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-mE AlJTCJMTIC CONTRJL OF lARGE SHIPS 

IN CONFINED WATERS 

R. S. Burns 

ABSTRACT 

The design and evaluation of a control system, which can be 
utilised for the automatic guidance of large ships in confined or 
restricted waters, is investigated. 

The vessel is assumed to be a multivariable system and it is 
demonstrated that a non-linear, time-varying mathematical model 
most accurately describes the motion of the hull, particularly in 
tight manoeuvres. 

A discrete optimal controller has been designed to control 
simultaneously track, heading and forward velocity. The system is 
most effective whilst operating under a dual-mode policy. It is 
shown that feedback matrix adaption is necessary to deal with 
changes in forward velocity and a form of gain scheduling is proposed. 
Active disturbance control is employed to counteract effects of wind 
and tide. 

An inertial navigation system, together with an optimal controller 
and filter, is installed on-board a car ferry model. Free-sailing 
tests show that the performance characteristics of the system are in 
accordance with theoretical predictions. 

The feasibility of implementation on a full-size vessel is 
considered. 
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1.1. Introduction 

C H A P T E R 1 

INTRODUCTION AND REVIEW OF SHIP 

AUTOPILOT CONTROL SYSTEMS 

The history of the modern automatic pilot (autopilot) for ship 

steering has its origin near the beginning of this century, following 

the invention of the gyrocompass. Elmer Sperry discussed the problems 

of automatic steering in 1922 (1) in terms of an application of the 

gyrocompass and describes what was possibly the first installation 

aboard ship. In the same year Minorsky presented the basic theory for 

directional stability of automatically steered ships (2) and summa-

rised various control equations that might be applied. Sperry's 

system, although completely mechanical, had all the elements that make 

up the control loop of an automatic course-keeping system, namely: 

rudder, steering gear, ship, gyrocompass and autopilot. By 1932, four 

hundred of Sperry's systems had been installed on merchant ships 

throughout the world. 

. The autopilot of this era was a very simple device in which the 

heading error produced a corrective signal for the steering gear 

(proportional control). The proportional gain; or so-called rudder 

adjustment could be varied to suit different loading conditions of the 

ship. In heavy seas however, a proportional autopilot produced exces­

sive working of the steering gear and many manufacturers provided· a 

"weather· adjustment". In most cases this consisted of lost motion, or 
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backlash between the autopilot output and the control actuating 

device, so that when the ordered rudder angle changed direction the 

control system did not respond until a specified small angle had been 

exceeded, thus reducing rudder activity. Backlash, or alternatively, 

dead-band weather adjustment was employed in many autopilots and with 

some, an added feature was the .application of "bias" by which an 

initial constant rudder angle or "ki'ck" was applied as soon as the 

dead-band was exceeded. 

Another scheme introduced in early autopilots was to include in 

the rudder adjustment a form of delayed feedback which insured that 

rudder motion, once started, would continue .to some predetermined· 

angle before stopping. It is claimed that this had the effect of 

checking the ship's initial swing off course and also meeting the 

return swing of the ship, thus tending to prevent overshoot. Nomoto 

(3) describes this approach as "negative backlash" and explains that 

its purpose is to compensate for the phase lag caused by "weather 

adjustment" backlash. He adds that it is set to overcompensate for 

idle movement in telemotor links so as to yield a "phase lead". He 

refers to it as "over-telemotor adjust" and comments that the mechan­

ism is another kind of damping to raise the stability of auto­

pilots. 

1.2. PID Autopilots 

Proportional autopilots of a mainly mechanical nature were used 

in ships up to about 1950. They were not entirely satisfactory as 

over-telemotor adjust did not always prevent transient oscillation. 

The introduction of control terms proportional to the first or higher 

derivatives of the heading error had the combined advantage of pro­

ducing increased damping, improved stability and introducing an anti­

cipatory effect that helped compensate for control and steering gear 

2 



lags. According to Luke and West (4) the first commercial autopilot 

with rate-of-turn control action was installed on the S.S. United 

States in 1951. 

About this time also another addition to the control equation was 

a term proportional to the integral of heading error. This allowed 

the course to be maintained in the presence of a steady disturbance 

such as a cross wind. The control law for a proportional, integral 

and derivative (PID) controller can be written: 

(1.1) 

. 
Sometimes just the derivative of the actual heading ~A' rather 

than ~ is employed in equation ( 1.1). 
e 

This has the effect of pro-

ducing a single closed-loop zero in the closed-loop transfer function, 

whereas equation ( 1.1) as it stands wi 11 yield a pair of real· or 

complex conjugate closed-loop system zeros. 

One disadvantage of derivative terms are that they lead to large, 

and ineffective, rudder movement at high frequencies of encounter 

( i . e. in bow seas) . This high frequency rudder movement has little 

effect on the ship's heading due to the dynamics of the hull, but it 

does cause unnecessary wear on the steering gear and adds to the ship 

resistance. 

The use of a low-pass filter for avoiding excessive steering in 

rough seas as an alternative to backlash or dead-band was first pro-

posed by Motora (5). Rydill (6) observed that a simple first-order 

filter tended to reduce directional stability and suggests that a 

'quadratic delay' or second-order filter gives a sharper reduction in 

rudder movement at high frequencies, with less detrimental effect on 
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stabili.ty. 

When Lap·lace Transforms are taken of equation ( 1.1) and coupled 

with Rydill's filter the autopilot transfer function takes the form: 

(1. 2) 

By factorising the second order terms equation (1.2) may be 

expressed in the standard form of the PID ship control algorithm as 

described by Bech (7) 

oD ~ (l + TPHs) (l + KCRTCRs) 
-(sl = 

TPH(l + TCRs) (1 + T0s)s (1. 3) ljie 

Bech suggests the following range of autopilot setting to be 

suitable for most ships: 

K (rudder gain) 0.5 - 3 
R 

T (automatic permanent helm) 120 - ~seconds 

PH 
K (counter rudder gain) 1 - 8 

CR 
T (counter rudder time constant) 3.5 - 28 seconds 

CR 
T (damping time constant) 0.1 - 3.75 seconds 

D 
Along with changes in control laws came the required change to 

electronic hardware in order to.implement more complex designs. The 

PID autopilots of the sixties were analogue in nature and employed 

operational amplifiers to perform addition, integration and different-

iation. In discussing the "Sperry Gyropilot" Wesner (8') explains 

that a single operational amplifier with associated components is used 

to differentiate and filter the heading error. A further amplifier 

integrates the heading error to generate the "automatic weather helm" 

signal. Summing firstly the proportional and rate terms and then 

finally the integral signal produces the composite rudder out.out 



signal. The "Sperry Gyropilot" was designed mainly with the large 

tanker in mind, but Brook, chief engineer for S.G·. Brown, when 

describing an autopilot specifically for the needs of commercial 

shipping ( 9·) , chose a control algorithm similar to Wesner. These 

control equations differ from the standard form of Bech in that the 

first-order rate filter converts them into a classical lead-lag 

network with an added integral term as follows: 

(1. 4) 

When the autopilot was tested on a range of vessels Brown found 

that the product KCRTCR which he refers to as the lower break frequen-

cy time constant should have a value of 10 seconds for a ship of 1000 

tonnes displacement and up to 22 seconds for super tankers that 

displace 252,000 tonnes at normal cruising speeds. He selected a 

decade between the break frequencies so that the upper break frequency 

time constant TCR ranges between 1 and 2.2 seconds. The weather helm 

integrator time constant TPH was set at 80 seconds. 

1.3 Adaptive Autopilots 

The disturbances acting upon a vessel may·be classified according 

to their influence on the ship's behaviour and placed in the following 

categories: 

l. Disturbances that cause deviations from the 

set course. 

2. Disturbances which affect the steering 

characteristics of the ship. 

Wind, waves and tide belong to the first group. Heading error 
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due to this class of disturbance can be mainly overcome by feedback, 

providing the autopilot is correctly set. 

The second class of disturbances relate to ship handling qua:lit-

ies and inc1ude such factors as loading, depth of water under keel and 

forward velocity. 

The dynamics of a super tanker for example, manoeuvring in coast-

al waters may be subject to large parameter variation that could lead 

to course instability. Manual autopilot adjustment under these 

conditions would demand a significant level of judgment by operating 

personnnel. 

1.3.1 Model Reference Adaption 

This form of automatic adaption compares directly the responses 

of the actual ship with an ideal mathematical model when both are 

subjected to the same input. A criterion function is generated in 

terms of the difference between the responses. The autopilot is then 

so adjusted that the minimum (<or maximum) of the criterion function is 

approached. 

(a) Sensitivity Models 

Much pioneer work was done at Delft University of Technology by 

Honderd and Winkelman (10) who in 1972 simulated a model reference 

adaptive control system, obtaining data regarding the ship's dynamics 

from measurements taken aboard the Dutch training ship "Prinses 

Margriet". The dynamics of the model in the adaptive system 

corresponded to the dynamics of the actual ship in deep .water. Adapt-

ion took place by defining a quadratic criterion of the form: 

J ( 1. 5) 

. . 
with e ljJm --ljJA ( 1. 6) 

The quantity e was multiplied by a sensitivity coefficient avail-

able from the sensitivity model and the result used to adjust a 
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parameter in the system. The sensitivity-model has the same structure 

as the system, but with a• different input and is arrived at by 

analysis of how the non-linear function H(~), the steady-state relat-

•· 
ionship between oAand ~A' is· affected by loading and other category 2 

disturbances. 

The product of the sensitivity coefficient and error quantity 

adjusts the magnitude of the signal obtained from a rate gyroscope, so 

adaption takes place by varying the amount of rate feedback in the 

control loop. 

(b) Liapunov Approach 

This technique is based on the second method of Liapunov where 

the system and reference model are assumed to be of the same order. 

If there are differences between the state vectors of the model and 

system, the parameters of the system are adjusted in order to minimise 

the difference. 

Following the Liapunov approach, Van Amerongen and Udink ten Cate 

(11), 1973, demonstrated that when a Liapunov function V of the system 

error is formed, its time derivative V will be negative definite with 

respect to the error if certain adaptive laws are fulfilled. They go 

on to explain that such an adaptive system will be asymptotically 

stable and for ships with linear dynamics the Liapunov method is 

straightforward to apply. Difficulties were experienced however in 

forming a suitable Liapunov function for non-linear ship dynamics but 

by applying Ingwerson's method (12) a function was formed and follow-

ing the techniques of Winsor and Roy (13) a rate feedback adaptive 

law was obtained. After simulation tests on both sensitivity model 

and Liapunov autopilots, Van Amerongen and Udink ten ·cate concluded 

there was little difference between the two, although the latter 
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required a low-pass filter in the presence of measurement noise. 

Udink ten Cate and Verstoep persued Liapunov model reference 

adaptive control (MRAC) systems further (14) and in 1974 presented a 

method of improving performance by employing a new type of error noise 

rejection filter. The possibility of an alternative design method of 

Liapunov MRAC systems using a function of the parameter misalignment 

was investigated and it was demonstrated that this approach had better 

convergence properties and was less dependent on input signal 

frequencies compared with other design methods. 

1.3.2 Self-Tuning Autopilots 

As discovered by Honderd and Winkelman (10) one of the main 

problems of a model reference system is the selection of the reference 

model dynamic characteristics. In. recent years aspects of system 

identification have been refined and a survey by Astrom and Eykhoff 

(15) in 1971 reports that many techniques such as linear least 

squares,, generalised least squares, maximum likelihood and 

instrumental variable methods can all be used, the choice depending on 

available a priori knowledge. 

Subsequently, in 1973 Astrom and Wittenmark discussed a "self­

tuning regulator" (16) based on a least squares parameter estimator 

and a minimum variance control strategy. The analysis was restricted 

to a single-input, single-output system with constant, but unknown 

parameters. It was demonstrated that the control law was identical 

with that which would have been computed had the system parameters 

been known. The minimum variance cost function employed in the self-

tuning regu}ator had two limitations in the fact that there was no set 

point specified and no penalty on control effort. 

A more generalised "self-tuning controller" was first proposed by 

Clarke and Gawthrop (17) and recent work by Mort and Linkens (18) 
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and Hodder and Shiel:ds (19) on this algorithm indicates that the auto­

pilot .works satisfactorily under .both constant and changing parameter 

conditions., although difficulties may 'possibly exist in applying the 

algorithm to ship manoeuvring control. 

Following their work on maximum likelihood identification of ship 

steering dynamics, Astrom and Kallstrom (20) (21) returned to the 

problem of adaptive self~tuning autopilots, particularly for tankers 

( 22). The dependence of the ship velocity was handled by gain 

scheduling and in the more complex alternative proposed, a Kalman 

filter was. employed to obtain· a reliable smooth estimate of the head-

ing, sway velocity and yaw rate. It was concluded that the adaptive 

autopilot could reduce the drag by up to two percent compared with 

values obtained from well-tuned PID regulators. 

1.3.3 Cost Functions for Adaptive Course-Keeping Autopilots 

In confined waters and areas of high traffic density accurate 

steering is necessary and in general a PID autopilot will perform 

this function. During the seventies, when the cost of fuel oil 

increased dramatically, it was realised that on the ocean, good 

course-keeping qualitites were not so important as energy saving 

strategies. 

It was suggested as long ago as 1966 by Nomoto and Motoyama (23) 

that a ship left to yaw naturally in a seaway without the application 

of frequent corrective rudder movements will in fact suffer less 

propulsion loss than if helm is repeatedly being applied. During a 

400 mile passage it is estimated that heading deviations of ± 2 

degrees increase the distance no more than a quarter of a mile which 

means little in terms of fuel consumed. On the other hand, every 

departure of the rudder from the mid-position exercises an element of 
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drag and consequently a braking effect on the forward speed. 

Additiional drag. is created by the vast mass of water carried round by 

the ship during an induced· turn. 

Among the first to consider the use of a cost function were 

Koyama (24) in 1970 and Norrbin (25). They independently nroposed a funct-

ion of the type: 

(1. 7) 

The choice of the weighting factor A led to a great deal of 

conjecture. Koyama suggests values of between 8 to 10 whilst Norrbin 

indicates a much smaller value. Broome and Lambert (26) conducted 

experiments on a scale model of a fast container ship and demonstrated 

how the cost function could be minimised for a given value of derivat-

ive gain. 

Continuing this work, Marshall and Broome (27) constructed a 

three dimensional surface whose topology described cost function 

variation against rudder proportional gain K and counter rudder time 
p 

constant T Employing a cost function of the form: 
D 

J 1 Jt 2 0.5 Jt 2 
- 1jJ dt + -· 0 dt 
t e t A 

0 0 
(1. 8) 

it. was demonstrated that for certain classical ship models an optimum 

setting of the autopilot occured for values of T of about 50 seconds 
D 

and K of approximately 0.5. 
p 

Clarke (28) suggested a similar cost function of the form: 

J 1 Jt 2 t (Aljle + 
0 

(1. 9) 

A simulation exercise based on the results of an analytical 

solution for a 200,000 tonne tanker provided the following range of 
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constants: 

A 0 .. 5 to 1.5 

B 1600 to 79000 

C 0.9 to 4.7 

The variation of values were as a result of assuming different 

engine conditions, i.e. constant revolutions, constant power, 

constant torque or constant thrust. 

1.4 Path and Track-Keeping Autopilots 

Ship autopilots can be designed to perform the following tasks: 

1. Course-Keeping 

2. Course-Changing 

3. Track-Keeping 

4. Track-Changing 

In terms of classical control theory, 1 and 3 present the 

reguiJ.ator problem whilst 2 and 4 the tracking, or servomechanism 

problem. 

The first recorded track-keeping system was in 1892 when a 

British patent was granted for a leader-cable system. This type of 

system consists of an electric cable, carrying alternating current, 

that lies along the sea bed following the desi·red track. A pair of 

coils on-board the ship experience induced voltages, their difference 

indicating whether the cable lies to port or starboard of the vessel 

and the magnitudes representing the distance between the cable and 

ship. Though the idea of leader-cables has not been fully abandoned, 

as yet it has never found general application. 

At the end of the second world war interest arose in track­

keeping systems as a result of minesweeping operations, where areas of 

sea needed to be searched accurately. In 1966 Goclowski and Gelb (29) 



suggested the use of radio beacons to obtain position fixes . and 

desrgned a lead-lag autopilot based on perpendicular distance off 

track, heading and yaw-rate feedback. An automatic track guidance 

system for a minesweeper discussed by Horst (30) derived the 

perpendicular distance off track from the plotting table and employed 

a control algorithm: 

(1.10) 

. 
He explains that 1jl e and ljiA were used since t and yt were not available. 

Zuidweg (31) (32) was amongst the first to consider automatic 

guidance and track-keeping in the light of modern control theory. He 

demonstrated the feasibility of stochastic linear optimal control and 

estimation for a ship whose dynamics are constant and known. In 1973 

Millers (33) applied modern control theory to the problem of 

manoeuvring a ship through a narrow passage and developed a recursive 

filtering and control strategy to cope with stochastic current and 

measurement errors. Also in the same year Canner (34) discussed the 

linking of a Decca Navigator to an autopilot through an Omnitrac 

computer and suggests a cheaper alternative would be to extract path 

error from an x, y, t plotter. 

In a later paper (35) he explores the use of ·avionic radar 

responder position fixing devices. Yakushenkov (36) also at this. 

time discusses the synthesis of a ship's control system based on the 

minimisation of the mean square estimate of the deviation from the 

desired track, employing fH tered data from radio-navigational 

receiver, gyrocompass and log. 

The problem of controlling surface ships along prescribed paths 

in a manoeuvring situation where an adaptive autopilot is required to 

adjust for changes i:n system parameters was investigated by Parsons 
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and Cuong (37) in 1980. The:i!r approach was to design a control 

system with two loops - an inner or control loop comprising of both 

state estimator and optimal controller together with an outer, or.gain 

update loop consisting of an on-line parameter estimator. 

An adaptive autopilot for both track-keeping and track-changing 

was discussed by Van Amerongen and Land (38). A Kalman filter state 

estimation algorithm coupled with an optimal controller are employed 

in the track-keeping mode, but he suggests changing to a course­

keeping mode at turning points to ensure smooth transition. 

1. 4. 1 Dynamic Positioning 

Dynamic Positioning (DP) may be considered as the special case of 

track-keeping where the desired track is some point on the ocean bed. 

Interest in DP has arisen due to the discovery in recent years of vast 

mineral deposits on and below the floors of the ocean and has resulted 

in a great increase in the number of offshore mining projects. This 

has led to the need for accurate positioning of surface ships, for 

example, drilling vesssels. 

Dynamic Positioning systems have been manufactured since the 

early sixties, the traditional: approach to the control problem being 

the implementation of PID controllers (39). The posi-tional accuracy 

of these systems depend upon the measurement techniques employed, some 

of the most common being: 

1. Taut wire angle and length measurement. 

2. Acoustic transponder and hydrophone array. 

3. Shore based radio stations such as Decca Hi-Fix 

when the vessel is positioned near land. 

In 1975 A/S Kongsberg Vapenfabrikk of Norway initiated the 

development of a DP system based on the concept of Kalman filtering 



and optimal control. The first installation was tested. during 1977 on 

·board the v.essel M/V Seaway Eagle. Jenssen et. al (40) reported that 

the operational performance was in accordance with expectations, the 

vessel having a drift of less than 10 m over a five minute period. 

1.5 Commercial Autopilots on the Market 

A 1983 autopilot survey shows that there are about twelve major 

autopilot manufacturers in the world. Most produce a series of model? 

each of which is designed for vessels within a defined tonnage range. 

Autopilots, on the whole, are still of PID design but the 

adaptive autopilot is starting to make its mark on the commercial 

market. The Sperry approach to adaptivity is an add-on, 

microprocessor based, Adaptive Steering Module (ASM) that may be 

interfaced with their UGP Universal Gyropilot, a PID autopilot. 

Coleman and Wang (41) explain that the ASM can adjust the parameters 

of the Gyropilot for the following operating regimes: 

1. Open sea course-keeping, optimised control for 

minimum fuel usage. 

2. Course-changing manoeuvres, minimum overshoot and 

constant rate of turn. 

3. Confined water course-keeping, minimum heading 

error. 

In 1981 a new company was formed by Racal-Decca to launch what 

was asserted to be the most sophisticated adaptive a~topilot on the 

market - the DP780, developed by a team directed by Bech. This model 

referenced autopilot costs about £13,500 and Racal-Decca claim that a 

2 per cent fuel saving at present prices would pay for a DP780 in 114 

days cargo ship steaming, or after only 33 days at sea for a super 

tanker. 

Other major manufacturers include Plath who produce an adaptive 
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autopilot Navipilot AD, which has three control strategies, open-sea, 

confined waters and heavy weather· conditions. Adaptive autopilot 

control by Kockumation is, like that of Sperry, achieved by means of 

an add-on module following broadly similar principles. 

1.6 Integrated Navigational Systems 

On ocean going ships, various kinds of navigational instruments 

are installed usually according to some safety rules and regulation 

requirements. On larger vessels these will include: 

1. Gyrocompass. 

2. Doppler sonar or electromagnetic logs. 

3. Satellite navigator. 

4. Loran-C, Omega and/or Decca receivers. 

These instruments work independently, each with their own 

measurements errors, many of which may be considered of a random 

nature. The original work of Kalman and Bucy (42) demonstrated the 

existence of a method of estimation based on a statistica·l filter. 

Dove (43) points out that the so-called Kalman filter, first used in 

navigation of space vehicles and then in aircraft systems is now 

available as part of a maritime integrated navigational system. 

Grimble ( 44') explains the descrete-time Kalman fi 1 ter is a 

predictor-corrector mechanism. If the estimate of the states at time 

kT is known, and the system mathematical model is available, the 

predicted states at time (k+l)T can be computed. When the difference 

between the measurements and the predicted states are weighted by the 

Kalman gain matrix, a corrected best estimate is arrived at by ·Summing 

the predicted states with the weighted errors. The basic Kalman 

filter is designed for linear systems, but more recently it has been 

extended to cope with systems that have non-linear dynamics (45). 
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Hashiguchi (46) describes an integrated automatic navigational 

system manufactured by Hitachi Shipbuilding under the trade name 

"Transoline" that links together an autopilot with an integrated 

navigational system. Transoline is intended for open-sea operation 

and tests performed on the container ship S.S. Yashima-Maru indicate 

that the system works satisfactorily. 

1.7 Present Study 

The concept of automatic pilotage has been brought about by the 

increasing density of marine traffic in confined waters, particularly 

port approaches where the risk of collision is high. The practical 

realisation of such a system has been made possible by recent advances 

in navigational aids, particularly the Navstar Global Positioning 

System (GPS) which employs eighteen satellites, and is due to become 

operational around 1990. GPS has a three-dimensional positional 

ac~uracy of a few metres. When integrated with other navigational 

instruments and a suitable autopilot, it has the potential to bring a 

ship safely into port anywhere in the world . 
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This present investigation concerns a feas.l:bility study of a 

guidance system for automatically controlling a large· vessel in the 

pilotage phase of its voyage. 

1.1. 

The proposed system is shown in Figure 

The project is part of an integrated scheme where members of a 

research team have concentrated separately on the following areas: 

1. State Estimation and D.i:gital Filter:ing. 

2. Optimal and' Sub~Optimal Controller Design. 

3. Ship Modelling and Identification. 

The aim of the investigation described in this thesis is the 

design of an optimal or sub-optimal controller for the automatic 

pilotage of large· ships in confined waters. In the case of the 

optimal controller the problem is treated in a multivariable manner so 

that several parameters such as position, heading and' forward speed 

can be controlled simultaneously. In simulation stud.i:es Burns, 

Bouncer and Dove have demonstrated such a technique 

effective (47). 

to be very 

This is a new approach since the recent emphasis by other 

researchers (37} (38) involved in the study of control systems for 

manoeuvring in confined waters has been focused on the minimisation of 

scalar error quantities, for example heading or track error. 

The programme of work has three distinct phases: 

1. Ship Mathematical Models 

Chapter 2 describes the choice of state variables and the 

development of linear time-invariant, quasi-linear time-variant and 

non-linear time-variant ship mathematical models. 

Chapter 3 deals with disturbance modelling, derivation of 

aerodynamic derivatives and Gauss-Markov relationships for wind and 

tidal streams. 
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Chapter 4 is concerned with computer model verification employing 

(a) data for the·Nariner hull obtained from the literature and (b) 

linear and non-linear hydrodynamic coefficients evaluated for a model 

car-ferry hull from towing-tank tests at N.M.I., and free-sailing 

tests on the river Plym. 

2. Controller Design and Guidance System Simulation 

Chapter 5 explains the criteria and strategies employed in the 

design of sub-optimal and optimal controllers, disturbance 

counteraction and adaptioh to cater for time-varying and non-linear 

ship dynamics. 

Chapter 6 explores the effectiveness of different control polices 

in terms of (a) stability, (b) accuracy, ('c) integrity when 

simulating the automatic guidance of a full-size vessel into Plymouth 

Sound. 

3. Free-Sailing Model Performance 

Chapter 7 describes the measurement system and on-board computing 

facility employed to implement the guidance system on the physical 

model. The results of the commissioning tests are given. 

Chapter 8 looks at the modifications to the mathematical model 

and the software required to enable an optimal control policy to work 

in real-time, interfaced with the measurement system on-board the 

model car-ferry hull. A performance analysis is conducted on the 

results of the free-sailing tests. 

Chapter 9 reviews the principal conclusions and observations 

based on the work and considers the possibility of future 

developments. 
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C H A P T E R 2 

SHIP MATHEMATICAL MODEL 

2.1 Introduction 

Mathematical models of ship dynamics are required for many 

different purposes, amongst which the most important include: 

prediction of ship manoeuvres, autopilot analysis, navigational 

filters and design for optimum ship performance. There are two 

different approaches to the problem, theoretical modelling, based upon 

physical laws and experimental modelling, derived from measured input­

output relationships. 

2. 2. Co-ordinate Systems and Si'gn Conventions 

A ship may be considered to be a rigid body with six degrees of 

freedom. It is convenient to describe its motion in terms of 

translation and rotation about a moving system of three mutually 

perpendicular axes x,y,z, referred to as the ship longitudinal axis, 

lateral axis and vertical axis respectively. These axes, shown in 

Figure 2.1, form a consistent right-hand co-ordinate system. 

A second right-handed system of orthogonal axes 

referred to as the earth co-ordinate system, is fixed so that the x 
0 

axis, to conform with standard navigational practice, is aligned with 

the direction or True North. 
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x,u,X 

z ,w, Z 

Figure 2.1 

Ship Co-ordinate System 

2 . 3 Euler's Equations of Motion for a Rigid Body 

Employing equations for linear and angular momentum Abkowitz (48) 

demonstrated that the three force equations (surge, sway and heave) 

and the three moment equations (roll, pitch and yaw) may be written as 

a Eulerian set: 
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I p+(I -I )qr+mfYG(~+pv-qu)-ZG(~+ru-pw.)} K 
X Z y . . · 

I q+ (I -I ) rp+m {ZG ( ~+qw-rv) -XG ( ~+pv-qu.J} M 
y X Z 

(2.1) 

When manoeuvring in· the approaches to a port, it will be assumed 

that ship motions in roll, pitch and heave are small enough to be 

neglected·. Under these conditions equations ( 2 .1) reduce to: 

• 2 
m( u-rv-XGr ) = X 

(2.2) 

If the origin of the ship co-ordinate system is selected to 

coincide with the mass centre of the vessel, then equations (2.2) 

become: 

m(~-rv) X 

. 
m(v+ru) = Y 

. 
I r N 

z 

2.4 Selection of System Variables 

(2.3) 

In the formulation of the multivariable control problem it is 

necessary to view the ship as a dynamic system with multiple inputs 

and outputs as shown in Figure 2.2. 
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Figure 2.2 

Multivariable System 

State 
Variables 

If a true representation of the system behaviour is to be 

achieved , care must be taken over the selection of the system 

variables . 

(a) State Variables 

The choice of variables that make up the state vector has been 

made from consideration of those parameters which are felt i mportant 

when defining the "state" of a vessel in a manoeuvring situation. The 

state vector which most fully describes this condition is : 

(2.4) 

All of these state variables relate to the ship co-ordinate 

system. The first two states oA and nA become necessary if the 

dynamics of rudder and main engines are to be taken into account . The 

remaining six states constitute position and its derivative in the 

surge, sway and yaw directions. 

A further set of earth-related states may be defined: 

(x u y v ) 
0 0 0 0 
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The transformation from ship to earth co-ordinate system, which 

takes. place after the· state computations, is· given by: 

y = T<tlX (2.6) 

where T<t) is a time-varying transformation matrix. 

(b) Control and Disturbance Variables 

When choosing the control vector it is assumed· that the ship has 

a single screw and rudder but no bow thruster, so that: 

(2.7) 

Equation (2.7) will equally apply to vessels with twin screws 

and rudders, provided the latter are linked and both engines maintain 

the same revolutions. 

When considering the two categories of disturbances mentioned in 

Chapter l, wind and tidal stream have been selected as being the most 

important parameters that will deflect the ship from some desired· 

track. With regard to the ship handling class of disturbance, the 

most important variable in a manoeuvring condition is forward 

velocity. Other effects such as shallow water and loading are not 

included at this stage. 

The vector of disturbances, expressed with respect to the ship 

co-ordinate system, is: 

(.u V U V ) 
c c a a 

It is sometimes convenient to combine the control 

disturbance vectors inco an .augmented forcing vector of the form: 
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2.5. Linear Time-Invariant Model 

The forces and moments acting on a ship's hull are as a result 

of hydrodynamic, aerodynamic ar.d control surface effects. In gener·al, 

they are highly ncn-linear, but if the vessel is travE-.·lling at 

constant forward velocity with only small variations in heading, the 

expressions may be linearised using a first order Taylor expansion 

about the given equilibrium condition of motion (49). Hence , the sway 

and yaw components of equations (2.3) may be written in dimensional-

ised form as: 

mv+mru = Y .~+Y (v+v )+Y . ;+Y r+Y~oA+Y nA+Y v v v c r r u n a a 

I r N.~+N (v+v )+N·~+N r+N~OA+N nA+N v z v v c r r u n a a 

Rearranging equation (2.10) gives, 

and, 

[ 
Y ojt: [ Y n J ( Y v ) [Y r -mu] v = ------u + ---- n + ----- v + r 

m-Y. A m-Y • A m-Y • m-Y • 
V V V 

[ 
y, ) [ y J ( y J r • v a 

+ ----- r + ----- V + ---- V 
m-Y • m-Y • c m-Y • a 

V V V 

( N ~ [N ) r v 
+ r + ----- v + 

I -N• I' .,.N• · c 
z z r 

( 
N l a 

. -----V 

I -N a z r 

2.5 . 1 . Steering Gear and Main Engines 

(2 .10) 

(2.11) 

The steering gear and main engines are both modelled by first 
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or.der linear different:i:ai equations:-

(2.12) 

2.5.2. State-Space Formulation 

After suitabl:e re-arrangement and combination of equations 

( 2.11) and· ( 2 •. 12), the system equation set may be written, 

X = U 

u 0 

y = V 

1/J = r 

(2.13) 

Equation set (2.13) can be expressed as a vector matrix 

differential equation as shown in (2.14),which is the general form of 

the state variable equation for a linear tim~-invariant system. 
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f22 0 0 0 0 0 0 0 ' 0 

X 0 0 0 1 0. 0 0 0 'X .o 0 0 0 

u 0 0 0000 OOu + 0 0 0 0 

y 0 0 0 0 0 1 0 0 y 0 0 0 0 

V 0 0 0 

. 
1/1 0 0 0 0 0 0 0 1 1/1 0 0 0 0 

r 0 0 

or, 

X Ctl F XCtl + G UCtJ 

0 0 

0 0 

nD 

u. 
c 

o o; v 
c 

0 0 u 
a 

o ·o 

(2.14} 

(2.15} 

The el!ements of the f and G matrices are constant and a 

complete list is given in Appendix Al.l. 

2.5.3. Discrete Solution of the State Equation 

Equation (2.15} may be solved in discrete-time and proof of the 

reverse exponential matrix method for computation of state, control 

and disturbance transition matrices as employed by Cadzow (50} and 

Bouncer (:51} is given in Appendix Al. 5. 

The discrete solution of the state equation is: 

x< (k+l}Tl= A<Tl x<kT}+ B<Tl u<kTl 

When the control and disturbance variables are separated, 

equation (2.16} takes the form: 

X< (k+l}T}= A(T} X(kT}+ B(T}U (kT}+ QT) W(kT} 
c 

2.5.4. Transfer Function Approach 

(2.16} 

(2.17} 

Eliminating v and v from equations (2.11} gives the classical 
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linear differential ·equation governing yaw response to rudder motion, 

first used by Nomoto (52) in 1966.: 

.. . 
Tl T21jl A+( Tl +T2 )ljiA +lJIA 

(2.18) 

Appendix Al. 4 lists the relationships between· T
1

, T
2

, T
3 

and Kn with 

the ship's mass, moment of inertia and dimensional~sed hydrodynamic 

coefficients. 

From equation (2.18) the transfer function becomes: 

(2.19) 

2.5.5. Co-ordinate System Transformation 

To convert from ship to earth co-ordinates we may use: 

u u cos ljiA - V sin ljiA 0 

V usin ljiA +VCOS ljiA 0 

X J u dt 
0 0 

yo f V dt (2.20) 
0 

or, in terms of transformation matrix T ctl , 

::] [: 
0 0 cos ljiA 0 -sin ljiA 0 

:) [x) 0 0 sin ljiA 0 cos ljiA 0 (2.21) 

The discrete transformation takes place by assuming that during 

the k th sampling period the ship's co-ordinate system has a fixed 

angle ljiA (kT) with respect to earth axes, so that: 

x
0 

( (·k+1)T) = x
0 

(kT)+(x( (k+l)T)-x(kT) )cos( ljiA (kT)) 

- (y( (k+l)T)-y(kT) )sin( ljiA (kT)) 
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y
0 

((k+l)T) = y
0 

(kT)+(y((.k+1)T)-y(kT) )cas( 1jl A (kT)) 

+ (x( (k+1)T)-x(,kT) )sin( W A(kT)) 

u ((k+l)T) 
0 

v ( (k+1)T) 0 . 

u( (k+l)T)cos( 1jl A (kT) )-v( (k+1)T)sin( 1jl A (kT)) 

v( (k+1)T)cos( 1jl A (kT) )+u( (k+l:)T)stn( 1jl A (kT)) 

2.6. Quasi-Linear Time-Variant Model 

(2.22) 

}f, whilst in the approach to the fina1 berthing position say, a 

ship undergoes large changes in forward· velocity then equations (2 .16) 

and (2.17) are not valid' since matrices A(T), B(T) and ((T) are now 

time-varying. The problem can be overcome with a discrete model by 

assuming that the va1ues remain constant during the sample period and 

then re-computed at each sample instant. 

Together with the sway and yaw equations ( 2 .10·) it now becomes 

necessary to include the surge expression from equation (2.3): 

mu-mrv X.~+X (u+u )+X nA+X u 

which may be written: 

u = 

+ 

u u c n a a 

[ X) [X) [mr] n ·U 
---- n + ·---- u + ---- v 
m-X• A m- X • m-X. 

u u u 

[ 
X ) u 

---- u + m-X· c 
u 

(2.23) 

(2,24) 

Combining equation (2.24) with (2.11) yields the equation set 

(2.13) with the modification: 

(2.25) 

The matrix equation for the quasi-linear model is similar to 

(2.14) except there will be entries f
42

, r
44 

and f
46 

in the F matrix 
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plus g43 and g45 in the G matrix. 

parameters are given in Appendix AL2. 

The values of the additional 

To use the quasi-linear state equations the hydrodynamic 

coefficients have to be re-dimensionalised at each sampling instant 

according to the new total velocity: 

(2.26) 

As a result, every element in both the f · and G matrices will 

change so that the state, control and disturbance transition matrices 

also need to be calculated. 

The state equation for the quasi-linear time-variant system is: 

X'( t) f(t) X( t) + 

and the corresponding discrete solution, 

X( (k+l)T) A(T,kT) X(kT)+ 13( T, kT) 

2.6.1 Non-Dimensional Model 

GCtl. U(tl 

u (kT)+ C(T,kT) 
c 

(2.27) 

W(kT) 

(2.28) 

A method employed by some researchers (53) to avoid re-

calculation of the system matrices is to use a non~dimensional 

mathematical model that does not requi-re scaling as a function of 

forward velocity. The system that finds most common usage is the 

prime system, based on the ship length L and total velocity u. The 

fundamental non-dimensional quantities are: 

length X 
X -L 

time t (¥) t 
mass m 

(2.29) m· 
P; L3 

2 
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Formulation of the state equati~ns is a similar process to that 

described in 2. 6 except that the F and· G matrices are calculated 

once only, using non-dimensional hydrodynamic coefficients. The non-

dimensional state variables become: 

' ' X (t l 1 _!: .!_.!_.!_.!_ 1 L ) X (t ) 
ULULU U 

·( 2. 30) 

This technique· was tested, computing a set of non-dimensional 

state variables during a turntng manoeuvre. Their values, upon re-

dimensionalising, were the same as those obtained using the standard 

quasi-linear model. 

2.7. Non-Linear Time-Variant Model 

It is well known that in a manoeuvring situation where a vessel 

is executing tight turns, the linear equations of motion become 

inaccurate when attempting to predict the ship's movements. In 1969 

Bech (54) observed that the Nomo.to equation ( 2 .18) was only valid for 

a small range of WA and oA and suggested the equation be re-written: 

(2.31) 

Here the main non-linearities have been lumped in the steering . 
characteristics H( WA) which describes W A as a function of o5 

A 
in 

the steady-state and is written as a polynomial expression: 

• 2 3 

Co+C1 1jJ A7c2 1jJ A +C3 W A ( 2. 32) 

H( 1/J A) can be determined, in general, by the reversed spiral 

test, or in the case of dynamic stability by the Dieudonne spiral 

test. 

2. 7 .1 Non-Li'near Equations of Motion 

The surge equation (2.23) when expressed in terms of a Taylor 
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expansion up to third· order becomes: 

mu-mrv = {X .. ~+X (.u+u )+X_..oA+X nA+X u } 
u u c " n aa 

+ 

+ 
2 •. 

X u +2X· u(u+uc) aa a uu 

+ 2X··~.;o + 
Uu A +2X nAu } na a 

1 o) 3 
+. -31 {x .. •U +X (u+u ) + 

. uuu uuu c 
3 +X u 

aaa a 

+ • 2 ··2 2 
3x •• u (u+u ) +3X• ·~u o + . ''" +3X nA u } uuu c uuu A nna ·. a· 

a2x 
(2.33) 

where, X• ax 
au. X • •· u uu 

au
2 

xuo 
a 2x 

X •.• a 3x = 
au.ao etc. uuu 

au
2

au 

Similar expressions exist for the sway and yaw equations. 

Abkowitz (48) shows that terms above third order are 

unimportant. He also demonstrates that as a consequence of symmetry 

in the X-direction, functions with even powers (e.g. o 2 ) will be 
A 

predominant. In contrast, expressions for Y and N will contain mainly 

terms with odd powers (e.g. 

The selection of important non-linear coefficients has been made 

by r"eviewing the work of Strom-Tejsen (55), Lewison (56), Gill (57) 

and Eda and Cr"ane (58). 

These are: 

Surge Equation, ter"ms in: 2 3 2' 2 
oA 

2 
and 

2 u • u • V • I" • • unA nA 

Sway Equation, ter"ms in: 2 3 2 
oA 

3 
and OAV 

2 
nA • V • rv • 

Yaw Equation, terms in: 2 3 2 0 3 0 2 
nA • V • I" V • • AV and u V A a a 
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2.7.2. Non-Linear Control Parameters 

In addition to hull coefficients, the control parameters 

themselves (rudder and propeller) are non-linear functions. 

Propeller Characteristics 

O'Brien (59) shows that the thrust exerted by a propeller is: 

T = p 

Gill (57) assumes that can be approximated 

straight-line relationship: 

where J , the screw advance coefficient is expr.essed by: 
a 

J 
a 

From equations (2.34), (2.35) and (2.36): 

But the actual thrust is, 

so that: 

or: 

Rudder Characteristics 

T a 

T 
a (1-td)T 

p 

-
XununA +X n nn A 

2 

Let the speed of advance of a propeller and rudder be 

32 

(2.34) 

to the 

( 2. 35) 

(2.36) 

(2. 37) 

(2.38) 

(2.39) 

(2.40) 

u and 
av' 



assume the rudder sits in the propeller race which has velocity u • 
r 

It may be shown that the rate of change of axial momentum across the 

propeller is: 

where: 

dM 
_E.= e._ A (u 

2
-u 2

> 
dt 2 p r av 

(2.41) 

(2.42) 

From Newton's second law, equating (2.37) and (2.41) gives: 

u 
r 

2 
(2.43) 

The lateral force on a ship's hull due to rudder action is 

therefore: 

y 
r (2.44) 

When dimensionalising the rudder terms it is important to use u 
r 

in equation (2.44) and not u, so that the effect of the propeller race 

on the rudder is taken into account when manoeuvring at low forward 

speeds. 

The complete set of non-linear equations of motion now become: 

mu-mrv • -2 2- 3 3 x.u+X (u+u )+X (u +u )+X (u +u ) 
u u c uu c uuu c 

2 2 - 2 2 
+X v +X r +X, 0o +X unA+X n +x·u 

vv rr u A un nn A a a. 

I I - 2 mv+mru = Y.v+Y (v+v )+Y r+Y·r+Y,o +Y n 
v v c r r u A nn A 

+Y V 
a a 

I r N.v+N (v+v )+N r+N.r+N,o +N, o (v2+v 2) 
z v v c r r u A uvv A c 

- 2- 3 3- 2 2- 3 +N v +N u V +N nA. +N (v +v )+N r(v +v· )+N o 
a a uva a a nn vvv c rvv c ooo A 

33 
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In the above equations Clarke's bar notation (60) has been 

adopted, i .. e. : 

X uu 
lx 
2 uu 

X 
uuu 

~ 
'6 uuu 

etc. 

Equations (2.45) may now be arranged in a set of the form (2.13) 

but with entries in the fourth equation that will correspond to those 

in (2.25). 

Since there are many cross-coupled terms, some state variables 

appear in the F and G matrices themselves. For example, with the 

term mrv, v is considered the state variable and the product mr 

inserted in the F matrix using the current value r(kT). 

A list of the non-linear state equation parameters is given in 

Appendix Al.3. As with the quasi-linear model, they are re-calculated 

at each sampling instant. 
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C H A P T E R 3 

D I S T U R· B A N C E M 0 D E L L I N G 

3 .. 1. Introduction 

The principal factors causing disturbing forces and moments on 

a ship in the pilotage phase of its voyage are wind and current. When 

attempting to model their effect on a hull the computational algorithm 

requires the following information: 

(a) Components of wind and current velocities in x and 

y directions. 

(b) The hydrodynamic and aerodynamic coefficients of the 

vessel concerned. 

(c) The st6chastic nature of the disturbances themselves. 

3.2 Current 

From equations (2.45) it is seen that the total velocity of the 

hull relative to the water is (u + u ) in the x-direction and 
c 

(v + v ) in they-direction. The positive sign in these terms requires c 

that an anti-phase convention be adopted when describing values of 

current on the earth and ship co-ordinate systems. 

The relative motion vector diagram is shown in Figure 3.1. The 

components of OU in the x and y directions are: 
c 

u = U cos(~ -~A) c c c 

v = U sin(~ -~A) c c c ( 3.1) 

Velocity vectors OU and OU act through the centre of pressure P and 
c c 

vector U U is the total velocity of the hull relative to the water. c 
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X 
0 

X 

- x 
0 

u 

Figure 3.1 

Relative Current 

3 . 2 . 1. Hydrodynamic Coefficients 

Initial experiments using a first-order Taylor expansion gave 

rise to larger than expected errors in force and moment calculations 

and, since the information was available, all non-linear terms were 

eventually employed. 

The forces and moments exerted on the hull due to current are: 

X 
c 

- 2 - 3 X u +X u +X u 
u c uu c uuu c 

- 3 - 2 - 2 
y = y v +Y v +Y rv +Y~ oAvc c v c vvv c rvv c u vv 

(3 . 2) 

These terms are included in the complete non-linear system 

equations (2.45) . 
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3.2.2. The Dynamics of Tidal Streams 

Bow den and Proudrnan (61) have examined the longitudinal 

component of turbulence in the Mersey Narrows using a Doodson current 

meter , both on the sea bed and near the surface. They found that 

turbulent energy input had a bandwidth of about 1 cycle per minute up 

to 1 Hertz as shown in Figure 3.2. · 

1.0 Tidal Energy Input 

o.s 

0.6 
Turbulent Energy Input 

0.4 

o. 2 

1 Cycle/Tide 1 Cycle/Minute 

10-S 10-4 .. ol 0 . 1 1.0 
Log Frequency {Hz) 

Figure 3.2 

Turbulent Current Energy Spectrum 

The amplitude of horizontal turbulent fluctuation of the current 

was observed to be a linear function of the mean value, in the order 

of 10%. 

Discrete Stochastic Process 

One method of describing the random nature of the turbulence is 

to assume a first order Gauss-Markov function: 

u (k+l) 
c 

a U (k)+w (k) 
c c c (3 . 3) 

where a is a non-negative constant smaller than unity and w (k) is a 
c c 

gaussian random process for which: 
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E{w. (k)} = (1-a· )u 
c c cm 

From the characterisation of U ( k) it follows· that: 
c 

E{U (k) 2 } 
c 

qc 2 
----cr 
1 

2- c 
-a c 

Coefficient a may be obtained from the exponential term: 
c 

a 
c 

e 

T 
T 

c 

If the current is assumed to have a constant mean value 

(3.4) 

(3.5) 

(3.6) 

u 
cm 

while the ship is entering port, the deterministic and stochastic 

components may be separated: 

u (k+l) = cdl{u +a u (k)+b w (k)} 
c cm c c c c 

The coefficient b is given .by 
c 

b 
c 

T 

1 
Tc 

-e = 1-a 
c 

(3.7) 

(3.8) 

and the overall scaling factor Cdl allows different conditions of 

current whilst maintaining a constant ratio between mean and 

stochastic elements. 

In choosing the parameters for equations ("3.7) and (3.8), T was 

selected to be the same as the sampling time for the main ship 

model, 5 seconds, and T was set at 10 seconds which corresponds to a 
c 

turbulent energy break frequency of 0.0159 Hz. 

Standard Weather Conditions 

A set of standard weather conditions were employed in most 

simulation tests. These conditions existed in Plymouth Sound on 26th 

October 1982 between 10.30 and 11.00 a.m. 
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Values for the tidal steam mean and standard deviation during 

this period were: 

u 0.669 m/s 
cm' 

0.378 m/s 

a 
c 

0.2 m/s 

E {w (k) } = 0 
c 

(3.9) 

The stochastic component of the current for this parameter set 

is shown in Figure 3.7(a). 

3.2.3. Tidal Stream Direction 

The direction of the current during the considered period is 

taken to comprise of a constant mean value together with a stochastic 

component. The process may be described by: 

(3.10) 

The scaling constant cd2 only affects the stochastic component and the 

gaussian random process wcd(k) must have high correlation with w (k) 
c 

as explained in 3.3.2. This is achieved by setting: 

wcd(k) 
cr{wcd(k)} 

(k) = cr{w (k) } w 
c 

(3.11) c 

Parameters acd and bed are computed according to equations (3.6) 

and (3.8) where T has a value of 5 seconds. 
c The mean direction has 

been taken as a south-westerly incoming tide with a standard deviation 
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of 20 degrees, so that: 

a: = 3.665 rad. 
cm 

0.492 rad. 

a 
cd 

0.35 rad. 

(3.12) 

The stochastic component of tidal stream direction is shown in 

Figure 3.7(b) and the correlation with Figure 3.7(a) can be seen. 

3.3 Wind 

The aerodynamic forces and moments acting on a ship may be 

treated in a similar manner to the hydrodynamic effects of current. 

Again an anti-phase sign convention is used and the relative wind 

vector diagram is shown in Figure 3.3. 

X -y 
0 

IJJA X 

-x 
0 

V X 
u a 

I 
I u 

I 
I 

I 
I 

y 

-
u 

a 

yo 

Figure 3 . 3 

Relative Wind 
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Vectors, OU and OU pass through the centre of pressure P a, a 

(P ji!P ) and vector U U , or UA is the total wind velocity relative to a c a 

the ship, its components in the x and y directions being: 

or, 

u U cos( a: -ljJA )+Ucos 8 a a, - a 

u 
a U• (cosa: coslJ!A+sina: sinljJA)+u a a a 

v = U sin(a: -ljJA)+Usin8 a, a a 

which may be rewritten: 

V a, U (sin"' coslj1A-cosa: sinljJA)+v a a a 

3.3.1 Aerodynamic Coefficients 

(3.13) 

(3.14) 

A ship may be considered to be a lifting surface as shown in 

Figure 3.4. 

Figure 3.4 

Ship as a Lifting Surface 

The components of force in the x and y directions (drag and 

lift) may be written: 

2 
F ~P C IIA u 

X a X X a 

F 
y 

~p c IIA V 
2 

a y y a (3.15) 

The correction factor 11 depends upon the aspect ratio, which, 
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for a body sitting on a flat surface is: 

A 
a 

2L 
D 

In terms of non-dimensional aerodynamic 

(3.16) 

coefficients X 1 and y 1 

·a a 

equations (3.15) may be expressed: 

F 
X 

2 { ( "p L u )X !} u 
a a a a 

(3.17) 

Comparing equations (•3 .15) and ( 3. 1 7) we get: 

X I 

a 
y I 

a 

C AD 
_L_ = 

L 
(3.18) 

Zuidweg (31) suggests that for a ship the product C A is usually 
y 

in the order of -0.9. For a y-direction aspect ratio A of 20 1 this 
ay 

gives: 

Y I = -0.09 
a 

(3.19) 

A close approximation to CA is also about -0.9 1 and, if it is 
X 

assumed for a typical ship that, 

then, 

L -

D 

L 

0.16 

0.1 

X I = -0.0144 
a 

(3.20) 

Eda (62) shows that wind-tunnel tests on a model of a Mariner-

class vessel mounted on a ground board produced the following non-

dimensional aerodynamic coefficients: 

Y I= -0.056 
a 

X 1 = -0.015 a 

42 . 
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He also demonstrates that the total non-dimensional moment 

acting on the vessel is given by the relationship: 

where, 

3 . 3 . 2 Wind Dynamics 

N '= N 'v '+N u v ' 
w a a uva a a 

N '= -0.0017 
a 

N uva -0.0046 (3.22) 

Measurements made by Van Der Haven (63) at Brookhaven, New York, 

of the horizontal wind energy spectrum at a height of 10 metres is 

shown in Figure 3 .5. 

1.0 

0.8 

0.6 

0.4 

0.2 

4-Day 
Period 

10- -4 10 

Figure 3.5 

-3 
10 

Horizontal Wind Energy Spectrum 

The curve has several points of interest. 

1-Minute 

- 2 
10 

Period 

o.l 1.0 
Log Frequency (Hz) 

First, the four-day 

cycle represents the frequency of anti-cyclones in the Westerly 

zones. Second, the half-day period indicates the effect of daily 

temperature variation and third, the one minute period which is the 

cyclic repetition of gusts. 
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Correlation between Gust Magnitude and Direction 

Consider a 3-dimensional gust to have rectangular co-ordinates 

xw, yw' zw t hat are aligned with the mean speed direction as shown in 

Figure 3 . 6 . 
X 

0 

u I 

a 
~--------------~--------------~.-~~--~--~~~-------- xw 

I 
I 

I u I 

g 

Figure 3 . 6 

Gust Co-ordinate System 

The gust magnitude and direction is given by: 

u I u I + V I + w I 
g a a a 

If the W 
1 

component is ignored, 
a 

u I 

g 
u I +V I 

a a 

I 

( ) Au I From equation 3 . 23 it is seen that a gust increase u g 

(3 . 23) 

will affect its components tJ.Ua 1 and tJ.Va 1
' causing the gust direction 

to veer . For this to occur , there must be correlation between the 

statistical properties of Ua 1 and V~. 
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Correlated Discrete Stochastic Processes 

The wind magnitude and directton may be described by correlated 

Gauss-Markov functions with ·separate deterministic and stochastic 

components: 

U (k+1) = bd
3
{u +a U (k)+b w (k)} 

a amaa aa 

E{w (k)}= 0 
a 

w (k) = 
ad 

o{ wad (k l} 

o{w (k)} 
a 

w (k) 
a 

(3.24) 

(3.25) 

Parameters a and b are found. from equations (3.6) and (3.8) a a · · . 

with T and T set to 5 seconds and 10 seconds respectively, giving a c 

wind energy break frequency equal to that of the tidal stream, 

0.0159 Hz. 

Close inspection of anemogram records presented by Watts (64), 

shows on all traces the wind direction to contain higher frequency 

components than the wind velocity. No explanation is given for this 

phenomenon, but to include its effect in both the wind and tidal-

stream models, parameters aad'. bad' acd and bed are calculated from 

equations (3.6) and (3.8) with T 
c 

frequency of 0.0318 Hz. 

T = 5 seconds, giving a break 

The standard weather conditions prevailing in Plymouth Sound on 
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26th October, 1982 produces the following wind data: 

u 
am 

cr{ w (k)} 
a 

cc 
am 

cr{wad(k)} 

10.29 m/s 

5.674 m/s 

3.927 rad. 

= 0.492 rad. 

cr 
ad 

3 m/s 

0.35 rad·. 

(3.26) 

Correlated stochastic components of wind velocity and direction 

for these values are .shown in Figures 3.8(a) and 3.8(b). 

3.4. Disturbance Recursive Equation Set 

Using the values given in sections 3.2 and 3.3 the disturbance 

recursive equation set for the standard weather conditions (Cdl = c 
d2 

= cd3 = cd4 = 1) become: 

3.4.1 

U (k+l) = 0.669+0.606U (•k)+0.394w (k) 
c c c 

cc (k+l) 3.665+0.368cc (.k)+0.632w d(k) 
c c c 

U (k+l) 10.29+0.606U (k)+0.394w (k) 
a a a 

cc (k+l) 
a 3.927+0.368o: {k)+0.632w d(k) 

a a 

Frequency Spectrum 

(3.27) 

The smoothed frequency spectrum of the discrete time series 

generated by equations (3.27) may be evaluated using a Fast Fourier 

Transform (FFT) algorithm together with either a Bartlett,Turkey or 

Parzan smoothing window.. Figure 3.9(a) illustrates the nature of the 

smoothed spectrum for tide and wind velocity over the bandwidth 0.001 

to 0.2 Hz and Figure 3.9(b) indicates the slightly higher spectrum for 

tide and wind direction. 
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C H A P T E R 4 

S I M U L A T I 0 N 0 F S H I P M A N 0 E U V R E S 

A N D E X P E R I M E N T A L D E ~ E R M I N A T I 0 N 

0 F H Y D R 0 D Y N A M I C C 0 E F F I C I E N T S 

4.1 Introduction 

In order to assess the accuracy of the three mathematical models 

proposed in Chapter 2 to describe the motion of a vessel during tight 

manoeuvres, a comprehensive computer simulation study was conducted. 

This consisted of subjecting each of the models to a set of standard 

steering tests as laid down by the B.S.R.A. (65). 

A comparative evaluation with full-scale measurements taken by 

Morse and Price for the USS Compass Island (66) was then undertaken 

and the best mathematical model selected. 

The USS Compass Island was constructed with a Mariner hull form, 

and a complete set of hydrodynamic coefficients for this class of 

vessel have been measured by Chislett and Strom-Tejsen (67) using a 

planar-motion mechanism. These, together with the particulars of the 

full-size vessel,. are given in Appendix 2. 

4.2 Simulation Program 

The computer program for simulating ship manoeuvres is written 

in FORTRAN, all major calculations being carried out in either 

subroutine LAB (Linear A and B ) for the linear/quasi-linear models 

and NAB (Non-linear A and B ) for the non-l:inear model. Both routines 
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are similar and a listing for the latter is given in Appendix A6.1 

A flow-chart for the order of operations during a simuiation run 

is shown in Figure 4 .1. 

4.3 Manoeuvring Simulations 

4.3.1 Jurning Circle Manoeuvres 

Turning circles. are used. to determine the effectiveness of the 

rudder to produce steady-state turning characteristics. Simulation 

runs using approach speeds of 7.717 m/s (15 knots) for all three 

mathematical models and 2.572 m/s (5 knots) for the quasi-linear and 

non-linear models only, were performed for rudder angles of :!:. 5, 10., 

15, 20, 25 and 30 degrees. 

A total of 60 simulation runs were carried out and a typical set 

of results are given in Figure 4.2. Tables 4.1 to 4.4 summarise the 

results in terms of advance, transfer, tactical diameter and final 

diameter as defined in Figure 4.2(a) and the data is plotted in Figures 

4.3 to 4.6 for the two approach speeds. The results for steady-state 

loss in forward speed and increase in lateral velocity due to a turning 

manoeuvre are listed in Table 4.5 and shown in Figure 4.7(a) and 

4.7(b). 

4.3.2 Dieudonne Spiral Manoeuvre 

The Dieudonne spiral manoeuvre is used to provide a qualitative 

measure of course stability for surface ships. Steady-state yaw-rate 

is plotted as a function of rudder angle in a gradually increasing, 

and then decreasing spiral manoeuvre. Results are given in Table 

4.6 and Figure 4.8 along with the Morse-Price data. 

The simulation was performed at approach speeds of 7.717 m/s and 

2.572 m/s. In each case the rudder was set to +25 degrees and then 

decremented in steps of -5 degrees to -25 degrees (finer steps being 

so 
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used around the ori·gin•), and· incremented1 back again to +25 degrees in 

steps of +5 degrees. At each increment the ship was allowed to settle 

into a· steady turn and· the corresponding yaw-rate noted. 

4.3.3 Kempf Zig-Zag Manoeuvre 

This manoeuvre gives. an indication of the effectiveness of the 

rudder to initiate and check changes of heading •. Results are shown in 

Figure 4.9. 

The simulation was conducted at a single approach speed of 

7. 717 m/s as no data for the rea•l ship was available at the slower 

speed. Initially the demanded rudder was set to +20 degr~s then, as the 

simulation continued·, a check was made on the heading, and when it lay 

within a tolerance band of iB'-22 degrees, the demanded rudder was 

switched to -20 degrees. The process was repeated for several changes 

in demanded rudder. 

4.3.4 Starting Trials 

These were performed to compare the dynamics of the vessel in 

the x-direction with data extracted from the Morse-Price trials. With 

the propeller moment and· side-thrust terms removed (so that the ship 

would travel in a straight line) and the vessel stationary with rudder 

amidships, a step change in demanded engine speed was ordered. The 

resulting responses are shown in Figure 4.10. 

The final steady-'state relationship between forward speed and 

engine revolutions obtained from these trials were used as initial 

conditions for the turning circle, Dieudonne and Kempf manoeuvres. 

4.4 Analysis of Results 

The three phases of the turning circle manoeuvre, advance and 

transfer, tactical diameter and final diameter provide a measure of 

the accuracy of the mathematical models in terms of (.a) initial 

transient, (b) final transient, (c) steady-state performance. 
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Figures 4.3 and 4.4 show that all the mathematical models are 

reasonably accurate· in the initial transient, but Figure 4.5 and 4.6 

reveal that towards the end of the trans-ient and into the steady-

sta·te ,. on1y the non-linear model retains its accuracy. For example, 

with 20 degrees of starboard rudder, the final diameter of the real 

ship and· the non-linear model is about 1000 m, compared with about 500 m 

for the linear and.quasi-linear models. This tightness of turn in 

the latter case explains the excessive speed loss and lateral velocity 

experienced by the quasi-linear model shown in Figure 4.7. 

The Dieudonne spiral results of Figure 4.8 again emphasise that 

only the non-linear model provides an accurate rudder to yaw-rate 

relationship over the rudder angle range ±25 degrees. Note, however, 

that over the range ±.5 degrees; the slope (which is the gain constant 

K in the Nomoto model) is correct for all three mathemattcal models. n 

A further by-product of this test is the conclusion that the vessel 

has controls-fixed stability, although a close inspection of the 

Morse-Price data around the origin for the USS Compass Island shows a 

slight tendency towards instability. 

Results for the Kempf manoeuvre given in Figure 4.9 illustrate 

that, as with the turning circle, all three mathematical models 

produce fairly accurate results in a manoeuvre which is primarily an 

initial transient test. 

Figure 4.10 indicates that both non-linear and' quasi-linear 

models very closely represent the x-direction dynamics of the vessel. 

Conclusions 

The conclusions that must be drawn from this set of tests is 

that the non-linear model is the only mathematical model to 

accurately represent the three degrees of freedom ship motion in all 

manoeuvring regimes, particularly tight manoeuvres. 
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4.5 Important Non-Linear Coefficients 

Since the next stage of work involved measurement of 

hydrcdynamic coefficients for a car ferry hull, · an analytical survey 

of the important coefficients on the Mariner hull was conducted so as 

not to waste time measuring coefficients that have no significant 

effect on the hull's performance. 

To assess the relative importance of each coefficient, the 

vessel, under simulation, was steered into a tight turn and allowed to 

settle to its steady-state turning cirlce. Using the dimensionalised 

coefficients the equations of static equilibrium were employed to 

compute the forces and moments acting on the hull arising from each 

term. These were then expressed in percentage form. 

Using an approach speed of 7.717 m/s and a demanded rudder of 

-20 degrees, the steady turning circle contained the following state 

variables: 

0 = -0.349066 rad 
A 

n 7.15509 rad/s 
A 

u = 5.8033 m/s 

V -0.897414 m/s 

r = 0.012489 rad/s 

The steady-state forces and moments acting on the hull as a 

result of these state variables are given as a percentage in Table 

4.7. The terms deemed as "negligible" were not measured for the 

car-ferry hull, unless they were available from polynomial curve 

fitting expressions. 

The turning circle simulation was again repeated for a demanded 

rudder of -20 degrees with the "negligible" terms omitted and the 

recorded state variables remained unaltered to within three 

significant figures. 



4.6 Experimental Determination of Hydrodynamic Coefficients for Car 

Ferry Hull 5502 

The Department of Mechanical Engineering at Plymouth Polytechnic 

has on loan from the National Maritime Institute ('NMI) the scale model 

of a twin screw car ferry hull shown in Figure 4.12, NMI designation 

5502. The particulars of the model and full-size vessel are: 

Lpp 

Beam 

Draught 

Displacement 

Block Coefficient 

I about mass 
z 

centre 

Propellers 

The majority 

Model 5502A Full-Size Ship 5502B 

3.419 m 150 m 

0.565 m 24.8 m 

0.134 m 5.9 m 
6 

166·4 kg 14.4xl0 kg 

0.64 0.64 

2 9 2 
149.8937 kg m 24.364xl0 kg m 

3-bladed, inward turning. 

of the coefficients were determined from 

experiments conducted on the Number Two Towing Tank at the National 

Physical Laboratories, Teddington, during October.l981. The remainder 

of the coefficients were obtained from tests on the river Plym during 

the late summer of 1982. 

The NPL experiments required a three-axis dynamometer (surge, 

sway and yaw) to be inserted in the model to measure the hydrodynamic 

forces and moments on the hull. This was attached via a trailing link 

to the towing gantry as shown in Figure 4.13. 

A total of 64 runs were made in the towing tank. The tests are 

described in 4.7 and the results summarised in Appendix 3. 

55 



Figure 4,12 

Model Car Ferry Hull 5502 

·Figure ·4,13 

Model·Attached to·Towing·Gantry 
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4.7 Description of Tests 

4.7.1 Hull Resistance 

The hull was towed at six different speeds with none-rotating 

propellers and zero angle of drift, measurements being taken of drag 

force and forward velocity. A least-squares fit of a third-order 

polynomial through the results shown in Table A.3.1. produced the 

curve in Figure A.3.1 and hence the coefficients X , X and X 
u uu uuu 

4.7.2 Bollard Pulls -------
These were performed with the hull stationary, measurements 

being taken of thrust against propeller speed for (a) both propellers 

ahead, (b) single 1Jropeller ahead and astern as shown in Tables 

A.3.2(a) and (b). 

The coefficient X was obtained from the slope of a least­
nn 

squares straight-line fit of thrust against the square of propeller 

speed, given in Figure A.3.2(a) for case (a) above. 

The single propeller results were fitted to a third-order 

polynomial as illustrated in Figure A. 3. 2 (·b) thus overcoming the 

negative thrust problem (a square-law relationship still provides 

positive thrust when the propeller is driven in reverse). 

4.7:3. Self Propulsion Experiments 

The self propulsion point was obtained for the three different 

forward speeds given in Table A.3.3 by adjusting the angular velocity 

of the propellers to give zero dynamometer reading in the x-direction 

for each case. This corresponds to the condition under which the 

model is not being towed, but is self propelled. 

The difference between the bollard pull thrust at this engine 

speed and the hull resistance at the self propulsion point enables 

the coefficient X to be calculated. 
un 

The model towing speed was selected to be 0.75 m/s for most of 
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the remaining tests. This corresponds to a Froude number of 0.13 and 

represents a forward ve1oci ty of 5 m/s for the full .. size ,ship. 

4.7.4 Rudder Experiments 

The rudder experiments were conducted with both rudders linked 

together, the hull travelling at a forward speed of 0.75 m/s with zero 

drift angle and the engines running at the self propulsion velocity. 

Table A.3.4 lists the non-dimensional surge and sway forces and yaw 

moments in rudder angle increments of ·5 degrees over the range ±30 

degrees. 

Figure A.3.3(a) shows the X-force/rudder angle relationship 

which is clearly a square law. 
2 

The straight-line fit of X' against 

<5 A in Figure A. 3. 3 (b) has a slope whose value is X 0 0 ' . 

A cubic polynomial least-squares fit of the non-dimensional sway 

force Y' against rudder angle, shown in Figure A. 3·. 4 (a) produces the Y 
0

' 

and Y000 'coefficients. Similarly, fitting a cubic polynomial to the 

non-dimensional yaw moment N' and rudder angle data as seen in Figure 

A.3.4(b) provides N 0 ' and N 000 '. 

4.7.5 Drift Angle Experiments 

These were again conducted with rudders linked and a hull speed 

of 0.75 m/s, propellers at self-propulsion velocity. The drift angle 

was adjusted in 2 degree increments over a range of ±10 degrees. For 

each value of drift angle the rudders were rotated through ±30 degrees 

at 10 degree increments. At each rudder position, measurements of 

surge and sway forces and yaw moment were taken. 

This involved only 30 runs because fortunately the tank was long 

enough to allow 2 different rudder settings to be made per run. Table 

A.3.5 gives the non-dimensional forces and moments for the positive 

and negative drift angles. 
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Figure A3.5 shows the non-dimensional X-force plotted against 
2 

v . It will be seen that the results are scattered and the Mariner 

hull data is included for reference. A least-squares straight line 

fit produces the Xvv coefficient, obtained from the S'lope of the line. 

A cubic polynomial fit to the non-dimensional Y '-force/sway 

velocity data as shown in Figure A.3.6(a) yields the Y ' and 
V 

y 
vvv 

coefficients. A similar fit to the non-dimensional N' moments/sway 

velocity information provides N 'and N 'as shown in Figure A.3.6(b). 
V VVV 

4.7.6 Added Mass Coefficients 

No acceleration measurements were taken in the towing tank as 

the gantry control mechanism was only designed for constant speed 

operation. In the absence of measurements, it was considered 

reasonable to assume the ratio of non-dimensional added mass to non-

dimensional ship mass to be the same for both the Mariner and car 

ferry hulls, since both have similar block coefficients. 

Mariner Hull 

x.' 
u -0.05263 

m' 

y,• 
V -0.93734 

m' 

N.' 
V -0.34213 

m' 

y' I 

r -0.21939 
I I 

z 

N. I 

r 
I I 

z 

-1.1148 

4. 7. 7 Free-Sailing Tests 

(4.1) 

The yaw-rate dependant coefficients Y • , N ! , Y ! and N were 
r r rvv rvv 
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obtained from steady-'state turning circle trials on the river Plym. 

A calm day was selected and the tests performed. during the turn of the 

tide. 

The vessel was put in a tight turn with +30 degrees of. rudder. 

When steady conditions were arrived at, the diameter of the circle was 

measured and the time for one revolution noted. To take into account 

slight differences in the speed of the port and starboard screws, the 

tests were repeated with -30 degrees of rudder and the mean values 

which are listed below, were then computed. 

0 
A 

±30 degrees. 

Mean ·C:i:rcle D:i:ameter = 14.75 m 

Mean Time for One Revolution 150 seconds 

Track Veloci-ty U = 0.3089 m/s 

Forward Velocity u = 0.3034 m/s 

Lateral Velocity v 0.0578 m/s 

Yaw Rate r = ±0.0419 rad/s 

Approach Speed 0.5 m/s 

Mean Propeller Speed = 480 rev/min 

Under steady turning conditions the dimensionalised non-linear 

sway and yaw equations of motion (2.45) become: 

y V + Y r + YaaA y 3 
+ y 2 

+ y 3 mru + V rv 
&MeA V r vvv rvv 

0 N v + N + N0oA + N 3 
N 

2 
'Noo.s 6 A 

3 (4.2) r V + rv + 
V r vvv rvv 

It wiJ:l be noted that there are 2 equations and 4 unknowns. In 

the absence of further information, the principle of hull similarity 

was again employed using the following force and moments ratios 

obtained for the Mariner hull under a 30 degree rudder turn: 
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Y rv2 
rvv 

Y r 
r 

N r 
r 

= 1.630 

0.771 (4.3) 

These relationships can be substituted into equations (4.2) and 

a force and moment balance obtained. 

Table 4.8 lists the set of hydrodynamic coefficients and 

dimensionalising factors for car ferry hulls 5502A (model) and 5502B 

(full-size) . Figures 4.ll(a) to 4.ll(d) show a set of simulation 

results for the model when.30 degrees of starboard rudder is anplied. It 

will be noted that they correspond very closely to the free-sailing 

results measured on the river Plym. 
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-5 -
-10 548.6 
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Advance after 90 degrees Change of Heading (m) 

Linear Error Quasi- Error Non- Error 
Linear Linear 

Model ' Model ' Model \ 

427.17 - 403.24 - 474 .69 -
477.91 - 448.74 - 512.57 -
540 . 62 8.34 503 . 39 14.65 565.87 4.06 

669 . 65 - 576.20 - 641. 40 -
818.31 1.66 704.11 15 . 38 756.09 9.13 

lOll. 35 - 949.62 - 971.21 -
lOl l. 35 28.64 2565. 37 81.00 1829.88 29.11 

818. 3l 14.36 1059.61 10.86 1006.18 5. 3o 

669.65 - 749 .42 - 776 . 73 -
540.62 19.01 605.76 9.25 655.17 1.85 

477 .91 - 518.97 - 580.53 -
427.17 -. 459 . 99 - 526.74 -

- - 397.99 - 462 . 18 -
- - 437.47 - 502 . 23 -
- - 492.39 - 555.29 -
- - 568 .88 - 6 27 .05 -
- - 691.56 - 743 .66 -
- - 934.04 - 957 .29 -
- - - - 1803.54 -
- - 1037.31 47 . 35 988.05 40.35 

- - 736 . 69 - 759 .05 -
- - 595.83 30.32 641.01 40.20 

- - 510.69 - 566.02 -
- - 452.85 - 512. 3o -

Table 4.1 

Advance Af ter 90 Degrees Change of Heading 

Transfer after 90 degrees Change o f Headin.q (ml 

Linear Error Quasi- Error Non- Error 
Linear Linear 

Mode l \ Model ' Model ' 
-210. 69 - - 189.96 - - 335.09 -
- 252.07 - -233.40 - - 355.98 -
- 288.40 36.92 -272.02 40.50 -401.85 12 . 11 

- 341.04 - -300.38 - -4 70.94 -
-489. 04 25.72 -406 . 36 38.28 -555. 38 15.65 

- 713.92 - - 593.22 - -727. so -
713.92 33 . 83 1954.90 81.19 1355.52 25.64 

-489.04 33.15 674.26 7.83 731.43 o.oo 
- 341.04 - 413.37 - 567.40 -
- 288.40 43 . 68 317 .18 38.06 468. 20 a. 57 

- 252 . 07 - 261.23 - 415.96 -
- 210.69 - 225 .43 - 369.78 -

- - -169.52 - -327.66 -
- - -193.46 - - 362.20 -
- - - 232.58 - - 408.04 -
- - - 283.61 - -445.34 -
- - - 369.17 - -543.45 -
- - -546.40 - -698.58 -
- - - - 1337. 47 -
- - 635.16 15.78 725.17 32.19 

- - 403.5 3 - 543.97 -
- - 303.69 12.61 461. 70 32 . 86 

- - 245.38 - 423.80 -
- - 207.84 - 358.42 -

Table 4 . 2 

Transfer After 90 Deqrees Change of Heading 
74 

Approach 

Speed 

(m/s ) 

7. 717 

7 . 717 

7. 717 

7. 717 

7. 717 

7 . 717 

7. 717 

7. 717 

7. 717 

7 . 717 

7 . 717 

7 . 717 

2. 572 

2. 572 

2. 572 

2. 572 

2. 572 

2.572 

2. 572 

2.572 

2. 572 

2 .572 

2. 572 

2. 572 

Approach 

Speed 

(m/s l 

7 . 717 

7 . 717 

7 . 717 

7. 717 

7. 717 

7. 717 

7. 717 

7. 717 

7. 717 

7. 717 

7. 717 

7. 717 

2. 572 

2 . 572 

2. 572 

2. 572 

2.572 

2. 572 

2.572 

2.572 

2 . 572 

2.572 

2.572 

2. 572 



Rudder 

Anqle 

(deqrees) 

3o 

25 

20 

15 

10 

5 

- 5 

-10 

-15 

- 20 

-25 

- 30 

30 

25 

20 

15 

lO 

5 

-5 

-10 

-15 

- 20 

-25 

-3o 

i!udder 

Anq1e 

(deqreesl 

30 

25 

20 

15 

10 

5 

-5 

-10 

- 15 

- 20 

-25 

-30 

30 

25 

20 

15 

10 

5 

-5 

-10 

- 15 

- 20 

-25 

- 30 

Tactical Diameter after 180 degr ees Reading Change (ml 

Real Linear Error Quasi- Error Non- Error 
Linear Linear 

Ship Model ' Model ' Model ' 
- -472.14 - -397.89 - - 709.11 -
- -525.36 - -443.34 - - 776.96 -

-850 . 4 -603.59 29.02 - 509 .o3 40.14 - 866.81 1.93 

- -733.76 - -611.47 - -989 . 70 -
-1325.9 -975.50 26.43 - 772.61 41.73 - 1171 . 93 11.61 

- 1413.09 - -1119.19 - -1503.51 -
2176. 3 1413 . 09 35.07 - - 2769.67 27.27 

1458.5 975 . 50 33.12 l326. 42 9.06 1551.99 6.41 

- 733.76 - 864.57 - 1197.99 -
1001.3 603.59 39.72 669.80 33.11 loo9 . l6 o. 78 

- 525.36 - 549.08 - 881 .77 -
- 4 72.14 - 477.47 - 791.86 -
- - - -371. 39 - -699 . 87 -
- - - - 421.55 - - 767.84 -
- - - -488 . 12 - - 858. Jl -
- - - -585.84 ' - -976.92 -
- - - -750.54 - -1161.15 -
- - - - - - 1490.50 -
- - - - - 2759.61 -

1124.7 - - - - 1541.78 37.08 

- - - 848.63 - 1188.72 -
745.2 - - 648.33 12 . 99 997 . 46 JJ.85 

- - - 530.79 - 872.47 -
- - - 455 .02 - 782 . 34 -

Table 4.3 

Tactical Diameter After 180 Degr ees Heading Change 

i!e!ll 

Ship 

-
-

731.5 

-
1202.4 

-
2148.8 

1417. 3 

-
964. 7 

-
-
-
-
-
-
-
-
-

1133.9 

-
722 .4 

-
-

Steady-State TUrn Diameter (ml 

Linear Error Quui- Error 
Line"" 

Model ' Model ' 
251 - 295 -
301 - 328 -
376 48.59 390 46.68 

502 - 370 -
752 37.46 510 57.58 

1505 - 843 -
1505 29.96 - -

752 46.94 1210 14.63 

502 - 770 -
376 61 .02 586 39 .26 

301 - 480 -
251 - 423 -
- - 222 -
- - 272 -
- - 355 -
- - 392 -
- - - -
- - - -
- - - -
- - - -
- - 764 -
- - 547 24.28 

- - 525 -
- - 434 -

Table 4 . 4 

Steady-State Turn Diameter 
75 

Non- Error 
Line!lr 

Model ' 
607 -
608 -
782 6 . 90 

915 -
1108 7.85 

1440 -
2730 27 . 04 

1520 7.25 

1143 -
940 2.56 

803 -
702 -
588 -
661 -
759 -
896 -

1090 -
1425 -
2710 -
1495 31.84 

1125 -
922 27 .63 

782 -
681 -

Approach 

Speed 

(m/sl 

7. 717 

7. 717 

7 . 717 

7. 717 

7 . 717 

7. 717 

7. 717 

7. 717 

7. 717 

7 . 717 

7. 717 

7. 717 

2. 572 

2 . 572 

2. 572 

2.572 

2.572 

2.572 

2.572 

2.572 

2. 572 

2. 572 

2 . 572 

2.572 

Approach 

Speed 

(m/sl 

7. 717 

7. 717 

7. 717 

7 . 717 

7. 717 

7. 717 

7. 717 

7. 717 

7 . 717 

7 . 717 

7 . 717 

7 . 717 

2 . 572 

2. 572 

2 . 572 

2 . 572 

2.572 

2. 572 

2. 572 

2. 572 

2 . 572 

2 . 572 

2. 572 

2. 572 



Rudder 

Angle 

(degrees) 

30 

25 

20 

15 

10 

5 

- 5 

-10 

-15 

- 20 

-25 

- 30 

30 

25 

20 

15 

10 

5 

-5 

-10 

- 15 

-20 

-25 

- 30 

Rudder 

Angle 
(degrees) 

25 

20 

15 

10 

5 

2.5 

0 

- 2.0 

-2.5 

-5 

-10 

-15 

-20 

-25 

- 20 

-15 

-10 

-5 

- 2.5 

0 

2.5 

5 

10 

15 
20 

25 

Final Forward Velocity (m/si Fina l Lateral Velocity (m/s) 

Rea.l Linear QUasi- Non- Real Linear QUasi- Non-
Linear Linear Linear Linear 

Ship Model Model Model Ship Model Model Model 

- 7 . 717 2 .571 4.868 - 0.494 1.821 1.011 

- 7. 717 2.901 5.156 - 0.412 1.816 0.994 

5.196 7. 717 3.356 5.478 1.137 0 . 329 1. 793 0 .966 

- 7. 717 4.010 5.839 - 0.247 l. 728 0. 921 

6.585 7. 717 4.977 6.245 0.921 0 . 165 1. 569 0 .851 

- 7. 717 6.323 6. 711 - 0 .083 1.198 0. 734 

7.563 7. 717 7.662 7 .336 -o . 468 -o .083 -o . 319 -0.455 

6. 894 7. 717 6.954 6 . 708 -o . 695 -o.l65 -o. 921 -0.709 

- 7. 717 6 .099 6 .219 - -o . 247 - 1.281 -0.827 

5.916 7. 717 5.364 5 .803 -o. 818 -o . 329 - 1.489 -o.897 

- 7. 717 4. 776 5.439 - -o . 412 - 1.614 -o.94l 

- 7. 717 4.307 5 . 119 - - 0.494 -1.694 -o. 969 

- - o . 598 1 . 581 - - 0 . 624 0.334 

- - 0 .812 1.676 - - 0.619 0.328 

- - 1.008 1.78 2 - - 0.611 0. 319 

- - 1. 321 1.904 - - 0.604 o . 305 

- - l. 747 2.043 - - o . 541 0. 282 

- - 2.206 2 . 205 - - 0.392 0.244 

- - 2.559 2.432 - - -0.104 -o . l5l 

2.058 - 2.335 2.207 -o. 746 - -o. 315 - 0. 236 

- - 2.015 2.036 - - -o.443 -o . 274 

1. 749 - l. 727 1.894 -o. l59 - -o.so5 -o. 297 

- - 1.512 l. 772 - - -o.S28 -0 . 311 

- - 1.368 1.665 - - -o.S34 -o.320 

Table 4.5 

Final Forward and Lateral Velocities 

Steady-State Yaw-Rate (Oeg ./s.) 

Approac h Speed 7 . 717 m/s. Approach Speed 2 .572 m/s . 

Real Linear 

Ship Model 

- - 2 . 939 

- -2.351 

-o . 77 - 1. 763 

-o .68 - 1.175 

- 0 . 51 -o.588 

-o. 39 - 0.294 

- o. 23 0 

-0.1/0.19 -
0 . 26 0 . 294 

0 . 38 0 . 588 

0 . 54 1.175 

0 .67 1. 763 

0 . 74 2.351 

- 2.939 

o . 74 2.351 

0.67 1. 763 

o. 54 1.175 

0. 38 0. 588 

0 . 26 0. 294 

O. l8/-o.2 0 

-0 . 39 -o . 294 

-o. 51 -0 .588 

-o.68 -1.175 

- 0.77 -1. 763 
- - 2.351 

- - 2. 939 

Quasi- Non- Real Linear 
Li near Linear 
Model Model Shi p Model 

-1.481 -o. B83 - -
-1. 417 -o.817 - -
-1. 323 -o.714 -o.27 -
-1.166 -o.651 - 0 .24 -
-o . 869 - 0.534 -o . 20 -
-o.639 -o .454 -o.l7 -
-o.359 -o.339 -0 .125 .-

- - - -
-o. o58 -0.052 - 0 .01 -
0. 225 o. 309 0.13 -
0 . 6 59 0 . 512 0.19 -
0.925 0.628 0.22 -
1.089 0. 716 0.235 -
1.197 0. 787 - -
1.090 0. 716 0 . 235 -
0.927 0 .628 0.22 -
0.659 0.512 0 .17 -
0.219 0 . 309 0 .12 -

-0 . 0 5 7 -o.052 0.09 -
-o. 357 -o . 339 -o. o5 -
-o . 638 -0.454 -0.12 -
-o.869 - 0.534 -o.l6 -
-1.166 -o.651 -o.23 -
- 1.323 -o.714 -o.27 -
-1.417 -0.817 - -
-1.481 -Q. 883 - -

Ta_!:>_,J.e 4 .~ 

D1.eudonne S!nral !~anoeuvre 
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Quasi- Non-
Linear Linear 
Model Model 

- o . 489 -o. 295 

-o.471 -o.273 

-o.438 -o. 247 

- o . 385 -o. 217 

-0.292 -o.l78 

-o. 217 -o.l52 

-0.126 -o.ll4 

- -
- 0 . 025 -o . Ol9 

0 .073 0.103 

0 . 224 0. 170 

0 . 311 o. 209 

0 . 363 0.238 

0.397 0.263 

0 . 364 o. 238 

0 . 306 0 .209 

0 . 215 0 . 170 

0 .075 0 .103 

-o.Ol7 -o.ol7 

-o . l15 -o.ll4 

- 0.209 - 0.152 

-0.292 -0.178 

-o. 385 -o. 217 

-o . 438 -0.247 

-o.471 -o . 273 

-0.489 -o . 295 

Approach 

speed 

(m/s ) 

7 . 717 

7 . 717 

7. 717 

7. 717 

7 . 717 

7 . 717 

7. 717 

7. 717 

7. 717 

7. 717 

7. 717 

7. 717 

2.572 

2.572 

2.572 

2.572 

2.572 

2 . 572 

2.572 

2 . 572 

2. 572 

2 . 572 

2. 572 

2. 572 



Force Terms in Steady-State Moment. Terms in Steady-State 
Force Terms in Steady- State Surge Equa cion Sway Equation Yaw Equation 

Force 
Term Re lative Term Force Re l a tive Term Moment Relative \ Ne t 

' Thru.sc Importance ' Importanc e \ Importance 

X n 
2 

99.14 I Major -62. 2 N66A 63.S Major mru Major nnA 
lOO 

X ununA -ss. 76 Major y V 40.9 Major N r -46 . 9 Major 
V r 

mrv -16.98 - 39.1S Major Y66A -3S.S Major 1-1 V 33.2 Major 
2 2 

V 
2 x - 8.S4 - 19 . 7 Major - 28.3 - - 36 .3 V y rv Major N rv Major vv rvv rvv 

x uuuu 
3 

-4.71 -10.86 Major Y r 
r 

17.4 Major N nnnA 
2 - 9.7 Minor 

x 666A 
2 

-4.70 -10 . 8 4 Major YnnnA 
2 

5 . 4 - 3 
-4.8 Negligible Minor N V vvv 

x 2 
-5.56 - 12 . 8 Ma jor - 3 

6.7 N6vv6A v 
2 

3 . 3 Negligible u y V tu nor uu vvv 

X u 
u 

-3.09 - 7 .1 Minor y6vv6Av 
2 

- 2.3 Negligible N6666A 
3 

- 3 .3 Negligible 

- 2 
0.86 X r 

rr 
1.98 Negligible y666 6A 

3 
1.4 Negligible 

Major Importance lo-100\; Minor Importance 5- 10\; Negligible Importance below 5\ 

Table 4 . 7 

I mportant Hydrodynamic Coeffi cient s 

Surge Hydr odynamic Coef ficients Sway Hydrodynamic Coefficients Yaw Hydrodynamic Coefficients 

Value Dime ns ion- Non- Dimension- Non- Dimension-

Coefficient Non- Dimensional Dimensional alising Coefficient Dimensional a Using Coefficient Dimensional alising 

Dimensional Model Pull-Size Facto r Value Factor Value Factor 

Ship 

X 
u 

- 0.038462 76.1783 - Y6' 0 . 0034178 '>oL 
2

u 
r N6 -o.00160ll ~oL3u 

r 

X• • -0.000426 - -u ~ pL3 y 
V 

' -o.009867S ~oL2u N ' 
V 

-0.004 3535 ~oL3U 

x - -7.293782 -14446.16 - y. 
uu V 

-0 .007583 ~oL3 
No ' 

V 
-o.00023o ~pL 4 

x - - 0 . 227298 -450.1888 - y ' 0 . 0004926 ~oL3U N ' -o.002143 ~L4U 
uuu r r 

X 
un - -o. 040637 -39468.78 - y.' 

r 
- 0.0001368 ~oL4 N•, 

r 
-o.0006952 ~L5 

2 
' 

2 
-o.0026 

3 
X -0.015 - - ., 

o,.L UA y -0.087 '>o,.L UA N ~oaL UA a a a 

x ' vv 
-o. 00617 - - .. oL

2 y 
vvv -o. 441178 l'>oL

2
l / U 1-1 

uva 
-o.ooon ~D L3 

a 

x 6o -0 .00221 - - ~ pL 20 2 y 
rvv 

0.0229 34 (~L3 l /U N 
vvv 

-o.0326335 ( ~pL 3)/U 

x 
nn - 0 . 0011563 73339.8 - y 666 -o.ooo9569 '>PL 

2
u 

r 
N' -o.047235 ( ~pL 4) / U 
rvv 

N'6oo ' 0 .0007421 ~L3u 
r 

Table 4.8 

Hydrodynamic Coefficients for Car Ferry Hull 5502 
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C H A P T E R 5 

C 0 N T R 0 L L E R D E S I G N 

5.1 Introduction 

Control theory is a branch of applied mathematics devoted to the 

analysis and design of control systems. With the advent of the second 

world war, control engineering became a discipline in its own right 

due to the development of military systems designed on feedback 

control .principles. 

Classical control theory, based on the transfer function 

approach, owes much to the work of Nyquist (68) and Bode (69) in the 

frequency domain and Evans (70) in the s-plane. Such techniques have 

been in use since the late 1940's and early 1950's and are still 

employed in the design of many single input, single output systems. 

These methods were later extended to embrace non-linear systems via 

the describing function in the frequency domain and the phase-plane 

technique in the time domain. A further extension from continuous to 

discrete systems was effected with the development of z-transform 

operational methods. These latter techniques, together with matrix 

algebra, form the interface between classical and modern control 

theory. 

The 1960's heralded the "state-space revolution" in control 

theory and provided the vehicle by which many advanced concepts could 

be investigated. Kalman (71) laid down the foundations of 

deterministic optimal control together with the maximum principle of 
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Pontryagin (72) and the dynamic programming method of Bellman (73). 

Towards the end of the decade the theory was expanded by Astrom (74) 

and others to include the effect of random disturbances and 

measurement errors, in the form of stochastic processes. About this 

time also there was a revived interest in frequency domain analysis as 

applied to multivariable systems, most noteable being the Inverse 

Nyquist Array design method of Rosenbrock (75) based upon the concept 

of diagonal dominance. 

During the 1970's t here were further developments in frequency-

response techniques, such as the sequential return difference method 

of Mayne (76). More recently work by MacFarlane and Postlethwaite 

(77) has extended the characteristics loci technique into a more 

generalised form by the use of Riemann surfaces to cover multivariable 

systems . 

5.2. The Ship Control Problem 

The essential features of a ship automatic pilotage control 

system are shown in Figure 5 .1. 

r 
~--------~ Control 

Vector 

Disturbances 

w Earth 
~------------~Related 

States 
) Controller ) 

-----J ~------~ 
Sh.ip ~Tra,nsformat~on _ ~ 

Desired U 
X States ~r~,--~/~,~ 

" X 
0 

x ______ ..., 
....._ Measurement v--------' 

and r-. _____ __, 

Ship Related 
States 

Estimation K 
~--------------~ 

r' 
Noise 

V 

Figure 5.1 

Ship Automatic Pilotage Control System 
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Single Input, Single· Output Control 

Minimises the error in a single variable such as heading or 

distance off track that has occurred due to changes in desired value· 

or disturbance effects. The control action is. taken without regard to 

its effect on any of the other system variables. 

commercia~ ship autopilots fall under this category. 

Multivariable Control 

Most existing 

Views the system in total and attempts to formulate a control 

policy that minimises the· errors in all the state variables according 

to some predefined order of priority. Further,. an optimal controller 

will seek to maximise the return from the system for a• minimum cost. 

In this chapter the design of a multivariable optimal controller 

i:s undertaken. An optimal control strategy is initially constructed 

under the assumption that the ship dynamics are linear and time-

invariant. The effects of wind and current disturbances are then 

considered and finally the need for controller adaption, to 

accommodate the non-linear and time-variant characteristics of the 

real ship, is investigated. 

5.3. Controllability and Observability 

The concepts of controllability and observability were 

introduced by Kalman and play an important role in the control of 

multivariable systems. A system is controllable if a control vector 

U( t) exists that will transfer the system from any intial state 

X(to) to some desired state X(t) in a finite time interval. If the 

state of the system can be determined by observation of the output 

over a finite time interval, the system is said to be observable. 

Work done by Dove (78) has demonstrated that in the context of this 

project all the states are observable. As a consequence, it can be 
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assumed that the controller will always receive a best estimate of the 

system states X which, for initial design considerations, can be 

taken to be the values of the states themselves. 

If a system is described by 

X F X+ G U (5 .1) 

-then a sufficient condition for complete state controllability is that 

the matrix 

G:----- :Fn-l G ' ' 1 
I I 

(5.2) 

contains n linearly independent column vectors, i.e. is of rank n. A 

similar controllability matrix can be written in terms of the discrete 

state transition matrix A and control transition matrix B. 

The F and G matrices for the full-size car ferry hull, moving 

in a straight line at a forward speed of 7.717 m/s are: 

-0.5 0 0 0 0 0 0 0 

0 -0.5 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

F 0 0.0111 0 -0.0091 0 0 0 0 

0 0 0 0 0 1 0 0 

0.1272 0 0 0 0 -0.0306 0 0.3480 

0 0 0 0 0 0 0 1 

-0.0047 0 0 0 0 -0.0011 0 -0.0840 

(:5.3) 

From equation (5.2) the transpose of the controllability matrix 

may be constructed using equations (5.3) and (5.4). 
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0.5 0 

0 0.5 

0 0 

G b 0 

0 0 

0 0 

0 0 

0 0 (5.4) 

0.5 0 0 0 0 0 0 0 

0 0.5 0 0 0 0 0 0 

-0.25 0 0 0 0 0.0636 0 -0.00235 

0 -0.25 0 0.00554 0 0 0 0 

0.125 0 0 0 0.0636 -0.0346 -0.00235 0.00130 

0 0.125 0.0055 -0.00282 0 0 0 0 

-0.0625 0 0 0 -0.0346 0.0174 0.00130 -0.00066 

0 -0.0625 -0.00282 0.00141 0 0 0 0 

~ 0.03J:25 0 0 0 0.0174 -0.0087 -0.00066 0.00033 

0 0.03125 0.0014 -0.00071 0 0 0 0 

-0.0156 0 0 0 -0.00871 0.00436 0.00033 -0.00017 

0 ,-0.0156 -0.00071 0.00035 0 0 0 0 

0.00781 0 0 0 0.0044 -0.0022 -0.00017 0.00008 

0 0.00781 0.0004 -0.00018 0 0 0 0 

-0.00391 0 0 0 -0.00218 0.00109 0.00008 -0.00004 

0 -0.0039 -0.00018 0.00009 0 0 0 0 

( 5. 5) 

The rank of the controllability matrix was determined using NAG 

routine FOlBLF. This routine requires that for an mxn real matrix, 

82 



m~ n, so the input to the routine was QT , which has the same rank as 
c 

Qc. Upon exit, the rank was computed as eight, i.e .. equation (5.5) 

is non-singular and the system described by equation ( 5 .1) with 

matrices ('5.3) and (5.4) is fully state controllable. 

5.4. Multivariable System Control 

5.4.1. Stochastic Optimal Control 

The problem of controlling a system with many inputs and 

outputs, which is subject to disturbances and measurement errors, such 

that the system's behaviour is optimised is referred to as stochastic 

optimal control. 

The stochastic optimal control problem is to find a control U 

which causes the system 

X g( X<tl, UCtl1 WCtl1tl (5. 6) 

to follow an optimal trajectory X(t) that minimises a performance 

criterion 

J J
tl 
t h•( X(t) I U(t) lt)dt 

0 

whilst being subjected to a measurement process 

z = f( X(t) I V<tl lt) 

Separation Principle 

(5. 7) 

(5. 8) 

This important feature of stochastic optimal control theory is 

illustrated in Figure 5.2. The separation principle allows a given 

optimisation problem to be reduced into two problems whose solutions 

are known, namely an optimal filter in cascade with a deterministic 

optimal controller. The filter design has been undertaken by Dove 

(78) and forms no part of the work described here. 
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u X z 
) Ship ...., Measurement 

Dynamics / Process 

r - - - - - - - - -- -- ---, 
.... 

I Deterministic X I 
I 

I 
Optimal K Optimal <: Filter 

I 
Controller 

I 
L __ ~toch~tic Opt~a!_ C~t~l~r ___ _j 

Figure 5;2 

Separation Principle 

5 .4 .2 . Deterministic Optimal Control 

Tracking Problem with Quadratic Pe rformance Criterion 

The tracking or servomechanism problem is o ne of applying a 

control U to drive a ship so that i ts states follow a desired 

trajectory in some optimal sense . The regulator problem is a special 

case of the tracking problem, the desired trajectory being a zero 

state. 

Continuous Form 

The quadratic criterion to be minimised is 

J
t l 

J = t {<x- r>T Q<x- r> +uT RU}ctt 
0 

(5.9) 

where r is the desired value o f the state vector. I t can be shown 

(79 ) that constrained functional minimisation yields the matrix 

Riccati equations 

• 
w ( 5 .10) 

The coeffi c ients l~ (t) are found by integration in reverse-time start-

ing with the boundary condi t ion: 

0 (5.11) 

Should t 1 be infinite, or far removed from t
0

, the solutions of 
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W (.t) converge to constant values and the matrix Riccati equations may 

be written: 

( 5. 12) 

If the desired state vector ·r is known in advance, tracking 

errors may be reduced by .allowing the system to follow a command 

vector ffi. This vector is obtained from the reverse-time differential 

equation set. 

m < F - G R-1 
GT W> T m - a r (5.13) 

The boundary condition is: 

( 5. 14) 

Inbuilt into vector m are all the system transient and steady-

state errors for the desired state trajectory. This gives the optimal 

control law: 

Uopt 
-1 T -R G <1'1 X + ml (5.15) 

or, 

(5.16) 

where S is the optimal feedback gain matrix. An optimal controller 

for a tracking system is shown in Figure 5.3. 

Discrete Form 

J 

The discrete quadratic performance criterion is: 

N-1 
1: Hx <kTl - r <kTl > T Q <x (kTl - r (kTl > + uT <kTl R u <kTl }T 

k=O 
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Optimal Controller For a Tracki ng System 

Starting at t he terminal boundary condition: 

XT (N-l)T \Vo X(N-l)T = 0 

X 

(5 .18) 

the Riccati matrix H and t he optimal feedback matrix S may be obtained 

from the set of recursive equations: 

W<N-k)T {T Q + ST <N-(k+l))T.TR S <N-(k+l) ) T} + 

{A-B S <N-(k+l))T}T \V(N-(k+l))T {A-B S <N-(k+l))T} 

(5 . 19) 

where, 

S <N-(k+l))T {TR + BT W<N- (k+l) )T BJ-1 BT W<N-(k+l))T A (5. 20) 

The command vector m is obtained from the difference equation : 

m<N-klT = D <T , kTl m<N-<k+lllT + E <T,kTl r <N-<k+l llT (5 . 21) 

having the boundary condition 

m<N-l)T = Q (5. 22) 
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producing the optimal control at time kT 

U(kT)opt = - s.(N- (k+l) )T X(kT) - R- 1 r,T fll(N- (k+l) )T ( 5. 2 3) 

or, if time kT is far removed from the terminal time (N-l)T 

U(kT)opt = s X!kT) - R-1 
GT m<N- (k+l) )T (5. 24) 

5.5. Optimal Closed-Loop Pole Assignment 

Consider the time-invariant continuous system described by the 

state equations 

X Fx+GU (5.25) 

together with an optimal control law: 

R-1 rT W R-1 rT Uopt = - 11 X - , n m (5.26) 

upon substitution of (5.26) into (5.25) 

X (5.27) 

or, 

X <F - G Sl x - R- 1 
GT m (5. 28) 

where the term <F - GSl may be identified as the closed-loop state 

matrix of the optimal system. The optimal closed-loop eigenvalues 

(poles) are then given by: 

I s I - <F - G Sl I = 0 (5. 29) 

It is apparent that when F and G are time- invariant the 

location of the optimal closed-loop poles depend upon the value of the 

feedback matrix S, which in turn is dependentupon weighting matrices 

Q and R, There exists then, an infinite number of closed-loop 
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poles, each being a measure of the optimality of the system as defined 

by relative weightings of 0 and R, 

Work has been undertaken by Kouvaritakis (80) and others in 

location of optimal closed-loop-poles, particularly for the special 

condition: 

(5. 30) 

where I is the identity matrix and q
1

and r
1 

two positive constants. 

The weighting matrices a and R are diagonal and of the form: 

R ( 5. 31) 

Elements q
11 

and q
22 

are the rudder and main engines weightings 

and may be set at zero since the purpose of the control system is to 

employ the rudder and engines as control inputs, not as controlled 

variables. Surge dynamics are affected by variations in q
33 

and q
44 

together with r
22

. 

q88 respectively. 

The sway and yaw weightings are q
55

, q
66 

and q
77

, 

Due to the coupling of sway and yaw, these 

elements, together with r 11 closely interact, and changing any one 

value will affect all sway and yaw terms in the feedback matrix. 

The Riccati matrix W and optimal feedback matrix S are 

calculated in reverse-time starting at the terminal boundary condition 
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as defined by equation· (15.18). The recursive equations (5.19) and 

(5.20) are then employed to compute Wand S, sufficient recursions 

being performed to allow steady-state convergence. These. calculations 

take place in FORTRAN subroutine RICAL, a listing of which is given in 

Appendix A6. 1 . 

When the optimal feedback matrix is known, the optimal closed­

loop eigenvalues are given by equation ('5.29). Variations in Cl and H 

then will result in optimal trajectories being traced in the s~plane. 

These optimal root loci will always be stable, if a stable solution 

exists. The equations ( 5. 30·) cannot be used directly for the system 

under consideration since there are large differences of relative 

magnitude in individual elements. The alternative design procedure is 

to vary surge,, sway and yaw weighting coefficients in turn, observing 

the effects on the optimal loci. Once relative weightings are 

established, overall scaling can then be used to position the final 

value_ of the optimal closed-loop poles. 

If S is a null matrix then equation ( 5. 29) prov-ides the system 

open-loop poles, i.e. th·e eigenvalues of the F matrix defined in 

equation (5. 3). When u = 7. 717 m/s these are: 

s = -0.5, -0.039, -0.0755, 0, 0, -0.5, 0, -0.00913 

Surge Weighting 

Consider weighting matrices of the form: 

Q 

R 

diag. {o 

diag. {1 

0 0 0 0 O} 

(5.32) 

(5.33) 

Figure 5.4 shows the optimal trajectory as q
33 

is increased. 

It is evident from Figure 5.4 that the surge open-loop 

eigenvalues are: 

s 0, -0.00913, -0.5 
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(2 O.L. poles) 

- 0 .1 -0.08 -0.06 -0.04 

Figure 5.4 

Surge Optimal Closed-Loop Pole Trajectories 

j w 

0.02 

(3 O.L. poles) 

a 

-0.02 

The breakaway point occurs when q
33 

has a value of 0 . 000015 and 

values above 0 . 00005 produce excessive transient oscillation . This 

can be reduced by introducing the velocity term q
44 

Sway Weighting 

Here the weighting matrices become: 

Q = diag. {O 

R diag. {1 

With 

0 

1} 

0 0 0 0 

maintained at a constant value 

0 } 

of 0 .1 , 

illustrates the effect of increasing q
55

. 

- -0.1 

sway 

....0.06 ~0 .04 ~o.o2 

Figure 5 . 5 

Effect of qSS on Sway and Yaw Optimal 

Closed- Loop Pole Trajectories 
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It will be seen that the yaw loci breakaway is very close to the 

yaw open-loop pole and the sway breakaway point is a l most at the 

origin. As an indication of the rate of travel a l ong the real axi s , 

when q
55 

is varied by a factor of 50 from 0 . 000001 to 0.00005 the sway 

locus moves from the open-loop pole of -0. 039 to -0.0073. At the same 

time , the yaw l ocus, commencing at the origin, reaches a value of 

-0.059. 

When q
77 

is set to zero the sway eigenvalue that approaches the 

origin is transferred to the right- hand side of the imaginary axis , 

produc ing a single unstab le root. The consequence is that if the 

heading term s
17 

(that a ppears in the feedback matrix as a result of 

q ) is zer o, then no stable solution exists for the system as defined 
77 

by the present set of state variables. 

Yaw Weighting 

The weighting matrices are: 

0= diag. {O 0 0 0 0 0 q77 0 } 

R = diag. h 1} (5 . 35) 

The optimal trajectories are given in Figure 5.6. 

jw 

0.02 

aw 

-0 .1 - 0.08 -0.06 

- 0.02 

Figure 5 . 6 

Effect of q 77 on Sway and Yaw 

Optimal Closed- Loop Pole Trajectories 
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The sway loci move quickly from their open-loop poles to 

breakaway at ~7 = 0.04. Values of q
77 

above 0.5 produce undesirable 

transient oscillation. In contrast, the yaw loci move slowly from the 

open-loop pole positions, and, for example, at q
77 

= 0.5 the values 

are -0.0710 and 0 . 0 . This suggests the possibility of an open-loop 

zero in the vicinity of - 0.07. 

Complete Optimal Root Locus Diagram 

Having considered the effects of varying the individual elements 

of the Q matrix in order to obtain relative magnitudes, an overall 

scaling is now possible . Let Q and R be defined by: 

Q = q1 diag. { 0 0.00001 0 . 1 0 . 00001 0 0.2 0} 

R r 1 diag . h (5 . 36) 

Figure 5 . 7 shows the complete optimal root locus diagram as the 

rati o of q
1 

to r
1 

is increased . 

8 Selected Values 

poles) 

-0.1 

yaw 

-0.08 -0. 

Figure 5 . 7 

Complete Optimal Root Locus Diagram 
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The shaded area indicates the re·gion of excessive transient 

oscillation and the ideal optimal closed-loop eigenvalues should lie 

outside this area and also as far to the left of the imaginary axis as 

possible. A set of eigenvalues that fulfill this requirement are: 

s -0.4990; -0.0516 ± j0.0270; -0.0667; 

-0.4999; -0.0086 ± j0.0017; o.o. (5.37) 

The associated weighting matrices are given in equations (5.36) 

where q
1 

and r
1 

are 5.0 and 1.0 respectively. When subroutine RICAL 

is used to compute s and vi' their values become: 

Optimal Feedback Matrix 

s • [:·109 
0 

0 0 0 -0.0013 0.1532 -0.8419 

0.0161 0.0069 0.729 0 0 

(5.38) 

Riccati Matrix 

0.237 0 0 0 0.0031 0.322 -1.956 -17.98 

.0 0.0326 0.0141 1.477 0 0 0 0 

0 0.0141 0.0113 0.649 0 0 0 0 

w 0 1.477 0.649 69.47 0 0 0 0 

0.0031 0 0 0 0.095 1.57 2.99 42.05 

0.322 0 0 0 1.57 26.36 47.67 677.5 

0 0 2.99 47.67 123.2 1520.3 

17.98 0 0 42.05 677.5 1520.3 20393.3 

(5.39) 

5.6 Disturbance Control 

Conventional controllers employ ·integral control action to 

reduce steady-state disturbance errors. This is not possible under an 

optimal policy without affecting the closed-loop poles and an 

alternative method is active disturbance control. This technique, 
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used in dynamic posi.tioning, relies upon· knowledge of the disturbance 

model for the system in question. In the case of a ship it is the 

relationship between the instantaneous forces and moments acting upon 

the hull, and the disturbance variables. The existance of such a 

model allows prediction .of hull forces and moments from measurement of 

disturance variables (wind and current) and so makes possible· the 

initiation of counteractive control action. Complete instantaneous 

force and moment cancellation can never be fully achieved due to the 

dynamics of the controls themselves. In addition, the control action 

avai}able may not have sufficient flexi·bili ty to nullify the effect of 

all disturbances. For example, the deflection of a ship's rudder to 

ba·lance the sway disturbance forces will not simultaneously balance 

yaw disturbance moments and so some form of compromise must be sought. 

Equation (2.8) defines the disturbance vector wemployed in the 

mathematical model. The disturbance elements of the augmented. G 

matrix of equation ( 2 .14) may be separated· from the control elements 

and equation (2.15) ·may be written: 

• 
X Ctl F X(t) + G Uopt(t) + Gd W(t) (5.40) 

When the disturbance control matrix Gc is included, the state 

equations become: 

X Ctl F X.(t) + G Uopt (t) + Gd W (t) + Gc Udc (t) (5.41) 

so that the complete control vector is now: 

U<tl = Uopt(tl + Udc(t) (5.42) 
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Surge Disturbances 

The surge forces due to current and wind may be extracted from 

equation (2.45). 

2 
X c 

-(X + X w(l) + X w(l) ) w(l) 
u uu uuu 

X 
w 

- X w(3) 
a 

and the counteracting propeller thrust: 

so that, 

Yaw Disturbances 

X 
p 

X +X c w 
X 
pr 

Again, from equation (2.45), 

N -{N + N rw(2) + N w(2):2 + N~ Aw(2J} w(2) c v rvv vvv uVV 

N = -{N + N w(3)} w(4) 
w a uva 

and the rudder moment 

N 
r 

- (N 
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Nrd = Nrudd udc( 1 ) (5.49) 

giving, 

udc(1) = N + N (5 . 50) 
c w 

N 
rudd 

Similar expressions exist for the sway equations but these were 

not employed since for good track-keeping performance, a moment 

balance is of prime importance if the vessel is not to wander from a 

desired track due to excessive yawing. 

5 .7 Adaptive Optimal Control 

The optimal feedback matrix S described by equation ( 5. 38) has 

been computed assuming the ship has linear time - invariant dynamics . 

In fact, reducing forward velocity has the effect of radically 

changing the system open-loop poles as shown in Figure 5 .8 . 

jw 

0.01 
7 . 717 m/s 2.572 m/s 

oles) 

-0.1 -0. 08 -0.06 
)( .. J( 

7. 717 m/s 2. 572 m/s 
-0.01 

Figure 5.8 

Effect of Forward Velocity 

Reduction on Open-Loop Eigenvalues 

The open-loop eigenvalues for u = 2 .572 m/s are: 

s = -0.5 , -0.013, -0.0252 , 0, 0, -0.5, 0, -0 . 00265 (5 . 51) 

These may be compared with those given in equation (5 . 32) , which 

are f or u = 7 . 717 m/s. 
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{2 

The system nonlinearities are most predominant when the vessel 

is executing a tight turn. Figure 5 . 9 indicates the open- loop 

eigenvalue variation during a 30 degree port turn , at an approach 

speed of 7.717 m/s. jw 

0.02 

les) 

- 0.1 - 0 . 02 

{3 O. L. poles) 
(J 

0 

- 0 .02 

Figure 5 . 9 

Effect of 30 Degr ee Port Turn 

on Open-Loop Eigenvalues 

When the feedback matrix S given in equation (5 .38) is time-

invariant during a forward speed reduction from 7 . 717 to 2 . 572 m/s, 

the closed-loop eigenvalues depart from their optimal positions in the 

manner shown in Figure 5.10. jw 
7 . 717 m/s 

s Optimal Positions 
0.02 

m/s 

7.717 m/s 2 . 572 m/s at' 
-0. 1 -0 . 08 -0.06 -0. 04 -0.02 ' (J 

-0.02 

Figure 5 .10 

Departure of Closed-Loop Eigenvalues from Optimal Positions 

During a Speed Reduction 
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In contrast, the variation in closed-loop eigenvalues during a 

tight turn is relatively small as can be seen in Figure 5 .11 which 

shows the eigenvalue change during a 30 degree port turn with an 

approach speed of 7 . 717 m/s . 
jw 

~ Optimal Positions 
0.02 

(2) 

-0.1 -0 .08 - 0.06 -0.04 -0.02 a 

/ 
-0.02 

Figure 5 . 11 

Departure of Closed-Loop Eigenval ues from Optimal Positions 

During a 30 Degree Port Turn. 

It is evident from Figure 5.11 that for turning manoeuvres, 

controller adaption is unnecessary. Forward speed variations,however, 

produce large changes in c l osed-loop eigenvalues as seen in Figure 

5.10, such that at speeds below 2 . 5 m/s, the system is tending towards 

instability. Under these conditions an adaptive control strategy 

becomes very necessary to restore the closed-loop poles to their 

originally assigned optimal positions. 

Let the closed-loop system matrix be defined by : 

(5 . 52) 

If Fe has a constant known value when F is varying with time, 

the adaptive feedback matrix is: 

(5 .53) 
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Equation (5 . 53) only has a solution when 
r-1 ,, exists which 

requires that G be a square matrix. 

An alternative approach is to re-calculate the feedback matrix 

at different forward speeds with Q and R held at the values given in 

equation (5 . 36), q and r being 5.0 and 1.0 respectively . 
l l 

This 

technique does not maintain a fixed closed-loop pole array, and Figure 

5.12 indicates the extent of variation as the forward speed is reduced 

from 7.717 to 2.572 m/ s. 

7 . 717 m/s 
m Optimal Positions 

7 . 717 m/s 

-0 . 1 -0.08 -0.06 - 0.04 

Figure 5 . 12 

2. 572 m/. 

2.572 m/s / 

-0 .02 

jw 

0 . 02 

(J 

- 0 . 02 

Variation in Closed-Loop Poles During a Speed Reduction 

Feedback Matrix Re- calculated with Constant Q and R . 

Figure 5.13(a) and (b) show the optimal root loci for speeds of 

5.145 and 2 . 572 m/s . 

m Assigned Positions 

poles) 

-0. 1 

o Open-Loop Zero 

(a) Forward Speed 

-0 . 08 -0 . 06 -0.04 

5.145 m/s 
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m Assigned Positions 

-0. 1 -0.08 -0.06 

o Open- Loop Zero 

( b) Forward Speed 2.572 m/s 

Figure 5.13 

Optimal Root Locus Diagrams for Forward Speeds 

of 5.145 and 2 . 572 m/s 

The complex loci can be re-positioned to their original optimal 

values by increasing the q
1

- r
1
ratio together with q88 . Notice that 

in both cases the real axis locus does not depart far from the sway 

open-loop pole . This is also evidentin Figure 5 . 7 and is indicative 

of t he presence of an open-loop zero, as first suspected during the 

variation of individual matrix elements. The validity of this 

statement is supported by the·Nomoto equation (2 .19) which identifies 

the existence of an open-loop zero 
1 

For the 5502 hull travelling 

at 7 . 717 m/s, 
1 

has a value of -0.0611 and, as it lies just to the 
T3 

left of the open-loop sway pole in Figure 5 . 7 , is the reason for the 

s hort real axis l ocus. The open-loop poles and zeros retain their 

relative positions on the real axis as the forward speed is varied . 

At l ow speeds then , adaptive control action will return the complex 

loci to t heir original optimality, but the real axis locus will be 

attracted to the system open-loop zero . Other finite but unknown real 
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open- loop zeros may be introduced by increasing the rate coefficients 

q
44

, q
66 

and q
88 

in the Q matrix. 

Adaptive Matrices, u = 5 .145 m/s 

The Q , R and S matrices to . return the complex loci to their 

original (u = 7 . 717 m/s) positions are: 

Q = diag. {o 0 0 . 00005 0 . 5 0 . 00005 0 . 1 100} 

R diag. { 0 . 2 0.2 } 

s=[:·13s 0 0 0 -0.0029 0 . 3292 - 1 .810 -2:.963] 
0 . 0267 0 . 0 153 1.912 0 0 0 

(5.54) 

which prociuce the closed- loop eigenvalue set: 

s -0.4988; - 0 . 0527 ± j 0.0276; - 0 . 0397 ; 

-0.4999; -0.0095 ± j 0.0041; o.o (5 . 55) 

Adaptive Matrices,u = 2 . 572 m/s 

Q diag. {o 0 0 . 00005 0 . 5 0 . 00005 0 1 200} 

R diag. {0 . 01 0.01} 

s [ :.175 0 0 0 -0.0121 1.035 -7.596 -16:.26] 
0 . 0553 0 . 0658 8 . 437 0 0 0 

(5.56) 

with the closed-loop eigenvalues: 

s -0.4982; -0 . 0539 ± j 0 . 0273 ; - 0.0196 

-0.4998; -0.01876± j0 . 01167 ; 0 . 0 (5 .57) 

Figures 5.14(a) and (b) show to what extent the elements of the 

feedback matrix adapt to changes in forward speed. It can be seen 

t hat in general, the adaption is inversely proportional to the square 
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of forward velocity. The adaptive equation set are: 

-0.08 
-2.0 

si5 u 

6.0 
-1.8 

s16 u 

-50.0 
-2.0 

s17 u 

-2090.0 
-2.72 

s18 u 

0.418 
-2.0 

s23 u 

67.65 
-2.2 

(5.58) s24 u 

When expressed in this manner, the control algorithm is in the 

form of a "gain scheduling controller". 
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C H A P T E R 6 

C 0 N T R 0 L L E R P E R F 0 R M A N C E 

6.1 Introduction 

Having established a range of optimal controller feedback 

parameters, it becomes necessary to assess the effectiveness of the 

system under operational conditions in terms of (a) stability, ('b) 

accuracy and (c) integrity. This chapter presents a computer 

simulation study of the automatic guidance of the fuH-size 5502 car 

ferry into Plymouth Sound whilst under an optimal control policy·. 

The control strategies considered are: 

(a) Ship related state variable feedback with reverse-time 

integration. 

(b) Ship related state variable feedback with dual-mode control and 

way-point anticipation. 

(c) Ship and earth .related state variable feedback for dynamic 

position-keeping. 

Generalised performance indices are employed to select the best 

policy and also to measure the degradation of system performance 

under: 

(i) adverse wind and tide conditions, 

(fi)- variable forward speed adaption, 
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0 
::< 
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6.2 . Desired State Trajectories 

The recommended track for deep draught vessels into Plymouth 

Sound has been used as a basis for computing the desired value of the 

state variables. The track commences at a point 2 , 500 m south, 1000 m 

west of the breakwater lighthouse and, for the purpose of simulation , 

is assumed to consist of four straight-l ine elements as illustrated in 

Figure 6 .1. 

PL '!'MOUTH SDUttD 

Cornwall 

N 

D 
D 

+ • 
rake's Island Desired 

Track 

• 

• c 

• • 

't::::::::: ~ 

• Breakwater 

A 

• 

2000 4000 6000 

Figure 6 .1 

Desired Track Into Plymouth Sound 

Devon 

Y (m) 
0 

The desired headings and element intersections (way-points) are 

given in Table 6.1. 
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Element Desired Heading Way-Point Co-ordinates Yo, Xo 

(radians) (metres ) 

OA - 0.173076 0 2590 . 0 , 0.0 

AB 0. 7135 A 2291.0, 1710.4 

BC 1 . 209397 B 3124 . 3 , 2673 .1 

CD 0.0 c 4928.9, 3355.2 

Table 6.1 

Desired Headings and Way-Points 

6.3 . Ship Related State Variable Feedback 

The desired state vector relates to the ship co-ordinate system: 

(6.1) 

Once the earth related state vector has been defined at 

t 0, the remaining computations are performed with respect to the 

ship axes, as shown in Table 6 . 2 . 

t = 0 

X 0.0 
oD 

r o = uoD 7.602 

2590.0 

-1 . 329 
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Tsamp = 5 seconds 

kT 
XD UD IJ! D Yo VD rD 

(seconds) (metres) (m/s) ( metres) (m/s) (radians) ( rad/s) 

0 0 7 . 717 0 0 -0.173076 0 

5 38 . 585 7.717 0 0 - 0 . 173076 0 

10 77 . 17 7 .717 0 0 - 0 . 173076 0 

15 115. 755 7 . 717 0 0 -0 . 173076 0 

20 154.34 7. 717 0 0 -0 .173076 0 

etc. 

Table 6.2 

Desired State Vector 

Determination of Track Error 

The lateral motion state variable y is not a measure of the 

track error , which may be obtained using the co-ordinate 

transformation shown in Figure 6.2 . 

Let t he desired track at the ith way-point be inclined at the 

desired heading a ngle IJ!D(i) and assume that the vessel's position y
0

, 

x on the earth ' s co-ordinate system is known . 
0 

The position of the 

ship relative to co-ordinate system yt,xt, with origin at way- point 

y(i) , x(i) is given by : 

where yt is the perpendicular distance off track and xt the 

distance travelled by the ship from the way-point. 
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X 
0 

Figure 6.2 

Co-ordinate Transformation 

6.3.1. Reverse-Time Integration 

This technique requires the generation of a reverse-time command 

vector m using the difference equation (5 . 21) prior to the 

commencement of the simulation run. The controller details (weighting 

matrices) for each simulation are given in Table 6.3 . 

So that an overall comparison can be made, a set of generalised 

performance indices may be defined: 

J J:l 
2 

X 
(x

0
- x) dt 

0 

J:l 
2 

J (u
0

-u) dt 
u 

0 

J:l 
2 

J (y0- y.J dt y 
0 

J:l 
2 

Jlji = (ljJD-ljJA) dt 
0 
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Run Q MATRIX iR MATRIX 

No. q l!i q·22 q 33 q44 q 55 q66 q77 qBB 1r r 
'11 22 

u = 7.717 m/s. Without Disturbances. 

I 0 0 0.5E~4 0 0 0 O.I 0 I 1 
I 

2 0 0 0.8E~4 0 0 0 0.5 I 0 0.1 1 
I 

3 Q; 0 0.8E-4 0 0 0 ' 0.5 0 0.1 1 

4 0 0 0.8E-4 0 0 0 0.5 0 0.1 1 

5 0 0 0.5E'-4 I 0.5 0.5E-4 0 1 I 0 1 1 
! I I 

6 0 0 0.5E-4 0.5 0.5E-4 0 1 0 1 1 
' 

7 0 0 0.5E-4 0.5 0.5E-4 0 1 0 1 1 

8 0 0· i 0.5E-4 0.5 0.5E-4 0 1 0 1 1' 

u = 7.717 m/s. Including Disturbances. 
I 

9 0 0 : 0.5E-4 0.5 0.5E-4 ·0 1 0 1 1 

10 0 0 0.5E-4 0.5 ·0.5E-4 0 1 0 1 1 

11 0 0 0.5E-4 0.5 0.5E-4 '0 1 0 1 1 

u = 5.145 m/s. ' 

12 0 0 0.5E-4 0.5 0.5E-4 0 1 0 1 1 

13 0 0 0.5E-4 0.5 0.5E-4. 0 1 0 1 1 

14 0 0 0.5E-4 0.5 0 .. 5E-4 0 1 lOO 0.2 0.2 
u = 2.572 m/s• 

1:5 0 0 0.5E-4 0.5 0.5E-4 0 1 0 1 1 

16 0 0 0.5E-4 0.5 0.5E-4 0 1 0 1 1 

1:7 0 0 0.5E-4 0.5 0.5E-4 0 1 200 0.01 0.01 

18 0 0 0.5E-4 0.5 0.5E-4 0 1 0 I 1 1 

19 0 0 0.5E-4 0.5 0.5E-4 0 1 0 1 1 
I 

Table 6.3 

Controller Settin~s 
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JB rl 0 
2

ct 
t A t 

0 

rl 
2 

J nA dt ( 6. 3) n 't 
0 

Table 6.4 lists the values of the performance indices for each 

simulation run, these being a representative selection of the ·many 

runs performed at the controller selection stage. 

Figure 6.3(a), (b) and (C') shows simulations 1, 2 and 3 and 

illustrates the effect of increasing the heading weighting. It can be 

seen from Figure 6.3(b) that raising the weighting level increases the 

steady-state heading error. This error arises from the steady-state 

solution of equation (5.13): 

wx (6.4) 

when X r , 

w (6.5) 

These errors. will be avoided if the command vector is adjusted 

according to equation (6.4). Simulation 3 shown in Figure 6.3(c) is a 

re-run of simulation 2 with the necessary corrections made. 

6.3.2. Dual-Mode Control with Way-Point Anticipation 

Way-point anticipation is a simple concept that allows the 

command equations (5.13) to be removed, thus reducing the optimal 

controller given in Figure 5.3 to the form shown in Figure 6.4. 
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Run PERFORMANCE INDICES 

No . J J J JtjJ Jo J 
X ~ 

y n 

u = 7 . 717 m/s . Wi thout·Disturbances. 

1 7 .19E6 207 . 36 64.94E6 38 . 61 1.157 39.19E3 

2 8.85E6 213.48 348 . 86E6 205.18 33 . 03 41.08E3 

3 11.43E6 229 . 61 14 . 64E6 10.62 11.56 40.23E3 

4 0 . 27E6 181 . 61 29 . 78E6 67.72 21.20 37. 72E3 

5 0.437E6 170.91 8 . 72E6 85 . 45 16.59 37.85E3 

6 0 . 224E6 157.42 0.797E6 74.09 12 . 28 37 .33E3 

7 4 . 63E6 174 .68 10.34E6 87.32 17 . 64 37.96E3 

8 1. 416E6 163.51 0.81E6 74 . 83 12.46 37 . 67E3 

u = 7 . 717 m/s. Including Disturbances. 

9 0 . 574E6 166.32 6.00E6 87.56 35.23 38.23E3 

10 0 . 529E6 161.42 0.959E6 72 . 68 35 . 27 38 . 00E3 

11 0 . 604E6 165 . 54 1.17E6 75 . 44 33.56 38 .05E3 

u = 5.145 m/s. 

12 0 . 266E6 19.67 1.6lE6 107.88 24 .36 24 . 27E3 

13 0 . 167E6 12. 70 1.35E6 103.77 20.51 24.10E3 

14 0 . 063E6 10 . 97 1.51E6 99 . 18 32 . 12 24.28E3 

u = 2 . 572 m/s. 

15 0 . 479E6 10.77 2 .65E6 306 .5 72 .13 12 . 06E3 

16 0.129E6 4.475 1.15E6 189 . 33 45.48 11.67E3 

17 0 . 024E6 37.00 1.43E6 160.15 129.80 12.30E3 

18 3 . 82E6 54.31 113.13E6 413 . 87 434 .06 14.17E3 

19 18.41E6 182.02 20.21E6 323.81 543 . 85 14.51E3 

Table 6 .4 

Generalised Performance Indices 
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X 
Figure 6.4 

Optimal Control Without Command Equations 

Here, the control equation (5 .16) is now replaced by: 

,. 

S ' r - x (6 . 6) 

It will be appreciated that equation (6.6) contains no 

anticipatory terms and simulations 4 and 5, shown in Figure 6.5(a) and 

(b) illustrate the transient overshoot effect on (i) heading weighting 

( ii ) track-keeping weighting. 

The turning circle manoeuvres described in Chapter 4 indicate 

the amount of advance 'A ' that can be expected during a 90 degree turn 

for given rudder angles and approach speeds. Figure 4.3 shows that 

for large rudder angles the advance is reasonably independent of 

approach speed. This suggests that if a vessel is changing from track 

angle t/J DA to t/J DB, and the motion is assumed to form an arc of a 

circle of radius A , the way-point advance (the distance from the way­
v 

point that the rudder order has to be executed) to avoid overshoot is 

given by: 

A 
wp Av sin ( t/J DB - t/J DA) (6.7) 

Figure 6.6 shows a vessel initially on track and course that has 

reached an advanced way-point . 
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Advanced 
Way-Point 

Figure 6 . 6 

Way-Point Advance 

If the instruction is now given to track the new segment , the 

controller accepts the track error yt and course error tjl • When the 
e 

control policy is weighted for track-keeping, terms in will 

predominate, causing the ship to turn to port and follow trajectory 

( i ) . The problem may be overcome by employing a dual-mode controller 

that weights course-keeping terms if tjl exceeds 
e 

some given angle 

(20/30 degrees was found to be suitable). Under a dual-mode policy, 

when the advanced way-point is reached, the controller switches from 

track to course weighting , thus suppressing terms in 

emphasising terms in tjl • 
e 

The vessel now follows trajectory ( ii ) 

reverts to track-keeping mode when tjl falls below 20 degrees. 
e 

and 

and 

Simulation run 6, shown in Figure 6.7 illustrates the hull 

response under dual- mode control . The normal operating controller 

mode has the track-keeping characteristics of simulation run 5, 

changing to the course- keeping setting of run 4 during t urns. 
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The way-point advances are: 

Point A, A 309 m 
wp 

Point B, A 347 m 
wp 

Point ·C, A 502 m 
wp 

6.4. Ship and Earth Related State Variable Feedback 

Marine position~fixing navigational equipment will always locate 

the posi-tion of a vessel relative to the earth co-ordinate system. 

With ship related state variable control, all positional information 

must be transformed to the ship axis system. The positional: 

measurements may be used directly-, however, if the state vector is re-

defined as: 

(6.8) 

This requires that the system matrix F be combined with the 

transformation matrix T. to produce the system equation set: 

oA fll 0A + ~1 °D 

nA = f22 nA + ~2 ~ 

xo u cos 1jl A - v sin 1jl A 

u f41 CIA + f42 nA + f44 u + f46 V + 

f48 r + g43 u + g45 u .c a 

Yo = u· sin 1jl A + v cos l/J A 

V f61 oA + f62 nA + f64 u + f66 V + 

f68 r + g64 V + g66 V 
c a 

lj!A r 
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• 
r f81 oA + f82 nA + f84 u + f86 v + 

~4' VC + ~6 V 
a 

(6.9.) 

which may be expressed as: 

X (tl (6.10) 

This combination of ship and earth related states allows a 

multivariable control strategy, referred to as dynamic position-

keeping, to be used to control the vessel's heading and. forward speed, 

together with its position on the earth's surface. 

It will be seen from equation ( 6 .10) that F 0 is a function of 

WA which implies that the feedback matrix S becomes a function of w
0

. 

This must be true for if a vessel is steaming north, errors in 

actuate the rudder whilst errors in x
0 

operate the engines, whereas 

when it travels due east, y
0 

errors operate the engines and x
0 

errors 

actuate the rudder. The reversability of control action requires that 

and terms in the Q matrix and be identical. 

However, since the dynamics of the system have not been changed, the 

relative weightings in the Q and R matrices may remain unaltered. 

The desired state vector r given in Table 6.2 will now have 

entries in the required earth related positional eo-

ordinates. If the reverse-time generated command vector m is not 

used, the dual-mode control action described in 6.3.2 may be employed. 

Let the weighting matrices be defined by: 

Q diag. {o o o.oooos 0.5 o.oooo5 o 1 cl 

R = diag. {1 1} (6.11) 

When the forward speed· is 7. 717 m/s, the feedback matrices for 
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each section of the desired track are: 

s,. ~ [ 0.109 0.92E-8 -0.00023 0.48E-6 -0.0013 0.1532 -0 .. 8419 -8.047 l 
-0.18E-8 0.0161 0.0068 0.729 -0.0012 -0.5lE-6 -0.99E-6 -0.13E-4 

(6.12} 

SAB = 0.109 0.19E-6 0.00088 0.89E-5 -0.00102 0.1532 -0.8419 -8.047 l 0.18E-6 0.0161 0.0052 0.729 00045 -0.45E-6 -0.22E-5 -0.33E-4 

(6.13} 

soc ~[ 0.109 0.24E-6 0.00126 0.12E-4 -0.00048 0.1532 -0.8419 -8.047 l 
0.24E-6 0.0161 0.00245 0.729 0.0065 0.16E-4 0.29E-4 0.00041 

SCD 

(6.14} 

0.109 0 0 0 -0.0013 0.1532 -0.8419 -8.047 

0 0.0161 0.0069 0.729 0 0 0 0 

(6.15} 

It will be seen that the final section matrix SCD in equation 

(6.15} is identical to the ship related feedback matrix given by 

equation (5.38} 6ince at zero heading, F and F
0 

are equivalent. 

In equations (6.12}, (6.13} and (6.14}, entries s
12

, s
13 

and s
14 

contribute to demanded rudder angle and entries s
21

, s
25

, s
26

, s
27 

and 

s
28 

to demanded engine speed when the vessel is travelling in a 

direction other than north. 

Simulation runs 7 and 8 shown in Figure 6.8(a} and (b) 

demonstrate the dynamic properties of ship and earth related feedback 

control under: 
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(a) position-keeping mode, 

(1b) dual-mode control. 

The performance indices given in Table 6.4 for runs 7 and 8 are 

as specifed in equation (6.3) with the exception that: 

J. 
X 

J 
y 

J
tl 2 . 

(x -x ) dt 
t oD o · 

0 

6.5. Selection of Control Policy 

(6.16) 

In choosing the best control policy, account must be taken not 

only of the values of performance indices, but also of the relative 

merits and disadvantages of each method. 

Reverse-Time Integration 

This technique provides the only true way of anticipating 

desired state trajectories. The settings in run 3 indicate a strategy 

that has reasonable track-keeping, excellent course-keeping and 

moderate forward speed control capability. The process of calculating 

a reverse-time command vector before entering a port, however, is time 

consuming and requires considerable computing power. Further, checks 

need to be made on the command vector to eliminate the possibility of 

steady-state errors accruing. 

Dual-Mode Control 

A practical and easily implemented solution to. the problem of 

anticipating way-points. 'The main disadvantage of dual-mode control 

is that earth-related measurements must be transformed to ship axes 

prior to control ·action taking place. Figure 6.9 illustrates that for 

run 6, J has a global minimum, 
y 
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controller provides very good track-keeping together with reasonable 

course-keeping and forward-speed performance. 

Dynamic Position-Keeping 

It will be observed that the performance indices for position-· 

keeping runs 7 and 8 correspond to those for the dual-mode simulations 

5 and 6, i.e. the net outcome of both strategies is the same, the 

difference lying in the manner in which· the problem has been tackled. 

The use of a combination of ship and earth related state variables 

eases the measurement problem but with the incurred penalty of 

feedback matrix dependence upon desired heading. 

In summary, reverse-time integration is a sophisticated solution 

but with practical difficulties, whilst dual-mode control and dynamic 

position keeping ultimately perform the same function, the former 

being more straight-forward to use. Hence a dual-mode policy, with 

way~point anticipation as displayed in run 6 was selected as the best 

control strategy in terms of; 

(a) overall performance, 

(b) ease of physical implementation. 

Disturbance Control Performance 

The standard weather conditions for all disturbance simulations 

are generated using the recursive equation set (3.27). These provide 

a mean current of 0.669 m/s and a mean wind speed of 10.29 m/s, both 

in a south-westerly direction. The stochastic components remain the 

same for each run thus enabling comparisons of control strategies to 

be made. 

Simulation 9 shown in Figure 6.10 indicates the effectiveness of 

a dual-mode policy under the combined action of wind and current. It 

can be seen from the performance indices that although there is a 

marked increase in rudder activity, a significant deterioration in 
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overall performance, particularly in respect to track-keeping arises. 

When the disturbance control terms of equation (5.42) are 

incorporated, the system performance is greatly enhanced. In 

simulation 10, shown in Figure 6.1l(a), it is assumed that 

instantaneous measurements of wind and current are available for use 

by the controller. Under these conditions, there is littie difference 

between the disturbed and non~disturbed response. 

Run 11, shown in Figure 6.11(b), represents the simulated 

condition whereby no measured data is available and the controller 

operates with mean values of wind and current, obtained from local 

weather forecasts and chart tidal data. Admittedly, such information 

will be approximate, but any a priori knowledge on the nature of the 

disturbance vector will improve the quality of control, as can be seen 

when comparison is made between Figures 6.10 

with their respective performance indices. 

Adaptive Control Performance 

and 6.11(b), together 

As the forward speed of the vessel reduces, the open-loop 

eigenvalues follow the real-axis trajectories shown in Figure 5.8 and 

Figure 5.10 traces the closed-loop loci for a fixed value feedback 

matrix. Dual-mode simulations 12 and 15, shown in Figure 6.12(a) 

and (b) are for forward speeds of 5.145 and 2.572 m/s respectively 

with constant feedback matrix settings using the 7.717 m/s values of 

equation (5.38). Clearly, the oscillatory track-keeping performance 

of run 15 is unsatisfactory, and some form of controller adaption is 

required. 

Simulations 13 and 16, given in Figure 6.13(a) and (b) are again 

for speeds of 5.145 and 2.572 m/s, the feedback matrix S being re-

calculated, with constant Q and R at each forward speed. This 
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method of adaption, when observed in the s-plane {Figure 5.12) appears 

to produce significant deterioration in time-domain performance. 

Comparison of Figures 6.7, 6.13{a) and 6.13{b) however, show that at 

each forward speed, the vessel moves along an identical track, the 

adaptive controller time-scaling the closed-loop dynamics accordingly. 

This surprising and unexpected result, is in many ways more desirable 

than the control strategy employed in ·simulations. 14 and 17, shown in 

Figure 6.14{a) and {b). Here, the complex closed-loop eigenvalues are 

returned to their original optinial positions by the use of adaptive 

equation set {5.58). 

In a constant Q and R policy, the complete re-calculation of 

S via the Riccati matrix is unnecessary since the positional terms 

s
15

, s
17 

and s
23 

remain unchanged and the velocity terms s
16

, s
18 

and 

s
24 

are governed by the relationships: 

sl6 

s 
24 

Simulations 18 and 19, 

1.172 
-1.0 

u 

-61.88 
-1.0 

u 

2.76 
-0.65 

u (6.17) 

shown in Figure 6.15{a) and {b) 

illustrate the effect of wind and tidal stream on a vessel approaching 

Plymouth .at a speed of 2.572 m/s under a constant Q and R policy. 

Run 18 is without ·disturbance correction and run 19 includes the 

correction algorithm. It appears from Figure 6.15{b) that at the 

beginning, and towards the end of the run, the corrective measures are 

not adequate to cope with disturbance surges. 

When a vessel moves at low forward velocity, there is a 

corresponding reduction in rudder control forces and moments. The 

disturbance forces on the hull, however, do not reduce and so 
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eventaully a saturation point occurs when the maximum control effort 

available is insufficient to match the disturbance effects. This 

condition is reached in run 19 and it can be seen in Figure 6.15(b) 

that for the first 8 minutes, and also after 30 minutes, the rudder is 

hard over to port. It is during these periods that the disturbances 

attain their peak values since both wind and tidal stream are almost 

perpendicular to the ship ' s track. 

It is evident then that there comes a point of reduced forward 

velocity where the control system, although able to guide the vessel 

along its desired track, is unable to cope with disturbances of large 

magnitude. This condition of control saturation must be seen as a 

limitation of the system presented here. Should it be envisaged that 

significant low speed manoeuvring is to be performed by the ferry, 

then additional control effort (for example, bow thrusters) must be 

considered. 
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Generalised Performance Indices 
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C H A P T E R 7 

S Y S T E M I M P L E M E N T A T I 0 N 

7.1 Introduction 

The first step towards the physical realisation of a guidance 

system based on the controller design described in Chapter 5 together 

with the optimal filter of Dove was achieved by implementing the 

control and filter algorithms on a microprocessor situated on-board 

the model car ferry hull 5502. 

schematically in Figure 7 .1 . 

The complete system is shown 

Measurement ~~;j------~--~ 
1-----1M/Plex 

System 
A/D 

Figure 7.1 

Micro­

Processor 

Schematic Representation of Guidance System 

7 . 2 Measurement System 

7.2 .1 Review of Measurement Techniques 

The selection of the state variables given in equations (2 . 4) 

and (2.5) werebased upon quantities that not only describe the system 
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behaviour, but are also measureable by navigational aids on-board a 

full-size ship. When attempting to measure the same quantities within 

the constraints of·a model vessel, problems o:t space I'estriction and 

cost dictate the need for a different approach. 

Position ·Fixing 

Since radio location is impt'actical, an underwater acoustic 

tr:'ansponder 

considered. 

system that uses localised grid co-ordinates was 

A similar system, designed by Wood (81) is currently 

being used in the manoeuvt'ing tank at the National Maritime Institute. 

The system employs a tr'ansmitter transducer mounted under the hull 

that tr'ansmits a 200 kHz signal in bursts of 100 \ls, once ever:'y 

second. The radial wave travels through the water and is received by 

four, equi-spaced transducers. The position of the vessel is a 

function of the transmission time to each r:'eceiver, and an accuracy of 

better than ~ 7.5 cm over a distance of 40 m is claimed. 

For control of a fr'ee-sailing vessel the system has the 

disadvantage that the positional information is shor:'e-based and must 

be I'elayed back to the model via a telemetry link. The main problem 

however:', was the high cost of the transmit and receive transducers 

and I'eceive amplifier's. The fundamental idea is still attr:'active, 

and ways of 'in-house' transducer manufacture are being considered for 

future projects. 

Linear Velocity Measurement 

Measurement of the surge and sway velocity of the model hull 

pose a problem because of the small magnitude involved, particularly 

in the latter case, where even in a tight turn, values will not 

rise much above 0.1 m/s. 

Conventional turbine and electro-magnetic logs lack in 

sensitivity, as do their' doppler-sonar countet'parts. A further:' 
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disadvantage is that both systems produce increased drag on the hull. 

Also of concern with the former systems is that they measure velocity 

relative to the water. Further investig"ation into doppler-sonar 

·measurement revealed that two-axis systems were outside the project 

budget. 

An alternative employed in aero-space applications is to measure 

the total linear acceleration vector and hence compute the components in 

the surge and sway directions, the respective velocities being 

obtained by integration. This type of inertial navigation system 

works well in aircraft, where accelerations are high. In the model 

hull however, a tight turn produces a sway acceleration in the region 

of 0.01 m/s 2 , and with a 1 g accelerometer (the most sensitive that 

could be obtained) this represents a signal of 10 mV. Another problem 

with inertial systems is that successive integration produces a 

progressively increasing error. 

Angular Position and Velocity Measurement 

The measurement of angular position (heading) and angular 

velocity (yaw-rate) fortunately did not present a problem. The 

Department of Mechanical Engineering had in its possession an accurate 

heading gyroscope, supplied by University College, London. Also it 

owned three servoed rate gyroscopes, mounted on orthagonal axes in 

order to measure pitch, roll and yaw-rates. The sensitivities of both 

heading and rate gyroscopes were sufficiently high to cope with the 

range of measurements expected. 

7.2.2. Prototype Measurement System 

Of the options available, a measurement system based on inertial 

principles (acceleration measurement) was the most viable in terms 

of performance and cost. Three servoed linear accelerometers were 
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purchased, and together with the existing gyroscopes formed the basis . 

of an inertial sensing system. 

Traditionally, inertial systems are mounted on a stabilised 

platform so that measurements of surge and sway accelerations are 

independant of pitch and roll. Also, if the platform is aligned t o 

True North, accelerations relative to the earth's co-ordinate system 

are available. 

Strap-down systems, of the type shown in Figure 7 . 2 are 

currently used in missiles and other aero-space applications. 

p 

Strap-Down Inertial Navigation System 

The instruments are mounted with respect to a local co-ordinate 

s y stem and the t ot al a cceleratio n vec t or a and angular rate vector n 

c omputed according to the relationships : 

a = a + n +a 
X -y Z 

.P + q + r (7 .1) 
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This allows accelerations and angular velocities to be 

ca·laculated With respect to any· other set of orthagonal axes, From a 

given set of initial conditions, other kinematic quantities may be 

obtained through successive integration. 

A prototype measurement system consisting of 3 accelerometers 

and 3 rate gyroscopes conforming to the configuration in Figure 7.2 

was constructed. In addition, heading was to be measured directly by 

the University College gyrocompass. The degree of redundancy of 

pitch, roll and heave transducers, at this stage, was unknown. 

7.2.3. Initial Tests 

To check how the accelerometers and rate gyroscopes would 

perform in a real manoeuvring situation, permission was obtained from 

Brittany Ferries to place the prototype system (excluding heading 

gyro) on the bridge of the 5000 tonne ferry Amorique. Recordings from 

the instruments were made on a Racal 4-channel tape-recorder whilst 

the Amorique manoeuvred in and out of Plymouth (and also Roscoff). In 

addition, use was made of the bridge radar, ship's log and rudder 

indicator to chart the actual track of the vessel and to collect 

information on forward veloc-ity and rudder activity during the 

manoeuvres. 

In thi•s early stage, analysis of data was qualitative rather 

than quantitative. Play back of the tapes revealed that the ship's 

motions in yaw, roll and pitch were adequately meausred by the rate 

gyros. Signals from surge and sway accelerometers (heave acceleration 

was not measured) were detectable during periods of high acceleration, 

but deeply buried in measurement noise (main engine vibration). 

Bearing in mind that all measurements in the final configuration would 

be passing through a Kalman filter, the decision was taken on the 

basis of these results to implement the inertial measurement system on 
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-board the model car ferry hull. 

The positional and velocity data col l ected from the Amorique 

proved to be valuable when setting up the simulation programs 

described in Chapter 6 . Also, what is difficult to quantify perhaps, 

is the insight given into the real problem of manoeuvring a large 

vessel in confined waters, as viewed from the bridge. 

7 .2.4 Measurement System Component Characteristics 

800 ADA Servoed Linear Accelerometer 

Manufactured by Smiths Industries, these accelerometers are of 

high sensitivity and operate as torque balance, closed-loop systems. 

As shown in Figure 7 . 3 , accelerations along the input axis produce a 

force on the mass. Resultant movement of this mass is detected by an 

optical pick-off and fed back to the coil of a torque motor , which 

returns the mass to its null position . The magnitude of the torque 

motor current is a measure of the acceleration . 

Input l 
Axis 

Led 

Mass 

Optical 
Pick-Off 

Specification 

Figure 7 . 3 

800 ADA Servoed Linear Accelerometer 

Torque 

Motor 

Input Range: ± l g surge and sway directions 

± 2 g heave direction . 

Electrical Supply: ± 12 V d . c . 
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Output Range: ± 10 V d . c. 

Sensitivity (As supplied by manufacturer and confirmed by 

calibration tests) . 

Surge Accelerometer : 1.018135 V s
2

/ m 

Sway Accelerometer: 1.020191 V s 2 / m 

Heave Accelerometer: 0 . 509642 V s
2

/m 

900 Series Servoed Rate Gyroscope 

Again a product of Smiths Industries , the rate gyroscopes employ 

a d.c. motor to drive a brass rotor at high speeds to obtai n the 

necessary angular momentum. The deflection of the frame in Figure 7.4 

due to the gyroscopic couple is detected by an optical pick-off and 

fed back to a torque motor , which returns t he frame to i ts null 

position . The torque motor current is a measure of the angular 

velocity about the input axis . Torque Motor 

. Input Axis 

~ 

Figure 7 . 4 

900 Series Servoed Rate Gyroscope 

Specification 

Input Range: ± 50 degrees/s full scale . 

Electrical Supply: ± 6 V d . c . 

Output Range: ± 3 V d.c . 

Sensitivity (As supplied by manufacturer and confirmed by 

calibration tests) 
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Yaw-Rate Gyroscope: - 3 . 28549 V s/rad. 

Pitch-Rate Gyroscope: - 3.27138 V s/rad. 

Roll-Rate Gyroscope: -3.17419 V s/rad. 

ADC Heading Gyroscope 

Supplied by University College, London, the heading 

gyroscope, seen in Figure 7.11, was manufactured by American Design 

Components (ADC) of New York. To operate the gyro, the inner frame is 

caged and the spin rotor run up to speed . When steady conditions 

exist the position motor is used to drive the inner frame to the null 

position on the measurement bridge shown in Figure 7 . 5. 

ov 
H 

+6V G I -6V 

ov 

Figure 7 . 5 

Heading Gyroscope Measurement Bridge 

With the vessel pointing due North, the gyro is uncaged. If it 

is now set to point due East , the gyro outer frame and hence the 

bridge windings turn starboard through 90 degrees. Position G is now 

aligned with the wiper and the output signal is + 6 V d.c. Similarly, 

if the vessel points South, the output is 0 V d.c. and if it points 

West, - 6 V d.c . 

The problem with this arrangement is that for each signal 

output, there exists two possible headings. For example: 
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0 V d.c. 

+3 V d.c. 

-3 V d.c. 

0 or ISO degrees 

45 or 135 degrees 

225 or 315 degrees. 

To avoid confusing the guidance system, this placed a 

restriction that all test manoeuvres should be confined to 

.±. 90 degrees. 

Specification 

Input Range: .±. 90 degrees full scale 

Electrical Suppl~es: 

Measurement Bridge: 

Output Range: 

Gyro Spin Motor: 

± 6 V d.c. 

±. 6 V d.c. 

+ 12 V d.c. 

Sensitivity (By caUbration): 3.8993 V/radian 

7.3 The Measurement Package 

The measurement package consisted of the accelerometers and rate 

gyros mounted in a waterproof box as shown in Figure 7.6. This 

package, as with all other 'high cost equipment, was attached to the 

hull with quick-release screws. 

In order to avoid signal contamination, the instrumentation and 

servo-motor power supplies were separated. The general arrangement of 

the former are shown in Figure 7.7. 

7.4 Rudder and Engine Serve-Systems 

7.4.1 Rudder Serves 

Each rudder had its own servo-drive (aithough eventually both 

were linked to a single unit) which consisted of a conventional 

feedback positional control system driven by a d.c. servo-motor. 

Conductive plastic potentiometers were employed to reduce signa,! noise 

and a 1.0 Amp power operational amplifier (National Semiconductor 
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'!' . 

Figure 7.6 

Measurement Package 

· ·Figure· 7; 11 

Top View of·TMs·ggoo Comouter; ·Power 

Supplies and Heading Gyroscope. 
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LH0021) was used to drive the servo-motor. The schematic diagram is 

given in Figure 7.8(a) and a phototgraph of the rudder servo-system is 

s hown in Figure 7 .8(b). 

+1 2V - --
+6V 

-=.;:... 
~=-

Comm on 

-=:=... 
-=:=.... 

- 6V 
-1 2V 
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Meas. 
Bridge 

Rudder 

Schematic Diagram of Rudder Servo-System 
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Figure 7. 8 (b) 

Rudder Servo-System 

Figure·B.l2 

Model in a Tight'Turn. 

on the Reservoir 
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The operational requirements of the s~stem were: 

(i) To produce sufficient torque at the rudder to 

overcome friction and hydrodynamic moments. 

(ii) To achieve a rapid response with no more than 

10% overshoot with rudder immersed in water. 

(iii) To provide ± 40 degrees rudder deflection from 

either radio control or computer input. 

Although a fairly large d.c. motor was employed, there was 

insufficient torque at the motor shaft to meet requirement (i). The 

torque was increased by a factor.of three to a suitable value by the 

use of a timing ·belt and· pulleys. 

The dynamic characteristics were tuned by varying the feedback 

resistance of the operational ampl'ifier and the correct rudder 

deflection obtained by careful selection of input resistance values. 

The radio-control rudder deflection was finally increased to :!: 50 

degrees to allow for steerage under a computer malfunction "hard-over" 

command·. 

Rudder Servo Characteristics 

Static 

Sensitivity (computer input) 

Dynamic 

Rise Time: 0.2 seconds 

Damping Ratio: 0.7 

7.4.2 Engine Speed Cohtrol 

0.4385 rad./V. 

As with the rudders each engine was equipped with its own speed 

control system. Since, at any given speed, the hydrodynamic moments 

on the propeller remain approximately constant, it was decided that 

open-loop speed ·control would give sufficient accuracy. 
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The d.c . motor power requirements , measured during towing-tank 

tests were known to be 2 A at 24 V to rotate the propeller at 712 

rev./min . in water. This performance was obtained from a NPN/PNP 

darlington pair of power transistors (TIP 141 and TIP 146) which were 

used to supply the armature current to the d.c . motor, the base 

current to each transi stor being provided by a 300 mA 759 operational 

amplifier as shown in Figure 7.9. 

+l2V 

3.:9K d . c . servo-

lOK 

3.9K 

Computer 
Input lK 

lK 

40~F 

-12V _.--------~-----------------------------------+-

Gearing 

Figure 7.9 
Propeller 

Schematic Diagram of Engine Speed Control 

Initial tests on the system indicated t hat a maximum unloaded 

speed of 250 rev./min . was available at the motor. This was increased 

to 750 rev./min . at the propeller shaft by gearing, but fell to 500 

rev./min. under normal operating load . Finally, an asymmetric power 

supply (+24 V, -12 V) was employed on the power transistors to provide 

the following performance characteristics: 
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Static 

Maximum forward speed: 

Maximum reverse sj:Jeedi 

1,000 rev./min. unloaded 

750 rev./min. loaded. 

750 rev./min. unloaded 

500 rev./min. loaded 

Sensitivity (computer input); 105.263 rad/sV 

Dynamic 

Time Constant: 0.15 seconds. 

As with the rudder servo, sufficient control was available from 

the radio link to override any computer malfunction command. 

When the rudder and engine servos were connected to the same 

power supplies, a certain amount of interaction took place during 

motor transients. This was overcome by inserting a 40 ~F capacitor 

between one of the engine inputs and ground. 

7.5 Microcomputer Hardware 

A Texas TMS 9900 .microprocessor was used for the on-board 

computer facility. The machine was chosen because: 

(i) It has 16-bit capacity. 

(ii) Several TMS 9900 processors were already in 

use within the Department. With the given 

expertise of Academic and Technical Staff, a 

rapid implementation could be achieved. 

7.5.1 General Features of the TMS 9900 

The TMS 9900 is a 16-bit machine with bit, byte and word 

processing capability. It operates with 16-bit instructions which may 

be one, two or three words long. The instruction set comprises of 69 

operations which employ a total of 5 addressing modes. 

The Workspace Concept 

The TMS 9900 chip contains the following registers: 
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(1) Program Counter (PC) 

( 2') Works pace Pointer ( WP) 

( 3') Program Status Register ( ST) 

Instead of hardware working registers, the processor has the 

ability to create a file of 16 general .purpose registers in RAM. In 

principle, each of these registers can be used for any purpose the 

programmer chooses, though in practice some of the registers are 

usually reserved for .particular functions in connection with software 

instructions and addressing modes. To create a workspace area, the 

workspace pointer register is loaded with the starting address. 

Input/Output Capability 

The TMS 9900 chip has separate 16-bit data and address busses, 

the latter giving the capability of accessing 64 k bytes of memory. 

Input/Output operations are performed by a Communication Register 

( CRU). This is a system whereby the information bits enter/leave the 

CPU in serial fashion and parallel series or series parallel 

conversion takes .place under software control in synchronism with the 

CPU. 

7.5.2 System Configuration 

The TMS 990omaybe configured in various arrangements, depending 

upon the requirements of the programmer. When operating as an on-

board controller/estimator/logger, 

following functions: 

the system must contain 

(i) High-level language facility (BASIC) 

(ii) Program storage on EPROM 

(Hi) A/D and D/A conversion 

(iv) Data logging capability 

the 

This was achieved by a four, printed circuit board system, the 
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memory-map details of which are given in Figure 7.10. 

7.5.3 A/D and D/A Conversion 

Analogue to digital and digital to analogue conversion is 

performed on the TMS 9900 by reading and wri:ting, by means of a move­

word instruction, to a small memory area hard-wired to a user-defined 

base address, in this case 9FF0
16

. Both A/D and D/A units are bi-

polar and contain 12-bit accuracy, so that~ 2047 separate increments 

are available. When set to unity gain, this provides an A/D 

resolution of 4.885 mV per bit. 

below. 

A summary of the functions are given 

D/A Conversion (2 Channels) 

Channel 1. 

Channel 2. 

Write to (Base Address + 2) 

Write to (.Base Address + 0) 

i.e. MWD ( 09FF2H) 

i . e. MWD ( 09FFOH') 

A/D Conversion (16 Channels) 

Select Channel. Write to (Base Address + 8) 0, 1, 2 etc. 

Select Channel 1. MWD(09FF8H') 0001H 

Set Gain Write to (Base Address + 6) 

00 Gain 1 

01 Gain 2 

10 Gain 4 

11 Gain 8 

For Gain 2 MWD(09FF6H) = OOOlH 

Start Conversion. In:i:tiated by Write to (Base Address + A) 

End Conversion. Conversi:on complete if contents of (Base 

Address + C) are positive. 

Read Data. 

Conversion time = 25 ~s. 

Data contained in bytes (Base Address + E) 

and (Base Address+ F). 
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Locations 
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3000 
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BOO 0 - t-

cooo -
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EOO 0 

FOOO 

FFF E 

r 

Figure 7 . 10 

TMS 9900 Memory-Map. 
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An A/D subroutine would then be: 

00 REM ADC SUBROUTINE 

10 M\IID(09FFAH) OFFFH 

20 CHK M\IID(09FFCH) 

30 IF CHK<O THEN GOTO 20 

40 AC = MWD(09FFEH) 

50 RETURN 

Computer Power Supplies 

The tolerances on the computer power supplies (± 3%) were 

tighter than could be obtained directly from a battery. Three 

regulators (+5V, +12V and -12V) were mounted on heat sinks and 

attached to the top of the computer casing to obtain maximum heat 

transfer, as can be seen in Figure 7.11. 

7.6 Commissioning Trials 

7.6.1 Commissioning Test 1. 19.7.83 

This first test was performed on the Rowing Club side of the 

River Plym under wind conditions of force 2/3 and a slightly choppy 

water surface. Signals from three accelerometers and 3 rate-gyros 

were relayed by cable to a shore-based 8-channel Racal tape-recorder. 

The heading gyro was inoperative due to transportation damage; 

The objectives of the test were: 

(i) To commission the measurement package and 

servo-drives to rudders and main engines. 

{.ii) To determine the degree of transducer 

redundancy. 

( iii) To qualify signal magnitudes. 

The test consisted of driving the vessel, under radio control, 

20 m in a straight line followed by a 180 degree turn to port. The 

vessel returned along a reciprocal course arriving at the start point 
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again by a further 180 degree turn to port. 

Problcems were experienced with: 

(a) Sea-weed fouling the propellers. 

(b) Cable drag in the water. 

(c) Main engines running at only 60% of design speed. 

A reasonable set of results however, were recorded on the fourth run, 

and are shown in Figure 7.12. The points to be noted are: 

(i) Surge acceleration is small, a slight deceleration 

being evident during the turn. 

(ii) Sway acceleration very noisy, due to rolling (up 

to 20 degrees) of vessel. 

( iii) 

(iv) 

(V) 

(vi) 

Heave acceleration negligible. 

Pitch-rate small. 

Good yaw-rate signal, particularly in turn. 

Large roll rates (note correlation with sway 

accelerometer) . 

It is evident from the above that heave and pitch measurements 

are small enough to be neglected, thus simplifying vector equation 

7.1. Under calmer conditions, this statement could equally apply to 

roll measurements. 

The sensitivity of the sway accelerometer to.roll gave cause for 

concern, since integration would give unreal harmonic variation in 

sway velocity. 

7.6.2 Commissioning Test 2.3.8.83. 

In order to avoid sea-weed complications, the site location was 

changed to the National Trust side of the River Plym, launching from 

Point Beach. To overcome cable drag problems, the test consisted of a 

turning circle around a moored sailing boat, on-board which sat the 8-
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channel tape-recorder. The speed of the main engines had now been 

increased' to their design value by the addition of a+ 24V rail, as 

described in section 7.4.2. 

The test was unsuccessful due to wind rising in the setting-up 

period• from force 1 to force 3/4. When attemptimg to perform a 

turning circle around the moored vessel, the model hull became 

uncontrollable when it was beam-on to the wind. 

Other problems encountered were again cable drag and also main 

engine malfunction which was diagnosed to be a faulty wiper contact 

on the 47k preset shown in Figure 7.9. 

with a standard potentiometer. 

The cure was to replace it 

7.6.3. Commissioning Test 3. 12-20.9.83. 

The frustrations of attempting to co-ordinate tide, weather and 

wind on the River Plym made the search for a more desirable site a 

high priority. Also, since much time was wasted in setting up, a site 

where the model could be left would be advantageous. 

Such a site was eventually found at the South West Water 

Authority's water treatment works, Crownhill. Here, the reservoir 

measured 110 m x 11:0 m and, depending upon wind direction, usually 

contained at least one stretch of sheltered water. Further, the 

reservoir was used by Plymouth Model Boat Club and · possessed an 

excellent winched launching platform facility. In addition, mains. 

power was available for test instruments and battery charging. 

The tests were performed around one of the four corners of the 

reservoir, depending upon wind direction. The vessel was 

driven towards the corner, para·llel to, and about 3 m from the side 

for a distance of 50 m. It was then turned under radio control 

through 90 degrees and piloted away from the corner, again parallel to 

the side. The 8-channel tape-recorder was wheeled on a trolley along 
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the side of the reservoir, the connecting cable being held vertically 

above the model at all times by means of a boom. 

Several runs were undertaken and Figure 7.13 shows a typical set 

of results. It can, be seen that surge accelceration is fairly 

constant, but has a d.c. bias due to uneven balast. Sway acceleration 

still contains a large component of roll which will be considered as 

measurement noise by the optimal filter. Good correlation is obtained 

between rudder angle, heading and yaw-rate, all of which are 

reasonably noise-free signals. 

Engine and rudder serves performed satisfactorily, although in 

the latter case, if too much trim was applied, the rudder angle could 

exceed 50 degrees. This allowed the feedback potentiometer to pass 

the z 12V discontinuity point and the rudder would attempt to rotate 

through 360 degrees and end up jammed hard over. The problem was 

overcome by the use of mechanical stops at z 40 degrees. 
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C H A P T E R 8 

F R E E - S A I L I N G T R I A L S 

8.1 Introduction 

The aims that were set when planning the execution of the free­

sailing trials on the model hull are listed below: 

(i) Track-Keeping 

To demonstrate the ability of the control system to 

lock onto a pre-defined track from any given combin­

ation of initial conditions. 

(ii) Track-Changing 

To show the system is able to change from one track 

to another when initially under: (a) stea-dy-state 

conditions, (b) transient conditions (as may be 

experienced when way-points are close together). 

(iii) Speed Control 

To observe the characteristics of the forward velocity 

control of the vessel. 

(iv) Comparison With Theoretical Predictions 

To compare the trial results with those predicted by 

computer simulation. 

(v) Measurement Accuracy 

To determine the accuracy of the measurement system 

and the effectiveness of the filter/estimation 

algorithm. This analysis has been undertaken by Dove 

(78) and is not included here. 
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Limitations 

The trials were conducted at constant forward speed under calm 

water conditions with the absence of tide, wind and waves. These 

limitations were imposed because: 

(a) Restrictions in speed and size of ·the on-board 

computing facility to fully implement the control 

and filter algorithms. 

(b) The problems of obtaining scaled disturbance effects 

on open water with known mean and statistical 

properties. 

8.2 Selection of State Variables for Model 

When a comparison between the model and a full-size vessel is 

made, two main differences exist: 

(a) No positional measurement takes place on the model. 

(b) The dynamics of the rudder and engines are rapid 

and may be neglected. 

Under these conditions, the state vector as defined by equation 

(2.4) reduces to: 

T 

X (u v ljJ r) 
A 

(8 .1) 

It will be noted that all of these variables are measurable from 

the on-board instrumentation pack. 

8.2.1 Reduced State Equations 

The reduced state equations for the model, with no disturbance 

terms, become: 
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• 
fll fl2 0 fl4 ' 

[~ 
u u gll gl 

V f21 f22 0 f24 V + g21 g2 
• tjJ 0 0 1 

A 
0 tjJA 0 0 

r f41 f42 0 f44 r g41 g4 (8.2) 

The elements of the reduced F and G matrices all exist in the 

original non-linear state equations and are defined in Appendix Al.3 . 

F Matrix 

Reduced Element Designation : f 11 f 1 2 f 14 f 21 f 22 f 24 f 41 f 42 f 44 

Original Element Designation: f
44 

f 46 f 48 f 64 f 66 f 68 f 84 f 86 f 88 

G Matrix 

Reduced Element Designation: g11 g12 g21 g22 g41 g44 

Original Element Designation: f
41 

f
42 

f
61 

f
62 

f 81 f
82 

8.3 Controller Parameters 

The design and simulation package used to determine controller 

parameters for t he full-size vessel was now used to compute the 

parameters for the model hull. It was anticipated that the weightings 

of the Q and R matrices given in equation ( 6 .11 ) would remain 

unchanged for two dimensionally similar hul l s . This, however, was not 

the case and the feedback matrix computed for the model heavily 

emphasised course-keeping, rather than track- keeping performance. 

The implication from this result suggests that for both hulls 

the course-keeping control parameters are approximately t he same, but 

the track-keeping parameters f or the model hull need to be increased. 

This, with hindsight, is explained by the fact that for both hulls 

the expected course error is of a similar magnitude whereas track 

errors might be of an order of ten times smaller for the model hul l , 

requiring larger feedback gains to produce similar rudder deflections . 

The optimal root locus diagram technique outlined in Chapter 5 
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was again employed and the selected weightings, together with the 

corresponding feedback matrix for a forward speed' of 0.75 m/s are 

given in equations (8.3) and (8.4) 

Q 

R 

diag. 

diag. 

{o o o .. ooo5 o.5 0.1 a 1 oJ 

(8.3) 

s 0.026 0 0 0 -0.06795 2.765 -0.9329 -3.1029 

0 0.19E-5 0.00107 0.0479 0 0 0 0 

(8.4) 

The reduced version of equation (8.4) is: 

s r-0.0679e 2.765 -0.9329 -:.1029] 
0.00107 0.0479 0 (8.5) 

with track and forward position terms s1!
1 

and s
21 

retained. 

Of interest is that the course-keeping terms s
13 

and s
14 

in 

equation (8.5) are almost identical to those calculated before the 

Q weightings were varied. This implies that dual-mode control 

switching from track to course-keeping may be implemented by simply 

setting s
11 

to zero without fear of instability. 

The optimal closed-loop eigenvalues for the 8-state system with 

feedback matrix (8.4) are: 

s = -4.8235 -0.3998 -0.1427 ; -0.2521 ; 

o.o -0.0317 -0.105E-4 -4.9999. (8.6) 

Figure 8.1 shows a simulation of a 90 degree track- changing 

situation using the reduced state equations (8. 2) tog.ether with the 

feedback matrix (8.5) when the forward speed is 0.75 m/s. Here the 

dual-mode controller switches from track to course-keeping when the 

course error exceeds 30 degrees. The way-point advance is 15 . .75 m and 
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the sampling time is one second. 

8 . 4 Real-Time Software Development 

Mainframe simulations of the type shown in Figure 8.1 reveal 

that system performance deteriorates rapidly when the sampling time is 

much above one second. This imposes the r estriction that all real-time 

computation has to be carried out within this time interval. A 

problem to be faced at the development stage was that the TMS 9900, in 

common with many other microprocessors, used an interpretive, rather , 

than a compi led version of BASIC . The former, although easy to use is 

slow in operation because of its line-by-line interpretation from 

source to object code . 

Figure 8 . 2 shows the order of operations , together with their 

estimated time values, to be performed within one sampling interval. 

output~ I read 
IJ (kT) t Z (kT) 

Filter 
Algorithm 

0. 2s 

(kT) 

X (kT) U (k+l/k)T f available f available 

Control Mathematical Mode l 
Algorithm Computation 

I 0.2s J O.Ss 
T I 

Sarnolina Interval = 1.0 seconds 

Figure 8 . 2 

Output U(k+l)T 

X (k+l/k)T t 1 read 
available tZ (k+l)T 

!Estimation 
~lgorithm 

O.ls 

(k+l)T 

Order of Operati ons in Real- Time Program 

It will be noted t hat 0 .4 seconds has elapsed before the control 

vector U, based upon the best estimate of the state variables at time 

kT, becomes available . Since this information can only be output at 

the end of the sampling interval , it means that the control variables 

are computed from the immediate previous, and not the current st ate 
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estimates, the latter being unavailabte. This dilemma is unavoidable 

in a real-time ·situat:ion. 

8.4.1 Program Structure 

Apart from the obvious functions of estimation, filtering and 

control, an important programming feature is that of logging measured 

and computed data. 

sampling instant: 

The following parameters are stored at each 

(a) Raw measurements of state variables: forward and 

lateral velocity, heading and yaw-rate (4 x 112). 

(b) Best estimates of state variables (4 x 112). 

(c) Demanded and actual rudder angle and engine speed 

(4xll2). 

(d) Computed track co-ordinates (2 x 112). 

The final sizing of the DIMENSION statements were left until the 

end to use up all available memory space. 

Subroutines 

The program employs the following main subroutines (BASIC) and 

utility subroutines (Assembly Language) 

Main Stibroutines 

Statement Number 

Utility Subroutines 

3000 

3100 

10000 

12000 

13000 

15000 

10400 

10500 

Subroutine Function 
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8.4.2 Computation of Mathematical Model 

The discrete mathematical model of the vessel is recalaculated 

for the estimation algorithm dur-ing each sampling interval. 

Initially, this was performed in a similar manner to the mainframe 

program, i.e. by determining the elements of the- F and G matrices 

and then calculating the discrete state and control transition 

matrices A and B using the power series expansion technique outlined 

in Appendix Al.S. 

The mainframe subroutine TRNMAC takes into account the first 50 

terms in the expansion and when the routine was performed in BASIC on 

the TMS 9900 the following run times were observed: 

Number of Terms 

in Expansion 

50 

20 

5 

Run Time 

(seconds·) 

30 

12 

3 

In order to maintain an accuracy up to 3 decimal places in both 

A and B matrices, the absolute minimum number of terms in the 

expansion was 5. Unfortunately, a total program run time of 3.4 

seconds was still too high to be· considered. 

An alternative approach based on perturbation theory was finally 

employed to calculate A and B directly. 

If it is assumed that: 

A F (u,v,r,t) 

B ( u, v, r ,o D, n
0

, t) (8.7) 

then, for small perturbations in u,v,r,o
0 

and ~· 
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(8. 8) 

The TRNMAC routine was run varying u,v,r, OD and ~ in turn over 

their expected ranges and the partial derivatives for each element 

calculated. A summary is given in Appendix 5. 

When tested on the TMS 9900 the perturbation technique gave an 

accuracy equal to ten terms in the power series expansion and took 

0.58 seconds to run. Dove undertook further mainframe simulation 

tests using both methods in order to validate the precision of state 

variable computation (78). 

A complete listing of the real-time program, including the 

control, modelling and estimation routines, is given in Appendix A6.4. 

8.4.3 Bench Testing 

So that the final version of the program could be tested, the 

instrument pack, together with the heading gyroscope were mounted on a 

trolley and interfaced with the TMS 9900. Since, in reality, the 

vessel would be moving with very small accelerations, signals from the 

instruments were obtained by rotating the trolley, at a suitable rate, 

through some prescribed angle. The x ,y filtered track parameters 
0 0 

were fed to D/A converters and output to an analogue X-Y plotter. 

Figure 8 .. 3 shows the trace from a typical run. 

The instruments, computer and serve-systems were now mounted in 

the 5502 hull (re-named St. Nicholas, after Sealink's flag-ship, a 

car-ferry of similar size and displacement) and the hull re-painted 

prior to the final tests. 
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8.5 Test Procedure 

The reservoir is shown in Figure 8 . 4. 
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Plan of Crownhill Reservoir 
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Sighting 
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Calm water conditions usually exist on the southern or western 

sides of the reservoir making either A orB suitable test starting 

positions. Assuming the latter , the model is positioned at the end of 

the jetty and connected to the keyboard/printer terminal by a 

communications umbilical chord. All systems are now switched on and 

the following test procedure initiated: 

1. Load program from EPROM and run. 

2 . Input time delay necessary to manoeuvre vessel 

under radio-control from B to C, the latter being the 

start position for the run . 

3. Input details regarding desired track and way- point 

advance. 
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A. 

4. Specify which measurements are to be filtered and 

·adjust Kalman gain matri'x. 

5. A·llow vessel to float freely for 1 minute to enabie 

60 measurements from each instrument to be made. 

Calculate and print mean and standard deviation, the 

former being subtracted from any future measurements., 

the latter being used in the filter measurement noise 

covariance matrix. 

6. Un-plug the timbiiical and pilot vessel to position c, 

This is performed by the radio-control operator stand­

ing atE and lining model up with sighting poles F. 

7. During the test, still and video cameras monitor the 

vessel's progress, either from G for track-keeping, or 

from I for a track-changing. 

8. Upon completion, manoeuvre model under radio-control 

back to B, plug in unbilical and dump data to terminal. 

A similar procedure may be employed when operating from position 

Typically, a test would require 5 minutes to align the heading 

gyroscope, input the track and filter data and measure the mean and 

standard deviation of the instrument signals. The run itself would 

take 2 minutes and a further period of about 25 minutes would be 

required to print the data to the terminal. During this 32 minute 

time interval the computer 5V power supply regulator became extremely 

hot and a 10 minute cooling down period was allowed, prior to the 

execution of the next test. At every opportunity (i.e. during data 

print-out) batteries were placed on charge. In this manner, 3 

successive runs could be undertaken before a complete re-charge of all 
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batteries became necessary. Thi!s enabled, weather .permitting, up to 9 

runs to be performed in a single'day. 

8.6 Test Results 

A total of 19 runs were conducted during the period 30th May -

8th June 1984, the details of which are given in Table 8.1. It must 

be remembered that the effectiveness of the filter as well as the 

controller was being studied, and' not all tests have significance in 

context with the latter. Runs 1, 4, 6, 7 and 8 are particularly 

concerned with filter tuning and detailed discussion is presented by 

Dove ( 78). In Runs 3 and 5, the filter closely resembled its final 

form, and the test results may be considered to be valid. 

With Run 2, the heading gyroscope was inadvertently left caged, 

and as the measurement was unfil tered, this led to the condition· of no 

heading feedback. This set of circumstances was considered in 5.5 

where it appeared that no stable solution existed. This was indeed 

the case and the system became dynamically unstable, highlighting the 

fact that if system integrity is to be maintained, a filtered estimate 

must always be available under conditions of gyro malfunction. No 

data was printed from this run. 

The following runs were selected for detailed analysis: 

Run No. 

3 and 5 

9 

10 

Objective Reason for Choice 

Track-Keeping Positive initial track error 

Track-Keeping Negative initial track error 

Track-Changing Steady-state conditions at 

change, no disturbances. 

12 Track~Changing Steady-state conditions at 

change with wind gusting force 3/4. 

19 Track-Changing Initial track error, producing 

transient conditions at change. 
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Run Date Test Initial Number of Filtered Recorded Start Comments 
and Track Samples Measure- Video/ 

No. Time Type Offset. (TSAMP= 1s ments Still Position 
_(m_}_ 

1 30.5 . 84 Track- 4.11 80 All - B Light Westerly Wind . 
11.00 keeping filtered 

2 12.00 Track- 4.ll 80 U & V - B Gyro Caged. 
keeping filtered 

3 12.30 Track- 4.11 80 U & V - B Liqht Westerly Wind. 
kee.r;>ing filtered 

4 14.15 Track- 0.0 80 All V & S A Light Southerly Wind. 
keeping unfiltered 

5 15.00 Track- 5 . 0. 80 U & V V & S A Light Southerly Wind. 
keeping filtered 

6 16.00 Track- 5.0 80 All V & S A Light Southerly Wind. 
keeping filtered 

7 17.00 Track- 5.0 80 All s A Light Southerly Wind. 
keeping filtered 

8 18.00 Track- -5 .0 110 U & V s A Diagonal Run. 
keeping filtered 

. 9 31.5.84 Track- -5.0 80 All V & S A Calm Conditions . 
9.15 keeping filtered 

10 13~00 ITmk- 0.0 110 All A Light Southerly Wind. 
Changing filtered 

11 14. 30 Track- o.o 110 All A Wind Increasing. 14 I Changing filtered rows of data missing. 

12 15.00 1 
Track- 0.0 110 All A Wind Gusting 3/ 4. 
Changing filtered 

l3 l. 6 . 84 Track -1.0 110 U & V A Reduced Way-Point 
9.15 Changing filtered Advance. Calm Condi-

tions. 

14 11.00 Track -2 . 4 110 All A Increased Way-Point 
Changing filtered Advance. 

15 12.00 Track ·-2 . 4 110 All A Track Change During 
Changing filtered Transient. 

16 14 . 30 Track -2.4 110 All A Wind Gusting 3/ 4. 
Changing f.iltered 

17 5.6.84 Track 0.0 110 U & V - B Wind Gusting 3/ 4 . 
11 .00 Changing filtered 

18 8.6.84 Track 0.0 110 All - B Slight Wind, South-
11.00 Changing filtered - B West. 

19 15.00 Track- 4.0 110 All s A Calm Conditions. 
Changing filtered 

Table 8.1 

Details of Test Runs. 
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8. 7 Analysis of Re.sul ts 

In assessment of system 

understood 'that: 

performance it must be clearly 

(i) Any difference between the filtered measurements and 

the actual states of the vessel is a measure of the 

performance of the optimal filter. 

(ii) Any difference between the filtered measurements and 

the desired states is a measure of the performance of 

the optimal controller. 

It must be with respect to (ii) above that the analysis of the 

controller is conducted. However, for the purpose of comparison, the 

final position of the vessel relative to the sighting poles is 

shown on track plots. 

Figures 8.ll(a) and (b) are repeated exposure photographs for 

runs 5 (track-keeping) and 10 (track-changing) .. In the former, the 

sighting poles at H and F (as defined in Figure 8.4) can be seen on 

the far bank, and in the latter the sighting pole at position K. 

Figure 8.12, mounted beneath Figure 7.8(b) in Chapter 7, shows 

the model in a tight turn during a track-changing manoeuvre. 

The measured data for all runs was input from keyboard into the 

mainframe PRIME 9950 and a common database established. Computer 

simulations were then conducted for each run, matching in every case 

simulated and measured initial conditions. Raw and filtered 

measurements (again the former for comparison only) were ~uperimposed 

upon simulation data. Figures 8.5 through to 8.10 are the graphics 

output for Runs 3, 5, 9, 10, 12 and 19 respectively. 

When attempting to quantify the "goodness" of a control system, 

one is really asking the question: what error exists between the 
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Figure 8;11 (a) 

· ·Run 5: Track-' Keeping 

· Figure B;ll(b) 

· ·Run · 10: · Track•Changing. 
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desired value and.the measurement of the actual value over the control 

interval? The answer must lie in the form of a performance index, 

and ·the quadratic forin of those given in equations (6.3) rel:ate best 

to the optimal control law employed here. 

Where mathematical modelling techniques are used in the design 

of dynamic systems and some optimal solution is sought, the ultimate 

response of the simulation model must be considered as an ideal that 

the real system will approach. The measure of the degree of closeness 

of the two systems will be reflected in their respective performance 

indices. 

The generalised performance indices (with the exception of J 
X 

which has no relevance to the present set of state variables) for both 

the mathematical model and the physical model are given in Table 8.2. 

Apart from control quality analysis, it is also necessary to 

vaiidate the accuracy-of the mathematical model. Since both physical. 

and mathematical models are, responding to almost identical inputs, the 

integral of the square of the residuals over the control period may be 

used to define the following mathematical model validity indices: 

J:l 
2 J = (u-ui dt 

uu 
0 

J J:l (y-y) 
2 dt 

yy 
0 

JljJijJ J:l 
0 

A 2 
(ljJA -1/JA) dt 

Joo J:l (OA-~A)2 dt 
0 

= J:l 
A 2 

J (nA -nA) dt (8.9) nn 
0 

A list of mathematical model validity indices for the trials on 

the reservoir are given in Table 8.3. 
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Run Performance Indices 

No. J J Jt/J Jo J 
u y n 

Mathematical Model 

3 0.0216 920.00 3 . 545 0.8472 0.00183 

5 0.1038 1868.09 6.972 1.1769 0.00392 

9 0 . 0024 311.82 1.309 0 . 2706 0 . 00062 

10 0 . 3212 306.49 22.781 3 . 2329 0.00042 

12 0.3279 314.79 23.169 3 . 2758 0.00045 

19 0.3614 611.29 24 . 913 3.5469 0.00104 

Physical Model 

3 0 . .0668 1057.86 3.437 2.2287 0.00469 

5 0 . 1491 2516 . 01 5.674 2.6414 ' 0.00080 

9 0 . 5316 402.28 3.346 4.9479 0.00056 

10 0.9215 564 . 24 19.605 10.9555 0 . 00763 

12 1.2365 1834.19 32 . 361 8.7313 0 .01053 

19 1.0063 824.81 22.084 9.9549 0 .00847 

Table 8.2 

Generalised Performance Indices for Mathematical 

and Physical Models 

Run Mathematical Model Validity Indices. 

No. J J 
Jt/Jt/J 

J J 
uu YY 00 nn 

3 0.049 22 .010 1.209 1 . 612 9.050 

5 0 . 157 146.173 2.044 2 .035 0.495E-2 

9 0.509 17.477 0 .406 3 . 629 0 .111E-2 

10 0 . 271 86 . 009 1.730 9.244 0 . 762E-2 

12 0 .454 1311.126 9 .108 7 . 818 0.105E-1 

19 0 . 261 67 . 758 0 . 346 8 . 354 0.932E- 2 

Table 8 . 3 

Mathematical Model Validity Indices 
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C H A P T E R 9 

C 0 N C L U S I 0 N S 

9.1 Introduction 

The research-summarised in this thesis has been concerned with 

the design and evaluation of a control system which could be utilised 

for automatic pilotage of surface ships in confined or restricted 

waters. This final chapter reviews some of the principal conclusions 

and observations based on.the work and considers the possibility of 

future developments. 

9.2 Modelling Techniques 

Mariner Hull 

The first section of-work was devoted to the development of a 

mathematical model that adequately describes the motion of a vessel in 

a manoeuvring situation. A comprehensive computer simulation study 

was conducted on the Mariner hull form using hydrodynamic data from 

the work of Chislett and Strom-Tejsen (67). A comparative evaluation 

with full-scale measurements taken by Morse and Price for the USS 

Compass Island (66) showed that a non-linear, time-varying model most 

accurately represented the motion of the hull in surge, sway and yaw, 

particularly with tight manoeuvres. 

The model gives good correlation with the full-size ship in 

terms of both transient and steady-state behaviour over a range of 

forward velocities from 2.572 to 7.717 m/s and yaw-rates up tot 1.0 

degrees/second; which corresponds to 25 degrees of rudder. 

not however cater for: 
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-
(i) Changes in handling qualities due to operational 

loading or trim. 

(ii) Shallow water and bank effects. 

( iii) The action of passing ships. 

-
Disturbances were modelled in terms of hydrodynamic effects of 

current and. aerodynamic effect of wind. The aerodynamic data for the 

Mariner hull was taken from wind-tunnel tests performed by Eda ( 62) . 

'· The disturbances were considered to contain both mean and stochastic 

components which could be scaled to simulate a range of weather 

conditions that might occur in Plymouth Sound. The stochastic nature 

of the disturbances were correlated in terms of magnitude and 

direction. 

Use was made of the disturbances to deflect the vessel from some 

desired track and, in'the absence of measured data, no attempt was 

made to quantify the resulting motion. The effect of waves on the 

hull was not considered. 

Car-Ferry Hull 

As a consequence of the Mariner modelling exercise, there 

existed a simulation package that had been extensively tested on a 

single vessel but was as yet untried on other ship types. Due to time 

limitation and lack of availability of the large number of 

hydrodynamic coefficients required, it was decided that ·future 

validation of the simulation package could be made using experimental 

data derived from tests on the model car-ferry hull. 

The towing-tank tests at the National Maritime Institute 

resulted in a set of accurately measured steady-state hydrodynamic 

coefficients for the model car-ferry, the yaw-rate dependent 

coefficients being obtained later from free-sailing tests. No 

measurements were taken, however, of the added mass coefficients which 
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affect the transient behaviour of the vessel. The assumption that the 

ratio of.non-dimensional added mass to non-dimensional ship mass was 

the same for both Mariner and car-ferry, due to their similar block 

coefficients, was shown to be true from the magnitude of the validity 

indice.s obtained by comparison. of real and simulated data. 

The aerodynamic coefficients for the car-ferry hull are based on 

equations (3.18) and must be assumed to be approximate in the absence 

of measured data. 

9. 3 Controller Desi'gn and Evaluation 

The design of a multivariable system to control simultaneously 

track,. heading and velocity of a ship modelled by a set of non-linear, 

time-varying differential equations is a challenging requirement. 

Linear Analysis 

The task is simplified when the time-varying and non-linear 

effects are removed, and it was for these conc:Htions that the system 

was demonstrated to be fully ·state controllable. What effect 

variations in forward velocity, yaw-rate and other parameters have on 

controllability still as yet remain unanswered. 

Optimal control of systems with linear dynamics using quadratic 

performance criteria (LQP control) has an explicit ·solution giving 

directly the optimal control law. The matrix recursive equations 

(5,19) and (5.20) integrate in reverse time to give the solution of 

the steady-state matrix Riccati equation together with the parameters 

of the feedback matrix. The time interval required for steady~state 

convergence is equal to the settling time of the dominant closed-loop 

eigenvalues, needing many recursions when the sampling time is small. 

This means that the algorithm is demanding in terms of processor 

utilisation and a more efficient technique might be to use the Potter 
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algorithm(82).This requires that a 2n x 2n matrix is formed, the 

eigenvalues of which correspond to those of the optimal system. 

The use of optimal root loci is a very visual approach and' gives 

great insight into the effect of changing parameter weightings in the 

Q and R matrices. An important outcome of linear design analysis 

is the dependence of d!fnamic stability upon heading feedback. 

Non-Linear Analysis 

When the effects of system non-linearities were considered, it 

was discovered that the optimal closed-loop poles had very little 

departure from their assigned positions, even in very tight turns. 

From this it was concluded that controller adaption was unnecessary 

for turning manoeuvres. 

Adaptive Optimal Control 

Variations in forward velocity has the effect of radically 

changing system open and closed-loop poles and a system tuned to 

provide satisfactory response at· '7. 717 rn/;s will be. highly oscillatory 

at 2.572 m/s. 

A method of adaption was proposed whereby the complex closed­

loop poles maintain their original optimally assigned positions. The 

controller synthesised from the variations of required feedback matrix 

elements takes the form of a "gain scheduling controller" where, in 

general, the gain of the time-varying elements is 

proportional to the square of the forward velocity. 

Disturbance Control 

inversely 

It is not possible under an optimal policy to employ integral 

control action without affecting the closed-loop poles. An 

alternative method, referred to as active disturbance control, was 

investigated. The technique relies upon knowledge of the disturbance 

model of the vessel, together with the nature of the disturbances. It 
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was found that complete instantaneous force and moment cancellation 

was not possible due to the dynamics of the controls themselves,. 

together with their force/moment characteristics. A compromise 

solution was proposed whereby emphasis was placed upon the balancing 

of disturbance and control moments. 

9.4 Performance Characteristics 

The performance evaluation of three different types of control 

strategy was undertaken. ·The first of these, Reverse-Time Integration 

provides the only true means of anticipating desired state 

trajectories. A reverse-time command vector is generated from 

knowledge of the ship's closed-loop dynamics together with the desired 

state vector. Inbuilt into the command vector, which must be 

available prior to the vessel entering port, is the inverse of a•ll 

transient and steady-state errors. 

The technique was found to possess good transient anticipation 

but suffered from a lack of steady-state accuracy, the latter being 

sensitive to controller setting. 

The second control strategy incorporates dual-mode control with 

way-point anticipation. This is a simple concept that allows the 

command ve~tor to be replaced by a method of advancing way-points so 

that track-changing occurs without overshoot. At the advanced way-

point position, a switch is .made from track to course-keeping. This 

initiates a turning manoeuvre and· when the course error is less than 

a prescribed amount (thirty degrees was found to be suitable) the 

track~keeping mode is re-established. 

Dual-mode control was found to possess excellent track-keeping 

capability as can be seen in Figure 6.7. The generalised performance 

indices given in Table 6.4 show that for this run, J and J , which 
y u 
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relate to track-keeping abitity and forward velocity control, both 

have a global minimum·. It will be observed by comparing J with J,,, 
y 'I' 

that good track-keeping performance is achieved at the expense of 

good· coi.lrse-keeping, for when a vessel pulls onto track it must 

alw~ys incur a course penalty. 

The third policy uses a combination of ship and earth related 

state variables to allow a multivariable control strategy, referred to 

as dynamic position-keeping,. to be used to control the vessel's 

heading and forward speed, together with its position on the earth's 

surface. The method has the advantage that filtered positional 

information taken from navigational equipment may be used directly in 

the feedback loop, but suffers from· the problem that the feedback 

matrix becomes a function of the desired heading. 

It will be observed that the performance indices in Table 6.4 

for· position-keeping runs 7 and 8 correspond to.those for the dual-

mode simulations 5 and 6; i.e. the riet outcome of both strategies is· 

the same, the difference lying in the manner in which the problem has 

been tackled. 

It was concluded that reverse-time integration is a 

sophisticated solution but with practical difficulties, whilst dual-

mode control and dynamic position-keeping ultimately perform the same 

function·, the former being more straight-forward to use. Hence a 

dual-mode policy with way-point anticipation was selected as the best 

control strategy to implement in the physical model. 

Adaptive Control Performance 

As predicted at the design stage, oscillatory track-keeping 

performance occurs when a vessel travels at low forward speed with a 

fixed gain feedback matrix as shown in Figure 6.12(b). The gain 

scheduling controller proposed in Chapter 5 provided the vessel with 
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unchanging yaw dynamics as its forward speed varied.This had the 

effect of reducing track transient errors but with the penalty of 

significant increase in rudder activity. 

It was observed, however, that when adaption takes place with. 

constant Q and R matrices at each forward speed, the ship always 

moves along an identical track. This form of adaption was considered 

more desirable than the fixed eigenvalue policy and the parameters for 

a gain scheduling controller were again computed. These were found, 

in general, to be proportional to the inverse of the forward speed. 

Disturbance Control Performance 

Comparison of Figures 6.10 and 6.11(a) show quite clearly the 

benefits that can be obtained by the use of disturbance control. In 

the latter, however, it is assumed that the nature of the 

disturbances are known, i.e. that they can be measured. The use of 

anemometers to measure wind strength and direction presents no problem 

• 
but difficulties arise in the measurement of current. One possibility 

is to place current-meters at strategic points in port approaches and 

radio information to passing vessels. Alternatively, dopplar sonar· 

may be used to monitor surge and sway velocity relative to (a) sea-

bed, (b) water, the difference being the velocity of the current. 

If, however, no measurements exist, but an approximate mean 

estimate for both wind and current is available as input to the 

controller, some improvement will result as seen in Figure 6.ll(b). 

At reduced forward speeds disturbance control is less effective 

because of the corresponding reduction in rudder control moments and 

forces. Eventually, a saturation point occurs when the maximum 

control effort available is insufficient to counteract the disturbance 

effects. 
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9.5 ·Implementation and Testing 

The factors that governed the selection of measurement and 

control system hardware for the physical model were: 

(a) cost 

(b) size 

(c) accuracy 

(.d)· "in house" availability 

(e) "in house" expertise. 

This resulted' in a system that was not ideal, but had the 

potential to work. Initial tests on the bridge of the Amorique 

demonstrated that the prototype measurement system had sufficient 

sensitivity to detect motions of· a full-size. vessel. 

Apart from tuning feedback loops, the rudder serves on the model 

gave little trouble. There was a problem 0 however, with the main 

engine drive amplifiers, which were always working close to their 

upper saturation level in order that the propellers could operate at 

the mean design speed. As·.a result, when testing on the reservoir, the 

speed control system was unable ·to cope with a wide range of demanded 

engine speeds about the mean value. To avoid the possibility of 

amplifier malfunction due to frequent overload, the optim~l controller 

weightings were adjusted to provide a· constant ·demanded speed with 

only small perturbations, with the incurred penalty of largely 

ineffective forward velocity control. 

Although the sides of the reservoir were sheltered, the central 

area always remained exposed. Track-keeping runs therefore, could be 

performed in conditions of moderate wind, but track-changing runs 

required cail.m weather, usually found early in the morning or late 

evening. Run 12 in Figure 8.9 is a good example of where the model is 
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deflected off-track by a force 3/4 wind experienced in the middle of 

the reservoir. 

However, in calm water, the model responded well and the 

dominant closed-loop dynamic characteristics for both simulated and 

measured systems can be extracted from runs 3 and 5 and are listed in 

Table 9.1. 

Run Simulation WD w Closed-Loop n or I; 
No. Measured (rad/s) (rad/s) Eigenvalues 

3 Simulation 0.0668 0.581 0.0821 -0.0477±j0.0668 

3 Measured 0.073 0.437 0.0812 -0.0355±j0.073 

5 Simulation 0.0654. 0.590 0.0810 -0.0478±j0.0654 

5 Measured 0.0654 0.500 0.0755 -0.0378tj0.0654 

Table 9.1 

Closed~Loop Characteristics of Model 

Table 9.1 reinforces the data presented in the form of validity 

indices that in general the cLosed-loop dynamics of both physical and 

·mathematical models are very close. The damping in the physical 

system is slightly less than that in the mathematical one and is 

thought to be due to small inaccuracies in the yaw-rate coefficients 

measured from free-sailing tests on the River Plym. 

9.6 Future Developments 

Within the given limitations of the reservoir trials, the 

performance of the physical model closely corresponded to theoretical 

predictions, and demonstrates the effective ne ss and accuracy of the 

synthesis and analysis techniques employed: Although these trials 
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conclude the present programme of work, they are also the starting 

point for the next phase of research. 

It has been appreciated throughout, .that the detailed information 

obtained for the ship mathematical model was for one carefully defined 

set of conditions only. Further, data regarding dynamic 

·characteristics (added mass) was missing and had to be approximated.· 

The handling characteristics of surface ships undergo 

significant changes depending upon operational and environmental 

conditions. ·rt is important therefore to have with:i:n the system a 

parameter estimation algorithm that provides the controller and filter· 

·with frequent updates of the mathematical model. Parsons and Cuong 

(37) in 1980 studied the effectiveness of a two-loop system, .an inner 

control loop and an outer gain update loop, the latter taking the form 

of either a weighted least-squares, or a minimum variance parameter 

estimator~ Bouncer (83) has used on-line methods of identification 

and parameter estimation for a noisy electrohydraulic system and 

Kallstrom ('84) has employed similar techniques to investigate ship 

steering properties. Abkowitz (85) employs an extended Kalman filter 

technique to identify hydrodynamic characteristics from ship 

manoeuvring trials. Slender body theory has been applied by Hwang (86) 

in the identification of non-linear hydrodynamic coefficients and to 

show the cancellation effect. 

The integrated use of identification, estimation and control 

algorithms to form optimal self-tuning systems has been explored _by 

Grimble et. al. (87), (88) with particular reference to the dynamic 

positioning problem. This is an area where there has been much 

activity and optimal self-tuning systems for dynamic positioning now 

exist. Saelid et. al. (89) discusses an instability problem on the 

ALBATROSS system and points out that the real life situation often 
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results in a sub-optimai solution due to compromise in terms of 

performance, physical costs and the technical costs of modelling and 

tuning. 

The track-keeping performance of a vessel is very dependent upon 

accurate positional measurement. Apart from the development of 

satellite navigational systems such as GPS, there is a growing 

interest in iocalised position-fixing systems. A state-space 

controller has been designed by Gilles et. al. (90) that locks a ship 

onto an underwater pilot or leader cable and the system was 

successfully tested over a distance of 4 km. 

An offshoot from dynamic positioning technology is the use of 

acoustic transponders that lie on the sea-bed in port approaches to 

provide positional information to ships in close proximity. Smith (91) 

reports that Krupp Atlas-Elektronik have developed an automatic 

position fixing system that uses a laser beam to measure dynamica•lly 

both range and bearing from shore to ship. 

have decimeter accuracy. 

The system is claimed to 

The danger with automatic track-keeping is always the risk of 

collision. The potential integration of automatic track-keeping with 

collision avoidance systems very much depends upon how reliable and 

accurate the measurement of relative position and velocity of nearby 

ships can be made. 

The main problems are noise on radar data coupled with small 

perturbation of ship motion. Merz (92) is investigating the use of an 

optimal filtering algorithm to obtain best estimates. Lanka (93) has 

developed a continuously adaptive Kalman filter for tracking 

manoeuvring radar targets. Stockel and Colley (94) have been working 

on collision avoidance algorithms that enable a vessel to follow the 
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"rules of the road" in a potential collision situation. 

It i:s .envisaged that in the immediate future, developments in 

the continuing ship dynamics and control research programme at 

Plymouth Poiytechnic will take place in the following areas: 

(a) Identification and Parameter- Estimation 

Carrying on the work of Bouncer, the free-sailing car-ferry model 

will be used as a vehicle to investigate on-line identification 

techniques such as Linear Least Squares and Maximum Likel:l:hood for 

comparative evaluation with existing towing-tank data. 

(b) Integrated Track-Keeping·and Collision Avoidance 

The guidance system de-vised by Burns and Dove will be 

implemented· on the Polytechnic survey vessel for further testing and 

evaluation. The system will then be expanded to encompass the 

collision avoidance algorithms of Stockel and Colley and the 

feas~bili ty of a fully integrated track-keeping and collision 

avoidance system investigated. 
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Radius of track-changing arc. 
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Total acceleration vector. 
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Control transition matrix. 

Coefficients in cubic polynomial expression. 

Covariance. 

Cost function coefficient. 
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Sum of all external forces in surge direction. 
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Distance to mass centre in sway direction. 
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Non-linear sway hydrodynamic coefficients. 

Earth related state vector. 

Distance travelled in heave direction ·(J wdt) 

Earth related height co-ordinate. 
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Sum of all external forces in heave direction. 
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w· w· 
··D' n Damped· and undamped.natural frequency. 

Angular rate vector. 

Special Notations 

Dot notation is used for time derivatives_. 

i.e. 

Clarke'sbar notation is used for non-linear hydrodynamic 

coefficients. 

X uu = 1 
2 X 

uuu = 
1 
6 

3 a x 
au3 

Hat notation. is used when referring to best estimates. 

i.e. X is the best estimate of. X 
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APPENDIX 1 

MATHEMATICAL MODEL PARAMETERS 

Al.L Linear Time-Invariant Model 
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(m-Y· )(I -N·) .,. Y•N·• v z r r v 
= (linear model) 

Al.3 



. " 

Al.S. Ccimoutatioil of the'Discrete ·state and'Control Matrices 

' 
Foi::: the (inear constant coefflcient ·;;ystem: 

I 

X<tl' 

the discrete ·solution is: 

x<~<k+l>T) Jt X(kT) + 

If U<t) is piecewise constant over the interval!_T, then· 

x< <k+l!lT) = A(T) )((kT) + R<Tl u<Tl 

where, A:(T) e Ft 

aJ1d', B<T) <e ift - V F 
~1 

G 

For general appl:i!cations the exponential matrix may be evaluated by a 

digital computer ;program based on the following arrangement of the 

equation 

A. < I 'F 'F2 2 
i T) = + , , T + ; , :!:, + 

2! 

<l + FT{' iii + !F! 
2 

. ·;·. + F T { I 
(L-2) 

S:i!milarly, 

< I + F:r ( 
J 

+!FT I ( I 
(L-,1) 

L-1 
T 

(L-1') : 

'I' + .. '. ;. . 

+ F T) 
L 

B'(T) = T( I + .F i { l + F T { I + ...•• 
2 3 

+ 

}) n 

..... +F!._ t l+FT I +:F !l DJ) ·G 
(L:- 2) ,(•L-1) L 

) 

Starting with. the innermost factor,. the· number of ternfs I. in ·the 

series' approximation must ·be decided beforehand. When implemented in 

subroutine TRNMAC, a value of L = 50 was found to be sufficiently accurate. 

Al!, 4 



APPENBIX 2 

' 
MARINER HULL HYDRODYNAMIC COEFFICIENTS 

Particulars of Full-Size Vessel 

Hull 

Rudder 

Length between perpendiculars Lpp = 160.9 m 

Draught = 9.07 m 

Beam = 23.17 m 

6 
Displacement = 17.1024 x 10 kg 

Block Coefficient = 0.6 
9 2 

I about mass centre = 21.74962 x 10 kg m 
z 

Maximum Design Angle = 37-40 degrees 

Maximum Rudder Rate= 2.5- 3.7 degrees/second 

Closed-Loop Time Constant T = 2 seconds 
R 

Propeller 

Number of Propellers = 1 

Number of Blades 4 

Propeller Di:ameter = 6.706 m 

Direction of Rotation right-handed 

Closed-Loop Engine Time Constant T = 2 seconds 
N 

A2.1 



Coefficient 

X ' n 

X ' X u , u. 

X•' 
u 

x uu 

xuuu 

X 
un 

X ' a 

x vv· 

x 
rr 

x66, 

x 
M 

Surge Bydrodynam.ic Coefficients Sway Bydrodynamic CoeffiCients 

Non-Dimensional Value Dtmensio~lisinq COefficient Non-Dimensional Value 

Quasi-Linear Non-L..1..near :Factor Linear and Non-Linear 
Quasi-Linear 

0.0000462 ~DL 3 
y~ 0.0027 0.00255 

-o.0012 -6000· ~L2U y ' 0.52 . ' -n 

-o.ooo5384 -o.ooo42 ~DL 3 y· - 2104. 307• 
M 

-1860.436• ' - - y ' -o.01243 -o.Ol16 
V 

- -272.047• - Y•' 
V 

. -o.0070384 -o.00748 

- -15155.8• - '{' I 0.0028616 0.0022 
r 

-o.015 I-Q;015 ~ L
2u '. y.' -o.00027 -o.OOOOB6 a A r 

- .-o.008988 ~pL 2 '{ ' -o.056 -o.o56 • 
- 0.00018 .,L4 Yvvv - -o.080782 

~L2;2 ' - -o.000948 'lrvv - 0.15356 

- 21855.5• 966~' - -o.00082 

Y6vv ' - 0.011896 

* dimensionalised form 

Table A2.1 

Mariner Hull Hydrodvnamic Coefficients 

Yav·Hydrodyn~c Coefficients 

Coefficient Non-Dimensi~nal ValUe 

N ' 6 

N 
n 

N 
M 

N ' 
V 

N ' 
r 

Ne' 
r 

N 
a 

N 
uva 

livvv 

li 
rvv 

li ' 6vv 

Linear· and 
Quilsi-Linear 

-o.OOl26 

-o.26 

-o.0035l 

0.00005 

-0.00227 

-o.0000165 

-o.0017 

-o.0046 

Non-Linear 

-o.OOL274 

-169291. 5• 

-0.002635 

-o.ooo221 

-o.00166 

-o.000437 

-o.OOl7 

-o.0046 

0.016361 

-0.05483 

0.00041 

-o.00489 

* dimensionaliaed form 

A2.2 

Dimensionalisinq 

Factor 

~PL 3u 

~oL4 

~L4U 

.,DL 
5 

~ t
3u 

a A 

~ L3 
a 

(~L 3 l/U 

(.,oL4 l/U 

~PL3u 
r 

Dimensionalisinq 

Factor 

~L2u 
r 

~DL 3 

-
~L2U 

~L3 

~L3U 
~L4 

2 
&,paL UA 

(~DL 21 /U 

(~L 3 J/U 

~L2u 
r 

~L2 

. 

' 

: 

I 



A P P E N D I X 3 

TOWING TANK RESULTS CAR FERRY HULL 5502 

A3' .. 1.: Hull Resistance 

Forward Velocity u. Force in x-Direction 

(m/sl '; (N) 

0.255 -0.428 

0.505 -1.833 

0.750 -4.213 

1.003 -7.518 

1. 250 -11.731 

1.500 -17.126 

Table A3.1 

Hull Resistance 

Figure A3.1 shows a least-squares fit of the following cubic 

polynomial to the data in Table A3.1: 

X= 0.038462u -7.293782u2 -0.227298u3 
(A3 .1) 

so that, 

X = 0.038462 u 

X -7.293782 
uu 

x -0.227298 uuu (A3. 2) 

A3.2 Bollard Pulls 

2 A least-squares straight line fit of thrust against nA as shown 

in Figure A3.2(a) gives: 

-3 2 
X = -0.0482 + 1.1563xl0 nA 

or, 

X = 1.1563xlo-3 
nn 

A3.1 

(A3. 3) 

(A3. 4) 



Propeller Speed 2 
.Thrust nA nA 

(rad/s) 
. 2 

(•rad/s) (N) 

. 

10.47 io9.66 0.120 

20.94 438.65 0.480 

31.42 986.96 1.079 

41.89 1754.60 1.918 

52.36 2741.56 3.117 

62.83 3947.84 4.367 
-

73.30 5373.45 . 6.148 

83.78 7018.39 8.135 

Table A]. 2 (a) 

Bollard Pulls - Both Propellers Ahead 

- 2 It will be observed that the relationship Thrust = X n suffers 
nn A 

·from the disadvantage that a .Positive thrust results, whether or not 

the screws are ahead or astern. 

Propeller Speed nA Thrust 

(rad/s) (N) 

83.78 3.853 

73.30 2.877 

62.83 2.124 

52.36 1.387 

41.89 0.891 

31.42 0.462 

20.94 0.154 

10.47 0.069 

o.o 0.0 

-10.47 -0.103 

-20.94 -0.154 

-31.42 -o. 393 
cont •. cont .. 

A3.2 



Propeller Speed nA Thrust 

(rad/,s) (N) 

cont •• 

-41.89 -0.617 

-52.36 -0.9.76 

-62.83 -1.559 

-73.30 -2.021 

-83.78 -2.791 

Table A3.2(b) 

Port Screw Ahead and Astern 

A least-squares cubic polynomial fit to the data in Table A3.2(b) 

is shown in Figure A3.2(b). The cubic thrust-speed law is: 

X= O.Ol07875nA + 0.8073xl0-4nA
2 

+ 0.420lxl0-5nA 3 (A3. 5) 

A3.3 Self Propulsion Points. 

Propeller 

Speed nA 

(rad/s) 

25.13 

50.27 

74.61 

u R 

(m/s) (N) 

0.25 -0.449 

0.50 -1.823 

0.754 -4.215 

Mean Value. X = -0.040637 
un 

(N) 

0. 7];8 

2.872 

6.327 

Table A3.3 

T + R = 

0.268 

1.048 

2.112 

X = 
un 

T + R 

u.nA 

6.283 -o.04267 

25.133 -o.04170 

56.258 -0.03754 

Self Propulsion Points - Both Screws Ahead 

A3.3 



A3. 4 Rudder Experiments 

Rudder Angle cSA X' Y' N' 

l0- 3 10-3 lo- 3 I 

Degrees Radians X X X 
. ' 

5 0.087 0.005 0.268 0.126 

10 0.175 -0.052 0.537 -0.264 

15 0.262 -0.172 o. 784 -0.406 

20 o. 349 -0.303 1.218 -0.550 

25 0.436 -0.449 1.528 -,0.687 

30 0.524 ..,o. 699 1.693 -0.772 

35 0;611 -0.882 1.899 -0.833 

-10 -0.175 -0.083 ·-0.619 o. 273 

-20 -0. 349 -0.271. -1.21:8 0.579 

-30 -'0.524 "'0.744 1. 757 0.786 

Table A3.4 

Non-Dimensional Rudder Forces and Moments on Hull 

From Figure A3.3(b), 

hence, 

X' = -0.0022lliA
2 

xcSii = -o.oo221 

(A3. 6) 

(A3. 7) 

The non-dimensional sway-force/rudder relationship is shown in 

Figure A3.4(a) and is expressed by: 

·so that, 

Y' = 0.0034178cSA- 0.0009569cSA
3 

Y0 ' = o.oo34178 

'Y000 ' = -o.ooo9569 

(A3. 8) 

(A3. 9) 

Figure A3.4(b) gives the non-dimensional yaw-moment/rtidder relation-

ship and the polynomia•l fit is: 

or 

N' = -0.0016011/iA + 0.000742laA
3 

N0 ' = -o.oo16o11 

N000 ' = o.ooo7421 

A3.4 

(A3 .10) 

(A3 .11) 



The linear coeffi~ients Y0 ' and N0 ' in equations A3.9:aild A3.11 

were checked by fitting a straight line through the points over the 

range ± 20 degrees. 

A3.5 Drift Angle Experiments 
""--:--~·· 

2 
The 'straight-line fit of non-dimensional X-force against v as 

shown in Figure A3.5 is: 

i.e. 

2 
X' = -0.00617v 

X I = -0.00617 
vv 

(A3.12) 

(A3 .13) 

Figure A3.6(a) shows non-dimensional sway force against lateral 

velocity. The least-squares fit is: 

hence, 

3 
Y' = -'O.oo98675v - o.44117.8v 

Y I = -0.0098675 
V 

y = -0.441178 
vvv 

(A3 .14) 

(A3.15) 

Figure A3 .. 6(b) gives the non-dimensional yaw-moment/sway velocity 

relationship. The polynomial fit is: 

· where, 

N' = -o.oo43535v - 0.0326335 

-0.0043535 

N I = -0.0326335 
vvv 

(A3.16) 

(A3.17) 

As with the rudder coefficients, the linear terms Y ' and N ' were 
V V 

checked by a straight line fit over the sway velocity range± 0.08 m/s. 

A3.6 Added Mass Coefficients 

From equations (4.1) 

For hull 5502, 

x.• = -0.05263 m' 
u 

Y•' -0.93734 m' 
V 

Y• I = -0.21939 I r z 
I 

N. I = -0.028446 m' 
V 

N• I = -1.1148 I I 

r z 

m' = 0.00809 

I I 

z = 0.0006236 

A3.5 

. 
(A3.18) 



Rudder Anqle ~ll, 

Degrees 

0 

10 

20 

30 

-20 

-30 

0 

10 

20 

30 

-20 

-30 

0 

10 

20 

30 

- 20 

-30 

0 

10 

20 

30 

-20 

-30 

0 

10 

20 
3o 

-20 

- 30 

this gives, 

U-= Q.754 Ill/S . -v -= u sin I} 

Dritt Angle 8 X' Y' N' Drift Anqle 8 X' 

Deqrees xl0-3 xlo- 3 xlo- 3 Degrees xl0-3 

10 -o.083 2.la6 0.633 -10 -0 . 139 

10 -o,2l7 2. a39 0.8a1 -10 .o.1so 

10 -o.470 3.554 0 -10 -o.19l 

10 -o.955 4.208 -o. 220 - 10 -o.594 

10 -o. 315 1.062 1.182 -10 -o.516 

10 -o. 676 0 . 613 1. 389 -10 -o . 976 

8 -0.067 1. 593 0 . 470 -a -0.072 

8 -o.191 2.308 0.158 -a -0. 119 

8 -o . 403 2. 900 -o.140 -a -o . 253 

8 - 0.914 3. 513 -o. 383 -8 -o.589 

8 -o. 289 0 . 286 0.984 -8 .0,460 

8 - 0.687 -0.020 1. 205 -8 -o. 935 

6 -0.021 1.021 0.338 -6 -o.052 

6 -o . 145 1.695 0 . 025 -6 -o . 103 

6 -o. 382 2.369 -o.228 -6 -o.268 

6 -o.852 2.839 -o.491 -6 -o . 620 

6 -o. 320 -0.184 0.869 -6 -o. 392 

6 -o.697 -o.633 1.079 - 6 -o .909 

4 -o.o41 0.470 0.256 -4 -o. ll9 

4 -o.139 1. 185 -o .038 -4 -o. 191 

4 -o.392 1 . 838 -o. 325 -4 -o.356 

4 -0 .826 2. 431 -o . 563 -4 -o.723 

4 -o. 310 -1.675 o. 796 -4 -o. 475 

4 -o. 687 - 1.920 0 . 984 -4 -o.924 

2 -o.057 0.123 0.143 -2 -o.098 

2 -o . 124 o . 756 -0.154 -2 -o.166 

2 -o.Jl5 1.389 -o. 435 - 2 -o. 3a7 
2 -0.754 1.940 -o.649 -2 -o.749 
2 -o. 299 -o.919 0 .691 -2 -o.439 
2 -0. 692 -1. 34a 0.869 -2 -o.847 

'Table 'A3. 5 ·nrift ·Angle .. E?tperiments 

Xe I = -0.000426 
u 

Y. ' = -0.007583 
V 

y. ' = -0.0001368 
r 

N•' = - 0.00023 
V 

N •' = -0.0006952 
r 

A3 . 7 Free-Sailing Tests 

Y' N' 

xl0- 3 xlo- 3 

-2.2aa -o.6la 

- 1.675 -o.887 

- 1.226 -1 •066 

- 1.389 -0 .974 

-3.656 -o. ooa 

· - 4.085 0.248 

-1.655 -o.436 

-1.001 -o . 724 

-o . 429 -0.991 

-o.020 - 1.220 

.. 3,023 0.127 

-3 . 452 o . 373 

-1.103 -o. 328 

-o. 3Ba -o.594 

0.184 -o. 886 

0.654 -1.077 

-2.226 0.236 

2. 778 0 . 494 

-0.531 -0.225 

-o.041 -o. S03 

0.613 -o . 789 

1.164 -0.981 

- 1.736 0 . 313 

-2.186 0.554 

-o.082 -0.107 

o. 36a -o.388 

1.001 -o. 686 

1.491 -o. 907 
-1.409 0.410 
-1.797 0.639 

(A3.19) 

The steady-state f orces and moments acting on the hull during a 

turning circle are obtained by substitution of the data in 4 . 7.7 

into equations (4.2) 

Steady-State Sway Equation 

-2 .11485 = - 1.05959 - 0.04189Y + 1.02698 - 1.65868 
r 

o.l3995xl0-3Y 
rvv 

A3.6 

0.07883 (A3 . 20) 



.From equation (4. 3), 

- 2 . 63 Y rv = 1. 0 Y r 
rvv r 

Substitution of equation (A3.21) into (A3,20) gives: 

hence, 

and, 

Steady-State Yaw EqUation 

y 3.129053 
r 

'lrvv = 1526.64 

Y I = 0.0004926 
r 

y = 0.022934 
rvv 

Substitution into equation (4.2) gives, 

o = -1.59833 - o.04189N - 1.64488 - 0.41948 - 0.0001399N 
r rvv 

(A3. 21) 

(A3.22) 

(A3.23) 

+ 0.2090156 (A3.24) 

From equation(4.3), 

- 2 N rv = 0.771 N r 
rvv r 

Combine equations (A3.24) and (A3.25), 

giving, 

and, 

N = -46.54237 
r 

N = -10750.586 rvv 

N I -0.002143 
r 

N 
rvv 

-0.047235 

A3.7 

(A3.25) 

(A3. 26) 

(A3.27) 
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A P P E N D I X 4 

OPTIMAL FILTER 

The optimal filter has been designed by Dove and was used in 

conjunction with the optimal controller during computer simulation and 

free-sailing model tests. It comprises of a recursive algorithm which 

remembers past data, receives future measurements, and bases the estimate 

of the state vector upon a combination of past and present information . 

The block diagram of the filter model is shown in Figure A4.1. 

z (k+l) 

K <k+l) 

H Ck+ll A(k+l , kl 

"-------lB Ck+l , k > 

Figure A4.1 

Optimal Filter 

XCk+l) 

X Ck> 

Delay 

.__ __ --J u ( k+l) 

u (k) 

The filter equations are summarised in the paper presented in 

Appendix 7, and are numbered (14) to (16) consecutively. 

M.l 



A P P E N D I X 5 

ELEMENTS OF A AND B MATRICES 

Using small perturbation analysis, the elements of the 4 x 4 

discrete state transition matrix A and 4 x 2 control transitionmatrix B 

have been computed in rea~-time using the following relationships: 

all 

al2 

al3 

al4 

a21 

a22 

a23 

a24 

a31 

a32 

a33 

a34 

a41 

a42 

a43 

a44 

bll 

bl2 

b21 

b22 

b31 

b32 

b41 

b42 

1 - 0.0410116u - 0.02119 r 

1.06725 r 

0 

0.0140048 r 

0. 446096 r 

0.995 - 0.1593785u - 2.05168 ABS.(r) 

0 

0.005 + 0.028376u- 0.02429 ABS(r) 

0.015758 r 

0.01- 0.101248u + 0.6868 ABS(r) 

1 

0.989 0.195818u 

0.03377 r 

-0.0295 - 0.17164u + 1.29186 ABS(r) 

0 

0.967 - 0.35436u 

-0.03162678
0 

-0.000195 + 0.0000065n
0 

+ 0.000478 ABS(r) 

0.0195 + 0.071189u- 0.0045258 ABS(o
0

) 

0 

0.017- 0.059506u- 0.00146 ABS(o
0

) 

0 

0.0315- 0.1130267u 

0 

A5.1 



A P P E N D I X 6 

COMPUTER PROGRAMS 

All mainframe simulation programs have been run on a PRIME 9950 CPU 

with 10 MB memory and 1 x 600, 3 x 300 MB disc file storage. The sub­

routines listed in A6.1, 2 and 3 are written in FORTRAN and form the 

essential core of the simulation package. 

The real-time ship control program, implemented on the TMS 9900 

microprocessor, is listed in A6.4. 

A6.1 Main Subroutines 

Subroutine NAB : 

Subroutine RICAL 

Subroutine RICATI 

Subroutine OPTCON 

Computes the non-linear system matrices 

F and G and discrete transition matrices 

A , B and C. 

Determines the Riccati matrix N, feedback 

matrix S , command vector m and reverse­

time tracking matrices D and E. 

Is called by RICAL to obtain the discrete 

solution of the matrix Riccati equation. 

Calculates the optimal control law and confines 

the maximum and minimum control values to remain 

within specified limits. 

A6.1 



SUBROU'l'rNE IIAB(A,B,C,N,NX,NG,NB,NC,NN,IFIN ,K,LOOP,T, 
&WUH,TSAMP,XOLO,UVEL,UA,WU,UDl,U02,U} 

C THIS SUBROU'l'INE COMMENCES WIT!i THE NON-DIMENSIONA.LISED 
C RYDRODYNAMIC COEliTICIENTS AND CALCULATES THE CONTINUOUS 
C TIME STATE AND FORCING MATRICES. IT THEN CALLS T!UIAAC TO 
C CONVERT THESE TO THE DISCRETE TIME MATRICES A, B & C. 
c 
c 

c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

c 

DIMENSION P(8,8),G(8,6l,XP(14l,YP(14l,ANP(14) 
DIMENSION A(8,8),B(8,2),C(8,4),WU(4 l ,WUH (4) 
DIMENSION R(500),XOL0(8),T (S00) 
DIMENSION U(2) 

IF(K-1 )6,6, 7 
6 READ(5,101)RO,AL,AM,TAUR,TAUN,ZI 

!PIM•U'IN+ 1 
NX~1 

WRITE (6,10J)RO, AL,AM,TSAMP,TAUR,TAUN,ZI 
WRITE (6,104)N,NG,NN,IP!N 

READ IN NON-DIMENSIONALISED HYDRODYNl\MIC DERIVATIVES 
USING MATRED AND PRINT VALUES USING MATPRN 
COHIIENTION: 

XP(1 l ~XDELT' YP (1l =YDELT' ANP (1) =NDELT' 
XP (2) •XN' YP(2l =YNN' ANP (2) =NNN' 
XP ()) •XU' yp {)) =YU' ANP () ) =NU' 
XP {4 )•XUDOT ' YP(4 l =YUOOT' ANP(4 l ~NUDOT' 

XP (S) •XUU' YP (Sl •YV' ANP (S)=NV' 
XP (6l=XUUU' YP(6) =YVDOT' ANP(& ) =NVDOT' 
XP(7 )•XUN' YP (7)=YR' ANP (7) =NR' 
XP (8) =XROOT' YP (8) cYRDQT' ANP (8) =NRDOT' 
XP(9)=XUA' YP(9)-YUA' ANP (9) =NUVl\' 
XP ( 10) •XVl\' YP (10) •YVA' ANP (10) =NVA' 
XP (ll l •XVV' YP(lll~YVW' ANP ( 11 l =NVW' 
XP (12) =XRR' YP (12) =YRW' ANP(12)=NRW' 
XP ( 13) •XDD' YP ( 13) •YDDD' ANP ( 13 l =NDDD' 
XP (14) •XNN' YP!l4l~YDW' ANP(14l=NDW' 

CALL MATRED(XP,14,1,28) 
CALL MATPRN (XP,14, 1 ,28,12HNDX 

CALL MATRED(YP,14,1, 28) 

CALL MATPRN (YP,14 ,1 ,28,12HNDY 

CALL MATRED (ANP,14,1,28l 
CALL MATPRN (ANP,14,1,28,12HNDN 

C COMPUTE DIMENSIONALISED BYDRODYNAMIC DERIVATIVES 
C THAT CORRESPOND TO SHIP FORWARD VELOCITY . (lNEL) 
c 

c 

7 CALL OIMEN (RO ,AL,XP,YP,ANP,UVEL,XOLD,UA,U, 
lXDELT,XN,XU,XUOOT,XUU,XUUO,XUN,XRDOT,XUA,XVA,XVV,XRR, 
2XDD , XNN,YDELT,YNN,YU,YUDOT,YV,YVDOT,YR,YRDOT,YUA,YVA, 
l YVVV, \'RW, YDOO, YDW, ANDELT, ANNN, ANU, ANUOOT, ANV, ANVDOT, 
4ANR, ANRDOT, ANUA, AlNA, ANVW, ANRW, AND DD, ANDW) 

C COMPUTE X, B AND C COEFFICIENTS 
c 

c 

CALL CALXBC (AM,ZI,XOLD,UVEL,WU,UD1,UD2,K,WUH, 
lXN,XU,XUOOT,XOU,XUUU,XUN,XUA,XVA,XVV,XRR,XDO,XNN, 
2YDELT,YNN,YV,YVOOT,YR ,YRDOT,YUA,YVA,YVVV,YRVV,YDOD,YDVV, 
)AHOELT , ANNN, ANY' ANVOOT, ANR, ANRDOT , ANUA, ANVA, AlNVV, ANRW I 
4ANDDD,ANOW,X1,X2,X4,X6,X8,KU3,KU5, 
SB1 ,B2,B4,86,B8,BU4,BU& , 
6C1,C2,C4,C6,C8,CU4,CU6,U) 

C COMPUTE P MATRIX 
c 

CALL FMAT(X4,X6,X8,XOLO,B4,86,B8,C4,C6,C8,F,N,NN) 
c 
C COMPUTE G MATRIX 
c 

c 

CALL GMAT(X1,X2,XUJ,KUS,B1,B2,C1,C2, 
1BU4,BU6,CU4 , CU6,G,N,NG,NN) 

C COMPUTE DISCRETE TIME STATE TRANSITION MATRIX A (T) , 
C CONTROL TRANSITION MATRIX B(T) & DISTURBANCE TRANSITION 
C MATRIX C (T). 
c 

c 
CALL TRNMAC(F,G,A,B,C,N,NG,NB,TSAMP,NN) 
WRITE WliEN K=1,LOOP , 2LOOP, )LOOP ETC. 
IF (K-1)2,2,3 

3 IP (K-LOOP)4 , 5,5 
5 LOOP•LOOP+20 
2 CONTINUE 

WRITE (6,102)T(K) 
CALL MATPRN (P,N, NN,12HP MATRIX 

c 

c 

c 

CALL MATPRN (G, N,NG,NN,12HG MATRIX ) 
CALL MATPRN (A,N,N,NN,12BA MATRIX ) 
CALL MATPRN(B,N,NB,NN,12HB MATRIX ) 
CALL MATPRN(C,N,NC,NN,6R C ) 

101 POR/1l\T(6P12.4l 
102 FORMAT(lH , 'TIME•' ,F10.S, 'SECONDS' ) 
103 FORMAT Clfl , 10X, 'RO•' , EH. 7, ' KG/M** 3' / 10X ,'LENGTH:' , El4. 7 , 

1'M'/10X,'MASS•' ,E14.7,'KG' /10X,'TSAMP•' ,E14.7,'SEC'/10X , 
2'TAUR•',El4. 7,'SEC'/10X, 'TAU~~.El4.7,'SEC'/lOX,'IZa ', 
3 E14.7,'KG M** 2') 

104 PORMAT(lH ,10X,'N~' ,r5/10X, 'NG=' ,IS/lOX,'NN= ',I ; / 10X, 
1' !FIN•', IS) 

4 RETURN 
END 

SUBROUTINE RICAL (F ,G,GU,AA,BB,Q,R,S,W, 
&XD, YD,VFOR,TSAMP,N,NB,!IM,NN,IFIN) 

C • SUBROUTINE CALCULATES THE RICCATI FEEDBACK I'.ATRIX 
C • AND COHMANll MATRIX 
c 

c 

DIMENSION AA(8,8) ,BB(8,2) ,Q(8,8l ,R(2,2l ,W(8,8) ,WPl(8,8l 
DIMENSION S(2,8l ,F(8,8l ,G (8,6) ,GU(8,2l ,D(8,8) , £ (8,8) 
DIMENSION REVIN (8 ,500),GT(2,8l ,RGT(2,8) 
DIMENSION RGTM(2,8) ,UREV(8) ,DM(8,1),EUC8 , 1l 
DIMENSION OLOM(8l ,VREV(2),VFOR(2,500),C(8,4) 
DIMENSION XD(SOO) ,YD(SOO) 
COMMON RIN (8,500l,YOUT(8,250l 

C • PUT W MATRIX TO TERMINAL (NULL )VALUE 
DO 15 J•1,N 
DO 15 I•1,N 

15 wct,Jl-o.o 
c 

DO 10 M=1, !FIN 
CALL RICATI (AA,BB,Q ;R,S,W,WP1,TSAMP,N,NB, NN) 

c 
C • UPDATE W MATRIX 
c 

c 

DO 20 J•1,N 
DO 20 !=1,N 

20 W(I,Jl-wFl(I,J) 
10 CONTINUE 

S(1,3l=-S(1,3l 
s (1,5) • -S (1,5) 
CALL MATPRN (S, NB,N,NN,6HS ) 
CALL MATPRN (W, N,N,NN ,6 HW ) 
WRITE(1,ll4) 

ll4 POR/1l\T ( lfl , 'OK' l 

C • DITERI!INE GU (8X2) MATRIX PROM G C8X6 ) 
c 

DO 45 I~1,N 
DO 45 J•1,NB 

45 GU(I,J)=G(I,J) 
C * CALCULATE R£VERSE TIME TRACKING MATRICES D AND E 

CALL TRACK (F,GU,R,Q,W,S,D,E,TSAMP , N,NB,NN) 
CALL MATPRN (D, N,N,NN,6HD ) 
CALL MATPRN(E,N,N,NN,6HE ) 

c 



C • GENERATE DESIRED STATES 
C • INITIALISE 
c 

CALL MATZER (RIN, N, IP IN, NN ) 
c 
C • RIN IS THE DESIRED STATE MATRIX: 
C RIN(l ) • DELTD RIN(2)=NO 
C RIN(3)•XD RIN (4)•UD 
C RIN(5)3YD RIN (6)=VD 
C RIN(7)•PSID RIN(8)•RD 
c 

c 

RIN ( 2, l) 2 6 . 439 
RIN(J,l)=().O 
RIN(4,U=7. 717 
RIN (5 , 1 )=().0 
RIN(7,lla-0 . 173076 
XD ( 1) =(). 0 
YD(l)•2590.0 

C • STAGE ONE 

c 

00 30 I32,46 
RIN (2 , I)-6 . 439 
RIN (4 ,1)•7 . 717 
RIN (3, I ) ~RIN (J,t- 1)+RIN(4,I)*TSAMP 

30 RIN (7, I )=<>. 173076 

C • STAGE "n/0 

c 

00 12 I347, 79 
RIN (2, I )•6 . 439 
RIN (4 ,I) •7. 717 
RIN ( 3,I ) =RIN (J ,I-1 ) +RIN(4,I)*TSAHP 

12 RlN(7 ,I )a0. 7135 

C • STAGE THREE 
00 34 1•80 , 129 
RIN (2, I) •6 . 439 
RIN (4,I )•7. 717 
RIN( J ,I ) •RIN (3 ,I-l ) +RIN(4,I)~SAMP 

34 RIN(7,I) • 1-209397 
c 
C • STAGE FOUR 

00 36 I=1JO,rFIN 
RIN (2, 1 ) •6. 4 39 
RlN(4,I)•7 . 717 

RIN(3,I)•RIN( 3 ,I-1) +RIN(4 ,I) *TSAHP 
36 RIN( 7 ,I)a0.0 

00 39 !•2, IPIN 
XD ( D =XD (I- ll +RIN (4 , Il *TSAHP*COS (RIN (7, I)) 

C 39 YD ( I )•YD(I-1 ) +RIN (4,I ) *TSAHP*SIN (RIN (7, I )) 

C WAY-POINT ADVANCE 
c 
c 00 41 J•41,46 

00 41 J•J8,46 
RIN (7 ,J) -o . 7l35 

41 CONTINUE 
c 00 42 J•72, 79 

00 42 J•70, 79 
RIN (7, J )•1 .209397 

42 CONTINUE 
c 00 43 J•119 ,1 29 

00 43 J•ll6' 129 
RIN(7,J)a0.0 

43 CONTINUE 
c 
C • REVERSE TIME DESIRED STATES 

00 40 J•l, IFIN 
NBACK= IPIN- (J -1 ) 
00 40 I•l,N 

40 REVIN(I,J)•RIN (I ,NBACK) 
C • REVERSE-TIME TRACKING USING THE DISCRETE EQUATION : 
C H(K+l )•D(T) *M (K)+E(T) *UREV(Kl 
C * INITIALISE AT TERHINAL TlHE 

CALL HA'l'RED (OLDH,N,NH,NN) 
CALL MATPRN (OLDH,N,NH,NN,6HI«>LD 

c 
C • CALCULATE -R••- t •G• 

ONEM-l.O 

c 

c 

CALL MATINV (R,NB , NB) 

CALL MATRNS (GT,GU,N ,NB,NN) 
CALL MATMUL(RGT , R,GT,NB , NB,N,NN) 
CALL MI\TSCL (RGl'M,ONEM,RGT, NB ,N, NN) 

00 60 K•l , ! PIN 
00 70 I• l,N 

70 UREV (I)•REVIN (!,K) 
CALL MATHUL (DH,D,OLDH,N,N,NM,NN ) 
CALL MATMUL (EU,E,UREV,N,N, NH ,HN) 
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c 

CALL MATADD (OLDH,DM,EU,N ,NH,NN) 
CALL MAl'MUL (VRL""V,RGTH, OLDM,NB,N,NM,NN) 
NFOR•IFIN- (K- l) 
00 80 I=1,NB 

8o VFOR(I,NFOR) =VREV(I) 
60 CONTINUE 

C • RECALCUU.TE VFOR (WAY-POINT ADVANCE OPTION) 
c 

00 65 K+1, ! FIN 
VFOR(1,K)=O.O 
VFOR(2,K)=<l.O 
00 6 4 I•l.N 
VFOR(l,K) =VFOR(1,X)+S(l,I)*RIN(I,K) 

64 VFOR(2,K)cVFOR(2,K)+S(2,I) •RL~ ( I,Kl 

65 VFOR(2,K)=VFOR(2,K)+6.439 
c 

c 

RETURN 
END 

SUBROUTINE RICATI (A,8,Q,R,S,W,WP1,TSAHP,N,NB,NN ) 

C •••••DISCRETE SOLUTI ON OF THE MATRIX RICCATI EQUATION••••• 
c 

c 

DIMENSION PA (8,8) ,8S(8,8) , 8SM (8,8) ,V (8,8) ,VT ( 8,8) , 
1VTW(8,8) 

DIMENSION V'IWV (8,8) ,8(8,2) ,8T(2,8) ,an; (2 ,8) ,W (8,8), 
1WP1(8,81 

DIMENSION 8ni8 (2,2), R (2,2 ) ,TR(2,2) ,TR8ni8(2,2) 
DIMENSION A (8,8) , 8niA( 2 , 8) ,S(2,8) ,ST (8,2) 
DIMENS ION STT(8 , 2),STTR(8,2),STTRS(8,8),Q(8,8)QT(8,8) 

C S•(T•R+B'~•s) ••- l •s••w•A 

C WIIER£ T IS A SCALAR, R A 2X2 DIAGONAL MATRIX 
c 
c 
c 
c 
c 
C • TRANSPOSE OF a MATRIX 

8 A 8X2 MATRIX 
W A 8X8 SQUARE MATRIX 
A A 8 X8 SQUARE MATRIX 
S A 2X8 MATRIX 

CALL HATRNS (BT, B,N,HB,HN) 
c 
C + PRODUCT OF B' AND W 

CALL MATHUL (BTW,BT , W,NB,N,N,NN) 
c 
C * PRODUCT OF Bni AND 8 

CALL MATMUL (BTWB,BTW,B ,NB,N,NB,NN) 
c 
C • PRODUCT OF SCALAR TSAMP AND MATRIX R 

CALL MATSCL (TR,TSAH.P,R,NB,HB ,HN) 
c 
C * ADD ~TRICES TR AND 8ni8 

CALL MATADD (TRan;a , TR, BTWB,NB,NB , HN) 
c 
C * INVERT MATRIX TRBn;a 

CALL MATlNV(TRBn;a,N8,HB) 
c 
C * PRODUCT OF an; AND A 

CALL MATMUL (BTWA,Bn; , A,HB,N,N,HN) 
c 
C • COMPOTE S MATRIX 

CALL "'Jt.TMUL (S ,TRBn;a,BniA,NB ,NB, N, HN) 
c 
C WP1•(T*Q+S'+T*R*S)+(A-B*S) '*W* (A-8*S ) 



C W11ERE Q "IS A 8X8 DIAGONAL MA'miX 
C W,S,T,R,A AND B DEFINED EARLIER 
c 
C • TRANSPOSE OF S !Ill 'm IX 

cALL MA'mNS (ST,S,NB,N,NN) 
c 
C • PRODUCT OF S' AND SCALAR TSAMP 

CALL ~~TSCL(STT,TSAMP ,ST,N ,NB,NN) 

c 
C • PRODUCT OF STT AND R 

CALL ~~TMUL (STTR , STT,R,N,NB,NB , NN ) 

c 
C • PRODUCT OF STTR AND S 

CALL MATMUL (S'M'RS, S'ITR, S, N, NB, N,NN) 

c 
C • PRODUCT OF Q AND SCALAR TSAMP 

CALL MATSCL (QT,TSAMP,Q, N,N, NN) 
c 
C • ADD QT AND STTRS 

CALL HATADD (PA,QT,STTRS,N,N,NN) 
c 

c 
C • PRODUCT OF B AND S 

c 

CALL ~ATHUL (BS,B,S,N,NB,N,NN) 
CALL MATSCL (BSH,ONE!o!,BS,N ,N ,NNl 
CALL HATADD (V, A,BSH,N,N,NNl 

C • TRANSPOSE OF V 
CALL MATRNS (VT,V, N,N,NN) 

c 
C • PRODUCT OF VT AND W AND V 

c 

CALL MATHUL (VTW,VT,W,N,N , N,NN) 
CALL MATHUL(VTWV,VTW,V,N,N,N,NN) 

C • NEW VALUE FOR W HATRIX....-P1 

c 

c 

CALL HATADD(WP 1,PA, VTWV,N,N,NN) 

RETURN 
END 

SUBROUTINE OPTCON (XOLD, X, S, VFOR, UD1,UD2 ,U,N,NB,NX,liN , 
&TSAMP,DRUDD,HOD~,ABCER,CERROR,XO,YO,PTRACX) 

C • SUBROUTINE TO COMPUTE OPTIMAL CONTI!OL LAW 

c 

c 
c 

DIMENSION XOL0(8),VFOR(2,500l,S(2,8),SXI2l,U I2l,DRUDD 
1 (500) 

DIMENSION X0(250),Y0(250l 
COMMON RIN(8,500l,YOUT (8 ,250) 

C • RECALC~TE XOLD(S) USING co-ORDINATE TRANSFORMATION 
c 

c 

c 

IF (X.GT.ll TO TO 20 
PTRACX>().O 

20 IF(X.GT.46l GO TO 21 
YI•2590. 0 
XI=<J.O 
RIN7=-0. 173076 
GOT022 

21 rF (X.GT. 79) GO TO 23 
YI•2290.'974 
XI•17l0. 378 
RIN7-<>. 7135 
GO TO 22 

23 lF(!<.GT.129l GO TO 24 
YI•3124 . 321 
XI•2673 .084 
RIN7=l. 209397 
GOT022 

24 YI•4928. 924 
XI•3355. 213 
RIN7-<>.0 

22 TEHP•XOLD(5l 
XOLD(5)• (YO(X)-YI)*COS(RIN7) -(XO(X)-XI) *SIN(RIN7) 
PTRACX•PTRAC!<+(XOLD(5) ••2)*TSAI1P 

C • UOPT-VFOR-S*X 
c 
C • CHANGE TO COURSE-KEEPING 
C • rF COURSE ERROR EXCEEDS 20 DEGREES . 
c 

UDt-o .o 

c 

UD2=<J .O 
CERROR•RIN(7?Kl-XOLD(7) 
~ER=ABS (CERROR I 

~~n:lli~5~~~9f0~8l~'IIJC,NN) 
U(1) =VFOR(1,Xl-SX(1l+UD1 
GO TO 19 

18 U(1) =- (CERROR- 30 .0 *XOLD (8))+UD1 
19 U(2l•VFOR(2,K)-SX(2 )+UD2 

C * LIMIT ENGINE SPEED 
c 

c 

c 

U2LlHl=l.5*RIN(2,K) 
U2LIM2=0 . 5*RIN(2,K) 
IF (U(2) .GT.U2LIH1) U(2 ) =U2LIM1 
I!'(U ( 2) .LT .U2LIH2l U(2) =U2LIH2 

XOLD (5) -TEMP 
IF (MODEl 1, l. 2 

C MAXIMUM RUDDER ANGLE = +OR- 35 DEGREES . 
c 

c 

1 IF (U(1) .LT.0.610865) GOTO 3 
u ( 1) =(). 610865 
CON'I'INUE 
IF (U(1) .GT.-D .6l0865) GOTO 5 
u ( 1) =-o. 610865 
CONTINUE 

C MAXIMUM RATE OF CI'~GE OF RUDDER IS 2. 5DEG/SEC. 
c 
c 
C MAKRTE IS MAXIMUM RATE OF Clll\NGE OF RUDDER ANGLE 
C CURRTE IS CURR.ENT RATE OF CP~GE OF RUDDER ANGLE 
c 

c 
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~~TE=<J .04363323 1J 

IF (K- 1)12 ,12 ,13 
12 CURRTE•U(1) / TSAI1P 

rF (CURRTE.LT.0.0436) OOTO 14 
U(1)=0 .0436*TSAMP 

14 CONTINUE 
IF(CURRTE.GT.-0 .0436) GOTO 66 
U(l)•-Q.0436•TSAMP 
GO TO 66 

13 CURRTE•(U (1) -DRUDD (K-1ll / TSAMP 
IF (CURRTE .LT.0.04J6l GOTO 44 
U(1)=DRUDD (K- l l + (0.0436*TSAMP) 

44 CONTINUE 
IF (CURRTE .GT.-D.0436) GOTO 66 
U( 1) =DRUDD (K-1)-(0.0436*TSAMP) 

66 CONTINUE 

RETURN 

END 



A6.2 Utility Subroutines 

Subroutine DIMEN : 

A6.3 

Subroutine CALXBC 

Subroutine FMAT 

Subroutine GMAT 

Subroutine TRNMAC 

Subroutine TRACK 

Subroutine REVMAT 

Matrix Operations 

Subroutine MATINV 

Subroutine MAT ADD 

Subroutine MATMUL 

Subroutine MA TONE 

Subroutine MATRED 

Subroutine MATEQL 

Subroutine MATIDN 

Subroutine MATS CL 

Subroutine MATZER 

Subroutine MATPRN 

Subroutine MATRNS 

Dimensionalises the hydrodynamic coefficients. 

Called by NAB . 

Computes the elements of the F and G 
matrices . Called by NAB. 

Sets up the F matrix. Called by NAB . 

Sets up the G matrix. Called by NAB. 

Evaluates discrete transition matrices A, B 

and C. Called by NAB. 

Generates the reverse-time discrete transition 

matrices D and E. Called by RICAL. 

Evaluates reverse-time discrete transition 

matrices D and E. Called by TRACK . 

Performs matrix inversion. 

Performs matrix addition. 

Performs matrix multiplication. 

Produces a One's matrix. 

Reads in a matrix. 

Makes matrix A equal to matrix B. 
Produces an Identity matrix. 

Multiplies a matrix ·by a scalar. 

Produces a null matrix. 

Prints out a matrix. 

Provides the transpose of a matrix. 

A6.5 



c 

SUBROUTINE DIHEN(RO, AL,XP,YP,ANP ,UVEL,XOLD,UA,U, 
lXDELT,XN , XU,XUDOT,XUU,XUUU,XUN,XRDOT,XUA,XVA,XVV,XRR, 
2XDD,XNN, YDELT , YNN, YU, YUDOT, YV, YVOOT, YR, YRDOT, YUA, YVA, 
JYVVV , YRVV,YDDD,YDVV , ANDELT,ANNN,ANU,ANUDOT,ANV,ANVOOT, 
4ANR,ANROOT,ANUA,ANVA ,ANVVV,ANRVV,ANODD,ANOVV) 

DIMENSION XP(14) ,YP(14) ,ANP(t4) ,XOLD (8) ,U(2) 

C X DI~SIONALISED HYDRODYNAMIC DERIVATIVES 
C FOR NON-LIN~R MODEL 
c 

c 

c 

R02o0 . 5*RO 
RA2c0. 5* 1. 28 

XOELT-XP (1) •R02*AL• •2*UVEL'*2 
XN= (XP (2) 'R02*AL ** J*7 . 752) I (2. • ) . 14159) 
XU•XP (3) . 

XUDOT•XP(4) ' R02 *AL ** ) 
XUU•XP (5) 

XUUU•XP(6) 
XUN•XP(7) 
XRDOTcO.O 
XUA•XP (9l *RA2 *AL**2 ' UA 
XVl\"'() . 0 
XVV•XP ( ll ) •R02 *AL .. 2 
XRR=XP (12 ) ' R02 ' AL *•4 
XDD=XP(13) •R02 • AL••2• UVEL ••2 
XNN•XP ( 14) 

C Y DIHENSIONALISED HYDRODYNAMIC DERIVATIVES 
C FOR NON- LINEAR MODEL 
c 

c 

UCOR2• (0, 84 ' UVEL**2+0.00001533l*U (2) ** 2) 
YOELT•YP(1)*R02 *AL**2 ' UCOR2 
YNN•YP (2) 
YU=O.O 
YU~.o 

YV•YP (5) ' R02*AL *• 2*UVEL 
YVDOT•YP(6l*R02• AL••J 
YR•YP (7) • R02*AL *• J • UVEL 
YRDOT•YP (8) • R02*AL'*4 
YUA=O.O 
YVA•YP(10) ' RA2*AL'' 2' UA 
YVVV=(YP(11j *Ro2• AL•• 2) / UVEL 
YRVV•(YP(l2 • R02*l\L*'))/UVEL 

YODD-YPf1)) ' R02*AL'* 2*UCOR2 
YDVV•YP(l4) • R02 *AL' *2 

C ~ DIMENStONl\LISED HYDRODYNAMIC DERIVATIVES 
C FOR NON- LINEAR MODEL 
c 

c 

k~DELT•ANP(l ) •Ro2•AL•• J •UCOR2 

ANNN•ANP (2) 
ANU=O .O 
ANUDDT-0.0 
k~=ANP ( 5)'R02•JIL •• ) •UVEL 

ANVOOT-ANP(6)'R02 ' AL'*4 
ANR•ANP(7 ) 'R02*AL '' 4' UVEL 
ANRDOT•ANP (8) *R02*AL• •S 
I\NUA2ANP (9) *RA2*AL**3 
ANVA•ANP (l0) *RA2*AL** ) ' UA 
ANVVV• (ANP (ll) *R02 *l\L* • )l / UVEL 
ANRVV• (ANP(l2) *R02'AL**4) / UVEL 
At/DDO•ANP ( lll ' !!02*AL •• ) *UCOR2 
ANOVV,.ANP (14) *R02*AL •• J 

RETURN 

END 

c 

c 

SUBROUTINE CALXBC(AM,ZI,XOLD,UVEL,WU,UOl,UD2,K,WUM 
lXN , XU,XUDOT,XUU,XUUU,XUN,XUA,XVA,XVV,XRR,XOO,XNN, 
2YDELT,YNN,YV,YVOOT,YR, YRDOT,YUA,YVA,YVVV,YRVV,YOOD , YOVV 
31\NOELT,ANNN,ANV, ANVDOT,ANR,ANRDOT,ANUA,ANVA,ANVVV,ANRVV 
4ANDOO,ANDVV,Xl,X2,X4,X6,X8,XUJ,XU5, 
5Bl,B2,84,86,88,BU4,BU6, 
6Cl,C2,C4,C6,C8,CU4,CU6 , U) 

DIMENSION XOLD(8),WU (4) ,WUH(4),U(2) 

C X COEFTICIENTS 
c 

c 

c 

XUOO'l'H=AM- XUDOT 

X1•(XOO*U(l))/XUOOTH 
X2•( (XUN*UVEL)+ (XNN*U(2))) / XUOOTH 
X4•(XU+XUU*XOLO(l)+XUUU*XOLO(l) • •2) / XUOOTH 
X6•(XVV*XOLD (2)+AH*XOL0(4)) / XUDOTH 
X8• (XRR*XOLD (4)) / XUOOTH 
XUJ• (XU+XUU*WU( l )+XUUU*WU(l) ••2) / XUOOTH 
XU5•XUA/ XUDOTH 

C Y COEFTICIENTS 
c 

c 

c 

YVOOTH•AM- YVDOT 

Yl•(YOELT+YOOO*U(l) *•2)/YVOOTH 
Y2• (YNN ' U (2)ltfVOOTH 
Y4•(-AM*XOLD(4))/YVOOTH 
Y6•(YV+YRVV*XOL0(4) ' XOLD (2) +YVVV*XOL0 (2) *•2+YOVV*U(l) 

l *XOLD(2) )/YVOOTH 
YB•YR/YVOOTH 
Y88•YRDOT /YVOO'l'H 
YU4•(YV+YRVV*XOLO (4) *WU( 2) +YVVV' WU(2) u 2+YOVV*U ( ll 

l ' WU C 2) ) / YVDOTM 
YU6•YVA/YVOOTH 

C N COEFTICIENTS 
c 

c 

c 

ANROO I •ZI-ANRDOT 

ANl•(AtiDELT+ANOOO*U(l) *•2)/ANROOI 
AN2• (ANNN*U(2))/ANROOt 
AN4-o.O 

AN6• (ANV+ANRVV~XOLD(4)*XOL0(2) +ANVVV*XOL0(2) ••2+ANOVV 

l *U(l) *XOLD (2))/ANRDOI 
AN66•ANVOOT/ ANRDOI 
ANB•ANR/ ANROOI 
ANU4• (ANV+ANRVV*XOLD(4) *WU(2) +ANVVV*WU(2)•*2+ANOVV*U(l) 

&*WU(2)) / ANRDOI 

C • EOA 'S TER.'1 
c 

c 
C • OIS'ruRBAOCE CONTROL TERMS 
c 

c 

c 
c 8 
c 

c 

c 
c c 
c 

c 
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TC•(XUJ*XUOOTH) *WU( l ) 
TA._ (XUA*WU ())) 
TP•(XUN*UVEL)+(XNN*U(2)) 
UD2•(TC+TA) / TP 

AOC•- (ANU4 *ANRDOt)•WU (2) 
ANA•- (ANVl\+ANUA*WU ())) •wU(4) 
ANR• (ANDELT+ANOOO*U(l) *•2) 
UDl• (ANC+ANA) / ANR 

COEFT!CIENTS 

BOEN•1.0-YB8• AN66 

Bl• (Y1+Y88*AN1)/BDEN 
B2•(Y2+Y88*AN2) / BOEN 
84• (Y4)/BDEN 
B6•(Y6+Y88•AN6) / BOEN 
B8•CYB+Y8B*AN8l / BOEN 
BU4• (YU4+YB8*ANU4 )/BDEN 
BU6•(YU6+YBB*ANU6) / BDEN 

COEFFICIENTS 

COEN•l.D-AN66*Y88 

Cl•(AN1+AN66 *Yl) / COEN 
C2•(AN2+AN66*Y2)/COEN 
C4=(AN66*Y4) / COEN 
C6•(AN6+AN66 ' Y6)/COEN 
C8•(AN8+AN66 *Y8) / COEN 



c 

c 

c 

CU4• (ANU4+AN66•YU4l /CDEN 
CU6•CANU6~AN66*YU6t/CDEN 

RETURN 

END 

SUBROUTINE FMAT (TAUR,TAUN,Xl,X2,X4,X6,X8,XOLD, 
131, B2 , B4, B6, 98,Cl. C2, C4 ,C6 ,CB, F .. N ,NN1 

DIMENSION f(N,N),XOLD(8) 
CALL MATZER(F,N,N,NN) 
F (l,ll = (- 1.01 / TAUR 
F (2,2J =(-l.Ol/TAUN 
F ( 3,4)=l.O 
F (4,11=Xl 
F (4,2l=X2 
f (4 , 4)•X4 
f (4 , 6)=X6 
F(4,8)=X8 
f cs. 6)=1.0 
F (6,ll =Bl 
F (6,2J=B2 
F(6,4)=B4 
f(6,61=B6 
F(6,8)=B8 
r(7. 8) =1.0 
f CB,ll=Cl 
F (8,2J=C2 
f (8, 4) =C4 
f(8, 6) =C6 
F (8,8)=C8 

RETURN 

END 

c 

c 

c 

SUBROUTINE GMAT (TAUR , TAUN, XU 3, XUS , 
1BU4,BUG,CU4,CU6,G,N,NG,NN) 

DIMENSION G(N,NG) 
CALL MATZER (G,N,NG,NN) 
G(l.l)•l.O/TAUR 
GC2,2J =l.O/TAUN 
G(4,3) =XU3 
G(4,5)=XUS 
G(6,41=BU4 
G(6,6)=BU6 
G(8,4)=CU4 
G (8 , 61 =CU6 

RETURN 
END 

SUBROUTINE TRNMAC(F,G,A,B,C,N,NG,NB,TSAMP,NN) 

C EVALUATES DISCRETE STATE TRANSlTION MATRIX A (T) 
C CON'l'ROL TRANSITION I'.ATRIX B (T1 AND DISTUR.BANCE 
C TRANSITION MATRIX C(T). 
c 

c 

DlHENSION ST(8,8),F(8,8l ,A(8,8l ,INTEGA (8,8) 
DlHENSION BUD(8,6) ,G (8,6) ,8(9,21 ,C (8,4) 
REAL INTEGA 
INTEGER POWER 
NORMFT=Q.O 
DO 1 I=l,N 
DO 1 J•l,N 
ST (I ,J) =F (I,J1 *TSAMP 
A(I,J) =ST(I,JJ 
POWER•SO 
DO 7 1=2. POWER 
FPOWR=POWER- I+ 2 
DO 5 J=1,N 
DO 3 K=1 ,N 
INTEGA(J,Kl=A(J,K) / FPOWR 
INTEGA(J,Jl•INTEGA(J,Jl+l.O 
CALL MATMUL (A,ST,INTEGA ,N,N,N,NNl 
CONTINUE 
DO 9 J•l,N 
A(J,J)=A(J,J)+l.O 
DO 9 K•l,N 

9 INTEGA (J,K)=TSAHP•INTEGA (J,Kl 
CALL MATMUL (BUD, INTEGA,G,N,N,NG,NNl 

C * SPLIT BUD (8,6) INTO 8 (8 , 2) AND C (8 , 4) 
c 

c 
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DO 10 I=l,N 
DO l.O J•l, !<B 

10 BCI,J ) =BUD(I,J) 
DO 20 I=l ,N 
DO 20 J=),NG 
K=J-2 

20 C (I,Kl=BUD ( I,Jl 

RETURN 

END 



SUBROUTINE TRACK (F,GU,R,~,W , S , D,E,TSAHP,N , NB , NN ) 

c 
C + THE SUBROUTINE GENERATES THE REVERS£ TIME DISCRETE 
C • TRACKING MATRICES D AND £ BY SOLVING THE ~ATION: 
C ~FF•M+GG•RIN 

C WHERE, FF• (F-G*R**-l*G'*W) ' 
c Gr.•- Q 
c R••-t•G'•w•s 
c 

c 

c 

DIKENSION F (8, 8 ) ,GU 18, 2) , R 12, 2) , Q (8, 8 ) , W (8, Bl, S (2, 8 ) 
DII'.ENSION D(8 , B) , E (8, 8 ) , GM IB, 2) ,GHS ( 8 , 8 ) , FGHS (8, 8 ) 
DIKENSION FF (8,8) ,GG(8,8) 

OW..M=-1.0 
CALL MATSCL (GH,ONEH,GU,N,NB,NN) 

C • PRODUCT OF -G AND S 
CALL HATMUL (GHS,GH,S,N,NB,N,NN) 

c 
C • ADD F AND GHS 

CALL HATADD (FGHS,F,GHS,N,N,NN) 
c 
C • FF IS TRANSPOSE OF FGHS 

CALL HATRNS (IT,FGHS,N,N,NN) 
c 
C • GG IS -Q 

CALL I'~TSCL (GG,ONEH, Q,N,N,NN ) 

c 
C • US£ REVMAT (REVERS£ TRNHAT) TO FIND DISCRETE MATRICES D 
C AND£ 

c 

c 

CALL REVHAT (FF,GG,O,E,N,N,TSAMP,NN ) 

RETURN 

END 

SUBROUTINE REVHAT (F , G,A , B,N,NG,TSAMP,NN) 

C EVALUATES DISCRETE STATE TRANSITION MATRIX A (T) 
C AND DISCRETE FORCING MATRIX B (T) 
c 

c 

DIHENSION ST (8,8l,F(8,8~ (8,8), INTEGA ( 8,8 ) ,8 (8,8 ) ,G ( 8,8) 

REAL INTEGA 
INTEGER POWER 
NORHM'-0.0 
DO 1 I•1,N 
DO 1 J•1,N 
ST ( I,J) •F (I,J)•TSAHP 
A(I,J) •ST (I,Jl 
POWER•SO 
DO 7 1•2, POWER 
FPOWR•POWER-1+2 
DO 5 J•1 , N 
DO 3 K•1,N 

3 INTEGA IJ.Kl •A IJ, Kl/FPOWR 
5 IN'r<.GA (J,Jl•INTEGA IJ, J) +l.O 

CALL HATMUL IA, ST, INTEGA,N,N,N,NN) 
COm'INU£ 
DO 9 J•1,N 
AIJ,J)•A(J,J)+1.0 
DO 9 K•1 , N 

9 INTEGA (J , K) -TSAHP• INTEGA IJ,Kl 
CALL MATMULIB,INTEGA,G,N,N ,NG,NN) 

RETURN 
END 

c 

SUBROUTINE HATINV IA,N,NA) 
DIMENSIQN AINA, N) ,PIVOT (20l ,IPIVOT(20) ,IND£X (20, 2l 
~!VALENCE (IROW,JROW), ( ICOLUM,JCOLUH) , (AHAX,T, SWA 
IF (N-1)10 , 5,10 

5 AT-A (l, ll 
A (l ,ll•l. / AT 
RETURN 

10 DET£1\H•l.O 
15 DO 20 J•1 , N 
20 !PIVOT (J ) -o 
30 DO 550 I•l,N 
4o AMAX-o.o 
45 DO 105 J=l,N 
5o IF (IPIVOT (J ) -1)Go, 105,60 
60 DO lOO K•l,N 
70 IF (IPIVOT (K) -1 ) 80,100 ,740 
8o IF (ABS (AMAX) -ABS (A(J,K))) 85,100 , l00 
85 IROW-J 
90 ICOLUH•K 
9 5 AMAX•A (J, K) 

lOO COm'INU£ 
105 CGITINUE 
110 IPIVOT (ICOLUH) •IPIVOT (ICOLUH) +l 
130 IF(IROW- ICOLUM)l40,260,l40 
140 DETERH•-DETERH 
150 DO 200 L-1, N 
160 SWAP-A (IROW,L) 
170 A(IROW,L) •A ( ICOLUH,Ll 
200 AIICOLUH,L)•SWAP 
260 INDEX ( I ,ll•IROW 
270 INDRX (I,2)•ICOLUH 
310 PIVOT ( I ) •A ( ICOLUM,ICOLUH) 
320 D£T£RH•-D£TERM•PtvOT ( l ) 
330 A (ICOLUH, ICOLUH) =1.0 
340 00 350 L-1, N 
350 A(ICOLUH,Ll =A (ICOLUH,L)/PIVOT (1 ) 
38o DO 550 L1•l, N 
390 IF (Ll-ICOLUH)400,550,400 
400 T-A (L1,ICOLUH) 
420 A(L1,ICOLUH) -o.O 
430 DO 450 L•1,N 
450 A(L1 ,L) •A (L1,L) -A (ICOLUH,L) •T 
550 CONTINUE 

600 DO 710 I•1,N 
610 L•N+l-I 
620 IF(INDEX(L,l ) -IND£X(L,2)630, 710,630 
630 JROW•INDEX (L,ll 
640 JCOLUH•IND£X (L,2l 
650 DO 700 K•1, N 
660 SWAP•A (K,JROW ) 
670 A(X, JROW ) =A (K,JCOLUH) 
700 A(K,JCOLUH ) •SWAP 
710 COm'INU£ 
740 RETURN 

END 

SUBROUTINE MATADD(A,B,C,N,M,NN) 

C HATADD A•B+C 
c 
C N IS TB£ NUMBER OF ROWS IN B AND C 
C M IS THE NUMBER OF COLUMNS IN B AND C 
c 

DIMENSION A(N,M) ,B(N,M) , C(N, M) 
00 10 I•1,N 
DO 10 J•1,M 
A(I,J)•B(I,J ) +C (I , J ) 

10 CONTINUE 
RETURN 

END 



SUBROUTINE MATMUL (A,B,C,N,M,L,NN) 
c 
C MATMUL A•B*C 
c 
C N IS NUMBER OF ROWS IN B 
C M IS NUMBER OF COLUMNS IN B AND ROWS !N C 
C L IS NUMBER OF COLUMNS !N C 
c 

c 

DIMENSION A(N,L), B(N,M), C (M, L) 
DO 10 I=1 ,N 
DO 10 K•1, L 
A(I,K) =O.O 
DO 10 J•1,M 

10 A(I,K ) •A(I,K) +B (I,Jl*C (J,K) 
RETURN 
END 

SUBROUTINE MATONE (A,N,M,NN) 

C PRODUCES A ONE'S MATRIX 
c 

c 

c 

DIMENSION A(N,M ) 
DO 10 I=1,N 
DO 10 J•1,M 

10 A(I,J) •l.O 
RETURN 
END 

SUBROUTINE MATRED (A,N,M,NN) 

DIMENSION A(N,M) 
DO 10 I•1,N 

10 READ (5,20) (A (I,J) ,J•1,M)) 
20 FORMAT (8F10.0) 

RETURN 
END 

SUBROUTINE MATE0L (A,B,N,M,NN ) 

C MATEQL A•B 
c 
C t( IS THE NUMBER OF ROWS 
C M IS THE NUMBER OF COLUMNS 
c 

c 

DIMENSION A(N,M), B(N,M) 
DO 10 I•1,N 
DO 10 J•1,M 

10 A(I,J) =B (I,J) 
RETURN 
END 

SUBROUTINE MATlON (A,N,NN ) 

C MATIDN PRODUCES A UNITY MATRIX A 
c 
C N IS THE NUMBER OF ROWS AND COLUMNS 
c 

DIMENSION A(N,N) 
DO 10 I•1,N 
DO 10 J•1,N 
A(I , J)-<l .O 

10 CONTINUE 
DO 20 I•1,N 
A(I,Il =l.O 

20 CONTINUE 
RETURN 

END 

SUBROUTINE MATSCL(A,S,B,N,M,NN) 
c 
C N IS NUMBER OF ROWS,M NUMBER OF COLUMNS 
c 

c 

c 

DIMENSION A(N,M) ,B (N,M) 
DO 10 I =1,N 
DO 10 J=1,M 
A(I , J ) •S*B (I,J ) 

10 CONTINUE 
RETURN 
END 

SUBROUTINE MATZER(A,N,M,NN ) 

DIMENSION A(N,M) 
DO 10 I•1,N 
DO 10 J•1,M 
A(I,J)=O.O 

10 CONTINUE 
RETURN 
END 

SUBROUTINE MATPRN (A,N,M,NN,NAME) 

C PRINTS OUT MATRIX A 
c 
C N IS NUMBER OF ROWS 
C M IS NUMBER OF COLUMNS 
c 

c 

DU!ENSION A(N, M) , NAME (2) 
WRITE (6,30) 
WRITE (6,40)NAME(1 ) ,NAME (2) , N,M 
DO 10 I•1,N 
WRITE (6, 20) (A ( I ,J ) ,J•1 , M) 

10 CONTINUE 
20 FORMAT ( 1X, SEl4. 7) 
30 FORMAT (//) 
40 FORMAT(12B REAL MATRIX , 3X,2A4,10X , I3 , 3H X ,I3//) 

RETURN 
END 

SUBROUTINE MATRNS(A,B,N,M,NN) 

C A-TRANSPOSE OF B 
c 

DIMENSION A(M,N ) ,B (N, M) 
DO 10 I•1,M 
DO 10 J =1,N 
A(I,J) •B (J,I ) 

10 CONTINUE 
RETURN 
END 



A6 . 4 Real-Time Ship Control Program 

lOO 
110 
120 
130 
150 
180 
190 
200 
210 
220 
230 
232 
235 
240 
245 
250 
255 
260 
262 
264 
266 
268 
269 
270 
280 
285 
290 
292 
295 
300 
310 
315 
320 
325 
340 
345 
350 
355 
360 
370 
380 
400 
410 

420 

430 
440 
450 
460 
470 
480 
490 
500 
510 
515 
520 
530 
540 
1000 
1oo6 
1010 
1015 
1200 
1220 
1270 
1271 
1272 
1273 
1274 
1275 
1280 
1285 
1290 
1294 
1295 
1300 
1305 
1310 
1314 
1315 
1320 
1322 
1324 
1325 
1330 
1335 
1340 
1345 
JOlO 

DIM AX(4,4), A(4,4l , AXT (4) 
DIM B(4,2 l, BU (4) 
DIM CR(4,4) 
DIM ER(4,2),F(4,4 ) ,G (4,2l 
DIM KZ (4) 
DIM S(2,4l,ST (4,4 ) 
DIM TR (ll2) ,TT(4,4l 
DIM U(2,112),UZ(2,112) 
DIM XT(4),XTA(4l , XTB(4,112l,XO(ll2 l 
DIM YO (ll2l 
DIM Z(4,112l ,ZD (4) 
Na4:: NB-2 
XT(l)"'(). 75:: XT(2)-<l:: XT (3l oo0:: XT(4)-<l 
INPtTI' "TIME DELAY(SECS)•";TD 
INPUT "YO(M)~";YO(O) 
INPUT "RUDDER CHANGE•" ;RC; "TRACK CHANGE•" ;TC 
INPUT "NEW READING (RAD)•" ;IJC 

INPUT "FIN•";FIN 
INPUT ''FILTERED FORWARD VELOCITY?(Y/N)";$f'U 
INPUT "FILTERED LATERAL VELOCITY? (Y/Nl"; $f'V 
INPUT "FILTERED KEADING?(Y/ N)"; SFR 
INPUT "FILTERED YAW RATE? (Y/N)"; SPY 
UZ(1,0l-o:: UZ(2,0)•76 . 9442 
U(1,0)=0:: 0(2,0)•76 . 9442 
XD=O:: X"():: XO(O)-<l 
51=0.982188: : s2-o . 98o2o9:: s3-o. 256456:: TP:1 
54--0.304369:: 55•-0.248:: 56•-337.8 
DR~2.2805:: DE•-0.0095 
Hl-D:: H2-o:: M3-o 
H4-<l: : M 5-o: : M6-<l 
GOSUB 13000 
FOR 1~1 to N 

Z(I,O)•XT(I) 
NEXT I 
DATA 0.00006816,4.478E-09 ,-0.0000912, - 0 .0000644 
DATA 7 . 876E-08, 5.174E- 12,-1,058E-07, - 7.442E-o8 
DATA - 4.443E- 09,-2.93E-13,0. 01189,4.325E- 09 
DATA -1. 099E-08, - 7.226E-13,1.516E-o8,1 .039E-08 
FOR I =1 TO N: : FOR J•1 TO N 

READ AX(l,J ) 
NEXT J:: NEXT I 

PRINT "AX MATRIX" 
FOR I=1 TO N:: FOR J•1 TO N 

PRINT AK (I,J) 

NEXT J:: PRINT:: NEXT I:: PRINT 
INPUT "CHANGE AX MATRIX ? (Y/N)"; $CK 
tF SCK•"N" THEN GOTO 500 
INPUT "I•''; l; 11 J=11 ; J 
INPUT "AX(I,J)•"; AX (I,J) 
INPUT "MORE ? (Y/ N)"; SHK 
IF SHK•"Y" THEN GOTO 460 
INPUT "ABORT ? (Y/ N) "; SAB 
IF SAB•"Y" THEN GOTO 1345 
PRINT "START" 
FOR K•1 TO TO 

FOR JJ•1 TO 14:: FOR KK•1 TO 95 
NEXT KK: : NEXT JJ: : NEXT K 

FOR K-o TO PIN 
IF K•O THEN GOSUB 10500 
GOSUB 12000 
GOSUB 15000 
GOSUB 3010 
GOSUB 10500 

NEXT K 
HWD (09IT2H) =0 
HWD (09ITOHl-<l 
INPUT $CO 
PRINT : : PRINT 
PRINT "XHAT2" 
FOR K>() TO FIN 

PRINT XTB(1,Kl,XTB (2,Kl ,XTB(3,K) ,XTB(4,K) 
NEXT K 
PRINT : : PRINT 
PRINT "Z" 
FOR K-<l TO FIN 

PRINT Z(l , K),Z(2 ,K),Z(3, K),Z(4,Kl 
NEXT K 
PRINT : : PRINT 
PRINT •u" 
FOR K=O TO FIN 

PRINT U(l ,K) ,U(2,K) ,UZ (1,Kl , UZ(2,K) 
NEXT K 
PRINT : : PRINT : : PRINT "K, XO, YO" 
FOR K-o TO FIN 

PRINT K,XO(K),YO(K) 
NEXT K 
STOP 
FOR 1~1 TO N 
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3015 AXT(l)>():: FOR J•1 TON 
3020 AXT(I ) •AXT(I ) +A (I,J ) •XT(J ) 
3030 NEXT J:: NEXT I 
3040 FOR I =1 TO N 
3045 BU (I )-<l:: FOR J•1 TO NB 
3050 BU(I ) •BU (Il +B (I,J) *U(J,K) 
3060 NEXT J: : NEXT I 
3070 FOR 1=1 TO N 
3080 XTA(I)•AXT (I ) +BU (I ) 
3090 NEXT I 
3095 GOSUB 10000 
3096 GO$UB 10500 
3100 FOR I=1 TO N 
3110 ZD (I ) •Z (I , K+1)-XTA(Il 
3120 NEXT I 
6000 FOR I~1 TO N 
6005 KZ(I ) -<l:: FOR J•l TON 
6010 KZ(I)•KZ(I)+AK(I,J) 0 ZD (J ) 
6020 NEXT J: : NEXT I 
6030 FOR I•l To N 
6040 XTB(I,K+1)•XTA(I)+KZ(I) 
6050 NEXT I 
6060 FOR I =1 TO N 
6070 XT(I ) =XTB (I,K+ll 
6080 NEXT I 
6082 IF SF'U•"N" THEN XT(l )•Z(1,K+1) 
6084 IF SPV="N" THEN XT(2 )•Z (2 ,K+l) 
6086 IF SFR•"N" THEN XT ())•Z(),K+l) 
6088 IF SFY•"N" THEN XT(4)•Z.(4,K+l) 
6100 RETURN 
10000 REH MEASUREMENT SUBROUTINE 
10010 HWD(09FF8H)-<liT01H 
10020 HWD(09FF6H)-<lFFOOH 
10030 GOSUB 10400 
10040 SA• ( (AC/204 . 7) - Mll *51 
10050 Zll,K+1l•Z(1,Kl+(SA*TP) 
10055 IF SA•"SD" THEN Z ( 1, K+l) =SA 
10060 MWD(09FF8H)-DFF02H 
10070 HWD(09FP6Hl-<lFFOOH 
10080 GOSUB 10400 
10090 SW• ( (AC/204 . 7l - M2) *52 
10100 Z(2, K+1)•Z (2, K)+(SW*TP) 
10105 IF SA="SD" THEN Z(2 ,K+l)•SW 
10110 MWD (09FF8Hl aOIT03B 

10120 HWD (09FF6Rl-<>FFOOR 
10130 GOSUB 10400 
10140 Z (3 ,K+1 ) • ((AC/204 . 7)-M3) *53 
10150 HWD (09FF8R)-<JFF04H 
10160 HWD (09PF6H)-<lFFOOR 
10170 GOSUB 10400 
10180 Z(4,K+l)•((AC/ 204. 7)-M4) *S4 
10190 MWD (09FF8R) -<lFF05H 
10200 MWD (09FF6B)=OFFOOH 
10210 GOSUB 10400 
10220 UZ.(l,K+l )•(AC/ 204.7)•S5- M5 
10230 MWD(09FF8H)-<JIT06H 
10240 MWD(09PF6H)-DFFOOR 
10250 GOSUB 10400 
10260 UZ.(2,K+1) •(AC/ 204.7) *S6- M6 
10270 RETURN 

10400 REM ADC SUBROUTINE 
10410 MWD(09FFAH)-<lFFFFB 
10420 CRK=HWD(09FPCH) 
10430 IF CliX<O THEN GOTO 10420 
10440 AC-HWD (09PFEBl 
10450 RETURN 
10500 REM DAC COWERSION 
10510 
10515 
10520 
10525 
10530 
10540 
10550 
12000 
12010 
12020 
12030 
12050 
12060 
12070 
12080 
12090 
12100 
12110 
12130 
12140 
12150 

D1=(DR*204 . 7) • U(1,K) 
IF K>O THEN D1•(DR*204. 7) *U( l,K+1 ) 
D2• (DE*204 . 7) • U(2,K) 
IF K>O THEN D2•(DE*204.7) • U(2,K+1) 
HWD(09FF2H ) =D1 
HWD (09ITOR)•D2 
RETURN 
REM CXltn"ROL SUBROUTINE 
GOSUB 12500 
R1=0.75:: R2-D:: R3-<l:: R4-<l 
IF K>RC THEN R3•HC 
IF K>TC THEN GOTO 12080 
YI=1:: Xl-<l:: RA-<l 
GOTO 12090 
YI=1:: XI•42:: RA•HC 
TR(K+1)•(YO(K+1 l -Yl ) *COS(RA)-(XO(K+l) -XI) • siN(RA) 
CR=R3-XT (3) 
ACR=ABS(CR) 
ER(l,l)•- TR(K+l) 
ER(2,l)•R2-XT(2) 
ER ( 3, 1) •R3- XT ( 3) 



12160 ER(4,ll•R4- XT(4) 
12170 XD•XD+R1 • TP 
12180 X•X+XT(l ) " TP 
12185 IF K-o THEN xo-o,, x-o 
12190 ER (1,2l•xo-x,, ER (3,2l =O 
12200 ER (2,2)•R1-XT(1)" ER (4, 2)=0 
12210 GOSUB 12600 
12215 SP•S(l,l ) 
12220 IF ACR>0.524 THEN S(l,1J-o 
12230 U(1,K+1)-o,, U(2,X+1)aO 
12240 FOR 1•1 TO 2 , , FOR J•1 TO 4 
12250 U(I,K+1 ) •U (I,K+1 )+S( I,J) •ER (J, I ) 
12260 NEXT J , ' NEXT I 
12270 S ( 1. l) •SP 
12300 U(2,X+1 l •U(2,K+1)+76.9442 
12310 IF U(1,K+1)>0.6109 THEN U(1,K+1J-o.6109 
12320 IF U(1,K+1)<- 0.6109 THEN U(l,K+1 l•~0.6l09 
12330 !F U(2,K+1)>l00 THEN U(2,K+ll•100 
12340 IF U(2,K+1)<50 THEN pt2,K+1)•50 
12 3 50 RETURN 
12500 REM POSITIONAL co-ORDINATES 
12520 XO (X+1 )•XO(X)+(XT(1 ) •COS (XT(3))-XT(2) • siN(XT (3) )) •TP 
12530 YO (K+ll •YO (X)+ (XT (2) •cos (XT (3) ) +XT (1) "SIN (XT (3))) •TP 
12540 RETURN 
12600 REM S MATRIX 
12610 S(1,1)•-o:o6795' :5(1,2)•2 . 76508 
12620 5(1,3)•- 0.93291::5(1,4)--3.10289 
12630 S (2 , 1)-o.001067::S (2, 2)-D. 047929 
12640 5 (2 , 3)-o:: 5(2,4)-o 
12650 RETURN 
13000 REM MEAN AND STANDARD DEVIATION 
13010 Z(1,0)-D:: Z(2,0)a0 : : Z(3,0)•0:: Z(4,0l • O 
13020 SA•"SD" 
13030 FOR K-o TO 59 
13040 .GOSUB' 10000 
13050 FOR JJ•1 TO 11:: FOR KX•1 TO 95 
13060 NEXT KX:: NEXT JJ:: NEXT K 
13070 SA•"RN" 
13080 X1=0:: X2-o:: X3-o:: X4-o:: XS-o:: X6-o 
13090 FOR K•1 TO 60 
13100 X1•X1+Z (1,K) :: X2•X2+Z (2,K) 
13110 X3•X3+Z(3,K):: X4-X4+Z (4,X) 
13120 XS•XS+UZ(1,Xl:: X6•X6+UZ (2,K) 
13130 NEXT K 

Ml•X1/60:: M2•X2/60:: M3•X3/60 
H4•X4 / 60:: M5=X5/60:: H6•X6/60 
X1-D : : X2-o:: XJ-0:: X4-o:: Xs-D:: X6-0 
FOR K•l TO 60 

Xl•Xl+(Z (l ,Kl -Hl) •( Z(1,Kl - Ml ) 
X2•X2+(Z(2,KJ - M2)•(Z(2,K) -M2) 
X3•X3+(Z(3,X)-H3)•(Z (3 ,X) -M) ) 
X4•X4+(Z(4,K) -H4 ) • (Z(4,X) -H4 ) 

NEXT X 
CR (1, 1 )•SQR(Xl /59) 
CR (2,2)•SQR(X2/59) 
CR (3,3)•SQR(X3/59) 
CR (4,4)•SQR(X4/59) 
PRINI' : : PRINI' " MEAN" 
PRINI' Ml , M2,M3 
PR !NI' M4 , MS, M6 
PRINT : : PRINT "STANDARD DEVIATION~ 
PRINT CR (l,l) ,CR (2, 2\CR 13, 3), CR (4, 4) 
RETURN 
A (1,1) •1-0.0410116•XT(1 ) -Q.02119•XT (4) 
A(1,2) •l.0672S•XT (4) 
l\(1,3)-o 
A(1 , 4)a0.0140048"XT(4) 
A(2 , 1)a0. 446096*XT (4) 
A(2 , 2)-o.995-0.159378S•XT(1) -2 .05168• ABS (XT (4)) 
l\(2,3)-o 
A(2,4J-o.OOS+0.028376•XT(1)-0.02429*ABS(XT(4) ) 
A(3,l)a0.01575B*XT(4 ) 
A(3,2)•- 0.01-D.101248"XT(1)+0.6868"ABS(XT(4) ) 
l\{3,3)•1 
A(3,4)*0.989-D.195818•XT(l) 
A(4,1 ) -o.03377" XT(4) 
A(4, 2l•-0.0295-0.17164 • XT(1)+1.29186•ABS(XT(4 )) 
l\ (4,3)-o 
A(4,4)a0.967- 0.35436•XT (1 ) 

13140 
13150 
13160 
13170 
13180 
13190 
13200 
13210 
13240 
13250 
13260 
13270 
13280 
13290 
13300 
13310 
13320 
13330 
13340 
15000 
15010 
15020 
15030 
15040 
15050 
15060 
15070 
15080 
15090 
15100 
15110 
15120 
15130 
15140 
15150 
15160 
15170 
15180 
15190 
15200 
15210 
15220 
15225 
15226 

B(1 ,1 )•- 0.0316267 • U(l,X) 
B(1,2 )•-0.000195+0.0000065*U (2,X)+0.000478•ABS (XT(4)) 
B(2,l )a0.0195+0. 071189•XT (l)-0.00452SB•ABS (U(1,X)) 
8(2,2)-o 
B(3,l)a0. 017- 0.059506•XT(1 ) - 0.00146•ABS(U (1, X)) 
8 (3,2)-o 
8 (4,l)a0.0315-0.ll30267•XT (1) 
8 (4,2)-o 
GOTO 15300 

A6 . ll 

15230 
15240 
15250 
15260 
15270 
15280 
15290 
15300 

PRINT "AA MATRIX" 
FOR I•l TO N:: FOR J•l TO N 

PRINT A (I ,J), 
NEXT J: : PRINT : : NEXT I: : PRINT 

PRINT "BB MATRIX" 
FOR I•1 TON:: FOR J=1 TO NB:: PRINT B(I,J ) 

NEXT J: : PRINT : : NEXT I: : PRINT 
RETURN 
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APPLICATION OF MUL TIVARIABLE SYSTEMS THEORY, OCTOBER 1982 

AUTOMATIC PILOTAGE OF LARGE SHIPS IN CONFINED WATERS - A MULTIVARIABLE APPROACH 

R.S. Burns, M.J. Dove, T .H. Bouncer. 

Plymouth 'Polytechnic. 

INTRODUCTION 

The feasability of a guidance system for automatically controlling a . large 

ship in the pilotage phase of a voyage is investigated. Identification, 

Optimal Control and Estimation Techniques are applied to a mathematical 

model of a vessel in the approaches to Plymouth. 

It is beyond question that the overall standard of navigation at sea is very high i ndeed, and the 

probability of comp leting a voyage successfully must be very close to unity. However, (1), a brief 

summary of marine traffic acc idents shows that the majority occur within congested waters, 

particularly within port limits. Congestion, coupled with the increased size and complexity of 

operat ion, ~as focussed attention on the control of pilotage and be r thing, for, not only must the 

safety and cost factors be considered, but also the environmental aspects of , say, the spillage of 

large quantities of crude oil at, or near, the approaches to a port. 

This paper investigates the possibilities of employing multivariable control theory to the problem 

of automatically piloting a large vessel in the approaches to a port . 

A discrete, time-varying non- linear model has been developed based upon eight sys tem states , namely 

forward and lateral position and velocity, heading, yaw-rate, rudder angle and engine speed. The 

model has two deterministic inputs - demanded rudder and engine speed plus four stochastic dis turb­

ance inputs in the form of wind and current vectors . The measurements of the state vector, con­

taminated with random noise, are passed through an optimal, time-varying filter . 

The best estimate of the state variables are used by an adaptive optimal contro~ler to compute 

those inputs (demanded rudder and engine speed) which minimise a given performance criterion. The 

dynamics of both the filter and controller are updated frequently by a system identification 

algorithm that can be either based upon apriori knowledge of the hydrodynamic coefficients of the 

vessel, or by o~-line measurements of the state variables . 

An outline of the proposed system is given in Figure 1. 
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MATHEMATICAL MODEL 

Equat i ons of Mot i on 

The shi p is cons i dered to be a rigid body with three degrees of f r eedom, in surge, sway and yaw. 

Ship motions in the other three degrees of freedom, roll, pitch and heave are cons idered small 

e nough to be neglected . It is conveni ent to describe the mot i on in terms o f a moving system of 

axes coincident with the mass cent r e of tne hull as illustrated in Figure 2 . This gi ves rise to 

an Eu lerian set of equations of motion which may be written in the form 

mU - mrv • X 

mV • mur • Y . ... . .................... . .. ... . . .. .. .. . . . .. . ...... . . . .•. •..• . ..... .... . . . . • . . (1) 

I r s N 
z 

Techn i ques employed in obtaining expressions for hydrodynamic for ces and moments are well covered 

in the lite r ature (2) and the usual method is to apply a Taylor series expansion . for applications 

such as course-keepi ng, where changes in rudder and heading angles do not usually exceed five 

degrees, a linear approximation , using only the first order terms in the expans ion , is normal l y 

quite adequate. In a track-keeping situation where large changes i n headi ng can be expected, it 

becomes necessary to incl ude second and third order expansion terms . 

Surge Equation. The complete surge equation in dimensional ised form is 

mu - mrv s X . u • X (u • uc) + X u2 • X u3 + X v2 • X r 2 + X
00

o •• 2 • X un + X n 2 
u u uu uuu vv rr ~ uu A nn A 

. . . . • • • • • • • . • . . • • . . • • • • • • • . • . . . • • • • . . • . . . • . . ( 2) 

In the above equation a shor thand subscript and bar notation has been adopted , for instance 

The dimensionalised hydrodynamic coefficients are obtained from t he non-dimensional values in the 

usual manner 

Sway and Yaw Equations. The dimensionalised sway and yaw equations are 

+ Y 6 V2 T Y V 
6vv A " a a 

( J) 
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Steering Gear and Main Engine. These are both modelled by first orde r linear differential 

equations 

6 
l 

6A A r 6o TR R 

r,A 
l - l 

=- n T nA TN 0 N 

Where &
0 

and n
0 

a r e the demanded rudder angle and demanded engine speed respective ly . 

St a te Space Formulation 

(4) 

( 5) 

( 6) 

Much attention was devoted to the choice of state variables in relationship to the tracking problem 

and the state vector was finally based on the ship body axes 

This state is affected by the forcing vector 

Equations (5) , (6) , (2), (3) and (4) can be arranged in the fo llowing set 

6 
A 

.-J.. 6 
TR A 

-1 
nA =- n 

TN A 

l< = u 

y • V 

l .,._ 
TR 

1 +-
TN 

60 

"n 

il V 
u4 c 

+ B V 
u6 a 
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The coefficient s A, B, and C are all time-varying and so, for example 

• x66'
6
A • 

A1 m - X. 
u 

A1, therefore, is a funct ion of the instantaneous total velocity U and rudder angle 6A, 

Equation set {9) repr esent the time-varying state equations for the ship and are expressed by the 

state matrix vector differential equation 

( 10) 

It is convenient to partition the G matrix in terms of the control forcing function 6A and nA and 

the di sturbance forcing functions uc' vc' ua and va so that 

(ll) 

The corresponding discrete solution is 

X<<K + l)T) • A<T, KT>X<KT) + B<T , KT> U<KT) + C<T,KT) W(KT) (12) 

MEASUREMENT AND FILTERING 

Separation Principle 

This is an important feature of stochastic optimal contr ol theory that allows a given optimisation 

problem to be reduced into two problems whose solutions are known, namely an optimal filter in 

cascade with a deterministic optimal controller. 

The Measurement Process. The measured state Z<K + 1) is considered to conta in noise V{K + 1), where 

V(K + 1) is a stationar y gaussian process wi th convariance M. The measurement process is then 

represented by 

Z< <K + l)T) • H<<K + l)T)X(lK + l)T) + V((K + l )T) (13) 

Estimation of the State Vector 

The Kalman filter used here is a recursive computational a lgorithm which remembers past data, 

receives future positions, and bases the est imate of the state upon a combina tion of past and 

present information. It should be noted however that thi s technique assumes the system is linear 

and the errors gaussian. As a ship const itutes a non-linear system, when parameters such as large 

altera tions of course and speed , shallow water effects , and trim are considered there must be some 

limi tations to the technique . 

The filter is characterised by containing a model of the ship and the equations are 
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X«K + l)T) - A<T ,KT)X(KT) + K<<K + l)T) ~((K+ l)T) - H<<K + l)T)A(T,KT)X(KT)J 

The filter gain matrix K<K + 1) and t he two covariance matrices P<K + 1/K) , P<K + 1/K + 1) are 

governed by 

(14) 

K<<K + l)T) - P<K + 1/K) HT ((K + l)T) ~((K + l)t)P(K + 1/K) HT((K + l)T) + M<<K + l)T)]-
1 

(15) 

P<K + 1/K + 1) = 0 -K<<K + l)t> H<<K + l)t>]P<K + 1/ K) 

In determining the va lue of the filter gain matrix consideration has to ' be gi ven to the control 

vecto r U<KT) and its associated control matrix B<t,KT) . A model of B<t ,KT) is required in the 

filte r and the complete filter model is shown in Figure 3, leading to the overall filter equations 

as 

X<<K + l)T)- A<t,KT)X(K/K) + B<t,Kt)U(KT) + K<<K + l)T) ~( (K + l)T) - H< <K + l)t>{A<t.Kt)X(KT) 

+ B<<T,KT)U(KT) IJ 

CONTROLLER DESIGN 

Stochastic Optimal Control 

The stochastic optima l contro l problem is to find a control U which causes the system 

X· g<X<t> . U<t>. ~Ht> ,t> 

eo follow an optimal traJectory X<t) tha t minimises a performance crLterion 

I
t! 

J • h<X<t> . U<t),t)dt 
to 

whilst being subjected eo a measurement process 

z- f(X( t). V(t),t) 

Deterministic Optima l Control 

( 16) 

Tracking Problem with Quadratic Performance Criterion. The tracking or servomechanism problem is 

one of applying a con trol U to drive a ship so that its states follow a desired trajectory in some 

optimal sense. The regulator problem is a special case of the t racking problem, the desired 

trajec tory being a zero state. 
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Con tinuous Form . The quadratic cr iterion to be minimised is 

(17) 

where R is the desired value of t he state vec tor it can be shown (3) that constrained functional 

min imisation yields the matrix Riccati equations 

(18) 

together with the reverse-time differential equation set 

. - 1 T T 
M = <F - G R G W> M - Q R (19) 

The boundary condi tion is 

and the optimal contr ol 

(20) 

Discrete Form. Discrete minimisat i on produces the recursive Riccati equations together with t he 

difference equation 

Mc(N-K)T) • D<r.KT>Mccs-(K + t)T) • E<T,KT) Rc<N-(K • l )T) (21) 

hav ing the boundary condi t ion 

M(N- 1) • 0 

and the op timal control a t the Kth ins tant 

U<KT)opt - -S«N-<K • t»r>X<KT) - R-1 Gr M<<N - (K • ll>r> (22) 

The deterministic optimal controller for a ship tracking system i s shown in Figure 4 . 

IDENTIFICATION 

Method of Linear Least Squares 

Pu t = 0 ,1,2, 3 , . . . , K 
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" If we dif ferentiate with respect toj3 and set a~(J (ft)) = O, we obtain the L.L.S. estimate given by 

(2J) 

where 

- \ 
Cl u yTy 
' K 

A recursive form of equation ( 2J) is avail able, which has the fo rm 

( 24) 

" /3 K+\ ( 25) 

" 
The pair o f equations 24 and 25 enable revised estimates of the 

" ca lculated from the prior estimate ~ K' based on a knowledge of 

parameter matrix /3 K+\ to be 

yT and Z obtained by measurements 

made at the {K+l)th sampling instant. 

CO~UTER SI~ATION 

The vessel chosen for the simulation was of the Mariner Class. Good agreement between full - scale 

test results and data obtained from the mathematical model was found with all standard manoeuvres 

and Figure 5 shows a typical t urning c ircle for 20 degree starboard rudder . The recommended track 

for deep draught vessels into Plymouth Sound was selected as a suitable design specification for the 

automatic guidance s ystem. This requires simultaneous control of the ship ' s position , heading and 

forward velocity and implementation o f the matrix cont r ol equation ( 22) produces the optimal 

trajectory illustrated in Figure 6 when the desired forward speed is 7. 717 m/s (1 5 knots). 

CONCLUSIONS 

Huch work is stil l to be done before automatic guidance sys t ems of the type descr ibed her e are 

actually fitted to surface ships. Manufacturers are, however, already moving towar ds the 

replacement of conventional analogue auto-pilots with adaptive micrprocessor based minimum energy 

course-keeping systems and the possibility exists that in the none to distant future a new 

generation of auto-pilots with both course and track-keeping facilities will emerge. 
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NOTATION 

Matrices and Vectors 

A 
B 
c 
D 
E 
F 
G 
H 
K 
M 
M 

N 
N 

Discrete Stat e Transition Matrix. 

Discrete Control Matrix. 

Discrete Disturbance Matrix . 

Discrete Reverse Transition Matrix. 

Discrete Reverse Control Matrix . 

Cont inuous Time System Matrix. 

Continuous Time Forcing Matrix. 

Measurement Matrix. 

Kalman Gain Matrix. 

Covariance of Noise Vector. 

Reverse Time State Vector . 

Covariance of Control Vector. 

Residual Vector. 

p 
Q 

R 
R 

s 
u 
V 
V 

14 
w 
X 
X 
y 
z 

Scalar Symbols 

A, B, C 

Iz 

L 

m 

r 

T 

State Equation Coefficients. U 

Moment of Inert ia about z axis (kg m2) . u 

Length of ship between perpendiculars (m), ua , uc 

Mass of ship (kg) . 

Actual and Demanded engine speeds (rad/s) , v 

To tal moment applied t o ship (Nm). 

Yaw hydrodynamic coefficients . 

Angular ve locit y of ship about z axis. 

Sampling time interval (s). 

Time (s) . 

"a ' "c 

x , y ,z 

X 

Covariance of State Vector, 

State Error Weighting Matrix. 

Control Weighting Matrix. 

Desired State Vector. 

Feedback Gain Matrix. 

Control Vector. 

Co11111and Matrix. 

Noise Vector. 

Riccati Coefficient Matrix . 

Disturbance Vector. 

State Vector. 

Best Estimate of State Vector . 

Combined State and Control Vector. 

Measured State Vector . 

Track velocity (m/s). 

Forward velocity of ship (m/s). 

Forward component s of wind and current 

ve locities (m/ s). 

Lateral velocity of ship (m/ s). 

Lateral components of wind and current 

velocities (m/s) . 

Ship related or thogonal co-ordinates(m). 

Total for ce on ship in forward 

direction (N) . 

Surge hydrodynamic coefficients. 

Time cons tant of main engines (s). 

Time cons t ant of rudder serve (s). X
0

, Y 
0

,Z
0 

Earth related orthogonal co-ordinates . 

J 

Interger counter s. 

Performance Index . 

GREEK SYMBOLS 

" /3,/3 Transpose of Augmented State Transition 

Matrix and best estimate . 
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Y Total latera l force on ship (N), 

Sway hydrodynamic coefficients. 

Actua l and Demanded rudder angles (rad) . 

Density of water (kg/ m3) . 

Actual heading of ship ( rad). 



APPLICATION OF MULTIVAAIABLE SYSTEMS THEORY, OCTOBER 1982 

u X MEA~UIUMENr z 
S YSTEM -PRot:£!>5 

ICJ(NTtt:u:ATtoN 

PR.oct.~5 

J l 
u A,8 u 

OPTIMAL OI'TtMAL 
~ 

CoNr~ouE.Ja FILTEit r-
~ 

" ---
X 

nr 

Figure l Proposed Automatic Guidance System Figure 2 Co-ordina t e Systems 

~(~.,) 
):::::::::::::::::::~)~ 

~ 
vac.To4t ,...-------.., 

r m 

-s 

Figure 3 Optimal Filter Figure 4 Op timal Controller 
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Figure 5 Turning Ci rcle, 20° Starboard Rudder, 7.717 m/s. 
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Figure 6 Optimal Trajectory into Plymouth Sound. 
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