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Generation Of In Vitro B-Cell Chronic Lymphocytic Leukaemia-Specific T Cell Responses Using 

Dendritic Cells. RV Goddard. 

Immunotherapy using dendritic cells has shown encouraging results in both haematological and non

haematological malignancies. In this study, monocyte-derived dendritic cells from patients with B-ccll 

Chronic Lymphocytic Leukaemia were generated by culture in lntcrleukin-4 and Granulocytc Macrophage

Colony Stimulating Factor. Lysate-pulsed autologous dendritic cells were used as antigen presenting cells in 

eo-culture with autologous B-cell Chronic Lymphocytic Leukaemia T -cells. B-ccll Chronic Lymphocytic 

Leukaemia T-cells stimulated with B-cell Chronic Lymphocytic Leukaemia lysate-pulsed autologous dendritic 

cells showed a significant increase in cell surface expression of Interleukin-2 Receptor (CD25), Interferon

gamma secretion and cytotoxicity against autologous B-ccll Chronic Lymphocytic Leukaemia B-ccll targets 

hut not against targets from healthy volunteers. Responses were only stimulated by the B-ccll Chronic 

Lymphocytic Leukaemia B cell lysate. Cytotoxicity was Major Histocompatibility Complex Class 11 restricted. 

The addition of maturation agents such as Lipopolysaccharide, Tumour Necrosis Factor-alpha and 

Polyriboinosinic Polyribocytidylic Acid to monocyte derived dendritic cells was unsuccessful at increasing 

anti-tumour responses. Pre-treatment of T cells with lnterleukin-15 before stimulation by lysate pulsed 

autologous dendritic cells increased numbers of activated cells, cytokinc secretion and specitic cytotoxicity to 

B-ccll Chronic Lymphocytic Leukaemia 8-cells. Fusion of monocyte derived dendritic cells and B-cell 

Chronic Lymphocytic Leukaemia B-cclls generated both Major Histocompatibility Complex Class I and Class 

11 restricted cytotoxicity to B-ccll Chronic Lymphocytic Leukaemia B-cell targets. When B-ccll lysates were 

analysed using reducing sodium dodecyl sulphate-polyacrylamide gel electrophoresis, a B-cell Chronic 

Lymphocytic Leukaemia specific hand at 42,000 Dalton and other patient specific bands were observed. Only 

the 65.000 Dalton and 42.000 Dalton hands were capable of stimulating comparable T cell responses as the 

whole lysate. The 65,000 Dalton band from normal healthy volunteers showed a dominant peptide that closely 

matched Human Serum Albumin. The 42.000 Dalton band from B-cell Chronic Lymphocytic Leukaemia 

patients showed a possible match with Human Actin. 
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1. INTRODUCTION 

The Immune system 

The immune system is divided into the innate and the adaptive compartment . The 

innate immune system is the first line of defence of the human body against pathogens. If an 

infection is able to overpower these defences then the adapti ve immune system is activated. 

The adaptive immune system is capable of produci ng a specific reaction to the pathogen 

and maintaining an immunological memory of that pathogen so that a more effective 

response can be generated upon re- infection. The most important cells of the immune 

system are the white blood cells or leukocytes. Leukocytes consist of either cells which 

form a major part of the innate immune system (natural ki ller cells, neutrophils, 

polymorphs, monocytes, and macrophages) or lymphocyte (T and B cells) which mediate 

the adaptive immune response. The innate system and the adaptive system do not act in 

i solation of each other. Antigen uptake, processing and presentation is one of the main ways 

for phagocytes to activate lymphocytes. Once activated the lymphocytes secrete either 

lymphokines or antibodies, which in turn aid the phagocytes to destroy the infectious agent 

more effectively. 

1.2 B lymphocytes CB-cell ) 

B-lymphocytes possess three functions: (i) antigen presentation by presenting 

peptides upon the numerous Major Histocompatibility Complex (MHC) class IJ molecules 

on their cell surface, (ii ) antibody recognition of foreign proteins and (i ii) by effector cell 

13 



function through antibody production. Some but not all B-cells wi ll ex press the foll owing 

markers; cell surface designation (CD) I. CD4, CD5, CD6, CD9, CD 10, CD 19, CD20, 

CD2 1, CD22, CD23, CD24, CD37, CD38, CD40, CD 53, CD 54, CD72, CD73, CD74, 

CD79, CD80, CD81, CD82, CD83, CDw84, CD86, CDI 38, CDI39, CDI50, CDI78, 

CD 179, CD 180, CD229111. 

1.2. 1 B-cell development 

B-cells initially develop from lymphoid stem cells in the haemopoietic ti ssue of the 

foetal li ver. However, during the neonatal period the production of B-cells moves to the 

bone marrow where it continues in adult life. B progenitor cells express markers such as 

CD I 0, CD 19, CD38 and MHC class Ll. After re-arrangements of the heavy chain gene pre

B cells emerge expressing J..l heavy chains in the cytoplasm and CD20 on the cell surface 

and CDIO expression is lost. Proliferating pre-B cells give rise to smaller pre-B cells. Light 

chain gene re-arrangement occurs and the resulting immature B-cell expresses assembled 

surface immunoglobulin and CD2 1. Loss of CD38 expression then occurs. The resulting 

mature B-cell can be stimulated to secrete soluble immunoglobulin (antibody) by clonal 

selection driven by the presence of a pathogen's antigen within the body. However, B cells 

which bind cell-associated self an tigens can undergo apoptosis by clonal deletion or 

undergo receptor editing and fu rther recombi ne Ig genes. Initially the anti body will be an 

IgM type. However in further response to the antigen, the type of immunoglobulin changes 

(class switching) and B-cells of that clone become either plasma cells or memory B-cells. 

Although the structure of the antibody changes the antigen specificity rarely does. Plasma 

cells regain CD38 expression and show a new marker, PCA- 1, on their cell surface 121. 

1.2.2 Antibody production 

B-cells' definitive feature 1s thei r ability to produce immunoglobulins which, with the 

14 



addition of transmembrane section and cytoplasmic tail , can act as unique antigen receptors 

called B cell receptors (BCR). The immunoglobulin (lg) molecu le is made up of four 

protein chains, two light chains and two heavy chains (Figure I ). Each chain consi ts of a 

variable region at the amino-terminal end referred to as YL and YH. Differences in the 

variable regions create a plethora of antigen specificities (idiotypic) enabling the B cells to 

recognise many pathogen antigens. The remaining part of the molecule has a constant 

structure. The l ight chain is called the CL region. The heavy chain is further divided into 3 

globu lar regions, CH 1, CH2, CH3 stabilised by intra-chain disulphide bonds. Between CH 1 and 

CH2, the two heavy chains are linked by two disulphide bonds at the hinge region. This 

allows each variable region to bind antigen independently as it provides spatial flexibili ty 

{3} 

There are five different classes of immunoglobulin (lg) produced in humans; l gG, 

IgM , IgA, lgE, lgD. They vary in structure, particularly in the constant regions of the heavy 

chain amino acid structure. Hence each class of Ig's heavy chain is designated as y, 

1..1. , a , £, 8 and is highly conserved within each class of Ig (isotypic). IgM is a pentameric 

version of the basic Ig structure with a central 1 chain. The two heavy chains (1..1.-chains) 

have an additional constant region (CI..l4) with a penultimate cysteine enabling binding to 

the 1 chain or other Cl..l4 chains. The basic lg structures are held together by disulphide 

bonds between constant heavy chain regions 3 (CI-13). IgM secretion is conf ined to the intra

vascular pool and predominates in early responses. lgD has a high concentration of 

carbohydrate due to variations in amino acid sequence of the three constant 8-chains. lgD is 

found in human serum at low concentrations and is susceptible to proteolysis. lgE contains 

a fourth constant domain on the heavy chain (C£4). The hinge region is organised 

differently with C£2 placed between two disulphide bonds. The Fe porti on (released by 
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digestion with papain) of the lgE binds mast cells. lgG and lgA are further subdivided into 

sub-classes; lgG I , lgG2, lgG3 and lgG4 and lgGA 1 and lgGA2. IgG sub-classe differ in 

their hinge regions by the number of inter-heavy chain bonds. JgG is the major Ig found in 

serum and is present equally in intra-vascu lar and extra-vascular pools. lgGs are the major 

antibodies involved in secondary responses and anti -tox in function. IgA possesses an 

additional C-terminal octapeptide with a penultimate cysteine residue that can bind to a J 

chain. IgA is the main component of secretions such as sali va, colostrum, milk, 

tracheobronchial and genito-urinary secretions. It is found in serum mainly in a dimeric 

form. Secretory lgA, found in seromucous secretions, can occur in either subclass as a 

dimeric form binding the secretory component by cysteine residues in Ca l and Ca2 ' 41. 
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Figure 1: Antibody basic structures 

Soluble lgA 

""'' 

Basic structure of lgG 

Pentameric structure of IgM 

I 

~L____---
Takenfrom Turner M, Molecules which recognise antigen. In : Roit /M, Brostoff J, Male DK, Eds. 
Immunology 2m1 Edn. London: Cower medical publishing. 1989. 
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1.2.2 Importance ofT cell help 

Although 8-lymphocytes express receptors for lymphokines and chemokines, 

contact-mediated signals from T-cells are required to produce a highly effective humoral 

response 151. Firstly, signalling through the 8CR primes the 8-cell to be more responsive to 

signals from T cells 161. Engagement of MHC class 11 molecules stimulates early 

biochemical events and lead to 8 cell proliferation and differentiation !71_ MHC class 11 

engagement by T-cells enhances both 8CR signalling via 2 8CR co-receptors (CDI9 and 

CD22/'111 and CD40 191 signalling by eo-localisation with cholesterol and glycosphingolipid 

enriched membrane microdomains 1101. Direct signalling through CD40 occurs by ligation 

with CD 154, a trimer Tumour Necrosis Factor (TNF) family member, expressed on 

activated T cells. CD40 engagement can stimulate proliferation, antibody secretion, 

cytokine production, increased ability for antigen presentation, isotype switching, 

development of germinal centres and establishment of humoral memory responses fllf_ 

These many complex roles of CD40 engagement rely on the complicated interaction of 

CD40 with TNF-associated factors (TRAP's) 1121. Engagement of CD 134-Iigand (CD 134L) 

(OX40L) is thought to play a role in the secondary antibody response and immunoglobulin 

isotype switching 1131. Signalling through enhanced adhesion molecules such as intercellular 

adhesion molecule -I (ICAM-1) 1141, CD81 /1.1/ and CD22 1161 have been shown to amplify 

activation signals from T helper cells. Engagement of CD72 by its ligand CD I 00 enhances 

B cell activation via CD40 and inhibits lgG production but not initial lgM production 1171. 

CD27, a tumour necrosis factor receptor (TNF-R) family member, expressed by a subset of 

memory 8 cells is ligated by CD70 expressed by T lymphocytes at the later stages of their 

activation 1181. CD27-CD70 interactions are particularly important for the development of 

antibody secreting plasma cells 119
'. 
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Due to thymic selection ofT cells, self- reactive T cells are more tightly regulated 

than B cell s. Hence any self-reactive B cells cannot become activated and produce high

affinity autoreacti ve antibodies without T cell help. 

1.3 B-cell Chronic Lymphocytic Leukaemia CB-CLL) 

B-cell chronic lymphocytic leukaemia is one of the most common types of 

leukaemia among adults in Europe and North America 1201. B-CLL affects twice as many 

males as females. The median age at diagnosis is between 65 and 70 years. B-CLL is 

characteri sed by the accumulation of a clone of malignant B-cells in lymphoid tissue, the 

bone marrow and the peripheral blood. The first indication of the disease is often a 

consistent lymphocyte count of higher than 4.5. x 109/L in peripheral blood samples (often 

taken for other clinical reasons). The phenotype of these B-cells includes the expression of 

pan-B-cell associated cell surface markers such as CD 19, CD20, CD40, CD45RA, MHC 

class ll OR and CD37. The B-CLL cells also express high levels of COS, a molecule that is 

usually found upon the surface of T cell s but also on a small subset of peripheral B

lymphocytes 1211 and CD23 which are not usually expressed on other B-cell lymphomas. B

CLL cells usually express low levels of CD2 1, MHC class Il DP, CD I c and surface 

immunoglobulin . B-CLL cells sometimes express CD25. However, CLL cells can be 

differentiated from pro-lymphocytic leukaemia (PLL), mantle cell lymphoma or hairy cell 

leukaemia (HCL) by the absence FMC7 and CD 10 1221, from acute lymphoblastic leukaemia 

(ALL) and fo ll icular lymphoma (FL) by the absence of CD22, CD35, CD79b, CD I 0 and 

from myeloma by the absence of CD38 1231 . 

The B cells that accumulate in CLL patients are functionally inactive as they do not 

respond to B cell stimuli such as lipopolysaccharide (LPS), Ep. tein-Barr virus (EBV) 

proteins and anti -lgM antibodies. CLL B cells do not act as good stimulator cell s in an 
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al logeneic mixed lymphocyte reaction and fun ction as poor antigen presenting cells JNJ . The 

CLL clone persists wi thin the periphery due to its fai lure to respond to apoptoti c stimuli 

rather than increased proliferation of B-cells. In the majority of patients the CLL cells are in 

the quiescent Go phase of the cell cycle 1251• Hypomethylation of the bc/-2 promoter region 

results in high levels of bcl-2 protein in 85% of patients. bc/-2 is one of the proteins that 

control the apoptosis caspase cascade. Therefore, the high expression of bc/-2 has been 

linked along with other factors to the B-CLL cells' ability to resist apoptosis. 

Chromosome abnormalities were originally shown in 50% of B-CLL patients. 

However with the adoption of fluorescence in situ hybridisation (FISH) this has risen to 

80% of B-CLL patients. Deletion of the retinoblastoma suppressor gene (RBI) at 13q 14 is 

one of the most common chromosome abnormalities. However, RBI has not been shown to 

be involved in the pathogenesis of B-CLL. Patients wi th on ly a single deletion at 13q have a 

better average survival than patients with other chromosome abnormalities 1261. The next 

most common chromosome abnormality is deletions at the 11 q2 1-23 region disrupting the 

atax ia telangeictasia mutated (ATM), radixin (RDX) and FDX genes. This genetic 

abnormality may be responsible for fami lial CLL as germline mutations in the ATM gene 

have been identified. Deletions at 11 q usually correlate with a poor prognosis for CLL 

patients 1271 . Trisomy or partial trisomy of chromosome 12 is another common abnormal 

karyotype found in B-CLL. Tri amy 12 is as ociated with atypical cell morphology, bright 

expression of surface immunoglobulin, CD20 and FMC7 and absence of CD23, higher 

proliferative rate, advanced disease and poor prognosis 1281. Inactivation by the p53 tumour 

suppressor gene as a result of a mutation at chromosome 17p is associated with resistance to 

chemotherapy. Decreased p53 function can result in an increase in B-cell proliferation and 

prolonged cell survival. Therefore it is unsurprising that it is closely associated with 
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advanced disease and a more aggressive form of the di ·ease i .e. those patienrs with 

Richter' s transformation 171 . Trans l ocation~ of chromosome 14 at 32q have been ob ·erved in 

B-CLL The Immunoglobulin heavy chain is encoded at 32q. However, the frequency of 

these translocations amongst B-CLL patients is dependent upon the laboratory technique 

used. The most common translocation is from 14q32 to 11 q 13. The immunoglobulin heavy 

chain and bcl-2 genes become adjacent. This translocation is more commonly found in 

mantle cell lymphoma. Hence high frequency of translocation 14q32 to I I q 13 may be a 

re ult of misdiagnosis of mantle ce ll lymphoma as B-CLL 171 . 

B-CLL is an indolent disease but as the disease advances there is a progressive 

enlargement of the spleen and lymph nodes. Lymphoid cells accumulate in the bone 

marrow through diffuse interst itial infiltration resulting in the complete filling of the inter

trabecular space. Anaemia, thrombocytopenia and netropenia will develop due to failure of 

the bone marrow or because of plenic pooling or hypersplenism. A utoimmune haemolytic 

anaemia, thrombocytopenia or both (Evan's syndrome) can occur due to polyclonal 

autoantibody production by normal non-malignant B cell . Hypogammaglobulinaemia 

occurs due to the disordered immune function of B-CLL patients. B-CLL patients are more 

susceptible to infection such a S. pneumoniae, S. aureus, £. coli, or Herpes zoster and 

have a higher incidence of olid tumours probably also because o f the di ordered immune 

function. 

A lthough chemotherapy can induce partial or complete remission 1291, long-term 

disease-free survival is unusual. Therapy for CLL is given generall y with palliative intent 

rather than curative. The patients age, quality of life and immune status all influence choice 

of treatment. Cun·ently patients in the earlier stages of disease are reviewed regularly and 

only receive treatment when the disease progresses. For most B-CLL patients chlorambuci l 

2 1 



(an alkylating drug) is the front line treatment. In 50% of patients chlorambuci l produces a 

reduction in lymphocytosis, an improvement in haemoglobin and platelet count and 

shrinkage of lymphadenopathy and splenomegly. In these patients chlorambucil delays the 

rate of disease progression but does not increase overal l survival. The treatment is often 

discontinued when lymphocyte counts have returned to normal ranges. Patients can often 

develop resistance to chlorambucil. Corticosteroids alone such as prednisolone are only 

partial ly effecti ve. However, they may inhibit the infi ltration of lymphocytes into the bone 

marrow prior to treatment with an alkylating drug. Combination therapy of alkylating drugs 

and steroids increase response rates to 70% but not increase overall survival. Purine 

analogues such as fludarabi ne have widened treatment options for patients no longer 

responsive to chlorambucil. Early results are promising as treatment with fludarabine has 

been shown to increase complete remission rates, overall response rates and prolong disease 

free-survival 1301. However no change in overall survival rates has been seen. Recent tri als 

of bone marTow transplantation or monoclonal antibodies are promising 1311. New treatment 

modalities for this disease are requi red and trial s of bcl-2 antisense have begun. In view of 

the fact that B-CLL is a tumour of the immune system it seems challenging and logical to 

attempt to harne s that system to treat this disease. 

1.4 T -cells 

T cells are critical in developing cell-mediated immune response . 

I .4. 1 T cell receptor (TCR) 

There are 2 types of TCR. TCR I consists of a y-receptor chain encoded by chromosome 13 

and a 8-receptor chain encoded by chromosome 14. TCR2 consists of a 45kDa a -receptor 

chai n encoded by chromosome 14 and a 40kDa ~-receptor chain encoded by chromosome 7 

joined by a disulphide l ink near the cell membrane (Figure 2). Each chain contai ns a 
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variable domain and a con tant domain maintained by intra-domain disulphide bonds 1321. 

TCR are generated by a series of omatic site- pecific deoxyribonucleotide acid (D 

recombination reaction collectively termed variable diversity j oining (V(D)J) 

recombinations. The formation of the receptors 2 protein chains is dependent upon three 

recombination events; the recombination of V , D and J gene to form the variable domain 

of the a chain and the j oining of V and J to form the variable region of the p chain. Each 

variable region then associate with the recombined constant domains. This generate a 

large repertoire of T cells which can recognise many antigens. Rearrangement is tightly 

regulated and TCR genes are only fu lly assembled in T cell f .H/. 

Figure 2: TCR interaction with MHC 

cos• T cell C04• T cell 

Adapted from Schwart::. RH, Science. 1990; 248: I 350. 

The development of TCR I positive T cells is separate from TCR2 positive T cells. 

TCR I cells do not express either CD4 or CD8. TCR I cells are capable of recognising 

antigens such as tetanus toxin (IT), staphylococcal enterotoxin A , mycobacterial antigens 
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and heat shock proteins (HSP). TCR I cells can recognise highly polymorphic antigens 

such as tumour idiotypes from B cel l lymphoma. Recogni tion of antigen does not occur 

using the MHC system but by recognis ing intact antigens by HSP 70 ' 341
. 

M ost T cel l in the periphery have the TCR2 receptor. Each heterodirner is 

noncovalently linked to invariant chains of the CD3 complex (CD38, CD3y and CD3£ 

homodimer) and s-homodirner. Within seconds of antigen receptor cross- linking the 

phosphotyrosine content of Src family of non-receptor protein tyrosine kinases (PTKs) 

increases perhaps by autophosphorylation at the Src homology I (SH-1 ) si te. In resting 

lymphocytes key Src PTKs are kept in poorly phosphorylated states by phosphotyrosyl 

phosphatases such as those found on CD45. Src PTKs phosphorylate the immunoreceptor 

tyrosine activation motifs (ITAMs) of the invariant chains until binding wi th SH2-

contai ning proteins occurs. Zap contains two tandem SH-2 domains before the catalytic 

domain. Zap is recruited to sand £ subunits of TCR-CD3 complex by interaction with the 

activated ITAM' . This interaction in turns acti vates Zap{351. 

1.4.2 Major Histocompatibility Complex (MHC) 

The TCR2 molecu le is responsible for the recognition of antigens presented in the 

context of another molecule, the human leukocyte antigen (HLA), coded for by the M ajor 

Histocompatibili ty complex (MHC). Three maj or sets of molecu les are encodecl within this 

region on chromosome 6, class I, class U and class m. MHC class 11 molecules are made up 

of two polypeptides, an a-chain and a P-chain each with two domains. Genes wi thin the 

MHC class ll region that encode for many genes are arranged into three groups, DP, DQ 

and DR and contain genes for at least one a-chain and one P-chai n. MHC class I molecules 

are made up of an a-chain consisting of three domains and P2-microglobulin (Figure 4). 

Genes within the MHC class l region encode for twenty genes including the classical 
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Human Leukocyte Antigens (HLA) -A, -B, -C, and -E heavy chains (Figure 3). Class Ill 

genes encode complement components involved in the cleavage of C3. Other genes reside 

in this region such as TNF and HSP 70 '361
. At each gene locus there are many di fferen t 

alleles within the human population. Since any region of A, B, C, D-relatecl , or E may be 

linked together and with two non-identical chromosomes the number of haplotypes is very 

large. HLA haplotypes do not associate in a completely random manner. Paired specificities 

have been discovered with linkage disequil ibrium e.g. if 16% of the population have HLA-

A 1 and I 0% of the population have HLA-8 8, then 1.6% of the population would be 

predicted to possess both HLA-A I and HLA-B8 if the association was random. However, 

8.8% of the population carry HLA-A I and HLA-8 8 genes rm. 

Figure 3: Arrangement of MHC 
Class 11 region 

I 
I DP DZ DO ox 
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class I region 

Taken from Owens M. Major Histocompatibility complex. In: Roit /M, Brostoff J, Male DK, Eds. 

Immunology 2"" Edn. London: Gower medical publishing. 1989. and Parham Naw re. 1990; 348: 674 

The crystal structure of MHC class I molecule revealed a groove on its surface 

constructed by 2 domains of the a chain (a l and a2) formi ng the sides and a P-pleated 

sheet forming the floor. Along the groove there are 6 bi nding sites for the antigen peptide 

fJBJ which is usually 8 or 9 peptides long. Deep and highly conserved pockets at each end 

bind the carboxyl and amino termini by hydrogen bonding f39J. A deep polymorphic pocket 
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in the middle of the groove plays a major role in allele-specific peptide binding 1401. The 

MHC class Il crystal structure ha, now been de ·cri bed and it also contains a peptide binding 

groove which binds peptides usually 13 or 14 peptides long 1411
. Therefore MHC-binding 

motifs can now be predicted to bind certain HLA alleles f.Jll. 

Figure 4: Schematic representation of MHC class 11 and MHC class I 

MHC class n molecules MHC class I molecu les 

Taken from Roitt, Brostoff, Male. Immunology chapter 4, 2"d Ed. Cower medical publishing. 1989. 

CD4 or CD8 become intimately associated with the TCR and can enhance the 

binding of the TCR by binding nonpolymorphic portions of MHC molecules l.f3l or by 

affecting signal transduction 1441. T cells which have CD4 on their cell surface recognise 

antigens by engagement with MHC class II molecules. T cells which are posi tive for CD8 

recognise antigens by MHC class [ molecules. In general , CD8 positive T cells are 

responsible for cell-mediated ki lling and CD4 positi ve T cell s provide T cell help in the 

form of cytokine and chemokine secretion. There is a minority population of CD8 positi ve 

T cell s involved in cytokine secretion and a CD4 positive population of T cells that can 

26 



mediate cell cytotoxicity. 

Peripheral T cells that traffic through lymph nodes and the vasculature are 

susceptible to chemokine sjgnals to attract them and arrest their movement. T cells in this 

state have a 'hand-mirror' shape, with the nucleus pushed into the leailing edge of the cell 

and the cytoplasm concentrated in a trun 'handle-like projection that lags behind as a 

uropod. These rnghly polarised T ce11s have Integrins, TCR and co-receptors, CD43, CD44, 

cytoplasmic organelles (such as endoplasmjc reticulum (ER)/Golgi and microtubule

organising centre) and secretory vesicles all located in the uropod region £451
. Chemokine 

receptors CCR2 and CCR5 are found at the leailing edge of the T cell. 

1.4.3 T cel1 development 

T lymphocytes develop in the thymus fTom a few progenitor stem cells which 

originate from the fetal liver or adult bone marrow. Initially the thymic T cells ilifferentiate 

from stem cells by interaction with the thymic epithelial microenvironment. The 

thymocytes become organised into cortical and medullary regions within the thymus. T cell 

maturation occurs in three stages starting in the thymjc cortex and maturing in the thymjc 

medulla until they emerge as peripheral T cells (Figure 5). 
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Figure 5: T ceU development 
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At the earliest stage, in the thymic cortex, the cells undergo gene re-arrangements of 

the T cell receptor (TCR) p chain. The TCR-associated complex CD3 is expressed in the 

cytoplasm after the gene re-arrangement/"'61. The TCR2 thymocytes differentiate further 

and molecules such as CD l , CD4 and CD8 are expressed upon the cell surface 

simultaneously. It is at this stage that the T cells are educated by the thymic epithelial 

binding of the MHC and self-antigens. Firstly positive selection ensures that TCR receptors 

that bind "self MHC" haplotypes with low affinity "self antigens" on thymic cortical 

epithelial cells receive a positive signal for further differentiation. Thymocytes which do 

not bind MHC, because of errors in TCR rearrangement, undergo programmed cell death. 

Cells which bind "self MHC'" and show high affinity binding to "self-antigens" on thymic 

DCs (DCs) are deleted ' 471
. During the final stage of maturation the mature thymocytes 

loose CD l molecules from the cell surface and become either CD4 positive T cells or CD8 

positive T celJs ' 461
. Single positive ceJis that bind to "self-antigens" presented by thymic 

epithelial ceiJs in the context of "self-MHC" are anergised 1471
. Hence by negative selection 
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T cells with the ability lo recognise foreign antigens in the context of ''self MHC" travel to 

the periphery. 

Once T cells are activated by antigen presenting cells (APCs) and become effector T 

cells they migrate to non-lymphoid organs and migrate to sites of infection directed by 

integrins and inflammation related cytokines and chemokines. T-cells with high-affinity 

TCRs become dominant in the primary response and are specifically selected as memory T 

cells 14x1. A small subset of these cells may persist as memory effector T cells capable of 

launching an in si/11 secondary response to re-infection 1491. However, T cells that receive 

only a short stimulation proliferate but do not acquire effector function of cytokine 

secretion or cytotoxicity. These non-polarised cells retain their ability to home into the 

lymph nodes and become a different subset of long-term memory T cells which have no 

defined effector function until the establishment of secondary responses 1501. In this way T 

cell memory is able to establish more rapid and effective responses to a repeat infection 

whilst still retaining the flexibility in the nature of that response. 

I .5 Antigen presentation 

The mechanism for the initial formation of the T ceii-APC contact is not clear but 

may involve villus/villus contact 1511 with leukocyte functional antigen-) (LFA-1) or C02 

mediating adhesion 1521. Once initial contact has been made a slop signal occurs to enable 

the T cell to resist chemokine gradients that would otherwise stimulate the T cell to 

continue chemotaxis t5.il. The stop signal is raised intracellular calcium and this coincides 

with the T cell becoming a more spherical shape 1541. The nature of the calcium signal is 

related to the antigen encountered on the MHct.w. T cell activation is generated at the 

immunological synapse, a specialised area of contact between T cells and APC 1561 . Small 

TCR-MHC clusters form with CD4 eo-clusters and strong calcium signals are recorded. 
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The CD3 coalescence directs clustering of TCR molecules to form the central 

suprarnolecular activating complex with a surrounding peripheral supramolecular activating 

complex of ICAM-LFA-1 ligand pairs1571. Exclusion of CD45, CD43 and ICAM from the 

MHC-CD3 complex1581 stabilise the central supramolecular activating complex. 

Reorganisation of the microtubule-organising centre mediated by CD3 occurs following 

antigen recognition'59
i. 

The maintenance of the central supramolecular activating complex requires eo

stimulation by engagement of CD28 at this point1601. Both CD28 and CD 152 are 

immunoglobulin supergene family glycoproteins expressed as homodimers that play a 

major role in eo-stimulation ofT cells by signal transduction via cytoplasmic tails with 

tyrosine- containing motifs /61/. T cells express CD28 on the cell surface at relatively 

constant levels apart from small fluctuations which occur during T cell activation 1611. CD28 

enhances T cell activation by increasing proliferation, cytokine secretion and T cell survival 

in the presence of TCR stimulation that would otherwise be insufficient for T cell 

proliferation1611. CD28 also upregulates CD40L which is vital for the development of fully 

functional T cell effector cells1621. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) 

(CD 152) plays an inhibitory costimulatory role in regulating T cell activation. Although 

both CD28 and CD 152 bind CD80 and CD86 on APCs, CD 152 has I 00-fold higher avidity 

for CD86 than CD2816·11 . The CD 152 inhibitory signal will predominate when T cells 

encounter antigen on APCs 1641. The majority of CD 152 is localised within the peri-nuclear 

Golgi even at times of maximal expression, 36-48 hours after T cell activation 1"51 . 

Intracellular CD 152 traffics to the cell surface at the site of the TCR-APC interface and is 

quickly endocytosed 1651. Hence the inhibitory effect of CD 152 can be controlled by tightly 

restricted expression at the cell surface as it can compete with CD28 for its ligand and 
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downregulate aT cell response1641. Na"ive T cells do not express CD 152. 

The formation of the supramolecular activating complex allows high binding 

avidities to be achieved by summation of a variety of independent avidities 1601. Signal 

transduction molecules such as protein kinase C8 migrate to the central supramolecular 

activating complex 1661. Once the T-cell coupling signal has progressed, the TCR is down 

regulated. CD8+ T cells, after stimulation, internalise class I MHC ligands and CD281671. 

Serial triggering of additional TCR by low affinity peptide-MHC complexes results in 

sustained signalling whilst the T cell and the APC maintain cellular contact 16111. Eventually 

the T cell disengages from the APC having become fully committed to effector function. 

However, the early T-ceii-APC contact is highly dynamic as it can be disrupted by APC 

loaded with higher antigen concentrations1691, increased levels of T-cell cAMP, 

modifications of the T-cell cytoskeleton1701 or the presence of collagen1711. Prolonged 

contact at lymph nodes may be facilitated by the lack of collagen. 

1.6 Cytokine secretion 

There are principally two phenotypes of cytokine secreting T cell. Type I T helper 

cells (Th I cells) provide protection against intracellular pathogens such as bacteria and 

viruses and are also implicated in organ specific autoimmune disease 1721. Type 2 helper T 

cells (Th2 cells) are specialised to eradicate parasites such as tlatworms and roundworms 

and are involved in allergic reactions 1721. One of the defining features of Th I versus Th2 T

cells is the range of cytokines that they secrete 1731. Conversely the microenvironment of 

cytokines can affect the differentiation of any one particular na"ive T cell into one Th type or 

the other 1731. Figure 6 illustrates that development of Th I type response is driven by 

interleukin-12 (IL-12) by stimulating the production of interferon-y (IFN-y) 1741. Increased 

IFN-y secretion up-regulates receptors to IL-12 and inhibits the growth of Th2 T cells 1741. 
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Signal transducer and acti vator of transcription-4 (Stat-4) 1751, ezrin , radi xin and moe in 

fam ily (ERM) 1761 and T box tran cription factor (T-be£)'771 are all involved in Th I 

differentiation. IL-4 on the other hand induces Th2 responses by the production of IL-4, IL-

5 and [L- 13 through act ivation of Stat-6 1751, c-Maf 17111 and guanine, adenine, thymine, 

adenine contain ing (GATA-3) 1791. IL-4 down-regulates the expression of IL-12 receptors 

and so inhibits the growth of Th I type T cell s1731
. Th lrfh2 cytokine profiles become more 

fi xed as T cells are exposed to repeated or sustained culture conditions. However, even 

committed Th2 cells can be converted to Th I cells by T-bet 1771. A sustained TCR 

engagement is required not only to stimulate na'lve T cells but also for proliferating cells to 

differentiate into effector T cells especially the Th2 type 180
· 

811
. Long-term clones reach a 

point when they are fully committed to one or other Th phenotype/771 . 

Figure 6: Thl/Th2 T cell phenotypes 
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Generation of antigen-specific T cells that express CD8 is thought to require two 
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signals. Firstly, the engagement of the TCR by the peptide-MHC class I complex and 

secondly, a eo-stimulatory signal stimulating C02S on the T cell by engagement of COSO 

or COS6 on the APC 1611. Ligation of C02S provokes the release of IL-2 from antigen 

specific COS+ T cells which is necessary for the acquisition of cytolytic function 11121. CTL 

generation is often dependent upon T cell help supplied by C04+ T cells. Stimulation of 

cytotoxicity can be triggered by a single peptide-MHC I complex. There is rapid localised 

calcium release at the uropodium when cytotoxic T lymphocytes encounter target cells 1831. 

cos+ cytotoxic T cells kill targets by the perforin pathway. When effector-target 

cell contact is made the Golgi apparatus is re-orientated 1871. Perfmin normally stored in the 

cytoplasmic granules is exocytosed by the cytotoxic T cell !851
. Perforin inserts into the 

plasma membrane of the target cell and forms pores in the target membrane by 

polymerisation fli41. Polarised secretion of a family of eleven granule-stored serine proteases 

(granzymes) occurs tx41 . Granzyme B has clearly been linked to promote DNA 

fragmentation by identification of substrates including pro-caspases ' 841. The eleven 

granzymes have one of four specificities; tryptase cleaving after arginine or lysine , asp-ase 

(cleaving after asparagine), met-ase (cleaving after methionine or leucine) and chymase 

(cleaving after phenylalanine, tyrosine or tryptophan) 1841. The proteolytic activity is 

associated with the induction of DNA fragmentation and apoptosis. Perforin mediated 

cytotoxicity is common when there are high levels of IL-2 1851. The Perforin and granzyme 

killing pathways' principle function is to eliminate parastized, infected cells that resist 

apoptosis clue to pathophysiological changes. Hence it is the perforin mechanism that is 

linked to killing of virus-infected and tumour cells 186
'. 

An alternative pathway mediated by Fas-FasL (C095/CD95L) is also involved in 

cytotoxicity. Fas-FasL killing has a primary function of control of normal cell renewal by 
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inducing apoptosis of actively proliferating cells 1871. Interleukin-1 converting enzymes are 

activated within the target cell after attack by a cytotoxic effector cell flill_ IL is well 

established that CD4+ T cells express cytotoxic activity. Cell-mediated cytotoxicity is 

associated with Th I cells. CD4-mediated target cell death is by DNA fragmentation. CD4+ 

T cells preferentially kill their targets by Fas-FasL pathway but can also kill by the perforin 

pathway. CD4+ T cells preferentially lyse MHC-class 11 cells such as APCs. CD4+ T cells 

are capable of killing tumour cells by bystander lysis 1881• 

1.8 Antigen presenting cells (APC) 

B cells, monocytes, macrophages and DCs are capable of presenting antigens to 

both B and T cells. Both B-cells and T-cells express reciprocal adhesion molecules such as 

!CAM-I (CD 54) and LFA-1 (CD 11 a-CD 18) and thus, by establishing close cell-cell 

contact, facilitate antigen presentation and T cell activation 1891• CD40 has been shown to 

play a crucial role in enhanced antigen presentation by B-cells to T-cells 1901. Activated B 

cells can induce proliferation and differentiation of un-activated B cells by means of the 

CD 134L-CD 134 (OX40) interaction 191f. The interaction of CD 137 on activated T cells and 

CD 137L on B cells delivers important eo-stimulatory signals to the T cell 1921. 

1.8.1 Dendritic cells <DCs) 

Dendritic cells are easily identifiable under the microscope by their dendrite cellular 

processes around the cell lamellae. Dendritic cells vary in their differentiation stale and 

cellular origin. The first dendritic cell to be described was the Langerhans cell. These are 

na"lve skin DCs. Their primary function is antigen uptake and they are highly adapted to 

that. Langerhans cells express Lag antigens, and Langerin or Birbeck granules can easily be 

observed 1931. Follicular DCs do not originate from the bone marrow but retain antigen for 

longer periods and re-stimulate B cells within the B lymphoid follicle. In general, DCs of 
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myeloid origin associate with T cells within the lymph nodes to initiate proliferation and 

activation ofT and B cells. These cells are MHC n+, CD4+, CD33"'ong+, CDI23Jim+. 

CD 13'"''"g+, CD29+, CD58+, COS+, C02+ and CD86+ and produce large amounts of IL-l~. 

IL-6, IL-12 TNF-a and IL-8 upon stimulation ' 941
. Thymic or lymphoid DCs have an 

altogether different role in the deletion of maturing T cells 1951 • They possess unique 

markers CD8q ' 961 as well as COlic+, DEC205+, CDIIbdim, 3301- and CD4-f931
. Thymic 

DCs also have a mature phenotype although the maturation stimulus is unclear it is not 

related to pathogens or inflammatory stimuli like myeloid DCs. A further type of dendritic 

cell, plasmacytoid DC, was identified as the dendritic cell present at inflamed lymph nodes 

surrounding high endothelial venulesf97J_ They are distinct from monocytes and myeloid 

DCs in that they are CD 123+, CD45RA +, CD4+, IL-3R+ and CD lie' and CD I a· and present 

in low levels in peripheral blood'981
. When cultured in vitro in the presence of CD40L 

myeloid and plasmacytoid DCs mature into DC I and DC2 which selectively trigger Th I 

and Th2 responses respectivel/991
. Although the degree to which the responses are 

polarised is also dependent upon the maturation state of the DC and the DC: T-cell 

ratio' 1001
. Thymic and plasmacytoid DCs appear to share a common lymphoid precursor 

which is COlic-, CD la- and IL-3R+ whereas, interstitial DCs and Langerhans cell derived 

DCs appear to share a myeloid precursor which is COlic+, COla+ and IL-3R·f9.if_ 

Dendritic cells are a discrete population of "professional APC". They are referred to 

as such because they are capable of stimulating both a primary and secondary immune 

response. In fact DCs secrete specific chemokines such as CCLI8/DC-CK I, CCLI9/ELC, 

CCL22/MDC and CCLI7/TARC that attract na'ive, recently activated and memory T cells 

that express CCR7 and CCR4' 101
· 

1021
• They present antigens in the context of MHC class I 

and ll and express the vital eo-stimulatory molecules such as CD80, CD86 and CD40. 
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Immature resident DC's are present in the peripheral tissues where they are highly 

specialised for antigen uptake by micropinocytosis via aquaporins 3 and 7, clathrin

mediated endocytosis, specific uptake by DEC205, mannose receptor, Fe receptors, heat 

shock proteins by CD91 and phagocytosis by CD36 through Crkll-Dock 180-Rac I complex 

11031. Immature resident DC's spontaneously migrate at a low rate to the draining lymph 

node. MHC class Il complexes on these cells are not stably expressed on the cell surface but 

accumulate in lysosomes 11041. These DC's have not received danger signals and are not 

mature hence they do not induce effector T cell responses. These DCs have a low density of 

antigen and low levels of eo-stimulation molecules and have been shown to stimulate 

regulatory T cells to secrete IL-l 0(1°51. Once antigens and "danger signals"11061
, in the form 

of cytokines and chemokines, have been detected, the DCs migrate to the closest draining 

lymph node. Monocytes are recruited from the blood and rapidly differentiate into DCs11071
• 

These replacement DCs are stimulated to continue antigen sampling in the periphery by the 

secretion of chemokines by the originally stimulated DCs110111
. During this migration the 

dendritic cell becomes a highly specialised antigen-presenting cell and secretes a different 

set of chemokines(IOH/. Mature DCs have high levels of MHC molecules on their cell 

surface but low rates of new MHC biosynthesis thus making them insensitive to new 

antigens 11041
. Macropinocytosis and phagocytosis is down-regulated by mature DCs and 

this mechanism involves a small GTPase, Cdc42 (1 031. In vitro studies have demonstrated 

that DCs mature in response to inflammatory stimuli such as LPS11091 and TNF-a11101 and T 

cell feedback signals such as CD40L11111.0nce an interaction between DCs and 

lymphocytes has been formed the dendritic cell matures further in response to signals from 

the lymphocytes. Activated DCs express the lectin DC-SIGN which binds ICAM-3 and 

hence stabilise the DC-T cell synapse 11121. The kind of response stimulated is dependent 
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upon the nature of the antigen and the adjuvant properties of any microbial products, upon 

the receptor through which DC maturation agents signal, upon the origin of the responding 

DC subset, upon the microenvironment in which the antigen is encountered and upon the 

cytokines released by neighbouring cells1931. The evolution of an immunodominant T cell is 

due to interclonal competition for APCs. The competition has been decreased 

experimentally by increasing the number of available antigen loaded DCs 11131. Hence a 

more common pathogenic antigen will stimulate a broader spectrum ofT cells. Eventually 

the DCs will die. Interaction between DCs and na·lve CD4+ T cells results in the DCs' 

disappearance from the lymph node1" 41. 

1.9 Antigen processing 

1.9.1 MHC class 11 antigen processing 

Exogenous proteins are taken up into APCs by phagocytosis, by fluid-phase 

endocytosis or by specific receptors such as the mannose receptor 1051. Such receptors 

target and concentrate the antigen into the intracellular compartments for processing and 

interaction with class II molecules and hence can recognise rare antigens 1" 61 . The invariant 

chain Ii directs class 11 molecules into the endocytic pathway and protects them from 

binding peptides before reaching the endosomal compartment (as illustrated in Figure 7). 

The Ii is proteolysed in a sequential multi-step process to form a class 11 associated Ii 

peptide (CLIP) which is replaced by peptide antigen 1" 61. Exogenous antigen is unfolded by 

exposure to acidic pH. Unfolding is also aided by y-IFN-inducible lysosomal thiol reductase 

(GILT) which reduces the inter-molecular and intra-molecular disulphide bonds and tertiary 

protein structure 1" 71. Antigen is unlocked by initial cleavage by endopeptidases and is 

attributed to the cysteinyl protease asparaginyl endopeptidase (AEP). AEP has been shown 

to be essential in proteolysis of carboxy-terminal domain of tetanus toxin antigen in order to 
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order to produce antigenic peptides associated with tetanus toxin T cell responses fliBJ_ 

Specific exopeptidases further degrade the protein into peptides by trimming protein 

residues from the ragged amino or carboxyl termini. The endocytic proteases most 

commonly found in APCs are the aspartic protease cathepsins (Cat) D,B,F,H,L,S,Z and 

AEP fJ/
91. These proteases are synthesised in the endoplasmic reticulum (ER) as 

proenzymes with a propiece that occupies the active site. The propiece is removed by 

autocatalytic or paracatalytic enzyme action and the mature active form of the enzyme is 

generated 11201. The final step of Ii proteolysis was mediated by Cat S in B cells and DCs 

whereas Cat L performed this final cleavage in cortical thymic epithelial cells fli6J. Once Ii 

proteolysis is complete the peptide is loaded onto the MHC class II molecule. Long 

polypeptides can bind with the immunogenic epitope anchored in the MHC groove. The T 

cell epitope is thus protected whilst the peptide is trimmed. Factors which influence 

antigens presented by class ll molecules can involve the antigen, its glycosylation state, its 

interaction with internalisation receptors and its early binding of MHC class II molecules 

11211. Other factors which regulate the class Il restricted peptides are the cathepsin genes 

expressed by each APC e.g. Cat S, Cat F and Cat Z are found in bone-marrow derived 

APCs (B cells, DCs and macrophages) whereas Cat Lis found in macrophages and cortical 

thymic epithelial cells 11221. The strength of proteolysis in the endocytic compartments is 

regulated by factors such as cytokines (IFN-y, IL-6, TNF-a, ll.r I b and ll.r I 0), pathogen 

products (Bm-CPI-2 secreted by the nematode Bn1gia malayi and toxin secreted by 

Helicobacler pylori) and endogenous competitive inhibitors (propiece of the enzyme, 

cystatin inhibitor family and p41) fJ/
61. 

38 



Figure 7: Classical MHC class Il antigen presentation pathway 
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1.9.2 MHC class 1 antigen processing 

1-lliC class I pathway (Figure 8) is involved in antigen presentation of endogenously 

synthesised proteins to cytotoxic T lymphocytes (CTLs). Antigenic peptide fragments are 

generated by the multicatalytic proteasome complex. The 20S proteasome core is barrel 

shaped and composed of four stacked rings of seven subunits each with two outer a rings 

and two inner ~ rings. The cleavage of peptide bonds is performed by ~ 1, ~2 and ~5 with 

their active face inside the proteasome lumen. Assess to the catalytic lumen is controlled by 

19S cap made up of fifteen different sub-units. IFN-y treatment stimulates the replacement 

of ~1 , ~2 and ~5 with subunits lymphoblastoid type of latency-2 (LMP-2), MACLl and 

LMP-7 to form the immunoproteasome and thus changing the cleavage preferences fllJJ_ 

The peptides are shuttled into the ER by a nucleotide triphosphate (NTP)-dependent 
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heterodimeric complex composed of the transporters associated with antigen processmg 

(TAP), TAP I and TAP2 1124
· 

12
-'1. The TAPl ffAP2 complex select peptides of a di tinct 

length (8- 10 amino acids) and according to the binding affinities of the 3 N-terminal and C-

terminal end amino acid peptide residues 1126
· m. m. 1291

. The expression of TAPl and 

TAP2 can be increased by IFN-y stimulation ' '301
. Peptides can also be processed by the 

TAP independent pathway which involves proteolysis of hydrophobic signal peptides from 

proteins translocated directly into the ER ''31
· 

1321
. TAP is physically as ociated with MHC 

class I molecules and mediates the loading of peptides into the MHC class I binding cleft 

either directly or via chaperone molecules such as tapasin 1133
·
1341

. Export of the MHC class 

I -~2-microglobu li n -peptide complex is regulated by the chaperone molecule calreticulin . 

The fin al trimeric complex of MHC class I heavy chain, ~2-microglobulin and peptide is 

transported to the cell surface by the trans-golgi complex ' 135
· 

136
· 

1371
. At the cell surface the 

peptide is presented in the context of a specific MHC class I molecule and interacts with the 

clonotypic T-cell receptor. 

Figure 8: Classical MHC class I antigen presentation pathway 
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based upon Figure I from Seliger B, Maeurer MJ, Soldano Ferrone. Immunology Today. 1997; 18:293. 
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1.9.3 Cross-priming 

The term cross-priming was first described by Bevan/1381 and describes the ability of 

host APCs to prime cytotoxic T lymphocyte responses against minor histocompatibility 

antigens captured from foreign donor cells. lt is primarily used to describe the uptake and 

re-presentation of cell associated antigens in the class I pathway /1 391 but has more recently 

been applied to the class IT pathway as well /1 401
. Cross-presentation has been shown to be 

involved in tolerogenic responses (cross-tolerance) by inducing tolerance to parenchyma! 

antigens 1140
· 

1411 and immunogenic responses (cross-priming) by inducing CTLs to tumours 

I 
142

· 
143

1, grafts I 
144

' and DNA-encoded antigens 11451
• The cell type responsible for cross

presentation of antigens has not been isolated in vitro it has been found that macrophages 

1
146

· 
147

1, DCs fl 48
' and B cells 1149

' can all be induced to cross-present exogenous antigens of 

high concentration. A possible candidate for the cell responsible for cross-presentation was 

isolated from a genetically modified tumour model and this cell bore characteristics of both 

DCs and macrophages 11501
. Dendritic cells have been shown to be able to capture apoptotic 

cells and cross-present class-1-restricted antigens whereas macrophages could capture 

apoptotic cells but not cross-present the antigens 11481
. Dendritic cells express avP3 integrin 

which may play an important role in this process 1151
1. 

Several heat-shock proteins, HSP70 /1 521
, HSP90 and gp96 /1 531 have been shown to 

immunise CTL responses that are specific for antigens derived from donor cells. The HSPs 

act as chaperones, carrying precursors of cellular peptide antigens that can be presented by 

any MHC haplotype . However, proteins such as gp96 can be absent and cross-presentation 

will still occur 11541
• 

For CTL development by cross-presentation, antigen has to be cross-presented by 
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the same cell to COS+ and CD4+ T helper cells'1551
. This implies either a three cell cluster 

enabling short range soluble signals such as IL-2 or a sequential interaction with the C04+ 

T cell which modifies the APC enabling it to stimulate the COS+ effector cell. C040 has 

arisen as one of the molecules that could mediate this sequential stimulation11561
• Other 

signals provided by virus infection can transform the APC into a CTL priming cell ' 157
'. 

Hence some CTL responses require CD4+ help and others do not. 

1.10 Tumour antigens 

Several human (MHC) HLA class !-restricted tumour-associated antigens (TAAs) have 

been isolated. They can be segregated into the following groups. 

a) Oncofetal antigens 

T AAs encoded by normal, non-mutated genes may be persistently expressed by tumour 

cells and encode differentiation antigens associated with an earlier fetal stage which are 

silent in normal adult cells fl 581
. Of the twelve members of the melanoma antigen

encoding gene (MAGE) family six are expressed in melanoma, head and neck cancer, 

non-small cell lung cancers and bladder carcinomasfl59
· 

1601
. MAGE-1 expressed on 

testis is not presented in terms of MHC class I fl 58
'. Therefore it has potential as MHC 

class I specitic cytotoxic T cells will be unable to recognise it on the testis. Other 

oncofetal antigens include BAGE fl 611
, GAGEfl621 in melanoma, a-fetaprotein in 

hepatic carcinoma/1631
, Carcino-embryonic antigen (CEA) in colonic cancer ' 1681

• 

b) Tissue-specific differentiation antigens 

These are non-mutated antigens specifically expressed by a specific cell type whose 

expression levels may change in individuals with cancer. Melanoma antigens from 

melanocytes such as tyrosinase {1
641

, gp I 00 11651
, Mart-1/melan A, ' 1661 were some of the 
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first antigens to be described. The membrane tyrosinase kinase receptor her-2/neu 

normally expressed in epithelia has been associated with breast and ovary cancer 11581
. 

c) Neoepitopes 

These antigens are generated by point mutations in ubiquitously expressed genes such 

as CDK4, ~-catenin 11671 and MUM-IIL33-B. 

d) Point mutations in oncogenes 

Point mutations in oncogenes are usually found in carcinogen induced tumours such as 

the tumour suppressor gene p53 or K-Ras codon 12, 13 or 61. p53 mutations have been 

associated with human colorectal cancer and human lung carcinomas 11681
. K-Ras has 

been associated with patients with gastrointestinal cancer 11581
• 

e) Recombined proteins 

Fusions between 2 proteins results in production of new antigen such as the bcr/abl 

fusion gene found in CML patients. 

f) Viral epitopes 

After infection with certain viruses, genes of the virus express cellular oncogenes which 

cause growth and uncontrolled cellular division hence resulting in malignant 

transformation. Viruses associated with cancer such as Epstein-Barr Virus (EBV) in 

lymphomas, Human T cell leukaemia virus- I (HTL V -I}, Hepatitis B virus in 

hepatocellular cancer and papilloma virus in cervical cancer all express viral epitopes 

(15/ij 

g) ldiotypic epitopes 

The malignant B cell in B cell lymphomas secrete immunoglobulins of the same 

idiotype which can act as antigens. The malignant T cell clone in T cell lymphoma all 

bear TCR of the same idiotype 1158
1. 
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h) Mucin rich epitopes 

Tn is a blood group-related carbohydrate epitope consisting of a-N-acetyl-galactosamine 

linked to the hydroxyl group of serine or threonine in glycoproteins. TAG-72 is a 

common glycoprotein marker that results from the addition of sialic acid on to Tn and is 

found in gastrointestinal, breast and ovarian carcinomas. Thomse-Friedenreich antigen 

(T-antigen) is generated by the addition of P-linked galactose to the Tn and is found on 

epithelial tumours particularly colon cancer. Normally the expression of these antigens 

is masked by the additional terminal sugar moiety 11681
. MUC I gene mucin is found in 

breast, pancreatic and ovarian cancer. A mucin is encoded that is heavily glycosylated in 

normal cells and exposed in malignant cells revealing a glycoprotein which is antigenic 

[169/ 

1.11 Recognition and presentation of tumour antigens 

Cell surface expression of MHC class I molecules is reduced on human tumours 1170
· 

1711
• Loss of functional LMP-2, LMP-7, TAP! and TAP 2 has been shown, in tumour cell 

lines from small-cell lung carcinoma /172/, Burkitts lymphoma /1 731 and hepatocellular 

carcinoma /1 741 and in surgically removed malignant tumours /175/, to correlate with low 

surface expression of MHC class I. However, in some human prostate carcinoma cell lines, 

despite high cell-surface expression of MHC cla<>s I, there are low levels of TAP2 rnRNA 

/1 761
• Down-regulation of TAP molecules, impairing the assembly of MHC class I molecules 

in the ER, resulted in low expression and stability of tumour antigen bearing complexes on 

tumour membranes. TAP defects therefore offer an explanation of how tumour cells may 

escape MHC class I restricted CTL-mediated recognition /1 771
. Some tumour epitopes are 

processed more efficiently such as MAGE-A3 by the immunoproteasomes and others are 

not such as Tyrosinase, gp I 00, Melan-A. Cells unable to catabolise the tumour proteins to 
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expose MHC class l binding epitopes do not express these epitopes on the cell surface and 

so evade reactive T cells to those epiotopes {1
231

. Cells with TAP abnormalities show 

enhanced lysis by natural killer (NK) cells. Therefore, TAP-independent loading of antigens 

should still occur. Other methods of antigen presentation such as MHC class li antigens, 

nonpolymorphic CD I molecules, minor histocompatibility antigens such as TL and heat 

shock proteins may be the remaining anti-tumour immune surveillance mechanisms. 

I .12 Immunotherapy 

Early attempts at cancer immunotherapy were relatively crude, such as injecting 

patients with killed tumour cells or adjuvants such as Bacillus Calmette Guerin fJlR/ and 

Cotynebacterium parvwn. That the immune system had the potential to eradicate residual 

leukaemia became apparent during allogeneic bone marrow transplantation. The graft

versus-leukaemia (GVL) effect of the incoming donor immune system was a consequence 

of graft-versus-host disease (GVHD) f 
179

' 
180

· 
1811

• GVL is based upon direct donor T cell 

recognition of the recipient's allogeneic MHC molecules. This would also encompass 

recognition of recipient 'self peptide sequences held within the recipient's allogeneic MHC 

molecules. Amongst the donor T cells stimulated by allogeneic differences in MHC would 

be a small proportion ofT cells able to recognise antigens on the tumour cells. CD4 + T cell 

allo-recognition of MHC class 11 molecules would provide T cell help for responses to 

tumour peptides which had previously been inhibited due to lack of presentation of tumour 

antigens in the context of MHC class 11. The background cytokine profile generated by a 

large anti-MHC response would infiuence cells such as DCs and natural killer cells too 

[!/ill. T cell depletion of the donor bone marrow has decreased GVHD but also increased the 

relapse rate and engraftment failure of HLA-matched allogeneic bone transplantation. 
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Donor lymphocyte infusions have now become a more effective treatment for patients after 

allogeneic bone marrow transplantation in CML, but not so for other haematological 

malignancies such as AML, myelodysplasia and multiple myeloma 1 tXJJ_ Analysis of the T 

cells from successful allogeneic transplants that had received cos+ depleted donor 

lymphocyte infusions have found HLA class !-restricted CTLs that recognise broadly 

expressed minor histocompatibility antigens IIMJ. Reduced intensity conditioning treatments 

prior to transplant has also resulted in less GVHD in allogeneic MHC-matched setting in 

CML (IX51. 

Initial attempts al vaccination with autologous or allogeneic tumour cells were 

largely unsuccessful {IX6/. Identification of tumour antigens such as MAGE, BAGE and 

GAGE advanced the prospects of vaccination for immunotherapy (!Ill!_ More tumour 

associated peptide sequences were determined by peptide elution (!Bill, motif analysis 1
1891 

d . "d" "b d. (190 191 1921 A I .. d. . .b d" b f I an ant1-1 10type anti o 1es · · . s a resu t ant1-1 1otyp1c anti o 1es ecame use u 

as therapeutic agents 11931
. Peptide vaccination to target antigens such as MUC-1 showed 

strong responses 11941
. However, peptide vaccines were susceptible to proteolytic digestion. 

Peptides were designed with a pan-reactive DR epitope, a CTL activating epitope and a 

fatty-acid moiety in order to overcome this 11951
. Heat-shock proteins offered a mechanism 

by which peptides could be isolated and more effectively used as a vaccine. The heat-shock 

protein would have non-covalently bound peptides generated from the tumour cell. 

Vaccination with tumour derived HSP-peptide complexes has shown protective immunity 

in animal studies 1196
· 

1531
. 

The isolation of tumour associated antigens made it possible to use the humoral 

arm of the immune system as therapy. There are two main mechanisms by which antibodies 

can mediate tumour lysis. Complement-fixing antibodies bind to the tumour cell membrane 
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and promote the attachment of complement components that create pores in the tumour cell 

membrane and disrupt the cell by loss of membrane integrity. Antibody-dependent-cell

mediated cytotoxicity (ADCC) occurs when antibodies usually of the lgG class form an 

intercellular bridge by binding the variable region to a tumour antigen on the tumour cell 

and binding effector cells such as NK cells macrophages and granulocytes, by Fe receptors 

such as CD64, CD32 and CD 16. In vitro and in vivo ADCC has been shown to be more 

innuential in tumour lysis than complement fixation 11631. However, ADCC effector cells 

have shown poor infiltration of large tumour masses and loss of the tumour antigen 

frequently interferes with antibody therapy 0631 . Anti-idiotypic responses have been 

generated in non-Hodgkin's lymphoma (NHL), lymphomas and B-cell neoplasms such as 

multiple myeloma 131. Analysis of differentiation specific cell surface molecules lead to the 

development of Campath-1 H (target is CD52), Rituximab (target is CD20) and Bexxar 

(target is CD20) which are now being used in the treatment of 8-cell malignancies 

including B-CLL 11971. Bispecific antibodies were generated which bound target cells with 

one domain and effector cells with the other 11981. More effective than this was the grafting 

of effector cells with a chimeric receptor, consisting of a heavy and light chain variable 

region of a monoclonal antibody (that binds a tumour associated antigen) and an 

intracellular signalling domain fl 99
• 

200
· 

201
· 

202 1. 

Adoptive cellular immunotherapy was demonstrated in animal models. Tumour 

specific syngeneic T cells were transferred into hosts bearing tumours. These experiments 

showed that complete tumour elimination required an extended presence of transferred T 

cells within the host. Tumour reactive lymphocytes that had infiltrated solid tumours (TlL) 

were isolated and expanded ex vivo with IL-2, tumour or both. TILs were re-infused into 

patients. These TIL were able to home to the tumour and mediate a significant effect in 
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melanoma 11631
. Recently DCs are being used to generate T cell clones that could be re

infused 12031
. 

Lymphokine-activated killer (LAK) cells have been activated in vitro by IL-2 

treatment. They are non-MHC restricted in their tumour killing. Clinical studies with 

infusion of LAK cells and IL-2 induced remissions in patients with malignant melanoma 

and renal cell carcinoma. However, toxicity levels were very high 1204
· 

2051
• It was found that 

lower doses (less toxic) of IL-2 were as effective and that LAK cells did not add to the 

efficacy of IL-2. Systemic administration of cytokines was complicated by their widespread 

and varying functions. Cytokines considered for immunotherapy included IL-l, IL-2, IL-4, 

IL-6, IL-7, IL-l 0, IL 12, TNF-a and p, interferon (IFN) a,p, and y and granulocyte 

macrophage- colony stimulating factor (GM-CSF) 131
• Systemic immunotherapy with 

cytokines such as IFN-a and IL-2 in renal carcinoma 12061
·
12071 and melanoma'2081 have 

yielded modest responses rates with low complete remission rates. IFNs have shown 

disappointing results in solid tumours but unexpected results in hairy cell leukaemia, 

Kaposi's sarcoma and as a maintenance treatment for multiple myeloma. TNF has shown to 

be inactive and toxic /31. These studies indicated that cytokine therapy alone was susceptible 

to immunosuppression by the tumour and was best used in combination with other 

treatments ' 2091
. 

In transforming growth factor-P (TGF-P) insensitive tumours, i.e. ones which do not 

have a growth response to TGF-p, neutralising TGF-P by antisense in vitro and in vivo 

inhibited the growth of malignant cells 12101
. Jn·adiated tumour cells were vaccinated into a 

rat glioma model and found to be moderately effective. However, when the tumour cells 

were also modified genetically to secrete low levels of TGF-p, effector cells were generated 

with much higher lytic ability (2/1}. Antibodies neutralising TGF-P showed an increase in 
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NK activity in a mouse/human breast cancer model '2121
. The positive efrect of IL-2 on the 

stimulation of CTLs coupled with anti-TGF-P antibodies has shown promising results 12131
. 

In order to ensure presentation of tumour associated antigens in the context of MHC 

class I molecules, vaccinia virus, fowlpox virus and adenovirus have been used as viral 

vectors to encode tumour associated antigen genes. Vaccinia virus encoding CEA antigen 

has generated antibody and cellular responses in colorectal cancer patients ' 2141
• Anti-

tumour responses have been observed after vaccination with tumour cells that have been 

adenovirally transduced with cytokines such as GM-CSF fll.lf_ DNA vaccination has also 

been used as a vaccination method for ensuring tumour antigen entrance into the cell ' 2161
. 

In B-cell lymphomas idiotype specific DNA sequences have been used to immunise 

patients ' 2171
. Cytokines such as LL-12 have been combined with DNA vaccines and show 

enhanced responses fltRJ_ Tumour cell loss of MHC class I antigen expression is thought to 

be an escape from tumour surveillance ' 2191
. Gene transfer of tumours with HLA class I 

molecules has been shown to elicit clinical responses /220J_ 

The recent marked growth in our understanding of the immune system and its 

interaction with malignant disease includes the mechanism by which antigen is presented to 

T lymphocytes [22
1.2221

. Dendritic cells are now known to be essential for the initiation of 

primary immune responses and are particularly efficient at capturing and presenting 

. . T 11 f221 224 22>1 B . . h . . . h . h ant1gens to na1ve -ce s · · · · . y pmmng t em 111 v11ro w1t tumour antigens, t ese 

"professional" antigen-presenting cells (APCs) may bypass the state of inertia in which the 

immune system appears to co-exist with most tumours ' 2261
. Studies of dendritic cell 

vaccines in both animal models and man have demonstrated the generation of anti-tumour 

· f271 227 2281 R 1· bl h d f . . DC f 1mmune responses · · · . e 1a e met o s or generatmg Immature s rom 

peripheral blood mononuclear cells have facilitated their use in immunotherapy ' 229
·
2301. In 
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vitro studies in man have demonstrated that DCs loaded with tumour antigens can induce 

CTL . I'll 'I' 'Ill . . . J'l~ Jll Jl(lj responses agm nst melanoma •· ·-· -·-· · , chrome myelo1d leukaemm· -· ·-· · ·-· , acute 

myeloid leukaemia 12371 and pancreatic cancer 12381
. In vivo studies using DC loaded with 

tumour antigens have demonstrated encouraging clinical anti-tumour responses against; B-

cell lymphoma 12391
, melanoma 12401

, myeloma 12411
, parathyroid carcinoma 12421

, prostate 

1'4l 744 ' 411 d I · 1' 461 T . f"l . b DC h b h cancer - · · - ·- · an rena carcmoma - . umour 111 1 trat1on y s as een s own to 

be a good prognostic factor in colorectal adenocarcinomas 12471
, human gastric cancer 12481 

and papillary thyroid carcinomas 1249
1. 

2.18 Rationale for this study 

It seems unlikely that an intrinsic "malignant" transformation of the COS+ B cell is 

solely responsible for the pathogenesis of B-CLL. The rapid death of these cells by 

apoptosis in vitro and partial reversal of this by some cytokines 12501 implies that the 

development of this disease must be dependent upon co-operative interaction between the 

malignant cells and other normal components of the immune system. More recently these 

investigations have intensified along with the growth in understanding of the relationship 

between different cell types in the normal immune response, both by direct cell-cell 

. . d . . 11· . flil 2121 F h 1· d . . f T 11 mteract1ons an v1a s1gna 1ng prote1ns · · · . rom t e ear 1est escnpt10ns o ce 

numbers and phenotype 1253
· 

2541 to recent findings of highly specific abnormalities of 

intrinsic T cell function and T cell-COS+ B-cell interactions 1255
· 

256
· 

2571
, T cell dysfunction 

has thought to play a role in B-CLL. Hence although conventional therapies for B-CLL do 

offer temporary relief, the disease persists. B-CLL is essentially a malignancy of a cell of 

the immune system (B-cells). It seems logical that the final correction of such a disease will 

be held in the manipulation of the immune system. In vivo the interactions of B cells, T 

cells and APCs are so complex that we need a much greater understanding of them before 
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we c:an; fully understand a. disease such· as 8-GI!..E, Receni leaps forward in; dendf:itic cell 

!knowledge opened: 1llpi 1the possibility of being able lo cn.idely alter .the' ibalmlce betWeen 

anergy arid' anli"Lumour responses. Tihis study evaluated whether,in vitro.1B-CLL specific Tic 

cell responses couldi be' generatedi using autologous tumourcelllysate~pulsed deiJdritic:ceiJi. 

:By:manipulation .in vitro. :of the 1presentation .of possible B~CLJ[L, specific antigens .and I thei~ 

subsequerll :identification we' sought· lt() further, ,the: understahdi ng ofthe complex !hattire. of 

1this malignancy:.11his :study, aimedi to ;define some parameters· in viit:o 1thai would: provide 

valuable insights into the correctiimmunotherapy approath1using'DCs. 
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2. MATERIALS AND METHODS 

2.1 Patients 

Local Research Ethics Committee permission and individual informed consent were 

obtained for these studies. A group of thirty-two patients, who were either untreated or who 

had not received treatment in the last 6 months, were selected for the study. Patient details 

are given in Table I. Another group of ten healthy volunteers were used as a control. 

Protocols for isolation of cells from the blood of patients and healthy volunteers were 

identical. Selection of patients for specific experiments was at random. 

Table 1: Patient profile 

Patient IWCLL Stage WBC count Previous treatment 
X 109/L 

I A/0 25 NONE 

2 A/0 61.7 NONE 

3 A/0 18 NONE 
4 A/0 14.9 NONE 

5 A/0 23.2 NONE 
6 A/0 previously A/1 9.8 Chlorambucil 

7 A/0 previously cm 13.5 Chlorambucil 

8 A/0 previously CIII 15 Ch lorambuci I 

9 All 57 NONE 
10 Bill 119.2 NONE 

11 CfiV 118 NONE 
12 C/IV 122 Chlorambucil and 

Fludarabine 

13 C/IV 167 Chlorambucil and 
Splenic radiotherapy 

14 A/0 20 NONE 

15 All 26.4 NONE 

16 8/I 16 Chlorambucil and 
Cyclophosphamide 

17 A/0 12.1 I course 
Chlorambucil 

18 C/Hl 162 NONE 

19 A/0 previously Alii 8.6 Splenic radiotherapy 
and Chlorambucil 
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Patient IWCLL stage WBC count Previous treatment 
X 109/L 

20 C/111 163 2 courses 
Chlorambucil 

21 NO 45 NONE 
22 NO 12.7 NONE 
23 C/III 163 Splenic radiotherapy 

and Chlorambucil 
24 NO 27.7 NONE 
25 C/III 90.5 Ch lorambuci I 
26 8!1 223 Prednisolone 
27 8!11 74.1 Chlorambucil and 

prednisolone 
28 8/1 56.4 2 courses of 

Fludarabine, I x 
CHOP, I x Campath 

+chlorambucil + 
prednisolone 

29 NI 25.5 Ch lorambuci I 
30 C/IV 98.7 Chlorambucil 
31 NO 15.6 NONE 
32 A/11 26.6 NONE 

2.2 lmmunophenotyping. 

The Following monoclonal antibodies were used for immunophenotyping studies of 

DC and effector cells in the cytotoxic assays. CD4-FITC (Serotec, Oxford, UK), CD8-PE 

(Serotec), CD3-FITC (Serotec), CD 16-FITC (Serotec), CD56-FITC (Serotec), HLA-DR-PE 

(Serotec), CD83-FITC (lmmunotech, Coulter, Luton, UK), CD40-PE (Serotec), CD86-

FITC (Serotec), CDI4-PE!CD45-FITC (Becton Dickenson, Oxford, UK), CDIIc-PE 

(Serotec), CD20-PE (Serotec), CD5-PE (Serotec), CD 19-FITC (Serotec), CD I a-FITC 

(Serotec), anti-IgG I-PE and anti-IgG 1-FITC (Serotec). Cells were washed twice in 

Phosphate buffered saline (PBS) and then twice in PBS + 0.05% Bovine se111m albumin 

(BSA) (Sigma). Directly conjugated antibodies were added at I 0111 per I 0'' cells and 

incubated for 15 minutes at room temperature. Cells were washed twice in PBS and twice 

in PBS + 0.05% BSA. Positive antibody binding was assessed in terms of gates set at 2% of 
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relative isotype controls using an Epics Elite flow cytometer (Coulter). 

2.3 Isolation of Peripheral Blood Mononuclear Cells (PBMC) 

PBMC were isolated using a well established single step centrifugal technique1258
· 

2592601
. Equal amounts of blood and RPMJ 1640 + 2mM Glutamine (Sigma, Dorset, UK) + 

500U/ml Penicillin (Sigma) + 500 Jlg/ml Streptomycin (Sigma) were diluted. I Oml of 

Lymphoprep (9.1% w/v Sodium Diatrizoate and 5.7% w/v polysaccharide) (Nycomed, 

Robbins Scientific, UK) was added to fresh 20 ml universal (Grenier). I Oml of diluted 

blood was layered onto the top of the Lymphoprep. Cells were separated by centrifugation 

in Hereaus Labofuge 200R (Hereaus, UK) swing out rotor for 20 minutes, 2200 rev/min 

(540g) at 22°C. On removal a middle whitish layer was observed with red blood cells at 

bottom of universal and yellow serum on top. Cells in the middle whitish layer were 

removed into a fresh sterile universal. Cells were washed twice in 20ml RPMJ 1640 + 2mM 

Glutamine + 500U/ml Penicillin + 500 Jlg/ml Streptomycin by centrifugation at 1500 

rev/min (252g) for I 0 minutes. Cells were resuspended in whatever medium required for 

culture or further separation procedures. Cells were counted in a 1110 dilution of 0.04% 

Trypan blue in a Haemocytometer (Sigma) using light microscopy. 

2.4 Depletion of CDI9 positive cells from PBMCs 

Peripheral blood mononuclear cells (PBMC) were isolated under Class lJ conditions 

by density gradient centrifugation from peripheral blood. PBMC's were counted on a 

haemocytometer in a I: 10 dilution of Trypan Blue (Sigma). Pan B Dynabeads (Dynal, 

Merseyside, UK) at 4 x I 08/ml were aliquoted into a conical centrifuge tube so that there 

was a 4: I bead to cell ratio. PBMCs were resuspended in cold PBS so that the Pan B 

Dynabead concentration never fell below I x I 08 beads/m I. Pan B Dynabeads were washed 
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using magnetic separation on a MP-I magnet (Dynal) for 2 minutes in cold PBS to remove 

Sodium Azide preservative. Washed Dynabeads and PBMC's were mixed and incubated 

whilst rotated for 45 minutes at 4°C. CD 19 positive cells were selected by adherence to the 

tube in closest proximity to the magnet for 3 minutes. CD 19 depleted cells were carefully 

removed with a pipette and used for the isolation of DCs. 

Separation of cell populations by Dynabeads was validated by analysis of cell 

fractions by flow cytometry (Figure 9). Of particular note is that PBMC from B-CLL 

patients consist of mainly of B lymphocytes (CD20+) with small percentages of T cells 

(CD3+) and monocytes (CD 14+) (Figure 9A). Depletion of CD 19 positive cells with 

Dynabeads was shown to result in a mixture of cells not containing B cells (CD20+) but 

consisting mainly of T cells (CD3+) and HLA-DR positive monocyte progenitor cells 

(Figure 98). The cells from the first wash on the magnet of the CD 19 positive cells 

contained a mixture of B cells (CD20+) and T cells (CD3+) and so were always discarded 

(Figure 9C). The cells removed from CD 19 positive Dynabeads using Detachabeads were 

over 99% cos• B cells (Figure 9D). 
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Figure 9: Flow cytometry to illustrate purity of cell separation methods. 
(A) Peripheral Blood Mononuclear Cells isolated using Lymphoprep. 

I! 6J.m 0.1% 0. /% 

... 

(B) Peripheral Blood Mononuclear Cells not bound to CD19 Dynabead 

~ 0.1" o.?M ~ 1.m "" ~ l!l .. 

• 1 rgG-Frrc 1eee .I lg('r-FITf' 1888 • 1 CDJ-FITC 1990 .1 fg('.t-FITC 1998 

(C) Peripheral Blood Mononuclear Cells collected from first wash of CD 19 Dynabeads 

- .· 
'"' • 1 lgG-FITC 1000 

.1 lgG-fiTC 1998 . I CDJ.fJTC 1900 .1 lgG-ffiC 

Figure 9: Cells isolated from l B-CLL patient (Patient 25) were stained with 
antibodies and analysed by flow cytometry as stated in Section 2.2. 
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2.5 Dendritic cell isolation and culture. 

PBMC from patients with B-CLL and healthy volunteers were depleted of CD19' 

cells using Pan B Dynabeads (Dynal) as stated in Section 2.4. The CD19-depleted PBMC 

were cultured in a 24 well tissue culture plate (Gibco, Life Technologies, Paisley, UK) at 

37"C in 5% C02 for 2 hours at a density of Ix I06/well. Culture medium consisted ofRPMI 

1640 (Gibco) + 10% human AB serum+ 2mM Glutamine (Sigma, Dorset, UK) + 500U/ml 

Penicillin (Sigma) + 500 f.1g/ml Streptomycin (Sigma). Non-adherent cells were removed 

by 4 rounds of vigorous washing that involved agitation and replacement of the culture 

medium with a sterile plastic Pasteur pipette. Adherent cells were then cultured in 

0.5ml/well culture medium + 800 U/ml GM-CSF (Cambridge Bioscience, Cambridge, UK) 

+ 1000 U/ml JL-4 (Cambridge Bioscience) at 37"C in 5% C02 for 6 days. The cultures were 

fed every 2 days by addition of 0.5mllwell culture medium containing IL-4 and GM-CSF. 

On day 6, the culture medium was removed and centrifuged. The non-adherent dendritic 

like-cells were resuspended in fresh culture medium with 800 U/ml GM-CSF and I 00 

f.1g/ml IL-12 (Cambridge Bioscience) replaced into the plate and cultured for 16 hours. 

2.6 Removal of CD 19 positive cells from Dynabeads 

The Dynabeads attached to the centrifuge tube described in Section 2.4 were 

resuspended in 1 Oml RPMI + 10% AB serum. After 3 minutes incubation on MP-1 magnet 

weakly positive CDJ9 cells (first wash) were removed from supematant with a Pasteur 

pipette and retained in a universal container (Greinier, UK). CD19 positive B cells 

attached to Pan B Dynabeads were resuspended in I ml/4 x I 08 Dynabeads RPMI I640 + 

10% AB serum. Pan B Detachabeads were added at IOOml/4 x 108 Dynabeads. Cells and 

beads were incubated for 1 hour at room temperature whilst undergoing rotary mixing. 

After 3 minutes incubation upon MP-I magnet CDI9 positive cells were removed with a 
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Pasteur pipette and retained in a universal container. Dynabeads were washed in this 

manner with 20 ml RPMI 1640 + 10% AB serum. CD19 strong and weak positive cells 

were centrifuged twice at 600 rpm for 3 minutes to remove any Dynabeads or 

Detachabeads that formed as a pellet. The resulting tissue culture supematant was 

centrifuged at 1500 rev/min (252g) for 5 minutes to reveal CD19 positive cells as an 

opaque white pellet. 

2. 7 Separation of Granulocytes 

Blood was separated using Lymphoprep as stated in Section 2.3. Granulocytes are 

found in the bottom layer with the red blood cells. This layer was decanted. Red blood cells 

underwent flash lysis. Cells were centrifuged at 1500 rev/min (252g) for 5 minutes to 

remove the intact cells in the form of a pellet. Cells remaining were classified as 

Granulocyte cells, resuspended in RPMI 1640 +Penicillin+ Streptomycin+ Glutamine+ 

I 0% AB Serum and counted using Trypan Blue. 

2.8 Preparation of soluble cell lysate. 

The CD19' B-cells from the PBMC fraction were removed from Dynabeads using 

Pan B Detachabeads (Dynal) as stated in section 2.4. On average B-CLL B-cells were 97% 

CD5 1 and 92% CD20'. B-cells were resuspended in 2 ml of lysis buffer (IOmM 

bicarbonate buffer pH 7.1 and 0.5mM Phenyl Methyl Sulphonyl Fluoride) (Sigma) on ice. 

The cells were homogenised on ice using a Dounce Homogeniser (Jencons, Leighton 

Buzzard, UK) and then ultrasonicated on ice using two 10 second bursts with a 15 second 

rest from a 50W-Vibracell (Sonics and Materials Inc, Jencons). Soluble protein was 

collected after ultracentrifugation at 55,000 rpm (1 OO,OOOg) for 1 hour at 4°C. The protein 

concentration was quantified as stated in section 2.9. Soluble protein lysates were sterile 

filtered using 0.41J. filters (Nalgene, Marathon Laboratory Supplies, London, UK) and 
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stored at -70°C. AJJ celllysates were exposed to CD19+ Dynabeads. Lysates were defined 

as allogeneic if they originated from a different individual to the effector T -cells. Lysates 

were defined as non-B-CLL if they were made from B-cells or T-cells from healthy 

volunteers or cell types unaffected by B-CLL such as granulocytes. 

2.9 Protein determination assay 

Protein concentration was quantified by the Bradford protein assay method using a 

protein determination kit (Biorad, Hertfordshire, UK). Duplicate BSA standards or lysate 

protein samples were diluted 100 J.LI to lOO 1-11 in the weJis of 96 well plate. Standards 

supplied from Biorad were diluted to 2.9mg/ml. 25 1-11 of Biorad colour reagent was added 

to each weJI. After a 10 minute incubation at room temperature the plate was mixed and 

read on a Dias spectrophotometer (Dynatech laboratories, UK). A standard curve was 

generated usingEIA Calc software an example ofwhich is shown in Figure 10. 
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Figure 10: Protein determination standard curve 
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Prolein SIDndllrd Concenlralion (pg/ml) 

Figure I 0: An example of a 1ypical slandard curve generaled by dilulion or BSA 
slanrlanls. 

The software programme fits a line by regression analysis. From the equation of that 

line the optical density measurement of the test lysate wells is used to calculate the 

concentration in pg/ml. Several dilutions for each lysate were tested to ensure lhat the 

protein concenlration measured in the lysate was within the optical density range of the 

standard curve. The calculated concentration was multiplied by its di I ut ion factor to give a 

total protein concentration for the lysate. When several of the lysate dilutions were within 

the optical density range of the standard curve, the calculated value was multiplied by its 

dilution factor and an average lysate total protein concentration was determined. 

2.10 Pulsing DCs with Tetanus Toxin and Tuberculin PPD 

The known antigens Tetanus Toxin and Tuberculin Purified Protein Derivative 

(PPD) were used as positive controls to validate the proliferation and ELISA assays. 

Tetanus Toxin and Tuberculin PPD were added to dendritic cell culture medium at 0.4Uiml 

and 900U/ml respectively on day 6 of culture and incubated for a further 4 hours at room 

temperature. 
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2.11 Pulsing DCs with soluble B-cell lysate. 

Dendritic cells were pulsed by the addition of soluble lysate to the culture medium 

at I OOng/ml per I 06 cells and incubated for 4 hours at room temperature. Control unpulsed 

DCs were incubated at this time with lysis buffer except in Patient's 5,7,9,1 0 and 13. 

2.12 T-cell isolation and T-cell cultures. 

T-cells were isolated indirectly from the PBMC fraction by depleting adherent and 

CD 19+ cells as stated in Section 2.4 and 2.5. The purity of the T -cells was on average 60% 

when assessed by flow cytometry using anti-CD3-ffiC conjugated antibodies. Lysate

pulsed or unpulsed DCs were aliquoted at a concentration of I 01 cells per well to 96 well 

roundbottom tissue culture plates. T-cells were then added to give aT-cell: Dendritic cell 

ratio of at least 20: I. Cultures destined for cytotoxicity assays were fed with 5 U/ml of IL-2 

(Cambridge Bioscience) on days 3,7,1 0,14 and 17. Dendritic cells in cultures destined for 

cytotoxicity assays were restimulated by the addition of I 00 ng/ml soluble B-cell lysate or 

lysis buffer on days 7 and 14. Cultures were continued for a total of 21 days or 28 days at 

37°C in 5% C02 in culture medium + 5% AB serum. Cultures used to assess cytokine 

secretion or T-cell activation were not fed IL-2 or restimulated with soluble lysate. 

2.13 Mixed Lymphocyte Reaction 

PBMC were isolated from two mismatched normal healthy volunteers as stated in 

Section 2.3. Stimulator cells were irradiated with a Caesium source at 30Gy. Stimulators 

were added to 24 well plates at 3 x 105
/ well in RPMI 1640 + I 0% human AB serum + 

2mM Glutamine + 500U/ml Penicillin + 500 j.lg/ml Streptomycin. Stimulators to act as 

targets in the final cytotoxicity assay were cultured at I x I 06
/ well with RPMI 1640 + 10% 

AB serum + 2mM Glutamine + 500U/ml Penicillin + 500 11g/ml Streptomycin + 

Phytohemagglutinin from Plwseolus vulgaris (PHA) at I mg/ml (Sigma,UK). Responders 
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were resuspended in RPM! 1640 + 10% human AB serum+ 2mM Glutamine+ 500U/ml 

Penicillin+ 500 11g/ml Streptomycin at I x 106/well and added to equal number of wells 

containing stimulators or not as the case may be. Wells not containing Stimulators were 

made up to the same volume as those that did, by the addition of appropriate volumes of 

RPM! 1640 + 10% human AB serum+ 2mM Glutamine+ 500U/ml Penicillin+ 500 !lg/ml 

Streptomycin. Responders and stimulator cells were cultured for 7 days at 37°C in 5% C02 • 

On day 3 of culture IL-2 at 5U/ml was added to the MLR. Evidence of clumps of stimulated 

cells within the MLR but not in wells with responders alone were observed under I Ox 

objective of Hund Wetzlar phase contrast inverted microscope (Wilovert, Jencons) after 7 

days. 

2.14 Measurement ofT cell proliferation CIL-2 Receptor expression). 

T-cell activation was measured quantifying cells eo-expressing CD3 and CD25 (IL-

2 receptor) by double-labelled flow cytometry using the same protocol as 2.2. Flow 

cytometry was employed using anti-CD3-FITC/anti-CD25-PE conjugated monoclonal 

antibody (lmmuno Quality Products, Mast Diagnostics, Merseyside, UK). Positive antibody 

binding was assessed in terms of gates set at 2% of anti-IgG I-PE and anti-IgG 1-FITC 

labelled cells. Anti-CD3-FITC (Serotec) and anti-CD25-PE (Serotec) conjugated 

monoclonal antibodies were added individually to controls to allow for adjustment of 

compensation. 

2.15 Quantitation of cytokine secretion. 

Cell-free tissue culture supernatants were harvested on days I to 5 and stored at 

-70"C until required. When convenient, the supernatants were thawed and the 

concentrations of IFN-y and IL-4 measured in duplicate by ELISA (Pelkline, Eurogenetics, 

Hampton, UK). 96 well plates were coated overnight at room temperature by adding I 00111 
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of monoclonal anti-human IFN-y antibody diluted I: I 00 in carbonate/bicarbonate buffer pH 

9.6. Plates were washed with 0.2M PBS to remove unbound antibody. Non-specific binding 

was blocked by 200 Jll kit blocking reagent added for I hour at room temperature. The 96 

well plate was washed with kit washing buffer. I 00 Jll of IFN-y standards and test 

supernatants were diluted in kit dilution buffer and incubated for I hour at room 

temperature. IFN-y antibody-biotin conjugate was diluted I: I 00 and I OOJll added for I hour 

at room temperature. The 96 well plate was washed with kit washing buffer. Strepavidin

Horseradish Peroxidase conjugate was diluted I: I 0,000 and I 00111 and was incubated for 30 

minutes at room temperature. The 96 well plate was washed with kit washing buffer. I 00111 

of Substrate solution containing O.IIM acetate buffer pH 5.5 + 0.5 mg/ml 3,5,3'5'

tetramethylbenzidine (TMB) (Sigma, UK) + 0.003 % Hydrogen peroxide was added for 30 

minutes in the absence of light at room temperature. The colour change reaction was 

stopped by addition of I 00111 of 1.8 M Sulphuric acid solution. The plate was mixed and 

read on a Dias spectrophotometer (Dynatech laboratories, UK). A standard curve was 

generated using El A Calc software from lFN-y standards provided. Unknown sample values 

were calculated from that standard curve. Sensitivity limits for the assays were 2-6 pg/ml 

for IFN-y and 0.2-0.4 pg/ml for lL-4. 

2.16 Quantification of cell mediated cytotoxicity. 

Cytotoxicity was measured by a flow cytometric method, LIVE/DEAD cell 

mediated cytotoxicity (Molecular Probes, Cambridge Bioscience) ' 261 1. Target cells were 

labelled with 4Jll per 5 x I 05 cells of di0C 18 for 2 hours at 37"C in 5% C02 and then washed 

twice in culture medium. Effector cells were harvested from the tissue culture and placed in 

flow cytometry tubes (Falcon, Marathon Laboratory Supplies) at the appropriate effector: 

target ratios. A minimum of I o~ labelled targets was added. Propidium iodide was added to 
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each tube. Targets and effectors were gently mi xed and centrifuged at I 000 rev/mi n ( 11 2g) 

for 30 seconds. Targets and effectors were incubated together for 4 hours at Jr c in 59'o 

C0 2• Flow cytometry standard gates were set on unlabelled targets stai ned with propidium 

iodide and di0C 18 1abelled targets without propidium iodide as shown in Figure 11. 

& 
& 
& 

" 
C) 
0 
.J .. 
1-
I: 
Q. 

" 

Figure 11: Gate settings for cytotoxicity contt·ols 
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Figure 11 : (A) d iOC1R labelled targets with no propidiurn iod ide se t gates for PMT4, (B) unlabelled 
targets with propidium iod ide set gates fo r PMT2 and (C) targets wi th no effectors show non
specific cell death. 

Non-specific cell death (spontaneous apoptosis) was measured by the cytotoxicity of 

di0C 18 labelled targets stained with propidium iodide without effectors ( 11 C). Cytotox icity 

was expressed as the number of dead targets (cells staining posi ti ve for propidium iodide 

and di0C18) di vided by the total number of targets (cells staining positive for di0C18). 

Percentage specific cytotoxicity was measured as fo llows: 

% specific cytotoxicity = (total cytotoxicity- spontaneous cytotoxicity) x I 00 

A Mixed Lymphocyte Reaction (MLR) was used to validate this system shown in Figure 

12. 
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Figure 12: Mixed Lymphocyte Reaction (MLR) cytotoxicity test 
validation 
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Figure 12: A MLR was cultured belween 2 mismmchcd normal heahhy volumeers as 
slaled in Seclion 2.13. Cells were assessed for cytoloxicily using melhod outlined in 
Section 2.16. Resuhs show triplicalcs for each eflcclor: large! ralio. Non-specific 
cyloiOxicily was 22%. 

As a control, effectors consisting of unpulsed DCs were used to detect any non-

specific uptake of the di0C 18 dye from target cells by DCs. The B-CLL B-cell targets were 

97% CD5+and 92% CD20+. The B-CLL T-cell targets showed binding for CD20-PE < 2%. 

Allogeneic targets were defined as those originating from another individual to the effector 

T-cells. Targets were defined as non-B-CLL if they were made from B-cells and T-cells 

from a healthy volunteer or granulocytes and T-cells from B-CLL patients. 

2.16 Antibody blocking studies. 

Antibody blocking experiments involved the addition of anti-HLA class I (Serotec), anti-

HLA class II (OR, DP, DQ) (Serotec), anti-Pan TCR a~ (Serotec), anti-CD4 (Serotec) and 

anti-CD8 (Serotec) monoclonal antibodies at I OO!Jg/ml at the commencement of the 4 hour 
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incubation of effectors and targets. 

2.17 Electrofusion 

Monocyte derived DCs were isolated as previously described. Electrofusion method 

was based upon findings of Scott-Taylor et al ' 2621
. B-CLL B-cells and DCs were 

resuspended in 0.3M sodium sucrose solution at a cell density of 5 x I 05/ml. 0.4ml of B

CLL B-cells and DCs were added to a 0.8ml electro-plated cuvette (Bio-Rad). An 

exponential pulse of 250V at 25 11Fd with a time constant averaging between 3.4 and 4 

milliseconds was delivered using Gene Pulser Transfection Apparatus (Bio-Rad). 

Additional B-CLL B-cells and DCs were pulsed with an exponential pulse of 500V at 

25!1Fd with a time constant of 8.7 milliseconds. B-CLL B-cells and DCs were mixed in 

electro-plated cuvette but not pulsed as a control for non-specific uptake of membrane 

fragments. Cells were washed once in Hepes buffered saline solution. Fused cells were 

separated on 10% w.v. dextran solution 2100 rev/min (500g) for 5 minutes whilst some 

remained non-separated as a control. The layer containing hybrid cells was washed in 

Hanks Balanced salt solution (HBSS). Cells in the process of "round-up" were observed in 

the separated cultures using x20 objective of a Hund Wetzlar phase contrast inverted 

microscope (Wilovert, Jencons). Cells were resuspended and cultured in culture medium + 

I 0% AB Serum + IL-4 + rL-12 and GM-CSF overnight at 37"C in 5% C02• The total viable 

cell yield was established from the count of cells in an aliquot mixed I: I 0 with 0.4% 

Trypan Blue using a haemocytometer after 16 hours in culture. This was a more accurate 

estimate of long term survival of the cells as electroporation can make live cells permeable 

to exclusion dyes such as Trypan Blue 12631
. Comparison of the total cell yield in separated 

and non-separated cultures gave a crude estimation of fusion efficiency. Cell yields and 

fusion efficiencies can be seen in Table 4. Cells were assessed for the presence of CD86 
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and CD20 upon the cell surface by flow cytometry after 16 hours in culture as shown in 

Figure 41. Due to the low yield, fused separated cells exposed to the 2 different voltages 

were combined and added toT-cell eo-cultures. 

2.18 Reducing Sodium dodecyl sulphate- polyacrylamide gel electrophoresis (SOS-PAGE) 
analysis 

SOS-PAGE analysis was carried out based upon previous methods as stated by 

Sambrook, Fritsch and Maniatis ' 2641
. Cell lysates were diluted with equal quantities of 

SDS-gel loading buffer containing 0.05M Tris(hydroxymethyl)aminomethane 

(Tris),Hydrochloric acid buffered (HCL) pH 6.8 (Sigma) + I% v/v Glycerol (Sigma) + 

2%w/v SOS (Sigma) + 0.1 o/ow/v Bromophenol Blue (Sigma) + freshly added 0.05%v/v ~-

Mercaptoethanol (Sigma) and boiled for 5 minutes. Cell lysates were loaded onto Tris-HCL 

Ready gel containing a gradient of 4-15% polyacrylamide (Biorad, Hertfordshire, UK) with 

Broad Range Molecular Weight Markers (Biorad) details of which can be seen in Table 3. 

Electrophoresis was carried out in Protean System 11 Apparatus (Biorad, Hertfordshire, UK) 

in electrophoresis buffer containing 25mM Tris + 250mM glycine pH 8.3 + 0.1 o/ow/v SOS 

at I OY for 2-3 hours supplied by an APS powerpack (Holm-Nielson). Gels were stained 

with 90% Methanol (BDH): disti lied H20. I: I v/v + I Oo/ov/v Glacial Acetic Acid (Sigma)+ 

Coomassie Brilliant Blue R250 (Biorad) overnight on a lateral shaker and destained with 

two changes of destain solution (90% Methanol:distilled H20. I: I v/v + I Oo/ov/v Glacial 

Acetic Acid) each after 30 minutes. Gels were placed in distilled water and kept at 4 °C for 

I hour. Gels were photographed using digital camera electrophoresis documentation and 

analysis system 120 (Kodak, Newhaven,USA). and analysed by ID image analysis software 

(Kodak). 
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Table 2: Details of Broad Range Molecular Weight Standards 

Name of protein of marker Molecular Weight of marker Reference for marker 
(Dalton) 

Myosin 200,000 Woods EF, Himmelfarb s and 
Harring10n WF. J.Biol. Chem. 
196:1; 238: 2:174. 

~-galactosidase 116,250 Fowler AV and Zabin I. Proc. 
Narl. Acad. Sci. USA. 1977; 74: 
1507. 

phosphorylate b 97,400 Tilani K er al. Proc. Narl. Acad. 
Sci. USA. 1977; 74: 4762. 

Bovine Serum Albumin 66,200 Brown JR. Fed Proc. 1975;34: 
591. 

Ovalbumin 45,000 Warner RC., "Egg Proteins," in: 
The Proteins, Vol. IIA, p.435 
(Neuralh H. and Bailey K., eds.), 
Academic Press, New York 
(1954). 

Carbonic anhydrase 31,000 Davis R.P., "Carbonic 
Anhydrase," m: The Enzymes, 
Vol. V, p.545, (Boyer, P. D.,ed.) 
Academic Press, New York 
( 1971 ). 

Soybean trypsin inhibitor 21,500 Wu Y.V. and Scheragc 
H.A .. Biochemistry. 1962: 1:698. 

Lysozyme 14,400 Jollcs P .. Angcw. Chem lnrl. 
Edit. 1969; 8: 227 

Aprotinin 6,500 Kassell B. and Laskowski M. 
Biochem. Biopllys. Res. Com. 
1965: 20:46:1. 

2.19 Native PAGE analysis 

Cell lysates were diluted with I :5 in gel loading buffer 30%w/v glycerol (Sigma) + 

0.25%w/v Bromophenol Blue (Sigma). Cell lysates were loaded onto Tris-HCL Ready gel 

containing a gradient of 4-15% polyacrylamide (Biorad, Hertfordshire, UK) with Broad 

Range Molecular Weight Markers (Biorad) details of which can be seen in Table 3. 

Electrophoresis was carried out in Protean System 11 Apparatus (Biorad, Hertfordshire, UK) 

in electrophoresis buffer containing 45mM Tris-borate + I mM EDTA at I OV for 2-3 hours. 

Gels were stained with 90% Methanol (BDH): distilled H20. I: I v/v + I O%v/v Glacial 
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Acetic Acid (Sigma) + Coomassie Brilliant Blue R250 (Biorad) overnight on a lateral 

shaker and destained with two changes of destain solution (90% Methanol:distilled H20. 

l: l v/v + I O%v/v Glacial Acetic Acid) each after 30 minutes. Gels were placed in distilled 

water and kept at 4 °C for l hour. Gels were photographed using digital camera 

electrophoresis documentation and analysis system 120 (Kodak, Newhaven.,USA) and 

analysed by ID image analysis software (Kodak). 

2.20 Electro-blotting of proteins onto membranes 

Gels were not stained with Coomassie Blue if they were to be transferred onto 

either a nitro-cellulose membrane or PVDF. 

2.20.1 Transfer to Nitro-cellulose for Western Blotting 

Transfer buffer (Towbin Buffer/1651) containing 25mM Tris, pH 8.3 + 192mM 

glycine + 20% v/v Methanol was chilled Filter paper (Biorad), Fibre pads (Biorad}, 

0.45J.1m nitro-cellulose membrane (Biorad) and gels were allowed to equilibrate in 

transfer buffer for at least l hour at 4°C. Gels were already marked for orientation and 

a corresponding mark placed on the nitro-cellulose membrane. The cassettes of Mini 

Trans-Blot Electropheretic Transfer Cell (Biorad) were assembled as shown in Figure 

13. Air bubbles were carefully removed to ensure good transfer. Ice blocks were 

placed around the apparatus to reduce heat transfer. Transfer occurred overnight at 

30V, 90mA using APS powerpack. 
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Figure 13: Arrangement of layers in blotting apparatus 
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2.20.2 Transfer to PolyVinylidene DiFiuoride CPVDF) for protein sequencing 

PVDF membrane is thought to be the best support for proteins as it has high 

protein binding capacilf66 and is resistant to acidic and organic solvents used in 

amino-terminal protein sequencin!(67
.2

68
. Transfer was carried out as previously 

stated in Section 2.20.1. 

2.21 Electro-Elution of protein bands 

B-CLL lysates were separated by reducing PAGE, as outlined in section 2.18. 

Protein bands were visualised by staining with Coomassie Blue. After equilibration in 

distiJled water for 1 hour 65K.Da, 42K.Da, 31KDa and 25KDa bands were excised with a 

razor blade. Membrane caps containing dialysis membrane with 10,000 Dalton (Da) 

exclusion pore size were soaked at 60°C in elution buffer (25mM Tris, 192mM Glycine and 

0.1% SDS) for 1 hour prior to use. The model 422 Electro-EJuter was assembled as shown 

in Figure 14. The gel slices were chopped and placed in individual labelled glass tubes on 

the E lectro-Eluter. The glass tubes were filled with elution buffer. Elution took place 

70 



overnight with 8- 1 OmA/glass tube. The eluted protein was found in the membrane cap. 

Approx imately 400f..ll of protein solution was decanted. The membrane cap was rinsed with 

a further 200f..ll of fresh elution buffer. The protein olution was d ialysed overnight at 4°C 

against PBS using I O,OOODa Slid-A -Lyzer dialysis cas ettes (Pierce, Perbio Science, 

Che ter, UK). Protein content was estimated as outlined in section 2.9. 

Figure 14: Arrangement of tubes for electro-elution. 

2.22 Western blot analysis 
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Reducing SOS-PAGE was carried out on celllysates from both B-CLL patients and 

normal healthy volunteers as stated in section 2.18. The gels were not stained with 

Coomassie Blue. The resulting gel wa blotted onto nitro-cellulose a described in ection 

2.20. 1. Protein bands were stained wi th 2% Ponceau S stain solution (Sigma) and destained 

in distilled water. All bands were marked in pencil at this stage. Non-specific binding was 

blocked in Bovine Lacto Transfer Technique Optimiser B (BLOTTO B) for I hour at room 

temperature with gentle shak.ing. BLOTTO B consisted of I OmM Tri HCL (S igma) pH8 + 

150mM Sodium Chloride (Sigma) + I o/o skimmed milk powder (Safeway, UK) + I% 

Bovine Serum albumin (BSA) (S igma) + 0.05% Tween 20 (Sigma). Goat anti -Human 
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CD5, Goat anti-Human CDI9, Goat anti-Human CD23, Rabbit anti-Human CD72, Mouse 

anti-Human CD38 monoclonal antibodies (Santa Cruz, USA) were incubated with the 

nitro-cellulose blot diluted at I :500 in BLOTIO B for I hour at room temperature with 

gentle shaking. The blot was washed 3 times in IOmM Tris buffered 150mM saline pH8 

(TBS) + 0.02% Tween 20. A secondary polyclonal Donkey anti-Goat lg alkaline

phosphatase conjugate, polyclonal Rabbit anti-Mouse lg alkaline-phosphatase conjugate or 

polyclonal Mouse anti-rabbit lg alkaline-phosphatase conjugate (Santa Cruz) diluted I: I 000 

in BLOTIO B respectively were incubated for I hour at room temperature with gentle 

shaking. The blot was washed 3 times in TBS + 0.02% Tween 20 and once in TBS alone. 

The Western blot was developed using an Alkaline-Phosphatase development kit (Biorad) 

for 2 -4 minutes, washed in distilled water and air-dried. 

2.23 Protein Sequencing 

Protein bands of interest were sequenced. B-CLL lysates were concentrated using a 

freeze drier and then separated using reducing SOS-PAGE as stated in section 2.18. Gels 

were blolled onto PVDF as stated in section 2.20.2. Bands were sent for automated N

terminal sequencing to 2 commercial services either Proseq ( Box ford, USA) or PNACL 

(Leicester, UK). 

2.24 Statistics. 

Effects of treatment upon groups of 5 patients or more were analysed by one-way 

analysis of variance (ANOV A). Direct comparisons between treatment groups with smaller 

sample groups were analysed using the Student's /-lest. Differences between median values 

were compared using the Kruskal-Wallis test. Statistics were generated using Statsgraphics 

Plus software. 
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3. RESULTS-DENDRITIC CELLS 

3.1 Characterisation of dendritic cell immunophenotypes. 

The results of immunophenotyping studies of DCs derived from normal volunteers 

and patients with B-CLL are summarised in Table 3. 

Table 3: Dendritic cell surface markers 

Cell surface Normal DCs BCLL patient DCs 
marker (Mean%+ sd) (Mean%+ sd) 

HLA-DR 56.8 ± 17.1 54.0 ± 8.4 

CD83 1.4 ± 0.9 1.2 ± 0.8 

CD40 12.9 ± 5.9 26.7 ± 8.4 p=0.02 

CD86 27.8 ± 1.8 15.7±3.8 P=0.003 

CD16 2.2 + 1.2 19.2 ± 6.9 

CD 56 0.3 ± 0.3 0.2±0.1 

CD3 10.7 ± 5.2 9.2 ±5.6 

CD14 19.3 ± 18.2 11.2 ± 7.0 

CDllc 4.2 ± 4.5 10.1 ± 6.0 

CD20 4.1 + 2.7 4.7 + 3.0 

CD la 9.6± 7.3 9.6± 8.3 

CD45 92.5 ± 3.5 89.0 ± 4.0 

Table 3. Analysis of markers for CDI9 depleted PBMC cultured in RPMI 1640 + 
I 0% AB serum + IL-4 (I OOOU/ml) + GM-CSF (800 U/ml) for 6 days at 37"C, 5% C02 from 
3 normal volunteers and 5 B-CLL patients. p-values were calculated using single-tailed 
unpaired Student's Hest. 

There were no significant differences in mean cell surface marker expression of HLA-

DR, COla, CD3, CD4, COlic, CDI4, CDI6, CD20, CD45, CD56, and CD83 between 

patients and healthy volunteers. However, CD40 was found to be significantly increased in 

patients compared to healthy volunteers (p=0.02), and CD86 was found to be significantly 

decreased in B-CLL patients compared to healthy volunteers (p=0.003). 

3.2 Photographs of monocyte DCs 

Dendritic cells from I B-CLL patient were isolated according to the method in 
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section 2.5 and photographed using a Diavert microscope (Leitz) using x20 objective and 

automatic MPS 45 camera (Wild). It can be observed from Figure 15 that monocyte derived 

DCs change from rounded monocyte like cells to cells with dendrite protrusions over the 6 

day incubation. Numbers of monocyte cells with in the culture did not increase. Dendritic 

cells were thus a consequence of cell differentiation from the common granulocyte

macrophage precursor monocyte cells observed after I day of culture. The DCs on day 7 

had been incubated at 37°C, 5% C02 overnight with IL-12 (I OOng/ml) and then 

subsequently pulsed with autologous B-CLL lysate for 4 hours at room temperature. Larger 

numbers of dead cells were seen after the overnight incubation with IL-12 than without. 
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Figure 15: Monocyte derived dendritic cell cultures 
Day I Day 2 

Day6 

Figure 15: Dendritic cells from Patient 25 were isolated as stated previously and cultured for the indicated 

period at 37"C, 5% C0 2 in RPMl 1640 + Penicillin + Streptomycin + Glutamine+ I 0% AB erum. Cells in 24 

well plates were photographed using Diavert microscope (Leitz) with x20 objecti ve and automatic MPS 45 

camera (Wild ). 
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3.3 Validation of system using autologous DCs pulsed with Tetanus Toxin and Tuberculin 

T cells were eo-cultured with commonly used antigens to assess the efficacy of DCs 

to stimulate T cell activation (lL-2 receptor expression). IL-2 production is initiated by 

antigenic stimulation and the IL-2 receptor is constitutively expressed after approximately 

48 hours 1269
·
2701

. T cell activation was observed when autologous DCs, pulsed with either 

Tetanus Toxin or Tuberculin PPD, were cultured with autologous T cells from a single 

healthy volunteer (Figure 16a). However, when the Tetanus Toxin and Tuberculin PPD 

antigens were added to T cells without DCs there was an increase in T cell after 6 and 7 

days eo-culture. The T-cells were responding to the Tetanus Toxin and Tuberculin PPD as a 

recall antigen after in vivo vaccination. The activation ofT-cells by autologous DCs pulsed 

with tetanus toxin occurred much quicker after 3 days of eo-culture. The activation ofT 

cells by DCs pulsed with Tuberculin PPD occurred after 5 days eo-culture. 
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Figure 16a: T cell proliferation to autologous DCs pulsed with Tetanus 
Toxin and Tuberculin PPD in a normal healthy volunteer. 
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Figure 16a: T -cells from I normal healthy volunteer were cultured alone, with Tetanus 
Toxin (0.4U/ml) and Tubercu lin PPD (900U/ml) or with DCs pulsed with Tetanus Toxin 
(0.4U/ml) and Tuberculin PPD (900U/ml) for 4 hours at room temperature. Cells were 
harvested on day 3-7 of culture and assessed by now cytometry for CD3/CD25 eo
expression. 

77 



T cells from B-CLL Patient 26 showed an increase in T cell activation when 

stimulated by autologous DCs pulsed with Tetanus Toxin or Tuberculin PPD (Figure 16b). 

However, when Tetanus toxin and Tuberculin PPD were added to T-cells without DCs 

increased T-cell activation was observed after 5 days. The response to antigen alone 

without being pulsed onto DCs was greater in the B-CLL patient. This may be because the 

individuals recall antigen response is stronger due to recent vaccination or increased 

exposure to the antigens. However, B-CLL patients have been shown to express increased 

levels of CD25 as the disease progresses f271/. Pulsing Tuberculin PPD onto DCs stimulated 

more T cells to express the [L-2 receptor than administration of the Tuberculin antigen 

directly to T-cells. These experiments validated that specific antigens pulsed onto DCs 

could stimulate T cell activation, using markers such as the IL-2 receptor (CD25). 
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Figure 16b: T cell proliferation to autologous DCs pulsed with stimulated 
by Tetanus Toxin and Tuberculin PPD in a B-CLL patient. 
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Figure 16b: T -cells from I B-CLL Patient 26 were cuhured alone, with 
Tetanus Toxin (0.4U/ml) and T uberculin PPD (900U/ml) or with DCs pulsed 
with Tetanus Tox in (0.4U/ml ) and T uberculin PPD (900U/ml) for 4 hours at 
room temperature. Cells were harvested on day 3-7 of culture and assessed by 
flow cytometry for CD3/CD25 eo-expression. 
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Cytokine production by T cells was also assessed by ELISA to show T helper cell 

activity. IFN-y was measured from the same patients and healthy volunteer that had shown 

an increase in IL-2 receptor. T-cells from the healthy volunteer secreted increased amounts 

of IFN-y when cultured with autologous DCs pulsed with either Tetanus Toxin or 

Tuberculin PPD (Figure 17a). IFN-y secretion in response to the administration of 

Tuberculin PPD toT-cells without DCs after 5 days was the same as that when using pulsed 

DCs. However, IFN-y secretion followed the same pattern as IL-2 receptor expression. 

T-cells ·from the B-CLL Patient 26 secreted increased amounts of IFN-y when 

cultured with autologous DCs pulsed with either Tetanus Toxin or Tuberculin PPD (Figure 

17b). When comparing the T-cell responses from the normal healthy volunteer (Figure 16a 

and 17a) and B-CLL Patient 26 (Figure 16b and 17b) it was observed that although the peak 

response was weaker in the B-CLL patient the responses followed similar overall patterns. 
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Figure 17a: IFN-ysecretion by T cells to autologous DCs pulsed with 
Tetanus Toxin and Tuberculin PPD in a normal healthy volunteer. 
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Figure 17a: T-cells from I normal healthy volunteer were cultured with Tetanus 
Toxin (0.4U/ml) and Tuberculin PPD (900U/ml) alone or with DCs pulsed with 
Tetanus Toxin (0.4U/ml ) and Tuberculin PPD (900U/ml) for 4 hours at room 
temperature. Tissue culture supernatanL was assessed by ELlS A. Each treatment 
group was measured in duplicate per time point. 
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Figure 17b: IFN-y secretion by T cells to autologous DCs pulsed with 
Tetanus Toxin and Tuberculin PPD in a B-CLL patient 
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Figure 17b: T-cells from I B-CLL Patient 26 were cultured with Tetanus Toxin 
(0.4U/ml) and Tuberculin PPD (900U/ml) alone or with DCs pulsed with Tetanus 
Toxin (0.4U/ml) and T uberculin PPD (900U/ml) for 4 hours at room temperature. 
Tissue culture supernatant was assessed by ELISA. Each treatment group was 
measured in duplicate per time point. 
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3.3 Allogeneic dendritic cell: T cell interactions 

In order to test the ability of DCs to stimulate cytotoxicity cell-cell allogeneic 

reactions between Des and T cells were investigated by mixed cultures. Figure 18 shows 

the resu1ts from 3 B-CLL patients and 3 healthy normal volunteers. It should be noted that 

Des from B-CLL patients cultured with allogeneic T cells from healthy volunteers 

stimulated cytotoxicity towards allogeneic B-CLL B cell targets (*). The converse was true 

in that DCs from normal healthy volunteers stimulated allogeneic B-CLL T cells to kill 

allogeneic normal healthy B cells (/\). However, the cytotoxicity generated by B-CLL T 

cells was of a lower percentage than normal T -cells. T -cells from B-CLL patients showed 

higher background cytotoxicity when not stimulated. These two phenomenon were 

probably due to the fact the T -cells from B-CLL patients have shown dysfunctional 

characteristics. Collectively the antigen presentation data suggests that DCs can be used as 

efficient antigen presenting cells. 
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Figure 18: Cytotoxicity generated in mixed lympbocyte culture between T 
cells and DCs from B-CLL patients and healthy normal volunteers. 
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OeOOritic eels from Patiem 2, 7 and 8 and 3 healhy volunteers were ~IXed for 21 days in 
RPMI1640 + 5% AB serum+ GUamine + Penicilin + Streptomycin+ IL-2 (5U/ml) at 3t>C, 
5% C02 v.flh autologous T cells or allogeneic normal T eels and tested for cytotoxicity against 
allogeneic or autologous targets. 
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4. RESULTS- T CELL RESPONSES 

4.1 Measurement of T cell proliferation (fL-2R expression) in B-CLL patients. 

T-cells derived from patients with B-CLL were cul tured alone or with autologous B-

CLL lysate-pulsed or unpulsed DCs. T-cells were assessed for eo-expression of CD3 and 

CD25 (IL-2R). Figure 19 illustrates typical now cytometric profiles generated from eo-

cultures of B-CLL Patient 22. It can clearl y be seen that the proportion of T cells eo-

expressing CD3 cells and CD25 increased when T-cells were stimulated by B-CLL B-cell 

lysate pulsed DCs. 

Figure 19: Typical example of flow cytometry profiles assessing T cell 
proliferation (IL-2R expression) in a B-CLL patient 
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Figure 19: T-cells from B-CLL Patient 22 were eo-cultured alone, with lysis buffer 
pulsed DCs or 8-CLL lysate pulsed DCs for 7 days in RPM1+5% AB Serum+ 
Penicill in+ Streptomycin + Glutamine at 37''C, 5%C02. Cells were harvested and 
assessed for CD3/CD25 eo-expression by flow cytometry. Gates were set at 2% of 
FITC-Ig and RPE-Ig negative controls. 
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Activation markers were assessed in the eo-cultures of 5 patients and analysed as a 

sample group. A significant increase in T-cell activation was found after 4 days of culture 

by T-cells cultured with autologous lysate-pulsed DCs compared to T-cells cultured with 

DCs pulsed with lysis buffer (p=0.03) (*)(Figure 20a). 

A lysate from a normal healthy volunteer was used as a control and pulsed onto 

DCs from B-CLL patients. It was important to see whether an allogeneic lysate from a 

normal healthy volunteer could also stimulate T-cells from B-CLL patients. Although there 

was an increase in the percentage of activated B-CLL T cells after eo-culture with 

autologous B-CLL DCs pulsed with an allogeneic B-cell lysate from a healthy volunteer, 

this was not significant (Figure 20a). 

4.2 Mea~urement ofT-cell proliferation {IL-2R expression) in healthy volunteers 

Dendritic cells from 5 normal healthy volunteers were pulsed with autologous 

normal lysate and then eo-cultured with autologous normal T-cells. This allowed a direct 

comparison between the autologous system in normal healthy volunteers and B-CLL 

patients. When an autologous non-B-CLL B-cell lysate from healthy volunteers was pulsed 

onto autologous DCs, there was no increase in T cell activation (Figure 20b). Interestingly, 

when an allogeneic non-B-CLL B-cell lysate from healthy volunteers was pulsed onto 

autologous DCs, the percentage of activated autologous T cells was increased at day 3 and 6 

but not significantly (Figure 20b). A strong allogeneic response would have been expected 

when using an allogeneic B cell lysate from normal healthy volunteers. 
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Figure 20a: T cell proliferation (IL-2R expression) to autologous lysate 
pulsed DCs from B-CLL patients 
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Numbers of CD3/CD25 positive T-cell from 5 B-CLL were measured 
(Figure 20a). Median values expressed were tested using the Kruskal-Wall is 
test. (*) Indicates a significant increase in double positive cells with p=O.OJ 
when eo-cultures of pulsed DC were compared with unpulsed DCs. 
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Figure 20b: T cell proliferation (IL-2R expression) to autologous lysate 
pulsed DCs from normal healthy volunteers 

70 

60 

M c 50 

~ 
N c 40 0 
+ 
M c 
0 
~ 0 30 
c 

.~ 
"t:J 
Cl) 

== 20 

10 

0 

3 4 5 6 

Time (days) 

0 normal T cells 

• normal dendritic cells + normal T cells 

• normal dendritic cells + allogeneic normal lysate + normal T cells 

Ill normal dendritic cells + autologous normal lysate + normal T cells 

Numbers of CDJ/CD25 positive T-cells from 5 healthy volunteers' (Figure 20b) were 

measured . Median values expressed were tested using the Kruskal-Wallis test. No significant 

increases were found. 
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4.3 Quantitation of cytokine secretion in B-CLL patients. 

T-cells derived from patients with B-CLL were cultured alone or with lysate-pulsed 

or unpulsed (lysis buffer added in 5 patients) DCs. The supernatant from these cultures was 

harvested and tested for IFN-y protein levels by ELISA. IFN-y was chosen as it is an 

important T helper cell type I (Th I) cytokine. A significant increase of IFN-y secretion in 

culture supernatant was found after 72 hours by T-cells cultured with B-CLL lysate-pulsed 

autologous DCs compared to both T-cells cultured with unpulsed DCs and T-cells cultured 

alone (p=0.0004) (Figure 21 a). In addition there was no secretion of IFN-y by T -cells 

cultured with autologous DCs pulsed with soluble allogeneic B-cell lysate derived from 

healthy volunteers (non-B-CLL) (Figure 21 a). 

4.4 Quantitation of cytokine secretion in healthy volunteers 

Secretion of IFN-y by T-cells derived from healthy volunteers and cultured with 

autologous DCs pulsed with autologous B-cell lysate from healthy volunteers (non-B-CLL) 

was measured. Normal T-cells, stimulated using the same system as that for B-CLL 

patients, did not secrete significant amounts of IFN-y (Figure 21 b). Dendritic cells from a 

normal healthy volunteer that had been pulsed with allogeneic B-CLL lysate could not 

stimulate autologous normal healthy T-cells to secrete IFN-y. Even background levels, ofT 

cells alone or T-cells with DCs pulsed with lysis buffer, of IFN-y secretion in the group of 5 

healthy volunteers was lower than the I 0 B-CLL patients (Figure 21 b compared with 21 a). 
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Figure 21a: IFN-ysecretion by T-cells cultured with autologous lysate 
pulsed DCs from B-CLL patients. 
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T issue culture supernatants from cultures of I 0 B-CLL patients' (Figure 21 a) were measured for IFN-y by 

ELISA. Data was analysed by one-way ANOY A. Where(*) indicates an overall significant effect of treatment 

with p=0.0004. Each treatment group per patient was measured in duplicate. 
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Figure 2lb: IFN-y secretion by T -cells cultured with autologous lysate 
pulsed DCs from normal healthy volunteers 
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Tissue culture supematants from cultures of 5 normal healthy volunteers (Figure 2 1 b) were measured for IFN-

y by ELISA. Each treatment group per patient was measured in duplicate. 
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4.5 Secretion of IL-4 

To establish the nature of the cytokine profile generated by the stimulated T-cell 

cultures a typical T Helper cell type 2 (Th 2) cytokine was measured. Concentrations of IL-

4 in tissue culture supernatants were measured in 2 patients with B-CLL and found to be 

less than 50 pg/ml. 

4.6 Measurement of cytotoxic T-cell activity in B-CLL patients. 

T-cells were cultured with DCs for 21 days with IL-2 fed on days 3,7,10,14, and 17. 

Soluble lysate was added to the pulsed DCs on day 7 and 14. T-cell effectors were then 

tested in a flow cytometric cytotoxicity assay. A typical example of the flow cytometric 

profiles at a 40: I effector: target ratio from Patient 13 are shown below in Figure 22. It can 

be seen that cytotoxicity to B-CLL B cell targets is greater by T-cells cultured with 

autologous DCs pulsed with B-cell lysate from B-CLL patient than that seen by T cell 

effectors stimulated by DCs pulsed with lysis buffer or T-cells cultured alone. 
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Figure 22: Typical Flow cytometric profiles of cytotoxicity to B-CLL B 
cells 
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Figure 22: T -cells from Patient 13 were cultured and are sho wn here after incubation at 40: I 
effector rat io in RPM! 1640 + I 0 % AB Serum + Penic ill in+ Streptomycin+ Glutamine fo r 4 
hours at 37oC, 5%C02. Gates were set as illustrated in Figure 11 . Non-specific cytotox ic ity to 
B-CLL B-cell targets was measured at 29%. 
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T-cells derived from I 0 patients with B-CLL were cultured alone or with lysate

pulsed or unpulsed (lysis buffer added in 8 patients) DCs and then tested for cytotoxicity 

against B-CLL B-cell targets. At the 40: I effector: target ratio, a significant increase in 

cytotoxicity against B-CLL targets was generated by T-cells cultured with B-CLL lysate

pulsed autologous DCs compared with both T-cells cultured with unpulsed DCs and with 

T-cells cultured alone (p=0.0008) (Figure 23a). In order to check the speciticity of this cell 

mediated cytotoxicity other control targets were tested. To test whether the cell-mediated 

cytotoxicity.was directed towards a Pan B-cell antigen, such as CDI9, control B cell targets 

from normal healthy volunteers were used. Significant cytotoxicity was not demonstrated 

against allogeneic B-cell targets from healthy volunteers (non B-CLL targets) (Figure 23b). 

Secondly to test for any autoimmune reactivity that may have a detrimental effect upon the 

immune system of the patient, autologous T-cells from B-CLL patients were used as targets. 

Significant cytotoxicity against autologous T-cells derived from B-CLL patients (non-B-cell 

targets) was not stimulated by eo-culture T cell effectors with a B-CLL B cell lysate pulsed 

DCs (Figure 23c). T-cells derived from patients with B-CLL cultured with soluble B-CLL 

lysate in the absence of DCs did not show significant cytotoxicity against B-CLL or B-cell 

targets from healthy volunteers. Presentation of the B-CLL B cell lysate by DCs was 

required in order to stimulate T-cell responses. 
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Figure 23a, 23b and 23c : Cytotoxicity ofT cell effectors from B-CLL 
patients 
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Effec tors fro m I 0 8 -CLL patients were cultured for 2 1 days (see Chapter 2) and cytotoxicity against 

auto logous 8 -CLL B-cell targets (Figure 23a), allogeneic B-cell targets fro m healthy volunteers (non-8 -CLL) 

(Figure 23b) and auto logous 8 -CLL T-cel l targets (Figure 23c) was measured. T-cells had been cultured 

a lone L:, or with auto logous DCs pulsed with auto logous 8 -C LL lysate+ , allogem: ic lysate fro m healthy 

volunteers (non 8 -CLL) e or lys is buffer • (except in patient 7 and 13 no lysate). Data was analysed by 

one-way ANOV A. Where(*) indicates an overa ll significant effect of treatment with p=O.OOOB. 
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Figure 24: Cytotoxicity against HLA matched normal B-cells by T -cell 
effectors from B-CLL patient stimulated by lysate pulsed DCs 
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Figure 24: T-cells from B-CLL Patient 26 were eo-cultured alone, with lysis huffer pulsed 
autologous DCs or lysate pulsed autologous DCs for 28 days at 37"C, 5tKC01. Cultur~s were fed fL-
2 and restimulated as stated in Section 2. 12. Cytotoxicity was measured against HLA-matched 
PBMC' . T cells and B cells. Duplicates per treatment per target were measured . 
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Many anti-tumour responses have been shown to be HLA restricted. Therefore, it 

was important to test B-CLL targets of the same HLA type as control targets. In Patient 26, 

effectors were tested against B cells, PBMC's and T cells from 2 HLA class I and Il 

matched healthy volunteers and I HLA class Il matched healthy volunteer. No cytotoxicity 

to these targets was demonstrated as shown in Figure 24. 

4.7 Measurement of cytotoxic T-cell responses in healthy volunteers 

As a direct comparison with the B-CLL autologous system, T-cells from normal 

healthy volunteers were stimulated by autologous DCs pulsed with B-cell lysate from 

normal healthy volunteers. T-cells derived from healthy volunteers showed no specific 

cytotoxicity to autologous B-cell targets from healthy volunteers (non-B-CLL targets) 

(Figure 25a). T-cells were also cultured with autologous DCs pulsed with allogeneic B-CLL 

lysate. Effector from normal healthy volunteers after stimulation by normal DCs pulsed 

with an allogeneic B-CLL B-cell lysate did not demonstrate significant cytotoxicity against 

autologous B-cell targets from B-CLL patients (Figure 25b). 
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Figure 25. Cytotoxicity ofT cell effectors from normal individuals. 
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Efkclors from 5 normal healchy volunceers were cultured for 21 days (see Chapter 2) and cytotoxicity againsl 

autologous B-cell targecs from healthy volunu:ers (non-B-CLL) (Figure 25a) and allogeneic B-CLL B-cell 

targels (Figure 25h) was measured. T -cells had been cultured alonc6 or wilh autologous DCs pulsed wich 

aulologous normal B-ccll lysalc • , allogeneic lysale from B-CLL patien+ or lysis buffer. . Data was 

analysed by one-way ANOV A. 
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4.8 Stimulation of cytotoxicity by Granulocyte lysate from B-CLL patient 

In addition, it was thought necessary to demonstrate that a lysate from a cell type 

other than B-cells could not stimulate similar anti-8-CLL responses. A cell not shown to be 

involved in the disease of 8-CLL was chosen. Granulocytes have shown limited 

involvement in the pathology of B-CLL 12721. Granulocytes were isolated as described in 

Section 2.7. Lysate generation, pulsing of DCs and culture conditions for the granulocyte 

lysate were the same as those as 8-cells. T-cells cultured with autologous DCs pulsed with 

an autologous granulocyte lysate from B-CLL Patient I showed no significant increase in 

cytotoxicity against autologous granulocytes or autologous 8-CLL cells as shown in Figure 

26. Although the cytotoxicity ofT-cell effectors cultured alone or with DCs pulsed with 

lysis buffer was higher against granulocyte targets than 8-CLL cells this was thought to be 

due to the fragility of the granulocyte cells. 

99 



Figure 26: Cytotoxicity stimulated by granulocyte lysate from a B-CLL 
patient 
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Figure 26: Granulocytes and 8 -CLL 8 cells were separated from 8 -CLL Patien t I and cell lysatcs were 
prepared by identical methods according to Chapter 2. A single batch of DCs was pulsed with the 2 
different Iysates under the same conditions. T -cell effectors were cultured without o r with pulsed DCs 
under the same conditions for 2 1 days as stated in Chapter 2. All targets were auto logous. 
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4.9 Stimulation of cytotoxicity using allogeneic B-cell lysates from B-CLL patients 

In order to further characterise the specificity of the stimulatory ability of the B-CLL 

B-cell lysates, allogeneic B-cell lysates from B-CLL patients were pulsed onto DCs from 

another B-CLL patient and cultured with T-cells from that B-CLL patient. Mixed results 

were obtained. T-cells derived from Patient 14 and cultured with autologous DCs pulsed 

with an allogeneic B-CLL lysate from Patient IS did not demonstrate cytotoxicity to B-CLL 

targets from Patient 14 (Figure 27a). However, T-cells derived from Patient 6 and cultured 

with autologous DCs pulsed with allogeneic B-CLL lysates from Patients 2 and 13 

demonstrated significant cytotoxicity to B-CLL targets from Patient 6 (p=0.003 and 

p=0.009). Allogeneic B-CLL lysates from B-CLL Patient 7 did not stimulate cytotoxicity to 

B-CLL targets from Patient 6 (Figure 27b ). The lysates from Patient 7 and IS had 

previously generated specific cytotoxicity when used as autologous lysate, pulsed onto 

autologous DCs, cultured with autologous effectors and tested against autologous targets. 
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Figure 27: Cytotoxicity generated by allogeneic-8-CLL-Iysate pulsed DCs 
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Effectors from 8 -CLL patients were cultured alone 0 , with autologous DCs pulsed with autologous 

B-CLL lysate , 8 -CLL a llogeneic lysate from patienLS 15. 2. 13 and "[] and lysis buffll for 

2 1 days. Cytotoxicity shown was performed at a target: effector ratio of 40: I . Where (*) indicated a 

significant increa e in mean ~peci fic cytotoxicity compared with auto logous DCs with lys is buffer with 

p<O.OI when analysed by Students Hest. Each treatment group was measured in duplicate per patient. 
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4.10 Characterisation of effector cell immunophenotypes. 

Effector cells from B-CLL patients 14 and 16 where immunophenotyped after 21 

days in culture. The mean cell surface expression was found to be 47% CD4+ cells and 13% 

CD8+ cells, the remaining cells being CD3-. CD 16 and CD56 expression was absent. 

4. 11 Antibody blocking studies. 

Although Natural Killer cells were not found by flow cytometry in the effector cell 

population, they could still be responsible for the killing of B-CLL cells. In order to 

characterise the mechanism of cytotoxicity, antibodies were used to inhibit the cytotoxic T

cells. Antibody blocking experiments were performed at the effector stage of the 

cytotoxicity assay on 3 patients chosen at random. Significant inhibition of cytotoxicity was 

demonstrated with anti-class II but not with anti-class I monoclonal antibodies in Patient 2 

(Figure 28a) p=0.006 and 12 p=0.031 (Figure 28b). Significant inhibition of cytotoxicity 

was demonstrated in Patient 4 with anti-pan TCR a~ and anti-CD4 but not with anti-CD8 

monoclonal antibodies (p=0.03 and p=0.046) (Figure 28c). This confirmed that the 

cytotoxicity induced by B-CLL lysate pulsed DCs was reliant upon a HLA class-II restricted 

mechanism. 
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Figure 28: Antibody blocking of cytotoxicity generated from B-CLL 
patient T -cell effectors. 

Figure 20: Antibody Blocking. T-cell effectors from B-CLL patient 2 (Figure 20a) and B-CLL patient 

12 (Figure 20b) and patient 4 (Figure 20c) were cultured alone 0 . with autologous B-CLL DCs pulsed with 

B-CLL lysate or lysis buffer• for 21 day . Anti-human HLA-class I and anti-human HLA-class 11 

antibodies were present whilst effectors were incubated at a 40: I effector :target ratio with autologous 8 -CLL 

8 -cell targets (Figure 20a and Figure 20b). Anti-Pan TCR ap , Anti -CD8 and Anti-CD4 anti bodies were 

incubated with autologous 8 -CLL 8 -cell targets at a target: effector ratio of 40: I (Figure 20c). Where(*) and 

(**) indicate a significant inhibition of specific cytotoxicity in the pre cnce of antibody compared with none 

with p<0.05 and p<O.O/ when analysed by Student 's Hest. Each treatment group was measured in duplicate 

per patient. 
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5. RESULTS- FURTHER OPTIMISATION 

5.1 Maturation of DCs with IFN-a 

The low levels of cytotoxicity may be due to the relatively immature state of the 

monocyte derived DCs (CD83.) used to present lysate antigens to the T-cells in our 

experimental system. After loading of antigen onto the dendritic cell surface a further 

'danger signal' is required to achieve maximal presentation of that antigen to the T-cell 

12731. Type I Interferon's (IFN) have shown maturation effects upon CD34+ derived DCs 

12741. IFN-a (2jlg/ml) (Cambridge Bioscience) was added to monocyte derived DCs after 

pre-treatment with IL-12 and pulsing with either B-CLL lysate or lysis buffer on 7 days of 

culture. After 24 hours incubation the DCs were washed by centrifugation and added toT

cells as stated in Section 2.11. Cytotoxicity against B-CLL B-cell targets was assessed after 

a further 21 days ofT-cell effectors in eo-culture. In Patient 17, autologous T-cells cultured 

with lysate pulsed DCs matured by IFN-a showed decreased specific cytotoxicity to B-CLL 

targets (Figure 29). The addition of IFN-a to lysate pulsed monocyte derived DCs from 

Patient 17 or 27 did not stimulate cell surface expression of CD83. In Patient 27, a decrease 

in the number of cells positive for HLA-DR antibody staining was observed when the 

maturation agent was added to DCs after lysate pulsing. However, when IFN-a was added 

before lysate pulsing during the same experiment there was an increase in HLA-DR 

expression (Figure 30). 
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Figure 29: Effect of maturation by IFN-a on dendritic cell maturation as 
measured by cytotoxicity by T cells to autologous B-CLL targets. 
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Figure 29: T-cell efft!ctors generated from DCs treated or untreated with IFN-a (2J..lg/ml ) for 24 hours were 

tested against autologous 8 -CLL B-cells fro m Patient 17. Mean !.J1Cc ific cy totoxicity was gt!ne rated from 

duplicates for each treatment point. (* ) lndicat t!s a significant decrea~e in cyiOtoxicity (p=0. 0/8) when IFN-a 

was added to lysate pu lsed DCs compared with no IFN-a. 
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Figure 30: Cell surface expression of HLA-DR on DCs with maturation 
agent IFN-a. 
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Figure 30: Dendritic cells from 8-CLL Patient 27 were treated with fFN-a (2 !-lg/ml) with and without previous 

exposure to autologous lysate and were stained with anti- Human HLA-DR-RPE conjugated antibodies as 

stated in Section 2.2. 
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5.2 Maturation of DCs with Poly (I:C) 

Polyriboinosinic Polyribocytidylic Acid (Poly(l:C)) induces stable mature DCs 

capable of stimulation in a primary allogeneic MLR 12751
. Therefore, it was another possible 

dendritic cell maturation agent that should be investigated. Poly (I:C) at 50Jlg/ml was added 

For 3 days after pulsing with B-CLL B-cell lysate to monocyte DCs. Although 50Jlg/ml was 

not the optimal concentration to achieve maximal effect, it did increase the cell surface 

expression of CD83 on immature monocyte DCs (Figure 31 ). T-cell effectors, from Patient 

18, stimulated by Poly(I:C) matured and immature autologous DCs were tested for 

cytotoxicity against autologous B-CLL B-cell targets. At the 40: I effector target ratio, 

autologous effector T-cells cultured with Poly (I:C) treated DCs exhibited decreased 

specific cytotoxicity to B-CLL B-cells. However, at the target: effector ratio of 20: I specific 

anti-B-CLL B-cell cytotoxicity was increased when T-cell effectors had been cultured with 

autologous lysate pulsed DCs matured with Poly (I:C) (Figure 31 ). 
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Figure 31: The effect of maturation agents on CD83 expression by 
dendritic ceUs. 
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Figure 31 : Dendritic cells from Patient 21 were isolated and cultured for 6 days as stated in Section 2.5. IL-12 

pre-treatment and lysate were administered as previously stated in Section 2.1 0. Maturation agents were added 

to duplicate wells of 24 well plate at various concentrations. After 3 days incubation at 37"C, S%C02 cells 

were removed using EDT A and stained for CD83-FITC staining as stated in Section 2 .2 . 
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Figure 32: Effect of Poly (I:C) on dendritic cell maturation as measured 
by cytotoxicity by T cells to autologous B-CLL B-cells 
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Figure 32: T-cell effectors generated from DCs treated or untreated with Poly (I:C) (50!-lg/ml) for 3 days were 

tested against autologous 8 -CLL 8-cell s from Patient 18 after eo-culture for 21 days at 37"C. 5lh-CO!. Mean 

specific cytotoxicity was generated from duplicates for each treatment point. (*) Indicates an increase due to 

use of Poly (I :C). 
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5.3 Maturation of DCs with LPS 

Lipopolysaccharide (LPS) has been shown to induce maturation of DCs in 1•ivo 11091 

and in vitro 1276
·2771 . Therefore, LPS was another good candidate to increase the maturation 

of monocyte derived DCs from B-CLL patients. LPS was added to autologous DCs after 

pulsing with a B-CLL B cell lysate at I OOng/ml for 24 hours before eo-culture with 

autologous T cells. Although this was not optimal for Patient 21 and so did not show peak 

expression in the concentration curve (Figure 31 ), the addition of LPS as a maturation agent 

resulted in 12% CD83 cell surface expression in Patient 19. A decrease in the numbers of 

double positive CD86/CD40 cells was also observed. There was no significant difference in 

IFN-y secreted by T cells eo-cultured with DCs matured with LPS after pulsing with B-CLL 

B cell lysate. There was no increase in specific cytotoxicity to B-CLL B-cell targets by 

effectors that had been cultured with lysate pulsed DCs matured with LPS. However, the 

autologous T cells eo-cultured with DCs pulsed with lysis buffer and then treated with LPS 

showed increased levels of non-specific cytotoxicity (Figure 33). 
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Figure 33: Effect of LPS on dendritic cell maturation as measured by 
cytotoxicity by T cells to autologous B-CLL B-cell targets 
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Figure 33: T-cell effectors from Patient 19 were generated from DCs treated or untreated with LPS 

( IOOng/ml) for 24 hours and tested against autologous B-CLL B-cclls after eo-culture for 21 days at 

37"C, 5%C01. 
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5.4 Maturation of DCs with TNF-a 

Tumour Necrosis Factor-alpha (TNF-a) administration to monocyte derived DCs 

produced COla+, CD83+ DCs capable of maximal stimulation in an allogeneic Mixed 

Lymphocyte Reaction (MLR) 11101. Therefore TNF-a was used as a potential maturation 

agent. The addition of TNF-a as a maturation agent resulted in an increase in CD83 cell 

surface expression (Figure 31 ). TNF-a was added to DCs, from Patient 20, at lOng/m I for 

48 hours after pulsing with autologous B-CLL B-cell lysate and then eo-cultured with 

autologous T cells. There was no difference in the numbers of double positive CD86/CD40 

cells. At effector: target ratios of I 0: I and 20: I there was increased levels of specific 

cytotoxicity to B-CLL B-cells by effector T-cells which had been stimulated by TNF

a treated autologous lysate pulsed DCs. However, at the higher effector: ratio of 40: I there 

was no significant difference in cytotoxicity against B-CLL B cells by T-cells cultured with 

TNF-a matured lysate pulsed DCs (Figure 34). 
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Figure 34: Effect of TNF-a. on denddtic cell maturation as measured by 
cytotoxicity by T cells to autologous B-CLL B-cell targets 
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Figure 34: T -cell effectors from Patient 20 were generated from DCs treated or untreated with TNF-cx 

( I Ong/ml) for 48 hour and tc ted again t autologous B-CLL B-cells after eo-culture for 21 days at 37"C, 
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5.5 Use of Heal Shock to improve antigen presentation 

Antigenic peptides have been coupled with tumour cell derived proteins to enhance 

macrophage responses against a wide range of tumours ' 278
·
2791

. Therefore, it was thought 

that if the B-cells from B-CLL patients" experienced heat shock and that when they were 

used to prepare the lysate, these lysates would prove more antigenic. After isolation as 

outlined in Sections 2.4 and 2.6, the B-CLL B-cells were placed at a 45°C water bath for 90 

minutes. This treatment has shown to induce heat-shock protein-70 (HSP-70) ' 2801
, heat

shock protein-72 (HSP-72) ' 2811 and used in many studies involving heat shock protein ' 282
· 

283. 284/ B-cell lysate generated from heat-shocked B-CLL B-cells was compared with B-

cell lysate from untreated B-CLL cells by pulsing onto autologous DCs and eo-culture with 

autologous T cells from Patient 11. T cell effectors generated were then tested for 

cytotoxicity against autologous B-CLL B-cell targets. Heat-shock treatment of the B-cells 

used to prepare B-CLL lysate when pulsed onto DCs, increased observed cytotoxicity by 

autologous T-cell effectors at 40: I and 20: I effector: target ratios (Figure 35a). However, 

the increase in cytotoxicity was not significant when compared with that observed from T

cell effectors stimulated by DCs pulsed with lysate from B-cells not receiving heat-shock 

treatment. Interestingly, T-cell effectors cultured without DCs but with soluble heat shock 

lysate showed increased cytotoxicity to autologous B-cell targets. When the lysate was 

analysed by SDS-PAGE it was observed that the lysate from B-CLL B-cells were different 

to the lysate from heat-shock treated B-CLL B-cells in the same patient (Figure 35b). 
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Figure 35a: Effect of heat-shock treatment of B-CLL B-cells before lysate 
preparation on cytotoxicity against autologous B-CLL B-ceU targets. 
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Figure 35a: B-cells from Patient 11 were heat-shocked at 45°C for 90 minutes prior to lysate preparation. 

Heat-shocked and untreated lysates were pulsed onto DCs which were eo-cultured with autologous T-cells for 

21 days at 37oC, 5%C02. Cytotoxicity was measured against autologous B-ce\ls. 
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Figure 35b: SDS-PAGE of heat shock treated B-celllysate from B-CLL 
patient 
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Figure 35b: B cells from Patient 11 were isolated. Lysate was prepared from half and the remaining 

half was heat shock treated in a 45°C water bath for 90 minutes. Lysate was prepared from the heat 

shock treated cells. Both lysates were assayed for total protein content and analysed by SDS

PAGE. Italic numbers in brackets indicate total net intensity of each lane. 
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5.6 Pre-treatment ofT cells with IL-15 

T-cells from patients with B-CLL may have been exposed in vivo to possible 

immunosuppressive factors secreted by the B-CLL cells. T-cells of B-CLL patients show 

dysfunctional cell surface molecule expression12551
. Treatment with cytokines in 

conjunction with B-CLL B-cell lysates presented by monocyte derived DCs may be 

necessary to stimulate dysfunctional T cells. CD4+ T-cells treated with IL-15 have shown 

enhanced antigen specific proliferation in vitro 121151
• Since IL-15 can maintain T -cell 

activation normally suppressed by multiple myeloma cells 12861
, another late B lineage 

tumour, this effect was tested on T-cells from B-CLL patients. T-cells were plated at 8 x 

105/ml in 24 well plates (Life Technologies, lnvitrogen) in culture medium + I 0% AB 

Serum+ IOng/miiL-15 (Cambridge Bioscience). Cells were incubated for 16 hours at 37"C 

in 5% C02• T cells were washed in culture medium twice to remove any residual IL-15 

before eo-culture with DCs as stated in Section 2.12. 
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5.6.1 Proliferation (IL-2R expression) by IL-15 treated T-cells 

A typical flow cytometric profile from Patient 21 after 7 days incubation can be seen 

in Figure 36. T-cells were stimulated by DCs pulsed with autologous B-CLL B-cell lysate 

as previously observed in Section 4.1. However, the percentage of activated T-cells was 

further increased by the T-cells being pre-treated with IL-15 before stimulation by lysate 

pulsed DCs (Figure 36). The experiment was repeated in B-CLL patient 22. There was an 

observable increase in the numbers of activated T-cells after 5 days (in patient 22) and 7 

days (in patient 21) eo-culture with autologous B-CLL lysate pulsed DCs than T cells eo

cultured with autologous DCs pulsed with lysis buffer (Figure 37). T-cells treated with IL-

15 prior to culture with autologous DCs pulsed with B-cell lysate showed an observable 

increase in activation after 7 days than IL-15 pre-treated T-cells eo-cultured with autologous 

DCs pulsed with lysis buffer in both Patients 21 and 22 (Figure 37). T-cells that had 

received prior treatment with IL-15 showed greater activation levels after 7 days of 

stimulation by B-CLL lysate pulsed DCs than those not pre-treated with IL-15 in both 

patients (Figure 37). 
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Figure 36: Comparison ofT cell proliferation (IL-2R expression) after 
IL-15 treatment from a B-CLL patient 

w 
0.. 
~ 
J> 
N 
0 
u 

T-cells 

(Dendritic cells + lysis buffer ) 

• 1 

w 
0.. 
~ 
' lO 

N 
0 
u 

+ T-cells 

CD3-FITC 1000 

<Dendritic cells + lysate) 

+ T-cel~ 

18% 

62.1% 

• 1 
CD3-FITC 

1000 

w 
0.. 
~ 
' lO 

N 
0 
u 

T-cells + 11-15 

<Dendritic cells+ lysis buffer) 

+ T-cells + IL-15 

. l 

w 
0.. 
~ 
' lO 

N 
0 
u 

84.6% 

CD3-FITC 
1000 

(Dendritic cells+ lysate) 

+ T-cel!s + IL-15 

45.6% 

• 1 
CD3-FITC 

1000 

Figure J6: Pulsed or unpulsed DCs from Patient 21 were eo-cultured wi th T-cells alone or T -cells treated wi th 
lL-15 ( I Ong/ml) for 16 hours. Typical examples shown were incubated for 7 days at JrC. 5~ CO~ in RPM I 
1640+ 5%AB serum + Penicill in + Glutamine+ Streptomyc in. Cells were harvested and stained for activation 
markers as stated in Section 2. 14. 

120 



Figure 37a: Effect of IL-15 pre-treatment upon T cell proliferation (IL-
2R expression) after stimulation by B-CLL lysate pulsed DC 
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Figure 37b: Effect of IL-15 pre-treatment upon T -cell proliferation (IL-
2R expression) after stimulation by B-CLL lysate pulsed DC 
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Figun: 37a and b: Numbers of CDJ/CD25 positive T-cells were measured from Patient 21 (Figure 37a) and 

Patient 22 (Figure 37b ). T -cells were cultured alone or pre-incubated with IL-15 ( I Ong/ml) for 16 hour and 

then cultured alone or with autologous 8 -CLL DCs pulsed with a soluble 8 -CLL lysate or lysis buffer. 
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5.6.2 IFN-y secretion by IL-15 pre-treated T cells 

A significant increase of IFN-y secretion in culture supernatant was found after 4 

days by T-cells cultured with B-CLL lysate-pulsed autologous DCs compared to both T-

cells cultured with lysis buffer-pulsed DCs and T-cells cultured alone (p=0.038) (Figure 

38). T-cells derived, from the same B-CLL patients, treated with IL-15 prior to culture with 

autologous DCs pulsed with B-cell lysate showed a significant increase in IFN-y secretion 

after I day (p=0.0/8)(Figure 38). More IFN-y was secreted by T-cells which had been IL-

15 treated and then cultured with B-CLL lysate-pulsed autologous DCs (p=0.030 )(Figure 

38). 

5.6.3 Cytotoxicity to B-CLL targets generated by T-cell effectors pre-treated with 
IL-15 

T-cells eo-cultured with B-CLL lysate pulsed DCs showed significantly higher 

levels of specific cytotoxicity to autologous B-CLL B cell targets when compared with DCs 

pulsed with lysis buffer (p=0.019)(Figure 39). T-cells, from the same B-CLL patients, pre-

treated with IL-15 prior to culture with autologous DCs pulsed with B-cell lysate also 

showed significantly higher levels of specific cytotoxicity to B-CLL B-cell targets 

(p=0.002)(Figure 39). T cells eo-cultured with autologous B-CLL lysate pulsed DCs 

showed significantly greater specific cytotoxicity against B-CLL B-cell targets when pre-

treated with IL-15 (p=0.006) (Figure 39). 
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Figure 38: Effect of IL-15 pre-treatment on IFN-y secretion by T-cell 
effectors stimulated by autologous B-CLL B-cell lysate pulsed DCs . 
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Figure 38: Tissue culture supematants from patient 21 and 23 were measured for secreted IFN-y by ELISA. 

T -cell s were cultured alone or pre-incubated with IL-15 ( I Ong/ml) for 16 hours and then eo-cultured for 21 

days. Mean values were <ested using unpaired Students' t-test. # indicates a significant (p=0.038) di fference 

between { (DC+Lysate)+ T} and I DC+ T }. * indicates a significant (p=0.0/8) di fference between 

I(DC+Lysate)+(T+fL-1 5)} and IDC+(T+IL-15)}." indicates a signi ficant (p=O.OJO) difference between 

I (DC+Lysate)+(T +IL-15)} and I (DC+Lysate)+ T } . Each treatment group per patient was measured in 

duplicate. 
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Figure 39: Effect of IL-15 pre-treatment on cytotoxicity ofT -cell effectors 
from B-CLL patients 
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Figure 39: Effectors from patients 5,6,and 7 were prc-incubated with IL-15 ( I Ong/ml) for 16 hours and then 

eo-cultured for 28 days and tested for cytotoxicity against autologous B-CLL B-cell targets. One measurement 

was made per patient per treatment. Data was analysed by one-way ANOV A. Overall significant effect of 

stimulation by lysate pulsed DCs (p=O.O 19). Overall significant effect of stimulation of fL-1 5 pre-incubated 

T -cells by lysate pulsed DCs (p=0.002). Overall significant effect of pre- incubation with IL-15 (p =0.006). 
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5.6.4. Effect of IL-15 pre-treatment on cytotoxicity to K562 cells 

IL-15 can induce Natural Killer (NK) cell development 12'~ 71 and increase cytotoxic 

activity of NK cells 12881. K562, an erythroleukemia cell line, are sensitive to NK cell 

mediated cytotoxic activity 12891. It was possible that the increase in cytotoxicity observed in 

Figure 39 was due to NK activity and not T-cell effectors. Therefore, pre-treated T-cell 

effectors were also tested for cytotoxicity against K562 cells. K562 T cells eo-cultured with 

B-CLL lysate pulsed DCs showed no specific cytotoxicity to K562 cell targets (Fig 40). IL-

15 pre-treated T cells eo-cultured with autologous B-CLL lysate pulsed DCs did not show 

significant cytotoxicity to K562 cell targets (Figure 40). T cells eo-cultured with autologous 

DCs pulsed with B-CLL B-cell lysate showed similar levels of cytotoxicity to K562 cell 

targets whether pre-treated with IL-15 or without cytokine (Figure 40). 
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Figure 40: Effect of IL-15 pre-treatment on cytotoxicity ofT -cell effectors 
from B-CLL patients against K562 ceUs. 
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Figure 40: Effectors from patient 7 were pre-incubated with ll.rl5 {IOng/ml) for 16 hours and then eo-cultured 

for 28 days and tested for cytotoxicity against KS62 cell targets. One measurement was made per treatment 

group 
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5.7 Fusion of DCs and B-CLL B cells 

5.7.1 Introduction 

The majority of effective anti-tumour responses generated are MHC class-I-

restricted, but data presented in this thesis suggests a predominant MHC class-II-restricted 

anti-tumour response in B-CLL. The generation of CD8+ cytolytic T-lymphocytes (CTL) as 

well as a CD4+ cytokine and cytotoxic anti-tumour response would be necessary for 

effective vaccination in patients with B-CLL. Priming of CTL by native antigens requires 

introduction into the cytoplasm 1290
· 

2911
. A strategy that assures that antigens will be 

delivered and processed efficiently in a MHC class-I -restricted manner is to fuse APCs 

with tumour cells. Whole cell vaccines have been produced in this manner for several 

different tumours 1292
· 

293
· 

2941
. Therefore fusion of monocyte derived DCs with autologous 

B-CLL B cells was attempted by electroporation in an effort to generate CD8+ CTL. 

Table 4: Summary of electrofusion efficiencies and yields 

Fusion method Number of viable Percentage fused Total fused cell 
cells cells yield 

Mixed not fused 4.3x 105 6.6% 2.8 X 104 

(control) 
250 V non- 3 X 10' 10.4 3.1 X 104 

separated 

250V separated on I X 104 50.5 5 X IO.i 
10% Dextran 
500V non- I X 105 45.0 4.5 X 104 

separated 

500V separated on 5 X 104 83.1 4.1 X 104 

10% Dextran 

Table 4: B-CLL B-cells from Patient 8 were electrofused using Gene Pulser Transfection Apparatus (Biorad). 
Viability counts were estimated by counting cells excluding Trypan Blue dye using haemocytometer 16 hours 
after voltage application. Percentage of cells fused were calculated from flow cytometry labelling with CD20-
RPE and CD86-FITC antibodies under stated conditions 16 hours after voltage application. 
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Figure 41: Flow cytometl'ic analysis of fused B-CLL and DCs 
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Figure 24 : Fused cells were labelled with CD20- RPE and CD86-FITC antibodies, as stated 
in Section 2.2, 16 hours after voltage application. 
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5.7.2. Results 

T-cell effectors from the same B-CLL patient were generated via two different 

approaches. Some were generated by eo-culture ofT-cells with B-CLL lysate pulsed DCs 

and others were generated by eo-culture ofT-cells with B-CLL dendritic ceii-B-cell fusion 

cells. T-cell effectors generated in these two different ways were then tested for cytotoxicity 

against autologous B-CLL B-cell targets as a direct comparison. As previously observed 

(Section 4.6), T -cell effectors cultured with lysate pulsed autologous DCs showed a 

significantly higher percentage specific cytotoxicity against B-CLL B-cell targets than T

cell effectors cultured with autologous DCs pulsed with lysis buffer (p=0.037) (Figure 42). 

T-cell effectors cultured with autologous fused dendritic-ceii-B-cell hybrids showed a 

significantly higher percentage specific cytotoxicity against B-CLL B-cells than other T-cell 

effectors (p=0.0/6)(Figure 42). A direct comparison in the same B-CLL patient showed 

that autologous fused dendritic-ceii-B-cell hybrids were more effective at stimulating T-cell 

effectors with specific cytotoxicity against B-CLL B-cells than autologous DCs pulsed with 

B-CLL B-cell lysate (p=O.O 13) (Figure 42). 
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Figure 42: Cytotoxicity to B-CLL B-cells by T -cells generated by eo
culture with fusion hybrids 
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Figure 42: Effectors from Patient 8 were cuJtured for 28 days and cytotoxicity against autologous B-CLL B 
cell targets at a 40: l ratio was measured. Data were analysed by unpaired Students' t-test. Where # indicates 
significant (p=0.037) increase in cytotoxicity due to puJsing DCs with lysate. Where " indicates significant 
(p=0.0/6) increase in cytotoxicity due to electrofusion of DCs with B-CLL B-cells rather than mixing the 2 
cell types. Where • indicates significant (p =O.OJ3) increase in cytotoxicity due to electrofusion ofDCs with B
CLL cells rather than puJsing with lysate. Each treatment group was measured in duplicate. 
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Figure 43: Effect of monoclonal antibodies on cytotoxicity ofT -cell 
effectors stimulated by eo-culture with fusion hybrids. 
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Figure 43 : Effectors from Patient 8 were cultured for 28 days and cytotoxicity against autologous B-CLL B-

cell targets at a 40: 1 ratio was measured. Anti-human CD4 and anti-human CD8 antibodies ( 1 OOmg/ml) were 

added to effectors for 4 hours when incubated with targets. Data were analysed by unpaired Students' t-test, 

where • indicates significant (p=0.039) inhibition with anti-human CD4 antibodies of cytotoxicity stimulated 

by lysate pulsed DCs and # indicates significant (p=O.OJ8) inhibition with anti-human CD8 antibodies of 

cytotoxicity stimulated by electrofused DCs. Each treatment group was measured in duplicate. 
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Monoclonal antibodies against Human CD4 and CD8 were incubated with all the T 

cell effectors during the cytotoxicity assay incubation period. T-cell effectors stimulated by 

lysate pulsed autologous DCs showed a significant inhibition of specific cytotoxicity 

against B-CLL B-cell targets by human anti-CD4 antibodies (p=0.039) (Figure 43). T-cell 

effectors stimulated by autologous dendritic-ceii-B-cell hybrids showed a decrease in 

cytotoxicity against B-CLL B-cells of 14% when incubated with anti-human CD4 

antibodies (p=0.062)(Figure 43). Most importantly, T-cell effectors stimulated by 

autologous dendritic-ceii-B-cell hybrids showed a significant inhibition of cytotoxicity 

against B-CLL B-cells by anti-human CD8 antibodies (p=0.0/8) (Figure 43). 
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6. Results-Properties of Lysates 

At present there are no documented peptide sequences that could be responsible for 

the anti-tumour responses demonstrated. However, differences between B-cell lysates of 

normal healthy volunteers and B cells from B-CLL patients have previously been detected 

by 2-D electrophoresis 12951 . However, no functional tests have ever been performed to 

assess the importance of these B-CLL specific proteins. A quick method for identification 

of possible proteins within the lysate that could act as target anti-tumour antigens was 

required in order to perform functional tests using the in vitro dendritic cell system. 

6.1 Native PAGE 

A typical example of the native gel containing B-cell lysates from both B-CLL 

patients and normal healthy volunteers is illu~trated in Figure 44. A single dominant band at 

between 116 kDa and 97 kDa were observed 1n all the lysates. Additional fainter bands 

were seen in both lysates from B-CLL patients and 'lormal healthy volunteers. There was 

not a clearly visible difference between lysates generated from B-CLL patients and normal 

healthy volunteers. Any differences observed using non-reduced geb was dependant upon 

the amount of protein contained within the lysate loaded onto each gel. 

133 



Figure 44: Native gel of B-celllysates from B-CLL patients and normal 
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Figure 44: Lysates were assayed for protein content as stated in section 2.9. Samples were loaded onto a 

nati ve gel and stained according to section 2. 19. 

6.2 SOS-PAGE 

It should be noted from Figure 45a that all the B cell lysate had an obvious protein 

visible at the 65 kDa molecular weight. Many more protein bands were observed in the 

protein lysates from B-CLL patients where the same total protein had been loaded onto the 
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reducing gel as the B cell lysate from a control healthy volunteer (Lanes 3, 4, 13, 14 vs. 

Lane 9, 16, 18). Proteins were detected in some patients that were not observed in all of 

them (Lanes 5 and 7). We have not correlated these patient specific bands with stage or 

cyto-genetics. 

Figure 45a: SDS-PAGE ofB-celllysates from B-CLL patients and normal bealtby volunteers 
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Figure 45a: Lysates were assayed for protein content as stated in section 2.9. Samples were loaded onto a 

reducing gel and stained according to section 2.18. 
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Figure 45b: SOS-PAGE of 8-celllysates from 8-CLL patients and 
normal healthy volunteers 
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Figure 45b: Lysate were a sayed for protein content a stated in section 2.9. Samples were 
loaded onto a non-reducing gel and stained according to section 2. 18. 
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When 50 J.1g ofB-celllysate from B-CLL patients was loaded onto the gel a 42 kDa 

band not seen in the B cell lysate from a healthy volunteer was observed. This observation 

was made in I 0 B-CLL patients and 5 normal controls as summarised in Figure 46a. 

However, when I OOug was loaded onto the gels a faint 42 kDa protein could be observed in 

the lysate from l healthy volunteer's B-cells (Figure 45b). Therefore the lysates loaded at 

lOOJ.1g were analysed separately as summarised in Figure 46b. In order to draw a direct 

comparison between these lysates a series of dilutions of both lysates from B-CLL patients 

and normal healthy controls was performed (Figure 47). This was because the protein 

estimates may have been incorrect. The difference in expression of this B-CLL specific 

band may have been due to less total protein being added in the B-cell lysates from healthy 

volunteers. Figure 47 illustrates that at comparable total protein concentrations the 42 kDa 

protein band is clearly more highly expressed within the B-cell lysate from a B-CLL patient 

than a healthy volunteer. A band of less intensity was also observed at 25 kDa in most B

CLL patients (Figure 46a and 46b ). We chose to test the functional capability of the 65 

kDa, 42kDa and 25kDa bands present in all the B-CLL lysates by pulsing these separated 

bands onto DCs. 
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Figure 46a: Comparison of digital optical densimetry profiles of B-cell 
lysates from B-CLL patients and healthy volunteers 
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Figure 46a: Cellly ates from I 0 8-CLL patients and 5 normal healthy vo lunteers were prepared as stated in 
Section 2.7. 501Jg was loaded into each well and analysed by SOS-PAGE as described in Section 2. 18. Gel. 
were scanned using Kodak image proces ing oftware and net band inten ity was measured. 
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Figure 46b: Comparison of digital optical densimetry profiles of B-cell 
lysates from B-CLL patients and healthy volunteers 
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Figure 46a: Cell lysates from 6 B-CLL patients and I normal healthy volunteers were prepared as stated in 
Section 2.7. IOO~g was loaded into each well and analysed by SOS-PAGE as de cri bed in Section 2. 18. Gels 
were canned using Kodak image processing software and net band intensity was measured. 
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Figure 47: SOS-PAGE of various dilutions of B-celllysate from healthy 
volunteer and B-CLL patient 
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Figure 47: Lysate. were assayed for protein content as stated in sec tion 2.9. Samples were loaJed onto a non
reducing gel and stained accordi ng to cction 2. 18. Italic numbers in brackets depi<.: t total net imcn ity 
read ing for each lane. 
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6.3 lmmunogenicity of individual protein bands. 

In 5 B-CLL patients, B-celllysates were isolated as stated in Section 2.8 whilst DCs 

were cultured according to Section 2.5. Individual protein bands were extracted from the 

polyacrylamide gel by electro-elution as stated in Section 2.21. Proteins were pulsed onto 

DCs and then eo-cultured with T-cclls as the lysates had done previously. IFN-y secretion 

and cytotoxicity against autologous B-cell targets were compared for the 65kD, 42kD, 

25kD and whole lysate. 

As previously illustrated in Figure 21 a, whole B-cell lysate from B-CLL patients 

when pulsed onto autologous DCs after 3 days eo-culture with autologous T-cells produced 

a significant increase in IFN-y secretion (p=0.0/98) (Figure 48). Both 65kD (p=0.0025) and 

42kD (p=0.0/25) band, when pulsed onto autologous DCs, stimulated autologous T-cells to 

produce increased levels of IFN-y. The 65 kDa protein band was more effective at 

stimulating the secretion of IFN-y than the 42kD band or whole B-cell lysate. 
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Figure 48: Effect of individual protein bands upon IFN-y secretion by T
cells from B-CLL patients. 
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Figure 48: lFN"'Y was measured by ELlS A from Patients' 25,29,30,31 ,32. Overall effect of 
treatment was measured by on~way ANOV A(*) indicates significant increase (p=0.0/98) in IFN-r 
secretion by T -cells cultured with DCs pulsed with whole lysate compared with those cultured with 
DCs pulsed with lysis buffer. (") indicates significant (p=0.0025) increase in IFN-y secretion by T
cells cultured with DCs pulsed with 65k.D band compared with those cultured with DCs pulsed with 
lysis buffer. ($)indicates significant (p=O. 0 I 25) increase in IFN-y secretion by T -cells cultured with 
DCs pulsed with 42kD band compared with those cultured with DCs pulsed with lysis buffer. 
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As previously illustrated in Figure 23a, whole B-cell lysate from B-CLL patients 

when pulsed onto autologous DCs and eo-cultured with autologous T-cells generated T-ccll 

effectors with increased cytotoxicity, at the effector: target ratio of 40: I, against autologous 

B-cells (p=0.008). Dendritic cells pulsed with the purified 65kDa (p=0.0/4) or 42 kDa 

(p=0.005) protein band generated T-cell effectors with significantly increased cytotoxicity 

at the 40: I effector: target ratio against autologous B-cells (Figure 49). At the lower 

effector: target ratio's of 10: I and 20: I the 42kDa band pulsed onto autologous DCs 

generated T-cell effectors with greater cytotoxicity against autologous B-CLL B-cell 

targets. Therefore, it was possible that the 42 kDa band contained the antigen responsible 

for stimulating a cytotoxic T-cell response. The purified protein band of molecular weight 

25 kDa did not stimulate significant increases in either IFN-y secretion or cytotoxicity 

against autologous B-CLL B-cell targets. The 25 kDa protein band was not sent to be 

sequenced in order to save valuable resources. 
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Figure 49: Stimulation of cytotoxicity against B-cells by T -cell effectors 
fr·om B-CLL patients by different protein bands pulsed onto DCs 
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Figure 49: T -cell effectors were generated by 28 day!> culture from Patient ' 25,29,30.3 1 ,32. 
Overall effect of treatment was mea ured by one-way ANOVA. (*)indicates significant (p=0.008) 
increa e in cytotoxicity by T-cells cultured with DCs pul ed with whole ly ate compared with those 
cultured wi th DCs pu lsed with lysis buffer. (") indicates significant (p=0.0 /4)increase in 
cytotoxicity by T -cells cultured with DCs pulsed with 65kD band compared with those cultu red 
with DC pul ed with lysis buffer. (S)indicate · significant (p=0.005) increase in cytotoxici ty by T
ce lls cultured with DCs pulsed with 42kD band compared with tho e cultured wi th DCs pul. ed 
wi th ly i buffer. 
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6.4 Western blot analysis of SOS-PAGE 

There were two protein bands of particular interest that needed identification. One 

approach was to choose proteins with corresponding molecular weights of 65kDa and 42 

kDa that were known to be over-expressed in B-CLL patients. Western blot analysis would 

then confirm whether these proteins were a possible target antigen. 

6.4.1 CDI9 

CD 19 is a 95 kDa transmembrane glycoprotein that contains two extracellular 

immunoglobulin domains 1296
· 

2971
. CD 19 is selectively expressed on the cell surface of B

lymphocytes, where it activates intracellular signalling cascades 129x1. Expression of CD 19 

is continuous throughout B-cell development and through terminal differentiation of B-cells 

into plasma cells 12991
. CD 19 forms functional complexes with B-lymphocytes surface 

proteins, including Integrin pI, CD21 and CD81. As such it would provide a good control 

marker to differentiate B-lyrnphocytes from T-lyrnphocytes. CD 19-dynabeads had been 

used in all the purification steps and so it was a good idea to investigate whether either of 

the two bands were merely an artefact due to the method of B-cell separation. Decreased 

CD 19 expression on the cell surface of B-cells from B-CLL patients has been reported 13001
. 

Figure 50 shows that in Lanes 5 and 8 two protein bands reactive to anti-human CD 19 at 

approximately 64kDa and 31 kDa were detected. No reactive bands were detected in Lane 7 

(containing T-cell lysate) despite plenty of protein bands being detected by Ponceau S 

staining. There was a decreased detection signal from B-CLL B cells than those from 

healthy volunteers. 
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Figure 50: Western blot of various cell lysate using affinity-purified 
polyclonal goat anti-human CD19 
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Figure 50: Lysates were run on a 4-15% Tris-HCL polyacrylamide gel under reducing conditions. Gel 

was lcfl unstained and elcctro-bloued onto nitro-cellulose. Protein hands were stained with Ponceau S 

and marked in pencil. Primary antibody goat-anti-human CD 19 (I :500) was added for I hour. 

Secondary antibody donkey anti-goat alkaline phosphatase conjugate (I: I 000) was added ror I hour. 
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6.4.2 cos 

COS is a 67k0a transmembrane glycoprotein expressed on virtually all T

lymphocytes, some thymocytes and 8-cells 1' 1. lt resembles C06, as both share a common 

structure of 3 scavenger receptor cysteine-rich domains and similar tissue distribution 13011
. 

COS is associated with T-cell signalling through the TCR/C03 complex 13021
. A B-cell 

antigen known as C072 is the ligand for COS 13031
. COS expression has been found upon B

cells from B-CLL patients 13041. Cross-linking of COS with antibodies has induced 

apoptosis of 8-cells from 8-CLL patients 13051
. Therefore, it was considered a prime 

candidate as a protein not expressed in normal 8-cells but that may have attributed to the 

immunogenicity of the 65kDa and in the 8-cell lysate. Samples that showed the clearest 

detection of COS were those loaded with I OOJ..ig of total protein. COS was detected as 2 

bands of approximately 50k0a and 30k0a in lysates from 8-cells from both 8-CLL patients 

and normal healthy volunteers (Figure 51, Lanes 5 and 8). In T-cell lysates from both 

normal healthy volunteers and B-CLL patients (Figure 51, Lanes 2 and 7) the 31 kOa band 

was detected alone. This may well be a consequence of different glycosylation or different 

disulphide bonds of the protein subunits. 
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Figure 51: Western blot of various cell lysate using affinity-purified 
polyclonal goat anti-human CDS 
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Figure 51: Lysatcs were run on a 4-15'7t- Tris-HCL polyacrylamide gel under reducing conditions_ Gel 

was left unstained and clectro-blotted onto nitro-cellulose. Protein bands were stained with Ponceau S 

and marked in Pencil. Primary antibody goat-anti-human CD5 (I :500) was added for I hour_ 

Secondary antihody donkey anti-goat alkaline phosphatase conjugate (I: I 000) was added for I hour-
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46.4.3 C072 

C072 is the 45 kOa human homologue of murine Lyb-2 1·1061. C072 is a ligand for 

COS expressed upon both normal 8-cells and leukaemia 8-cells regardless of COS eo

expression 13071. The COS-C072 ligand pair may be involved in an autostimulatory loop 

that may play a role in replenishment of all types of 8-cell13081
. C072 was highlighted as a 

possible target antigen for cytotoxicity against B-CLL 8-cells 1·
1091

. Interestingly the rabbit 

anti- human, rat, mouse, C072 antibody only detected a protein band at approximately 

60k0a in T-cell lysates from normal healthy volunteers (Figure 52). This result was 

disappointing. Even when I OO~g of lysate was, added to another gel and, blotted with the 

same combination of antibodies, C072 was still not detected in B-cells. Primary and 

secondary antibody concentrations were increased and C072 was still not detected in 8 

cells from either normal healthy volunte~rs or 8-CLL patients. 
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Figure 52: Western blot of various cell lysate using affinity-purified 
polyclonal rabbit anti-human, rat, mouse CD72 
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Figure 52: Ly~ate~ v.ere run on a 4- 1 5 <;~ Tris-HCL polyacrylamide gel under reducing conditions. Gel wa\ left 

unstained and electro-blottcc.l onto nitro-ce ll ulose. Protein hand~ were stained with Ponceau S and markec.l in 

Pencil. Primary antibody rabbit-ant i-human, rat , mouse CD72 ( I :500) was adc.led for I hour. Secondary 

ant ibody mou~e anti-rabbit alkaline phosphata~c conjugate ( I : I 000) wa\ added for I hour. 
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6.4.4 CD23 

CD23 is a 45 k.Da type II integral membrane glycoprotein expressed on mature B

cells, monocytes, eosinophils, platelets and DCs ' 3101
. Soluble forms ofCD23 are increased 

in serum ofB-CLL patients ' 3111 and soluble CD23 may be an even stronger clinical marker 

than clinical stage ' 3
'
21

. However, CD23 expression on freshly isolated B-CLL cells was 

transient but was restored by cytokines secreted from activated T -cells such as IL-2, IFN-y, 

TNF-a and IL-4 ' 3131. CD23 was therefore an ideal candidate for our protein of interest seen 

at approximately 42k.Da. However, CD23 was only detected in T -cell lysates from a B-CLL 

patient (Figure 53). This result was disappointing. Even when IOOJ..lg of lysate, was added 

to another gel and, blotted with the same combination of antibodies, CD23 was still only 

detected in T -cell lysates from a B-CLL patient. Primary and secondary antibody 

concentrations were increased and CD23 was still only detected in T -cell lysates from 

normal healthy volunteers. 
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Figure 53: Western blot of various cell lysate using affinity-purified 
polyclonal goat anti-human CD23 

2 3 4 

l- Broad Spectrum Molecular Weight markers 

2- SOil& B-celllysate from B-CLL Patient 26 

3- SO~tg B-celllysate from B-CLL Patient 8 

4- S01-1g B-celllysate from B-CLL Patient I 0 

5- 50 ll& B-cell lysate from healthy volunteer l 

5 6 7 8 9 10 

LANES 

6- SO 1-1g B-celllysate from healthy volunteer 2 

7- SOilS T-cell lysate from B-CLL Patient 26 

8- SO llS T -cell lysate from healthy volunteer 7 

9- lysis buffer 

10- Broad Spectrum Molecular Weight markers 

116 kDa 

97 kDa 
66kDa 

45 kDa 

31 kDa 

21 kDa 

Figure 45: Lysates were run on a 4-15% Tris-HCL polyacrylamide gel under reducing conditions. Gel was left 

unstained and electro-blotted onto nitro-cellulose. Protein bands were stained with Ponceau S and marked in 

Pencil. Primary antibody goat-anti-human CD23 (1 :SOO) was added for 1 hour. Secondary antibody donkey 

anti-goat alkaline phosphatase conjugate ( l : l 000) was added for l hour. 
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6.4.5 CD38 

CD38 is a 45kDa type 11 integral membrane glycoprotein expressed on early and activated T 

and B cells 13141
. CD38 is also found on monocytes and thymocytes 13151

. Expression of 

CD38 by B-cells from B-CLL patients is co1Telated to poor survival and poor prognosis 

1
316

·
3171

. A strong protein band was detected at approximately 60 kDa by the mouse 

monoclonal anti-human CD38 antibody in the lanes loaded with I OOJ..lg of lysate from B 

and T-cells from B-CLL patient 26 and normal B-cells (Figure 54, Lanes 3,4 and 6). 

Interestingly, the detection of CD38 was strongest in the lane containing 50J..lg of B-cell 

lysate from B-CLL patient I 0. There was no band detected by the anti-human CD38 

antibody in the lane containing 50 J..lg B-cell lysate from B-CLL patient. This reflects the 

heterogeneity observed with CD38 expression in B-CLL patients. 
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Figure 54: Western blot of various cell lysate using mouse monoclonal 
anti-human CD38 
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Figure 54: Lysatcs were run on a 4- ISik Tri~-HCL polyacrylamide gel under reducing conditions. 
Gel was left unstained and e le~.:lro-blol!ed onlo nitro-cellulose. Protein bands were stained with 
Ponccau S and marked in Pencil. Primary antibody mouse monoclonal ami-human CD38 ( I :500) 
was added for I hour. Secondary antibody rabbit anti-mouse alkaline phosphata~c conjugate 
( I : I 000) was added for I hour. 

154 



6.5 Protein seguencing 

The 65kDa band and the 42 kDa band from the B-cell lysate of B-CLL patient and 

65 kDa band from a normal healthy volunteer were separated by reducing SOS-PAGE 

and electro-blotted onto PVDF membrane. Proteins immobilised on the membrane were 

sent to Protein and Nucleic Acid Chemistry, University of Leicester, UK, and Proseq, 

Boxford, Massachusettes, USA, for sequencing. Results were generated from the 42kDa 

band from B-CLL patient and 65 kDa from normal healthy volunteers. However, the 

65kDa from B-CLL patients did not yield any sequence data. The 65kDa band from 

normal healthy individuals yielded a sequence 35 amino acids long as shown in Figure 55 

by N-terminal sequencing using an ABI 476 protein sequencer. A BLAST protein 

database search was carried out using the NCBI website 13181
. The 35 amino acid peptide 

showed a strong homology to Human Serum Albumin as shown in Figure 55. The 42kDa 

band from B-CLL patients was an N-blocked protein. An in situ CNBr digestion revealed 

2 strong signals and 4 weaker signals. 0-phthalaldehyde (OPA) was added to the digest. 

This chemically selected the proline residue from the peptide mixture 11191
. Peptides were 

then sequenced. Two strong peptide signals of 20 amino acids and 19 and one weaker 

peptide signal of 19 amino acids showed homology with Human actin (Figure 56). 

However, the remaining weak signal revealed a peptide of 13 amino acids to which no 

match could be found in the databases. Even when protein amino acid data was translated 

to nucleic acid sequence a corresponding match could not be found. 
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Figure 55: Sequence data from 65kDa band of B-celllysate from 
normal healthy volunteer 

Normal healthy volunteer 65kDa band.- 14 matches 
I) Human Serum albumin precursor 97% 
2) Bovine Serum albumin precursor 82% 
3) Sheep Serum albumin precursor 80% 
4) macmu Serum albumin precursor 82% 
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6) Horse Serum albumin precursor 74% 
7) Felca Serum albumin precursor 7 1% 
8) Pig Serum albumin precursor 77% 
9) Canfa Serum albumin precursor 68% 
I 0) Mouse Serum albumin precursor 70% 
I I) Rabbit Serum albumin precursor 68% 
12) Merun Serum albumin precursor 69% 
13) Chick Serum albumin precursor 65% 
14)TRASC 67 KD Serum albumin (alb-1 ) 60% 

I) Aligned with HUMAN Serum alburnin precursor 

DAHKSEVAHRFKDLGEENFKALYLIAFAQILQQCP 
25 DAHKSEVAHRFKDLGEENFKALVLIAFAQILQQCP "tJ 

4) Aligned with MACMU Serum albumin precursor 

DIHKSEYAHRFKDLGEENFKI LVt.IAFIQ LQQCP 
I/ DIHKSEVAHRFKDLGEEHFKILVtiAFIQ QQCP 'i l 

8) Aligned with PIG Serum albumin precursor 

LQQCP 

LQQCP "'' 

Figure 55: Li ted above are sequences showing homology from blast search of non-redundant 

Swissprot sequences. Percentages represent identical amino acids to tc~ t sequence. Below arc 

shown examples of alignments . Sequence generated from blot is shown in blue. Red number~ 

give residue number from amino terminus. Green highlights amino acids not matching sequence 

data. 
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Figure 56: Sequence data from 42kDa band of B-celllysate B-CLL 
patient 

42 kDa from B-CLL patient aligned with Human Actin 

I) Strong signal (52%) 
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Figure 56: Above arc shown examples of alignments for 4 peptides generated by dige tion. 

Alignmem of sequence data and Genbank search (NCBI). Sequence genera1ed from blot is shown in 

blue. Red numbers give residue number from amino terminus. Green highlight amino acids not 

matching sequence data. Percentages represent identical residues. Unidentilied residue. are 

symbolised by (X). 
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7. Discussion 

7.1 Anti-Idiotype responses 

Chronic B-cell malignancies represent a potential target for immunotherapy by virtue 

of the fact that they are derived from immune cells and thus have the capacity for 

interaction with T lymphocytes. In addition, each tumour is derived from a clonal 

expansion of one malignant B-cell, and thus each cell in the clone will share specific 

determinants, for example those encoded by variable region sequences of rearranged 

immunoglobulin genes. Clinical studies in which patients with lymphoma and myeloma 

were vaccinated with idiotype protein have demonstrated the generation of anti-idiotypic 

T-cell responses and a degree of clinical response f3}(}.m. 139
• 

322.3131
. An alternative 

approach has been to load DCs with idiotype protein and subsequently use the pulsed DCs 

as a form of immunotherapy. Such an approach has also been shown to induce anti

idiotypic immune responses in lymphoma, rm. 325
• 

3261 and myeloma, fU/,327
1 with some 

encouraging clinical results. Over-expression of surface IgM has been shown to possess 

possible prognostic significance in B-CLL patients£3281
. A similar rationale can therefore be 

proposed for immunotherapy in B-CLL, and this study was designed to determine whether 

DCs loaded with B-CLL tumour protein could stimulate anti-B-CLL cell responses. 

7.2. Phenotype ofDCs 

Initial problems of generation of adequate numbers of DCs from patients with B

CLL were overcome once the malignant B-cells were removed. These DCs were 

morphologically and numerically similar to those from healthy individuals. 

Immunophenotyping DCs generated from healthy individuals and patients with B-CLL 

demonstrated similar levels of expression of cell surface molecules, with the notable 

exception of CD40, which was increased, and CD86, which was decreased. A previous 
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study has demonstrated that dendritic cell generated from healthy individuals and patients 

with myeloma are phcnotypically and functionally similar. however this did not include 

CD40 1-'
291

. Although the significance of this tinding is unclear at present, CD40+ DCs have 

been found to be vital for the generation of anti-tumour responses in mice13301
• 

Establishment ofT cell help via the CD40-CD40L interaction is essential for generation of 

antigen specific CD8+ T-cells 115~ 1 . Ligation with anti-CD40 antibodies can replace the 

need forT cell help f.IJII_ Stimulation of CD40 by increased expression of CD40-Iigand has 

been shown to stimulate immune recognition of B-CLL B-cells in l'il'o 1·1321 and in l'itro 

133
-'1. The decreased levels of cell surface CD86 in B-CLL patients differ significantly from 

the findings in myeloma patients and may be linked to the disease. Soluble CD86 

expression has been shown to be increased in serum from patients with AML and B-CLL 

Both normal DCs and B-CLL B-cells express an alternatively spliced form of CD86 that 

encoded for the soluble form 133
-l/. Since CD86 has been shown to be a key eo-stimulatory 

molecule 13351 its decreased expression upon the DCs may well be related to the increase in 

soluble CD86 levels seen in B-CLL patients. 

7.3 Defect in B-CLL is T-cell dysfunction 

The functional capabilities of DCs from B-CLL patients' were compared with those 

of normal healthy volunteers. Firstly, Tuberculin PPD and Tetanus Toxin were pulsed onto 

DCs and the number of activated T-cells and IFN-y secretion was assessed. Numbers of 

activated T-cells were similar in both B-CLL patients' and normal healthy volunteers 

(Figure 16a and 16b). However, secretion of IFN-y in response to antigen pulsed DCs was 

decreased in the B-CLL patient compared with the normal healthy volunteer (Figure 17a 

and 17b). The intracellular expression of IFN-y by antigen activated T-cells in B-CLL 

patients has been shown to be significantly reduced and correlated to disease stage 13361
• 
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However, IFN-y secretion from un-stimulated T-cells from B-CLL patients has been shown 

to be significantly higher (S.Scrivener unpublished observation) This may have a complex 

role, as changes in the proteasome are triggered by IFN-y 12·~ 1 . It is therefore possible that 

the presentation of tumour related MHC class I antigens has been altered in B-CLL 

patients. However, untreated T lymphocytes from B-CLL patients still release IFN-y in 

response to exogenous IL-2 13371
. When the DCs ability to stimulate normal T-cells in the 

allogeneic culture system (Figure 18) was investigated, it was seen that the lower T-cell 

cytotoxicity levels were due toT-cell dysfunction in B-CLL patients. B-CLL patients have 

long been known to exhibit reduced T-cell helper function 13381 and increased suppressor 

function 13391
. The use of adoptive transfer has demonstrated that T-cells from early stage 

B-CLL patients inhibit the accumulation of malignant cells whereas in patients with late 

stage disease the T-cells could enhance the effects of the malignant B-ceiJ 1·NuJ. 

7.4 Activation ofT-cells by lysate pulsed DCs 

There is a sub-population of peripheral human CD4+, CD25+ known to have 

regulatory properties 13411
. However, these cells do not produce IL-2, IL-4 or IFN-y. It is 

possible that the appearance of CD25+ CD3+ cells in our cultures in response to lysate 

pulsed DCs represent the stimulation of this regulatory subset. It seems unlikely as the 

same cultures secrete IFN-y and the appearance of CD3+, CD25+ cells was validated by 

recall responses to Tetanus Toxin and Tuberculin PPD in both healthy volunteers and B

CLL patients. This regulatory T-cell sub-population also express CD45RO, HLA-DR and 

CTLA-4 (CD 152). T-cells isolated from the blood of B-CLL patients and stimulated with 

OKT3 showed reduced expression of CD25 and CTLA-4 (CD 152) 12551
. It seems unlikely 

therefore that the regulatory sub-population of CD4+ cells is the same population of 

dysfunctional T-cells observed in B-CLL patients. 
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7.5 T helper I response 

Resulls from Chapter 3 demonstrate that patient derived DC~, when pulsed with 

soluble 8-CLL lysate, stimulate autologous T-cells to secrete IFN-y but not IL-4. This 

suggests that our culture system has primed aT helper I. Antigen presenting cells, such as 

DCs, have the capacity to generate either a T helper I or a T helper 2 immune response 

13.n1. T helper I responses are associated with the secretion of particular cytokines such as 

IFN-y and IL-12 /J
431

, and induce cell-mediated immunity, all of which are particularly 

important in the response against tumours. The levels of IFN-y observed in this study are 

similar to those generated by superantigen-pulsed DCs cultured with T-cells 13441 but are 

higher than those generated by CD40L-stimulated 8-CLL 8-cells cultured with autologous 

T-cells 13451 However, we have no evidence to suggest which cell type within the pulsed 

dendritic ceii-T-cell eo-culture is responsible for the production of IFN-y. Immature resting 

DCs express relatively few CD80 and CD86 molecules. These molecules are up-regulated 

after contact with T-cells 13461
. Contact with T-cells allows the establishment of CD40-

CD40L interaction 1111
· 

3471
• CD40 up-regulates CD80 and CD86 and induces the p75 

component of IL-12 1· 34111 . fL-12 has been shown to be a stimulator of IFN-y production in 

T-cells 13491
. However, IL-12 can also stimulate macrophages and DCs to produce IFN

y f.UOJ_ T -cells of CD 57+ /CD28. phenotype have been observed to be significantly 

increased in 8-CLL patients and responsible for the secretion of IL-2, IFN-y and TNF-a in 

response to anti-CD3 stimulation '3511
. lt is equally possible therefore that either 

CD 57' /CD28. T-cells or DCs or both are responsible for the increase in IFN-y secretion in 

response to stimulation by lysate pulsed DCs. 

7.6 Role of IL-12 in preparation of DCs 

Studies have shown that IL-12 polarises DCs towards the induction of T helper 
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responses 1351
· 

353
· 

3541
. Pre-treatment of munne DCs with IL-12 was shown to elicit 

responses to relatively un-reactive tumour/self peptides, 13
·'

51
. In view of this, we pre-

incubated the DC with IL-12 just prior to the addition of antigen. Recently IL-12 

responsiveness has been demonstrated in human monocyte derived DCs 13561
. One 

preliminary experiment showed that without pre-treatment with IL-12, monocyte derived 

DCs pulsed with B-CLL lysate could not stimulate significant T cell responses. Therefore, 

all the experiments were carried out with an IL-12 pre-treatment before lysate was pulsed 

onto DCs. IL-12 could possibly reverse the effects of cytokines such as IL-l 0 and TGF-P 

which may have been encountered by the DCs from B-CLL patients. Dendritic cells do 

respond differently to the same stimuli because of previous exposure to cytokines and 

• (?52/ maturatiOn agents · · . 

7.7 Immunosuppression in leukaemia 

T helper type 2 responses are associated with the secretion of cytokines such as IL-4 

and IL-l 0 13571
. Tumours have been shown to secrete factors such as IL-l 0 1358

·
359

· 
360

· 
361

· 
362

· 

3631
, transforming growth factor-P (TGF-P) 13

MJ and vascular endothelial growth factor 

(VEGF) 13651
, which suppress dendritic cell and/or T-cell function. Immature DCs treated 

with IL-l 0 have been shown to induce anergy in melanoma antigen specific CD8+ cytotoxic 

T-cells in vitro f.l.illl_ IL-l 0 may modulate immune escape by two different mechanisms; 

anti-tumour antigens presented by IL-10 modulated immature DCs, with low eo-

stimulation markers, induce anergic anti-tumour specific T-cells and immature IL-l 0 

modulated DCs induce regulatory T-cells which maintain the anergic nature of the anti-

tumour specific T-cells 13
M 1. However, the effect of IL-10 may be more complex as in vitro 

IL-10 can inhibit the proliferation of B-cells from B-CLL patients 13671
. Clinical responses 

to dendritic cell vaccines have been affected by the cytokine profile of the individual 
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patient 13681
. TGF-~ is perhaps the most potent immunosuppressive factor f.I(JY/. TGF-~ can 

inhibit the production of lL- 12 by monocytes 13711 3711
. TGF-~ may also inhibit important 

cell surface receptors important for ce ll acti vation and growth 13721
. TGF-~ is a potent 

inh ibitor of cytotoxic T-ce ll differentiation 1370
·
3731

. Admin istration of TGF-~ in vi i'O can 

inhibit T-cell responses to vi ruses and allogeneic antigens 13731
. However, TGF-~ is also a 

potent inhibitor of proli feration of neoplastic cell s i11 vitro, its effects in vivo may depend 

upon microenvironment 137
-11. In the majority of B-CLL patients TGF-~ inhibits in vitro B

cell proliferation but loss of responsiveness i demonstrated in a ubset of patient 13751
. 

VEGF is mainly recognised by its angiogenic propertie . VEGF inhibits the differenti ation 

of CD34+ cells into DCs '3651
. B-cells from B-CLL patients have shown to secrete both 

TGF-~ r3761 and VEGF f377J. The T-cells used in our experiments were derived from 

patients with B-CLL and thus were exposed in vivo to immunosuppressive factors secreted 

by the B-CLL cells. 

7.8 Role of IL-15 and reversal of T cell anergy 

TGF- ~ secreted from tumour cell s has been shown to suppress T-cells response to 

IL-2 fJ781 by blocking Signal Tran ducers and Acti vators of Transcription (STAT3) and 

STAT5 phosphorylation 1379
·
3801

. IL-15 has been shown to maintain STAT3 and STAT5 

phosphorylation despite TGF-~ secreted by multiple myeloma cell s 12861. [L-15 may restore 

signalling of T cell. , affected by ill vivo exposure to inhibitory fac tors such as TGF

~ . through STAT3 and STAT5 phosphorylation. T-cells isolated from B-CLL patients may 

be exposed to B-CLL specific antigens without eo-stimulatory signals and induced into an 

anergic phenotype in vivo. Analysis of T-cell receptor B vari able (TCRBV) genes, in 

patients' with B-CLL, has showed skewing of the T-cell population 1255·381 1. IL-1 5 may 

revert T-cells from an anergic phenotype and result in an increased response to tumour 
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revert T-cells from an anergic phenotype and result in an increased response to tumour 

antigens presented by autologous DCs. IL-15 is capable of selectively activating primed T

cells and naive CD8+ cells but not naive CD4+ cells ' 3821
. IL-15 has also been shown to 

enhance responses of yo T -cells to non-peptide antigens ' 3831
. Therefore, the administration 

of IL-15, to T-cells from B-CLL patients, may enhance the survival of an adilitional 

population ofT -cells responsive to the same or other antigens presented by the autologous 

tumour cell lysate-pulsed DCs. Further characterisation of the responding T -cell phenotype 

in IL-15 treated and untreated T -cells from B-CLL patients is required. 

As well as its effects upon T -cells, IL-15 promotes differentiation and growth of B 

cells ' 3841
. lL-15 has been shown to promote growth of B-CLL cells via the IL-2 receptor f3 

and y chain ' 3851
. However, it is not likely that activated B-CLL cells are responsible for the 

increased T -cell responses observed, as separation methods sought to remove all CD 19+ 

cells from the dendritic cell-T-cell eo-culture. IL-15 can also induce monocyte derived 

DCs to become mature cells resembling those generated with TNF-a. '3861
. The pre

treatment ofT cells with IL-15 and subsequent culture with autologous immature DCs may 

increase measurable T-cell responses by an indirect effect upon dendritic cell maturation. 

Treatment ofT-cells with IL-15 can stimulate IL-5 ' 387
1, IFN-y and TNF-a. '3881 secretion 

that induces dendritic cell maturation. An increase in the stimulatory capacity of the DCs 

would then increase the magnitude ofT-cell responses. However, in this study induction of 

CD83 expression within the dendritic cell population did not increase total specific 

cytotoxicity levels to the same extent as that seen with T-cell pre-treatment with IL-15. 

7.9 Class ll restricted killing ofB-CLL cells 

An abnormally high number of CD8 positive T cells with a cytotoxic cell surface 
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demonstrated fNI!J. Triggering B-CLL B-cells wi th a CD40L-tran. fected 3T6 cell line 

stimulated allogeneic T-celb from B-CLL patients to make proliferative and cytotox ic 

responses 13331
. However, untreated B-CLL ce lls are not capable of stimulati ng similar 

results '3911
. B-CLL B cells stimulated by CD40L when cultured with allogeneic T ce lls 

from B-CLL patients demonstrated CD8+ cytolytic T cell responses. Whereas, when B-

CLL B cell s stimulated by CD40L were cultured with autologous T cells from B-CLL 

patients CD4+ medi ated release of IFN-y was observed 13
"

51
. The capacity for B-CLL B 

cells to appear more antigenic to B-CLL patient T-cells was linked to an upregulation of 

CD80 and CD86 on the B-CLL B cell surface. T-cel l abnormalities such as the oligoclonal 

I monoclonal expansions of CD4+ TCRBY subsets that have been observed '392
·
2561 may 

reflect previous attempts in vivo ofT cells to recognise tumour cells {3
931

. Antigen-non-

specific act ivated CD4+ T cells have the potential to inhibit the proli ferative response of B-

CLL B-cells JJ941
. Spontaneously occu1Ting T lymphocytes in B-CLL patients have been 

iso lated that were capable of responding to CD40L acti vated B-CLL B cell s "'291
. However, 

in al l of these experiments increased T cell signalling via CD80 and CD86 is required to 

generate an adequate measurable T cell response. Therefore, presentation of B-CLL 

antigens in the correct contex t of eo-stimulatory molecules is required by T-cells from B-

CLL patients in order to make an anti -tumour response. 

Although the levels of specific cytotoxicity (24%), generated in our cultures at an 

effector: target rati o of 40: I, seem low when compared to those of other in vitro studies 

{ 'P 2 1' 'l'i 216 IO 'i J I'll 19~ 2 17 2 1~ 197 198 
-· • • • ~ . - · • • • • • 

7
• , they are comparable to levels shown by other -· · · ''· · · ·' · · · · · 

399
' . These di ffere nces could be due in part to the fact that different diseases were studied. 

However, in a study of B-CLL, similar levels of specific cytotoxicity were generated when 

CD40L stimulated B-CLL cells were cultured with allogeneic T-cells but not autologous T-
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cells 13
-1

51
. Of particular interest was the nature of the re~ponding ce ll popu lation. The 

responding ce lb in two patients were predominantly CD4"'. Anti body blocking experimcnb 

in the three patients tested demonstrated significant. inhibition of cytotoxicity wi th anti

clas 11, anti-pan TCR a~ and anti-CD4 but not with anti-class I or anti-COS monoclonal 

an tibod ies. Overall thi s sugge ts that CD4+ HLA class n restric ted cytotox ic T-cells are 

responsible for the majori ty of lysis of B-CLL cell s in our culture system. MHC Class Il

restricted cytotox icity results from exogenous antigen processed and presented by DC via 

the classical MHC class 11 pathway (Figure 7). HLA class rr molecules are only expressed 

on antigen presenting cells such a B ce lls. 14001
. Some tumour cells such as metastatic 

melanoma express MHC class Il. Hyper-expression of MHC class n molecules can be a 

triggering factor for autoimmune diseases 1401/. Class II restricted cytotox ic T cells form a 

major part of anti-viral responses to herpes simplex vi rus and measles f-IO:!. 
4031

. As B-CLL 

is a malignancy of B cells it may be that the MHC class ll molecule. are highly expressed 

on the B-CLL B cell surface and thi s is why a MHC class 11-rest.ricted response is 

generated. However, if thi s were the sole reason, other B cell malignancies would show 

similar MHC cla ll-restriction. 

In general, it is thought that CD8+; classes I restricted T-cells are responsible for 

anti-tumour immunity 1236· 
238

· 
39

/i. <~0-1/. However, CD4+ cytotoxic T-cell have been reported 

in hepatocellular carcinoma f-I0
5

J and p21-ras ( 12Val) mutated cells 14061
. CD4+ T ce lls 

which secreted IFN-y were shown to eliminate UV light-induced tumour 6 132A-PRO by 

indirect cell killing mechanisms in a mou ·e model. In an imal tumour systems, transfection 

of MHC class U molecules into the tumour cell resulted in rejecti on whereas transfection 

with MHC class I had no effect f-IOl/. MHC class IT-restricted CD4 + T cells have been 

isolated against tumour antigens such as tyrosinase, MART- 1/Melan-A, gpiOO, MAGE-3, 

166 



YESO-I/CAG3 which have all prev iously been presented by MHC c las~ I molecules 140"~. 

1 ormally cytotoxic CD4+ T-cells represent 1-6% of the CD4+ T-cell population f-IIJYf. CD4T 

T -cel ls wi th an anergic cytotox ic phenotype have been expanded from PBMC of B-CLL 

patients 14111
· mr. Therefore, the stimulation of cytotox icity against auto logous B-CLL B

cel ls by ly ate pulsed DCs may be a result of the acti vation of thi s anergic population ofT

cells. However, B-CLL patients with decreased the numbers of CD4+ T-cells due to recem 

therapy w ith fludarabine 14121
, may not exhibit a specific cytotox ic response in our culture 

system. 

7. I 0 Maturity of DCs 

However, the levels of cytotox icity (Figure 23a) may have been because of the 

relatively immature state of the monocyte derived DC (CD83 negative) used to present 

lysate antigens ro the T-cells. CD83 shares its homology with the member of the IgG 

superfamil / 4
'
31. CD83+ cel ls possess a distinct cel lular phenotype, cytokine gene 

expression profi le f.JI.JJ and greater stimulatory capacity 1"'' 51 compared wi th COST cel ls. 

After loading of antigen onto the dendritic cell surface a further 'danger signal' is required 

to achieve maximal presentation of that antigen to the T -cell 12731. M aturation agent 

therefore have been cytokine or bactetial products associated with infection such as LPS 

ft09.:!76 2771, IFN-a fll-1/' TNF-a fiiOI, Poly(I :C) /2751' CpG DNA f.Jt6f . 

Results in Chapter 5 i llustrate that the addition of TNF-a, Poly(I :C) and LPS to 

autologous DCs after pu lsi ng with B-CLL lysate does result in the emergence of CD83+ 

DC . However, the highest percentage of CD83+ DCs after addition of any maturation 

agent wa merely 12%. Higher CD83+ expression levels have been observed where the 

cel ls were cultured w ith 10% Fetal cal f serum 11101 or under serum free conditions f-1!
51 but 
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not when ce ll were cultured in medium containing 5% human AB ·erum f -li T/. Hence our 

leveb of CD83 expre. sion \ere probably limited by the presence of human AB serum in 

the culture. It could be argued that LPS and TNF-a. are required for longer incubation 

periods in order to induce CD83. This i. un l ikely, however, as the effects of TNF-a. 

( I Ong/ml), such as increased MHC class I and 11, ICAM-1, B7 and CD40 expression and 

down regulated Ii and FcyRll expression, have been observed after 24 hours f-Il l /. In 

contrast to LPS, TNF-a. and Poly (I:C), IFN-a. did not stimulate CD83 expression in our 

system . This is probably because maturation effects with IFN a. and ~require the presence 

of TNF-a. !2741 . 

The addition of TNF-a. ( I Ong/ml) or Poly(I :C) to monocyte derived DCs after 

pulsing with B-CLL lysate did not increase the level of specif ic cytotoxi city at the highest 

effector: target ratio. However, at lower effector: target ratios the addition of maturation 

agents to DCs stimulated effectors to exhibit maximal specific cytotoxici ty levels. This 

indicated that although the absolute number of targets kil led by specific cytotoxicity did not 

increase with maturation agents, the frequency of specific cytotoxic cel ls within the 

effector ce ll population was increased. The absolute levels of specific cytotoxicity may be 

l imited by the expression of antigen/s upon the targets in the contex t of MHC Class-IT 

molecules. In vivo TNF-a. matured lysate-pulse-DCs were able to generate clinical 

respon es in patients' with medullary thyroid carcinoma whereas immature DCs did 

not/4181. 

LPS maturation of monocyte derived DC in serum free conditions acts through 

inducing secretion of high levels of TNF-a. !4131
. Whether LPS induced maturation of 

monocyte derived DCs is entirely due to TNF-a. is unclear. Although Chapter 5 showed a 

difference in the degree of specificity ofT-cell responses generated using LPS or TNF-a. 
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this rnay be due to differe nces between individual B-CLL patients. LPS , T F-a and Poly 

I C) · NF ·-D f.J/I.JJ<J 4 ' 01 E · r 1 · h · · · ( : acti vate -IU) · · - • xpress10n o many genes w 11 c are Important 111 ant1gen 

presentation by DCs in volves NF-KB, such as CD86.~2 1 and CD83 f -ll .ll_ Other genes contain 

a NF-ld3 binding site in their regul atory regions such as CD80, MHC class I (H-2Kb), 

MHC class n (HLA-87), CCRS, IL-12, macrophage inflammatory protein (MIP)- Ia, MfP-

I~ ' fL-1 a , IL- l~, IL-6, IL-8, CD54, Fas, Fas Ligand, RANTES and TNF-a 1411
· 

4
.!.11. 

Dendritic cells, induced to maturation by LPS or TNF-a, exhibit increased stimulatory 

capacity because of the accumulation and persistence of antigen MHC class-11 complexes 

upon the cell surfacef4:?.J/. Matured DCs also exhibit MHC class-1 up-regulation that 

stimulates additional subsets of T-cells14251
, hence increasing the magnitude of the overall 

T -cell response. 

7.1 1 Natural Killer cell s 

Although there is evidence that DCs can directly trigger anti -tumour responses by 

Natural Killer (NK) cells f -12
61, the effector cel ls in our assay did not express the NK 

markers CD 16 and CD 56. Although our work demonstrated that NK cells were not present 

within the responding T cell population; a better way to demonstrate that NK ce lls were not 

respon ible for the killing of B-CLL targets was to use a cell line K562. K562 cells are 

lysed by NK cell ac ti vity f 2891
. No specific killing of K562 cell line was demonstrated by T-

cell effector generated by eo-culture with B-CLL lysate-pulsed autologous DCs (Figure 

40). In add ition, B-CLL B-cell targets have been shown to be resistant to anti-FAS 

mediated cytotoxici ty f-127/ and to lysis by normal or autologous LAK cell s 14281
. IL-15 can 

also induce NK cell development f.?Xll and increase cytotoxic acti vity of NK cells flXXI _ 

K562 cell s are sensiti ve to NK cell mediated cytotoxic acti vity and in thi s study [L-15 did 

not increase the amount of NK cell activity. 
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K562 cells are sensitive to NK ceJJ mediated cytotoxic activity and in this study IL-15 did 

not increase the amount ofNK cell activity. 

7.11/n vivo priming ofT-cells and deletion 

Perhaps the modest level of tumour specific cytotoxicity observed is due to the 

relatively low frequency ofB-CLL-reactive cells within the patients' T-cell repertoire. The 

lack of a specific response by T -ceJJs from healthy volunteers presented B-CLL lysate 

antigens by their own DCs suggests the presence of a pre-existing pool of reactive T-cells 

in B-CLL patients not found in healthy volunteers. Recently the existence of autologous T 

lymphocytes capable of spontaneous specific recognition of B cells from B-CLL patients 

has been demonstrated '4291
. However, there is also evidence that there are considerable 

decreases in the ratio of TH I to TH2 helper T cell phenotypes !3361
. FasL expression has 

been found on melanoma ' 4301
, lymphoma ' 4311

, glioma !4321
, lung tumour cells, colon 

cancer !4331 and breast adenocarcinoma. The expression of FasL by some tumours may 

confer immune-privileged status by inducing deletion by apoptosis of autologous tumour

specific effector lymphocytes f4341. 

7.12 Antigen processing and cell fusion 

One of the main aims of the optimisation experiments was to generate MHC class I 

restricted responses by the stimulation of CD8 positive T cells. Most of the studies that 

have previously been able to generate CD8 responses have used peptides to pulse onto 

DCs. Many of the properties of intrinsic to peptides (the size and method of production) 

may result in the DCs processing them via the MHC class I pathway. In general it is 

thought that DCs process and present exogenous proteins by the HLA class II pathway and 

that endogenously synthesised protein generate MHC class I restricted cytotoxic T 

lymphocytes !4351
• However, this is not to say that DCs cannot present exogenous protein 
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I molecule~ '' 381
. However. the method of entry into the dendritic cell has been . hown to 

influence the mo~t common pathv ay by which rhe protei m. are proce ~eel through f 
1
·
1
"
1. 

Fusion of B-cells and monocyte derived DCs from a B-CLL patient was sti ll attempted to 

try and overcome any problems related to ·cross-priming' such a ; lack of appropriate 

bone-marrow derived APC, limiting nature of the antigen, inadequate CD4+ help and 

inadequate le els of transport or associated with antigen processing (TAP). 

Dendritic cel ls transfected with full -length cDNA have resu lted in MHC etas I 

restri cted T cel l responses being generated f.J.JOJ. However, the fusion of DCs and carcinoma 

cells has been shown to generate both MHC class I and class 11 respon e f.J4! . .J.J:!f. 

Although initial attempts with in vivo vaccination did not result in clinically significant 

outcomes f.J.JJJ. Use of human allogeneic DCs fu eel with tumour cells in metastatic renal 

cell carcinoma has shown more promising results ill vivo 14441. When compared ill vitro, 

either allogeneic or autologous DCs fused to ovarian carcinoma cells cou ld generate 

cytotox ic T cell acti vi ty but allogeneic DCs fused to tumour cells produced higher 

proliferative responses f.J.J51. 

lembrane fragmentation and amalgamation are common effect of applying electric 

pulses to cells. Membrane resealing occurs rapidly and pontaneou ly after ce ation of the 

electric pttlse' 4461
. There i · a ·ignificant difference between 'membrane mixing' and the 

estab li shment of a stable growing hybrid cell f .J-171. True fusion between human tumour cells 

and CD34+ cells have resulted in hybrid cells capable of efficient growth ' 2621
. However, 

attempts to produce hybrids with monocyte derived DCs have been unsuccessful in 

producing table hybrid populations because of their low replicati ve potential ' 229
· ·I.Jiil . 

Analysis of fusion rates, by flow cytometric dyes and antibody staining, overestimates 

hybrid efficiencies f .J.J
91 but, for the purposes of this study it provided relevant information 
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Analysis of fusion rates, by flow cytometric dyes and antibody staining, overestimates 

hybrid efficiencies '""91 but, for the purposes of this study it provided relevant information 

about ' membrane mixing' between two specific cell types in a heterogeneous mix of cells. 

Fusion rates for B-CLL cells were low but this was probably due to the well-known 

spontaneous apoptosis of B-CLL cells in vitro. Dendritic cells mixed with B-CLL B-cells 

without an electric current showed a 50% decrease in cell viabili ty. Flow cytometric 

analysis showed this cell death to be located in the CD20+ cell population. Perhaps the 

addition of cytokines such as IL-2, IL-4 and IL-15, known to increase in vitro viability ' 3851 

of B-CLL B-cells, may increase fusion yields. It was not possible to bring the cells into 

preliminary alignment before applying the membrane destabilising voltage, due to the 

limitation of the gene pulser apparatus. This has been shown to increase fusion yields by 

the formation of 'pearl-chained' cells 14461
. By increasing the voltage and pulse duration 

higher fusion rates and higher purity were achieved in separated, fused dendritic-B-eLL B

cells. However, voltages and current duration were not increased greatly as irreversible 

membrane breakdown results in cell death due to electric pulses of excessive strength and 

duration ' 4461
. Further optimisation of the voltage and current duration could possibly 

increase yields of fused dendritic-B-CLL B-cells. For these experimental purposes, 

introduction of antigens into the cytosol of the DCs by 'membrane mixing' was the main 

objective rather than the establishment of a proliferating hybrid cell. It has been 

demonstrated that short-term fusion or eo-culture can result in the generation of anti

tumour T -cell responses 14501. 

Despite sub-optimal electrofusion conditions, it was possible to generate hybrid 

monocyte derived DCs that could stimulate both MHC class I and IT-restricted effector T

cells. This is in contrast to previous findings where only HLA class-II restricted T-cell 
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and ineffecti ve stimulation of anergic dy functional T-ce l l ~ , were overcome by 

elcctrofusion of monocyte derived DC w ith B-CLL B-cell 

7. 13 Autoimmunity versus anti - leukaemia effect 

One concern that has been rai sed with regard to dendriti c cell vaccination is the possibility 

o f inducing autoreacti vity. In our culture system, reacti vity was not demonstrated against 

autologous B-CLL T-cell and granulocytes or HLA matched and allogeneic B-cell from 

healthy individual ·. Ideally we would wi h to test for cytotox icity against autologous non-

malignant B-cells from B-CLL patients but due to the overabundance of the malignant B-

cells in these patients we found thi s impossible. A lthough T-cells make poor targets we did 

not wish to introduce anti -viral epitopes into our system in the form of EBY-transfected 

targets. Recently, T cells generated by stimulation with CML pu lsed DCs showed 

pro liferation against autologou CML cell s but not an HLA-identical sibling 14511
. Clinical 

studies with dendritic ce ll vaccination have so far not reported evidence of allloimmune 

I. 1124 ~4o 241 ' 41 ' 4fll A · · h b . d cl b DC I d . h ·c1 c 1sease. · · - · · - · ·- . utoJmmunJty a een m uce y s pu se w1t pept1 es 

eluted from tumour cells in mice 1452
· 

4531
. One report states that blast cell lysates pulsed 

onto human DCs mediate inhibitory effects 14541
. However, it seems more likely that 

immature DC were generated and that these were able to induce tolerance as thi s has been 

demonstrated 1 105
-"

55
· 
45

fJ!_ 

7. 14 Possible B-CLL antigen(s) 

Our experiment have demon trated specific T-cell response to 8 -CLL. Although 

cytotoxicity was induced with some allogeneic B-CLL ly ates th is was not the case with 

other . Thi s suggests that, although a common antigen may be present in a proportion of B-

CLL patients, other B-CLL patient may have unique antigens. Thi should not be 

surprising, as B-CLL is not a homogenous disease. 2-D analysis of proteins from B-cells of 
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CLL patients, other B-CLL patients may have uruque antigens. This should not be 

surprising, as B-CLL is not a homogenous disease. 2-D analysis of proteins from B-cells of 

B-CLL patients revealed a group of proteins between 50-60k:D that were not found in B 

cells from normal individuals !2951
. Analysis of the B-cell lysates from B-CLL patients 

confirmed the presence of a B-CLL common antigen and patient specific antigens (Figure 

45a). 

Due to the use of CD19 Dynabeads during the production phase of the lysate it 

would also be useful to show that similar levels ofCD19 are present in the lysates from B

CLL patients and B cells from healthy volunteers. CD 19 was detected at 64k:Da and 31 k:Da 

to varying degrees in B-cell lysates from both B-CLL patients and normal healthy 

volunteers (Figure 50). CD5 has been demonstrated on the cell surface of B cells from B

CLL patients along with the expression of CD72 (a CD5L) !4571
. CD5 and CD6 have been 

linked to Bcl-2/ Bax ratios in a role of apoptosis protective mechanisms !4581. CD5 was 

detected at in B-cell lysates from B-CLL and normal healthy volunteers (Figure 51). 

However, CD72 was only detected upon T -cell lysates from normal healthy volunteers 

(Figure 52). This was in disagreement with studies analysing cell surface expression of 

these molecules. CD5 expression in T -cell lysates from B-CLL patients correlated with the 

reduced cell surface expression previously demonstrated !2551
. Molecules such as CD23 

!4591 and CD38 fJOOJ are increased upon the B-CLL B cell surface. CD23 was not detected in 

B-cell lysates from B-CLL patients but was detected in T -cell lysates from 1 B-CLL 

patient. CD38 was detected in some but not aJJ B-cell Jysates from B-CLL patients and in 1 

normal healthy volunteer. However, the normal healthy volunteer also showed detection of 

CD5. This may be for two JX>Ssible reasons; a lack of symptoms resulting in a no diagnosis 

or detection of protein by western blot cannot differentiate between constitutive expression 
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capacity. Bcl-2 is an intracell ular signal li ng molecule which has been reported to be greatly 

up-regu lated in B cells from B-CLL patients fJ5
y1. Another inh ibitor of apoptosis protein , 

Survivin has recently been shown to be inducible in B-CLL ce lls f-1
601

. High CD20 

expression has been related low li fe expectancy f -1
61 1

. However, none of these proteins are 

of a molecular weight corresponding to the 4 1 kDa or 65 kDa bands of interest. There is a 

relati vely uncharacterised B lymphocyte surface molecule (p42) wi th a molecular weight of 

42kDa that shows no reactivity to anti-CD23, CD40 or CD72 antibodies f-1
621

. 

Sequencing revealed the 65k0a band from normal healthy volunteers to have a 

close homology with human serum albumin . The 65kDa band from B-cell lysates of B-

CLL patients could not be sequenced probably because it was natural ly N-blocked. The 

42kDa band from B-cell lysates from B-CLL patients showed a homology with human 

actin. However, thi s was not a close homology and so may be a protein similar in structure 

to actin. The producti on of act in-contain ing and vimentin-contain ing intermediate 

filaments in response to 12-o-tetradecanoyl-phorbol- 13-acetate (TPA) have been observed 

in B-cells from B-CLL and hairy cell leukaemia (HCL) and not normal B cells ' 4631
. There 

is also evidence of an atypical relationship between CD5-CD2 1 and actin in B-CLL B-cells 

14641
. A subset of genes have been isolated from B-CLL patients using DNA chip 

microatTays which are specifical ly expressed '4651
. Analysis of the B-cell lysates ustng 

DNA chip microarrays would prove very interesting. 

7. 15 Impl ications for the clinic 
There are three possible sources of DCs for use in immunotherapy. Fi rstly, DCs can 

be directly purified from the peripheral blood. Their low density allows physical separation 

f -IM. "
671

. Purity can easily be increased by depletion ofT-cells, B-cells, Natural Killer cells, 

and monocytes from the separated fractions of blood or the positive selection of HLA-DR++ 

1"
611

' , CD83+, or CMRF-44+ 14691 cells using magnetic anti body coated beads or a cell sorter. 
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However, DCs from the peripheral blood are still at a relati vely low densi ty. Secondly, 

CD34+ puri f ied ce lls from peripheral blood f./7Uf or bone marrow rm . .J?]f can be cu ltured 

with GM-CSF and TNF-a. Larger numbers can be generated using this method although 

the DCs are often only 50% pure. It is di fficult to separate the antigen capture process from 

antigen presentati on. However, DCs grown from CD34+ precursors do have high cell rates 

which make them ideal candidates for gene transfers wi th retrov iruses and cel l fusions. 

Apheresis can be used to increase the number of CD34+ progenitor ce lls'4731 or CDI 4+ 

precursors ' 4741 by in vivo administration of G-CSF or GM-CSF followed by large scale 

isolati on of DCs by immunomagnetic bead separation. Thirdly, monocyte deri ved DCs can 

be generated from CDI4+ cells cultured w ith GM-CSF and rL-4. 90% of these DCs are 

immature and so at the optimal stage for antigen uptake. Maturation can be initiated by 

culture with TNF-a 11101(in a serum free envi ronment). 

Culture conditions are important for a product that will be returned to the patient ' s 

body. The use of fetal calf serum wou ld involve the ri sk of uptake and presentation of 

xenogeneic antigens by DCs. However, the use of xenogeneic antigens has shown that 

slight side-effects associated with cross-species interactions may be beneficial in breaking 

tolerance to self antigens f.Jn . Serum contains proteases that would alter the structure and 

therefore antigenicity of proteins and peptides added in vitro to DCs ' 4761
. A utologous 

serum from patients with a malignancy could contain anti bodies which could interfere with 

loading of the tumour antigen onto the D Cs. This has been demonstrated with a anti 

Gala( I ,3)Gal antibodies that cross-react with MUC- 1 ' 4771
. Serum from B-CLL patients 

has been shown to contain an undefined serum factor that may play a ro le in the 

pathogenesis of the disease ' 47111
. Therefore, the use of serum free mediums such as AIM-V 

f 229
· 
479

· 
4801, X-VIVO 15 '48 1 I are favoured for the production of DCs of a clinical grade. 

176 



has been shown to contain an undefined serum factor that may play a role in the 

pathogenesis of the disease ' 4781. Therefore, the use of serum free mediums such as AIM-V 

f129
• 

479
• 

480
1, X-VIVO 15 ' 481

1 are favoured for the production ofDCs of a clinical grade. 

The nature of the antigen used to prime DCs has considerable implications for 

therapeutic studies. Many in vivo studies have used well-defined synthetic peptide 

sequences with some success ruo.uJ.u 4
'
406

'
480

'
482

• 
483

• 
4841

. A previous study in melanoma had 

demonstrated the generation of equivalent anti-melanoma responses after vaccination with 

either melanoma peptide- or tumour lysate-pulsed DCs ru oJ_ Longer peptides or complete 

proteins in cell lysates may prove more effective as the DCs endocytose and process the 

antigen so that the optimal 9-mer peptide is presented ' 2361
. A mix of peptides also guards 

against loss of 1 dominant tumour antigen and tumour escape. Where self-proteins are also 

tumour-associated proteins they can be modulated to become more antigenic with some 

success ' 4851
. In many malignancies there is limited amount of autologous antigen. This is 

not the case in B-CLL as the malignant B-cells are commonly found in the periphery. Total 

RNA from tumour cells has been shown to be effective at generating anti-tumour 

responses ' 4861
. Where antigen is limited, vaccination with RNA after amplification of 

RNA by PCR may provide an alternative ' 4871
. DNA transduction of DCs as a strategy 

possesses several advantages; responses are not restricted by MHC haplotypes, unknown 

peptides can still be presented and presentation of antigens is more prolonged ' 4881. 

The site of injection for DCs may prove vital. Sub-cutaneous injection of dendritic 

cell vaccines was more effective than intra-venous injections in murine experiments !4891
. 

lntralymphatic injection of DCs ensures contact between DCs and T-cells at the lymph 

node ' 4901 and has resulted in more effective responses ~'2401. 

In vitro generation of tumour-specific T -cells by DCs and injection ofT -cell clones 
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illustrated in a tudy of I melanoma patient f -1
911. T -cell clones and DCs have been 

combined with other therapies ·uch a~ cytokines i-N: J and bone marrow transplantation f-1
911

. 

The data presented here would favour a manipulation of the T-cells of B-CLL 

patients by cytokine modification to overcome the anergic nature of the T-cells from B

CLL patients. Fusion hybrids of autologous DCs and B-CLL B-cells were the most 

effective stimulus for both MHC class I and II restricted responses. Generation of 

auto logous reactive T-cell clones within the B-CLL patient would be subject to immuno

suppres ion. De-bulking of the tumour prior to immunotherapy would be vital in order to 

prevent the large number of peripheral B cells interfering with dendritic cell homing and 

subsequent T-cell interaction . However. the choice of drug therapy or radiotherapy would 

have to avoid immunosuppression particularly of the CD4+ T-cells. The potential of the 

peptide sequences already isolated could be explored so that a defi ned protein (gene) could 

be targeted. Eventually thi s could lead to generation of new drug therapies. The reverse 

immunology approach has been succes ful in other malignancies at identi fy ing optimal 

antigens. Testing of tumour associated proteins using the DC system could lead to more 

effecti ve therapies for B-CLL patients particularly those with drug resistant disease. 
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cancer [21 ]. In vivo studies using DC loaded with tumour antigens 
have demonstrated encouraging clinical anti-tumour responses 
against B-cell lymphoma [22], melanoma (23], myeloma [24], 
parathyroid carcinoma [25], prostate cancer [26-28] and renal 
carcinoma [29]. In this study, we evaluated whether in vitro B
CLL-specific T-cell responses could be generated using auto
logous tumour cell lysate-pulsed DC. 

MATERIALS AND METHODS 

Volurrteer selection 
Local research ethics commillee pemuss10n and individual 
informed consent were obtained for these studies. A group of 16 
patients who were either untreated or who had not received 
treatment in the last 6 months were selected for the study. Patient 
details are given in Table I. Another group of five healthy 
volunteers was used as a control. Protocols for isolation of cells 
from the blood from patients and healthy volunteers were 
identical. Selection of patients for antibody blocking and mixed 
lysate experiments was random. 

Dendritic cell isolation and culture 
blood mononuclear cells (PBMC) were isolated by 

gradient centrifugation from peripheral blood. PBMC 
patients with B-CLL and healthy volunteers were depleted of 

9+ cells using Pan B Dynabeads (Dynal, Merseyside, UK). 
CD 19-depleted PBMC were cultured in a 24-well tissue 

lcult1ure plate (Gtsco, Life Technologies, Paisley, UK) at 37°C in 
C02 for 2 h. Culture medium consisted of RPM! 1640 

8:1GIItC01), I 0% human AB serum, 2 mM glutamine (Sigma, Dorset, 
K), 500 Ulml penicillin (Sigma) and 500 ,.,.gtml streptomycin 
igma). Non-adherent cells were removed by vigorous washing 
culture medium. Adherent cells were then cultured in culture 

m with 800 Ulml granulocyte macrophage colony stimulal
faclor (GM-CSF) (Cambridge Bioscience, Cambridge, UK) 
1000 U/ml interleukin-4 (IL-4) (Cambridge Bioscience) at 

Table I. Patient profile 

WBC count 
IWCLL stoge xl09/l Previous treatment 

NO 25 None 
NO 61·7 None 
NO IS None 
NO 14·9 None 
NO 23·2 None 
NO previously All 9·8 CWorambucil 
NO previously Cm 13·5 Chlorambucil 
NO previously Cm IS Chlorambucil 
NI 57 None 
Bill 119·2 None 
C/IV 118 None 
C/IV 122 Chlorambucil and Fludarnbine 
C/IV 167 Chlorambucil and 

splenic radiolherapy 
NO 20 None 
All 26-4 None 
B/1 41·2 Chlorambucil and 

Cyclophosphamide 

37°C in 5% C02 for 6 days. The cultures were fed every 2 days 
with fresh culture medium containing IL-4 and GM-CSF. On day 
6, the culture medium was removed and the cells cultured in fresh 
cullure medium with 800 U/ml GM-CSF and 100 ,.,.gtml inter
leukin-12 (IL-12) (Cambridge Bioscience) for 16 h, washed, and 
resuspended in culture medium. 

Preparation of soluble cell lysate 
The CDI9+ B-cells from the PBMC fraction were removed from 
Dynabeads using Pan B Delachabeads (Dynal). In the B-CLL 
patient, these cells were 97% CD5+ and 92% CD20+ B-cells 
were resuspended in 2 ml lysis buffer (10 mM bicarbonate buffer 
pH 7·1 and 0·5 mM phenyl methyl sulphonyl fluoride) (Sigma) on 
ice. The cells were homogenized on ice using a Dounce 
Homogeniser (Jencons, Lcighlon Buzzard, UK) and then ultra
sonicated using two 10 s bursts with a 15 s rest from a 50 W 
Vibracell (Sanies and Materials Inc. Jencons). Soluble protein was 
collected after ultracentrifugation al 55 000 rev/min (100 000 g) 

for I h at 4°C. The protein concentration was quantified by the 
Bradford protein assay method using a protein determination kit 
(Biorad, Hemel Hempstead, UK). Soluble protein lysates were 
sterile-filtered using 0·4 ,.,.m fillers (Nalgene, Marathon Labora
tory Supplies, London, UK) and stored al - 70°C. All cell lysates 
were exposed to CDI9+ Dynabeads. Lysales were defined as 
allogeneic if they originated from a different individual to the 
effector T cells. Lysates were defined as non-B-CLL if they were 
made from B-ee lis or T -eells from healthy volunteers, or cell types 
unaffected by B-CLL such as granulocytes. 

Pulsing dendritic cells with tetanus toxin and wberculin PPD 
The known antigens tetanus toxin and tuberculin purified protein 
derivative (PPD) were used as positive controls to validate the 
proliferation and ELISA assays. Tetanus toxin and tuberculin PPD 
were added to DC culture medium al 0·4 Ulml and 900 U/ml, 
respectively, and incubated for 4 h at room temperature. 

Pulsing dendritic cells with soluble B-celllysale 
DC were pulsed by the addition of soluble lysate to the DC culture 

Table 2. Dendritic cell surface markers. Analysis of markers for CDI9 
depleted PBMC cultured in RPM I 1640 + I 0% AB serum + IL-4 ( 1000 
U/ml) + GM-CSF (800 U/ml) for 6 days at 37"C. 5% C02 from two 
normal volunteers and four B-CLL patients. P-vaJues were caJculalcd 

using single-tailed unpaired Student's t-test 

Cell surface Nonnal dendritic cells BCLL patient dendritic cells 
marker (Mean percentage + s.d.) (Mean percenlage + s.d.) 

HLA-DR 56·8 + 17·1 54·0 + 8·4 
CD83 1·4 + 0·9 1·2 + 0·8 
CD40 12·9 + 5·9 26·7 + 8-4 p = 0·02 
CD86 27·8 + 1·8 15·7 + J.8 p = 0-003 
CDI6 2·2 + 1·2 12-4 + 16·0 
CD56 0·3 + 0-3 0·2 + 0·1 
CD3 10·7 + 5·2 9·2 + S-6 
CDI4 19·3 + 18·2 11·2 + 7·0 
CD! le 4·2 + 4·5 10·1 + 6·0 
CD20 4·1 + 2·7 4-7 + 3·0 
CD la 9·6 + 7-3 9·6 + 8·3 
CD45 92·5 + 3·5 89·0 + 4·0 

2001 Blackwell Science Ltd, Clinical and £tperimemal Immunology, 126:16-28 
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Fig. l. Proliferation. Number of CD3/C025-positive T -cells from (a) five B-CLL patients and {b) five healthy volunteers were measured. 
T -cells were cultured alone <•>. with autologous dendritic cells pulsed with B-CLL lysate <• >. allogeneic lysate from healthy volunteers 
(non-B-CLL) (!ilil), autologous lysate from healthy volunteers (non-B-CLL) (1!1!), or no lysate (D) were measured. One measurement per 
patient was made. Positive controls of autologous dendritic cells pulsed with tetanus toxin (0) or tuberculin PPD (11!1) and cultured with 
autologous T-cells were measured in duplicate in one patient and one healthy volunteer. Median ranked values, calculated from duplicates. 
were tested using the Kruskal-Wall is test. (*) Indicates a significant increase in double positive cells, with P = 0·03 (**) with P = 0·0 I (a) 

and P = 0·001 (b). when eo-cultures of pulsed dendritic cells were compared with unpulsed dendritic cells. 
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medium at I 00 ng/ml per I 06 cells, and incubated for 4 h at room 
temperature. Control, unpulsed dendritic cells were incubated at 
this time with lysis buffer, except in Patient's 5, 7, 9, 10 and 13. 

T-ee// isolation and T-ee// cultures 
T -cells were isolated indirectly from the PBMC fraction by 
depleting adherent and CDI9+ cells. The purity of the T-cells 
was, on average, 60% when assessed by flow cytometry using 
anti-CD3-FITC-conjugated antibodies. Lysate-pulsed or unpulsed 
dendritic cells were aliquoted at a concentration of 103 cells per 
well to 96-well round-bottom tissue culture plates. T -cells were 
then added to give a T-cell:DC ratio of at least 20:1. Cultures 
destined for cytotoxicity assays were fed with S U/ml of 
interleukin-2 (IL-2) (Cambridge Bioscience) on days 3, 7, 10, 
14 and 17. DC in cultures destined for cytotoxicity assays were re
stimulated by the addition of 100 ng/ml soluble B-cell lysate or 
lysis buffer on days 7 and 14. Cultures were continued for a total 
of 21 days at 37°C in S% C02 in culture medium + 5% AB 
serum. Cultures used to assess cytokine secretion were not fed IL-
2 or re-stimulated with soluble lysate. 

lmmwoophenotyping 
The following monoclonal antibodies were used for irnmunophe
notyping studies of DC and effector cells in the cytotoxic assays: 
CD4-FITC (Serotec, Oxford, UK), CD8-PE (Serotec), CD3-FITC 
(Serotec), CDI6-FITC (Serotec), CDS6-FITC (Serotec), HLA
DR-PE (Serotec), CD83-FITC (lnununotech, Coulter, Luton, 
UK), CD40-PE (Serotec), CD86-FITC (Serotec), CDI4-PFJ 
CD4S-FJTC (Becton Dickinson, Oxford, UK), CDilc-PE (Ser
otec), CD20-PE (Serotec), COS-PE (Serotec), CD 19-FITC 
(Serotec), CDla-FITC (Serotec), anti-lgGI-PE and anti-lgGI
FITC (Serotec). Cells were washed twice in PBS and then twice in 
PBS + 0·05% BSA (Sigma). Directly-conjugated antibodies were 
added at 10 p.l per 106 cells and incubated for 15 min at room 
temperature. Cells were washed twice in PBS and twice in 
PBS + 0·05% BSA. Positive antibody binding was assessed in 
terms of gates set at 2% of relative isotype controls using an Epics 
Elite flow cytometer (Coulter, Luton, UK). 

Proliferatioro assay 
T-cell activation was measured, quantifying cells eo-expressing 
CD3 and CD2S (IL-2 receptor) by double-labelled flow 
cytometry. The methodology outlined by Loken and Wells [30] 
was employed, using anti-CD3-FITC-/anli-CD25-PE-conjugated 
monoclonal antibody (lmmuno Quality Products, Mast Diagnos
tics, Merseyside, UK). Positive antibody binding was assessed in 
terms of gates set at 2% of anti-lgGI-PE- and anti-lgGI-FITC
labelled cells. Anti-CD3-FITC- (Serotec) and anti-CD2S-PE 
(Serotec)-conjugated monoclonal antibodies were added indivi
dually to allow compensation. 

Qualllijication of cytokine secretion 
Cell-free tissue culture supernatant fluids were harvested on days 
1-S and stored at -70°C until required. When convenient, the 
supernatant fluids were thawed and the concentrations of IFN-y 
and IL-4 measured in duplicate by ELISA (Pelkline, Eurogenetics, 
Hampton, UK). Sensitivity limits for the assays were 2-6 pglml 
for IFN-y and 0-2-0·4 pglml for IL-4. 

Cytotoxicity assay 
Cytotoxicity was measured by a flow cytometric method, LIVE/ 

DEAD cell mediated cytotoxicity (Molecular Probes, Cambridge 
Bioscience) [31]. Target cells were labelled with 4 p.l per 5 x 105 

cells of diOC 18, for 2 hat 37°C in 5% C02, and then washed twice 
in culture medium. Effector cells were harvested from the tissue 
culture and placed in flow cytometry tubes (Falcon, Marathon 
Laboratory Supplies, London, UK) at the appropriate effector:
target ratios. A minimum of I x 104 labelled targets was added. 
Propidium iodide was added to each tube. Targets and effectors 
were gently mixed and centrifuged at 1000 rev/min for 30 s. 
Targets and effectors were incubated together for 4 h at 37°C in 
S% C02 . Flow cytometry standard gates were set on unlabelled 
targets stained with propidium iodide, and di0C 18-labelled targets 
without propidium iodide. Non-specific cell death (spontaneous 
apoptosis) was measured by the cytotoxicity of di0C 18-Iabelled 
targets stained with propidium iodide without effectors. Cytotoxi
city was expressed as the number of dead targets (cells staining 
positive for propidium iodide and diOC 18) divided by the total 
number of targets (cells staining positive for diOC 18). Percentage 
specific cytotoxicity was measured as follows: 

% specific cytotoxicity = (total cytotoxicity 

- spontaneous cytotoxicity) X 100 

As a control, effectors consisting of unpulsed dendritic cells were 
used to detect any non-specific uptake of the diOC 18 dye from 
target cells by dendritic cells. 

Target cells in cytotoxicity 
The B-CLL B cell targets were 97% COS+ and 92% CD20+. The 
B-CLL T cell targets showed binding for CD20-PE < 2%. 
Allogeneic targets were defined as those originating from another 
individual to the effector T cells. Targets were defined as non-B
CLL if they were made from B cells and T cells from a healthy 
volunteer, or granulocytes and T cells from B-CLL patients. 

Antibody blocking studies 
Antibody blocking experiments involved the addition of anti-HLA 
class I (Serotec), anti-HLA class 11 (DR, DP, DQ) (Serotec), anti
Pan TCR al3 (Serotec), anti-CD4 (Serotec) and anti-COS 
(Serotec) monoclonal antibodies at lOO p.g/ml at the commence
ment of the 4 h incubation of effectors and targets. 

Statistics 
Effects of treaunent upon cytotoxicity and cytokine secretion 
analysed by one-way analysis of variance (ANOVA). 

comparisons between treatment groups were analysed using 
Student's 1-test. Differences between median values 
compared using the Kruskal-Wallis test. Statistics were gentera,ted 
using Statsgraphics Plus software (Manugistics, Maryland, 

RESULTS 

Characterization of dendritic cell immunophenotypes 
The results of irnmunophenotyping studies of DC derived 
normal volunteers and patients with B-CLL are shown in Table 
There were no significant differences in mean cell-surface 
expression of HLA-DR, CD la, CD3, CD4, CD lie, CDI4, 
CD20, CD45, CD56 and CD83, between patients and 
volunteers. However, CD40 was found to be nn;t.ronoh 

increased in patients compared with healthy 
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J. Cytotoxicity of B-CLL T -cells. Effectors from I 0 B-CLL patients 
cultured for 21 days (see Materials and Methods for conditions) and 

:ytc>tmticity against autologous B-CLL B·celltargets (a), allogeneic B·cell 
from healthy volunteers (non·B·CLL) (b) and autologous B-CLL 

targets (c) was measured. T cells had been cultured alone (.t.) or 
autologous dendritic cells pulsed with autologous B-CLL lysate(+), 

lysate from healthy volunteers (non B-CLL) (0) or lysis buffer 
in patients 7 and 13 no lysate) <•>· Data were analysed by one-way 

. (*) Indicates an overall significant effect of treatment with 
= 0·0008. Individual results can be seen in Table 3. 
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Fig. 4. Cytotoxicity of normal T cells. Effectors from five healthy 
volunteers were cultured for 21 days (see Materials and Methods for 
conditions) and cytotoxicity against autologous B-cell targets from healthy 
volunteers (non-B-CLL) (a) and allogeneic B·CLL B-cell targets (b) was 
measured. T -cells were cultured alone (.t.) or with autologous dendritic 
cells pulsed with allogeneic B·CLL lysate (fil). autologous lysate from 
healthy volunteers (non-B-CLL) (0) or lysis buffer(.). One measurement 
was made per patient and treatment group . 

(P = 0·02), and CD86 was found to be significantly decreased in 
B-CLL patients compared with healthy volunteers (P = 0·003). 

Proliferation assays 
T-cell activation was observed when autologous dendritic cells, 
pulsed with either tetanus toxin or tuberculin PPD, were cultured 
with autologous T cells in a B-CLL patient (P = 0·01) (Fig. la) 
and a healthy volunteer (P = 0·007) (Fig. I b). T-cclls derived 
from patients with B-CLL were cultured alone or with autologous 
B-CLL lysate-pulsed or unpulsed dendritic cells. A significant 
increase in T-cell activation was found after 4 days of culture by T 
cells cultured with lysate-pulsed dendritic cells, compared with T 
cells cultured with unpulscd dendritic cells (P = 0·03) (Fig. la). 
Although there was an increase in the percentage of activated B
CLL T -cells after eo-culture with autologous B-CLL dendritic 
cells pulsed with an allogeneic non-B-CLL lysate from a healthy 
volunteer, this was not significant (Fig. la). Similarly, when an 
allogeneic lysate was pulsed onto dendritic cells from a healthy 
volunteer, the percentage of activated autologous T -cells was 

2001 Blackwell Science Ltd, Clinical and Erperimenral/mmrmo/ogy, 126:16-28 
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Table 3. Individual specific cytotoxicty to B-CLL targets for 10 patients in Fig. 3(a) at 40: I effector:target ratio. Individual cytotoxicity results after 
effectors have been incubated for 4 h with B·CLL B-cclltargets at 37'C,5% CO, at a ratio of 40: I. Effectors had been cultured for 3 weeks with two rounds 

of restimulation 

Dendritic cells Dendritic cells Dendritic cells 
Patient T-cells + lysis buffer + B-CLL lysate + non·B·CLL lysate 
number (% + s.d.) +T-cells (% + s.d.) + T -cells (% + s.d.) + T-cells (% + s.d.) 

I • 4·2 1·1 21·7 6·9 
2 3·2 + 4·5 1·34 + 4·9 20·6 + 3·7 5·05 + 4·3 
3 6·3 6·6 22·30 n.d. 
4 0 11·09 + 0·13 30·76 + I n.d. 
5 4-40 2·90 21·52 n.d. 
7 t 9·70 9·70 28·60 n.d. 
8 0-00 2·50 18 0·17 
11 6·60 5·00 14·10 n.d. 
13 t 3-40 2·13 17·70 n.d. 
16 3·15 + 2·3 4·45 + 3 13·1 + 4·7 n.d. 

•Indicates non-B-CLL lysute is lysate from granulocytes. tlndicates patients' who did not receive lysis buffer as a control. Results showing no standard 
deviation were not perfonned in duplicate due to limited numbers of effectors. 

increased but not significantly (Fig. I b). There was no increase in 
activated T -cells cultured with autologous dendritic cells pulsed 
with an autologous non·B-CLL B cell lysate from healthy 
volunteers (Fig. I b). 

Qua11tijicatio11 of cytoki11e secretio11 
T cells from both B-CLL patients and healthy volunteers secreted 
increased amounts of IFN--y when cultured with autologous 
dendritic cells pulsed with either tetanus toxin or tuberculin PPD 
(Fig. 2a, b). T cells derived from patients with B-CLL were 
cultured alone or with lysate-pulsed or unpulsed (lysis buffer 
added in five patients) dendritic cells. A significant increase of 
IFN--y secretion in culture supematant fluid was found after 72 h 
by T cells cultured with B-CLL lysate-pulsed autologous dendritic 
cells compared with both T cells cultured with unpulsed dendritic 
cells and T cells cultured alone (P = 0·0004) (Fig. 2a). In 
addition, there was no secretion of IFN--y by T cells cultured 
with autologous dendritic cells pulsed with soluble allogeneic B
cell lysate derived from healthy volunteers (non-B-CLL) 
(Fig. 2a). T cells derived from healthy volunteers and cultured 
with autologous dendritic cells pulsed with autologous B cell 
lysate from healthy volunteers (non-B-CLL) or with allogeneic 
B-CLL lysate did not secrete significant amounts of IFN--y 
(Fig. 2b). Concentrations of IL-4 in tissue culture supematant 
fluids were measured in two patients with B-CLL and found to be 
less than 50 pglml. 

Cytotoxicity assays 
T cells derived from patients with B-CLL were cultured alone, or 
with lysate-pulsed or unpulsed (lysis buffer added in eight 
patients) dendritic cells, and then tested for cytotoxicity against 
healthy and B-CLL-derived B- and T-cell targets. A significant 
increase in cytotoxicity against B-CLL targets was generated by T 
cells cultured with B-CLL lysate-pulsed autologous dendritic 
cells, compared with both T cells cultured with unpulsed dendritic 
cells and T cells cultured alone (P = 0·0008) (Fig. 3a). However, 
no significant cytotoxicity was demonstrated against allogeneic B
cell targets from healthy volunteers (non-B-CLL targets) 

(Fig. 3b), or against autologous T cells derived from B-CLL 
patients (non-B-cell targets) (Fig. 3c). In one patient, effectors 
were tested against B-cells, PBMCs and T-cells from two HLA 
class 1- and II-matched healthy volunteers and one HLA class II
matched healthy volunteer. No cytotoxicity to these targets was 
demonstrated. 

T-cells derived from healthy volunteers cultured with auto
logous dendritic cells pulsed with autologous 8-cell lysate from 
healthy volunteers (non-B-CLL lysate), or with allogeneic 8-CLL 
lysate, did not demonstrate significant cytotoxicity against 8-cell 
targets from healthy volunteers (non-B-CLL targets) (Fig. 4a) or 
B-CLL targets (Fig. 4b ). 

T-cells derived from patients with B-CLL cultured with 
soluble B-CLL lysate in the absence of dendritic cells did not 
show significant cytotoxicity against B-CLL or B-celltargets from 
healthy volunteers. In addition, T cells cultured with autologous 
dendritic cells pulsed with an autologous granulocyte lysate from 
B-CLL Patient I showed no significant increase in cytotoxicity 
against autologous B-CLL cells (see Table 3) and autologous 
granulocytes, or allogeneic B-ccll targets from a healthy volunteer 
(non-B-CLL). 

T-cells derived from Patient 14 and cultured with autotogotJs 
dendritic cells pulsed with an allogeneic B-CLL lysate 
patient IS did not demonstrate cytotoxicity to B-CLL targets 
patient 14 (Fig. Sa). However, T cells derived from patient 6 
cultured with autologous dendritic cells pulsed with allogeneic 
CLL lysates from patients 2 and 13 demonstrated 
cytotoxicity to B-CLL targets from patient 6 (P = 0·003 
P = 0·009). Allogeneic B-CLL lysates from B-CLL Patient 7 
not stimulate cytotoxicity to B-CLL targets from patient 
(Fig. Sb ). The allogeneic lysates used above had been shown 
generate specific cytotoxicity when used as autologous 
with autologous effectors and targets. These results are 
ized in Table 4. 

Cilaracterizatioll of responder cell immmropile11otypes 
Effector cells from B-CLL patients 14 and 16 were im1muno1phe 
notyped after 21 days in culture. The mean cell surface eXl>re!;sio 
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5. Effect of allogeneic B-CLL lysate. Effectors from B-CLL Patients 
4 (a) and 6 (b) were cultured alone (0 ). with autologous dendrit ic cells 

lsed with autologous B-CLL lysate <• >. B-CLL allogeneic lysates from 
I 5, 2, 13 and 7 (~). and lysis buffer (0) for 2 1 days. Cytotoxicity 

was performed at a target:effector mtio of 40: I. (*) Indicated a 
increase in mean specific cytotoxicity compared with 

u•v •u!'.v" • dendritic cells with lysis buffer. with P < 0·01. when analysed 
/-test. No significant specific cytotoxicity was measured 

autologous T cells, allogeneic B cells or al logeneic T ce lls. Each 
group was measured in duplicate per patient. 

was found to be 47% CD4 + cells and 13% CD8+ cells, the 
remaining cells being CD3 negative. CD 16 and CD 56 expression 
was absent. 

Antibody blocking studies 
Antibody blocking experiments were performed at the effector 
stage of the cytotoxicity assay on three patients chosen at random. 
Significant inhibition of cytotoxicity was demonstrated with anti
class II but not wi th anti-class I monoclonal antibodies in patients 
2 (Fig. 6a) (P = 0·006) and 12 (P = 0 ·03 1) (Fig. 6b). Significant 
inhibition of cytotoxicity was demonstrated in patient 4 with anti
pan TCR of3 and anti-CD4, but not with anti-CD8 monoclonal 
antibodies (P = 0·03 and P = 0·046) (Fig. 6c). 

DISCUSSIO N 

Chronic B cell malignancies represent a potential target for 
immunotherapy by virtue of the facl that they are derived from 
immune cells and thus have the capacity for interaction with T 
lymphocytes. In addition, each tumour is derived from a c lonal 
expansion of one malignant B cell and thus, each cell in the clone 
will share spec ific determinants, for example, those encoded by 
variable region sequences of rearranged immunoglobulin genes. 
Clinical studies in which patients with lymphoma and myeloma 
were vaccinated with idiotype protein have demonstrated the 
generation of anti-idiotypic T -ceU responses and a degree of 
clinical response [32-36). An alternative approach has been to 
load DC with idioty pe protein and subsequently use the pulsed DC 
as a form of immunotherapy. Such an approach has also been 
shown to induce anti-idiotypic immune responses in lymphoma 
[22,37] and myeloma [24,38], wi th some encouraging clinica l 
results. A similar rat ionale can therefore be proposed for 
immunotherapy in B-CLL, and this study was designed to 
determine whether DC loaded with B-CLL tumour protein could 
stimulate anti-B-CLL cell responses. S ince a previous study in 
melanoma had demonstrated the generation of equivalent anti
melanoma responses after vaccination with either melanoma 
peptide- or tumour lysate-pulsed DC [23], we decided to load DC 
with soluble B-CLL cell lysate. 

Initial problems of generation of adequate numbers of DC 
from patients wi th B-CLL were overcome once the malignant B
cells were removed . These DC were morphologically and 
numerically similar to tho e from healthy indjviduals. Immuno
phenotyping DC generated from healthy individuals and patients 
with B-CLL demonstrated similar levels of expression of cell 
surface molecules, with the notable exception of CD40 and CD86. 
A previous study has demonstrated that DC generated from 
healthy individuals and patients with myeloma are phenotypicalJy 
and functionally s imilar; however, this did not include CD40 [39] . 
Although the s ignificance of Ihis finding is unclear at present, 
CD40+ DC have been found to be vital for the generation of anti
tumour responses in mice [40]. Stimulatjon of CD40 by increased 
expression of CD40-Iigand has been shown to s timulate immune 
recognitio n of 8-CLL cells in v ivo [4 1] . TI1e decreased levels of 
CD86 in B-CLL patients differ s igni ficantly from the findings in 
myeloma paLients and may be linked to the disease. Since CD86 
has been shown to be a key eo-stimulatory molecule [42], its 
decreased expression upon the dendritic cells from B-CLL 
patients may affect the optimal presentation of antigens toT-ce lls. 

Our results demonstrate that patient-derived DC, when pulsed 
wi th soluble B-CLL lysate, stimulate autologous T cells to 
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Table 4. Summary of cytotoxic T cell generation and responses. 

T cells Dendritic cells Lysate 

B-CLL Autologous Autologous 
B-CLL B-CLL B-cells 

B-CLL NONE Autologous 
B-CLL B-cells 

Healthy Autologous Autologous 
volunteer healthy healthy B cells 

vo1unleer 

Allogeneic B-CLL 
B-cells 

B-CLL Autologous B-CLL Autologous B-CLL 
granulocytes 

B-CLL Autologous B-CLL Allogeneic healthy 
B-cells 

B-CLL Auwlogous B-CLL Allogeneic B-CLL 
B-cells 

proliferate, secrete IFN--y (but not !L-4) and lyse autologous B
CLL targets. This suggests that our culture system has primed 
both a T helper I and a cytotoxic T -cell immune response. 
Antigen-presenting cells, such as DC, have the capacity to 
generate either aT helper I or aT helper 2 immune response [43). 
T helper I responses are associated with the secretion of particular 
cytokines, such as IFN--y and !L-12, and induce cell-mediated 
immunity, which is particularly important in the response against 
tumours. T helper 2 responses are associated with the secretion of 
cytokines such as !L-4 and !L-10. Tumours have been shown to 
secrete factors, such as !L-10 [44), transforming growth factor-13 
(TGF-13) [45] and vascular endothelial growth factor (VEGF) [46). 
wltich suppress DC and/or T cell function. Immature DC treated 
with !L-10 have been shown to induce anergy in melanoma 
antigen-specific CD8+ cytotoxic T -<:ells i11 vitro [47 ]. The T -cells 
used in our experiments were derived from patients with B-CLL 
and thus, were exposed i11 vivo to possible immunosuppressive 
factors secreted by the B-CLL cells. Recent data in our group 
suggests that the T cells of B-CLL patients show dysfunctional 
cell surface molecule expression [48]. Studies have shown that 
DC can be polarized towards stimulatory or inhibitory phenotype, 
IL-12 polarizing towards the induction of T helper I responses 
[49-51]. Pre-treatment of murine dendritic cells with !L-12 was 
shown to illicit responses to relatively unreactive tumour/self 
peptides [52]. In view of this, we pre-incubated the DC with IL-12 
just prior to the addition of antigen. Recently, !L-12 responsive-

Targets Response 

Auwlogous B-CLL Increase in IFN--y. 
Increase in specific cytoloxicity. 
Blocked by anti-MHC-<:lass 11. 
anti-TCR, anti-CD4. 

Autologous No response 
B-CLL T-<:ells 
Allogeneic No response 
healthy B-cells 
Autologous No response 
B-CLL B-cells 
Autologous No response 
healthy B cells 
Allogeneic B-CLL No response 
B-cells 
Autologous No cytotoxic or cylokine 
healthy B cells response, non-significant 
Allogeneic B-CLL increase in percentage 
B-<:ells activated T cells 
Autologous B-CLL No response 
B-cells 
Allogeneic healthy No response 
B-cells 
Autologous B -CLL No response 
granulocytes 
Allogeneic healthy No cytotoxic or cytokine 
B-cells response, non-significanl 

increase in percentage 
activated T cells 

Autologous B-CLL 2/4 patients showed 
B-<:ells increased specific 

cytotoxicity 

ness has been demonstrated in human monocyte-derived dendritic 
cells [53]. One preliminary experiment showed that without pre
treatment with IL-12, monocyte-derived dendritic cells pulsed 
with B-CLL lysate could not stimulate significant T-cell 
responses. The specific T-cell responses to B-CLL generated in 
our culture system suggest that, if a state of anergy to the 
existed in vivo, the i11 virro culture with DC and nn,-tJ-eatment 
with IL-12 has reversed this state. 

The levels of IFN--y observed in our study are similar to 
generated by superantigen-pulsed DC cultured with T cells [54] 
but are higher than those generated by CD40L-stimulated 
B cells cultured with autologous T cells [55]. Although the 
of specific cytotoxicity (24% ), generated in our cultures at 
effector: target ratio of 40: I, seem low compared with those 
other i11 vilro studies [15,17-19,56). they are comparable 
levels shown by others [14,20,21,57-59]. These differences 
be due, in part, to the fact that different diseases were 
However, in a study of B-CLL, similar levels of 
cytotoxicity were generated when CD40L-stimulated B-CLL 
were cultured with allogeneic T cells, but not autologous T 
[55]. 

We attempted to increase the immunogenicity of our 
lysate by heat-shock treatment of the B-CLL cells 
preparation of the lysate, and by using combined fractions 
soluble and membrane-bound lysate. Neither of these tr<lllrntenl 
resulted in increased percentages of specific cytotoxicity. So 
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Fig. 6. Antibody blocking experiments. T-cell effectors from B-CLL patiem 2 (a) and B-CLL patient 12 (b) were cultured alone (0). wi th 
autologous B-CLL dendri tic cells pulsed with B-CLL lysate <•> or lys is buffer (D) for 2 1 days (see Materials and Methods). Anti-human 
HLA-class I and anti-human HLA-class n antibodies were present whilst effectors were incubated at a 40: I effector: target ratio wi th 
autologous B-CLL B-cell targets (a and b). T-cell effectors from B-CLL patient 4 (c) were cultured alone (0), with autologous B-CLL 
dendritic cells pulsed with B-CLL lysate <•> or lysis buffer (0) for 2 1 days (see Materials and Methods). Anti-Pan TCR a {3 , Anti-COS and 
Anti-CD4 antibodies were incubated with autologous B-CLL B-cell targets at a target:effector ratio of 40: I (c). The (*) and (**) indicate a 
significant inhibition of specific cytotoxici ty in the pre ence of antibody compared with none, with P < 0·05 and P < 0·0 I when analysed 
by Student's t-test. Each treatment group was measured in duplicate per patient. 
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we have been unable to generate stronger T-cell responses in vitro 
with additional immune manipulation during the cell culture 
period. Perhaps the modest level of tumour-specific cytotoxicity 
observed is due to the relatively low frequency of B-CLL-reactive 
cells within the patients' T-cell repertoire. However, the low 
levels of cytotoxicity may be due to the relatively immature slate 
of the monocyte-derived DC (CDSr) used to present lysate 
antigens to the T cells. After the loading of antigen onto the 
dendritic cell surface, a further 'danger signal' is required to 
achieve maximal presentation of that antigen to the T cell [91. 
Current work is testing whether treatment with lipopolysaccharide 
and polyriboinosinic polyribocytidylic acid can enhance further 
DC maturation after tumour lysate loading, and therefore 
stimulate higher levels of specific cy101oxicity to B-CLL cells. 

Of particular interest was the nature of the responding cell 
population. The responding cells in two patients were predomi
nantly CD4 +. Although there is evidence that DC can directly 
trigger anti-tumour responses by Natural Killer (NK) cells [60], 
the effector cells in our assay did not express the NK markers 
CDI6 and CD56. Antibody blocking experiments in the three 
patients tested demonstrated significant inhibition of cytotoxicity 
with anti-class 11, anti-pan TCR 0<~ and anti-CD4, but not with 
anti-class I or anti-CD8 monoclonal antibodies. Overall, this 
suggests that CD4 + HLA cla>S 11-restricted cytotoxic T cells are 
responsible for the majority of lysis of B-CLL cells in our culture 
system. In general, it is thought that CD8+ class !-restricted T 
cells are responsible for anti-tumour immunity 119,21,61]. 
However, CD4+ cytotoxic T cells have been reponed in 
hepatocellular carcinoma [62) and p21-ras (12Val) mutated cells 
[63]. In general, it is thought that DC process and present 
exogenous proteins by the HLA class 11 pathway, and that 
internalizing antigen from apoptotic cells generates MHC class I 
restricted cytotoxic T lymphocytes [9]. B-CLL patients with 
decreased the numbers of CD4 + T cells due to recent therapy with 
fludarabine [64) may not exhibit a specific cytotoxic response in 
our culture system. 

One concern that has been raised with regard to dendritic cell 
vaccination is the possibility of inducing autoreactivity. In our 
culture system, reactivity was not demonstrated against auto
logous B-CLL T -cells and granulocytes, or HLA matched and 
allogeneic B-cells from healthy individuals. Recently, T-cells 
generated by stimulation with CML-pulsed dendritic cells showed 
proliferation against autologous CML cells, but not an HLA
identical sibling [65]. However, our system was unable to 
demonstrate strong T-cell responses to allogeneic lysates. We 
can only surmise that our system is not optimized for the 
presentation of allogeneic antigens via the indirect pathway. 
However, the system was able to present well characterized 
antigens such as tetanus toxin and tuberculin PPD. The lack of a 
specific response by T-cells from healthy volunteers presented 
with B-CLL lysate antigens by their own dendritic cells suggests 
the presence of a pre-existing pool of reactive T -cells in B-CLL 
patients not found in healthy volunteers. Recently, the existence of 
autologous T-lymphocytes capable of spontaneous specific 
recognition of B-cells from B-CLL patients has been demon
strated [66]. Ideally, we would wish to test for cytotoxicity against 
autologous non-malignant B-cells from B-CLL patients, but due 
to the overabundance of the malignant B-cells in these patients, 
this was found to be impossible. Although T-cells make poor 
targets, we did not wish to introduce anti-viral epitopes into our 
system in the form of EBV-transfected targets. Clinical studies 

with DC vaccination have so far reported no evidence of 
autoimmune disease [22-24,26,29], although autoimmunity has 
been induced in mice in one study [67]. 

Our experiments have demonstrated specific T -cell responses 
to B-CLL. Although cytotoxicity was induced with some 
allogeneic B-CLL lysates, this was not the case with others. This 
suggests that, although a common antigen may be present in a 
proponion of B-CLL patients, other B-CLL patients may have 
unique amigens. This should not be surprising, as B-CLL is not a 
homogenous disease. However, despite the obstacles this hetero
geneity may present, we believe that it is important to identify the 
anligen(s) within the B-CLL lysate responsible for the immune 
responses we have demonstrated, and this work is currently in 
progress. At the same time, this study provides evidence that a 
clinical trial of immunotherapy in B-CLL is feasible. 
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SUMMARY 

Immunotherapy using dendritic cells has shown encouraging results in both haemutological and non
haematological malignancies. In this study, monocyte-derived dendritic cells from patients with B-CLL 
were cultured for 6 days in the presence of IL-4 and GM-CSF. Autologous B-CLL T-ceUs were cultured 
alone or with B-CLL lysate-pulsed and unpulsed autologous dendritic cells. IFN-'Y secretion was 
assessed using ELlS A. Cytotoxicity was assessed, after 21 days io culture and re-stimulation, using flow 
cytometry with and without blockade by anti-HLA class I, anti-HLA class 11, anti-CD4, anti-CD8 and 
anti-TCRal3 monoclonal antibodies. B-CLL T cells stimulated with B-CLL lysate-pulsed autologous 
dendritic cells showed a significant (P = 0·0004) increase in IFN-'Y secretion and a significant 
(P = 0·0008) increase in specific cytotoxicity to autologous B-ceU targets, but none to autologous T cell 
or B cell targets from healthy individuals. B-CLL T cells cultured with (non-B-CLL) B-cell lysate
pulsed B-CLL dendritic cells showed oo significant response. Pulsing dendritic cells from healthy 
volunteers with an autologous (non-B-CLL) B-cell lysate did not stimulate proliferation, cytok.ine 
production or cytotoxicity by autologous T cells. Pulsing B-CLL dendritic cells with allogeneic B-CLL 
lysates and culturing with autologous T -cells elicited cytotoxicity against autologous B-CLL targets in 
some cases, but not in others. Cytotoxicity was significantly reduced by blocking with anti-HLA class II 
(P = 0·001), anti-TCRal3 (P = 0·03) and anti-CD4 (P = 0·046) antibodies. Pheootyping of the 
responding T-cell population demonstrated the majority to he CD4 positive. Our data demonstrate that 
HLA class 11-restricted proliferative and cytotoxic T-cell responses to B-CLL can be generated using 
autologous dendritic cells pulsed with tumour cell lysate. 

Keywords dendritic cells tumour lysate B-cell chronic lymphocytic leukaemia HLA class U 

INTRODUCTION 

B cell chronic lymphocytic leukaemia (B-CLL) is characterized 
by the accumulation of a clone of malignant B cells in lymphoid 
tissue, the bone marrow and the peripheral blood. Although 
chemotherapy can induce partial or complete remission [I), long
term disease-free survival is unusual. Recent trials of bone 
marrow transplantation or monoclonal antibodies are promising 
[2]. However, new treatment modalities for this disease are 
required. In view of the fact that B-CLL is a tumour of the 
immune system, it seems challenging and logical to allempt to 
harness that system to treat this disease. 

The recent marked growth in our understanding of the immune 
system and its interaction with malignant disease includes the 
mechanism by which antigen is presented toT lymphocytes [3,4). 
Dendritic cells (DC) are now known to be essential for the 
iniliation of primary immune responses and are particularly 
efficient at capturing and presenting antigens toT cells [5-7). By 
priming them in vitro with tumour antigens, these 'professional' 
anligen-presenting cells (APCs) may bypass the state of ignorance 
in which the immune system appears to co-exist with most 
tumours [8]. Studies of DC vaccines in both animal models and 
man have demonstrated the generation of anti-tumour immune 
responses [9- 11]. Early allempts at cancer immunotherapy were relatively crude, 

including injecting patients with killed tumour cells or adjuvants 
such as Bacillus Calmelle Guerin and Corynebacterium paruum. 
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Reliable melhods for generating immature DC from peripheral 
blood mononuclear cells have facilitated their use in immunother
apy [12,13). 111 vitro studies in man have demonstrated that DC 
loaded wilh tumour antigens can induce cytotoxic T-lymphocyte 
(CTL) responses against melanoma [ 14-16], chronic myeloid 
leukaemia [17-19], acute myeloid leukaemia [20) and pancreatic 
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