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Guidance of Small Motorised Marine Craft

Abstract

This thesis investigates the design and evaluation of a control system, that is able to adapt
quickly to changes in environment and steering characteristics. This type of controller is
particularly suited for applications with wide-ranging working conditions such as those ex-
perienced by small motorised craft.

A small motorised craft is assumed to be highly agile and prone to disturbances, being
thrown off-course very easily when travelling at high speed but rather heavy and sluggish
at low speeds. Unlike large vessels, the steering characteristics of the craft will change
tremendously with a change in forward speed. Any new design of autopilot needs to be to
compensate for these changes in dynamic characteristics to maintain near optimal levels of
performance.

This study identifies the problems that need to be overcome and the variables involved.
A self-organising fuzzy logic controller is developed and tested in simulation. This type of
controller learns on-line but has certain performance limitations.

The major original contribution of this research investigation is the development of an
improved self-adaptive and predictive control concept, the Predictive Self-organising Fuzzy
Logic Controller (PSoFLC). The novel feature of the control algorithm is that is uses a
neural network as a predictive simulator of the boat’s future response and this network is
then incorporated into the control loop to improve the course changing, as well as course
keeping capabilities of the autopilot investigated.

The-autopilot is tested in simulation to validate the working principle of the concept and
to demonstrate the self-tuning of the control parameters. Further work is required to'establish

the suitability of the proposed nbvcl-concept to other control.
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Chapter 1

Introduction and Structure of the Thesis

1.1 Aim and Main Objectives of the Research

Over centuries helmsmen have been steering ships. The task of manoeuvring the vessel
safely through both rough and calm sea lies with the helmsman. Depending of the environ-
ment, this can sometimes demand a high level of skill, expertise and decision making. At
other times it can be boring and tedious to concentrate for long periods of time. Sailors are
still looking for suitable devices to assist them in their navigational task and vessel operation.
There has been an increased use of electro and mechanical devices to automate this process
with certain degree of success. Recently there have been large advances in technology both
in this and other applications.

Of particular interest are the developments-in the field of neural networks and fuzzy logic.
This research investigates the possibilities of employing up-to-date techniques such as fuzzy
logic and neural networks to perform course-keeping/ course-changing control aimed at a
specifically small, highly responsive maritime craft. The novel combination of both fuzzy
logic and neural networks in the fashion described in this thesis is unique.

The aim of this research is to develop an autopilot which is able to quickly and reliably
adapl its control parameters to changes in environment and steering characteristics. The aim
is to give the autopilot self-tuning capabilities, so that it can modify its control parameters
automatically without the need of input from the human helmsman. This will have the effect
of improving vessel control which could result in reduced fuel costs and travel time. Im-

portantly, it will also improve passenger comfort/ cargo safety, and reduce the risk of human



error.

In order to achieve the aim of this research, the following objectives were identified. It is
necessary to undertake a study of historic autopilot development, and to identify the limita-
tions of the current technologies being used. For benchmarking purposes a conventional PD
autopilot was therefore developed and tested in course keeping and course changing modes
of operation. An alternative design using SoFLC was also developed to demonstrate its per-
formance abilities. This controller forms the basis of the research undertaken and has been
expanded Lo create a novel predictive form of seif-organising fuzzy logic controller. All
these types of controllers have been tested in simulated conditions. The results being anal-
ysed and relevant comparison regarding made. Conclusions have been drawn regarding the

performance advantages obtained and recommendations are provided for further research.

1.2 Issues Related to Ship Control Systems

Considerable information about the transient behaviour of the craft is needed for the suc-
cessful control of such a small and responsive vessel. Owing to the size and possible high
forward speeds, such a craft is a highly responsive plant and very sensitive to all types of
disturbances, such as change in speed, loading and weather, etc. Even fundamental char-
acteristics.can change. Consider the behaviour at different forward speeds; at the low speed
end, the vessel can be seen as a displacement boat, whereas at higher speeds the vessel can
go into planing mode and thus change the steering characteristics entirely. Different loading
conditions will change the mass and therefore the inertia, draft, added mass etc and therefore
the time transient behaviour of the vessel responding to.a rudder change will alter too. Tt now
depends upon the ‘intelligence’ of the controller to cope with such a wide range of working
conditions [45]. Sophisticated hardware and software is needed to identify the working envi-
ronment and to activate the correct control procedure in order to produce an optimal control
performance [6, 31]. Optimal control performance is desirable because it means an improved
course accuracy which results in savings in fuel and travelling time [28].

It is imperative to emphasise the need for, and the advantages and disadvantages of using

autopilots for course keeping and course changing control. Under various sea conditions



control and steering of any size vessel can become both boring and tedious. This can lead to
a decrease in safety due to lack of concentration. In these circumstances the helmsman’s task
1s to maintain:the vessel on a desired course to achieve some preset destination. However, the
helmsman will also attempt to continually optimise the vessel’s.performance by minimising
heading error and rudder usage. It has proven [45, 14, 124] to be very helpful to employ a
device (electrical or mechanical) to do the course-keeping, thereby allowing the helmsman
lo concentrate on other crucial activities, eg navigation, route planning, efc. Furthermore,
a human being needs to utilise helpful aids and devices to detect very slow translation and
rotation of the vessel. To this aim, the human’s main input is visual data from the compass.
If the data from the compass is used as an input to an automated control device, it is possible
for the resulting autopilot to achieve acceptable levels of performance when compared to that

of the original helmsman. The three main components of a control loop can be seen as:

o the controller,
o the plant and

o the feedback device.
The signal flow between the components can be summarised as:

o error detection,
o decision making (controlling),

o application of the control action.

The error detector is a device which subtracts the actual heading from the desired heading.
This error is then fed into the control algorithm, which outputs-a signal to the control actuator,
the rudder on the ship. So, the signal is a desired rudder angle which drives the vessel back
on course.

The precise nature of the autopilot’s performance is therefore highly dependent on the
methodology used within the controller, but clearly there is significant potential for further
improvement using modern techniques.

This research takes into account all factor related to ship control for small motorised ves-
sels. It gives particular emphasis to course changing and course keeping. By introducing

the use of artificial neural nétworks and fuzzy logic to perform the task of ship control, it is



possible to develop a new design of autopilot which should outperform the alternative ap-
proaches currently used. The novel combination of fuzzy logic control plus neural network
system identification allows for enhanced control performance, and is an original contribu-
tion to knowledge. The system operation is validated using simulated testing. Performance
is then compared to other systems.

The emphasis of this research is based upon the demonstration of the capability of the
new system to adapt its control parameters rapidly in response to changes in the operating

environment.

1.3 Layout of the Thesis

Chapter 1 (Introduction) provided an overview over the research aim and objectives. It
also considers some aspects related to ship control systems to outline the background of this

research.

Chapter 2 (Survey — The History of Piloting) provides a brief analysis to justify the need
for-this research, and the use of automated steering devices. It also provides an introduction
to the field of marine autopilots, the history and development of autopilot design from the
turn of the century via the P, PD, PID control law to the advanced and adaptive concepts of
the present day. Modern control algorithms are introduced and briefly explained in order to
put this research into the right context. This thesis.concentrates only on specific techniques
currently employed which are applicable to the research being undertaken. An overview of
the historical development of autopilots is included, and an understanding of the limitations

of modern techniques is provided.

Chapter 3 (Heading Control using PD, Fuzzy Logic and Self-organising Fuzzy Logic)
pravides an overview of PD control, fixed rulebase fuzzy logic control (FLC), and also self-
organising fuzzy logic control (SoFLC). Particular emphasis is given to the basic building
blocks of the SoFLC. These are rulebase design, performance index structure, and rulebase
update algorithm. The SoFLC forms an important part within the novel control design pro-

posed by this study.



Chapter 4 (The PSoFLC) describes the development of the novel Predictive Self-organising
Fuzzy Logic Controller (PSoFLC). A method is demonstrated which reduces the adaptation
time of a self-organising fuzzy logic controller (SoFLC) acting in a new, unknown envi-
ronment. This chapter also contains an extension to ‘classic’ fuzzy logic as proposed by
Zadeh [127, 128]. A novel defuzzification method is introduced (section 4.4, A Novel De-
Juzzification Method Using a Normalisation Technigue) which provides a much smoother
control surface when irregularly placed, and asymmetrically shaped, fuzzy sets are used in
the output window. Applied to ship control, this can prevent erratic rudder movements which
could cause extensive wear and tear on the rudder mechanism as well as waste fuel and re-
duce forward speed.

The functionality of the controlier and the predictor modules are separately explained,
and individual test results are shown. This method of using a neural network to determine a
mathematical model does not require specialist knowledge about the plant and environment.
Furthermore, the design engineer can concentrate on the input and output data, and the neural
network will find a relationship between the two. It also enables the identification of the
influence of individual parameters to the overall response. The unique combination of both
modules, the predictor and the SoFLC, forms this novel controller and is the basis for the

originality of this study.

Chapter 5 (Simulation Test Results) contains the simulated tests results of the predictive
controller (PSOFLC) and the results are analysed with detailed graphs showing the various
responses. The tests include step response tests without and with disturbances as well as
course following tests, The test results of the PSoFLC are compared and analysed with
namely a PD controller tuned for high speed and also with the SoFLC. Each section of
the chapter contains a discussion of the test results which highlights the similarities and

differences identified.

Chapter 6 (Discussion) identifies the key points derived from the test results and identifies
benefits and limitations of the novel predictive self-organising fuzzy logic controller.
The new fuzzy logic defuzzification technique is discussed in a variety of test environ-

ments. The development of a testbed to host the controllers is introduced, and the predictor



design is discussed in detail. A comparison of the controllers is undertaken and relevant

conclusions made.

Chapter 7 (Conclusions and Suggestions for Future Work) contains the general con-
clusions of this research and lists some possible ways to implement the new control concept

into other applications. It also reflects on the covered areas of this research and its objectives.

Appendix A (Neural Networks: Theory) Theory and applications of artificial systems
such as neural networks are explained in appendix A. Here, examples are shown, of how
neural networks can be used for control and system identification. This appendix provides
examples of industrial applications utilising this technique. The neural network part is sub-
divided into two sections, Neural Networks for Control and Neural Networks for System

Identification.

Appendix B (Fuzzy Logic: Theory) provides an overview of fuzzy logic, the theory and
their application in industry. The principles of the fuzzy set theory are explained as well as
operators used to formulate ‘fuzzy’ rules. Various defuzzification methods are explained.

It is necessary to introduce the two techniques uniquely combined in this research. The
interested reader can find the main principles of neural networks and fuzzy logic in the

following two appendices A and B respectively.

Appendix C (The Simulation Set-Up) contains explanation on the simulation method
used, based upon a 52 ft (16m) life boat simulator by Browning [20]. The development of an
Integrated Autopilot Testbed used for data logging and testing can be found in appendix C.2.
The data-logging interface is explained logether with the communication protocol (NMEA
0183 [72]) used between the controller and boat. Some operational guidance is provided
on how to operate the software, eg selecting various control regimes, and the the gauges

displayed on the screen are explained.

Appendix D(NMEA Messages considered) lists the NMEA messages |72} used for com-
munication. These messages are exchanged between the simulation and the testbed software

using the serial ports.



Appendix E (Rulebases) consists of a time series of rulebases developed during the train-
ing of both self-organising controllers. A graphical representation (control map) of the rule-

bases accompanies each set of numbers.

Appendix G (Papers, Publications, Presentations) contains a copy of all related research

publications based upon this study.



Chapter 2

Survey — The History of Piloting

In 1922, Minorsky [66] emphasised in one very early paper the advantages of using an auto-
mated steering aid:

For merchant ships an accurate and reliable automatic steering device becomes
a real money saving proposition, largely justifying its use.

On battleships, by its use the absence or reduction of yawing in action means
a better efficiency in gunfire, increased maneuvering speed and also a greater
cruising radius.

Quotation: Minorsky [66], p. 280

The control task of ship navigation can be subdivided into two major divisions. The course
related -autopilot attempts to optimise ship orientation rather than the ship’s position. The
main control task is therefore to maintain or change, the heading of the ship to minimise the
error from the desired course. The track related autopilot optimises the position of the vessel
and not its orientation.

To clarify the-above: this work only considers course and directional tasks of an autopilot
and not position-oriented strategies summarised as navigation. Of course, there-are:combina-
tions possible and nowadays those are most commoniy available on the market. Nevertheless,
the control of the vessel is broken down as mentioned - the control of the vessel’s orienta-
tion as the base level with the navigation unit sitting on the next hierarchical level above
(figure 2.1). control is a complex task and for this purpose of design must be considered in

isolation.
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Figure 2.1. Navigation Layer
2.1 Early Developments until 1930

A very important and early paper was published by Minorsky [66] in 1922. This paper
discusses the stability problems of automated steering and developed the basic theory of
‘directional stability of automatically steered bodies’.

Furthermore, Minorsky subdivided the control problem into individual, smaller problems
such as rudder position control, rudder angular velocity control and rudder angular accelera-
tion control.

Similarly, Sperry [98] described the first installation of a gyrocompass aboard a ship in
1922, In this publication, he considered the problems that occur with automatic steering
using a gyrocompass. In this very early work one can find all the elements that make up
the control loop of an automated steering system for course keeping purposes. The steering
device proposed by Minorsky was installed and tested on the battleship New Mexico [67].
By 1932, this application had been installed on more than 400 merchant ships all over the
world [21]. Nevertheless, before it became such a vast success, some problems with the
gyroscope principles needed to be solved.

In 1923, Schuler |95] described the behaviour of pendulums and gyroscopes when -ac-
celerated in a horizontal direction. The.doubts raised by Martienssen [64] in 1906 based on
calculating gyroscopic compasses errors under north-south acceleration were fundamental
for further research in this field. He discovered very great errors of the gyroscopic compass
device, and simply concluded that this device, or at least this design, is useless for accurate
navigation. However, Schuler suggested a re-designed device which overcame the problems

mentioned above.



Utilisation of the new design, and the subsequently derived equations finally led to the
successful gyroscopic devices now commonly used. The.difficulties of the early years have
been overcome and gyroscopes can be found in most navigation devices which require a high
degree of accuracy.

The autopilot used for the period 1930 to 1950 was a rather simple controller as pro-
posed by Minorsky in 1922 (|66], p. 282). The heading error produces a signal which is
then directly used to adjust the steering mechanism. The controller can be seen as a pro-
portional controller. It is possible to adjust the control parameter (Kp. .. proportional gain)
to suit different conditions eg ship loading. This simple device cannot cope with a wide
range of conditions, ie in rough weather conditions when the proportional controller forces
the steering mechanism to be heavily used and which therefore wears out very quickly. A
weather adjustment is therefore necessary to prevent this excessive wear. In most cases a sim-
ple deadband is introduced to avoid high frequency and small magnitude movements. The
rudder position is then only changed if the control output exceeds a small specified rudder
angle. A different methed to avoid rudder wear by including a delay feedback was proposed.
The rudder cannot stop or change direction until this angle has been reached. Nomoto and

Motoyama [74] described this method as ‘negative backlash’.

2.2 Development of the PID Autopilot

‘During the period, overshadowed by two world wars; the autopilots used were mainly simple

mechanical devices following a simple proportional rule.

da = Kp -, (2.1

where: 9, ... desired rudder angle,
Kp ... proportional gain constant,
Y, ... heading error.
These devices were not very satisfactory and could not prevent overshooting and therefore

often caused transient oscillation.
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Schiff and Gimpnich [93] introduced the addition of a rate control term. In the 1950s, an
improvement in stability could be achieved by the introduction and use of the mainly first
derivative of the heading error (€) or the rate-of turning (angular velocity V). The first com-
mercial autopilot utilising this technique was installed in 1951 on the S. S. United States [63].

The control rule of this autopilot may be defined as:
8y =Kp Yo+ Kp- Ve 2.2)

where: Kp ... differential gain constant.

This was referred to as the PD (proportional plus derivative) controller. In 1953, Motora [71])
suggested to applying a low-pass filter to the output signal to prevent rudder oscillation. Ac-
cording to Rydill [91], who analysed the effectiveness of the PD controller, this may generate
a loss in stability and he therefore recommended the use of a quadratic delay technique (a
second order filter) to overcome this problem. Applying this filter reduces the high frequency
rudder movements with less damaging effect on stability.

Schiff and Gimprich [93] also proposed the addition of an integral term, but it was not
considered further because it was thought to make the ship response sluggish. However, the
integral term finally found consideration in the control equation; the resulting control law

being summarised as follows (equation 2.3).
Sd:Kp'llIe-i-KD'\Pe—l-K['/Wedf (2.3)

where: K ... integral gain constant.

The consideraiion of the integral term now allowed to maintain the ships course in the pres-
ence of steady state disturbances, such as tidal currents and cross winds. Bech in 1972 [13]
emphasised on the needs to tune the autopilot with the demands of optimal propulsion econ-
omy in mind. The application of the PID control laws in ship autopilots when operating in
rough seas was further analysed by Blanke [15].

The PID (proportional plus integral plus derivative) control rule was formulated. The

addition of the integral term assisted in minimising the rudder movements as well as the



steering gear lags. Constant disturbances, causing an offset were now taken into account and
the PID autopilot was fully capable.of dealing with them.

However, the introduction of the integral term may slow down the rudder response.and
cause a sluggish ship response [69]. An acceleration term is therefore introduced to the
PID control rule 2.3 to compensate the slowed down rudder response. The extended control

equation can be written as:
Sd:KP'\I’e+KD'1;Ue+KI"/\|1ed’+KA'\-|.fe 2.4)

where: K4 ... acceleration gain constant.

Controllers based on the PID format could not prevent the generation of high frequency
rudder movements [122] in certain operating conlditions (eg periodic wave patterns). Those
high frequency rudder movements can have a detrimental effect on the hull’s yawing move-
ment [6], and can cause extensive wear of the steering gear.

The introduction of a deadband in the rudder loop can lead to unstable behaviour (the
wind-up of the integral causes this effect). The deadband is a threshold value which the
demanded rudder change has to exceed in order to be executed. If the demanded rudder

change is less then this deadband, then this control action is simply ignored.

2.3 Adaptive Autopilots

The PID controller can be tuned to work under certain specific conditions. If these conditions
change — due to weather (eg waves, wind, tide or current) [30], speed or load, the controller
will not operate near its setting point [6]. To maintain a high level of performance, a further
tuning adjustment of the control parameters is then required to ensure satisfactory autopilot
performance.

The dynamic behaviour of the ship and hence also the parameters of this model

are dependent on the external circumstances and the applied thrust power. When

the ship is steered with an autopilot it Is necessary to adjust the parameters of
the autopilot dependent on the change of the steering characteristics of the ship.

Quotation: van Amerongen and Udink ten Cate {8]



It was determined that the performance of even. the most advanced PID controller could be
improved by adjusting its parameters according to the operating environment of the control
system (ship and autopilot). Van Amerongen |2].defined-two disadvantages of the PID-type

controllers:

o [t is difficult to adjust manually. Because the operator, the watch officer, has
marty other tasks and lacks the insight into control theory, his adjustment
will seldom be optimal.

o The optimal adjustment varies and is not known by the user. changing cir-
cumstances require manual re-adjustment of a series of settings of the au-
topilot. This holds not only for variations in the parameters of the process
but also when due to a varying traffic situation the required performance
changes.

Quotation: van Amerongen [2]

The PID parameter adjustment may be achieved either manually or automatically. The dis-
turbances, and therefore the effects to the hull, may also be subdivided into two major cate-

gories:

I. disturbances that cause a ‘small’ deviation of the desired course and
2. disturbances which change the vessel’s characteristics and consequently the steering
characteristics.

Weather and tidal changes such as waves, wind and current are associated with category 1.
Changing the mass of the vessel whilst loading/ unloading and the resulting draft, displace-
ment and inertia, the quantity of water under the keel and alterations in the forward speed,
all alter the handling characteristics of the vessel and are therefore associated with the sec-
ond category. Small adjustments required to compensate for the disturbances defined by
category 1 may be overcome by automatic adjustments. Changes to the autopilot param-
eter settings to counteract disturbances of category 2 are mainly undertaken by the opera-
tor [8]. These adjustments therefore demand a significant knowledge of both the handling
characteristics of the ship and the environment/ disturbances. Research dating back until
1972 [44,7, 83, 3, 62] and more recent work |31, 124, 96, 132], including the one described
in this thesis, concentrates upon the possibility of automatically adjusting the control pa-
rameter for both types of disturbances. This will ‘de—skill’ the operating of the vessel and

therefore achieve an improvement in safety and economics.
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An heuristic approach to the adjustment of the PID gains was undertaken by Olden-
burg [78]. Other researchers, such as Brink et al. [17] and Ohtsu et al. [77], have chosen an
stochastic adaptation algorithm,

The human factor which is the major source of errors can be taken out of the loop.
Employing an automatic device to do the steering can also improve the stability of the vessel
in roll [4, 51, 5, 37, 16, 110]. Safety improvements are realised by allowing the operator to

concentrate fully on navigation and collision avoidance.

2.4 Self-tuning Controller

The process of self-tuning is referred to as the.on-line adjustment of controller parameters.

In the early 1970s, researchers concentrated on self-tuning or self-adjusting control to
overcome the problems which occur when classical control algorithms are applied to areas
with changing environment and/or uncertainties. Astrém and Wittenmark [10] published a
paper in 1972 which considered a SISO (single—input single—output) system with constant
but unknown parameters. For this kind of system optimal control algorithms can be formu-
lated and solved using non—linear stochastic control theory. However, obtaining the solution
is very impractical because the computational demands needed in order to cover a wide range
of working conditions. A different approach to solving this problem is by taking knowledge
of the process into account and the fact the system has constant but unknown-control param-
eters. One way of finding these paramelers is by employing strategies which will converge to
the optimal strategies. Those algorithms will be referred to as self~tuning or self—adjusting
strategies [10].

Further research in this area was published by Clarke and Gawthrop [29] and Lim and
Forsythe [59] who utilised a cost function which was minimised in order to change the con-
troller’s parameters. In 1990, Vahedipour ef al. [ | 14] developed a pseudo derivative feedback
autopilot. Kallstrom and Astrom [52], Mort and Linkens [70], Brink and Tiano [ 18] looked
into self-tuning methods.

The H.. approach, a frequency based, robust control technique, was applied to marine

autopilot design too but was found to be particulary appropriate for flight control systems
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and gas-turbine designs [32] where the emphasis is on high performance, robust designs-and
reliable systems [36, 37].

It is clear, that the classical and tuned PID autopilot has limitations. It is always fas-
cinating how human operators can cope with a very wide range of unknown and uncer-
tain conditions. The latest research in this field attempts to adapt human abilities such
as learning and experience to the design of a controller with an increased level of perfor-

mance [54, 109, 113, 130, 121].

2.4.1 Model Reference Adaptive Control (MRAC)

The Model Reference approach is based upon the comparison of measured, actual data and
data of an ideal mathematical model (reference model) which represents the desired response.
An error function containing both information of the reference model and the vessel to con-
trol is derived. By adjusting the controller’s parameters, this function (criterion) is then
minimised in such a way, that the actual response follows closely the response of the model.

In 1973, van Amerongen and Udink ten Cate underlined the importance of adapting the
parameters of the autopilot and compared two methods of model referencing. In the pa-
per | 8], both of the following approaches Lo tackle the ‘fixed settings problem’ are described.

Layne [57] takes the same principle in his Fuzzy-Model-Reference-Learning-Controller
(FMRLC), but he does not adjust a conventional controller, but the “learning algorithm seeks
to adjust the fuzzy controller so that the closed-loop system ... acts like a pre-specified
reference model”.

Lightbody [58] undertook further research on the idea of MRAC. Here, the controller is
a back-propagation neural network and the error between the reference model and the plant

is used to adapt (teach) the neural network controller.

The Mathematical Model A mathematical model of the ship is the counterpart of the
actual ship. The control action is applied to both the model and the ship, then the con-
trol parameters are adapted following a criterion such as J = 5-82 with the error defined as
£ =\, — . The result of the sensitivity coefficient and error adjusts the feedback signal ob-

tained from the rate gyro. The adaptation takes place exactly by adjusting this rate feedback
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signal.
Nomoto’s model [75] (equation 2.5) is often the basis for this technique in maritime

control application.

T (T +T) Y+ = K8+ K13 (2.5)

where: Y ... heading ... rudder angle
Te ... time constants K ... gain
The constant K and time constants T, T and T3 are related to the mass and speed as well

as to the hydrodynamics of the vessel. The rudder variable is & and the variable y belongs to

the course. The transformation into Laplace domain assuming zero initial conditions gives:

Yis) K(tas+1)
8(s)  (Tys+ D{(tas+ 1)s (2.6)

It has been found by van Amerongen and Udink ten Cate [8] that this model is too sim-
ple to describe the complete ship’s behaviour, so the rudder angle should not exceed 5°.
However, this model is feasible since under normal steering, a ship often makes only small
deviations from the straight line path [57]. For most applications however, a model suited
for rudder bigger than 5° is needed. An extended transfer function (as proposed by Bech and

Smitt [12]) can be used. If the thrust power remains constarit (%, 1%2—1 T3 = constant), the

transfer function can be re-written (substituting (%)\u = H(y)):

1 l K K ;
+|—+— )P+ —H) = —(136+8 2.7
y (T] Tz)wtw (V) P GLRL) 2.7)
If the rudder rate-(rudder-angular velocity) is neglected and if a; = % + Tiz and K' = r’iz

then-equation 2.7 simplifies to:

W4 a) i+ K H(y) =K'S. (2.8)

H () represents.a non-linear function of W and can be obtained from the relationship be-
tween & and . When the the external conditions do not change (f = {y = 8 = 0), then H{y)

can be found-from the relationship between 6-and . A spiral test gives an approximation of



H(¥):
H() = ay® + by (2.9)

Figure 2.2 shows the block diagram of adaptive autopilot design.using a.reference model.

The model represents the desired behaviour of the ship.

Sensitivity Models  This sensitivity model technique is especially designed to prevent course
instability of very large ships. The adaptation process with the sensitivity model is in fact
based on a continuous hill climbing technique. The criterion used in that approach can be
defined as:

Tl 5
CZ/ —£°dt (2.10)
o 2

where: C ... critericn, € ... error.

Using the steepest descent method, the gain K of the rate feedback signal is adjusted. This

approach is not stable under all circumstances [38].

Liapunov Approach This approach follows the principle of direct adjustment of the con-
troller’s parameters. Assuming that the model’s transfer function and that of the system are
of the same order, a difference between the state variables of the system and the model is
utilised to adjust the system’s parameters in order to minimise this difference.

Existing differences between the state vectors of the the mode! and the system are min-
imised by altering the system parameter. The process is assumed to be linear and that non-
stochastic disturbances occur. A low-pass filter also is required in rough seas.

The model represents a desired response and the system should follow this response as
closely as possible. There are some difficulties when the Liapunov technique is applied to
non-linear ships. A low—pass filter is required to filter out the measurement noise.

However, according lo van Amerongen and Udink ten Cate [8], when the results of both

techniques are compared, no significant difference can be found.






2.5 Modern Control Algorithms

It has been demonstrated that adaptive cont‘rol is the control technique of the future. In recent
research (M. Polkinghorne er al [82])self-organising (self-tuning) [29, 125, 101, 115] meth-
ods have been used for the control of processes in uncertain, varying environments [60, 129,
61]. Existing adaptive controllers, eg self-organising fuzzy logic controllers (SoFLC) [81],
learn by employing a heuristic approach. In order to learn, they initially start off with a poor
performance. Because of their adaptive nature, the errors made during this low performance
work are detected and the control parameters are adjusted in such a way as to avoid the same
error in the future. The following sections describe the main differences between self-tuning

controllers, SoFL.C and the control idea PSOFLC of this research.

2.5.1 Self-tuning Autopilots

First developments of cost functions (criteria) for adaptive course-keeping autopilots were
undertaken by Astrom and Eykhoff [9] in 1971. The method used was based on a least

squares parameter estimator and a minimum variance control technique.

)
J:/ (W2 -+ Ay + A 82)de @110
Q0

Special attention should be given to the cost function. Assuming a vessel is left to yaw natu-
rally without high frequency rudder corrections, the distance travelled during a 400 nautical
miles journey does not increase more than a quarter of a mile when the deviation of the
course remains £2°[73]. However, each rudder movement causes a drag and so a loss in
forward speed and increased fuel consumption.

In 1975, Clarke and Gawthrop [29] developed a more generalised self-tuning controller.
Publications in the late 70’s and early 80’s show the applicability of self-tuning controllers

to the marine field [69, 43].

2.5.2 Optimal Control

It has been demonstrated by Burns [22] that it is possibleto design an optimal multi-variable

ship guidance system that controls position, heading and speed simultaneously, and such a
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system can work within the constraints required in port approaches.

2.5.3 Neural Networks

The first notable paper utilising neural networks (for the principles on neural networks see
section A) for the ship control application was published by Endo ef af [31]. The training
data to teach the neural network were generated by a PD controller. Further work in this field
has been published by the author of this thesis (23, 24] and by many other researchers [11,
39, 46, 50, 97, 107, 113, 116, 121, 123, 120, 133, 132, 134]. A key paper was published
by Hearn [41] where the use of a back-propagation neural network for on-line learning was
detailed. In reality, the controller was not truly learning on-line, but was using a relatively
fast computer in order that the learning could be achieved within the sampling time of the
system. The training of the network was finished within approximately 0.5 seconds.

The back-propagation learning algorithm is based on the gradient (steepest descent)
method. It minimises an error function. In the case of back-propagation, the error (E) of

a neuron is defined as:vspace-5mm

E=—(d—y)? (2.12)

where: £ ... error,
d ... desired output,

y ... actual output (ie sensor reading of the plant’s response).

The desired output vector, in the case of a ship autopilot a single output, contains only the
desired course. The system response is a function of the rudder angle and using the chain
rule to derive a error measure for each individual neuron a control signal can be learned
which minimises the difference between desired and actual course (figure 2.3). Further work
in this field is being undertaken by Zhang er al [131, 132, 42]. More work on track keeping
and related tasks such as rudder roll stabilisation and course keeping has.been undertaken by
several researchers [120, 105, 87].

There have been-publications in the field of predictive control, such as Montague et

al [68], Saint-Donat [92] and Tolle [111, 112].
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Figure 2.3. Direct Neural Control Scheme [41]

2.5.4 Fuzzy Logic

A further method of simulating human behaviour is achieved by using linguistic variables
and derived rules. The controller’s task is to use a human-like way of thinking. The thoughts
are placed into a knowl-edge base in the form of rules {rulebase), and the inputs-are givenin a
fuzzitied format. The use of so called fuzzy sets supports the human way of expressing every
day actions and understandings. Fuzzy sets represent the mathematical equivalent of linguis-
tic variables, eg tall, hot, cold, erc, used by the human language to express relationships
and/or rules.

Nowadays, even more advanced techniques are used. Self-organising fuzzy logic control
[26, 46, 60, 81, 82, 105, 106, 34, 33, 107, 109] or SoFLCcombined with the model reference
adaptive control (MRAC) technique [27, 53, 57, 99] is a recent development in this field to-
date.

The principles of fuzzy logic are outlined in appendix B. It is necessary to understand‘the
principles and functionality of both, neural nets (see appendix A)and fuzzy logic in order to
understand the underlying aim of this research.

A neuro-fuzzy hybrid system called ANFIS (Adaptive-Network-based Fuzzy Inference
System) was developed and introduced by Jang [48] in 1993. Since then researchers such
as Sutton and Craven [104] have used this technique successfully for the guidance of au-
tonomous vessels. This system uses a fuzzy system as an input layer. The successive layers
(layer 2, 3 and 4) are artificial neurons. The final output of the ANFIS system is not a single
number or vector as in supervised neural networks, moreover it activales a function with

parameters. Each neuron in the output layer represents a different set of parameters for this
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output function.

2.6 Summary

This chapter provided an‘historic overview of control systems in maritime applications. With
the recent advances in technology other revenues of control can be pursuit to give an even
better performance over a wider operating range. The direction of research and technology
can be seen in non-linear and adaptive control, enabling the controller to change its control
parameters, /e when changes in the operating environment occur. Some aspects of model
reference adaptive control (MRAC) were explained. This technique is using an internal
mathematical representation of the expected behaviour of the process. If the real response
varies to that of the reference model, controller parameters are adjusted in such a way that

the real behaviour is following the referenced response more closely.
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Chapter 3

Heading Control using PD, Fuzzy Logic
and Self-organising Fuzzy Logic

3.1 Controlling the Vessel with a Proportional 4+ Derivative

(PD) Controller

Since the mathematical description of the vessel used for the simulations already contained
an integral term (Nomoto model), the controller does not need to contain one as well [69].
The controller-was tuned at full speed using the following-technique as explained in Ce-
trek’s user manual for the 715/730 Autopilot Series [25]. This technique is.easily understood
by customers and leads 10 good control performance.
The differential gain was set to zero and the proportional gain increased gently until
marginal stability was achieved. Then the differential gain was increased to ‘drive back’ the

oscillation and to decrease the overshoot. Given the general form of a PD controller (see also

Chapter 1)
Sd:Kp'We'i'Td'w (3.1)
the following values were found:
K,=1.0,
T(,' = 4.44s,

The tuning has been performed under calm conditions at full speed. The boat simulation
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the plant output provides a satisfactory level of performance then no alteration of the rulebase
is performed. Conversely, as the performance level deteriorates, then the performance index
indicates the magnitude of adjustment required to drive the plant output back Lo a satisfactory
level.

The disadvantage with this self-organising technique using a performance index is that
the performance measured corresponds to a control action, hence rudder change, n time
steps back in the past. It is very difficult to relate the current stage of the vessel back to the
rudder action which has caused this state. The time delay is about one time constant of the
vessel, approximately 63% of the steady state yaw rate () have been reached. If a longer
time period is considered, then it is more likely that another rudder change was applied.
However, rudder changes made earlier still have effect on the vessel. Furthermore, and
more important, the control action has been applied and caused the poor, present state.

This technique has been used in several applications and its performance and reliability
has been tested and approved. The controller used is a standard fuzzy logic controller using
fuzzy singletons in the outpul window. A fuzzy singleton is defined as a fuzzy set where
only one element of the universe of discourse has a membership value greater than zero (see
figure B.12 in appendix B). This simple set will be used to keep the self-tuning algorithm

easy to understand as well as easy to implement.

3.4 The Self-organising Fuzzy L.ogic Controller (SoFILC)

This section discusses the self-organising method using historic data as previously intro-
duced by [125]. It discusses and explains the fundamental principles of self-organising fuzzy
logic controllers. The performance of this kind of controller is demonstrated in simulations
and serves as a reference (benchmark) to evaluate the achieved performance of the Predictive
Self-Organising Fuzzy Logic Controller (PSoFLC) of this research.

The input fuzzy windows used in both self-organising controllers have already been in-
troduced (figure 3.2, page 25). Considering the fuzzy windows again, it can be noticed that
the input window for the heading error is highly irregular, using asymmetrically shaped sets.

This layout allows to emphasise regions of control, in this case, give finer control in the
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As an example: if the heading error is big (y. > 0) and the vessel is turning quickly in the
direction to reduce the error (\y < 0), then the vessel is at a desired state, and the controller
acts in the desired way, that is, turning quickly to reduce the error. Note the small corrective
value in the left bottom (right top) corner of the performance index. If, on the other hand, the
error i8 big and the vessel turns away from the desired course (error and turning rate have the
same sign), then the controller suggests a non-desirable action and the performance index
indicates this with a number # 0.

The performance index itself is derived from PD (proportional+derivative) data. It rep-
resents a plane in a three dimensional space (see table in figure 3.6). Figure 3.6 shows the
performance index in a three dimensional plot. The surface is smooth and monotone in each

direction. The coloured curves in the x—y plane show the contours of the surface.

3.4.3 The Rulebase Update Algorithm

The performance index as discussed above gives an indication of the direction and magnitude
by which the rulebase has to be changed.

As previously described by Procyk and Mamdani [83], the performance index only pro-
vides a measure of performance of the overall controller. Now, this output has to be con-
verted into real, corrective, values to the process/ controller that should have been applied
some control actions in the past causing the present poor performance. It is imporiant and
not trivial to link the current state to previous control action(s).

Before any analysis can be completed, the change on the control actuator has to take
effect and a certain period of time has to pass by. This time delay or delay in reward
(DEL) [102] is characterised by the time constants of the process. For this application a
DEL of one time constant (DEL = kT = | X Tiygem) has been chosen.

The rule changing algorithm consists of three main phases.

I. straightforward fuzzy logic control (fuzzification, fuzzy inference, defuzzification).
The active rules and values are stored for later use in the tuning. A control output is

created which is fed into the process (control actuator).

2. The process ‘reacts’ in-an appropriate (in its characteristic) way and the actual output
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This equation effectively moves the singleton along the universe of discourse. Since the per-
formance index is scaled between %1 the gain to boost the output of the PI for rulebase
adaptation is set to 3.5, lloth of the maximum rudder movement. The physical rudder limit of
the boat was £35°. The values inside the rulebase saturate at £35°. No overrules are used

1o guide the adaptation of the rulebase.

3.5 Summary

The disadvantages are clear since this technique is based on the assumption that, the con-
troller output n lime steps (DEL) previously is.responsible for the present state of the process.
If the process measurement indicates a poor state, these rules should be changed. This tech-
nique only allows to adjust control parameters which already performed to an unsatisfactory
level and is therefore retrospective.

To avoid the application of a control action which does not improve the current situa-
tion, knowledge is required to assess the control action’s effect on the current state. Using
measurements, this knowledge is only available in the future. By relating the measured state
to a control action back in time, rules can be identified which caused the current, measured
state. A simulation (running faster than real time) could also give an indication of the control
action’s effect. This simulated state could give vital clues about the quality of the control

action about to be applied.
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Chapter 4

The Predictive Self-organising Fuzzy

Logic Controller

This chapter will concentrate on the method used to make predictions of a future state of
the ship (plant) which is then utilised to optimise the rulebase of the fuzzy logic controller.
For this purpose, this section explains the principles of adaptive-modelling using neural net-
works, and their application in a predictive controller.

Self—organising controllers (SOC) use present data to evaluate control performance. Of
course, the present performance is related (o a control action in the past. This means that at
the point in time that the.control action is applied, the future effect of that action is.unknown.
The action to be applied can improve the situation, but it is also possible that it can make
the situation worse. The aim for a controller should be to test and validate the effect of its
action on the plant before the action is actually applied. This can be achieved by running
a simulation faster than real-time which will obtain information about a future state (n time
steps ahead) of the plant when a certain control action is applied. In a predictive controller,
this future state is taken into account when the performance is validated. To run.a simulation,
a mathematical model of the plant and the environment is required. This mathematical model
is called the Predicior in this application.

An innovative form of mathematical modelling is used to forecast the plant’s behaviour

and is:explained later in section 4.2.
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The values inside the rulebase saturate at £35°, limiting the rudder demand 8, within the
physical limits of the rudder. No overrules-are used Lo guide the adaptation of the rulebase.

Following the analogy of Sugiyama [102], using predictor terminology, the DEL be-
comes the Time—in—Advance (TIA). For this application a TIA of two time constants (TIA =
kT =2 X Tgysiem) has been selected. Two time constants have been chosen to allow the rudder
change to take considerable effect on the hull’s movement. Together with the performance
index, an improvement in the vessel’s state is therefore expected within this time period.
Choosing only one time constant provides the system with insufficient time to change the
vessel’s turn rate, and approach the steady state response. Selecting a TIA value of ‘three
time constants would allow the vessel to reach a steady state. However, operating in a real
environment, rudder changes are applied more frequently than once every 3 time constants.
Investigation has shown that selecting 2 time constants as TIA is therefore a compromise
between the two scenarios. During the prediction, the rudder is not changed, so the effect
of the rudder in during this time is exactly determined. No other rudder input influences the
future state of the vessel, so a future state can be related toone control action more reliably
and accurately.

Figure 4.4 shows the block diagram of the rulebase adaptation module only. The pre-
dicted data is fed into the performance index which returns a measure of performance. Util-
ising this output from the performance index, the rulebase is updated. If the performance
index indicates a good performance (|P/| = 0) then the calculated rudder is applied to the
ship, otherwise the process of calculating a rudder demand 84, predicting, performance mea-
suring is repeated until the maximum number of cycles (10 in this application) is reached or
the performance index gives no reason for further repetition. The block diagram shows the
parts as found in the PSoFLC. The data utilised by the performance index is coming from

the predictor and is the heading error y, and turning rate V.

4.2 The Predictor

To find a fully representative model of the plant is always a problem in control engineering.

It has been shown [117, 85, 132] that neural networks are well able to learn the transient
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Actual Heading (y) Heading is the quantity to control and is the most important value to
be included in the mathematical model. By including heading into the model, orientation
dependent data (tide, current, wind) is considered. This way, more knowledge about the

environment is obtained and embedded' into the mathematical model.

Yaw Rate:(\) being the first derivative of the quantity to control, this is an important value

to consider.

Forward Speed (1 =x) A change in forward speed changes the steering characteristics of
the vessel. This can be seen by the influence of the forward speed v in the yaw equation (set
of equations 4.6).

An increase in forward speed causes the vessel to lift out of the water. This then results
in a reduction in the ‘carried mass’ and reduces the resistance. This non-linear term (~ v?)
has a major influence to the systems state [21], and it is therefore included as a state variable.
The position in x can now be easily obtained using the direction of travel (yaw, y) and the
forward speed. However, for piloting purposes as considered in this research, the actual

position is not a relevant information.

Actual Rudder Angle (8;) / Desired Rudder Angle (8;) The rudder is one of the two
actuators the boat has. The-second one being the propeller-directly linked to forward speed.
The rudder is linked to the yaw rate and is the prime actuator responsible for a:change in the
vessels orientation. It is therefore considered as an input into the model. Both rudder angles,

desired and actual, are included into the model to simulate the response of the steering gear.

Pitch Angle (6) / Roll Angle ¢ First tests revealed that the model was not very -accurate
when the roll and pitch angles were not included. This might be explained by the close
coupling of pitch to heave which is not considered either, and rudder to roll. A linear rela-
tionship can be noticed between the roll moment and the rudder (equation 4.6). This explains
the improvement of the model when the roll angle was included as a model input.

By including one of the two coupled variables a significant improvement of the model

was achieved. Including those two values into the input vector; more information about the
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environment can be obtained. The neural network should be able to estimate a magnitude of

the:sea state as well as anticipate low frequency wave patterns.

Time to the Previous Sample (Ar) The sampling time is not constant. To draw -any con-
clusions from the change in any of the above values, the time has to be included to connect
the values.

Nomoto’s simple model of a ship

1 K
s s+a

o€

(4.8)

indicates a second order system, a system of first order plus an. integrator. A linear rela-
tionship can be described with two points. If a rate term (first derivative) is included, a third
point is required to make a smooth transition from one section to another, this means that the

functionis differentiable in all points. Hence three points find consideration in the vector.

4.2.1 Predictor Requirements

The time for learning and predictions is limited. Ideally, a-continuous controller without time
delay will result in the best control. It is therefore important to use an as short as possible
sampling time but at least half the time constant of the process under control. 40 records
(input/ output data pairs) are stored as training data. These 40 records represent the last 20s
of the vessel’s transient behaviour (sampling time 0.5s). Since the training of the network
happens approximately every 10 seconds, a sample window of 20 seconds allows each set to
be exposed to the neural network together with one previous 10s window and one future. A
graphical representation of the timeline 1s displayed in figure 4.7. This enables the algorithm
to be exposed to already learnt data and new data to allow for a smooth transition. It also
helps the algorithm to restore and interpolate the relevant data. Measurements and analysis
have shown the dominant time constant of the ship in yaw to be approximately 1.25s travel-
ling at full speed. This relates to approximately 1,050 rpm and 21 knots (39 km - h~") for this
model. The time constant increases with reducing forward speed. Travelling at full speed is
therefore the ‘worst case scenario’ with respect to time available for learning and predictions.

Also, at full speed the vessel plus controller are most sensitive/ acceptive to disturbances and
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Initial tests involving only heading, heading rate and desired rudder with respect to the
input vector have proven the network to be too small. It was impossible for the network to
build a working model, from this limited set of input/output data. The output vector in this
case contained only one value, the heading acceleration. By using this model, the predictor
led the control algorithm to unsatisfactory behaviour shown in an oscillating, undamped
response.

More data was found to be relevant and therefore included in the input vector, namely roll
and pitch information. For internal processing, those data were also included in the output
vector and linked to the input vector when predictions are made more than.one time constant
ahead.

Different numbers of neurons in the hidden layers were also tested. Using an increased
number of neurons in the second hidden layer did not improve the overall performance of the
neural network model and the model therefore reverted to the size of the former structure.

The next section will explain the adaptive model, the Predictor in more detail.

4.2.2 Development of a Prediction Strategy Employing a Neural Net-

work

A method has to be determined which is capable of teaching the network on-line. This can
be achieved by learning measured data whilst a journey (simulated or real) takes place. In
this way, the model can adapt itself to respond exactly as would the vessel when working in
the same environment (mass loading, forward speed, disturbances, efc).

The neural network model will adapt itself if the ship characteristics change, as a result
of this the model has an unique ability to represent the current state of the ship at all times:.
The training sets the network is exposed to during the training are important for the quality
of the neural network model. To represent a particular state, all characteristic values have
to be taken into account. On the input side of the predicting neural network (see figure 4.8)
there are the forward speed, rudder angle and desired rudder angle, heading, heading rate,
roll and pitch angles and the heading acceleration. These data are related to the new heading
acceleration on the output side which when twice integrated gives the new heading angle.

During tests of the predictor it was observed that the predictions of the model improved
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Figure 4.9. A Test Run of the Predictor Module (Heading)

when pitch and roll angles were considered as additional inputs. These values are not con-
sidered, however, in the process of adapting the controller but they are internally used by the
predictor only. Analysing equations 4.6 the coupling between roll, pitch and yaw become
apparent. By including those extra values in the state vector a better moedel was achieved.
The neural network will establish a relationship between the data on the input ports and
the expected data on the output ports. The main outputs of the predictor is the new heading
related values (,, ¥, Yp,). The change in these values depends largely on the applied
rudder. The environmental forces such as waves, tide and wind will push the vessel off its
desired course. The data representing the environment including the vessel are considered
as inputs and the vessel’s response (heading, roll, pitch) as outputs. When predicting a new
heading, the current and past two slates are required. This combined data is fed into the
neural network which will return the new, expected, state of the vessel one time step ahead.
If a prediction further in the future is required, then the prediction process is repeated with
the most recently calculated figures fed back into the input vector as the most recent sample.

For adapting the control parameters, only the predicted heading information is.considered.
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4.2.3 Evaluation of the Prediction Module

The predictor was tested in simulation. Figure 4.9 shows the behaviour of this module.
A zig—zag manoeuvre was performed and the neural network was trained with measured/
simulated data. The predictor was then used to predict the ships heading, rudder, roll and
pitch 2 time constants ahead (approximately 3s at full speed 1050 rpm, 21 knots). In the
beginning there were rather targe errors. With an increase in time and the number of learned
conditions, this error was reduced. The Predictor does not need long term accuracy since it
is only required to predict a short time-period ahead (up to 3 time constants). Furthermore, a
second order system reaches 95% of the final steady state output to a step input after 3 time
constants. Predictions will be largely effected by inaccurate internal representation when
travelling at full speed. So the circumstances presented are the ‘worst case scenario’.

The predictor is unable to foresee changes in heading demand (operator driven desired
course change) and this can be seen in the rather large differences between actual and pre-
dicted heading when the heading demand changes. After a small period of time, the actual

response follows closely the predictions.

The neural network predicts the future actual heading

at sufficient accuracy ro be suitable as a predictor.

Figure 4.9 also shows the close matching of the true and predicted headings when a

constant rate of turn is reached. In essence, that is the expected predictor result.

4.3 The Integrated System

In this section a new kind of a fuzzy logic self-organising technique is introduced. The
block diagram seen in figure 4.10 shows all the modules discussed earlier in this chapter.
These modules, when combined, become the novel Predictive Self-organising Fuzzy Logic
Controlter (PSoFLC).

The control system consists of 3 main parts:vspace-5mm

o the plant exposed to disturbances = requirement for control,

o the controller and
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The control output is only passed to the process (simulated or real world ship) if the
predicted performance of the process following the control action shows a good, desired
performance. If the resulting state is poor (the PI indicates that low performance state), the
rulebase is.adjusted to meet the requirements.

The left-hand side of figure 4.10 represents the controller with all its components. The
working principle of the controller (providing the desired rudder angle &, and adapi the

rulebase if necessary) is summarised as follows:
I. An error signal y,, \ is determined from the desired course Yy and actual course ,,.

2. This signal is passed to.a fuzzy logic controller and a desired rudder angle 8 is gen-

erated.
3. The desired rudder angle 8, is fed intothe predictor to.give a future state of the vessel.

4. IF the rudder change results in an improved state (ie the heading error ¥, is reduced),

THEN the desired rudder angle 8, is applied to the ship’s real rudder.

5. ELSE, the rules involved in the calculation of this poor performance rudder angle 84

are modified in order to improve future performance.

The characteristics of the vessel is learned on-line while the vessel is in operation. This
insures-an always up-to-date model (Predictor) representing the current control-environment.
A flow chart to visualise the above is given in figure 4 4.

To evaluate the controller’s performance, a manoeuvre has been executed. The manoeu-
vre set up is a square ‘figure of 8’ in the following form. Commencing with a course of 90
degrees (East), followed by 90 degree turns to the North, West, South, East, South, West,
North and finishing off in eastern direction. All the course plots can be seen in chapter 5.

In figures 5.2 and 5.3 (see chapter 5), the course of the vessel and the heading and rudder
changes are analysed. The manoeuvre is performed three times to demonstrate the learning
capabilities of the controller. The learning effect can clearly be seen in the third manoeuvre
(third ‘figure of 8') where the course follows more closely the desired shape than previous
ones. The controller started off with an empty rulebase, which meant that, under all circum-

stances the desired rudder-angle remains at zero.
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The rudder will only start to move to one side when the measured state (orientation, po-
sition) indicates a low performance level of the controller and the adaptation process causes
some alterations in the rulebase. This, of course, can take some time when the SoFLC is
used, since the SOFLC ‘waits’ a period of time before it measures the state. Only when the
performance has already deteriorated does the SoFLC adjust control parameters and subse-
quently tries to improve the state.

Both sampling time, and the time which must pass to allow the control action to take
effect (delay in reward, DEL), play a key role in the time delay and low response time of
this kind of controller. NB: The response time here refers to the time taken to change the

knowledge base and not the controller’s reaction time.

4.4 An Original Defuzzification Method Using a Normali-
sation Technique

During the first development of the FLC using a geometrical approach, some questions re-
mained unanswered. For instance, the control surface was not smooth and it contained
plateaus and cliffs (figure 4.11). This effect was particularly bad when irregularly shaped
and non-uniformly distributed fuzzy sets in the input windows were used.

Work undertaken during this research programme has identified that:
Current defuzzification methods cause a rough and undesirable control behaviour.

This section highlights a new idea and its implementation to overcome these problems.

To improve the appearance of the control surface one has to smooth out the cliffs and
plateaus.

Initial experiments by the author, with fuzzy logic, have demonstrated that: the control
surface is highly non-linear when irregular fuzzy sets are used.Not only do irregularly shaped
sets show such.behaviour, regularly shaped triangular sets, non-equally placed in.the universe
of discourse, produce a very similar response. The reason for such *abnormal’ behaviour
lays in the mathematics of the employed defuzzification method. A solution developed by

the author to:overcome the problem can be found later in section 4.4. To aid comparison, the
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surface shown in figure 4.11 has plateaus and cliffs which are produced using the ‘centre of
area defuzzification method’.

Each rudder movement slows down the vessel due to the increased drag effects. So,
rudder changes have to be minimised in order to save time, fuel, money and downtrack
journey distance. Nevertheless, the controller should react precisely in order to minimise
heading error. The application of an averaging filter is possible but will result in a more
sluggish behaviour.

Eleven years of experience in autopilot development has indicated to the engineers at
Cetrek Ltd. [119] that a response resulting from a control surface as shown in figure 4.11
will cause extensive rudder wear as well as uncomfortable rides (due to the sporadic and
harsh rudder movements). The author observed how small changes on the input side (small
variation in heading and turn rate) induced very rough behaviour and response by the rudder.
According to Cetrek Ltd., fuel is wasted and bearings wear out much more quickly if a
controller shows such a response surface. A far smoother response (desired rate of rudder
movement} is required to secure a comfortable ride as well as minimise wear and tear.

A better defuzzification method is required. This section will introduce a new defuzzifi-
cation method for fuzzy logic controllers.

Given the performance problems (rough and sporadic changes of the output value see
also’|19], section 10.6) associated with the standard fuzzy logic control, it was found to be
necessary to generate an enhanced version to overcome these performance problems.

Figure 4.12 shows the resulting control surface which is much smoother, without the
steep cliffs and plateaus. Such a control behaviour is much more desirable than the one seen
in figure 4.11 as previously discussed. Analysis of the defuzzification method has identified
that the shape of the control surface is dependent upon a) the position and b) the shape of the
used fuzzy sets as well as c) upon the defuzzification method used.

The non—desirable surface profile is inherent in the fuzzy logic defuzzification method
employed. The maximum deviation (error) is less than 10% if regularly-shaped, equally-
placed sets (as in figure 4.13) are used [88]'. To improve the controller, more research has

been undertaken by the author in the field of classical fuzzy logic, with particular emphasis

' See appendix F for translation of the relevant pages.
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area has been employed. The equation for the overall centre of area is:

YiAicgi
EiAi

overall Centre of Area = 4.9

The problem of rough behaviour lies within equation 4.9; a wide fuzzy set covers a wide
range within the universe of discourse and is therefore very ‘fuzzy’ and should be less im-
portant than smaller, more precise, sets. The first moment of area does exactly the opposite,
the wider a set (larger the area) the more influence this set has on the final output, the more
weight it brings in.

One possible way to overcome this problem is to use irregularly shaped fuzzy sets.
When the degree of membership changes, the position of the centre of gravity changes, so a
smoother transition between sets could be achieved. ‘Leaning’ the set over to one side, re-
sults in a more gradual change when the set ‘is left’. However, this proves difficult to realise
on both flanks.

The solution introduced is quite simple. To make the sets equally important, the weight
of the sets is normalised. The weight indicates the influence of the set relative to the overall
output value. The area is defined and cannot be changed, so a new factor is required. To
equalise the weight of the set (all sets contribute the same amount towards the final output),
each set receives a density (p). The weight is calculated as: w = A-p. The density of a
set is simply the reciprocal of the area under the full set. The active weight (dimensionless)

becomes:
active area

active weight = ———
g area of full set

(4.10)

This simple algorithm (equation 4.]0)‘no-rrna]ises the the influence of the set to the over-
all output. To defuzzify, the active (and normalised) weight is used and the active area is
not considered. This new technique clearly demonstrates (see figure 4.17) the improved be-
haviour due to smoothed, yet still accurate response. The smoothed control action results in
less harsh rudder action. This will reduce rudder wear and improve the energy efficiency of
the vessel when the fuzzy logic is applied to an autopilot.

To obtain some analytical data, a 90° slep change is performed with exactly the same

settings. The fuzzy input windows (figure 4.14) and rulebases are identical. The only key
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troller uses movable fuzzy singletons. This allowed an easy implementation of the adaptive
algorithm in form of a computer program. It was shown that there is only a small variation
between the new defuzzification method and defuzzification of fuzzy singletons.

This chapter considered the Self-organising Fuzzy Logic Controller. Covering the struc-
ture of the rulebase and the performance index, the self-organising technique is explained.
The update algorithm utilises the result of the performance index to adjust parameters of the
fuzzy logic rulebase to counter act performance deterioration.

Expanding on the theory of SoFLC, the Predictor is added to the controller to form the
PSoFLC. The system is now able to evaluate (and apply-or omit accordingly) a control action
before it will be executed. This results in faster learning of desired rudder actions when
compared to standard SoFLC.

Since all control actions are evaluated by the predictor and performance index before
application it is believed to obtains a stable system. If the predictive module represents
the plant under control and hence ‘poor’ performance is detected, a stable controller can be

guaranteed.
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Chapter 5

Simulation Test Results

To demonstrate the controller’s performance, a manoeuvre has been set up to repeat the
same conditions for the different autopilots used. The SoFLC is compared with the novel
Predictive Self-organising Fuzzy Logic Controller (PSoFLC). This comparison demonstrates
the ability of the PSoFLC to adapt quickly and therefore to give a better performance in a

much shorter time.

5.1 Tests without Disturbances

All the tests in this section have been undertaken without disturbance effects being consid-
ered. Two.different tests have been set up. Firstly a ‘figure of 8’ test which provides a visual
reference of the performances of the controllers in question and is included to demonstrate
in a.qualitative way how the vessel responds with various-controller options. The second test

is a classic step response test in which the step is a change in course demand of +20°.

5.1.1 Course Following Test — ‘Figure of 8’

These simulations have been executed in ideal conditions — calm water, no.disturbance. The
autopilot is required to-do a square ‘figure of 8’ (figure 5.1) at a set forward speed. The fol-
lowing table 5.1 contains the desired course information and the times for which the course
should be kept.

The learning of the SOoFLC is slow, therefore the vessel does not reach the desired.course
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5.1.2 Discussion of the ‘Figure of 8’ Manoeuvres

The graphs (course plots) in figures 5.2 and 5.4 show the course travelled for the different
controllers.

The ‘figure of 8’ manoeuvres where undertaken to provide a visual reference of the capa-
bilities of the various controllers. This emphasised the learning capability of the SoFL.C and
PSoFLC, and the differences between them. It was clearly evident that the PSoFLC adapted
more rapidly than the SoFLC, which was demonstrated by the improved (more recognisable)

‘figure of 8’ in figure 5.4.

5.1.3 Step Response £20° Test

In figures 5.6 — 5.17 the step response of the vessel plus controller can be observed. Three
controllers, namely the PD, SoFLC, PSoFLC, are compared. The manoeuvre has been re-
peated for three different forward speeds to demonstrate robustness. The plots start off
with the heading and rudder data for 16.7 km-h~"' (9 knots, 450 rpm), in the order PD,
SoFLC, and PSoFLC. The second series shows the same manoeuvre for a forward speed of
222 km-h~! (12 knots, 600 rpm) while the third series shows the response at 38.9 km - h—!
(21 knots, 1050 rpm). The results are summarised in table 5.6 and table 5.7 later in sec-

tion 5.1.5.
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Table 5.2. Controller Comparison, 450 rpm

% drop % drop
criteria PD  SoFLC PSoFLC | PSoFLC v PD PSoFLC v SoFLC
ISE'0-30s [°*] { 109.70 105.12 123.90 12.95% 17.87%
ISE [°?] 36:62 49.76  41.82 14.21% -15.95%

criteria PD  SoFLC PSoFLC
rudder activity|°?] 11.20  81.19 10.99
rise time to 60% steady state | 11.2s 10.8 11.9s
overshoot 20.5%  19.5% 4.5% |

the PSoFLC only overshoots by 4.5% compared with 20.5% and 19.5% of the PD-and SoFL.C

respectively.

PD The PD controller shows a smooth response, one big (20.5%) overshoot and little rud-

der activily.

SoFLC The rudder demand steadily increases from run to run. This is expected since the

rulebase is set to zero at start up. Only when the learning progresses, a rudder demand &, # 0

is generated by the controller. The controller however is not able to reduce the rules once they

are built-up, resulting in-the oscillatory behaviour as seen in all step response tests performed
by the SOFLC. This could have been overcome using a lower learning gain. However, using
a lower learning gain value would have prevented the rulebase from developing during the
given time frame for comparison. this would have resulted in a very slow and lethargic

controller.

PSoFLC It can be noticed, that the rudder demand is reduced even at the first run. This
indicates that the controller after om.nly 40s has adapted the rules to a degree where control
action-can take place and no saturation occurs. By saturation, a necessary update of the rule
in one direction away from zero is implied. The PSoFLC has the least rudder activity of only

10.99 °2,
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30s of the.course change, then an improvement of 4.7% compared to the PD controller can
be observed. This indicates, that the PD controller had performed better in the later phase

(t > 30s).
PD The PD controller shows a smooth response, overshooting 12.0% before settling.

SoFLC The SoFLC drives the vessel in a very oscillatory manner. The amplitude is re-
duced and the frequency increased when compared with the SoFLC response at 9 knots.
Comparing the overshoot of 17.0% it is considerable more then the:overshoot of the PD and

PSoFLC, 12.0% and 3.0% respectively.

PSoFLC Considering the first 30 seconds only, the course changing phase, the ISE of
the PSoFLC is smaller than the ISE of the PD but marginally larger than the SoFLC. The
PSoFLC overshoots only by 3.0%. The course keeping accuracy is not as good as the one
produced by the PD controller. This is indicated by the decreased difference in ISE when
the full 90s of the third run are considered. Over the full 90s of the third run, the ISE of
the PSoFLC is 4% less (4.7% in the first 30s) then the ISE produced by the PD controller
and 26.7% less then the one of the SOFLC. The PSoFLC has the least rudder activity of only
4.95°2,

The numbers show that the SOFLC shows the best performance during the first 30s of
run 3. But since the SoFLC fails to settle within an acceptable band, this performance is not

representative for the performance of the complete step response test.

Step Response Test at 1050 rpm — 21 knots.(Figures 5.12, 5.13, 5.14 and 5.17)

At high speed (which is the tuning speed of the PD) the PD controller shows clearly the
best response with respect to ISE. However, the rudder activity is higher than the PSoFLC,
1.89 °? and 1.48 °2 respectively. The PD also has the shortest rise time of only 5.3s. The rise
time of the PSoFLC is 6.7s and an overshoot is also noticeable. The SoFLC again produces

a.response of marginally stability as seen in the two previous tests.
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Table 5.5. Monitored Fields

rate of change of error
error [ NB. NM NS Z PS PM  PB
NB 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NM | 0.00 0.00 0.00 0.00
NS 000 000 000 000 C00 (000 000
z |ow 0.00 0.00 0.00
PS 000 000 000 000 000 000 0.00
PM | 000 0.00 0.00 0.00
PB 000 000 000 0CO 000 000 0.00

Z/NM, Z/Z, Z/PM, PM/NM, PM/Z, and PM/PM. Only nine rules are considered in this
analysis as to increase the number generates confusion and restricts understanding. The rules
chosen have been selected as they represent all areas of the rulebase activity and therefore
indicate trends in the learning.

The individual plots in the SoFLC (figure 5.18) cross over and show a high activity. So
that inner rules have a larger magnitude than outer rules. It would be expected that the largest
changes in values (biggest gradient) should occur along the diagonal form NB/NB to PB/PB.
This has not occurred as the learning is too immature and not all rules have been ‘hit’. No
settling can be noticed. Several of the values drift off to the' maximum/ minimum value +35.

A zone of influence would have smoothed the rulebase, but would not have made a sig-
nificant difference to the effect observed during the learning.

Since there is no governing rule guiding the learning, it can be argued that the rulebase
eventually will settle with only the maximum/ minimum values and will emulate a bang—
bang controller (between the & limits). Another criterion is required which combines rudder
activity (actuator) and heading error (the control objective) to form a new cost function, ie
such as the one used by Astrom and Eykhoff [9] (equation 2.11, page 19).

The rulebase development of the PSoFLC (figure 5.19) is smoother and appears to settle
quickly. Learning is apparent only when the step changes were applied. The settling of the
rules is very rapid. The learning is focused and effective unlike the distracted learning of the
SoFLC. Unlearning effects were minimal. No double cross overs are observed, meaning that
the outer rules have an expected greater magnitude than smaller, inner, rules. Performance of
the PSoFLC is demonstrated as being effective and is a clear improvement over the SOFLC,

showing expected learning trends.
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5.1.7 Discussion of Step Change Test Results

Statistical analysis of the plots are summarised in table 5.6. The PD controlier cannot al-
ways be out-performed when operated in an environment without disturbances. Considering
only the trained PSoFLC then an improvement over the PD can be noticed as well. Very
noticeably, at low and medium speed, the PSoFLC overshoots clearly less than both of the
competing controllers. This has been achieved with a slight increase in the rise time.

The first of the two tables (table 5.6) only compares SoFLC with PSoFLC in order to
show the ability and speed of adaptation. After the initial training period, the PD controller
is added for comparison (table 5.7). At this stage, both adaptive methods will have reached
an almost steady state in their learning, assuming that no further change in environment takes
place.

An improvement can be seen when the SoFLC is compared with the PSoFLC. At the
speed-of 12 knots (600 rpm) (figures 5.10 and 5.11) the ISE error dropped by over 26% and at
full speed (1050 rpm) (figures 5.13 and 5.14) by still approximately 9.7% and approximately
16% at slow speed of 9 knots (figures 5.7 and 5.8). The PSoFLC has the least rudder activity
at all three tested forward speeds.

This indicates, that the SOFLC has learnt the environment and achieved a desirable con-
trol performance over time. However, the PSoFLC in comparison demonstrated a much
better, hence faster, adjustment of the control parameters and therefore the overall error was
reduced considerably especially during the initial step change. This proves that the predictive
algorithm adapts much faster than the standard self—organising method.

In all cases, both the SoOFLC and the PSoFLC start with an empty rulebase, which can
be seen in the initial phase of the application of the controller (see first runs). The rudder
stays centred (6 = 0) until some control action has been learnt and a rudder angle is applied
in order to reduce a heading error. The expressions as found in table 5.6 can be seen as
ISE = %fOT V. 2dr and rudder activity = %fOT 82dr and the percentages are obtained using

the equation below.

ISE —ISE
percentage drop [%] = — benchmark controller PSoFLC % 100% (5.1)

lSEbenchmnrk controller
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Table 5.6. Summary - Error Comparison of Step Response without Disturbances
improvement
controller | SoFLC | PSoFLLC | of PSoFLC
rpm | ISE [°?] | ISE [°?] | over SoFLC
450 | 44400 | 30315 -31.72%
600 | 39.620 | 26.190 -33.90%
1050 | 28.030 | 20.879 -25.51%

Table 5.7. Summary - Error Comparison, last step only
controller PD SoFL.C
ISE rise  over-  rud. ac- ISE rise  over- rud. ac-
rpm [°%) time shoot tivity [°2] [°2] time shoot tivity [°?]
450 | 36619 11.2s 20.5% 11.20 49.759 10.8s 19.5% 81.19
600 | 30.704 88s 12.0% 5.76 40.211  85s 17.0% 50.32
1050 | 16.579 53s n/a 1.89 27222  75s 13.0% 1590

controller PSoFLC ISE improvement
ISE rise  over- rud. ac- of PSoFLC over
rpm | [°3]  time shoot tivity[°?]| PD SoFLC
450 | 41.821 1195 4.5% 10:99 1421% | -15.95%
600 | 29478 O.7s 3.0% 4.95 -3.99% | -26.69%
1050 | 24589 6.7s 9.5% 148 | 48.31% 9.67%

Figures 5.13, 5.16, 5.17 summarise the heading errors for all three autopilots. The con-
trollers PD, SoFLC and PSoFLC are displayed in different colour, green, blue and red respec-
tively. The first plot of the three on the same page clearly highlights the better performance
of the PSoFLC when compared directly to the pilot using historic data for parameter ad-
justment. Here the advantage of using an internal predictor is clearly observable, resulting
in faster learning and error reduction. The SoFLC is still oscillating even after six course
changes (the plots only show the even steps for better presentation) while the predictive con-
troller shows hardly any overshoot at all. The SoFLC shows marginally stable response at all
three speeds. Figures 5.15 - 5.17 show the heading errors of the individual runs of all three
controllers in one graph respectively.

Table 5.7 shows a very noticeable result. After the initial training period, the PSoFLC
outperforms the PD controller. At medium speed the PSoFLC ISE error dropped by approx-

imately 4%. During the initial testing, this was not expected but is a welcome fact.
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Table 5.8. Controller Comparison, first 30s

% drop PD % drop SoFLC
rpm | ISEpp  ISEserLc  ISEpsoric | vs PSoFLC vs PSoFLC
450 | 109.70 105.12 123.90 12.95% 17.87%
600 92.01 86.32 87.70 -4.68% 1.60%
1050 49.72 70.21 73.02 46.86% 4.01%

Table 5.9 Summary - Error Comparison, travelling at 44 knots (79.2 ki - h~') last step only

controller ISE rise over- 3% sett- rudder ac-
[°2] time shoot lingtime tivity [°]
PD | 12.755 5.4s nfa 15.67s 1.669
PSoFLLC | [1.383 425 2.9% 7.36s 0.489
improvement | -10.757% -22.2% nfa -53.03% -70.70%

When the same PD controller is installed on a different vessel, ie one travelling at
44 knots (81.5 km-h~!) the PD controller shows an oscillating behaviour, whereas the
PSoFLC adapts and shows a smoother response. Figure 5.22 shows three consecutive step
changes of the PD and PSoFLC in the same environment. The high speed tesis are per-
formed in calm environment as the previous step change tests. The controllers sampling
time remained unchanged throughout the simulated tests. Particularly in figure 5.22 it can
be noticed that the dominant frequency and the sampling frequency almost match.

From this finding, it can be concluded, that the sampling frequency and the frequency
of storing data for visualisation should have been increased to allow for the decreased time
constant of the vessel travelling at such high speed. Both tests, the PD and the PSoFLC, use
the same frequency and environmental settings, so a qualitative comparison is still possible
and valid. However, the results shown in figure 5.22 and table 5.9 are not invalidated by the

lower sampling frequency used.

The control performance of the PSoFLC shows a considerable improvement

over the PD performance when the environment is unknown to both controllers.

The PSoFLC has a settling time of 7.4s, which is less than one-half of the settling time of
the PD’s settling time (15.7s). The PD shows a very oscillating response, changing course at

a much higher frequency than the PSoFLC.
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5.2.2 Straight Line Test

The following figures (figures 5.25-5.33) show the results of the tests carried out with dis-
turbances present. The controller is asked to steer the vessel in a straight line orienting the
vessel exactly North (0°). The tests are performed at three different forward speeds, 9, 12
and 21 knots. For analysis, a 120s window is selected starting at 380s. The first 380s are
used to tune the controllers to work in the exposed environment. This test is performed to

demonstrate the course keeping capabilities of the variuous controllers.

5.2.3 Graphs
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Figure 5.25. Straight Line at 450 rpm with Disturbances PD
Figure 5.25 shows the heading and corresponding rudder movement for the straight line
—10° and +8°.
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Figure 5.26. Straight Line at 450 rpm with Disturbances SoFLC
Figure 5.26 shows the response of the vessel when under control of the SoFLC at the same
slow forward speed of 9 knots. The heading oscillates between approximately —9° and +6°.
The rudder oscillates between approximately —17° and +18°.
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Figure 5.27. Straight Line at 450 rpm with Disturbances PSoFLC)
The response of the vessel when under control of the PSoFLC is displayed in figure 5.27.
Both, the heading error and the rudder do not show a harmonic oscillation as seen before.
The heading stays within a band of —~2°and +4°. The rudder operates between —8° and
+3°.
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Figure 5.28. Straight Line at 600 rpm with Disturbances PD
Figure 5.28 visualises the heading and rudder response of the PD controller at a forward
speed of 12 knots (22.2 km-h~') . During the 120s displayed, the course error does not
exceed £3°. The rudder operates in approximately the same region, between +3°.
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Figure 5.29. Straight Line at 600 rpm with Disturbances SoFL.C
Figure 5.29 displays the response of the SoFLC. The heading error shows a tendency o
oscillatory behaviour. The amplitude of the oscillation is approximately 10° but wandering
off. The rudder stays within a +10° band.
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Figure 5.30. Straight Line at 600:rpm with Disturbances PSoFLC

Figure 5.30 shows the a 120s window from the straight line test performed at a 12 knots
speed. The heading shows no sign from low frequency oscillatory behaviour. The vessel
drifted off course for approximately 40s before reducing this error. The rudder activity is

low.
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Figure 5.31. Straight Line at 1050 rpm with Disturbances PD
Figure 5.31 shows the vessel’s response travelling at full speed of 21 knots (38.9 km-h~!).
Some oscillatory behaviour can be noticed but the amplitude is small (approximately +2°).
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Figure 5.32. Straight Line at 1050 rpm with Disturbances SoFL.C
A more oscillatory response can be noticed by the SOFL.C as displayed in figure 5.32. The
amplitude is increased to that seen by the PD controller. The rudder activity reflects this
movement, oscillating between £5°.
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Figure 5.33. Straight Line at 1050 rpm with Disturbances PSoFL.C
Figure 5.33 displays the response of the vessel when under controi of the PSoFLC. The
heading oscillates between —4° and +3°.
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Table 5.11. Summary - Error Comparison Course Keeping Response with Disturbances
improvement
controller PD SoFLC | PSoFLC | of PSoFLC
rpm | ISE [°?] | ISE [°?] | ISE [°?] | over SoFLC

450 | 34.173  35.607 4.665 -86.90%

600 1.728 14.148 11.962 -15.45%

1050 0914 5.532 4.380 -20.82%

Table §5.12. Summary - Error Comparison, 120s Time Window

PD SoFLC PSoFLC improvement of

controller | ISE rud. ac- ISE rid, ac- | ISE  rud. ac- PSoFLC over
rpm | [°2] tivity [°2) | [°?)  tivity [°2) | [°?]  tivity [°?) PD SPFLC
450 | 36.194 48.34 [ 25.398 116.28 | 1.985 9.04 | -94:94% | -92.18%
600 | 2.278 2.63 9.298 18.86 | 8.539 576 | 27485% | -8.16%
1050 | 1.324 2.09 3.146 7.01 | 3.091 7.01 | 133.46% | -1.75%

It can be seen in all plots, that the high rudder activity is a compilation of multiple fre-
quencies. The dominant (low) frequency is mainly influenced by the vessel itself whereas
the higher frequencies are caused by the disturbances such as waves.

It is interesting to observe, that the PSoFLC has not shown a preferred speed. It seems
that at -all speeds the heading errors produced by the PSoFLC are of the same magnitude
whereas the other controllers work better at the higher speeds. This can be seen in the

improved performance (reduced ISE) at higher speed.
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Chapter 6

Discussion

6.1 General Points

The main objective of this research was o explore how a predictive control can be applied
to a motorised marine craft. The concept of predictive control is not new but up until now,
considerable knowledge and experience in the marine and control field was required (o suc-
cessfully implement such a predictive controller. The method discussed here shows an al-
ternative controller design combining on-line predictive and adaptive methods. The aim is
to show how to achieve and sustain a desirable control performance even if the operator has
limited control knowledge.:

In this work an approach is shown which achieves this aim.

PD and PID type controllers are still widely used in autopilots. They have proven to be
stable and effective. It is current practice to factory pre-set the PID parameters in the hope
that they will be suitable for a range of vessels. The result is:that they are nowhere near their
optimum setting for any particular craft. Commercial pressures demand more sophisticated
guidance and better tuned aulopilots. Past research in the field of PID control [10, 29] con-
centrated on the improvement of tuning the PID control algorithm by retaining the structure
of the PID but changing the controller parameters as required. Those adjustments have in-
creased the working range of the classical PID but fall short of delivering the performance
required from modern autopilots.

Other control techniques [35] have been investigated and found their way into applica-

tions in marine autopilots. The increase in computing power of up-to-date chip technology
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has expanded the field of autopilot design using purely digital hardware.

With the new approaches, non-linear methods can be pursued and the human intuition
finds its way directly into the design of the autopilots by considering the human way of
thinking and where possible the human way of learning, eg fuzzy logic.

The working environment is inherently non-linear. This is conflicting with classical con-
trol methods which required linearisation. With the advent of powerful computers, emphasis
on this requirement diminishes and non-linear methods now appear and find application in
current customer products. One of the biggest problems to resolve for a small boat autopilot
is the extremely high susceptibility to small changes in a wide range of working conditions.
For a non-adjustable, pre-set autopilot this creates a difficulty in sustaining the maximum
efficiency of the autopilot, by limiting the range of optimal performance.

There is an increasing customer demand for high-tech performance without the need for
much operator input, according to Cetrek Ltd. - manufacturer of marine autopilots. Self-
tuning and self-organising controllers have found their way into many branches of modemn
industries. The more complex and sophisticated a controller, the more effort needs to be put
into setup and installation. It is common practice to have an initialisation routine (manual
or automatic) for a system where critical control paramelters are to be adjusted. This routine
requires a high level of knowledge and expertise in those fields 1o which the controller is
applied. In practical applications where the operator has no-control engineering knowledge
then the system itself needs to have built-in self-identification and adaptation facilities. To
the author’s knowledge, there is no commercially available small craft autopilot that can
effectively ‘boot’ itself from such a standing start (empty rulebase) and with such rapidity as
that found in the PSoFLC developed as a result of this research investigation. Previous work
on SoFLC for small craft [81] has show that (given the same working range) only a slow
learning rate (adapting) could be achieved. Manual initialisation of the system requires-the
operator or installer to enter boat information. This shortcoming is inherent in the adaptation
algorithm employed. This information might not be available to the installer of the control
system. The boat, even the same type, can be differently equipped and therefore have a

different mass. These-and other variations cause different steering characteristics.
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6.2 New Fuzzy Logic Defuzzification

Although the defuzzification methods commonly known work well, when used as a con-
troller they can put unnecessary load and stress on the actuator if the control surface is not
smooth. This effect applies to all FLCs utilising ‘centre of area’ defuzzification methods.
Chapter 4.4 shows a novel defuzzification method to overcome rough and stochastic
behaviour as found in fuzzy logic control to-date. Applying a controller with rough and
stochastic behaviour to a ship would result in unnecessary wear and tear of the rudder gear.
By applying the new defuzzification method a smoother but still accurate response can be
achieved, increasing the lifespan of the actuator equipment. The method demonstrated here
gives engineers a simple solution to overcome these shortcomings without sacrificing any
of the benefits gained by using fuzzy logic. Both fuzzy singletons and the ‘normalisation
technique’, do not consider any area ‘under’ the set. Only their position in the universe of
discourse is taken into account. The calculated output of controllers using fuzzy singletons
therefore is almost equivalent to the output of controllers using the normalisation technique
(compare figure B.13 [page 156] figure 4.12 [page 52]). The defuzzified output will be the
same when regularly shaped sets are used and the singleton is placed in the centre of the set.

The output value will vary slightly when the sets are irregularly shaped (ie lean to one side).

6.3 Test Bed

The development of a graphical user interface (appendix C.2) proved to be most valuable.
All the testing of the various controllers has been done using this program. This program
allows the simulations to be exactly repeated for each controller. The test bed logs data (time,
longitude, latitude, heading, desired head, rudder, demanded rudder, speed, wind amplitude,
wind velocity, wave height, controller, type) which is then available in a.file after the program
is exited. Off-line analysis is therefore possible. Rudder angle and heading gauges are
displayed on the screen which give an instant reading of their respective positions. History
plots of rudder angle and heading are visible at the bottom of the screen. For a screen shot

and more detail on the test bed developed, be referred to appendix C.2.
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6.4 Predictor Design

Models are the basis for nondestructive development and preliminary design. Mathematical
modelling (the mathematical representation of a plant [ship]) has been used in control engi-
neering for a long time.Using models in the operational controller itself, as reference models
or other comparative means, has only become part of controller design since the develop-
ment of fast computers. The inclusion of a mathematical model inside the controller allows
the development of a predictive scheme. To fully utilise both techniques (internal modelling
and self-organising fuzzy logic) an adaptive internal model is required.

Here, an on-line learning neural network has been used as the adaptive model. The
emphasis is on adaptive since lhe controller to be developed has an adaptive nature and
1s able to change characteristics when the environment changes. It was demonstrated [96,
86, 132, 84] that neural networks are good at capturing time variant processes. The neural
network also acts as a lilter. When properly trained it will interpolate between points and
smoothen out noisy data.

The back-propagation network as used in the Predictor has only two hidden layers.
During operation, the network is constantly fed (0.5s sample time) with new sensor data.
Once every 10s the network is trained to capture the latest changes in the environment. The
output of the network suggests a future state from a given (current and past) state. The length
of the time window fed to the network is, in this set-up, 20 seconds, 40 samples. The size of
the training set depends not only on the time constant of the plant under control but also on
the environment.

If the controller was to be applied to a different application, a different time window
would be chosen in order to capture the process and environment dynamics. Using faster
hardware, the sample size could be increased. Care has to be taken however, not to overfeed
the neural network. Finding the optimum size of the neural network outstands the scope of
this research. Experiments have to be undertaken to find a good compromise between recall
quality and learning time when deciding on the samples size as well as on the size of the
neural network itself. There should always be at least three time steps present in the input

vector so the network is able (o capture time transient behaviour.
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6.5 Controller Comparison

This section discusses the results as visualised in-chapter 5. The controllers to be considered
are namely the PSoFLC, SoFLC and the PD,

The test vessel on which the autopilot has been tested is a 52 ft (15.8m) life boat simu-
lation [20]. The PSoFLController developed in this investigation combines self-organising
with predictive methods. This combination forms an unique controller, able to ‘boot’ from
scratch and to deliver acceptable control in a very short time.

The results from chapter 5 clearly show the advantages of the PSoFLC compared to the
SoFLC when exposed to the same environment. The PSoFLC adapts very quickly, much
quicker then the SoFLC. The course plotted in figures 5.2 (‘figure of 8" manoeuvre, SOFLC)
shows a very distorted first ‘figure of 8'. The same manoeuvre, the same starting point but
executed by the PSoFLC (fig 5.4) shows-a much more recognisable first ‘figure of 8. Giving
both controllers some time to adapt, ie comparing the third ‘tigure of 8’, then only a small
improvement of the PSoFLC can be observed. So, over time, both methods will learn the
environment and control the vessel. This not only applies to the ‘figure of 8’ test but also
to the performed step response tests and the course keeping test. However, both adaptive
methods did not demonstrate superior'behaviour compared with a tuned PD controller.

Comparing the results from chapter 5 the following conclusions may be made. The
PSoFLC demonstrates a smoother response at all speeds and the SoFLC enters into an os-
cillatory response at all speeds. The SoFLC is unable to ‘unwind’ (reduce) previously learnt
controller gains, hence the oscillatory behaviour. This also indicates, that the update algo-
rithm used in the SoFLC does not necessarily converge in all circumstances. Furthermore,
it can be expected, that the produced controller may become unstable under certain circum-
stances.

Looking at the rulebases produced by the SoFLC (appendix E.2.2), the rulebases are not
symmetrical with respect to the absolute value. The absolute values should be the same with
respect to the centre position although the sign will be opposite.

At the centre of the rulebase, where there is no heading error and no rate of turn, a zero
would be expected; indicating no necessary control output {rudder angle). The rulebases (see

appendix E) generated by the iterative process in the SoFLC all show similar asymmetrical
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settings. From that it can be concluded that the update algorithm used by the SoFLC caused
this asymmetric rulebase/ response. Since the manoeuvre was symmetrical (20°) and the
environment did not cause drift which could result in an offset, the rulebase was expected
not to show a centre offset and to be almost symmetrical with small perturbations.

Investigating the rulebases generated by the PSoFLC, this asymmetry is not found (see
appendix E.1.2). This is shown by the more symmetric response of the controller (fig-
ures 5.15-5.17, page 75), oscillating equally around the desired value.

The PD response-shows the following trends: with respect to increased forward speed, a
reduction in ISE, areduction in percentage overshoot, a reduction in rise time and-a reduction
in rudder-activity are seen (table 5.7).

The SoFLC does not show those trends. With respect to increased forward speed, a
reduction in ISE, a reduction in rise time and a reduction in rudder activity éan be noticed.
The criterion percentage overshoot does not follow a trend.

The PSoFLC shows similar qualitative behaviour to the SoFLC. With respect to increased
forward speed, a reduction in ISE, a reduction in rise time and a reduction in rudder activity
are noticed. The criterion percentage overshoot does not follow a trend.

This is not a statistically validated observation due to the small sample size of only three
samples. However, the inconsistency is important to notice as it would otherwise show a
reduction in percentage overshoot (table 5.7).

The inconsistency in trends suggests non-linear activity across the whole range. This is
in accord with the non-linear nature of the embedded fuzzy logic controller.

.The whole working range of the FLLC has to be seen as a non-linear range with small
linear sections. Those linear sections are the sections when exactly the saume two rules are

hit.
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Chapter 7

Conclusions and Suggestions for Future

Work

7.1 Conclusions

The aim of this investigation was to develop a control scheme which is able to adapt itself
quickly to changes in the working environment and in plant (process) characteristics. The
research objectives, as laid out in section 1.1 to:develop such a controller and demonstrate its
capabilities have been met. This thesis demonstrates the ability of a novel type of controller
(combining fuzzy logic as a controller and a neural network utilised as a model) to-evaluate
the controller’s performance before it is.applied. The evaluation is done by predicting future
stages.

A literature survey identified the current state of technology. Some aspects relevant
to this research undertaken to support this study were highlighted in chapter 2 of the the-
sis. From the literature, it was evident, that current self-organising techniques such as the
SOC of Sugiyama [101] and Yamazaki [125] are well suited for course keeping applications
which requires a slow learning. Other techniques such as Model Reference Adaptive Control
(MRAC) is targeted at purely linear control, eg there is only one adaptive parameter, Kp.

The limitations of SoFLC are analysed in chapter 3. The technique of analysing a present
state, and identifying the responsible control action (which occurred in the past), and isolat-
ing others which occurred since, is a difficult process and other control actions were issued in

between, is a difficult process. It is possible that the assumed control action is not the primary
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source which caused the state and therefore its influence is not always to be determined.

The Predictive Self-organising Fuzzy Logic Controller as explained in chapter 4 of-
fers a novel approach to overcome the problems as they are experienced with current self-
organising techniques. The addition of a Predictor module to the self-organising control
structure ‘is discussed and its implementation and utilisation in the overall control system is
discussed.

Simulated test results are shown in chapter 5. The tests include a £20° step change
undertaken without any disturbance present, and a straight line course keeping test with
disturbances. The graphs are discussed and analysed. From the results it can be concluded,
that the addition of the Predictor module significantly improved the learning of the self-
organising fuzzy logic controller resulting in a more rapid, more focused learning.

An essential part of this work has been to prove that it is possible, from an empty rule-
base of the fuzzy logic controller, to rapidly learn a useful set of steering parameters when
the learning is done under controlled conditions. This means that the controller would not
require the operator to input specialist knowledge. This removes.the need for any installation
and set-up expertise to initialise the autopilot system, which is a significant cost saving o
the customer. The learnt rulebase and also the neural network model can then be used to
continually improve the performance, probably at a slower learning rate to avoid external
disturbances causing transient effects.

The PSoFLC demonstrates significant reduction in learning times which will allow the
generation of larger databases within acceptable sea-trial duration. This is certainly not the
case with slow learning techniques currently used.

This thesis illustrates the advantages of fuzzy logic applied to the steering of small mo-
torised craft which are difficult to steer due to their design. The PD autopilots could not
demonstrate a better performance (reduced ISE) over the vast range of working conditions
of such craft. Nevertheless, the results shown (chapter 5) are for only the specially tuned PD
controller for that vessel. The pilot tuning was a compromise which had to encompass the
displacement mode at low speed and the planing mode at high speed. More attention was
given to the high speed mode when tuning the PD controller.

Both, neural networks {(appendix A) and fuzzy logic (appendix B), are used in the novel



controller design investigated, developed and discussed in this thesis. Fundamental research
was not only carried out in the field of combining the two techniques into a novel control
strategy but also in the fundamentals of the techniques used.

So far, the classic tuned PD controller has not always been outperformed by the unique
algorithm introduced here. Considering the learning curve the controller goes through, it
may be concluded that the PSoFLC will perform better in the long term than the classic
control algorithm (PD), especially when the environment changes. The PSoFLC shows a

considerable potential to improve over a greater variety of conditions.

7.2 Suggested Future Work

The control strategy resulting from the research is not only applicable to autopilot design but
also applicable to other areas of process control.

An improvement of the benchmark SoFLC (originally a side-line study only}), has been
the incorporation of a third dimension to the rulebase, namely a speed variable. This three
dimensional controller uses seven fuzzy selts in either input window named as heading error,
turn rate and speed.

The flexibility of such general controller designs to-expand and improve when provided
with additional useful data has been demonstrated. The system effectively becomes an ‘ex-
pert’ system database which can instantly respond to a'set of input data with a learnt response.
The overhead of adding this third input has proven to be very small as all of the software rou-
tines are common for the two dimension system and it is therefore a very attractive way of
improving the performance without utilising the predictive module. Almost all modern small
vessels that are likely to be fitted with an autopilot will have a source of speed data, either as
ground speed from a GPS, or as water speed from an electronic log. Critical to producing the
enlarged, three dimensional, database is the ability to accurately and rapidly learn without
significant installer expertise. Since this controller is based on the SoFLC algorithm it has
similar shortcomings as discussed in chapter 5. An increase in the dimension of the rulebase
could allow other sensor data to'be considered, such as forward-and downward looking sonar.

This data could be fed into the controller for use in eg in confined, shallow waters, or applied
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to the navigation layer where it is analysed and appropriate-decision are drawn from it.

At the time of writing this thesis, a three dimensional-rulebase-fuzzy-logic autopilot is
being tested by Cetrek Lid. However no results are yet available. It is believed that this
controller will adapt as quickly as a the standard SoFLC (two dimension) with the advantage
of not having to re-learn when the speed of the vessel changes: So once a condition is learnt,
it will not be forgotien as quickly as it happens with the standard SoFLC. However, the
need for re-training.can not be completely neglected since the craft can change it’s steering
characteristics due to other influences such as mass, eg when loaded/unloaded.

Current limitations in hardware design do not allow the implementation of the Predictive
Self-organising Fuzzy Logic Controller in the production line of Cetrek Ltd. yet. More ex-
tensive testing has.to follow and hardware has to improve to make this novel control strategy
widely available. |

It is also possible to replace the current back-propagation neural network used as the
internal model with a more sophisticated adaptive model. During this research a neural
network was found to be suitable for the predictive controller. More research in this field
could lead to an‘improvement in predictive quality resulting in even more rapid adaptation of
the controller to environmental changes (as demonstrated here). Another application could
be in the field of reconfigurable control where the whole control strategy has to be modified
due to some (unexpected) dramatic change in process characteristics, /e loss of one propeller

on a twin propelled craft or loss a rudder.
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Appendix A

Neural Networks: Theery

This chapter gives an introduction into the theory behind neural networks. Their ability to
learn has fascinated biologists and computer scientists for the last half century. The first
sections will explain the biological basics and how they are modelled in the.computer. Sec-
tion A.4 concentrates on the popular back-propagation learning algorithm as used in the

autopilot’s prediction module.

A.1 History and Introduction

Neural networks were first studied by neuro-biologists in an attempt to emulate some of the
processes of pattern recognition-that occur in the human brain - see McCulloch and Pitts [65],
Wiener [1 18], and Rosenblatt [89].

However, it soon became clear, that neural networks had many other technological ap-
plications and this is now considered in the literature on their application 1o a wide range of
problems including the general field of control engineering.

Before considering the neural network models, it is perhaps.useful to briefly describe the
biological neural network which spawned their artificial counterparts.

Serious investigations started in 1942, by the leading neuro-biologist McCulloch and the
statistician Pitt [65]. The paper A Logical Calculus of ldeas Imminent in Nervous Activ-
ity [65] tangents fields such as digital computing, electronic brains and macroscopic intelli-

gence:
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A.6 Using Neural Networks for System Identification

There are many applications in industry which use the capturing capabilities of neural net-
works. Neural .networks can be found in image processing and analysis as well as in ma-
chine monitoring. The network is well able to identify situations (patterns of input signals)
and draw conclusions which can otherwise only be made by experts. The expert acts as a
teacher in the first place and the neural network then copies this knowledge with its own
understanding. For system identification mostly back-propagation networks are used but,
Hopfield networks and self-organising Kohonen maps are found.as well.

Nowadays, neural networks are employed in business finance eg to predict share states.
Schoneburg [94], did some investigation in this field by applying such networks. However,
much more research is needed in this area as he found there were considerable limitations.
Although, the exact relationship does not need to bé known, it is important to know the
parameters which influence a decision. The neural network will pick up the relationship in
most circumstances providing important values are not suppressed.

Neural networks are important techniques when used for image analysis. They have
been successfully implemented into software for optical character recognition (OCR). As
the name indicates, the scanned image, which is in binary format, is checked for the appear-
ance of text. Those areas with text are -analysed and the characters extracted. The image,
hopefully, containing only one character is passed to a pre-trained neural network, contain-
ing all the possible characters of a font. The network will then come up with a possible
match. Depending on the strength of the signal (indicating the likelihood of a positive iden-
tification) the character is then passed on or questioned. It is possible, that all characters are
passed on to form a word which is then checked against a list of possibilities, and which can
incorporate a spell check program.

Many more applications using neural networks are being developed in the field of speech
recognition. They use a similar process to-those used inference being the input signal, where
it represents a frequency spectrum related to time. Here sound is digitised, divided into
small windows and the numbers stored in a vector before being passed to a neural network
for analysis.

This is a vast field and one which will involve future intensive studies in complex systems.
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A.7 Using Neural Networks for Control

Numerous applications have been applied in the field of control systems. Research by Zhang
et al [132] considers the application of neural networks for ship position and orientation
control where heading errors as well as positional errors are minimised during travel and
berthing. Feeding measured information into the network and assuming certain ship charac-
teristics, the error can be back propagated through the plant and the network, which acts as
the autopilot and optimises the control performance.

The ability of neural networks to assimilate, mix, compress and recall data has been
initially investigated by Richter and Burns [84]. This paper reflects the application of com-
bining three specially tuned PID autopilots for a marine craft into a single module. The PID
autopilots are fine tuned to work in only one sea state. All the data is then fed into the-neural
network to combine the ‘knowledge’ of all PID controllers and this new controller therefore
inherits the high performance of each PID autopilot without the need of adjusting parameters

when a change of the sea state occurs.

A.8 Neural Networks Summary

This section covered some aspects of neural networks and their application in science and
industry. The neuron models, including the perceptron, from the early and mid 1940’s [65]
have been fundamental to existing networks. These simple processing units as described
biologically and mathematically in this chapter form powerful tools when interconnected
and help to solve complex tasks of the modern world.

Considering the back-propagation learning algorithm, the neurons are organised in layers
and only neurons between neighbouring layers are connected. Simple tasks can be solved by
single-layer networks whereas more complex problems require a greater degree of freedom
which results in an increase in the number of neurons and their arganisation in layers. Multi-
layer networks, networks with more then one hidden layer, are used for more difficult and
complex tasks.

The back-propagation learning algorithm has been discussed and the mathematical deriva-

tion was also shown. The final equations of the learning are summarised to a generic algo-
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rithm which can easily be implemented into program code.
Existing applications demonstrate the wide acceptance of neural networks amongst re-
searchers and engineers in development laboratories, academic institutions, and most impor-

tantly, in industry and high street products.

141




Appendix B

Fuzzy Logic: Theory

B.1 Introduction and History

Fuzzy logic is a more general case of the classical Boolean logic. The classical logic is a
subset of the fuzzy logic. Basically the classical Boolean logic is fuzzy logic using step
functions to describe the degree of membership of a value to a-set. In the mid 1960’s, L.
Zadeh [127] developed the modern fuzzy logic. His intention was to model problems which
contained a degree of fuzziness within the data or even within the rules used to make a
decision. The values accepted are not only O and 1 as known from ithe classical logic, but
also all values in between. Therefore a few definitions have to be made as well as new
operators introduced and explained.

It is important to mention the differences between probability theory and the theory of
fuzzy logic. As Zadeh [128] formulates it, the membership function u(.) defines the pos-
sibility of an value x being an element of a fuzzy set Xy (x € Xi). Considering this, the
main difference between probability theory and fuzzy logic is that fuzzy logic (possibility)
deals with imprecise data of events, whereas probability theory deals with the randomness
of occurring (or not occurring) events [103]. The uncertainty of an event happening or not
is understood as randomness. The imprecision of fuzzy sets, however, considers the degree
membership of an element to a set (a fuzzy set) with imprecise, non crisp, boundaries. An-
other view may be given by “IT IS WARM”; fuzzy statements are not imprecise about the
event in question (IT IS) but refer to the quantity tn a vague manner (WARM).

Implied to fuzzy logic is the fuzzy set theory which will be explained in outline later
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sets for the variable age. The sets are named young, middle aged and old. The universe of
discourse in this case is the age of a person. In most cases it is not very useful to define
a point in life to say a person is middle aged. To formulate rules for a computer or any
other automated machine, these linguistic terms have to be transformed. into numbers so that
calculations can be done with them. To do this, fuzzy set theory comes into play. Back to

the example, the following facts can be used:

e People between 0 and 18 are definitely young,

e from 20 onwards they gradually become middle aged and

after 60 they are called old.

Between 18 and 35 they become less young but more -middle aged.

e Having completed the 30th year of life, they are definite middle aged.

From 40 onwards someone belongs more and more to the old age group.'

le at the age of 26.someone is 40% to young and 30% middle aged.

In this example trapezoidal fuzzy sets have been used. Other shapes of sets, such as
triangular, Gaussian, s-shaped, efc sets, are widely used. The advantage of using triangular
sets is the simplicity of the function(s) employed to describe a triangle: Generally, the degree
of membership is defined as a function g(x), 0 < p(x) < 1. The membership function is
often obtained subjectively by one or more human experts. Averaging and other statistical
methods can help to find the most appropriate functions. The process of decision making

using fuzzy logic is divided into three major steps.

1. The first step is the transformation of any measured value into fuzzy terminology. This

process is.called fuzzification.

2. The second step is the processing of the obtained fuzzy value(s) by applying the fuzzy

rules (inference).

3. The final step is the process of converting a linguistic term into.a sharp, crisp number
is called defuzzification. Different defuzzification methods are discussed later in this

appendix.

I'The author does not want to offend any reader by putting them in to an age group. Just treat it with a smile.
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1F ERROR IS POSITIVE SMALL THEN IF ERROR RATE IS ZERO

THEN DESIRED RUDDER IS NEGATIVE SMALL

The rule connects the error and the rate of the error in a similar way as the PD control
rule (equation 2.2) does. The measured value is fuzzified, eg its membership value to the
individual fuzzy subsets of the universe of discourse is obtained. The universes are assumed

to be finite and discrete, in such a way that each universe is a set of elements

E={e},C={c},0={o}
. universe of the error E = {e},

. universe of the error rate C = {c},

. universe of the output O = {0},

With this in mind, rules.can be formulated. In more symbolic notation rule k looks like:

IF EISE, THENIF CIS C, THEN O1S 0O,
Ey ... fuzzy subsetof E, E;, C E

Ci ... fuzzy subsetof C, C, C C
O ... fuzzy subset of O, O, C O.

The fuzzy subsets, Ey, C; and Oy, defined as ordered pairs where p(.) represents the mem-
bership value giving the degree to which the element (measured value) is a member of the

subset. Considering rule &, the ordered pairs are:

B {(emn))

Ce { (r, yq_(r)) } (B.9)

o = {{oaat0)}

A control rule is an implication

Ei —-C.— Oy (B.10)

which produces a relation matrix R in hyperspace. Considering the three universes, a rule

Ry of the R is given by the outer product

Ri = Ex x Cy % O. B.11)




Now, a whole range of rules can be defined in such a way. A controller will use several such
implications and the resulting (combined) relationship matrix R is obtained using the union

of the individual implications, ie

R=R\VRV...VRV...VR, =VR,. (B.12)

= <

R is a matrix of membership values ug(e,c,0). All control rules are stored within this ma-
trix R which represents the the fuzzy algorithm in its entirety. Using the implication of
equation B.10 the controller function can be described, eg the inference from the error and
change of error into the control action. The values ¢;, ¢; and o; are individual elements of
the universes of discourse E, C and O respectively. Theses elements can be represented in
time. Considering the sampling time 7', the elements can be formulated as e(iT), ¢(iT') and
o(iT), where / is the sample number | < i < o, i € N. However, the values for e and ¢ have
to be obtained from the actual process. The first step is to scale the measured values, eg
multiplying them with an appropriate scaling factor or gain, such as GE and GC, and then
quantising the scaled result to the closest element in the universe of discourse. Considering
the i " sample, the process output y(iT) and S as the process set-point, the values for e(iT)

and ¢(iT) are calculated from

o(iT) = Q[{S—y(iT)}xGE]

(i) = [{yir)-yr-1)} x GC| ®.13)

However, the quantisation procedure of this application is reduced to capping the inputs,
ie if the measured value is outside the universe, the value is set to the universe boundary.
This applies to both, the error and the rate. The controller output is a fuzzy subset O(iT) ob-
tainable by utilising the fuzzy implication from equation B.10 which gives individual mem-

‘bership values as:

Houp)(0) = e €T, €(iT), 0). (B.14)

This fuzzy subset has now to be defuzzified in order to produce on crisp output value. Some
‘defuzzification methods are explained in more detail in appendix B.5 below. Before the

defuzzified value is used, it is scaled to calculate the actual control action. This third scaling
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the:sets, overlaps are considered only once. In contrast the overlaps can be ignored, therefore
some small areas are considered twice. The final output is only very little influenced by the

difference in the techniques.

Centre of Area with ‘full’ Fuzzy Sets

This method does not consider the overlapping of the sets. Basically the sets are taken as
they are, and the centre is obtained utilising equation B.15. The graphical interpretation is

shown in figure B.10. The numerator is the first moment of the area of a set.

A cgi
output = overall cg = Z..-_:Ci (B.15)

ZiAl

cg ... centre of gravity

1k i T T T T T |
T close alot ﬁe a bit do nothing\ \45 open a lot
.5 | ‘a bit- E
el \\ N e \
45 6

-60 -45 -30 -t5 Q 15 30
Vatva Tums [degree]

membership
=]
(2}

0 75

Figure B.10. Active Rules

Centre of Area with ‘cropped’ Fuzzy Sets

Here, the overlapping area is only taken into account once. Therefore cross-over points of
the sets have to be-calculited and if a rule is hit twice or more times, only the maximum 1s
used (see figure B.11). In the example, only two sets (close a bit and close a lot) produce the

crisp output.

B.5.2 The Mean Of Maxima Method

This method is not widely used and has a tendency to give unsatisfactory results. It only uses

the position of the maxima of each set and it ignores the area under the set. The average of
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1.2.6. Conclusions

The results of this initial study demonstrate
that a neural network may be trained from
data provided by an optimal guidance system.
The trained network performs in a slightly
sub-optimal manner - but has the advantage
that it does not have to re-compute controller
parameters for different forward speeds. At
this stage it is not known how the network
would cope with another way-point con-
figuration.

The propertics of multi-layer neural networks
arc not yet fully understood. It would appear
however, that a ship guidance system is a
potential application of the technique. There
is extensive scope for further research in this
field, particularly in the design of un-
supervised learning networks that adapt in an
on-line manner.
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Abstract

Since the expansion in the number of powerful computers and workstations
available, simulations of complex structures (plants) are increasingly part of the
design process.

By use of these complex simulations, off-line study of plants and/ or controlier
designs may be achieved when otherwise no realistic study could be undertaken.
Differential equations are the main parts of those simulations. To increase the
precision of the simulation results, more time consuming calculations are
necessary but not always available.

In particular, neural networks demonstrate the capability to model highly complex
plants. By the application of training data derived from real environment, these
networks can learn to emulate a wide range of differing conditions. Once trained,
the neural network substitutes the plant’s model and performs instead.

When considering motions control, the neural network philosophy is of particular
interest. {sing the non-linear time-invariant dynamic characteristics of a maritime
vessel, a neural network is developed to model and control the motion of this
process. A comparative study s undertaken to validate the network.operation.

1 Introduction

The classical approach to modelling the dynamic behaviour of rigid bodies is to express
their behaviour as a set of simultaneous linear and non-linear differential equations, and
to obtain a solution for various input stimuli. An alternative approach is that of system
identification whereby a given input such as a sinusoid or pseudo-random binary
sequence (PRBS) is applied to the real system and from a set of input/ output measure-
ments a mathematical model may be obtained. This paper investigates the generation of a
state variable representation of a ship in three degrees of freedom by the application of
an Artificial Neural Network (ANN).

ANNs have been shown to demonstrate the capability to model highly complex plants.
By-the application of training data derived from the real environment, these networks can
learn to emulate a wide range of differing conditions. Once trained, the neural network
substitutes the plant and performs instead.

When considering motion control, the neural network philosophy is of particular interest.
Using the non-linear time-invariant dynamic characteristics of a maritime vessel, a neural
network is developed to model and control the motion of this process.

Using a carefully selected range of manoeuvres undertaken at vanous forward speeds, a
comparison can be made between the conventional ship model and the neural network
model developed.





















the .authors will concentrate on the implementation of this design of network during
simulated sea trial conditions. Results will then be compared to those obtained from a
traditional ship model to validate both the leaming achieved, and the subsequent perfor-
mance capability obtainable during simulation studies.

10 Conclusions

It has been demonstrated by this study that it is possible to simulate complex plant beha-
viour utibsing neural networks. The advantage of employing a simulation using this tech-
nique is that it becomes possible to overcome the problems associated with formulating
the relationship between the features to be investigated. This can be achieved by the
neural network, thus allowing the designer to concentrate on alternative aspects of the
design. The authors consider that the computational speed of the network far exceeds the
required time for conventional differental equations because a significant amount of the
raining is undertaken off-line. During execution, the neural solution therefore allows for
extension to far more complex mathematical models without incurring a notable slowing
of the process time.
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Ralph Richter', Martyn N Polkinghorne®, Roland S Burns'?
University of Plymouth, :
Devon,
United Kingdom

Abstract

This paper reflects a brief history on the development of ship
simulations and ship autopilots and as such only to summarise the
range of the developments have been made in this field.

1 Introduction
For merchant ships an accurate and reliable automatic steering device

becomes a real money saving proposition, largely justifying ils use.
On battleships, by its use the absence or reduction of yawing in action means
a better efficiency in gunfire, increased maneuvering speed and also a greater

cruising radius.

Quotation 1: Minorsky in {10], p. 280
An efficient helmsman keeps the ship accurately on her course by exerting a
properly timed ‘meeting' and ‘easing’ action on the rudder, i.e., by taking into
consideration the elements characterizing the motion from the dynamical
standpoint, namely, the instantaneous angular velocity of yawing as well as its
time variations.
It has often been stated that the human intuition of the helmsman cannot be

replaced by any mechanical contrivance whatever its nature may be.

Quotation 2: Minorsky in [10], p. 282
... if we connect the rudder with the direction indicaring apparatus whatever
its nature may be (magnetic, gyroscopic or radio compass) by any appropriate
maans, for example by means of an ordinary follow-up system.

Quotation 3: Minorsky in [10], p. 282

The control task of ship navigation can be subdivided into two major divisions. The
course related autopilots attempt to optimise ship orientation rather than the ship’s position.

The main control task is therefore to maintain or change, the heading of the s;iu'p to minimise

' School of Manufacturing, Materials and Mechanical Engineering
* Plymouth Teaching Company Centre



the error from the desired value. Conversely, the track related autopilots optimise the position

of the vessel and not its orientation.

2 Early Developments until 1930 |
An very important and early paper [10] was published by MINORSKY in 1922. This

paper discusses the stability problems of automated steering and developed the basic theory of

‘dircctional stability of automatically steered bodies’.

Furthermore MINORSKY subdivided the control problem into individual, smaller
problems such as rudder position control, rudder angular velocity control, rudder angular

acceleration control

Similary, SPERRY described the first installation of a gyrocompass aboard a ship in
1922, In this publication [16] he considered the problems that occur with automatic steering
using a gyrocompass. In this very early application we can find all the elements that make up
the control loop of an automated steering system for course keeping purposes. By 1932, this

application had been installed on more than 400 merchant ships all over the world.

In 1923, SCHULER [15] desribed the behaviour of pendulums and' gyroscopes when
accelerated in a horizontally direction. The doubts rised by MARTIENSSEN (9] in 1906 based on
calculating gyroscopic compasses errors under north-south acceleration were fundamental for
further research in this field.

By working out some examples, Martienssen came up with very great errors
of the compass and concluded therefrom that the gyroscopic compass is

useless as an accurate direction indicator for navigation.

Quotation 4: Schuler in [9], p. 26

However, SCHULER continued the quotation in the followihg way:
I asked myself the question: would this sort of acceleration error be capable
of elimination by an appropriate construction?

The aswer is, yes. And the solution is almost trivial.

Quotation 5: Schuler in [9], p. 26

Utilisation of these, and the subsequently derived equations and thoughts ﬁnally led to
the successful gyroscopic devices now common place. The difficulties of the first years have
been covercome and gyroscopes can be found in most navigation devices which require a

degree of accuracy.



The autopilot used for the period 1930 to 1950 was a rather simple controller. The
heading error produced a signal which was then used to adjust the steering mechanism. The
controller can be seen as a proportional controller, It was a possible to adjust the the control
parameter (K;) to suit different conditions eg. ship loading. Obviously this sir_nple device could
not cope with a wide range of conditions, i.e. in rough weather conditions when the
proportional controller forced the steering mechanism to be heavily used and therefore worn
out very quickly. A weather adjustment was therefore necessary to prevent this exess wear. In
most cases a simple dead-band was introduced to aviod high frequently and small magnitude
movements. The rudder was then only changed if the control output exeeds a small specified
rudder angle. A different method 10 avoid rudder wear was given by including a delay
feedback. This delay caused the rudder to move until a prespecified ruddeér angle has been
reached. The rudder could not stop or change direction until this angle has been exeeded.

NomoT0 [12] described this method as ‘negative backlash’.

3 Post World War i

During this period, overshaded by the two world wars, the autopilots used were
mainly simple mechanical devices following a simple proportional rule.

d=K,-&,
Where: € is heading error Equation 1

Those pilots were not very satisfactory and could not prevent overshooting and

therefore often caused transient oscillation.

In the 1950s, an improvement in stability could be achived by the introduction and use

of the mainly first derivative of the heading error (E‘w) or the rate of turning (angular velocity

). The first commercial autopilot utilising this technique was installed in 1951 on the S. §.

UNITED STATES. The control rule-of this autopilot may can be defined as:

Equation 2
At about the same time, a further term was also added to the contol equation this

being the integrale of the heading error, the resulting control law being (Equation 3).

6=K, €,+Kp-£,+K, -Js,',,dt

Equation 3



Thus, the PID control rule was formulated. Furthermore the addition of the integral
term assisted to neutralise the rudder movements as well as steering gear lags. Constant
disturbances, causing an offset were now considered and the PID autopilot was fully capable of

dealing with them.

Nevertheless, controllers based on the PID format could not prevent the high
frequency rudder movements. The introduction of a dead-band in the rudder loop could lead
into unstable behaviour. MoOTORA [11] suggested in 1953 to apply a low-pass filter to the
output signal to prevent rudder oscillating. According to RYDILL [14] this may generate a loss

in stability and hence he recommended the use a quadratic delay technique.

4 Adaptive Autopilots

Soon it was determined, that even the most advanced PID performance couid be
improved by adjusting its parameters according to the environment that the control system
(ship and autopilot) was operating in. This can be achieved by two methods; manually or
automatically. The disturbances, and therefore the effects to the hull, can also be subdivided

onto twG major categories:
a) disturbances that cause a ‘small’ deviation of the desired course-and

b) disturbances which change the vessel's characteristics and consequently the

steering characteristics.

Weather and tidal changes like waves, wind and current can be associated with the
first group. Changing the mass of the vessel whilst loading/ unloading and the resutling draft
and displacement, the quantity of water under the keel and alterationss in the forward speed
change the handling characteristics of the vessel and are therefore assosiated with the second
category. Small adjustments required to compensate for the disturbances of group a) can be
overcome by automatic adjustments:. Disturbances- of group b) require major corrections and
are mainly uuteitaken by the operator. Those adjustments demand a significant knowledge on

the handling characteristics of the ship and the environment/ disturbances.

4.1 Model Reference

This approach is based on the comparison of measured, actual data and data of an
ideal mathematical model (reference model). An error function is derived using those data.

This function (criterion) is then minimised.



In 1974, vAN AMERONGEN underlined in [17] the importance of adapting parameters of
the autopilot and compared two methods of model referencing. In this' paper he describes both

of the following approaches to tackle the ‘fixed settings problem’.

4.1.1  SENSITIvITY MODELS
The dynamic behaviour of the ship and hence also the parameters of this

model are dependent on the external circumstances and the applied thrust-
power. When the ship is steered with an autopilot it is necessary to adjust the
parameters of the autopilot dependent on the change of the steering

characteristics of the ship.
Quotation 6: van Amerogen in [17], p. 441

This technique of the ‘sensitivity model’ is especially designed to prevent course

instability of very large ships. The criterion used in that approch:-can be defined as:
T
C= H g'dt
0

Equation 4

Using the steepest descent method, the gain K4 of the rate feedback signal is adjusted.

Unfortunately this approach is not stable under all:circumstances.

4.1.2 LIAPUNOV APPROACH

This approch follows the principle of direct adjustment of the controller’s parameters.
Assuming the same order of the model's transfer function and the system’s one, a difference
between the state variables of the system and the model is utilised to adjust the system’s
parameters in order to minimise this difference. Furthermore the process is assumed to be
linear and that no stochastic disturbances occur. A low-pass filter also is required in rough
seas. The difference between the system’s and the model’s responses"i-é-. minimised by the

differences between the state variables.

VAN AMERONGEN concluded that there is no significant difference between both

approaches, the sensitivity model and the Liapunov approach.

4.2 Self-tuning Autopilots

First develpoments of “cost function for adaptive course-keeping autopilots” were
undertaken by ASTROM and EYKHOFF (2] in 1973. The method used was based on a least

squares parameter estimator and a minimum variance control technique.



Special attention should be given to the cost function. Assuming the vessel is left to
yaw naturally (without high frequent rudder corrections), the traveled distance during a 400
miles journey will not increase more than a quarter of a mile when the deviation of the course
remains + 2° [13]. In contrast, each rudder movement causes a drag and so a loss in forward

speed.

In 1975, CLARKE and GAWTHROP [5] developed a more generalised ‘self-tuning

controller’.

It has beeen demonstrated by BUrNS |4] that it is possible to design an optimal multi-
variable ship guidance system that controls position, heading and speed simultaneously, and

such a system can work within the constraints required in port approaches.

5 Latest Developments/ Intelligent Control

It is very obvious, the classical and tuned PID autopilot has limitations. It is always
fascinating how human operators can cope with a very wide range of unknown and uncertain
conditions. Latest research in this field attempts to adapt human abilities like learning and

experience to design a controller with an increased ievel of performance.

5.1 Neural Networks

The first noteable paper utilising this technique for the ship contrlo application was
published by EnDO [6]. The training data to teach the neural network generated by a PD
controller. Further work in this field is been published by the author himself and many other
researchers. An very interesing paper was published by HEARN [8] where he explained the use
of a backpropagation neural network for on-line learning. To be perfectly correct, the
controller is not truely learning on-line, but using a relativly fast computer, the learning can be
done within the sampling time of the system. The training of thé network could be finished

within approximately 0.5 seconds.

The back propagation learning (BP) algorithm is based on the gradient (steepest

descent) method. It minimises an error function. In the case of BP, the error is defined as:

‘ 2
E= %(d - y) d .. vector of the desired outputs

y .. vector of the actual outputs (actual plant
response)

Equation 5
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Abstract

The classical approach to modelling the dynamic behaviour of rigid bodies is to express their
behaviour as a set of simultaneous linear and non-linear differential equations, and to obtain a
solution for various input stimuli. An alternative approach is that of system identificarion
whereby a given input such as a sinusoid or pseudo-random binary sequence (PRBS) is applied
10 the real system and from a ser of input/output measurements a mathematical model may be
obrained. This paper investigates a novel alternarive to the state variable representation of a
ship in three degrees of freedom, by the applicarion of an Artificial Neural Network (ANN).

A surface ship is modelled by a set of non-linear differential equations in three degrees of
freedom. Using measured hydrodynamic coefficients, a discrete, time varying, state variable
mathematical model is constructed, and validated against full-scale sea trials.

Based on multivariable system theory it is possible to formulate an optimal control policy that
minimises a perforimance index. However, if the dynamic characteristics of the vessel change
(due to variations in forward speed, for example) then the guidance system is suboptimal and its
parameters need to be re-computed.

The possibility of using a model (such as a neural network) of a vessel to predict the
performance of the ship according 1o disturbances and rudder changes to optimise a rulebase of
a fuzzy logic controller is described, with the objective of providing a system which adapts its
parameters so that it provides optimal performance is provided over a range of conditions.

1. Introduction

Since the expansion in the number of powerful computers and workstations available, simulations
of complex structures (plants) arc increasingly part of thé design process. By the use of these
techniques, off-line study of the plants and/or controller designs may be achieved when otherwise
no realistic study could be undertaken. Differential equations are used io describe the dynamic
behaviour of the system being studied. To increase the accuracy of the design analysis, more time
consuming calculations are necessary because of reduced stepsize, but this is not always available.

In particular, neural networks demonstrate the capability (0 model highly complex plants. By
the application of training data derived from the real environment, these nelworks can learn to
emulate a wide range of differing conditions. Once trained, the ncural nciwork substitutes the
plant’s modcl and operates instcad.  Artificial neural networks (ANNSs) have previously
demonstrated their capability to model highly complex plants [4]. By deriving dala from the real
world environment, ¢.g. by measuring critical values, these nctworks can learn to emulate a wide
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Abstract

Intelligent methods of control which have been employed in an attempt to
maintain optimal marine autopilot performance have all been retrospective
in nature, thereby allowing performance levels to deteriorate before remedial
action can be subsequently applied. Of significantly more interest would be a
system which is capable of anticipating such performance deterioration prior
to its occurrence so that corrective action may be applied in expectation of
events by combining aspects of both modelling and control.

Advancing from the classical approach to modelling the dynamic be-
haviour of rigid bodies by expressing behaviour as a set of simultaneous
difterential equations using calculated hydrodynamic coefficients, or by the
application of a series of pseudo-random binary sequence (PRBS) to the real
system, a novel alternative to the state variable representation of a ship in
three degrees of freedom is demonstrated employing an artificial neural net-
work approach. Using this enhanced model, it is therefore possible for the
neural network model to predict the performance of the ship, and for this
information to then be channelled to an intelligent control device, with any
necessary rudder changes to optimise a rulebase of a fuzzy logic controller
then being calculated in an anticipatory mode of operation.

1 Introduction

The modern control techniques of H,, [4], Optimality [2], Self-Tuning [6],
Model Relerence [10], Neural Networks [3] and Fuzzy Logic {11] have all been
applied to the field of ship control over recent years in an attempt to improve
autopilot performance over the entire operating envelope. Whilst these tech-
nigques have successfully demonstrated that adaptive control methodologies



are the future of marine based autopilots, few actually offer a learring ca-
pability in the true sense, and of these all are retrospective learning, i.e.
poor autopilot performance must be encountered before corrective action is
applied to remedy the situation. Even very recent studies ([7]- [8]) employ-
ing sell-organising fuzzy logic control has required that autopilots learn in a
heuristic manner. Therefore it is only when errors due to poor performance
are detected that control parameters are adjusted to prevent any recurrence
should similar conditions be encountered in the future. The truly ideal form
of autopilot control would be one with the capability of prediction so that
deterioration in performance could be anticipated in advanced, with suitable
remedial actions being undertaken prior to this occurrence thereby prevent-
ing any noticeable deviation from the optimal performance level at any times.
Such a system would require a knowledge of alterations occurring within the
dynamic characteristics of the vessel and the implications generated by these
changes. To model boats in the conventional manner would be impractical
on any large scale due to the considerable effort involved in both time and
resources. However, if a novel manner of ship modelling could be derived in-
volving a neural network [9] solution based upon relatively little information
which was readily available, then this could be the key to developing such
a predictive system. The system itself must have the capablility of on-line
learning to be able to fully support the requirements of a predictive system,
e.g. by the application of self-organising fuzzy logic. - However, it is only
by combining both neural and fuzzy aspects together into a composite au-
topilot system, that a fully predictive novel innovative control system may
be obtained. This paper concentrates on the development of such a neural
network ship model, consideration of the on-line tuning ability of the fuzzy
autopilot when subjected to full scale sea trials, together with discussion of
the implications when joined into the necessary composite system.

2 Development of a Neural Network
Ship Model

2.1 Modelling techniques

The classical approach of modelling the dynamic behaviour of rigid bodies
is to express their behaviour in a set of simultaneous linear and non-linear
differential equations, and to obtain a solution for various input stimuli. Ship
motions in surge, sway and yaw can be described [1] by an Eulerian set of
non-linear differential equations of the form:



Length =  161m

Draught = 9m
Beam = 23m
Displacement = 17,000t
Number of propellers = 1
Number of rudders = 1
Maximum rudder angle = 35°

Table 1: Vessel Parameters

Surge Equation:
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where:
T
u’
T

X
w

Equations 1 to 3 can be arranged in the state matrix vector form:
x(t) = F(t)x(t) + Ge(t)u(t) + Gp(t)w(t)
The corresponding discrete solution is:

%((k + 1)T) = A(T,kKT)x(kT) + B(T, kT)u(kT) + C(T, kT)w(kT)

(2)

(4)

()

Whilst consideration of all 6 degrees of freedom within the neural model
should he possible, this study concentrated only on the three, these being



















































