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Abstract 

Growth, carcass composition and meat quality of Angora goats 

reared for fibre production 

Sarah Ann Barber 

The effects of age and plane of nutrition on the body and carcass composition and mohair 

fibre yield and quality of British Angora wether goats slaughtered at six, 12, 18 and 24 

months of age were investigated. Carcass yield, composition and conformation improved 

with increasing age and plane of nutrition. Greasy fleece weight also increased with 

increasing age and plane of nutrition but fibre quality declined since the increase in f!1ass was 

achieved by means of increased fibre diameter with no effect of age or plane of nutrition on 

the fibre elongation rate. There was a constant relationship between the increase in fibre 

diameter with age and fleece mass which was not affected by plane of nutrition. Similarly 

there was no significant effect of plane of nutrition on the relationships between fibre 

diameter and the weight of various body and carcass components. A strong relationship 

between fibre diameter and the weight of fat in the body or carcass suggested that the increase 

in fibre diameter with age of the goat was influenced by cumulative feed intake rather than by 

fat-free body size. 

The allometric growth patterns of the body and carcass of the Angora goat conformed with 

the patterns established for other domestic species, with early maturity of the external offal 

and vital organs, later maturity of the carcass and body fat, and a centripetal pattern of 

development. There was no effect of plane of nutrition on the allometric growth patterns of 

the fat-free body or carcass, but decreasing the plane of nutrition resulted in a uniform 

retardation of all body parts and carcass tissues and a significant effect on the relative growth 

rate of body and carcass fat. 

Regression equations were formulated to predict the half carcass composition of Angora 

wether goats using sample joint dissection data. The most accurate predictions were achieved 

with data from the leg and the best end of neck combined in multiple regression equations. 

A second experiment to investigate the effects of long term undernutrition followed by 

realimentation on the growth rate and composition of empty body weight gain revealed no 

evidence of compensatory liveweight gain in the Angora goat. 
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1 Introduction 

Although currently the largest single importer and processor of mohair fibre produced 

worldwide, the United Kingdom has remained a minor producer since the introduction of the 

first Angora goats to the country in 1981. By 1991 the number of U.K. registered breeding 

does had increased to approximately 2000, with fibre quality equivalent to that provided by 

the South African, Texan and Australasian producers, but British farmers were struggling to 

compete due to the relatively low quantity of mohair produced in the U.K. per annum 

(Veysey, personal communication). 

In a report commissioned jointly by the British Angora Goat Society and Food From Britain, 

Thelwall (1988) confirmed the feasibility of U.K. mohair production but highlighted the 

preeminently fashion dependent nature of the industry which results in considerable 

fluctuation in mohair price. He emphasised the importance of meat production to the long

term success of the industry and stressed that a stable income from meat would be essential in 

order to maintain profitability and encourage further U.K. mohair production. 

However, there has been very linle investigation into the production and quality of goat meat, 

particularly under temperate conditions. Few existing reports relate specifically to the Angora, 

so there is limited information on which to base management advice, particularly with regard 

to nutrition. It is also possible that any techniques adopted for the improvement of carcass 

quality and yield may be detrimental to the primary objective of producing high quality 

mohair fibre, since nothing is known of the relationship between the development of the 

carcass and fibre quality. 

Therefore the aim of this study was to examine the growth and carcass development of the 

Angora goat with age and at different levels of nutrition and to relate this development with 

the concomitant changes in fibre yield and quality under U.K. conditions. The study 

concentrated on the male castrate (wether) since this constitutes the major source of meat. 

Furthermore, castration tends to increase carcass fatness. This could be desirable in the case 

of the goat whose carcass is often considered 'over lean' by the butcher. 
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2 Review of the literature 

2.1 Growth and development of body and carcass components in domestic 

livestock 

The growth of an animal is generally described in terms of an increase in body weight with 

time, and of the changes in the form of the animal with increasing maturity. The relationship 

between body weight and time is sigmoid for most species, with a "self-accelerating" phase, 

a point of inflection which generally coincides with puberty, and a "self-decelerating" phase 

(Brody, 1964). Within the pattern of growth of the whole body there is a regular and 

systematic pattern of growth of the body organs, tissues and parts, the growth of each 

component following a temporal pattern similar to that of liveweight. Changes in the form of 

the animal result from differences in the relative growth rates of the component body parts 

which lead to differences in their proportions as the animal grows. 

These sequential growth patterns were first described in the sheep by Hamrnond (1932) who 

referred to parts as 'early'- or 'late'-maturing according to the sequence in which they reached 

their maximum absolute growth rate. In this and later studies by the Cambridge school of 

workers, summarised by Palsson ( 1955), patterns of development of domestic livestock were 

established. The order in which the body organs attain their maximum growth rate was thus; 

eyes, kidneys, heart, thoracic organs, digestive tract. The order of development of the carcass 

tissues was; nervous tissue, bone, muscle and fat, with fat developing in the various depots 

at different rates in the following order of increasing rate; mesenteric fat, kidney fat, 

intermuscular fat and subcutaneous fat. 

These same studies also identified a directional pattern of growth of the body comprising a 

primary wave of increasing growth intensity from the cranium down to the facial parts of the 

head and backwards to the lumbar region with a secondary wave of growth from the lower 

limbs down to the digits and upwards along the limbs to the trunk and lumbar region. A 

similar pattern of centripetal development was also observed within each of the major tissues 

of the carcass. 
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The growth intensity of the whole body (or the relative growth rates of its parts) is therefore 

distributed according to a fixed and orderly system of growth gradients which were first 

described mathematically by Huxley (1932). Over a given period of growth there is a 

constant ratio between the growth rate of a body component (y) and that of the whole body 

(x) which conforms to the model: 

y = axb 

where b is the "allometric growth coefficient". The application of Huxley's allometric 

equation enables the maturity of a part, tissue or organ in relation to another determining part 

of the animal or the whole animal, to be expressed mathematically. When b = 1 the growth 

rates are the same and the two parts remain in the same proportion over a given weight range; 

when b > 1 the proportion of y to x increases as the weight of x increases and y is considered 

relatively late-maturing; when b < 1 the proportion of y to x decreases as the weight of x 

increases and y is considered relatively early-maturing. 

Allometric growth coefficients give an indication of the rate of maturity of one part compared 

with another and have been used to describe the order of maturity of body and carcass 

components in most domestic species including pigs (Davies, 1974), sheep (Fourie, Kirton 

and Jury, 1970; Murray and Slezacek, 1976), cattle (Berg and Butterfield, 1968; Mukhoty 

and Berg, 1971) and goats (Fehr et al., 1976; Owen et al., 1978; Colomer-Rocher and 

Kirton, 1989). A detailed knowledge of differential growth rates is essential in order that 

appropriate nutrients may be supplied at the relevant stage of development in order to benefit 

the growth of a particular body or carcass component. This has assisted in the factorial 

estimation of the nutrient requirements of growing pigs (Moughan, 1989), sheep and cattle 

(Agricultural Research Council, 1980). 

At present there is insufficient knowledge of the differential growth rates of goats to allow 

detailed estimation of their nutrient requirements. However, there is little variation between 

species in the overall pattern of maturity since it is based on the functional importance of the 

parts or tissues for survival of the individual (Pa.Isson, 1963). Thus carcass dissection studies 
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on various breeds of goat have confirmed that skeletal tissue matures earlier than muscle and 

that fat is the latest developing tissue (Table 2. I). Consistent with this, among the chemical 

body components water is early maturing, lipid is a late developing tissue and the growth of 

protein is generally isometric with total body growth (Table 2.1). 

The carcass cuts, having varying proportions of bone, muscle and fat, also exhibit differential 

growth with respect to the whole carcass. The loin is generally the latest developing cut 

followed by the breast and best end of neck, with the shoulder and then the leg the earliest 

developing joints (Table 2.1), an order of development which clearly follows the centripetal 

growth pattern described by the Cambridge school. Wilson (1958b), Owen et al. (1977) and 

Owen and Norman ( 1977) also established a centripetal growth pattern in East African Dwarf 

goats and Botswana goats respectively by means of the relative changes in body and carcass 

linear measurements and joint proportions with age. 

The vital organs and alimentary canal are all relatively early developing, as are the external 

offal (head, skin and feet) and thus have a low growth impetus post-natally (Wilson, 1958b; 

Gaili, 1976; Owen and Norman, 1977). Morand-Fehr (1981) gives the order of maturity of 

the offal parts, from the earliest to the latest, as: head, skin, red offal (kidneys, heart, liver, 

lungs), gastro-intestinal organs (abomasum, intestine, omasum, rumen-reticulum). The 

majority of post -natal whole body growth is therefore due to that of the carcass. Estimates of 

the allometric coefficient for the carcass vary between 1.0 and 1.33, being influenced by the 

rate of fat deposition in the carcass (McGregor, 1982; Warrnington and K.irton, 1990). 

The differential development of total body fat in the goat has been poorly documented. 

Colomer-Rocher and Kirton (1989) studied the allometric development of carcass fat in New 

Zealand Saanen goats. In female goats the order of increasing fat maturity was intermuscular, 

pelvic, subcutaneous, kidney fat, with allometric coefficients ranging from 1.79 for 

intermuscular fat to 2.65 for kidney fat, indicating the late maturing nature of fat relative to 

the fat-free carcass. Similarly McGregor ( 1982) reported an order of fat development of 

Saanen wether goats as carcass fat, caul fat, channel fat with allometric coefficients ranging 

from 2.155 for carcass fat to 2.665 for channel fat. The later maturity of KKCF compared 
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with carcass dissectible fat in these two studies was the opposite situation to that reported for 

other domestic species by PaJsson ( 1955). This was attributable to the greater fatness of the 

female and castrate goats compared with the animals used in the Cambridge experiments, 

since the order of maturity of the fat depots in leaner male Saanen goats (Colomer-Rocher and 

Kirton, 1989) confirmed that reported by Palsson. 
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Allometric coefficient 

Dissectible components 

Bone Lean Fat 

0.741 1.067 1.823 

0.776 1.170 1.995 

0.87 0.99 1.25 

0.49 0.83 2.05 

Chemical components 

Water Protein Lipid 

0.91 1.04 1.43 

0.73 0.76 1.92 

0.930 2.155 

Commercial joints 

Leg Shoulder Best end Breast 

0.988 0.921 1.034 

0.948 1.017 0.951 

0.88 1.29 

arelative to carcass weight; 
brelative to EBW; 
crelative to fasted liveweight 

1.175 

1.034 

Sex Weight range (kg) Source 

Loin 

1.155 

1.107 

M 

c 
M 

F 

M 

F 

c 

M 

M 

F&C 

Table 2.1 

Birth 33 

20-46 

2-52 

8-32 

2-52 

8-32 

17-74 

birth- 33 

7.6 - 32.3 

14-46 

Morand-Fehr (198l)a 

Owen et al. (1978)b 

Colomer-Rocher & 

Kirton ( 1989)a 

Colomer-Rocher & 

Kirton ( 1989)a 

McGregor (1982)c 

Morand-Fehr (198l)a 

Gaili ( 1976)a 

Butler-Hogg & 

Mowlem (1985)a 

Allometric growth coefficients of dissectible and chemical components and 

commercial joints of goat carcasses (adapted from Warmington and Kirton, 1990) 
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2.2 Factors affecting differential growth rates 

2.2.1 Plane of nutrition 

Huxley's allometric equation (1932) implies that the size of a part is virtually determined by 

the total weight of the animal. This idea was rejected by the Hammond school who 

demonstrated large differences in the body proportions of pigs (McMeekan, 1940a, b, c) and 

sheep (Palsson and Verges, 1952) reared to the same body weights along different growth 

curves. They subsequently advanced the hypothesis that under-nutrition penalized the growth 

of body components differentially in the reverse order of their maturity, late maturing tissues 

and parts being the most affected, and that those body components having their maximum 

growth intensity at the time of restriction were the most retarded (Palsson, 1955). However 

Wallace ( 1948) observed that the proportions of parts and tissues in animals slaughtered in 

these experiments appeared normal in relation to the total weight of the tissue. Wilson 

(1954a) in his study of the domestic fowl, showed that the main effect of nutritional 

treatments was upon the fat tissues, which resulted in large differences in the proportions of 

other tissues when compared at equal body weights. In a later study of the East African 

Dwarf goat, Wilson (1960) confirmed that there was no effect of plane of nutrition on the 

body proportions of goats slaughtered at equal fat-free empty body weights. Tulloh ( 1963) 

and Elsley et al. (1964), using the original Cambridge data, subsequently demonstrated that 

the allometric relationship between body parts, when considered on a dissectible fat-free 

basis, was not disturbed by nutritional treatment, and concluded that when feeding is 

restricted there is a uniform retardation of the lean tissues accompanied by variation in the fat 

content of the body. Therefore within a species, muscle and bone bear a definite relation to 

body size, but nutritional extremes that produce variable fat deposition can alter this 

relationship. 

2.2.2 Breed 

Significant differences between breeds within a species in the differential growth rates of the 

carcass tissues relative to fat-free carcass (muscle plus bone) weight have been identified. 
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Davies (1974) and Fourie et al. (1970) found significantly different allometric coefficients for 

bone, but not muscle, between breeds of pigs and sheep respectively, resulting in differences 

in lean:bone ratios at equal lean plus bone weights. Similarly Mukhoty and Berg (1971), in a 

comparison of several breeds of cattle, found significant breed differences in muscle and 

bone weight when adjusted to a common muscle plus bone weight, although breeds were 

found to have similar growth coefficients for the two tissues. These effects were primarily 

due to differences in the degree of maturity at the same body weight, smaller animals being 

earlier maturing than larger animals (Agricultural Research Council, 1980). Much of the body 

compositional variation which exists between breeds of sheep and cattle, and also between 

species, disappears when comparisons are made at the same proportion of mature size 

(Taylor, 1980; Thonney et al., 1987b, c; Butterfield, 1988; Gaili, 1993). No such 

comparative studies have yet been made between goat breeds, butthe large range of mature 

body weights among breeds of goat (Table 2.2) suggests that most of the variation in the 

body and carcass proportions of goats reported in the literature is attributable to differences in 

maturity. 

Breed, country 

Boer, S. Africa 

Saanen, Britain I Australia 

Damascus, Cyprus 

Alpine, France 

Anglo-Nubian, Worldwide 

Angora, Texas I Australia 

Angora x Australian feral 

E. African Dwarf 

Table 2.2 

Mature weight 
(kg) 

100-110 

90- 100 

80-90 

80-90 

80-90 

50-60 

45-55 

20-25 

Mature size of some common breeds of goat 

(from McGregor, 1985a) 

Significant breed effects on the relative growth rate of fat with respect to fat-free carcass 

weight have been reported in sheep (Fourie et al., 1970) and cattle (Mukhoty and Berg, 

1971), suggesting either a genetic influence on the rate of fat deposition, on the time of onset 
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of the fattening phase or on the partitioning of total body fat between the various body and 

carcass depots. Kempster (1980-81) concluded that extreme dairy breeds of cattle deposit a 

higher proportion of their total fat internally (as KKCF) and a lower proportion 

subcutaneously than traditional British beef breeds, and Pa.Jsson (1940) reported that 

mountain breeds of sheep tend to accumulate more internal body fat than more specialised 

meat breeds. Shafrir and Wertheimer (1965) found that the internal fat depots are 

metabolically more active while subcutaneous fat is a less active depot. There have been no 

direct comparisons of fat partitioning between goat breeds at equal total fatness but the 

diversity of goat breeds and their end products suggests that some of the variation in the 

weights of body and carcass fat depots reported in the literature might be due to differences in 

fat partitioning between extreme types. 

2.2.3 Sex 

Sex effects on carcass differential growth rates have been recorded in sheep (Fourie et al., 

1970), cattle (Mukhoty and Berg, 1971), pigs (Davies et al., 1980) and goats (Wi1son, 1960; 

Colomer-Rocher and Kirton, 1989), females generally having lower coefficients for bone and 

muscle and higher coefficients for fat. These effects are again mainly attributable to 

differences in the mature size of male, female and castrate animals. Mukhoty and Berg ( 1971) 

found growth coefficients for fat to be 1.10, 1.18 and 2.15 for bulls, steers and heifers 

respectively, but since these values were not significantly different, attributed the observed 

differences in the weight of fat at a common muscle plus bone weight to the earlier onset of 

fattening in the heifers rather than to differences in the relative rate of fattening. 

2.2.4 Species 

Using the principals of differential growth, Owen et al. ( 1978) suggested that the goat is a 

relatively later maturing species than the sheep. When compared at the same age, native 

Botswana goats had a higher allometric growth coefficient for carcass lean tissue but a lower 

coefficient for carcass dissectible fat relative to empty body weight than Botswana sheep. 

Furthermore the early maturing leg and shoulder joints decreased as a proportion of the 
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carcass with increasing age more rapidly in the goats than in the sheep (Owen and Norman, 

1977). These effects may have been due to differences in the relative rate of fattening of the 

two species, an earlier onset of fattening in the sheep or to slower growth rates in the goats 

resulting in greater maturity of the sheep at comparable ages. 

There have been few other direct comparisons of differential growth rates between species. 

However, Davies (1974), using allometric equations formulated by Tulloh (1963) from the 

Cambridge data, demonstrated a similarity in muscle:bone ratios of both new-born and 

mature sheep, pigs and cattle which suggested that between species there is little difference in 

the relative growth of muscle and bone provided they are compared at equal maturity. 

Similarly Taylor ( 1980) showed that much of the variation among animals of different species 

was reduced after applying genetic size-scaling, i.e. taking into account differences in mature 

size. However, Thonney et al. ( 1987b) found that even when compared at equal proportions 

of mature weight British feral goats had a greater proportion of total muscle than several 

breeds of sheep. 
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2.3 Effects of differential growth patterns on body and carcass composition 

The goat has frequently been compared with the sheep in terms of its growth performance 

and body and carcass composition, presumably due to their similarities in size and 

physiology compared with other domestic species. However, goats are rarely reared under 

similar conditions of nuuition and management as sheep, not least because so little is known 

of the specific nutrient requirements of the growing kid, the lactating doe or the fibre 

producing goat. Furthermore, the differences that exist between breeds of goat are often as 

great as those between goats and sheep, particularly when the diversity of end products 

obtained from goats is taken into consideration. It is therefore not entirely valid to make such 

species comparisons, but as a highly developed meat producing species with a carcass not 

dissimilar to that of the goat, the sheep is a useful species with which to compare the goat in 

order to assess the current status of the latter as a meat producing animal. 

2.3.1 Killing-out percentage 

The economic value of a meat animal is dependent upon its killing-out percentage. The 

interpretation of published data for the goat is complicated by the variation in gut contents 

which results from different pre-slaughter fasting regimes, or the use of empty body weight 

or liveweight, and by differences in the definition of the carcass (Kinon, 1988). Based on 

empty body weight, values range from 65% in kids to as low as 40% in cull animals (Gall, 

1982). Consistent with an allomeuic coefficient for the carcass of greater than 1.0, killing-out 

percentage increases with the age and weight of the animal. As with other domestic species 

the value also increases with fat deposition in the carcass and varies depending on the sex and 

breed of the animal (Table 2.3). Carcass weights therefore vary between lOkg in the smaller 

African breeds to 50kg in the larger Saanen and the South African Boer goat (Kirton, 1988). 

Since the majority of goat breeds have a smaller mature size than these two extremes goat 

carcasses tend to be smaller than similar aged sheep. 

Several studies have suggested that carcass yield differs between breeds of goat (Owen and 

Norman, 1977; Smith et al., 1982) but have not compared breeds reared under identical 
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systems of nutrition and management or slaughtered at the same degree of maturity. From the 

observations in Table 2.3 it appears that the killing-out percentages of different goat breeds 

are similar, averaging 50%, when differences in fatness, maturity and mature body size are 

considered. A possible exception is the South African Boer, one of the largest goat breeds 

and the only specialised meat breed, which had a greater dressing percentage than the smaller 

native Botswana goat when compared at the same age (Owen and Norman, 1977) and a 

similar or greater dressing percentage than three South African sheep breeds when compared 

at the same liveweight (Naude and Venter, 1977). 

Studies of the killing-out percentages of goats and sheep have yielded variable conclusions 

because the comparisons were not made at equal stages of carcass maturity and often gave no 

indication of the mature size of the breeds involved. Thus Owen and Norman (1977) and 

Miller et al. (1943) found the killing-out percentages of Botswana and Angora goats to be 

similar to those of sheep of comparable ages and empty body weights respectively (Table 

2.3). However, Smith et al. (1982) found that at similar ages Angora and Spanish goats had 

significantly lower dressing percentages with higher percentages of head, feet, pelt and 

internal organs than sheep, suggesting that the goats were less mature than the sheep. At an 

equally adjusted empty body weight, Sudan desert sheep which had been fattened on a 

concentrate ration had heavier carcasses than goats fattened on the same diet, since the goats 

tended to deposit body fat around the gastro-intestinal tract rather than in the carcass (Gaili 

and Ali, 1985a). For this reason Fehr et al. (1976) observed a tendency for the dressing 

percentage of Alpine kids to decrease with increasing liveweight, over the range of 

liveweights studied, because of the increasing volume of the visceral mass (Table 2.3). 

Therefore at equal maturity goats would be expected to have poorer killing-out percentages 

than sheep due to the differences in fat partitioning between the species, goats tending to 

deposit a greater proportion of total fat internally rather than in the carcass. This was 

substantiated by Thonney et al. (1987b) who compared British feral goats with several breeds 

of sheep at equal proportions of their mature empty body weight and found the goats to have 

a lower carcass yield but higher proportions of omental plus mesenteric and perirenal fat than 

was expected for their stage of maturity. 
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Source Breed/species Sex Age EBW(kg) KO% 

I. Angora goat c 1 year 27.3t 50.5 
2 years 29.5 54.1 
3/4 years 38.6 54.5 

Rambouillet lamb c 30.0 50.0 

2. Angora goat c 16 months 29.7 54.0 

3. New Zealand feral M Young- aged 7.3- 36.H 44.6 
goat F 3.6-26.1 42.2 

4. Alpine goat M 8 weeks 16.2 52.8 
11 weeks 22.2 53.7 
18 weeks 27.4 51.1 
24 weeks 32.6 52.0 

5. S. African Boer goat c 8-35 weeks 10.0- 40.0 48.3 
S. African mutton-
merino sheep c 10.0- 40.0 46.6 
Merino sheep 41.0 
Dorpersheep 48.5 

6. Botswana goat M 1 year 16.0 48.7 
c 1 year 20.1 52.0 

3.5 years 34.5 53.0 
4.5- 5 years 45.8 55.8 

F 4.5- 5 years 32.8 47.0 
Boer goat M 1 year 26.6 56.2 
Botswana sheep c I year 22.6 52.0 

3.5 years 31.0 53.7 
F 4.5- 5 years 27.2 52.5 

7. Sudan desert goat M Yearling 12.5:J: 40.4 
Yearling 25.0 49.0 

8. Sudan desert goat M Yearling 18.0 47.6 
Sudan desert sheep Yearling 18.0 51.5 

l. Miller et al. (1943) 2. Shahjalal eta/. (1991) 3. Kirton (1970) 4. Fehr et al. (1976) 5. 
Naude & Venter (1977) 6. Owen & Norman (1977) 7. Gaili eta/. (1972) 8. Gaili & Ali 
(1985a); 
t24-hour shrunk weight; 
:J:Iiveweight. 

Table 2.3 

Killing-out percentages of goats and sheep 
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2.3.2 Carcass composition 

A knowledge of the quantity and distribution of fat, lean, and bone throughout the carcass is 

important in order to assess the animal as a meat producer, since it is this that determines the 

quality of the carcass produced. As with other domestic species there is an increase in the 

proportion of carcass fat and a reduction in the proportions of lean and bone with increasing 

age and carcass weight of the goat (Table 2.4), which is consistent with the allometric 

coefficients for these carcass tissues (Table 2.1 ). The more rapid decrease in bone proportion 

compared with that of lean results in an increase in the lean:bone ratio with increasing carcass 

weight. 

Average values for the tissue contents of goat carcasses vary between 55 and 70% for muscle 

and between 12 and 26% for bone (Table 2.4), the values being dependent on the age and 

slaughter weight of the animal (Naude and Venter, 1977; Owen et al., 1978; Colomer-Rocher 

and Kirton, 1989). Level of nutrition (Wilson, 1960), breed (McGregor, 1982; Treacher et 

al., 1989) and sex (Colomer-Rocher and Kirton, 1989) may also affect the proportions of 

lean and bone but these effects are mainly attributable to variation in the degree of maturity of 

the carcass and its fatness. When comparisons are made on a fat-free basis, there is little 

variation that cannot be accounted for by differences in carcass weight (Wilson, 1960; Gall, 

1982). Consequently lean: bone ratios vary little between breeds, generally ranging between 

2.0 and 3.0 depending on the weight of the carcass. Again the South African Boer goat is a 
possible exception, appearing to be a more muscular type with lean:bone ratios exceeding 5.0 

in the most mature carcasses (Naude and Venter, 1977). 

The most variable tissue in the carcasses of goats is fat since this can be affected by many 

factors including breed, age, liveweight, sex and nutrition (Owen et al., 1978). The carcasses 

of goats generally contain a lower proportion of fat than the carcasses of sheep reared under 

the same conditions (Table 2.4). Values for goats are commonly between 10 and 20% but can 

range from 4% in young, unfattened goats to over 30% in mature female goats, while lamb 

carcasses generally contain 20 to 35% dissectible fat (Gall, 1982; Kirton, 1988). 

Comparisons of carcass fat content are complicated since KKCF may or may not be included 
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Source Breed/species Sex Carcass wt. Carcass composition (%) Lean: Bone 

(kg) Fat Lean Bone 

1. Boer goat c 4.0 9.4 70.0 20.6 3.4 
12.0 18.2 68.0 13.8 4.9 
17.0 23.4 64.0 12.6 5.1 
22.0 24.5 63.5 12.0 5.3 

2. Saanen goat M 5.0 9.9 60.9 25.6 2.4 
20.0 14.0 60.1 21.5 2.8 
50.0 17.6 59.7 19.2 3.1 

F 10.0 10.6 61.8 24.7 2.5 
20.0 22.0 55.1 17.4 3.2 
30.0 33.7 51.5 14.1 3.7 

3. Angora goat M 12.3 14.1 63.4 22.5t 2.8 
Spanish goat 16.6 13.5 64.4 22.1 2.9 
Rambouillet, Barbado 20.5 18.7 59.8 21.5 2.8 
& Karakul sheep 

Angora goat F 12.5 11.7 63.4 24.9t 2.5 
Spanish goat 16.3 19.5 57.7 22.8 2.5 
Rambouillet, Barbado 20.3 21.2 57.2 21.6 2.6 
& Karakul sheep 

4. Saanen, Toggenberg, M 13.5 19.5 58.2 22.3 2.6 
Alpine & Nubian goats 22.2 23.5 57.4 19.0 3.0 
Blackface sheep 24.0 29.4 53.5 17.1 3.1 

5. Boer goat M 13.4 9.3 62.4 19.9 3.2 
Botswana goat 7.3 6.7 59.8 25.3 2.4 
Botswana goat c 9.9 10.8 58.9 23.1 2.6 
Botswana sheep 11.1 21.2 52.6 20.5 2.6 

Botswana goat c 17.6 14.8 59.1 20.2 3.0 
Botswana sheep 15.9 27.6 49.4 17.9 2.9 

Botswana goat F 14.8 13.3 58.8 20.8 2.9 
Botswana sheep 14.7 23.3 52.2 18.7 2.9 

6. Sudan desert goat M 8.16 4.3 55.1 26.1 2.1 
Sudan desert sheep 8.16 8.9 54.6 24.6 2.2 

1. Naude and Venter (1977) 2. Co1omer-Rocher and Kirton (1989) 3. Smith et al. (1972) 
4. Ladipo (1973) 5. Owen et al. (1978) 6. Gaili & Ali (1985a); 
t Composition of wholesale rack (6th to 12th rib) 

Table 2.4 

Comparison of the carcass composition of goats and sheep 
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and this is not always stated. The low fat content of goat carcasses results in greater 

proportions of lean and bone compared with lamb carcasses, but lean:bone ratios are 

generally similar for the two species (Table 2.4) any differences being mainly attributable to 

differences in the mature size of the two species or in the maturity of the animals in question. 

The lower fat content of goat carcasses compared with those of sheep may be due to a later 

onset of fattening or to a slower rate of fattening in the goat, but is most probably attributable 

to a difference in the partitioning of total body fat into carcass and non-carcass fat depots. 

Goats deposit a greater proportion of total fat in the non-carcass depots than sheep and a 

smaller proportion as subcutaneous carcass fat (Table 2.5). Thus Thonney et al. (1987b) 

found that British feral goats had a greater percentage of omental plus mesenteric fat and 

perirenal fat than several breeds of sheep when compared at equal maturity. Attempts to 

increase carcass fatness have therefore led to an increase in non-carcass fat, since much of the 

fat that was deposited tended to be directed into the kidney and pelvic regions (Naude and 

Venter, 1977; Smith et al., 1978) and the gastro-intestinal tract (Gaili and Ali, 1985a). 

Goats Lambs 

SCF 14.1 29.7 

IMF 39.8 45.0 

KKCF and heart fat 15.4 10.6 

Visceral fat 29.6 15.3 

Table 2.5 

Locations of separable fat in goats and lambs expressed 

as percentage of total separable fat (Ladipo, 1973) 

Conversely goat carcasses have an exceptionally low proportion of subcutaneous fat which 

rarely exceeds 2mm in thickness and is often absent altogether (Kirton, 1970; McGregor, 

1980; Hogg et al., 1989). In a comparison of the carcass characteristics of the Boer goat with 

several South African sheep breeds, subcutaneous fat depth averaged 2.3mm for the goat 

carcasses and between 5.4 and 5.9mm for the sheep carcasses (Naude and Venter, 1977). As 

a consequence of their thin subcutaneous fat cover goat carcasses require minimal fat trim, 

and hence their saleable meat yield approaches 100% of carcass weight in goats slaughtered 
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over a wide range of liveweights (Gaili et al., 1972; Butler-Hogg and Mowlem, 1985). 

However, poor subcutaneous fat cover can have an adverse influence on the storage and 

eating quality of the meat (Owen, 1975; Fehr et al., 1976). Toughness has been attributed to 

cold-shortening of the muscle fibres following rapid chilling of the warm carcass (Smith et 

al., 1976). The poor subcutaneous fat cover of goat carcasses predisposes them to this 

phenomenon and consequently Smith et al. (1978) assigned higher toughness scores to kid 

meat than to that of older, fatter goats. Almost without exception, when compared with meat 

from other domestic species, sensory panel discrimination against goat meat has been due to a 

lack of tenderness with no indication of any strong flavour or odour (Miller et al., 1943; 

Kirton, 1970; Gaili et al., 1972; Smith et al., 1974). 

The intramuscular fat content of goat meat is low at around 2% of fresh matter (Gonzalez et 

al., 1983; Hogg et al., 1989) and is significantly lower than that of sheep of equalliveweight. 

Babiker et al. (1990) recorded a value of 2.8% of fresh matter for the Sudan desert goat 

compared with 3.5% in lambs while Gaili and Ali (1985b) found values of 9.2% and 20.4% 

on a dry matter basis in goats and sheep respectively. The greater intramuscular fat content of 

the sheep carcasses may have been due to their greater total fat content (Gaili and Ali, 1985a) 

since ad libitum feeding of a concentrate diet increased the intramuscular fat of the goat 

carcasses to 18.5%. 

The few complete studies of total fat distribution in the goat suggest that about 25% of the 

body fat is situated within and between the muscles and that about 50 to 60% is in the body 

cavities (Wilson, 1958b; Ladipo, 1973; Gall, 1982). 

There have been few comparisons of different goat breeds reared under identical systems of 

nutrition and management, but indirect comparisons suggest that breed differences exist in 

carcass fat deposition. Dairy goats appear leaner at any liveweight than Angora goats 

(McGregor, 1982; Morand-Fehr et al., 1986). This may be a reflection of their greater mature 

size and later maturity rather than a breed difference in fat partitioning (McGregor, 1980) but 

breed differences in fat partition in sheep and cattle are known to exist (Ledger, 1959; 

Kempster, 1980-81). The Angora goat and its crosses with dairy goats appear to have a 
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carcass more similar in composition to that of the lamb, with a lower proportion of bone, a 

higher proportion of carcass fat and higher lean to bone ratios than pure bred dairy goats 

(fable 2.6). Again these differences are probably attributable to the smaller mature size of the 

Angora which results in a more mature carcass at equal slaughter weights (McGregor, 1980). 

However the Angora has a more favourable fat distribution, with greater subcutaneous fat 

cover, more intermuscular fat and less kidney fat than other breeds (Fehr et al., 1976; 

Mowlem, 1988). 

Component (% of carcass weight)t 
Kidney 

Muscle Bone SCF IMF fat* 

Lamb (unspecified breed) 55.0 12.0 16.0 17.0 

Dairy kid 55.9 15.4 6.7 14.3 

Angora x British Saanen kid 56 14.6 12.5 17.0 

tExcluding kidney fat; 
*As percentage of carcass weight including kidney fat 

Table 2.6 

Composition of lamb, dairy goat and Angora x dairy goat carcasses of 20.5kg 

(Mowlem, 1988) 

2.3.3 Carcass conformation and joint distribution 

4.1 

8.1 

4.6 

Carcass conformation is determined primarily by the shape and thickness of the muscles and 

is therefore mainly dependent on the maturity of the animal at slaughter. Conformation may 

also relate to the level of subcutaneous fat cover, particularly when assessed on the live 

animal, and is therefore also influenced by the level of nutrition and total famess of the animal 

(Kirton and Pickering, 1967). Despite having lean to bone ratios equivalent to those of lamb 

carcasses, goats have a comparatively poor carcass conformation, with greater carcass and 

leg length but shallower carcass depth, resulting in a less compact carcass (Fehr et al., 1976; 

Naude and Venter, 1977; Owen and Norman, 1977). This is mainly attributable to the later 

maturity of goats, who continue to show growth in the head and limbs at a more advanced 

age than sheep (Owen et al., 1977). An exception is the more muscular South African Boer 

goat which has a carcass conformation similar to that of the sheep but with a fat distribution 
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which is still typical of the goat (Naude and Venter, 1977; Owen et al., 1978). The low 

carcass fat content and poor subcutaneous fat cover of goats compared with sheep at similar 

stages of maturity also contributes to the poorer conformation of the goat carcass when 

assessed by the same criteria as sheep carcasses (Fehr et al., 1976; Thonney et al., 1987b). 

Carcass conformation is frequently described in terms of the relative contributions of the 

various joints to the whole. The most valuable commercial joints are the hind leg and the loin, 

followed by the shoulder, since in the mature carcass they contain the highest proportion of 

lean and the lowest proportion of dissectible fat (Gaili et al., 1972; Owen et al., 1978). 

Average values are difficult to compare due to the diversity of jointing techniques used, but in 

general the leg contributes 29% of carcass weight in the goat, the loin contributes 8% and the 

shoulder 44% (Gall, 1982; Butler-Hogg and Mowlem, 1985). The individual joints 

contribute similar proportions to carcass weight over a wide range of liveweights (Butler

Hogg and Mowlem, 1985) but vary depending on the stage of maturity of the carcass 

(Palsson, 1939). The shoulder and leg, being early maturing joints, generally decrease in 

proportion with increasing carcass weight, while the later maturing loin tends to increase in 

proportion (Fehr et al., 1976; Owen and Norman, 1977). 

Differences between goats and sheep have been detected in both joint proportions and in the 

distribution of carcass tissues between the joints. Owen and Norman (1977) found that, with 

the exception of the loin joint, Botswana male castrate goats had greater proportions of all 

joints than Botswana male castrate sheep at comparable ages (Table 2.7). Similarly, Gaili and 

Ali (1985a) found that muscle development in the male Sudan desert goat was greater than 

that in the sheep in the forelimb (21.6% v 19.9%) and the neck plus thorax (35.7%v 34.5%) 

while the M. psoas major was better developed in the sheep than in the goat (1.8% v 1.4%) 

when compared at an equally adjusted carcass weight. These differences are probably another 

reflection of the later maturity of goats rather than an absolute species difference in joint 

development. However Thonney et al. (1987c) found that although British feral goats 

excelled in total muscle proportion relative to sheep of equal maturity, their muscle weight 

distribution was less attractive because the goats had a lower proportion of muscle in the 

higher priced cuts. 
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Joint 

Neck 

Shoulder 

Thorax 

Loin 

Leg 

%of carcass weight 

Goat Sheep 

Milk tooth 6 tooth Milk tooth 

10.2 9.6 9. 0 

20.2 19.6 16.3 

20.2 20.9 19.8 

23.2 24.2 25.1 

24.0 22.8 22.8 

Table 2.7 

Joint distribution of carcasses of Botswana male castrate goats and sheep 

(Owen and Norman, 1977) 

6 tooth 

9.5 

15.7 

20.4 

26.3 

21.1 

Owen and Norman (1977) and Hogg et al. ( 1989) found significant differences in joint 

proportions between different breeds of goat of comparable liveweights, but these differences 

were largely explained by the different mature liveweights of the breeds in question. 
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2.4 Prediction of carcass composition 

Due to the time required and the expense of dissecting whole or even half carcasses, sample 

joints whose tissue proportions have a high correlation with the tissue proportions of the 

entire body or carcass are often used to predict whole carcass composition. Regression 

equations have now been derived for most breeds of domestic animal which enable the 

prediction of whole body composition from a knowledge of the composition of a single joint 

or a limited number of joints, alone or in conjunction with other carcass and non-carcass 

measurements (Barton and Kirton, 1958; Butterfield, 1965; Kempster et al., 1976). 

To be a useful predictor the sample joint must not only provide an accurate reflection of 

carcass composition, but must also be obtained with minimal damage and loss of value to the 

carcass and be relatively simple and quick to dissect (Naude & Hofmeyr, 1981). 

Highly significant correlations, with coefficients approaching 1.0, have been found between 

the weights of all tissues in the joint and the total weight of the same tissue in the carcass for 

most commercial joints in the lamb (Palsson, 1939; Barton and Kirton, 1958) and the goat 

(Morand-Fehr eta/., 1977; Naude and Venter, 1977). The most accurate estimates of whole 

carcass composition were obtained from the leg and the loin, with more precise estimation 

being achieved through the use of the two joints in combination. When the time taken to 

dissect the joints, ease of removal from the carcass and cost were considered, the leg was 

found to be the most appropriate predictor. 

Non-carcass components may also be useful predictors of carcass composition, particularly 

when the ease with which they are obtained and their low cost is considered. Thus, in goats, 

the weight of caul fat and total abdominal fat were highly correlated with total carcass and 

body fat (Gall et al., 1972; Morand-Fehr et al., 1977) and the total weight of bone in the 

carcass was accurately predicted by the weight of the cannon bone in the lamb (Palsson, 

1939; Timon and Bichard, 1965) or the four feet in the goat (Morand-Fehr et al., 1977). The 

weight of the feet was also a good predictor of carcass muscle (Morand-Fehr et al., 1977) as 

was the weight of the diaphragm and of the forelimb muscles in the goat (Gall et al., 1972). 
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A criticism of many of these predictors is that in view of the wide range of carcass weights 

used to obtain the correlations between the composition of the predictor and that of the whole 

carcass, it is likely that the high coefficients obtained were due to weight-weight relationships 

and may not apply where a change in carcass composition is not accompanied by a change in 

carcass weight (Gall, 1982). 
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2.5 Growth rate and feed conversion efficiency 

The majority of research on the growth of goats has been performed in the tropics and sub

tropics with goats reared under conditions of poor management and nutrition. Consequently 

growth rates are variable and low, ranging between 60 and 116glday (Wilson, 1958a; 

Devendra, 1966; Wilson 1976). Dairy goats reared in temperate regions under more 

favourable conditions have achieved growth rates of between 150 and 210g/day (Skjevdal, 

1974; Robstad, 1976; Fehr et al., 1976). Growth rates of the Angora goat are generally poor 

due to the extensive management systems used in the production of mohair, and rarely exceed 

50 to 1 OOg/day (Miller et al .. , 1943; Calhoun et al., 1988a, b). Furthermore, when compared 

with lambs reared under equivalent conditions the growth performance of most breeds of 

goat, including the Angora, is poor and is associated with a lower efficiency of feed 

conversion (Table 2.8). Consequently when species comparisons are made at equal ages, 

goats are generally less mature than sheep which explains their poorer carcass composition 

and conformation. 

One of the major influences on the growth rate of goats is their mature size. When 

composition, efficiency and rate of growth of large and small cattle breeds were compared 

over the same slaughter weight range, genetically larger animals were leaner and grew faster 

and more efficiently than genetically smaller animals (Thonney et al., 1981), but when mature 

size differences in sheep breeds were allowed for, there was little difference in efficiency or 

rate of growth at the same stage of maturity because the composition of gain was similar 

(McClelland eta/., 1973; Butterfield et al., 1983; Thompson and Parks, 1983). The wide 

variety in mature size of different goat breeds (Table 2.2) therefore probably contributes to 

the diversity of growth rates reported in the literature and the poorer growth performance of 

the Angora compared with the larger dairy breeds. Similarly, most breeds of goat have a 

smaller mature body weight than sheep which may explain the poorer growth performance of 

the goat in species comparisons. Furthermore, since comparisons are generally made over 

equalliveweight ranges the smaller goat is at a disadvantage since it will be more mature than 

the sheep, and growth rate and efficiency tend to decline with maturity (Brody, 1945; 

Gallagher and Shelton, 1972). Hence male castrates of the large Boer breed had a mean 
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growth rate comparable with that of the Merino sheep between 10 and 40kg liveweight 

(Naude and Venter, 1977). However, Thonney et al. (1987a) compared the growth rate and 

efficiency of equally mature goats and sheep and found that goats grew more slowly than 

expected relative to their mature weight and had a lower feed conversion efficiency than the 

whole trial average, indicating a real species difference in growth potential. 

Low efficiency may be attributable to poorer nutrient digestibility in the goat compared with 

the sheep. Mohammed and Owen ( 1980) recorded dietary energy digestibilities of 53.1% and 

55.3% in goats and sheep respectively when they were fed a pelleted ration at rates to 

maintain a constant liveweight and Gallagher and Shelton (1972) reported poorer organic 

matter digestibility in young Angora goats (55.4%) compared with young sheep (60.2%). 

They also observed species differences in the partitioning of energy for body tissue and fibre 

growth. Young sheep were 1.5 times more efficient at converting feed to liveweight gain than 

young goats, while goats were 3.2 times more efficient at converting feed to fibre. High 

maintenance requirements in the goat, relative to the sheep, may also contribute to their high 

feed conversion ratios. Mohammed and Owen (1980) found a metabolizable energy 

requirement for maintenance of 0.43MJ/kgM0.75 per day in goats and 0.30MJ/kgM0.75 per 

day in sheep. In support of this, when higher rates of gain have been achieved better 

efficiencies of between 2.4 to 5.4 grammes of feed per gramme of gain were recorded (Table 

2.8). 

Significant improvements in growth rate and efficiency have been achieved with increases in 

both dietary energy and protein. Shahjalal et al. (1992) found that by increasing the daily 

protein intake of Angora wethers from 83 to 145g/day their growth rates improved from 48 to 

79g/day and their feed conversion ratios decreased from 16.5 to 10.2 grammes of dry matter 

per gramme of liveweight gain. By increasing the daily energy intake of the goats from 7.6 to 

9.9MJ ME their growth rate was further increased to 116g/day and their feed conversion ratio 

was further improved to 7.3 grammes of dry matter per gramme of liveweight gain. These 

values are still poor when compared with average figures for sheep. McGregor (1985a) 

concluded that a major limitation to rapid growth rates in goats is their low energy intake, 

which is generally about 1.5 to two times maintenance compared with four times maintenance 
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in the sheep. Angora goats fed grain-based diets ad lib. achieved a maximum intake of only 

2.3 times maintenance (McGregor, 1984a) while sheep offered a similar diet consumed three 

times maintenance (Fraser and Orskov, 197 4 ). 

Castration of male kids has been shown to reduce their feed intake, rate of gain and feed 

conversion efficiency (Owen and Mtenga, 1980; Babiker et al., 1985) but mature, entire 

males lost their advantage over castrates by the exhibition of strong sexual activity which 

caused their growth almost to cease (Louca et al., 1977). 
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Source Breed/species Sex Weight range Growth rate F. C.E. 
(kg) (g!day) (g feed/g gain)t 

Miller et al. (1943) Angora goat c 23-32 86 9.7 
28-34 54 14.5 
35-42 73 12.9 

Rambouillet 28-42 141 7.0 
lamb 

Fehr et al. (1976) Alpine goat M 3- 16 209 2.4 
3-34 176 3.8 

Louca et al. (1977) Damascus goat M 21-47 240 4.8 
47-57 100 12.9 

c 18-40 210 5.1 
44-53 110 11.1 

F 18-37 190 5.4 

Owen & Mtenga British Saanen M Weaning- 25 222 3.4t 
(1980) goat 25-37 185 5.9 

c Weaning- 25 183 4.1 
25-37 234 5.5 

Naude & Hofmeyr South African M+F 9-26 200 3.9 
(1981) Boer goat 

Throckmorton et al. Angora goat c 19-30 81 8.2 
(1982) Merino sheep 19- 35 119 6.2 

Gaili & Ali Sudanese M 16- 19 43 9.3 
(1985a) desert goat 

Sudanese 24-31 125 5.9 
desert sheep 

tU nits expressed in terms of feed fresh matter except where indicated, when dry matter is 
used. 

Table 2.8 

Growth rates and feed conversion efficiencies of goats and sheep 
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2.5.1 Compensatory growth 

Compensatory growth is defined by McGregor (1985a) as "the rapid growth following a long 

period of weight loss or weight stasis" and by Wilson and Osbourn (1960) as "a rate of 

growth greater than that which is normal in animals of the same chronological age". The 

growth rate is usually no greater than that achieved by unrestricted animals of the same 

physiological age but in some cases has been shown to exceed the normal unrestricted growth 

rate (Murray and Slezacek, 1976; Stamataris et al., 1991). Animals which have undergone 

compensatory growth have often achieved their normal mature body size or the required 

slaughter weight (Waters, 1909; Osborne and Mendel, 1915). The phenomenon was first 

demonstrated by Osborne and Mendel (1915) in rats and has since been shown to occur in 

pigs (McMeekan, 1940c; Stamataris et al., 1991), sheep (Palsson and Verges, 1952) and 

cattle (Waters, 1909; Eckles and Swett, 1918). Many experiments have, however, reponed a 

failure to recover from undernutrition resulting in permanent stunting of the animals involved 

(Eckles and Swett, 1918; McCay et al., 1939). Variable results have also been reponed from 

the few studies of undernutrition in the goat. Wilson (1958a) showed compensatory 

liveweight gain in the East African dwarf goat and McGregor (1984b) observed that 

nutritionally deprived yearling Angora wethers could 'catch up' lost liveweight gain under 

suitable conditions of nutrition, but McDowell and Bove ( 1977) concluded that goats do not 

exhibit compensatory growth. 

The factors affecting an animal's ability to recover from the effects of undernutrition and the 

probable mechanisms of action of compensatory growth have been reviewed by Wilson and 

Osbourn (1960). The degree of compensatory growth exhibited is dependent upon the 

severity of undernutrition, which varies from weight loss, a period of weight stasis or very 

low weight gain. Eckles and Swett (1918) found in dairy heifers that if the restriction was too 

severe the mature size was permanently stunted. The duration of the period of undernutrition 

may also affect the animal's ability to recover. Rats maintained at constant body weight for 

1000 days were permanently stunted (McCay et al., 1939) while restriction for only 500 days 

allowed them to achieve their normal mature size upon realimentation (Osborne and Mendel, 

1915). 
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The maturity of the animal when undernutrition is imposed also appears to be important; the 

less mature the animal the less compensatory growth can be expected (Black et al., 1940; 

Bohman, 1955; Allden, 1970; Morgan, 1972). Similarly the rate of maturity of a breed 

affects its ability to recover from undernutrition. Joubert (1954) found that periodic 

undernutrition had a more severe effect on the early maturing Shorthorn breed of cattle than 

on the late maturing Afrikander breed. In this respect the goat, being a relatively slow 

growing and late maturing species, might be expected to recover well from undernutrition 

compared with other domestic species. 

The pattern of realimentation has also been shown to affect the recovery of underfed animals. 

Bohman (1955) and Heinemann and Van Keuren (1956) found that the higher the plane of 

nutrition upon realimentation the more rapid and the greater the recovery in weight of cattle. 

Finally the nature of the nutrient restricting growth may affect the ability of the animal to 

recover completely. Wilson and Osbourn (1960) concluded that very severe protein 

restriction may have a more harmful effect than very severe energy restriction since there is 

little reserve protein in animals. 

There have been several attempts to explain the mechanisms of action of compensatory 

growth. Ragsdale (1934) suggested that undernutrition disturbs the normal relationship 

between chronological and physiological age such that when an animal is realimented it 

grows at a rate appropriate to its physiological age rather than to its chronological age 

(Winchester and Ellis, 1957). As animals approach maturity their growth enters the self

retarding phase and is limited by inhibiting factors such as availability of nutrients and lack of 

space (Pomeroy, 1955). Consequently immature animals whose growth has been retarded 

have a greater growth potential following realimentation than unrestricted animals of the same 

age but greater maturity. This proposal is sufficient to account for the abnormally rapid 

growth relative to age which is generally observed (McMeekan, 1940c; Pa.Isson and Verges, 

1952), but does not explain why compensatory growth often exceeds the growth rate of 

unrestricted animals over a comparable liveweight range (Wilson, 1958a). 

Several studies have indicated that compensatory growth is mainly explained in terms of the 
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increased gut fill which accompanies realimentation, with no increase in the rate of body 

tissue gain (McMeekan, 1940c; Thornton et al., 1979). However Taylor et al. (1957) found 

significantly greater carcass gains in realimented cattle compared with cattle grown at a 

constant rate over the same period, and Murray and Slezacek (1976) found that compensatory 

liveweight gain in sheep was not associated with an increase in the weight of the contents of 

the alimentary tract. This study revealed no effect of compensatory liveweight gain on the 

composition of the dissected carcass but Pomeroy (1955) suggested that compensatory 

liveweight gain is partly due to a replacement of fat in the adipose tissues which have been 

depleted during the restriction period i.e. changes in the differential deposition of fat. Few 

experiments have been able to demonstrate a significant effect of compensatory liveweight 

gain on body and carcass composition which were not attributable to variation in fatness. 

Thus animals reared to the same stage of maturity and compared on a fat-free basis had 

identical carcass composition whether or not they had undergone a period of undernutrition 

(Wilson, 1958a, b, 1960; Elsley et al., 1964). 

Sheehy and Senior (1942) suggested that restricted cattle make greater weight gains upon 

realimentation than unrestricted animals fed ad libitum on the same ration because, being 

smaller and less active, their maintenance requirements are less than those of unrestricted 

controls. The same study revealed a marked increase in the appetite of animals during 

realimentation which was later confirmed by Winter (1971) in sheep and by Stamataris et al. 

(1991) in pigs. This may be related to the early maturing nature of the alimentary tract which 

is consequently only slightly retarded by undernutrition (McMeekan, 1941; Palsson and 

Verges, 1952; Wilson, 1954a). 

Compensatory growth has no adverse effect on the eating quality of meat in either sheep 

(Winter, 1970) or cattle (Morgan, 1972) despite the advanced age of the realimented animals. 

Since the unfavourable quality of goat meat has been associated with its poor subcutaneous 

fat cover (Smith et al., 1978) it is possible that if compensatory growth in the goat is 

associated with an increased relative rate of fat development this could actually improve the 

quality of the meat produced. 
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2.6 Nutrient requirements of the Angora goat 

There is little direct data concerning the nutrient requirements of goats, particularly the 

Angora. The few existing publications are based on limited information derived from dairy 

goats or extrapolated from lamb data (Huston et al., 1971; National Research Council 

(N.R.C.), 1981) and contain no information concerning the effects of level of nutrition on the 

composition of liveweight gain. The N.R.C. (1981) has developed recommendations for the 

nutrient requirements of goats based on pooled means of experimental data derived from a 

variety of breeds (Table 2.9). The values for protein requirements were determined from 

reports which had computed protein requirement as a ratio to energy requirement, rather than 

through the use of nitrogen balance studies, since adult goats can adjust their nitrogen output 

and reach equilibrium by varying the quantity of urea recycled to the rumen, particularly at 

lower levels of nitrogen intake. Nitrogen balance studies are therefore of questionable value 

in the goat. The mean protein to energy ratio for maintenance and growth was calculated as 

9.5g crude protein I MJ ME. 

Function 

Maintenance only 

Maintenance plus low activity. 

Maintenance plus medium activity 

Maintenance plus high activity 

Growth 

Aeece growth 

Energy 

0.42MJ MEJkg0.75 

25% increment 

50% increment 

75% increment 

0.03MJ ME/g gain 

0.125MJ ME/kg fleece 

Table 2.9 

Crude protein 

4.15g CP/kg0-75 

25% increment 

50% increment 

75% increment 

0.28g CP/g gain 

4.25g CP/kg fleece 

Nutrient requirements of the goat (N.R.C., 1981) 

The value for the maintenance energy requirement of goats reported here is comparable with 

figures provided for sheep of between 0.36 and 0.435MJ ME/kg0.75 (N.R.C., 1975; 

A.R.C., 1980; A.D.A.S., 1986). A similar value of 0.43MJ MEfkg0.75 for British Saaneri 

castrate goats was reported by Mohammed and Owen (1980) who recorded a lower 

maintenance requirement of 0.30MJ MEfkg0.75 for Suffolk x Scottish halfbred wether sheep. 
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The value for the energy requirement for growth in goats (Table 2.9) is the same as that given 

by A.R.C. (1980) for sheep but greater than that of 0.02MJ ME/g gain provided by N.R.C. 

(1975). 

The nutrient requirements for fibre production were based on factorial calculations by Huston 

et al. (1971). They suggest an optimum protein to energy ratio of up to 12g crude protein/MJ 

ME. When the digestibility of the protein is considered, this value is slightly lower than the 

optimum value reponed for wool production in the sheep by Kempton (1979) which is 12g 

digestible protein/MJ ME. This may be due to the greater efficiency of conversion of feed to 

fibre of the Angora goat compared with the sheep (Gallagher and Shelton, 1972) or to the 

greater importance of fibre diameter in the Angora goat, which increases with increasing 

protein content of the diet (Shelton and Huston, 1966). 

Subsequent to the preparation of this thesis new recommendations of the nutrient 

requirements of goats were proposed by the AFRC's Technical Committee on Responses to 

Nutrients, based on a review of published research and information in the field of goat 

nutrition (AFRC, 1993). Based on these recommendations, tables of ME and metabolisable 

protein requirements of housed, castrate male kids are presented in AFRC (1993). They 

include allowances for mohair fibre production and for liveweight gains of between 0 and 

200g/d. 

Recommendations of dry matter intake are variable, ranging from 185g!kg0.75 in fast 

growing kids and lactating does to 56gfkg0.75 in slow growing mature goats (Huston et al., 

1971; N.R.C., 1981; Sauvant et al., 1991). Cooper (1989) recommends a voluntary dry 

matter intake of 80gfkg0.75 for goats. As for other domestic species the voluntary feed intake 

of goats varies according to the diet (McGregor, 1984a). Goats appear to have a greater 

preference for a higher fibre content of the diet than lambs (Wilson et al., 1975) and are more 

efficient than sheep and cattle at digesting low quality feeds, but on better quality feeds there 

is no difference between species in either dry matter or nitrogen digestibility (Devendra, 

1978; Doyle and Egan, 1980). The preference of goats for a high fibre content of the diet 
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limits their voluntary feed intake and may partially explain their poor growth performance 

relative to sheep (McGregor, l984a). 



2.7 Mohair fibre production in the Angora goat 

The mohair fleece consists of two distinct fibre types. Mohair fibres are produced by the 

secondary skin follicles and are long, lustrous, elastic and round in cross-section. They are 

analogous to the downy undercoat, or cashmere fibres, produced by all other breeds of goat 

but, unlike cashmere, mohair is not seasonally shed but grows continuously. The mohair 

fleece is therefore shorn twice per year while cashmere is combed from the outer coat or 

guard hairs. Kemp fibres are vestigial guard hairs which are produced by the primary skin 

follicles of the Angora. They are brittle, non-elastic, chalky white in appearance, and oval in 

cross-section. They are also much shorter than mohair fibres and are further characterised by 

a continuous air filled medulla which affects their ability to take up dye. The problem of kemp 

in mohair has been reviewed by Tiffany-Castiglioni (1986). Mohair is a relatively coarse fibre ' 

with mean diameters ranging from 15 to 451Jlll while cashmere generally varies from 12j.l.m to 

no more than 19j.l.m. However the yield of mohair is much greater at approximately 2.5kg per · 

shear compared with 125g from a single harvest of cashmere (Ryder, 1986). The twoJibre 

types also differ greatly in their financial value. In the UK the price received for mohair in 

1990-1991 varied between £2.50-£9.00 per kilogram while that for cashmere was nearer £85-

£100 per kilogram (SAC, 1991). 

2.7.1 Fibre characteristics of economic importance 

The value of the mohair fleece is influenced by several characteristics, the most important 

being fibre diameter, staple length, clean fibre yield and the proportion of medullated fibres. 

This last category falls outside of the scope of this study and will not be discussed further. 

Fibre diameter is the major factor influencing the price received for mohair since it determines 

the type and quality of the end product for which the fibre may be used. The finest and most 

valuable fibre is produced by kids and young goats, has a diameter in the range 24 - 32j.l.m 

and a minimum length of 75 - lOOmm. This is reserved for fashion fabrics and fancy yarns. 

Coarser fibre, obtained from older animals, may reach 46j.l.m in diameter and is used in 

upholstery materials, carpets and curtains (Westhuysen, 1982; Thelwall, 1988). 
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Staple length varies little and is primarily a reflection of the length of the inter-shearing period 

(Shelton, 1961). The price for mohair in the U.K. is influenced very little by the length of the 

fibre, provided it is longer than 7 .5cm. Aeeces shorter than this are difficult to process and 

realise about 80% of the price of longer fleeces (Wilkinson and Stark, 1987). Therefore there 

is little economic justification for shearing more than twice a year, when the fleece is about 

12cm long. 

The income from an individual animal ultimately depends on the mass of clean mohair 

produced. Mohair production (mass) increases from birth and peaks at approximately three or 

four years of age, whereafter it declines gradually (Figure 2.1). Values for the mass of greasy 

fleece produced per goat per year vary according to the country of origin, sex, age and 

management of the goat (Table 2.1 0). The clean yield is calculated by scouring the fleece 

according to commercial practice to remove grease, dirt, dust and sweat. Values vary little 

and are normally in the region of 75 - 88% of greasy fleece weight (Bassett, 1966; 

Westhuysen et al., 1985). 



Country of origin 

South Africa 
U.S.A. 
Turkey 
Argentina 
Lesotho 

South Africa 

Turkey 

U.S.A. 

South Africa 

U.S.A. 

U.K. 

Sex 

F 
F 
F 
F 
F 
F 

F 
c 

Age Greasy fleece weight (kg) Source 

4.35 
3.70 
2.25 
1.00 
0.75 

yearling 3.17 
adult 4.71 - 4.80 
yearling 1.49 
adult 2.48- 3.13 
yearling 3.57- 3.83 
adult 5.39- 5.57 

kid 1.0- 2.0 
adult 4.0- 5.0 
adult 5.0 - 6.0 

kid 1.2 
adult 2.7 - 5.0 

kid 1.2 
yearling 1.8 
young goat 2.2 
adult 3.0 

Westhuysen (1982) 

Yalcin (1982) 

Westhuysen, et al. 
(1985) 

Ryder (1986) 

Nix (1990) 

t Kid values represent one shear at 6 months of age. Goats from Turkey, Argentina and 
Lesotho are shorn only once per annum. U.K. values are per shear. All other values 
represent the sum of two shears per annum. 

Table 2.10 

Average production of mohair per goat per yeart 

Date 

1890- 1910 

1950- 1960 

1975- 1980 

Mohair production per goat (kg)* 

1.79 

3.18 

4.02 

*Average for the whole period (Westhuysen, 1982) 

Table 2.11 

Average production of mohair per goat in South Africa from 1890 to 1980 
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2.7.2 Factors affecting fleece and fibre characteristics 

The main production parameters such as follicle density, ratio of secondary to primary 

follicles (SIP-ratio), fibre diameter, staple length, yield and body mass are determined 

genetically. Heritabilities are variable but generally moderate to high. Estimates for greasy 

fleece weight range between 0.13 to 0.40, fibre diameter varies from 0.11 to 0.19 and SIP 

ratio is generally greater than 0.25 (Yalcin, 1982; Westhuysen et al., 1985). It is therefore 

possible to make genetic progress through accurate selection to produce high yielding 

breeding stock with little or no kemp. Significant improvements in fleece production have 

been achieved in South Africa during the last century (Table 2.11 ). 

The age of a goat has a significant effect on the yield and quality of its fibre. At birth the 

Angoras coat consists mainly of long kemp fibres, since the ratio of mohair producing 

secondary follicles to kemp producing primary follicles (SIP) is low and the secondary 

follicles are mainly inactive. During the first three to four months after birth the mohair 

producing follicles mature and become productive and the SIP ratio rises. Many of the 

primary follicles shed their kemp fibres during this period and thereafter are less active 

(Tiffany-Castiglioni, 1986). Consequently, after the first six months of life the coat consists 

mainly of mohair with a kemp content rarely exceeding 4% (Westhuysen et al., 1985). From 

about three months of age changes in the activity of the secondary follicles result in further 

changes in fibre diameter and mohair mass with increasing age. Shelton (1961) reported that 

fibre diameter increased from an average of 24Jlm at six months to 46Jlm for adult animals up 

to 11 years of age, but staple length showed little change with age and grew at an average rate 

of approximately 20 to 25mm per month (Figure 2.1). Mohair mass increased rapidly from 

birth up to three or four years of age after which it gradually decreased in adults up to 11 

years of age. Body mass increased with age up to eight years and then stabilised. 

Consequently kg mohair/kg body mass peaked at about two years of age and rapidly declined 

thereafter. Shelton concluded that, taking into account the effect of fibre diameter on price, 

mohair production reaches an economic peak at approximately 18 to 24 months of age. 
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It is possible that nutrition and liveweight rather than age per se are the major determinants of 

mohair mass and fibre diameter. McGregor (1985b) concluded that poorer fed and smaller, 

but not necessarily younger, goats produced finer mohair than better fed and larger Angoras. 

Westhuysen et al. (1985) reported that fibre diameter was significantly correlated with body 

mass and that a similar positive correlation existed between fleece weight and fibre diameter 

and hence also between fleece mass and body mass. Calhoun et al. (1988a) also found a 

positive correlation between greasy fleece weight and average shorn body weight. 

Bassett (1966) showed that for Angoras aged 1.5 to 4 years average greasy fleece weights 

were 1 to 2kg lighter at the Spring shearing than in the preceding Autumn, with lower yields 

and therefore lower clean fleece weights. Staple length was also shorter in the Spring, 

indicating slower fibre growth in the Autumn/Winter than in the Spring/Summer. However, 

fibre diameter for all groups was greater in the Spring than in the Autumn and was associated 

with the increase in age/body weight rather than indicating a seasonal effect. Kids shorn at six 

and 12 months of age produced heavier greasy and clean fleeces in the Spring although, 

consistent with the other groups, staple length values were lower and fibre diameter was 

greater. Thus it would appear that for this age group the seasonal effect was existent but 

masked by the age/body weight effect. 

Fibre production is influenced by nutritional factors such as protein and energy. Shelton and 

Huston ( 1966) found a direct increase in clean fleece weight in yearling billies, from 3.3 to 

4.6kg, as the level of protein supplementation increased from 19.1 to 44.1g per day. Fibre 

diameter also increased from 35.8 to 381J.m but there was no effect on staple length. 

Westhuysen et al. (1985) reported that protein intake had a greater limiting effect on fleece 

yield in Angora kids than energy intake. This has been confirmed by more recent studies. 

Deaville and Galbraith (1990) found that young goats receiving.an average ME intake of 

8.2MJ per day yielded 20% more fibre when their crude protein intake was increased from 75 

to 141 g per day. Fibre diameter increased from 31.8 to 35.51J.m on the higher level of protein 

intake. Over a similar range of protein intakes Shahjalal et al. (1990) observed no further 

effect on either fleece growth or fibre diameter by increasing the daily energy ration from 8.1 

to 9.45MJ ME. 
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However, several studies have observed significant quadratic effects of both energy and 

protein intake on fibre growth when the other nutrient remained constant which suggested 

that there is an optimum energy to protein ratio for fibre growth (Calhoun et al., 1988a; 

Shahjalal et al., 1991). These studies suggest that the optimum ratio lies between 14.5 and 

17g crude protein per MJ ME, a range somewhat higher than the optimum value of 12g crude 

protein per MJ ME recommended earlier by Huston et al. (1971). Shahjalal et al. (1991) also 

showed that fibre diameter followed a similar pattern to fleece growth, increasing from 29.8 

to 36.1Jlm with increasing protein intake but decreasing again to 33.6Jlm at the highest level 

of intake. 

From the limited information available it would seem that increased yields of mohair achieved 

by means of nutrient manipulation are obtained via an increase in fibre diameter and not by 

increasing staple length. Consequently, the benefits of higher yield must be balanced with the 

penalties incurred by producing coarser fibre. 

48 



3 Trial 1. The effects of level of nutrition on mohair fibre characteristics, 

Iiveweight gain and differential growth of the British Angora wether goat 

3.1 Rationale and objectives 

The volatile nature of the U.K. mohair industry has necessitated Angora goat producers to 

devise systems of management which will enable them to optimise their income from the 

production of both meat and mohair. The finest and most valuable fibre is obtained from 

goats of between six and 24 months of age. It is probable that the optimum carcass quality 

will also be reached within this age range, thus presenting the producer with a conflict of 

· interests; current commercial practice dictates that Angora goats are reared on a low plane of 

nutrition in order to maintain fibre quality. It is unlikely that they will approach their full 

growth potential under these conditions, but improvement of the meat carcass by nutritional 

means is likely to have deleterious effects on fibre quality since energy and protein 

supplementation improve fleece yield by increasing the fibre diameter. This greater diameter 

reduces the value of the fibre and incurs high price penalties. Furthermore, the nutrient 

requirements of the growing Angora goat are poorly understood, particularly under U.K. 

conditions. Information is needed concerning the differential growth of carcass components 

and the relationship, if any, between the development of the carcass with age/increasing 

liveweight and the changes that occur in fleece yield and quality with advancing maturity of 

the goat and increasing plane of nutrition. 

The objectives of this experiment were therefore to determine the differential growth patterns 

of the British Angora goat from six months of age to maturity, to investigate the effects of 

plane of nutrition on the allometric relationships, and to determine the effects of age and plane 

of nutrition on the relationships between carcass composition and fleece characteristics. The 

male castrate was selected for this study since this constitutes the major source of meat, being 

generally redundant after two years of age when fibre quality begins to decline. Sequential 

slaughter and carcass dissection were performed at the predetermined ages of six, 12, 18 and 

24 months to coincide with the commercial practice of shearing Angora goats at six monthly 

intervals. 
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3.2 Materials and methods 

3.2.1 Trial design 

The trial was a 3 x 4 factorial design. The variables were level of nutrition (high, medium and 

low) and age at slaughter (6, 12, 18 and 24 months) with six.replicates per treatment group 

(Table 3.1). 

Level of 

nutrition 6 

High 6HIM 

Medium 

Low 6L 

Age at slaughter (months) 

12 18 

12H 18H 

12M 18M 

12L 18L 

Table 3.1 

24 

24H 

24M 

24L 

Feeding regime 

Ad libitum goat pellets 

Rationed goat pellets 

Commercial - grass based 

Summary of treatment groups in Trial I and their codes 

A total of 66 goats were allocated to only 11 treatment groups since the restriction was not 

applied to the mediun1 group until six months of age. Treatment groups 6H and 6M were 

therefore represented by the same six animals. 

3.2.2 High and medium levels of nutrition 

(i) Experimental animals 

Fifty Texan x New Zealand type British Angora wether kids, born February- April 1990, 

were purchased from a single lowland farm at 15 weeks of age. This number allowed 42 to 

be allocated to seven treatment groups, six per group, plus an additional eight kids as reserve 

animals in case of death or ill health in the early months of the experiment. The kids were 

weaned immediately prior to purchase. On arrival at the trial site, the 50 kids were allocated to 

six pens for ease of management, according to their age and entry weight, but they were not 
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pens for ease of management, according to their age and entry weight, but they were not 

allocated to different levels of feeding until they were six months of age. 

(ii) Housing 

The goats were housed throughout the trial in an open fronted building, containing six pens 

Sm x Sm. They were bedded on barley straw, replenished as required, and had free access to 

fresh water and a salt lick. Since wether kids are susceptible to the development of urinary 

calculi when reared on concentrate diets, daily water consumption per pen was monitored as a 

management aid, using KentP.S.M. - L water meters (Kent Meters Ltd., Luton, Beds.). The 

feed troughs were mounted on adjustable brackets and raised O.Sm from the ground, on the 

outside of the pen, to prevent fouling of the feed and allow easy collection of refusals. The 

trough height was adjusted regularly to allow for the accumulation of bedding and increasing 

height of the goats. Each pen was provided with strutted ramps and large logs to encourage a 

low degree of activity in the goats. 

(iii) Kid health 

The kids were drenched with Sml of Oramec (M.S.D. - Agvet, Hoddesdon, Herts.) three 

weeks before delivery to the trial site and again immediately before delivery. Following this 

course of treatment they were considered to be completely free of intestinal worms and not 

treated again for the remainder of the trial. They were vaccinated against Pasteurella and 

Clostridia with 2ml Tasvax Gold (Coopers Animal Health Ltd., Crewe, Cheshire) and lml 

Pastacidin (Hoescht U.K. Ltd., Milton Keynes, Bucks.) immediately before delivery. They 

received their second vaccination six weeks later and a booster dose after 12 months. Their 

feet were routinely checked and trimmed every four to six weeks, and belly fibre was kept 

trimmed close to the skin to prevent urine burns which are common to Angora goats. Ovipor 

(Rycovet Ltd., Glasgow) was used for the prevention and treatment of louse infestations as 

required. 

After approximately five weeks on trial many of the younger, more recently weaned animals 
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showed signs of coccidial infection. Scouring kids were removed from the creep feed, 

offered only hay and treated with 7.5ml Vesadin (R.M.B. Animal Health Ltd., Dagenham, 

Essex). One kid had to be destroyed, but was replaced with another from the same source 

since it was early enough in the trial to do so. The rest recovered and were returned to the pre

determined level of feeding over three weeks.The disease returned approximately two weeks 

later so all kids were treated with 3ml Bimalong (Bimeda U.K. Ltd., Liverpool) for three 

days. A coccidiostat (Deccox, IOOppm decoquinate, R.M.B. Animal Health Ltd.) was 

included in the pelleted feed for four weeks and the pens were cleared and disinfected. 

Another kid had to be destroyed and one died. Surviving kids which had been seriously 

affected by the disease were designated spare animals to avoid the possibility of including 

stunted animals in the trial. One kid died of asphyxiation after becoming trapped in a hay rack 

during this period. Another died of urolithiasis at 11 months of age. There were no further 

problems with ill health. 

(iv) Diets 

The kids were weaned onto lamb pellets containing 160g crude protein/kg DM (Lydney and 

District Farmers, Dean, Glos.) at four months of age. On arrival at the trial site they were 

transferred to Dalgety lamb creep feed (code no. 281, Dalgety Agriculture Ltd., Lifton, 

Avon) which contained 12.5 MJ ME/kg DM and 160g crude protein/kg DM. Group intakes 

of the creep feed were increased over a three week period until all of the kids were consuming 

an amount calculated to allow maintenance plus 150g daily liveweight gain when fed with hay 

or barley straw, as available. With the exception of those periods of ill health when it was 

necessary to restrict feed intakes, feeding continued at this level for all kids until they were 

six months of age, when the first treatment group, 6H/M, was slaughtered. 

At six months of age the remaining 40 kids were introduced to a pelleted complete diet 

containing 8.9 MJ ME/kg DM and 114g crude protein/kg DM which was formulated and 

produced by Dalgety Agriculture Ltd., Lifton, Avon (Appendix 1). A review of the literature 

had concluded that a diet of this specification would allow maintenance plus approximately 

90g daily liveweight gain on ad libitwn intakes, which are generally of the order of 80g 
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DM/kg metabolic body size. When all of the kids were readily consuming the complete diet, 

the six pens were each allocated to one of two treatments on the basis of mean pen 

liveweight. For the remainder of the trial the three pens allocated to a high level of nutrition 

were offered the complete diet ad libitum, on a group-fed basis. Any feed refused after 24 

hours was collected, weighed and discarded. Fresh feed was offered at 110% of the previous 

days intake, initially as a single morning feed but due to the limitations of trough space and 

the tendency of the goats to push the feed out of the troughs it was eventually offered as two 

equal feeds, morning and afternoon. 

The three pens allocated to the medium level of nutrition were group fed 80% of the ad 

libitum intake, calculated per unit of metabolic body size on a weekly basis. This level of 

intake was estimated to allow maintenance plus approximately 50g daily liveweight gain. 

The kids were weighed weekly, using a weigh crate (G.H.L. Products, Crewe, Cheshire) 

fitted with a Salter Universal weigh head with 200kg load cell and a definition of O.lkg, to 

determine daily liveweight gain and feed intake per kg liveweight0.75. Since it was not 

possible to weigh the ad libitum fed kids empty, all kids were weighed approximately one 

hour after the morning feed so that liveweights at similar degrees of gut fill were used for 

calculation offeed intake and requirement 

(v) Selection of slaughter groups 

Six kids were selected for slaughter at six months of age on a systematic basis (treatment 

group 6H/M). The kids were ranked in order of increasing liveweight and the first and then 

every eighth or ninth kid following it was selected for slaughter, ensuring that one kid was 

chosen from each pen, so that the full range of liveweights was represented. Subsequent 

slaughter groups were selected from within their appropriate treatment groups using the same 

system, but two goats were selected from each pen. This system of selection resulted in an 

increase in the standard deviation of the mean liveweight for each treatment as the trial 

progressed, but was necessary to ensure that the slaughter groups closely represented the 

whole treatment group at each slaughter age. 
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3.2.3 Low level of nutrition 

(i) Experimental animals 

Due to restrictions imposed by funding, facilities and availability of animals it was not 

possible to rear the third treatment group, representing the low level of nutrition, at the trial 

site. A further 24 Texan x New Zealand Angora wethers were retained on the farm of origin 

for rearing under commercial conditions until required for slaughter. They were reared on a 

low level of nutrition due to the adverse effects of high feed intake, particularly protein, on 

fibre quality. Although detailed feeding records were not available for these goats, they 

served as a useful control group to describe the carcass composition of goats which are reared 

solely to optirnise fibre quality, with no regard for meat yield or quality. 

Eighteen yearling Angora wethers, born relatively late in June 1989, were available from the . 

same source and of similar genetic stock. These constituted treatment groups 12L, 18L and 

24L. 

Since no more wether kids were available from the 1990 kidding of this source, the 

remaining six kids, treatment group 6L, were obtained from the same farm from the 1991 

kidding, since variation due to genotype and management conditions is likely to be greater 

than that due to year of kidding. The kids in treatment group 6L were born in March 1991. 

(ii) Management of low plane goats 

The commercially reared goats were run at grass with their darns until they were four to five 

months of age, when they were weaned onto lamb pellets containing 160g crude protein/kg 

DM (Lydney and District Farmers, Dean, Glos.). Treatment group 6L was slaughtered off 

grass immediately after they were shorn at six months of age. Treatment groups 12L, 18L 

and 24L were housed for their first Winter and fed a proprietary coarse feed containing an 

estimated 10.5 MJ ME and 176g crude protein/kg DM (Wessex Goat Mix, John Loader Ltd., 

Fordingbridge, Hants.) with hay, straw or silage as available. They were shorn in December, 
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at six months of age, and turned out to grass again the following April at an estimated 

stocking density of 15 goats per hectare. They were shorn for the second time in June and 

treatment group 12L was slaughtered. The remaining goats remained outside during their 

second Winter but were provided with wind/rain shelters. They received no supplementary 

feeding during this time except for one month after their third shearing in December, when 

they were housed and fed hay, straw or silage supplemented with minerals. Treatment group 

18L was slaughtered immediately after shearing. Treatment group 24L was shorn in June at 

24 months of age and slaughtered immediately afterwards. Liveweight gain was not 

monitored for the commercially reared goats. 

Each slaughter group was randomly selected from the main group by the farm staff at the time 

of slaughter. The goats were generally collected from the farm on a Friday, within two weeks 

of shearing, and transported 100 kilometres to Seale-Hayne. They were housed indoors and 

rested over the weekend with free access to barley straw and fresh water. On Monday 

morning they were weighed and then transported a distance of four kilometres to the local 

abattoir. They were all slaughtered within one hour of delivery to the abattoir, thus being 

subjected to the minimum of stress. 

3.2.4 Measurement of fleece and fibre characteristics 

All of the goats were shorn prior to slaughter. Shearing took place at six months of age and 

thereafter at six monthly intervals according to current commercial practice. Greasy fleece 

weights were recorded. Prior to shearing a mid-side fibre sample, approximately 5cm2. was 

taken from the left side of each goat for analysis of staple length and fibre diameter. The 

samples were taken over the last rib, approximately IOcm from the spine, according to the 

method of Gifford (1989). The use of an Oster electric small animal hand clipper (Oster 

Professional Products, Wisconsin, U.S.A.) with blade size 40 allowed the samples to be 

taken at skin level. An equivalent sample was taken from the right side three months after 

each shearing, to allow more frequent monitoring of fibre characteristics throughout the trial. 

Difficulty was experienced in obtaining fleece weights and pre-shearing fibre samples for the 
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L plane animals since advance warning of shearing could not always be obtained. 

Consequently, for the majority of the L plane treatment groups only fibre diameter data was 

collected. 

3.2.5 Analysis of fibre samples 

Ten staples were randomly selected from every sample and the length of each measured to the 

nearest 5mm. Snippets of fibre approximately 5mm long were cut from the root end of the ten 

measured staples, mounted in liquid paraffin (B.P.) on a 76 x 26mm glass microscope slide 

and covered with a glass cover slide. Fibre diameter was then measured on 100 random 

snippets using the projection microscope technique (Hutchings and Ryder, 1985). 

The slide was mounted on a Gillet and Sieben projection microscope. Using a 120 x 170 mm 

hand mirror, held at an angle of approximately 10" from horizontal by a retort stand and 

clamp, the image of the fibres was projected onto a levelled digitizer pad (MacTablet) linked 

to an Apple Macintosh Classic personal computer. The height of the digitizer pad was 

adjusted so that the image was magnified x270. Using a Basic program based on the theory 

of Pythagoras and written specifically for the task, fibre diameter was measured by touching 

the digitizer stylus onto each outside edge of the fibre image, taking care that the line between 

the points was as perpendicular to the long axis of the fibre as could be achieved manually. 

The system was calibrated with a 1000Jlm slide graticule (Graticules Ltd., Ton bridge, Kent) 

and verified with seven standard samples of mohair ranging from 23.1Jlm to 42. 7Jlm. The 

standards were tested by the International Mohair Association using both projection 

microscope and wind tunnel determination. The current system was accurate to within± 2Jlm 

of the standard measurements. 

3.2.6 Slaughter procedure 

The goats were weighed prior to slaughter using an electronic weigh crate and immediately 

transported to the abattoir to prevent further intake of feed and water. They were slaughtered 
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by captive bolt stunning and exsanguination via the jugular vein within one hour of delivery 

to the abattoir. 

The pelt (fleece and skin, including ears and head cover) was stripped from the carcass and 

weighed with a spring balance to the nearest 50 grammes. The feet were removed by cutting 

between the proximal edge of the metacarpus I metatarsus and the distal edge of the carpal I 

tarsal bones, and weighed on an electronic balance to the nearest gramme. The head was 

dislocated from the neck at the atlanto occipital joint and removed complete with lungs, 

trachea, liver, spleen, heart and oesophagus, the whole being termed the pluck. The warm 

pluck was weighed with a spring balance to the nearest 50 grammes. 

The gastro-intestinal tract from rumen to rectum was removed, complete with contents, and 

returned to the trial site. The full tract was weighed with a spring balance to the nearest 50 

grammes and the contents of the rumen, reticulum, omasum, abomasum, caecum and colon 

were emptied. The empty tract was washed, squeezed to remove excess moisture and re

weighed to obtain gut fill by difference. Omental fat was stripped from the stomachs as 

completely as possible and weighed. The intestine was placed in a sealed container and 

chilled at 2"C for two to four hours to facilitate removal of the mesenteric and intestinal fat, 

which was also weighed. 

The warm, dressed carcass was weighed on a spring balance to the nearest 50 grammes and 

then chilled for 24 hours at the abattoir. 

Empty body weight (EBW) was determined by subtracting gut fill from liveweight. 

Killing out percentage was calculated as 100 x (warm carcass weight I empty body weight). 

3.2.7 Jointing procedure 

The carcasses were collected from the abattoir, double wrapped in plastic bags, and put into 

cold storage at 2"C for no longer than 48 hours before jointing. Standard M.L.C. 

measurements were taken on the freely hanging whole carcass as follows:-
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1. The weight of the cold carcass. 

2. The F measurement- taken, using a steel tape measure, as the distance between the 

most distal point on the medial edge of the central and fourth tarsal bones to the most 

caudal point on the median line between the legs (Figure 3.1). 

3. The T measurement- taken, using a steel tape measure, as the distance between the 

most distal anterior edge of the central and fourth tarsal bones and the proximal edge 

of the tibial tuberosity (this point being found by inserting a skewer into the joint 

between the tibia and the femur - point A). 

4. The greatest width of the chest, measured with a 30cm calliper gauge. 

5. The circumference of the buttocks, using a steel tape measure held horizontally 

around the buttocks of the freely hanging carcass at the level of the proximal edge of 

the patellas. 

All linear measurements were taken to the nearest five millimetres. 

The carcass was sawn through the centre of the vertebral column. Pieces of spinal cord, large 

pieces of aorta and diaphragm were removed and discarded, and the tail was removed down 

to the level of the posterior edge of the third caudal vertebra. The kidney and perinephric and 

retroperitoneal fat (kidney knob and channel fat, KKCF) were removed from each side and 

their weights recorded separately. Any thoracic fat was removed and weighed. The weight of 

the right side was recorded and the unjointed side was then folded, securely wrapped in 

plastic bags and frozen. 

58 



LE G 

CHUHP-----

LOI~ ------

BEST END 
NECK 

SHOULDER l _____ _ 
~IIDDLE NECK J 

/ 
NECK 

Femur fossa to 12th rib 

-----BREAST 

Figure 3.1 

Standardised commercial lamb joints and linear carcass measurements 

used in Trial l and Trial 2 

59 



The weight of the left side was recorded and the following measurements were taken on the 

freely hanging side to the nearest five millimetres:-

1. The maximum depth of the side using a 30cm calliper gauge. 

2. The length of the side from the anterior edge of the pubic symphysis to the dorsal 

anterior corner of the first thoracic vertebra, using a steel tape measure. 

3. The length from the femur fossa to the 12th rib. This was determined by inserting a 

skewer through the carcass on the anterior edge of the 12th rib at the most ventral 

point of attachment with the diaphragm and recording the distance between this and 

point A with a steel tape measure. 

The left side was then split into commercial joints according to the procedures described by 

Cuthbertson, Harrington and Smith (1972) and adopted by the M.L.C., to yield the 

following joints: leg, chump, loin, breast, middle neck and shoulder, best end of neck and 

scrag end of neck (Figure 3.1). The scrag was weighed on an electronic balance to the nearest 

0.1 gramme and then discarded, since separation of the head and neck at the abattoir was not 

performed accurately enough to merit dissection of such a small joint. The remaining joints 

were weighed, individually sealed in airtight plastic bags and frozen until dissection could be 

performed. 

3.2.8 Carcass dissection 

Due to the expense and labour incurred in dissecting whole carcasses, a complete dissection 

was conducted on one side of the carcass only. This is a satisfactory method of arriving at the 

composition of the whole carcass, provided the side weights are not significantly different 

(Callow, 1944), the carcasses are evenly split along the spinal column and an adequate 

number of animals is available (Carroll and O'Carroll, 1964). In this study the side weights 

from each carcass were the same± 0.1kg, with the exception of one goat in group 12H 

which was unevenly split. In this case both sides of the carcass were dissected. 

The joints were removed from frozen storage and thawed in their sealed bags for 
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approximately 12 hours at room temperature. Each joint was then re-weighed and dissected 

with a butchers knife into subcutaneous and intermuscular fat, lean and bone according to 

standard M.L.C. techniques. The weight of each component was recorded. Easily dissectible 

glands, major blood vessels, ligaments and tendons were recorded separately as waste. The 

thawed joints were held in the cold store at approximately 2"C until dissection and the joint 

and its dissected components were covered with damp cloths throughout dissection, in order 

to minimize loss of moisture. As a result of using these measures weight loss during 

dissection was restricted to 2% or less. 

In addition to the determination of gross joint composition, the following measurements were 

taken:-

I. At the rib end of the loin joint the subcutaneous fat thickness was measured over the 

widest part of the eye muscle and 6cm from the mid-line using a lOcm calliper gauge: 

2. The outline of the eye muscle at the above position was traced onto grease-proof 

paper using a soft leaded pencil and the area determined with an electronic planimeter 

(Delta-T Devices Ltd., Burwell, Cambridge). 

The greatest width (A) and the greatest depth (B) of the eye muscle was also 

measured to the nearest millimetre and the ratio AIB x 100 was calculated (Palsson 

and Verges, 1952). 

3. The M. Longissimus dorsi was removed intact from the loin and best end of neck 

and its weight was recorded for each. 

3.2.9 Statistical analysis 

One-way and two-way analysis of variance, paired t-tests, linear regressions and covariance 

analysis were undertaken as refered to in Section 3.3 using Minitab version 6.1. It should be 

noted that the use of repeated results in Section 3.3.11 may have influenced the significance 

of the results. The repeated fibre sampling of the same groups of goats at different ages rather 

than the random sampling of different goats of various ages probably resulted in a lower total 

variance which would have increased the probability of obtaining a significant age effect. 
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3.3 Results and discussion 

3.3.1 Growth curve of the British Angora wether goat from four to 24 

months of age 

Individual fed liveweights were recorded for the H and M plane goats each week from four 

to 24 months of age. The weights were corrected for fleece cover by extrapolating backwards 

from shorn fleece weight to zero fleece cover following the previous shearing. Up to six 

months of age fleece-free liveweight was estimated by extrapolating backwards to zero fleece 

cover at birth. Fleece weight was assumed to be negligible at birth, consisting mainly of 

primary fibres which are shed prior to the first shear at six months of age (Westhuysen et al., 

1985, Tiffany-Castiglioni, 1986). 

Paired means of fleece corrected, fed liveweight were plotted against age in days to produce a 

growth curve for each plane of nutrition (Figures 3.2a and b). The 95% confidence limits 

showed that the standard deviation increased as the number of goats fell due to sequential 

slaughter. The confidence limits were wider for the H than for the M plane goats due to the 

greater variation in feed intake and gut fill of the goats fed ad libitum. 

Weekly Iiveweights were not available for the L plane goats. For comparison with the other 

treatments their mean fleece-free liveweight at.slaughter was plotted against approximate age 

in days (Figure 3.2c). The 95% confidence limits were narrower for the L treatment because 

the same number of goats was represented at each age. 

For each treatment a simple linear regression was fitted to the points. The slope of the 

regression line represented the mean growth rate of the goats throughout the trial. As a result 

of the treatment imposed on them the mean growth rate of the L plane goats was 0.4 7 that of 

the M plane goats and 0.27 that of the H plane goats. The mean growth rate of the M plane 

goats was 0.58 that of the H plane goats (Figure 3.2d). 

Regression lines were also derived using only the data from treatment groups 24H and 24M. 
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These regression lines were compared by covariance analysis with those incorporating all 

available liveweights for the Hand M plane goats respectively (Figures 3.2a and b) and were 

not found to be significantly different (P > 0.05). This confirmed that the growth curves 

produced using all available data accurately represented the curves of one continuous group 

of goats, and were not affected by the gradual decrease in goat numbers with age. 
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3.3.2 Voluntary feed intake of British Angora wether goats reared from six 

to 24 months of age on a single pelleted feed 

The mean daily voluntary feed intake per pen of H plane goats and the corresponding 

rationed intake of the M plane goats was recorded from six to 24 months of age. For each 

pen of goats the mean weekly dry matter intake per kg of fleece corrected metabolic body size 

was calculated and plotted against time (Figure 3.3). 

There was a clear repeating pattern of peaks and troughs in feed intake throughout the trial. 

The voluntary feed intake of the H plane goats increased immediately after each shearing to 

peak values of 90 to 120gfkg0.75 and then gradually declined to approximately 60 to 

70g/kg0.75 prior to the next shearing. This repeating trend suggested that as the depth of 

fleece increased the feed requirement of the goats decreased. The insulation afforded by the 

fleece may have caused an increase in body temperature which inhibited feed intake. When 

the fleece was removed feed intake increased again (Forbes, 1986). The dramatic effect of 

fleece insulation on the feed requirement of these animals indicated that it is difficult to 

estimate their maintenance requirement under conditions of varying fleece cover. The 

maintenance requirement represented in Figure 3.3 was that recommended by the NRC 

( 1981 ). It was derived from pooled means of experimental data performed mainly on dairy 

goats which suggested that it should more accurately apply to the fleece free Angora goat than 

to the goat in full fleece. 

A complicating factor in this scenario was that almost immediately after each shearing two 

goats were removed from each pen for slaughter. It was possible that the removal of some of 

the competition for trough space resulted in a change in the dominance hierarchy within each 

pen, allowing a previously inhibited goat greater access to the feed. 

The mean dry matter intake per unit of metabolic body size per six month period from 

shearing/slaughter to shearing/slaughter was calculated for Period II (6 to 12 months), Period 

m (12 to 18 months) and Period IV (18 to 24 months) for the two planes of nutrition (Table 

3.2). 
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Within each period the mean dry matter intakefkg0.75 of the H plane goats was significantly 

greater than that of the M plane goats. There were no significant differences in mean dry 

matter intake between pens within each plane of nutrition and within each period of feeding. 

There was a significant decrease in the total mean voluntary dry matter intakefkg0.75 of the H 

plane goats between successive periods and consequently a similar pattern for the M plane 

goats (Figure 3.3), The mean voluntary dry matter intake of the H plane goats was 

84gfkg0.75 for period II and 78gfkg0.75 for period m. During periods 11 and m the mean dry 

matter intake of the M plane goats was approximately 80% of that of the H plane goats 

(Table 3.2). 

During period IV the voluntary dry matter intake of the H plane goats fell significantly to a 

mean value of 56gfkg0.75. The large decrease was due to a rapid decline in feed intake during 

the last three months of the trial (Figure 3.3). At this stage the M plane goats were put onto a 

constant maintenance ration in preference to feeding a below maintenance quantity. 

Consequently the mean dry matter intakefkg0.75 of the M plane goats exceeded that of the H 

plane goats for the last three months of the trial. For the whole period their mean feed intake 

was 92% of ad lib which was still significantly lower than that of the H plane goats (P < 

0.05). 

There were two possible explanations for the downwards trend in voluntary feed intake; 

a) The same diet was fed to the goats for a total period of 20 months. It was possible that 

boredom with the diet resulted in a gradual decline in feed intake. 

b) The slaughtered H plane goats had sizeable internal fat deposits, particularly surrounding 

the gastro-intestinal tract and kidneys, which increased with age (Table 3.5). It was possible 

that this fat deposition inhibited feed intake, either through physical restriction of the gut 

cavity, or via some lipostatic mechanism (Forbes, 1986). 
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Pen number 

High plane Medium plane 

Period 1 4 5 Mean 2 3 6 Mean s .e . Si g. % of High 

n 84.78 79.77 88.72 84.42a 67.11 68.23 65.89 67.08a 0.985 *** 79 

m 80.04 74.72 79.51 78.09b 62.23 65.32 60.63 62.73b 1.150 *** 80 

0) N 52.72 58.28 56.85 55.95c 49.36 53.05 52.24 51.55c 0.895 * 92 
<0 

Mean 72.51 70.92 75 .03 72.51 59.57 62.20 59.59 60.25 0.744 *** 83 

Means within columns with different superscripts are significantly different (P < 0.001) 

Table 3.2 

Mean dry matter intake (glkg liveweight0.75) of Angora wether goats reared from six to 24 months of age on a high or medium plane of nutrition 



3.3.3 Statistical comparison of slaughtered and remaining treatment group 

liveweights and of dissected and non-dissected carcass side weights 

(i) Comparison of slaughtered and remaining treatment group liveweights 

One way analysis of variance was conducted on the fleece free liveweights of the H and M 

treatment groups prior to each slaughter to ensure that no bias existed between treatments at 

the start of the trial, and to ensure that the slaughtered goats were a good representation of all 

goats on the same level of nutrition at each age (Table 3.3). Liveweights were not available 

for the L plane goats for a similar comparison. 

Treatment group 

Age 6HIM 12H 18H 24H s.e. Sig. 12M 18M 24M s.e. Sig. 
(months) 

6 

12 

18 

21.1 22.0 19.2 20.0 

33.6 32.0 32.9 1.38 NS 

46.2 43.8 2.56 NS 

Table 3.3 

21.7 19.8 20.4 0.45 NS 

28.3 26.3 27.0 0.89 NS 

32.1 32.5 1.34 NS 

Mean fleece-free liveweight (kg) of slaughtered and remaining Angora wether goats reared 

on a high or medium plane of nutrition from six to 24 months of age 

The mean liveweight did not differ significantly between treatment groups at six months of 

age. This confirmed that there was no bias towards either plane of nutrition at the start of the 

trial and that the slaughtered group, 6H/M, was a good representation of all remaining 

treatment groups at that age. Similarly there were no significant differences between treatment 

groups at each age within each plane of nutrition, which confirmed that at each age sampled 

the slaughtered goats were a good representation of the remaining goats. 
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(ii) Comparison of carcass side weights 

A paired t-test was conducted on the weights of the right and left sides of carcasses in each 

treatment group in order to determine whether dissection of a single side would fairly 

represent the composition of the whole carcass. There were significant differences between 

the weights of right and left sides in some treatment groups (Table 3.4). 

Treatment 
group Left side Right side s.e. Significance 

6H!M 3.99 3.97 0.046 NS 

12H 7.83 7.83 0.052 NS 

18H 11.29 10.95 0.078 ** 
24H 11.37 11.57 0.089 NS 

12M 6.07 6.05 0.101 NS 

18M 6.95 6.71 0.126 NS 

24M 8.74 8.80 0.119 NS 

6L 4.54 4.55 0.038 NS 

12L 5.20 5.40 0.066 * 
18L 5.08 5.24 0.052 * 
24L 6.36 6.64 0.118 NS 

Table 3.4 

Mean weight of left and right cold side (kg) of Angora wether goats reared from six to 24 

months of age on a high, medium or low plane of nutrition 

Treatment group 18H had significantly heavier left sides than right sides (P < 0.01 ). 

Treatment groups 12L and 18L had significantly heavier right sides than left sides (P < 

0.05). These differences suggested that some or all of the carcasses in these groups may have 

been inaccurately split through the vertebral column, resulting in the half carcass dissection 

being unrepresentative of whole carcass composition. However a non-significant result in the 

above analysis did not prove that the two sides of each carcass were identical in composition. 

When the carcass dissections were performed several joints from the left (dissected) sides 

were obviously unevenly split. In these instances the corresponding joint from the right side 

was also dissected and the mean tissue weight from the two joints was taken to represent that 
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joint. 

Some of the treatment groups identified in Table 3.4 as having unequal side weights were not 

observed to have unevenly split joints upon dissection. Since time was limited it was not 

feasible to dissect both sides of such carcasses. In these cases it was concluded that the 

differences between side weights were due to differences intrinsic to the animal material. The 

difference in weight between the right and left sides varied from 0 to 700g in the worst case, 

and averaged 134g overall. When proportioned between the three main tissues and the waste 

fraction these differences were not large enough to significantly affect the representation of 

the whole carcass composition by half carcass dissection. 
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3.3.4 The effect of age and plane of nutrition on the body and carcass 

composition of the British Angora wether goat 

Two way analysis of variance was conducted on the body and carcass composition data to 

determine the effect of age (A), plane of nutrition (N) and their interaction (I) on the growth 

and development of the British Angora wether goat. Data from treatment group 6HIM was 

entered into the analysis twice since it represented both the H and M plane goats at six 

months of age. The least significant range was calculated at the 5% level of significance to 

determine the significance of the differences between each treatment group. 

There was a significant effect of age, plane of nutrition and their interaction on liveweight, 

empty body weight (EBW), killing-out percentage and the weights of all body and carcass 

components at slaughter (Table 3.5). Values increased from six to 24 months of age and 

were greater for the H than the L plane of nutrition with the M plane intermediate (Figures 

3.4 and 3.5). 

(i) High plane 

There was a significant increase in EBW and in the weights of most body components of the 

H plane goats up to 18 months of age. There were two exceptions. The .lungs showed no 

significant increase at any age with a mean weight of 227g, and the combined liver and 

spleen increased significantly from460.7g in group 6HIM to 662.5g in group 12H but 

showed no significant increase thereafter (Table 3.5). This indicated the early developing 

nature of these vital organs. 

Between 18 and 24 months of age there was no significant increase in EBW, the weight of 

the feet, the pelt or any of the essential organs (Table 3.5, Figure 3.4a). This signified the 

earlier maturing nature of the heart, kidneys and gastro-intestinal tract (GIT) and the external 

offal relative to the carcass and non-carcass fat depots. 

Although the vital organs showed little increase in weight after 18 months of age the 
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increases up to that age seemed disproportionately large compared with the complete lack of 

growth of the lungs. It would have been more consistent for the other organs to cease to 

grow at a younger age (compare with other studies). It was possible that the increases in 

weight of the heart, liver and spleen and kidneys up to I8 months of age was due to fat 

accretion, or glycogen in the liver, rather than to the growth of the organ tissue itself. 

WCW increased non-significantly between IS and 24 months of age from 25.lkg to 27.4kg. 

Similarly omental fat increased non-significantly from 2.77kg in group ISH to 3.29kg in 

group 24H (Table 3.5). These increases did not reach statistical significance because they 

were not as great as the differences between the younger age groups due to the overall decline 

in growth rate of the older goats (Figure 3.2a). While the fat-free carcass (lean plus bone) did 

not increase in weight beyond IS months of age, the weights of intermuscular fat (IMF), 

subcutaneous fat (SCF) and kidney knob and channel fat (KKCF) increased non

significantly up to 24 months of age (Figure 3.5a) and the weight of thoracic fat increased 

significantly between IS and 24 months of age from I3.0g to 36.3g (Table 3.5). The 

increase in WCW beyond IS months of age was therefore due to carcass fat development and 

not to the growth of lean or bone. 

These observations suggested that on the high plane of nutrition the fat-free body had reached 

its maximum weight of approximately 30kg (by difference) by I8 months of age. Any 

subsequent increase in EBW would be due solely to increases in carcass and omental fat. The 

lack of any increase in weight .of mesenteric and visceral fat between IS and 24 months of 

age (Table 3.5) indicated that these depots were relatively early maturing compared with 

omental fat, KKCF, IMF and SCF and as such had reached their maximum weight by IS 

months ofage in the H plane goats. 

The goats in group 24H were on average genetically smaller than those in group ISH. This 

was indicated by the lower mean weights of the feet, head and vital organs of the former 

(Table 3.5, Figure 3.4a) and also by their lower mean liveweight at IS months of age (43.S v 

46.2kg, Table 3.3). Consequently there was no increase in EBW between IS and 24 months 

of age despite the increase in total fat content of the empty body between those ages (Table 
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3.5). 

The apparent increase in bone mass from l.417kg in group 18H to 1.950kg in group 24H 

(Table 3.5, Figure 3.5a) was due to differences in the dissection technique used in that 

treatment group compared with that used in the dissection of earlier carcasses, rather than to 

an actual increase in bone mass with age. 

(ii) Medium plane 

The weights of most body and carcass components increased with each age increment up to 

24 months of age in the M plane goats (Figures 3.4b and 3.5b) indicating their relatively later 

maturity compared with those reared on the H plane of nutrition. There were few significant 

differences between age groups because the increases were small compared with the much 

larger differences in the H plane goats (Table 3.5). 

The lungs were the exception to the overall pattern. They showed no differences between any 

age groups and had a mean weight of 200g. This again emphasised their early maturity 

relative to other body components even on a lower plane of nutrition (Table 3.5). The 

continued increase in weight of the other vital organs up to 24 months of age may again have 

been due to the accretion of stored nutrients rather than to growth of the organ tissues, since 

there was no increase in the weight of the fat-free GIT beyond 18 months of age (Table 3.5, 

Figure 3.4b). Other studies have suggested that the heart, the liver and spleen and the 

kidneys should be earlier maturing than the GIT and therefore should not have increased in 

weight to greater ages than the latter (Pa!sson and Verges, 1952; Wilson, 1958b, 1960). 

The weights of the external offal components also increased up to 24 months of age, with the 

exception of the pelt which decreased slightly from 3.3kg in group 18M to 2.8kg in group 

24M (Table 3.5, Figure 3.4b). This was attributed to the fact that group 24M was shorn on 

the day of slaughter and therefore did not carry two weeks of fleece growth as did the 

younger age groups. 
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WCW increased with every age increase due to the growth of all carcass components up to 

24 months of age (Table 3.5, Figure 3.5b). Carcass bone appeared to increase rapidly from 

1.248kg in group 18M to 1.757kg in group 24M but this was again attributed to differences 

in dissection technique rather than to a sudden surge in bone growth. The weights of all non

carcass fat depots increased up to.24 months of age (Table 3.5). 

(iii) Low plane 

The patterns of growth and development of the L plane goats were complicated by a 

cessation of growth and weight loss of certain body components between 12 and 18 months 

of age. This was caused by sub-maintenance feed intakes on the commercial system of 

production (Materials and methods). There were few significant differences between age 

groups due to the relatively small changes compared with the H plane goats. 

EBW increased from 18.9kg to 23.2kg between six and 12 months of age, remained constant 

up to 18 months of age and then increased to 27.8kg at 24 months of age (Table 3.5, Figure 

3.4c). The vital organs demonstrated their high priority for available nutrients by continuing 

to increase in weight up to 24 months of age (Table 3.5), with the exception of the lungs 

which again did not grow between six and 18 months of age. Inexplicably the lungs 

increased in weight significantly between 18 and 24 months of age, reaching a mean weight 

of 290g which exceeded that of group 24H. This was attributed to error in the collection and 

weighing of the organs since no other explanation was available. The fat-free GIT increased 

in weight from 1.87kg at six months to 2.3kg at 24 months of age (Table 3.5). Since the data 

was missing for groups 12L and 18L it was impossible to say whether the tract continued to 

grow for the whole of that period or whether it had reached its mature weight earlier. The 

external offal continued to grow unchecked up to 24 months of age, indicating their high 

priority for available nutrients (Table 3.5). 

WCW increased from 9.7kg at six months to 11.4kg at 12 months of age (Table 3.5, Figure 

3.4c). It then decreased to 10.8kg at 18 months before increasing again to 14.3kg in group 

24L. While carcass bone continued to increase throughout the trial from 1.095kg in group 6L 
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to 1.515kg in group 24L (Table 3.5) all other carcass components lost weight between six 

and 18 months of age before regaining some of it at 24 months (Figure 3.5c). KKCF and 

SCF began to lose weight at 12 months of age, suggesting that as late maturing tissues they 

were mobilised as soon as the nutrient supply became limiting to the development of the 

earlier maturing components such as lean and bone. Both fat depots regained some weight at 

24 months of age (Table 3.5). IMF did not decrease until 18 months of age, indicating its 

earlier maturing nature and therefore its greater priority over available nutrients compared 

with KKCF and SCF. Similarly carcass lean was not affected until 18 months of age (Table 

3.5, Figure 3.5c). These results were consistent with those of Robinson (1948) who showed 

that the pattern of weight loss in mature ewes was the exact reverse of weight gain, with the 

most rapid loss in carcass fat, slow loss in carcass lean and no effect on the skeleton. 

The non-carcass fat depots also showed signs of early mobilisation in response to nutrient 

insufficiency. Omental fat decreased from 606g in group 6L to 363g in group 18L before 

increasing again to 479g in group 24L (Table 3.5). Due to missing data in groups 12L and 

18L for mesenteric and visceral fat it was impossible to say how soon these depots were 

mobilised. 

The failure of the L plane goats to increase in EBW between 12 and 18 months of age was 

due to mobilisation and consequently weight loss of both carcass and non-carcass fat and 

some lean, in order to fuel the growth of the vital organs, external offal and skeleton which 

continued to grow throughout the trial. 

These results suggested that the growth of the British Angora wether goat followed the same 

pattern of development as that described by Sir John Harnmond and his eo-workers in the pig 

and the sheep, namely early maturity of the organs and external offal, followed by the fat-free 

carcass with later maturity of carcass and non-carcass fat depots (Palsson, 1955). 
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Treatment group 
Significance 

High Medium Low of effect of 

6HIM 12H 18H 24H 12M 18M 24M 6L 12L 18L 24L s.e. A N I 

Liveweight (kg) 21.3a 33.7b 46.5c 45.7c 28.6ab 32.3b 36.2bc 21.2a 27.3ab 27.)ab 3l.Oab 0.62 *** *** ** 

EBW (kg) 18.4a 31.4cd 43.9e 43.8e 25.3abcd 28.6bcd 33.5d I 8.9ab 23.2abc 23.2abc 27.8abcd 0.59 *** *** *** 

WCW(kg) 8.7a I 7.4cd 25.1 de 27.4e 13.5abcd 15.3bcd 19.2d 9.7ab 1J.4abc I0.8ab 14.3abcd 0.37 *** *** *** 

Killing out % 47. )a 55.3cd 57.0d 62.6e 53.6cd 53.2cd 56.9d 51.3bc 49.Jab 46.6a 5 I .3bc 0.24 *** *** *** 

Pelt (kg) 2.5ab 3.6bcd 4 .6d 4.2cd 3 . Jabc 3.3abcd 2.8nb 2.5ab 3.3nbcd 2.1a 3.4bcd 0.08 *** *** *** 

GIT (kg)t 2.8a 4.5b 6.9d 6. )cd 3.8ab 4.3ab 4.5bc 2.9a 3.2ab 3 .6ab 3.3ab 0.10 *** *** *** 
-....! 
()) Pluck (kg)t J.8a 2.6cd 3.6g 3.4g 2.3bc 2.8de 3 .2efg 2.1 ab 2.4bcd 2.9def 3.3fg 0 .03 *** *** *** 

Feet (g) 506a 773bcde 923e 905de 676abc 730bcd 793cde 60Jnb 679abc 685abc 87Qde 11.0 *** ** ** 

Means in the same row with the same superscript are not significantly different (P < 0.05); 

t Includes associated fat 

Table 3 .5 

Effect of age and plane of nutrition on the mean weights of major body and carcass components of Angora wether goats (means of six goats) 



Treatment group 
Significance 

High Medium Low of effect of 

6H/MI 12H 18H 24H2 12M 18M 24M 6L 12LI 18LI 24L s.e. A N I 

Heart (g) 80.2a 112.3abc 157.7d l48. Jcd 88.8a 116. ?abc 144.8cd 9J.Oa I 03.3ab 129.3bcd 157.7d 2.3 1 *** * NS 

Lungs (g) 223.3bcd 207 .5abc 26J.5cd 216.5acd 20J.2abc 168.3ab 207.5abc 138.8a 199.3abc 167. 8ab 290.5d 4.80 ** * *** 

Liver & spleen (g) 460.7ab 662.5cde 822.0e 694.7de 495.2abc 507.2abc 604.9bcd 382.3a 443.0ab 493.0abc 667.7cde 10.9 *** *** *** 

Kidney (g) 35.5ab 52.8cd 6J.6d 52.8cd 43.0abc 43.2abc 46.0abc 32.0a 34.0ab 37.7ab 47.0bc 0.86 *** *** ** 
GIT (kg) 2 .4 2.9 1.8 2.2 2.5 2.4 1.9 2 .3 0 .01 ** NS NS 

Head (kg) 0.97a 1.35bc 1.88d 1.97de 1.28b 1.88d 1.95de 1.4 ?be 1.59c 2. 12de 2.19e 0.02 *** *** NS 
-.....1 
<0 

Visceral fat (kg) 0.118 0 .257 0.249 0.077 0.124 0. 128 0.055 0.039 0.04 ** NS NS 

Omental fat (kg) 0.493ab 1.500c 2.771d 3.294d 0.984abc 1.212abc 1.487bc 0.606abc 0.454a 0.363a 0.479a 0.06 *** *** *** 

Mesenteric fat (kg) 0.629 1. 150 1.023 0.567 0.579 0.681 0.387 0.471 0 .05 ** NS NS 

KKCF (kg) 0 .389ab I. 188c 2.204d 2.62 Jd 0.727abc 0.931 be 1.276c 0.469ab 0.393ab 0.229a 0 .272a 0.04 *** *** *** 

Thoracic fat (g)t O.Oa 6.5a 13.0ab 36.3c 6.6ab 10.2ab 22.0bc 4.1a l 3.0ab O.Oa O.Oa 0.97 *** *** *** 

Means in the same row with the same superscript are not significantly different (P > 0.05); 

t Left side only; 

I Visceral and mesenteric fat not removed; 

2 Visceral fat, heart, lungs, liver and head (n = 5) 

Table 3.5 (continued) 



Treatment group 
Significance 

High Medium Low of effect of 

6H/M 12H 18H 24H 12M 18M 24M 6L 12L 18L 24L s.e. A N I 

Dissected side (kg) 3.784a 7.366bc I 0. 123de 11.1 J3e 5.682abc 6.343abc 8.36cd 4.144a 5.0JOab 4.760ab 6.123abc 0.16 *** *** *** 

Bone (kg) 0.864a 1.20Jabc 1.4J7bcd 1.950e 1.024a 1.248abc 1.757de 1.095ab 1. 136abc l . J77abc 1.5 J5cd 0.02 *** * ** 

Lean (kg) 1.893a 3.761dfg 4.805& 4.446fg 3.025bde 3.003bde 3.88 1 efg 2.0 J5ab 2.690abd 2.456abc 3.482cdf 0. 06 *** *** *** 

Total fat (kg) 0.988a 2.350abc 3.861 cd 4.694d 1.586ab 2.066nb 2.690bc 1.021 a 1.15 I ab 1.078ab 1.089ab 0. 10 *** *** *** 

IMF (kg) 0.392ab 0.986bcd 1.389de 1.699e 0.677abc 0.799acd 1.048cd 0.350a 0.5J2abc 0.473abc 0.4J3ab 0.06 *** *** *** 

CO 
SCF (kg) 0.596a 1.364a 2.472bc 2.995c 0.9JOa 1.267a 1.642ab 0.672a 0.639a 0.605a 0.676a 0.04 *** *** *** 

0 
Means in the same row with the same superscript are not significantly different (P > 0.05) 

Table 3.5 (continued) 
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The effect of increasing the plane of nutrition from L to H on the earlier maturing body 

components such as the pelt, feet and GIT was greater in the younger treatment groups, up to 

18 months of age, than in the more mature animals (Figure 3.6b, c and e). The effect on the 

later maturing non-carcass fat and warm carcass was greatest in the oldest animals (Figures 

3.6f and 3.7a). In the very early maturing pluck there was little effect of increasing plane of 

nutrition at any age (Figure 3.6d). 

Similarly the effect of increasing the plane of nutrition on the warm carcass was small in the 

very early maturing bone at all ages (Figure 3.7b). The effect on lean was greatest at 18 

months of age and decreased at 24 months of age (Figure 3.7c) while the effect on the late 

maturing carcass fat depots was greatest in the most mature treatment groups (Figures 3.7d, e 

and f). 
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3.3.5 The effect of age and plane of nutrition on the body conformation of 

the British Angora wether goat 

Body conformation was measured by means of linear measurements of the cold carcass and 

by means of the weights and proportions of the commercial joints. 

(i) Linear measurements 

All of the linear measurements increased significantly with increasing age (Table 3.6, Figure 

3.8). They also increased significantly with increasing plane of nutrition with the exception 

of the total leg length, F, which had a mean value of 240mm (Figure 3.8a). The F 

measurement can be affected by the accumulation of fat in the crutch of the carcass (Colomer

Rocher and Kirton, 1989) and this may have masked the leg length of the fatter goats. The 

lower leg length, T, increased significantly from 148mm in the L plane goats to 157mm in 

the Hplalle goats-(Figure 3;8b). 

(a) High plane 

In the H plane goats there was a clear pattern of development of carcass conformation with 

age (Figure 3.9a, Table 3.7) which was consistent with that identified by McMeekan in the 

pig (1940a, band c) and by Palsson and Verges in the sheep (1952). At 24 months of age the 

measurements identified by these workers as being later developing i.e. chest width and side 

depth, had increased proportionately more over values at six months of age (96.0% and 

34.7% respectively) than the earlier developing leg and side length measurements. The T 

measurement had increased by only 17.0%, the F measurement by only 21.5% and side 

length by 23.7%. These measurements were essentially measures of skeletal development 

and indicated that in the young animal growth of the skeleton occurred mainly by increased 

leg length, first lower and then upper leg, and by increased carcass length. In the more 

mature animal the skeleton became deeper and wider. 

The circumference of the buttocks reflected lean and fat development as well as skeletal 
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growth and consequently was one of the later developing parameters, showing a large 

increase of 37.2% at 24 months of age over the value at six months. 

(b) Medium plane 

Carcass conformation in the M plane goats showed the same pattern of development with age 

as that of the H plane goats (Figure 3.9b) but the proportional increases in each measurement 

over values at six months of age were lower (Table 3.7). 

(c) Low plane 

In the L plane goats differences in the order of development of the linear measurements 

indicated the less advanced stage of maturity of the carcass at each age compared with the H 

and M plane goats (Figure 3.9c). Lower leg length, T, was still the earliest maturing 

parameter, increasing by only 9.3% at 24 months of age over its value at six months. There 

was little difference between the proportional increases of the remaining linear measurements 

by 24 months of age (Table 3.7). Side depth increased the most, by 20.3%, while increases 

in chest width and the circumference of the buttocks were inhibited by the low plane of 

nutrition and had increased proportionately less than any other measurement, 9.4% and 

11.8% respectively, except forT. The decrease in the circumference of the buttocks between 

12 and 18 months of age, and in chest width between 18 and 24 months of age indicated that 

these measurements were influenced by lean and fat development, both of which were 

adversely affected by the poor feed intakes of the L plane goats throughout the trial (Figure 

3.8e and f). 

Increasing the plane of nutrition from L to H had a greater effect on the earlier maturing 

parameters i.e. leg length, side length and length from femur fossa to 12th rib, in the younger 

age groups (Figures 3.8b, c and d respectively). At 24 months of age the differences between 

the treatment groups became less as each parameter reached maturity in the H plane goats but 

continued to increase in the L plane goats. 
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Conversely there was a greater effect of increasing the plane of nutrition on the later maturing 

parameters in the oldest animals. The circumference of the buttocks and chest width 

continued to increase in the H plane goats but remained relatively undeveloped in the L plane 

goats (Figures 3.8e and f respectively). 
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Treatment group 
Significance 

High Medium Low of effect of 

6HIM 12H ISH 24H 12M ISM 24M 6L 12L ISL 24L s.e. A N 

ccw S.4• 17.0cd 24.7ef 27.2f 13.0abc 14.Sbcd 19.2de 9.5ab 11.1 abc I0.5ab 13.5acd 0. 36 *** *** ** 
F 223 242 23S 271 237 236 252 221 237 245 256 2.20 *** NS NS 

T 141 157 166 165 151 161 160 140 145 154 153 1.06 *** ** NS 

Circumference of 

buttocks 436• 52 Sed 5S5e 59 Se 5Q4bcd 513cd 55Sde 450ab 476abc 474abc 503bc 3.26 *** *** *** 
Chest width 125 200 230 245 17S 194 214 149 171 163 ? ? NS NS 

CD Side depth 225 272 2S9 303 253 263 272 231 257 263 27S 2.15 *** ** NS <0 

Side length 5IS 5S3 621 641 560 57S 622 523 55S 550 602 3.30 *** *** NS 

Femur fossa to 

12th rib 363• 5Q4de 543ef 555f 467bcd 494cde 5JSef 434b 444bc 460bcd 509def 3.02 *** *** *** --

Means in the same row with the same superscript are not significantly different (P > 0.05) 

Table 3.6 

Effect of age and plane of nutrition on cold carcass weight (kg) and carcass linear measurements (mm)-of Angora wether goats (means of six goats) 
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The effect of plane of nutrition from six to 24 months of age on the linear carcass measurements of Angora wether goats 
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The effect of plane of nutrition from six to 24 months of age on the linear carcass measurements of Angora wether goats 



Treatment group 

lligh Medium Low 

l2H 18H 24H 12M 18M 24M 12L 18L 24L 

F 8.5 6.7 21.5 6 .3 5.8 13.0 7 .2 10.9 15.8 

T 11.3 17.7 17.0 7.1 14.2 13.5 3.6 10.0 9.3 

Circumference of buttocks 21.1 34.2 37.2 15.6 17.7 28.0 5.8 5.3 11.8 

Chest width 60.0 84.0 96.0 42.4 55.2 71.2 14.8 9.4 

CO 
1\) 

Side depth 20.9 28.4 34.7 12.4 16.9 20.9 11.3 13.9 20.3 

Side length 12.5 19.9 23.7 8.1 11.6 20.1 6.7 5.2 15.1 

Femur fossa to 12th rib 38.8 49.6 52.9 28.7 36.1 42.7 2.3 6.0 17.3 

Table 3.7 

Effect of age and plane of nutrition on carcass linear measurements (mm) of Angora wether goats - percentage increase over value at 

six months (means of six goats) 
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(ii) Commercial joints 

The weights of all of the commercial joints increased significantly with increasing age and 

plane of nutrition with the exception of the neck which was not significantly affected by plane 

of nutrition (Table 3.8, Figure 3.10). This was in part due to inaccuracies in the separation of 

the neck from the head in treatment group 6H/M, but also reflected the early maturing nature 

of this joint. The weight of the neck did not differ significantly between treatment groups at 

12 months of age and had an average value of 0.247kg at that age (Figure 3.10g). 

(a) High plane 

The weights of all of the commercial joints, except the neck, increased significantly up to 18 

months of age but also increased non-significantly up to 24 months of age in the H plane 

goats (Table 3.8, Figure 3.10). 

At 24 months of age the leg and the shoulder had increased proportionately the least over 

their value at six months of age (164.4% and 163.6% respectively) while the best end and the 

loin had increased proportionately the most (272.4% and 261.6% respectively) with the 

breast and chump intermediate (226.0% and 207.9% respectively) (Table 3.9, Figure 3.lla). 

This confirmed the existence of a centripetal pattern of growth in the Angora goat, as 

proposed for other domestic species by Harnmond (1955). Consequently the leg, shoulder 

and neck tended to decrease as proportions of total side weight while the loin, chump, best 

end and breast tended to increase up to 24 months of age (Table 3.10, Figure 3.12). 
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Treatment group 
Significance 

High Medium Low of effect of 

6H/M l2H 18H 24H 12M 18M 24M 6L 12L 18L 24L s.e. A N I 

Leg 0.897a l.7Jl cd 2.295e 2 .372e l.396bc 1.507bcd I. 917de 1.1 03ab 1.285abc 1.362abc 1.620cd 0.03 *** *** ** 

Chump 0.342a 0.63Jbc 0.965d 1.053d 0.498ab 0 .561 abc 0.805cd 0.353a 0.447ab 0.355a 0.518ab 0.02 *** *** *** 

Loin 0.393a 0.937bcd l.l6Jde 1.42] e 0.587abc 0 .725acd l .004cde 0.409a 0.539ab 0.494a 0.599abc 0.03 *** *** ** 

Best end 0.279a 0.637bcd 0.954de 1.039e 0.452abc 0.564abc 0.763cde 0.335ab 0.396ab 0.364ab 0.444abc 0.02 *** *** *** 

Breast 0.420ab 0.838bc 1.362d 1.369d 0.687abc 0.667abc 0.903c 0.37Ja 0.463ab 0.464ab 0.631 abc 0.03 *** *** *** 

Shoulder 1.5]5a 2.728cd 3.723e 3.993e 2.143abc 2.405acd 3.110de 1.6 J6ab 1.966abc 1.879abc 2.424bcd 0.05 *** *** *** 
<0 

Neck 0.042a 0.264bcd 0.325d 0.324cd 0.258bcd 0.26Jbcd 0.315cd O.l88b (}1 0.220bc O.l92b 0.288bcd 0.01 *** NS *** 

Means in the same row with the same superscript are not significantly different (P > 0.05) 

Table 3.8 

Effect of age and plane of nutrition on the weight of commercial carcass joints (kg) of Angora wether goats (means of six goats) 
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The effect of plane of nutrition from six to 24 months of age on the weight of commercial carcass joints of Angora wether goats 
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The effect of plane of nutrition from six to 24 months of age on the weight of commercial carcass joints of Angora wether goats 



C.D 
CX> 

Treatment group 

High Medium Low 

12H 18H 24H 12M 18M 24M 12L 18L 24L 

Leg 90.7 155.9 164.4 55.6 68.0 113.7 16.5 23.5 46.9 

Chump 84.5 182.2 207.9 45.6 64.0 135.4 26.6 0.6 46.7 

Loin 138.4 195.4 261.6 49.4 84.5 155.5 31.8 20.8 46.5 

Best end 128.3 241.9 272.4 62.0 102.2 173.5 18.2 8.7 32.5 

Breast 99.5 224.3 226.0 63.6 58 .8 115.0 24.8 25 .1 70.1 

Shoulder 80.1 145.7 163.6 41.5 58.7 105.3 21.7 16.3 50.0 

Table 3.9 

Effect of age and plane of nutrition on the weight of commercial carcass joints of Angora wether goats - expres ed as percentage 

increase in weight over value at six months of age (means of six goats) 
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The effect of age on the percentage increase in weight of commercial carcass joints of Angora 

wether goats reared on a high, medium or low plane of nutrition 
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Treatment group 

High Medium Low 

6H/M 12H 18H 24H Mean 12M 18M 24M Mean 6L 12L 18L 24L Mean 

Leg 22 .5 21.9 20.3 20.9 21.4 23.0 21.7 21.9 22.3 24.3 24.9 26.8 25.5 25.4 

Chump 8.6 8.1 8.6 9.3 8.6 8.2 8.1 9.2 8.5 7.8 8.7 7.0 8.1 7.9 

Loin 9.9 12.0 10.3 12.5 11.2 9.7 10.5 11.5 10.4 9.0 10.4 9.7 9.4 9.7 

Best end 7.0 8.1 8.5 9.1 8.2 7.5 8.1 8.7 7.8 7.4 7.7 7.2 7.0 7.3 

Breast 10.5 10.7 12.1 12.0 11.3 11.3 9.6 10.3 10.5 8.2 9.0 9.1 9.9 9.1 

Shoulder 38.0 34.8 33.0 35.1 35.2 35.3 34.7 35.6 35.9 35.6 38.0 37.0 38.1 37.2 ...... 
0 Neck 1.1 3.4 2.9 2.9 2.5 4.5 3.8 3.6 3.2 4.1 4.3 3.8 4.5 4.2 
0 

Table 3.10 

Effect of age and plane of nutrition on the weight of commercial carcass joints of Angora wether goats - expressed as percentage of cold side weight 

(means of six goats) 
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The effect of plane of nutrition from six to 24 months of age on the weight of commercial carcass joints of Angora wether goats -expressed as a proportion of cold side weight 
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(b) Medium plane 

The weights of all of the joints increased up to 24 months of age in the M plane goats but 

there were no significant differences between consecutive treatment groups due to the smaller 

magnitude of the increases relative to those in the H plane goats (Table 3.8, Figure 3.10). 

The carcasses of the M plane goats exhibited the same pattern of centripetal development as 

those of the H plane goats. The shoulder had increased the least at 24 months of age over its 

value at six months (105.3%) followed by the leg (113.7%), the breast (115.0%), the chump 

(135.4%), the loin (155.5%) and the best end (173.5%) (Table 3.9, Figure 3.11b). 

(c) Low plane 

Due to the relatively small increases in the weights of the joints of the L plane goats 

compared with those of the M and H plane goats there were no significant differences 

between treatment groups, with the exception of the leg which increased significantly from 

1.103kg in group 6L to 1.620kg in group 24L (Table 3.8). The leg was the only joint not 

affected by the poor feed intakes of the L plane goats. Its weight increased steadily with ag~ 

(Figure 3.10a) while all other joints lost weight between 12 and 18 months and regained it by 

24 months of age (Figures 3.10b to g). This emphasised the early maturing nature of the leg 

joint. 

The relative immaturity of the L plane carcasses at each age compared with the M and H 

plane carcasses was illustrated by an almost complete reversal of the order of proportional 

development in the L plane goats (Figure 3.11c). By 24 months of age the breast had 

increased the most relative to its weight at six months (70.1%) followed by the shoulder 

(50.0%). The loin, chump and leg had increased by only 46.5%, 46.7% and 46.9% each and 

the best end was the least developed joint, having increased its weight by only 32.5%. 

Consequently the leg, shoulder and breast tended to increase as proportions of cold side 

weight, the chump remained approximately constant and the loin and best end tended to 

decrease (Table 3.10, Figure 3.12). 
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Under conditions of nutrient insufficiency the early maturing joints had priority over the 

available nutrients while the growth of the later maturing joints was restricted. Consequently 

there was a greater effect of increasing the plane of nutrition from L to H on the later 

maturing loin and best end joints than on the earlier maturing leg and shoulder joints (Figure 

3.10). On the L plane of nutrition the carcasses were generally thinner with a greater 

proportion of leg and shoulder joints while on the H plane of nutrition the carcasses were 

more blocky and better filled with a greater proportion of loin, breast and best end joints 

(Table 3.10). 

The effect of plane of nutrition on joint weight was mainly due to increased fat deposition on 

the H and M planes of nutrition compared with the L plane. There was little difference in the 

weights of the fat free joints at any age between the three planes of nutrition (Table 3.11, 

Figure 3.13). The greatest effect of plane of nutrition on the fat free joints was seen at 18 

months of age, but by 24 months of age the growth of the fat free carcass in the H plane 

goats had plateaued while that of the L plane goats was still increasing, resulting in smaller 

differences in fat free joint weights at 24 months compared with 18 months of age. 
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Treatment group 
Significance 

High Medium Low of effect of 

6HIM 12H 18H 24H 12M 18M 24M 6L 12L 18L 24L s.e. A N 

Leg 0.742a 1.365cde 1.705fg 1.780& 1.118bcd 1.174bcd 1.542efg 0 .915ab I .052abc 1.074abcd 1.406def 0.02 *** *** *** 

Chump 0.239a 0.377bc 0.535dc 0 .614c 0.314abc 0 .365abc 0 .527de 0 .262ab 0.345abc 0 .278abc 0.406cd 0 .01 *** *** *** 

Loin 0 .273a 0.532bcde0.613de 0.706e 0.376ac 0.439acd 0.595cde 0.31 Oab 0 .417ncd 0.342ab 0.470acd 0. 01 *** *** * 

Best end 0 . 178a 0 .384cd 0.413d 0.4J7d 0.3121>cd 0 .278abc 0.409d 0.2J4ah 0.262abc 0 .268abc 0.316bcd 0 .01 *** *** ** 

Breast 0 .219a 0.404bcd 0.542d 0.441 cd 0.359abc 0.317abc 0.380bc 0 .214a 0.268ab 0 .271 ab 0.384bc 0 .01 *** *** ** 

Shoulder 1.1 06a I. 90Qdef 2.414& 2.437& 1.570bcd 1.678cdc 2.185fg 1.193ab 1.482acd 1.399abc 2.0 16efg 0.03 *** *** *** 

0 
Ul Means in the same row with the same superscript are not significantly different (P > 0.05) 

Table 3.11 

Effect of age and plane of nutrition on the weight of fat-free commercial carcass joints (kg) of Angora wether goats (means of six goats) 



a) 1.8 

1.6 

on 
c. 

1.4 

eo 
~ 
0 
0 .... 
'-

1.2 

' 1.0 ;:; 
u.. 

0.8 

0.6 
0 

c) 0.8 

0.7 

on 0.6 ..><: ._, 
c 
:2 0.5 
g 
..: 

' 0.4 ;:; 
u.. 

0.3 

0.2 

e) 0.6 

0.5 on 
c. 
~ 

:n 

"' ] 0.4 

] 
' ;:; 

u.. 0.3 

0 

b) 

on 
..><: ....... 
0. 
E 
::l 

..c 
u 
0 
0 ..: 
_!. 

~ 

10 20 30 
Age (months) 

d) 

,-... 
eo 

..><: ._, 
"0 
c 
0 
~ 

"' V 
.D 
QJ 
V 

.!:; 
.!. 
"' u.. 

10 20 30 
Age (months) 

f) 

on 
c. .... 
0 
:2 
::l 
0 
..c 
"' 0 
V 
.!;: 
.!. 
r:s u.. 

0.2 +-----.---,.--~--r----.-----, 
0 10 20 30 

Age (months) 

-+- High 
...... Medium 
....... Low 

Figure 3.13 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 
0 10 20 

Age (months) 

0.5 

0.4 

0.3 

0.2 

0. 1 
0 10 20 

Age (months) 

3 

2 

l 
0 10 20 

Age (months) 

The effect of age and plane of nutrition on the weight of fat-free commercial carcass joints of 

Angora wether goats 

106 

3l 

3( 

30 



3.3.6 Allometric growth of the British Angora wether goat from six to 24 

months of age (16 to 60kg empty body weight) 

For each plane of nutrition the 24 observations derived from the slaughtered goats for each 

body component were applied to the allometric model 

y = axb 

in order to describe the growth of each part of the body or carcass (y) in relation to the 

growth of the whole empty body or cold carcass (x). In the above equation b was the 

allometric coefficient and a was a constant. The logarithmic form of the equation 

Iog10 y = Iog10 a+ b Iog10 x 

was used to determine the statistical significance of the fit of the data to the line produced 

(Appendix 11) and to compare the allometric coefficients for each body or carcass component 

on the three planes of nutrition (Tables 3.12 to 3.14; Appendix 11). 

The order of maturity of the components of the empty body was demonstrated using the data 

derived from the H plane goats since that plane of nutrition encompassed the widest range of 

empty body weights (16 to 60kg) and therefore the most mature animals. The allometric 

coefficients were ranked in increasing order of magnitude, the early maturing components 

having the lowest coefficients and the late maturing components having the highest 

coefficients (Table 3.12). The most early maturing components were the lungs with an 

allometric coefficient of 0.173. The latest maturing component was the total body fat with an 

allometric coefficient of 1.581 (Figure 3.14). In general the vital organs- lungs, liver, heart 

and kidneys - were the earliest maturing body components, followed by the external offal -

feet, pelt and head, the warm carcass and finally the body fat. 
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Significance of difference 

Body Allometric coefficient (b) between allometric coefficients 
component 

(y) High Medium Low HvM HvL MvL 

Lungs 0.173 -0.039 1.538 

Liver & spleen 0.588 0.442 1.411 NS *** *** 
Kidneys 0.614 0.530 1.017 NS * *** 
Feet 0.684 0.759 0.916 NS * NS 

Head 0.710 1.039 0.849 * NS NS 

Heart 0.755 0.900 1.241 NS * NS 

Pelt 0.764 0.724 0.797 NS NS NS 

wcw 1.217 1.281 1.041 NS * ** 
Total body fat 1.581 1.642 0.132 NS 

Table 3.12 

Allometric coefficients (b) for the growth of main body components and organs (y) 

relative to the growth of the empty body (x) 
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The allometric development of the dissected half carcass tissues with respect to cold carcass 

weight was examined in the same way (Table 3.13, Figure 3.15). Bone was the earliest 

maturing carcass tissue (b = 0.586) followed by lean (0.786), carcass dissectible fat (SCF 

plus IMF, 1.320) and KKCF was the latest maturing carcass tissue (1.550). When the 

carcass dissectible fat was examined as two separate depots IMF was earlier maturing than 

SCF, with b values of 1.214 and 1.403 respectively. 

The commercial carcass joints matured in the following order with respect to cold carcass 

weight; shoulder (0.841), leg (0.847), chump (0.963), loin (1.063), breast (1.077) and best 

end (1.149) (Figure 3.16). 

Significance of difference 

Body Allometric coefficient (b) between allometric coefficients 
component 

(y) High Medium Low HvM HvL MvL 

Carcass bone 0.586 0.800 0.784 NS NS NS 

Carcass lean 0.786 0.859 1.337 NS *** *** 
Carcass dissectible fat 1.320 1.267 0.719 NS ** ** 

IMF 1.214 1.193 0.816 NS NS NS 

SCF 1.403 1.327 0.671 NS ** * 
KKCF 1.550 1.483 -0.217 NS 

Shoulder 0.841 0.871 1.074 NS ** ** 
Leg 0.847 0.909 1.031 NS * NS 

Chump 0.963 1.007 1.148 NS NS NS 

Loin 1.063 1.111 1.176 NS NS NS 

Breast 1.077 0.956 1.229 NS NS * 
Best end 1.149 1.265 0.987 NS NS * 

Table 3.13 

Allometric coefficients (b) for the growth of half carcass tissues and commercial joints (y) 

relative to the growth of the cold carcass (x) 
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The body fat depots also showed a distinct order of maturity with respect to empty body 

weight. Visceral fat was the earliest maturing depot (1.123) followed by mesenteric fat 

(1.274), IMF (1.548), SCF (1.787), KKCF (1.896) and omental fat (1.958) (Table 3.14, 

Figure 3.17). The allometric coefficients for KKCF and omental fat were so similar for the H 

plane goats that it was impossible to say with any certainty which was the earlier maturing. 

However, in the M plane goats KKCF was more rapidly developing than omental fat, and in 

the L plane goats KKCF was more rapidly mobilised than omental fat. This suggested that 

KKCF is actually the latest maturing fat depot and as such was mobilised in the H plane 

goats when their feed intakes fell below maintenance, resulting in a slightly greater allometric 

coefficient for omental fat. 

Body Allometric coefficient (b) 
component 

(y) High Medium Low 

Visceral fat 1.123 1.794 -0.532 

Mesenteric fat 1.274 0.892 0.526 

IMF 1.548 1.582 0.808 

SCF 1.787 1.763 0.468 

KKCF 1.896 1.945 -0.737 

Omental fat 1.958 1.934 -0.040 

TableD4 

Significance of difference 

between allometric coefficients 

HvM 

NS 
NS 
NS 
NS 
NS 
NS 

HvL 

** 

MvL 

* 

Allometric coefficients (b) for the growth of body and carcass fat depots (y) relative to the 

growth of the empty body (x) 
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3.3.7 The effect of plane of nutrition on the allometric growth of the British 

Angora wether goat 

For most of the linearised allometric equations the intercept and the gradient were 

significantly different from zero and the regression line represented a significant proportion 

of the variation in the data (Appendix ID. The exceptions were those equations with very low 

allometric coefficients - the growth of the lungs with respect to EBW in the H and M plane 

goats (Appendix 11, Table 1.1), the growth of KKCF with respect to CCW in the L plane 

goats (Appendix 11, Table 1.2) and the growth of all fat depots with respect to EBW in the L 

plane goats with the exception of IMF (Appendix 11, Table 1.3). In each case the gradient 

was not significantly different from zero and the regression line did not represent a significant 

proportion of the variation in the data. Consequently these regression equations could not be 

statistically compared with those formulated for the other planes of nutrition (Tables 3.12 to 

3.14). The remaining equations were compared, in pairs, using analysis of covariance 

(Snedecor and Cochran, 1967) to determine the effect of varying the plane of nutrition on the 

allometric relationships (Appendix IT). 

Reducing the plane of nutrition from H to L tended to reverse the order of the relative growth 

rates (b) of the main body components with respect to EBW (Figure 3.18). In the H plane 

goats the warm carcass and total body fat were the most rapidly developing body components 

while the vital organs were the least rapidly developing with respect to the growth of the 

whole empty body. In the L plane goats the vital organs developed the most rapidly while 

total body fat was the most slowly developing component. Consequently the b values tended 

to increase with decreasing plane of nutrition for the early maturing pans and decreased with 

decreasing plane of nutrition for the late maturing pans (Table 3.12). 

There were significant differences between the L and H plane goats in the b values for all 

body components except for the head and the pelt which did not differ significantly, and the 

lungs and total body fat which could not be compared statistically (Table 3.12). There were 

also significant differences between the Land M plane goats in the b values for the liver and 

spleen, the kidneys and the warm carcass, while the H and M plane goats differed 
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significantly only between the b values for the head. 
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Varying the plane of nutrition had similar effects on the allometric development of the carcass 

tissues with respect to CCW (Figure 3.19). The relative growth rate of the early maturing 

carcass bone tended to increase with decreasing plane of nutrition from 0.586 in the H plane 

goats to 0.784 in the L plane goats, but the difference was not significant (fable 3.13).The 

relative growth rate of carcass lean increased with decreasing plane of nutrition. There was a 

significant increase from 0.786 in the H plane goats and 0.859 in the M plane goats to 1.337 

in the L plane goats (P < 0.001). The allometric coefficient of the late maturing carcass 

dissectible fat decreased with decreasing plane of nutrition from 1.320 in the H plane goats to 

0.719 in the L plane goats. The L value was significantly lower than both the M and H 

values (P < 0.01). The significant differences were mainly attributable to differences in the 

relative growth rate of the later maturing SCF which increased from 0.671 in the L plane 

goats to 1.403 in the H plane goats. Although the earlier maturing IMF showed the same 

trend of increasing b value with increasing plane of nutrition the differences were not 

significant. The greatest effect of plane of nutrition was on the relative growth rate of KKCF 

which decreased with increasing CCW in the L plane goats (b = -0.217) while increasing 

rapidly with increasing CCW in the M and H plane goats (b = 1.483 and 1.550 

respectively). The H and M planes did not differ significantly and the L plane could not be 

statistically compared. 

In general on the H plane of nutrition KKCF was the most rapidly developing carcass tissue 

relative to CCW and bone was the least rapidly developing. On the L plane of nutrition bone, 

being the earliest maturing tissue, was still the least rapidly developing carcass tissue. For all 

other components the order of relative growth rate was opposite to that for the H plane goats

lean was the most rapidly developing carcass tissue and KKCF was the least rapidly 

developing relative to CCW. 

The relative growth rates of the earlier maturing commercial carcass joints with respect to 

CCW tended to increase with decreasing plane of nutrition while that of the latest maturing 

joint, the best end, tended to decrease with decreasing plane of nutrition (Table 3.13, Figure 

3.20). In general the allometric coefficients for the L plane joints were greater than for the M 

and H plane joints due to the influence of KKCF on CCW. The relatively more rapid growth 
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of KKCF in the H plane carcasses caused the commercial joints to develop relatively less 

rapidly than in the L plane carcasses in which KKCF actually declined with increasing CCW 

(Figure 3.21). 
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There were no significant differences between the M and H plane goats in the relative growth 

rates of the fat depots with respect to EBW (Table 3.14) but there appeared to be an effect of 

the L plane of nutrition. The relative growth rates of the fat depots in the L plane goats were 

lower than in the M and H plane goats (Figure 3.21), but with the exception of IMF could 

not be compared by covariance analysis. The allometric growth of IMF was significantly 

lower for the L plane goats (0.808) than for the M plane goats (1.582; P < 0.05) and the H 

plane goats (1.548; P < 0.01). The late maturing non-carcass fat depots, omental and KKCF, 

had negative b values of -0.040 and -0.737 respectively which suggested that they were 

mobilised in preference to the earlier maturing carcass fat to compensate for the nutrient 

insufficiency suffered by the L plane goats. The order of relative growth rates of the fat 

depots with respect to EBW was therefore opposite to that for the M and H plane goats i.e. 

the earlier maturing depots were the most rapidly developing while the late maturing depots 

were the least rapidly developing or most rapidly depleting depots, suggesting that the order 

of fat mobilisation was the exact opposite of fat deposition. This was true with the exceptions 

of visceral and mesenteric fat which appeared to be early maturing in the H plane goats but 

were still less rapidly developing than IMF in the L plane goats. This may have been due to 

the high proportion of missing data for these fat depots. 

The order of development of the fat depots with respect to the growth of total body fat, 

excluding visceral and mesenteric fat, was not significantly affected by plane of nutrition 

(Table 3.15, Figure 3.22). In the M and H plane goats omental fat appeared to be slightly 

later maturing than KKCF but the allometric coefficients for the two depots were very 

similar. Previous evidence (Section 6.1) and the order of maturity given for the L plane goats 

in Table 3.15 suggests that KKCF is the latest maturing fat depot and as such the first to be 

mobilised when nutrient intake is insufficient. 

122 



Significance of difference 

Body Allometric coefficient (b) between allometric coefficients 
component 

(y) High Medium Low HvM HvL MvL 

IMF 0.821 0.842 0.610 NS NS NS 

SCF 0.968 0.974 0.760 NS NS NS 

Omental fat 1.103 1.093 1.408 NS NS NS 

KKCF 1.065 1.070 1.568 NS * * 

Table 3.15 

Allometric coefficients (b) for the growth of half carcass IMF, SCF, total KKCF and 

omental fat (y) relative to the growth of the summed weight of the four depots (x) 

There were no significant differences between the H and M planes of nutrition in the growth 

of any of the fat depots relative to the growth of the summed weights of the four depots, 

although the allometric coefficients for the earlier maturing depots were slightly greater for 

the M plane goats while that for the late maturing omental fat was slightly greater for the H 

plane goats. In the L plane goats the relative growth of both IMF and SCF was lower while 

that of KKCF and omental fat was higher than for the other two planes of nutrition, and the 

differences between the allometric coefficients for KKCF were significant (P < 0.05). This 

result was the opposite to that which was expected and was attributable to the fact that 

omental and KKCF were mobilised more rapidly than IMF and SCF, and hence the greatest 

influence on the weight of total body fat (excluding visceral and mesenteric fat) was the 

variation in weight of the two latest maturing depots. 
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The effect of plane of nutrition on the allometric growth of the body and carcass fat depots 

relative to the growth of the empty body 
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3.3.8 Allometric growth of the fat-free empty body and carcass of the British 

Angora wether goat 

The classical approach to the analysis of the results which has been adhered to in the 

preceding sections has been criticised in more recent years since it takes no account of the 

influence of varying degree of body fatness on the relative growth rates of the remaining 

body tissues or of its effects on the body proportions of animals reared on different planes of 

nutrition (Wilson, 1960; Tulloh, 1963, Elsleyeta/., 1964). 

Therefore allometric equations were also formulated for the growth of each body and carcass 

component relative to the growth of the fat-free empty body or fat-free half carcass (dissected 

lean plus bone) respectively (Appendix II). The linear regressions of the weight of the lungs 

against fat-free EBW for both the M and H plane data were non-significant representations of 

the data (Appendix II, Table 3.1) and consequently could not be statistically compared with 

the L plane equation. Similarly for the L plane data the linear regressions of total body fat 

against fat-free EBW (Appendix 11, Table 3.1), SCF and KKCF against lean plus bone 

(Appendix Il, Table 3.2) and all fat depots except IMF and KKCF against fat-free EBW 

(Appendix II, Table 3.3) were non-significant representations of the data and could not be 

statistically compared with the corresponding M and H plane equations. The results of all 

other comparisons are listed in Appendix II. 

There were no significant differences between the three planes of nutrition in the allometric 

coefficients (b) for the growth of the kidneys, feet, heart or pelt relative to the fat-free empty 

body (Table 3.16, Figure 3.23). 

The growth of the liver plus spleen relative to that of the fat-free empty body was 

significantly greater for the L plane goats than for the M and H plane goats and the growth of 

the head relative to that of the fat-free empty body was significantly greater for the M than the 

L plane goats. It was possible that the presence of horns in the L plane goats affected this 

result. The growth of the fat-free cold carcass relative to that of the fat-free empty body was 

significantly lower for the L plane goats than for the M and H plane goats. This might be due 
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to an effect of plane of nutrition on the development of intramuscular fat, which was not 

measured in this study, or to a permanent stunting effect of the L plane of nutrition on the 

growth of the fat-free carcass. However, the most likely explanation is the difference, 

between the three planes of nutrition in the range of fat-free empty body weights (Figure 

3.23g) with the more narrow range of values and lower ultimate maturity of the L plane goats 

affecting the fit of the regression line. Had the L plane goats been reared to the same degree 

of fat-free maturity as the M and H plane goats it is possible that a significant treatment effect 

on the relative growth of the fat-free carcass would not have been detected. 

Significance of difference 

Body Allometric coefficient (b) between allometric coefficients 
component 

(y) High Medium Low HvM HvL MvL 

Lungs 0.275 -0.024 1.346 

Liver & spleen 0.841 0.571 1.218 NS * ** 
Kidneys 0.881 0.699 0.854 NS NS NS 

Feet 0.940 0.982 0.766 NS NS NS 

Head 0.997 1.326 0.771 NS NS * 
Heart 1.034 1.164 1.104 NS NS NS 

Pelt 1.004 0.969 0.612 NS NS NS 

Fat-free CCW 1.340 1.459 0.953 NS ** *** 
Total body fat 2.376 2.287 -0.041 NS 

Table 3.16 

Allometric coefficients (b) for the growth of the main body components and organs (y) 

relative to the growth of the fat-free empty body (x) 
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Although the linear regression of total body fat against fat-free EBW was not a significant 

representation of the L plane data the trends illustrated in Figure 3.23 clearly indicated that 

the development of total body fat progressed relatively more slowly with respect to the 

growth of the fat-free empty body than it did in the M and H plane goats. There was no 

significant difference between the allometric coefficients for the M and H plane goats but 

there was a trend towards decreasing b value with decreasing plane of nutrition, suggesting 

an effect of plane of nutrition on the development of total body fat with respect to the growth 

of the fat-free empty body. This trend was also apparent in the allometric regressions of the 

individual fat depots against fat-free EBW (Table 3.17, Figure 3.24). The b values for the 

growth of IMF and KKCF relative to the growth of the fat-free empty body were 

significantly lower for the L plane goats than for the M and H plane goats. 

Body Allometric coefficient (b) 
component 

(y) High Medium Low 

Visceral fat 1.225 2.158 -0.591 

Mesenteric fat 1.580 1.041 0.391 

IMF 2.065 2.014 0.662 

SCF 2.362 2.220 0.237 

Total KKCF 2.472 2.462 -0.926 

Omental fat 2.542 2.445 -0.311 

Table 3.17 

Significance of difference 

between allometric coefficients 

HvM 

NS 
NS 
NS 
NS 
NS 
NS 

HvL 

*** 

*** 

MvL 

*** 

*** 

Allometric coefficients (b) for the growth of body and half carcass fat depots (y) relative to 

the growth of the fat-free empty body (x) 
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There was no significant effect of plane of nutrition on the growth of bone or lean relative to 

the growth of total lean plus bone in the dissected half carcass (Table 3.18, Figure 3.25a and 

b). However the growth of both.carcass dissectible fat and IMF relative to half carcass lean 

plus bone was significantly lower .for the L plane goats than for the M and H plane goats and 

there was a clear trend towards decreasing b value with decreasing plane of nutrition (Figure 

3.25c and d). The same trend was apparent for SCF and KKCF (Figure 3.25e and f) but 

statistical comparisons could not be made between the L plane equations and those for the 

higher planes of nutrition. 

Significance of difference 

Body Allometric coefficient (b) between allometric coefficients 
component 

(y) High Medium Low HvM HvL MvL 

Carcass bone 0.778 0.951 0.685 NS NS NS 

Carcass lean 1.077 1.021 1.149 NS NS NS 

Carcass dissectible fat 1.720 1.423 0.408 NS *** *** 
IMF 1.603 1.382 0.541 NS *** ** 
SCF 1.815 1.468 0.337 NS 

KKCF 2.004 1.666 -0.430 NS 

Shoulder 0.833 0.950 1.017 NS NS NS 

Leg 0.901 0.998 0.890 NS NS NS 

Chump 0.982 1.102 1.003 NS NS NS 

Loin 0.896 1.089 0.941 NS NS NS 

Breast 0.851 0.687 1.146 NS NS * 
Best end 0.993 1.202 0.850 NS NS * 

Table3.18 

Allometric coefficients (b) for the growth of half carcass tissues and fat-free commercial 

joints (y) relative to the growth of half carcass lean plus bone (x) 
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There was no significant effect of plane of nutrition on the growth rates of the fat-free 

shoulder, leg, chump or loin joints relative to half carcass lean plus bone (Table 3.18, Figure 

3.26). However the relative growth rate of the fat-free breast was significantly greater in the 

L plane goats (b = 1.146) than in the M plane goats (b = 0.687), while the relative growth of 

the fat-free best end was significantly greater in the M plane goats (b = 1.202) than in the L 

plane goats (b = 0.850). The lack of any significant differences between the Land H planes 

of nutrition suggested that the differences between the L and M planes were attributable to 

causes other than a direct effect of plane of nutrition. The breast was a particularly difficult 

joint to dissect and it was likely that with the relatively large number of technicians involved 

in the dissections differences in individual dissection technique may have affected the result. 
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3.3.9 The effect of plane of nutrition on the . allometric growth of half carcass 

tissues within the carcass joints relative to the total weight of each tissue in 

the dissected half carcass 

The differential development of each carcass tissue within the carcass joints relative to the 

growth of the total weight of that tissue in the dissected half carcass was examined for each 

plane of nutrition by means of linearised allometric equations (Appendix 11). The equations 

were compared by covariance analysis to determine the effect of plane of nutrition on the 

differential development of each carcass tissue (Appendix m. 

There was no significant effect of plane of nutrition on the differential development of bone, 

total carcass fat or IMF within the half carcass (Table 3.19). The development of lean in the 

shoulder joint relative to total half carcass lean was significantly greater in the L plane goats 

than in the M and H plane goats (P < 0.05) and the development of SCF in the best end 

relative to total SCF in the half carcass was significantly greater in the M plane goats than in 

the H plane goats (P < 0.05). In view of the lack of any other significant effects of plane of 

nutrition within these two carcass tissues it was likely that these significant differences were 

attributable to the variation in the range of total half carcass tissue weights of the three planes 

of nutrition. Therefore it was concluded that there was no significant effect of plane of 

nutrition on the differential development of the half carcass tissues within the carcass joints. 
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Carcass tissue 

Bone Lean Total dissectible fat IMF SCF 
Carcass 

joint H M L H M L H M L H M L H M L 

Leg 0.954 ·0.843 0.791 0.986 1.009 0.889 0.950 0.966 1.013 0.620 0.602 1.080 1.031 1.064 1.140 

Shoulder 0.959 1.039 0.959 0.938• 0.933• I. I 04b 0.889 0.829 0.998 1.045 1.052 0.926 0.796 0.710 0.713 

Chump 0.995 1.305 1.031 1.019 1.037 0.945 0.971 0.986 0.890 0.692 0.684 0.610 1.091 1.124. 1.320 

Breast 0.980 0.788 1.252 1.077 0.886 1.238 1.057 1.018 0.854 1.044 1.104 0.850 1.136 1.085 1.090 

Loin I. 113 1.193 1.366 1.069 1.074 0.885 1.126 1.262 1.330 1.002 1.056 1.220 1.174 1.314 1.560 

Best end 1.147 1.046 1.121 1.131 1.297 0.976 1.220 1.324 1.176 1.373 1.385 1.810 1.171• 1.348b I. 21Qab 
__. 
(..) 

Within each carcass tissue means in the same row with different superscripts are significantly different (P < 0.05) --..1 

Table 3.19 

Effect of plane of nutrition on the allometric coefficients (b) f9r the growth of half carcass tissues in each commercial joint relative to the growth of the total weight of 

each tissue in the dissected half carcass 



3.3.10 Prediction of half carcass composition of British Angora wether goats 

(16 - 60kg EBW) from sample joint composition, weight of offal parts and 

linear carcass measurements 

(i) Accuracy of sample joint composition for the prediction of half carcass 

composition 

There was no significant effect of plane of nutrition on the differential development of any of 

the carcass tissues (Section 3.3.9). Therefore the linearised data from all three treatments was 

pooled to determine which joints were the most accurate predictors of half carcass 

composition. Initially simple correlations were made between the weight of each tissue in the 

dissected joint and the weight of the same tissue in the dissected half carcass (Table 3.20). 

Carcass tissue 
Carcass 

joint Bone Lean Total fat IMF SCF 

Leg 0.937 0.979 0.936 0.658 0.921 

Shoulder 0.961 0.981 0.990 0.970 0.954 

Chump 0.789 0.939 0.957 0.833 0.960 

Breast 0.799 0.839 0.961 0.925 0.943 

Loin 0.719 0.919 0.970 0.894 0.955 

Best end 0.870 0.905 0.984 0.950 0.968 

All correlations significant at 0.1% 

Table 3.20 

Correlation coefficients (r) between the weight of tissue in the dissected joint and the weight 

of the same tissue in the dissected half carcass (n = 66) 

The shoulder joint was the best single predictor of all half carcass tissues except SCF, having 

correlation coefficients (r) exceeding 0.95 for each correlation. Its high degree of accuracy as 

a predictor was primarily due to the fact that it represented a high proportion of total half 

carcass weight. As such it was too time consuming and expensive to be used as a sample 

joint. 
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With the exclusion of the shoulder the leg was the best predictor of bone and of lean with r 

values of 0.937 and 0.979 for the two tissues respectively. The leg was the worst predictor 

of total carcass fat, IMF and SCF, but with r values of 0.936 and 0.921 for total dissectible 

fat and SCF respectively was still an acceptable predictor of those tissues. The poor 

correlation of IMF in the leg with total IMF in the half carcass (r = 0.658) was attributed to 

the low IMF content of the joint and to its early maturing nature which limited its ability to 

accurately reflect a late maturing tissue such as fat. 

With the exclusion of the shoulder the best end was the most accurate predictor of total half 

carcass fat, IMF and SCF with r values of 0.984, 0.950 and 0.968 for the three depots 

respectively. It was also the best predictor of half carcass bone after the leg (r = 0.870). 

Although it ranked relatively low as a predictor of half carcass lean the best end had an 

acceptable correlation coefficient of 0.905. 

Linear regression equations were formulated for the prediction of half carcass tissue weight 

from the weight of each tissue in the leg and the best end, singly or in combination in simple 

regressions, or combined in multiple regressions (Table 3.21 ). The most accurate predictions 

of bone and of lean in the half carcass were achieved with the pooled data from the leg and 

the best end in simple regression equations (Equations 3 and 6), no improvement in accuracy 

being obtained by using the data from the two joints separately in multiple regression 

equations. Conversely the most accurate predictions of total carcass fat, IMF and SCF were 

achieved through the combination of the two joints separately in multiple regression 

equations (Equations 12, 16 and 20). 
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Dependent variate 
. (y) 

Log10 bone in half carcass (g) 

Log10 lean in half carcass (g) 

Log 10 total fat in half carcass (g) 

Log10 IMF in half carcass (g) 

Log10 SCF in half carcass (g) 

Independent variate(s) 
(x 1) (x2) 

Log10 bone in leg (g) 
Log10 bone in best end (g) 
Log10 bone in leg+ best end (g) 
Logw bone in leg (g) Log10 bone in best end (g) 

Log10 lean in leg (g) 
Log 10 lean in best end (g) 
Log10 lean in leg + best end (g) 
Log10 lean in leg (g) Log10 lean in best end (g) 

Log10 total fat in leg (g) 
Log 10 fat in best end (g) 
Log10 fat in leg+ best end (g) 
Log10 fat in leg (g) Log10 fat in best end (g) 

Log10 IMF in leg (g) 
Log10 IMF in best end (g) 
Log10 IMF in leg+ best end (g) 
Log10 IMF in leg (g) Log10 IMF in best end (g) 

Log10 SCF in leg (g) 
Log1o SCF in best end (g) 
Log10 SCF in leg+ best end (g) 
Log10 SCF in leg (g) Log10 SCF in best end (g) 

Table 3.21 

Regression equation 

I. y = 0.586 + J.OJ XI 
2. y = 1.66 + 0.709 XI 
3. y = 0.50 + 0.988 XI 
4. y = 0.752 + 0.722 XI + 0.267 X2 

5. y = 0.438 + 1.03 XI 
6. y = 1.83 + 0.729 X1 
7. y = 0.409 + J.OJ XI 
8. y = 0.654 + 0.798 XI + 0.2JJ X2 

9. y = 0.620 + 1.08 XI 
10. y = 1.38 + 0.817 XI 
11. y = 0.6JJ + 0.986 XI 
12. y = 1.16 + 0.239 XI+ 0.659 X2 

13. y = 1.24 + 0.832 XI 
14. y = 1.67 + 0.626 XI 
15. y = 0.882 + 0.888 X1 
16. y = 1.58 + 0.0744 X1 + 0.599 X2 

17. y = 1.03 + 0.884 XI 
18. y = 1.33 + 0.817 X 1 
19. y = 0.728 + 0.927 XI 
20. y = J.JJ + 0.336 X 1 + 0.559 X2 

Linear regression equations for predicting the weight of half carcass tissue (y) from the weight of that tissue in the leg and the best end (x) used singly or in 

combination (n = 66) 

R2 
(%) 

87.5 
75.3 
91.2 
91.2 

95.8 
81.7 
97.8 
97.7 

87.4 
96.7 
95.7 
97.4 

44.6 
90.5 
87.1 
90.6 

84.8 
93.3 
94.9 
96.3 



(ii) Accuracy of carcass measurements and the weight of offal parts and 

selected muscles for the prediction of half carcass composition 

Carcass measurements and the weights of various offal parts and selected muscles were 

correlated with the weights of the half carcass tissues, as appropriate, to determine whether 

these inexpensive measurements could be used as alternatives to sample joint dissection or to 

improve the accuracy of the dissection data when used in combination with it in multiple 

regression equations. 

Since there was no significant effect of plane of nutrition on the allometric development of the 

fat-free body (Section 3.3.8) the data from all three planes of nutrition was pooled to provide 

66 observations per correlation for the lean and bone evaluations (Tables 3.22 and 3.24 

respectively). The significant effect of the L plane of nutrition on the development of KKCF 

with respect to total body fat, excluding visceral and mesenteric fat (Table 3.15}, indicated 

that the internal fat depots would not accurately reflect carcass fat content in goats in which 

fat mobilisation had occurred. The L plane data was therefore excluded from the correlations 

of KKCF and omental fat against carcass dissectible fat (Table 3.26) resulting in only 42 

observations per correlation for those tissues. 

The variables having the highest correlations with the respective carcass tissues were used to 

formulate linear regression equations for the prediction of the weight of half carcass lean, 

bone, total dissectible fat, IMF and SCF (Tables 3.23, 3.25, 3.27, 3.28 and 3.29 

respectively). 

(a) Prediction of half carcass lean 

The highest positive correlations with the weight of lean in the half carcass, excluding the 

weight of lean in the sample joints, were obtained with the circumference of the buttocks and 

the weight of the L. dorsi from the best end, with coefficients of 0.951 and 0.930 

respectively (Table 3.22). The weight of the L. dorsi from the loin produced a poorer 

correlation of 0.843, which may have been due to the variable number of vertebrai processes 
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found in the loin joint. There was a high positive correlation of 0.878 between the weight of 

the four feet and the weight of lean in the half carcass. The feet were a useful predictor since 

their use necessitated no destruction of the carcass, but were limited in their predictive 

capability by their early maturity which probably affected their ability to reflect the weight of 

lean in the more mature carcasses. The same was true of the weight of the heart which had a 

relatively poor correlation with the weight of lean in the half carcass (0.760). This 

relationship may also have been affected by fat deposition in the organ in the heavier goats. 

There was a moderate positive correlation of 0.805 between eye muscle area and half carcass 

lean but a poor negative correlation of -0.456 between the latter and the ratio AIB x 100, 

which was found to be a useful indicator of carcass lean in the sheep by Palsson and Verges 

(1952). 

The circumference of the buttocks was the only carcass measurement to provide a satisfactory 

prediction of half carcass lean when used alone in a simple regression equation (Table 3.23, 

Equation 21) providing an R2 value of 90.3%. It also improved the accuracy of prediction of 

the weight of lean in the leg from 95.8 to 96.1% (Equation 24), the best end from 81.7 to 

94.8% (Equation 25) and both joints combined in a multiple regression from 97.7 to 97.9% 

(Equation 28). 

The weight of L. dorsi in the best end provided a better estimate of half carcass lean (R2 = 

86.2%; Equation 22) than the total weight of lean in that joint (R2 = 81.7%) since it avoided 

any errors associated with inaccurately split vertebrae or inadequate cleaning of the bones. In 

combination with other variables such as the circumference of the buttocks (Equation 23), the 

weight of lean in the leg (Equation 26) or both (Equation 28) it did not improve accuracy as 

much as the total weight of lean from the best end, but this may have been attributable to the 

fact that missing data reduced the number of observations from 66 to 61 for all equations 

incorporating the weight of the L. dorsi. 
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Correlation 

Variable coefficient (r) Significance n 

Logw lean in leg (g) 0.979 *** 66 

Logw lean in best end (g) 0.905 *** 66 

Logw circumference of buttocks (mm) 0.951 *** 66 

Logw L. dorsi in best end (g) 0.930 *** 61 

Logw four feet (g) 0.878 *** 66 

Logw side length (mm) 0.862 *** 66 

Logw L. dorsi in loin (g) 0.843 *** 64 

Logw eye muscle area (mm2) 0.805 *** 64 

Logw heart (g) 0.760 *** 66 

Logw NB x 100 -0.456 *** 64 

Table 3.22 

Correlation coefficients (r) between logw of some selected weights and measurements and 

log10 weight of lean tissue in the dissected half carcass (g) 
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Independent variates (x) Regression equation R2(%) 

Xt Logw lean in leg (g) 5. y = 0.438 + 1.03 Xt 95.8 

Xt Logw lean in best end (g) 6. y = 1.83 + 0.729 Xi 81.7 

Xi Logw lean in leg (g) 8. y = 0.654 + 0.798 Xi + 0.2}} X2 97.7 
X2 Logw lean in best end (g) 

Xt Logw circumference of buttocks (mm) 21. y = -4.12 + 2.81 xi 90.3 

Xi Log10 L. dorsi in best end (g) 22. y = 1.96 + 0.806 Xi 86.2t 

Xt Log10 L. dorsi in best end (g) 23.y = -2.13 + 0.322 Xi+ 1.85 X2 93.It 
X2 Log10 circumference of buttocks (mm) 

Xi Logw lean in leg (g) 24. y = -0.507 + 0.844 Xi + 0.556 X2 96.1 
X2 Logw circumference of buttocks (mm) 

Xi Log10 lean in best end (g) 25. y = -2.32 + 0.304 Xi + 1.89 X2 94.8 
Xi Logw circumference of buttocks (mm) 

Xt Logw lean in leg (g) 26. y = 0.679 + 0.842 Xi + 0.17 X2 96.4t 
X2 Log10 L. dorsi in best end (g) 

Xi Log10 lean in leg (g) 27. y = -0.091 + 0.657 Xi + 0.205 X2 
X2 Log10 lean in best end (g) + 0.434 X3 97.9 
X3 Log10 circumference of buttocks (mm) 

Xi Log10 lean in leg (g) 28. y = -0.312 + 0.832 Xi + 0.033 X2 
X2 Log10 L. dorsi in best end (g) + 0.470 X3 96.5t 
X3 Log10 circumference of buttocks (mm) 

Table 3.23 

Linear regression equations for predicting Iog10 weight of lean in the half carcass (y) from 

the weight of lean in the leg and the best end, offal weights, linear carcass measurements and 

the weight of the L. dorsi from the best end (n = 66; t n = 61) 
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(b) Prediction of half carcass bone 

The correlations between the various predictors and half carcass bone were generally lower 

than those for half carcass lean, ranging from 0.237 to 0.782 (Table 3.24). Most were 

significant at 0.1% but none of the coefficients were high enough to consider a linear 

measurement or offal part as a single predictor of half carcass bone. The F and F - T 

measurements (total and upper leg length respectively) were too severely affected by fat 

deposition in the crutch to be useful predictors of bone mass and the early maturing nature of 

the T measurement (lower leg length) affected its ability to reflect the weight of bone in the 

more mature carcasses. The later maturing measurements of side depth and chest width had 

greater r values of 0.630 and 0.725 respectively. These measurements may have been 

influenced by lean and fat development which would have reduced their ability to accurately 

reflect half carcass bone mass in the more mature carcasses. Excluding the weight of bone in 

the sample joints the highest correlation coefficient of 0.782 was achieved with the relatively 

late maturing side length which was unaffected by lean or fat deposition in the carcass. 

The best combination of linear measurements and offal parts into a multiple regression 

equation incorporated side length, chest width and the weight of the four feet (Equation 29, 

Table 3.25). This combination of early and late maturing measurements was likely to be 

accurate over a wide range of carcass maturities but with an R2 value of only 64.1% it was 

not an acceptable alternative to sample joint dissection (Equations I, 2 and 4). 

The accuracy of the leg alone as a sample joint was slightly improved from 87.5 to 88.6% by 

including the T measurement in the equation (Equation 30). The accuracy of the best end 

alone as a sample joint was substantially improved from 75.3 to 85.5% by including side 

length in the equation (Equation 31). The most accurate prediction of half carcass bone was 

achieved with the combination of the weights of bone from both sample joints in a multiple 

regression equation (Equation 4). The R2 value of 91.2% was not increased by including any 

other measurements in the equation. 
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Colrelation 
Variable coefficient (r) Significance n 

Log10 bone in leg (g) 0.937 *** 66 

Log10 bone in best end (g) 0.870 *** 66 

Log10 side length (mm) 0.782 *** 66 

Log10 length from femur fossa 0.777 *** 66 

to 12th rib (mm) 

Log10 four feet (g) 0.777 *** 66 

Log10 chest width (mm) 0.725 *** 60 

Log10 side depth (mm) 0.630 *** 66 

Log10T(mm) 0.546 *** 66 

Log10F (mm) 0.502 *** 66 

Log10 F -T (mm) 0.237 * 66 

Table 3.24 

Correlation coefficients (r) between log10 of some selected weights and measurements and 

log10 weight of bone in the dissected half carcass (g) 

Independent variates (x) Regression equation 

Log10 bone in leg (g) 1. y = 0.586 + 1.01 XJ 

X) Log10 bone in best end (g) 2. y = 1.66 + 0.709 XJ 

Log10 bone in leg (g) 4. y = 0.752 + 0.722 XJ + 0.267 x2 

Log10 bone in best end (g) 

R2(%) 

87.5 

75.3 

91.2 

x 1 Log10 side length (mm)t 29.y = -1.70 + 1.08 x1 + 0.24 x2 + 0.444 x3 64.1 
x2 Log10 chest width (mm) 
X3 Log10 weight of four feet (g) 

Log10 bone in leg (g) 
Log10T(mm) 

30.y = 1.43 + 1.11 X) - 0.505 X2 

Log10 bone in best end (g) 3l.y = -1.71 + 0.510 x1 + 1.37 x2 

Log10 side length (mm) 

Table 3.25 

88.6 

85.5 

Linear regression equations for predicting log10 weight of bone in the half carcass (y) from 

the weight of bone in the leg and the best end, offal weights and linear carcass measurements 

(n = 66; tn = 60) 
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(c) Prediction of total dissectible fat in the half carcass 

With the exceptions of the C and D measurements for back fat thickness there were high 

positive correlations between all of the variables tested and total dissectible side fat (Table 

3.26). The highest correlations were achieved with the weight of fat in the best end followed 

by the weight of fat in the leg, with r values of 0.984 and 0.936 respectively. The sample 

joints were therefore the best single predictors of total side fat (Equations 9 and 10, Table 

3.27). The weights of KKCF and omental fat also had acceptable correlation coefficients of 

0.928 and 0.920 respectively and therefore might be suitable predictors of total side fat when 

sample joint dissection is not desirable, provided it is known that fat mobilisation has not 

occurred (Equations 32 and 33). The accuracy of prediction of the individual fat depots was 

slightly increased by combining them both in a multiple regression (Equation 34). 

The accuracy of the leg as a single sample joint for the prediction of total dissectible side fat 

was improved by including KKCF in the equation (R2 = 94.0%, Equation 35). There was no 

benefit from including a secondary measurement with the weight of fat in the best end. 

Furthermore the accuracy of this joint as a predictor of total side fat was only marginally 

improved from 96.7% to 97.4% by including the weight of fat in the leg in the equation 

(Equation 12). 

The average back fat thickness [(C +D) I 2] produced a higher correlation coefficient with 

total side fat (0.790) than either the C or D measurement alone (0.763 and 0.746 

respectively) but the relationship was not strong enough for the measurement to be used as a 

single predictor. When combined with total fat from the leg in a multiple regression it 

increased the accuracy of the leg as a predictor of total side fat from 87.4% (Equation 9) to 

93.0% (Equation 36). Back fat thickness would therefore be a suitable secondary 

measurement to be used in conjunction with the weight of fat in the leg as an alternative to 

KKCF or in circumstances when it can not be guaranteed that internal fat mobilisation has not 

occurred. 
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Variable n 

Log10 total fat in best end (g) 66 

Logto total fat in leg (g) 66 

Log10 IMF in best end (g) 66 

Log to IMF in leg (g) 66 

Log10 SCF in best end (g) 66 

Log to SCF in leg (g) 66 

LogwC (mm) 58 

LogwD (mm) 56 

Log10 (C +D) I 2 (mm) 56 

Logw KKCF (g)t 42 

Log to omental fat (g)t 42 

Log to total fat 

0.984*** 

0.936*** 

0.763*** 

0.746*** 

0.790*** 

0.928*** 

0.920*** 

Logto IMF 

0.953*** 

0.921*** 

0.950*** 

0.658*** 

0.877*** 

0.870*** 

0.719*** 

0.723*** 

0.749*** 

0.913*** 

0.889*** 

tExcludes L plane data; ***significance of correlation coefficient 

Table 3.26 

Log10 SCF 

0.976*** 

0.919*** 

0.845*** 

0.519*** 

0.968*** 

0.921*** 

0.764*** 

0.743*** 

0.791*** 

0.917*** 

0.917*** 

Correlation coefficients (r) between log to of some selected weights and measurements and 

log to weight of total fat, IMF and SCF in the dissected half carcass (g) 

Independent variates (x) Regression equation R2(%) 

Xt Log10 total fat in leg (g) 9. y = 0.620 + 1.08 Xt 87.4 

Xt Log10 total fat in best end (g) 10.y = 1.38 + 0.817 Xt 96.7 

Xt Logto total fat in leg (g) 12.y = 1.16 + 0.239 Xt + 0.659 X2 97.4 
X2 Log10 total fat in best end (g) 

Xt Log10 KKCF (g)t 32. y = 0.320 + 0.778 Xt 85.7 

XJ Log10 omental fat (g)t 33. y = 0.245 + 0.764 XJ 84.2 

Xt Log10 KKCF (g) 34. y = 0.285 + 0.451 XJ + 0.347 X2 87.7 
X2 Log10 omental fat (g)t 

Xt Log10 total fat in leg (g) 35. y = 1.58 + 0.703 Xt + 0.277 X2 94.0 
X2 Log10 KKCF (g)t 

Xt Log10 total fat in leg (g) 36. y = 1.22 + 0.788 Xt + 0.251 X2 93.0t 
X2 Log10 [(C +D) I 2] (mm)t 

Table 3.27 

Linear regression equations for predicting log10 weight of fat in the half carcass (y) from the 

weight of fat in the leg and the best end, offal weights and back fat thickness 

(n = 66; tn = 42; :j:n = 56) 
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(d) Prediction of intermuscular fat in the half carcass 

The best correlation of half carcass IMF with non-dissection data was achieved with KKCF, 

with an r value of 0.913 (fable 3.26). The corresponding prediction equation (Table 3.28, 

Equation 37) might provide an adequate prediction of half carcass IMF provided it is known 

that fat mobilisation has not occurred. Omental fat was a comparatively poor predictor of IMF 

(Equation 38) and did not improve the accuracy of KKCF when combined in a multiple 

regression equation (Equation 39). Back fat thickness correlated relatively poorly with half 

carcass IMF. The avemge value [(C +D) /2] produced the highest correlation coefficient of 

the three measurements taken (0. 749) but was of little use as a predictor of IMF either alone 

or in combination with the non-carcass fat data or dissection data. 

The highest correlations with half carcass IMF were achieved with the weight of total fat in 

the best end, total fat in the leg and IMF in the best end, with r values of 0.953, 0.921 and 

0.950 respectively (Table 3.26). The correlation between IMF in the leg and IMF in the half 

carcass was poor (0.658) due to the low weight of IMF in the leg joint in even the most 

mature carcasses. 

The weight of total fat in the leg was the most accurate predictor of half carcass IMF when 

the leg was used as a single sample joint (Equation 40). The R2 value of 84.7% was not 

improved by dividing the total fat into its separate depots for use either singly or combined in 

a multiple regression equation. However, using data obtained from the H and M plane goats 

only, a greater accuracy of prediction was obtained by including KKCF in the equation 

(Equation 41), increasing R2 to 88.9%. 

The best end was a better predictor of half carcass IMF than the leg. The total weight of fat in 

the best end gave a more accumte estimate of half carcass IMF than either of the separated fat 

depots used alone, with an R2 value of 90.6% (Equation 42) but the accuracy of this equation 

was increased to 94.7% by combining the weights of the separated fat depots in a multiple 

regression equation (Equation 43). Neither equation was improved by including the weight 
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of KKCF. 

The weights of total fat from both sample joints produced a small improvement in the 

accuracy of prediction to 91.9% (Equation 44) over the use of total fat from the best end 

alone. Accuracy was further increased to 95.1% when the separated fat depots from each 

joint were incorporated into a multiple regression equation (Equation 45). 

Independent variates (x) Regression equation R2(%) 

Xi Log10 KKCF (g)t 37. y = -0.084 + 0.706 Xi 82.9 

Xi Log10 omental fat (g)t 38.y = -0.150 + 0.682 Xi 78.6 

x 1 Log10 KKCF (g) 39.y = -0.106 + 0.497 X!+ 0.222 X2 83.6 
x2 Log10 omental fat (g)t 

x, Logw total fat in leg (g) 40. y = 0.352 + 1.02 x, 84.7 

x, Logw total fat in leg (g) 4J.y = -1.47 + 0.560 Xi+ 0.307 X2 88.9 
Xi Log10 KKCF (g)t 

Xi Log10 total fat in best end (g) 42. y = 1.10 + 0.761 x, 90.6 

x, Log10 IMF in best end (g) 43. y = 1.44 + 0.446 X! + 0.275 X2 94.7 
x2 Logw SCF in best end (g) 

x1 Log10 total fat in best end (g) 44. y = 0. 794 + 0.543 X 1 + 0.330 X2 91.9 
x2 Log10 total fat in leg (g) 

x, Log10 IMF in best end (g) 45. y = 1.27 + 0.393 X! + 0.212 X2 + 0.069 X3 
x2 Logw SCF in best end (g) + 0.119 X4 95.1 
x3 Logw IMF in leg (g) 
X4 Logw SCF in leg (g) 

Table 3.28 

Linear regression equations for predicting logw weight of IMF in the half carcass (y) from 

the weight of IMF in the leg and the best end, offal weights and linear carcass measurements 

(n = 66; tn = 42) 
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(e) Prediction of subcutaneous fat in the half carcass 

The weights of KKCF and omental fat and average backfat thickness had higher positive 

correlations with half carcass SCF than with IMF, having r values of 0.900, 0.907 and 

0.791 respectively (Table 3.26). KKCF and omental fat produced reasonably accurate 

regression equations when used alone or combined in a multiple regression equation when 

the L plane data was excluded from the analysis (Table 3.29, Equations 46, 47 and 48). The 

relationship between back fat thickness and half carcass SCF was not strong enough for the 

former to be used as a single predictor (r = 0.791) but it was effective in increasing the 

accuracy of prediction of KKCF to 85.9% (Equation 49). 

Total fat in the best end and SCF in the best end produced the highest correlations with half 

carcass SCF, with r values of 0.976 and 0.968 respectively. Correlation of half carcass SCF 

with total fat or SCF in the leg also produced high correlation coefficients (0.919 and 0.921 

respectively) and thus either sample joint could be used as a single predictor of SCF. 

The best estimate of half carcass SCF using the leg alone was achieved using the total weight 

of fat in the leg (Equation 50). The R2 value of 84.1% was not significantly improved by 

dividing the fat into its constituent depots for use in a multiple regression equation, but the 

inclusion of KKCF or average back fat thickness increased R2 to 92.9% and 90.1% 

respectively (Equations 51 and 52). 

Greater accuracy was achieved using the best end rather than the leg as a single sample joint. 

Regression of total fat in the best end on half carcass SCF produced an R2 value of 95.2% 

(Equation 53) which was increased slightly to 95.6% by the separation of the fat into its 

constituent depots (Equation 54). The accuracy of the best end as a single sample joint was 

not increased by including KKCF or back fat thickness in either equation. 

The most accurate estimate of half carcass SCF was obtained using the weights of the 

separated fat depots from both sample joints in a multiple regression equation which had an 
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R2 value of 97.5% (Equation 55). Total weight of fat from the leg and the best end provided 

no better estimate of half carcass SCF than total fat from the best end alone (Equation 56). 

Independent variates (x) Regression equation R2(%) 

x1 Logw KKCF (g)t 46. y = 0.098 + 0.830 Xi 83.6 

xi Logw omental fat (g)t 47. y = 0.QJ7 + 0.823 Xi 83.8 

Xi Log10 KKCF (g) 48. y = 0.055 + 0.425 Xi + 0.430 X2 86.3 
x2 Logw omental fat (g)t 

Xi Logw KKCF (g) 49. y = -0.05 + 0.688 Xi + 0.240 X2 85.9 
x2 Logw [(C + D) /2] (mm)# 

Xi Logw total fat in leg (g) 50. y = 0.296 + 1.12 Xi 84.1 

Xi Logw total fat in leg (g) 51. y = -1.88 + 0.803 Xi + 0.258 X2 92.9 
Xi Logw KKCF (g)t 

xi Logw total fat in leg (g) 52. y = 0.974 + 0.790 Xi + 0.284 X2 90.1 
x2 Logw [(C + D) /2] (mm):j: 

Xi Logw total fat in best end (g) 53. y = 1.06 + 0.858 XJ 95.2 

xi Logw SCF in best end (g) 54.y = 1.30 + 0.686 XJ + 0.166 X2 95.6 
Xi Logw IMF in best end (g) 

xi Logw IMF in best end (g) 55.y = 1.23 + 0.132 Xi+ 0.547 X2- 0.097 X3 
x2 Logw SCF in best end (g) + 0.265 X4 97.5 
x3 Logw IMF in leg (g) 
x4 Logw SCF in leg (g) 

Xi Logw total fat in best end (g) 56. y = 0.900 + 0.742 Xi + 0.175 X2 95.4 
x2 Logw total fat in leg (g) 

Table 3.29 

Linear regression equations for predicting logw weight of SCF in the half carcass (y) from 

the weight of SCF in the leg and the best end, offal weights and linear carcass measurements 

(n = 66; tn = 42; :j:n =56; #n = 34) 
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(iii) Statistical evaluation of the proposed prediction equations 

The prediction equations were grouped according to the conditions under which each would 

be expected to be used, as follows; 

1. The use of offal parts and carcass measurements only to avoid destruction of the carcass; 

2. Dissection of the leg alone as the easiest sample joint to remove with minimal damage to 

the carcass and the best predictor of half carcass lean and bone; 

3. Dissection of the best end alone as the most accurate predictor of half carcass fat; 

4. Dissection of both the leg and the best end to provide the most accurate prediction 

possible of all half carcass tissues. 

Within each group the most practical equations with the highest R2 values for the prediction 

of each carcass tissue were tested for their accuracy of prediction (Tables 3.30 to 3.33). A 

separate population of 23 Texan x New Zealand Angora wether goats, of mean empty body 

weight 25.2 ± 3.2kg, was slaughtered and half carcass dissections performed in the course 

of Trial 2. The half carcass composition of these goats was then estimated from their sample 

joint data, offal parts and carcass measurements using the proposed prediction equations. The 

predicted and actual values for the weight of each carcass tissue were compared using 

analysis of variance and the correlation coefficients between the two sets of values were 

determined. 

(a) The use of offal parts and carcass measurements 

The use of offal parts and carcass measurements for the prediction of carcass composition 

was less satisfactory than the use of corresponding equations incorporating sample joint 

dissection data (Table 3.30). The R2 values were generally less than 90% although the 

correlations between actual and predicted values were significant (P < 0.01) for every 

equation tested. The values of half carcass lean predicted with Equation 21 were not 

significantly different from the actual values in the test population, indicating the suitability of 

this equation for prediction in the absence of dissection data. Similarly the actual bone values 

153 



were not significantly different from the values predicted with Equation 29, but the poor 

correlation of actual and predicted bone values (0.513) reflected the high variability in the 

bone data with which the equation was formulated and in the test population. (NB the 

original Equation 29 given in Table 3.25 was substituted here for one which did not include 

the weight of the feet, since that measurement was not recorded in the test population and 

could not therefore be tested It is possible that the inclusion of the feet in the equation would 

increase its accuracy of prediction). 

All of the proposed equations for the prediction of half carcass fat, IMF and SCF from the 

weight of the internal fat depots predicted fat values which were significantly lower than the 

actual values (P < 0.001). This confirmed that the relationship between the internal fat depots 

and carcass fat was variable and influenced by plane of nutrition. Neither KKCF nor omental 

fat was therefore suitable for the prediction of carcass fat, either alone or in combination with 

dissection data and there was no acceptable alternative to sample joint dissection for the 

prediction of half carcass fat content. 
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Dependent variate (y) Independent variates (x) 

Logw lean (g) x 1 Logw circumference of buttocks (mm) 

Logw bone (g) x1 Logw side length (mm) 
x2 Logw chest width (mm)t 

Logw total dissectible fat (g) x 1 Log 10 KKCF (g):j: 

x1 Logw omental fat (g):j: 

x1 Log1o KKCF (g) 
x2 Logw omental fat (g):j: 

Log 10 IMF (g) x1 Logw KKCF (g):j: 

~ Log 10 SCF (g) x 1 Log 10 KKCF (g):j: 

x1 Logw omental fat (g):j: 

x 1 Logw KKCF (g) 
xz Logw omental fat (g):j: 

tn = 60; :j:n = 42; 

•Significance of difference between predicted and actual values (n = 23); 

bCorrelation between predicted and actual values and significance (n = 23) 

Table 3.30 

Regression equation R2 (%) Siga 

21. y = -4.12 + 2.81 X 1 90.3 NS 

29. y = -2.81 + 1.86 Xi+ 0.344 X2 61.7 NS 

32. y = 0.320 + 0.778 Xi 85.7 *** 

33. y = 0.245 + 0.764 Xi 84.2 *** 

34. y = 0.285 + 0.451 x1 + 0.347 x2 87.7 *** 

37. y = -0.084 + 0.706 Xi 82.9 *** 

46. y = 0.098 + 0.830 Xi 83.6 *** 

47. y = 0.017 + 0.823 Xi 83.8 *** 

48. y = 0.055 + 0.425 Xi+ 0.430 X2 86.3 *** 

Linear regression equations for predicting the weight of half carcass tissues (y) from the weights of selected offal parts and carcass measurements 

rb 

0.934** 

0.513** 

0.921 ** 

0.709** 

0.879** 

0.896** 

0.922** 

0.689** 

0.851 ** 



(b) The leg as a single sample joint 

The use of the leg as a single sample joint provided suitable prediction equations for most 

carcass tissues (fable 3.31). The prediction of half carcass lean from the weight of lean in the 

leg and the circumference of the buttocks (Equation 24) yielded values which were not 

significantly different from the actual values, but the difference between the actual bone 

weights and those predicted from the weight of bone in the leg plus the T measurement 

(Equation 30) was significant (P < 0.05). A paired t-test showed that the estimated values 

were consistently lower than the actual values (P < 0.001). Re-examination of the raw data 

from the test population revealed that no waste was recorded for the leg joint, which 

suggested that the ligaments and tendons were weighed as bone. This was not true of the 

carcasses from which the equation was formulated. The inadequacy of the prediction was 

therefore attributable to error in the dissection of the test population and not to the inaccuracy 

of the equation, which would probably yield accurate predictions provided the dissection 

technique of the sample joint was consistent with that used to generate the original data used 

to formulate the equation. 

When used alone in simple regression equations the total weight of fat in the leg provided 

accurate estimates of total carcass fat, IMF and SCF (Equations 9, 40 and 50 respectively). 

When the weight of KKCF was included in the equations R2 was significantly increased 

(Equations 35, 41 and 51) and the correlations between the actual and predicted values were 

improved, but the predicted values were significantly lower than the actual values for all three 

equations incorporating KKCF (P < 0.001), confirming that the internal fat depot was not a 

suitable predictor of carcass fat. Substitution of mean back fat thickness [(C +D) I 2] for 

KKCF produced equations for the prediction of total fat and SCF in the half carcass with 

comparable R2 values (Equations 36 and 52, Tables 3.27 and 3.29 respectively) but since 

this measurement was not recorded in the test population it was not possible to test the 

equations which included it. The best estimates of total fat, IMF and SCF in the half carcass 

were therefore given by the weight of fat in the leg alone. 
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Dependent variate (y) Independent variates (x) 

Log10 lean (g) x1 Log10 lean in leg (g) 
xz Log10 circumference of buttocks (mm) 

Log10 bone (g) x1 Log10 bone in leg (g) 
x2 Log10 T (mm) 

Log10 total dissectible fat (g) x 1 Log10 total fat in leg (g) 

x 1 Log 10 total fat in leg (g) 
x2 Log10 KKCF (g)t 

Log 10 IMF (g) x 1 Log10 total fat in leg (g) 

x 1 Log10 total fat in leg (g) 
x2 Log10 KKCF (g):j: 

Log10 SCF (g) x1 Log10 total fat in leg (g) 

x 1 Log10 total fat in leg (g) 
x2 Log10 KKCF (g):j: 

:j:n =42; 

>Significance of difference between predicted and actual values (n = 23); 

bCorrelation between predicted and actual values and significance (n = 23) 

Table 3.31 

Regression equation 

24. y = -0.507 + 0.844 X I+ 0.556 Xz 

30. y = 1.43 + 1.11 x1 - 0.505 x2 

9. y = 0.620 + 1.08 XI 

35. y = 1.58 + 0.703 X1 + 0.277 X2 

40. y = 0.352 + 1.02 X 1 

41. y = -1.47 + 0.560 x1 + 0.307 x2 

50. y = 0.296 + 1.12 XI 

51. y = -1.88 + 0.803 X 1 + 0.258 X2 

R2 (%) Sig• rb 

96.1 NS 0.960** 

88.6 * 0.680** 

87.4 NS 0.942** 

94.0 *** 0.958** 

84.7 NS 0.907** 

88.9 *** 0.927** 

84.1 NS 0.949** 

92.9 *** 0.963** 

Linear regression equations for predicting the weight of half carcass tissues (y) from the weights of tissues in the dissected leg, selected offal parts and carcass 

measurements 



(c) The best end as a single sample joint 

Compared with the leg, the best end was a more useful single sample joint for the prediction 

of all carcass tissues (fable 3.32). Equations for the prediction of total fat, IMF and SCF had 

R2 values of 96.7, 94.7 and 95.6% (Equations 10, 43 and 54 respectively) compared with 

poorer values of 87.4, 84.7 and 84.1% for equivalent equations incorporating the leg 

dissection data (Equations 9, 40 and 50 respectively). Furthermore the equations for the 

prediction of lean and bone were only slightly less accurate when the best end was used 

' instead of the leg. R2 values for the prediction of half carcass lean were 94.8 and 96.1% for 

the best end and the leg respectively (Equations 25 and 24), and 85.5 and 88.6% for the 

prediction of half carcass bone from the two joints respectively (Equations 31 and 30). All of 

the equations involving best end dissection data provided estimates of carcass tissue content 

which were not significantly different from the actual values. The correlations of actual and 

predicted values were greater than 0.96 with the exception of Equation 31 for the prediction 

of half carcass bone (r = 0.632). Although still significant at I% this emphasised the high 

degree of error variation in the original data and in that of the test population, due to the 

difficulty in accurately splitting the vertebral processes. 

(d) The leg and the best end combined 

The accuracy of prediction of all carcass tissues was increased by incorporating dissection 

data from both sample joints into multiple regression equations (Table 3.33) all of which 

provided estimates of carcass tissue content which were not significantly different from the 

actual values. 
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Dependent variate (y) Independent variates (x) Regression equation R2 (%) Siga rb 

Log10 lean (g) x 1 Log 10 lean in best end (g) 25. y = -2.32 + 0.304 XI+ 1.89 X2 94.8 NS 0.964** 
x2 Logw circumference of buttocks (mm) 

Logw bone (g) x1 Log10 bone in best end (g) 31. y = -1.7( + 0.510 XI+ 1.37 X2 85.5 NS 0.632** 
x2 Log1o side length (mm) 

Logw total dissectible fat (g) x 1 Logw total fat in best end (g) 10. y = 1.38 + 0.817 XI 96.7 NS 0.984** 

Log 10 IMF (g) x 1 Log10 IMF in best end (g) 43. y = 1.44 + 0.446 XI + 0.275 X2 94.7 NS 0.971 ** 
x2 Logw SCF in best end (g) 

Logw SCF (g) x1 Log10 SCF in best end (g) 54. y = 1.30 + 0.686 x1 + 0.166 x2 95.6 NS 0.976** 
x2 Log1o IMF in best end (g) 

...... 
01 
<0 aSignificance of difference between predicted and actual values; 

bCorrelation between predicted and actual values and significance (n = 23) 

Table 3.32 

Linear regression equations for predicting the weight of half carcass tissues (y) from the weights of tissues in the dissected best end and selected carcass measurements 



0) 

0 

Dependent variate (y) 

Log10 lean (g) 

Logw bone (g) 

Log10 total dissectible fat (g) 

Log10 IMF (g) 

Log10 SCF (g) 

Independent variates (x) 

x1 Log10 lean in leg (g) 
xz Log10 lean in best end (g) 

x1 Log10 bone in leg (g) 
xz Logw bone in best end (g) 

x 1 Log 10 total fat in leg (g) 
xz Log10 total fat in best end (g) 

x1 Log10 IMF in best end (g) 
xz Log10 SCF in best end (g) 
x3 Log 10 IMF in leg (g) 
X4 Log10 SCF in leg (g) 

x1 Log10 IMF in best end (g) 
xz Log10 SCF in best end (g) 
X3 Log10 IMF in leg (g) 
X4 Log10 SCF in leg (g) 

.Significance of difference between predicted and actual values; 

bCorrelation between predicted and actual values and significance (n = 23) 

Table 3.33 

Regression equation 

8. 

4. 

12. 

45. 

55. 

y = 0.654 + 0.798 Xi+ 0.211 Xz 

y = 0.752 + 0.722 Xi + 0.267 Xz 

y = 1.16 + 0.239 x1 + 0.659 Xz 

y = 1.27 + 0.393 x1 + 0.212 Xz 
+ 0.069 X3 + 0.119 X4 

y = 1.23 + 0.132 Xi+ 0.547 Xz 
- 0.097 X3 + 0.265 X4 

R2 (%) 

97.7 

91.2 

97.4 

95.1 

97.5 

Linear regression equations for predicting the weight of half carcass tissues (y) from the weights of tissues in the dissected leg and best end 

Sig• rh 

NS 0.975** 

NS 0.778** 

NS 0.990** 

NS 0.976** 

NS 0.982** 



3.3.11 Fibre production in the British Angora wether goat 

(i) The effect of age and plane of nutrition on fleece weight and fibre quality 

The mean fleece weight, staple length and fibre diameter for each treatment group at each 

sampling are presented in Appendix Ill. Since the shearing intervals were not equal the mass 

of fleece and the length of fibre produced per six month period were also calculated as a daily 

rate of production for the comparison of age groups within each plane of nutrition. 

For each fibre characteristic measured a one way analysis of variance was performed between 

treatment groups at each age, within each plane of nutrition, to determine whether any trends 

caused by variation in age or plane of nutrition could be adequately described using only the 

data from the slaughter groups. There were no significant differences between treatment 

groups within each comparison with the exception of fibre diameter in the L plane goats at 18 

months of age (Appendix III). Treatment group 18L had a significantly greater mean fibre 

diameter than treatment group 24L (25.11 and 21.97Jlm respectively, P < 0.05). 

Despite the lack of significant differences the fibre data was very variable and the use of the 

slaughter groups to demonstrate age effects on fibre yield and quality resulted in misleading 

trends, particularly within the older animals. The effects of age and plane of nutrition on fibre 

yield and quality were therefore examined only within treatment groups 24H, 24M and 24L. 

With the exception of the latter, which was not sampled at six or nine months of age, these 

three treatment groups were sampled at every age throughout the trial and therefore provided 

a continuous set of data with which to monitor age changes. The data for each fibre 

characteristic were analysed using a two way analysis of variance (Table 3.34). 

(a) Fleece growth rate 

There was insufficient fleece weight and staple length data from the L plane goats to perform 

any statistical analysis of the effects of age on these two variables, or to examine the 

relationship between fibre yield and quality under the L plane of nutrition (section ii). 
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There was a significant effect of age (P < 0.001), plane of nutrition (P < 0.05) and their 

interaction (P < 0.05) on the fleece growth rate of the Hand M plane goats (Table 3.34). 

Daily fibre production increased with each age increase overall up to 18 months and then 

remained constant. Average daily production from birth to 24 months of age was 

significantly greater on the H plane (11.29g/day) than the M plane of nutrition (9.95g/day). 

In the M plane goats there was a significant increase in the rate of fibre production from 

5.83g/day between birth and six months to 14.84g/day between 12 and 18 months of age and 

a significant decrease to 10.57g/day between 18 and 24 months of age (P < 0.05). In the H 

plane goats daily fibre production increased significantly from 5.08g/day between birth and 

six months to 14.39g/day between 12 and 18 months (P < 0.05) but remained constant up to 

24 months of age (Figure 3.27a). 
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Aeece Fibre Increase 
Plane of Age growth rate diameter in length 
nutrition (months) (g/day) (f.!m) (mm! day) 

High 6 5.08a 18.97 0.86 

9 21.88 0.97 

12 11.04b 24.82 0.77 

15 27.56 0.89 

18 14.39cd 27.79 0.81 

21 29.84 0.81 

24 14.63d 27.09 0.59t 

Mean 11.29 25.42 0.81 

Medium 6 5.83a 21.58 0.95 

9 20.80 0.95 

12 8.56ab 21.74 0.78:j: 

15 24.50 0.92 

18 14.84d 23.43 0.73t 

21 26.77 0.79 

24 10.57bc 26.09 0.6l:j: 

Mean 9.95 23.56 0.82 

s.e. 0.301 0.294 0.01 

Significance of effect of 

Age *** *** *** 
Plane of nutrition * ** NS 

Interaction * NS NS 

Means in each column with different superscripts are significantly different (P < 0.05); 
n = 6; tn = 4; :j:n = 5 

Table 3.34 

The effect of age on fleece growth rate, fibre diameter and increase in staple length of 

Angora wether goats reared on a high or medium plane of nutrition from six months to two 

years of age 
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(b) Increase in length 

There was a significant effect of age on the daily increase in staple length of the combined H 

and M goats (P < 0.001, Table 3.34) with a downwards trend in both treatments from 

approximately 0.9mm/day between birth and six months to 0.6mm/day between 21 and 24 

months of age (Figure 3.27b). This pattern of decrease strongly reflected the decline in dry 

matter intake throughout the trial of the goats on both planes of nutrition (Figure 3.3). It was 

possible that the decline in feed intake with age, rather than age per se, was the cause of the 

decrease in fibre growth rate but there was no significant effect of plane of nutrition on the 

daily increase in staple length. The average increase in length from birth to 24 months of age 

was 0.81mm/day for the H plane goats and 0.82g/day for the M plane goats (Table 3.34). 

A distinct fluctuation was apparent in the length growth rate within each shearing interval (6-

12 months, 12-18 months, 18-24 months) for both planes of nutrition. Fibre length increased 

more rapidly in the three months immediately after shearing than in the three months 

preceding the next shear (Figure 3.27b). Again this fluctuating pattern reflected the variation 

in feed intake within each shearing interval (Figure 3.3). 

(c) Fibre diameter 

There was a significant effect of age (P < 0.001) and plane of nutrition (P < 0.01) on the 

mean fibre diameter of the Hand M plane goats (Table 3.34). The average diameter from six 

months to two years of age was greater on the H plane (25.42Jlm) than the M plane of 

nutrition (23.56J.!m). Fibre diameter increased with age up to 21 months and decreased 

between 21 and 24 months of age (Figure 3.28). The decrease was more marked in the H 

plane goats and coincided with the sudden rapid decline in feed intake of the ad lib goats 

during the last three months of the experiment (Figure 3.3). 
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The effect of age on the mean fibre diameter of Angora wether goats reared from six to 24 

months of age on a high, medium or low plane of nutrition 
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The effect of the L plane of nutrition on the changes in mean fibre diameter with age 

compared with the M and H planes was examined using two way analysis of variance of the 

data from all three planes of nutrition from 12 to 24 months of age since the treatment group 

24L was not represented at six or nine months of age (Appendix Ill). There was a significant 

effect of age (P < 0.01), plane of nutrition (P < 0.001) and their interaction (P < 0.01) on 

mean fibre diameter (Table 3.35). 

Fibre diameter increased with increasing plane of nutrition from 24.26Jlm in the L plane 

goats to 27.42Jlm in the H plane goats and with increasing age from approximately 24Jlm at 

12 months to 27Jlm at 24 months ofage. However the L plane followed an opposite trend 

with age to both the M and H planes. Fibre diameter decreased from 25.74Jlm at 12 months 

to 21.43Jlm at 21 months of age and then increased to 29.41Jlm at 24 months of age (Figure 

3.28). Consequently between 15 and 21 months of age fibre diameter increased with 

increasing plane of nutrition and the difference between the L plane (21.43Jlm) and the H 

plane (29.84Jlm) was significant at 21 months of age (P < 0.05). At 24 months of age the 

large increase in fibre diameter of the L plane goats and the slight decrease in both the M and 

H plane goats to values of 29.41, 26.09 and 27.09Jlm respectively removed this trend (Table 

3.35). 

At 12 months of age the fibre diameter of the L plane goats was greater than that of either the 

M or the H plane goats, with values of 25.74, 21.74 and 24.82Jlm for the three planes 

respectively, but the differences were not significant. 
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Plane of nutrition 
Age 

(months) High Medium Low 

12 24.82abcd 21.74ab 25.74abcd 

15 27.56bcd 24.50abcd 22.74ab 

18 27.79bcd 23.43abc 21.97ab 

21 29.84d 26.77abcd 21.43a 

24 27.09abcd 26.09abcd 29.41cd 

Mean 27.42 24.51 24.26 

s.e. 0.316 

Significance of effect of 

Age ** 
Plane of nutrition *** 
Interaction ** 

Means with different superscripts are significantly different (P < 0.05); n = 6 

Table 3.35 

The effect of age on the mean fibre diameter (jlm) of Angora wether goats reared on a high, 

medium or low plane of nutriti<;m from six months to two years of age 

(ii) The effect of a high or medium plane of nutrition on the relationship 

between fibre quality and the mass of fibre produced 

The pattern of changes in the mass of fibre produced per day, the length of fibre produced 

per day and fibre diameter at shearing in the H and M plane goats from six months to two 

years of age are presented as the proportional increase or decrease over the value at six 

months of age for comparison (Figure 3.29). The sharp decrease in the mass of fibre 

produced per day by the M plane goats between 18 and 24 months of age, and the decrease 

in the daily elongation rate and fibre diameter of both planes of nutrition between the same 

ages suggested that any relationship between the mass of fibre produced and its quality may 

have been affected by the decline in feed intake of groups 24H and 24M between 21 and 24 

months of age (Figure 3.3). The data for these two treatment groups at 24 months of age was 

therefore excluded from further analysis. The data recorded for groups 24H and 24M at six, 

12 and 18 months was used to determine the relationships between the mass of fleece 
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produced at each shear and fibre length and diameter, and the effect of a H or M plane of 

nutrition on these relationships. 

There was a non-significant positive correlation (r = 0.194) between logw fleece growth rate 

and log 10 increase in fibre length on the H plane of nutrition between six and 18 months of 

age (Table 3.36). There was a non-significant negative correlation (r = -0.183) between the 

two variables on the M plane of nutrition and when the data from both planes of nutrition 

was combined the resultant r value of 0.022 was also not significant. The increase in fleece 

growth rate with increasing age up to 18 months (Figure 3.29) was therefore not significantly 

related to variation in the fibre elongation rate. 

Plane of Correlation 
nutrition coefficient n Significance 

High 0.194 18 NS 

Medium -0.183 15 NS 

Combined 0.022 33 NS 

Table 3.36 

Correlation coefficients between log1o fleece growth rate (g/day) and log1o increase in fibre 

length (mm/day) of Angora wether goats reared from six to 18 months of age on a high or 

medium plane of nutrition 
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Figure 3.29 

The effect of age on the mass and length of fleece produced per day and the mean fibre 

diameter at shearing of Angora wether goats reared from six to 24 months of age on a high 

or medium plane of nutrition 
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The correlation of log10 cumulative fleece weight against log 1o fibre diameter resulted in an r 

value of 0.807 for the H plane of nutrition which was significant at 0.1% and a value of 

0.374 for the M plane of nutrition which was not significant (Table 3.37). The value for the 

M plane was lower due to the more narrow range of values for fibre diameter compared with 

the H plane (Figure 3.30) which resulted in a greater proportion of the total variation 

attributable to residual variation than to treatment variation on the lower plane of nutrition. 

Consequently the regression of log 10 M cumulative fleece weight onto log 10 M fibre 

diameter produced a regression equation (Equation 58) which was a non-significant 

representation of the data. 

Plane of 
nutrition 

High 

Medium 

Combined 

Correlation 
coefficient n 

0.807 18 

0.374 18 

0.641 36 

Table 3.37 

Significance 

*** 
NS 

***' 

Correlation coefficients between log10 cumulative fleece weight (kg) and log10 fibre 

diameter (Jl.m) of Angora wether goats reared from six to 18 months of age on a high or 

medium plane of nutrition 

The corresponding regression equations were; 

57. Log10 y (H)= -3.92 + 3.13logl0 x (H) R2 = 62.9% 

58. Log10 y (M)= -3.18 + 2.63 Iog10 x (M) R2 = 8.6% 

59. Log10 y (H+M) = -3.65 + 2.95 log10 x (H+M) R2 = 39.3% 

where y = cumulative fleece weight (kg), x = fibre diameter (Jl.m). 

Equations 57 and 58 were compared by analysis of covariance. The residual variances, 

gradients and intercepts of the two equations were not significantly different. There was 

therefore no significant effect of increasing the plane of nutrition from M to H on the 

relationship between fibre diameter and cumulative fleece weight in the present study. 
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Figure 3.30 

Logarithmic regression of cumulative fleece weight (kg) on fibre diameter (Jlm) of Angora 

wether goats reared on a high or medium plane of nutrition from six to 18 months of age 
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(iii) The effect of a high or medium plane of nutrition on the relationships 

between body and fleece characteristics 

Since fibre diameter appeared to be the. main factor affecting the mass of fleece produced 

(section ii) the relationships between fibre diameter and EBW, and fibre diameter and body 

composition were examined. 

Initially the consecutive changes in liveweight and fibre diameter with age were examined in 

treatment groups 24H, 24M and 24L (Figure 3.31). Since EBW and body composition data 

was only available for the slaughtered goats the subsequent correlations and regressions were 

performed using the data from treatment groups 6HIM, 12H, l8H, 12M and 18M. 

Figure 3.31 shows the changes in mean liveweight and mean fibre diameter of treatment 

groups 24H and 24M with increasing age from six to 24 months (a and b respectively), the 

changes in mean liveweight and mean fibre diameter of the L plane slaughter groups with 

increasing age from six to 24 months and the effect of age on the mean fibre diameter of 

treatment group 24L from 12 to 24 months (Figure 3.3lc). Liveweight data was not available 

for group 24L throughout the trial but it was assumed that the mean liveweight at each 

slaughter age was not significantly different from that of the slaughtered goats at the same 

age. 

On the H plane of nutrition the increase in liveweight with age was accompanied by a 

simultaneous increase in fibre diameter up to 21 months of age (Figure 3.31a). The decline in 

feed intake to sub-maintenance quantities between 21 and 24 months (Figure 3.3) appeared to 

affect the relationship between liveweight and fibre diameter. A similar pattern of changes 

was evident in the M plane data but the data was more variable due to the more narrow range 

of values of liveweight and fibre diameter between six and 24 months of age (Figure 3.31 b). 

The data relating to goats aged 24 months on the H and M planes of nutrition was therefore 

excluded from the evaluation of the relationships between body weight and fibre diameter and 

body composition and' fibre diameter since the decrease in feed intake atthat age may have 
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affected any existing relationships. 

All data relating to the L plane of nutrition was similarly excluded due to the variation in the 

crude protein intake of those animals (Materials and methods) and to their failure to gain 

weight between 12 and 18 months of age which was accompanied by a decrease in fibre 

diameter (Figure 3.31c), both of which may have affected any relationship between body 

mass and fibre diameter. 
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Figure 3.31 

The effect of age on the mean liveweight and fibre diameter of Angora wether goats reared 

from six to 24 months of age on a high, medium or low plane of nutrition (treatment groups 

24H, 24M and 24L respectively) 
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On the H plane of nutrition there were high positive correlations between fibre diameter and 

all of the body and carcass components examined (Table 3.38). There were significant 

correlations between the same variables on the M plane of nutrition but the correlation 

coefficients were lower than on the H plane. This was again attributable to the more narrow 

range of values for fibre diameter and body components on the lower plane of nutrition. The 

combination of the data for both planes of nutrition produced significant correlations (P < 

0.001) between fibre diameter and each body component examined. 

No. 

Body component 

EBW (kg) 

Fat free EBW (kg) 

Total body fat (kg) 

ccw (kg) 

Fat free CCW (kg) 

Total carcass fat (g) 

High 

18 

0.856***t 

0.833*** 

0.858*** 

0.849*** 

0.817*** 

0.867*** 

tSignificance of correlation coefficient 

Table 3.38 

Plane of nutrition 

Medium 

18 

0.554* 

0.489* 

0.630** 

0.584** 

0.5II * 

0.652** 

Combined 

30 

0.822*** 

0.788*** 

0.826*** 

0.817*** 

0.772*** 

0.843*** 

Correlation coefficients (r) between logw fibre diameter (j.lm) and log 10 body component of 

Angora wether goats reared from six to 18 months of age on a high or medium plane of 

nutrition 

To determine whether there was a significant effect of plane of nutrition on the relationships 

between fibre diameter and body characteristics, regression equations were formulated to 

describe the relationships using the pooled data from the two treatments. Plane of nutrition 

was then added as an additional variable in the equations. An improvement in R2 with a 

coefficient for plane of nutrition significantly different from zero indicated a significant effect 

of plane of nutrition on the relationship (Table 39). 

There was a significant relationship between fibre diameter and EBW (Equation 60) which 

was not affected by plane of nutrition (Equation 61). Similarly when EBW was divided into 
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•f 

its fat and fat - free components there was a significant relationship between fibre diameter 

and fat-free EBW (Equation 62) and between fibre diameter and total body fat (TBF) 

(Equation 64), neither of which was affected by plane of nutrition. When both body 

components were combined in a multiple regression equation (Equation 66) the R2 value of 

65.0% was the same as that obtained when total EBW as a single predictor was used 

(Equation 60) and there was no effect of plane of nutrition on the relationship (Equation 67). 

Furthermore the contribution made by fat-free EBW to the multiple regression was negligible 

since its coefficient of 0.004 in Equation 66 was not significantly different from zero. 

The relationship between fibre diameter and,CCW was similarly examined (Equations 68 to 

75). Again there were strong relationships between fibre diameter and CCW, fat-free CCW 

and total carcass fat which were not affected by plane of nutrition. The separation of total 

CCW into its fat and fat-free components increased R2 from 64.4% (Equation 68) to 69.8% 

(Equation 74). The coefficient for fat-free CCW of 0.196 w~s not significantly different from 

zero, suggesting that the increased strength of the multiple regression was due to the greater 

influence of total carcass fat on the relationship. 
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Independent variates (x) Regression equation R2(%) 

X] Logw EBW (kg) 60. y = 0.879 + 0.351 X] 65.0 

X] Logw EBW (kg) 61. y = 0.923 + 0.335 X] - 0.0146 Xz 65.2 
xz Plane of nutrition 

Xt Logw fat free EBW (kg) 62. y = 0.803 + 0.439 Xt 60.1 

X] Log10 fat free EBW (kg) 63. y = 0.858 + 0.416 Xt - 0.0167 Xz 60.6 
xz Plane of nutrition 

Xt Log10 total body fat (kg) 64. y = 1.23 + 0.190 Xt 66.1 

X] Logw total body fat (kg) 65. y = 1.27 + 0.181 X]- 0.0171 Xz 66.9 
xz Plane of nutrition 

X] Log10 fat free EBW (kg) 66. y = 1.24-0.004 X]+ 0.192 Xz 65,0 
xz Log10 total body fat (kg) 

X] Log10 fat free EBW (kg) 67. y = 1.30-0.033 X]+ 0.194 Xz- 0.0173 XJ 65.9 
xz Logw total body fat (kg) 
XJ Plane of nutrition 

X] Logw CCW (kg) 68. y = 1.06 + 0.281 X] 64.4 

X] Log10 CCW (kg) 69. y = 1.10 + 0.268 X]- 0.0157 Xz 64.9 
xz Plane of nutrition 

Xt Log10 fat free CCW (kg) 70. y= 1.07+0.318X] 57.8 

XJ Log10 fat free CCW (kg) 71. y = 1.12 + 0.300 X] -0.0189 Xz 58.8 
xz Plane of nutrition 

Xt Log 10 total carcass fat (kg) 72. y = 1.24 + 0.214 X] 68.9 

X] Log 10 total carcass fat (kg) 73. y = 1.27 + 0.205 X] - 0.0141 Xz 69.2 
xz Plane of nutrition 

X] Log 10 fat free CCW (kg) 74. y = 1.36- 0.196 X] + 0.330 Xz 69.8 
xz Log10 total carcass fat (kg) 

X] Log 10 fat free CCW (kg) 75. y = 1.38-0.191 X]+ 0.319 Xz- 0.0136 XJ 70.0 
xz Log10 total carcass fat (kg) 
XJ Plane of nutrition 

Table 3.39 

Linear regression equations to describe the effect of a high or medium plane of nutrition on 

the relationships between log 10 fibre diameter (y) and log 10 various body characteristics (x) 
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4 Trial 2. Effect of level of realimentation on liveweight gain and carcass 

composition of the British Angora wether goat 

4.1 Rationale and objectives 

The commercially reared goats which comprised the L plane of nutrition in Trial 1 did not 

increase in empty body weight or warm carcass weight between 12 and 18 months of age. 

Their failure to increase in body mass at this age was accompanied by a non-significant 

decrease in the weight of dissectible fat in the half carcass and in the weights of their omental 

and KKCF deposits between six and 18 months of age, suggesting that the goats were kept 

on a sub-maintenance level of nutrition for much of this time (Table 3.5). The decrease in the 

mean fibre diameter of the same goats between 12 and 21 months of age also supported this 

suggestion (Table 3.35) and reflected the current priority of commercial Angora goat farmers 

which is to produce fine fibre for as long as possible at the expense of the growth of the 

carcass for meat production. 

This system of production is likely to optimise returns from the sale of fibre but may have 

adverse effects on carcass yield, composition and meat quality. McMeekan (1940b) showed 

that pigs reared to a pre-determined liveweight on a low then high plane of nutrition made 

faster gains during the latter half of the experiment than pigs reared on a high plane of 

nutrition throughout. However, this "compensatory growth" consisted mainly of fat, since 

carcasses of the low-high pigs contained.a greater proportion of fat and smaller proportions 

of lean and bone than carcasses of the high-high pigs. Palsson and Verges ( 1952) reported 

similar observations for the sheep. 

McGregor ( 1984) demonstrated compensatory growth in the Angora goat, but the 

composition of the compensatory liveweight gain was unknown. In view of the unique fat 

distribution of the goat, it is possible that differences exist between the composition of 

compensatory growth of the goat and of other domestic species. 

Therefore a second trial was designed to investigate the effects of realimentation of 18 month 
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old Texan x New Zealand Angora wether goats on their daily liveweight gain and carcass 

composition. The objectives of this experiment were to examine the effects of long term 

undernutrition on the subsequent growth rate of the British Angora wether goat between 25 

and 30kg fleece-free liveweight, to compare the composition of the liveweight gain of the 

realimented goats with that of goats reared on an adequate (medium) plane of nutrition 

throughout, and to compare the effects of three levels of realimentation on the composition of 

liveweight gain of the British Angora wether goat. 
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4.2 Materials and methods 

4.2.1 Experimental animals 

The trial used 27 Texan x New Zealand Angora wether goats, approximately 18 months of 

age, with an initial mean fleece-free liveweight of 24.9 ± 2.3kg which were purchased from a 

single source. 

Growth rate and body composition data relating to the goats reared on high, medium and low 

planes of nutrition from six to 24 months of age in Trial 1 were also used for purposes of 

comparison and to formulate prediction equations to estimate the body composition of goats 

reared on a medium plane of nutrition throughout. 

4.2.2 Experimental design 

The goats were randomly allocated to a control group, A, and three treatment groups B, C 

and D. The variable factor was the level of realimentation (high, medium or low) used to 

attain a total mean liveweight gain of 5kg per treatment group, with seven replicates per 

treatment group (Table 4.1 ). The initial mean fleece-free liveweights of the four groups were 

compared using a one way analysis of variance and found to be not significantly different (P 

> 0.05). 

Treatment Level of Expected Initial 
group n realimentation DLWG(g) liveweight (kg) 

A 6 Control 24.5 

B 7 High 64.0 25.5 

c 7 Medium 43.0 24.2 

D 7 Low 29.0 25.5 

s.e. 0.46 

Significance NS 

Table 4.1 

Summary of treatment groups in Trial 2 and their mean initial fleece-free liveweights 
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(i) Control group A 

The control group A served two functions; 

1. As the initial slaughter group it was used to estimate the initial body composition of the 

goats in Groups B, C and D from their initial liveweights. Group A was slaughtered 

immediately before the beginning of the trial and the left sides of the carcasses were jointed 

and dissected according to the procedures described for Trial l. The body and carcass 

composition data of these six goats (Table 4.2) was used to derive relationships between 

liveweight and the weight of each body and carcass component (Table 4.3) from which the 

initial body composition of each of the goats allocated to treatment groups B, C and D was 

estimated. 

2. The mean empty body weight and body composition data of Group A was compared with 

that of goats reared to the same age (18 months) on a high, medium or low plane of nutrition 

in Trial 1 (treatment groups 18H, 18M and 18L respectively) to determine the relative state of 

maturity of the .Trial 2 goats at the beginning of the trial and to estimate their comparative 

growth rate up to 18 months of age (Table 4.2). 

One way analysis of variance revealed that the mean empty body and cold carcass weights of 

Group A were significantly less than those of treatment groups 18H and 18M but not 

significantly different.from those of treatment group 18L at 18 months of age (Table 4.2). 

Similarly the weights of the internal fat and carcass fat depots were significantly lower than 

those of treatment groups 18H and 18M but not significantly different from those of 

treatment group 18L. The weight of bone in the dissected half carcass did not differ 

significantly between treatment groups. The weight of lean in the dissected half carcass was 

significantly greater in group 18H than in the remaining treatment groups. There was a trend 

towards decreasing weight of lean with decreasing plane of nutrition but the weight of lean in 

treatment group 18L and Group A was similar. 

Therefore the mean growth rate and body and carcass development of the Trial 2 goats up to 
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Treatment group 

Body component 18H 18M 18L Group A s.e. Significance 

EBW (kg) 43.9a 28.6b 23.2bc 21.4c 0.97 * 

ccw (kg) 24.7a 14.8b 10:5c l0.2c 0.61 * 

Omental fat (kg) 2.771a l.212b 0.363c 0.429c 0.09 *** 

Mesenteric fat (kg) l.l50a 0.579b 0.357b 0.05 *** 

KKCF (kg) 2.204a 0.931b 0.229c 0.343c 0.05 *** 

Side bone (kg) 1.417 1.248 1.177 1.276 0.04 NS 

Side lean (kg) 4.805a 3.003b 2.456b 2.516b 0.14 *** 

Side dissectible fat (kg) 3.861a 2.066b 1.078c 0.750c 0.15 *** 

Side IMF (kg) l.389a 0.799b 0.473c 0.254c 0.05 *** 

Side SCF (kg) 2.472a 1.267b 0.605c 0.496c 0.10 *** 

Means in rows with different superscripts differ significantly 

Table 4.2 

Mean body composition of Angora wether goats reared to 18 months of age on a high, 

medium or low plane of nutrition (means of six goats) 

Log10 EBW (kg) = 1.06 log10 liveweight (kg) - 0.14 R2 = 97.7% 

Log10 omental fat (g) = 6.84 log 10 liveweight (kg)- 6.96 R2 = 24.2% 

Log10 mesenteric fat (g) = 7.85 log10 liveweight (kg)- 8.41 R2 = 59.6% 

Log10 KKCF fat (g) = 8.45 log10 Iiveweight (kg) - 9.26 R2 = 79.0% 

Log10 CCW (kg) = 2.03 log10 Iiveweight (kg) - 1.81 R2 = 77.5% 

Log10 bone (g) = 1.18 log 1 o Iiveweight (kg) + 1.4 7 R2 = 32.3% 

Log10 lean (g) = 1.48 log10 Iiveweight (kg) + 1.34 R2 = 49.9% 

Log10 IMF (g) = 8.40 log10 liveweight (kg)- 9.34 R2 = 47.9% 

Log10 SCF (g) = 7.90 log10 Iiveweight (kg)- 8.35 R2=4l.l% 

Log10 total fat (g) = 8.06log10 Iiveweight (kg)- 8.40 R2 = 43.6% 

Table 4.3 

Prediction equations relating log10 body component (y) to log10 liveweight (x) of Group A 

goats and used to predict the initial body composition of goats in Groups B, C and D 
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18 months of age was not significantly different from that of the L plane goats in Trial 1 up 

to the same age (Figure 4.1 ). 

(ii) Treatment groups B, C and D 

The goats assigned to treatment groups B, C and D were indoor housed in three pens 

approximately 5m x 5m. The treatment groups were mixed and randomly allocated to the 

three pens, seven goats per pen. The goats were bedded on straw with free access to water 

and salt licks. They were individually fed, twice per day, in custom built stalls and weighed 

every week before the fust feed in the morning to minimise variation in gut fill. 

The daily liveweight gain of the goats was controlled by varying their individual ration of a 

diet identical to that used in Trial 1. The ration consisted of an estimated maintenance 

component calculated to provide 0.42 MJ ME/k:g0.75, which was adjusted weekly, plus a 

fixed amount to allow the predetermined daily liveweight gain for each goat (Table 4.1 ). The 

feed requirement for growth was calculated from the dry matter intakes and the growth rates 

achieved by the M plane goats in Trial 1 over the same weight range of 25 to 30kg fleece-free 

liveweight. Group B was fed to achieve the same daily Iiveweight gain as the Trial 1 M plane 

goats. Group C was fed to achieve a daily liveweight gain of approximately 66% that of 

Group B. Group D was fed to achieve a daily liveweight gain of approximately 66% that of 

Group C (Figure 4.2). 

The goats were shorn and slaughtered when the average treatment group liveweight reached 

5kg more than its mean starting liveweight, with an allowance for fleece cover which was 

estimated from the results of Trial 1. The slaughter and dissection procedures were as 

described for Trial 1. 
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Figure 4.1 

Schematic representation of the growth of realimented goats in Trial 2 compared with the 

growth of goats reared on a high, medium or low plane of nutrition in Trial 1 
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Figure 4.2 

Schematic representation of the growth of goats reared on three levels of 

realimentation in Trial 2 
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4.3 Results and discussion 

4.3.1 The effect of long term undernutrition on the subsequent growth rate 

of the British Angora wether goat between 25 and 30kg fleece-free 

Iiveweight. 

(i) Feed intake 

It was necessary to shear group B three days before they were slaughtered. This period 

coincided with a particularly cold spell of weather. Contrary to the results in section 3.3.2 the 

shorn goats in this experiment suffered a loss of appetite immediately after shearing which 

was not evident in the unshorn goats. Forbes (1986) reported that in hens, pigs, cattle and 

dairy cows a reduction in the effective temperature to -20'C resulted in significant increases 

in feed intake and that the feed intake of sheep generally increases within a week of shearing. 

It is possible that the poor subcutaneous fat cover of the goats in Trial 2, which was 

estimated to be approximately equal to that of treatment group 18L in Trial 1 (Appendix IV), 

combined with Winter shearing, resulted in an extreme form of cold stress which is unlikely 

to be experienced by other domestic livestock in normal commercial situations. As a result of 

their depressed feed intake these goats lost between 0.75 and 1.85kg liveweight per goat 

between shearing and slaughter. The majority of this weight loss was probably due to a 

reduction of gut fill rather than to mobilisation of reserves but the decline in liveweight 

resulted in a mean liveweight gain of group B. which was significantly less than that of group 

C (Table 4.5). Groups C and D were shorn and slaughtered on the same day so that the 

problem did not recur. Therefore the mean daily feed intakes and daily live weight gains were 

calculated using the last fleece-corrected liveweights prior to shearingt rather than the 

slaughter weights, for accurate comparison of the growth performance of the three treatment 

groups. 

Dry matter, crude protein and energy intakes per kg Iiveweight0.75 were significantly 

different between treatment groups (Table 4.4). As expected, the efficiency of conversion of 

feed to liveweight gain decreased with decreasing plane of nutrition but the differences were 
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not statistically significant. 

Treatment group 

B c D s.e. Significance 

DM (glkg liveweight0.75) 73.8a 65.5b 59.2c 0.57 *** 

CP (g/kg liveweight0.75) 8.4a 7.5b 6.8c 0.06 *** 

Energy (MJ ME/kg liveweight0.75) 0.66a 0.59b 0.53c 0.01 *** 

kgDM/kgLWG 15.8 18.7 21.3 1.31 NS 

Means in rows with different superscripts differ. significantly 

Table 4.4 

Mean daily nutrient intakes of Angora wether goats realimented on three planes of nutrition 

from 25 to 30kg Iiveweight (means of 7 goats) 
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(ii) Growth performance 

The mean daily liveweight gain was highest for group B (58.5g/day) and lowest forgroup D 

(36.lg/day). The actual mean rate of gain was lower than predicted for group B but greater 

than predicted for groups C and D which made the differences between the treatment groups 

smaller than were planned. Consequently the mean daily liveweight gain of group B was 

significantly greater than that of group D but there were no significant differences between 

consecutive feed levels (Table 4.4). 

The actual mean growth rate of Group B of 58.5g/day was not greater than its expected 

growth rate of 64g/day which was achieved by goats reared on a continuous medium plane of 

nutrition in Trial 1 (Figure 4.1 ). Therefore there was no evidence of compensatory liveweight 

gain in the realimented goats. 

Treatment group 

B c D 

Fleece-free liveweights (kg) 

at entry 25.5 24.2 25.5 

at slaughter 28.5 29.6 29.8 

at finisht 29.6 29.1 29.8 

Total L WG (kg) 

entry to slaughter 3.0a 5.4b 4.3ab 

entry to finish 4.1 4.8 4.2 

Days from entry to finish 70 105 119 

DL WG (g) entry to finish 58.5a 46.5ab 36.1b 

Expected DLWG (g) 64.0 43.0 29.0 

Means in rows with different superscripts differ significantly; 
tLast fleece-corrected liveweight prior to shearing 

Table 4.5 

s.e. Significance 

0.56 N.S. 

0.56 N.S. 

0.52 N.S. 

0.34 * 
0.32 N.S 

3.23 * 

Effect of level of realimentation from 25 to 30kg liveweight on the mean growth performance 

of 18 month old Angora wether goats (means of 7 goats) 
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4.3.2 Comparison of the composition of the liveweight gain of 18 month old 

British Angora wether goats realimented on a medium plane of nutrition with 

that of goats reared on a medium plane of nutrition throughout 

The equations derived from the body composition data of Group A (Table 4.3) were used to 

estimate the initial body composition of each of the goats in Group B from its initial 

liveweight (Table 4.7), Due to unforeseen circumstances the mean liveweight gain of Group 

B following realimentation on the M plane of nutrition was only 3.0lkg (Table 4.5) which 

equated to a mean EBW gain of 3.33kg. The composition of the total EBW gain was 

calculated for each goat as the difference between the measured composition at slaughter and 

the estimated composition at the start of the trial (Table 4.7). 

Using data derived from Trial 1 from the goats reared on the M plane of nutrition throughout, 

equations were formulated for the prediction of body composition from fat-free EBW (Table 

4.6). The body composition of six hypothetical goats reared to equal initial fat-free EBW's as 

the Group B goats (mean initial fat-free EBW = 18.66kg) on the M plane of nutrition was 

estimated from the equations (Table 4.7). These goats shall henceforth be referred to as the 

M plane goats. Allowing a total EBW gain of 3.33kg per goat the final body composition of 

the M plane goats was also estimated using the prediction equations and the composition of 

EBW gain was calculated as for the Group B goats (Table 4.7). 

In this way the composition of the realimented EBW gain of the Group B goats could be 

compared with that of goats reared on a constant M plane of nutrition from the same initial fat

free EBW. The mean composition of 3.33kg EBW gain of the two treatment groups, Group 

B and M plane, was compared by one way analysis of variance (Table 4. 7). 

With the exception of fat-free CCW and half carcass bone there was no significant difference 

in the weight gained by any other body component between the two groups of goats. The M 

plane goats appeared to partition significantly more of their total weight gain into fat-free 

CCW than the Group B goats (1.297 v 0.660kg respectively, P < 0.01). This was due to the 

growth of significantly more half carcass bone in the M plane goats (0.165kg) than in Group 
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B (-0.063kg, P < 0.001) while the growth of half carcass lean was not significantly affected 

by the treatments. The initial weight of half carcass bone in Group B was high compared 

with that of the M plane goats ( 1.319 v 1.063kg respectively) while the final weight of bone 

in the two groups was similar (1.256 v 1.227kg respectively) resulting in an apparent weight 

loss of bone in Group B and a gain in the M plane goats. Since the equation used to predict 

initial half carcass bone in Group B had an R2 value of only 32.3% (Table 4.3) it seemed 

likely that the significant difference between the two treatments in the mass of bone growth 

was due to error in the prediction of the initial weight of bone of Group B rather than to a real 

treatment effect. 

There was therefore no significant effect of long-term undernutrition on the composition of 

subsequent empty body weight gain. 

Prediction equation R:i (%) 

Logw EBW = -0.262 + 1.29 logw fat-free EBW 98.0 

Logw omental fat = -3.21 + 2.45 Iogw fat-free EBW 80.4 

Log 10 KKCF = -3.34 + 2.46logw fat-free EBW 87.4 

Logw mesenteric fat = -1.62 + 1.041ogw fat-free EBW 35.2 

Logw fat-free CCW = -0.944 + 1.461ogw fat-free EBW 95.6 

Logw side lean = -1.43 + 1.45 logw fat-free EBW 90.3 

Logw side bone = -1.75 + 1.40 logw fat-free EBW 81.0 

Logw side dissectible fat = -2.54 + 2.121ogw fat-free EBW 90.3 

Logw side IMF = -2.80 + 2.01 logw fat-free EBW 88.4 

Logw side SCF = -2.89 + 2.22 log 10 fat-free EBW 84.6 

Table 4.6 

Linearised allometric equations used to predict the empty body composition (kg) from 

fat-free EBW (kg) of goats reared on the medium plane of nutrition from six to 24 months of 

age in Trial 1 

191 



Initial weight (kg) Final weight (kg) Weight gain (kg) 

Group B Medium plane Group B Medium plane Group B Medium plane s.e. Si g. 

Body component 

EBW 21.83 (2.14) 23.50 (0.73) 25.16 (1.38) 26.83 (0.73) 3.33 ( 1.29) 3.33 (0.00) 0.26 NS 

Fat-free EBW 18.66 (0.45) 18.66 (0.45) 20.87 (I. 19) 20.69 (0.44) 2.21 ( 1.32) 2.03 (0.01) 0.27 NS 

Omental fat 0.463 (0.31) 0.777 (0.04) 0.908 (0.23) 1.013 (0.05) 0.445 (0.37) 0.237 (0.01) 0.08 NS 

Mesenteric fat 0.446 (0.34) 0.503 (0.01) 0.519 (0.08) 0.564 (0.01) 0.073 (0.35) 0.061 (0.00) 0.07 NS 

KKCF 0.450 (0.37) 0.619 (0.04) 0.636 (0.19) 0.801 (0.04) 0.186 (0.33) 0.182 (0.00) 0.07 NS 

Fat-free CCW 8.49 (0.37) 8.16 (0.29) 9.15 (0.71) 9.46 (0.29) 0.660 (0.48) 1.297 (0.01) 0.10 ** 
Side lean 2.572 (0.35) 2.564 (0.09) 2.889 (Oc26) 2.977 (0.09) 0.317 (0.17) 0.414 (0.00) 0.04 NS 

__._ 
Side bone 1.319 (0.14) 1.063 (0.04) 1.256 (0.09) 1.227 (0.04) -0.063 (0. 11) 0.165 (0.00) 0.02 *** CD 

1\) Side dissectible fat 0.908 (0.71) 1.441 (0.07) 1.105 (0.10) 1.800 (0.08) 0.197 (0.69) 0.359 (0.01) 0.14 NS 

IMF 0.317 (0.26) 0.581 (0.03) 0.367 (0.04) 0.715 (0.03) 0.050 (0.26) 0.134 (0.00) 0.05 NS 

SCF 0.604 (0.46) 0.862 (0.05) 0.738 (0.09) 1.084 (0.05) 0.135 (0.44) 0.222 (0.00) 0.09 NS 

Table 4.7 

Mean empty body composition of Angora wether goats reared on a low plane of nutrition to 21.83kg EBW and then on a medium plane of nutrition to 25.16kg EBW 

(Group B), estimated empty body composition of goats reared on a medium plane of nutrition to a comparable fat-free EBW and then to a comparable total EBW gain 

of 3.33kg on a medium plane of nutrition (Medium plane) and comparison of the composition of EBW gain of the two groups of goats (means of six goats) 



4.3.3 The effect of level of realimentation of 18 month old British Angora 

wether goats on the composition of their subsequent liveweight gain 

The mean composition of the realimented empty body weight gain of treatment groups B, C 

and D was compared. The initial body composition of the goats allocated to each treatment 

group was estimated from their liveweight at entry and the relationships between liveweight 

and body composition derived from group A (Table 4.8). Changes in body composition from 

the start of the trial to slaughter were calculated for individual animals as the difference 

between the measured composition at slaughter and the estimated initial composition (Table 

4.9). Since the mean total EBWgains of the three treattnent groups were not equal the daily 

rate of gain of each body component was compared using a one way analysis of variance. 

There was an increase in the weight of most body components in all three treatment groups 

following realimentation (Table 4.9). Half carcass bone did not increase under any level of 

realimentation. This was expected in view of the early maturing nature of bone tissue. The 

apparent loss of weight of bone in groups B and D was attributable to the tendency of the 

prediction equation for bone to over estimate the initial weight of bone in the half carcass. 

The loss of the dissection data for the heaviest goat in Group B and the three lightest goats in 

Group C led to slightly misleading mean values for half carcass composition. In view of the 

small number of goats in each treatment group and the high variation in the data this was 

unlikely to have affected the significance of the results. 

There was no significant effect of level of realimentation on the daily weight gain of any of 

the body components examined (Table 4.9). 
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Upon completion of this second experiment it became apparent that possibly more 

illuminating results might have been achieved with several modifications to the trial design. 

The allocation of a total of nine goats to the control group, A, would have produced more 

accurate equations for the prediction of the initial empty body composition of the goats than 

was achieved by including only six goats, as described in Section 4.2.2., while still allowing 

six replicates per treatment in groups B, C and D. It was also found that following the 

random allocation of the goats to the four treatment groups, A, B, C and D, the heaviest 

animals were not included in group A. Consequently the initial body composition of these 

heavier animals had to be predicted from equations which did not in fact extend to such high 

values. Including the lightest and heaviest animals in group A would have improved the 

accuracy of the predictions of initial body composition and this may have affected the final 

outcome of the results. 

It would also have been useful to have included a group either fed ad lib., with 24 hour 

access to the feed, or at least permitted to feed 'to appetite' at each feeding, since it has been 

suggested that compensatory liveweight gain is simply a result of increased feed intake 

promoting normal rates of gain (Winter, 1971; Stamataris et al., 1991) or, in cases where 

liveweight rather than empty body weight have been recorded, due to increased gut fill 

(McMeekan, 1940c; Thomton et al., 1979). The realimented goats in the present study were, 

in effect, still restricted and in retrospect treatment D should have been replaced by 

unrestricted feeding. Furthermore the diet fed in the present study was of low nutrient density 

since, for reasons of economics and due to restricted storage space, it was the same as that 

fed to the goats in Trial 1 (Appendix 1). Consequently the rates of gain achieved by the three 

treatment groups were probably too low and too similar to demonstrate either the existence or 

otherwise of compensatory growth in the Angora wether goat or an effect of rate of 

realimentation on the composition of compensatory liveweight gain. Feeding a better quality 

diet might have yielded more useful results. 



Initial weight (kg) Final weight (kg) 

Group B Group C GroupD Group B Group C Group D 

n 7 7 7 7 7 7 

Liveweight 25.48 (2.45) 24.22 (2.23) 25.52 (2.92) 28.49 (2.01) 29.60 (2.06) 29.83 (3.35) 

EBW 22.27 (2.27) 21.10 (2.05) 22.31 (2.70) 25.70 ( 1.91) 27.04 (2.07) 26.80 (2.86) 

Omental fat 0.531 (0.33) 0.371 (0.23) 0.572 (0.45) 0.967 (0.26) 1.076 (0.21) 0.975 (0.24) 

Mesenteric fat 0.521 (0.37) 0.345 (0.25) 0.575 (0.52) 0.531 (0.07) 0.629 (0.07) 0.574 (0.1 0) 

KKCF 0.531 (0.40) 0.340 (0.26) 0.594 (0.58) 0.664 (0.19) 0.750 (0.23) 0.700 (0.13) 

ccw 11.17 (2.18) 10.08 ( 1.87) 11.25 (2.61) 12.32 ( 1.18) 13.64 (1.67) 13.29 (2.19) 

...... 
c:D n 6 4 7 6 4 7 
.j::. Fat-free EBW 18.66 (0.45) 17.70 (2.18) 18.21 ( 1.57) 20.87 (I. 18) 22.35 (1.11) 21.94 (1.80) 

Side lean 2.572 (0.35) 2.486 (0.46) 2.655 (0.45) 2.888 (0.26) 3.326 (0.34) 3.255 (0.55) 

Side bone 1.319 (0.14) 1.282 (0.19) 1.351 (0.18) 1.256 (0.09) 1.320 (0.02) 1.321 (0.09) 

Side dissectible fat 0.908 (0.71) 0.816 (0.68) 1.180 (I. I 0) 1.105 (0.10) 1.668 (0.47) 1.294 (0.35) 

IMF 0.317 (0.26) 0.284 (0.25) 0.419 (0.41) 0.367 (0.04) 0.587 (0.18) 0.491 (0.17) 

SCF 0.603 (0.46) 0.549 (0.46) 0.779 (0.71) 0.738 (0.09) 1.080 (0.31) 0.803 (0.19) 

Table4.8 

Mean initial and final weights of body components of Angora wether goats reared on a low plane of nutrition to 18 months of age (initial weight) and then realimented 

on a low, medium or high plane of nutrition to a mean liveweight gain of approximately 5kg per treatment group 



Total weight gain (kg) Daily weight gain (g) 

Group B Group C Group D Group B Group C Group D s.e. Si g. 

n 7 7 7 7 7 7 

Liveweight 3.01 ( 1.12) 5.38 (2.11) 4.31 ( 1.20) 40.15 48.87 34.71 3.28 NS 

EBW 3.43 (1.21) 5.94 ( 1.78) 4.49 (1.14) 45.73 53.99 36.20 3.11 NS 

Omental fat 0.436 (0.34) 0.705 (0.20) 0.404 (0.35) 15.82 6.41 3.26 0.71 NS 

Mesenteric fat 0.009 (0.36) 0.284 (0.23) 0.000 (0.46) 0.12 2.59 0.00 0.81 NS 

KKCF 0.133 (0.34) 0.410 (0.14) 0.106 (0.51) 1.77 3.73 0.86 0.78 NS 

ccw 1.15 (1.27) 3.57 ( 1.54) 2.04 ( 1.13) 15.30 32.41 16.42 3.00 NS 

...... 
(0 n 6 4 7 6 4 7 
01 Fat-free EBW 2.21 (1.31) 4.65 ( 1.1 0) 3.73 (3.02) 29.42 42.22 30.05 4.76 NS 

Side lean 0.316 (0.17) 0.841 (0.27) 0.601 (0.30) 4.22 7.64 4.85 0.58 NS 

Side bone -0.063 (0.11) 0.038 (0.19) -0.030 (0.19) 

Side dissectible fat 0.197 (0.69) 0.852 (0.56) 0.114 (0.76) 2.63 7.75 0.92 1.74 NS 

IMF 0.049 (0.26) 0.303 (0.23) 0.072 (0.24) 0.66 2.76 0.58 0.64 NS 

SCF 0.135 (0.44) 0.538 (0.34) 0.025 (0.54) 1.80 4.89 0.20 1.15 NS 

Table4.9 

Mean total weight gain of body components during realimentation period and comparison of daily weight gain of each body component of Angora wether goats reared 

on a low plane of nutrition to 18 months of age (initial weight) and then realimented on a low, medium or high plane of nutrition to a mean liveweight gain of 

approximately 5kg per treatment group 



5 Conclusions 

The fundamental laws of allometry, heterogenic growth, centripetal development and the 

order of developmental priority of different parts, organs and tissues which have been 

established for other species of domestic livestock and breeds of goat also apply to the British 

Angora goat. Thus between six months of age and maturity there is a definite order of 

development of the main body parts which is, in order of maturity, vital organs, external 

offal, carcass and body fat, the order of developmental priority being related to the 

physiological function of the part. The organs vital to the survival of the animal are therefore 

the earliest maturing and most rapidly developing parts in the young goat, followed closely 

by the head which is of primary importance as a protective container for the brain and 

sensory organs. Body fat is the latest developing part, being primarily a storage tissue for 

nutrients excess to the immediate requirements of the animal and is therefore most rapidly 

developing in the older goat when all other parts and tissues have achieved their maximum 

relative growth rate. 

The centripetal pattern of development is reflected in the relative order of development of the 

external offal, the head and feet being earlier maturing than the pelt, and in the linear 

development of the carcass which grows initially by increased leg length, first lower then 

upper leg, and by increased carcass length and then depth, all of which underline the early 

development of the skeleton. The later increases in carcass width and circumference of the 

buttocks are a reflection of the later maturity of carcass muscle and fat tissues. The centripetal 

growth pattern is also reflected in the relative growth rates and order of development of the 

commercial carcass joints which mature in the following order; shoulder, leg, chump, loin, 

breast, best end. Thus in the young goat the most rapid growth is in the limb joints, a wave 

of increasing relative growth intensity converging on the more centrally positioned joints as 

the animal matures. 

There is a clear order of development of the body fat depots, similar to that reported for other 

domestic species. In order of decreasing maturity this is; visceral, mesenteric, intermuscular, 

subcutaneous, omental and KKCF. Under conditions of sub-maintenance nutrient intake 
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these fat depots are mobilised in reverse order of their maturity, KKCF being most rapidly 

mobilised followed closely by omental fat while the carcass dissectible fat depots remain 

largely unaffected. Thus it appears that in the goat fat mobilisation is not the exact reverse 

process of fat accretion which would have resulted in a proportional decrease in all body fat 

depots. For this reason the internal fat depots are unsuitable predictors of carcass dissectible 

fat where there is a possibility that fat mobilisation may have occurred. 

There is no effect of variation in the plane of nutrition on the differential growth patterns of 

the fat-free empty body or carcass of the goat. Decreasing the plane of nutrition from high to 

low results in a uniform retardation of the whole body, the parts, organs and tissues of which 

remain in proportion relative to its fat-free weight. The growth of fat relative to that of the fat

free empty body or carcass is, however, dependent on the plane of nutrition, an increase of 

which results in more rapid fat deposition in all fat depots and a greater proportion of fat at 

equal total empty body or carcass weights. There is no effect of rate of fat deposition on the 

partitioning of total fat into the various depots except when fat mobilisation has occurred, this 

resulting in a greater proportion of the earlier maturing carcass dissectible fat depots and a 

lower proportion of internal fat depots. 

The differential development of the carcass tissues within the half carcass remain unaffected 

by variation in the plane of nutrition. Consequently sample joint composition accurately 

reflected the composition of the half carcass when the data from all three planes of nutrition 

were combined in the present study. The leg and the best end are the most accurate predictors 

of whole carcass composition when combined in multiple regression equations and it is 

hoped that the proposed prediction equations will be of use in future studies of Angora goat 

growth and nutrition to avoid the arduous and costly task of half carcass dissection. However 

it must be emphasised that the equations are only appropriate for the prediction of the body 

composition of Angora wether goats having an empty body weight of between 16 and 60kg 

which is the range of empty body weights used in the formulation of the equations. 

The observed effects of plane of nutrition on the absolute growth rates of the fat-free empty 

body and carcass and on the relative growth rates of total body and carcass fat explain the 
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differences found in body and carcass composition and conformation of the goats slaughtered 

at six-monthly intervals on the three planes of nutrition. The low-plane series of 

commercially reared goats clearly demonstrates the current policy of Angora goat producers 

of maintaining their goats on as low a nutrient intake as possible, even to the point of weight 

loss, in order to maintain fibre fineness for up to two years. Their methods are justified in the 

clear increase in fibre diameter with increasing plane of nutrition observed in the present 

study, which would incur price penalties in the commercial mohair market. 

The higher planes of nutrition confirm that the Angora wether goat has the potential to 

produce a meat carcass with reasonable conformation in terms of joint proportions, with 

lean:bone ratios which can be comparable with lamb carcasses of equal maturity and a more 

favourable fat content and partitioning than has been reported for other breeds of goat. It still 

remains that the Angora goat is slower growing and thus later maturing than most breeds of 

sheep which may have consequences on meat quality. This requires further investigation. 

Furthermore, despite having a greater proportion of subcutaneous fat than most other breeds 

of goat, the distribution of this fat is not entirely favourable, back fat thickness being 

characteristically low in all but the most obese animals. This not only has deleterious effects 

on carcass conformation but may also have consequences on meat quality which may have to 

be dealt with in terms of the post-slaughter treatment of the carcass. 

In addition to the undeniable benefits regarding carcass yield, quality and conformation, 

increasing the plane of nutrition also improved cumulative fleece yield, but this was achieved 

solely by means of greater fibre diameter with no concomitant increase in staple length. Thus 

there is no potential for more frequent shearing of goats reared on a higher plane of nutrition 

due to the requirement of mohair processors for a minimum staple length of 7.5cm, price 

penalties being incurred for shorter fleeces. Fibre diameter appears to be directly related to 

cumulative feed intake since there was a strong positive relationship between diameter and the 

weights of all body and carcass components, the relationship with body fat being particularly 

strong and unaffected by plane of nutrition. Consequently the use of higher planes of 

nutrition to increase growth rates and advance carcass maturity to produce a saleable carcass 

within 18 months will unavoidably result to some extent in an increase in fibre diameter. 
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However, large increases in fibre diameter may be averted by the avoidance of unnecessarily 

high levels of total fat deposition. The information provided in this study regarding the order 

of development of the various fat depots and the relationships between the depots and total 

weight of fat should go some way towards enabling producers to determine when optimum 

carcass fatness has been achieved and avoid the further wasteful deposition of omental and 

KKCF, thus avoiding unnecessary increases in fibre diameter. 

It is possible that improvements in growth rate and carcass composition without adverse 

effects on fibre quality may be achieved via the manipulation of diet quality, for example by 

varying the ratios of energy to protein or of rumen degradable protein to undegradable 

protein. These matters require further investigation. 

In the meantime it seems likely that when the price for fine mohair is at a premium producers 

will continue to grow the finest possible fibre at the expense of the growth of the goat and 

then attempt to feed up the 18-month-old animal to produce a saleable carcass. This being the 

case the results of experiment two are encouraging in that, while there is no evidence of 

compensatory liveweight gain in Angora goats of this age there are also no permanent 

adverse effects of long-term under nutrition on the subsequent growth rate and composition 

of empty body weight gain of the goats. Thus it should be feasible to increase the carcass 

weight at 18 months of age by means of increased lean and carcass fat deposition and not 

merely by increased internal fat deposition, which had been the point of concern. However, 

the increased age at maturity of such animals may have consequences on meat quality, and 

this also needs further investigation. 

It is hoped that the results of this study will assist and encourage Angora goat producers to 

develop a meat industry capable of affording some stability to the volatile mohair industry. 

Successful marketing will be required to promote the home consumption of UK produced 

goat meat and to encourage demand from foreign markets. Given a stable source of income 

mohair producers should be better able to expand their numbers to allow large-scale 

production of quality fibre which can compete economically with imported fibre from South 

Africa, Australasia and the USA in the UK processing market. 
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Appendix I 

Composition of experimental ration 

Wheat 

Wheatfeed 

Untreated straw 

Oatmeal by-product 

Ext. sunflower 

Fat 

Molaferm 

Limestone 

Dicalcium phosphate 

Rock salt 

Ammonium sulphate 

Mins/vits 

Analysis as fed 

Crude protein % 

ME MJ/kg 

Calcium % 

Phosphorus % 

Sodium % 

Magnesium % 

Dry matter % 

Crude protein g/kg DM 

ME MJ/kgDM 

gCP/MJME 

200 

% 

5.00 

24.40 

35.00 

10.00 

6.57 

2.08 

12.37 

1.53 

0.99 

1.26 

0.40 

0.40 

10.00 

7.85 

1.20 

0.50 

0.60 

0.26 

88.0 

113.64 

8.92 

12.74 



Appendix 11 

Allometric Significance 
Dependent coefficient 
variable (y) Treatment n logw a (b) R2(%) a b R 2 

WCW (kg) H 24 -0.589 1.217 99.2 *** *** *** 
M 24 -0.675 1.281 98.8 *** *** *** 
L 24 -0.361 1.041 89.6 ** *** *** 

Total body fat (kg)t H 18 -1.431 1.581 92.7 *** *** *** 
M 18 -1.556 1.642 95. 6 *** *** *** I\:) 

0 L 12 0 .359 0.132 0 .0 *** NS NS ....... 

Pelt (kg):j: H 18 -0.588 0.764 87.9 *** *** *** 
M 18 -0.527 0.724 78.7 ** *** *** 
L 24 -0.646 0.797 24.9 NS ** ** 

Feet (kg) H 24 -1.154 0.684 94.0 *** *** *** 
M 24 - 1.248 0.759 90.2 *** *** *** 
L 24 -1.402 0.916 75.4 *** *** *** 

Table 1.1 

Linearised allometric equations for the growth of body components and organs (y) relative to the growth of the empty body (x). Equation of the 

form log 10 y = log1 o a + b log 1 o x. Significance levels indicate the significance of the intercept and the gradient (allometric coefficient) from zero 

and the significance of the fit of the equation to the data (R2). 



Allometric Significance 
Dependent coefficient 
variable (y) Treatment n log10 a (b) R2 (%) a b R2 

Head (kg)# H 24 -0.899 0.710 84.4 *** *** *** 
M 24 -1.302 1.039 74.6 *** *** *** 
L 24 -0.898 0.849 48.9 ** *** *** 

Heart (kg) H 24 -2.061 0.755 90.7 *** *** *** 
M 24 -2.251 0.900 73.1 *** *** *** 
L 24 -2.623 1.241 57.7 NS *** *** 

1\) 

0 Lungs (kg) 
1\) 

H 24 -0.914 0.173 5.8 *** NS NS 

M 24 -0.654 -0.039 0.0 *** NS NS 

L 24 -2.813 1.538 68.5 NS *** *** 

Liver & spleen (kg) H 24 -1.080 0.588 74.3 *** *** *** 
M 24 -0.916 0.442 43 .9 *** *** *** 
L 24 -2.237 1.411 80. 7 ** *** *** 

Kidneys (kg) H 24 -1.927 0.614 78. 9 *** *** *** 
M 23 -1.815 0.530 71. 8 *** *** *** 
L 24 -2.506 1.017 76. 3 ** *** *** 

tExcludes treatment groups 6H/M, 12L and 18L; 

t Excludes treatment groups 24H and 24M; 

# incJudes oesophagus and trachea. 

Table 1.1 (continued) 



Allometric Significance 
Dependent coefficient 
variable (y) Treatment n Iog10 a (b) R 2 (%) a b R 2 

Bone (kg) H 24 -0.616 0 .586 74.7 *** *** *** 
M 24 -0 .827 0.800 78.6 *** *** *** 

L 24 -0.733 0.784 53.1 *** *** *** 

Lean (kg) H 24 -0.433 0.786 93.0 *** *** *** 
M 24 -0.509 0.859 93.9 *** *** *** 

1\) L 24 -0.979 1.337 87.9 *** *** *** 
0 
w Carcass dissectible H 24 -1.250 1.320 95.9 *** *** *** 

fat (kg) M 24 -1.193 1.267 95.5 *** *** *** 

L 24 -0.721 0.719 35 .6 *** ** ** 

IMF (kg) H 24 -1.532 1.214 94.0 *** *** *** 

M 24 -1.508 1.193 91.6 *** *** *** 

L 24 -1 .220 0.816 25.8 *** ** ** 

Table 1.2 

Linearised allometric equations for the growth of half carcass tissues and commercial joints (y) relative to the growth of the cold carcass (x). 

Equation of the form log10 y = log10 a + b Iog10 x. Significance levels indicate the significance of the intercept and the gradient (allometric 

coefficient) from zero and the significance of the fit of the equation to the data (R2). 



Allometric Significance 
Dependent coefficient 
variable (y) Treatment n Iog10 a (b) R2 (%) a b R2 

SCF (kg) H 24 -1.569 1.403 93 .9 *** *** *** 
M 24 -1.487 1.327 89.3 *** *** *** 
L 24 -0.900 0.671 23.1 *** * * 

KKCF (kg) H 24 -2.119 1.550 91.8 *** *** *** 
M 24 -2.088 1.483 91.8 *** *** *** 

1\) L 24 -0.552 
0 

-0.217 0.4 *** NS NS 
~ 

Leg (kg) H 24 -0.823 0.847 97.9 *** *** *** 
M 24 -0.881 0.909 98 .2 *** *** *** 
L 24 -0.952 1.031 90.2 *** *** *** 

Chump (kg) H 24 -1.365 0.963 96.1 *** *** *** 
M 24 -1.411 1.007 92.6 *** *** *** 
L 24 -1.584 1.148 78.4 *** *** *** 

Loin (kg) H 24 -1.385 1.063 92.4 *** *** *** 
M 24 -1.443 1.111 94.8 *** *** *** 
L 24 -1 .529 1.176 65. 0 *** *** *** 

Table 1.2 (continued) 



Allometric Significance 
Dependent coefficient 
variable (y) Treatment n log10 a (b) R2 (%) a b R2 

Best end (kg) H 24 -1.629 1.149 93.7 *** *** *** 
M 24 - 1.742 1.265 96.5 *** *** *** 
L 24 -1.450 0.987 80.9 *** *** *** 

Breast (kg) H 24 -1.396 1.077 93.1 *** *** *** 
M 24 -1.266 0.956 93.9 *** *** *** 

1\:) L 24 -1.608 1.229 80.5 *** *** *** 
0 
01 Shoulder (kg) H 24 -0.601 0.841 98.2 *** *** *** 

M 24 -0.632 0.871 96.7 *** *** *** 
L 24 -0.831 1.074 94.9 *** *** *** 

Table 1.2 (continued) 



Allometric Significance 
Dependent coefficient 
variable (y) Treatment n logw a (b) R2(%) a b R 2 

IMF (kg) H 24 -2.360 1.548 95.4 *** *** *** 
M 24 -2.403 1.582 90.7 ** *** *** 
L 24 -1.480 0.808 26.4 ** * * 

SCF (kg) H 24 -2.522 1.787 94.9 ** *** *** 
M 24 -2.487 1.763 88.8 * *** *** 

1\) L 24 -0.832 0.468 7.8 *** NS NS 
0 
0) Total KKCF (kg) H 24 -2.758 1.896 87.6 NS *** *** 

M 24 -2.875 1.945 91.4 NS *** *** 
L 24 0.505 -0.737 5.0 *** NS NS 

Omental fat (kg) H 24 -2.761 1.958 88.0 NS *** *** 
M 24 -2.768 1.942 85 .0 NS *** *** 
L 24 -0.293 -0.040 0.0 *** NS NS 

Table 1.3 

Linearised allometric equations for the growth of body and half carcass fat depots (y) relative to the growth of the empty body (x). Equation of the 

form Jog10 y = Jogw a + b logw x. Significance levels indicate the significance of the intercept and the gradient (allometric coefficient) from zero 

and the significance of the fit of the equation to the data (R2). 



Allometric Significance 
Dependent coefficient 
variable (y) Treatment n logw a (b) R2 (%) a b R2 

Mesenteric H 18 -2.078 1.274 73.2 ** *** *** 
fat (kg)t M 18 -1.551 0.908 43.1 ** ** ** 

L 12 -1.093 0.526 19.0 *** NS NS 

Visceral fat (kg)t H 18 -2.475 1.109 40.2 NS ** ** 
M 18 -3.582 1.775 46.4 NS ** ** 
L 12 -0.645 -0.532 0 .0 * NS NS 

1\:) 

0 
--...! 

t Excludes treatment groups 6HJM, 12L and 18L. 

Table 1.3 (continued) 



Allometric Significance 
Dependent coefficient 
variable (y) Treatment n logw a (b) R2 (%) a b R 2 

IMF (kg) H 24 -0.622 0.821 92.0 *** *** *** 
M 24 -0.617 0.842 87.6 *** *** *** 
L 24 -0.538 0.610 2 1.2 *** * * 

SCF (kg) H 24 -0.531 0.968 95.7 *** *** *** 
M 24 -0.515 0.974 92.7 *** *** *** 
L 24 -0.404 0.760 49.1 *** *** *** 

1\) 

0 
(X) Total KKCF (kg) H 24 -0.674 1.065 95.3 *** *** *** 

M 24 -0.697 1.070 94.5 *** *** *** 
L 24 -0.918 1.54 63.0 *** *** *** 

Omental fat (kg) H 24 -0.609 1.103 96. 2 *** *** *** 
M 24 -0.607 1.093 92. 2 *** *** *** 
L 24 -0.728 1.408 60.7 *** *** *** 

Table 1.4 

Linearised allometric equations for the growth of body and half carcass fat depots (y) relative to the growth of half carcass IMF, SCF, total KKCF 

and omental fat (x). Equation of the form logw y = Iogw a + b Iog10 x. Significance levels indicate the significance of the intercept and the 

gradient (allometric coefficient) from zero and the significance of the fit of the equation to the data (R2). 



I'\) 

0 
(0 

Significance of difference between 

Hand M HandL MandL 

Dependent 
variable (y) variances gradients intercepts variances gradients intercepts vanances gradients intercepts 

wcw NS NS NS NS * NS NS ** * 
Total body fatt ** NS * 
Pelt NS * NS NS NS NS NS NS NS 

Feet NS NS NS NS * *** NS NS *** 
Head NS * *** NS NS *** NS NS *** 
Heart NS NS NS NS * *** NS NS *** 
Lungs:j: 

Liver & spleen NS NS * NS *** NS NS *** NS 

Kidneys * NS NS NS * NS NS *** NS 

t Equation does not represent a significant proportion of the variation in the L data; 

:j: Equation does not represent a significant proportion of the variation in the H and M data. 

Table 2.1 

Analysis of covariance of linearised allometric equations for the growth of body components and organs (y) relative to the growth of the empty 

body (x) 



Significance of difference between 

Hand M HandL MandL 

Dependent 
variable (y) variances gradients intercepts vanances gradients intercepts variances gradients intercepts 

Bone NS NS NS * NS *** NS NS *** 
Lean * NS NS NS *** * NS *** ** 
Carcass fat * NS NS NS ** *** NS ** *** 

1\) IMF NS NS NS NS NS *** NS NS *** _.. 
0 SCF NS NS NS NS ** ** NS * *** 

KKCFt * NS NS 

Leg * NS * NS * *** NS NS *** 
Chump NS NS NS NS NS NS NS NS NS 

Loin ** NS NS NS NS NS NS NS NS 

Best end ** NS NS ** NS NS NS * NS 

Breast ** NS NS * NS ** NS * *** 
Shoulder NS NS NS NS ** NS NS ** * 

t Equation does not represent a significant proportion of the variation in the L data. 

Table 2.2 

Analysis of covariance of linearised allometric equations for the growth of half carcass tissues and commercial joints (y) relative to the growth of 

the cold carcass (x) 



1\) 
...... 
...... 

Significance of difference between 

Hand M HandL MandL 

Dependent 
variable (y) variances gradients intercepts variances gradients intercepts variances gradients intercepts 

IMF NS NS NS NS ** *** NS NS *** 
SCFt NS NS NS 

Total KKCFt ** NS NS 

Omental fatt NS NS NS 

Mesenteric fatt NS NS NS 

Visceral fatt NS NS * 

t Equation does not represent a significant proportion of the variation in the L data 

Table 2.3 

Analysis of covariance of linearised allometric equations for the growth of body and half carcass fat depots (y) relative to the growth of the empty 

body (x) 



1\.) 
...... 
1\.) 

Significance of difference between 

Hand M HandL MandL 

Dependent 
variable (y) variances gradients intercepts variances gradients intercepts variances gradients intercepts 

IMF NS NS NS NS NS NS NS NS NS 

SCF NS NS NS NS NS * NS NS NS 

KKCF * NS NS NS * * NS * * 
Omental fat NS NS NS NS NS NS NS NS NS 

Table 2.4 

Analysis of covariance of linearised allometric equations for the growth of body and half carcass fat depots (y) relative to the growth of half carcass 

IMF, SCF, total KKCF and omental fat (x) 



Allometric Significance 
Dependent coefficient 
variable (y) Treatment n log10 a (b) R2 (%) a b R 2 

Fat-free H 24 -0.787 1.340 91.0 *** *** *** 
carcass (kg) M 24 -0.945 1.459 95.6 *** *** *** 

L 24 -0.305 0.953 86.6 ** *** *** 

Total body H 24 -2.516 2.376 86.7 *** *** *** 
fat (kg)t M 24 -2.448 2.287 91.4 *** *** *** 

1\.) L 24 0.324 -0.041 0 .0 NS NS NS 
_.. 
w Pelt (kg):j: H 18 -0.817 1.004 91.0 *** *** *** 

M 18 -0.766 0.969 84.6 *** *** *** 
L 24 -0.355 0.612 18.3 NS * * 

Feet (kg) H 24 -1.405 0.940 94.2 *** *** *** 
M 24 -1.455 0.982 90.2 *** *** *** 
L 24 -1.148 0 .766 68.9 *** *** *** 

Table 3.1 

Linearised allometric equations for the growth of body components and organs (y) relative to the growth of the whole fat-free empty body (x). 

Equation of the form log10 y = log10 a + b log10 x. Significance levels indicate the significance of the intercept and the gradient (aJJometric 

coefficient) from zero and the significance of the fit of the equation to the data (R2). 



Allometric Significance 
Dependent coefficient 
variable (y) Treatment n log10 a (b) R2 (%) a b R2 

Head (kg)# H 24 -1.182 0.997 80.4 *** *** *** 
M 24 -1.561 1.326 72.8 *** *** *** 
L 24 -0.740 0.771 53.3 ** *** *** 

Heart (kg) H 24 -2.333 1.034 90. 3 *** *** *** 
M 24 -2.496 1.164 72.9 *** *** *** 
L 24 -2.364 1.104 60.1 *** *** *** 

1'\.) _.... 
~ Lungs (kg) H 24 -1.029 0.275 9.3 *** NS NS 

M 24 -0.677 -0.024 0 .0 * NS NS 

L 24 -2.462 1.346 68.9 *** *** *** 

Liver & spleen (kg) H 24 -1.343 0.841 79.4 *** *** *** 
M 24 -1.035 0.571 43.8 *** *** *** 
L 24 -1.894 1.218 78. 8 *** *** *** 

Kidneys (kg) H 24 -2.203 0.881 86.5 *** *** *** 
M 23 -1.977 0.699 74.9 *** *** *** 
L 24 -2.228 0.854 71.0 *** *** *** 

tExcludes visceral and mesenteric fat; t Excludes treatment groups 24H and 24M; 

# includes oesophagus and trachea. 

Table 3.1 (continued) 



Allometric Significance 
Dependent coefficient 
variable (y) Treatment n log10 a (b) R 2 (%) a b R 2 

Bone (kg) H 24 -0.419 0.778 73.5 *** *** *** 
M 24 -0.506 0.951 81.0 *** *** *** 
L 24 -0.315 0.685 59.1 *** *** *** 

Lean (kg) H 24 -0.192 1.077 97.7 *** *** *** 
M 24 -0.164 1.021 96.8 *** *** *** 

1\) L 24 -0.255 1.149 94.1 *** *** *** ....... 
(]1 

Carcass dissectible H 24 -0.785 1.720 90.7 *** *** *** 
fat (kg) M 24 -0.635 1.423 87.4 *** *** *** 

L 24 -0.210 0.408 14.1 NS * * 

IMF (kg) H 24 -1.1 19 1.603 91.5 *** *** *** 
M 24 -1 .007 1.382 89. 4 *** *** *** 
L 24 -0 .687 0 .541 14.7 *** ** ** 

Table 3.2 

Linearised allometric equations for the growth of half carcass tissues and commercial joints (y) relative to the growth of half carcass lean plus bone 

(x). Equation of the form log10 y = log10 a + b log10 x. Significance levels indicate the significance of the intercept and the gradient (allometric 

coefficient) from zero and the significance of the fit of the equation to the data (R2). 



Allometric Significance 
Dependent coefficient 
variable (y) Treatment n log10 a (b) R2 (%) a b R2 

SCF (kg) H 24 -1.065 1.815 87.5 *** *** *** 
M 24 -0.888 1.468 78.9 *** *** *** 
L 24 -0.395 0.337 5.5 ** NS NS 

Left KKCF (kg) H 24 -1.561 2.004 85.6 *** *** *** 
M 24 -1.435 1.666 83 .2 *** *** *** 

1'\) L 24 -0.528 -0.430 0.3 * NS NS 
...... 
0) Leg (kg) H 24 -0.484 0.901 76.6 *** *** *** 

M 24 -0.551 0.998 97.8 *** *** *** 
L 24 -0.469 0.890 85.8 *** *** *** 

Chump (kg) H 24 -1.028 0.982 75.6 *** *** *** 
M 24 -1.117 1.102 89.6 *** *** *** 
L 24 -1.071 1.003 77.5 *** *** *** 

Loin (kg) H 24 -0.901 0.896 55.6 *** *** *** 
M 24 -1.038 1.089 93.3 *** *** *** 
L 24 -0.968 0.941 47. 0 *** *** *** 

Table 3.2 (continued) 



Allometric Significance 
Dependent coefficient 
variable (y) Treatment n log10 a (b) R2 (%) a b R2 

Best end (kg) H 24 -1.142 0.993 71.9 *** *** *** 
M 24 - 1.256 1.202 90.6 *** *** *** 
L 24 -1.057 0.850 75.6 *** *** *** 

Breast (kg) H 24 -0.967 0.851 5 1.7 *** *** *** 
M 24 -0.904 0.687 61.9 *** *** *** 

I\.) L 24 -1.208 1.146 67.2 *** *** *** 
~ 

--....1 Shoulder (kg) H 24 -0.287 0.833 77.2 *** *** *** 
M 24 -0.365 0.950 98 .7 *** *** *** 
L 24 -0.408 1.017 85.1 *** *** *** 

Table 3.2 (continued) 



Allometric Significance 
Dependent coefficient 
variable (y) Treatment n Jog10 a (b) R2(%) a b R 2 

IMF (kg) H 24 -2.843 2.065 89.8 *** *** *** 
M 24 -2.792 2.014 87.9 *** *** *** 
L 24 -1.230 0.662 21.0 ** * * 

SCF (kg) H 24 -3.050 2.362 87.7 *** *** *** 
M 24 -2.889 2.220 83.9 *** *** *** 

I\) L 24 -0.505 0.237 0.0 NS NS NS 
....... 
(X) Total KKCF (kg) H 24 -3.274 2.472 78.6 *** *** *** 

M 24 -3.336 2.462 87.4 *** *** *** 
L 24 0.700 -0.926 15.3 NS * * 

Omental fat (kg) H 24 -3.277 2.542 78.3 *** *** *** 
M 24 -3.212 2.445 80.4 *** *** *** 
L 24 0.056 -0.311 0.0 NS NS NS 

Table 3.3 

Linearised allometric equations for the growth of body and half carcass fat depots (y) relative to the growth of the whole fat-free empty body (x). 

Equation of the form log 1 o y = log 1 o a + b log 1 o x. Significance levels indicate the significance of the intercept and the gradient (allometric 

coefficient) from zero and the significance of the fit of the equation to the data (R2). 



Allometric Significance 
Dependent coefficient 
variable (y) Treatment n log10 a (b) R2 (%) a b R2 

Mesenteric H 18 -2.301 1.580 64.1 *** *** *** 
fat (kg)t M 18 -1.618 1.041 35.2 ** ** ** 

L 12 -0.881 0.391 11.9 * NS NS 

Visceral fat (kg)t H 18 -2.456 1.225 26.3 ** * * 
M 18 -3.881 2.158 43.1 *** ** ** 

1\:) L 12 -0.608 -0.591 1.2 NS NS NS 
...... 
c.o 

t Excludes treatment groups 6HIM, 12L and 18L. 

Table 3.3 continued 



1'\) 
1'\) 

0 

Significance of difference between 

Hand M HandL MandL 

Dependent 
variable (y) variances gradients intercepts variances gradients intercepts variances gradients intercepts 

Fat-free carcass ** NS NS ** ** NS NS *** NS 

Total body fatt # ** NS NS 

Pelt NS NS NS NS NS * NS NS NS 

Feet NS NS NS NS NS ** NS NS ** 
Head NS NS ** NS NS *** NS * *** 
Heart NS NS NS NS NS ** NS NS ** 
Lungst 

Liver & spleen NS NS ** NS * ** NS ** NS 

Kidneys NS NS NS NS NS *** NS NS *** 

t Equation does not represent a significant proportion of the variation in the L data; 

t Equation does not represent a significant proportion of the variation in the H and M data; 

# Excludes visceral and mesenteric fat. 

Table 4.1 

Analysis of covariance of linearised allometric equations for the growth of body components and organs (y) relative to the growth of the fat-free 

empty body (x) 



Significance of difference between 

Hand M HandL MandL 

Dependent 
variable (y) variances gradients intercepts variances gradients intercepts vanances gradients intercepts 

Bone NS NS NS * NS * NS NS * 
Lean NS NS NS NS NS * NS NS * 
Carcass dissectible fat NS NS NS NS *** *** NS *** *** 

1\) IMF NS NS NS NS *** *** NS ** *** 1\) 
__., 

SCFt NS NS NS 

Left KKCFt * NS * 

Leg *** NS NS *** NS NS NS NS * 

Chump ** NS NS ** NS NS NS NS NS 

Loin *** NS NS * NS NS NS NS NS 

Best end *** NS NS *** NS NS NS * NS 

Breast ** NS NS ** NS NS NS * NS 

Shoulder *** NS NS *** NS NS NS NS NS 

t Equation does not represent a significant proportion of the variation in the L data. 

Table 4.2 

Analysis of covariance of linearised allometric equations for the growth of half carcass tissues and commercial joints (y) relative to the growth of 

half carcass lean plus bone (x) 



I\) 
I\) 
I\) 

Significance of difference between 

Hand M HandL MandL 

Dependent 
variable (y) variances gradients intercepts variances gradients intercepts variances gradients intercepts 

IMF NS NS NS NS *** *** NS *** *** 

SCFt NS NS NS 

Total KKCF *** NS NS NS *** *** NS *** *** 
Omental fatt * NS NS 

Mesenteric fatt NS NS NS 

Visceral fatt NS NS * 

t Equation does not represent a significant proportion of the variation in the L data 

Table 4.3 

Analysis of covariance of linearised allometric equations for the growth of body and half carcass fat depots (y) relative to the growth of the fat-free 

empty body (x) 



Allometric Significance 
Dependent coefficient 
variable (y) Treatment logw a (b) R2(%) a b R2 

Leg (kg) H -0.452 0.954 91.0 * *** *** 
M -0.122 0.843 90.0 NS *** *** 
L 0.039 0.791 74.1 NS *** *** 

Shoulder (kg) H -0.265 0.959 97.2 * *** *** 
M -0.513 1.039 95.1 ** *** *** 
L -0.279 0.959 77.0 NS *** *** 

Chump (kg) H -1.072 0.995 59.9 NS *** *** 
M -2.001 1.305 85.4 *** *** *** 
L -1.133 1.031 39.0 NS ** ** 

Breast (kg) H -1.041 0.980 68.5 * *** *** 
M -0.432 0.788 66.1 NS *** *** 
L -1.874 1.252 61.2 ** *** *** 

Loin (kg) H -1.428 1.113 50.2 NS *** *** 
M -1.666 1.193 61.6 * *** *** 
L -2. 184 1.366 35.2 NS ** ** 

Best end (kg) H -1.530 1.147 83.0 *** *** *** 
M -1.210 1.046 86.5 *** *** *** 
L -1.431 1.121 50.7 NS *** *** 

Table 5.1 

Linearised allometric equations for the growth of bone in each commercial joint (y) relative to 

the growth of the total weight of bone in the dissected half carcass (x). Equations of the form 

log10 y = log10 a + b log 1o x. Significance levels indicate the significance of the intercept 

and the gradient (allometric coefficient) from zero and the significance of the fit of the 

equation to the data (R2). 
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Allometric Significance 
Dependent coefficient 
variable (y) Treatment logw a (b) R2(%) a b R2 

Leg (kg) H -0.498 0.986 97.9 *** *** *** 
M -0.577 1.009 97.4 *** *** *** 
L -0.137 0.889 92.2 NS *** *** 

Shoulder (kg) H -0.198 0.938 97.6 NS *** *** 
M -0.182 0.933 96.0 NS *** *** 
L -0.769 1.104 94.9 *** *** *** 

Chump (kg) H -1.129 1.019 93.6 *** *** *** 
M -1.201 1.037 84.8 ** *** *** 
L -0.924 0.945 73.2 * *** *** 

Breast (kg) H -1.395 1.077 82.6 ** *** *** 
M -0.748 0.886 47 .7 NS *** *** 
L -1.987 1.238 63.1 ** *** *** 

Loin (kg) H -1.218 1.069 86.9 ** *** *** 
M -1.236 1.074 89.9 *** *** *** 
L -0.603 0.885 63.7 NS *** *** 

Best end (kg) H -1.691 1.131 85.5 *** *** *** 
M -2.233 1.297 84.9 *** *** *** 
L -1.156 0.976 74.2 * *** *** 

Table 5.2 

Linearised allometric equations for the growth of lean in each commercial joint (y) relative to 

the growth of the total weight of lean in the dissected half carcass (x). Equations of the 

formlog 10 y = log10 a + b logw x. Significance levels indicate the significance of the 

intercept and the gradient (allometric coefficient) from zero and the significance of the fit of 

the equation to the data (R2). 
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Allometric Significance 
Dependent coefficient 
variable (y) Treatment logw a (b) R2 (%) a b R2 

Leg (kg) H -0.698 0.950 95.7 *** *** *** 
M -0.736 0.966 85.8 * *** *** 
L -0.778 1.013 49.7 NS *** *** 

Shoulder (kg) H -0.086 0.889 99.1 NS *** *** 
M 0.094 0.829 98.0 NS *** *** 
L -0.432 0 .998 79.3 NS *** *** 

Chump (kg) H -0.965 0.971 93.7 *** *** *** 
M -1.017 0.986 82.9 ** *** *** 
L -0.780 0.890 41.7 NS *** *** 

Breast (kg) H -0.928 1.057 96.9 *** *** *** 
M -0.343 0.854 29.1 NS ** ** 
L -0.793 1.018 90.2 ** *** *** 

Loin (kg) H -1 .322 1.126 97.2 *** *** *** 
M - 1.773 1.262 92.7 *** *** *** 
L -2.010 1.330 56.4 * *** *** 

Best end (kg) H -1.693 1.220 97.6 *** *** *** 
M -2.003 1.324 96.4 *** *** *** 
L -1.525 1.176 71.7 ** *** *** 

Table 5.3 

Linearised allometric equations for the growth of total dissectible fat in each commercial joint 

(y) relative to the growth of the total weight of total dissectible fat in the dissected half carcass 

(x). Equations of the form logw y = logw a + b logw x. Significance levels indicate the 

significance of the intercept and the gradient (allometric coefficient) from zero and the 

significance of the fit of the equation to the data (R2). 
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Allometric Significance 
Dependent coefficient 
variable (y) Treatment logw a (b) R2(%) a b R2 

Leg (kg) H 0.107 0.620 60.7 NS *** *** 
M 0.159 0.602 28 .7 NS ** ** 
L -1.010 1.080 47 .3 NS *** *** 

Shoulder (kg) H -0.537 1.045 97 .4 *** *** *** 
M -0.566 1.052 90.6 * *** *** 
L -0.175 0.926 72.2 NS *** *** 

Chump (kg) H -0.220 0.692 65 .9 NS *** *** 
M -0.192 0.684 49.2 NS *** *** 
L -0.056 0.610 22.4 NS * * 

Breast (kg) H -0.889 1.044 83 .6 ** *** *** 
M -1.068 1.104 72.3 * *** *** 
L -0.467 0.850 42.1 NS *** *** 

Loin (kg) H -0.944 1.002 75.2 * *** *** 
M -1.079 1.056 73.0 ** *** *** 
L -1 .640 1.220 41.8 * *** *** 

Best end (kg) H -2.040 1.373 96.0 *** *** *** 
M -2.044 1.385 90.5 *** *** *** 
L -3.240 1.810 60.3 ** *** *** 

Table 5.4 

Linearised allometric equations for the growth of IMF in each commercial joint (y) relative to 

the growth of the total weight of IMF in the dissected half carcass (x). Equations of the form 

log 10 y = log10 a + b log 10 x. Significance levels indicate the significance of the intercept 

and the gradient (allometric coefficient) from zero and the significance of the fit of the 

equation to the data (R2). 
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Allometric Significance 
Dependent coefficient 
variable (y) Treatment log10 a (b) R2 (%) a b R2 

Leg (kg) H -0.899 1.031 96.2 *** *** *** 
M -0.979 1.064 92.3 *** *** *** 
L -1.130 1.140 29.3 NS ** ** 

Shoulder (kg) H 0.144 0.796 96.8 NS *** *** 
M 0.374 0.710 82.0 NS *** *** 
L 0.308 0.713 33.7 NS ** ** 

Chump (kg) H -1.328 1.091 94.9 *** *** *** 
M -1.426 1.124 86.8 *** *** *** 
L -2.050 1.320 56.9 ** *** *** 

Breast (kg) H -1.174 1.136 93 .5 *** *** *** 
M -0.985 1.085 81.2 ** *** *** 
L -1.010 1.090 39.6 NS ** ** 

Loin (kg) H -1.440 1.174 95.8 *** *** *** 
M -1.879 1.314 92.9 *** *** *** 
L -2.570 1.560 50.2 ** *** *** 

Best end (kg) H -1.511 1.171 96.5 *** *** *** 
M -2.011 1.348 95.3 *** *** *** 
L -1 .530 1.210 59.2 * *** *** 

Table 5.5 

Linearised allometric equations for the growth of SCF in each commercial joint (y) relative to 

the growth of the total weight of SCF in the dissected half carcass (x). Equations of the form 

log10 y = log10 a + b log 10 x. Significance levels indicate the significance of the intercept 

and the gradient (allometric coefficient) from zero and the significance of the fit of the 

equation to the data (R2). 
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1\) 
1\) 

CO 

Significance of difference between 

Hand M HandL MandL 

Dependent 
variable (y) variances gradients intercepts variances gradients intercepts variances gradients intercepts 

Leg NS NS NS NS NS NS NS NS NS 

Shoulder NS NS NS NS NS NS NS NS NS 

Chump ** NS NS NS NS NS NS NS NS 

Breast NS NS NS NS NS NS NS NS NS 

Loin NS NS NS NS NS NS NS NS NS 

Best end NS NS NS NS NS NS NS NS NS 

Table 6.1 

Analysis of covariance of linearised allometric equations for the growth of bone in each commercial joint (y) relative to the growth of the total 

weight of bone in the dissected half carcass (x) 



1'\.) 

1'\.) 

<.0 

Significance of difference between 

Hand M HandL MandL 

Dependent 
variable (y) variances gradients intercepts variances gradients intercepts variances gradients intercepts 

Leg NS NS NS NS NS ** NS NS ** 
Shoulder NS NS NS NS * NS NS * NS 

Chump NS NS NS NS NS ** NS NS * 
Breast NS NS NS NS NS NS NS NS NS 

Loin * NS NS NS NS NS NS NS NS 

Best end NS NS NS NS NS NS NS NS NS 

Table 6.2 

Analysis of covariance of linearised allometric equations for the growth of lean in each commercial joint (y) relative to the growth of the total weight 

of lean in the dissected half carcass (x) 



1'\) 

VJ 
0 

Significance of difference between 

Hand M HandL MandL 

Dependent 
variable (y) variances gradients intercepts variances gradients intercepts variances gradients intercepts 

Leg NS NS NS NS NS *** NS NS *** 
Shoulder NS NS * NS NS NS NS NS NS 

Chump NS NS NS NS NS * NS NS NS 

Breast NS NS NS NS NS NS NS NS NS 

Loin NS NS NS NS NS * NS NS NS 

Best end NS NS * NS NS NS NS NS NS 

Table 6.3 

Analysis of covariance of linearised allometric equations for the growth of total dissectible fat in each commercial joint (y) relative to the growth of 

the total weight of total dissectible fat in the dissected half carcass (x) 



1\.) 

c.v ...... 

Significance of difference between 

Hand M HandL MandL 

Dependent 
variable (y) variances gradients intercepts variances gradients intercepts vanances gradients intercepts 

Leg NS NS NS NS NS * NS NS * 
Shoulder NS NS NS NS NS * NS NS * 
Chump NS NS NS NS NS NS NS NS NS 
Breast NS NS NS NS NS * NS NS * 
Loin NS NS NS NS NS * NS NS ** 
Best end NS NS NS NS NS NS NS NS NS 

Table 6.4 

Analysis of covariance of linearised allometric equations for the growth of IMF in each commercial joint (y) relative to the growth of the total 

weight of IMF in the dissected half carcass (x) 



1\.) 

w 
1\.) 

Significance of difference between 

Hand M HandL MandL 

Dependent 
variable (y) variances gradients intercepts variances gradients intercepts variances gradients intercepts 

Leg NS NS NS NS NS NS NS NS NS 

Shoulder NS NS NS NS NS ** NS NS * 
Chump NS NS NS NS NS * NS NS NS 

Breast NS NS NS NS NS NS NS NS NS 

Loin NS NS NS NS NS NS NS NS NS 

Best end NS * NS NS NS * NS NS ** 

Table 6.5 

Analysis of covariance of linearised allometric equations for the growth of SCF in each commercial joint (y) relative to the growth of the total 

weight of SCF in the dissected half carcass (x) 



Appendix Ill 

Sampling age Treatment Fleece weight Fleece growth rate Staple length Increase in length Fibre diameter 
(months) group (kg) (g/day) (mm) (mm/day) (Jlm) 

6 6HIM 0.800 (0.11) 4.82 (0.66) 130.67 (3.48) 0.787 (0.02) 21.82 (2.27) 

12H 0.945 (0.23) 5.69 (1.37) 148.67 (13.45) 0.895 (0.08) 21.59 (2.60) 

18H 0.860 (0.19) 5.18 (1.17) 158.17 (19.15) 0.953 (0.12) 22.13 (2.20) 

24H 0.843 (0.28) 5.08 (1.67) 143.08 (16.41) 0.863 (0.10) 18.97 (3.55) 

Mean 0.862 (0.20) 5.19 (1.23) 145.15 (16.84) 0.875 (0.10) 21.13 (2.83) 

12 12H 2.066 (0.20) 12.37 (1 .22) 147.67 (3.91) 0.880 (0.02) 24.19 (2.34) 
1\) 

w 18H 1.898 
w 

(0.30) 11 .36 (1.80) 155.00 (14.88) 0.922 (0.09) 26.58 (3.89) 

24H 1.844 (0.38) 11.04 (2.27) 142.17 (16.51) 0.847 (0.10) 24.82 (2.52) 

Mean 1.936 (0.30) 11.59 (1.80) 148.28 (13.37) 0.883 (0.08) 25.20 (3.00) 

18 18H 3.272 (0.59) 16.78 (3.02) 176.33 (8.96) 0.900 (0.04) 30.28 (3.69) 

24H 2.806 (0.43) 14.39 (2.20) 167.50 (16.55) 0.852 (0.08) 27.79 (3.29) 

Mean 3.039 (0.55) 15.59 (2.81) 171.92 (13.50) 0.876 (0.07) 29.03 (3.58) 

24 24H 2.765 (0.35) 14.63 ( 1.86) 135.90 (l3.39)t 0.718 (0.07) 27.09 (2.40) 

Total 1.810 (0.94) 10.13 (4.69) 151.02 (18.36) 0.867 (0.09) 24.53 ( 4.27) 

No significant differences between means within each age group; t n = 4 

Table 7.1 

Mean fibre characteristics of British Angora wether goats reared from six to 24 months of age on a high plane of nutrition; mean of six goats (S.D.) 



Sampling age Treatment Fleece weight Fleece growth rate Staple length Increase in length Fibre diameter 
(months) group (kg) (g/day) (mm) (mm/day) (~m) 

6 6HIM 0.800 (0.11) 4.82 (0.66) 130.67 (3.48) 0.787 (0.02) 21.82 (2.27) 

12M 0.938 (0.26) 5.65 (1.55) 150.58 (23.42) 0.908 (0.14) 20.45 (2.65) 

18M 0.837 (0.18) 5.04 (1.07) 151.75 (14.33) 0.9 15 (0.09) 20.03 (2.80) 

24M 0.967 (0.21) 5.83 ( 1.26) 158.50 (14.31) 0.957 (0.09) 21.58 (1.98) 

Mean 0.885 (0.20) 5.33 ( 1.18) 14 7.88 ( 17 .98) 0.892 (0.11 ) 20.97 (2.41 ) 

12 12M 1.710 (0. 18) 10.24 ( 1.09) 147.42 (12.55) 0.877 (0.07) 22.45 ( 1.18) 
1\) 

w 18M 1.564 (0.27) 9.37 (1.64) 148.58 (6.46) 0.885 (0.04) 21.35 (2.52) 
+:>-. 

24M 1.430 (0.43) 8.56 (2.60) 147.90 (13.95):j: 0.878 (0.08) 21.74 (1.57) 

Mean 1.568 (0.32) 9.39 (1.90) 147.97 (10.54) 0.880 (0.06) 21.85 (1.80) 

18 18M 2.668 (0.71) 13.68 (3.63) 158.25 (12.41) 0.808 (0.06) 23.80 (2.20) 

24M 2.895 (0.46) 14.84 (2.34) 161.75 (12.12)t 0.823 (0.06) 23.43 (3. 18) 

Mean 2.781 (0.58) 14.26 (2 .97 ) 159.65 ( 11.73) 0.814 (0.06 ) 23.62 (2.61) 

24 24M 1.998 (0.41) 10.57 (2.18) 138.00 (12.23):j: 0.728 (0.06) 26.09 (3.93) 

Total 1.581 (0. 79) 8.86 (3.87) 149.13 (1 5.29) 0.860 (0.10) 22.27 (2 .89) 

No significant differences between means within each age group; t n = 4; :j: n = 5 

Table 7.2 

Mean fibre characteristics of Angora wether goats reared from six to 24 months of age on a medium plane of nutrition; mean of six goats (S.D.) 



Sampling age Treatment Fibre diameter 
(months) group (~m) 

6 6L 25.27 (3.35) 

12 12L 29.06 (1.86) 

18L 28.08 (2.65) 

24L 25.74 (2.29) 

Mean 27.63 (2 .58) 

18 18L 25.1la (1.69) 

24L 21.97b (2 .58) 

Mean 23.54 (2.65) 

24 24L 29.41 (5.52) 

Total 26.38 (3 . 79) 

Means with different superscripts within each age group differ significantly (P < 0.05) 

Table 7.3 

Mean fibre diameter of British Angora wether goats reared from six to 24 months of age on a 

low plane of nutrition; mean of six goats (S.D.) 
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Appendix IV 

Treatment group 

High Medium Low 

6HIM 12H 18H 24H 12M 18M 24M 6L 12L 18L 24L 

Back fat thickness 
C (mm) 1.7 2.2 5.6 3.3* 1.5 2.8 2.0t 0 .6 0.8 0 .8 1.1 

(1.2) (0.8) (2.8) ( 1.5) (0.5) (1.4) (0.2) (0.5) (0.2) (0.4) 
1\.) 

w D(mm) 3.7 4.8 8.2 5.5* 4 .0 4.3 6.0t 1.4:j: 1.6 1.1 1.5 
0') (1.0) (1.2) (4.5) (2.2) (0.7) (1.0) (0.5) (0.7) (0.3) (0.4) 

(C +D) I 2 (mm) 2.7 3.5 6.9 4.4* 2.7 3.5 4.0t l.O:j: 1.2 1.0 1.2 
(1.0) (0.9) (3.1) ( 1.8) (0.6) ( 1.0) (0.2) (0.5) (0.2) (0.4) 

Eye muscle area 5.56 9.30 11.16 13.18 6.95 8.38 11.79# 6.29 6.89 5.77 7.93 
(cm2) (1.70) (1.73) (1.87) (3.30) ( 1.15) (1.73) (2.77) ( 1.19) ( 1.26) (0.79) (1.48) 

F-T (mm) 82.5 85.0 71.7 105.8 85.8 75.0 91.7 80.8 91.7 90.8 102.5 
(12.9) (8.4) (8.8) (36.7) (13.2) (15.2) (7.5) (3.8) (8.8) (6.7) (6.9) 

t n = 1· * n = 3· :j: n = 4· # n = 5 
' ' ' 

Mean back fat thickness, eye muscle area and upper leg length measurements of British Angora wether goats reared from six to 24 months of age 

on a high, medium or low plane of nutrition- mean (s.d.) of six goats unless otherwise indicated 
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