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Abstract 

This thesis investigates the design and evaluation of a control system, that is able to adapt 

quickly to changes in environment and steering characteristics. This type of controller is 

particularly suited for applications with wide-ranging working conditions such as those ex­

perienced by small motorised craft. 

A small motorised craft is assumed to be highly agile and prone to disturbances, being 

thrown off-course very easily when travelling at high speed 'but rather heavy and sluggish 

at low speeds. Unlike large vessels, the steering characteristics of the craft will change 

tremendously with a change in forward speed. Any new design of autopilot needs to be to 

compensate for these changes in dynamic characteristics to maintain near optimal levels of 

performance. 

This study identities the problems that need to be overcome and the variables involved. 

A self-organising fuzzy logic controller is developed and tested in simulation. This type of 

controller learns on-line but has certain performance limitations. 

The major original contribution of this research investigation is the development of an 

improved self-adaptive and predictive control concept, the Predictive Self-organising Fuzzy 

Logic Controller (PSoFLC). l'he novel feature of the control algorithm is that is uses a 

neural network as a predictive simulator of the boat's future response and this network is 

then incorporated into the control loop to improve the course changing, as well as course 

keeping capabilities of the autopilot investigated. 

The autopilot is tested in simulation to validate the working principle of the concept and 

to demonstrate the self-tuning of the control parameters. Further work is required to establish 

the suitability of the proposed novel concept to other control. 
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Chapter :l 

Introduction and Structure of the Thesis 

1.1 Aim and Main Objectives of the Research 

Over centuries helmsmen have been steering ships. The task of manoeuvring the vessel 

safely through both rough and calm sea lies with the helmsman. Depending of the environ­

ment, this can sometimes demand a high level of skill, expertise and decision making. At 

other times it can be boring and tedious to concentrate for long periods of time. Sailors are 

still looking for suitable devices to assist them in their navigational task and vessel operation. 

There has been an increased use of electro and mechanical devices to automate this process 

with certain degree of success. Recently there have been large advances in technology both 

in this and other applications. 

Of particular interest are the developments.in the field of neural networks and fuzzy logic. 

This research investigates the possibilities of employing up-to-date techniques such as fuzzy 

logic and neural networks to perform course-keeping/ course-changing control aimed at a 

specifically small, highly responsive maritime craft. The novel combination of both fuzzy 

logic and neural networks in the fashion described in this thesis is unique. 

The aim of this research is to develop an autopilot which is able to quickly and reliably 

adapt its control parameters to changes in environment and steering characteristics. The aim 

is to give the autopilot self-tuning capabilities, so that it can modify its control parameters 

automatically without the need of input from the human helmsman. This will have the effect 

of improving vessel control which could result in reduced fuel costs and travel time. Im­

portantly, it will also improve passenger comfort/ cargo safety, and reduce the risk of human 



error. 

In order to achieve the aim of this·research, the following objectives were identified. It is 

necessary to undertake a study of historic autopilot development, and to identify the limita­

tions of the current technologies being used. For bench marking purposes a conventional PD 

autopilot was therefore developed and tested in course keeping and course changing modes 

of operation. An alternative design using SoFLC was also developed to demonstrate its per­

formance abilities, This controller forms the basis of the research undertaken and has been 

expanded to create a novel predictive form of self-organising fuzzy logic controller. All 

these types of controllers have been tested in simulated conditions. The results being anal­

ysed and relevant comparison regarding made. Conclusions have been drawn regarding the 

performance advantages obtained and recommendations are provided for further research. 

1.2 Issues Related to Ship Control Systems 

Considerable information about the transient behaviour of the craft is needed for the suc­

cessful control of such a small and responsive vessel. Owing to the size and possible high 

forward speeds, such a craft is a highly responsive plant and very sensitive to all types of 

disturbances, such as change in speed, loading and weather, etc. Even fundamental char­

acteristics can change. Consider the behaviour at different forward speeds; at the low speed 

end, the vessel can be seen as a displacement boat, whereas at higher speeds the vessel can 

go into planing mode and thus change the steering characteristics entirely. Different loading 

conditions will change the mass and therefore the inertia, draft, added mass etc and therefore 

the time transient behaviour of the vessel responding to.a rudder change will alter too. It now 

depends upon the 'intelligence' of the controller to cope with such a wide range of working 

conditions [45]. Sophisticated hardware and software is needed to identify the working envi­

ronment and to activate the correct control procedure in order to produce an optimal control 

performance [6, 31]. Optimal control performance is desirable because it means an improved 

course accuracy which results in savings in fuel and travelling time [28]. 

It is imperative to emphasise the need for, and the advantages and disadvantages of using 

autopilots for course keeping and course changing control. Under various sea conditions 

2 



control and steering of any size vessel can become both boring and tedious. This can lead to 

a decrease in safety due to lack of concentration. In these circumstances the helmsman's task 

is to maintain:the vessel on a desired course to achieve some preset destination. However, the 

helmsman will also attempt to continually optimise the vessel's,performance by minimising 

heading error and rudder usage. It has proven [45, 14, 124] to be very helpful .to employ a 

device (electrical or mechanical) to do the course-keeping, thereby allowing the helmsman 

to concentrate on other crucial activities, eg navigation, route planning, etc. Furthermore, 

ahuman being needs to utilise helpful aids and devices to detect very slow translation and 

rotation of the vessel. To this aim, the human's main input is visual data from the compass. 

If the data from the compass is used as an input to an automated control device, it is possible 

for the resulting autopilot to achieve acceptable levels of performance when compared to that 

of the original helmsman. The three main components of a control loop can be seen as: 

o the controller, 

o the plant and 

o the feedback device. 

The signal flow between the components can be summarised as: 

o error detection, 

o decision making (controlling), 

o application of the control action. 

The error detector is a device which subtracts the actual heading from the desired heading. 

This error is then fed into the control algorithm, which outputs a signal to the control actuator, 

the rudder on the ship. So, the signal is a desired rudder angle which drives the vessel back 

on course. 

The precise nature of the autopilot's performance is therefore highly dependent on the 

methodology used within the controller, but clearly there is significant potential for further 

improvement using modem techniques. 

This research takes into account all factor related to ship control for small motorised ves­

sels. It gives particular emphasis to course changing and course keeping. By introducing 

the use of artificial neural networks and fuzzy logic to perform the task of ship control, it is 

3 



possible to develop a new design of autopilot which should outperform the alternative ap­

proaches currently used. The novel combination of fuzzy logic control plus neural network 

system identification allows for enhanced control performance, and is an original contribu­

tion to knowledge. The system operation, is validated using simulated testing. Performance 

is then compared to other systems. 

The emphasis of this research is based upon the demonstration of the capability of the 

new system to adapt its control parameters rapidly in response to changes in the operating 

environment. 

1.3 Layout of the Thesis 

Chapter 1 (Introduction) provided an overview over the research aim and objectives. It 

also considers some aspects related to ship control systems to outline the background of this 

research. 

Chapter 2 (Survey- The History of Piloting) provides a brief analysis to justify the need 

for this research, and the use of automated steering devices. It also provides an introduction 

to the field of marine autopilots, the history and development of autopilot design from the 

turn of the century via the P, PD, PID control law to the advanced and adaptive concepts of 

the present day. Modern control algorithms are introduced and briefly explained in order to 

put this research into the right context. This thesis concentrates only on specific techniques 

currently employed which are applicable to the research being undertaken. An overview of 

the historical development of autopilots is included, and an understanding of the limitations 

of modern techniques is provided. 

Chapter 3 (Heading Control using PD, Fuzzy Logic and Self-organising Fuzzy Logic) 

provides an overview of PD control, fixed rulebasefuzzy logic control (FLC), and also self­

organising fuzzy logic control (SoFLC). Particular emphasis is given to the basic building 

blocks of the SoFLC 'fhese are rulebase design, performance index structure, and rulebase 

update algorithm. The SoFLC forms an important part within the novel control design pro­

posed by this study. 

4 



Chapter 4 (The PSoFLC) describes the development of the novel Predictive Self-organising 

Fuzzy Logic Controller (PSoFLC). A method is demonstrated which reduces the adaptation 

time of a self-organising fuzzy logic controller (SoFLC) acting in a new, unknown envi­

ronment. This chapter also contains an extension to 'classic' fuzzy logic as proposed by 

Zadeh [127, 128]. A novel defuzzif1cation method is introduced (section 4.4, A Novel De­

fuzzijication Method Using a Normalisation Technique) which provides a much smoother 

control surface when irregularly placed, and asymmetrically shaped, fuzzy sets are used in 

the output window. Applied to ship control, this can prevent erratic rudder movements which 

could cause extensive wear and tear on the rudder mechanism as well as waste fuel and re­

duce forward speed. 

The functionality of the controller and the predictor modules are separately explained, 

and individual test results are shown. This method of using a neural network to determine a 

mathematical model does not require specialist knowledge about the plant and environment. 

Furthermore, the design engineer can concentrate on•the input and output data, and the neural 

network will find a relationship between the two. It also enables the identification of the 

influence of individual parameters to the overall response. The unique combination of both 

modules, the predictor and the SoFLC, forms this novel controller and is the basis for the 

originality of this study. 

Chapter 5 (Simulation Test Results) contains the simulated tests results of the predictive 

controller (PSoFLC) and the results are analysed with detailed graphs showing the various 

responses. 'fhe tests include step response tests without and with disturbances as well as 

course following tests. The test results of the PSoFLC are compared and analysed with 

namely a PD controller tuned for high speed and also with the SoFLC. Each section of 

the chapter contains a discussion of the test results which highlights the similarities and 

differences identified. 

Chapter 6 (Discussion) identifies the key points derived from the test results and identifies 

benefits and limitations of the novel predictive self-organising fuzzy logic controller. 

The new fuzzy logic defuzzification technique is discussed in a variety of test environ­

ments. The development of a testbed to host the controllers is introduced, and the predictor 
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design is discussed in detail. A comparison of the controllers is undertaken and relevant 

conclusions made. 

Chapter 7 (Conclusions and Suggestions for Future Work) contains the general con­

clusions of this research and lists some possible ways to implement the new control concept 

into other applications. It also reflects on the covered areas of this research and its objectives. 

Appendix A (Neural Networks: Theory) Theory and applications of artificial systems 

such as neural networks are explained in appendix A. Here, examples are shown, of how 

neural networks can be used for control and system identification. This appendix provides 

examples of industrial applications utilising this technique. The neural network part is sub­

divided into two sections, Neural Nenvorks for Control and Neural Networks for System 

I demifica t ion. 

Appendix B (Fuzzy Logic: Theory) provides an overview of fuzzy logic, the theory and 

their application in industry. The principles of the fuzzy set theory are explained as well as 

operators used to formulate 'fuzzy' rules. Various defuzzification methods are explained. 

It is necessary to introduce the two techniques uniquely combined in this research. The 

interested reader can find the main principles of neural networks and fuzzy logic in the 

following two appendices A and B respectively. 

Appendix C (The Simulation Set-Up) contains explanation on the simulation method 

used, based upon a 52ft ( 16m) life boat simulator by Browning [20]. The development of an 

Integrated Alllopilot Test bed used for data logging and testing can be found in appendix C.2. 

The data-logging interface is explained together with the communication protocol (NMEA 

0183 [72]) used between the controller and boat. Some operational guidance is provided 

on how to operate the software, eg selecting various control regimes, and the the gauges 

displayed on the screen are explained. 

Appendix D{NMEA Messages considered) lists the NMEA messages,l721 used for com­

munication. These messages are exchanged between the simulation and the testbed software 

using the serial pons. 
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Appendix E ~Rulebases) consists of a time series of rulebases developed during the train­

ing of both self-organising controllers. A graphical representation (control map) of the rule­

bases accompanies each set of numbers. 

Appendix G (Papers, Publications, Presentations) contains a copy of all related research 

publications based upon this study. 
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Chapter 2 

Survey - The History of Piloting 

In 1922, Minorsky [66] emphasised in one very early paper the advantages of using an auto-

mated steering aid: 

For merchant ships an accurate and reliable automatic steering device becomes 
a rea/money saving proposition, largely justifying its use. 

On battleships. by its use the absence or reduction of yawing in action means 
a better efficiency in gunfire, increased maneuvering speed and also a greater 
cruising radius. 

Quotation: Minorsky [66], p. 280 

The control task of ship navigation can be subdivided into two major divisions. vhe course 

related autopilot attempts to optimise ship orientation rather than the ship's position. The 

main control task is therefore to maintain or change, the heading of the ship to minimise the 

error from the desired course. The track related autopilot optimises the position of the vessel 

and not its orientation. 

To clarify the above: this work only considers course and directional tasks of an autopilot 

and not position oriented strategies summarised as navigation. Of course, there are combina-

tions possible and nowadays those are most commonly available on the market. Nevertheless, 

the control of the vessel is broken down as mentioned- the control of the vessel's orienta-

tion as the base level with the navigation unit sitting on the next hierarchical level above 

(figure 2.1 ). control is a complex task and for this purpose of design must be considered in 

isolation. 
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r- Position 
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Orientation 
Control 

Figure 2.1. Navigation Layer 

2.1 Early Developments until 1930 

A very important and early paper was published by Minorsky [66] in 1922. This paper 

discusses .the stability problems of automated steering and developed the basic theory of 

'directional stability of automatically steered bodies'. 

Furthermore, Minorsky subdivided the control problem into individual, smaller problems 

such as rudder position control, rudder angular velocity control and rudder angular accelerac 

tion control. 

Similarly, Sperry [98j described the first installation of a gyrocompass aboard a ship in 

1922. In this publication, he considered the problems that occur with automatic steering 

using a gyrocompass. ln this very early work one can find all the elements that make up 

the control loop of an automated steering system for course keeping purposes. The steering 

device proposed by Minorsky was installed and tested on the battleship New Mexico [67 j. 

By 1932, this application had been installed on more than 400 merchant ships all over the 

world [21]. Nevertheless, before it became such a vast success, some problems with the 

gyroscope principles needed to be solved. 

In 1923, Schuler [951 described the behaviour of pendulums and gyroscopes when ace 

celerated in a horizontal direction. The doubts raised by Martienssen [641 in 1906 based on 

calculating gyroscopic compasses errors under northcsouth acceleration were fundamental 

for further research in this field. He discovered very great errors of the gyroscopic compass 

device, and simply concluded that this device, or at least this design, is useless for accurate 

navigation. However, Schuler suggested a recdesigned device which overcame the problems 

mentioned above. 
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Utilisation of the new design, and the subsequently derived equations finally led to the 

successful gyroscopic devices now commonly used. The difficulties of the early years have 

been overcome and gyroscopes can be found in most navigation devices which require a high 

degree of accuracy. 

The autopilot used for the period 1930 to 1950 was a rather simple controller as pro­

posed by Minorsky in I 922 (166], p. 282). The heading error produces a signal which is 

then directly used to adjust the steering mechanism. The controller can be seen as a pro­

portional controller. It is possible to adjust the control parameter (Kp ... proportional gain) 

to suit different conditions eg ship loading. This simple device cannot cope with a wide 

range of conditions, ie in rough weather conditions when the proportional controller forces 

the steering mechanism to be heavily used and which therefore wears out very quickly. A 

weather adjustment is therefore necessary to prevent this excessive wear. In most cases a sim­

ple deadband is introduced to avoid high frequency and small magnitude movements. The 

rudder position is then only changed if the control output exceeds a small specified rudder 

angle. A different method to avoid rudder wear by including a delay feedback was proposed. 

l:he rudder cannot stop or change direction until this angle has been reached. Nomoto and 

Motoyama [74] described this method as 'negative backlash'. 

2.2 Development of the PID Autopilot 

Duringthe period, overshadowed by two world wars; the autopilots used were mainly simple 

mechanical devices following a simple proportional rule. 

(2.1) 

where: be~ ... desired rudder angle, 

Kp ... proportional gain constant, 

\jle ... heading error. 

These devices were not very satisfactory and could not prevent overshooting and therefore 

often caused transient oscillation. 
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Schiff and Gimprich [93] introduced the addition of a rate control term. In the 1950s, an 

improvement in stability could be achieved by the introduction and use of the mainly first 

derivative of the heading error (€) or the rate of turning (angular velocity \jl). rhe first com­

mercial autopilot utilising this technique was installed in 1951 on the S. S. United States [63]. 

The control rule of this autopilot may be defined as: 

(2.2) 

where: Ko ... differential gain constant. 

This was referred to as the PO (proportional plus derivative) controller. In 1953, Motora [71] 

suggested to applying a low-pass t11ter to the output signal to prevent rudder oscillation. Ac­

cording to Rydill [91 ], who analysed the effectiveness of the PO controller, this may generate 

a loss in stability and he therefore recommended the use of a quadratic delay technique (a 

second order filter) to overcome this problem. Applying this filter reduces the high frequency 

rudder movements with less damaging effect on stability. 

Schiff and Gimprich [93] also proposed the addition of an integral term, but it was not 

considered further because it was thought to make the ship response sluggish. However, the 

integral term finally found consideration in the control equation; the resulting control law 

being summarised as follows (equation 2.3). 

(2.3) 

where: K, ... integral gain constant. 

The consideration of the integral term now allowed to maintain the ships course in the pres­

ence of steady state disturbances, such as tidal currents and cross winds. Bech in 1972 [ 131 

emphasised on the needs to tune the autopilot with the demands of optimal propulsion econ­

omy in mind. The application of the PlO control laws in ship autopilots when operating in 

rough seas was further analysed by Blanke [ 15 ]. 

The PlO (proportional plus integral plus derivative) control rule was formulated. The 

addition of the integral term assisted in minimising the rudder movements as well as the 
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steering gear lags. Constant disturbances, causing.an offset were now taken into account and 

the PID autopilot was fully capable of dealing with them, 

However, the introduction of the integral term may slow down the rudder response.and 

cause a sluggish ship response [69]. An acceleration term is therefore introduced to the 

PID control rule 2.3 to compensate the slowed down rudder response. The extended control 

equation can be written as: 

(2.4) 

where: KA ... acceleration gain.constant. 

Controllers based on the PID format could not prevent the.generation of high frequency 

rudder movements [ 122] in certain operating conditions (eg periodic wave patterns), 17hose 

high frequency rudder movements can have a detrimental effect on the hull's yawing move­

ment [6]. and can cause extensive wear of the steering gear. 

The introduction of a deadband in the rudder loop can lead to unstable behaviour (the 

wind-up of the integral causes this effect). The deadband is a threshold value which the 

demanded rudder change has to exceed in order to be executed. If the demanded rudder 

change is less then this deadband, then this control action is simply ignored. 

2.3 Adaptive Autopilots 

The PID controller can be tuned to work under certain specific conditions. If these conditions 

change- due to weather (eg waves, wind, tide or current) [30], speed or load, the controller 

will not operate near its setting point [6]. To maintain a high level of performance, a further 

tuning adjustment of the control parameters is then required to ensure satisfactory autopilot 

performance. 

The dynamic behaviour oft he ship and hence also the parameters of this model 
are dependent 011 the external circumstances and the applied thrust power. When 
the ship is steered with an autopilot it is necessary to adjust the parameters of 
the autopilot dependent on the change of the steering characteristics of the ship. 

Quotation: van Amerongen and Udink ten Cate [8} 
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It was determined that the performance of even the most advanced PID controller could be 

improved by adjusting its parameters according to the operating environment of the control 

system (ship and autopilot). Van Amerongen 12ldefined.two disadvantages of the PID-type 

controllers: 

e It is difficult to adjust manually. Because the operator; the watch officer; has 
many other tasks and lacks the insight into control theory, his adjustment 
will seldom be optimal. 

o The optimal adjustment varies m1dis not known by the user. changing cir­
cumstances require manual re-adjustment of a series of settings of the au­
topilot. This holds not only for variations in the parameters of the process 
but also when due to a varying traffic situation the required performance 
changes. 

Quotation: van Amerongen {2] 

The PID parameter adjustment may be achieved either manually or automatically. The dis­

turbances, and therefore the effects to the hull, may also be subdivided into two major cate-

gones: 

I. disturbances that cause a 'small' deviation of the desired course and 

2. disturbances which change the vessel's characteristics and consequently the steering 
characteristics. 

Weather and tidal changes such as waves, wind and current are associated with category I. 

Changing the mass of the vessel whilst loading/ unloading and the resulting draft, displace­

ment and inertia, the quantity of water under the keel and alterations in the forward speed, 

all alter the handling characteristics of the vessel and are therefore associated with the sec­

ond category. Small adjustments required to compensate for the disturbances defined by 

category I may be overcome by automatic adjustments. Changes to the autopilot param­

eter settings to counteract disturbances of category 2 are mainly undertaken by the opera­

tor [8]. These adjustments therefore demand a significant knowledge of both the handling 

characteristics of the ship and the environment/ disturbances. Research dating back until 

1972 [44, 7, 83, 3, 62] and more recent work [31, 124, 96, 132], including the one described 

in this thesis, concentrates upon the possibility of automatically adjusting the control pa­

rameter for both types of disturbances. This will 'de-skill' the operating of the vessel and 

therefore achieve an improvement in safety and economics. 
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An heuristic approach to the adjustment of the PlO gains was undertaken by Olden­

burg [.78]. Other researchers, such as Brink et a/; [ 17] and Ohtsu et al. [77], have chosen an 

stochastic adaptation algorithm. 

The human factor which is the major source of errors can be taken out of the loop. 

Employing an automatic device to do the steering can also improve the stability of the vessel 

in roll[4, 51, 5, 37, 16, 110]. Safety improvements are realised by allowing the operator to 

concentrate fully on navigation and· collision avoidance. 

2.4 Self-tuning Controller 

The process of self-tuning is referred to as the on-line adjustment of controller parameters. 

In the early 1970s, researchers concentrated on self-tuning or self-adjusting control to 

overcome the problems which occur when classical control algorithms are applied to areas 

with changing environment and/or uncertainties. Astrom and Wittenmark [I 0] published a 

paper in 1972 which considered a SISO (single-input single-output') system with constant 

but unknown parameters. For this kind of system optimal control algorithms can be formu­

lated and solved using non-linear stochastic control theory. However, obtaining the solution 

is very impractical because the computational demands needed in order to cover a wide range 

of working conditions. A different approach to solving this problem is by taking knowledge 

of the process into account and the fact the system has constant but unknown·control param­

eters. One way of finding these parameters is by employing strategies which will converge to 

the optimal strategies. Those algorithms will be referred to as self-tuning or self-adjusting 

strategies [I 0]. 

Further research in this area was published by Clarke and Gawthrop [291 and Lim and 

Forsythe [59] who utilised a cost function which was minimised in order to change the con­

troller's parameters. In 1990, Vahedipour et al. [ 114] developed a pseudo derivative feedback 

autopilot. Kallstrom and Astrom [52[, Mort and Linkens [70], Brink and Tiano [18] looked 

into self-tuning methods. 

The H~ approach, a frequency based, robust control technique, was applied to marine 

autopilot design too but was found to be particulary appropriate for flight control systems 
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and gas-turbine designs [32] where the emphasis is on high performance, robust designs and 

reliable systems [36, 37]. 

lt is clear, that the classical and tuned PID autopilot has limitations. It is always fas­

cinating how human operators can cope with a very wide range of unknown and uncer­

tain conditions. The latest research in this field attempts to adapt human abilities such 

as learning and experience to the design of a controller with an increased level of perfor­

mance [54, 109, 113, 130, 121]. 

2.4.1 Model Reference Adaptive Control (MRAC) 

The Model Reference approach is based upon the comparison of measured, actual data and 

data of an ideal mathematical model (reference model) which represents the desired response. 

An error function containing both information of the reference model and the vessel to con­

trol is derived. By adjusting the controller's parameters, this function (criterion) is then 

minimised in such a way, that the actual response follows closely the response of the model. 

In 1973, van Amerongen and Udink ten Cate underlined the importance of adapting the 

parameters of the autopilot and compared two methods of model referencing. In the pa­

per [8], both of the following approaches to tackle the 'fixed settings problem' are described. 

Layne [57] takes the same principle in his Fuzzy-Model-Reference-Learning-Controller 

(FMRLC), but he does not adjust a conventional controller, but the "learning algorithm seeks 

to adjust the fuzzy controller so that the closed-loop system ... acts like a pre-specitied 

reference model". 

Lightbody [58] undertook further research on the idea of M RAC. Here, the controller is 

a back-propagation neural network and the error between the reference model and the plant 

is used to adapt (teach) the neural network controller. 

The Mathematical Model A mathematical model of the ship is the counterpart of the 

actual ship. The control action is applied to both the model and the ship, then the con­

trol parameters are adapted following a criterion such as 1 = !e2 with the error defined as 

£ = \j/111 - 'ila· 'Phe result of the sensitivity coefflcient and error adjusts the feedback signal ob­

tained from the rate gyro. The adaptation takes place exactly by adjusting this rate feedback 
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signal. 

Nomoto's model [75] (equation 2.5) is often the basis for this technique in maritime 

control application. 

(2.5) 

where: 'I' ... heading o ... rudder angle 

'tx ... time constants K ... gain 

The constant K and time constants 1:1, t 2 and 't3 are related to the mass and speed as well 

as to the hydrodynamics of the vessel. The rudder variable is o and the variable ljl belongs to 

the c"ourse. The transformation into Laplace domain assuming zero initial conditions gives: 

\jl(s) 
o(s) 

(2.6) 

It has been found by van Amerongen and Udink ten Cate [8] that this model is too sim­

ple to describe the complete ship's behaviour, so the rudder angle should not exceed 5°. 

However, this model is feasible since under normal steering, a ship often makes only small 

deviations from the straight line path [57]. For most applications however, a model suited 

for rudder bigger than so is needed. An extended transfer function (as proposed by Bech and 

Smitt [ 12]) can be used. If the thrust. power remains constant ( 
1

K
1 

, 
1
1
1 +

1
12

, 't3 ~constant), the 
. I 2 I 2 

transfer function can be re-written (substituting ( t )\jl = H(\jl)): 

(2.7) 

If the rudder rate (rudder-angular velocity) is neglected and if a 1 = 
1

1
1 
+ ;

2 
and K' = 1 ~2 

then equation 2.7 simplifies to: 

(2.8) 

H('l') represents a non-linear function of'!' and can be obtained from the relationship be­

tween o and ljl. When the the external conditions do not change (\ji = ijl = ~ = 0), then H('l') 

can be found from the relationship between o and 'I'· A spiral test gives an approximation of 
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H(\jf): 

(2.9) 

Figure 2.2 shows the block diagram of adaptive autopilot design,using a. reference model. 

The model represents the desired behaviour of the ship. 

Sensitivity Models This sensitivity model technique is especially designed to prevent course 

instability of very large ships. The adaptation process with the sensitivity model is in fact 

based on a continuous hill climbing technique. The criterion used in that approach can be 

defined as: 

(2.10) 

where: C .... criterion, E ..• error. 

Using the steepest descent method, the gain Ko of the rate feedback signal is adjusted. 'Fhis 

approach is not stable under all circumstances [381. 

Liapunov Approach This approach follows the principle of direct adjustment of the con­

troller's parameters. Assuming that the model's transfer function and that of the system are 

of the same order, a difference between the state variables of the system and the model is 

utilised to adjust the system's parameters in order to minimise this difference. 

Existing differences between the state vectors of the the model and the system are m in, 

imised by altering the system parameter. The process is assumed to be linear and that non-

stochastic disturbances occur. A low-pass filter also is required in rough seas. 

The model represents a desired response and the system should follow this response as 

closely as possible. There are some difficulties when the Liapunov technique is applied to 

non-linear ships. A low-pass filter is required to filter out the measurement noise. 

However, according to van Amerongen and Udink ten Cate [8], when the results of both 

techniques are compared, no significant difference can be found. 
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2.5 Modern Control Algorithms 

It has been demonstrated that adaptive control is the control technique of the future. In recent 

research ~M. Polkinghome et at f82])<self-organising (self-tuning) [29, 125, I 01, 115] meth-

ods have·been used for the control of processes in uncertain, varying environments [60, 129, 

61 ]. Existing adaptive controllers, eg self-organising fuzzy logic controllers (SoFLC) [81], 

learn by employing a heuristic approach. In order to learn, they initially start off with a poor 

performance. Because of their adaptive nature, the errors made during this low performance 

work are detected and the control parameters are adjusted in such a way as to avoid the same 

error in the future. 'fhe following sections describe the main differences between self-tuning 

controllers, SoFLC and the control idea PSoFLC of this research. 

2.5.1 Self-tuning Autopilots 

First developments of cost functions (criteria) for adaptive course-keeping autopilots were 

undertaken by Astrom and Eykhoff [9] in 1971. The method used was based on a least 

squares parameter estimator and a minimum variance control technique. 

(2.11) 

Special attention should be given to the cost function. Assuming a vessel is left to yaw natu­

rally without high frequency rudder corrections, the distance travelled during a 400 nautical 

miles journey does not increase more than a quarter of a mile when the deviation of the 

course remains ±2°[731. However, each rudder movement causes a drag and so a loss in 

forward speed and increased fuel consumption. 

In 1975, Clarke and Gawthrop [29] developed a more generalised self-tuning controller. 

Publications in the late 70's and early 80's show the applicability of self-tuning controllers 

to the marine field [69, 43]. 

2.5.2 Optimal Control 

It has been demonstrated by Burns [22] that it is possible to design an optimal multi-variable 

ship guidance system that controls position, heading and speed simultaneously, and such a 
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system can work within the constraints required in port approaches. 

2.5.3 Neural Networks 

~he first notable paper utilising neural networks (for the principles on neural networks see 

section A) for the ship control application was published by Eh do et a/ [31]. The training 

data to teach the neural network were generated by a PD controller. Further work in this field 

has been published by the author of this thesis [23, 24] and by many other researchers [ 11, 

39, 46, 50, 97, I 07, 113, 116, 121, 123, 120, 133, 132, 134]. A key paper was published 

by Hearn [41] where the use of a back-propagation neural network for on-line learning was 

detailed. In reality, the controller was not truly learning on-line, but was using a relatively 

fast computer in order that the learning could be achieved within the sampling time of the 

system. The training of the network was finished within approximately 0.5 seconds. 

The back-propagation learning algorithm is based on the gradient (steepest descent) 

method. It minimises an error function. In the case of back-propagation, the error (£) of 

a neuron is defined as:vspace-5mm 

where: E ... error, 

I 2 
E = -(d- y) 

2 

d ... desired output, 

y ... actual output (ie sensor reading ofthe plant's response). 

(2.12) 

The desired output vector, in the case of a ship autopilot a single output, contains only the 

desired course. The system response is a function of the rudder angle and using the chain 

rule to derive a error measure for each individual neuron a control signal can be learned 

which minimises the difference.between desired and actual course (figure 2.3). Further work 

in this field is being undertaken by Zhang et a/ [ 131, 132, 42]. More work on track keeping 

and related tasks such as rudder roll stabilisation and course keeping has.been undertaken by 

several researchers [ 120, I 05, 87]. 

There have been publications in the field of predictive control, such as Montague et 

a/ [68]. Saint-Donat [92] and To lie [Ill, 112]. 
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where: \jl ... heading angle, k ... time step k 
u ... surge, P •.• plant 
E ... error, c ... current 
r ... yaw rate, d ... desired. 

Figure 2.3. Direct Neural Control Scheme [41] 

2.5.4 Fuzzy Logic 

A further method of simulating human behaviour is achieved by using linguistic variables 

and derived rules. The controller's task is to use a human-like way of thinking. The thoughts 

are placed into a knowledge base in the form of rules (rulebase), and the inputs are given in a 

fuzzified format. The use of so called fuzzy sets supports the human way of expressing every 

day actions and understandings. Fuzzy sets represent the mathematical equivalent of linguis­

tic variables, eg tall, hot, cold, etc, used by the human language to express relationships 

and/or rules. 

Nowadays, even more advanced techniques are used. Self-organisingfuzzy logic control 

126,46, 60, 81, 82, 105, 106, 34, 33, 107, 109] or SoFLCcombined with the model reference 

adaptive control (MRAC) technique [27, 53, 57,991 is a recent development in this field to­

date. 

llhe principles of fuzzy logic are outlined in appendix B. It is necessary to understand'the 

principles and functionality of both, neural nets (see appendix A) and fuzzy logic in order to 

understand the underlying aim of this research. 

A neuro-fuzzy hybrid system called ANFIS (Adaptive-Network-based Fuzzy Inference 

System) was developed and introduced by Jang [48] in 1993. Since then researchers such 

as Sutton and Craven 11041 have used this technique successfully for the guidance of au-

tonomous vessels. This system uses a fuzzy system as an input layer. The successive layers 

(layer 2, 3 and 4) are artificial neurons. The final output of the ANFrS system is not a single 

number or vector as in supervised neural networks, moreover it activates a function with 

parameters. Each neuron in the output layer represents a different set of parameters for this 
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output function. 

2.6 Summary 

This chapterprovided an historic overview of control systems in maritime applications. With 

the recent advances in technology other revenues of control can be pursuit to give an even 

better performance over a wider operating range. The direction of research and technology 

can be seen in non-linear and adaptive control, enabling the controller,to change its control 

parameters, ie when changes in the operating environment occur. Some aspects of model 

reference adaptive control (MRAC) were explained. 17his technique is using an internal 

mathematical representation of the expected behaviour of the process. If the real response 

varies to that of the reference model, controller parameters are adjusted in such a way that 

the real behaviour is following the referenced response more closely. 
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Chapter 3 

Heading Control using PD, Fuzzy Logic 

and Self-organising Fuzzy Logic 

3.1 Controlling the Vessel with a Proportional + Derivative 

(PD) Controller 

Since the mathematical description of the vessel used for the simulations already contained 

an integral term (Nomoto model), the controller does not need to contain one as well [69]. 

The controller was tuned at full speed using the following technique as explained in Ce­

trek's user manual for the 7151730 Autopilot Series [25]. This technique is easily understood 

by customers and leads to good control performance. 

The differential gain was set to zero and the proportional gain increased gently until 

marginal stability was achieved. "fhen the differential gain was increased to 'drive back' the 

oscillation and to decrease the overshoot. Given the general form of a PD controller (see also 

Chapter I) 

the following values were found: 

Kp= 1.0, 

7;1 = 4A4s. 

(3.1) 

'Fhe tuning has been performed under calm conditions at full speed. The boat simulation 
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Figure 3.1. PSoFLC- FLC only 

developed by Browning [20] is a key element for all further tests. This simulation was used 

during all development states of the various controllers considered in this study. 

3.2 Fixed Rulebase Fuzzy Logic Controller 

The testbed as described in appendix C.2 contains a fixed rulebase fuzzy logic controller, 

referred to as FLC 1• This controller (figure 3.1) is the first step to the development of the 

full PSoFLC. In fact, the FLC is part of both of the more advanced systems the SoFLC and 

the Predictive SoFLC. The FLC is implemented using fuzzy singletons in the output window 

and a 7 x 7 ru lebase. The output window can theoretical ly consists of 49 fuzzy singletons. 

Each combination of rules Ek ---+ Ck has its own fuzzy output set (Ek ---+ Ck ---+ Ok). An initial 

rulebase using 9 named output singletons is laid out in table 3.1 . 

Figure 3.2 shows the fuzzy input windows as they are used in all fuzzy logic controllers 

of this research. The input windows stay fixed. The heading error ranges from -30° to 

+ 30°. If the heading error exceeds the range it saturates. The shape and placement of the 

1 for an overview of the theory o f fuzzy logic please refer to appendix B 

Table 3.1. Fixed Rulebase FLC: Rulebase 

error rate error rate 

NB NM NS z PS PM PB NB NM NS z PS PM PB 
NB +30 +30 +30 +30 +15 +5 +2 NB PVB PVB PVB PVB PB PM PS 
NM +30 +30 +15 +2 0 0 -2 NM PVB PVB PB PS zz zz NS 
NS +15 +5 +5 +2 0 -2 -5 NS PB PM PM PS zz NS NB 
z +5 +5 +2 0 -2 -5 -5 z PM PM PS zz NS NM NM 
PS +5 +2 0 -2 -5 -5 -15 PS PM PS zz NS M NM NB 
PM +2 0 0 -2 -15 -30 -30 PM PS zz zz NS NB NVB NVB 
PB -2 -5 -15 -30 -30 -30 -30 PB NS NM NB NVB NVB NVB NVB 
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Figure 3.2. Fuzzy Input Windows 

fuzzy sets are chosen in such a way that a finer control is achieved around the set point 

(\jle ~ 0) for course keeping and coarser control for course changing (1\j/el ~ 0). Similar, the 

heading rate (\jl) ranges from - 6 o Is to +6 o Is. When fed into the controller, the turning rate 

simply saturates on these values. The fuzzy sets in the heading rate input window are equally 

placed and regularly shaped. 

In order to evaluate the fuzzy logic rulebase, a method was required to visualise the input/ 

output relationships of the fuzzy logic controller. To this aim a three-dimensional plot called 

the control surface was used. In these plots the two input variables, heading error and yaw 

rate, were plotted as x and y axes respectively. The third dimension z was the single output 

variable of the controller, ie the desired rudder angle. In the surface plot (figure 3.3), the 

knowledge of the controller was represented. 

Figure 3.3. Control Surface using singletons 
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Figure 3.4. Block Diagram of a Self-organising Fuzzy Logic Controller (SoFLC) [102] 

3.3 Self-organising Fuzzy Logic Control (SoFLC)-

Overview 
I 

In very recent years, words like self-tuning or self-organising have been connected with 

modern techniques including fuzzy logic and neural networks [I 08, 106, 34, 33]. 

In connection with fuzzy logic, the word self-organising does not fully describe the 

method of adapting the fuzzy logic controller to a new environment. In fact, most algo­

rithms only change the actual value of an output rule rather then the structure of the rulebase. 

The expression self-tuning is a more accurate description of the process. 

With self-tuning algorithms, the two tasks of straightforward control and gradual learning 

are combined. In terms of fuzzy logic, the control is performed by the fuzzy logic methods 

described in appendix B (p. 142). Simultaneously, the operating environment is observed as 

well as the controller's response within that environment. Adaptation can now be achieved 

by utilising the obtained information to change the fuzzy rulebase in order to improve future 

outputs of the controller. Information on acceptable and unsuitable combinations of envi­

ronment variables and associated control operation gives a measure of performance. This 

information may be stored in a similar form as the rulebase of the fuzzy logic controller, the 

Performance Index. 

A block diagram of the SoFLC as used by Sugiyama [1 02] can be seen in figure 3.4. The 

controller works as follows: If the observation of the operating environment indicates that 
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the plant output provides a satisfactory level of perfonnance then no alteration of therulebase 

is performed. Conversely, as the performance level deteriorates, then the performance index 

indicates the magnitude of adjustment required to drive the plant output back to a satisfactory 

level. 

The disadvantage with this self-organising technique using a performance index is that 

the performance measured corresponds to a control action, hence rudder change, n time 

steps back in the past. It is very difficult to relate the current stage of the vessel back to the 

rudder action which has caused this state. The time delay is about one time constant of the 

vessel, approximately 63% of the steady state yaw rate (ljl) have been reached. If a longer 

time period is considered, then it is more likely that another rudder change was applied. 

However, rudder changes made earlier still have effect on the vessel. Furthermore, and 

more important, the control action has been applied and caused the poor, present state. 

This technique has been used in several applications and its perfonnance and reliability 

has been tested and approved. The controller used is a standard fuzzy logic controller using 

fuzzy singletons in the output window. A fuzzy singleton is defined as a fuzzy set where 

only one element of the universe of discourse has a membership value greater than zero (see 

figure 8.12 in appendix B). This simple set will be used to keep the self-tuning algorithm 

easy to understand as well as easy to implement. 

3.4 The Self-organising Fuzzy Logic Controller (SoFLC) 

This section discusses the self-organising method using historic data as previously intro­

duced by [ 1251. It discusses and explains the fundamental principles of self-organising fuzzy 

logic controllers, The performance of this kind of controller is demonstrated in simulations 

and serves as a reference (benchmark) to evaluate the achieved performance of the Predictive 

Self-Organising Fuzzy Logic Controller (PSoFLC) of this research. 

The input fuzzy windows used in both self-organising controllers have already been in­

troduced (figure 3.2, page 25). Considering the fuzzy windows again, it can be noticed that 

the input window for the heading error is highly irregular, using asymmetrically shaped sets. 

This layout allows to emphasise regions of control, in this case, give finer control in the 
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the changed rulebase at 11 :37:37.02 (24) 

NB NM NS z PS PM PB 
NB 0.00 0.00 0.16 12.41 6.97 5.4 1 0.55 
NM 0.00 0.00 0.37 12.44 7.36 5.34 -2.23 
NS 0.00 0.00 1.96 2.57 -0.61 - 1.46 -0.56 
z 0.00 0.00 5.17 -0.30 -3.32 - 1.04 0.00 
PS 0.3 1 3.08 3.98 -0.59 -2.99 -0.02 0.00 
PM 2. 11 -4. 19 -8.25 -9.97 -0.74 0.00 0.00 
PB 0.20 -4.41 -8.26 -10.40 -0.01 0.00 0.00 

Figure 3.5. Rulebase Visualisation 

centre of the window, around zero heading error. 

3.4.1 Structure of the Rulebase 

The controller's intelligence is stored in its rulebase. A two-dimensional structure has been 

chosen to adapt a PD (proportional+ derivative) control strategy. The error 'l'e (in rows) and 

the rate of error 'i'e (in columns) identify the structure. The table in figure 3.5 shows the 

final rulebase after completion of the 20° step response test manoeuvre which lasts about 

12 min . For intermediate rulebases, please see appendix E. The inclusion of an integral term 

as additional input into the rulebase was not found to be necessary since this, the constant 

offset, can easily be achieved by shifting the whole rulebase to either side. The rulebase used 

does not need to be symmetrical around its centre point. A shift of the control plane (see 

control surface plot in figure 3.3) along one of the two input axis has the same effect. This 

shift results in a fi xed value =/=- 0 in the centre of the rulebase 'l'e = 0 and \jl = 0. Effectively, 

the centre point of the demanded rudder movement is no longer 0° but a constant value 

=/=- 0°. The self-adapting nature of the controllers conside red make it possible to modify the 

rulebase to suit this requirement. 

3.4.2 The Performance Index 

The performance index (PI) states the perf ormance of the controlle r. It shows how well 

or poorly the controller reacts to its desired state. The performance index is more than a 

performance measure. It reflects the desired response of the process. It therefore has build in 
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rate of change of error 
error NB NM NS Z PS PM PB 

NB 1.00 0.52 0.42 0.40 0.38 0.29 -0.20 
NM 0.7 1 0.23 0.14 0.12 0.09 0.00 -0.48 

s 0.63 0. 15 0.06 0.03 0.01 -0.08 -0.57 
z 0.60 0.12 0.02 0.00 -0.02 -0. 12 -0.60 

PS 0.57 0.08 -0.0 1 -0.03 -0.06 -0. 15 -0.63 
PM 0.48 0.00 -0.09 -0. 12 -0.14 -0.23 -0.7 1 
PB 0.20 -0.29 -0.38 -0.40 -0.42 -0.52 -1.00 

Figure 3.6. The Performance Index 

information which can be seen as a reference model. The values of~ 0 indicate the desired 

response and incorporating this information into the perf01mance index is process dependant. 

The performance index output is a measure which can be used directly to adjust the rulebase. 

The structure of the performance index used in this application copies the structure of the 

rulebase. This means that when a PD type control rule is used, then the pe1formance index 

should also be of PD type, having the error and the rate as inputs. The measured parameter(s) 

of the process (plant behaviour) are used as inputs to the perform ance index. In the table (in 

figure 3.6) the rows are the heading error 'l'e and the columns are the rate of change of the 

heading error We· In general, the performance index has the same, or at least a similar (using 

the same input variables), structure as the fuzzy rulebase used in the fuzzy inference (forward 

phase). The fuzzy implication as used in the fuzzy logic controller is he re applicable too. 

IF E IS Ek THEN IF C IS Ck THEN PI IS Ph 

(3.2) 

Ek represents a fu zzy subset from the universe of heading errors, Ck a subset from the change 

in error (rate) universe and Plk represents to performance index output. 

The performance index is a measure of the controllers quality. The smaller the absolute 

number, the better the performance, and the closer the process is to the desired state. The 

number and sign itself indicate the error that the utilised rules must be changed in order to 

increase performance, get closer to the desired state. 
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As an example: if the heading error is big (\jle » 0) and the vessel is turning quickly in the 

direction to reduce the error (\jt « 0), then the vessel is at a desired state, and the controller 

acts in the desired way, that is, turning quickly to reduce the error. Note the small corrective 

value in the· left bottom (right top) corner of the performance index. If, on the other hand, the 

error is big and the vessel turns away from the desired course (error and turning rate have the 

same sign), then the controller suggests a non-desirable action and the performance index 

indicates this with a number -:f. 0. 

The performance index itself is derived from PD (proportional+derivative) data. It rep­

resents a plane in a three dimensional space (see table in figure 3.6). Figure 3.6 shows the 

performance index in a.three dimensional plot. The surface is smooth and monotone in each 

direction. The coloured curves in the x-y plane show the contours of the surface. 

3.4.3 The Rulebase Update Algorithm 

The performance index as discussed above gives an indication of the direction and magnitude 

by which the·rulebase has to be changed. 

As previously described by Procyk and Mamdani [83], the performance index only pro­

vides a measure of performance of the overall controller. Now, this output has to be con­

verted into real, corrective, values to the process/ controller that should have been applied 

some control actions in the past causing the present poor performance. It is important and 

not trivial to link the current state to previous control action(s). 

Before any analysis can be completed, the change on the control actuator has to take 

effect and a certain period of time has to pass by. This time delay or delay in reward 

(DEL) [I 02] is characterised by the time constants of the process. For this application a 

DEL of one time constant (DEL= kT = I x Tsystem) has been chosen. 

The rule changing algorithm consists of three main phases. 

I. straightforward fuzzy logic control (fuzzification, fuzzy inference, defuzzification). 

The active rules and values are stored for later use in the tuning. A control output is 

created which is fed into the process (control actuator). 

2. The process 'reacts' in an appropriate (in its characteristic) way and the actual output 
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value is measured by a device in the feedback loop of the control system. 

3. This output value is forwarded to the performance index (PI) which will generate a 

measure of the controller performance. If poor performance is measured, adjustments 

of the rulebase are needed. Now, n time steps later, the rules and values responsible of 

this control output are changed according to the performance index and their influence 

toward the final output. So, if this combination of rules is activated in the future, the 

control output will be different, hopefully it will produce a smaller error than it did 

before. 

There are a maximum of two rules overlapping each other in each of the input windows. This 

means, that in this application with two input windows, a maximum of four rules are active 

in the output window which need consideration for the defuzzification. 

where: 

n active 
I! input 

n ov 

n active .. . number of active mles, 

n0 v ... number of overlapping fuzzy sets, 

llinput ... number of input windows, dimensions. 

(3.3) 

Fuzzy singletons are used because of their easy implementation, The follow ing equation 

represents the update: 

where: 

R (r- DEL) + 1l · J.l(R (t-DEL)) · PI, · (3.4) 

R (r+) . .. new rule, the+ indicates a future use, 

R (I - DEL) .. . rule output at timet - DEL, 

11 .. . gain, 

J.l(R(l - DEL)) .. . member hip function (influence) of rule R (r- DEL) • 

PI, . . . performance index output at timet which measures the process 

state at timet which is caused by a control output at timet - DEL. 
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This equation effectively moves the singleton alongthe universe of discourse. Since the per­

formance index is scaled between ±I the gain to boost the output of the PI for rulebase 

adaptation is set to 3.5, /0 lh of the maximum rudder movement. The physical rudder limit of 

the boat was ±35°. The values inside the rule base saturate at ±35°. No overrules are used 

to guide the adaptation of the rulebase. 

3.5 Summary 

The disadvantages are clear since this technique is based on the assumption that, the con­

troller output n Lime steps (DEL) previously is responsible for the present state of the process. 

If the process measurement indicates a poor state, these rules should be changed. This tech­

nique only allows to adjust control parameters which already performed to an unsatisfactory 

level and is therefore retrospective. 

To avoid the application of a control action which does not improve the current situa­

tion, knowledge is required to assess the control action's effect on the current state. Using 

measurements, this knowledge,is only available in the future. By relating the measured state 

to a control action back in time, rules can be identified which caused the current, measured 

state. A simulation (running faster than real time) could also give an indication of the control 

action's effect. This simulated state could give vital clues about the quality of the control 

action about to be applied. 
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Chapter 4 

The Predictive Self-organising Fuzzy 

Logic Controller 

This chapter will concentrate on the method used to make predictions of a future state of 

the ship (plant) which is then utilised to optimise the rulebase of the fuzzy logic controller. 

For this purpose, this section explains the principles of adaptive-modelling using neural net­

works, and their application in a predictive controller. 

Self-organising controllers (SOC) use present data to evaluate control performance. Of 

course, the present performance is related to a control action in the past. This means that at 

the point in time that the·control action is applied, the future effect of that action is unknown. 

The action to be applied can improve the situation, but it is also possible that it can make 

the situation worse. The aim for a controller should be to test and validate the effect of its 

action on the plant before the action is actually applied. This can be achieved by running 

a simulation faster than real-time which will obtain information about a future state (n time 

steps ahead) of the plant when a certain control action is applied. In a predictive controller, 

this future state is taken into account when the performance is validated. To run, a simulation, 

a mathematical model of the plant and the environment is required. This mathematical model 

is called the Predictor in this application. 

An innovative form of mathematical modelling is used to forecast the plant's behaviour 

and is explained later in section 4.2. 
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Figure 4.1. PSoFLC- Fuzzy Input Windows 

4.1 The Embedded Self-organising Fuzzy Logic Controller 

(SoFLC) 

4.1.1 Rulebase Structure 

The Predictive Self-organising Fuzzy Logic Controller util ises the rulebase structure of the 

FLC as d iscussed in section 3.2. The controlle r uses two input variables the heading error 

('lfe) and turning rate ('if ). This defines the structure of the rule base. A maxi mum of two 

fuzzy sets overlap in each of the two input windows. This results in a maximum of four active 

rules in the output window which combined and defuzzified form the fi nal output value. The 

input windows are shown in figure 4.1. These are the same input windows as found in the 

FLC and SoFLC from the previous chapter (section 3.2, page 25). A sample rulebase can be 

seen in fi gure 4 .2. 

30 

20 
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the changed ru lebase at 11 :37:37.02 (24) 

NB NM NS z PS PM 
NB 0.00 0.00 0.16 12.41 6.97 5.41 
NM 0.00 0.00 0.37 12.44 7.36 5.34 
NS 0.00 0 .00 1.% 2.57 -0.61 -1.46 
z 0.00 0 .00 5. 17 -0.30 -3.32 -1.04 
PS 0.31 3.08 3.98 -0.59 -2.99 -0.02 
PM 2. 11 -4. 19 -8.25 -9.97 -0.74 0.00 
PB 0.20 -4 .4 1 -8.26 -10.40 -0.01 0.00 

Figure 4.2. PSoFLC - Fuzzy Rulebase 
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rate of change of error 
error NB NM NS z PS PM PB 

NB 1.00 0.52 0.42 0.40 0.38 0.29 -0.20 
NM 0.7 1 0.23 0.14 0.12 0.09 0.00 -0.48 
NS 0.63 0. 15 0.06 0.03 0.0 1 -0.08 -0.57 
z 0.60 0.12 0.02 0.00 -0.02 -0. 12 -0.60 

PS 0.57 0.08 -0.01 -0.03 -0.06 -0. 15 -0.63 
PM 0.48 0.00 -0.09 -0.12 -0.14 -0.23 -0.7 1 
PB 0.20 -0.29 -0.38 -0.40 -0.42 -0.52 - 1.00 

Figure 4.3. The Performance Index 

4.1.2 Performance Index 

Like in the FLC, the performance index is of the same structure as the rulebase. The per­

formance index as used in the SoFLC and extended PSoFLC is visualised in figure 4.3. The 

performance index is normalised between ± 1. A scaling factor can be applied to extend the 

range and amplify the output. 

The performance index used within the PSoFLC is the same as used in the SoFLC de­

scribed in the previous chapter (section 3.4.2, page 28). 

4.1.3 Rulebase Adaptation 

where: R(1+) ... new rule, the + indicates a future use, 

R1 • •• rule output at timet (now), 

1l ... learning gain, 

p(R1) ••• membership function (influence) of rule R1, 

(4.1) 

Pl(t+ T IA} . . . performance index output at time (t + TIA) which measures the 

process state at time (t + TIA) which is caused by a control output 

at time t (now). 

The learning gain 'T\ is set to 1l = 0.35. This is 1
1
0 th of the gain applied within the SoFLC, 10 

is the maximum number of predictor cycles before a control action is passed to the process. 
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The values inside the rule base saturate at ±35°, limiting the rudder demand od within the 

physical limits of the rudder. No overrules are used to guide the adaptation of the rulebase. 

Following the analogy of Sugiyama [I 02], using predictor terminology, the DEL be­

comes the Time-in-Advance (TIA). For this application a TIA of two time constants (TIA = 

kT = 2 x Tsystem) has been selected. Two time constants have been chosen to allow the rudder 

change to take considerable effect on the hull's movement. Together with the performance 

index, an improvement in the vessel's state is therefore expected within this time period. 

Choosing only one time constant provides the system with insufficient time to change the 

vessel's turn rate, and approach the Steady state response. Selecting a TIA value of three 

time constants would allow the vessel to reach a steady state. However, operating in a real 

environment, rudder changes are applied more frequently than once every 3 time constants. 

Investigation has shown that selecting 2 time constants as TIA is therefore a compromise 

between the two scenarios. During the prediction, the rudder is not changed, so the effect 

of the rudder in during this time is exactly determined. No otherrudder inpui influences the 

future state of the vessel, so a future state can be related to·one control action more reliably 

and accurately. 

Figure 4.4 shows the block diagram of the rulebase adaptation module only. The pre­

dicted data is fed into the performance index which returns a measure of performance. Uti 1-

ising this output from the performance index, the rulebase is updated. If the performance 

index indicates a good performance (IPII ~ 0) then the calculated rudder is applied to the 

ship, otherwise the process of calculating a rudder demand od. predicting, performance mea­

suring is repeated unti I the maximum number of cycles (I 0 in this application) is reached or 

the performance index gives no reason for further repetition. The block diagram shows the 

parts as found in the PSoFLC. The data utilised by the performance index is coming from 

the predictor and is the heading error 'Ve and turning rate \jl. 

4.2 The Predictor 

To find a fully representative model of the plant is always a problem in control engineering. 

It has been shown [ 117, 85, 132] that neural networks are well able to learn the transient 
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Figure 4.4. PSoFLC - rulebase adaptation 
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Figure 4.5. PSoFLC- Predictor Adaptation 

behaviour of a process. So, it should be possible to obtain a very specific mathematical 

model by measuring the time transient behaviour of the vessel and teach, on-line, a neural 

network utilising this data. The neural network mathematical model is the adaptive module 

referred to as the Predictor. This Predictor, a block diagram of the training is displayed in 

figure 4.5, will then be employed in the PSoFLC. As long as the training data set contains 

most, if not all , the significant data, the neural network back propagation learning algorithm 

will relate the inputs to the outputs and deliver a mathematical model which, in control terms, 

represents the transfer function. 

Ideally the predictor should be a 12 degree of freedom mathematical model, contain­

ing 12 state variables, three translation (x,y,z) and three rotational (<!> , 8, 'If) plus their first 

derivatives. 

The set of Euler's differential equations are used to discuss the selection of parameters 

for the predictor. 
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surge: m{ u + qw- rv- Xc(q2 + ?) + Yc(pq - ;) + Zc(pr + q)} 

sway: m{ v+ ru- pw - Ye(? + p2
) + Zc(qr - p) + Xc(qp +;) } 

heave: m{ w + pv - qu- Zc(p2 + q2 ) + XG(rp - q) + Yc(rq + p)} 

roll : lxx.P + Uu - Iyy)qr+m{ Yc(w+ pv- qu) - ZG(v+ ru - pw)} 

pitch : lyyq+ Uxx- lu )rp+m{ Zc(u+qw - rv) - Xc(w+ pv - qu)} 

yaw : Iu; + (Iyy- lxx)pq + m{ XG( v + ru - pw) - Yc(u + qw - rv)} 

Where: 

X XH + Xp + XR + Xo 

y YH+Yp+YR + Yo 

z ZH + Zp + ZR + Zo 

K KH + Kp + KR + Ko 

M MH + Mp+MR + Mo 

N NH + Np+NR+No 

with: 

H ... forces/ moments acting on the hull 

p ... fo rces/ moments acting on the propeller 

R ... forces/ moments acting on the rudder 

o ... others forces/ moments (such as stabi lisers, 

fins, other external forces such as wind, wave current etc) 

X 

y 

z 

K 

M 

N 

(4.2) 

(4.3) 

(4.4) 

By moving the the ships co-ordinate system into the centre of gravity of the ship (fig­

ure 4.6), the equations in (4.2) and (4.3) can be simplified to: 

surge : m{ u+ qw - rv} X 

sway: m { v + ru - pw} y 

heave : m{ w+pv-qu} z 
(4.5) 

roll : lx:rP + (1u- lyy) qr K 

pitch: lyyl/ + (rrx- Iu )rp M 

yaw: fzz; + ( Iyy- fxx) pq N 
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Figure 4.6. The Ship Co-ordinate System 

X xliLl + Xu (u + Uc) + XuuU2 + XuuuU3 + XvvV2 + x,,r2 

+XooO~ + XtmUnA + X,nn~ + XuaUa + Xuz2 + Xee82 

y ~;v+ Yv(v+ Vc) + Y;.; + Y,r + Y,mn~ + YvvvV3 + Yrvvrv2 

+ Y,,0n~ OA + Y,,ooon20~ + YovvOA v2 + Yva V a 

z ~v~v + ~vw + Z,z + ZeS + Zqq (4.6) 

K Kpp + Kpp + K00a 

M Mt/J + Mqq + MeS + M,z + Mww 

N Nvv + Nv(v + Vc) +N;;+ N, r+ N,111l~ + NvvvV3 + Nrvvrv2 

+N111,0n~ OA + N,111000n~ 0~ + N0 11110A v2 + Nva V a 

According to Burns [21], the linear coefficients N0oA, N,r, N11 v and the nonlinear coefficient 

Nrvvrv2 have major relevance. 

Considering only the linear terms from the equations above (equation 4.5) the yaw rate 

relationship can be written : 

(4.7) 

It was foun d that a step in time characterising the state of the small motorised craft as used 

here in the validating simulation is sufficiently described by the fo llowing state variables: the 

actual heading, yaw rate, forward speed, desired rudder angle, current rudder angle, roll and 

pitch angle as well as the time to the previous sample. 

40 



Actual Heading (\fl) Heading is the quantity to control and is the most important value to 

be included in the mathematical model. By .including heading into the model, orientation 

dependent data (tide, current, wind) is considered. This way, more knowledge about the 

environment is obtained and embedded' into the mathematical model. 

Yaw Rate (ljl) being the first derivative of the quantity to control, this is an important value 

to consider. 

Forward Speed (u = .l') A change in forward speed changes the steering characteristics of 

the vessel. This can be seen by the influence of the forward speed v in the yaw equation (set 

of equations 4.6). 

An increase in forward speed causes the vessel to lift out of the water. This then results 

in a reduction in the 'carried mass' and reduces the resistance. This non-linear term ("-' v2) 

has a major influence to the systems state [21 J, and it is therefore included as a state variable. 

The position in x can now be easily obtained using the direction of travel (yaw, \fl) and the 

forward speed. However, for piloting purposes as considered in this research, the actual 

position is not a relevant information. 

Actual Rudder Angle (1)0 ) I Desired Rudder Angle (Od) The rudder is one of the two 

actuators the boat has. The second one being the propeller directly linked to forward speed. 

The rudder is linked to the yaw rate and is the prime actuator responsible for a•change in the 

vessels orientation. It is therefore considered as an input into the model. Both rudder angles, 

desired and actual, are included into the model to simulate the response of the steering gear. 

Pitch Angle (8) I Roll Angle <1> First tests revealed that the model was not very accurate 

when the roll and pitch angles were not included. This might be explained by the close 

coupling of pitch to heave which is not considered either, and rudder to roll. A linear rela­

tionship can be noticed between the roll moment and the rudder (equation 4.6). This explains 

the improvement of the model when the roll angle was included as a model input. 

By including one of the two coupled variables a significant improvement of the model 

was achieved. Including those two values into the input vector; more information about the 
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environment can be obtained. The neural network should be able.to estimate a magnitude of 

the sea state as well as anticipate low frequency wave patterns. 

Time to the Previous Sample (ill) The sampling time is not constant. To draw any con­

clusions from the change in any of the above values, the time has to be included to connect 

the values. 

Nomoto's simple model of a ship 

K 

s s+a 
(4.8) 

indicates a second order system, a system of first order plus an integrator. A linear rela-

tionship can be described with two points. If a rate term (first derivative) is included, a third 

point is required to make a smooth transition from one section to another, this means that the 

function. is differentiable in all points. Hence three points find consideration in the vector. 

4.2.1 Predictor Requirements 

The time for learning and predictions is limited. Ideally, a continuous controller without time 

delay will result in the best control. It is therefore important to use an as short as possible 

sampling time but at least half the time constant of the process under control. 40 records 

(inpuU output data pairs) are stored as training data. These40 records represent the last 20s 

of the vessel's transient behaviour (sampling time 0.5s). Since the training of the network 

happens approximately every I 0 seconds, a sample window of 20 seconds allows each set to 

be exposed to the neural network together with one previous I Os window and one future. A 

graphical representation of the timeline is displayed in figure 4.7. This enables the algorithm 

to be exposed to already learnt data and new data to allow for a smooth transition. It also 

helps the algorithm to restore and interpolate the relevant data. Measurements and analysis 

have shown the dominant time constant of the ship in yaw to be approximately 1.25s travel­

ling at full speed. lihisrelates to approximately I ,050 rpm and 21 knots (39 km· h- 1) for this 

model. The time constant increases with reducing forward speed. Travelling at full speed is 

therefore the 'worst case scenario' with respect to time available for learning and predictions. 

Also, at full speed the vessel plus controller are most sensitive/ acceptive to disturbances and 
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training set 2 

Figure 4.7. Timeline 

noise. The chosen sampling time of O.Ss is just less than half the time constant of the vessel 

in yaw. The sampling time of O.Ss was chosen not to overload the processor with too much 

data but still 'over sample' twice the dominant frequency. Using a shorter time would over­

load the controller with messages which then will cause a long backlag of queued messages. 

A time delay would be the result. A longer time was not feasible, as the dynamics would 

not be sufficiently captured. The boat's time constant changes with a any change in speed. 

By increasing the speed, the vessel becomes more responsive, the time constant becomes 

shorter. 

One training cycle of the network is completed within the time window of one time 

constant. The main work has been carried out on a PC with a Pentium 266 MHz processor 

and 64MB RAM running OS/2. Running on a PC with more processing power, the learning 

time could be decreased even further which results in less idle time of the actual control loop 

and improved performance. A further development stage of the software could result in a 

parallel-process learning routine. The learning could be canied out in the background and 

would therefore not interfere with the control loop. The cun·ent set-up is semi-parallel; every 

I Os one complete teaching cycle is performed to update the model. 

The structure of the neural network (see figure 4.8) as used in the predictor shows all 

the input variables on the left hand side. The four output values, heading acceleration, roll, 

pitch and rudder angles are located on the right hand side of the diagram. It can be seen, that 

the network consists of two hidden layers with twelve neurons in the first hidden layer and 

five neurons in the second. Other researchers, ie Balasuriya and Hoole [ 11 ], have chosen a 

similar network structure for neural network control of marine craft. Here a two hidden layer 

neural network is trained to control the heading of a 161 m cargo vessel. 
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Figure 4.8. Structure of the Neural Network inside the Predictor Module 

After extensive experimentation it proved best to have a network with two hidden layers. 

A single hidden layer network was unable to captu re the the plant's behaviour accurately 

even after long training times. 

The transfer function of al l neurons is the Sigmoid function as described in appendix A. 

The size (number of hidden layers and number of neurons in each of the layers) of the neural 

network represents the degree of freedom (DOF) of the entire system. The predictor shall 

simulate the behaviour of the vessel and the working environment. 

It is accepted that no direct relationship exists between the the degree of freedom of the 

system and the number of neurons and their connectivity within the network. Experiments 

have shown [56] that , the more complex a problem (ie higher the degree of freedom), the 

more neurons are needed to identify the problem. 
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Figure 4.10. Predictive SoFLC 

• the feedback sensors. 

The controller itself is a combination of 3 modules (figures 3. 1, 4.4 and 4.5). The indi-

vidual modules can also be seen as layers. The most primitive layer, providing basic control, 

is the FLC (figure 3. 1 ). The FLC utilises the rulebase (RB). The next layer is the 'rulebase 

adaptation module' . The 'rulebase adaptation module' (figure 4.4) is responsible for the 

adjustments of the rulebase employed by the FLC to generate a desired rudder angle. The 

Performance Index (PI) provides the necessary value to do exactly that. 

• The PI can be fed with values from either (not combined) states, measured or predicted. 

• The PI is not concerned with the source of the state data it evaluates eg in the SoFLC 

it is a current state that is evaluated, in the PSoFLC it is the predicted state. 

The desired control command, hence the desired rudder angle, is fed into the predictor. The 

predictor as explained in detail in section 4.2 provides an estimated future state (future head­

ing) of the vessel some time ahead. This new state is evaluated using the PI. All necessary 

alteration of the rules, which are responsible for the predicted state, are modified when a 

poor performance is observed. The Predictor always contains the current steering character­

istics of the vessel. If those characteristics change, then the Predictor is adjusted to minimise 

the differences between the real world ship and the internal model (Predictor). The block 

diagram underlining this process can be seen in figure 4.5. 
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Figure 4.14. Fuzzy Input Windows 

on exploring variants of defuzzification methods. The main problems of the roughly shaped 

control surface are caused by the size and shape of the fuzzy sets in the output window. 

In particular the area covered by the set is considered to have a detrimental influence. If 

the fuzzy sets are equal in size and equally placed over the universe of discourse, then the 

occurrence of a I 0% error can probably be accepted. However, if the sets are d ifferent in 

size and/or shape, or the sets are not covering the universe with equal spacing, then the error 

increases and the control surface becomes undesirable. 

Very broad sets (see figure 4.1 5) attract a very wide range in the universe of d iscourse, so 

if such a rule is active, it will dominate the final output because of its influence with its fi rst 

moment of area (A · cg). As a comparison, figure 4. 13 shows a fuzzy output window with 

regularly shaped, equally placed fuzzy sets. Note that, the clefuzzification method centre of 
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Figure 4.15. Fuzzy Output Window (desired rudder) 
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Table 4.1. Comparison of Defuzzification Methods 

rudder rate activity rudder activity heading ISE 
in [o2/s2] in [o2] in [o2] 

standard method 17.333 4.614 7.164 
new method 2.601 2.575 7.529 
percentage drop -84.99% -44.19% 5.09% 

difference between the two methods compared is the additional code to normalise the influ­

ence of the fuzzy set. 

The standard (Centre of Area) and the new defuzzification methods are compared and 

numbers can be found in table 4.1 . The percentages in table 4. I are obtained using equa­

tion 4.11 

standard method - new method 
percentage drop [%] = - x I 00% 

standard method 
(4.11) 

The first four seconds of the test are omitted due to excessive noise when calculating the rate 

and the saturation of the desired rudder. The rudder rate activity is calculated as follows: 

1 loT . rudder rate activity= - o2dt 
T o 

(4.12) 

with 

i5 = do ~ ~8 = od(k)- od(k- l ) 

dt M t (k) - t (k- l ) 
(4.13) 

as rudder rate approximation or discrete 

rudder rate activity 

(4.14) 

and the heading ISE is detennined using 

1 loT heading ISE = - 'Jie 2dt. 
T o 

(4. 15) 

The heading error of the two methods is nearly identical, the new defuzzification method 
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shows only an non-significant deterioration (5%) here. The rudder activity itself was reduced 

to about one half. A comparison of the values for the rudder ISE (error between actual Oa 

and desired rudder Od) shows no significant difference. A reduction of approximately 2% 

was found. The comparison of the heading errors, figure 4.16, shows a slight increase in ISE 

of the heading. This indicates that: 

the defuzzijication method does not have a big influence on 

the actual controller's performance with respect to heading. 

With respect to the rudder rate activity, an almost 85% drop between the two methods com­

pared could be achieved. 

Considering the desired rudder graph (figure 4.17) it can be see that the standard method 

causes more rudder activity, hence bigger rudder deflections in certain conditions. At about 

13s the desired rudder angle rises sharply. At about 24s a steep drop can be noticed using the 

standard defuzzification method. This can also be noticed in the rudder-rate plot 4.18. This 

new, improved defuzzification method, demonstrates a much smoother response, less rudder 
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Initial tests involving only heading, heading rate and desired rudder with respect to the 

input vector have proven the network to be too small. It was impossible for the network to 

build a working model, from this limited set of input/output data. The output vector in this 

case contained only one value, the heading acceleration. By using this model, the predictor 

led the control algorithm to unsatisfactory behaviour shown in an oscillating, undamped 

response. 

More data was found to be relevant and therefore included in the input vector, namely roll 

and pitch information. For internal processing, those data were also included in the output 

vector and linked to the input vector when predictions are made more than-one time constant 

ahead. 

Different numbers of neurons in the hidden layers were also tested. Using an increased 

number of neurons in the second hidden layer did not improve the overall performance of the 

neural network model and the model therefore reverted to the size of the former structure. 

The next section will explain the adaptive model, the Predictor in more detail. 

4.2.2 Development of a Prediction Strategy Employing a Neural Net­

work 

A method has to be determined which is capable of teaching the network on-line. This can 

be achieved by learning measured data whilst a journey (simulated or real) takes place. In 

this way, the model can adapt itself to respond exactly as would the vessel when working in 

the same environment (mass loading, forward speed, disturbances, etc). 

The neural network model will adapt itself if the ship characteristics change, as a result 

of this the model has an unique ability to represent the curTent state of the ship at all times, 

llhe training sets the network is exposed to during the training are important for the quality 

of the neural network model. To represent a particular state, all characteristic values have 

to be taken into account. On the input side of the predicting neural network (see figure 4.8) 

there are the forward speed, rudder angle and desired rudder angle, heading, heading rate, 

roll and pitch angles and the heading acceleration. These data are related to the new heading 

acceleration on the output side which when twice integrated gives the new heading angle. 

During tests of the predictor it was observed that the predictions of the model improved 
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Figure 4.9. A Test Run of the Predictor Module (Heading) 

when pitch and roll angles were considered as additional inputs. These values are not con­

sidered, however, in the process of adapting the controller but they are internally used by the 

predictor only. Analysing equations 4.6 the coupling between roll, pitch and yaw become 

apparent. By including those extra values in the state vector a better model was achieved. 

l!he neural network will establish a relationship between the data on the input ports and 

the expected data on the output ports. The main outputs of the predictor is the new heading 

related values (ijtp. \jfp. \1-',,). The change in these values depends largely on the applied 

rudder. The environmental forces such as waves, tide and wind will push the vessel off its 

desired course. The data representing the environment including the vessel are considered 

as inputs and the vessel's response (heading, roll, pitch) as outputs. When predicting a new 

heading, the current and past two states are required. This combined data is fed into the 

neural network which will return the new, expected, state of the vessel one time step ahead. 

If a prediction further in the future is required, then the prediction process is repeated with 

the most recently calculated figures fed back into the input vector as the most recent sample. 

For adapting the control parameters, only the predicted heading information is considered. 
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4.2.3 Evaluation of the Prediction Module 

The predictor was tested in simulation. Figure 4.9 shows the behaviour of this module. 

A zig-zag manoeuvre was performed and the neural network was trained with measured/ 

simulated data. The predictor was then used to predict the ships heading, rudder, roll and 

pitch 2 time constants ahead (approximately 3s at full speed I 050 rpm, 21 knots). In the 

beginning there were rather large errors. With an increase in time and the number of learned 

conditions, this error was reduced. The Predictor does not need long term accuracy since it 

is only required to predict a short time period ahead (up to 3 time constants). Furthermore, a 

second order system reaches 95% of the final steady state output to a step input after 3 time 

constants. Predictions will be largely effected by inaccurate internal representation when 

travelling at full speed. So the circumstances presented are the 'worst case scenario'. 

The predictor is unable to foresee changes in heading demand (operator driven desired 

course change) and this can be seen in the rather large differences between actual and pre­

dicted heading when the heading demand changes. After a small period of time, the actual 

response follows closely the predictions. 

The neural network predicts the future actual heading 

at sufficient accuracy to be suitable as a predictor. 

Figure 4.9 also shows the close matching of the true and predicted headings when a 

constant rate of turn is reached. In essence, that is the expected predictor result. 

4.3 The Integrated System 

In this section a new kind of a fuzzy logic self~organising technique is introduced. The 

block diagram seen in figure 4.10 shows all the modules discussed earlier in this chapter. 

These modules, when combined, become the novel Predictive Self-organising Fuzzy Logic 

Controller (PSoFLC). 

The control system consists of 3 main parts:vspace-5mm 

o the plant exposed to disturbances=? requirement for control, 

o the controller and 
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The control output is only passed to the process (simulated or real world ship) if the 

predicted performance of the process following the control action shows a good, desired 

performance. If the resulting state is poor (the PI indicates that low performance state), the 

rulebase is adjusted to meet the requirements. 

The left-hand side of figure 4.10 represents the controller with all its components. The 

working principle of the controller (providing the desired rudder angle 0" and adapt the 

rulebase if necessary) is summarised as follows: 

I. An error signal \jle. ljJ is determined from the desired course \jld and actual course ljl0 • 

2. This signal is passed to a fuzzy logic controller and a desired rudder angle Ot~ is gen­

erated. 

3. The desired rudder angle 0" is fed into.the predictor to give a .future state of the vessel. 

4. IF the rudder change results in an improved state (ie the heading error \jle is reduced), 

THEN the desired rudder angle od is applied to the ship's real rudder. 

5. ELSE, the rules involved in the calculation of this poor performance rudder angle 0" 

are modified in order to improve future performance. 

The characteristics of the vessel is learned on-line while the vessel is in operation. This 

insures an always up-to-date model (Predictor) representing the current control environment. 

A flow chart to visualise the above is given in figure 4.4. 

To evaluate the controller's performance, a manoeuvre has been executed. The manoeu­

vre set up is a square 'figure of 8' in the following form. Commencing with a course of 90 

degrees (East), followed by 90 degree turns to the North, West, South, East, South, West, 

North and finishing off in eastern direction. All the course plots can be seen in chapter 5. 

In figures 5.2 and 5.3 (see chapter 5), the course of the vessel and the heading and rudder 

changes are analysed. The manoeuvre is performed three times to demonstrate the learning 

capabilities of the controller. The learning effect can clearly be seen in the third manoeuvre 

(third 'figure of 8') where the course follows more closely the desired shape than previous 

ones. The controller started off with an empty rulebase, which meant that, under all circum­

stances the desired rudder angle remains at zero. 
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The rudder will only start to move to one side when the measured state (orientation, po­

sition) indicates a low performance level of the controller and the adaptation process causes 

some alterations in the rulebase. This, of course, can take some time when the SoFLC is 

used, since the SoFLC 'waits' a period of time before it measures the state. Only when the 

performance has already deteriorated does the SoFLC adjust control parameters and subse­

quently tries to improve the state. 

Both sampling time, and the time which must pass to allow the control action to take 

effect (delay in reward, DEL), play a key role in the time delay and low response time of 

this kind of controller. NB: The response time here refers to the time taken to change the 

knowledge base and not the controller's reaction time. 

4.4 An Original Defuzzification Method Using a Normali­

sation Technique 

During the first development of the FLC ,using a geometrical approach, some questions re­

mained unanswered. For instance, the control surface was not smooth and it contained 

plateaus and cliffs (figure 4.11 ). This effect was particularly bad when irregularly shaped 

and non"uniformly distributed fuzzy sets in the input windows were used. 

Work undertaken during this research programme has identified that: 

Current defuzzification methods cause a rough and undesirable control behaviour. 

This section highlights a new idea and its implementation to overcome these problems. 

To improve the appearance of the control surface one has to smooth out the cliffs and 

plateaus. 

Initial experiments by the author, with fuzzy logic, have demonstrated that: the control 

surface is highly non-linear when irregular fuzzy sets are used.Not only do irregularly shaped 

sets show such,behaviour, regularly shapedtriangular sets, non-equally placed in·the universe 

of discourse, produce a very similar response. The reason for such 'abnormal' behaviour 

lays in the mathematics of the employed defuzzification method. A solution developed by 

the author to overcome the problem can be found later in section 4.4. To aid comparison, the 
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surface shown in figure 4.11 has plateaus and cliffs which are produced using the 'centre of 

area defuzzification method'. 

Each rudder movement slows down the vessel due to the increased drag effects. So, 

rudder changes have to be minimised in order to save time, fuel, money and downtrack 

journey distance. Nevertheless, the controller should react precisely in order to minimise 

heading error. The application of an averaging filter is possible but will result in a more 

sluggish behaviour. 

Eleven years of experience in autopilot development has indicated to the engineers at 

Cetrek Ltd. !119] that a response resulting from a control surface as shown in figure 4.11 

will cause extensive rudder wear as well as uncomfortable rides (due to the sporadic and 

harsh rudder movements). The author observed how small changes on the input side (small 

variation in heading and turn rate) induced very rough behaviour and response by the rudder. 

According to Cetrek Ltd., fuel is wasted and bearings wear out much more quickly if a 

controller shows such a response -surface. A far smoother response (desired rate of rudder 

movement) is required to secure a comfortable ride as well as minimise wear and tear. 

A better defuzzification method is required. This section will introduce a new defuzzifi­

cation method for fuzzy logic controllers. 

Given the performance problems (rough and sporadic changes of the output value see 

also 11 9J, section I 0.6) associated with the standard fuzzy logic control, it was found to be 

necessary to generate an enhanced version to overcome these performance problems. 

Figure 4.12 shows the resulting control surface which is much smoother, without the 

steep cliffs and plateaus. Such a control behaviour is much more desirable than the one seen 

in figure 4.11 as previously discussed. Analysis of the defuzzification method has identitied 

that the shape of the control surface is dependent upon a) the position and b) the shape of the 

used fuzzy sets as well as c) upon the defuzzification method used. 

The non-desirable surface profile is inherent in the fuzzy logic defuzzification method 

employed. The maximum deviation (error) is less than I 0% if regularly-shaped, equally­

placed sets (as in figure 4.13) are used [88] 1• To improve the controller, more research has 

been undertaken by the author in the field of classical fuzzy logic, with particular emphasis 

1 See appendix F for translation of lhe relevant pages. 
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area has been employed. The equation for the overall centre of area is: 

I;A;cg; 
overall Centre of Area= =::::-'-c..::.:. 

I; A; 
(4.9) 

The problem of rough behaviour lies within equation 4.9; a wide fuzzy set covers a wide 

range within the universe of discourse and is therefore very 'fuzzy' and should be less im­

portant than smaller, more precise, sets. The first moment of area does exactly the opposite, 

the wider a set (larger the area) the more influence this set has on the final output, the more 

weight it brings in. 

One possible way to .overcome this problem is to use irregularly shaped fuzzy sets. 

When the degree of membership changes, the position of the centre of gravity changes, so a 

smoother transition between sets could be achieved. 'Leaning' the set over to one side, re-

suits in a more gradual change when the set 'is left'. However, this proves difficult to realise 

on both flanks. 

The solution introduced is quite simple. To make the sets equally important, the weight 

of the sets is normalised. The weight indicates the influence of the set relative to the overall 

output value. The area is defined and cannot be changed, so a new factor is required. To 

equalise the weight of the set (all sets contribute the same amount towards the final output), 

each set receives a density (p). The weight is calculated as: w =A· p. The density of a 

set is simply the reciprocal of the area under the full set. The active weight (dimensionless) 

becomes: 
active area 

active weight = -----­
area of fu 11 set 

(4.1 0) 

This simple algorithm (equation 4.1 O)normalises the the influence of the set to the over­

all output. To defuzzify, the active (and normalised) weight is used and the active area is 

not considered. This new technique clearly demonstrates (see figure 4.17) the improved be­

haviour due to smoothed, yet still accurate response. The smoothed control action results in 

less harsh rudder action. This will reduce rudder wear and improve the energy efficiency of 

the vessel when the fuzzy logic is applied to an autopilot. 

To obtain some analytical data, a 90° step change is performed with exactly the same 

settings. The fuzzy input windows (figure 4.14) and rulebases are identical. The only key 
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Figure 4.18. Rudder Rate Comparison 

deflection and flatter slopes (smaller rate of change) then the standard method. 

4.5 Summary 

50 

The development and test of the Predictor module was investigated in this chapter. The 

requi rements from a control point of view were clarified as well as test results were presented 

and discussed. The Predictor is an essential part of the novel control strategy explained in 

this thesis. It allows the validation of control actions before they are applied to the real craft 

and helps to reduce the execution of unnecessary or performance-reducing actions. 

Conclusions may be drawn from the predicted behaviour about the current performance 

of the controller and necessary adjustments can be executed before a performance deteriora­

tion take place. 

Due to some unexpected behaviour and undesirable performance characteristics of the 

developed fuzzy logic controller, more effort was taken to overcome the very harsh response. 

In certain areas of the control surface very steep cliffs were found which delivered an unde­

sirable response, putting unnecessary stress on the steering gear and producing more drag. 

These shortcomings spurred the development and testing of a new defuzzification method. 

This new method allows a wider application of rules in the output window; especially when 

they are unevenly spread over the universe of discourse and the fuzzy sets themselves are ir-

regularly shaped. The new resulting control surface shows a much smoother relief compared 

to the standard defuzzification methods. 

The fuzzy logic controller embedded in the predictive self-organising fuzzy logic con-
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!roller uses movable fuzzy singletons. This allowed an easy implementation of the adaptive 

algorithm in form of a computer program. It was shown that there is only a small variation 

between the new defuzzification method and defuzzification,of fuzzy singletons. 

This chapter considered the Self-organising Fuzzy Logic Controller. Covering the struc­

ture of the rulebase and the performance index, the self-organising technique is explained. 

The update algorithm utilises the result of the performance index to adjust parameters of the 

fuzzy logic rulebase to counter act performance deterioration. 

Expanding on the theory of SoFLC, the Predictor is added to the controller to form the 

PSoFLC. The system is now able to evaluate (and apply or omit accordingly) a control action 

before it will be executed. This results in faster learning of desired rudder actions when 

compared to standard SoFLC. 

Since all control actions are evaluated by the predictor and performance index before 

application it is believed to obtains a stable system. If the predictive module represents 

the plant under control and hence 'poor' performance is detected, a stable controller can be 

guaranteed. 
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Chapter 5 

Simulation Test Results 

To demonstrate the controller's performance, a manoeuvre has been set up to repeat the 

same conditions for the different autopilots used. The SoFLC is compared with the novel 

Predictive Self-organising Fuzzy Logic Controller (PSoFLC). This comparison demonstrates 

the ability of the PSoFLC to adapt quickly and therefore to give a better performance in a 

much shorter time. 

5.1 Tests without Disturbances 

All the tests in this section have been undertaken without disturbance effects being consid­

ered. Two.different tests have been set up. Firstly a 'figure of 8' test which provides a visual 

reference of the performances of the controllers in question and is included to demonstrate 

in a.qualitative way how the vessel responds with various· controller options~ The second test 

is a classic step response test in which the step is a change in course demand of ±zoo. 

5.1.1 Course Following Test- 'Figure of 8' 

These simulations have been executed in ideal conditions- calm water, no.disturbance. The 

autopilot is required to·do a square 'figure of 8' (figure 5.1) at a set forward speed. The fol­

lowing table 5.1 contains the desired course information and the times for which the course 

should be kept. 

The learning of the SoFLC is slow, therefore the vessel does not reach the desired course 
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Table 5.1. Figure of 8- Course Definition 

course time 
90° 40s 
oo 40s 

-90° 40s 
180° 40s 
90° 40s 

180° 40s 
-90° 40s 

oo 40s 
90° 40s 

before the next course change happens (40s) which results in an steadily increasing rudder 

demand. When the manoeuvre is repeated for the first time (2nd 'figure of 8'), the rulebase 

contains rudder angles and therefore the rudder is deflected more than in the first 'figure of 8' 

but it is still increasing. Comparing this with the response of the PSoFLC, the initial rudder 

response following a 90° course change builds up in a similar manner but this controller 

adjusts the rulebase so quickly, that even on the very first course change a control action can 

be seen rather than the current maximum learnt value. The rudder is driven back due to the 

fact , that the controller comes close to the desired course. The peaks sti ll show the increasing 

values for the rudder angles in the rulebase until they settle. 

2 

Figure 5.1. Figure of 8 - Course Plot 
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Figure 5.2 shows the same 'figure of 8' course (see table 5.1 ) repeated three times using the 
SoFLC. The first 360s of the 'figure of 8' test show one feature of the learning. The rudder 
deflection has to be learnt. This is an iterative process, starting with very small deflections 
and gradually increasing the rudder movement until the vessel responses as defined in the PI. 
It can be seen that the first 'figure of 8' is almost unrecognisable. But once the controller is 
taught, it repeats the manoeuvre staying closer to the desired course. 
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Figure 5.3. Rudder and Heading Plot - SoFLC, no disturbances 
Figure 5.3 represents the heading and rudder responses whilst undertaking the ' figure of 8' 
manoeuvre. The bottom graph shows the steadily increasing rudder particularly well. The 
first 'figure of 8' (360s) can clearly be seen as the learning phase. When the manoeuvre is 
repeated (second and third 'figure of 8') the controller response is much improved, resu lting 
in a more recognisable 'figure of 8'. From the rudder activity itself, it can be assumed that 
manoeuvre two and three look very similar due to the similarity in rudder activity. Looking 
at figure 5.2 and the top graph of figure 5.3, this can be confirmed. Inherently, the rudder 
response does not return to zero between early turns as the turn in incomplete when the next 
turn begins. 
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Figure 5.4. Course Plot - PSoFLC, no disturbances 
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The course plot of the same manoeuvre but utilising the Predictive-SoFLC can be seen in 
figure 5.4. Here even the first 'figure of 8' can clearly be identified as such. The rulebase 
adaptation is much quicker, giving a better control right from the start. A constant improve­
ment can be noticed too. The last 'figure of 8' is more closed than the two before and the 
turns become more symmetrical. The overall visual performance appears to be much better 
then the SoFLC throughout the test. 
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Figure 5.5. Rudder and Heading Plot- PSoFLC, no disturbances 
Considering the top graph in figure 5.5 a horizontal line (zero error) can be noticed at the end 
of each but the first four-turn block. The rudder activity (bottom graph) reflects this too. The 
rudder activity becomes smaller and smaller when the three 'outrun' periods are considered. 
The learning phase can be noticed here as well. The first peak in the rudder plot has a gently 
increasing ramp in the rudder demand. This shows the build-up of the rulebase. Comparing 
this with the rudder activity of figure 5.3 it can clearly be seen, that the PSoFLC learns more 
quickly, building the rulebase required for the 90° turn almost within the time required for 
the first turn, hence the complete reduction of the error to 0°. At the second turn a jump in 
rudder demand is noticed as soon as the desired course changes. 
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5.1.2 Discussion of the 'Figure of 8' Manoeuvres 

The graphs (course plots) in figures 5.2 and 5.4 show the course travelled for the different 

controllers. 

The 'figure of 8' manoeuvres where undertaken to provide a visual reference of the capa­

bilities of the various controllers. This emphasised the learning capability of the SoFLC and 

PSoFLC, and the differences between them. It was clearly evident that the PSoFLC adapted 

more rapidly than the SoFLC, which was demonstrated by the improved (more recognisable) 

'figure of 8' in figure 5.4. 

5.1.3 Step Response ±20° Test 

In figures 5c6 - 5.17 the step response of the vessel plus controller can be observed. Three 

controllers, namely the PO, SoFLC, PSoFLC, are compared. The manoeuvre has been re­

peated for three different forward speeds to demonstrate robustness. The plots start off 

with the heading and rudder data for 16.7 km·h- 1 (9 knots, 450 rpm), in the order PO, 

SoFLC, and PSoFLC. The second series shows the same manoeuvre for a forward speed of 

22.2 km· h- 1 (12 knots, 600 rpm) while the third series shows the response at 38.9 km· h- 1 

(21 knots, 1050 rpm). The results are summarised in table 5.6 and .table 5.7 later in sec­

tion 5.1.5. 
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5.1.4 Graphs 
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Figure 5.6. Step Response Test ±20° at 450 rpm (PD) 
Figure 5.6 shows the heading and rudder angles for three step changes of 90s duration per­
formed by a PD controller. The test is performed with the engine running at 450 rpm pro­
pelling the vessel to 9 knots ( 16.7 km · h- I). The test was a continuous process and the small 
differences in the responses were caused by the minor variations in the starting points for 
run l ,2 and 3. This is shown by the variations in the graphs. The sequential nature of the 
runs caused this variation . A course change at the end on a run results in a slightly different 
starting point for the following step change. 
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Figure 5.7. Step Response Test ± 20° at 450 rpm (SoFLC) 
The same ±20° step change was performed by the SoFLC. The simulated results are visu­
alised in figure 5.7. The controller clearly has difficulties keeping the course under controL 
The first step change (green) shows a steadily increasing rudder demand. The second and 
third run use almost the same rudder demand to compensate. However, the response is not 
or only slightly damped. 
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Figure 5.8. Step Response Test ±20° at 450 rpm (PSoFLC) 
Figure 5.8, the same ±20° at 450 rpm is performed by the PSoFLC. There is a noticeable 
improvement over the three runs noticeable, indicated by the diminishing rudder demand and 
improved heading performance. 
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Figure 5.9. Step Response Test ± 20° at 600 rpm (PD) 
In figure 5.9, the PD controller is utilised acting to a 20° step change at 600 rpm which 
results in a forward speed of 12 knots (22.2 km · h- 1) through the water. The response shows 
a clear overshoot before the response settles. A slight second overshoot can be noticed. 
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Figure 5.10. Step Response Test ± 20° at 600 rpm (SoFLC) 
Figure 5.1 0, the SoFLC at the speed of 12 knots shows a similar response to the response 
seen at the lower speed. During first run, the rudder demand slowly increases during the first 
run, and the response is very oscillatory during the second and third runs. 
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Figure 5.11. Step Response Test ±zoo at 600 rpm (PSoFLC) 
The response of the vessel to a zoo step change and a forward speed of l Z knots is displayed 
in figure 5.11. The heading response shows an improvement over all three runs with very 
little rudder activity and oscillatory behaviour. 
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Figure 5.12. Step Response Test ± 20° at l 050 rpm (PD) 
Figure 5.12 visualises the response of the vessel to a step change in heading demand of 20°. 
The vessel is now travell ing at full speed of 21 knots (38.9 km· h- 1) . This is the tuning 
speed of the PD controller, its response is displayed in these graphs. The graph shows two 
very small swings before settling. However, the setting value is not reached, so there is no 
overshoot on run 3. The minute differences in the runs are caused by the slight differences in 
the starting conditions. The steps were performed in sequence and a course error at the end 
of one run gives a different starting point for the following step change. 
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Figure 5.13. Step Response Test ±20° at 1050 rpm(SoFLC) 
Figure 5.13, the SoFLC is controlling the vessel. As seen before, the rudder demand in­
creases during the first run. The heading and corresponding rudder responses show a very 
oscillatory behaviour in the second and thi rd runs. Nei ther the heading nor the rudder peaks 
increase over time, but do not diminish ei ther. 
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Figure 5.14. Step Response Test ±20° at 1050 rpm (PSoFLC) 
Figure 5.14 shows the response of the vessel when under control of the Predictive Self­
organising Fuzzy Logic Controller. The heading performance improves with each run. The 
third run shows two bigger overshoots and one smaller 'swing' . 
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5.1.5 Comparison of the Step Change Test Results 

The step change tests were undertaken without disturbances present for a variety of forward 

speeds, ie 450 rpm, 600 rpm and I 050 rpm. Each controller was subjected to the same test 

conditions and course pattern. A comparison can therefore be undertaken to quantify the 

differences. Detailed analytical results of the comparisons are given below. 

Step Response Test at 450 rpm- 9 knots (Figures 5.6, 5.7, 5.8 and 5.15) 
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Figure 5.15. Step Response Test ±20° at 450 rpm errors 

At urban slow speed (450 rpm= 9 knot ) the PSoFLC shows very little overshoot. However, 

the rise time is the longest of all three controllers (11.9s). The rudder activity of the PD 

and the PSoFLC are in the same range, 11.2 °2 and 11 .0 °2 respectively. The rudder activity 

of the SoFLC is far higher, 81.2 °2 . This increase in activity is expected when the heading 

errors are examined. The SoFLC ends up in a very oscillatory behaviour, driving the rudder 

between ± 15° and the course responds with a similar behaviour, oscillating between ±5°. 

Considering the heading error plot, figure 5.15, the PSoFLC performance is let down by 

its course keeping accuracy. The course change of the third run (first 30s) shows that the 

PSoFLC achieves a much reduced overshoot when compared to both the PO controller and 

SoFLC. The PSoFLC indicates the best performance with respect to overshoot. At 9 knots 
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Table 5.2. Controller Comparison, 450 rpm 

%drop %drop 
criteria PD SoFLC PSoFLC PSoFLC v PD PSoFLC v SoFLC 
lSE 0-30s [02

] 109.70 105.12 123.90 12.95% 17.87% 
lSE [02

] 36;62 49.76 41.82 14.21% -15.95% 

criteria PO SoFLC PSoFLC 
rudder activity[0L] 11.20 81.19 10.99 
rise time to 60% steady state 11.2s 10;8 11.9s 
overshoot 20.5% 19.5% 4.5% 

the PSoFLC only overshoots by 4.5% compared with 20.5% and 19.5% of the PO and.SoFLC 

respectively. 

PD The PO controller shows a smooth response, one big (20.5%) overshoot and little rud-

der activity. 

SoFLC vhe rudder demand steadily increases from run to run. This is expected since the 

rulebase is set to zero at start up. Only when the learning progresses, a rudder demand od # 0 

is generated by the controller. The controller however is not able to reduce the rules once they 

are built-up, resulting in the oscillatory behaviour as seen in all step response tests performed 

by the SoFLC. This could have been overcome using a lower learning gain. However, using 

a lower learning gain value would have prevented the rulebase from developing during the 

given time frame for comparison. this would have resulted in a very slow and lethargic 

controller. 

PSoFLC It can be noticed, that the rudder demand is reduced even at the first run. This 

indicates that the controller after om.nly 40s has adapted the rules to a degree where control 

action can take place and no saturation occurs. By saturation, a necessary update of the rule 

in one direction away from zero is implied. The PSoFLC has the least rudder activity of only 
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Step Response Test at 600 rpm - 12 knots (Figures 5.9, 5.10, 5.11 and 5.16) 
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Figure 5.16. Step Response Test ± 20° at 600 rpm errors 

90 

At medium speed (600 rpm = 12 knots), all controllers show similar behaviour to that ob­

served at slow speed. Again, the PSoFLC has the least overshoot (thi rd run). The only 

difference (from the 9 knots test), is that the rise times of all three controllers show much 

less divergence. However, the PSoFLC has the longest, 9.7s. The SoFLC demonstrates the 

same oscillatory behaviour, increased in frequency, reduced in amplitude. The rudder activ­

ity of the PSoFLC here (4.95 °2 ) is marginally less than that of the PD (5.76 °2). The same 

applies to the lSE, where the PSoFLC is 4% less than the PD. When considering only the first 

Table 5.3. Controller Comparison, 600 rpm 

% drop %drop 
criteria PD SoFLC PSoFLC PSoFLC v PD PSoFLC v SoFLC 
lSE 0-30s [0 l ] 92.01 86.32 87.70 -4.68% 1.60% 
ISE [02] 30.70 40.21 29.48 -3.99% -26.69% 

criteria PD SoFLC PSoFLC 
rudder activity[0 L] 5.76 50.32 4.95 
rise time to 60% steady state 8.8s 8.5s 9.7s 
overshoot 12.0% 17.0% 3.0% 
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30s of the·course change, then an improvement of 4.7% compared to the PO controller can 

be observed. This indicates, that the PO controller had performed better in the later phase 

(t > 30s). 

PD The PO controller shows a smooth response, overshooting 12.0% before settling. 

SoFLC The SoFLC drives the vessel in a very oscillatory manner. The amplitude is re­

duced and the frequency increased when compared with the SoFLC response at 9 knots. 

Comparing the overshoot of 17.0% it is considerable more then the overshoot of the PO and 

PSoFLC, 1'2.0% and 3.0% respectively. 

'PSoFLC Considering the first 30 seconds only, the course changing phase, the lSE of 

the PSoFLC is smaller than the lSE of the PO but marginally larger than the SoFLC. The 

PSoFLC overshoots only by 3.0%. The course keeping accuracy is not as good as the one 

produced by the PO controller. This is indicated by the decreased difference in lSE when 

the full 90s of the third run are considered. Over the full 90s of the third run, the lSE of 

the PSoFLC is 4% less (4.7% in the first 30s) then the lSE produced by the PO controller 

and 26.7% less then the one of the SoFLC. The PSoFLC has the least rudder activity of only 

4.95 ol. 

The numbers show that the SoFLC shows the best performance during the first 30s of 

run 3. But since the SoFLC fails to settle within an acceptable band, this performance is not 

representative for the performance ofthe complete step response test. 

Step Response Test at 1050 rpm- 21 knots,(Figures 5.12, 5.13, 5.14 and 5.17) 

At high speed (which is the tuning speed of the PO). the PO controller shows clearly the 

best response with respect to lSE. However, the rudder activity is higher than the PSoFLC, 

1.89 °2 and 1.48 o
2 respectively. The PO also has the shortest rise time of only 5.3s. The rise 

time of the PSoFLC is 6.7s and an overshoot is also noticeable. The SoFLC again produces 

a response of marginally stability as seen in the two previous tests. 

78 



! 
£ 0 

f .: 
..• 
~L-~.0~~~--~»--~~~~~~~--~~--~~~~ 

-tot 

20 

15 

<'> 10 

c 
E. 5 

e 0 C; 
Cl 
c -5 '6 .. .. 
.<: -10 

-15 

-20 

0 10 20 30 40 

" ! • 
I o 

f ~ 
· 10 

· IS 

-20 "--~,0~~,.---:':-»--.. ~-.. ~~ .. --~,.--~~ -----',. 

50 60 70 

time(s) 

-~~ 

dala hie: ND1050 
p 

SOFLC­
PSOFLC-

80 90 

Figure 5.17. Step Response Test ±20° at 1 050 rpm errors 

PD At full speed (1 050 rpm, 21 knots, the tuning speed of the PD controller), the PD 

controller shows the best ISE performance, with an ISE of only 16.579 °2 . Virtually no 

overshoot is noticed. 

SoFLC As seen at the slower forward speeds, the SoFLC has a very oscillatory behaviour, 

oscillating between ± 3°. The amplitude is reduced and the frequency increased when com­

pared with the lower speeds. The rudder activity is about 8.4 times greater than that of the 

PO and 10.7 times greater than the PSoFLC. 

Table 5.4. Controller Comparison, 1050 rpm 

% drop % drop 
criteria PD SoFLC PSoFLC PSoFLC v PD PSoFLC v SoFLC 
ISE 0-30s [0 2

] 49.72 70.21 73.02 46.86% 4.01 % 
ISE [0 2

] 16.58 27.22 24.59 48.31 % -9.67% 

criteria PO SoFLC PSoFLC 
rudder activity[0 2

] 1.89 15.90 1.48 
rise time to 60% steady state 5.3s 7.5s 6.7s 
overshoot n/a 13.0% 9.5% 
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Figure 5.18. SoFLC Rulebase Development, 9 Selected Values 
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Figure 5.19. PSoFLC Rulebase Development, 9 Selected Values 

PSoFLC The PSoFLC has a 48% increased ISE at this speed and a sightly longer (1.4s 

longer) rise time but it has the least rudder activity of only 1.48 °2 . Figure 5.17 also shows 

two pronounced overshoots before settling. The rudder activity of the PSoFLC dropped by 

21.7% when compared with that of the PD. 

5.1.6 Analysis of the Rulebase Development 

Appendix E contains two full sets of (24 individual) rulebases produced by the SoFLC and 

PSoFLC, logged in 30s intervals during a step response test at full speed. Figures 5.21 and 

5.20 show a selection of four rulebases (start, number 8, 16 and final). The development 

of representative values in the rulebase is plotted in fi gures 5.18 and 5.19. Only 9 of the 

more important rules are monitored and their position in the rulebase is highlighted below 

in table 5.5. These rules are represented by the lingujstic names NM/NM, NM/Z, NM/PM, 
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Table 5.5. Monitored Fields 

rme of dumge of.ermr 
error NB NM NS z PS PM PB 
NB 0.00 0.00 0.00 0.00 0.00 0.00 O.!XJ 

NM 0.00 lo.ool 0.00 lo.ool 0.00 lo.ool 0.00 
NS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

z 0.00 lo.ool 0.00 lo.ool 0.00 lo.ool 0.00 
PS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PM 0.00 lo.ool 0.00 lo.ool 0.00 lo.ool 0.00 

PB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Z/NM, ZJZ, ZIPM, PM/NM, PM/Z, and PM/PM. Only nine rules are considered in this 

analysis as to increase the number generates confusion and restricts understanding. The rules 

chosen have been selected as they represent all areas of the rulebase activity and therefore 

indicate trends in the learning. 

The individual plots in the SoFLC (figure 5.18) cross over and show a high activity. So 

that inner rules have a larger magnitude than outer rules. It would be expected that the largest 

changes in values (biggest gradient) should occur along the diagonal form NB/NB to PB/PB. 

This has not occurred as the learning is too immature and not all rules have been 'hit'. No 

settling can be noticed. Several of the values drift off to the maximum/ minimum value ±35. 

A zone of influence would have smoothed the rulebase, but would not have made a sig­

nificant difference to the effect observed during the learning. 

Since there is no governing rule guiding the learning, it can be argued that the rulebase 

eventually will settle with only the maximum/ minimum values and will emulate a bang­

bang controller (between the± limits). Another criterion is required which combines rudder 

activity (actuator) and heading error (the control objective) to form a new cost function, ie 

such as the one used by Astrom and Eykhoff [9] (equation 2.11, page 19). 

The rulebase development of the PSoFLC (figure 5.19) is smoother and appears to settle 

quickly. Learning is apparent only when the step changes were applied. The settling of the 

rules is very rapid. The learning is focused and effective unlike the distracted learning of the 

SoFLC. Unlearning effects were minimal. No double crossovers are observed, meaning that 

the outer rules have an expected greater magnitude than smaller, inner, rules. Performance of 

the PSoFLC is demonstrated as being effective and is a clear improvement over the SoFLC, 

showing expected learning trends. 
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the preset rulebase 

NB NM NS z PS PM 
NB 0.00 0.00 0.00 0.00 0.00 0.00 
NM 0.00 0.00 0.00 0.00 0.00 0.00 
NS 0.00 0.00 0.00 0.00 0.00 0.00 
z 0.00 0.00 0.00 0.00 0.00 0.00 
PS 0.00 0.00 0.00 0.00 0.00 0.00 

30 PM 0.00 0.00 0.00 0.00 0.00 0.00 
PB 0.00 0.00 0.00 0.00 0.00 0.00 

the changed rulebase at 17:29: 14.36 (8) 

NB NM NS z PS PM 
NB 0.00 0.00 0.7 1 11.23 4.77 0.17 
NM 1.85 5. 19 6. 11 16.99 1.56 -4.41 
NS 3. 15 14.48 14.38 10.96 -8. 14 -12.82 
z 2.03 11.61 3.69 5.73 -3.98 -10.25 
PS 1.66 9.92 10.23 -10.81 -18.46 -3.46 
PM 0. 15 0.20 -2.75 -14.69 -8.03 -0.83 
PB 0.00 -0.42 -3.56 -8.98 -0.7 1 0.00 

...-~{16) 

the changed rulebase at 17:33: 14.38 (16) 

NB NM NS z PS PM 
NB 0.00 0.00 1.38 16.68 6.64 -0.65 
NM 2.44 7.24 12.05 22.46 - 1.27 -9.99 
NS 4.54 20.98 25.25 12. 11 -24.55 -25 .74 
z 2.25 2 1.97 10.29 4.93 - 10.32 -25.53 
PS 4.03 20.50 22.97 -16.61 -3 1. 55 - 15.88 
PM 1.94 6.35 -2.51 -22.22 - 13.43 -4.52 
PB 0.72 0.58 -5.72 -14.49 ·0.7 1 0 .00 

the chnnged rulebase at 17:37:36.73 (24 ) 

NB NM NS z PS PM 
NB 0.00 0.00 1.38 22.34 8.18 -0.60 
NM 2.71 8.85 15.74 29.76 1.33 - 11.74 
NS 5.17 27.50 35.00 14.53 -35.00 -35.00 
z 2.25 35.00 16.58 3.94 - 15.05 -34 .19 
PS 4.23 28.42 33.60 -18.49 -35.00 - 19.38 
PM 1.94 6.54 -6.14 -29.40 -16.54 -4.95 
PB 0.60 0.28 -8.06 -19.83 -0.71 0.00 

Figure 5.20. SoFLC - Rulebases 
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the preset rulebase 

NB NM NS z PS PM 
0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 

the changed rulebase at 11:29:20.30 (8) 

NB NM NS z PS PM 
0.00 0.00 0.00 11 .24 5.62 1.70 
0.00 0.00 0.14 11.47 6.07 1.03 
0.00 0.00 1.22 1.13 -0.30 -0.50 
0.00 0.00 4 .02 -0.0 1 -2.06 -0.02 
0. 12 4. 17 1.85 -2.30 -2. 18 0.00 
0.69 - 1.63 -6.33 -11.20 -0.61 0.00 

-0.04 -2.22 -6.42 -11.39 0.00 0.00 

the changed rulebase at 11:33:20.39 1(16) 

NB NM NS z PS PM 
0.00 0.00 0.00 11.75 6.54 4.00 
0.00 0.00 0. 17 11.88 6.96 2.95 
0.00 0.00 1.74 1.99 -0.47 -0.86 
0.00 0.00 4.82 0.35 -2.6 1 -0.06 
0.02 3.42 1.51 -2.88 -2.50 0.00 
1.16 -2.41 -7.91 -11.20 -0.64 0.00 
0.28 -2.52 -7.43 -11.32 0.00 0.00 

the changed rulebase at 11 :37:37.02 (24) 

NB NM NS z PS PM 
0.00 0.00 0. 16 12.4 1 6.97 5.41 
0.00 0.00 0.37 12.44 7.36 5.34 
0.00 0.00 1.96 2.57 -0.61 - 1.46 
0.00 0 .00 5. 17 -0.30 -3.32 -1.04 
0.3 1 3.08 3.98 -0.59 -2.99 -0.02 
2. 11 -4.19 -8.25 -9.97 -0.74 0.00 
0.20 -4.41 -8.26 -10.40 -0.01 0.00 

Figure 5.21. PSoFLC - Rulebases 
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5.1.7 Discussion of Step Change Test Results 

Statistical analysis of the plots are summarised in table 5.6. The PD controller cannot al-

ways be out-performed when operated in an environment without disturbances. Considering 

only the trained PSoFLC then an improvement over the PD can be noticed as well. Very 

noticeably, at low and medium speed, the PSoFLC overshoots clearly less than both of the 

competing controllers. This has been achieved with a slight increase in the rise time. 

The first of the two tables (table 5.6) only compares SoFLC with PSoFLC in order to 

show the ability and speed of adaptation, After the initial training period, the PD controller 

is added for comparison (table 5.7). At this stage, both adapiive methods will have reached 

an almost steady state in their learning, assuming that no further change in environmennakes 

place. 

An improvement can be seen when the SoFLC is compared with the PSoFLC. At the 

speed-of 12 knots (600 rpm) (figures 5.10 and 5.11) the lSE error dropped by over 26% and at 

full speed (I 050 rpm) (figures 5.13 and 5.14) by still approximately 9.7% and approximately 

16% at slow speed of 9 knots (figures 5.7 and 5.8). The PSoFLC has the least rudder activity 

at all three tested forward speeds. 

This indicates, that the SoFLC has learnt the environment and achieved a desirable con-

trol performance over time. However, the PSoFLC in comparison demonstrated a much 

better, hence faster, adjustment of the control parameters and therefore the overall error was 

reduced considerably especially during the initial step change. This proves that the predictive 

algorithm adapts much faster than the standard self-organising method. 

In all cases, both the SoFLC and the PSoFLC start with an empty rulebase, which can 

be seen in the initial phase of the application of the controller (see first runs). ~he rudder 

stays centred (0::::; 0) until some control action has been learnt and a rudder angle is applied 

in order to reduce a heading error. The expressions as found in table 5.6 can be seen as 

/SE= t Ici \jf,2dt and rudder activity= t Ici o2dt and the percentages are obtained using 

the equation below. 

percentage drop [%] = _ ISEbenchmark coni roller- ISEpsoFLC x 1 OO% (5_1) 
ISEbenchmark conlroller 
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Table 5.6. Summary - Error Comparison of Step Response without Disturbances 

improvement 
controller SoFLC PSoFLC ofPSoFLC 

rpm lSE [02 ] lSE [02 ] over SoFLC 
450 44.400 30.315 -31.72% 
600 39.620 26.190 -33.90% 

1050 28.030 20.879 -25.51% 

. . , Table 57 Summary -Error Comparison last step only 

controller PD SoFLC 
lSE nse over- rud. ac- lSE nse over- rud. ac-

rpm [o2) time shoot tivity [02 ] [o2) time shoot tivity [02 ] 

450 36.619 11.2s 20.5% 11.20 49.759 10.8s 19.5% 81.19 
600 30.704 8.8s 12.0% 5.76 40.211 8.5s 17.0% 50.32 

1050 16.579 5.3s n/a 1.89 27.222 7.5s 13.0% 15.90 

controller PSoFLC lSE improvement 
lSE nse over- rud. ac- of PSoFLC over 

rpm [o2) time shoot tivity [02 ] PD SoFLC 
450 41.821 11.9s 4.5% 10:99 14.21% -·15.95% 
600 29.478 9.7s 3.0% 4.95 -3.99% -26.69% 

1050 24.589 6.7s 9.5% 1.48 48.31% -9.67% 

Figures 5.15, 5.16, 5.17 summarise the heading errors for all three autopilots. The con­

trollers PO, SoFLC and PSoFLC are displayed in different colour, green, blue and red respec­

tively. The first plot of the three on the same page clearly highlights the better performance 

of the PSoFLC when compared directly to the pilot using historic data for parameter ad­

justment. Here the advantage of using an internal predictor is clearly observable, resulting 

in faster learning and error reduction. The SoFLC is still oscillating even after six course 

changes (the plots only show the even steps for better presentation) while the predictive con­

troller shows hardly any overshoot at all. The SoFLC shows marginally stable response at all 

three speeds. Figures 5.15 - 5.17 show the heading errors of the individual runs of all three 

controllers in one graph respectively. 

Table 5.7 shows a very noticeable result. After the initial training period, the PSoFLC 

outperforms the PD controller. At medium speed the PSoFLC lSE error dropped by approx­

imately 4%. During the initial testing, this was not expected but is a welcome fact. 
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Figure 5.22. Step Response Test ± 20° at 44 knots errors 
Figure 5.22 once more shows the heading error. This time, the vessel is travelling at 44 knots. 
The PD controller doesn't settle as quickly as the PSoFLC does, and during course keeping, 
the PD response is more oscillatory. 
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Table 5.8. Controller Comparison, first 30s 

%drop PO %drop SoFLC 
rpm ISEpo ISEsoFLC ISEpsoFLC vs PSoFLC vs PSoFLC 
450 109.70 105.12 123.90 12.95% 17.87% 
600 92.01 86.32 87.70 -4.68% 1.60% 

1050 49.72 70.21 73.02 46.86% 4.01% 

Table 5.9 Summary -Error Comparison, travelling at 44 knots (79 2 km .Jz- 1) last step only 

controller lSE rise over- 5% sett- rudder ac-
(o2] time shoot ling time tivity (02 ] 

PD 12.755 5.4s n/a 15.67s 1.669 
PSoFLC 11.383 4.2s 2.9% 7.36s 0.489 

improvement -10.757% -22.2% n/a -53.03% -70.70% 

When the same PD controller is installed on a different vessel, ie one travelling at 

44 knots (81.5 km· h- 1) the PD controller shows an oscillating behaviour, whereas the 

PSoFLC adapts and shows a smoother response. Figure 5.22 shows three consecutive step 

changes of the PD and PSoFLC in the same environment. The high speed tests are per­

formed in calm environment as the previous step change tests. The controllers sampling 

time remained unchanged throughout the simulated tests. Particularly in figure 5.22 it can 

be noticed that the dominant frequency and the sampling frequency almost match. 

From this finding, it can be concluded, that the sampling frequency and the frequency 

of storing data for visualisation should have been increased to allow for the decreased time 

constant of the vessel travelling at such high speed. Both tests, the PD and the PSoFLC, use 

the same frequency and environmental settings, so a qualitative comparison is still possible 

and valid. However, the results shown in figure 5.22 and table 5.9 are not invalidated by the 

lower sampling frequency used. 

The control performance of the PSoFLC shows a considerable improvement 

over the PD perfomumce when the environment is unknown to both controllers. 

The PSoFLC has a settling time of 7.4s, which is less than one-half of the settling time of 

the PD's settling time (15.7s). The PD shows a very oscillating response, changing course at 

a much higher frequency than the PSoFLC. 
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5.2 Test with Disturbances 

5.2.1 The Disturbances 

The life boat simulation [20] includes some model of environmental disturbances. Waves 

are modelled as a simple sine wave. The maximum height and length can be varied by the 

operator. 

For the following tests, the vessel is exposed to weather disturbances such as wind, tide 

and waves. The disturbances are summarised in table 5.10. The wind gusts are randomly 

applied within the specified limit. All angles specified (see table 5.10 and figure 5.23) are 

absolute angles. For both the SoFLC and the PSoFLC, the initial rulebase of the controller 

is empty. This is the worst case scenario for both controllers. 

Table 5.10. Summary of Disturbances acting on the Vessel 

acting from 
waves l .Om +400 

tide 3.7 km · h- 1 +450 

wind 9.3 km · h- 1 +50° 
gusts 1.8 km · h- 1 

t? 0 distu<bances 

Figure 5.23. Straight Line Test with Disturbances 

The disturbances (wave height) acting on the vessel are presented in figure 5.24. This 

image shows the wave height during a 300s period. 

time[s) 

Figure 5.24. Acting Disturbances (Wave Height) 
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5.2.2 Straight Line Test 

The following figures (figures 5.25-5.33) show the results of the tests carried out with dis-

turbances present. The controller is asked to steer the vessel in a straight line orienting the 

vessel exactly North (0°). The tests are performed at three different forward speeds, 9, 12 

and 21 knots. For analysis, a 120s window is selected starting at 380s. The first 380s are 

used to tune the controllers to work in the exposed environment. This test is performed to 

demonstrate the course keeping capabilities of the variuous controllers. 

5.2.3 Graphs 
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Figure 5.25. Straight Line at 450 rpm with Disturbances PD 
Figure 5.25 shows the heading and corresponding rudder movement for the straight line 
-10° and +8°. 
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Figure 5.26. Straight Line at 450 rpm with Disturbances SoFLC 
Figure 5.26 shows the response of the vessel when under control of the SoFLC at the same 
slow forward speed of 9 knots. The heading oscillates between approximately -9° and +6°. 
The rudder oscillates between approximately -176 and+ 18°. 
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Figure 5.27. Straight Line at 450 rpm with Disturbances PSoFLC) 
The response ofthe vessel when under control of the PSoFLC is displayed in figure 5.27. 
Both, the heading error and the rudder do not show a harmonic oscillation as seen before. 
The heading stays within a band of -2°and +4°. The rudder operates between -8° and 
+30. 
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Figure 5.28. Straight Line at 600 rpm with Disturbances PD 
Figure 5.28 visualises the heading and rudder response of the PD controller at a forward 
speed of 12 knots (22.2 km· h- 1) • During the 120s displayed, the course error does not 
exceed ±3°. llhe rudder operates in approximately the same region, between ±3°. 

15,--,---r---.--.---,---,--,---,---.~d~ata~l~i!e~W~D~W~O~SO 

10 

·5 

·10 

-~ 

. _._l ____ '\ 
\·· 

./ \ 
\ 
\/ 

. 15 '-----'----'----'----'----'---'----'-----'----'----'----'----' 
380 390 400 410 420 430 440 450 460 470 480 490 500 

lime(s) 

~ ::v~·-L~~~r~F:~;~ 
380 390 400 410 420 430 440 450 460 470 480 490 500 

lime (s) 

Figure 5.29. Straight Line at 600 rpm with Disturbances SoFLC 
Figure 5.29 displays the response of the SoFLC. The heading error shows a tendency to 
oscillatory behaviour. The amplitude of the oscillation is approximately 10° but wandering 
off. The rudder stays within a ±I 0° band. 
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Figure 5.30. Straight Line at 600 rpm with Disturbances PSoFLC 
Figure 5.30 shows the a 120s window from the straight line test performed at a 12 knots 
speed. The heading shows no sign from low frequency oscillatory behaviour. The vessel 
drifted off course for approximately 40s before reducing this error. The rudder activity is 
low. 
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Figure 5.31. Straight Line at 1050 rpm with Disturbances PD 
Figure 5.31 shows the vessel's response travelling at full speed of 21 knots (38.9 km· h- 1 ). 

Some oscillatory behaviour can be noticed but the amplitude is small (approximately ±2°). 
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Figure 5.32. Straight Line at I 050 rpm with Disturbances SoFLC 
A more oscillatory response can be noticed by the SoFLC as displayed in figure 5.32. The 
amplitude is increased to that seen by the PD controller. The rudder activity reflects this 
movement, oscillating between ±5°. 
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Figure 5.33. Straight Line at I 050 rpm with Disturbances PSoFLC 
Figure 5.33 displays the response of the vessel when under control of the PSoFLC. The 
heading oscillates between -4° and +3°, 

93 



5.2.4 Discussion 

Course Keeping Test at 450 rpm - 9 knots 
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Figure 5.34. Straight Line at 450 rpm with Disturbances (errors) 

As seen in the figures 5.25, 5.26, 5.27 and 5.34, at low speed all the controllers apply 

more rudder than at higher speeds, which indicates the better manoeuvrability of the vessel 

at higher forward speed. 

The rudder activity of the SoFLC in figure 5.26 shows an increasing tendency which 

indicates a very oscillating behaviour. When the SoFLC is utilised at a urban slow speed as 

in figure 5.26 then the heading error cannot be reduced which leads to the conclusion that 

this type of controller is marginally stable. 

The PSoFLC keeps the heading error between ± 4°whereas the other two controllers 

exceed that boundary by a very noticeable amount. 

Course Keeping Test at 600 rpm - 12 knots 

At medium speed (600 rmp = 12 knots, figures 5.28, 5.29, 5.30 and 5.35), all controllers 

can handle the vessel keep the course between reasonable bounds. The PD controller demon­

strates the best alternative here, with the smallest ISE and the least rudder activity. All three 

controllers keep the error within ±5°during the 120s time sample. 

Course Keeping Test at 1050 rpm - 21 knots 

At high speed ( 1050 rpm = 2 1 knots, figures 5.31, 5.32, 5.33 and 5.36) the vessel is at 

its most responsive state. The lSE become very similar and the rudder activity differs only 
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Figure 5.35. Straight Line at 600 rpm with Disturbances (errors) 
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Figure 5.36. Straight Line at 1050 rpm with Disturbances (errors) 

slightly in absolute terms. However, the PD shows the best result here as well. The PSoFLC 

comes in as second closely followed by the SoFLC. 

General 

The PSoFLC performs well with the changing environment and the disturbances. A sum­

mary of the errors of the different contro llers can be found in table 5.11. The expressions 

found in this table are the same as before; !SE = + Jci \jl/ dt for the heading error and 

rudder activity =+ Jci 82dt. 

The percentages in the tables 5.11 and 5.12 are obtained as foll ows: 

percentage drop [%] = _ ISEbenchmark controller- ISEpsoFLC x 1 OO%. 
ISEbenchmark controller 

At higher speed, the rudder becomes far more effective . At lower speeds, the disturbances 

take over and therefore the rudder has to work harder. 

95 



Table 5.11. Summary - Error Comparison Course Keeping Response with Disturbances 

improvement 
controller PD SoFLC PSoFLC ofPSoFLC 

rpm lSE [02 ] lSE [02 ] lSE [02 ] over SoFLC 
450 34.173 35.607 4.665 -86.90% 
600 1.728 14.148 11.962 -I 5.45% 

1050 0;9)4 5.532 4.380 -20.82% 

Table 5.12. Summary - Error Compmison, 120s Time Window 
PD SoFLC PSoFLC improvement of 

controller lSE rud. ac- lSE rUd. ac- lSE rud. ac- PSoFLCover 
rpm ["21 tivity [" 21 ["21 tivity ["21 ["21 tivity ("21 PD SPFLC 
450 36.194 48.34 25.398 116.28 1.985 9.04 -94:94% -92.18% 
600 2.278 2.63 9.298 18:86 8.539 5.76 274.85% -8.16% 

1050 1.324 2.09 3.146 7.01 3.091 7.01 133.46% -1.75% 

It can be seen in all plots, that the high rudder activity is a compilation of multiple fre­

quencies. The dominant (low) frequency is mainly influenced by the vessel itself whereas 

the higher frequencies are caused by the disturbances such as waves. 

It is interesting to observe, that the PSoFLC has not shown a preferred speed. It seems 

that at all speeds the heading errors produced by the PSoFLC are of the same magnitude 

whereas the other controllers work better at the higher speeds. This can be seen in the 

improved performance (reduced TSE) at higher speed. 
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Chapter 6 

Discussion 

6.1 General Points 

The main objective of this research was to explore how a predictive control can be applied 

to a motorised marine craft. The concept of predictive control is not new but up until now, 

considerable knowledge and experience in the marine and control field was required to suc­

cessfully implement such a predictive controller. The method discussed here shows an al­

ternative controller design combining on-line predictive and adaptive methods. The aim is 

to show how to achieve and sustain a desirable control performance even if the operator has 

limited control knowledge, 

In this work an approach is shown which achieves this aim. 

PO and PID type controllers are still widely used in autopilots. They have proven to be 

stable and effective. It is current practice to factory pre-set the PlO parameters in the hope 

that they will be suitable for a range of vessels. The result is that they are nowhere near their 

optimum setting for any particular craft. Commercial pressures demand more sophisticated 

guidance and better tuned autopilots. Past research in the field of PIO control 110, 29] con­

centrated on the improvement of tuning the PID control algorithm by retaining the structure 

of the PID but changing the controller parameters as required. Those adjustments have in­

creased the working range of the classical PID but fall short of delivering the performance 

required from modern autopilots. 

Other control techniques [35] have been investigated and found their way into applica­

tions in marine autopilots. The increase in computing power of up-to-date chip technology 
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has expanded the field of autopilot design using purely digital hardware. 

With the new approaches, non-linear methods can be pursued and the human intuition 

finds its way directly into the design of the autopilots by considering the human way of 

thinking and where possible the human way of learning, eg fuzzy logic. 

The working environment is inherently non-linear. This is conflicting with classical con­

trol methods which required linearisation. With the advent of powerful computers, emphasis 

on this requirement diminishes and non-linear methods now appear and find application in 

current customer products. One of the biggest problems to resolve for a small boat autopilot 

is the extremely high susceptibility to small changes in a wide range of working conditions. 

For a non-adjustable, pre-set autopilot this creates a difficulty in sustaining the maximum 

efficiency of the autopilot, by limiting the range of optimal performance. 

There is an increasing customer demand for high-tech performance without the need for 

much operator input, according to Cetrek Ltd. - manufacturer of marine autopilots. Self­

tuning and self-organising controllers have found their way into many branches of modern 

industries. The more complex and sophisticated a controller, the more effort needs to be put 

into setup and installation. It is common practice to have an initialisation routine (manual 

or automatic) for a system where critical control parameters are to be adjusted. This routine 

requires a high level of knowledge and expertise in those fields to which the controller is 

applied. In practical applications where the operator has no control engineering knowledge 

then the system itself needs to have built-in self-identification and adaptation facilities. To 

the author's knowledge, there is no commercially available small craft autopilot that can 

effectively 'boot' itself from such a standing start (empty rulebase) and with such rapidity as 

that found in the PSoFLC developed as a result of this research investigation. Previous work 

on SoFLC for small craft 181] has show that (given the same working range) only a slow 

learning rate (adapting) could be achieved. Manual initialisation of the system requires the 

operator or installer to enter boat information. This shortcoming is inherent in the adaptation 

algorithm employed. This information might not be available to the installer of the control 

system. The boat, even the same type, can be differently equipped and therefore have a 

different mass. These and other variations cause different steering characteristics. 
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6.2 New Fuzzy Logic Defuzzification 

Although the defuzzification methods commonly known work well, when used as a con­

troller they can put unnecessary load and stress on the actuator if the control surface is not 

smooth. This effect applies to all FLCs utilising 'centre of area' defuzzification methods. 

Chapter 4.4 shows a novel defuzzification method to overcome rough and stochastic 

behaviour as found in fuzzy logic control to-date. Applying a controller with rough and 

stochastic behaviour to a ship would result in unnecessary wear and tear of the rudder gear. 

By applying the new defuzzification method a smoother but still accurate response can be 

achieved, increasing the lifespan of the actuator equipment. The method demonstrated here 

gives engineers a simple solution to overcome these shortcomings without sacrificing any 

of the benefits gained by using fuzzy logic. Both fuzzy singletons and the 'nonnalisation 

technique', do not consider any area 'under' the set. Only their position in the universe of 

discourse is taken into account. The calculated output of controllers using fuzzy singletons 

therefore is almost equivalent to the output of controllers using the nonnalisation technique 

(compare figure B.l3 [page 1561 figure 4.12 [page 52]). The defuzzitied output will be the 

same when regularly shaped sets are used and the singleton is placed in the centre of the set. 

The output value will vary slightly when the sets are irregularly shaped (ie lean to one side). 

6.3 Test Bed 

The development of a graphical user interface (appendix C.2) proved to be most valuable. 

All the testing of the various controllers has been done using this program. This program 

allows the simulations to be exactly repeated for each controller. The test bed logs data (time, 

longitude, latitude, heading, desired head, rudder, demanded rudder, speed, wind amplitude, 

wind velocity, wave height, controller, type) which is then available in a.fiJe after the program 

is exited. Off-line analysis is therefore possible. Rudder angle and heading gauges are 

displayed on the screen which give an instant reading of their respective positions. History 

plots of rudder angle and heading are visible at the bottom of the screen. For a screen shot 

and more detail on the test bed developed, be referred to appendix C.2. 
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6.4 Predictor Design 

Models are the basis for nondestructive development and preliminary design. Mathematical 

modelling (the mathematical representation of a plant [ship]) has been used in control engi­

neering for a long time. Using models in the operational controller itself, as reference models 

or other comparative means, has only become part of controller design since the develop­

ment of fast computers. The inclusion of a mathematical model inside the controller allows 

the development of a predictive scheme. To fully utilise both techniques (internal modelling 

and self-organising fuzzy logic) an adaptive internal model is required. 

Here, an on-line learning neural network has been used as the adaptive model. The 

emphasis is on adaptive since the controller to be developed has an adaptive nature and 

is able to change characteristics when the environment changes. It was demonstrated [96, 

86, 132, 841 that neural networks are good at capturing time variant processes. The neural 

network also acts as a 111ter. When properly trained it will interpolate between points and 

smoothen out noisy data. 

The back-propagation network as used in the Predictor has only two hidden layers. 

During operation, the network is constantly fed (O.Ss sample time) with new sensor data, 

Once every I Os the network is trained to capture the latest changes in the environment. The 

output of the network suggests a future state from a given{ current and past) state. The length 

of the time window fed to the network is, in this set-up, 20 seconds, 40 samples. The size of 

the training set depends not only on the time constant of the plant under control but also on 

the environment. 

If the controller was to be applied to a different application, a different time window 

would be chosen in order to capture the process and environment dynamics. Using faster 

hardware, the sample size could be increased. Care has to be taken however, not to overfeed 

the neural network. Finding the optimum size of the neural network outstands the scope of 

this research. Experiments have to be undertaken to find a good compromise between recall 

quality and learning time when deciding on the samples size as well as on the size of the 

neural network itself. There should always be at least three time steps present in the input 

vector so the network is able to capture time transient behaviour. 
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6.5 Controller Comparison 

This section discusses the results as visualised in chapter 5. The controllers to be considered 

are namely the PSoFLC, SoFLC and the PD, 

The test vessel on which the autopilot has been tested is a 52 ft ( 15.8m) life boat simu­

lation [20]. The PSoFLController developed in this investigation combines self-organising 

with predictive methods. This combination forms an unique controller, able to 'boot' from 

scratch and to deliver acceptable control in a very short time. 

The results from chapter 5 clearly show the advantages of the PSoFLC compared to the 

SoFLC when exposed to the same environment. The PSoFLC adapts very quickly, much 

quicker then the SoFLC. The course plotted in figures 5.2 ('figure of 8' manoeuvre, SoFLC) 

shows a very distorted first 'figure of 8'. The same manoeuvre, the same starting point but 

executed by the PSoFLC (fig 5.4) shows a much more recognisable first 'figure of 8'. Giving 

both controllers some time to adapt, ie comparing the third 'figure of 8', then only a small 

improvement of the PSoFLC can be observed. So, over time, both methods will learn the 

environment and control the vessel. This not only applies to the 'figure of 8' test but also 

to the performed step response tests and the course keeping test. However, both adaptive 

methods did not demonstrate superior'behaviour compared with a tuned PD controller. 

Comparing the results from chapter 5 the following conclusions may be made. The 

PSoFLC demonstrates a smoother response at all speeds and the SoFLC enters into an os­

cillatory response at all speeds. The SoFLC is unable to 'unwind' (reduce) previously learnt 

controller gains, hence the oscillatory behaviour. This also indicates, that the update algo­

rithm used in the SoFLC does not necessarily converge in all circumstances. Furthermore, 

it can be expected, that the produced controller may become unstable under certain circum­

stances. 

Looking at the rulebases produced by the SoFLC (appendix E.2.2), the rulebases are not 

symmetrical with respect to the absolute value. The absolute values should be the same with 

respect to the centre position although the sign will be opposite, 

At the centre of the rulebase, where there is no heading error and no rate of turn, a zero 

would be expected; indicating no necessary control output (rudder angle). The rulebases (see 

appendix E) generated by the iterative process in the SoFLC all show similar asymmetrical 
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settings. From that it can be concluded that the update algorithm used by the SoFLC caused 

this asymmetric rulebase/ response. Since the manoeuvre was symmetrical (±20°) and the 

environment did not cause drift which could result in an offset, the rulebase was expected 

not to show a centre offset and to be almost symmetrical with small perturbations. 

Investigating the rulebases generated by the PSoFLC, this asymmetry is not found (see 

appendix E.l.2). This is shown by the more symmetric response of the controller (fig­

ures 5.15-5.17, page 75), oscillating equally around the desired value. 

The PD response shows the following trends: with respect to increased forward speed, a 

reduction in lSE, a· reduction in percentage overshoot, a reduction in rise time and·a reduction 

in rudder activity are seen (table 5. 7). 

The SoFLC does not show those trends. With respect to increased forward speed, a 

reduction in lSE, a reduction in rise time and a reduction in rudder activity can be noticed. 

The criterion percentage overshoot does not follow a trend. 

The PSoFLC shows similar qualitative behaviour to the SoFLC. With respect to increased 

forward speed, a reduction in lSE, a reduction in rise time and a reduction in rudder activity 

are noticed. The criterion percentage overshoot does not follow a trend. 

This is not a statistically validated observation due to the small sample size of only three 

samples. However, the inconsistency is important to notice as it would otherwise show a 

reduction in percentage overshoot (table 5.7). 

The inconsistency in trends suggests non-linear activity across the whole range. This is 

in accord with the non-linear nature of the embedded fuzzy logic controller . 

. The whole working range of the FLC has to be seen as a non-linear range with small 

linear sections. Those linear sections are the sections when exactly the same two rules are 

hit. 
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Chapter 7 

Conclusions and Suggestions for Future 

Work 

7.1 Conclusions 

The aim of this investigation was to develop a control scheme which is able to adapt itself 

quickly to changes in the working environment and in plant (process) characteristics. The 

research objectives, as laid out in section 1.1 to develop such a controller and demonstrate its 

capabilities have been met. This thesis demonstrates the ability of a novel type of controller 

(combining fuzzy logic as a controller and a neural network utilised as a model) to·evaluate 

the controller's performance before it is. applied. The evaluation is done by predicting future 

stages. 

A literature survey identilied the current state of technology. Some aspects relevant 

to this research undertaken to support this study were highlighted in chapter 2 of the the­

sis. From the literature, it was evident, that current self-organising techniques such as the 

SOC of Sugiyama 11011 and Yamazaki [ 125] are well suited for course keeping applications 

which requires a slow learning. Other techniques such as Model Reference Adaptive Control 

(MRAC) is targeted at purely linear control, eg there is only one adaptive parameter, Ko. 

The limitations of SoFLC are analysed in chapter 3. The technique of analysing a present 

state, and identifying the responsible control action (which occurred in the past), and isolat­

ing others which occurred since, is a difficult process and other control actions were issued in 

between, is a difficult process. It is possible that the assumed control action is not the primary 
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source which caused the state and therefore its influence is not always to be determined. 

The Predictive Self-organising Fuzzy Logic Controller as explained in chapter 4 of­

fers a novel approach to overcome the problems as they are experienced with current self­

organising techniques. The addition of a Predictor module to the self-organising control 

structure is discussed and its implementation and utilisation in the overall control system is 

discussed. 

Simulated test results are shown in chapter 5. The tests include a ±20° step change 

undertaken without any disturbance present, and a straight line course keeping test with 

disturbances. The graphs are discussed and analysed. From the results it can be concluded, 

that the addition of the Predictor module significantly improved the learning of the self­

organising fuzzy logic controller resulting in a more rapid, more focused learning. 

An essential part of this work has been to prove that it is possible, from an empty rule­

base of the fuzzy logic controller, to rapidly learn a useful set of steering parameters when 

the learning is done under controlled conditions. This means that the controller would not 

require the operator to input specialist knowledge. This removes:the need for any installation 

and set-up expertise to initialise the autopilot system, which is a significant cost saving to 

the customer. The learnt rulebase and also the neural network model can then be used to 

continually improve the performance, probably at a slower learning rate to avoid external 

disturbances causing transient effects. 

The PSoFLC demonstrates significant reduction in learning times which will allow the 

generation of larger databases within acceptable sea-trial duration. This is certainly not the 

case with slow learning techniques currently used. 

This thesis illustrates the advantages of fuzzy logic applied to the steering of small mo­

torised craft which are difficult to steer due to their design. The PO autopilots could not 

demonstrate a better performance (reduced ISE) over the vast range of working conditions 

of such craft. Nevertheless, the results shown (chapter 5) are for only the specially tuned PO 

controller for that vessel. The pilot tuning was a compromise which had to encompass the 

displacement mode at low speed and the planing mode at high speed. More attention was 

given to the high speed mode when tuning the PO controller. 

Both, neural networks (appendix A) and fuzzy logic (appendix B), are used in the novel 
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controller design investigated, developed and discussed in this thesis. Fundamental research 

was not only carried out in the field of combining the two techniques into a novel control 

strategy but also in the fundamentals of the techniques used. 

So far, the classic tuned PO controller has not always been outperformed by the unique 

algorithm introduced here. Considering the learning curve the controller goes through, it 

may be concluded that the PSoFLC will perform better in the long term than the classic 

control algorithm (PO), especially when the environment changes. The PSoFLC shows a 

considerable potential to improve over a greater variety of conditions~ 

7.2 Suggested Future Work 

l'he control strategy resulting from the research is not only applicable to autopilot design but 

also applicable to other areas of process control. 

An improvement of the benchmark SoFLC (originally a side-line study only), has been 

the incorporation of a third dimension to the rulebase, namely a speed variable. This three 

dimensional controller uses seven fuzzy sets in either input window named as heading error, 

turn rate and speed. 

The flexibility of such general controller designs to expand and improve when provided 

with additional useful data has been demonstrated. The system effectively becomes an 'ex­

pert' system database which can instantly respond to a set of input data with a learnt response. 

The overhead of adding this third input has proven to be very small as all of the software rou­

tines are common for the two dimension system and it is therefore a very attractive way of 

improving the performance without utilising the predictive module. Almost all modern small 

vessels that are likely to be fitted with an autopilot will have a source of speed data, either as 

ground speed from a GPS, or as water speed from an electronic log. Critical to producing the 

enlarged, three dimensional, database is the ability to accurately and rapidly learn without 

significant installer expertise. Since this controller is based on the SoFLC algorithm it has 

similar shortcomings as discussed in chapter 5. An increase in the dimension of the rulebase 

could allow other sensor data to·be considered, such as forward·and downward looking sonar. 

This data could be fed into the controller for use in eg in confined, shallow waters, or applied 
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to the navigation layer where it is analysed and appropriate decision are drawn from it. 

At the time of writing this thesis, a three dimensional-rulebase-fuzzy-logic autopilot is 

being tested by Cetrek Ltd. However no results are yet available. It is believed that this 

controller will adapt as quickly as a the standard SoFLC (two dimension) with the advantage 

of not having to re-learn when the speed of the vessel changes. So once a condition is learnt, 

it will not be forgotten as quickly as it happens with the standard SoFLC. However, the 

need for re-training.can not be completely neglected since the craft can change it's steering 

characteristics due to other influences such as mass, eg when loaded/unloaded. 

Current limitations in hardware design do not allow the implementation of the Predictive 

Self-organising Fuzzy Logic Controller in the production line of Cetrek Ltd. yet. More ex­

tensive testing has to follow and hardware has to improve to make this novel control strategy 

widely available. 

It is also possible to replace the current back-propagation neural network used as the 

internal model with a more sophisticated adaptive model. During this research a neural 

network was found to be suitable for the predictive controller. More research in this field 

could lead to an improvement in predictive quality resulting in even more rapid adaptation of 

the controller to environmental changes (as demonstrated here). Another application could 

be in the field of reconfigurable control where the whole control strategy has to be modified 

due to some (unexpected) dramatic change in process characteristics, ie loss of one propeller 

on a twin propelled craft or loss a rudder. 
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Appendix A 

JVeuraJNetworks: Theory 

This chapter gives an introduction into the theory behind neural networks. Their ability to 

learn has fascinated biologists and computer scientists for the last half century. The first 

sections will explain the biological basics and how they are modelled in the computer. Sec­

tion A.4 concentrates on the popular back-propagation learning algorithm as used in the 

autopilot's prediction module. 

A.l History and Introduction 

Neural networks were first studied by neuro-biologists in an attempt to emulate some of the 

processes of pattern recognition·that occur in the human brain- see McCulloch and Pills [65], 

Wiener [118], and Rosenblatt ]89]. 

However, it soon became clear, that neural networks had many other technological ap­

plications and this is now considered in the literature on their application to a wide range of 

problems including the general field of control engineering. 

Before considering the neural network models, it is perhaps useful to briefly describe the 

biological neural network which spawned their artificial counterparts. 

Serious investigations started in 1942, by the leading neuro-biologist McCulloch and the 

statistician Pill ]65]. The paper A Logical Calculus of Ideas Imminent in Nervous Activ­

ity [65] tangents fields such as digital computing, electronic brains and macroscopic intelli­

gence, 
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, 

Figure A.l. Structure of a Biological Neuron [100] 

A.2 The Neuron 

A.2.1 The Biological Structure 

Artificial neural networks, such as computer programs, try to adapt biological neural net­

works as information processing units. To understand artificial neural networks, the biologi­

cal principles have to be understood. 

A neuron as seen in figure AI is the basic element of the brain. The inter-connection 

of a very large number (tens of billions) of these processing units form the neural network. 

The transmission of the signals between the cells is chemical in nature. Each neuron receives 

signals from other neurons. The signals are electrical impulses. Depending on the excitement 

of a neuron, the frequency of it's output signal changes. This is called the firing rate of the 

neuron. The link between the neurons is called axon. An axon can be attached to more than 

one neuron. Furthermore, each neuron possesses several incoming ports for the connection 

of an axon. 

This port is called dendrite. The link between axon and dendrite is a chemical fluid 

which can be understood as a variable resistor which changes the strength of the incoming 

signals. The region, where all three items work together is called synapse (see figure A.2). 
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Figure A.2. Layout of a Synapse 

During learning, the effi ciency of the synapse is changed. The more this path is used, the 

less resistant the fluid becomes. If the port is not used at all, the connection can break up 

completely and die. 

If the sum of the incoming signals over a defined time is bigger than the threshold of 

that neuron the neuron will fire. The output of a biological cell is an electrical impulse. The 

neuron firing rate increases with increasing excitation. 

A.2.2 The McCulloch-Pitts Cell 

In 1942, McCulloch and Pitts suggested a model for a network which was built using very 

simple neurons. This neuron is called a McCulloch-Pitts cell and the network resulting from 

the inter-connection of these cells is called a McCulloch-Pitts network. The McCulloch-Pitts 

cell is one of the simplest in structure and functionality, because it uses exclusively binary 

signals. The output of each cell is either 1 or 0 and the incoming signals can only be I or 0. 

Furthermore, these networks have supporting and hampering connections. If there is at least 

one hampering signal going into a cell , the output of that cell wi ll be zero. If no hampering 

signal occurs, and the number of supporting incoming signals is greater than a predefined 

threshold, then a McCulloch-Pitts cell outputs a 1, otherwise the output will also be zero. 

e x 

Figure A.3. Step Function 
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Figure A.4. Geometric Interpretation of the Input Space divided by a Perceptron 

Basically, if the number n of incoming supporting connections is less than the threshold 8, 

then this cell wi ll never fire. 

0/ 1 
output = 

0 

A.2.3 The Perceptron 

{ 

Ix; > 8 

0 Ix;::; 8 
no hampering signal 

at least one hampering signal 

(A. I ) 

Because of the many disadvantages of early models of neurons, Rosenblatt, an American 

psychologist, developed a different mode l - the percept ran. The main criteria of the percep­

tron is that it only takes weighted inputs. 

A simple perceptron is a McCulloch-Pitts cell which uses weighted inputs to calculate the 

total input of that cell. Consider n inputs, w1, . . . , Wn weights and a threshold 8 , the neuron 

will fire (output= I) only if I w;x; 2 8 otherwise the output will be 0. Thus it is possible to 

emphasise some signals, such that there are more and less important signals going into the 

cell. 

{ 

1 'w·x· > 8 Lt I I _ 

output = 
0 otherwise 

(A.2) 

The geometrical interpretation (figure A.4) of the perceptron's function can be formulated 

as follows: the perceptron divides the input space into two regions. Region one only contains 

data where the neuron fires (output = l) and the other region contains data which result in 
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zero output. This linear approach does not represent the actual behaviour of a biological 

neuron. It was found, that the neuron 's firing rate is limited. To correct this other transfer 

functions are employed. 

A.2.4 Neuron with Steady Transfer Function 

From the above sections, the mathematical algorithm can be extracted: the incoming signal 

is defined as x, the outgoing signal as y and the synapse carries the symbol w. Before the 

neuron is activated, all incoming signals are summed up to form the total input/. This value 

is the parameter of the transfer function utilised by the neuron to calculated the output value y 

which represents the firing rate of the biological neuron . The structure of an artificial neuron 

is shown in figure A.S. 

Possible transfer functions and all the mathematics of a single neuron have been sum­

marised in figure A.6. When implementing a neural network on a computer, is is possible 

to use different transfers function in the neurons. It is common practice to use alternative 

functions in the layers. Often the sigmoid function is used in the hidden layer(s) and a linear 

expression for the neurons in the output layer. More on layers and the organising of neurons 

follows in the sections below. 

A.3 The Inter-connection 

To simulate the behaviour of the human brain a network of neurons is needed, a so called 

neural network (net). The neurons are usually organised into groups called layers. A neural 

Figure A.S. Main Structure of an Artificial Neuron 
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el ... the threshold, which moves the transfer function (graph) 
in the horizontal direction 

~- I ... output of neuron j in the previous layer 
wj,; ... weight between neuron i in layer 1 and the neuron j in layer 1- l 

If . .. total input of neuron i in layer I 

where (transfer function) could be: 

linear: J(I/) = If 

Sigmoid function : J(I!) = _ 1_/ 
I 1+/i 

hyperbolic tangent: f(I/) = tanh If 

hard limiter I threshold function: (perceptron) J(!/) = { 
- 1 I! < 0 

I -

+ I I! > 0 
I 

Figure A.6. Mathematics Preliminaries of a Neuron 

output layer 

hidden layer 

input layer 

Figure A.7. Single-Layer Network 

(A.3) 

~j (A.4) 

JJ (A.5) 

:B (A.6) 

Jl (A.7) 

network consists of at least an input and an output layer and eventually hidden layer(s). 

The terms single and multi refer to the number of hidden layers in the network A single­

layer network consists of three layers, one input and one output layer and a single hidden 

layer. Simple tasks can be solved by a single layer network but for difficult problems multi­

layer networks are needed. The main structure of a single-layer network is shown below 

(figure A.7). 

The inter-connection between the neurons in different layers can be seen in figure A.7. 
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output layer 

hidden layer 

hidden layer 

input layer 

Figure A.8. Multi-Layer Network 

It is not necessary to have a network where the connections are only between neurons of 

different layers, but it is easier to understand and to design a network in this way. The 

majority of neural networks are organised in this way. Some tasks do not require hidden 

layers. The number of hidden layers and the number of neurons in each hidden layer are 

free to be defined and will determine the performance of the network in terms of speed and 

quality. For most tasks a single-layer network is sufficient. 

The behaviour of a multi-layer network (see figure A.8) in general is not very different to 

a single-layer network. The user has to find the optimum in size and structure to be satisfied 

with the results and the speed. A small network is faster but if the task is too difficult , 

important information may be lost. Conversely, if the network is too large, the output can be 

noisy and the computing speed, especially during the learning, is slow. 

The order of the system should be reflected by the degree of freedom of the network. 

Degree of freedom refers here to the number of variable parameters in the system. In terms 

of neural networks, the degree of freedom is the number of all variable weights on the path 

from one neuron to another. 

Sometimes it is possible to improve the learning quality of the network by re-arranging 

the neurons into more hidden layers but less neurons in each. As yet, there seems to be no 

fixed or rigourous guidelines for the construction of a network. Experience of the user and 

the character of the problem will determine the successful application. 
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A.4 Learning with Back-propagation 

The back-propagation is probably the best known and analysed learning algorithm for neural 

networks. 

A.4.1 General Facts 

The two main tasks of a brain - learning and recall - are the most interesting. Learning 

itself is the process of calibration of the synaptic efficiency, or in the words of artificial 

networks, the weights. Using this principle some models of neurons and their connections 

have been investigated, ie single-layer networks, multi-layer networks and self-organising 

networks. The networks can be classified into three groups, depending upon the learning 

principle, eg supervised learning, learning with critic, and one group unsupervised learning 

(self-organising network). The latter is utilised to obtain relationships between the input and 

the output vector by the creation of an iterative process without a teacher (as in supervised 

learning) and also without evaluative values (as learning with critic). 

Clustering is the process of arranging data into groups. The network tries to find charac­

teristics in data, and then sorting the data into one of the clusters. In other words, it is known 

that given data contains items out of n groups. The network has to find the borders between 

the data to place them in one of the groups. 

The results of the student (the network) can be only as good as the training data of the 

teacher/ supervisor. For supervised learning a vector of input data and one vector of the 

desired outputs which is associated to the input vector is needed. Clearly, one problem, 

besides the program for learning, is to have good sets of training data. A set of training data 

is considered to be a pair of vectors containing input/ desired output data each. 

A.4.2 The Derivation of the Learning Algorithm 

ln this section, a method of supervised learning is discussed and together with the way this 

may be used in order to develop a 'learning controller' for the steering of a small craft. 

Rumelhart's and McClelland's [90] contributions to neural networks are fundamental 

to further investigation. One way to use the supervised learning is by using the back-
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propagation algorithm. The neural network used in this algorithm is a multi-layer perceptron 

network, and the transfer fu nction used must be steady at each point, eg the sigmoid. The 

back-propagation rule needs the en·or between computed output by the network (straightfor­

ward or phase I ) and the desired output given by the teacher. To adju t the weights on the 

path between one neuron and the next neuron, the error is back propagated, starting with 

the output layer via the hidden back to the input layer. This process is the second tage, or 

the learning phase. The process- computing forward and error propagation backwards- is 

repeated with different pairs of training data, until a maximum number of epochs is reached 

or the max imal error approaches a preset value, ie £ = 0.05. One epoch is the process of 

passing the data from the input layer to the output layer to obtain the 'actual' output vector, 

calculati ng and back-propagating the error between actual and de ired values, and the adap­

tation of the weights inside the neural network. The interesting feature of back-propagation 

is that no knowledge about the process i required, but a good teacher wi ll have to provide 

sufficient data to cover the entire operation envelope of the system considered. The disad­

vantage of this method is that the student does not have any elf-learning capabili ties and 

therefore cannot respond better than the teacher. In addition, data from a teacher is required, 

which is not always available. 

So far only the forward or recall phase of the network has been discussed. However to 

store information the network mu t be taught. In order to understand the simplest type of 

learning algorithm, the back-propagation algorithm is used as an example. This technique 

is based on using the teepest-descent method (gradient method) to minimise the error. This 

can be seen in equation A.8. 

(A.8) 

d . .. desired output 1 .. . layer 
E .. . error ; .. . index of neuron in layer 
y . . . actual (computed) output of the neuron 

Con idering equation A.8, it can be een that the actual output is a function of the weights 

as well as of other parameters. The task is to define a ~w which reduces the error of equa-

tion A.8. 

Equation A.9 shows the correct mathematical expression with 11 as a proportional factor 
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representing the Learning rate. 

a£ 
L\w = - Tl ­aw (A.9) 

With y as the computed output resulting from the equations A.5 in figure A.6 and the 

total input into that neuron equation A.9 becomes: 

Defining 

equation A.9 can be rewritten as: 

a1 a 
-=- I wy aw aw 
a 

- I wy = y aw 

(A.lO) 

(A. ll ) 

(A. l2) 

(A. l 3) 

(A.14) 

This gives us a corrective value by which the weight has to be adjusted to reduce the error 

defined in equation A.8. 

An extensive mathematical explanation and the complete derivation of the back-propagation 

learning algorithm can be found in the literature, eg [80, 40]. 

A.4.3 Summary of Theory 

The equations for a back-propagation neural network are summarised and are shown in fig-

ure A.9. 

136 



x1 = Sigmoid(If) 

11 _I 1 1- 1 81 
· - ·W· · · X · + · 
I } ) 11 j I 
-1 I A I 
wji = wj ;+uwji 

11 . . . learning rate 

straightforward (phase l )(A 1.1) 

(A1.2) 

(A2.l ) 

back-propagation (phase 2) (A2.2) 

for output layer neurons (A2.3) 

for inner neurons (A2.4) 

o: ... error of neuron i in layer l 
If . .. total input of neuron i in layer l 

AI "h " +I u wj,i ... wetg t mcrement .or wj,i 

~ .. . output of neuron i in layer l 
w),; ... weight on path from neuron j in layer l - 1 to 

neuron i in layer l 
Sigmoid() . . . transfer function (see figure A.6) 

Figure A.9. The Learning Equations 

A.S Applications of Neural Networks 

The multi-layer back-propagation networks are probably the most common structures used 

to tackle problems found in industrial applications. They can be used in robotics for pattern 

recognition, such as speech and image recognition, as well as for encrypting applications 

where the main task is to associate consequences with specific facts. An important factor is 

that the data fed to the network has to contain all the relevant information to the problem and 

also that the network should be large enough - contain a sufficient number of neurons and 

associated weights. Finding proper data is not trivial and the emphasise is on relevant data. 

It is well known, that neural networks can interpolate between points and find relationships 

in the data. The degree of freedom of the system should match the degree of freedom of the 

network, otherwise the network will not be able to identify and rebuild existing relationships 

between the facts and the consequences. The developer has to find a compromise between 

demanded accuracy and learning effort. The larger the neural network is the longer it takes to 

teach it. A further problem has to be considered which results in a unusable neural network 

ie over fitting. This will occur when too much data is presented to the network but the data 

does not contain enough significant information and the degree of freedom of the network 
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is too great. The network will then learn the individual ' fingerprint' of the training sets and 

not interpolate between these. The relationship between input and output vectors is lost. It 

also can happen, that noise within the data becomes very important and is interpreted as data 

rather than filtered out. 

Neural networks have become an important tool in many areas of industry and business. 

They are present in applications such as medicine [47], finance [76], marketing, insurance 

eg in risk assessment, quality control and engineering. 

A.S.l Application of a Neural Networks for Data Encryption and Com­

pression 

Neural networks can also be used for data compression [47] . The compression code is found 

by inserting a bottleneck into the network structure. Consider the example of 8 data lines 

which can carry signals where only one has a high input and the others are low. The network 

has simply to reconstruct the input layer on its output layer and the bottleneck, the hidden 

layer, contains the data in a compressed format. 

The structure of the example network is 8 inputs, 3 neurons in the only hidden layer and 

8 output neurons. Considering only binary data for the output of the 3 hidden neurons, eight 

states can be thus encoded by the network. The network structure is shown in figure A.l 0 . 

output layer 

input layer 

Figure A.lO. Network structure to find a binary code 
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A.6 Using Neural Networks for System Identification 

There are many applications in industry which use the capturing capabilities of neural net­

works. Neural networks can be found in image processing and analysis as well as in ma­

chine monitoring. The network is well able to identify situations (patterns of input signals) 

and draw conclusions which can otherwise only be made by experts. The expert acts as a 

teacher in the first place and the neural network then copies this knowledge with its own 

understanding. For system identification mostly back-propagation networks are used but, 

Hopfield networks and self-organising Kohonen maps are found as well. 

Nowadays, neural networks are employed in business finance eg to predict share states. 

Schoneburg [94], did some investigation in this field by applying such networks. However, 

much more research is needed in this area as he found there were considerable limitations. 

Although, the exact relationship does not need to be known, it is important to know the 

parameters which influence a decision. The neural network will pick up the relationship in 

most circumstances providing important values are not suppressed. 

Neural networks are important techniques when used for image analysis. They have 

been successfully implemented into software for optical character recognition (OCR). As 

the name indicates, the scanned image, which is in binary format, is checked for the appear­

ance of text. Those areas with text are analysed and the characters extracted. The image, 

hopefully, containing only one character is passed to a pre-trained neural network, contain­

ing all the possible characters of a font. The network will then come up with a possible 

match. Depending on the strength of the signal (indicating the likelihood of a positive iden­

tification) the character is then passed on or questioned. It is possible, that all characters are 

passed on to form a word which is then checked against a list of possibilities, and which can 

incorporate a spell check program. 

Many more applications using neural networks are being developed in the field of speech 

recognition. They use a similar process to those used inference being the input signal, where 

it represents a frequency spectrum related to time. Here sound is digitised, divided into 

small windows and the numbers stored in a vector before being passed to a neural network 

for analysis. 

'fhisis a vast field and one which will involve future intensive studies in complex systems. 
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A.7 Using Neural Networks for Control 

Numerous applications have been applied in the field of control systems. Research by Zhang 

et al [132] considers the application of neural networks for ship position and orientation 

control where heading errors as well as positional errors are minimised during travel and 

berthing. Feeding measured information into the network and assuming certain ship charac­

teristics, the error can be back propagated through the plant and the network, which acts as 

the autopilot and optimises the control performance. 

The ability of neural networks to assimilate, mix, compress and recall data has been 

initially investigated by Richter and Burns [84]. This paper reflects the application of com­

bining three specially tuned PID autopilots for a marine craft into a single module. The PID 

autopilots are fine tuned to work in only one sea state. All the data is then fed into the-neural 

network to combine the 'knowledge' of all PID controllers and this new controller therefore 

inherits the high performance of each PID autopilot without the need of adjusting parameters 

when a change of the sea state occurs. 

A.8 Neural Networks Summary 

This section covered some aspects of neural networks and their application in science and 

industry. The neuron models, including the perceptron, from the early and mid 1940's [65] 

have been fundamental to existing networks. These simple processing units as described 

biologically and mathematically in this chapter form powerful tools when interconnected 

and help to solve complex tasks of the modern world. 

Considering the back-propagation learning algorithm, the neurons are organised in layers 

and only neurons between neighbouring layers are connected. Simple tasks can be solved by 

single-layer networks whereas more complex problems require a greater degree of freedom 

which results in an increase in the number of neurons and their organisation in layers. Multi­

layer networks, networks with more then one hidden layer, are used for more difficult and 

complex tasks. 

The back-propagation.learning algorithm has been discussed and the mathematical deriva­

tion was also shown. The final equations of the learning are summarised to a generic algo-
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rithm which can easily be implemented into program code. 

Existing applications demonstrate the wide acceptance of neural networks amongst re­

searchers and engineers in development laboratories, academic institutions, and most impor­

tantly, in industry and high street products, 
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Appendix B 

Fuzzy Logic: Theory 

B.l Introduction and History 

Fuzzy logic is a more general case of the classical Boolean logic. The classical logic is a 

subset of the fuzzy logic. Basically the classical Boolean logic is fuzzy logic using step 

functions to describe the degree of membership of a value to a set. In the mid 1960's, L. 

Zadeh [ 127] developed the modem fuzzy logic. His intention was to model problems which 

contained a degree of fuzziness within the data or even within the rules used to make a 

decision. The values accepted are not only 0 and I as known from ,the classical logic, but 

also all values in between. Therefore a few definitions have to be made as well as new 

operators introduced and explained. 

It is important to mention the differences between probability theory and the theory of 

fuzzy logic. As Zadeh [ 128] formulates it, the membership function p(.) defines the pos­

sibility of an value x being an element of a fuzzy set Xk (x E Xk). Considering this, the 

main difference between probability theory and fuzzy logic is that fuzzy logic (possibility) 

deals with imprecise data of events, whereas probability theory deals with the randomness 

of occurring (or not occurring) events [103]. The uncertainty of an event happening or not 

is understood as randomness. The imprecision of fuzzy sets, however, considers the degree 

membership of an element to a set (a fuzzy set) with imprecise, non crisp, boundaries. An­

other view may be given by "IT IS WARM"; fuzzy statements are not imprecise about the 

event in question (IT IS) 'but referto the quantity in a vague manner (WARM). 

Implied to fuzzy logic is the fuzzy set theory which will be explained in outline later 
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Figure B.l. Fuzzy Sets of Different Age Groups of People 

in this chapter. Expressions like fuzzy set, fuzzy operator, fuzzy rules, fuzzification and 

defuzzi fication will be discussed here. Examples demonstrate the use of this kind of logic 

and the utilisation of those princ iples for control tasks. 

The big advantage of using fuzzy logic for control tasks is that it can easily cope with 

linguistic variables. The human brain is not very good in 'v isualising' numbers. It is much 

easier to visualise terms like tall , sho rt, hot, cold etc. But the problem with linguistic vari­

ables is the precision they are used with, eg tall is not equal 185 cm it is more like about 

180 cm. So these terms have to be transferred into 'crisp' numbers before being used in 

calculations. Fuzzy logic allows using the spoken language (linguistic variables) to define 

ru les and algorithms for control purposes. 

B.2 The Main Principle 

B.2.1 The Fuzzy Set 

The main difference to the Boolean logic can be seen in an additional function called mem­

bership function. This is a measure how much a value belongs to a set. In the class ical logic, 

such a function does not exist. Either a value belongs to a set or not. But what will happen 

if the border becomes unsharp, fuzzy, not just yes or no? The best way to illustrate this is by 

using an example. 

Example: Age of a Person 

Fuzzy sets can easily be obtained from a survey. A typical question asked could be: what is 

understood by a 'young' person? Figure B. I shows a fuzzy window containing three fuzzy 
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sets for the variable age. The sets are named young, middle aged and old. The universe of 

discourse in this case is the age of a person. In most cases it is not very useful to define 

a point in life to say a person is middle aged. To fonnulate rules for a computer or any 

other automated machine, these linguistic terms have:to.be transformed.into numbers so that 

calculations can be done with them. To do this, fuzzy set theory comes into play. Back to 

the example, the following facts can be used: 

• People between 0 and 18 are definitely young, 

• from 20 onwards they gradually become middle aged and 

• after 60they are called old. 

• Between 18 and 35 they become less young but more middle aged. 

• Having completed the 30th year of life, they are.definite middle aged. 

• From 40 onwards someone belongs more and more to the old age group. 1 

le at the age of 26 someone is 40% to young and 30% middle aged. 

In this example trapezoidal fuzzy sets have been used. Other shapes of sets, such as 

triangular, Gaussian, s-shaped, etc sets, are widely used. The advantage of using triangular 

sets is the simplicity of the function(s) employed to describe a triangle. Generally, the degree 

of membership is defined as a function p(x), 0 ~ p(x) ~ I. The membership function is 

often obtained subjectively by one or more human experts. Averaging and other statistical 

methods can help to find the most appropriate functions. The process of decision making 

using fuzzy logic is divided into three major steps. 

I. The first step is the transformation ofany measured value into fuzzy tenninology. This 

process is.called fuzzification. 

2. The second step is the processing of the obtained fuzzy value(s)by applying the fuzzy 

rules (inference). 

3. The final step is the process of converting a linguistic tenn into. a sharp, crisp number 

is called defuzzification. Different defuzzification methods are discussed later in this 

appendix. 

1The author does not want to offend any reader by putting them in to an age group. Just treat it with a smile. 
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B.3 Fuzzy Operators 

The two operators discussed here, are the the set union and set intersection. The two sets, A 

and B, are displayed as a dashed line and the result of the operation is a solid line. 

The set union (A U B) of the two sets A and B is shown in figure B.2. The graphical 

Figure B.2. Set Union ofTwo Sets (A U B) 

interpretation of the set intersection (A n B) is displayed in figure B .3. The two logical 

' ' 
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' ' ' ' ' 
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' 
' 
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Figure B.3. Set Intersection of Two Sets (A n B) 

operators can be modelled in different ways in fuzzy logic terms. Below, the three most 

commonly used fuzzy implementations of the set union and set intersection are described. 

The tree operators set union, set intersection and complement (U, n, "')create new sets from 

existing sets. In boolean logic, those operators have their equivalent in OR, AND and NOT 

(V, 1\, •). So, the set union operator can be modelled with the OR operator of the boolean 

logic. Assuming two sets A and B, so J1A,J1B :X--+ 0 , I is valid. The membership function 

JlAuB of the set union of A U B is: 

JlAuB(x) (B. I ) 

The set intersection can be modelled in a similar manner: 

JlAnB(x) JlA (x) 1\ JlB(x) Vx E X (B.2) 
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Figure B.4. Max/Min Fuzzy Operator 

The complement of a boolean set (rv A) is: 

' J.lA (x) 'ix E X (B.3) 

A whole range of functions exist which could be used to implement the fuzzy operators. 

However, the functions have to fulfil certain conditions. 

B.3.1 The Min/Max Implementation 

By looking at the two figures above, the fuzzy union can be modelled as the maximum (equa­

tion B.4) of two sets. The fuzzy intersection (AND, A) is the opposite of the fuzzy union (OR, 

V), and therefore the fuzzy intersection can be modelled with the minimum (equation B.5) 

function . The fuzzy NOT (.::,)can be seen as the complement x -t I - x. The equations B.l, 

B.2, B.3 can be re-written: 

J.lAus(x) = J.lA (x) V J.ls (x) 'ix E X, (B.4) 

J.lAns(x) = J.lA (x) A J.ls(x) Vx E X, (B.5) 

J.l~A (x) = .::, J.1A (x) 'ix E X. (B.6) 

Figure B.4 shows the graphical representation of the min and max operators. Other 

possible operators are the bounded max/min operators and the Yager-union/intersection. 
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Figure 8.5. Bounded Max/Min Fuzzy Operator 

The Bounded Sum/Difference Implementation 

In Figure B.S one can find the bounded min and bounded max operators. 

Z(x,y) 

Z(x,y) 

max(O,x+y- 1) 

min( 1 ,x+ y) 

The Yager-Union/Intersection Implementation 

(B.7) 

This method describes a whole family of functions. By modifying only one parameter (p) 

the shape of the function can be changed. If p » I the function approximates the min/max 

function from above. The graphical representation can be found in figure B.6. 

I 
max(O,xP + yP) /i - 1) with p ;:::: 1 

I 
m in( I ,xP + yl') /i) 

(B.8) 

Figure B.6 shows the graphical representation of the Yager-Union and Yager-intersection 

operators. 

Using the fuzzy operators, rules can be formulated. In the next example, the room tem­

perature is controlled. A simple set of rules to employ can look like: 

• IF TEMPERATURE IS WARM AND ROOM TEMPERATURE DROPS QUICKLY 

THEN OPEN VALVE A LOT 

• IF TEMPERATURE IS WARM AND ROOM TEMPERATURE RISES 

THEN CLOSE VALVE A BIT 
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yager-intersectioo(x, y), p:2.0 yager-union(x, y), p=2.0 

Figure B.6. Yager-Union!IntersectionFuzzy Operator 

• IF TEMPERATURE IS WARM AND ROOM TEMPERATURE RISES QUICKLY 

THEN CLOSE VALVE A LOT. 

The heater example is a simple control task. The variable (plant) to control is the room 

temperature, the control actuator is the valve of the heating element. There is one sensor 

in the feedback path which measures the temperature. From this measurement the rate of 

change of the temperature can be calculated. The input variables are the actual measured 

temperature and the temperature change rate. Both measured values are fuzzified using the 

fuzzy sets from figure B.7. 

To complete the example, more fuzzy operations are needed. The actions are formulated 

as linguistic terms, too. But no device can work on such a basis. So, each fuzzy action has to 

be converted into a precise action to adjust the actuator, in this case, the position of the valve 

which controls the flow rate of the heating element. 

B.4 Fuzzy Rules 

With the the set theory in place, rules can be formed in the fuzzy manner. One can say: 

a. 
:E 
t? 
.8 0.5 
E .. 
E 

0 -- .. 

0 5 10 15 20 25 30 35 40 
temperature (C) 

a. 
:E 
t? .. 

D 
E .. 
E 

-4 -3 -2 -1 0 2 3 4 

temperature change (K I min] 

Figure B.7. Input Windows 
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dq ... drops qui 

d ... drops 

s ... steady 

r ... rises 

rq ... rises quiet 



IF ERROR IS POSITIVE SMALL THEN IF ERROR RATE IS ZERO 

THEN DESIRED RUDDER IS NEGATIVE SMALL 

The rule connects the error and the rate of the error in a similar way as the PD control 

rule (equation 2.2) does. The measured value is fuzzijied, eg its membership value to the 

individual fuzzy subsets of the universe of discourse is obtained. The universes are assumed 

to be finite and discrete, in such a way that each universe is a set of elements 

E= {e},C= {c}, 0= {o} 

E universe of the errorE= { e }, 

C universe of the error rate C = { c}, 

0 universe of the output 0 ={a}, 

With this in mind, rules.can be formulated. In more symbolic notation rule k looks like: 

IF E IS Ek THEN IF C IS Ck THEN 0 IS Ok 

Ek fuzzy subset of E, Ek c E 

ck fuzzy subset of c. ck c c 

ok fuzzy subset of 0, ok c 0. 

The fuzzy subsets, Ek. Ck and Ok. defined as ordered pairs where p(.) represents the mem­

bership value giving the degree to which the element (measured value) is a member of the 

subset. Considering rule k, the ordered pairs are: 

A control rule is an implication 

{ (e,J.IE.(e)) }, 

{ (r,J.Ic.(r))}, 
{ ( o,pok(o))}. 

(B.9) 

(B. I 0) 

which produces a relation matrix ~ in hyperspace. Considering the three universes, a rule 

Rk of the~ is given by the outer product 

(B. II) 
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Now, a whole range of rules can be defined in such a way. A controller will use several such 

implications and the resulting (combined) relationship matrix 9l is obtained using the·union 

of the individual implications, ie 

9l = R1 'i!R2\J ... 'i!Rk\J ... 'i!Rn =V R11 • (B.I2) 
11 

9l is a matrix of membership values J.IR(e, c, o ). All control rules are stored within this ma­

trix 9l which represents the the fuzzy algorithm in its entirety. Using the implication of 

equation B.l 0 the controller function can be described, eg the inference from the error and 

change of error into the control action. The values e;, c; and o; are individual elements of 

the universes of discourse£, C and 0 respectively. Theses elements can be represented in 

time. Considering the sampling timeT, the elements can be formulated as e(iT), c(iT) and 

o(iT), where i is the sample number I < i < oo, i E N. However, the values fore and c have 

to be obtained from the actual process, The first step is to scale the measured values, eg 

multiplying them with an appropriate scaling factor or gain, such as G£ and GC, and then 

quantising the scaled result to the closest element in the universe of discourse. Considering 

the i rh sample, the process output y(iT) and S as the process set-point, the values for e(iT) 

and c(iT) are calculated from 

e(iT) 

c(iT) 

Q[ {s- y(iT)} x GE] 

Q [ {y(iT)- y(iT- T)} x cc] 
(B.I3) 

However, the quantisation procedure of this application is reduced to capping the inputs, 

ie if the measured value is outside the universe, the value is set to the universe boundary. 

This applies to both, the error and the rate. The controller output is a fuzzy subset O(iT) ob-

tainable by utilising the fuzzy implication from equation B.l 0 which gives individual mem­

bership values as: 

J.loun ( o) = J.IR( e(iT), c(iT), o). (B.I4) 

This fuzzy subset has now to be defuzzified in order to produce on crisp output value. Some 

defuzzification methods are explained in more detail in appendix B.5 below. Before the 

defuzzified value is used, it is scaled to calculate the actual control action. This third scaling 
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Figure B.8. Output Window - Valve Positions 

factor is the output gain GO. 

B.S The Different Defuzzification Methods 

The fuzzy sets displayed in fi gure B.8 can be seen as a general output window. Considering 

the example, negative means ' to close' whereby positive means ' to open', 'big' is associated 

with 'a lot' and 'medium' to a normal action. 

If only the last four rules are taken into account, the rules can be written into a table as 

visualised in table B. I. Only the rules for the right temperature, warm being the goal, are 

considered. 

Table B.l. Fixed Rulebase 

change of temperature .1t}; the temperature ... 
tempera- drops drops doesn't rises rises 

ture t} quickly change quickly 
cold 

warm open a lot open a bit do nothing close a bit close a lot 
hot 

Obviously, more rules are required to control this situation. In table B.2, a complete set 

of rules for two input variables can be found. The two input parameters are the temperature 

and the change of the temperature in the room. The temperature is divided into 3 categories, 

whereas the temperature change is split into five sets. 

Finally, to control the device or plant, the general (linguistic) output of the rulebase has to 

be transformed into a crisp number. This process is called defuzzification. In most cases, not 

only one rule is activated. Using two input windows with a maximum of two sets overlaps, 

the max imum number of activated rules is four. Therefore a maximum of four rules have to 
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Table 8 .2. Full Fixed Rulebase 

tempera- drops drops doesn't rises rises 
ture 1} quickly change quickly 

cold open a lot open a lot open a bit do nothing close a bit 
warm open a lot open a bit do nothing close a bit close a lot 

hot open a bit do nothing close a bit close a Jot close a lot 

a. :c 
!'? 
CD 
.0 0.5 
E 
CD 
E 

0 

0 5 10 15 20 25 30 35 40 

temperature [C) 

)(~ 
dq ... drops quickly 

a. 
d ... drops :c 

!'? 
CD 0.5 dq r s .. . steady .0 
E 
CD 

__ / r ... rises E 

0 rq ... rises quickly 

-4 -3 -2 -1 0 2 3 4 

temperature change (K I min] 

Figure 8.9. Input Windows 

be taken into consideration to calculate the final output. 

Assuming a temperature of 1'} of 28 oc and a temperature rise ~1'} of 1.5 K · min- 1 (see 

figure B.9) then the following applies: 

A temperature of 1} = 28 oc gives 

A temperature change of ~1'} = 1.5 K · min- 1 

1-'warm ('l'}) = 0.2667 

1-'hot('l'}) = 0.7333 

1-'rises(~'l'}) = 0.6667 

1-'rises quickly (~,'}) = 0.2857 
This results in four active rules. In this case only two different ones, one rule is hi t three 

times wi th different values as seen in the following tables B.3- B.5. The numbers represent 

the membership of the sets act ive. 

B.S.l Centre of Area 

Probably the most common defuzzificat ion method is the centre of area. Two implementation 

of this defuzzification method are known. One which considers exactly the area covered by 
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Table B.3. Applied Fixed Rulebase 1 

change of temperature ~~; the temperature ... 
tempera- drops drops doesn't rises rises 

ture ~ quickly change quickly 
cold 

warm close a bit close a lot 
hot close a lot close a lot 

Table B.4. Applied Fixed Rulebase 2 

change of temperature .1. \'}; the temperature .. . 
tempera- drops drops doesn't rises rises 

ture l'} quickly change quickly 
cold 

warm min(}iwarm·fl rises) min(}ill'uml•flrises !l_uick/y) 
hot min(}iluH ,flrim) min(flhot ,flrises !E•ick!.J_) 

Table B.S. Applied Fixed Rulebase 3 
change of temperature~~; the temperature .. . 

tempera- drops drops doesn 't rises rises 
ture t} quickly change quickly 

cold 
warm 0.2667 0.2667 

hot 0.6667 0.2857 

153 



the sets, overlaps are considered only once. In contrast the overlaps can be ignored, therefore 

some small areas are considered twice. The final output is only very little influenced by the 

difference in the techniques. 

Centre of Area with 'full' Fuzzy Sets 

This method does not consider the overlapping of the sets. Basically the sets are taken as 

they are, and the centre is obtained utilising equation 8.15. The graphical interpretation is 

shown in figure B.l 0. The numerator is the first moment of the area of a set. 

(B.I5) 

cg ... centre of gravity 

·15 

Valve Tums (degree] 

Figure 8.10. Active Rules 

Centre of Area with 'cropped' Fuzzy Sets 

Here, the overlapping area is only taken into account once. Therefore cross-over points of 

the sets have to be calculated and if a rule is hit twice or more times, only the maximum is 

used (see figure B.ll ). In the example, only two sets (close a bit and close a lot) produce the 

crisp output. 

B.5.2 The Mean Of Maxima Method 

This method is not widely used and has a tendency to give unsatisfactory results. It only uses 

the position of the maxima of each set and it ignores the area under the set. The average of 
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Figure B.ll. Active Rules 

those positions will give the final , crisp output. 

1 ll 

output= - -L Ui 
n i= l 

30 

ui ... position of the maximum 

B.S.3 The Fuzzy Singleton Method 

45 60 75 

(B.16) 

If the fuzzy sets in the output window become very slim (see blue lines in figure B.l2), do 

not overlap or even touch each other, then they become fuzzy singletons. The defuzzifica­

tion using fuzzy singletons reduces to the calculation of the centre of gravity of lines. The 

membership gives directly the 'area'. No further conver1ing is necessary. A control surface 

resulting from fuzzy singletons in the output window can be seen in figure B.l3. 
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Figure B.12. Fuzzy Singletons 
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Figure 8.13. Control Surface using Fuzzy Singletons 

B.6 Applications of Fuzzy Logic 

error 

This section highlights briefly some aspects of fuzzy logic important to control purposes. The 

main principles of fuzzy logic as proposed by Zadeh [127] in 1965 were explained earlier in 

this chapter. 

The normal way of expressing rules and knowledge is by using linguistic variables, but 

it is difficult to implement thoughts on a digital machine. The idea of using so-called fuzzy 

sets and validating a fact against them opens up an interesting field. Therefore, crisp and 

precise values are fuzzified and then treated as fuzzy data. The combination of the values, 

eg if the fact belongs partially to more than one set, is passed through a rulebase and a range 

of output data is created. Each data represents a membership of a fuzzy set in the output 

window. After defuzzification, a crisp value is produced and provides the controller's crisp 

output. The big advantage of using fuzzy logic is (a) the easy understanding of the rules 

and relationship since elements of the human language are used to express them and (b) the 

ability to merge together possibly disparate information in order to generate a deterministic 

output. 
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The applications of fuzzy logic reach from high street products to process control. One 

can find fuzzy logic in washing machines (AEG, Goldstar), photographic equipment (Canon, 

Minolta, Ricoh, Sanyo), temperature control (refrigerator by Whirlpool), vacuum cleaners 

(Philips, Siemens) etc [55]. The automotive industry adapted fuzzy logic in power train and 

transmission control (GM-Saturn, Honda, Mazda) and Nissan utilised it in engine control. 

One of the first application using fuzzy logic was the automation of the cement kiln opera­

tion [I , 79]. 

The main idea is sti 11 the same, which is to use human understandable expressions, to deal 

with imprecise data and utilise the information ie with a computer. More applications wi ll 

occur in the industrial field. This thesis discusses one potential area in control engineering 

but fuzzy logic found utilisation in other areas such as design , finance, engineering and 

medicine [60] and many others. Many industrial applications around the world are listed and 

briefly explained in the book [ 126] edited by Yen et al. 

B.7 Fuzzy Logic Summary 

It has been demonstrated that fuzzy logic is a good tool for control tasks [49, 26, 81 , 99] 

including ship heading control. It is relatively easy to use and easy to implement. The major 

advantage is the capability of using linguistic variables to describe human thoughts. These 

thoughts are summarised in a fuzzy rulebase which can be single or mu lti dimensional. The 

rulebase can combine facts from different sources, eg universe of discourses. 

This chapter therefore highlighted some aspects of fuzzy logic. It discussed the main 

principles as proposed by Zadeh [ 127, 128] including the definition of fuzzy sets and fuzzy 

operators. 

For application to control tasks, control rules are defined by the engineer and stored 

within the controller in a rulebase. In order to produce one single control output, the data 

produced by the fuzzy logic have to be defuzzified. The di fferent defuzzification methods 

are explained and discussed. 

This chapter has provided an introduction to self-organising fuzzy logic control which 

has been utilised to form the predictive self-organising fu zzy logic controller as explained in 
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chapter 4. The working principles of the performance index are briefly discussed as well as 

the method of the rule changing utilising the outcome of the petformance index. 
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Appendix C 

The Simulation Set-Up 

C.l The Ship Mathematical Model 

Today, the majority of control tasks are undertaken using digital controllers. They are devel­

oped off-line, without being attached to the practical hardware (plant). Mathematical models 

substitute for the plants being controlled in the design process. To use a model instead of the 

real plant has certain benefits. For example, the plant is not involved in the design process 

of the new controller at any time. The key factor being to save resources, ie hardware, time, 

money, and sacrificed test equipment which can be very expensive. Using computer models, 

the real plant remains untouched. Furthermore, the real plant can still be used while a new 

controller is being designed and there is no loss in production due to maintenance or down 

time. Finally, the plant might not be available for the length of time that the design and 

testing of a controller requires. Often a simulation using models can run faster than real time 

with obvious advantages. More testing can be done in the same or even in less time. Also, 

a computer model can be copied and run on several machines at the same time simulating 

different conditions. The physical hardware remains untouched and the off-line time can so 

be reduced to a minimum. 

These are only a few factors which highlight the advantages of using models. The test­

ing of any new device can be first achieved during simulation employing physical and/ or 

computer models. 

In a previous research project in collaboration with Cetrek Ltd. of Poole (UK) a six 

degree of freedom lifeboat model was developed by Browning [20] at Bournemouth Poly-
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Table C.l. Lifeboat Parameters 

number of propellers 2 
number of rudders 2 

length 51'8l" 
2 15.8m 

beam 17'0" 5.18m 
draft 3'7l" 

8 1.11 m 
displacement 32,415t 

technic. The model represents, with its original set-up, a lifeboat with the parameters as 

shown in table C. I . 

This lifeboat simulation fulfils the requirements of this research to investigate small, 

highly responsive, motorised vessels. This simulation is the basis for all further investiga­

tions. The boat simulation runs on a 386SX PC based machine in approximately real time. 

An interface to an external controller (autopilot) has already been included. It is therefore 

possible to attach another PC or digital device which is using a serial port (RS232) for corn-

munication purposes. 

The simulation too has its limitations. It was found that the waves, as simulated by 

Browning, are Gaussian Random noise within operator-specified limits. The 'sensor read­

ings' are sent via the serial communications port. This implies discrete handling of the 

measured data, sampling frequency is dependant on the power of the processor and com­

munication frequency is fixed and limited by the UART initialisation and used (NMEA) 

protocol. 

C.2 The Integrated Autopilot Testbed 

The testbed is the part of the setup which contains the controller and data-logger. Data is 

exchanged using the RS232 serial ports on both PCs using a protocol based on messages. 

The messages exchanged follow the widely used National-Marine-Electronics-Association 

0183 (NMEA) format [72]. This standard provides the foundation for the communications 

between maritime devices, since it includes messages to control heading and rudder. 
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C.2.1 Graphical User Interface and NMEA Messages 

The first task to be solved was the creation of an independent interface for communication 

with the lifeboat simulation. This program acts as a data-logging (monitoring) program. 

Various heading controlle rs fo r the ship or simulation are embedded. Using the Function­

keys, a choice of heading controllers can be made. The range is: 

• with a simple P controller and also includes 

• PD (see section 3. 1 ), 

• PID, 

• fixed rulebase fuzzy logic, 

• SoFLC and the 

• PSoFLC (function keys F I-F6 respectively). 

The main windows displays the course travelled. Each square of the grid represents a 

distance of 1 OOm. The two windows underneath show the history of the heading error and 

the rudder position . On the right-hand side, the visual appearance of Cetrek devices has been 

copied to show the heading error and the current rudder position in an analogue manner. 

The absolute heading can be seen in a digital form in the compass device (top). The current 

time and the elapsed time of the run is located in the right top corner of the screen with 

an underlying world grid displaying the current position on the globe. All those devices 

are updated constantly at a sampling time depending on the speed of the computer that the 

program runs. 

The programming language used is C++. The code is written in an object oriented man­

ner to allow easy re-use of program components. A screen shot of the program can be seen 

in figure C.l. One module is handling all the NMEA communication with the lifeboat sim­

ulation. 

The messages between the model (or real world ship) are exchanged, using the NMEA 

standard. The messages considered are summarised in appendix D. 

A special message containing information about the vessel's current state is transmitted 

by the li feboat simulation using the customised MOD (model) message (see appendix D for 
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Figure C.l. Screen Shot of the Program 

syntax and message content). It contains data about heading, rudder angle, the yaw rate and 

roll and pitch angle. 

The autopi lot is fully embedded into this environment. It uses the data from the NMEA 

messages sent by the lifeboat as input variables. The autopilot itself uses only the heading 

information and its derivative (\jl and \jl) . However, when running the PSoFLC far more in­

formation is considered. To build the internal mathematical model of the vessel, information 

used is as fo llows: 

• rudde r, 

• roll , 

• pitch , 

• speed, 

• heading. 

To 'communicate' with the ship, information about the direction and the speed to drive 

the rudder is transmitted directly into the distribution box of the vessel (during simulation). 
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Figure C.2. General Layout of the Control Task 

The information transmitted represents a flow rate of the oil in the pump driving the rudder 

shaft. The simulation has a variable speed oil pump. 

During tests using a real boat, fitted with Cetrek devices, the autopilot software was 

executed on a laptop. The software sends a RSA (see appendix D for syntax and message 

content) message, only containing a desired rudder angle. Then the rudder loop inside the 

'619 Distribution Box' controls the rudder to the desired position . When the distribution 

box receives this message, it overrides the built-in autopilot and uses the received messages 

as 'dodge' command (as it does in power-steer mode). The built-in autopilot has an input 

device for entering a desired course and giving power-steer commands. Two buttons on the 

device increase/decrease the value to be changed in predefined steps. In power-steer mode, 

a press of the button will have the effect of moving the rudder to the desired angle . 

The actual test bed not only includes a contro l loop for the course keeping but also a 

rudder loop to control the desired position of the rudder. Here, a fixed ru lebase fuzzy logic 

controller has been used to achieve good performance with minimal development effort. 

The rudder loop is not used when operated on the real ship during sea trials but during 

simulations. 

The block layout of the controller developed (see figure C.2) shows a standard control 

loop wi th negative feedback to provide a heading error vector including \jl and \jl. Figure C.3 

shows a more detailed layout with both the outer and a inner loop (heading control loop and 

rudder control loop). 

The actual rudder position is transmitted by the boat's rudder feedback device in NMEA 

format. 
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Figure C.3. Detailed Layout of the Control Task 

C.2.2 Data-Logging 

Part of the test bed is the data-logger. All events (heading information, rudder changes, 

positions etc) are held in an array in memory. This array is saved to file when the program 

is exited. The sample rate can be reset in the source code or it can be switched to an event-

driven logger. If the event--driven logger is selected, points are on ly stored when an event 

(events can be OR'ed) occurs. Giving each record a time-stamp proved to be very valuable 

since the sampling frequency is not constant when logging events. This time-stamp is then 

used as an x-axis in history plots. 

The program can be started with a manoeuvre fi lename as a parameter from the command 

line . The manoeuvre fi le contains information on the planned course to execute. There are 

two numbers in each record - 1) desired heading, and 2) the time required for this heading 

to be maintained. This feature has been used to set up simulation runs and to guarantee the 

same working conditions for each controller used during testing and for comparison. 

Data is written to a fi le which makes it easy to repeat and analyse the simulation off-line. 

The number of saved points depends on the memory avai lable in the machine. In order to 

save time, all points are held in memory (dynamic list) until the program is stopped. Points 

held in memory appear in green, points which cannot be stored in memory (due to lack of 

free resources and therefore not in the file) are shown as yellow crosses. The points are 
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simply connected by a line to show the covered course in the track window. 

C.3 Summary 

This chapter highlighted some aspects of mathematical modelling of ships and the charac­

teristics of the sample vessel. 

The program developed for testing and comparison of autopilot designs has been dis­

cussed in detail. This software provides the testbed for all the work canied out including de­

velopment and testing in simulation. The graphical user interface allows easy visual analysis 

of the process. It gives instant readings of vital information such as rudder angle, travelled 

course and heading error. 
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AppendixD 

NMEA Messages considered 

Geographic Position - Latitude/ Longitude 

$xxGLL, llll.ll,n , yyyyy.yy , m,hhmmss.ss,A*hh<CR><LF> 

with: llll.ll ... the vessel's latitude, 

n . .. N/S for north/ south respectively, 

yyyy.yy .. . the vessel's longitude, 

m . .. E/W for east/ west respectively, 

hhrnrnss.ss . .. UTC of position 

A*hh ... A= data valid 

This message gives the longitude as well as the latitude of the vessel 's position on the globe. 

This data is used to plot the true way covered by the vessel. 

Water Speed and Heading 

$xxVHW,h.h,T,m.m,M,s.s,N,x.x,K*hh<CR><LF> 
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with: h.h ... the vessel's heading, 

T ... true, 

m.m .. . the vessel's heading, 

M . . . magnetic, 

s.s . .. the vessel's speed, 

N ... knots, 

s.s . . . the vessel's speed, 

K ... km·h- 1 

Out of this message, the relative speed of the vessel can be extracted as well as the cuJTent 

heading. 

Wind Speed and Direction 

$xxMWV,xxx.x,T,yyy.y,K,A*hh<CR><LF> 

with: xxx .x . . . the wind angle, 

T .. . True or Relative (R) wind angle, 

yyy.y ... the wind speed 

K . .. K (km· h- 1) , M (m· h- 1) 

A *hh ... A = data valid 

Customised Message (MODel) 

$xxMOD , xxx . x,M,yy.y , L,zz.z,ppp.p,rrr . r<CR><LF> 

with: xxx.x ... the vessel's heading, 

M . . . Magnetic or True heading, 

yy.y . .. the rudder angle in o 

L .. . L . .. left, R ... right 

zz.z . . . the yaw rate 

ppp.p .. . the pitch angle 

m .r . . . the roll angle 
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AppendixE 

Rule bases 

The first 30s are executed by the PO to align the vessel to 0°. There are 25s after each 

20°step change to serve exactly the same purpose, to real ign the vessel in case the autopilot 

tested was unable to keep the desired course. This has been included to have always the 

same starting positions when initi ating a new step. During the real igning, the PO contro ller 

is functioning. The sequence is displayed in table E. l. 

Table E.l. Step Response Manoeuvre 

heading time operating controller 
0 oo lOs PD 

30 oo 20s PD 
run I 120 20° 90s PSoFLC/SoFLC 

145 20° 25s PD 
235 oo 90s PSoFLC/SoFLC 
260 oo 25s PO 

run 2 350 20° 90s PSoFLC/SoFLC 
375 20° 25s PD 
465 oo 90s PSoFLC/SoFLC 
490 oo 25s PO 

run 3 580 20° 90s PSoFLC/SoFLC 
605 20° 25s PD 
695 oo 90s PSoFLC/SoFLC 
720 oo 25s PO 

Figure E. l shows the time setup for the step change. The purple dots indicate a sampling 

point of the rulebase. The contents and its visualisation can be found in the following section. 

The heading and rudder charts only d isplay the data as collected when the PSoFLC or 

SoFLC were operating, eg no rulebase update was performed during the 'alignment' when 
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Figure E.l. The Step Response Test 

the PO controller was operating. 

During this 12 min period, not all rules have been activated and so some areas of the 

rulebase remain unchanged or little changed whereas other areas show a big activity. Rules 

remain unchanged, does not mean the controller was performing well in the considered re-

gions, it only means there was no ru le update required in those areas. It is largely due to 

the environment that the inner ru les of the controller were sufficient to cover the existing 

environment. The controller can on ly learn the response of a environment is it exposed to. 

The controller only learns, what is needed according to the current and past vessel states and 

environmental conditions. 

From the interaction of these rules, the non-linearitie of the controller's rulebase become 

apparent. 
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E.l PSoFLC 

E.l.l Measured Values 
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Figure E.2. Step Response 1050 rpm, 2 1 knots - Rulebase logging 

The fi gure E.2 above shows the heading during the ±20°step change where the rulebases 

following where logged. 

The following tables and graphs represent the rulebase, not the control surface, in approx. 

30s intervals. 
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E.1.2 The Rulebases 
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the preset mlebase 

NB NM NS z PS PM PB 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

the changed mlebase at 11 :25:50.27 ( I) 

NB NM NS z PS PM PB 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0. 19 0.00 0.00 0.00 

0.00 0.00 0.00 0.03 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0 .00 0.00 0.00 0.00 0.00 

the changed rulebase at 11 :26:20.28 (2) 

NB NM NS z PS PM PB 

0.00 0.00 0.00 11.24 5.62 1.70 0.08 

0.00 0.00 0.1 4 11.51 6.08 1.03 -1.62 

0.00 0.00 1.07 1.33 -0.22 -0.50 -0.36 

0.00 0.00 2.24 0.77 -1.28 -0.02 0.00 

0.00 0.00 0.28 -2.43 -2.05 0.00 0.00 

0.00 0.00 -0. 14 -0.83 -0.61 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

the changed rulcbase at 11 :26:50.29 (3) 

NB NM NS z PS PM PB 

0.00 0.00 0.00 11.24 5.62 1.70 0.08 

0.00 0.00 0.14 11.51 6.08 1.03 -1.62 

0.00 0.00 1.07 1.30 -0.24 -0.50 -0.36 

0.00 0.00 2.25 -0.19 -1.49 -0.02 0.00 

0.00 0.00 0.49 -2.37 -2. 11 0.00 0.00 

0.00 0.00 -0. 13 -0.82 -0.61 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 



The adaptation of the rules is very rapid. During the first 30s after the step change, the 

majority of the adaptation is complete. Rulebases (I), (2), (3) and (4) clearly demonstrate 

that. There is only very little difference between rulebases (2), (3) and (4). Rulebase (2) 

is sampled about 30s into the first step change. Most of the adaptation occurred before this 

sample. This can be concluded from the differences in rulebase (I) and (2). 
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the changed rulebase at 11 :27:20.29 (4) 

NB NM NS z PS PM PB 

0.00 0.00 0.00 11 .24 5.62 1.70 0 .08 

0.00 0.00 0 .14 11 .5 1 6.08 1.03 -1.62 

0.00 0.00 1.13 1.38 -0.26 -0.50 -0 .36 

0.00 0.00 2.39 0 .04 -1.57 -0.0 2 0.00 

0 .00 0.00 0.48 -2.39 -2. 12 0 .00 0.00 

0.00 0.00 -0 .13 -0 .82 -0.61 0 .00 0.00 

0.00 0.00 0 .00 0.00 0.00 0 .00 0.00 

the changed rulebase at 11 :27:50.29 (5) 

NB NM NS z PS PM PB 

0.00 0.00 0.00 11.24 5.62 1.70 0.08 

0.00 0.00 0.14 11 .5 1 6.08 1.03 - 1.62 

0.00 0.00 1.13 1.38 -0.26 -0.50 -0.36 

0.00 0.00 2.39 0.04 -1.57 -0.02 0.00 

0.00 0.00 0.48 -2.39 -2. 12 0.00 0.00 

0.22 -3.24 -6.78 -11.2 1 -0.61 0.00 0.00 

-0.07 ·2.25 -6.42 -11.39 0.00 0.00 0.00 

the changed rulebase at 11 :28:20.30 (6) 

NB NM NS z PS PM PB 

0.00 0.00 0.00 11 .24 5.62 1.70 0.08 

0.00 0.00 0.14 11.47 6.07 1.03 - 1.62 

0.00 0.00 1.1 7 1.05 -0.30 -0.50 -0.36 

0.00 0.00 4.06 0.62 -1.97 -0.02 0.00 

0.12 4.17 1.97 -2.02 -2. 16 0.00 0.00 

0.69 - 1.63 -6.:l3 -11.20 -0.61 0.00 0.00 

-O.D4 -2.22 -6.42 -11.39 0.00 0.00 0.00 
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the changed rulebase at I I :28:50.30 (7) 

NB NM NS z PS PM PB 

0.00 0.00 0.00 11 .24 5.62 1.70 0.08 

0.00 0.00 0.14 11.47 6.07 1.03 -1.62 

0.00 0.00 1.22 1.13 -0.30 -0.50 -0.36 

0.00 0.00 4.05 0.17 -2.06 -0.02 0.00 

0.12 4 .17 1.87 -2.27 -2. 19 0.00 0.00 

0.69 -1.63 -6.33 -11.20 -0.6 1 0.00 0.00 

-0.04 -2.22 -6.42 -11.39 0.00 0.00 0.00 

the changed rulebase at 11:29:20.30 (8) 

NB NM NS z PS PM PB 

0.00 0.00 0 .00 11 .24 5.62 1.70 0.08 

0.00 0.00 0.14 11.47 6.07 1.03 - 1.62 

0.00 0.00 1.22 1.13 -0.30 -0.50 -0.36 

0.00 0.00 4 .02 -0.0 1 -2.06 -0.02 0.00 

0.12 4.17 1.85 -2.30 -2. 18 0.00 0.00 

0.69 -1.63 -6.33 - 11 .20 -0.61 0.00 0.00 

-0.04 -2.22 -6.42 -11.39 0.00 0.00 0.00 

the changed rulebase at 11 :29:50.33 (9) 

NB NM NS z PS PM PB 

0.00 0.00 0.00 11.75 6.54 4.00 0.29 

0.00 0.00 0.14 11 .85 7.00 3.00 -2.70 

0.00 0.00 1.22 1.13 -0.34 -0.61 -0.60 

0.00 0.00 4.02 -0.01 -2.06 -0.02 0 .00 

0. 12 4.17 1.85 -2.30 -2.18 0.00 0.00 

0.69 -1.63 -6 .33 -11.20 -0.61 0.00 0.00 

-0.04 -2.22 -6.42 -11.39 0.00 0.00 0.00 

the changed rulebase at 11 :30:20.35 ( 10) 

NB NM NS z PS PM PB 

0.00 0.00 0.00 11 .75 6.54 4.00 0.29 

0.00 0.00 0.15 11 .86 6.96 2.95 -2.70 

0.00 0.00 1.46 1.38 -0.58 -0.86 -0.60 

0.00 0.00 4.55 0.2 1 -2.53 -0.06 0.00 

0. 12 4. 17 1.81 -2.70 -2.47 0.00 0.00 

0.69 - 1.63 -6.32 -11.23 -0.64 0.00 0.00 

-0.04 -2.22 -6.42 -11.39 0.00 0.00 0.00 
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the changed rulebase at 11 :30:50.36 ( I I) 

NB NM NS z PS PM PB 

0.00 0 .00 0 .00 11.75 6.54 4.00 0.29 

0.00 0 .00 0 .15 11 .86 6.96 2.95 -2.70 

0.00 0.00 1.46 1.38 -0.58 -0.86 -0.60 

0.00 0.00 4.44 -0.42 -2.54 -0.06 0.00 

0.12 4. 17 1.73 -2.86 -2.48 0.00 0.00 

0.69 -1.63 -6.32 -11.23 -0.64 0.00 0.00 

-0.04 -2.22 -6.42 - 11.39 0.00 0.00 0.00 

the changed rulebase at 11:3 1 :20.37 ( 12) 

NB NM NS z PS PM PB 

0.00 0.00 0.00 11.75 6.54 4.00 0.29 

0.00 0.00 0.15 11 .86 6.96 2.95 -2.70 

0.00 0.00 1.49 1.42 -0.58 -0.86 -0.60 

0.00 0.00 4.48 0.24 -2.52 -0.06 0.00 

0.12 4. 17 1.73 -2.85 -2.47 0.00 0.00 

0.69 -1.63 -6.32 -11.23 -0.64 0.00 0.00 

-0.04 -2.22 -6.42 -11.39 0.00 0.00 0.00 

the changed ru lebase at 11:3 1:50.37 ( 13) 

NB NM NS z PS PM PB 

0.00 0.00 0.00 11.75 6.54 4.00 0.29 

0.00 0.00 0.16 11.87 6.96 2.95 -2.70 

0.00 0.00 1.76 1.71 -0.58 -0.86 -0.60 

0.00 0.00 4.95 0.50 -2.52 -0.06 0.00 

0.02 3.42 1.55 -2.8 1 -2.47 0.00 0.00 

1.16 -2.41 -7.91 -11.20 -0.64 0.00 0.00 

0.28 -2.52 -7.43 -11.32 0.00 0.00 0.00 

the changed rulebase at 11:32:20.37 ( 14) 

NB NM NS z PS PM PB 

0.00 0.00 0.00 11.75 6.54 4.00 0.29 

0.00 0.00 0. 17 11.88 6.96 2.95 -2.70 

0.00 0.00 1.75 1.77 -0.60 -0.86 -0.60 

0.00 0.00 4.83 -0.67 -2.74 -0.06 0.00 

0.02 3.42 1.5 1 -2.89 -2.50 0.00 0.00 

1.16 -2.41 -7.9 1 -11.20 -0.64 0.00 0.00 

0.28 -2.52 -7.43 -11.32 0.00 0.00 0.00 
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the changed rulebase at 11 :32:50.38 ( 15) 

NB NM NS z PS PM PB 

0.00 0.00 0.00 11.75 6.54 4.00 0.29 

0.00 0.00 0. 17 11 .88 6.96 2.95 -2.70 

0.00 0.00 1.74 1.99 -0.48 -0.86 -0.60 

0.00 0.00 4.82 0.07 -2.62 -0.06 0.00 

0.02 3.42 1.5 1 -2.89 -2.50 0.00 0.00 

1.16 -2.4 1 -7.91 -11.20 -0.64 0.00 0.00 

0.28 -2.52 -7.43 -11.32 0.00 0.00 0.00 

the changed rulebase at 11 :33:20.39 1(16) 

NB NM NS z PS PM PB 

0.00 0.00 0.00 11.75 6.54 4.00 0.29 

0.00 0.00 0.17 11 .88 6.96 2.95 -2.70 

0.00 0.00 1.74 1.99 -0.47 -0.86 -0.60 

0.00 0.00 4.82 0.35 -2.61 -0.06 0.00 

0.02 3.42 1.5 I -2.88 -2.50 0.00 0.00 

1.16 -2.41 -7.9 1 - 11.20 -0.64 0.00 0.00 

0.28 -2.52 -7.43 - 11.32 0.00 0.00 0.00 

the changed rulebase at 11 :33:50.43 ( 17) 

NB NM NS z PS PM PB 

0.00 0.00 0. 16 12.4 1 6.97 5.41 0.55 

0.00 0.00 0.37 12.44 7.36 5.34 -2.23 

0.00 0.00 2.06 2. 18 -0.77 - 1.46 -0.56 

0.00 0.00 5.23 0.47 -3. 19 -1.04 0.00 

0.02 3.42 1.74 -3. 17 -3.00 -0.02 0.00 

1.16 -2.41 -7.89 -11.29 -0.75 0.00 0.00 

0.28 -2.52 -7.43 -11.32 0.00 0.00 0.00 

the changed rulebase at 11 :34:20.43 ( 18) 

NB NM NS z PS PM PB 

0.00 0.00 0. 16 12.41 6.97 5.4 1 0.55 

0.00 0.00 0.37 12.44 7.36 5.34 -2.23 

0.00 0.00 2.06 2.34 -0.76 - 1.46 -0.56 

0.00 0.00 5.36 -0.54 -3.47 - 1.04 0.00 

0.02 3.42 3.89 -0.58 -2.99 -0 .02 0.00 

1.16 -2.41 -7.45 - 10.78 -0.73 0.00 0.00 

0.28 -2.52 -7.43 -11.32 0.00 0.00 0.00 
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the changed rulebasc at 11 :34:50.43 ( 19) 

NB NM NS z PS PM PB 

0.00 0.00 0.16 12.41 6.97 5.4 1 0.55 

0.00 0.00 0.37 12.44 7.36 5.34 -2.23 

0.00 0.00 2.05 2.48 -0.70 -1.46 -0.56 

0.00 0.00 5.36 0.31 -3.40 -1.04 0.00 

0.02 3.42 3.89 -0.60 -2.99 -0.02 0.00 

1. 16 -2.4 1 -7.45 -10.78 -0.73 0.00 0.00 

0.28 -2.52 -7.43 -11.32 0.00 0.00 0.00 

the changed rulebase at 11 :35:20.5 1 (20) 

NB NM NS z PS PM PB 

0.00 0.00 0. 16 12.4 1 6.97 5.41 0 .55 

0.00 0.00 0.37 12.44 7.36 5.34 -2.23 

0.00 0.00 2.05 2.48 -0.70 - 1.46 -0.56 

0.00 0.00 5.35 0.03 -3.41 -1 .04 0.00 

0.02 3.42 3.88 -0.62 -2.99 -0.02 0 .00 

1.16 -2.41 -7.45 -10.78 -0.73 0.00 0.00 

0.28 -2.52 -7.43 -11.32 0.00 0.00 0 .00 

the changed rulebase at 11:35:50.5 1 (21) 

NB NM NS z PS PM PB 

0.00 0.00 0. 16 12.4 1 6.97 5.41 0.55 

0.00 0.00 0.37 12.44 7.36 5.34 -2.23 

0.00 0.00 2.02 2.43 -0.70 - 1.46 -0.56 

0.00 0.00 5.24 -0.89 -3.42 -1.04 0 .00 

0.31 3.08 3.98 -0.59 -2.99 -0.02 0.00 

2.11 -4. 19 -8.25 -9.97 -0.74 0.00 0.00 

0 .20 -4.4 1 -8.26 -10.40 -0.01 0.00 0.00 

the changed rulebase at 11 :36:20.53 (22) 

NB NM NS z PS PM PB 

0.00 0.00 0 .16 12.41 6.97 5.4 1 0.55 

0.00 0.00 0 .37 12.44 7.36 5.34 -2.23 

0.00 0.00 1.99 2.4 1 -0.69 -1.46 -0.56 

0.00 0.00 5.20 ·0.94 -3.40 -1.04 0.00 

0.31 3.08 3.98 -0.59 -2.99 -0.02 0.00 

2. 11 -4. 19 -8.25 -9.97 -0.74 0.00 0.00 

0.20 -4.41 -8.26 -10.40 -0.01 0.00 0.00 
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the changed rulebase at 11 :36:50.54 (23) 

NB NM NS z PS PM PB 

0.00 0.00 0.16 12.4 1 6.97 5.41 0.55 

0.00 0.00 0.37 12.44 7.36 5.34 -2.23 

0.00 0.00 1.96 2.49 -0.65 - 1.46 -0.56 

0.00 0.00 5.18 -0.68 -3.36 - 1.04 0.00 

0.3 1 3.08 3.98 -0.59 -2.99 -0.02 0.00 

2. 11 -4. 19 -8.25 -9.97 -0.74 0.00 0.00 

0.20 -4.4 1 -8.26 -10.40 -0.01 0.00 0.00 

the changed rulebase at 11:37:37.02 (24) 

NB NM NS z PS PM PB 

0.00 0.00 0. 16 12.4 1 6.97 5.41 0.55 

0.00 0.00 0.37 12.44 7.36 5.34 -2.23 

0.00 0.00 1.96 2.57 -0.61 -1.46 -0 .56 

0.00 0.00 5. 17 -0.30 -3.32 -1.04 0.00 

0.31 3.08 3.98 -0.59 -2.99 -0.02 0.00 

2.11 -4. 19 -8.25 -9.97 -0.74 0.00 0.00 

0.20 -4.4 1 -8.26 - 10.40 -0.0 1 0.00 0.00 



E.2 SoFLC 

E.2.1 Measured Values 

en 
c: 
'6 
<0 
Q) 

.<::: 

C\l 
c: 

.s 
Q; 
-u 
-u 
2 

M' 
c: 

.s 
a; 
-u 
-u 
2 

25 

20 

15 

10 

5 

0 

-5 

0 

:: 

10 20 30 40 50 

time (s] 

60 70 

Run1 -­
Run2 -
Run3-

80 90 

0 10 20 30 40 50 60 70 80 90 

time[s] 

::,____-·-·_· - __.·· ·_··· ···_..__· __._· _ __._· _ -__,__· --'-----'---da-ta fi.._le: so-10___,00] 

0 10 20 30 40 50 60 70 80 90 

time[s] 

_:: .____· _· ..__·_· ·· _·· . -'-----'---·· ____,_- _······_···. ~·······_·····_· .. ··__.._· -- - ___._,.,.-a fil'--e: s-o10___,WI 

0 10 20 30 40 50 60 70 80 90 

time[s] 

178 



E.2.2 The Rulebases 
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the preset rulebase 

NB NM NS z PS PM PB 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0 .00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0 .00 

the changed rulebase at 17:25:44.36 ( I) 

NB NM NS z PS PM PB 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.01 0.01 0.00 0.00 

0.00 0.00 0.00 0.03 0.0 1 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0 .00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

the changed rulebase at 17:26:14.36 (2) 

NB NM NS z PS PM PB 

0.00 0.00 0.7 1 11 .23 4.77 0.17 0.00 

0.00 0.00 0.8 1 10.13 4.80 0.50 0.00 

0.00 0.00 0.6 1 0.15 -0.56 -0.70 0.00 

0.00 0.74 0.56 6.33 -0.73 0.00 0.00 

0.00 0.19 - 1.25 -5.69 -5.77 0.00 0.00 

0.00 0.00 - 1.01 -4.1 1 -2.4 1 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

the changed rulebasc at 17:26:44.36 (3) 

NB NM NS z PS PM PB 

0.00 0.00 0.7 1 11.23 4.77 0. 17 0.00 

0.00 0.43 3.44 13.22 4.95 0. 14 0.00 

0.00 1.03 6.75 5.07 -0.59 -2.24 0.00 

0.00 3.10 1.63 6.22 -1.71 -0.58 0.00 

0.00 0.68 0.04 -8.58 -8.37 0.00 0.00 

0.00 0.16 -0.9 1 -4.97 -3.13 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 



The adaptation of the rules is not as rapid as can be observed when the PSoFLC is operating. 

This is seen by the diffe rences between the ru lebases. It appears that the rulebase does not 

settle, furthermore, it is constantly updated. 
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the changed rulebase at 17:27:14.36 (4) 

NB NM NS z PS PM PB 

0.00 0.00 0.7 1 11.23 4.77 0.17 0.00 

0.34 1.4 1 4.36 13.85 4.39 -0.33 0.00 

0.42 4.48 9.41 6.66 -1.97 -4.22 0.00 

0.00 3. 10 2.53 6.08 -2.17 -3.62 -0.20 

0.40 4.18 1.95 -11.5 1 -12.85 -1.96 -0.20 

0. 15 1.44 -0.07 ·6.90 -5.65 -0.40 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

the changed rulebasc at 17:27:44.36 (5) 

NB NM NS z PS PM PB 

0.00 0.00 0.71 11 .23 4.77 0.17 0.00 

0.34 1.4 1 1.07 12.91 4.39 ·0.33 0.00 

0.42 4.48 4.45 5.72 -1.97 -4 .22 0.00 

0.00 3.10 2.53 6.08 -2. 17 -3.62 -0.20 

0.40 4.18 1.95 -11.51 - 12.85 - 1.96 -0.20 

0.15 1.44 -3.89 -14.96 ·6.36 -0.40 0.00 

0.00 0.00 -3.45 -8.98 -0.7 1 0.00 0.00 

the changed rulcbru.c at 17:28:14.36 (6) 

NB NM NS z PS PM PB 

0.00 0.00 0.7 1 11.23 4.77 0.17 0.00 

1.85 4.90 4.01 15.63 4.67 ·0.56 0.00 

3. 15 12.47 8.06 8.85 -2.49 -5.23 0.00 

1.93 7.34 3.31 6.08 -2.57 -4.82 -0.20 

1.56 4.92 5.00 -11.64 - 14.15 -2.08 -0.20 

0.15 -0.80 -4.47 -14.74 -6.77 -0.40 0.00 

0.00 -0.42 -3.56 -8.98 ·0.7 1 0.00 0.00 
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the changed rulebase at 17:28:44.36 (7) 

NB NM NS z PS PM PB 

0.00 0.00 0 .7 1 11.23 4.77 0.17 0.00 

1.85 5. 14 5.47 16.69 2.62 -3.46 -0.55 

3.15 13.84 11.83 10.56 -5.1 6 -10.36 -0.55 

1.93 9.66 3.69 5.73 -3.98 -5.15 -0.20 

1.56 5.23 7.57 -10.51 - 15.60 -2.3 1 -0.20 

0.15 -0.80 -4.06 - 14.56 -6.98 -0.40 0.00 

0.00 -0.42 -3.56 -8.98 -0.71 0.00 0.00 

the changed rule base at 17:29:14.36 (8) 

NB NM NS z PS PM PB 

0.00 0.00 0.71 11.23 4.77 0.17 0.00 

1.85 5.19 6.11 16.99 1.56 -4.41 -0.55 

3.15 14.48 14.38 10.96 -8.14 -12.82 -0.72 

2.03 11.6 1 3.69 5.73 -3.98 -10.25 -0.37 

1.66 9.92 10.23 -10.8 1 -18.46 -3.46 -0.20 

0.15 0.20 -2.75 - 14.69 -8.03 -0.83 0.00 

0.00 -0.42 -3.56 -8.98 -0.71 0 .00 0.00 

the changed rulebase at 17:29:44.36 (9) 

NB NM NS z PS PM PB 

0.00 0.00 1.38 16.68 6.64 -0.65 -0.72 

1.85 5. 19 8.20 24 .11 5.15 -6.49 - 1.5 I 

3. 15 14.48 15.80 16.34 -6.50 - 12.6 1 -0.56 

2.03 11.61 3.69 5.73 -3.98 -10.25 -0.37 

1.66 9.92 10.23 - 10.8 1 - 18.46 -3.46 -0.20 

0 .15 0.20 -2.75 -14.69 -8.03 -0.83 0.00 

0.00 -0.42 -3.56 -8.98 -0.71 0 .00 0.00 

the changed rulebase at 17:30: 14.37 ( 10) 

NB NM NS z PS PM PB 

0.00 0.00 1.38 16.68 6.64 -0.65 -0.72 

1.85 5. 19 8.32 24.56 5.20 -7.42 - 1.5 1 

3. 15 14.48 16.33 16.65 -7.62 -16.34 -0.56 

2.03 12.33 4.13 4.82 -5.25 - 12.77 -2.47 

1.69 10.49 11.45 -12.57 -21.25 -9.79 -2.27 

0. 18 0.75 -2.02 - 15.37 -9.80 -3.05 -0.89 

0.00 -0.42 -3.56 -8.98 -0.71 0.00 0.00 
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the ch3nged rulebase 3t 17:30:44.37 ( I I) 

NB NM NS z PS PM PB 

0.00 0.00 1.38 16.68 6.64 -0.65 -0.72 

1.85 5.19 8.66 23.32 3.69 -7.42 -1.51 

3. 15 14.61 18.19 13.37 -14.16 -17.43 -1.24 

2.03 12.97 6.59 5.04 -5.25 -17.20 -3.37 

1.83 13.87 14.69 -13.37 -24.07 -13.08 -2.59 

0.3 1 2.06 0.14 -15.87 - 11 .10 -3.94 -1.00 

0.00 -0.42 -3.56 -8.98 -0.71 0.00 0.00 

the changed rulebase at 17:3 1:14.38 ( 12) 

NB NM NS z PS PM PB 

0.00 0.00 1.38 16.68 6.64 -0.65 -0.72 

1.85 5.19 8.68 23.15 3.50 -7.42 - 1.51 

3. 15 14.61 18.56 12.60 -15.74 -17.87 -1.24 

2.03 13.24 7. 12 5.04 -7.47 -20. 14 -3.37 

1.83 15.35 17.09 -13.50 -27.77 -1 4.74 -2.59 

0.3 1 2.43 1.07 -16.03 -12.55 -4.32 -1.00 

0.00 -0.42 -3.56 -8.98 -0.7 1 0.00 0.00 

the changed rulebase at 17:3 1:44.38 ( 13) 

NB NM NS z PS PM PB 

0.00 0.00 1.38 16.68 6.64 -0.65 -0.72 

1.85 5.19 8.68 23.15 3.50 -7.42 -1.51 

3. 15 14.61 18.56 12.60 -15.74 -17.87 -1.24 

2.03 13.24 7.12 5.04 -7.47 -20.14 -3.37 

1.83 14.77 10.93 -21.00 -27.77 -14.74 -2.59 

1.53 5.94 -5.63 -24.85 -12.55 -4.32 -1.00 

0.72 0.58 -5.72 -14.49 -0.71 0.00 0.00 

the ch3nged rulebase at 17:32: 14.38 (14) 

NB NM NS z PS PM PB 

0.00 0.00 1.38 16.68 6.64 -0.65 -0.72 

2.16 5.86 9.85 22.29 0.5 1 -9.23 -1.87 

3.88 16.77 20.96 11 .96 -21.96 -22.83 -1.73 

2.03 13.24 7.64 5.44 -8.45 -24.16 -3.37 

4.03 19.06 18.85 -18.69 -30.33 -15.88 -2.59 

1.94 6.35 -3.14 -22.9 1 -13.30 -4.52 -1.00 

0.72 0.58 -5.72 -14.49 -0.71 0.00 0.00 
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the changed rule base at 17:32:44.38 ( 15) 

NB NM NS z PS PM PB 

0.00 0.00 1.38 16.68 6.64 -0.65 -0.72 

2.44 7.05 11.54 22.23 -0.69 -9.64 -2.0 1 

4.54 20. 16 23.91 11.58 -23.45 -24.42 - 1.87 

2 .25 19.82 9.58 4.93 -9.31 -24.61 -3.37 

4.03 20.28 2 1.24 -17.70 -30.98 -15.88 -2.59 

1.94 6.35 -2.87 -22.48 - 13.35 -4.52 -1.00 

0.72 0.58 -5.72 -14.49 -0.7 1 0.00 0.00 

the changed rulebase at 17:33:14.38 ( 16) 

NB NM NS z PS PM PB 

0.00 0.00 1.38 16.68 6.64 -0.65 -0.72 

2.44 7.24 12.05 22.46 -1.27 -9.99 -2.01 

4.54 20.98 25.25 12. 11 -24.55 -25.74 -1.87 

2.25 21.97 10.29 4.93 - 10.32 -25.53 -3.37 

4.03 20.50 22.97 - 16.61 -3 1.55 - 15.88 -2.59 

1.94 6.35 -2.5 1 -22.22 - 13.43 -4.52 -1.00 

0.72 0.58 -5.72 - 14.49 -0.71 0.00 0.00 

the changed rulebase at 17 :33:44.38 (1 7) 

NB NM NS z PS PM PB 

0.00 0.00 1.38 22.34 8.18 -0.60 -0.62 

2.44 7.24 12.05 30.55 6.85 -8.64 -1.91 

4.54 20.98 25.25 15.7 1 - 18.90 -25.74 -1.87 

2.25 25.54 11.72 4.76 - 10.74 -25.53 -3.37 

4.03 2 1.2 1 23.68 - 16.61 -3 1.55 -15.88 -2.59 

1.94 6.35 -2.51 -22.22 - 13.43 -4.52 -1.00 

0.72 0.58 -5.72 - 14.49 -0.71 0.00 0.00 

the changed rulebase at 17:34: 14.38 ( 18) 

NB NM NS z PS PM PB 

0.00 0.00 1.38 22.34 8. 18 -0.60 -0.62 

2.44 7.36 12.70 29.58 5.37 -9.36 -2.35 

4.54 21.62 27.89 14.00 -24.08 -29.35 -2.3 1 

2.25 25.88 13.51 4.67 - 10.84 -30.08 -3.59 

4.23 23.20 29.13 -16.86 -34.15 -16.91 -2.8 1 

2.06 7.39 -0.41 -2 1.68 -14.50 -4.64 -1.00 

0.72 0.58 -5.72 -14.49 -0.7 1 0.00 0.00 
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the changed rulebase at 17:34:44.38 ( 19) 

NB NM NS z PS PM PB 

0.00 0.00 1.38 22.34 8. 18 -0.60 -0.62 

2.44 7.36 12.94 29.21 4.75 -9.40 -2.35 

4.54 2 1.8 1 29.27 12.76 -27.43 -3 1.49 -2.31 

2.25 28.09 14.15 4.67 - 11. 19 -3 1.70 -3.59 

4.23 26.60 32.05 -17.15 -35.00 -18.67 -2.81 

2.06 8.35 1. 11 -22.15 - 15.76 -4.88 -1.00 

0.72 0.58 -5.72 -14.49 -0.7 1 0.00 0.00 

the changed rulebase at 17:35:1 4.38 (20) 

NB NM NS z PS PM PB 

0.00 0.00 1.38 22.34 8.18 -0.60 -0.62 

2.44 7.36 12.97 29.24 4.74 -9.40 -2.35 

4.54 2 1.8 1 29.56 13.08 -27.95 -3 1.49 -2.31 

2.25 28.86 14.30 4.67 -1 1.19 -31.70 -3.59 

4.23 27.66 33.36 -17.00 -35.00 -19.02 -2.81 

2.06 8.70 1.66 -22.09 - 15.98 -4.93 -1.00 

0.72 0.58 -5.72 -14.49 -0.7 1 0.00 0.00 

the changed rulebase at 17:35:44.38 (2 1) 

NB NM NS z PS PM PB 

0.00 0.00 1.38 22.34 8. 18 -0.60 -0.62 

2.44 7.36 12.97 29.24 4.74 -9.40 -2.35 

4.54 21.81 29.56 13.05 -27.98 -3 1.49 -2.3 1 

2.25 28.86 14.24 3.85 -11.92 -3 1.70 -3.59 

4.23 25.37 25. 17 -21.55 -35.00 - 19.02 -2.8 1 

1.94 6.37 -7.42 -30.06 -16.08 -4.93 -1.00 

0.60 0.28 -8.06 -19.83 -0.7 1 0.00 0.00 

the changed ru lebase at 17:36: 14.38 (22) 

NB NM NS z PS PM PB 

0.00 0.00 1.38 22.34 8.18 -0.60 -0.62 

2.60 8.28 14.44 29.25 2.78 -10.46 -2.46 

5.06 24.83 32.30 13.43 -32.30 -34.59 -2.43 

2.25 29.98 14.43 3.85 -13.11 -33.93 -3.59 

4.23 27.92 29.10 -20.38 -35.00 - 19.05 -2.81 

1.94 6.54 -6.91 -29.89 - 16.25 -4.93 -1.00 

0.60 0.28 -8.06 -19.83 -0.7 1 0.00 0.00 
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the changed rulebase at 17:36:44.38 (23) 

NB NM NS z PS PM PB 

0.00 0.00 1.38 22.34 8.18 -0.60 -0.62 

2.71 8.72 15.44 29.74 1.55 -1 1.68 -2.48 

5.17 26.69 35.00 14.46 -34.37 -35.00 -2.45 

2.25 35.00 16.27 3.94 -14.28 -34.19 -3.59 

4.23 27.92 3 1.36 -19.27 -35.00 -19.05 -2.8 1 

1.94 6.54 -6.60 -29.64 -16.32 -4.93 - 1.00 

0.60 0.28 -8.06 -19.83 -0.71 0.00 0.00 

the changed rulebase at 17:37:36.73 (24) 

NB NM NS z PS PM PB 

0 .00 0.00 1.38 22.34 8. 18 -0.60 -0.62 

2.7 1 8.85 15.74 29.76 1.33 - 11.74 -2.48 

5. 17 27.50 35.00 14.53 -35.00 -35.00 -2.45 

2.25 35.00 16.58 3.94 -15.05 -34.19 -3.59 

4.23 28.42 33.60 -18.49 -35.00 -19.38 -2.8 1 

1.94 6.54 -6.14 -29.40 -16.54 -4.95 -1.00 

0.60 0.28 -8.06 -19.83 -0.71 0.00 0.00 



Appendix F 

R. Rojas: Theorie der neuronalen Netze 

- Eine systematische Einfiihrung [88] 

(Translation) 

Chapter 10 Fuzzy logic and neural networks 
10.2.2 Fuzzy values and inverse operation (page 214 ff.) 

Kategonc I Kategone 2 Kategone 3 

MeBberetch 

Ab b. I 0. 10 Kategun,Jcrung mll dreted.tgen Fun twnen 

The transformation of the value x in a fuzzy category is achieved by reading off the member­

ship values Ut, a.2, a.3 for the value x from the graphs representing the membership functions. 

Abb. I 0. 10 shows an example where a.1 and a.2 are posi tive whilst a.3 is zero. 

It is important to be able to reconstruct the original value x from the membership values 

U t , a.2 and U3 by using the inverse operation. The centre of gravity [COG] method efforts the 

means of ach ieving this. Abb. I 0.12 shows the dissection of the value x into the membership 

values Ut , a.2 and a.3. From Ut, a.2, a.3 one can re-construct x. For that purpose, the area 

under the triangle, up to the respective height Ut , a.2 and a.3, is calculated. It is fact that, 

when this method is used, the horizontal component of the centre of gravity of the total area 
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is a valid approximation of x. 

MeBberetch 

Sch"erpunkt der schallienen Flache 

Abb. 10. 12 Schwcrpunktmethode 

It is possible to calcu late an approximation for x utilising this centre of gravity method 

for all values of x, for which at least two of the three numbers a 1, a 2 and a3 are different 

from zero. Abb. I 0.13 shows the deviation from x and its approximation for a categorisation, 

in which the basis of the triangle is 2 units in length, the height is as usual I. The positioning 

of the sets corresponds to Ab b. I 0. 12 and x lays between I and 2. The figure shows, that the 

maximal deviation from the true value can not be bigger than 10%. 

lb 

IO 

I J 

12 

l ~ I J I 6 l!il 

The quality of the results of the centre of gravity method is dependant on the appropri­

ate positioning of the category triangles. When a weighted COG, which means differently 

weighted sets, is considered, different triangle combinations to the ones shown here can be 

used. 

Schwerpunkt ... centre of gravity Mel3bereich ... universe of discourse 

Kategorie ... category, here set dreieckig ... triangular 

Abweichung ... deviation schattierte Flache ... shaded area 
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1. Introduction to Neural Net-
works 

The brain is the most complex structure we 
know. Its powerful capabilities, like thinking, 
remembering, problem-solving and learning, 
are very fascinating to model. We use 
artificial neural nets to simulate the behaviour 
of the human brain such as learning and recall 
of patterns. First applications were develo­
ped for pattern recognition in the early 
1940's. The first principles were published by 
Frank Rosenblatt in 1957. He developed an 
element called perceptron, as shown in 
figure 1, which attracted attention in the 
world of neural computing. His perceptron is 
a device to recognise abstract and geometric 
patterns. 

I Principle of the Perceptron 

figure 1 

The perceptron consists of a 400 photocell 
grid and was mainly developed for optical 
pattern recognition. The electrical output of 
the photocells were collected by the asso­
ciator unit passing the random connections. 
The new multi layer system, developed in the 

-------- -------------------~ 
from other Neurons 

a Biological Neuron 

figure 2 

page- 2-

1960's, could learn and recall complex tasks. 
A non linear transfer function was used. 
To understand actions and algorithms in 
neural computing it is necessary to look at 
biological neural nets and their architecture. 
A neuron is the basic element of the brain. A 
diagram of a neuron is detailed in figure 2. 
The structure of the brain is an interconnec­
tion of a very large (tens of billions) number 
of neurons. The transmission of signals in the 
brain is chemical in nature. Each neuron re­
ceives an input signal from other 
neighbouring neurons. The connection path 
between two neurons is called an axon and 
the incoming ports dendrites. 
The connections between axons and dendrites 
are called synapses (see figure 3). In order to 
understand the biological model, the axon is 
an electrical cable and the dendrites is a 
socket. To carry information a link is needed. 
The synapse, the link or plug, changes the 
effectiveness of the incoming spike. 
During a learning phase the efficiency of the 
synapse is modified. The sum of the incoming 
signals, the total input, is used by the 
receiving neuron to generate an output. _. This 
output of one neuron is the input for inany 
other neurons exc~pt those neurons m the 

Synapse 

I Synapse l 
figure 3 

output layer. The artificial neuron is a simple 
model of the biological neuron which has the 
form as displayed in figure 3. 
The denotation of the signals depends on 
your point of view. Assuming the present 
neuron, all incoming signals arc called x and 
the output is called y, this y, or output, is then 
an incoming signal for the next neuron and is 
then called x (llgurc 4). 
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I Main Structure of an Artifical Neuron I 
figure 4 

As you can see, the synapse is modelled as a 
modifiable weight which is associated which 
each axon (connection to a neuron). The 
neurons output formed by the transfer 
function is a single number that represents the 
rate of firing - the activity of the neuron. To 
compute the output, the neuron multiplies 
each incoming signal by the associated weight 
and adds together all these weighted inputs to 
form the total input and uses this to create the 
output by using the transfer function. The 
reaction of the artificial network depends on 
both the transfer used function and the 
weights. 
The output of the neuron in the mathematical 
sense is defined as: 

!.= x . · w .. + . k L k-1 k e k 
I J ) ,1 I 

(1) 
J=l 

e ki .. the threshold, which moves the 
transfer function (graph) in the hori­
zontal direction. 

xk-Ij output of neuron j in the previous 
layer 

wk .. weight between neuron i in layer k and J, l 

the neuron j in layer k-1 
Jki ... total input of neuron i in layer k 

Y;t = f( !;") where J{IIt ) could be: 

!Vn = I ik --*--linear 

1 r 
Sigmoid function !( lt ) = _ , 4--

1 + e 1
' 

hyperbolic tangent !(It) = tanh( It) C 

{ 

I !.* ~ 0 =.J-f(l k) - 1 hardlimitcror 
; = + I l/ > 0 

threshold fu nction 
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2. Types of Networks 

2.1 Architecture of Single Layer Nets 

In the past, many forms of neural nets and 
their algorithms were investigated. Serious 
investigations started in 1 943, by the head 
neurobiologist Warren McColloch and 
statistician Waiter Pitt. The paper "A Logical 
Calculus of Ideas Imminent in Nervous 
Activity" brings together fields such as digital 
computing, "electronic brains" and macros­
copic intelligence. The first conference on 
artificial intelligence was organised in 1956 by 
famous names such as Marvin Minsky, John 
McCarthy, Claude Shannon and Nathanial 
Rochester. 
To simulate the behaviour of the human brain 
we need a network of neurons, a socalled 
neural network (net). The neurons are usually 
organised into groups called layers. A neural 
net consists of at least an input and an output 
layer and eventually hidden layer(s). In order 
to understand the following fac ts, with 'single' 
we mean the number of hidden layers. 
Actually, a single layer net consists of t.hree 
layers, one input and one output layer and a 
single hidden layer. The words one and single 
are synonyms for each other. Simple tasks can 
be solved by a one layer network but for 
difficult problems we need multi layer nets. 
The main structure of a single layer net is 
shown below. 

U
outpullayer 

hidden layer 

nput layer 

Oala Flow 

figure 5 
The interconnection between the neurons in 
different layers can be seen in figure 5. It is 
not necessary to have a net where the 
connections are only between neurons of 
different layers, but it is easier to understand 
and to design a net in this way. T he majority 
o f modern neural nets arc organised in this 
way. Some tasks do not require hidden layers. 
The number of hidden layers and the number 
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of neurons in each hidden layer is free to 
define and will determine the performance of 
the net in speed and quality. For the majority 
of tasks a single layer net is sufficient. 

2.2 Multi Layer Nets 

The behaviour of a multi layer net (see 
figure 6) in general is not very different to a 
single layer net. The user has to find a 
optimum in size to be satisfied with the 

output layer 

hidden layer 1 ~~~'11-
Data Flow 

input layer 

figure 6 
results and the speed. A small net is faster but 
if the task is too difficult, important 
information may be lost. Conversely, if the 
net is too large, the output can be noisy and 
the computing speed, especially during the 
learning, is slow. 

3. Learning of a Neural Net 

3.1 General Facts 

The two main tasks of a brain - learning and 
recall - are the most interesting for us. 
Learning itself is the process of the calibration 
of the synaptic efficiency, or in the words of 
artificial nets, the weights. Using this principle 
some models of neurons and their 
connections have been investigated, i.e. single 
layer nets, multi layer nets and self organising 
nets. The nets can be classified into three 
gro ups, depending upon the learning 
principle, e.g. Sllpervised teaming (as 
discussed in this paper) , teaming wirh critic 
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and the last group unsupervised learning 
(self organising nets). The latter is utilised to 
obtain relationships between the input and the 
output vector by the creation of an iterative 
process without a teacher ·(as in supervised 
learning) and also without evaluative values 
(as learning with critic). If we inspect 
supervised learning, we must consider, that 
the results of the student (our net) can be only 
as good as the training data of the teacher/ 
supervisor. For supervised learning we need a 
vector of input data and one vector of the 
desired outputs which is associated to the 
input vector. The reader can easily see, that 
one problem, besides the program for 
learning, is to have good sets of training data. 
We interpret a set of training data as a pair of 
inputl desired output vectors. 

3.2 Back Propagation 
Rumelhart's contributions to neural nets 
( 1986) are fundamentals for further 
investigation. In this paper, the method of 
supervised learning will be discussed and how 
to use this in order to develop a learning 
controller for the steering of small craft. ; 
One way to utilise the supervised learning is 
by using the back propagation algorithm.. 
The control model is displayed in figure 7. 
The neural net used in this algorithm is a 
multi layer net and the transfer function is the 
Sigmoid. The back propagation rule needs the 
error between computed output by the net 

\jl a 'Vel 
heading 
babr 
rudder 

actuaV desired 

actuaV requested 

'l'c crTo r heading 
T1 . T2, T 3, T r time constants 

ligure 7 



~ University of Plymouth 

(straight forward or phase 1) and the desired 
output given by the teacher. To adjust the 
weights on the path between one neuron and 
the next neuron, the error is back propagated, 
starting with the output layer back to the first 
hidden layer (layer netxt to the input layer). 
This process is the second or the learning 
phase. 
The steps - computing forward and error 
propagation backwards - is repeated with 
different pairs of training data until a maxi­
mum number of epochs is reached or the 
global error approaches an acceptable value 
less than i.e. £ = 0.05. 
The interesting feature of back propagation 
is, that we do not need any knowledge about 
the process, this is what we will use the 
controller for, but we need a good teacher. 
However, this is on the other hand a 
disadvantage because our student does not 
have any self organising capabilities and so 

straightforward (phase 1) 

x; = Sigmoid(!:) (2) 

1: =' w! .xH +fi i....J t , r J ' 
(3) 

j 

-1 _ I A I w,.; - w,., + uw .. 
• ~ ) ,1 

(4) 
back propagation (phase 2) 

11w1 . . = 7]81.x 1.- 1 (5) 
J ,l J J 

8~ =x: (1 -x:) ·(d; -x:) outputlayer(6) 

81 1(1 I) 'i:'l+l l+l . 
j = X; - X; · i....J u * wJ.k rnner neur. (7) 

k 

1l .. ........ ... learning coefficient 
x1

i .......... .. output of neuron i in layer 1 
01i ........ . ... error of neuron i in layer I 
11

j .. ... . ....... total input of neuron i in layer 1 
w1

j i .......... weight on path from neuron j in 
layer l-1 to neuron i in layer l 

A I . h . c I 
uW j i ...... .. Welg t tncrement iOr W ji 

Sigmoid() transfer function 
this can not be a better response than the 
teacher. The final algorithm (equations) is 
displayed below. 
Note, the learning rules for the thresholds 8 
arc the same as the rules for the weights. The 
threshold is a weight with the associated input 
or 1.0. 
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4. Application of Neural Nets for 
Ship Steering 

4.1 Introduction 
Many collisions and groundings of marine 
vessels occur in the approaches to a port 
where the traffic density is intense. This 
suggests that there is a need for automatic 
guidance systems to deal with the problems of 
surface ships manoeuvring in confined waters, 
possibly under shore control as part of the 
port's Vessel Traffic Services. 
Modern sea going vessels have a ranae of 0 

navigation aids including global positioning 
system (GPS) receivers, Doppler sonar, 
gyrocompass as well as hypobolic aids such 
as Loran C and Decca. Current trends include 
the use of standard interfaces to network 
communication systems using computer tools 
such as electronic charts to form integrated 
navigation systems. It is also possible to 
employ the navigational data to provide best 
estimates of state vectors (Kalman filter) and 
optimal guidance strategies. Such techniques 
require powerful computing facilities, 
particularly if the dynamic characteristics of 
the vessel are changing, as may be the case in 
a manoeuvring situation or changes in 
forward speed. 
Chapter (4.3) of this paper investigates the 
possibility of training a Neural Network to 
behave in the same manner as an optimal ship 
guidance system, the objective being to 
provide a system that can adapt its parameters 
so that it provides . optimal performance 'over 
a range of conditions, without incurring a 
large computational penalty. 
A series of simulation studies have been 
undertaken to compare the performance of a 
trained neural network with that of the 
original optimal guidance system over a 
range of forward speeds. It is demonstrated 
that a single network has comparable 
performance to a set of optimal guidance 
control laws, each computed for different 
forward speeds. 
S ince the increase in the numhcr or 
computers, more and more modern tcch-
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niques have been used such as neural com­
puting (neural nets), fuzzy logic, etc. 
Conventional ship autopilots are based on 
proportional, integral and derivative (PID) 
control algorithms and are used to control the 
ship's heading in an open seaway. These 
controllers are developed to work under 
specific conditions and so they are not 
working at their optimal point and need to be 
reset to take into account the vessel's 
handling characteristics and environmental 
conditions. It is not current practice to use an 
automatic system in the approaches to a port 
and in many cases control of the vessel is 
handed over to a pilot at this stage. However, 
it is in the pilotage phase of the voyage, 
where the traffic density is intense, that the 
risks of collision and grounding are highest. 
In addition, it has been highlighted /1/ that 
over 80 percent of all marine accidents are 
due to human error. 
The main idea of a modern controller is to 
merge all the beneficial features of several 
controllers to create an intelligent controller, 
i.e. with a behaviour like a human helmsman. 

4.2 An Artifical Neural Network 
Autopilot for Small Vessels 

4.2. 1 Creation of the Training Data 

In the previous chapters, a teacher for the 
neural net was mentioned. The idea that this 
study is based on is, that one PID controller is 
tuned for one particular sea state and this 
tuned PID controller is used as one teacher 
for the neural net. If a training file, which 
contains input and output data of the PlO 
controller, is created, the neural net will learn 
to respond like its teacher. But if the training 
data file consists of data pairs of more than 
one teacher, i. e. data of several tuned PlO 
controllers in several sea states, the neural net 
will learn the behaviour of the tuned PIO 
controllers at its optimal point or close to it. 
We know that the ship parameters such as 
weight, inertia. draught and speed, have key 
effects in the behaviour of the ship. So, if we 
wanL, we could tunc PlD controllers for more 
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specific situations and create more relevant 
data. 
The PIO controllers, used as teachers, are 
tuned firstly for a very small heading error 
and not for a smooth rudder movement. Tests 
have proved that the neural net will work as a 
damper too. 
The training file for the neural net contains 
PIO information of different tuned controllers 
in the associated sea states from port and 
starboard directions and the current output of 
the controllers. Further difficulties can arise 
when the inputs of the net have very big 
differences in the values. 
Suppose the heading error and the rate of 
change of the heading error are in the order 
of w·• and less than 101 and the integral of 
the heading error is bigger than 102

, emphasis 
will be placed on the input neuron for the 
integral and the small changes of the other 
two neurons are not taken into consideration. 
In this case, the net will only learn the rudder 
offset to remove the average disturbance 
without alternating. 

4.2.2 Training the Network 

The net consisting of 10 neurons in each of 
the 2 chosen hidden layers. The architecture 

output layer 

Data Aow 

figure 8 

of the net is shown in figure 8. 
During the learning, the training sets are 
randomly selected until the given number, in 
this case 60,000 is reached. It is possible to 
formulate the stop condition in association 
with the actual error between computed 
output of the net and the desired output given 
by the teacher. 



~ University of Plymouth 

4.2.3 Results 

In the following graphs you can sec the 
learning process and the comparison of a 
trained Neural Network to a PID controller. 

, 8 
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figure 9: learning 
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figure 10: comparison of 
Neural Net to PID in sea state 3 

figure 11: comparison of 
Neural Net to PID in sea state 5 

Sea State 3 4 5 
RMS Yaw Error 0.103 0.197 1.863 

Ncurdl Net 
RMS Yaw Error PID 0.194 0.579 2.387 

table 1: results 
As you can see, the Neural Net is able to 
react in the manner of its teacher(s). It is 
possible to train a Neural Net with the data of 
more than one teacher and the network will 
pick up the behaviour of all the supervisors. 
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4.3 Optimal Ship Guidance using a 
Neural Network Approach 

4. 3. 1 Background 

This suggests that there is a need for 
automatic guidance systems for marine 
vehicles in confined waterways, such as many 
of the world's major ports, even to the extent 
of allowing transfer of control from ship to 
shore using the port's Vessel Traffic Services 
(YTS). As electronic navigation aids become 
more sophisticated and the use of satellite 
Global Positioning System (GPS), particularly 
used in differential mode, becomes more 
widespread, the concept of fully automatic 
pilotage in port approaches becomes a 
tangible reality. 
It has been demonstrated by Burns /4/ that it 
is possible to design an optimal multivariable 
ship guidance system that controls position. 
heading and speed simultaneously, and that 
such a system can work within the constraints 
required in port approaches. 
By the use of multivariable system theory, it 
is possible to construct a mathematical model 
of a surface ship that can respond to coiltrol 
inputs (rudder and main engines) and also 
disturbance inputs (wind, waves and current). 
Such a mathematical description normally 
requires a set of non-linear differential 
equations. 
Based on a multivariable model with a control 
vector u, a disturbance vector w and a state 
vector x an optimal control policy may be 
formulated that ~imises a perfomiance 
index, or cost function. A problem with this 
approach is that if the dynamic characteristics 
of the vessel change (due to vruiations in 
forward speed for example) then the guidance 
system is sub-optimal, and its parameters 
need to be re-computed . This places a large 
computational burden on the ships 
navigational computer, which must perform 
its calculations during the sample period. 
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4.3.2 Ship Mathematical Model 

Ship motions in surge, sway, heave, roll, pitch 
and yaw can be described by a Eulerian set of 
non-linear differential equations of the form: 

m(t~+qw-rv) = X 

m(v+ru-pw) = Y 

m(1v + pv - qu) = Z 

fxp( lz- l .v )= L 

l,p{I.r: - Iz) =M 

fxp( f_.- f.r: )= N 

(8) 

The terms X, Y, Z, L, M and N represent all 
the external forces and moments acting on the 
hull and include both linear and non-linear 
components. These equations can be arranged 
as a set of state equations in terms of the state 
vector x, control vector u and disturbance 
vector w, where: 

:1 =( 8A nA X U y V Z W fP p {) q If/ ~ (9) 

uT = (80 n0 ) (10) 

WT =(uc Vc Lla Va Sx Sy) (11) 

The vessel used in the simulation had the 
following parameters: 

Length = 161 m 
Draught = 9 m 
Beam =23 m 
Displacement = 17000 tonnes 
Number of propellers = 1 
Number of rudders = 1 
Maximum rudder angle = ±35 degrees 

The dynamic characteristics of the vessel may 
be described in terms of its open-loop 
eigenvalues. When u = 7.717 rnls (15 knots), 
these are: 

s = -0.5, -0.039, -0.0755, 
0 , 0, -0.5, 0 -0.00913 (12) 

When the vessel is travelling at 2.572 rnls 
(5 knots), they become: 

s = -0 .5, -0.013, -0.0252, 
0, 0 , -0.5,0 -0 .00265 ( 13) 

These results arc shown in Figure 12 and 
demonstrates that the vessel becomes less 
manoeuvrable at low speeds, thus requiring a 
control policy that takes this into account. 

""·' 
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figure 12: Effect of Forward Speed 
on Open-Loop Eigenvalues 

4.3.3 Optimal Guidance Policy 

Given the state equations: 
.i( r) = F ( t) x( t) + G c ( r) u + G 0 ( t) w( t) (14) 

and the quadratic criterion to be minimised: 

1 = r~ {(x-r( Q(x-r)+uTRu}dt (15) 

where r is the desired state vector. It can be 
shown Burns /5/ that the optimal control is: 

uopl = -( Sx +R-I eT m) (16) 

where S is the optimal feedback gain matrix 
calculated from solution of the Riccati 
equations and m is the command vector, 
computed from a knowledge of the system 
model and the desired state vector. 
Figure 13 illustrates the departure of the 
eigenvalues from their assigned positions as 
the forward speed is reduced from 7.717 m/s 
to 2.572 rn/s.. To maintain a fixed closed­
loop eigenvalue array, it is necessary to re­
compute the feedback matrix S at each 
forward speed. · 

J. Hl ral • 

.._________ io-•• 
~l.Sla/• 

~ .., .. ,' 

figure 13: Eigenvalue Departure During a 
Speed Reduction. 

Figure 14 shows a simulated approach into 
the Port of Plymouth using the assigned 
closed-loop eigenvalues. The problem of 
way-point overshoot is overcome by using 
way-point advance and dual-mode control as 
shown in Figure 15. Under a dual-mode 
policy, when the advanced way-point is 
reached, the controller switches from track to 
course weighting, thus suppressing \j/1 and 
emphasising \jf.,. 
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...... 

Figure 14: Simulated Approach 
into the Port of Plymouth. 

Atlva nc•d 
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Figure 15: Way-Point Advance. 

4. 3.4 Neural 
System 

Network Guidance 

4.3.4.1 Supervised Learning using Back 
Propagation 

The output of each artificial neuron is 
calculated by multiplying each incoming 
signal by an associated weight, and adding 
together all the weighted inputs to form the 
total input and uses a Sigmoid function to 
create the output. 
A neural network consists of at least an input 
layer, and output layer and a single 
intermediate, or hidden layer. All neurons are 
interconnected. A single hidden layer can be 
used for simple applications, but for more 
complex situations, multi-layer networks are 
employed. 
The problem is to fmd the optimum size that 
gives the best balance between accuracy and 
speed (Richter and Burns /6/). 
In this application the net work is trained 
using supervised learning. A subset of the 
state vector (only those terms that affect the 
demanded ruudcr) arc input to both the 
optimal guiuance system and the neural ne t, 
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which both compute the demanded rudder 8o 
Differences between the two values are used 
to train the network using back propagation 
learning as shown in Figure 16. 

Ye 
V 

Optimal 
'l'e Guidance 

~ 
r Controller u 

error used B0 ship 
for Back-

Propagation -

Neural 

L! Network 

figure 16: Supervised Learning 
using Back Propagation 

4.3.4.2 Training the Network 

Training data from the optimal guidance 
system over a range of speeds from 2.572 to 
7.717 m/s was collected in the simulated 
approach to the Port of Plymouth. During 
learning, the training sets are randomly 
selected and run over a given interval, usually 
until 100,000 - 200,000 samples have been 
taken. Parameters such as momentum, 
learning coefficient and number of neurons in 
hidden layer are then varied until a giobal 
minimum error ~ achieved. For this 
application, this occurred for the following 
values: 

input neurons = 5 
output neurons = 1 
number of hidden layers= 2 
neurons in hidden layer = 10 
learning coefficient = 0.6 
momentum _ = 0.4 
number of samples = 200,000 
learning time = 2230 seconds 

4.3.5 Results 

The weight coefficient matrices were used in 
an neuro-optimal hybrid controller to test the 
system, the neural network controlling the 
rudder, the optimal guidance system control­
ling the main engines. 

4.3.5.1 Low Speed Approach 

In the low speed approach, the vessel 
commenced its run at 2.572 rnls. Figure 17 
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shows the cross-track error 'l'e for both the 
optimal and neural controllers. Figures 18 and 
19 give the corresponding results for the 
heading error 'l'e and rudder So. It can be seen 
that there is good correlation for heading and 
rudder, but there is an offset with the cross­
track error. This is possibly due to the way in 
which the training data was scaled. 
The dual-mode operation can clearly be seen. 
At t = 580 seconds the first way-point is 
approached and the controller drives the 
rudder hard-over as it enters course-changing 
mode. When the heading error is 20 degrees 
at t = 700 seconds, track-keeping mode is 
resumed. 

40 
: : . I I 

00 : ; I 1 --~-
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figure 17: Cross-Track Error -
Low Speed Approach 

figure 18: Heading Error­
Low Speed Approach 
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figure 19: Rudder Angle­
Low Speed Approach 

4.3.5.2 High Speed Approach 
Here the speed of approach was 7.717 m/s. 
Figures, and show the cross track error, 
heading error and demanded rudder 
respectively. As with the low speed approach, 
there is good correlation between the two 
controllers for rudder and heading, with an 
offset on the cross-track data. At high speeds, 
it can be seen that the rudder excursions are 
far smaller, indicating that both controllers 
have adapted to the change in vessel 
dynamics. 

100 200 300 •oo :oo 600 
litnell) 

fig1,1re 20: Cross-Track Error -
High Speed Approach 

fig ure 2 1: Heading Error -
High Speed Approach 
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figure 22: Rudder Angle -
High Speed Approach 

4.3.5.3 Controller Performance 

In order to compare the performance of the 
two controllers, a set of generalised 
performance indices may be defined: 

J y = 1 ( Y D - Y A ) 
2 

dt 
'o 

1, = J (If o - 1/f A ) 
2 

de (17) 
to 

to 

T bl 2 . a e gives the comparative results. 
soeed OOlimal Controller Neural Controller 

(mls) J, J. h J J., J~ 

2.572 0.764E6 111.4 67.2 0.968E6 111.7 63.6 

7.717 0.852E6 43.2 61.1 0.1388 43.9 63.4 

table 2: Comparative Results 
From Table 2 it can be seen that in terms of 
heading and rudder, the two controllers 
perform in a similar manner, but the optimal 
controller provides better track-keeping 
performance. 

4.3.6 Conclusions 
The results of this initial study demonstrate 
that a neural network may be trained from 
data provided by an optimal guidance system. 
The trained network performs in a slightly 
sub-optimal manner - but has the advantage 
that it does not have to re-compute controller 
parameters for dif!Crent forward speeds. At 
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this stage it is not known how the network 
would cope with another way-point 
configuration. 
The properties of multi-layer neural networks 
are not yet fu lly understood·. It would appear 
however, that a ship guidance system is a 
potential application of the technique. There 
is extensive scope for further research in this 
field, particularly in the design of un­
supervised learning networks that adapt in an 
on-line manner. 
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5. Appendix A 
The example to explain the mathematics for 
the back propagation algorithm is the well 
known XOR function. For that reason we 
design a net with 2 input and 1 output 
neuron. In the only hidden layer we place 
two neurons. The structure of the net ts 
displayed in figure 23. 

input 
w11 

i1 

hidden output 

i2 w 23 

figure 23: XOR; net structure 

Our trainin d h bel w. lg ata are s own 0 

X1 X2 X1@ X2 

0 0 0 .1 
0 l 0 .9 
1 0 0.9 
1 1 0.1 

(table 3) 
Remember the transfer function (sigmoid), 
we have to scale our desired outputs 
between 0.1 and 0.9. To rescale the output 
of the net, we can use the following 
equation: 

output-0.1 
new= in general 

0.8 

output - o.t I . r th h~ if new= · rmxunurno eteac'""''l• · 
0.8 

values between ±a are requested 
output- 0.5 I I new= ·a. Now, we have a 

0.4 
net and training data, only the learning 
algorithm is missing. With the known 
knowledge, it is possible to calculate the 
output of the net. The weights, we have to 
use, are randomly initialised. The error 
between the computed output and the 
desired output given by the teacher gives us 
the sign and the speed we have to change 
the weights to reduce this error. 
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5. 1. 1 Mathematical Background of 
Back Propagation 

The equations for phase 1 (neuron 1) are: 
/1 =il 0 wl,l +i2 0 w2.l + 1· el 

(total input) (18) 

x 1 =Sigmoid( li) = 
1

_1 l+ e 1 

(output) (19) 
similarly for neuron 2 and for neuron 3 see 
below, 

/ 3 = xt . wl.3 + Xz • w2,3 + 1· 83 

(total input) (20) 

x3 = Sigmoid(/3 ) = 1
_1 1 + e 3 

(output) (21) 
x3 is the final output of the net and we have 

the error 

E 3 = _!_ ( d - x3 ) 
2 

• 

2 
(22) 

The value Y2 is insetted with a mathematical 
sense. The reason is explained below. The 
main aim of learning is to reduce the error 
as fast as possible. Using the gradient of the 
error for one special weight, we have the 
method to minimise the difference between 
calculated output of one neuron and the 
desired output by modifying this weight. 
We define an increment 6w1 3 proportional , 
to -dE I dwl 3· , 

.d£3 . 
6w = - 11-- 11 .. learning rate (23) l.3 -:.. 

uwt,3 
The error E3 (equation 22) is formed in 

terms of the output x3 and this is a funclion 
of 13 (total input equation 20) . Using the 

partial derivative -dE I dwu, we can say 
dE, dE, dl, 
--=--·-- (24) 
dwl.3 d/3 awl,3 

Using the equation 20 to get 13 we can 

write 
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(13 
--=x J\1 I 

u 
If we now define 

8 =- {)£3 
3 ()[ 

3 

(26) 

so can we formulate ~w 1 ,3 in the following 
form 

~wt,3 = 1183x1 · (27) 

To get 83 = -dE3 I ai3 we use the chain rule 
to declare the partial derivative in one term 
(rate of change of error) and a second term 
(rate of change of the output x3) where we 

consider the inputs to the same neuron. 
That is written 

83 =- a£3 =- a£3 ax3 (28) 
dl3 ax3 dl3 

The separated factors can be calculated as 
follows: 

()£3 = -( d- x
3

) (29) 
Jx3 

and 

~: = f (13) (30) 

From which we simplify 
83=(d-x3)f(I3) (31) 

~w1 •3 = TJ( d - x3 )f {I3)x1 = T}d3x1• (32) 

By using Sigmoid as the transfer function, 
w~ remember equation, 

x3 = Sigmoid(I3 ) = 
1 

_
1 1 + e 3 

Jx3 - () ( l ) 
d/3 - d/3 1 + e - 13 

dx3 1 - / -=+ e J 

d/3 {1 + e - 13 )2 
that we can transform into 

Jx 
()/: = X 3 . ( l.O - X 3 ) (33) 

and so finally 
~w1•3 = 1] · (d- x3) · x3(1.0 - x3) ·x1 . (34) 
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Analogue to the output neuron 3, we can 
use the general equations to change the 
weights in the other layers. But there are 
some different circumstances if the 
considered neuron is not in the output 
layer. We can still write the general 
equations 

1 dE 
~wj,i = -1} awl .. 

1.1 

dE ()J: 
= -1} ()[! J»/. . 

I 1.1 

()£ 1-1 
- - 1} X - d[! j 

I 

~ -q(:: ~~ }:-1 
= -T}( ()~ t ( li ).<-l 

axi ) 
I dl / - 1 ~w j , i = 1} i xi . (35) 

But we can not evaluate the factor 
-aE I ax1

i directly. Suppose, the present 
layer is the layer before the output layer. 
We know the en·or of the neurons output in 
the "next" (in this case: output -) layer and 
so we can formulate 

()£ JE ()[l.+l 
----[ --1-

Jxl. - ). J/1.+1 Jx! 
1 1 I 

"( dE k '\' 1 1+1 = 'J Jitt )Jxf ';x.twi,k 

~7(:f, }~;' 
- dE = - '\' 81+1 w!+.l (36) 

J..l ~ 1 1,1 , 
aA.j 1 

which means, that 8 for an internal node 
can be evaluated in terms of 8 in the next 
layer. Finally we can say 

A I s::l 1- l h 
uwj,i = T}ui xj w ere 

8~ = x: ( l - x:) . ( d,. - x: ) 
for I = output layer (37) 
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J'. =x~(I -x')· ~ J 1+Lw1
.+1 

) I I i...J k j,k 
k 

for 1 = internal layer (38) 

Note, the learning rules for the thresholds B 
arc the same as the rules for the weights. 
The threshold is a weight with the asso­
ciated input 1.0. The conclusion is 
displayed below. 

straight forward (phase 1 

x: =Sigmoid( I/ ) (39 

I/ = L w:.i x~- l + e: (40 
j 

";.1_ . = w'- . + t1w'- . 
J .l ) .1 J.l 

(41 

back propagation (phase 2 
A I <;;/ 1- 1 (42 
uwj.i = 7]u jxj 

8~ = x: ( 1 - x:) · ( d; - x:) output layer ( 43 

s:l '(l ') ~ s;l+l l+l • (44 u i =X; -X; · i...J u « wp mner neur. 
k 

11 .. .... ...... .. . learning coefficient 

x1i ............. output of neuron i in layer I 

o1i ............. error of neuron i in layer I 

I1i .. ...... ...... total input of neuron i in layer I 

w1ji ............ weight on path from neuron j in 

layer 1-1 to neuron i in layer I 

l1w1ji ......... weight increment for w'ji 
SigmoidO .. transfer ['Unction 
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Using the standard algorithm, explained in 
this chapter, the learning may be very 
frequent and/ or the approach to zero is not 
rapid enough. To reduce this effect, we 
insert a momentum, often described as 
inertia. The momentum is an additive term 
to t1w1

i; which considers the last change of 
the weight. The term is working like a 
damper or low pass filter. The new 
equation to calculate the change of the 
weight 11 w1

i; is 
A I <;:I 1- l rv A I oPwi.i = 11uixi +lJ,LlP_1wi,i . (45) 

p means the present training set, and with 

t1.p-l w~.i , we consider the direction and 

rate of the last modification of the weight 
made for the training set before. With this 
change we get a smoother and more rapid 
learning. With this term we can chose a 
bigger learning rate which means faster 
learning. 
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1. Introduction 

Many collisions and groundings of manne 
vessels occur in the approaches to a port 
where the traffic density is intense. This sug­
gests that there is a need for automatic gui­
dance systems to deal with the problems of 
surface ships manoeuvring in confined waters, 
possibly under shore control as part of the 
port's Vessel Traffic Services. 

Modem sea going vessels have a range of 
navigation aids including global positioning 
system (GPS) receivers, Doppler sonar, 
gyrocompass as well as hypobolic aids such 
as Loran C and Decca. Current trends include 
the use of standard interfaces to network 
communication systems using computer tools 
such as electronic charts to form integrated 
navigation systems. It is also possible to 
employ the navigational data to provide best 
estimates of state vectors (Kalrnan filter) and 
optimal guidance strategies. Such techniques 
require powerful computing facilities, 
particularly if the dynamic characteristics of 
the vessel are changing, as may be the case in 
a manoeuvring situation or changes in for­
ward speed. 

Chapter (1.2) of this paper investigates the 
possibility of training a Neural Network to 
behave in the same manner as an optimal ship 
guidance system, the objective being to 
proviJc a system that can aJapt its parameters 
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so that it provides optimal performance over 
a range of conditions, without incurring a 
large computational penalty. 

A series of simulation studies have been 
undertaken to compare the ·performance of a 
trained neural network with that of the 
original optimal guidance system over a 
range of forward speeds. It is demonstrated 
that a single network has comparable per­
formance to a set of optimal guidance control 
laws, each computed for different forward 
speeds. 

Since the increase in the number of compu­
ters, more and more modern techniques have 
been used such as neural computing (neural 
nets), fuzzy logic, etc. 

Conventional ship autopilots are based on 
proportional, integral and derivative (PlO) 
control algorithms and are used to control the 
ship's heading in an open seaway. These 
controllers are developed to work under spe­
cific conditions and so they are not working 
at their optimal point and need to be reset to 
take into account the vessel's handling cha­
racteristics and environmental conditions. It 
is not current practice to use an automatic 
system in the approaches to a ·port and in 
many cases control of the vessel is handed 
over to a pilot at this stage. However, it is in 
the pilotage phase of the voyage, where the 
traffic density is intense, that the risks of col­
lision and grounding are highest. In addition, 
it has been highlighted /1/ that over 80 per­
cent of all marine accidents are due to human . 
error. 

The main idea of a modern controller is to 
merge all the beneficial features of several 
controllers to create an intelligent controller, 
i.e. with a behaviour like a human helmsman. 

1.1. An Artifical Neural Network 
Autopilot for Small Vessels 

1. 1. 1. Creation of the Training Data 

The idea that this study is based on is, that 
one PlO controller is tuned for one particular 
sea state and this tuned PID controller is used 
as one teacher l'or the neural net (sec lig I). 
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Nec<aJ Net 

'If· 'I'd ... .. ........... . actual/ desired heading 
0,0, ........ .. .... .. ..... actual/ reques ted rudder 
'l'c ........ .. .. .. .. .. .... error heading 
T~. T2, T3, T, .... time constants 

figure 1 

If a tr::unmg file, which contains input and 
output data of the PID controller, is created, 
the neural net will learn to respond like its 
teacher. But if the training data file consists of 
data pairs of more than one teacher, i. e. data 
of several tuned PID controllers in several sea 
states, the neural net will learn the behaviour 
of the tuned PID controllers at its optimal 
point or close to it. We know that the ship 
parameters such as weight, inertia, draught 
and speed, have key effects in the behaviour 
of the ship. So, if we want, we could tune 
PID controllers for more specific situations 
and create more relevant data. 

The PID controllers, used as teachers, are 
tuned firstly for a very small heading error 
and not for a smooth rudder movement. Tests 
have proved that the neural net will work as a 
damper too. 

The training file for the neural net contains 
PID informatio n of different tuned controllers 
in the associated sea states from port and 
starboard directions and the current output of 
the controllers. Further difficulties can arise 
when the inputs of the net have very big 
differences in the values. 

Suppose the heading error and the rate of 
change of the heading error are in the order 
of 10·' and less than 101 and the integral of 
the heading en·or is bigger than 102

, emphasis 
will be placed on the input neuron for the 
integral and the small changes of the other 
two neurons arc not taken into consideration. 
In this case, the net will only learn the rudder 
o rrsct lll rcmo vc the a vcragc d ist urbancc 
without alternating . 

1. 1.2. Training the Network 

The net consisting of 10 neurons in each of 
the 2 chosen hidden layers. The architecture 
of the net is shown in figure 2. 

inpullayer 

Data Flow 

figure 2 

During the learning, the trammg sets are 
randomly selected until the given number, in 
this case 60,000 is reached. It is possible to 
formulate the stop condition in association 
with the actual error between computed 
output of the net and the desired output given 
by the teacher. 

1.1.3. Results 

In the following graphs you can see the 
learning process and the comparison of a 
trained Neural Network to a PlO controller. 
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figure 3: leai-ning 
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·-·- neural ruddet 
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eo 

ligurc 4: comparison of 
Neural Net to PID in sea state 3 
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figure 5: comparison of 
Neural Net to PID in sea state 4 

-neural yaw 

- neural ruder 
- - --- PIDyaw 
-·--- PlO rudder 

figure 6: comparison of 
Neural Net to PID in sea state 5 

Sea State 3 4 5 

RMS Yaw Error 0.103 0.197 1.863 
Neural Net 

RMS Yaw Error PID 0.194 0.579 2.387 

table 1: results 

As you can see, the Neural Net is able to 
react in the manner of its teacher(s) . It is 
possible to train a Neural Net with the data of 
more than one teacher and the network will 
pick up the behaviour of all the supervisors. 

1.2. Optimal Ship Guidance using 
a Neural Network Approach 

1.2. 1. Background 

This suggests that there ts a need for 
automatic guidance systems for marine 
vehicles in conl1ned waterways, such as many 
or the world's major ports, even to the extent 
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of allowing transfer of control from ship to 
shore using the port's Vessel Traffic Services 
(YTS). As electronic navigation aids become 
more sophisticated and the use of satellite 
Global Positioning System (GPS), particularly 
used in differential mode: becomes more 
widespread, the concept of fully automatic 
pilotage in port approaches becomes a 
tangible reality. 

It has been demonstrated by Burns /4/ that it 
is possible to design an optimal multivariable 
ship guidance system that controls position, 
heading and speed simultaneously, and that 
such a system can work within the constraints 
required in port approaches. 

By the use of multivariable system theory, it 
is possible to construct a mathematical model 
of a surface ship that can respond to control 
inputs (rudder and main engines) and also 
disturbance inputs (wind, waves and current). 
Such a mathematical description normally 
requires a set of non-linear differential 
equations. 

Based on a multivariable model with a control 
vector u, a disturbance vector w and a state 
vector x an optimal control policy may be 
formulated that minimises a performance 
index, or cost function. A problem with. this 
approach is that if the dynamic characteristics 
of the vessel change (due to variations in 
forward speed for example) then the guidance 
system is sub-optimal, and its parameters 
need to be re-computed. This places a large 
computational burden on the ships 
navigational comp~;~ter, which must perform 
its calculations during the sample period. 

1.2.2. Ship Mathematical Model 

Ship motions in surge, sway, heave, roll, pitch 
and yaw can be described by a Eulelian set of 
non-linear differential equations of the f01m: 

m(ti + qw - rv) = X 

m( v + ru- pw) = Y 

m(1i' + pv - qu) = Z 

I X fJ( I t - l,.) = L 

l ,. fJ( I X - I t ) = M 

I X p ( l,. - I ' ) = N 

(l) 
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The tem1S X, Y, Z , L , M and N represent all 
the external forces and moments acting on the 
hull and include both linear and non-linear 
components. These equations can be arranged 
as a set of state equations in terms of the state 
vector x, control vector u and disturbance 
vector w, where: 

X =(g~ '~ X u y V z w ~ p B q "' t} (2) 

ur =(80 n0 ) (3) 

WT =(uc Vc Uu V a Sx S,) (4) 

The vessel used in the simulation had the 
following parameters: 

Length = 161 m 
Draught = 9 m 
B~m = 23m 
Displacement = 17000 tonnes 
Number of propellers = I 
Number of rudders = I 

Maximum rudder angle = ±35 degrees 

The dynamic characteristics of the vessel may 
be described in terms of its open-loop 
eigenvalues. When u = 7. 717 m/s (15 knots), 
these are: 

s = -0.5, -0.039, -0.0755, 
0, 0, -0 .5, 0 -0.00913 (5) 

When the vessel is travelling at 2.572 mls 
(5 knots), they become: 

s = -0.5, -0.013, -0.0252, 
0, 0, -0.5,0 -0.00265 (6) 

These results are shown in Figure 7 and 
demonstrates that the vessel becomes less 
manoeuvrable at low speeds, thus requiring a 
control policy that takes this into account. 

.0. 1 

,.. 
0 . 0 1 

1 , 1 11 -.~. 
ll O.L. plu l 

.0.1 

-o.ca 

figure 7: Effect of Forward Speed 
on Open-Loop Eigenvalues 

1.2.3. Optimal Guidance Policy 

Given the state equations: 
. i·(r) = F(t)x(t) +GJt)u+G0 (t)w(t) (7) 

and the quadratic critction to be minimised: 

J = J,:: {(x - r).,.Q(x - r) +t/Ru}dr (8) 
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where r is the desired state vector. It can be 
shown Burns /5/ that the optimal control is: 

uopl = -( Sx +R-I eT m) (9) 

where S is the optimal fee~back gain matrix 
calculated from solution of the Riccati equa­
tions and m is the command vector, compu­
ted from a knowledge of the system model 
and the desired state vector. 

Figure 8 illustrates the departure of the 
eigenvalues from their assigned positions as 
the forward speed is reduced from 7.717 m/s 
to 2.572 m/s. To maintain a fixed closed­
loop eigenvalue array, it is necessary to re­
compute the feedback matrix S at each 
forward speed. 

tU('-"'-~-'~· ''_.,'"'='==='.,.,· ',_" ....:_"''~?H--~ 
o-0. i -o. l -o . ot -o .06 -0. 04 ..O .OJ .......... 

~ -o .o1 

figure 8: Eigenvalue Departure During a 
Speed Reduction. 

Figure 9 shows a simulated approach into the 
Port of Plymouth using the assigned closed­
loop eigenvalues. The problem of way-point 
overshoot is overcome by using way-point 
advance and dual-mode control. Under a 
dual-mode policy, when the advanced way­
point is reached, the controller switches from 
track to course weighting, thus suppressing Y1 
and emphasising 'Vc· 

.. .. , 

Figure 9: Simulated Approach 
into the Port of Plymouth . 
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1.2.4. Neural Network Guidance 
System 

1.2.4.1. Supervised Learning using Back 
Propagation 

The output of each artificial neuron is 
calculated by multiplying each incoming 
signal by an associated weight, and adding 
together all the weighted inputs to form the 
total input and uses a Sigmoid function to 
create the output. 

A neural network consists of at least an input 
layer, and output layer and a single interme­
diate, or hidden layer. All neurons are inter­
connected. A single hidden layer can be used 
for simple applications, but for more complex 
situations, multi-layer networks are 
employed. 

The problem is to find the optimum size that 
gives the best balance between accuracy and 
speed (Richter and Bums /6/) . 

In this application the network is trained 
using supervised learning. A subset of the 
state vector (only those terms that affect the 
demanded rudder) are input to both the 
optimal guidance system and the neural net, 
which both compute the demanded rudder 8o 
Differences between the two values are used 
to train the network using back propagation 
learning as shown in Figure 1. 

1.2.4.2. Training the Network 

Training data from the optimal guidance 
system over a range of speeds from 2.572 to 
7.717 m/s was collected in the simulated ap­
proach to the Port of Plymouth. During lear­
ning, the lraining sets are randomly selected 
and run over a given interval, usually until 
100,000 - 200,000 samples have been taken. 
Parameters such as momentum, learning 
coefficient and number of neurons in hidden 
layer arc then varied until a global minimum 
cn·or is achieved. For this application, thjs 
occurred for the following values: 

input neurons = 5 
output neurons = I 
number of hidden layers= 2 
neurons in hidden layer = 10 
lcaru ing wcffi ..: icnt = 0 .() 

momentum 
number of samples 
learning time 

1.2.5. Results 
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=0.4 
= 200,000 
= 2230 seconds 

The weight coefficient matrices were used in 
an neuro-optirnal hybrid controller to test the 
system, the neural network controlling the 
rudder, the optimal guidance system control­
ling the main engines. 

1 .2.5.1 . Low Speed Approach 

In the low speed approach, the vessel com­
menced its run at 2.572m/s. Figure I 0 shows 
the cross-track error Ye for both the optimal 
and neural controllers. Figures 11 and 12 give 
the corresponding results for the heading 
error \j/e and rudder 8o. It can be seen that 
there is good correlation for heading and 
rudder, but there is an offset with the cross­
track error. Tills is possibly due to the way in 
which the traiillng data was scaled. 

The dual-mode operation can clearly be seen. 
At t = 580 seconds the first way-point is ap­
proached and the controller drives the rudder 
hard-over as it enters course-changing mode. 
When the heading error is 20 degrees at t = 
700 seconds, track-keeping mode is resu111ed. 

figure 10: Cross-Track Error -
Low Speed Approach 
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fig ure 11: Heading Error -
Low Speed Approach 

:1· . i ! . -I· -~~-:_j] __ __ ~ -~ 
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h'ne l3J 

fig ure 12: Rudder Angle­
L ow Speed Approach 

1.2.5.2. High Speed Approach 

Here the speed of approach was 7 .717 rn/s. 
Figures 13, 14 and 15 show the cross track 
error, heading error and demanded rudder 
respectively. As with the low speed approach, 
there is good correlation between the two 
controllers for rudder and heading, with an 
offset on the cross-track data. At high speeds, 
it can be seen that the rudder excursions are 
far smaller, indicating that both controllers 
have adapted to the change in vessel 
dynamics. 

: /\". I 

llmo 1•1 

I 

figure 13: Cross-Track En or -
High Speed Approach 
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figure 14: Heading Error ­
High Speed Approach 
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figure 15: Rudder Angle­
High Speed Approach 

1 .2.5.3. Control ler Performance 

In order to compare the performance of the 
two controllers, a set of generalised perfor­
mance indices may be defined: 

'• 
J _y = f (y D - y A) 2 dt 

'o 
,, 

j V' = f (If/ D - If/ A )2 dt (10) 

,, 
j {j = f 8 A 1dt 

'• 
bl 2 . Ta e gtves th e com~ara tve resu lt s. 

speed Optimal Controller Neural Controller 

(mfs) J, J,. JA J. J, J! 

2.572 0.764E6 111 .4 67.2 0.968E6 111 .7 63.6 

7.717 0.852E6 43.2 6 1.1 O.l38E7 43.9 63.4 

table 2: Comparative Results 

From Table 2 it can be seen that in terms o r 
head in£ and rudder, the two controllers 
perfor~1 in a similar manner, but the optimal 
controller provides be tter track- keeping 
pe rformance. 
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1.2.6. Conclusions 

The resulls of this initial study demonstrate 
that a neural network may be trained from 
data provided by an optimal guidance system. 
The trained network performs in a slightly 
sub-optimal manner - but has the advantage 
that it does not have to re-compute controller 
parameters for different forward speeds. At 
this stage it is not known how the network 
would cope with another way-point con­
figuration. 

The properties of multi-layer neural networks 
arc not yet fully understood. It would appear 
however, that a ship guidance system is a 
potential application of the technique. There 
is extensive scope for further research in this 
field, particularly in the design of un­
supervised learning networks that adapt in an 
on-line manner. 
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The Application of Neural Networks 
for the Modelling of Process Dynamics 

Professor Roland Burns and Mr Ralph Richter 
School of Manufacturing, Materials and Mechanical Engineering 

1 Introduction 

The classical approach to modelling the dynamic behaviour of rigid bodies is to express their 
behaviour as a set of simultaneous linear and non-linear differential equations, and to obtain 
a solution for various input stimuli. An alternative approach is that of system identification 
whereby a given input such as a step, sinusoid or pseudo-random binary sequence (PRBS) is 
applied to the real system and from a set of inpuUoutput measurements using such 
techniques as linear least squares and maximum likelihood analysis a mathematical model 
may be obtained. This paper investigates the generation of a state variable representation of 
a ship in three degrees of freedom by the application of an Artificial Neural Network (ANN). 

ANNs have been shown to demonstrate the capability to model highly complex plants. By the 
application of training data derived from the real environment, these networks can lean to 
emulate a wide range of differing conditions. Once trained, the neural network substitutes the 
plant and performs instead. The technique can be used not only to simulate the process 
dynamics of real systems, but also to act as a reference system model in adaptive and 
predictive control situations. 

When considering motion control, the neural network philosophy is of particular interest. 
Using the non-linear time-invariant dynamic characteristics of a maritime vessel, a neural 
network is developed to model and control the motion of this process. 

Using a carefully selected range of manoeuvres undertaken at various forward speeds, a 
comparison can be made between the conventional ship model and the neural network model 
developed. 

2 Artificial Neural Networks 

Artificial neural networks represent a powerful tool for simulating an understanding of 
complex relationships between patterns. Pattern can be understood not only as image, but 
also as number (vector, matrix) of data. The relationship between such vectors is often either 
not fully known or very difficult to describe using mathematical terms. 

The 'genius' of the human brain to understand and to explain situations which are considered 
fascinating to biologists and engineers. First publications on neural computing was published 
in the early 1940's by Frank Rosenblatt, Warren McCulloch, Norbert Wiener, Wafter Pitts. 
The importance of studies in the field of neuro-medicine is reflected by the number of Nobel 
prizes awarded to those researching neurology. Between 1901 and 1991, approximately 10% 



of the prizes in medicine and physiology were awarded to researchers, whose work 
contributed directly to the advancement of neurological medicine. 

It is the intention of this study to underline the ability of artificial neural networks to handle 
complex situations in addition to the biological neural network. A neural network has been 
designed to find (learn) and recall the behaviour of a large motorised marine vesseL It was 
determined that the initial task was to break down the problem into smaller sub units. 

3 Mathematical Background of ANNs 

To understand the actions and algorithms concerned with neural computing it is necessary to 
consider biological neural nets and their architecture. 

A neuron is the basic element of the brain. A diagram of a neuron is detailed in Figure 1. 

The structure of the brain is an interconnection from other Neurons 
of a very large (tens of bijlions) number of 
neurons. The transmission of signals in the 
brain is chemical in nature. Each neuron re-
ceives an input signal from other neighbouring Oendrites 
neurons. The connection path between two 
neurons is called an axon and the incoming 
ports dendrites. 

The connections between axons and dendrites 
are called synapse (Figure 2). In order to Figure 1 Structure of a biological neuron 

understand the biological model, the axon is an 
electrical cable and the dendrites is a socket To 
carry information a link is required. The 
synapse, the link or plug, changes the 
effectiveness of the incoming spike. 

During the learning phase the efficiency of the ~ 
synapse is modified. The sum of the incoming 
signals, the total input, is used by the receiving 
neuron to generate an output. This output of 
one neuron is the input for many other neurons Synapse 
except those neurons in the output layer. 

The artificial neuron is a simple model of the Figure 2 Synapse 
biological neuron which has the form as 
displayed in Figure 3. 

The label of the signals depends on your view point. Assuming the present neuron, all inco­
ming signals are called x and the output is 
called y, this y, or output, is then an incoming 
signal for the next neuron and is then called x. 
As demonstrated, the synapse is modelled as a 
modifiable weight which is associated which 
each axon (connection to a neuron). The neu­
rons output formed by the transfer function is a 
single number that represents the rate of firing 
- the activity of the neuron. To compute the Transfer Function 
output, the neuron multiplies each incoming 

signal by the associated weight and adds Figure 3 Main structure of an artificial neuron 

l 



together all these weighted inputs to form the total input and uses this to create the output by 
using the transfer function. The reaction of the artificial network depends on both the transfer 
function used and the weights. 

The out put of the neuron in the mathematical sense is defined as: 

1t " t-1 " et ; = £..Jxi . wiJ + ; (Equation 1) 
}=I 

(Equation 2) 

ek; the threshold, which moves the transfer function (graph) in the horizontal direction. 
x:•i output of neuron j in the previous layer 
w j.i weight between neuron i in layer le and the neuron j in layer k-1 
lk; total input of neuron i in layer le 

l = f(ln where J(I;t) {transfer function) could be: 

linear !(In= I/' 
Sigmoid function 

f(ljk) = l - 1' 

l+e · 
hyperbolic tangent 

4 Network Architecture 

f(I/) = tanh(I/) 

f(I:)~ {:: / .k < 0 
' - hard limiter or 

l.k > 0 
I 

threshold function 

In the past, many forms of neural nets and their algorithms were investigated. Serious 
investigations started in 1943, by the head neuro-biologist Warren McColloch and statistician 
Waiter Pitt. The paper [3] tangents fields like digital computing, 'electronic brains' and 
macroscopic intelligence. The first conference on artificial intelligence was organised in J956 
by famous names such as Marvin Minsky, John McCarthy, Claude Shannon and Nathanial 
Rochester. 

To simulate the behaviour of the human brain we need a network of neurons, a so called 
neural network (Net). The neurons are usually 
organised into groups called layers. A neural 
net consists of at least an input and an output 
layer and eventually hidden layer(s). In order 
to understand the following facts, with 'single' 
we mean the number of hidden layers. In 
practise, a single layer net consists of three 
layers, these being one input and one output 
layer with a single hidden layer. The words 
one and single are synonyms for each other. 
Simple tasks can be solved by a one layer 
network but for difficult problems a multi 
Layer network (Figure 4) is required. 

The behaviour of a multi layer net in general is 
very similar to a single layer net. The user has 
to find the optimum network size to be 
satisfied with the derived results and the speed 
computation. A small net may be faster but if 
the task is too difficult then important 

output layer 

hidden layer 2 

hidden layer 1 
Flow 

input layer 

Figure 4 Mufti layer network 



information may be lost, conversely, if the net is too large, then the output may become noisy 
and the subsequent computing speed, especially during the learning, is slow. 

Rumelhart's contributions to neural nets ([4]) are fundamentals for further investigation. 

The method of supervised learning utilised the back propagation algorithm (Figure 5). 

The neural net used in this algorithm is a multi layer net 
and will be the Sigmoid transfer function. The back 
propagation rule requires the error between computed 
output by the net (straight forward or phase l) and the 
desired output given by the •teacher'. To adjust the 
weights on the path between one neuron and the next 
neuron, the error is back propagated, starting with the 
output layer back to the first layer after the input layer. 
This process is the second, or learning, phase. The 
process- computing forward -:and error propagation back­
wards - is repeated with different pairs of training data 
until a maximum number of data is reached or the maxi­
mal error approaches an error, i.e. E = 0.05. 

c. 

teacher 
Ship 

1 
berror (~ e~een 

te~c er fnd s u en 
0 switch 

' back propagation 
learning 

......,.. 
'--

Neural Net 

Figure 5 Layout 

The interesting feature of back propagation is that we do not need any prior knowledge about 
the process. However, conversely this may prove to be a significant disadvantage because our 
student does not have any self organising capabilities and so can not be produce a response 
that is an improvement on that of the teacher. 

I I ""' I 1-1 91 
i = L..J W;;X j + i 

j 

x: = Sigmoid(!/) 
- 1 I A I 
WjJ = Wj.i + oWj.i 

straightforward (phase 1) 

(Eq.3) 

learning coefficient 
output of neuron i in layer I 
error of neuron i in layer I 
total input of neuron i in layer I 

A I t:l 1-1 
oWiJ = 11u 1x 1 back propagation (phase 2) (Eq. 4) 

weight on path from neuron j in layer I­
I to neuron i in layer I 

l'lw\ weight increment for w1
ii 

0 ~ = x: ( 1- x:) · (d; - x:) output layer (Eq. 5) SigmoidO transfer function 

t: I _ I ( 1- I). ""' t: 1+1 Wl+l . u 1 -X; X; L..J u k J.k mner neurons (Eq. 6) 
k 

The learning rules for the thresholds e are the same as the rules for the weights. The threshold 
is a weight with the associated input of 1.0 . 

5 Ship Mathematical Model 

Ship motions in surge, sway and yaw can be described [5] by an Eulerian set of non-linear 
differential equations of the form : 

Surge Equation: 
mu +mqw - mrv = 

Sway Equation: 
mv+mur - mpw = 

(Equation 7) 

X.u+X.(u+uc)+X •• u2 +X ••• u3 +X.,y
2 

+X"r
2 

s::l ~ ~ e2 +X66u A+ x .. nunA + Xnnn~ + XU<JutJ + X:.:.z- + Xee 

(Equation 8) 

Y. v + Y. (v + vc)+ Y/+ Y,r + Y,.,.n! + Yvvv v
3 + Y""'rv

2 

+ Y •• o n; 8 A + r:.ooo n 2 8 ~ + Ys)> A V 1 + yva V a 



Yaw Equation: 

1/+.(1,- /z )pr = 
(Equation 9) 

Nyv+Ny(v+vc)+N,i+N""n~ +NWYv3 +N,r+Nrwrv1 

+N ,.,.6n!S _. + N..,.~n!S~ + NflwS 1y
1 + N, vu 

Equations (7) to (9) can be arranged in the state matrix vector form: (Equation l 0) 
x(t) = F(t)x(t) + G c(t)u(t) + G 0 (t)w(t) 

The corresponding discrete solution is: (Equation 11) 

x((k + l)T)= A(T,kT)x(kT) + B(T,kT)u(kT) + C(T,kT)w(kT) 

where: 

X T = (o A n A X U y V Z W <j> p 8 q \jl r) 
UT= (o D no) .. 
Wr =(uc Vc u. v.l;,. Sy) 

(Equation 12) 

(Equation 13) 

(Equation 14) 

For this study, it was necessary to concentrate on three degrees of freedom. These being surge, 
sway and yaw. 

6 Ship Model Application 

The vessels parameters used in this simulation are given below (Table 1), and are based on the 
Morse and Price data for the Mariner Hull [6]. 

Table 1: Vessel Parameter 

Length = 161m 

Draught = 9m 

Beam = 23m 

Displacement = l7,000t 

Number of propellers = l 

Number of rudders = 1 

Maximum rudder angle = 35° 

A neural network is required to model the 
behaviour of large ships. The precise relation­
ships between many of the features and 

1--- u [mls) v (mls) --r [•ts] I 
8 

' ' ..... 
6 ... -------------------
4 
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Figure 6 Settl(ng Times 

characteristics of these ships are not fully understood. To determine them, it is possible to 
employ a neural network. Rudder angle, and engine speed cause speed changes in the surge, 

sway and yaw directions (u, v, ~ ). Since we are not only interested in the steady state 
response of the vessel, but also in the transient behaviour, it is essential to consider the time 
elapsed since the last rudder charige as an other input. Figure 6 indicates the various time 
periods required for the response to settle down. 



Table 2 settling times 

o [0
} u l t[s}l v t[s} yaw t[s} 

rate 
0 7.588\ 275\ 0.278\ 410\ -o.186l 405 

10 6.639l 270\ 0.734\ 220\ -o.534l 180 
.... =16 ·--6~818f"276f-0:669[-23a1··ci476f-···23o 

20 5.915\ 295\ 0.870\ 240l -o.681 \ 185 
··-=·20 .... 6~o·4-31 ... 29"01-~83-sf .. 23s1· .. -a:64·-tr-·--24o 

30 5.308l 290j 0.930j 24Qj -0.782j 155 
·--=-3o - 5A"oa1·-2as1-:o.9-o7l'-240l .. <U47j·--·1·s-5 

7 Structure of the~ANN 

Utilising an acceptable error of ±1 %, we 
can determine from the data (Table 2) the 
following values. Therefore it is possible to 
state that if the time considered is bigger 
than the time to reach steady state, then the 
response has reached steady sta~e. otherwise 
the response remains in the transient period 
and the operation of the artificial neural 
network is required. 

It is a pre-requisite that the variables to be investigated are considered before commencing 
design of the network's structure (see Table 3). 

To learn the transient behaviour, it is 
necessary to determine the time elapsed since 
the last rudder change as an additional 
further input. Thus, the interface to the 
outside world is defmed. 

A 3-6-6-6-3 network was identified to be 
suitable for this application. The quality of 

Table 3 Structure of the Network 

.......... ..!.~Pf~.~--......................... J?.~~-~p-~~-; ................ . 
rudder \engine forward \ lateral \turning 
angle \speed speed j speed j rate 

u V 

results obtained from a two hidden layer network proved unsatisfactory. Obviously, the 
transients, with their associated overshoots, are difficult to understand, and were therefore 
filtered out. Using more than two hidden layers the error is reduced and overshoots were 
replicated giving a suitable level of network performance. · 

8 Network Training 

The learning method utilised for this study was the back propagation algorithm. This 
algorithm is based on the minimisation technique called steepest descent or gradient method 
[l]. The transfer function employed was the popular Sigmoid function. The output were in the 
limits between 0.0 and 1.0 (0.0 < y < 1.0), where those values are reac~ed at infinity. There­
fore, the desired outputs had to be scaled within these limits. During the learning process the 
trend of the error development was observed and it could be seen that the network stuck in 
local minima. By increasing the number of hidden layer, the error surface contains less 
troughs and a more constant learning was achieved. Furthermore the learning rate was 
adjusted from an initial large learning rate with gradual decrements until the fmished level of 
learning was achieved (steady error) . 

9 Training Results 

Results of the learning are given in Figure 7 to Figure 9. Figure 7 displays the forward speed 
and demonstrates how the response of the network closely follows that of the surge rate 
training data. An improved level of performance is identified by the response for sway rate 
data, and also for that of yaw rate with increments in rudder angle of 0°, -l0°, + 10°, -20, +20°, 
-30° and +30° is displayed. 
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Figure 9 Yaw Rate Response 

The actual outputs match very closely the desired outputs given in the training· sets which 
clearly demonstrates the learning success of the network design utilised. Further work by the 
authors will concentrate on the implementation of this design of network during simulated sea 
trial conditions. Results will then be compared to those obtained from a ~aditional ship model 
to validate both the learning achieved, and the subsequent performance capability obtainable 
during simulation studies. 

10 Conclusions 

It has been demonstrated by this study that it is possible to simulate complex plant behaviour 
utilising neural networks. The advantage of employing a simulation using this technique is 
that it becomes possible to overcome the problems associated with formulating the 
relationship between the features to be investigated. This can be achieved by the neural 
network, thus allowing the designer to concentrate on alternative aspects of the design. The 
authors consider that the computational speed of the network far exceeds the required time for 
conventional differential equations because a significant amount of the training is undertaken 
off-line. During execution, the neural solution therefore allows for extension to far more 
complex mathematical models without incurring a notable slowing of the process time. 
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A NEURAL NETWORK APPROACH TO THE 
CONTROL OF SURFACE SliPS 

Dr Roland Burns and 
Mr Ralph Richter 

School of Manufacturing, Materials and Mechanical Engineering 
University of Plymouth, Plymouth, Devon, UK 

Abstract: Conventional ship autopi lots are based on proportional, integral and derivative 
(PID) algorithms, and are generally set to work under specific conditions. Changes in 
either the vessel's handling characteristics or environmental conditions means that the 
system is not working at itc; optimal point. This paper explores the possibility of 
developing two neural network autopilots based on training data derived from: 

a) a small vessel operating in a range of sea states, using di fferen tly tuned PID 
controllers for each sea state. 

b) an optimal guidance system for a large ship sailing in calm water at varying 
forward speeds. 

It is demonstrated that with the small vessel, a single neural network can cope with a 
range of sea states without the need for re-tuning. ln the case of the large vessel, the 
trained network performed in a slightly sub-optimal manner - but had the advantage that it 
was not necessary to re-compute controller parameters at different forward speeds. 

Keywords: neural control, navigation systems, optimal control, mathematical models, 
marine systems 

1. INTRODUCTION 

Many collisions and groundings of marine vessels 
occur in the approaches to a port where the traffic 
density is intense. This suggestc; that there is a need 
for automatic guidance systems to deal with the 
problems of surface ships manoeuvring in confined 
waters, possibly under shore control, as part of the 
port's vessel traffic services. 

Conventional ship autopilots are based on 
proportional, integral and derivative (PID) control 
algorithms, and are used to control the ship's 
heading in an open seaway. These controllers are 
developed to work under specific conditions, and so 
they arc not working at their optimal point and need 
to be reset to take into account the vessel's handling 
characteristics and environmental conditions. It is 
not current prac tice to use an automatic system in 

the approaches to a port, and in many cases control 
of the vessel is handed over to a pilot at this stage. 
However, it is in the pilotage phac;e of the voyage, 
where the traffic density is intense, that the risks of 
collision and grounding are highest. In addition, it 
hac; been highlighted in the 'Panel on Human Error 
in Merchant Marine Safety' (1976) that over 80 per­
cent of all marine accidents are due to human error. 

Modem sea-going vessels have a range of navigation 
aids, including global positioning system (GPS) 
receivers, Doppler sonar, and gyrocompasses, as well 
as hypobolic aids such as Loran C and Dccca. 
Current trend<; include the use of standard interfaces 
to network communication systems using computer 
tools such as electronic charts to form in tegrated 
navigation systems. it is also possible to employ the 
navigational data to provide best estimates or state 



vectors (Kalman filter) and optimal guidance 
strategies. Such techniques require powerful 
computing facilities , particularly if the dynamic 
characteristics of the vessel are changing, as may be 
the cac;e in a manoeuvring situation or changes in 
forward speed. 

The feasibility of neural networks to steer ships has 
been studied by Endo et al. (1989). 

Section 2 of this paper considers the scenario of a 
small vessel, operating under different environ­
mental conditions, depicted here by a range of sea 
states. To maintain optimality, a PID autopilot is 
tuned to handle each sea state. The complete data set 
from this exercise is then used to train a neural 
network, the intention being that the single network 
can then perform over the complete range of sea 
states without the need for re-tuning. 

Section 3 of this paper investigates the possibility of 
training a neural network to behave in the same 
manner as an optimal ship-guidance system, the 
objective being to provide a system that can adapt its 
parameters so that it provides optimal performance 
over a range of conditions, without incurring a large 
computational penalty. 

A series of simulation studies have been undertaken 
to compare the performance of a trained neural 
network with that of the original optimal guidance 
system over a range of forward speeds. It is 
demonstrated that a single network hac; comparable 
performance to a set of optimal guidance control 
laws, each computed for different forward speeds. 

With the advent of more powerful computers, an 
increac;ing number of modem techniques has been 
used such ac; neural computing (neural nets) and 
fuzzy logic for on-line control. 

The main purpose of a modern autopilot is to merge 
all the beneficial features of several controllers to 
create an intelligent controller, i.e. with a behaviour 
like a human helmsman. 

2. AN ARTIFICAL NEURAL NETWORK 
AUTOPILOT FOR SMALL VESSELS 

2. I. Creation of the Training Data 

The idea on which this study is based is that one Pill 
controller is tuned for one particular sea state and 
this tuned PID controller is then used as one tea~.:her 
for the neural network (see Fig. 1). 

If a training file, which contains input and output 
data of the PID controller, is created, the neural net 
will learn to respond like its teacher. But if the 
training data file consists of data pairs from more 
than one teacher, i.e. data from several tuned PID 
controllers in several sea states, the neural net will 
learn the behaviour of the tuned PI 0 controllers at 
the optimal point, or close to it. It is known that the 
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Fig. 1 Structure of the system 

sh1p parameters such as we1ght, mertia, draught and 
speed, have key effect<; on the behaviour of the ship. 
So, if necessary, the PID controller can be nmed for 
more specific situations and create more relevant 
data. 

The PID controllers, used as teachers, arc runed 
firstly for a very small heading error and not for a 
smooth rudder movement. Tests have proved that the 
neural net will work as a damper too. 

The training file for the neural net contains PID 
information for differently tuned controllers in the 
associated sea states from port and starboard 
directions, and the current outputs of the controllers. 
Further difficulties can arise when the inputs of the 
net have very big differences in the values. 

Suppose the heading error and the rate of change of 
the heading error are· in the order of 10·•. and less 
than 101, and the integral of the heading error is 
bigger than 102

, emphac;is will be placed on the 
input neuron for the integral and the small changes 
of the other two neurons are not taken into 
consideration. In this case, the net will only learn the 
rudder off.c;et to remove the average disturbance 
without alternating. 

2.2. Training the Network 

The net consists of 10 neurons, in each of the 2 
chosef! hidden layers. The architecture of the net is 
shown in Fig. 2. 

output layer 

hidden layer 2 

hidden layer 1 

input layer 

Data Flow 

Fig. 2 Struclure of the neural network 



During the learning stage, the training sets are 
randomly selected until the given number, in this 
case 60,000, is reached. It is possible to formulate 
the stop condition in association with the actual 
error between the computed output of the net and the 
desired output given by the teacher. 

2.3. Results 

The following graphs depict the learn ing process 
and the comparison of a trained neural network to a 
PID controller. 
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Table 1 Resultc; 

Sea State 3 4 5 

RMS Yaw Error 0.103 0.197 1.863 
Neural Net 

RMS Yaw Error PID 0.194 0.579 2.387 

It is clear that the neural network is able to react in 
the manner of its teacher(s). It is possible to train a 
neural network with the data from more than one 
teacher, and the network will pick up the behaviour 
of all the supervisors. 

3. OPTIMAL SfllP GUIDANCE USING A 
NEURAL-NETWORK APPROACH 

3.1. Background 

This suggest'> that there is a need for automatic 
guidance systems for marine vehicles in confined 
waterways, such as many of the world's major portc;, 
even to the extent of allowing a transfer of control 
from ship to shore using the port's vessel traffic 
services (VTS). As electronic navigation aids 
become more sophisticated, and the use of satellite 
Global Positioning System (GPS), particularly used 
in differential mode, becomes more widespread, the 
concept of fully automatic pilotage in port 
approaches becomes a tangible reality. 

It has been demonstrated (Burns, 1990) that it is 
possible to design an optimal multivariable ship 
guidance system that controls position, heading and 
speed simultaneously, and that such a system can 
work within the constraint'> required in port 
approaches. 

By the use of multivariable system theory, it is 
possible to construct a mathematical model of a 
surface ship that can respond to control inputs 
(rudder and main engines) and also to disturbance 
input'> (wind, waves and current). Such a 
mathematical description normally requires a set of 
non-linear differential equations. 

Based on a multi variable model with a control vector 
u, a disturbance vector w and a state vector x, an 
optimal control policy may be formulated that 
minimises a performance index, or cost function. A 
problem with this approach is that if the dynamic 
characteristics of the vessel change (due to variations 
in forward speed, for example) then the guidance 
system is sub-optimal, and its parameters need to be 
re-computed. This places a large computational 
burden on the ship's navigational computer, which 
must perform its cakulations during the sample 
period. 



3.2. Ship Mathematical Model 

Ship motions in surge, sway, heave, roll, pitch and 
yaw can be described by a Eulerian set of non-linear 
differential equations of the form: 

m(ti+qw-rv) = X 

m(v+ru-pw)=Y 

m(1v+pv - qu)=Z 

Jzp{I:- I .. )= L 

I.p(lz - 1=)= M 

I z p( I . - I z} = N . 

(1) 

The terms X, Y, Z, L, M and N represent all the 
external forces and moments acting on the hull, and 
include both linear and non-linear component<>. 
These equations can be arranged as a set of state 
equations in terms of the state vector x, control 
vector u and disturbance vector w, where: 

X =(8.4 /~ X u y V z w tP p () q "' ~ (2) 

uT= (80 n0 ) (3) 

WT=(uc Vc U0 V0 Sx S, }. (4) 

The vessel used in the simulation had the following 
parameters: 

Length 
Draught 
Beam 
Displacement 
Number of propellers 
Number of rudders 

= 161 m 
=9m 
=23 m 
= 17000 tonnes 
=I 
= 1 

Maximum rudder angle = ±35 degrees. 

The dynamic characteristics of the vessel may be 
described in terms of its open-loop eigenvalues. 
When u = 7.717 mls (15 knots), these are: 

s = -0.5, -0.039 ' -0.0755, 
0, 0, -0.5, 0 -0.00913. (5) 

When the vessel is travelling at 2.572 rn/s (5 knot<>), 
they become: 

s = -0.5, -0.013, -0.0252, 
0, 0, -0.5,0 -0.00265. (6) 

These results are shown in Fig. 7, and demonstrate 
that the vessel becomes less manoeuvrable at low 
speeds, thus requiring a control policy that takes thi s 
into al:counl. 

l, ' ll al• 
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Fig. 7 Effect of forward speed on open-loop 
eigenvalues 

3.3. Optimal Guidance Policy 

Given the state equations: 

x(t) = F(t)x(t)+Gc(t)u+G0 (t)w(t) (7) 

and the quadratic criterion to be minimised: 

J= t{(x-r( Q(x-r)+uTRu}dt, (8) 

where r is the desired state vector, it can be shown 
(Bums, 1989) that the optimal control is: 

u opt = -(Sx + R-tGT m) (9) 

where S is the optimal feedback gain malrix 
calculated from solution of the Riccati equations 
and m is the command vector, computed from a 
knowledge of the system model and the desired state 
vector. 

Figure 8 illustrates the departure of the eigenvalues 
from their assigned positions as the forward speed is 
reduced from 7.717 rn/s to 2.572 m/s. To maintain a 
fixed closed-loop eigenvalue array, it is necessary to 
re-compute the feedback matrix S at each forward 
speed. 

1. 111 .,, 
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Fig. 8 Eigenvalue departure during a speed 
reduction 

Figure 9 shows a simulated approach into the Port of 
Plymouth using the assigned closed-loop 
eigenvalues. The problem of way-point overshoot is 
overcome by using way-point advance and dual­
mode control. Under a dual-mode policy, when the 
advanced way-point i:; reached, the controller swit­
ches from track to course weighting, thus sup­
pressing y, and emphasising '1/ •. 

...... ; 

Fig. 9 Simulated approach into the port of 
Plymouth 



3.4. Neural-network Guidance System 

Supervised Learning using Backpropagation The 
output of each artificial neuron is calculated by 
multiplying each incoming -signal by an associated 
weight, adding together all the weighted inputs to 
form the total input, and using a Sigmoid function to 
create the output. 

A neural network consists of at least an input layer, 
an output layer and a single intermediate, or hidden 
layer. All neurons are interconnected. A single 
hidden layer can be used for simple applications, but 
for more complex situations, mulli-layer networks 
arc employed. 

The problem is to rind the optimum size that gives 
the best balance between accuracy and speed 
(Richter and Bums, 1993). 

In thi s application the network is trained using 
supervised learn ing. A subset of the state vector 
(only those terms that affect the rudder required) are 
input to both the optimal guidance system and the 
neural net, which both compute the required rudder, 
~. Differences between the two values are used to 
train the network using backpropagation teaming as 
shown in Fig. 1. 

Training the Network Training data from the 
optimal guidance system over a range of speeds from 
2.572 to 7.717 m/s was collected in the simulated 
approach to the Port of Plymouth. During learning, 
the training setc; were randomly selected and run 
over a given interval, usually until 100,000 -
200,000 samples had been taken. Parameters such ac; 
momentum, teaming coefficient and number of 
neurons in hidden layer were then varied until a 
global minimum error was ach ieved. For this appli­
cation , this occurred for the following values: 

input neurons = 5 
output neurons = 1 
number of hidden layers= 2 
neurons in hidden layer = 10 
learning coefficient = 0.6 
momentum = 0.4 
number of samples = 200,000 
learning time = 2230 seconds. 

3.5. Results 

The weight coeffi cient matrices were used in an 
neuro-optimal hybrid controller to test the system, 
the neural network controlling the rudder, and the 
optimal guidance system controlling the main 
engines. 

l..ow-speed Approach In the low-speed approach, the 
vessel commenced its run at 2.572 m/s. shows the 
cross-track error y., for both the optimal and neural 
w ntrollcrs. Figures 11 and 12 give the 
correspond ing results for the heading error f/1. and 
rudder c5iJ. lt can be seen that there is good 

~0 ~ 1~ 1~ 1~1~1~ 
Tim<t ($) 

Fig. I 0 Cross-track error - low-speed approach 
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Fig. 11 Heading error - low-speed approach 

Fig. 12 Rudder angle - low-speed approach 

correlation for heading and rudder, but there is an 
offset with the cross-track error. This is possibly due 
to the way in which the training data was scaled. 

The dual-mode operation can clearly be seen. At 
t = 580 seconds the first way-point is approached, 
and the con troller drives the rudder hard-over as it 
enters the course-changing mode. When the 
heading error is 20° at t = 700 seconds, the track­
keeping mode is resumed. 

High-!>peed Approach Here the speed of approach 
was 7.7 17 m/s. Figures 13 to 15 show the cross track 
error, heading error and required rudder 
respectively. As with the low-speed approach, there 
is a good correlation between the two controllers for 
rudder and heading, with an offset on the cross-track 
data. At high speeds, it can be seen that the rudder 
excursions arc far smaller, indicating that both 
controllers have adapted to the change in vessel 
dynamics. 



Fig. 13 Cross-track error - high-speed approach 
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Fig. 14 Heading error- high-speed approach 
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Fig. 15 Rudder angle - high-speed approach 

Controller Peifonnance In order to compare the 
performance of the two controllers, a set of 
generali sed performance indices may be defined: 

'• 
j .Y = J ( y D - y A) 2 dt 

'• 
1 VI = J ( If/ D - If/ A ) 

2 
dt (10) 

,, 
10 = J 8 A 

1
dt 

'• 
Table 2 gives the ..:ornpara tive results. 

Table 2 Comgarative Results 

speed Optimal Con1roller Neural Conlrollcr 

(m/s) J l w 16 J. lw J~ 

2 .572 0.764E6 111 .4 67.2 0 .968E6 111.7 63.6 

7 .717 0.852E6 43.2 61.1 0.138E7 43.9 63.4 

From Table 2 it can be seen that in tem1s of heading 
and rudder, the two controllers perform in a similar 
manner, but the optimal controller provides better 
track-keeping performance. 

4 . CONCLUSIONS 

The results of this initial study demonstrate that a 
neural network may be tra ined from data provided 
by an optimal guidance system. The trained network 
performs in a slightly sub-optimal manner - but has 
the advantage that it does not have to re-compute 
controller parameters for different forward speeds. 
At thi s stage it is not known how the network would 
cope with another way-point configuration. 

The properti es of multi-layer neural networks are not 
yet full y understood. It would appear however, that a 
ship's guidance system is a potential application of 
the technique. There is ex tensive scope for further 
research in this fi eld, particularly in the design of 
unsupervised learning networks that adapt in an on­
line manner. 
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Abstract 

Conventional techniques to model plants require the utilisation of differential equations. 
The computation of such equations becomes slow in situations when the plants are 
highly complex. By taking training data from the real plant, it is possible to design and 
train a neural network which is capable of achieving a successful plant model using an 
off-line backpropagation technique. For a marine application, analysis of the results of 
this study is included which demonstrates how this technique may be applied, and the 
nature of the performance obtainable. 

1 Introduction 

The classical approach to modelling the dynamic behaviour of rigid bodies is to express their 
behaviour as a set of simultaneous linear and non-linear differential equations, and to obtain a 
solution for various input simuli. An alternative approach is that of system identification 
whereby a given input such as a sinusoid or pseudo-random binary sequence (PRBS) is applied 
to the real system and from a set of input/ output measurements a mathematical model may be 
obtained. This paper investigates the generation of a state variable representation of a ship in 
three degrees of freedom by the application of an Artificial Neural Network (ANN). 

ANNs have been shown to demonstrate the capability to model highly complex plants. By the 
application of training data derived from the real environment, these networks can learn to 
emulate a wide range of differing conditions. Once trained, the neural network substitutes the 
plant and performs instead. · 

When considering motion control, the neural network philosophy is of particular interest. 
Using the non-linear time-invariant dynamic characteristics of a maritime vessel, a neural 
network is developed to model and control the motion of this process. 

Using a carefully selected range of manoeuvres undertaken at various forward speeds, a 
comparison can be made between the conventional ship model and the neural network model 
developed. · 

2 Artificial Neural Networks 

Artificial neural networks represent a powerful tool for simulation an understanding of 
complex relationships between patterns. Pattern can be understood not only as image, but also 
as number (vector, matrix) of data. The relationship between such vectors is often either not 
fully known or very difficult to describe using mathematical terms. 

The 'genius' of the human brain to understand and to explain situations which are considered 
fascinating to biologists and engineers. First publications on neural computing was published in 
the early 1940's by Frank Rosenblatt, Warren McCulloch, Norbert Wiener, Waiter Pitts. The 
importance of studies in the field of neuro-medicine is reflected by the number of No bel prizes 
awarded to those researching neurology. Between 1901 and 1991, approximately 10% of the 



prizes in medicine and physiology were awarded to researchers, whose work contributed 
directly to the advancement of neurological medicine. 

It is the intention of this study to underline the ability of artificial neural networks to handle 
complex situations in addition to the biological neural network. A neural network has been 
designed to find (learn) and recall the behaviour of a large motorised marine vessel. It was 
determined that the initial task was to break down the problem into smaller sub units. 

3 Mathematical Background of ANNs 

To understand the actions and algorithms concerned with neural computing it is necessary to 
consider biological neural nets and their architecture. 

A neuron is the basic element of the brain. A diagram of a neuron is detailed in Figure 1. 

The structure of the brain is an interconnection from other Neurons 

of a very large (tens of billions) number of 
neurons. The transmission of signals in the brain 
is chemical in nature. Each neuron receives an 
input signal from other neighbouring neurons. Dendrites 

The connection path between two neurons is 
called an axon and the incoming ports 
dendrites. 

The connections between axons and dendrites 
are called synapse (Figure 2). In order to Figure 1 Structure of a biological neuron 

understand the biological model, the axon is an 
electrical cable and the dendrites is a socket. To 
carry information a link is required. The 
synapse, the link or plug, changes the 
effectiveness of the incoming spike. 

During the learning phase the efficiency of the ~ 

synapse is modified. The sum of the incoming 
signals, the total input, is used by the receiving 
neuron to generate an output. Tiris output of 
one neuron is the input for many other neurons Synapse 
except those neurons in the output layer. 

The artificial neuron is a simple model of the Figure 2 Synapse 
biological neuron which has the form as 
displayed in Figure 3. 

The label of the signals depends on your view point. Assuming the present neuron, all inco­
ming signals are called x and the output is 
called y, this y, or output, is then an incoming 
signal for the next neuron and is then called :x. 
As demonstrated, the synapse is modelled as a 
modifiable weight which is associated which 
each axon (connection to a neuron). The neu­
rons output formed by the transfer function is a 
single number that represents the rate of firing 
- the activity of the neuron. To compute the Transfer Function 
output, the neuron multiplies each incoming '-'Xo,__ ______________ __. 

signal by the associated weight and adds Figure 3 Main structure of an artificial neuron 



together all these weighted inputs to form the total input and uses this to create the output by 
using the transfer function. The reaction of the artificial network depends on both the transfer 
function used and the weights. 

The output of the neuron in the mathematical sense is defined as: 
/.t = ~ x~-l . w• . + e~ 
' i.J J } ,1 ' 

(Equation 1) 
j = l 

x: =J(I:) (Equation 2) 

e k; the threshold, which moves the transfer function (graph) in the horizontal direction. 
xk-ti output of neuron j in the previous layer 
~j.i weight between neuron i in layer k and the neuron j in layer k-1 
I k; total input of neuron i in layer k 

where !(I;•) (transfer function) could be: 

linear f(I/) =I/ 
Sigmoid function 

!(I/)= 1 • 
1 + e-1, 

hyperbolic tangent 

* 
_L 

4 Network Architecture 

!(I;')={:: 
v--

_ .. ,_ .. J1 
I / 5 0 

hard lim.iter or 
I .• > 0 

I 

threshold function 

In the past, many forms of neural nets and their algorithms were investigated. Serious 
investigations started in 1943, by the head neuro-biologist Warren McColloch and statistician 
Waiter Pitt. The paper [3] tangents fields like digital computing, 'electronic brains' and 
macroscopic intelligence. The first conference on artificial intelligence was organised in 1956 
by famous names such as Marvin Minsky, John McCarthy, Claude Shannon and Nathanial 
Rochester. 

To simulate the behaviour of the human brain we need a network of neurons, a so called neural 
network (Net). The neurons are usually 
organised into groups called layers. A neural 
net consists of at least an input and an output 
layer and eventually hidden layer(s). In order 
to understand the following facts, with 'single' 
we mean the number of hidden layers. In 
practise, a single layer net consists of three 
layers, these being one input and one output 
layer with a single hidden layer. The words 
one and single are synonyms for each other. 
Simple tasks can be solved by a one layer 
network but for difficult problems a multi 
layer network (Figure 4) is required. 

The behaviour of a multi layer net in general is 
very similar to a single layer net. The user has 
to find the optimum network size to be 
satisfied with the derived results and the speed 
computation. A small net may be faster but if 
the task is too difficult then important 

output layer 

input layer 

Figure 4 Multi layer network 



information may be lost, conversely, if the net is too large, then the output may become noisy 
and the subsequent computing speed, especially during the learning, is slow. 

Rumelhart's contributions to neural nets ([4]) are fundamentals for further investigation. 

The method of supervised learning utilised the back propagation algorithm (Figure 5). 

-teacher 
Ship 

_L 

ttf (~ 
t~ Jnfld 

' 
q .switch 

back propagation 
learning 
~ 

The neural net used in this algorithm is a multi layer net 
and the neurons will use the Sigmoid transfer function. 
The back propagation rule requires the error between 
computed output by the net (straight forward or phase 1) 
and the desired output given by the 'teacher'. To adjust 
the weights on the path between one neuron and the next 
neuron, the error is back propagated, starting with the 
output layer back to the first layer after the input layer. 
This process is the second, or learning, phase. The 
process - computing forward and error propagation 
backwards - is repeated with different pairs of training 
data until a maximum number of data is reached or the 

L., '--
Neural Net 

Figure 5 Layout 

maximal error approaches an error, i.e.£= 0.05. 

The interesting feature of back propagation is that we do not need any prior knowledge about 
the process. However, conversely this may prove to be a significant disadvantage because our 
student does not have any self organising capabilities and so can not be produce a response 
that is an improvement on that of the teacher. 

11 " 1 1-1 81 ; = i.- W;,;Xj + ; 
j 

x: =Sigmoid(!/) 

straightforward (phase 1) 

w1 
•. = w~ . + llw1

.. (Eq 3) 
) ,1 ) ,1 },J • 

A I 5:;1 1-1 uw1,; = TJu 1x1 back propagation (phase 2) (Eq. 4) 

8 ~ = x: (1- x:) · (d; - x:) output layer (Eq. 5) 

8 1 = x1 (1 - x~ ) · " 8 l+l w1
+

1 inner neurons (Eq. 6) 
} I I '-' k j ,k 

k 

11 learning coefficient 
x\ output of neuron i in layer I 
~·~ error of neuron i in layer 1 
11

1 total input of neuron i in layer I 
w\, weight on path from neuron j in layer 

1-1 to neuron i in layer I 
tnvii weight increment for w\1 

SigmoidO transfer function 

The learning rules for the thresholds e are the same as the rules for the weights. The threshold 
is a weight with the associated input of 1.0 . 

5 Ship Mathematical Model 

Ship motions in surge, sway and yaw Cat1 be dtscribed [5] by an Eulerian set of non-linear 
differential equations of the form : 

Surge Equation: (Equation 7) 

mu+ mqw - mrv = X.,u +X., (u + uc )+ X.,.,u 2 + X.,.,.,u 3 +X"" v2 + X"r 2 

+Xli58~ +X.,nunA +Xnnn~ +X.,0 U0 +Xaz
2 

+X99 8
2 

Sway Equation: (Equation 8) 

mv+ mur- mpw = Y.,v+ Y.,(v+ vc)+ Y/+ Y,.r+ Ynnn~ + Yvwv3 + Yrvvrv 2 

+Ynn!in~8 A+ ynn1i!i!in28 ~ + ~vv8 A v2 + Y.ava 



Yaw Equation: 

1/+(11 -lx)pr = 
(Equation 9) 

Nvv+ Nv(v+ vc)+ N/+ Nnnn! + Nvvvv3 + N,r+ N rvvrv2 

+NnnS n!b il + Nnnlililin!b ~ + Nlivvb il v2 + N VQ VQ 

Equations (7) to (9) can be arranged in the state matrix vector form: (Equation 10) 
i(t) = F(t)x(t) + G c (t)u(t) + G D (t)w(t) 

The corresponding discrete solution is: (Equation 11 ) 
x({k + 1)T)= A(T,kT)x(kT) + B(T,kT)u(kT) + C(T,kT)w(kT) 

where: 

X T = (b A n A X U y V Z W $ p 8 q \jl r) 
U T = (b D no) 

W T = ( U c V c Ua V a ~ x ~ y) 

(Equation 12) 

(Equation 13) 

(Equation 14) 

For this study, it was necessary to concentrate on three degrees of freedom. These being surge, 
sway and yaw. 

6 Ship Model Application 

The vessels parameters used in this simulation are given below (Table 1), and are based on the 
Morse and Price data for the Mariner Hull [6] . 

Table 1: Vessel Parameter 1--- u(mls) v [mls) r r'•1 1 
Length = 161m 

Draught = 9m 
8 ,...., 

' ... 6 .. 
Beam = 23m -------------------
Displacement = 17,000t 4 

Number of propellers = 1 2 

Number of rudders = 1 /-
0 

Maximum rudder angle = 35° \: 
lW O.:W 300 400 500 

-2 
A neural network is required to model the 
behaviour of large ships. The precise relation- Figure 6 Settling Times 
ships between many of the features and 
characteristics of these ships are not fully understood. To determine them, it is possible to 
employ a neural network. Rudder angle, and engine speed cause speed changes in the surge, 

. 
sway and yaw directions (u, v, \jl ) . Since we are not only interested in the steady state 
response of the vessel, but also in the transient behaviour, it is essential to consider the time 
elapsed since the last rudder change as an other input. Figure 6 indicates the various time 
periods required for the response to settle down. 



Tab/~ 2 settling times 

0 [0] u ! t [s] ! V t [s] ! yaw i t [s] 
l ~ i rate ~ 

0 7.588! 275i 0.278! 410! -0.186 405 
10 .... ~:~~-~~--?.~Q~---~.:?_~~~--~~~--~Q:.~~ 180 

-10 6.818! 270! -0.669, 230! 0.476 230 
20 __ ?.:.~~~L?~~l--Q:~?~I--~4.QL-.Q:.~-~~ -----~-~ 

-20 6.043! 290! -0.8361 235! 0.641 ! 240 
30 5.308! 290i 0.930! 240! -0.782! 155 

-················ ········-··-t··--····----·i····---··t···---··---·t-·--··········· 
-30 5.408! 285! -0.9071 240 j 0.747! 165 

7 Structure of the ANN 

Utilising an acceptable error of ±1 %, we 
can determine from the data (Table 2) the 
following values. Therefore it is possible to 
state that if the time considered is bigger 
than the time to reach steady state, then the 
response has reached steady state, otherwise 
the response remains in the transient period 
and the operation of the artificial neural 
network is required. 

It is a pre-requisite that the variables to be investigated are considered before commencing 
design of the network's structure (see Table 3). 

To learn the transient behaviour, it is 
necessary to determine the time elapsed since 
the last rudder change as an additional 
further input. Thus, the interface to the 
outside world is defined. 

A 3-6-6-6-3 network was identified to be 
suitable for this application. The quality of 

Table 3 Structure of the Network 

····-······~.PT~_!§·······-- .................... ?-!!.9?.~~~-·- · ······· ······· 
rudder l engine forward j lateral turning 

I • 
an le 1 s s I s ed rate 

u V 

results obtained from a two hidden layer network proved unsatisfactory. Obviously, the 
transients, with their associated overshoots, are difficult to understand, and were therefore 
filtered out. Using more than two hidden layers the error is reduced and overshoots were 
replicated giving a suitable level of network performance. 

8 Network Training 

The learning method utilised for this study was the back propagation algorithm. This algorithm 
is based on the minimisation technique called steepest descent or gradient method [1]. The 
transfer function employed was the popular Sigmoid function. The _output were in the limits 
between 0.0 and 1.0 (0.0 < y < 1.0), where those values are reached a~ infinity. Therefore, the 
desired outputs had to be scaled within these limits. During the learning process the trend of 
the error development was observed and it could be seen that the network stuck in local 
minima. By increasing the number of hidden layer, the error surface contains less troughs and a 
more constant learning was achieved Furthermore the learning rate was adjusted from an 
initial large learning rate with gradual decrements until the finished level of learning was 
achieved (steady error). 

9 Training Results 

Results of the learning are given in Figure 7 to Figure 9. Figure 7 displays the forward speed 
and demonstrates how the response of the network closely follows that of the surge rate 
training data. An improved level of performance is identified by the response for sway rate 
data, and also for that of yaw rate with increments in rudder angle of 0°, -10°, +10°, -20, +20°, 
-30° and +30° is displayed. 
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Figure 7 Surge Velocity Response 
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Figure 9 Yaw Rate Response 

The actual outputs match very closely the desired outputs given in the training sets which 
clearly demonstrates the learning success of the network design utilised. Further work by the 
authors will concentrate on the implementation of this design of network during simulated sea 
trial conditions. Results will then be compared to those obtained from a traditional ship model 
to validate both the learning achieved, and the subsequent performance capability obtainable 
during simulation studies. 

1 0 Conclusions 

It has been demonstrated by this study that it is possible to simulate complex plant behaviour 
utilising neural networks. The advantage of employing a simulation using this technique is that 
it becomes possible to overcome the problems associated with formulating the relationship 
between the features to be investigated. This can be achieved by the neural network, thus 
allowing the designer to concentrate on alternative aspects of the design. The authors consider 
that the computational speed of the network far exceeds the required time for conventional 
differential equations because a significant amount of the training is undertaken off-line. During 
execution, the neural solution therefore allows for extension to far more complex 
mathematical models without incurring a notable slowing of the process time. 
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Abstract 

Conventional autopilots for small crafts arc based on 
proportional plus integral plus derivative (PID) 
oontrol algorithms. The settings of the proportional, 
i.Dlcgral and derivative CXHitrol pa.ramcters depend 
upon the vessel's bandHog characteristics and also 
the euvironrr.ental c::ooditioas, e.g. the sea state. 

IdcalJy the autopilot should be tuned in calm water 
oooditioos and then rdUDcd for difrercnl sea states. 
In prxtioc the c::oauoller paramc:tcrs are pre-set a1 

the factoly aDd an: rarely cbaogcd. and so most 
autopilots do Dot opcra!C at their optimal sdrings 

This paper iiM:stigatcs the ~ of artificial DCUI3l 
DCtworks (Dds) as an altcmativc oontrol SU31Cgy. A 
DCUr21 DCtwolk wperviscd by PID amtrollers has 
bccD devdopcd. Tbc input wctor 10 the uctwork 
ooasists of beading aror, rate of change of heading 
error and the iDlcgral of heading error. The output of 
the Detwork is the requested rudder angle. Tbe 
lcamiDg data for the DCUr.ll actwork was geoc:rat.cd 
using tuned PID infomwioo for a range of sea states. 

Tbc !lCtwolk empl~ the back propaptioo approach. 
Tbc iDput 10 each artificial DCW'OD coasists of the 
sum of all iDpuls (multiplied by the weigltt) which is 
then used for the geucratioo of a single output by 
us.:g the Sigmoid as a transfer fuDction. 

The investigation has dcmonstratcd that if the size of 
the aetwort is too small, then impor1ant leamiDg 
characteristics will be lost. On the other hand if the 
networt is too large then the output may be noisy and 
the computational speeds, cspccia11y during the 
learning phase, will be slow. 
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The paper will display the initial results of the study. 
The work to-date has shown that a tuned PID 
c:onttoller for a given sea state will out-perform a 
gc:nc:ral purpose DCUr.ll controller dcsigucd 10 oope 
with a range of ac:a states. HoweYer, leSUlts indicate 
that wbc:n the PID c::oatrol1er opentcs iD 1a swcs 
that it bas Dot bc:cn specifically tDDcd a, tbe DCUl3l 
cootroller provides superior pcrformm::e. 

1. Fundamental Principles 

The brain is the most cxaplcx suuc:turc ~ kDow. Its 
powerful Clplbilities, like thinking, K"" milcring, 
problcuHolviDg ad lcamiDg. arc w:sy fn inatiag 10 
model We use artificial acanl DCU to simulate tbc 
bc:b:niour or tbc human baiD such • kamiD& IIDd 
n:calJ of plttems. Fust lpplic;dioas were ~ 
for pattcm m:ogaitioll in the c:arty 1940's. Tbc first 
priDciplcs · were publisbcd by Fnak Roacoblatt in 
1957. He dcftlopcd an dc:mcDl callcd~pb"'ft.as 
shown in figure 1.1. 1Wbi<:h altndCd aacmion in the 
world of acural oomputing. His pczttp~on is a 
clcYicc 10 ftlCOgDisc lbstaact aDd pomctric pattems. 

The pcrccpbon consists ot a 400 phoeocell grid and 
was mainly dcvdopcd for optical pattern recognition. 
The electrical omput of the pbotoc:dls were oollcctod 
by the usociator unit passing tbc nndom conooc­
tions. Tbc DCW multi byer system. dcvdopcd in the 
1960's. could learn and n:calJ complex tasks. A oon 
linear transfer function was used. 



Object 

Fig. l .l Principleofthe Pm:tptron 

To understand actions and algorithms in neural 
computing it is DCIOCSS'ry to &ook at biological neural 
Dets aDd their architc:cturc. A n~n is the basic 
element of the brain. A diagram of a ocuron is 
dcW.tcd in figure 1.2. 

from other Neurons 

1bc llnldUI'e oC the braiD is u ~ of a 
w:ry 1arge (1CDS or billioas) DIIIDbcr or acumas. 1bc 
tpnsmjssjon ol sigDa1s iD the brain is cbemjcal iD 
aaDIIe. Elcb D:UI'Oil ra::dves aD input sipa1 from 
other DCipbouriDg QCUIODS. 1bc CODDCCtioa path 
bctwcc:D two ac:uroas is called u axon ud the in­
coming ports detrdrltu. 1bc c:onacctiODS betwcc:D 
axoas ud dc:Ddritcs an: called synapses. lD order to 
uadcntiDd the biologic21 model. the axoa is u 
elcc:ttica1 able and the dcDdriU:s is a lOCket. To cmy 
iaformatioa a link is DeCdcd 1bc syuap~~:, the link or 
plug. c:baqcs the ~ o( the incomiDg 
apila:. 

During a learning phase the cfficieocy of the syuapsc 
is modified. Tbc sum of the incoming signals. the 
total input, is used by the rccciving oc:uron to 
gcocratc an output. This output of oae oc:uron is the 
iDpu1 for DWI)' other DCWODS cxc:ept those DCUI'ODS in 
the outpu1 bycr. Tbe artificial oeuron is a simple 
model of the biological DCUI'OD which has the form as 
displayed in figure 1.3. 
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Synapse 

Fig. 1.3 SJNJPSt 

The denotation of the signals depends on your point 
of view. Assuming the present neuron. all incoming 
signals are called x and the output is called y, this y. 
or output. is then an incoming signal for the next 

neuron and is then called x (figure 1.4). 

X, 

Xa 

~ 

,.. 
Fif. 1.4 Mtlin Structt.rn of 1111 Artifu:Ud Neuron 

·. 

As you cm ~ the syupse is DIOdcUed as a 
modifiable weight which is associated which each 
axoo (conntetioa1o a DeUrDD). 1bc ~ OUipU1 
formed by tbc trusrcr finv$n is a siDglc IIUIDbc:r 
that lq)I'CSCIII5 the ale of firing - tbc acUvi1y of the 
DCUl'OIL To compute the OUipUl. the DeUI'Oil awltiplics 
each iDcoming sigDa1 by the associated ...agbl and 
adds t.ogdhcr all these wc:igb1cd iDpu1s to form the 
lOcal iaput ud·ucs this to CI'CilC tbc output by using 
(be uusfcr tuaaioa. 1bc rcacUOQ of tbc utific:ial 
DCtwork depends OD both tbc traasf'cr functioa used 
and tbc wcipls. 

1bc ouapat of tbc DCIIIUil in tbc ma•hc::matic:al a::usc 
is defined as: 

eki 

xk·l. 
J 

wk·· J.l 

yki 

the thn:shold, which moYeS the uansfer 
fundion (graph) in the horizontal direction. 
output or neuron j in the previous layer 
v.dght betM:cn neuron i in layer k and the 
neuron j in layer k -1 
total input of neuron i in layer k 



y,lc = J( I,lc) when: J( I/') (transfer 

function) could be: 

Sigmoid function 

J(In = 1 r• 
l+e- · 

hyperbolic tangent 

j(l,') = { :: 
/ le< 0 
I-

/le >0 
I 

bard limiter 

or threshold function 

2. Tvpes of Networks 

2.1. Architecture of Single Layer 
Nets 

In tbe past. many forms of DCural Dcts and their 
algorithms were iovestigatc:d. Serious investigations 
started in 1943, by tbe bead oewobiologist Warren 
McCoUoch and statistician Waiter Pitt. 1be paper • A 
Logical Cakulus of Ideas lmmjnc:nt in Nervous 
Activity" tangents fields like digital computing. 
•dccttooic braiDs• and mac:roscopic iDtdligcDce. The 
first coafcreacc OD artificial iDidligeoce was 
organised in 1956 by famous aames such as Marvin 
Minsky, John McCartby, Claudc Shannon and 
Nathanial Rocbc:su:r. 

To simulate tbe behaviour of the human brain we 
DCCd a n~twMt of DCUrODS, a so called oeural 
network (Net). The neurons are usually organised 
into groups called layea. A oeural act consists or at 
least an input and an OUipUl layer and eventually 
hidden layer{s). In order to UDderstaDd the following 
bets, with 'sillgle' we mean the number of hidden 
layers. Actually. a single layer oet coasists of three 
layers, ooe input and ooe output layer and a sing/~ 
bidden layer. The words on~ and sing/~ are 
synonyms for each other. Simple tasks can be solved 
by a one layer network but for difficult problems we 
-need multi layer n~ts. The main structure of a single 
layer net is shown below. 
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output layer 

· input layer 

Data Flow 

Fig. 2.1 Main Structurt of a Sing/~ U)'U N~twork 

The interconnection between the neurons in different 
layers can be seen in figure 2.1. It is not ncussaey tC' 
have a net where the connections are only between 
neurons of different layers, but it is easier to 
understand and to design a Dct in this way. The 
majority of modem neural nets are organised in this 
way. Some tasks do not require hidden layers. The 
number of hidden layers and tbe number of neurons 
in each hidden layer is free to be ddi.nc:d and will 
determine tbe performance of the DCt in speed and 
quality. For the majority of tasks a single layer net is 
sufficient 

2.2. Multi Layer Nets 
output'-rw 

Fig. 2.2 Main SII'UCIIU'e of 11. Multi~ Nttwo, 

The behaviour of a multi layer oc:t in general is no• 
very different to a single layer act. Tbe user bas tc 
find the optimum iD sizw: to be sabsficd with th< 
results and the speed. A small act is faster but if the 
task is too difficult important information may b< 
lost. cooversely, if the act is too large, the output C3J 

be noisy and the computing speed. cspccially durint 
the learning. is slow. 



3. Learning of a Neural Net 

3.1. General Facts 

The two main tasks of a brain - learning and recall -
are the most interesting for us. Learning itself is the 
process of calibration of the synaptic efficiency, or in 
the words of artificial nets, the weights. Using this 
principle some models of neurons and their 
connections have been investigated. i.e. single layer 
nets, multi-layer nets and self-<lrganising nets. The 
nets can be classified into three groups. depending 

• upon the learning principle, e.g. supervised learning 
(as discussed in this paper), learning with critic and 
one group unsupervised learning (self-organiS:ng 
nets). The latter is utilised to obtain relationships 
between the input and the output vector by the 
creation of an iterative process without a teacher (as 
in supervised learning) and also without evaluative 
values (as learning with critic). If we inspect 
supervised learning. we must consider, that the 
results of the student (our net) can be only as good as 
the training data of the tc:achc:r/ supervisor. For 
supervised learning we need a \'tetor of input data 
and one vector of the desired OUlpUtS w~ch is 
associated to the input w:ctor. The reader can easily 
see. that one problem. besides the program for 
k:aming. is to have good sets of training data. We 
i.a1cprct a set of ttaining data as a pair of input/ de­
sited ourput wctors. 

3.2. Back Propagation 

Rumelbart's conuibutions to neural nets (1986) are 
fundamentals for further Um:stigatioo.. In this paper, 
the IDdbod of supervised lc:aming will be discussed 
aDd bow to use this in order to devdop a learning 
c:oottoUcr for steering of small crafts. 

Ooc: way to utilise tllC supervised 1eaming is by using 
the bade propagation algorithm. The control modcl 
is displayed in figure 3.1. 

The neural net used in this algorithm is a multi-layer 
net and the transfer function is the Sigmoid. The 
back propagation rule needs the nTOr between 
computed output by the oct (maigbt forward or 
phase 1) and the desired output given by the teacher. 
To adjust the weights on the path bctwccn one 
ueuron and the DeXt neuron. the error is back 
propagated. starting with the output layer back to the 
first layer after the input layer. This process is the 
scrond or the learning phase. 

The -process - computing forward and error 
propagation backwards - is repeated with diffcrcot 
pairs of training data until the end of the data is 
reached or the maximal error approaches its limit­
ing value, i.e. & = 0.0~. 
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Fig. 3.1 Omtrol Model 

'Va 'Vd ······· ······ ······· actual/ desired heading 
Oa 0.. ...................... actual/ requested rudder 
'Ve .. ....................... error heading 
T1. T2. T3, Tr ...... time constants 

The interesting feature of back propagation is, that 
we do not need any knowledge about the process, this 
is what we will use the.controUer for, but we need a 
good teacher. However, this is on the other band a 
disadvantage because our student does not have any 
sclf~rganising capabilities and so this can not be a 
better response than the teacher. Tbe conclusion is 
displayed below. 

xf =Sigmoid( I:) straightforward (ph. l)(Al.l) 

t = ""'w1 x'-' +a' { ~ tJ J { (Al.2) 
j 

-1 I A I 
wJJ =wiJ +u.wiJ 
Aw1 

. . = n6
1
1 x'.-' J,J ., J 

(Al.l) 

back propagation (phase 2) 

(A2.2) 

~ = x:(t-xf).(d,-x:) output layer (A2.3) 

~ =:rJ(t-:r:)·:L~+lw~1 inncrocurons(A2.4) 
k 

11 learning c:ocmcieot 
x'i output of DCW'OD i in layer 1 

~· •. i error of oeuron i in layer 1 
,. total input of DCWOD i in layer I 
vtji weig!it on path from DCUJ"OD j in layer 1-1 to 

ocuronl in layer I 
~w'ji weight increment for w'ji 
SigmoidQ transfer function 

Note, the learning rules for the thresholds e are the 
same as the rules for the weights. Tbe threshold is a 
weight with the associated input of 1.0 . 

4. Application of Neural Nets for 
Ship Steering 

4.1. Review 

Since the increase in the number of computers, more 
and more modem techniques have been used such as 
neural computing (neura.l nets}, fuzzy logic, etc. 



Conventional autopilots, based on PO or PID 
controllers are often used but they are developed to 
work under s:pocific conditions and so they are not 
working at their optimal point Alternatively the 
mariner was engaged by adjusting the working 
parameters of the PID autopilot. The main idea of a 
modem controller is to merge all the beneficial 
features of several controllers to create an intelligent 
controller, i.e. with a behaviour like a human 
helmsman. 

4.2. Creation of the Training Data 

• In the previous chapters, a teacher for the neural net 
was mentioned. The idea that this study is based on 
is. that one PID controller is tuned for one particular 
sea state and this tuned PID-:contro/Jer is used as one 
teacher for the ncwa1 net. If a training file, which 
coDlaios input and output data of the PID controller, 
is crea1ed. the ocural net will learn to respond like its 
teacher. But if the traini.og data file consists of data 
pairs of more than one teacher, i. e. data of several 
1UDCd PID controllers io sc:veral sea stU.eS used io 
their associated sea states. the ueural DCt will learn 
the behaviour of the tuned PID controllers at its 
oprimal point or c::1ose to it We know that the ship 
pai3JDdCrS such as weight. iDcnia, draught and 
speed. have key c:fl'ccts io the behaviour of the ship. 
So, if 1II'C want. we CX»Uld tuDc PID conttoUcrs for 
more specific: situations and create more relc:vanl 
data. 

lbe PID controllers, used as tcacbcrs, are tuned 
fitsl!y for a very small heading error and DOt for a 
IIDOOCh rudder 1D0YaDCD1. Tests have provtd that the 
aanl oet will work as a damper too. 

4.3. Testing the Autopilot 

The net ex>DSistS or 10 neurons in each or the 2 
choseu hidden layers. Figure 4.1 shows a typical 
yaw response or the tnined netWOrk, ex>mparcd 
with a standard PlO a~topUot in sea state 4. Table 
4.1 gives theRMS yaw error for both the PlO and 
neural autopUots for sea states 3, 4 and S. 

Sea State 3 4 
. s 

RMSYawError 
PID Autopilot 0.193 O.S79 2.387 

RMSYawError 
Neural Autopilot 0.103 0.197 1.863 

Ta~ble 4.1 
Compnrison between PID ond Neurol Autopllots 
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... --, : 

Fig. 4.1 PID- Neurol Response Se:~ Sbte 4 

5. Conclusions 

The applicational benefits of the neural network 
could be expanded upon by: 

. applications to different speeds, 

. to different mass loadings, 

. to different vessels. 

Obviously the problem would then arise that the 
required data is hard to obtain since as additional 
alterations are introduced to the control problem, 
extra inputs will be required by the net to register 
these changes. 

CUrrent research into a general ex>mputer model 
for small vessels ex>uld prove an essential source of 
data for such a supervised learning network. 

Alternatively modifications to· the ex>ntrol action 
could be achieved by . an unsupcrviscd learning 
network operating in an on-line manner. 

Given these points, tbe scope and potential for 
further research and development is huge. 
However it has successfully been proven that a 
neural netwQrk has the ability to actively ex>ntrol a 
small vessel in a superior fashion to a PID 
ex>ntroller, and this may be regarded as a 
•mnestone• in the application of neural techniques 
in this field. 
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Abstract 

Since the expansion in the number of powerful computers and workstations 
available, simulations of complex structures (plants) are increasingly part of the 
design process, 
By use of these complex simulations, off-line study of plants and/ or controller 
designs may be achieved when otherwise no realistic study could be undertaken. 
Differential equations are the main parts of those simulations. To increase the 
precision of the simulation results, more time consuming calculations are 
necessary but not always available. 
In particular, neural networks demonstrate the capability to model highly complex 
plants. By the application of training data derived from real environment, these 
networks can learn to emulate a wide range of differing conditions. Once trained, 
the neural network substitutes the plant's model and performs instead. 

When considering motions control, the neural network philosophy is of particular 
interest l:Jsing the non-linear time-invariant dynamic characteristics of a maritime 
vessel, a neural network is developed to model and control the motion of this 
process. A comparative study 1s undertaken to validate the network· operation. 

1 Introduction 

The classical approach to modelling the dynamic behaviour of rigid bodies is to express 
their behaviour as a set of simultaneous linear and non-linear differential equations, and 
to obtain a solution for various input stimuli. An alternative approach is that of system 
identification whereby a given input such as a sinusoid or pseudo-random binary 
sequence (PRBS) is applied to the real system and from a set of input/ output measure­
ments a mathematical model may be obtained. This paper investigates the generation of a 
state variable representation of a ship in three degrees of freedom by the application of 
an Artificial Neural Network (ANN). 

ANNs have been shown to demonstrate the capability to model highly complex plants. 
By the application of training data derived from the real environment, these networks can 
learn to emulate a wide range of differing conditions. Once trained, the neural network 
substitutes the plant and performs instead. 

When considering motion control, the neural network philosophy is of particular interest. 
Using the non-linear time-invariant dynamic characteristics of a maritime vessel, a neural 
network is developed to model and control the motion of this process. 

Using a carefully selected range of manoeuvres undertaken at various forward speeds, a 
compa1ison can be made between the conventional ship model and the neural network 
model developed. 



2 Artificial Neural Networks 

Artificial neural networks represent a powerful tool 
for simulation and understanding of complex relation-
ships between patterns. Pattern can be understood not 
only as image, but also as number (vector, matrix) of 
data. The relationship between such vectors is often 

X, 

either not fully known or very difficult to describe L!x,.,!.....:-__________ _J 

using mathematical terms. 

The 'genius' of the human brain is to understand and 

Figure 3 Main structure of an 
artificial neuron 

to explain situations which are considered fascinating to biologists and engineers. First 
publications on neural computing was published in the early 1940's by Frank Rosenblarr. 
Warren McCulloch, Norbert Wiener, Waiter Pius. The importance of studies in the field 
of neuro-medicine is reflected by the number of Nobel prizes awarded to those 
researching neurology. Between 1901 and 1991, approximate! y 10% of the prizes in 
medicine and physiology were awarded to researchers, whose work contributed directly 
to the advancement of neurological medicine. 

It is the intention of this study to underline the ability of artificial neural networks to 
handle complex situations in addition to the biological neural network. A neural network 
has been designed to find (learn) and recall the behaviour of a large motorised marine 
vessel. It was determined that the initial task was to break down the problem into smaller 
sub units. 

3 Mathematical Background of ANNs 

To understand the actions and algorithms concerned 
with neural computing it is necessary to consider 
biological neural nets and their architecture. Oendrites 

A neuron is the basic element of the brain. A diagram 
of a neuron is detailed in Figure 1. The structure of the 
brain is an interconnection of a very large (tens of L------::....:::::W.-____ ___j 

billions) number of neurons. The transmission of Figure 1 Structure of a 
signals in the brain is chemical in nature. Each neuron biological neuron 
receives an input signal from other neighbouring neurons. The connection path between 
two neurons is called an axon and the incoming ports dendrites. 

The connections between axons and dendrites are called synapse (Figure 2). ln order to 
understand the biological model, the axon is an electrical cable and the dendrites is a 
socket. To carry information a link is required. The synapse, the link or plug, changes the 
effectiveness of the incoming spike. 

Duril1g the learning phase the efficiency of the synapse 
is modified. The sum of the incoming signals, the total 
input, is used by the receiving neuron to generate an 
output. This output of one neuron is the input for 
many other neurons except those neurons in the output 
layer. Synapse 

The mtificial neuron is a simple model of the biological 
neuron which has the form as di splayed in Figure 3. Figure 2 Synapse 



The label of the signals depends on your view point. Assuming the present neuron, all 
incoming signals are called x and the output is called y, this y, or output, is then an 
incoming signal for the next neuron and is then called x. As demonstrated, the synapse is 
modelled as a modifiable weight which is associated which each axon (connection to a 
neuron). The neurons output formed by the transfer function is a single number that 
represents the rate of firing - the activity of the neuron. To compute the output, the neu­
ron multiplies each incoming signal by the associated weight and adds together all these 
weighted inputs to form the total input and uses this to create the output by using the 
transfer function. The reaction of the artificial network depends on both the transfer 
function used and the weights. 

The output of the neuron in the mathematical sense is defined as: 

(Equation I) 

(Equation 2) 

e ki the threshold, which moves the transfer function (graph) in the horizontal 
direction. 

xk-Ji output of neuron j in the previous layer 
W'i.i weight between neuron i in layer k and the neuron j in layer k- 1 
I"i total input of neuron i in layer k 

l =!(!/) where f(I ;* ) (transfer function) could be: 

Sigmoid function 

tVn= 1 
• 

1 +e-1
' 

~ 
_L 

4 Network Architecture 

hyperbolic tangent 

!(1:)= {:: 
-I;* ~ 0 

hard limittrr or 
J_* > 0 

I . 

threshold 
function 

In the past, many forms of neural nets and their algorithms were investigated. Serious 
investigations started in 1943, by the head neuro-biologist Warren McColloch and 
statistician Waiter Piu. The paper [4] tangents fields like digital computing, 'electronic 
brains' and macroscopic intelligence. The first conference on artificial intelligence was 
organised in 1956 by famous names such as Marvin Minsky, John McCarthy, Cfaude 
Shannon and Nathanial Rochester. 

To simulate the behaviour of the human brain we need a network of neurons, a so called 
neural network (Net). The neurons are usually organised into groups called layers. A 
new-al net consists of at least an input and an output layer and eventually hidden layer(s). 
In order to understand the following facts, with 'single' we mean the number of hidden 
layers. In practice, a single layer net consists of three layers, these being one input and 
one output layer with a single hidden layer. The words one and single are synonyms for 
each other. Simple tasks can be solved by a one layer network but for difficult problems 
a mulci layer network (Figure 4) is required . 



The behaviour of a multi layer net in general is very 
similar to a single layer net. The user has to find the 
optimum network size to be satisfied with the derived 
results and the speed computation. A small net may be 
faster but if the task is too difficult then important 
information may be lost, conversely, if the net is too 
large, then the output may become noisy and the 
subsequent computing speed, especially during the 
learning, is slow. 

output layer 

hidden layer n 

Rumelhart's contributions to neural nets ([5]) are 
fundamentals for further investigation. 
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The method of Figure 4 Multi layer network 
supervised learning 
utilised the back propagation algorithm (Figure 5). 

The neural net used in this algorithm is a multi layer 
net and will be the Sigmoid transfer function. The 
back propagation rule requires the error between 
computed output by the net (straight forward or 
phase 1) and the desired output given by the 
'teacher'. To adjust the weights on the path 
between one neuron and the next neuron, the error 

Figure 5 Layout is back propagated, starting with the output layer 
back to the first layer after the input layer. This 

process is the second, or learning, phase. The process - computing forward and error 
propagation backwards - is repeated with different pairs of training data until a maximum 
number of data is reached or the maximal error approaches an error, i.e. £ = 0.05. . 

The interesting feature of back propagation is that we do not need any prior knowledge 
about the process. However, conversely this may prove to be a significant disadvantage 
because our student does not have any self orgamsing capabilities and so cannot produce 
a response that is an improvement on that of the teacher. 

I f ~ 1 1-l 81 ; = L,.w;,;Xi + ; 
j 

x: =Sigmoid(!/) 

~~/. . = wt . + ~wl . 
1·' 1 ,1 1·' 

6\A/. . = nolx l.-l 
1·' 'I 1 1 

straight forward 

(phase 1) 

(Eq. 3) 

back propagation 

(phase 2) (Eq. 4) 

o~ =x:(i-x:)·(d; -x:) 
for output layer (Eq. 5) 

r------------------------------, 
Ol = X1 (1- X 1 ) · ~ 0 l+lW/.+l 

1 I I L,. k 1 •k 
k 

for inner neurons (Eq. 6) 

learning coefficient 
output of neuron i in layer I 
error of neuron i in layer I 
total input of neuror. i in layer I 
weight on path from neuron j in layer 1-1 
to neuron i in layer I 

6w1
;; weight increment for w1

i; 

Sigmoid() transfer function 

The learning rules for the thresholds e are the same as the rules for the weights. The 
threshold is a weight with the associated input of 1.0 . 



5 Ship Mathematical Model 

Ship motions in surge, sway and yaw can be desclibed [6] by an Eulelian set of non­
linear differential equations of the form : 

Surge Equation: (Equation 7) 

mu+ mqw- mrv = Xuit + xu (u + u.c) + xuuu2 + XUUUU 3 
+ x .. v2 

+ X,.r2 

+XIi1i8~ +XununA +Xnnn! +Xuauo +Xllz2 +Xaa9 2 

Sway Equation: (Equation 8) 

mv+ mur- mpw = Y"v+ Y"(v+ VC)+ Y/+ Y,r+ ynnn! + Y" .. v3 
+ Yrv.rv2 

+Ynnl5n!8 A+ Ynn&'\lin28 ~ + ~ •• 8 AV2 + Yoo vo 

Yaw Equation: 

IJ+ (ly - l x)pr = 
(Equation 9) 

N"v+ N. (v+ vJ+ N,f+ Nnnn~ + N"". v
3 + N,r+ N rvJV

2 

+Nnnli n~ 8rl +Nnnli1ili n;8~ + N15vo8Av
2 
+N.o vo 

Equations (7) to (9) can be arranged in the state matrix vector form: 

x(t) = F(t)x(t) + G c (t)u(t) + G D (t)w(t) 
(Equation 1 0) 

The corresponding discrete solution is: (Equation 11) 

x((k + l)T) = A(T, kT)x(kT) + B(T, kT)u(kT) + C(T, kT)w(kT) 

where: 

X T = (0 A n A X U y V Z W <jl p 9 q 'V r) 
u T= (8 o no) 

(Equation 12) 

(Equation 13) 

(Equation 14) W T = ( U c V c U• V a Sx S y) 

For this study, it was necessary to concentrate on three degrees of freedom. These being 
surge, sway and yaw. 

6 Ship Model Application 

The vessels parameters used in this simulation are given below (Table 1), and are based 
on the Morse and Price dala for the Mariner Hull [7]. 

Table 1: Vessel Parameter 

Length = 
Draught = 
Berum = 
Displacement = 

Number of propellers = 

Number of mdders = 
Maximum rudder angle = 

161m 

9m 
23m 

l7,000t 

1 

3SO 

A neural network is required to model the 
behaviour of large ships. The precise rela­
tionships between many of the features and 
characteristics of these ships are not fully 
understood. To determine them, it IS 

possible to employ a neural network. 
Rudder angle, and engme speed cause 
speed changes in the surge, sway and yaw 
directions (u, v, r). Since we are not only 
interested in the steady state response of 



the vessel, but also in the transient beha­
viour, it is essential to consider the time 
elapsed since the last rudder change as 
another input. Figure 6 indicates the 
various time periods required for the 
response to settle down. 

Utilising an acceptable error of ±1 %, we 
can determine from the data (Table 2) the 
following values. Therefore it is possible 
to state that if the time considered is 
bigger than the time to reach steady state, 
then the response has reached steady 
state, otherwise the response remains in 

1--- u [m/s) - ........... ·-·-· v (m/s) r f/s) I 
8 ,, 

' ... 6+---~'~--------------------------------------
4+-------------------------

2+-------------------------
/-······-·· -····-···············-· 

0 ''-~~--~~~~--~~~~ 1 00 200 300 400 500 
-2 

Figure 6 Settling Times 

the transient period and the operation of the artificial neural network is required. 

7 Structure of the ANN 

It is a pre-requisite that the variables to 
be investigated are considered before 
commencing design of the network's 
structure (see Table 3). 

To learn the transient behaviour, it is 
necessary to determine the time elapsed 

Table 3 Structure of the Network 

............. ~P.~.~---·· ······· ................... Q.~~P.~~~----·· · · ··· ······ ··· : : : 

rudder l engine forward l lateral l turn in 
an le l s l s ed l rate 

n u V r 

since the last rudder change as an additional further input. Thus, the interface to the 
outside world is defined. 

A 3-6-6-6-3 network was identified to be suitable for this application. The quality of 
results obtained from a two hidden layer network proved unsatisfactory. Obviously, the 
transients, with their associated overshoots, are difficult to understand, and were 
therefore filtered out. Using more than two hidden layers the error is reduced and 
overshoots were replicated giving a suitable level of network performance. 

8 Network Training 

The learning method utilised for this study was the back propagation algorithm. This 
algorithm is based on the minimisation technique called steepest . descent or gradient 
method [2]. The transfer function employed was the popular Sigmoid function . The 

Table 2 settling times 

~i(0] u It [s] I v ! t[s] l yaw ! t [s] 
! ! 1 1 rate I 

0 7.588i 275i 0.278i 410i -0.186i 405 
10 6.639! 270i 0.734! 220[ -0.534! 180 

00 000 0 0 0000 ••••ooo••••••••••t'----••• i ••••••- •·•-•••·••-t o oo oooooooo ~ oooooouo•--•·•-t•••• •••••••• •••• 

-10 6.818i 270i -0.669i 230i 0.476i 230 
20 5.915! 295i 0.870i 240i -0.681 i 185 

........... ········-········+·····-······t·---··--······-t···········t-·················-t•••4 
........... . 

-20 6.043i 290i -0.836! 235! 0.641! 240 
30 5.308i 2901 0.930! 240! -0.7821 155 

············ · · ·· ··· ·· ······· ·":' ···· · ·· ····t··· ··· ········~···~··········- t- ······ ······· · · · ·t ·· ··· · ········ · · 

-30 5.4081 285i -0.907! 240i 0.7471 165 



output were in the limits between 0.0 and 1.0 (0.0 < y < 1.0), where those values are 
reached at infinity. Therefore, the desired outputs had to be scaled within these limits. 
Outing the learning process the trend of the error development was observed and it 
could be seen that the network stuck in local minima. By increasing the number of hidden 
layers, the error smface contains less troughs and a more constant learning was achleved. 
Furthermore the learning rate was adjusted from an initial large learning rate with gradual 
decrements until the finished level of learning was achieved (steady error). 

9 Training Results 

Results of the learning are given in Figure 7 to Figure 9. Figure 7 displays the forward 
speed and demonstrates how the response of the network closely follows that of the 
surge rate training data. An improved level of performance is identified by the response 
for sway rate data, and also for that of yaw rate with increments in rudder angle of 0°, 
-10°, +1 0°, -20°, +20°, -30° and +30° is displayed. 

~~~\··,' 
neural net ~-. . 

"' ---· -- - source 

Figure 7 Surge Velocity Response 

time windows 

Figure 8 Sway Velocity Response 

neural net 

- ··-- source 

time windows 

Figure 9 Yaw Rate Response 

The actual outputs match very closely the desired outputs given in the trai ning sets which 
clearly demonstrates the learning success of the network design util ised. Fut1her work by 



the authors will concentrate on the implementation of this design of network during 
simulated sea trial conditions. Results will then be compared to those obtained from a 
traditional ship model to validate both the learning achieved, and the subsequent perfor­
mance capability obtainable during simulation studies. 

1 0 Conclusions 

It has been demonstrated by this study that it is possible to simulate complex plant beha­
viour utilising neural networks. The advantage of employing a simulation using this tech­
nique is that it becomes possible to overcome the problems associated with formulating 
the relationship between the features to be investigated. This can be achieved by the 
neural network, thus allowing the designer to concentrate on alternative aspects of the 
design. The authors consider that the computational speed of the network far exceeds the 
required time for conventional differential equations because a significant amount of the 
training is undertaken off-line. During execution, the neural solution therefore allows for 
extension to far more complex mathematical models without incurring a notable slowing 
of the process time. 
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Abstract 

This paper reflects a brief history on the development of ship 
simulations and ship autopilots and as such only to summarise the 
range of the developments have been made in this field. 

1 Introduction 
For merchant ships an accurate and reliable automatic steering device 

becomes a real money saving proposition, largely justifying its use. 

On battleships, by its use the absence or reduction of yawing in action means 

a better efficiency in gunfire, increased maneuvering speed and also a greater 

cruising radius. 

Quotation 1: Minorsky in [10], p. 280 

An efficient helmsman keeps the ship accurately on her course by exerting a 

properly timed 'meeting' and 'easing' action on the rudder, i.e., by taking into 

consideration the elements characterizing the motion from the dynamical 

standpoint, namely, the instantaneous angular velocity of yawing as well as its 

time variations. 

lt has often been stated that the human intuition of the helmsman cannot be 

replaced by any mechanical contrivance whatever its nature may be. 

Quotation 2: Minorsky in [10], p. 282 

... if we connect the rudder with the direction indicating apparatus whatever 

its nature may be (magnetic, gyroscopic or radio compass) by any appropriate 

means, for example by means of an ordinary follow-up system. 

Quotation 3: Minorsky in [10], p. 282 

The control task of ship navigation can be subdivided into two major divisions. The 

course related autopilots attempt to optimise ship orientation rather than the ship's position. 

The main control task is therefore to maintain or change, the heading of the ship to minimise 

1 School of Manufacturing, Materials and Mechanical Engineering 
2 Plymouth Teaching Company Centre 



the error from the. desired value. Conversely, the track related autopilots optirnise the position 

of the vessel and not its orientation. 

2 Early Developments until1930 

An very important and early paper [10] was published by MINORSKY in 1922. This 

paper discusses the stability problems of automated steering and developed the basic theory of 

'directional stability of automatically steered bodies'. 

Furthermore MINORSKY subdivided the control problem into individual, smaller 

problems such as rudder position control, rudder angular velocity control, rudder angular 

acceleration control 

Similary, SPERRY described the first installation of a gyrocompass aboard a ship in 

1922. In this publication [16] he considered the problems that occur with automatic steering 

using a gyrocompass. In this very early application we can find all the elements that make up 

the control loop of an automated steering system for course keeping purposes. By 1932, this 

application had been installed on more than400 merchant ships all over the world. 

In 1923, SCHULER [15] desribed the behaviour of pendulums and· gyroscopes when 

accelerated in. a horizontally direction. The doubts rised by MARTIENSSEN [9] in 1906 based on 

calculating gyroscopic compasses errors under north-south acceleration were fundamental for 

further research in this field. 

By working out some examples, Martienssen came up with very great errors 

of the compass and concluded therefrom that the gyroscopic compass is 

useless as an accurate direction indicator for navigation. 

Quotation 4: Schuler in [9], p. 26 

However, SCHULER continued the quotation in the following way: 

I asked myself the question: would this sort of acceleration error be capable 

of elimination by an appropriate construction? 

The aswer is, yes. And the solution is almost trivial. 

Quotation 5: Schuler in [9], p. 26 

Utilisation of these, and the subsequently derived equations and thoughts finally led to 

the successful gyroscopic devices now common place. The difficulties of the first years have 

been covercome and gyroscopes can be found in most navigation devices which require a 

degree of accuracy. 



The autopilot used for the period 1930 to 1950 was a rather simple controller. The 

heading error produced a signal which was then used to adjust the steering mechanism. The 

controller can be seen as a proportional controller. It was a possible to adjust the the control 

parameter (Kp) to suit different conditions eg. ship loading. Obviously this simple device could 

not cope with a wide range of conditions, i.e. in rough weather conditions when the 

proportional controller forced the steering mechanism to be heavily used and therefore worn 

out very quickly. A weather adjustment was therefore necessary to prevent this exess wear. In 

most cases a simple dead-band was introduced to aviod high frequently and small magnitude 

movements. The rudder was then only changed if the control output exeeds a small specified 

rudder angle. A different method to avoid rudder wear was given by including a delay 

feedback. This delay caused the rudder to move until a prespecified rudder angle has been 

reached. The rudder could not stop or change direction until this angle has been exeeded. 

NOMOTO [12] described this method as 'negative backlash'. 

3 Post World War 11 

During this period, overshaded by the two world wars, the autopilots used were 

mainly simple mechanical devices following a simple proportional rule. 

Where: £is heading error Equation 1 

Those pilots were not very satisfactory and could not prevent overshooting and 

therefore often caused transient oscillation. 

In the 1950s, an improvement in stability could be achived by the introduction and use 

of the mainly first derivative of the heading error (t IV) or the rate of turning (angular velocity 

!if ). The first commercial autopilot utilising this technique was installed in 1951 on the S. S. 

UNITED STATES. The control rule of this autopilot may can be defined as: 

o=Kp ·£\fi+Kv ·t\11 

Equation 2 

At about the same time, a further term was also added to the contol equation this 

being the integrale of the heading error, the resulting control law being (Equation 3 ). 

o = KP · £'11 + Kv · tlf + K1 · J£\fldt 

Equation 3 



Thus, the PID control rule was formulated. Furthermore the addition of the integral 

term assisted to neutralise the rudder movements as well as steering gear lags. Constant 

disturbances, causing an offset were now considered and the PID autopilot was fully capable of 

dealing with them. 

Nevertheless, controllers based on the PID format could not prevent the high 

frequency rudder movements. The introduction of a dead-band in the rudder loop could lead 

into unstable behaviour. MOTORA [11] suggested in 1953 to apply a low-pass filter to the 

output signal to prevent rudder oscillating. According to RYDIU [14] this may generate a loss 

in stability and hence he recommended the use a quadratic delay technique. 

4 Adaptive Autopilots 

Soon it was determined, that even the most advanced PID performance could be 

improved by adjusting its parameters according to the environment that the control system 

(ship and autopilot) was operating in. This can be achieved by two methods; manually or 

automatically. The disturbances, and therefore the effects to the hull, can also be subdivided 

onto two major categories: 

a) disturbances that cause a 'small' deviation of the desired course and 

b) disturbances which change the vessel's characteristics and consequently the 

steering characteristics. 

Weather and tidal changes like waves, wind and current can be associated with the 

first group. Changing the mass of the vessel whilst loading/ unloading and the resutling draft 

and displacement, the quantity of water under the keel and alterationss in the forward speed 

change the handling characteristics of the vessel and are therefore assosiated with the second 

category. Small adjustments required to compensate for the disturbances of group a) can be 

overcome by automatic adjustments, Disturbances of group b) require major corrections and 

are mainly wilertaken by the operator. Those adjustments demand a significant knowledge on 

the handling characteristics of the ship and the environment/ disturbances. 

4. 1 Model Reference 

This approach is based on the comparison of measured, actual data and data of an 

ideal mathematical model (reference model). An error function is derived using those data. 

This function (criterion) is then minimised. 



lh 1974, VAN AMERONGEN underlined in [17] the importance of adapting parameters of 

the autopilot and compared' two methods of model referencing. In this paper he describes both 

of the following approaches to tackle the 'fixed settings problem'. 

4. 1. 1 SENSITIVITY MODELS 

The dynamic behaviour of the ship and hence also the parameters of this 

model are dependent on the external circumstances and the applied thrust­

power. When the ship is steered with an autopilot it is necessary to adjust the 

parameters of the autopilot dependent on the change of the steering 

characteristics of the ship. 

Quotation 6: van Amerogen in [17], p. 441 

This technique of the 'sensitivity model' is especially designed to prevent course 

instability of very large ships. The criterion used in that approch can be defined as: 

T 

c- I.!.£2 dt - 2 

0 

Equation 4 

Using the steepest descent method, the gain K.t of the rate feedback signal is adjusted. 

Unfortunately this approach is not stable under all circumstances. 

4. 1.2 LIAPUNOV APPROACH 

This approch follows the principle of direct adjustment of the controller's parameters. 

Assuming the same order of the model's transfer function and the system's one, a difference 

between the state variables of the system and the model is utilised to adjust the system's 

parameters in order to minimise this differem:e. Furthermore the process is assumed to be 

linear and that no stochastic disturbances occur. A low-pass filte~ also is required in rough 

seas. The difference between the system's and the model's responses is minimised by the 

differences between the state variables. 

VAN AMERONGEN concluded that there is no significant difference between both 

approaches, the sensitivity model and the Liapunov approach. 

4.2 Self-tuning Autopilots 

First develpoments of "cost function for adaptive course-keeping autopilots" were 

undertaken by ASTROM and EYKHOFF [2] in 1973. The method used was based on a least 

squares parameter estimator and a minimum variance control technique. 



Special attention should be given to the cost function. Assuming the vessel is .left to 

yaw naturally (without high frequent rudder corrections), the traveled distance during a 400 

miles journey will not increase more than a quarter of a mile when the deviation of the course 

remains± 2° [l3]. In contrast, each rudder movement causes a drag and so a loss in forward 

speed. 

In 1975, CLARKE and CA IVTHROP [5] developed a more generalised 'self-tuning 

controller'. 

It has beeen demonstrated by BURNS [4] that it is possible to design an optimal multi­

variable ship guidance system that controls position, heading and speed simultaneously, and 

such a system can work within the constraints required in port approaches. 

5 Latest Developments/ Intelligent Control 

It is very obvious, the classical and tuned PID autopilot has limitations. It is always 

fascinating how human operators can cope with a very wide range of unknown and uncertain 

conditions. Latest research in this field attempts to adapt human abilities like learning and 

experience to design a controller with an increased ievel of performance. 

5. 1 Neural Networks 

The first noteable paper utilising this technique for the ship contrlo application was 

published by ENDO [6]. The training data to teach the neural network generated by a PD 

controller. Further work in this field is been published by the author himself and many other 

researchers. An very interesing paper was published by HEARN [8] where he explained the use 

of a backpropagation neural network for on-line learning. To be perfectly correct, the 

controller is not truely learning on-line, but using a relativly fast computer, the learning can be 

done within the sampling time of the systenL The training of the network could be finished 

within approximately 0.5 seconds. 

The back propagation learning (BP) algorithni is based on the gradient (steepest 

descent) method. It minimises an error function. In the case of BP, the error is defined as: 

d .. vector of the desired outputs 

y .. vector of the actual outputs (actual plant 
response) 

Equation 5 



Obviously, the desired output vector, in the case of a ship autopilot a single output, 

contains only the desired course. The plant response is a function of the rudder angle and using 

the chain rule, and some further assumptions, a control signal can be learned which minimises 

the difference (error) between desired and actual course. 

Plant 

Fig. 1: Direct Neural Control Scheme [8] 

()E _ ()E atf £1tf 
J..v .. - ::1.P dt c J..v .. 

I) OUk k I) 

Wij . . . weight to adjust to change the output 

Equation 6 

More work on track keeping and related tasks like rudder roll stabilisation, course 

keeping etc. is being undertaken by the University of Plymouth including the authors of this 

paper, N. W!IT and D. R. SUITON. 

5.2 Fuzzy Logic 

A further method of simulating human behavior is achieved by using linguistic 

variables and derived rules. The controller's task is to use a human-like way of thinking. The 

knowledge is put into a rulebase and the inputs are given in a fuzzy form. The use of so called 

fuzzy sets supports the human way of expressing every day actions and understandings - tall is 

tall and not 3.2 m - warm is about 22 oc. 

Nowadays, even more advanced techniques are used. · Self-organising fuzzy logic 

control is probably the latest development in that field. 

5.3 Genetic Algorithms 

To adapt the biological evolution is the background of genetic algorithms (GA). It is 

a search technique to optimise a cost function, in this case called fitness function. Using 

biological rules, eg. only the fittest survives and mutation are translated into a computer 

understandable format to find the absolute minimum/ maximum of the given fitness function. 
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Abstract 
The classical approach 10 modelling the dynamic behaviour of rigid bodies is to express their 

behaviour as a set of simultaneous linear and non-linear differential equationf, and 10 obtain a 
solution for various input stimuli. An alternative approach is that of system identification 
whereby a given input such as a sinusoid or pseudo-random binary sequence (PRBS) is applied 
to the real system and from a set of input/output measuremems a mathematical model may be 
obtained. This paper investigates a novel alternative 10 tire state mriable represemation of a 
ship in three degrees of freedom, by the application of an Artificial Neural Network (ANN). 
A surface ship is modelled by a set of non-linear differential equations in three degrees of 
freedom. Using measured hydrodynamic coefficients, a discrete, n·me varying, state variable 
mathematical model is constructed, and validated against full-scale sea trials. 
Based on multi variable system theory it is possible to formulate an optimal control policy that 
minimises a performance index. However, if the dynamic characteristics of the ve.fsel change 
(due to variations in forward speed, for example) then the guidance system is suboptimal and its 
parameters need to be re-computed. 
The po.fsibility of using a model (such as a neural network) of a vessel to predict the 
performance of the ship accordir!g 10 disturbances and rudder changes to optimise a rulebase of 
a fuzzy logic controller is described, with the objective of providing a system which adapts its 
parameters so that it provides optimal performance is provided over a range of conditions. 

1. Introduction 
Since the ex.pansion in the number or powerful computers and workstations available, simulations 
of complex. structures (plants) are increasingly part of the design process. By the use of these 
techniques, off-line study of the plants and/or controller designs may be achieved when otherwise 
no realistic study could be undertaken. Differential equations are used io describe the dynamic 
behaviour of the system being studied. To increase the accuracy of the design analysis, more time 
consuming calculations arc necessary because of reduced stepsize, but this is not always available. 

In particular, neural networks demonstrate the capability to model highly complex. plants. By 
the application of training data derived from the real environment, these networks can learn to 
emulate a wide range of differing conditions. Once trained, the neural network substitutes the 
plant's model and operates instead. Artificial neural networks (ANNs) have previously 
demonstrated their capability to model highly complex. plants [4]. By deriving data from the real 
world environment, e.g. by measuring critical values, these networks can learn to emulate a wide 



range of different conditions. Once trained, the neural network can be used as a model in 
simulations and other applications. Considering a maritime vessel, the non-linear time-invariant 
dynamic characteristics are particularly difficult to model. Using a carefully selected range of 
manoeuvres undenaken at various forward speeds, a comparison can be made between a 
conventional ship model and the neural network developed. 

2. Ship Mathematical Model 
The classical approach of modelling the dynamic behaviour of rigid bodies is to express their 
behaviour in a set of simultaneous linear and non-linear differential equations, and to obtain a 
solution for various input stimuli . 

Ship mOtions in surge, sway and yaw can be described f I] by an Eulerian set of non-linear 
differential equations of the form : 
Surge Equation: 

nui + mqw - mrv = 

Sway Equation: 

mv+mur - mpw = 

Yaw Equation: 

1/+(IY - l x)pr= 

X .. ti+X .. (u+uc)+X .... u2 +X ...... u3 +Xwv2 +X"r2 

+X888! + x .. ,unA + X,,n~ + x .. aua + Xu.z 2 + x8802 

Y"v + Y"( v + vc) + Y/+ Y,r+ Ynnn~ + Y"""v3 + Y"'JV 2 

+Yilll8n~8 A+ Y,, 880n 28~ + Y~8 A v2 + Y..ava 

+N nn8n~8 A+ N,,8&5n~8~ + N /j,o8 A V
2 

+ Noa V a 
Equations (1) to (3) can be arranged in the state matrix vector form: 

x{t} = F{t}x(t} + Gc(t}u(t} + G 0 (t}w{t} 
The corresponding discrete solution is: . 

where: 

x((k + l}T) = A(T, kT}x(kT} + B(T, kT}u(kT) + C(T, kT}w(kT} 

X T = ( 8 A 0 A X U y V Z W {bp 0 q 1{/f) 

uT=(8ono) 

W T = ( U c V c U 3 V a ?:. S y) 

(l ) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

For this study, it was necessary to concentrate on three degrees of freedom. These being surge, 
sway and yaw. 

The vessel's parameters used in this simulation are given below (Table 1), and are based on 
the Morse and Price data for the Mariner Hull [2]. 

A neural network is required to model the behaviour of large ships. The precise relationships 

between many of the features and characteristics of these Table 1: Vessel Parameter 
ships are not fully understood. To determine them, it is Length = 
possible to employ a neural network. Rudder angle, and Draught = 
engine speed cause speed changes in the surge, sway and Beam = 
yaw directions (u, v, r). Since we are not only interested in Displacement = 
the steady state response of the vessel, but also in the Number of propellers = 
transient behaviour, it is essential to consider the time Number of rudders = 
elapsed since Lhc last rudder change as another input. Maximurn rudder angle = 

161m 
9m 

23m 
17,0001 

l 



Figure 1 indicates the various time periods required for the response to settle down. 
Utilising an acceptable error of ±1 %, we can determine from the data (Table 2) tJ1e following 

values. Therefore it is possible to state that if me time considered is bigger man .me time to reach 
steady-state, men the response has reached steady-state, otherwise the response remains in the 
transient period and the operation of me artificial neural network is required. 

T bl 2 r .....-------------------
1--- u [mls] - • • • • ·v [m/s]- ·- • r [ •ts] I a e sett 101 ttmes 

d u t [s] V l [s] yaw l [s] 
rol rate 

0 7.588 275 0.278 410 -0.186 405 

10 6.639 270 0.734 220 -0.534 180 -------------------· 
-10 6.818 270 -0.669 230 0.476 230 

20 5.915 295 0.870 240 -0.681 185 

-20 6.043 290 -0.836 235 0.641 240 

30 5.308 290 0.930 240 -0.782 155 . · ------------------- .... .. ......... .......... 0 .. - • 

-30 5.408 285 -0.907 240 0.747 165 
·--- ·'TtJIT"- • ""200·--:roo- ·-·40u- · --sou 

Figure I Seuling Times 

3. Ship Model using a Neural Network Approach 

3.1 Structure of the ANN 
It is a pre-requisite mat the variables to be investigated are considered before commencing design 

of the network's structure (see Table 3). Table 3 Structure of the Network 
To learn the transient behaviour, it is 

necessary to determine me time elapsed since the 
last rudder change as an additional furmer inpuL 
Thus, me interface to me outside world is 
defined. 

A 3-6-6-6-3 network was identified as being 
most suitable for mis application following a 

Inputs · 

rudder engine 
angle speed 

8 n 

Outputs 

forward lateral turning 
speed speed rate 

u V r 

programme of heuristic experimentation. The quality of results obtained from a two hidden layer 
network proved unsatisfactory. Obviously, me transients, with their associated overshoots, are 
difficult to understand, and were therefore filtered out. Using more than two hidden layers the 
error was reduced and overshoots were replicated giving a suitable leve l of network performance. 

4. Network Training 
The learning method utilised for this study was me back propagation algorithm. This algorithm is 
based on the minimisation technique called steepest descent or gradient method. The transfer 
function employed was the popular Sigmoid function. The output was in the limits between 0 and 
I (0 < y < 1), where these values are reached at infinity. Therefore, the desired outputs had to be 
scalccl within these limits. During the learning process the trend of the error development was 
observed and it could be seen that the network stuck in local minima. By increasing the number of 
hidden layers, the error surface contains less troughs and a. more constant learning was achieved. 
Furthermore tJ1e learning rate was adjusted from an initial large learning rate witl1 gradual 
decrements until the linished level or learning was achieved (steady error). 



5. Training Results 
Results of the learning are given in Figures 2 to 4. Fi!,JUre 2 displays the forward speed and 
demonstrates how the response of the network closely follows that of the surge velocity training 
data. An improved level of performance is identified by the response for sway velocity data, and 
also for that of yaw rate with increments in rudder angle of 0°, -10°, +10°, -20°, +20°, -30° and 
+30° is displayed. 

- neural net 

--source 

Figure 2 Surge Velocity Response 

time windows 

Figure 3 Sway Velocity Response 

t t I I I I I I I I I I I I I 
c= 

I I I I I I I I I 

time windows 

Figure 4 Yaw Rate Response 

The actual outputs match very closely the desired outputs given in the training sets which 
clearly demonstrates the learning success or the network design utilised. Further work by the 
authors will concentra te on the implementation of this design of network during simulated sea trial 
conditions. Results will then be compared to those obtained from a traditional ship model to 
validate both the learning achieved, and the subsequent performance capability obtainable during 
simulation studies . 



6. A Novel Predictive Control Principle 
This kind of mathematical model can be used in a novel controller design. It has been found and 
demonstrated that adaptive control is the control technique of the future. Recent research into self­
organising (self-tuning) methods, M. Polkinghorne et al., has been applied for control purposes 
when processes operate in uncertain, varying environments. Such existing adaptive controllers, 
e.g. self-organising fuzzy logic controllers (SOFLC), learn by employing a heuristic approach. In 
order to learn they have to work with a poor performance. Due to adequate techniques, the errors 
made during this low performance work are detected and the control parameters are adjusted in 
such a way to avoid the same error in the future. To fully appreciate the novel approach of this 
research, it is a prerequisite that the conventional SOFLC technique be described. The SOFLC 
technique has been employed in several maritime applications ( [3] and [5]), its performance and 
reliability having previously validated. 

6.1 Performance Index Operation 
The Performance Index (Pl) determines the performance of the controller and it indicates the per­
formance level of the controller when reacting. Ln general, the PI has a similar structure to the 
fuzzy rulebase used in the forward phase of the fuzzy inference. The output parameters of the 
process are used as inputs to the PI. Before any analysis can be done, the change on the control 
actuator has to take effect; a certain amount of time has therefore to elapse. This time delay is 
characterised by the time constants of the process and may be referred to as 'delay in reward' . 

The Pl outputs are a measure which can be used directly to adjust the rulebase. The 
rulechanging algorithm consists of three main phases. 

• standard fuzzy logic control (defuzzification, fuzzy inference, defuzzi!ication). The active 
rules and values are stored for later use in the tuning. A control output is created which is 
fed into the process (control acruator). 

• The process 'reacts' in an appropriate (in its characteristic) manner with the actual output 
value being measured by a device in the feedback loop of the control system. 

• This output value is then forwarded to the Performance lndex ·(PL) which will generate a 
measure of the controller performance. If a zone of poor performance hac; been hit, 
rulebase. adjustment is needed. Now, n time steps later, the rules and values hit to form 
this control output are adjusted according to the performance index criteria, therefore when 
this combination of rules is activated in the future, the control output will be modified, to 
produce a reduced error. 

However, this technique is based on the assumption that the controller output 11 time steps 
before is responsible for the present state of the process. If the process is in a poor state, these 
rules must be changed which is a retrospective methodology only allowing adjustment of control 
parameters which already performed badly. 

,--- -- -- -- -- -- --

+ 

Figure 5: Standard SOFLC 



By employing a predictive technique the disadvantage resulting from that time delay may be 
overcome, thereby producing an enhanced level of operational performance. 

6.2 A New Model Predictive Technique 
The block diagram (Figure 6) shows the principle of the new predictive self-organising fuzzy 

logic controller (PSOFLC). The control output is only passed to the process if the predicted 
performance of the process following the application of this control action indicates a satisfactory 
performance level. If the output is poor, then the rulebase is adjusted to meet the requirements. 

To determine a high quality model is always a problem in this type of control application. It 
has been demonstrated [4] that neural networks are well able to learn the transient behaviour of a 
process. Therefore it must be possible to obtain a very specific mathematical model by measuring 
the present behaviour of the vessel and teaching a neural network on-line utilising this data. This 
adaptive model can than be used as the predictive model in the described PSOFLC. A method 
must therefore be identified to teach the network on-line by learning measured data whilst a journey 
takes place. ln this manner, the model can adapt itself to behave exactly like the vessel when 
working in the same environment (mass loading, forward speed, etc.). The model will change itself 
if the ship characteristics change, so that the model will always represent the present state of the 
ship. 

7. Conclusions 
:.:_ )--"'-·~--._:--l-----o~d~ __ ___;..._,_j 

+ Vfo.now I FLC 

real world ship --,--, --,-~_. 

L.._ ___ _,! I 
I 

~ ___________ ship_ dynam~~ ~ 

Figure 6: PrP.A:Iictive SOFLC 

It has been demonstrated by this study that it is possible to simulate complex plant behaviour in an 
innovative manner by utilising a neural network. The advantage of employing a simulation using 
this technique is that it becomes possible to overcome the problems associated with formulating the 
relationship between the features to be investigated. This can be achieved by the neural network, 
thus allowing the designer to concentrate on alternative aspects of the design. During execution, 
the neural solution therefore allows for extension to far more complex mathematical models 
without incurring a notable slowing of the process time. 

This new control technique indicates a new research area for predictive control which will 
allow controllers to a void areas with unsatisfacmry control performance and therefore will 
contribute significantly to improved efficiency and safety. 
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Abstract 

Intelligent methods of control which have been employed in an attempt to 
maintain optimal marine autopilot performance have all been retrospective 
in nature, thereby allowing performance levels to deteriorate before remedial 
action can be subsequently applied. Of significantly more interest would be a 
system which is capable of anticipating such performance deterioration prior 
to its occurrence so that corrective action may be applied in expectation of 
events by combining aspects of both modelling and control. 

Advancing from the classical approach to modelling the dynamic be­
haviour of rigid bodies by expressing behaviour as a set of simultaneous 
differential equations using calculated hydrodynamic coefficients, or by the 
application of a series of pseudo-random binary sequence (PRBS) to the real 
system, a novel alternative to the state variable representation of a ship in 
three degrees of freedom is demonstrated employing an artificial neural net­
work approach. Using this enhanced model, it is therefore possible for the 
neural network model to predict the performance of the ship, and for this 
information to then be channelled to an intelligent control device, with any 
necessary rudder changes to optimise a rulebase of a fuzzy_ logic controller 
then being calculated in an anticipatory mode of operation. 

1 Introduction 

The modern control techniques of Hoo [4], Optimality [2], Self-Tuning [6], 
i\·lodel Reference [I 0], Neural Networks [3] and Fuzzy Logic ['11] have all been 
applied to the field of ship control over recent years in an attempt to improve 
autopilot performance over the entire operating envelope. Whilst these tech­
niques have successfully demonstrated that adaptive control methodologies 



are the future of marine based autopilots, few actually offer a learrting ca­
pability in the true sense, and of these all are retrospective learning, i.e. 
poor autopilot performance must be encountered before corrective action is 
applied to remedy the situation. Even very recent studies ([7]- [8]) employ­
ing self-organising fuzzy logic control has required that autopilots learn in a 
heuristic manner. Therefore it is only when errors due to poor performance 
are detected that control parameters are adjusted to prevent any recurrence 
should similar conditions be encountered in the future. The truly ideal form 
of autopilot control would be one with the capability of prediction so that 
deterioration in performance could be anticipated in advanced, with suitable 
remedial actions being undertaken prior to this occurrence thereby prevent­
ing any noticeable deviation from the optimal performance level at any times. 
Such a system would require a knowledge of alterations occurring within the 
dynamic characteristics of the vessel and the implications generated by these 
changes. To model boats in the conventional manner would be impractical 
on any large scale due to the considerable effort involved in both time and 
resources. However, if a novel manner of ship modelling could be derived in­
volving a neural network [9] solution based upon relatively little information 
which was readily available, then this could be the key to developing such 
a predictive system. The system itself must have the capablility of on-line 
learning to be able to fully support the requirements of a predictive system, 
e.g. by the application of self-organising fuzzy logic. ·However, it is only 
by combining both neural and fuzzy aspects together into a composite au­
topilot system, that a fully predictive novel innovative control system may 
be obtained. This paper concentrates on the development of such a neural 
network ship model, consideration of the on-line tuning ability of the fuzzy 
autopilot when subjected to full scale sea trials, together with discussion of 
the implications when joined into the necessary composite system. 

2 Development of a Neural Netwo~k 
Ship Model 

2.1 Modelling techniques 

The classical approach of modelling the dynamic behaviour of rigid bodies 
is to express their b.ehaviour in a set of simultaneous linear and non-line;1r 
differential equations, and to obtain a solution for various input stimuli. Ship 
motions in surge, sway and yaw can be described [I] by an Eulerian set of 
non-line;u· differential equations of the form: 



Length = 161m 
Draught = 9m 

Beam= 23m 
Displacement= li,OOOt 

Number of propellers = 1 
Number of rudders = 1 

Maximum rudder angle = 3.5° 

Table 1: Vessel Parameters 

Surge Equation: 

Sway Equation: 

mv + 1nU1'- mpv = Yvv + Yv(v + Vc) + }~7: + Y,.7· + Ynnn~ 
+YvvvV3 + Y..vvrv 2 + Ynnon~JA (2) 
+Ynnooon~!S~ + Y6vt·!5Av 2 + }·~aVa 

Yaw Equation: 

I.r + (/y- lx)pr = Nvv + Nv(v + vc) + N,r + N,r + Nnnn~ 
+N"vvV3 + Nrvvrv 2 + Nnnon~JA (3) 
+Nnnooon~J~ + Novv!5Av 2 + NvaVa 

where: 
XT =(JA TIA X U y V Z W qy p 0 q 1/J r) 
uT =(!So no) 

WT =(uc Vc Ua Va (x (y) 

Equations 1 to 3 can be arranged in the state matrix vector form: 

x(t) = F(t)x(t) + Gc(t)u(t) + Go(t)w(t) 

The corresponding discrete solution is: 

(4) 

x((lo: + I )T) = A(T, I.:T)x(kT) + B(T, I.:T)u(I.:T) + C(T, kT)w(kT) (5) 

Whilst consideration of all 6 degrees of freedom within the neural model 
should he possible, this study concentrated only on the three, these being 
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time windows 

Figure 1: Settling Times 

surge, sway and yaw. The vessel 's parameters used in this simulation are 
given below (see table 1), and were based on previous work by Morse and 
Price which was directed towards the established Mariner Hull [5] . It has 
previously been demonstrated that artificial neural ne~works (ANNs) have 
the capability to model highly complex plants [9] by generating a series .of 
connections between neurons within the network itself, each having a weight­
ing value which may be scaled during training to replicate the relationships 
between the input/output data presented during this phase of development. 
By deriving this data from the real world environment, i.e. by measuring 
critical values, these networks can learn to emulate a wide range of differ­
ent working conditions. When considering the application of a maritime 
vessel, the non-linear time-invariant dynamic characteristics are particularly 
difficult to model and realistic data may only be obtained by carrying out 
a carefully selected range of labourious manoeuvres undertaken at various 
forward speeds. In addition , the precise relationships between many of the 
features and characteristics of these ships is often not f, tlly understood. 

An alternative approach is that of system ident ification whereby a pseudo­
random biuary sequence (PRBS) is applied to the real system and the in­
put/output measurements used to develop a model. However, by consider­
ation of only crucial inputs /output relat ionships then training data for a 
neural network may also produced instead. Such a model could fu lly de­
scribed the ship dynamics with limi ted data quantities, thereby signifi cantly 
simplifyi ng t.he model generation process. ln contrast to the extensive sea 



Inputs Outputs 
time rudder engme forward lateral turning 

elapsed angle speed speed speed rate 
t 0 n u V r 

Tab le 2: Network Inputs and Outputs 

trials necessary with the conventiona l approaches to model generation , the 
neural network can in terpolate relationships given only limi ted information 
assuming that the data provided describes the key aspects for the dynamic 
characteristics. For t his application, the important parameters to be consid­
ered during measurement were identified as being rudder angle, and engi ne 
speed {input parameter) which cause velocity changes in the surge, sway and 
yaw directions ( u, v, r) (output parameter) . Whilst steady-state response is 
of limited value to the model generation process, the transient behaviour of 
the vessel is essential and consideration must be given to the time elapsed 
since t he last rudder change as this will singificantly effect t he learning re­
quirements. Figure 1 indicates t he various time periods required for the 
transient vessel response to settle down. 

Utilising an acceptable error of± 1%, it is possible to determine from the 
data the required values of settling time (table 3). From this information it 
may be deduced that if the t ime considered is greater than the ti me to reach 
steady-state, then the response has already reached steady-state, otherwise 
the response remains in t he transient period and dynamic operation of the 
artificial neural network is required. 

2.2 Structure of the Neural Network 

It is a pre-requisite that t he variables to be investigated are considered before 
commencing the initial design stages of the network's structure. Table 2 con­
tains the required input a nd output variables considered to be the minimum 
requirement for this application. 

To learn the trans!ent behav iour, it is necessary to determine the t ime 
elapsed since the last rudder change as a n additional further input to those 
previous discussed. The quali ty of results obtained from a two hidden layer 
network proved unsatisfactory with transients features being fi lt ered out dur­
ing t he learning phase. Following further heuristic experimentation , the 
required network structu re was identified as being a 3-6-6-6-3 which cor­
responds to input a nd output layers of 3 neu rons in each, separated by 3 
hidden layers of 6 neurons. Performance levels were significant ly increased 



d(oj u t(s] V t[s] yaw rate t(s] 
0 7.588 275 0.278 410 -0.186 405 

10 6.639 270 0.734 220 -0.534 180 
-10 6.818 270 -0.669 230 0.476 230 
20 5.915 295 0.870 240 -0.681 185 

-20 6.043 290 -0.836 235 0.641 240 
30 5.308 290 0.930 240 -0.782 155 

-30 5.408 285 -0.907 240 0.747 16.5 

Table 3: Settling Times 

with t his network strudure allowing correcl learning of even the more subtle 
aspects of the training data provided, and avoiding local m in ima difficu lties. 
In addition , is was discovered that wi t h the fin al form of network structure, 
t he error surface contains less t roughs and a more constant learning was 
achieved. 

3 Network Training 

The learning method util ised for this study was the ~ack propagation al­
gorithm which is based upon the steepest gradient of descent minimisati.on 
techn ique and a Sigmoid transfer fun ction with output limits between 0 and 
1, i.e. 0 < y < 1 where these values can only be reached with magnit udes of 
infinity. Therefore, the desired outputs required scaling to bring them within 
the numerical limits. Adjustment of the learning ra t e was preformed from a 
large ini t ial value, by gradual decrements unt il the required termination level 
of learning was achieved which equated to the steady error characterist ic. 

Considering t he training results in fi gure 2 for the vessel's forward speed, 
it is easily visible that a close comparison is present between the network re­
sponse and the actual training reponse of the system . Clearly, there is close 
correlation between the two sets of responses with little discrepancy being 
apparent . Whilst t he network closely follows that of t he surge velocity train­
ing data, an improved level of performance is apparent with t he responses 
for both sway velocity and also yaw rate when following defined increments 
of rudder angle set as 0°, - 10°, + 10°, -20°, +20°, -30° and +30°. The 
evidence of successfu l nework learning is gi ven in table 4. 

During learning, approximately 4 mi ll ion epochs were t rained , t he learn­
ing rate and the momentum being grad ua lly changed. Starting oiT with a 
learning ra.Le 17 of 0.3, a nd momentum a of 0.8, bot h have been reduced 
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Figure 2: Surge Velocity Response 
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Figure 3: Sway Velocity Response 

Parameter 
Surge Velocity 
Sway Velocity 

Yaw Rate 

RMS 
0.097620 
0.042320 
0.168156 

Table 4: Correlation of Network a nd Training Data for Ship Model 
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Figure 4: Yaw Rate Response 

in three steps to final values of 0.05 and 0.4 respectively. The training file 
contained data for the 7 different rudder settings, these 0° , ± 10°, ± 10° 
and ± 10°. For each rudder angle a, between 55 and 60 vectors were stored 
representing t he time transient information. 

4 Novel Intelligent Control Principles 

4 .1 Structure of the Fuzzy Controller 

The real world inputs of heading error , and rate of change of heading error, 
must be converted to fuzzy values for use wit hin the Fuzzy Logic Controller 
(F LC). This process may be achieved using the fuzzy i ~put windows de­
scribed (figure !J). 

T he form of FLC used for this study employs two rulebases , one for 
the gain of counter rudder (derivative term), and the other for rudder ratio 
(proportional term) . Having established t he fun ct ion of the two rulebases, 
it is important to realise that vessel performance will only be satisfactory 
if the contents of each rulebase is correct. An initia l informat ion may be 
generated from consultations with experienced helmsmen. In practice, the 
rulebases t herefore contain t he helmsmen knowledge. This experience is non­
linear in nature, and when utilised for the purposes of shi i) control, creates 
a signifi cant iucrease in operating performance to be obtained. The output 
from the fuz?.y controller is produced by a procc::;s of dcfuzzifying identified 
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Figure 5: Inpu t \\'indow for Heading Error 

fuzzy sets in a single output window of simi lar format to that used for input 
fuzzification. A deterministic output is produced by utilising a centre of area 
method. 

Advantages of using the fuzzy technique include the ability to merge 
together several experiences, thereby producing a composite result which was 
not previously know, but capable of improved performance when compared 
to the known experience. For example, it is possible to ask the helmsman 
to determine the amount of rudder required for a small heading error, and 
for a large one. In reality, if the headine error was of medium Yalue, then a 
conventional expert system would have to provide the closest known response 
(either that for a small or a large heading error). The fuzzy system can take 
both pieces of knowledge and combine them so that the result is somewhere 
in the middle. This form of reasoning, being inspired by natural processes, 
is much more human-like in approach. · 

During sea trials this novel non-linear design of fuzzy logic controller 
(FLC) improved performance by approximately 50% which constitutes a sig­
nificant saving in energy usage over a long voyage. 

4.2 Self-Organising Operation 

In order to ensure that the rulebases are capable of correct 'operation, two 
performance indices are employed. Observations of the vessel performance 
are passed to the performancE'! index in terms of the fuzzifiP.d heading error 
and fuzzified rate of change of heading error. Based on these observations, the 
performance index can enforce any required modifications to each rulebase so 
that it continually changes to match variations in the operating environment. 
The ability of the Self-Organising Controller (SOC) to achieve the correct 
modifications to the rulebases is fundamental to the successful operation and 
is therefore dependent upon the content of the performance index utilised. 

This a lgorithm uti lised combines the two tasks of control and learning. 



Figure 6: Predictive SOF LC 

Learning must be ach ieved by observ ing the operating environment and the 
controller 's effect within that environment. By u t ilising this information, 
changes in t he fu zzy rulebase were determined in order that fu ture activa­
tions of those rules will generate an improved level of performance. Having 
predetermined which observations are acceptable, and which are not , t his in­
formation m ay be stored in a m atrix format called a performance index (PI). 
If the observations of the operating environment ind icate tha t t he process 
is main taining a satisfactory level of performance t hen no rule alterations 
will be required. Conversely, as the performance level deteriorates, then the 
magnitude of the rule changes increases. 

4.3 Performance Index Development 

The magnit ude of each element in the respective Pis was determined based 
upon experience, observations and an understanding of the nature of t he 
learning required and as such may be considered to be application depen­
dant. Poor performances are penalised by large magnitude whilst desirable 
performance levels generate no modification. 

5 Towards Predictive Ship Control 

Having established the viabili ty of both the modelling techniques using neural 
network, and of the intelligent self-organising fnzzy logic controller , they 
may then be combined together to form a predictive composite system as 
previously defined . 

Obviously the learning of t he controller has be amended to take into ac­
count t he ant icipatory aspects of t he new methodology being employed. T he 
block diagram (figure 6) demonstrates t he principles of this new Predictive 
Self-Organising Fuzzy Logic Controller (PSOF LC). The control output is 
only passed to t he process if t he predicted performance of t he process fol-



!owing the application of this control action indicates a satisfactory level or 
the time to check and alter the coutroller's performance has elapsed. If t he 
outp ut is poor, then the rulebase is adjusted to meet the requirements. 

Similarly, the neural model may be employed on-li ne and than be used as 
t he predictive model, for anticipating dynamic changes in the 'real' system, 
wi thin the described PSOFLC. A method is therefore required to establish 
the criteria for learning data generat ion during the voyage itself. By this 
means, the model can adapt itself to behave exactly as the vessel will when 
subjected to the on-going disturbance effects and dynamic variations, e.g. 
mass loading, forward speed, etc. 

6 Conclusions 

It has been demonstrated by this study that it is possible to simulate complex 
plant behaviour in an innovative manner by ut ilising a neural network. The 
advantage of employing a simulation using this technique is that it becomes 
possible to overcome the problems associated with formulating the relation­
ship between the features to be investigated. This can be achieved by the 
neural network , thus allowing t he designer to concentrate on alternative as­
pects of the design. During execution, the neural solution therefore allows 
for extension to far more complex mathematical models wi thout incurring a 
notable deterioration of t he process t ime. 

The principles of intelligent learning using a self-organising form of fuzzy 
logic controller have been validated by preliminary full scale sea trials. As­
pects of this SOC remain relevant for the predictive controller, however cer­
tain areas of the learning process may require re-engineering to m aximise the 
potential of utilising the new learning methodology. 

This novel predicti ve controller is therefore a composite form of two estab­
lished areas of innovation . Such a new control technique will allow controllers 
to avoid unsatisfactory control performance and t herefore wi ll contribute sig­
nificantly to improved efficiency and safety whi lst at sea. · 
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Single Site Myoelectric Control of a Complex Robot Hand 

Paul Robinson 1
, Peter Nurse, Steve Roberts, Ralph Richter, Guido Bugmann1 &;. Roland Burns 

J\1_\.:oelectric control methods have been used in 
commercial prosthetic hands for about twenty _vears. 
Lower arm muscle action results in !he generation of 
electric potentials which may be detected at the skin 
surface. Commercial prosthetic hands use these 
potentials to activate a binary control action: hand 
open/hand closed. There is no colitrol 01•er the force 
exerled b.v the hand. This is set of some 'average' value 
thought to be most appropriate for a wide range of 
circumstances. Consequent~v avai fable commercial 
hand are of on~v limited practical use. This paper 
describes an improved myolectric control s:a-·srem 
capable of controlling a multiple degree of freedom 
(DOF) robotic hand. Spectral analysis of a single site 
myolectric signal is combined with a neural network to 
provide up to seven control signals. Tests on a range of 
volunteers hC!VP. validated the robustness of the system. 
As a man-machine interface (MAfl) the method is shown 
to have many potential applications including a no'>·e/ 
means of robot programming and as an intuitive 
interface to VR environments. 

Keywords: Myoelectric; robot; prosthetic; control 

1. Introduction 

It is common for lower ann amputees to retain the 
muscle structure of the lower arm, Fig 1. Commercial 
prosll1etic hands detect the electrical activity generated 
by the action of these muscles a nd use the signal to 
control the operation of ilie hand (Radix et al, 1996). 
The control system consists of a pair of electrodes 
attached to the skin surface above both the flexor and 
ex1cnsor muscles just below the elbow. Stump muscle 
action results in the generation of electric potentials, the 
magnitude of which is detected by surface electrodes 
and used to control the opening and closing of the 
prosthetic hand. When a detected signal exceeds a 

'School of Electronic, Communication & Electrical 
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specified threshold Yaluc the hand \\ill open. Closing 
the hand requi res the signal from the second electrode 
to exceed the specified 'close threshold' . Variations on 
this simple two-site-two-state' control melllod ha\'e been 
developed but are not commonly used (Roberts et al. 
1995). Existing NHS prosthetic hands are therefore 
severely limited in their ability to emulate the behaYiour 
of a real hand. Only a single DOF pincher movement is 
aYailable. It is widely accepted tl1at any improvement in 
the design of prosthetic hands is dependent upon 
ad\a.nces in myoelectric control methods. 

EXTEHSOR CARPI RAOIAUS BREVIS 

Figure!. Lower am1 muscles contributing to ring finger 
motion. 

Fundamental to the success of myolectric control is the 
ability to reliably detect specified muscle actions , i.e. 
hand movements i_n an able bodied person and the 
equi\'alent muscle action in an amputcc, in the presence 
of noise. Each hand mo\'ement is the result of a 

{ 



complex combination of muscle actions. To complicate 
matters further each individual produces slightly 
different muscles actions for the same hand movement. 
The electrical signal received at the upper arm surface 
electrode is a combination of time varying signals 
generated by several muscles. In order to reach the 
electrode these signals have propagated through 
different thickness' of tissue proportional to the distance 
between the electrode and tl1e relevant muscle. Thus the 
received signal is a combination of time varying 
potentials, generated by a number of muscle actions, 
which have been attenuated and filtered according to 
their distance from the pick-up electrode. In addition 
the variables governing this process, e.g . thickness and 
quantity of arm bone and tissue, are different for each 
individual. It follows that any control system based 
upon the MEG (myoelectrogram) must be capable of 
discriminating between a v .. ide variety of signals 
generated by similar muscle actions. 

2. Experimental Procedure 

A single pair of electrodes, situated about lcm apart are 
attached below the elbow to the upper forearm of a 
range of able bodied volunteers. In addition a reference 
electrode is securely attached to the upper-arm using 
proprietary tape. Motion artefact, a serious source of 
signal degradation. is reduced to a minimum by 
ensuring a good contact surface between skin and 
electrode. Consideration of a range of electrodes 
resulted in the choice of Liberty Mutual MY0115 EMG 
research electrodes. Pick-up from the two electrodes is 
fed to a variable gain differential amplifier. The 
MY0115 inc!udes on-board filtering giving a claimed 
3dB response of 90-500Hz and a gain which may be 
customer specified between approximately 500 to 6000. 
Differential myoelectric signals of interest typically 
have magnitudes from a few microvolts up to a few 
millivolts. Without the filter these signals would tend to 
be swamped by induced 50 Hz noise created by nearby 
mains electrical equipment. 

The amplified, differential myoelectric signal is fed to a 
PC using a PC1718 Advancetech PC interface card The 
signals, sampled at a rate of 1 kHz, are captured from 
the ann surface in one second bursts, i.e. 1000 samples. 
A normalisation process ensures an RMS value of 1 
volt. The resulting signal is applied to six filters 
operating within the range 0 Hz to 300 Hz, viz. <50Hz, 
50-99 Hz, 100-149 Hz, 150-199 Hz, 200-249 Hz, and 
>250 Hz. Initial experiments used the LABTEC 
notebook and DaDisp signal processing package to 
examine the raw data. Subsequently a dedicated 
software package was developed which produced the 
filtering operations described above and calculated the 
RMS va lue of each filter output. This RMS value 

provides a measure of the power spectrum within each 
frequency band. Filters one and two, i.e. <99 Hz, are 
clearly operating below the low frequency -3dB level of 
the MYO 115 electrode. Notwithstanding this unusual 
'double-filtering' procedure results obtained from the 
<lOO Hz frequency band were found to be crucial in 
identifying specific hand moveme~ts. The myoelectric 
signals associated \\ith many specific hand movements 
have a significant low frequency, i.e. < lOO Hz, content. 
The double filtering effect may therefore be regarded as 
a crude form of spectrum averaging. 

The Nassi Schneidermann chart of Figure 2 illustrates 
the complete process. A neural net is fed the RMS 
values of the six filter outputs and trained to recognise 
specific patterns. Outputs from the neural network are 
then associated \\ith specified hand movements. These 
positions are actioned in software by a complex, virtual 
band and the result exhibited on a PC screen. 

INITIALISE I LOAD NE1WORK CONSTANTS 

DO FOREVER 

SAMPLE MES ON AID CARD FOR 1 SEC 

NORMALISE 

FIT. TER 1 --!> RMS --!> STORE 

FILTER 2--!> RMS --!> STORE 

v v v 
FTI..TER 6 --!> RMS -4> STORE 

NEURAL NE1WORK 

GENERATE HAND POSillON 

GENERATE FRONTAL VIEW OF HAND 

PRINT ON SCREEN 

Figure 2 The Nassi Schneidermann Chart 

A large number of experiments were performed in order 
to disco\'er those hand/finger/wrist movements which 
could be most readily, and reliably, identified. Initial 
methods used the natural 'neural network' of the human 
brain. Two approaches were followed. In the first 
instance a spectrum analyser displayed the captured 



myoelectric signals in real time. Observations seemed to 
show some correlation between specific 
hand/finger/wrist movements and the resulting spectra. 
These results were confirmed when the differential 
myoelectric signals produced by the hand movements 
were amplified and played through a loud speaker. After 
a short learning period it was discovered that specific 
hand/wrist/finger movements could be clearly identified 
by their audio signal. It was this discovery which 
convinced the authors that a simple neural network 
should be capable of being trained to identify individual 
hand movements. 

3. The Neural Network 

Neural networks, with their abil~· to learn and 
recognise relationships between patterns of inputs, are 
ideally suited to recognising complex myolectric 
signals. In this case hand/finger/wrist movements are 
known to result from muscle actions, but the pattern 
between a complex combination of input muscle signals 
(detected at a single site) and output movements 
remains unclear. By feeding the prepared data, from the 
six filters, to a neural net, a transfer function and hence 
the causal relationship, can be learned The neural net 
performs as an identifier of different input signals 

RMS 1 RMS2 RMS3 RMS4 RMS5 RMS 6 

Figure 3 - The Neural Network 

NEURAL 
NETIVORK 

Empirical methods resulted in the choice of a back­
propagation learning algorithm. This widely used 
algorithm learns from errors and is a form of the 
gradient minimisation problem. A simple neural 
network, Figure 3, consisting of six inputs, a hidden 
layer of four neurons and three outputs, is used to 
identify the hand action. 

The neural network provides three binary output signals 
providing a potential of seven control signals: the 
relaxed condition, i.e. 000, is not considered to be a 
control signal. Training was done using a modified 
backpropagation algorithm with added momentum. 
This momentum helps to pre\'ent the neural net 
becoming trapped in local minima of the error surface 
(Lau, 1992) · 

The network was trained with four training sets, 
representing four different moves. Each move was 
repeated four times to allow for variations. Initial 
e>.-periments used the three neurons of the output layer 
to action three, single movements of the virtual hand, 
viz. a logical one at output one drives the hand to a 
specified position and ditto for outputs two and three. 
Clearly, however, the control system is capable of 
executing seven movements, i.e. the binary output 
range of the neural network. 

For simplicity, and to prove the technology, only one 
action at a time is identified. The output of each neuron 
in the output layer lies between 0 and 1 due to the 
implemented transfer function. The Sigmoid function, 
i.e. y= 11[ 1 +e:..-p(-x)] was used for all neurons to 
compute the firing threshold of the neuron. 

4. Results 

Myoelectric signal spectra obtained from movement of 
the ring finger, i.e. the third fineer, is shown in Figure 
4. Scans Sl to S4 illustrate the results for the same 
individual repeating the ring finger movement four 
times. Care is taken to try to ensure that each action is 
identical to the previous movement. 
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Figure 4 - Ring finger movements 

In practice it is extremely difficul! to ensure range of 
movement, speed of action and force applied remain 
constant. Differences between each set of experimental 



data are clearly visible. However the general 'shape' of 
the spectra resulting from this single finger movement 
remain fairly constant. 
Figure 5 shows typical spectra from four specific 
positions of the hand/finger/wrist.. 
SI. Relaxed hand, i.e. fingers and thumb held out 

straight. 
S2. The ring finger bent so that the tip touches the 

palm. 
S3. Hand relaxed, wrist bent inwards towards the 

palm. 
S4. Little finger bent inwards to touch the palm. 
The results of Figure 5 were obtained from a single 
individCJal. Different people produce unique 'spectral 
identities' but the overall relative patterns, for similar 
movements/positions, remain fairly consistent. 
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Figure 5 - Spectra from four hand positions 

S4 

The above movements of the hand and/or wrist were 
identified by the neural network, and used to control the 
action of a virtual robot hand, Figure 6. In this case the 
three simple positions mentioned earlier are illustrated, 
i.e. the relaxed position and the two finger parallel and 
chuck grasps. These position were identified as being 
useful to a user of prosthetic hands. The positions 
adopted by the virtual hand do not necessarily replicate 
the position of the volunteers' control hand. The 
intention is not that the robot hand will exactly replicate 
the movements of the biological hand. The aim is for 
the user to be able to reliably control a complex 
prosthetic hand using simple muscle movements of the 
upper forearm. 

From a practical viewpoint it is important that the 
exertion necessary for the muscle control does not 
become so excessive as to render the user exhausted 
after a short period of use. Simplicity of action is 
therefore of crucial practical importance. In this regard 

the amputee has one advantage over the able bodied 
person. In order to exert force the able bodied user must 
grasp an object or press the fingers against each other or 

a. Hand relaxed b. Parallel 
grasp 

Figure 6. Useful hand positions 

c. Chuck grasp 

into the palm of the hand. Because of the Y.>ay the 
forearm muscles are terminated in many amputees ~e 
ability of the muscles to emulate the action of varying 
force is retained. Crucially this ability is maintained 
without the need of an external opposing force. The 
magnitude of the myoelectric signal is proportional to 
the force exerted. The potential exists for this effect to 
d add a further dimension to the control system. It is 
intended in the near future that the magnitude the 
signal Y.ill be used to provide a greater combination of 
output signals and hence a more sophisticated control 
action. 

5. Further Developments 

The above results demonstrate that the frequency 
components of the MEG (myoelectrograrn) signal from 
a single probe cany enough information to discriminate 
several band positions. An advantage of the spectral 
approach is the ·robustness of the system against 
electrode efficacy fluctuations. Work towards a more 
refined analysis is pursued. For instance, at present, 
binary commands are extracted from the MEG, e.g. 
' open hand', 'chuck grasp' etc. For a more natural 
operation of a prosthetic hand, it is necessary to also 
extract force information from the signal. It is well 
known that the magnitude of a MEG signal is 
proportional to the force applied The authors believe 
that force information may also be encoded in the 
frequency spectrum of the signal. Success along these 
lines would lead to a force-sensitive system robust 
against fluctuations in probe efficacy. 

At present, tl1c signal is sampled during one second, its 
amplitude is nomulised, its energy is computed in six 



Figure 7 - Advanced virtual hand, associated EMG signal and neural network 

frequency bands, then the results fed to the neural 
network which evaluates the band position encoded by 
the signal. This procedure causes a relatively long 
reaction time. Shortening the reaction time to less than 
lOOms is desirable for a practical system. In order to 
achieve this objective, future developments are aimed at 
normalising the amplitude using hardware filters and a 
new low power analogue neural network chip developed 
at the University of Plymouth [Coue and Wilson, 1996a, 
1996b]. 

Finally, the conception of a training procedure is to be 
investigated. To train the neural network it is necessary 
to know which intended movement corresponds to the 
recorded signals. One solution may involve a more 
complex virtual hand which adopts a sequence of 
positions, Figure 7, that the patient would be asked to 
copy with his (missing) band There is also the 
possibility that prosthetic users could chose which 
positions of the hand were of most interest. An office 
worker, for example, ·would be likely to chose a different 
set of actions to a manual worker. The neural network 
would then be trained to reproduce the movements of 
the virtual hand, using the signals recorded on the 
subject. Once the patient is satisfied that the neural 
network has learned to produce the correct m.ovements, 
the neural net can be transferred onto the real prosthetic 
hand 

Figure 7, shows the system under development for 
training a neural network to reproduce the movements 
intended by the patient. The window to the left displays 
a moving virtual band The graph on the top right 
shows an example of a raw MEG signal recorded during 
the following sequence of positions: 1. Re$1 2. Thumb 
I index finger in a pinched grip, 3. Thumb I index 
finger parted forcefully and finally 4. Rest. In the future 
is hoped that this system will operate in real time in 
response to the user lower arm muscle movements. 

6. Conclusions 

Myoelectric signals, obtained form a single site on the 
lower arm, are capable of controlling a complex robot 
hand The robustness of the method has been 
successfully demonstrated using a number of able 
bodif".d volunteers. It was discovered that a trai.ned 
neural network will often operate satisfactorily for a 
range of different individuals. The present system has 
been implemented using only four separate control 
actions. However seven separate actions will be 
implemented in the near future. It is also feasible to 
arrange for a 'library' of different hand movements to 
be stored and recalled by the user as and when required. 
Each of these libraries would contain a combination of 
up to seven specialised hand positions and/or force 
\'alues. 



ime delays experienced with the prototype system are 
cceptable for practical applications. Implementation 

f dedicated analogue filters and neural networks, 
eloped at the University of Plymouth, are expected to 
ce these delays to approximately lOOmS. This work 

included in the next phase of the project. 

ctical implementation of these control methods for 
"sabled users is dependent upon the development of an 

proved NHS prosthetic band. The ideal hand would 
physically attractive, inexpensive, lightweight, 

lude multiple finger joints and force control. A joint 
roject with a major prosthetic manufacturer to 
nstruct such a hand is presently under evaluation. 
owever it is unlikely that such a device will be 

.. v .. .uAUie in the near future. 

.. 
her possible application areas, presently under 
vestigation., include a novel method of industrial robot 

rogramming, robot teleoperation (NASA is evaluating 
yoelectric control methods for use with the shuttle 
bot arm) and as a biologically intuitive interface for 

environments. It is poSSible that in the near future 
yoelectric control will become an important MM1 

man machine interface) technology enabling natural 
actions to be used to control complex hardware 

d software systems. 

e authors wish to thank the University of Plymouth 
(DevR), the BRA (British Robot Association) and the 
Tempus award scheme for supporting this work. 
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