Little Hook) and high 
(N. Moor Main Drain; South Drain; Sowy River) predatory fish 
regimes, showing (a) proportion of time spent crawled out and 
(b) latency to crawl out under different treabnents (n = 24 for 
each treabnent combination). Columns without letters do not 
differ significantly from one-another but differ significantly from 
all columns with letters. Columns with the same letter do not 
differ significantly, but do differ from columns bearing alter­
native letters. 

response from fishless populations was significantly 
lower than from populations exposed to predatory 
fish, however, suggesting that the innate perceived 
threat is lower in the fishless populations. The 
populations from habitats with predatory fish present 
also demonstrated an innate response to tench cues 
alone, not seen in the populations without any 
predatory fish in their natural habitat. The observed 
decrease in use of the refuge in response to tench cues 
is most likely to be an artefact of the increase in crawl 
out response to this cue, confirming that crawl out 
behaviour is the main response to tench kairomones 

© 2007 The Authors, Journal compilation © 2007 Blackwell Publishing Ltd, Freshwater Biology, doi:l 0.1111 /j.1365-2427.2007.01843.x 



Predator regime alters innate behaviour 5 

Table 1 Results from four-way nested 
Proportion of time 

A N OVA on time spent crawled out of the 
water and latency to crawl out. Factors 
used are: habitat type (predatory fish/no 
predatory fish), population (nested in 
habitat type), alarm cue (present/absent) 
and tench cue (present/absent). ll = 24 for 
all treatment combinations 

Source d.f. Mean square F P-vaJue Mean square F P-value 

Habitat type (Ha) 
Population nested in 
habitat (Po) 

Alarm cue (A) 

Tench cue (TI 
Ha• A 
Ha-T 
A•Po 
PPo 
A-T 
Ha• A-T 
A-T•Po 
Total 

shown by L. stagna/is, as found in a previous study 
(Dalesrnan et al., 2006). 

The difference between high and low risk popula­
tions in a laboratory-reared Fl generation suggests 
that adaptation to local predator regimes has occurred 
in the six populations studied. This result concurs 
with results on responses from other freshwater 
organisms with limited dispersal such as Gammarus 
pulex (AbjOmsson, Hansson & Bronmark, 2004) and 
the Trinidadian guppy, Poedlin reticula (O'Steen et al., 
2002), which also showed divergence in the degree of 
innate response to predatory fish cues relative to the 
predators present in their environment. As all three of 
these species have relatively low dispers,al abilities 
these results support the theory that species with low 
dispersal capabilities adapt to local predator regimes 
rather than relying purely on plasticity to alter 
phenotype (Kawecki & Ebert, 2004). 

The reduced response to fish cues from populations 
not normally exposed to predatory fish suggests that 
L. stagna/is does not have a general anti-predator 
response to all the potential predator species it could 
encounter, as these populations showing low responses 
to predatory fish cues are exposed to large numbers of 
invertebrate predators (5. Dalesman, pers. obs.) whose 
numbers would be reduced by predatory fish else­
where (Abjomsson, Bronmark & Hansson, 2002). 
Indeed, it has been previously demonstrated that 
aquatic gastropods are able to vary their response 
depending on predator identity (Snyder, 1967; Turner, 
Bernot & Boes, 2000), so potentially populations may 
lose their response to one type of predator without 
reducing their response to another (Mikolajewski et al., 

3.41 27.76 0.006 4.10 30.61 0.005 
4 0.12 1.94 0.103 0.13 1.27 0.282 

14.61 266.87 <0.001 13.91 248.47 <0.001 
24.62 222.23 <0.001 31.16 416.26 <0.001 
0.73 13.27 0.022 0.35 6.25 0.067 
3.72 33.57 0.004 5.70 76.08 0.001 

4 0.05 0.86 0.486 0.06 0.53 0.714 
4 0.11 1.75 0.138 0.07 0.71 0.586 
1 14.24 355.51 <0.001 14.05 194.13 <0.001 
1 0.67 16.66 0.015 0.13 1.80 0.251 
4 0.04 0.63 0.640 0.07 0.69 0.602 

575 

2006). This may eventually result in the complete loss of 
the ability to recognize potential predator by a prey 
species if they no-longer come into contact (Stoks, 
McPeek & Mitchell, 2003). The reduced avoidance 
response in low risk populations suggests that there 
may be costs associated with retaining anti-predator 
behaviour towards fish . Traits linked with an increased 
tendency to respond to fish cues may incur costs when 
expressed in fishless environments, for example the 
loss of sexual ornamentation (Magurran, 1999; Basolo & 

Wagner, 2004) or the costs associated with maintaining 
and producing plastic responses (DeWitt, 1998). 

Assuming that costs are associated with maintaining 
the high degree of anti-predator behaviour in response 
to fish cues when predatory fish are not present, it 
seems perplexing that the response is retained at all in 
the low risk populations studied here. One explan­
ation may be that fishless environments can be 
invaded by predatory fish during times of flooding, 
as the fish and fishless populations used here are in 
relatively close proximity (<1.1 km) and on a flood 
plain. The high and low response populations are 
connected by a series of drainage ditches so there is 
also potential for gene flow between populations, 
preventing complete loss of anti-predator behaviour 
from the fishless populations. As the fitness conse­
quences of not responding to fish correctly are likely to 
be much higher than occasional inappropriate beha­
viour when fish are not present, it is possible that even 
infrequent encounters with predatory fish may result 
in the behaviour being retained. An alternative 
explanation would be that at least part of the observed 
response to predatory fish cues is due to a general 
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sensitivity to predators rather than a predator specific 
response, or linked within a suite of behavioural 
syndromes (Sih, Bell & Johnson, 2004). In this case the 
'low risk' populations are still exposed to an assort­
ment of invertebrate predators including beetles, bugs 
and leeches (5. Dalesman, pers. obs.), and elements of 
the response seen to fish kairomones may be included 
in the anti-predator response to these other taxa. 

The nature of the environment in which the snail 
populations used in this study live, with the close 
proximity and potential for migration along linked 
water systems suggests that the differences seen will 
be under strong selection, both for high response 
under threat of predation, but also to lose responses 
when that threat is no longer present. The degree of 
variation seen in both population groups, with a few 
individuals from the populations lacking predatory 
fish showing a high response to fish and alarm cues, 
and vice versa, indicates potential within the popula­
tion to react rapidly to a change in predatory threat. 
Rapid microevolution causing divergence between 
conspecific populations (Hendry & Kinnison, 1999) 
has been demonstrated elsewhere as a result of 
natural selection caused by predators (Cousyn et al., 
2001; O'Steen et al., 2002; Losos, Schoener & Spiller, 
2004; Meyer et al., 2006; Nosil & Crespi, 2006). 

In conclusion, our study suggests that innate 
differences in behaviour and morphology found in 
other aquatic species (O'Steen et al ., 2002; Abjornsson 
et al., 2004) may be generalized across freshwater taxa 
with poor dispersal abilities. The inability to move 
from areas of high predation risk to low predation risk 
may be promoting adaptive responses to local pred­
ator regimes. We have previously demonstrated that 
L. stagna/is is able to alter risk perception of a known 
predator based on recent experience (Dalesman et al., 
2006). Such abilities to associate predation cues with 
perceived risk to fine-tune the innate recognition of 
predation threat in the short term, alongside the long 
term adaptive response to predators demonstrated in 
the present study, suggest that freshwater snails such 
as L. stagna/is are able to match their anti-predator 
behaviour closely to their environment. 
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PHYLOGENETIC RELATEDNESS AND ECOLOGICAL INTERACTIONS 
DETERMINE ANTIPREDATOR BEHAVIOR 
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Marine Biology and Ecology Research Centre, School of Biological Sciences, Uni1•ersity of Plymouth , Plymouth PL4 8AA UK 

Abstract. Interspecific recognition of alarm cues among guild members through 
"eavesdropping" may allow prey to fine-tune antipredator responses. This process may be 
linked to taxonomic relatedness, but might also be influenced by local adaptation to recognize 
alarm cues from sympatric species. We tested this hypothesis using antipredator responses of a 
freshwater gastropod Lymnaea stagna/is (L.) to alarm cues from damaged conspecific and 10 
heterospecific gastropod species. As predicted, the magnitude of antipredator response 
decreased significantly with increasing phylogenetic distance, but increased when species were 
naturally sympatric (defined as species cohabiting in the same water body) with the source 
population of L. stagna/is. The responses to sympatric species were higher overall, and the 
relationship between genetic distance and alarm cue resp nse was stronger when tested with 
sympatric species. This is the first study to demonstrate t population sympatry influences 
innate antipredator responses to alarm cues from i gui members and suggests that 
responses based on phylogenetic relationships can be ifi hrough local adaptation. Such 
adaptation to heterospecific alarm cues suggests that s ould be at a disadvantage when 
they encounter novel intraguild members resulti invasion or range expansion 
due to a reduction in the presence of reliable i predation risk. 

Key words: 
phylogeny. 

INTRODUCTION ttraction of Aplysia spp. to heterospecifics during 

Biological signals produced by organisms are aying (Cummins et al. 2005). In these cases, there is 
• ...._..,.,..,..nefit to all individuals to oviposit in the same site, 

ally intended to communicate only with••al""" 
Irrespective of their species. The interaction between 

individuals conferring benefit to the signal 
evolutionary history and local adaptation in shaping 

intercepted by heterospecific individuals 
interspecific communication has also been investigated 

dropping" (Stowe et al. 1995, Bradbury 
in relation to sexual signals, where it has been shown 

camp 1998). Eavesdropping impli,...llll'l'll.,. 
that differences between signaling systems are more 

signaler, but may be of benefi 
pronounced in sympatric species pairs (Ryan and Rand 

example in locating resources o 1995, Symonds and Elgar 2004). Phylogeny is not a 
competitors, and has been found to good predictor of the degree of divergence seen between 
wide variety of taxa (Catchpole and Leis 986, Stowe sexual signals when species are found sympatrically, 
et al. 1995, Taga and Bassler 2003, Symonds and though exceptions have been found (Smith and Flor­
Wertheim 2005, Runyon et al. 2006). Eavesdropping on entino 2004). The importance of sympatry in shaping 
alarm cues from heterospecific intraguild members has sexual signals suggests that local adaptation to avoid 
been found in several species and may be used to provide heterospecific interactions is acting on this signaling 
additional information about potential predation risk system, and in many cases counteracting the effects of 
(Stenzler and Atema 1977, Mirza and Chivers 2001 , phylogenetic relatedness. 
Hazlett and McLay 2005, Schoeppner and Relyea In predator- prey systems, recognition of alarm cues 
2005). from closely related species is not considered communi-

In communication systems where it is beneficial to cation as there is no benefit to the signaler (Bradbury 
both signaler and receiver to respond to related and Vehrencamp 1998), however it may be of benefit to 
heterospecifics, phylogenetic relationships generally ap- the receiver to assess predation risk accurately and, 
pear to explain the patterns observed, for example, the hence, may reduce the high fitness costs associated with 
similarity of chemical aggregation signals in closely predation (Lima and Dill 1990). There is considerable 
related Drosophila spp. (Symonds and Wertheim 2005) evidence that alarm cues are conserved within phyloge-
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netic groups (Pfeiffer 1977), with responses to alarm 
cues from closely related species generally being stronger 
than from those more distantly related (Snyder 1967, 
Stenzler and Atema 1977, Brown et al. 2003, Vilhunen 
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METHODS and Hirvonen 2003), though the nature of the relation­
ship between phylogenetic distance and response has 
only been investigated for the tadpole Hyla versico/or 

Study organisms.- Adult L. stagna/is used to establish 
(Schoeppner and Relyea 2005). Snyder (1967) proposed the snail culture for behavioral trials were collected from 
that responses to alarm cues from heterospecific species 

South Drain, a drainage canal on the Somerset Levels, sharing a common predator would be advantageous to a 
UK (5 1°10'48" N, 2°52'48" W) in September 2005. prey species regardless of taxonomic relationships. This 
Repeated field sampling between June 2004 and June theory would suggest that the effect of phylogenetic 
2006 identified which gastropod species were present at 

relatedness might be modified via the effects of sympatry the South Drain site. ln the laboratory, adults were kept 
or allopatry. There have been several studies which 

in aquaria with 4 L of aerated artificial pond water Suggest that sympatry may modify responses to alarm 
(American Society for Testing and Materials 1980) with 

cues from heterospecific species, however, they either 90 mg/L [Ca2+] (Rundle et al. 2004). They were 
used wild caught individuals so could not rule out the maintained at 15o ± 1oc under a 12 h: !2 h light: dark 
effects of experience (Stenzler and Atema 1977, Chivers cycle, and fed on iceberg lettuce and spinach. To 
et al. 1997, Rochette and Dill 2000, Sullivan et al. 2003• minimize the influence of adult experience on juvenile 
Hazlett and McLay 2005) or used too few species to development and behavior, the FI snails used during 
investigate any interaction with the effects of phyloge- behavioral trials were bred from egg masses laid a 
netic relatedness (Laforsch et al. 2006). two months post collection and were then 

In aquatic systems, chemical cues often provide the sep rately in the same conditions as the 
most reliable source of information about a predator ecific adult snails were collected from 
where other information, such as visual cues, may be s (Appendix A) to raise Fl snails that 
impaired by poor visibility (Dodson et a l. 1994). oduce alarm cue. All snai ls used had a 
Information from predator diet or injured conspecifics he ht of 6 ± 0.5 mm except in the case of 
can be used to assess current predator feeding activity ies (Planorbis planorbis and Planorbarius 
and hence associated risk from a potential predator spiral diameter measured 6 ± 0.5 mm. 
(D alesman et al. 2006), or to learn to identify a llllliilllll'lstance between species was calculated using 
previously unrecognized predation threat (Chivers <WIIIIl .... llll..::~~ base pair section of I8S rDNA obta}ned from 
Smith 1998). Due to selective forces operating on nk (Appendix A). Sequences were aligned using 
species to respond correctly to predation threat it IX 1.83 (Thompson et al. 1997) and a pairwise 
likely that the relationship between phylogen ic nee matrix calculated in TREECON 3.0 (Van de 
lance of intraguild members from a res~lllm!!a Peer and De Wachter 1993) using the K.imura two-
antipredator response to alarms cues will b parameter model (Kimura 1980), with the transition/ 
local adaptation. transversion ratio estimated from the data and inser-

Here we investigated the innate tionsfdeletions taken into account. As no 18S rDNA 
freshwater gastropod, Lymnaea sta 7is sequence is currently available for Lymnaea fusca , the 
cues from heterospecific prey guil sequence for L. palustris was used as a closely related 
with cues from a fish , (tench, Tinea species within the sub-genus Stagnicola; Lymnaea 
feed on gastropods (Bronmark 1994). palustris is the only other British species found in the 
heterospecific freshwater gastropods at diffe ng phylo- subgenus (Anderson 2005), and is known to be very 
genetic distance from L. stagna/is, five of which are closely related to L.fusca based on ITS-2 sequence data 
found sympatrically to the source population of L. (Bargues et al. 2001). 
stagna/is used during behavioral trials, and five of which Odor production.- Predator and alarm cues were 
are allopatrically distributed. In this case, species were produced in the same way in all the experiments 
considered allopatric if they were not found in the same (Dalesman et al. 2006). Tench, Tinea tinea, were used 
body of water (South Drain) as the L. stagna/is to produce predator cue as they are a known natural 
population (S. Dalesman, unpublished data), allopatric predator of freshwater gastropods (Bronmark 1994). 
species in some cases came from a site less than I km The tench were fed Nutri-Flake (Hozelock Cyprio, 
away. We tested the following hypotheses: (I) that the Aylesbury, UK), which contains no mollusk extracts, 
innate antipredator response of L. stagna/is to alarm and hence avoided potential dietary cues affecting the 
cue, paired with predatory fish cues, would decrease with trials. Predator cue water was produced by placing three 
increasing phylogenetic distance of the heterospecific tench (length 10 ± I cm) into 4 L of aerated artificial 
snail species used to produce alarm cue; and (2) that the pond water for one hour. Alarm cue was produced by 
response to alarm cue from species found sympatrically mixing three crushed snails (6 ± 0.5 mm) into 4 L of 
to the L. stagna/is population would induce stronger aerated artificial pond water. Predator plus alarm cue 
anti predator behavior than alarm cue from species water was produced by mixing three crushed snails (6 ± 
found allopatrically distributed relative to the L. 0.5 mm) into 4 L of tench cue water. The control was the 
stagna/is population. addition of aerated artificial pond water with no cues 
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on response means versus genetic distance were carried 
out using a regression analysis in Minitab 13. 

added. Crushed snails were used as opposed to feeding 
snails to tench to ensure that the alarm cue concentra­
tion paired with tench cue was kept at a similar level for 

R ESULTS all behavioral trials, the strong behavioral response in 
the paired cue treatment in a previous study suggested The principal antipreda tor behavior of Lymnaea 
that L. stagna/is responds to alarm cue from crushed stagna/is, crawling above the water line, was greatest in 
snails paired with tench cues as a predation threat response to alarm and tench cue combined, both in the 
(Dalesman et al. 2006). mean proportion of time spent out of the water and the 

Behavioral assay.- Behavioral trials were carried out mean latency to crawl out. The effects of genetic 
between January and May 2006 in the Experimental distance or sympatryfa llopatry were not seen in response 
Aquatic Ecology Laboratory, University of Plymouth in to the control or either cue presented alone. However, in 
conditions analogous to those in which the snails were response to combined cues (alarm and tench cue) the 
maintained (Dalesman et al. 2006). Twenty-four indi- proportion of time spent crawled out declined signifi­
viduals were used for each treatment combination, with cantly with genetic distance between L. stagna/is and the 
each snail used once only, giving a total of 1056 snails. heterospecific snail. This trend was modified depending 
Behavioral chambers consisted of a white plastic dish , on whether the snail species used is found allopatrically 
165 mm diameter x 60 mm depth (A. w. Gregory and or sympatrically to the responding population of L. 
Co., London, UK), with a longitudinally sectioned white stagna/is; the response to allopatric species was signif­
PVC pipe, 36 mm long, 30 mm diameter, attached open icantly I er than that to sympatric species, with a 
side down to the centre using nontoxic sealant (Wickes weaker cl in with increasing genetic distance (Fig. I a; 
Ultimate Sealant and Adhesive, Wickes Building Sup- AN r-way interaction: Ft , t040 = 4.84, P = 
plies Ltd., Middlesex, UK) to provide a refuge. Twenty- 0.028; dix B). In response to combined cues the 
four chambers were set up for each behavioraltrial, and I I out was significantly longer with 
juvenile snails were acclimated to behavioral chambers ene tc distance; this response was again 
for 24 hours in 630 mL of artificial pond water prior to whether heterospecifics used to produce 
behavioral assays. Cue water (70 mL) was added to each ere found sympatrically to the L. stagna/is 

..... K , with a significantly shorter latency to crawl 
chamber at the start of the behavioral assay to 
final concentration of 10% cue water, with six eh when crushed snails were found in sympatry 

. I b; ANCOVA, four-way interaction, F 1. 1040 = 
having each of the four cue treatments added o 
d T ·d · · f , P = 0.047; Appendix B). 

ay. o avot cross-contammatJon, alarm c r~•••'P ost hoc analysis of the response to combined cues 
single species was used on each day, res·-'""-

(alarm and tench cue together) showed that when alarm 
behavioral trials in total for each sna· spec· •••r cue was produced by sympatric species there was a 
position of the chambers in which eacti t highly significant relationship between genetic dista nce 
was added was fully randomized wit · 

and strength of the response for both the proportion of 
for each behavioral trial. The P time crawled out (Fig. la; R2(adj) = 0.90, P = 0.003) 
within the behavioral chambers and latency to crawl out (Fig. Jb; R\adj) = 0.94, p = 
minutes for 2 hours following cue 0.001). However, this relationship was not apparent 
behavior is the main antipredator when the species used to produce alarm cue were 
stagna/is to tench (Dalesman et al. 2006 , hence only allopatric, with a weaker non-significant relationship 
results from crawl-out behavior are presented here. between genetic distance and proportion of time spent 
Crawl-out behavior was analyzed using two variables: crawled out (Fig. 1 a; R2(adj) = 0.63, p = 0.070), and no 
the proportion of total time spent crawled out of the apparent relationship ·between genetic distance and 
water; and the latency to crawl out, calculated as the latency to crawl out (Fig. 1 b; K(adj) = 0.00, p = 0.396). 
proportion of total time during the trial before crawl-out 
behavior was observed (Cotton et al. 2004). 

Statistical analysis.- Data were analyzed as an 
unbalanced ANCOVA design using General Linear 
Model (GLM) in Minitab 13 (Minitab, State College, 
Pennsylvania, USA). Alarm cue, tench cue and envi­
ronment (whether snails were found sympatrically or 
allopatrically) were treated as fixed factors, and pairwise 
genetic distance between L . stagna/is and each of the 
species used to produce alarm cue was used as the 
covariate. Both time spent crawled out and latency to 
crawl out were calculated as proportions of total 
duration, and were arcsine-square root transformed 
prior to analysis (Sokal and Rohlf 1995). Post hoc tests 

DISCUSS ION 

This study demonstrates that the magnitude of innate 
avoidance responses shown by Lymnaea stagna/is to 
heterospecific alarm cues paired with predator cues, 
declines with phylogenetic distance. Tbis declining 
response concurs with findings on innate tadpole 
behavior (Hyla versicolor) where timing of evolutionary 
divergence was compared with response level (Schoepp­
ner and Relyea 2005). Although the relationship 
between genetic distance and antipredator response of 
L. stagna/is is very strong when the responding 
population is found sympatrically to the species used 
to produce alarm cues, this relationship is weaker and 
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by L. stagna/is to alarm cues presented in isolation alone 
concurs with previous findings for this species (Dales­
man et al. 2006), and may reflect the general unreliability 
for prey species of using alarm cues alone, as it provides 
no information about the nature of the threat (Chivers 
and Smith 1998). 

The significant effect of sympatry on intensifying 
antipredator response suggests that L. stagna/is has 
either conserved its response relative to allopatric species 
or elevated it toward sympatric species. This type of 
adjustment has been demonstrated previously in re­
sponse to predator cues where individuals from envi­
ronments with high numbers of predators show a greater 
innate response to predator cues than those from low 
risk environments (Boersma et al. 1998, Magurran 1999, 
Abjornsson et al. 2004), although this may be due to 
transgenerational effects as well as local adaptation 
(Agrawal et al. 1999). However, our study is the first to 
conclusive emonstrate that sympatry can affect the 

tor response to alarm cues from 
revious studies that inferred evidence 

sympatry did not control adequately for 
of experience, by using wild caught 

tenzler and Atema 1977, Chivers et al. 
e and Dill 2000, Sullivan et al. 2003, 
cLay 2005), or used too few species to 

conclusions (Laforsch et al. 2006). Together 
factors may account for the bias toward the 
tance of phylogenetic relationships affecting the 
se to alarm cues in the current literature. 

FIG. I. The relationship between genetic rei 
sympatryfallopatry in the antipredator respon 
stagna/is (a freshwater gastropod) to tench (~ 
that feeds on gastropods) and alarm cues combin 
symbols show the response (mean :!:: SE) 

.......... lltlthough tench are likely to represent the main 
predation threat to aquatic gastropods in the site where 

lillfi•our responding population was sourced, it is likely that 

(solid circles, sympatric species; ope 
species), with lines indicating the trend 
behavior and Kimura two-parameter 
proportion of time spent crawled out o 
proportion of latency to crawl out. N = 24 snru 
point. 

not significant when considering the response to 
allopatric species, particularly in the latency to crawl 
out. This is the first evidence to demonstrate that the 
effect of relatedness on prey responses to heterospecific 
alarm cues can be modified by ecQJogical context and 
could disappear if the species used are allopatric to the 
responding population. 

The agreement between our findings for syrnpatric 
species and those of other studies (Mirza and Chivers 
2001, Schoeppner and Relyea 2005, Kelly et al. 2006) 
suggests that the influence of phylogenetic relatedness 
may indeed be widespread in chemical alarm signaling. 
This relationship between response and genetic distance 
indicates there may be a gradual mode of evolution in 
either the signaling chemicals or the way in which they 
are detected (Jovelin et al. 2003, Symonds and Wertheim 
2005, Kelly et al. 2006). The complete lack of response 

L . stagna/is and co-habiting gastropod species will 
encounter other predator threats. The presence of 
generalist predators or specialist predators that focus 
on the taxonomic group including the prey species of 
interest, is likely to increase selection to respond to 
heterospecific cues, whereas specialist predators that 
focus on other taxonomic groups would select against 
costly induced responses to heterospecific cues. The 
degree to which a taxonomic group is represented in the 
predator's diet will affect the degree to which a response 
to heterospecific alarm cues is appropriate. For example, 
both crayfish, Paeifastaeus leniuseulus, and tench, Tinea 
tinea, consume a large number of gastropods, so there is 
a high probability that when they are actively foraging in 
an area all gastropod species have a high risk of 
predation (Bronmark 1994, Nystrom et al. 2001). 
However, if a rainbow trout (Oneorhynehus mykiss) 
which specializes on aquatic insects, happens to con­
sume an aquatic gastropod, it is unlikely that they will 
pose a significant threat to other gastropods in the 
vicinity (Nystrom et al. 2001). This may have two effects 
on the response to alarm cues from heterospecifics: (I) 
the response may be predator specific, such that the prey 
species only responds to heterospecific cues when paired 
with cues from specific predators', and (2) the selection 
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to respond to heterospecific species may only occur 
when there are predators present that preda te several 
species within a taxonomic group. 

macroinvertebrates and amphibians. American Society for 
Testing and Materials, Philadelphia, Pennsylvania , USA. 

Anderson, R. 2005. An annotated list of the non-marine 
mollusca of Britain and Ireland. Journal of Conchology 38: 
607-638. 

Bargues, M. D., M. Vigo, P. Horak, J. Dvorak, R. A. Patzner, 
J. P. Pointier, M. Jackiewicz, C. Meier-Brook, and S. Mas­
Coma. 200 I. European Lymnaeidae (Mollusca: Gastropoda), 
intermediate hosls of trematodiases, based on nuclear 
ribosomal DNA ITS-2 sequences. Infection, Genetics and 
Evolution 1:85- 107. 

Boersma, M., P. Spaak, and L. De Meester. 1998. Predator­
mediated plasticity in morphology, life history, and behavior 
of Daplmia: the uncoupling of responses. American Natural­
ist 152:925-927. 

Bradbury, J. W., and S. L. Vehrencamp. 1998. Principles of 
animal communication. Sinauer Associates, Sunderland, 
Massachusetts, USA. 

Bronmark, C. 1994. EfTects of tench and perch on interactions 
in a fresh-water, benthic food-chain. Ecology 75:1818- 1828. 

Brown, G. E. 2003. Learning about danger: chemical a larm 
cues and local risk assessment in prey fishes. Fish and 
Fisherie :227-234. 

., J. C. Adrian, N. T . Naderi, M. C. Harvey, and 
Kell 2003. Nitrogen oxides elicit antipredator 

juvenile channel catfish, but not in convict 
"nbow trout: conservation of the ostariophysan 

e. Journal of Chemical Ecology 29:1781-

A general reliance on heterospecific cues to indicate 
the level of predation risk in the environment may be 
de trimenta l if invasive intraguild species move into the 
ha bita t whose alarm cues are not recognized . In this 
case, the responding species may under-estimate the risk 
of predation resulting in a reduced antipredator 
response and potentially increased vulnerability to 
predation . Likewise, if a species colonizes a novel 
habitat it may encounter new intraguild members. The 

phylogenetic relationship between the responding spe­
cies and the novel intraguild members is likely to 
influence the potential for recognition of alarm cues as 
demonstrated in this study. Adaptive responses to a 

novel species appear to have occurred historically in the 
population of L. stagna/is used as responders. We found 
that L. stagna/is exhibits an elevated response to a larm 

cue from the invasive gastropod Physel/a acuta. This 
response to a sympatric introduced species is elevated 
relative to that for a closely related native British 
species, Physa fontinalis found allopatricaUy distributed 
relative to the South Drain L. stagna/is population. 

Differences between populations in response to a larm and B. Leisler. 1986. lnterspecific territorialism 
arblers: a local efTect revealed by playback 

cues have previously been suggested to occur through s. Animal Behaviour 34:299-300. 
learning (Brown 2003), however there is good sup··-'~~-~. 1 P., J. M. Kiesecker, E. L. Wildy, M. T. Anderson, 
for genetic differentiation in response to pre R. Blaustein. 1997. Chemical alarm signalling in 
(Abjornsson et al. 2004, Kawecki and Ebert 20 restrial salamanders: intra- and interspecific responses. 

it would therefore seem highly likely that prey ology 103
=
599-{il3. ers, D. P., and R. J. F. Smith. 1998. Chemical a larm 

would a lso show adaptive variation in respo signalling in aquatic predator-prey systems: a review and 
cues. It appears, in our study, that indivi prospectus. Ecoscience 5:338- 352. 
population used as responders have Cotton, P. A., S. D . Rundle, and K. E. Smith. 2004. Trait 
response toward sympatric species. As compensation in marine gastropods: shell shape, avoidance 

behavior, and susceptibility to predation. Ecology 85: 1581-
were na"ive lab reared snails we 1584. 
effects of experience, which have Cummins, S. E., C. H. Schein, Y. Xu, W. Braun, and G. T . 
explain strong responses to sy Nagle. 2005. Molluscan attractins, a family of water-borne 
2003). Here it is clear tha t local a protein pheromones with interspecific attractiveness. Pep tides 

26: 121- 129. 
behavioral plasticity is important. dy d emon- c Dalesman, S., S. D. Rundle, R. A. oleman, and P. A. Cotton. 
strates for the first time that sympatry can enhance 2006. Cue association and antipredator behaviour in a 
innate responses to heterospecific alarm cues and that pulmonate snail, Lymnaea stagna/is. Animal Behaviour 71: 
this process can interact with phylogenetic rela tionships 789- 797. 
to fine-tune antipredator behavior. Dodson, S. 1., T. A. Crow!, B. L. Peckarsky, L. B. Kats, A. P. 
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