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Diesel engine exhaust emission fractions: clastogenic effects in vitro 

Rachael Ann Whittington 

Abstract 

Despite being hailed as a green fuel, emissions from diesel engines including particulate 

matter (PM I 0 and PM 2.5) have been implicated in a range of adverse human health 

effects from lung and bladder cancers to premature mortality. In this study diesel engine 

exhaust emissions were collected from a light duty direct injection diesel engine on a 

standard test bed. Engine conditions of speed and load were altered to provide a set of 

total emission samples from over the engine's operating range. Diesel emission samples 

collected were fractionated on a silica column into aliphatic, aromatic, and polar groups of 

compounds, which were tested for their genotoxicity in the chromosome aberration assay 

in Chinese hamster ovary CHO-Kt cells both with and without metabolic activation (rat 

liver S9 fraction). 

The aliphatic fractions did not exhibit cytotoxicity up to the max1mum 

concentration assayed, and one emission sample (3000 rpm speed and 5 Nm load) assayed 

for effect on chromosome aberrations was not clastogenic (up to 600 j.tg/ml). The aromatic 

fractions of all engine emission samples assayed and of the fuel were not clastogenic, but 

did show high levels of cytotoxicity at relatively low doses, raising concern that any 

genotoxic effect was masked by the toxicity of certain chemicals within the fraction. 

Further fractionation, using HPLC, was therefore performed which separated the aromatics 

into various ring sizes. Assay of the ring fractions showed evidence of increasing 

clastogenicity with increasing ring size, with th~ ·3+ -ring fractions of both the fuel and one 

emission sample clearly clastogenic when assayed with metabolic activation (evidence of 

the presence of indirect-acting genotoxic compounds within both samples). 

The final fractions to be assayed, the polar fractions, were clastogenic when 

assayed both with and without metabolic activation. All seven fractions from emission 

samples collected over a range of speed and load conditions caused highly significant 

increases in chromosome aberrations at concentrations as low as 20 j.tg/ml. An engine 

running for less than 30 minutes at 1000 rpm speed and 55 Nm load (urban driving 

conditions for a heavily laden vehicle) would emit 148 mg of polar group compounds for 

every litre of fuel consumed. Polar compounds have been shown to be a highly mutagenic 

fraction of air particulate samples, and as diesel emissions contribute up to 80 % of the 

particulate matter in urban air in some areas, diesel emissions and the polar compounds in 

particular are of real concern to human health. 
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I. I Introduction to the diesel engine 

In 1892 Rudolph Diesel, a German engineer developed a new type of engine that differed 

from the standard gasoline engine which had been introduced 30 years earlier. It became 

known as the diesel engine and was capable of spontaneous combustion of liquid fuel 

without requiring spark ignition. The first prototype engine actually exploded small coal 

dust particles rather than using liquid fuel (Morgan et al., 1997). 

The use of diesel engines became more widespread during the 1980s as a response 

to the warnings about petrol powered vehicles and their production of harmful emissions. 

At this time diesel was hailed as the new green fuel, and Governments and environmental 

agencies encouraged car companies to develop and produce new diesel models to sell to 

the public on the basis of their green credentials. In the United Kingdom as recently as 

1992, the Treasury and Departments of Environment and Transport joined forces to cut the 

price of diesel relative to petrol. The owners of fleet cars were also offered tax incentives 

to run diesel cars (Sown, 1994). The greater fuel economy that was and continues to be 

achieved through diesel combustion was one of the major factors of its rise in popularity, 

especially among the fleet trade. Early evidence in the mid 1990s of the drawbacks of 

diesel combustion lead the Department of Health to shift its position on diesel from 

neutrality to one advocating a precautionary approach. The rise in popularity has however 

been sustained by continued improvements in diesel engine performance, and it appears 

that public reports of possible adverse health effects associated with diesel have yet to 

impact on the diesel car market. 

1.2 A comparison of diesel with petrol powered vehicles 

Early diesel vehicles were designed for optimum fuel economy and performance, and 

provided approximately 15 to 30 % better volumetric fuel efficiency than similar petrol 
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vehicles (Hammerle et al., 1994). Fuel economy is a major asset of the diesel engine and 

explains its unrivalled popularity in transportation, particularly buses, vans, and heavy duty 

trucks, and has been sustained in spite of advances in petrol technology. Because of this 

fuel economy, and due to recent further improvements in engine performance and in resale 

values, the UK has seen a substantial increase in the number of new diesel car sales as a 

proportion of total car sales. Diesel sales in 1990 accounted for 5.4% of new car sales in 

the UK, increased to 12.6% in 1995 (Collier, 1995), and are now approaching 20% so that 

they now comprise 6% ofthe national total (QUARG, 1996). In some European countries 

the surge in popularity of the diesel car is even greater, for example France where half of 

all new cars sold now have diesel engines (Patel, 1995). 

As well as its greater fuel efficiency over petrol, diesel continues to be attractive to 

consumers who are increasingly aware of the 'greenhouse effect' because its combustion 

produces less of the regulated gaseous emissions such as carbon dioxide (the principal 

greenhouse gas) per mile travelled. Diesels also emit less of the other b'feenhouse gases, 

methane and nitrous oxide, than do similarly powered petrol cars (QUARG, 1993b). Petrol 

vehicles are responsible for the emission of much higher amounts of VOCs (Volatile 

Organic Compounds), in particular benzene and I ,3-butadiene, both of which are known 

human carcinogens (DoE, 1996). In addition to the production of carbon dioxide from 

petrol combustion, evaporative emissions from petrol cars contribute significantly to 

hydrocarbons in ambient air from petrol station forecourts, petrol storage depots and oil 

refineries, and evaporation from the petrol stored in cars, parked and moving. The main 

environmental significance is their contribution to photochemical ozone formation and its 

long-range transport (QUARG, 1993b). 

The transfer of hot exhaust vapour into a cooler exhaust tailpipe leads to the 

spontaneous nucleation of 'carbon' particles before emission, fonning 'particulates'. For 
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diesel vehicles, the combustion process is such that they generally emit a much greater 

mass of this particulate mater than do petrol equivalents (QUARG, 1996). There has been 

a great deal of recent publicity implicating particulates in a range of possible serious 

adverse health effects (Pope et al., 1992, 1995; Anderson et al., 1995). Diesel vehicles 

also emit almost twice as much NOx (a combination of nitric oxide, NO, and nitrogen 

dioxide, N02) than petrol vehicles with state of the art control systems (Chang et al., 

1991 ). Nitrogen dioxide is a respiratory irritant, and may exacerbate asthma and possibly 

increase susceptibility to infections. There is considered a general shortfall in information 

about emissions from diesel powered vehicles, and in particular there has been little on 

road emissions measurements. With continuous advances in diesel technology, Hammerle 

et al. ( 1994) felt that more data on current and future diesel vehicles were needed to 

provide an accurate assessment of the effect of diesel emissions on urban ozone formation, 

atmospheric particle concentration, and therefore the attendant health risk. 

The increased proportion of diesel cars on the roads is therefore associated with 

an improvement in hydrocarbon and carbon dioxide emissions, a worsening of emissions 

of nitrogen oxides, and importantly has a major impact on the emission of particulate 

matter. The lower levels of 1:,>reenhouse gas emissions from diesel cars does not necessarily 

imply a lesser impact of such engines on global warming as the carbonaceous particulate 

emissions from diesels may also act to warm the lower atmosphere (QUARG, 1993b). The 

question of whether a diesel car is more polluting than a petrol car is difficult to answer as 

the two have major differences. Ignoring the difficulties of comparing like with like, the 

question then arises as to which pollutants are most important. Unfortunately there is not a 

simple answer to this question as the consequences of the different pollutants vary 

markedly, and indeed are still not fully categorised and understood (QUARG, 1993b). 
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1.3 Diesel composition 

Diesel fuel is known to be an exceptionally complex chemical which on combustion 

produces an equally complex cocktail of hydrocarbons and polar derivatives (Rhead & 

Trier, 1992), of which only a small number have been classified. Complete diesel 

combustion primarily results in the production of C02 (13 %), H20 (13 %), with nitrogen 

from the air representing 73 %. The emission of CO and compounds formed by 

incomplete combustion of the diesel fuel or engine oil make up the remaining I % 

(Kingston, 1995). The incomplete combustion products are thought to represent thousands 

of chemical species in both the vapour and particulate phases of particulate exhaust 

emissions, of which around 400 have been definitely identified. The distribution of 

chemicals between the particulate and vapour phases is determined by a number of factors 

including the vapour pressure of the compound, the temperature of the exhaust stream, and 

the relative concentmtion of particular compounds. Table I shows some of the compounds 

and chemical groups readily identified in diesel exhaust emissions. 

/.3./ Diesel part iculates 

A major drawback of diesel combustion in particular is the emission of a fine carbonaceous 

particulate matter, produced mainly by the incomplete burning of fuel. Polycyclic 

Aromatic Compounds (PAC) and other organic components from the diesel exhaust stream 

are readily adsorbed onto the carbon core, and many of these organics have been shown to 

be genotoxic (Lewtas, 1988; Scheepers & Boss, 1992) and/or carcinogenic (IARC, 1989). 

The presence of mutagens and carcinogens adsorbed on to particulates has generated 

concern about diesel exhaust and its potential for inducing lung cancer (Morgan et al., 

1997). 
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gas phase 

acrolein 
ammoma 
benzene 
1 ,3-butadiene 
formaldehyde 
formic acid 
heterocyclics and derivatives1 

hydrocarbons (C1- C1s) and derivatives1 

hydrogen cyanide 
hydrogen sulphide 
methane 
methanol 
nitric acid 
nitrous acid 
oxides of nitrogen 
polycyclic aromatic compounds and derivatives 1 

sulphur dioxide 
toluene 

particulate phase 

heterocyclics and derivatives 
hydrocarbons (C14 - C3s) and 
derivatives 1 

inorganic sulphates and nitrates 
metals 
polycyclic aromatic compounds and 
derivatives 1 (several hundred 
chemical species) 

derivatives include acids, nlcohols, aldehydes, anhydrides, esters, ketoncs, nitriles, quinones, sulphonnles and 
halogenated and nitrated compounds, and multi-functional derivatives 

Table I. Chemical compounds and species groups found in diesel engine exhaust 

emissions (adapted from lARC, 1989, and Collier, 1995) 

Primary emissions of particulate matter can arise from many sources, including 

road transport, stationary combustion, and industrial processes (QUARG, 1996). The 

majority of ai rbome particulate mass has a diameter of 10 J..lm or less and has been termed 

PMlO or coarse particulate matter, which generally deposit in the upper airways. Particles 

outside of this size are relatively very large in size and have little impact on health. 

Currently, diesel vehicles, in particular trucks and buses, are a major contributor to such 

emissions, especially in urban areas. lt has been estimated that road transport accounts for 

a third of atmospheric PMIO, rising to as much as 80 % in London (QUARG, 1996). 

Within the PMlO size range, particles of less than 2.5 J..lm aerodynamic diameter (PM2.5) 

are normally described as ftne, and are currently the cause of greatest concern as they are 

capable of reaching the deepest part of the lung. As well as creating dirt, odour, and 

visibility problems, increased atmospheric burdens of PM I 0 have been linked with higher 
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rates of mortality and morbidity (QUARG, 1993b; Pope et at, 1995). Research on airborne 

particulate matter has lagged behind research on other common air pollutants, possibly 

because particulate matter was not perceived as a significant threat to health once the 

extreme pollution characterised by the London smogs was abolished (QUARG, 1996). 

1.3.2 Polycyclic aromatic compounds and diesel chemistry 

PAHs (Polycyclic Aromatic Hydrocarbons) are a group of chemicals containing carbon 

and hydrogen atoms with more than one benzene ring in their structure, and are ubiquitous 

in nature. The broader class of PAC incorporate a range of substituent groups such as 

nitrogen, oxygen, or sulphur in the ring structure (QUARG, 1993a). PAHs were first 

identified in diesel exhaust in 1954 (Kotin et al., 1955), and the suspicion that they played 

a role in cancer led on to a pronounced research interest in the human health effects over 

the following 25 years. Many individual PAHs have carcinogenic (White, 1986) or 

mutagenic potential (Pahlmann and Pelkonen, 1987). Sixteen PAHs have been 

recommended as priority pollutants by the World Health Organisation (WHO), the 

European Economic Community (EEC), and the US Environmental Protection Agency 

(US EPA) (Hellou, 1996). All sixteen ofthese priority pollutants, shown in Figure 1, have 

now been quantified in diesel exhaust particles (Pointet et al., 1997). Table 2 lists the 

International Agency for Research on Cancer (lARC) classifications for a range of PAC 

that have been found in vehicle exhaust. A significant number of these compounds fall 

into the IARC group 2 (2A- at least limited evidence of carcinogenicity in humans, 28-

evidence of carcinogenicity in animals) (QUARG, 1993b ). 
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napthalene fluoranthene indeno[ 1 ,2,3-cd]pyrene 

acenaphthylene acenaphthene fluorene 

phenanthrene anthracene pyrene 

benz[ a ]anthracene chrysene 

benzo[k]fluoranthene benzo [a ]pyrene 

benzo[ghi]perylene dibenz[ a,h ]anthracene 

Figure 1. Chemical structures of sixteen polycyclic aromatic hydrocarbons identified as 

priority pollutants by the World Health Organisation, the European Economic Community, 

and the US Environmental Protection Agency. All sixteen have been isolated from diesel 

exhaust emissions (Hellou, 1996; Pointet et al., 1997) 
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compound class 

olefins 

aromatics 

PAHs 

nitro-PAH 

compound 

I ,3-butadiene 

ethylene 

benzene 

anthracene 

benzo[a]anthracene 

benzo[j+k]tluoranthene 

benzo[ghi]perylene 

benzo [a] pyrene 

benzo[ e ]pyrene 

chrysene 

coronene 

tluoranthene 

phenanthrene 

I ,3-dinitropyrene 

I ,6-dinitropyrene 

1 ,8-dinitropyrene 

6-nitrobenzo(a)pyrene 

3 -nitrotluoranthene 

2-nitrofluorene 

1-nitropyrene 

IARC classification* 

2A 

3 

3 

2A 

28 

3 

2A 

3 

28 

3 

3 

3 

3 

28 

28 

3 

3 

2B 

2B 

*!ARC Group I -proven human carcinogens, Group 2A- limited evidence of carcinogenieity in humans, Group 2B 
evidence of carcinogen icily in animals, Group 3 - unclassified chemicals (I ARC, 1989) 

Table 2. The lARC carcinogenic classification of selected polycyclic aromatic compounds 

from diesel engine particulate emissions (adapted from Scbeepers and Boss, 1992 and 

QUARG, 1993b) 

PAC are found in significant masses in diesel exhaust emtsstons, the majority 

arising from PAC already present in the fuel which survive combustion and appear in the 

exhaust (Collier et al., 1995). PAC also arise from other sources including survival from 

the lubricating oil and from pyrosynthetic formation within the combustion chamber 

(amounting to no more than 20 %). Pyrosynthetic formation results when molecules of 

fue l or oil have been transformed into intermediate products under the extreme temperature 
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and pressure region in the cylinder, but have not proceeded to complete combustion (in 

part due to a lack of oxygen from poor mixing). These may not have the same structure as 

PAC surviving combustion (Rhead & Trier, 1992). Research by Collier (1995) has shown 

that PAC and emissions are sensitive to the engine operating conditions of speed and load, 

and to the type of diesel engine combustion system (Direct lnjection-01 or Indirect 

Injection-ID!). The greatest PAC combustion efficiencies i.e. the lowest percentage 

recoveries of PAC, were found at high engine loads and mid speed. Thus, the 

mutagenicity of diesel engine exhaust is likely to vary depending upon the engine 

operating conditions. 

1.3.3 Nitro emissions- nitro-polycyclic aromatic compounds (nitro-PAC) and oxides of 

nitrogen (NOx) 

Nitro-PAHs are derivatives of PAH or PAC where nitro-groups replace one or more 

hydrogens on the ring structure. They are a widespread class of environmental 

contaminants derived from different environmental combustion sources, including diesel 

and aeroplane emissions, airborne particulates, coal fly ash, and food, and their presence 

has been suggested in cigarette smoke (Fu, 1990). A number of nitro-PAH have been 

identified in diesel engine exhaust extracts (Table 2), and have been widely studied in 

bacteria since the confirmation of a number of them as potent direct-acting mutagens 

(Schuetzle et al., 1980). 1-nitropyrene is the most abundant nitro-PAH found in many 

environmental sources, and is a moderately potent direct-acting mutagen tested in bacteria 

Fu ( 1990). The contribution of 1-nitropyrene to the total mutagenic activity of diesel 

particulates has been estimated at I 0 - 40% (Schuetzle et al., 1980; Nakagawa et al., 1983; 

Veigl et al., 1994). Study ofnitro-PAH in mammalian systems has however been minimal, 

and is particularly relevant as bacteria contain high levels ofnitroreductase enzymes which 

activate nitro compounds to potential mutagens, which does not necessarily reflect nitro 

compound activation in vivo (section 1.10.6.3). 
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Nitro-PAH are not detected in the diesel fuel nor in the sump oil samples (Collier, 

1995), and are produced only through combustion. The nitrating species are oxides of 

nitrogen, NOx, which are formed by the thermal decomposition of nitrogen and air in the 

combustion chamber. The composition of NOx is key in nitration process (the proportion 

ofNO:N02• which is dependent upon engine operating conditions). Once formed, the NOx 

may then react with PAH to form nitro-PAH via a free radical mechanism within the 

combustion chamber (Scheepers & Boss, 1992b ). Nitration may also occur by an 

electrophilic substitution of exhaust PAH by nitrogen dioxide in the presence of nitric acid 

via the nitronium ion. The present technology for NOx emission reduction for diesels 

gives limited benefit and does not approach the performance of three way catalysts 

(QUARG, 1993b). Nitro-PAH emissions therefore continue to pose a potential threat to 

health. 

1.4 Et~virollmelltal a11d huma11 impact of diesel emissio11s 

The exhaust emissions from diesel engines have raised concern since it was first suggested 

that they have the potential to cause adverse health effects. Their effects may arise from 

their regulated and unregulated gaseous emissions (1.4.1), from the emission of the fine 

carbonaceous particulate matter ( 1.4.2), or more likely a combination of these factors by 

the addition of a significant burden of particulates to ambient air (1.4.3). 

/.4./ Gaseous emissions 

Of the gaseous emissions emitted during diesel combustion, carbon monoxide and nitrogen 

dioxide can potentially cause the most harm. In European urban areas almost 90 % of CO 

is produced from road traffic emissions. At levels found in ambient air, carbon monoxide 

combines with haemoglobin in the blood, reducing the ability of the blood to carry 0 2. At 

higher concentrations, it can aggravate cardiovascular diseases and impair mental function 
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(QUARG, l993b ). The impact of carbon monoxide is increased by its capacity to survive 

in the atmosphere for approximately l month before its eventual oxidation to carbon 

dioxide. Of the oxides of nitrogen, only N02 is of such toxicity to raise concern at ambient 

levels (QUARG, 1993b ). N02 is a respiratory irritant as exposure at high levels can lead to 

constriction of the airways and an increase in airway resistance, and is therefore linked to 

asthma. In the presence of sunlight, N02 reacts with hydrocarbons to produce 

photochemical pollutants such as ozone, which have their own environmental and health 

effects. After their conversion to nitric acid (after approximately 1 day), the oxides of 

nitrogen can damage vegetation - either directly or indirectly by contributing to the 

acidification of rainfall. The strict control of these gaseous emissions has therefore been 

undertaken by Governments throughout the Western world. 

1.4.2 The environmental and health impact of diesel particulate mal/er 

Before establishing a direct causal link, an understanding of where diesel em1ss1on 

compounds exert their effects is required. The primary potential route of administration of 

diesel emissions to the human system is through inhalation of gaseous and particulate 

extracts. The particulates emitted after diesel combustion are of a size range that is likely 

to pass through the nose and mouth (PM I 0), making the respiratory tract the major site of 

exposure to airborne particulates (Heyder, 1993). The more recently described fine 

particulates, PM2.5, are capable of lodging deep in the lungs. Once bound to the alveoli, 

ultrafine particles (< O.IJlm) may induce oxidant production, lung inflammation, and 

hyperactivity. This may be as a result of the particle-associated organic compounds, PAC, 

which are then made available in the tissue by being dissolved in physiological fluids, or as 

more recently suggested by being solubilised or dispersed by pulmonary surfactant 

compounds (Scheepers and Boss, 1992). Additionally, the absorption of components of 

diesel emissions through the skin cannot be excluded as PAHs are easily absorbed 

percutaneously (Jongeneelen et al., 1984). As well as prolonging the residence time of 
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particulate-associated orgamc compounds in the lung, particulates may induce the 

generation of reactive oxygen species, and together with some gas phase components may 

exert a promoting effect (McCiellan, 1986). 

Diesel exhaust was classified as 'probably carcinogenic to man (Group 2A)' by the 

IARC in 1989. People most at risk are thought to be those occupationally exposed to the 

combustion products of diesel engines, including miners, bridge, tunnel, railroad, loading 

dock, fann, and maintenance garage workers, and truck and fork-lift drivers (Ensell et al., 

1998). The general public, particularly in urban areas, are also potentially at risk. There 

have been several reviews of the numerous epidemiological papers published so far on 

occupational exposure, the authors not always concurring in their conclusions. The Health 

Effects Institute in America published a detailed review in 1995 which concluded that the 

epidemiologic data were consistent in showing weak associations between exposure to 

diesel exhaust and lung cancer. They found that long-tenn exposure to diesel exhaust in a 

variety of occupational circumstances inferred a 1.2- to 1.5-fold increase in the relative risk 

of lung cancer compared with workers classified as unexposed. Although the small 

magnitudes of the increases in these risks make the studies very sensitive to confounding 

factors and uncertainties of exposure, the HE! felt that the association between increased 

risk of lung cancer and exposure to diesel emissions persisted after controls for smoking 

were applied, although in some cases the risk was lower (HEl, 1995). As well as the 

increase risk of lung cancer described above and in other studies (Bhatia et al., 1998), 

occupationally exposed bus drivers in Copenhagen were found to be at increased risk of 

bladder and liver carcinomas (Nielson et al., 1996). An excess of bladder cancer has been 

previously described in three out of four case-controlled studies (IARC, 1989). In contrast 

to the HEI report, a review of epidemiological evidence by M organ et al. (1997) concluded 

that a link between lung cancer and diesel exposure had not been established. Criticism 
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was made of some studies for failure to assess the smoking habits of individuals, and the 

way in which occupational exposure was assessed. 

The increased risk of certain cancers is not the only proposed direct effect of diesel 

em1ss1on exposure. There have been numerous reports of pulmonary irritation and 

bronchial hyperactivity in persons persistently exposed to diesel emissions. Wade and 

Newrnan (1993) found three non-smoking railroad workers developed asthma following 

excessive exposure to locomotive emissions following an alteration in working patterns. 

Further acute effects of diesel exhaust exposure include eye irritations and cardiovascular 

symptoms (Scheepers and Bos, 1992). There has been little investigation into the 

detrimental effects of diesel exhaust on heart activity, even though links with air pollution 

in general have been described. An indication of the genotoxic potential of diesel in 

humans has been shown by enhanced amount of PAH-DNA adducts found in the 

lymphocytes, urine and haemoglobin of occupationally exposed bus garage workers 

(Nielson et al., 1996a; 1996b ). 

The lung has a natural self-clearing mechanism, but when atmospheric .levels of 

particulates rise this can be overloaded. The question of whether such particle overloading 

occurs in humans under environmental exposure conditions has been addressed using 

toxicity and modelling data. Levels of diesel particulate matter alone in ambient settings 

(I to 10 j.tg/m3
) were not sufficiently high to overwhelm lung clearance processes, and 

hence lead to lung tumour induction by a mechanism driven by inflammation and cell 

proliferation (HET, 1995). There may have been an underestimation of environmental 

exposure as a higher concentration range, of 3 to 29 j.tg/m3 in the environment, was 

described by Lafon et al. (1994). Occupational exposure levels of diesel particulate, which 

can be as high as 164~-tg/m3 (Hammond et al., 1993), were not studied. 
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At present, there is no clear evidence as to whether health effects of particulate 

matter are related to certain components such as PAC or whether they represent non

specific effects of inhaled particles. That the transport of chemicals on the surface of 

particles may be important in the cause of lung inflammation has been shown in recent 

studies in which iron complexed on the surface of fly ash particles promoted oxidative lung 

injury, and this effect was reduced after removal of surface iron by washing {Tepper et al., 

1994 ). Diesel exhaust extracts have been suggested as important air pollutants in the 

activation of airway epithelial cells and thus potentially responsible for allergic airway 

inflammation (Ohtoshi et al., 1998; Takano et al., 1998; Miyabara et al., 1998). The full 

extent of the biological activity of particulate matter from diesel vehicles is therefore yet to 

be determined, and hence the health effects for inhalation of diesel particulate matter 

remain uncertain. It is, however, well established that people with pre-existing respiratory 

or cardiac disorders are most risk of the acute effects from exposure to particles. Heart and 

breathing problems are worsened in sensitive groups, from days of restricted activity to 

premature mortality (DoE, 1996). 

1.-1.3 The potential affects of airborne particulate mal/er 

Diesel engine emissions are a major contributor to the particulate load, particularly m 

urban air. In 1993, the QUARG described increasing evidence that an increase in mortality 

and morbidity may be associated with a rise concentration of particulate matter in urban 

air. They cited the work of Pope and colleagues (Pope et al., 1992) who had found a linear 

positive relationship between the airborne concentration of PM I 0 and both daily mortality 

from all causes and respiratory morbidity. However, without a convincing biological 

mechanism, the causal relationship could not be fully demonstrated. More recent studies, 

including time series studies in which day to day changes in mortality and illness are 

shown to be related to concentrations of airborne particulate matter, have strengthened the 

epidemiological evidence for the adverse health effects of airborne particulates. Anderson 
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et al. ( 1995) found, in a detailed evaluation of the December 1991 pollution episode in 

London, that there was an increase of about to % in mortality during the week of the 

episode compared with the same period in earlier years. A large scale study based upon 

the American Cancer Society database of over half a million people has included data on 

fine particulate matter from some 50 urban areas as well as particulate sulphate data from 

151 urban areas. After controlling for smoking and other risk factors, a clear relationship 

between cardiopulmonary and lung cancer mortality and concentrations of particulate air 

pollution was established (Pope et al., 1995). The increased mortality was correlated with 

levels of pollution found commonly in US cities. Although clear associations with 

increases in mortality and short term pollution episodes were also shown, Pope is 

convinced that it is the long term chronic exposure that is most important in terms of real 

loss of health and loss of life (Pope et al., 1995). 

It has to be borne in mind that scepticism for the role of air pollution in mortality 

and morbidity still exists. Pope and eo-workers themselves are concerned that some other 

factor might be causing the deaths- not least from the complex regression analysis method 

used to analyse data, or inadequate control of other factors such as weather variables or 

other pollutants. Moolgavkar reanalysed Pope's data and concluded that although there 

was an association between air pollution and mortality, it was impossible to isolate one 

component of air pollution as being responsible (Reichhardt, 1995). 

As well as variations in morbidity and mortality (the most certain measurement), a 

variety of indicators of ill health have been followed in relation to acute effects of airborne 

particulate matter such as time off school or work, respiratory, cardiovascular or other 

symptoms requiring hospital emergency treatment or admission, exacerbation of asthma 

and changes in lung function. The reported health effects associated with particulate 

matter exposure were summarised by Reichhardt (1995) as: 
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mortality 

increased hospital use: admissions, emergene-y room visits 

increased pneumonia and exacerbation of chronic obstructive pulmonary disease: 

hospital admissions, emergency room visits 

exacerbations of asthma: attacks, bronchodilator use, emergency room visits, hospital 

admissions 

increased respiratory symptoms: cough, upper and lower respirat01y tract problems 

decreased lung function 

Airborne particles, in addition to promoting exacerbations of lung disease, have an 

additional effect on the coagulability of blood, increasing the susceptibility of individuals 

to acute episodes of cardiovascular disease. Several haematological factors are not only 

known to be predicative of cardiovascular disease, but also arise as a consequence of 

inflammatory reactions (Seaton et al., 1995). 

It has been hypothesised that the ultrafine component of PM I 0 is responsible for 

its adverse effects, with free radical activity on their surface increasing their surface area 

compromising epithelial integrity (Sea ton et al., 1995). The ultrafine component of PM I 0 

is not insignificant, for example in London urban pollution, half by number of the 

particulates collected were less than 0.1 ~-tm. Fine particulates can travel for hundreds of 

kilometres and may remain suspended for weeks, as opposed to the larger particulates 

which are readily removed from the air through coagulation and the effect of rain in a 

matter of hours. Until we know more about the specific human effects of particulates, it is 

difficult to say whether overloading of the lung from high atmospheric pollution is the 

main contributor. Repeated inhalation of genotoxic substances from airborne particulatcs 

could also exceed the body's ability to eliminate and detoxifY (Repace, 1982) and therefore 

pose a health risk of intoxication and cancer development through a chronic exposure 

mechanism (Hornberg et al., 1997). 
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Whilst a direct causal link between diesel pollution, in particular particulates, and 

daily mortality has not been established, the growing evidence of their adverse effects on 

health cannot be ignored. Current mutagenicity studies on the emissions from diesel 

engines are important in the search for a mechanism of action, which would aid in 

demonstration of the causal link. 

1.5 Legislation for diesel emissio11s and related ambient air pollution 

Worldwide regulation of diesel engines varies, with current emissions legislation largely 

being related to new vehicles. The pollutants of diesel engine exhaust that are generally 

legally controlled include carbon monoxide, hydrocarbons (includes the many different 

organic compounds emitted, some of which are not in fact hydrocarbons), oxides of 

nitrogen (most abundant is nitric oxide, NO), and particulates (QUARG, 1993b). Engines 

are generally regulated so that the maximum total permitted weight of particulate matter, 

generated and collected under defined conditions, is specified. In Europe, a number ofEC 

Directjves have been released which relate specifically to control of engine emissions, 

summarised in Table 3. 

New, stage Ill limits for emissions from vehicles are under discussion and are 

planned for introduction by the EEC in the year 2000 (QUARG, 1996). To meet these 

requirements the UK National Air Quality Strategy was formed and a consultation draft 

document issued in 1996. Proposed targets for eight pollutants, to be met by 2005, were 

set and are summarised in Table 4. There have been criticisms for not considering a 

special standard for fine particles PM2.5 (Walker, 1996), especially as PM2.5 has shown a 

better association with increased mortality than PM I 0 in one study (Reichhardt, 1995). 

Criticism was also levied for not setting specific targets for traffic, as the amount of traffic 

on the roads in the UK is predicted to almost double between 1994 and 2005 (DoE, 1996). 
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The Government has gone some way to meeting this criticism through the implementation 

of the Road Tmffic Reduction Act 1997 (Croner, 1999), although the impetus is placed on 

local authorities. 

EC Directive 

91/441/EEC 

93/12/EEC 

91/542/EEC 

94/12/EEC 

93/59/EEC 

description 

(enforced 1992) limits overall traffic emtsstons - specifically CO, 
hydrocarbons and oxides of nitrogen, and particulate 

limits the sulphur content of diesel fuel to 0.05% from 1996 

emission limits for particulate matter mass from diesel vehicles in force 
1995/1996 for HGVs 

emission limits for particulate matter mass from diesel vehicles in force 
1996 for new cars 

emission limits for particulate matter mass from diesel vehicles in force 
1997 for diesel vans 

Table 3. Selected European Community Directives relating to the regulation of emissions 

from diesel vehicles 

standard 

pollutant concentration measured as specific objective 

benzene 5ppb running annual mean to be achieved by 2005 

I ,3 -butadiene lppb running annual mean to be achieved by 2005 

carbon monoxide IOppm running 8 hr mean to be achieved by 2005 

lead 0.5~tg/m3 annual mean to be achieved by 2005 

nitrogen dioxide I 04. 6ppb (20ppb) I hr mean (annual mean) measured as the 99.9th centile, to be 
achieved by 2005 • 

ozone 50 ppb running 8 hr mean measured as the 97th centile, to be 

particles PM I 0 50 Jlg/ml running 24 hr mean 
achieved by 2005* 
measured as the 99th centile, to be 
achieved by 2005* 

sulphur dioxide 100 ppb 15 min mean measured as the 99. 91
h centile, to be 

achieved b 2005* 
PM 10 is gravimetric method for measuring panicle size using a size selective inlet collecting 50% of I Of.Ul1 panicles, less 
than 5% of 20 f.U11 particles and more than 95% of Sf.lll1 panicles 
*these objectives arc to be regarded as prm·isionnl 

Table 4. Summary of specific objectives for eight pollutants proposed by the UK National 

Air Quality Strategy 
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PM 10 levels are currently measured in 9 UK cities, and average values over a day 

are around 15-35 f..1g/m3 with daily maxima up to 70 f..lg/m3 (Seaton et al., 1995). At 

present, therefore, the Government's proposed target would be exceeded on a daily basis. 

Through implementation of targets, primary national emissions of PM I 0 are predicted to 

fall by about one quarter between 1995 and 2010, based upon consistent sales of diesel cars 

(QUARG, 1996). The implementation of these stricter emission levels will be partially 

negated, however, if there is a continued shift in the pattern of fleet turnover in the UK to 

the levels in Europe (approaching 50% of the fleet in some European countries are diesel). 

The setting of air quality objectives is only of benefit if strict monitoring and 

enforcement follow. Monitoring can be expensive and inaccumte, with large differences in 

pollutant levels found over small spatial distances, for example due to local wind speed 

(Croxford et al., 1996). One of the methods for assessment of diesel used is derived from 

sulphur to carbon ratios in road tunnel air used by De Fre and colleagues ( 1994 ). Their 

work highlighted another of the problems of monitoring, exposure limits set by ambient air 

quality standards are exceeded tor drivers stuck in stagnant traffic (rush hour) or for 

frequent tunnel users. This is of concern as studies have shown statistical associations 

between airborne particulate matter and increased mortality and sickness, even at levels 

well within current national air quality standards (Reichhardt, 1995). In the UK, 

technology to measure exhaust emissions at the roadside has been developed and widely 

applied. Such technologies, along with good inspection (through MOT) and maintenance 

programmes, have been deemed key in identifYing gross polluters which contribute a 

disproportionate amount of the emissions. Whilst legislation and regulation are important, 

it appears that the need to reduce traffic volumes in urban areas is fundamental. Much of 

the interest in emissions has focused on cars and light duty vans because there are the 

greatest number of these categories of vehicle (Westerholm and Edgeback, 1994). Heavy-
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duty vehicles, however, make the greatest contribution to diesel emissions and the most 

significant benefits would come from improved control of their emissions. 

The imposition of stricter limits has already impacted on emissions through new 

car development and the introduction of improved diesel fuels (for example low sulphur 

diesel fuel introduced in 1996). There is therefore a need to re-assess mutagenicity in the 

light of these advances. 

1.6 Reductiolf ill diesel elfgilfe emissions 

As well as through le!,rislation, reduction in the emissions from diesel engines has been 

sought through engine performance ( 1.6. I), post-combustion devices such as particulate 

traps (1.6.2), and through the use of alternative fuels such as rapeseed methyl esters (1.6.3). 

I. 6. I Improvements in engine performance to reduce emissions 

Whilst the main focus for engine developers is fuel consumption and driveability, 

improvements in engine performance have helped to reduce emissions. Once the 

drawbacks of diesel combustion were known, for example, detailed mapping of diesel 

engine operation was undertaken to define operating modes with low emissions. This led 

to improved engine control to maintain the engine in these low emission modes 

(Westerholm & Edgeback, 1994). The introduction of electronic control units to control 

fuel injection in the late 1980s was a major advance, as it had previously been controlled 

mechanically and was prone to drifting out of tune. Additionally, build up of carbonaceous 

deposits over the vehicle's lifespan gradually reduced the injection rate, which led to new 

injector designs and ashless detergents which can reduce emissions by up to 25 % 

compared to fouled injectors (Hammerle et al., 1994). Further modification of the fuel 

injection process for Direct Injection engines enabled a better distribution of fuel which 
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could then be burned more completely, reducing the formation of PAC. Improvements in 

the mid 1990s include higher pressure fuel injection and individual control of each injector 

which are expected to again provide a further reduction in engine emissions. One of the 

most significant advances in emission reduction so far has been the introduction in 1996 of 

a low sulphur diesel fuel, which reduced particulate emissions by up to 13 % for HGV. 

In addition, the toxicological and chemical characterisation of engine exhausts in relation 

to the quality of fuels may play an important role, providing basic information useful for 

the development of fuels with a lower environmental and therefore health impact (Crebelli 

et al., 1995). 

1.6.2 Post-combustion treatment devices 

At the post-combustion stage, there has been an introduction of exhaust treatment devices 

such as catalysts and particulate traps, which typically remove up to 50 % of organic 

emissions (Horiuchi et al., 1990). The catalysts in use on diesel vehicles are less active 

than petrol catalysts, in part because the sulphur in commercial diesel fuel would be 

converted to particulate sulphate, negating any benefit. Particulate traps have been shown 

to be effective (Hammerle et al., 1994 ), but commercial introduction has been slow 

because they are difficult to control. Build up of particulate matter on the trap results in 

increasing exhaust back pressure which leads to a reduction in fuel economy and 

performance. Burning of the collected particulate occurs at high speeds and loads, but is 

not frequent enough to clear the trap. The addition of fuel catalysts such as iron or copper 

would reduce the temperature at which the particulate matter will bum encouraging more 

frequent regeneration, but the release of metal particles has its own environmental 

significance. 

Sif:,'llificant improvements have been made in diesel engine design, catalysts, 

particulate traps and fuel composition. The use of the full range of emission control 
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technology resulted in a to times reduction of particulate emissions and 30 times reduction 

in particulate associated organic emissions for new vehicles (Hammerle et al., 1994 ). 

1.6.3 A1ternativefuels 

A second strateb'Y for reduction of the impact of diesel emissions upon urban air quality 

would be to switch to alternative fuels like natural gas or electric traction. With the latter, 

the impact of emissions from electricity generation would have to be taken into account 

(QUARG, 1993b). Another alternative fuel would be the use of plant oils, which Diesel 

tested as early as 1900 for his then newly developed self ignition engine. Since the enerb'Y 

crisis in 1973, the research in this field has greatly expanded. Whilst combustion of crude 

rapeseed oil causes severe damage to the common diesel engine, rapeseed methyl esters 

(RME) are an adequate substitute for fossil diesel fuel (Bunger et al., 1998). Investigation 

of their emissions is continuing. 

1. 7 Assessing the mutagenicity of chemical species 

The relevance of mutagenicity testing to the adverse health effects of diesel in humans is 

discussed. The definition of mutagenicity (section 1.7.1 }, is followed by a discussion of 

the action of ( 1. 7.2) and significance of mutagenic processes and their impact on the 

human race with particular reference to effects in germline and somatic cells (1.7.3). An 

outline of mutagenicity testing (1.8) will then precede a discussion of the chromosome 

aberration assay (I. 9), the major test utilised in this screen. 

I. 7.1 What is mutagenicity? 

A mutation is a change in the genetic information (for example amount or chemical 

structure of DNA), which may result in a change in the characteristics of a cell as a result 

of alterations in, or non-production of, proteins (or RNAs) specified by the mutated DNA. 
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The changes in the genetic infonnation are heritable and transmitted through mitotic and/or 

meiotic division. A mutagen, therefore, is an agent capable of disturbing the integrity of 

the hereditary mechanism of a cell or organism (Fahrig, 1984). Of course some DNA 

changes have no phenotypic effect, either because the change occurs in non-coding DNA, 

or does not alter the primary amino acid sequence of a polypeptide or because the resulting 

changes in the amino acid sequence occurs in a non-critical region of the polypeptide. Not 

all variant proteins, therefore, have clinical consequences. The potential mechanisms for 

altering genetic infonnation are complex. Mutagens may act directly upon the DNA, such 

as point mutations, whereby the base sequence of a gene is altered. As well as direct 

interaction with DNA, a potential mutagen may affect the more peripheral cell division 

processes by interaction with DNA precursors, enzymes of DNA synthesis, structural non

DNA components of chromosomes, components of the spindle fibre apparatus 

(Zimmennan and Taylor-Mayor, 1985), or by interference with repair systems. 

Colchicine, for example, is a chemical mutagen which interacts with the tubulin of the 

spindle fibres to prevent proper function ofthe spindle fibre apparatus (Fahrig, 1984). 

Muller first demonstrated the induction of mutations in 1927 usmg X-rays, 

although his findings were not readily accepted. The field of chemical mutagenesis was 

set underway in 1942 by the discovery of Charlotte Auerbach and J.M.Robson that 

nitrogen mustard, a component of military poison gas, caused mutations. Since that time, 

the numbers of proven chemical mutagens rose exponentially, until the eventual realisation 

that mutagens were widely distributed in the environment (Zimmennan and Taylor-Mayer, 

1985). 

Whether mutations are induced events, such as by chemical mutagens, or 

spontaneous, they are always random events - the nature of the mutation is a matter of 

chance. Mutagens therefore act only to increase the rate at which a mutation takes place, 
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not to direct which genes are mutated (Cummings, 1990). That being said, however, some 

recent studies have indicated that mutation may not always be a truly random event, with 

particular genes or regions of chromosomes being targeted, for example Slijepcevic and 

Natarajan (1994a; 1994b) found chromosome damage in X-irradiated Chinese hamster 

cells is more frequent in euchromatin than heterochromatin and mapped in G-light bands. 

Those mutagens that result in a structural alteration of eukaryotic chromosomes are termed 

clastogenic (Fahrig, 1984). The broader term of mutagenicity encompasses clastogens 

which, by definition, act to result in a change in the gross DNA chemical structure. The 

term genotoxic implies that a test chemical is capable of damaging DNA in a chemical 

sense, an effect usually monitored by the induction of point mutations or chromosome 

aberrations. One of the classic definitions of genotoxic was given by Druckrey: 

'any agent which, by virtue of its physical or chemical properties, can induce or produce 
heritable changes in those parts of the genetic apparatus that exercise homeostatic control 
over somatic cells, thereby determining their malignant transformation' 

(Druckrey, 1973) 

This definition was cited by Ashby in 1995, and he described it as as good as or better than 

subsequent definitions. A carcinogen is defined as a chemical capable of increasing the 

incidence of cancer in any species of mammal when administered by any route (Heddle, 

1982). 

I. 7.2 Action ofmutagens 

As a mutagen, radiation has been shown to increase the frequency of chromosome 

aberrations (Lioyd and Edwards, 1983) and other mutational events at the molecular level 

such as DNA damage including strand breaks and base deletions (Cummings, 1990). 

Radiation penetrates directly from the environment to damage DNA. 

Chemical mutagens, however, follow a more indirect route. The principal methods 

of exposure to chemicals are ingestion, inhalation, or absorption through the skin - the 
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chemicals must then be able to penetrate the nucleus and cause changes in DNA 

(Cummings, 1990). Chemicals act in a variety of ways, such as intercalating agents, as 

base analogues (substitute for bases during nucleotide synthesis), by deamination of bases, 

and less specifically cause DNA damage through strand breaks and crosslinking with or 

between strands, or may interfere with DNA repair mechanisms. Importantly, chemicals 

entering the body are often recognised and metabolically activated by cytochromes in an 

attempt to speed up their expulsion. This does not always have the desired effect, and can 

result in a previously unreactive chemical being modified to a mutagen (section 1.8.4). 

Mutagens normally induce more than one type of mutational change, the nature of the 

change being characteristic to that mutagen, and dependent upon the type of DNA 

alteration and the organism's secondary response to the DNA modification (Gatehouse el 

al., 1990). 

I. 7.3 'f1w significance of mulagens 

Throughout history, spontaneous mutation has been an essential part of species 

development through natural selection, neutral drift and molecular drive. Mutations occur 

continuously during the cell replication process, at a seemingly high 'background' rate. 

The vast majority of these are corrected by one of several DNA repair mechanisms 

functioning in the cell, which as well as correcting errors made during replication, 

recogn1se damage to the DNA molecule. The importance of DNA repair has been 

highlighted by our knowledge of repair deficient human syndromes, such as xeroderma 

pigmentosum. This is an autosomal recessive disorder whereby individuals are deficient 

(have an 80 % reduction) in excision repair of thymidine dimers, a multigene process. 

Affected individuals are therefore extremely sensitive to sunlight (UV radiation), which 

causes thymidine dimers. A mutation in any one of the genes of this DNA repair leads to 

clinical symptoms, skin tumours, and ultimately death. Even for people whose DNA repair 
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systems are fully functional, overexposure to UV radiation can overload the repair system 

so that tumours result. 

Mutagen·s in the environment therefore serve to increase the background mutation 

rate in cells. Mutations which are not repaired may have consequences to the individual. 

Both large and small changes in DNA sequences have been demonstrated to be relevant in 

altering the phenotype of organisms. This led DuBridge and Calos (1987) to describe the 

process of mutational change as a fundamental aspect of biology. More than 20 years ago, 

the mutation of DNA by chemical and physical agents was shown to often be mirrored by 

their capacity to elicit tumours in animals (McCann et al., 1976). The genetic basis of 

many cancers is now widely accepted. For example through molecular and cytogenetic 

techniques showing that many tumour cells which carry somatically acquired genomic 

alterations, and evidence from aggregation of certain types of tumour within families 

(which hinted at the wider area of inherited predisposition to cancer). Thus in somatic 

cells, chemically and physically induced mutations primarily have potential carcinogenic 

significance, often through alterations in DNA which activate proto-oncogenes, or through 

loss or inactivation of tumour suppressor genes (Bryant, 1993). In the proposed multi step 

induction of many cancers (Fearon and Vogelstein, 1990), each mutation of DNA is a 

possible cancer induction step, underlining the significance of an awareness of increases in 

human mutations through mutagens. Other than cancer, it has been suggested mutations in 

somatic cells may also be responsible for other pathological conditions in man, and may 

play a role in the ageing process (Hartman, 1983). 

As well as the effect of mutation on somatic cells and tissues, mutations have 

heritable mutagenic significance in germ cells (Heddle, 1982). Around I %of alllivebom 

infants are affected in some way by genetic disease which resulted from a mutation in 

germ cells (DuBridge and Calos, 1987). At 16 weeks gestation, around 30 % of 
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spontaneous abortions are chromosomally abnormal (Seller, 1982). Whilst some of these 

may be due simply to errors during replication, the effect of mutation exposure on the 

primordial germ cells is a possibility. Aneuploidy, having more or fewer than an exact 

multiple of the haploid number of chromosomes, has been shown to be induced by 

chemicals such as diazepam (Kirkland, 1998). Aneuploidy has a massive impact on 

human health, for example an additional chromosome 21, as in Down Syndrome, is the 

commonest identified cause of mental retardation in humans. Specific structural 

alterations of germ-line chromosomes also appear to predispose to development of 

particular tumours (Hanson & Cavenee, 1988). We therefore need to assess the risk to 

human health of all potential mutagens, including chemicals, in our environment. 

1.8 The testing of compounds for their mutagenicity 

The following quote succinctly explains development of mutagenicity testing: 

'we would like to know what the important sources of mutation are, in an effort possibly to 
limit exposure to them or to neutralise their activity' 

DuBridge and Calos (1987) 

The goal of mutagenicity testing is to identify chemicals that cause genetic damage in 

humans. There are presently over 6 million chemical compounds known, with almost 

500,000 used in manufacturing processes (Cummings, 1990). New industrial chemicals 

are being introduced at a rate of 700 - 3,000 per year, of which only a small number have 

been fully tested for mutagenic effects. 

1.8.1 Carcinogenicity and mutagenicity testing in vivo 

The traditional test of choice for carcinogenicity testing in particular would be a long-term 

in vivo animal study, suitable for providing conclusive evidence of carcinogenicity for the 

chemical under assessment. Such studies are, however, limited due to their vast expense 
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and the time taken for each experiment, which can run into years. Justification for the use 

of live laboratory animals is increasingly called into question in the light of raised public 

awareness regarding animal welfare. It is therefore logistically impossible to test all new 

and highlighted existing compounds by classical toxicological methods in animals. This, 

along with scientific advances in genetics, carcinogenesis, and molecular biology has led to 

the expansion and acceptance of short term tests as predictors of mutagenesis. 

1.8.2 Short term in vitro mutagenicity assays 

Short term in vitro assays were therefore developed to address in part the drawbacks of 

long term in vivo assays, and in recent years scientific advances have led to a widespread 

validation and acceptance of such tests. More than one hundred short-term tests have been 

described in the literature, with a small proportion of these now in common use (Dunkel, 

1983). The in vitro assay has many advantages, not least of which is the significantly 

reduced cost compared to full scale in vivo assessment. In addition, short-term in vitro 

assays require relatively small quantities of test sample, and provide relatively rapid 

results. The battery of tests commonly used include the chromosome aberration assay in 

vitro, bacterial mutation assays (the Ames test, Ames et al., 1975), sister chromatid 

exchange measurement, genotoxicity studies using yeast cultures, DNA adducts, and gene 

mutation assays in cultured mammalian cells. 

1.8.3 Mammalian cell assays 

In his work on the effects of environmental agents on human populations, Chu (1983) 

highlighted the advantages of mutagenesis studies in mammalian cells. He described such 

systems as unquestionably more relevant to man than are bacterial, fungal, or insect 

systems, combined with the advantage that cultured cells offer the advantage of ease of 

handling, low cost, and rapidity of assay. Importantly, mammalian cell assays g~ve a 
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measure of the intrinsic response of the mammalian genome to mutagens (Cote et al., 

1990). For many studies, the fact that short term assays require relatively small quantities 

of test sample is crucial. The main drawback of cultured mammalian cells is their inability 

to mimic whole organism response and sufficiently activate potential mutagens. This is 

overcome to a certain extent by the addition of an exogenous metabolic activation system, 

derived from treated rat livers. There are a range of mammalian assays that are based upon 

the detection of chromosome changes using microscopy, including the induction of 

structural chromosome aberrations, which was the assay chosen for use during this study. 

1.8.4 Metabolic activation 

Many chemicals, including many carcinogens and mutagens, are neither toxic nor naturally 

reactive to DNA ( electrophillic) themselves (Heddle, 1982). The active forms (their 

metabolites) are generated within the organism during metabolism in certain tissues 

(primarily the liver in mammals). The biological system involved contributes to its own 

damage by providing the enzymes and cofactors necessary to generate these electrophilic, 

genotoxic metabolites. P-450 and P-448 mixed function oxidases catalyse activation, 

usually by oxidation. 

One of the major disadvantages of most cultured mammalian cells is that they have 

little intrinsic metabolic activation capacity. CHO cells have a minimal level of 

cytochrome P450 activity and would therefore be incapable of activating some potential 

mutagens. This is overcome during mutation assays by the addition of an exogenous 

metabolic activation system. The post-mitochondrial supematant (S9) from rat livers pre

treated with an enzyme inducer such as Aroclor 1254 is the most widely used (Kirkland, 

1990). The S9 fraction is combined with eo-factors glucose-6-phosphate and NADP, a 

composition which is suitable for converting most compounds to active and reactive forms 

(de Serres and Hollaender, 1980). Careful control of the S9 fraction, including the source 
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and age of the animal, and the inducer used, are crucial for quality control. There is 

limited evidence that factors such as the age of the animal may influence the mutagenicity 

of chemicals through a reduction in activating capacity (Raineri et al., 1986; Brennon

Craddock et al., 1987). The S9 mix is also toxic to cells, and therefore exposure to the test 

agent in the presence of S9 has to be limited to a maximum of 3 to 6 hours for monolayer 

cultures (lshidate, 1990). 

1.8.5 Assessment of cytotoxic effect of unknown compounds 

Detectable levels of mutation, for example chromosome aberrations, are often found only 

at doses of the mutagen where some reduction in cell viability is exhibited (Scott et al., 

1990). Therefore the cytotoxicity of the test agent is assessed in a preliminary assay, the 

results of which aid in the selection of suitable screening doses. There are a range of 

methods for assessing cytotoxic effect, the most common being to determine the effect of 

the test agent on mitotic index at the time when the cells would be harvested in the 

mutation assay. Whilst this method is commonly utilised, the effect on mitotic rate is not 

strictly a reflection of the toxicity of a chemical, as a reduction in the number of mitotic 

cells may merely be evidence of a cell cycle delaying effect of the chemical. A more direct 

method of assessing the toxicity of a chemical is to measure its effect on cell viability in 

the cell system to be used for the chromosome aberration assay, for example by neutral red 

vital staining (Fiennes et al., 1987). The uptake of neutral red by lysosomes and Golgi 

bodies was used by Fiennes and widely by other authors in cell culture assays (for example 

Wilson, 1992) to quantify viable cell numbers. 

Under OECD (Organisation for Economic Co-operation and Development) and 

US EPA recommendations, the highest concentration of a test substance for aberration 

testing should suppress mitotic activity by 50% (Lee et al., 1994). The UKEMS (United 

Kingdom Environmental Mutagen Society) advise a wider 50 - 75 % reduction, with the 
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countenance that the reduction should not be so great that there are insufficient cells for 

analysis (Scott et al., 1990). The importance of observing some reduction in mitotic 

activity is emphasised by the general consideration that negative results are valid only 

when a si1,rnificant degree of cytotoxicity has been induced. Where no degree of 

cytotoxicity is exhibited, there is a recommended maximum testing dose 10 mM or 2 -3 

mg/ml (Kirkland, 1990). For tests higher than I 0 mM, the osmolality of the culture is 

ascertained as a number of highly soluble, non-toxic, non-DNA reactive substances such as 

sodium chloride and sucrose have been found to be clastogenic at very high concentrations, 

probably due to changes in the osmolality of the culture medium (lshidate et al., 1984). 

1. 9 Tire assessment of mutagenicity tllrougll tl1e clrronwsome aberration assay 

/.9.1 Overview 

In mutagenicity testing, the chromosome aberration assay is an established procedure for 

examining the adverse effects of chemical and physical agents on mammalian cells (Dean 

& Danford, 1984 ). The assay has been used widely since its development (Galloway et al., 

1985, 1987, 1997; Sofuni et al., 1990), and the relevance of testing for the ability of a 

chemical to induce chromosome aberrations is now well established (Kirkland, 1998). The 

aim of the assay is to detect the induction of microscopically visible changes in 

chromosome structure. These changes are as a result of chromosome breakage 

(clastogenesis) and can range from a chromatid gap, which is a small discontinuity in the 

DNA, to triradial chromosomes as a result of complex interchanges. Recent large 

collaborative studies have brought together worldwide expertise in the field to resolve 

differences in methodologies (Galloway et al., 1997). 

The use of the chromosome aberration assay is part of the 'tiered approach' to 

chemical testing, the development of which has taken many years of experimentation and 
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discussion, reviewed by Kirkland ( 1998). lshidate ( 1990) reported that the chromosome 

aberration assay had been incorporated into the genetic toxicolo~:,ry guidelines of many 

countries following the recommendations of the OECD, and the concerns of a study by 

IPCS (International Programme on Chemical Safety)IWHO (World Health Organisation) 

which indicated that a large number of genotoxic chemicals would be considered non-toxic 

if tested only by the Ames test. Carcinogens such as benzene, diethylstilbestrol (DES), and 

asbestos are usually negative in bacterial mutation assays, but are clastogenic and interfere 

with chromosome segregation during mitosis and result in aneuploidy. The OECD 

guidelines ( 1988) for genetic toxicology testing of chemicals emphasised that test systems 

should cover two genotoxic endpoints- gene mutation and chromosomal aberration. 

1.9.2 The significance of chromosome aberrations 

A DNA break or discontinuity caused by the test chemical is either rejoined or repaired to 

restore the original structure, left unrejoined, or rejoined inaccurately to produce a 

chromosome rearrangement (Bender et al., 1974 ). In fact, Evans ( 1983 ), described the 

interaction between the test chemical and DNA as not resulting in a direct breakage of the 

phosphodiester backbone of the DNA or chromosome, but that such breakage or exchange 

followed as a consequence of misreplication at sites of damage in the DNA during the 

succeeding normal S phase of DNA replication. The unit of breakage and rearrangement 

with virtually all mutagens is therefore the single chromatid, with the exception of very 

densely ionizing particulate radiations. Thus, mutations that occur during (or after) 

chromosome replication are seen to involve single chromatids when observed at the 

subsequent mitosis, whereas breakages and rearrangements that involve unduplicated G1 

chromatids themselves become duplicated inS to give chromosome-type aberrations. 
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A positive result in the chromosome aberration assay demonstrates that the agent 

can induce gross structural changes in vitro. The presence of such chromosome 

aberrations are usually lethal to cells in the first few cycles after their induction, either 

because they cannot survive mitosis for mechanical reasons, or due to loss of vital genetic 

information (Dean & Danford, 1984). Their presence is, however, significant because they 

are taken as indicators of more subtle chromosome damage that is compatible with cell 

division, such as reciprocal translocation, inversion, or small deletions. As discussed in 

section 1.7.3, in somatic cells these may contribute to neoplastic changes, for example 

translocations at the sites of proto-oncogenes can alter their gene expression {Minden, 

1987), and chromosome deletions, rearrangements and whole chromosome loss can lead to 

the elimination of tumour suppressor genes, resulting in malignancy (Phillips, 1987). 

Subtle chromosome damage in germ cells may lead to heritable genetic changes through 

dominant lethality, congenital malformations or indeed to perinatal mortality (Chandley, 

1981 ). That some aberrations lead to stable chromosomal mutations was shown by 

lshidate ( 1990), who recultured colonies of cells which survived MNNG treatment. When 

subsequently G-banded cells were analysed, around 50 % of the colonies showed 

karyotypes differing from the original cells- new stable cell populations. 

On a more fundamental level, cytogenetic damage is indicative of the interaction of 

the test compound with DNA and consequently of its potential to induce other genotoxic 

damage such as gene mutations (Richold et al., 1990). There is also the possibility that 

one of the indirect effects of mutagen exposure on chromosome structure is as a 

consequence of damage to nucleotides that could be later incorporated into the 

chromosome (Evans, 1983). The correlation between chromosome aberrations and 

carcinogenicity is important. lshidate ( 1990) cites a recent review where 93 % of well

known carcinogens were clastogenic in the aberration assay with or without metabolic 

activation. A negative result in the chromosome aberration assay in vitro has been shown 
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to strongly indicate a lack of potential for in vivo clastogenesis, as almost all in vivo 

clastogens have given positive results in vitro when fully tested (Thompson, 1986; Ishidate 

et al., 1988b ). 

Cytogenetic variation, in the absence of known mutagens, is a common feature of 

all mammalian development. The use of chromosomal changes as end points for detecting 

exposure to mutagens is appropriate since a significant proportion of inherited genetic 

diseases in man are directly attributable to chromosomal mutations involving changes in 

chromosome structure or number. For example, approximately I in 170 live newborn 

babies has a chromosomal mutation that may have an adverse effect on health and 

development of the child, to some extent. Chromosome damage is therefore a very 

appropriate endpoint to be utilised in test systems to detect chemical mutagens (Evans, 

1983). 

/. 9. 3 Mechanism of chromosome aberration induction 

The majority of chemical mutagens a·nd carcinogens interact with cellular DNA and induce 

chromosome damage in mammalian cells. Modes of action of mutagens include 

intercalation (between bases), adduct formation with DNA (e.g. alkylation, strand linking), 

base analogues incorporated into DNA, deamination of DNA (e.g. nitrous acid), strand 

scisson (e.g. bleomycin), and interference with the mitotic apparatus (Rinkus and Legator, 

1980). Two key concepts have been proposed regarding the production of chromosomal 

aberrations. The first was by Sax in 1940, who published his 'breakage first' hypothesis 

and went on to develop a one-hit or two-hit kinetics and the role of repair in radiation 

induced chromosome aberrations. An alternative, proposed by Revell in 1959, was the 

'exchange' hypothesis for X-ray induced chromatid aberrations, where all chromosome 

aberrations are the consequence of an inter- or intra-chromosomal exchange, with 

incomplete exchanges resulting in deletions (Palitti, 1998). It has more recently been 
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shown that both models are correct, with a proportion of aberrations being formed by each 

mechanism (Savage and Harvey, 1991). 

It has now been widely accepted that the pnmary step m the induction of 

aberrations is the interaction of the mutagen with DNA, forming a DNA lesion. This 

interaction is mediated by the chromosome dynamic structure and levels of organisation of 

chromatin. It has generally been observed that there is a non-random induction of 

chromosome aberrations by ditTerent clastogens. In X-irradiated Chinese hamster cells, 

Slijepcevic and Natarajan (1994) found damage to be more frequent in euchromatic 

regions than in heterochromatic. The role of DNA repair enzymes, and their use as a 

research tool, has led to more recent unveiling of aberration formation. The DNA lesion 

(strand break or damaged bases) is converted to a strand break either by DNA replication 

or by repair mechanisms. Clastogens whose mode of action falls into the DNA replication 

category (S-dependent agents), such as UV light and alkylating agents, produce aberrations 

by misreplication - chromosomal damage is formed once the DNA containing lesion has 

undergone a round of replication. For the latter category, S-independent agents (such as X

rays), aberrations are produced by misrepair of DNA lesions independent of DNA 

replication. 

Amongst the most recent discoveries, reviewed by Palitti (1998), has been the 

demonstration that the DNA double strand break is the most important lesion which leads 

to chromosome aberrations in repair-competent cells (Natarajan et al., 1990), and that 

processes leading to the formation of dicentrics and translocations are different (Natarajan 

et al., 1994). Using FISH, Balajee was able to show that interstitial telomeric sequences 

may make the chromosome more prone to spontaneous breakage or breakage following 

treatment with clastogenic agents (Balajee et al., 1994). 
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1.9.4 The chromosome aberration assay method 

I. 9.4. I Introduction 

For the assay of an unknown compound, an exponentially growing culture of cells are 

treated with the test agent for a set period (so that cells in all stages of the cell cycle are 

exposed to the test agent), with or without metabolic activation (Scott et al., 1990). Cells 

are harvested at around 1.5 cycles post treatment, so that analysis takes place in the first 

full cell cycle after treatment, with an allowance for the unsynchronised nature of the cell 

culture and for any delaying effect the test agent has on the cell cycle. Observations made 

earlier than this, or after the second mitosis, tend to underestimate the frequency of 

aberrations, as many aberrant cells fail to survive the first mitosis (Dean & Danford, 1984). 

As well as cell death, underestimation may arise after several cell divisions because 

acentric fragments and other unstable structural rearrangements such as rings and 

dicentrics may be lost (Hollaender, 1971 ). Accumulation of cells in metaphase for 

microscopic analysis is essential and is achieved by addition of colcemid (a spindle 

inhibitor that is a synthetic derivative of colchicine), around two hours prior to harvest. 

The discovery that colchicine arrested eukaryotic cell in mitosis, by Blakeslee in 1937, was 

one of the two technical innovations that were crucial in the development of the 

methodology. The second, by Hsu in 1952, was that exposure of mammalian cells to 

hypotonic solution expands cells and distributes chromosomes evenly throughout the cell 

(Dean and Danford, 1984 ). After harvesting and solid staining, cells are examined for the 

presence of gross readily visible chromosome aberrations which are recorded. 

/.9.4.2 Mammalian eel/lines used to assay fbr chromosomal aberrations 

The choice of cell system for detection of chromosomal aberrations is important. Firstly, 

the cell system used must have been sufficiently validated by showing reproducible 

sensitivity to known clastogens. Several cell types are in common use, including human 

lymphocytes, with the most popular in toxicological studies being continuous cell lines 
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derived from the Chinese hamster. Continuous cell lines have the advantage of providing 

an easily accessed source of clonal cells for repeated assays, they are easily grown and can 

be synchronised. With regard to the chromosomes themselves, cell types are favoured 

which have a relatively small number of large chromosomes to facilitate quick and 

accurate aberration scoring. An international expert working !:,'TOUp in Australia in 1994 

concluded that there was no one cell type preferable for testing (Galloway et al., 1997). 

The Chinese hamster cell lines as a group are well suited for chromosome 

aberration determinations because their short cell cycles ensure rapid proliferation in a 

simple culture medium. They also have a small number of relatively large chromosomes, 

and a DNA mass similar to that of the human cell therefore providing a comparable 

amount of DNA for exposure. Established cell lines are, however, sensitive to high 

spontaneous chromosome aberration frequencies, polyploidy and endoreduplications. 

These can be minimised by careful tissue culture techniques such as avoiding overdense 

growth and routine checking for mycoplasma infections (Scott et al., 1990). One of the 

criticisms levelled against the use of continuous cell lines is that cells in vitro are 

genetically unstable and may show drift in sensitivity to mutagens (Fox, 1985). 

Karyotypic stability is essential and maintained by passaging for a maximum of 15 times 

before cells are discarded and frozen stocks resuscitated (Loveday et al., 1989). The use of 

known mutagens as positive controls in each assay check for any drift in sensitivity of the 

cells. 

The continuous mammalian cell line, CHO-K I, was selected for use in this study. 

CHO has been described as the most widely used cell line for the study of both induced 

chromosome aberrations and sister chromatid exchanges (Dean & Danford, 1984). Its 

main advantages over the use of human lymphocytes include its regulated clonal nature, 

whereas the source and therefore type of lymphocytes may vary from assay to assay. The 
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CHO-K I cells also has less than half the number of chromosomes (2n = 19-21) of the 

human lymphocyte, but contain approximately the same amount of DNA making the 

chromosomes large and easily visible. CHO cells continue to feature prominently in the 

examination of the ability of chemicals to induce cytogenetic changes and thus identity 

potential mutagens or carcinogens (Loveday et al., 1989; Galloway et al., 1995, 1997). A 

CHO cell line has been used for in vitro cytogenetic studies on a variety of chemicals in 

the USA since 1980 under the National Toxicology Program (Sofuni et al., 1990). 

/.9.4.3 71w CHO eel/line 

The Chinese hamster ovary cell line was first isolated in 1957 from an ovary culture of the 

Chinese hamster, Cricetulus griseus, (Puck et al., 1958), and the CHO cells used today are 

clones or subclones of this isolate. A complete karyologic analysis of CHO was presented 

by Deavan & Peterson (1973), who found 13 altered chromosomes when compared to the 

parental Chinese hamster cell, and a modal chromosome number of21. The modal number 

differs from the original 2n = 22, the karyotype having undergone extensive rearrangement 

including inversions and translocations. Analysis of G-banding patterns has shown that all 

of the template-active genome has been retained (Deavan & Peterson, 1973). 

The widely used CH O-K I subclone was first described by Kao & Puck ( 1970), and 

found to differ from CHO cells in that one small telocentric chromosome was missing. 

This cell line therefore ordinarily has a chromosome number of 20, although chromosome 

number can often vary from cell to cell. Cells of the CHO line grow rapidly, dividing 

every 12-14 hours, and are fibroblastic in nature, although they do not elongate to any 

~:.rreat extent. The long ann of the X chromosome in CHO cells has a secondary 

constriction, which has been shown to be a preferential breakpoint similar to the fragile 

sites observed in several human chromosomes (Loveday et al., 1989). Galloway and eo

workers (1997) highlighted the frequent breakage of a large metacentric chromosome in 
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CHO cells treated with clastogens, giving rise to an acrocentric chromosome and an 

acentric fragment. The common aberration can be suspected in karyotypes of 22 objects 

instead of the usual21. 

/.9.4.4 Aberration assay control 

Usage of control cultures for all assays is a well established part of the procedure. Erratic 

control values invalidate experiments as they signal that some essential parameter is not 

under control. Constant monitoring of the background aberration rate is essential in 

continuous cell cultures, which are not restricted by the usual homeostatic regulations in 

vivo e.g. nervous and endocrine systems. Without strict in vivo regulation, continuous cells 

will tolerate environmental stresses and spontaneous mutations more readily and these may 

be reflected in their karyotype. Monitoring is therefore achieved by use of solvent or 

negative controls. 

A positive control is included when testing a compound of unknown genetic 

activity, at concentrations which induce a relatively low frequency of aberrations to ensure 

sensitivity of the assay. Chemicals used as positive controls are selected from those that 

are well documented in the literature, and which are then shown to act reproducibly in the 

chosen test (Kirkland and Fox, 1993). Different controls are used in activation and non

activation parts of an in vitro test, and in this study were selected from lshidate (I 990). 

1.9.4.5 Sampling time 

A sampling time of 1.5 times the cell cycle from the beginning of treatment is generally 

recommended in the chromosome aberration assay. It is usual to harvest cells a full cycle 

after exposure to the test agent, ordinarily in the first metaphase after treatment, as the 

majority of chemical agents that induce chromosome damage require the cell to undergo an 

S-phase (DNA replication) before aberrations develop. The additional half cycle time 
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allows for a moderate cell cycle delay, as the cell cycle length can be altered by toxic 

agents as the cell may enter an extended G l or even a short GO in response to the 

unfavourable conditions. lshidate ( 1988) found that a number of chemicals gave a 

negative response at 24 hours and positive at 48 hours, indicating a very extensive mitotic 

delay at clastogenetic doses. It has therefore been recommended that if negative or 

equivocal results are obtained with a single harvesting time at 1.5 normal cycle times, a 

repeat test should include an additional sampling time at approximately 24 hours later 

(Scott et al., 1990). 

1.9.4.6 Culture conditions and choice of concentrations 

As extremes of pH can be clastogenic (Morita et al., 1989), the effect of the material under 

test on the pH of the culture medium is required. High sample concentrations may result in 

changes in physiological conditions, such as pH or osmolality of the culture medium, 

which can indirectly stimulate the incidence of chromosome aberrations (Ishidate, 1990). 

Strict regulation of culture conditions is essential to eliminate aberrations which result 

from increased osmolality or low pH. These have been postulated as being responsible for 

the 50 % of chemicals that are clastogenic in vitro but which fail to induce chromosome 

aberrations in vivo (Thompson, 1986; Ishidate et al., 1988). A minimum of three sample 

concentrations for testing are required for the production of a dose response curve. The 

range of sample concentrations is normally selected after an initial cytotoxicity assay has 

been performed. Doses are then selected which cause a significant reduction in mitotic 

index, give some degree of mitotic inhibition, and a lowest dose which is on the borderline 

of toxicity. Because many chemicals are clastogenic only at cytotoxic doses, it is 

imperative that there is an indication of the level of cytotoxicity in the final test, as 

repeatability of cytotoxicity levels is difficult to achieve. 
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1.9.4. 7 Scoring of aberrations, statistical analysis and interpretation of results 

Metaphase analysis of chromosome aberrations is carried out by an experienced observer 

who is familiar with the karyotype of the cell line used for the test, and with all the various 

types of structural changes that can be induced. Generally, the 'percentage of cells with 

aberrations' rather than the number of aberrations per cell is considered for analysis, so as 

not to distort results in cases where there were a high number of aberrations in any one cell 

(Sofuni et al., 1990). Aberrations scored as chromosome or chromatid gaps have usually 

been excluded from aberration totals and therefore not included for statistical analysis, as 

their true nature is still not understood. Where chromosome aberrations yields were on the 

borderline of statistical significance above controls, further investigations are normally 

recommended if the inclusion of gaps makes the yields clearly significant. Where replicate 

cultures have been analysed, homogeneity is checked before combining results for 

evaluation (Richardson et al., 1989). In earlier studies, a linear trend test was used to test 

for evidence of a dose response (Galloway et al., 1985, 1987; Margolin et al., 1986). After 

international collaboration, the use of the Fisher's exact test has been generally adopted to 

compare frequencies of aberrations in control cells and at each dose level (Richardson et 

al., 1989; Galloway et al., 1997). A Bonferroni or Dunnett type adjustment of the P value 

has been used to allow for multiple dose comparisons against a common control (Galloway 

et al., 1997). 

1.10 Mutagenicity of diesel emissions, PAH, and airborne particulates 

The testing of diesel emissions is complicated by the complex nature of the organic output, 

of which only a fraction of the several hundred compounds present have been identified. 

The mutational analysis of complex mixtures is therefore discussed ( 1.1 0.1 ), followed by a 

description of the systems used to actually collect and extract the organic compounds 

present in diesel emissions for analysis (1.10.2). The remainder of the section describes 
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previous mutagenicity testing of diesel, from whole emission extmcts, emission fractions 

and airborne particulate fmctions, to testing of the PAC compounds present. 

1./0./ Mutagenicity testing of complex samples 

Several different strategies have been described for the evaluation of the toxicological 

properties of complex mixtures: integrative (studying the mixture as a whole), dissective 

(dissecting a mixture to detennine the causative constituents), and synthetic (studying 

interactions between agents in simple combinations) (Mauderly, 1993). Bioassay-directed 

fractionation is an example of the dissective approach, and has been used previously to 

identify mutagenic fractions of organic extmcts of diesel exhaust particles (Schuetzle and 

Lewtas, 1986), and was the approach adopted in this study (Figure 2). 

The process involves separation of solvent extmcts of the adsorbant (gas-phase) or 

particulate matter into fmctions of increasing polarity using open-column liquid 

chromatography or HPLC. Short-tenn bioassays are then used to detennine which 

fractions are most mutagenic (Shuetzle and Daisey, 1990). Through repetition of the 

chemical fraction and biological testing, sub-fractions with high concentmtions of 

mutagenic compounds can be isolated for the eventual detennination of the constituents by 

chemical analysis. Separation may also unveil unidentified chemicals within a complex 

mixture, whose activity may be masked in the crude extmct by the presence of other 

chemicals which are actively toxic to the test organisms (Zimmennan and Taylor-Mayer, 

1985). Whilst characterisation of the mutagenicity and carcinogenicity of individual 

compounds within a complex mixture is important, it is also crucial to consider their 

interactions and the impact these may have on overall adverse potential - the synthetic 

approach. The synergistic and antagonistic action of individual aromatic hydrocarbons has 

been demonstmted on several occasions. Several mutagenic and non mutagenic PAH 

enhance the mutagenicity of B[a]P. However, the majority of mutagenic PAH (particularly 
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solvent extract of adsorbent (gas phase) 

bioassay 
(in vitro chromosome 

aberration assay) 

fractionation 

select fractions of interest 

1 
further fractionation and 

characterisation 

1 
specified compound analysis 

(e.g. GC, GC/MS) 

compound class 
chemical analysis 

Figure 2. Bioassay directed chemical analysis scheme for identification of mutagenic 

agents in complex mixtures (adapted from Schuetzle and Daisey, 1990) 
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those with 5 or more rings) reduce or completely suppress the mutagenicity of B[a]P. The 

higher the number of rings present in a PAH, the less of the PAH is needed to inhibit or 

enhance mutagenicity of P AH (Hermann, 1981 ). 

1.10.2 Mutagenicity testing of whole diesel emissions 

The mutagenicity and carcinogenicity of complete organic extracts of diesel emissions has 

been assessed in a variety of test systems, which are discussed below. The mode of 

collection, and thus the exact chemical nature, of the diesel engine emissions varies 

between studies, and indeed is not always fully specified. Engines may have been operated 

under United States or European 'driving test cycles', where engine conditions are altered 

according to a set pattern in an attempt to mimic public traffic. For example the US 

Federal Test Procedure 75, which operates for 31.5 minutes over a range of speeds with an 

average at 34 kmlh (Bunger et al., 1998; Andersson et al., 1998). Other researchers have 

used a defined diesel emission extract or standard reference material SRM 1650 (Ostby et 

al., 1997; Ensell et al., 1998). Table 5 lists the main variables in engine emission 

collection materials and methodology that have differed between studies. Through 

collection of diesel engine emissions at a range of set engine conditions of speed and load, 

as used during this study and previously (Kingston, 1994; Enya et al., 1997), mutagenicity 

can be correlated with engine operating conditions which could h'llide future engine 

improvements and emission regulation. 

The characterisation, and therefore control, of emissions from diesel engines IS 

obviously dependent on an experimental sampling system capable of collecting all relevant 

compounds adequately. The US EPA dilution tunnel and filter sampling system was one 

of the first sampling systems developed, and has been widely adopted for PAC research 

use in many countries. The system was devised to mimic the natural dilution and cooling 

of the exhaust stream as it leaves the tail pipe, with particulate-associated PAC collected on 
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sta e of collection 

diesel engine 

engine operating conditions 

engine sampling system 

fTactionation 

ossible variations in ui ment or methods 

heavy duty or light duty 
engine capacity (litres) 
direct or indirect fuel injection 

transient driving cycle 
idling engine 
set conditions of speed and load 

dilution tunnel 
collection of gaseous organics 
TESSA 

silica gel fi-actionation/ HPLC 
solvents and volumes used 

Table 5. Major variations in materials and methodology affecting chemical make up of 

diesel engine emissions and emission fractions assessed for mutagenicity in different 

studies 

filters which may then be extracted with solvents to provide a soluble organic fraction. 

Drawbacks of this system include inefficient sampling of hydrocarbons and P AC that have 

remained in the vapour phase (Petch et a/, 1987), and the si!:,'llificant problem of artefact 

formation (in particular nitro-PAH) on the carbon particles as the diluted exhaust continues 

to pass through the filter (Lach & Winkler, 1998). As a significant mass of sample is 

essential for mutagenicity testing, the relatively prolonged exposure time of the filter 

accentuates the problem artefact formation. 

To address the drawbacks of the dilution tunnel, a unique exhaust stream sampler-

TESSA (Total Exhaust Solvent Scrubbing Apparatus)- was developed at Plymouth (Petch 

et al., 1987). The TESSA is a stainless steel tower linked to a single combustion chamber 

of the engine. The exhaust passes though the tower against a counter-current of 

pressurised solvent spray, and is stripped of all hydrocarbons and PAC before they can 

adsorb onto carbon particles. Therefore gaseous organics are adequately sampled, and to 
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prevent artefact formation, the solvent is removed rapidly through an exit pipe into ultra 

pure water to quench further reactions. 

I. 10.2. I Assay of whole diesel emission organic extracts in short term assays 

The organic extracts of diesel emissions were shown to be mutagenic in bacterial assays 

some time ago (reviewed in Schuetzle & Daisey, 1990). Mutagenicity is largely dependent 

on the aromatic content of the fuel (Crebelli et al., 1995), and to some extent the test cycle 

emissions are collected under (Bunger et al., 1998). Supplementary metabolic activation 

in the form of rat liver S9 has been reported to reduce the mutagenic effect (Clark and 

Vigil, 1980; Wang et al., 1981; Bunger et al., 1998). Diesel exhaust organic extracts have 

also been shown to be mutagenic in a number of in vitro mammalian assays, including 

micronucleus induction in vitro (Gu et al., 1992), DNA adducts (Gallagher et al., 1993), 

and chromosome aberrations and sister chromatid exchanges (Hasegawa et al., 1988; 

Kingston, 1994). Kingston (1994) found clastogenicity dependent on engine operation 

conditions of speed and load which the samples were collected under. In the cell 

transformation assay, diesel exhaust particulate extracts were positive in their ability to 

transform rat tracheal epithelial (RTE) cells into cells with neoplastic potential (Ensell et 

al., 1998), and BALB/c-3T3 cells (Hasagawa et al., 1988). 

I. 10.2.2 Assay of whole diesel emission extracts in vivo 

Short-term assays of diesel engine emission extracts have been replicated in vivo, primarily 

in mice. Whilst they failed to induce micronuclei (Ong et al., 1985; Morimoto et al., 

1986), Wong et al. (1996) was able to demonstrate the presence of adducts in the DNA of 

rats exposed to a diesel inhalation carcinogenicity regime, which established the in vivo 

genotoxicity of diesel emissions (Rosenkranz, 1986). More recently diese! exhaust 

particulates were shown to induce morphological transformation RTE cells expressed in 

vivo (Ensell et al., 1998). Animal studies have shown that chronic heavy exposures to 

77 



diesel engme exhaust can cause lung pathology and associated physiological effects 

(Mauderly, 1994), and other types of cancer (Rosenkranz, 1987). Indeed diesel engine 

exhaust was classified as carcinogenic to experimental animals by the !ARC ( 1989). In 

rats exposed chronically by inhalation, diesel has been shown to be a pulmonary 

carcmogen. The response is, however, questionable in mice and negative in Syrian 

hamsters (Mauderly, 1994). Whilst the usefulness of animal experiments in providing a 

warning of possible carcinogenicity is not disputed (Morgan et al., 1997), methodology in 

trying to mimic the occupational environment can bring its own problems. In the case of 

rat inhalation chronic exposures, the short life of the animal necessitates exposure to 

extreme concentrations in order to induce a response. Such doses overwhelm the defence 

mechanisms of the animal, resulting in impaired lung clearance mechanisms so that 

particles gradually accumulate in the lungs, with a resultant particle or lung overload (HEI, 

1995). This detracts from resembling the exposure in the workers occupational 

environment. There can also be the problem that many animal species have an increased 

incidence of certain malignancies not found in man (Morgan et al., 1997). 

The are, therefore, two mechanisms which may explain diesel exhaust particulate 

carcinogenicity (Mauderly, 1992). There is a possible genotoxic mechanism where tumour 

development results from the interaction of particle associated organics with pulmonary 

cell DNA. If tumours follow the overloading and retardation of lung clearance, however, 

the subsequent accumulation of particles, inflammation, and the interaction of 

inflammatory mediators with cell proliferative processes and DNA is suggestive of an 

epigenetic mechanism. Carcinogenesis could be the result of the parallel action of these 

two mechanisms - direct genotoxic damage and indirect damage mediated by the immuno

response of the lung to the inhalation of large numbers of fine particles (Schlesinger, 

1995). lt may also be that diesel exhaust induces lung cancer by different mechanisms in 

different species (HEI, 1995). 
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1.10.3 Mutagenicity and carcinogenicity offractionated diesel emissions 

Schuetzle and eo-workers were one of the first to fractionate diesel exhaust organ1c 

extracts (1980), into fraction groups of aliphatic compounds, moderately polar, and polar 

compounds. The aliphatic fraction includes mainly straight chain hydrocarbons and 2/3 

ring PAH. The moderately polar, or aromatic fraction includes many substituted PAH, 

particularly oxy- and nitro-PAH. The polar fraction has been the most difficult section of 

emissions to classify and analyse, because polar compounds are generally non-volatile and 

therefore cannot be analysed by GC/MS without derivatization. Using an alternative 

method, the presence of di-functional compounds such as hydroxyvaleric acid, succininc 

acid, and polyols, plus di-substiuted alkanes with hydroxy, aldehyde, carboxyl, nitrate, and 

nitrite esters were identified (Shuetzle and Daisey, 1990). A number of acetylating agents 

including alkylnitrates, which are known to react with DNA, have been shown to be at 

their highest concentration in the polar fraction (Shuetzle and Daisey, 1990). 

In Ames assays, Schuetzle et al. (1980) ascribed more than 65 %of the direct 

acting mutagenicity to the moderately polar (aromatic) fractions, in which they detected 

mostly oxy- and nitro-PAH. They did not, however, assay the final polar fraction at that 

time. Other authors have concurred, attributing between I 0 and 40 % of the direct acting 

mutagenicity of diesel to substituted PAH, in particular nitro-PAH (Pederson & Siak, 

1981; Ohe, 1984). More recently, Hayakawa et al. (1997) found nearly 62% of the direct 

acting mutagenicity in the moderately polar fraction, with strong mutagenicity (35 %) also 

present in the final polar fraction. Fractions of diesel exhaust containing non-aromatic 

(aliphatic compounds) did not provoke tumours in rats, whereas fractions containing PAHs 

with 4 or more rings were found to be potent tumour inducers (Grimmer et al., 1987). 

Fractionated diesel emissions have also been injected into the adult brain of rats, to 

elucidate the possible adverse effects of motor vehicle exhausts on the central nervous 
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system. The latter fractions, containing nitro-PAH and polar group compounds, caused 

major lesions and some disappearance of immunoreactivity (Andersson et al., 1998). 

/.10.4 Mutagenicity of fractions of airborne particulates 

As discussed, emissions from diesel-powered vehicles are a significant contributor to 

levels of particulate matter in ambient air. In contrast to diesel emissions, assays of the 

organic extracts of ambient particulate matter have found nitro-PAHs to account for only 

10-20% of total mutagenic activity (Arey et al., 1988; Tokiwa et al., 1983). Higher levels 

of direct acting mutagenicity were found in the polar fractions, suggesting the presence of 

other so far unidentified mutagenic species (Kamens et al., 1985; Schuetzle and Lewtas, 

i986; Nisioka et al., 1988). 

I. I 0. 5 Mutagenicity and carcinogenicify of polycyclic aroma I ic compounds 

I. 10.5. I Introduction 

As well as testing the whole and fractionated diesel exhaust extracts, research has also 

focused on mutagenicity testing of some of the several hundred PAC identified in diesel 

emissions. it was initially thought that PAH were primarily responsible for the mutagenic 

activity of diesel exhaust emissions. it has since been shown, however, that most of the 

mutagenic activity in diesel particulate extracts is concentrated in fractions other than the 

PAH fraction. Components of the aromatic fraction, shown to exhibit strong direct acting 

mutagenicity, have received the widest attention, in particular nitro-PAC compounds. 

1.10.5.2 Mutagenicity ofpolycyclic aromatic hydrocarbons 

it has been proposed that the structural configuration of PAH and their active metabolites 

may be central to their mutagenic and carcinogenic potential, according to the 'bay region' 

hypothesis. The bay region relates to a concave area of the periphery of aromatic 

hydrocarbons, which exhibits distinctive NMR properties (Dipple, 1985). In a detailed 
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study, Pahlman and Pelkonen, (1987) found PAHs without a bay reg1on (including 

anthracene, fluorene, naphthene, and pyre ne) were not mutagenic. Most of the bay region 

PAHs they tested (including B[a]P, benz[a]anthracene, triphenylene) were mutagenic, and 

although three were not (phenanthrene, benzo[e]pyrene, and perylene) they did not dismiss 

the bay region structure as being important in mutagenic potential. 

The most abundant group of PAH occumng m diesel fuels are generally 

naphthalene and alkylnapthalenes (Pemberton et al., 1997). Although negative in bacterial 

assays, the mutagenicity of napthalene was confirmed in vivo in the mouse micronucleus 

assay, the Vicia faba chromosome aberration assay, and the wing SMART (somatic 

mutation and recombination test) in Drosophila melanogasler (Delgadro-Rodriguez et al., 

1995). In humans, naphthalene produces toxic effects by inhalation, ingestion or 

adsoprtion through the skin causing e.g. nausea, vomiting, headaches, fever, anaemia, liver 

necrosis, convulsions and even coma. Jt is also toxic for various animal species (Delgadro

Rodriguez et al., 1995). 

Benzo[a]pyrene has been the most studied PAH, and has shown carcinogenicity 

after oral administration, intraperitoneal injection, subcutaneous injection, inhalation or 

after direct application into the lungs or onto the skin of experimental animals (IARC, 

1983). For the unsubstituted PAHs in general, a minimum of 4 benzene rings is required 

for, but does not guarantee, carcinogenic activity (Dipple, 1985). Many other individual 

PAHs have been shown to have mutagenic potential (Pahlmann and Palkonen, 1987), 

including several members of the alkyi-PAH group of compounds in bacterial assays. 2-

methylanthracene, 9-methylanthracene, 2-methylphenanthrene are direct acting mutagens 

in Ames bacterial strains. The di and tri-methylfluorenes are indirect acting mutagens, 

requiring the addition of metabolic activation in the form of rat liver S9 to exhibit a 

positive response (Scheepers and Boss, 1992). There has been the suggestion from several 
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investigators that after nitro-PAH, the unresolved mutagenic activity of diesel emissions 

may be due to oxy-PAHs. One oxy-PAH found abundantly in diesel exhaust, 9-

fluorenone, was however not mutagenic in the Ames assay (Schuetzle et al., 1980). 

1.10.5.3 Mutagenicity of nitro-PAH species 

The contribution of diesel engine emissions to nitro-PAH levels in the environment is 

thought to be significant. The majority of nitro-PAH are potent direct acting mutagens in 

the Ames test (McCann et al., 1975; Nachtman and Wolff, 1982), although the small 

amount of testing of this group in mammalian systems has been less conclusive. 1-

Nitropyrene (1-NP) and its isomers were preliminarily identified as the major mutagenic 

species in diesel exhaust in Ames assays (Schuetzle, 1983; Tokiwa et al., 1987). The 

genotoxicity of 1-nitropyrene has however been described as weak, even in some bacterial 

systems (Ensell et al., 1998). In mammalian assays, reports of 1-NP are mixed. [t induced 

chromosome aberrations in a Chinese hamster lung cell line with S9 (Matsuoka et al., 

1991), and increased SCEs in CHO cells with S9. 1-NP induces cell transformation in 

some cell lines (BALB/3T3 cells) but not others (RTE cells) (Ensell et al., 1998). Without 

S9, 1-NP was negative in the 1-IGPRT assay in CHO cells (Heflich et al., 1985), and only 

weakly positive for the induction of DNA strand breaks in CHL fibroblasts (Edwards et al., 

1986). The addition of S9 did not promote activation of 1-NP. The carcinogenicity of 1-

NP is still questionable. It has been found to be tumourigenic and non-tumourigenic, 

although in one study the positive assessment was later changed when a contamination of 

the sample of0.2- 0.3% with highly mutagenic dinitropyrenes was discovered (Tokiwa et 

al., 1987). 

The detection of nitro-PAH with the highest recorded direct acting activity in the 

Ames assay overturned earlier conclusions about 1-NP. The dinitropyrenes (DNPs) have 

been attributed with up to 43 % of the direct acting mutagenicity of diesel emissions 
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(Nakagawa et al., 1983; Schuetzle and Daisey, 1990). I ,6-dinitropyrene and to a slightly 

lesser extent l ,8-dinitropyrene are powerful bacterial mutagens, and although they account 

for only a small amount of the nitro-PAHs in diesel exhaust, they make a significant 

contribution to the mutagenicity associated with diesel particles because of their potency. 

DNPs induce chromosome aberrations in CHL cells without metabolic activation 

(Matsuoka et al., 1991 ), and are tumourigenic in rats, inducing a range of tumours (lmaida, 

1988). 

Another nitro-PAH, 3-nitrobenzanthrone, was recently isolated from the organic 

extracts of both diesel exhaust and airborne particulates and was identified as a new class 

of powerful mutagen. Mutagenicity in Ames assay was very high, equivalent to that of 

previously highest recorded levels for 1 ,8-dinitropyrene, and micronuclei were induced in 

vivo, suggesting its potential genotoxicity to mammals (Enya et al., 1997). Concentrations 

of 3-nitrobenzanthrone were highest at high load, warning of the potential dangers of 

engine overloading, and suggesting a need for stronger regulation over the load limit of 

diesel trucks (Pearce, 1997). 

A number of other nitro-PAH have been identified in diesel emissions, including l

and 2-nitronapthalene. 1-nitronapthalene was mutagenic in some mammalian cell culture 

assays (Shelby and Stasiewicz, 1984; Boyes et al., 1991 ), but not carcinogenic (Shelby and 

Stasiewicz, 1984 ). In contrast, 2-nitronaphthalene induces bladder tumours in monkeys 

(Be land et al., 1985). This highlights the difference in carcinogenicity and mutagenicity 

that may be observed between different isomers, for example 6-nitro-benzo(a]pyrene 

shows greater mutagenic activity in the presence of S9, whilst 1- and 3- nitro

benzo(a]pyrene are potent direct acting mutagens (Beland et al., 1985). 
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Although they are direct acting mutagens, it is important to note that nitro-P AH 

must be metabolised to bind covalently to DNA. Salmonella typhimurium, the bacterial 

strain predominantly used in Ames testing, contains a family of nitroreductases capable of 

reducing nitro-PAHs to their reactive metabolites. Strains deficient in nitroreductase 

enzymes, and importantly mammalian systems, generally show decreased sensitivity 

towards nitro-P AH induced mutations (Be land et al., 1985). It is possible that in animals, 

intestinal bacteria may play a critical role in the metabolic activation of certain 

nitroaromatic compounds (Be land et al., 1985). As discussed in section 1.1 0.2, the nitro

PAH are particularly susceptible to formation as artefacts of prolonged engine emission 

sampling, and their contribution to mutagenicity may therefore be overestimated. For 

example in studies using the TESSA sampling system, designed to reduce artefact 

contributions, concentrations of 1-nitropyrene were considerably lower than some reported 

in the literature (Collier, 1995). 

1.11 Aims of the investigation 

Continuous alterations in Government regulations relating to diesel emissions in response 

to increased awareness of their adverse health effects mean that newer engines, emission 

control devices, and fuels are released each year. Mutagenicity testing conducted in the 

early 1980's, almost twenty years ago, cannot therefore be relied upon to accurately reflect 

the potential mutagenic effects of emissions currently emitted from diesel powered 

vehicles. The need for continued assessment in line with current technology is crucial. 

Testing of diesel emissions in mammalian system assays has lagged behind the main focus 

of work in bacterial systems, despite a recommendation from the IARC in 1989 that such 

testing was required. Although there has now been more than 20 years work, knowledge 

of the compounds within diesel emissions responsible for their mutagenic effect is limited. 
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Only a handful of studies to address this using biologically directed fractionation of diesel 

emissions have taken place, and again a full study in mammalian systems is rare. 

The aims of the study were therefore to address some of the above mentioned areas 

through collection and preparation diesel engine emission samples from a modern light

duty diesel engine using a low-sulphur fuel. The collection of samples over a range of 

engine conditions of speed and load, was to be followed by fractionation and assay for 

their mutagenic effect using the chromosome aberration assay in CHO cells. This 

information was then to be used to guide further emission sample collection and sample 

fractionation, in a bioassay-directed manner. The objective was to isolate the most 

mutagenic fractions, and compare the effect of engine speed and load on mutagenicity, and 

the contribution of measured engine outputs of NOx, hydrocarbons, and smoke. The 

inclusion of the diesel fuel in fractionation and mutation assays was to facilitate a 

comparison of pre- and post-combustion effects. 
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2. MATERIALS AND METHODS 
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2.1 Collection atUl preparation of diesel samples 

2.1.1 Diesel engine set up andfoel description 

The test engine for this research was a Perkins Prima 2 litre four cylinder light-duty direct 

injection diesel engine (of the type used commercially in small vans) on a standard test bed 

set up (Figure 3). The engine exhaust manifold had previously been modified to allow 

sampling from one cylinder (Rhead et al., 1992). To apply load to the engine (torque, 

Nm), the test bed included a Borghi and Saveri FA 100 eddy-current dynamometer, 

controlled by a Test Automation Series Compact Controller which also displayed the speed 

(rpm). The engine throttle was controlled manually by a threaded control rod with 

adjusting screw. 

A stock of fuel was selected and set aside in 50 gallon drums. This reliable stock of 

low sulphur No.2 DERV fuel (Table 6) was then used throughout the research to supply 

the engine and for all testing of the fuel. The engine was supplied with fuel from a I 0 litre 

header tank. The lubricating oil used was Shell Heavy Duty Rimula X, grade 15/30W. 

Properties Value 

Specific gravity at I5°C 0.8570 kg/1 

Aromatic content (%wt.) 37.4 
mono-aromatics 30.7 
di-aromatics 5.7 
tri-aromatics 1.0 

Carbon (%wt.) 87.2 
Hydrogen (%wt.) 13.0 

Sulphur 350 ppm 

Boiling range 211-370.5 oc 
Viscosity at 40°C 4.051 eSt 

Table 6. Properties of the low sulphur No.2 DERV diesel fuel used throughout this 

research work (figures provided by the fuel refiner) 
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Figure 3. The diesel engine test bed set up at Plymouth. The photograph shows the Test 

Automation Series Compact Controller (A) which controls the dynamometer and displays 

engine speed. The solvent reservoir (B) and the dynamometer are located at the rear of the 

engine (C). The TESSA sampling tower is shown on the left hand side (D) 
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2.1.2 The Total Exhaust Solvent Stripping Apparatus (I'ESSA) 

The exhaust gas sampling system used throughout this research, the TESSA, was 

developed to sample the exhaust close to the combustion chamber (Petch et al., 1987), the 

advantages of which are discussed in section 1.1 0.2. The TESSA comprises a stainless 

steel tower in three sections (Figure 4). The cooled bottom section contains the exhaust 

entry point, which is fed directly from one combustion chamber of the engine by a 

slideable plate mechanism, and an exit pipe at the base via which samples are collected. 

The middle section incorporates the main solvent entry point where the solvent is sprayed 

under pressure down the tower as the exhaust gasses pass upwards. This area is also filled 

with short sections of glass tubes which provide a large surface area for interaction 

between solvent and organics in the exhaust stream. The top of the tower contains a water 

and baffle cooling section and also has a solvent entry point so that the tower can be 

washed from the top with solvent. 

2.1.3 Collection of emission samples 

Before sampling, the engine was conditioned by running at a high speed (4000 rpm) and 

load (80 Nm) for one hour. To ensure proper cooling of the engine and TESSA during 

operation, the water reservoir was filled with a mixture of ice and water and the cooling 

system switched on. The speed and load was then set to that desired and the engine run for 

a further 15 minutes to equilibrate. When ready to sample, a solvent-clean Winchester 

flask was placed under the outflow pipe to collect the emission sample. The solvent 

reservoir was filled with solvent [ 1: 1 dichloromethane (DCM): methanol], typically 

1200 ml of each solvent for a 2 minute engine sample, and the pressure controlling solvent 

flow increased to 1 bar. The taps were opened so that the solvent was sprayed under 

pressure into TESSA for 5 seconds to wet the tower, and then the exhaust flow switched 

into the base of the tower enabling the exhaust stream to be sampled for a total of 2 

minutes. The exhaust flow was then switched back away from the tower, and collection of 
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(a) diagram ofTESSA 

r:ot-- external cooling 
coils 

baffies 

-t---solvent input 
(spray) 

-+-- graded glass 
tubing 

(b) photograph of TESSA 

Figure 4. The Total Exhaust Solvent Scrubbing Apparatus (TESSA) for engine emission 

sampling 
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the sample continued until the solvent reservoir empty. To quench further reactions, 500 

ml of de-ionised water was added to each Winchester bottle, which were then stored in the 

dark at -4°C until work-up. The collection procedure was then repeated up to six times at 

the set speed and load to give replicate emission samples from sequential runs of TESSA, 

each sample being collected into a separate Winchester flask. If samples were required 

from different speed and load conditions, the engine settings were altered and the engine 

run at the new speed and load for I 5 minutes to equilibrate before collection 

recommenced. 

For each speed and load, fuel consumption was measured. The fuel was fed to the 

engine via a fuel/water separator before entering a 400 ml fuel burette (with measurement 

increments of 100 ml, 200 ml, and 400 ml), which was normally bypassed during 

sampling. For fuel consumption measurements, fuel supply was switched to the fuel 

burette and the consumption of a set volume of fuel timed for that particular speed and 

load, giving a fuel consumption measurement in litres/minute. 

2.1.4 Engine runs performed and emission samples collected 

Samples were collected over a range of speeds ( 1000- 3500 rpm) and loads (5 - 75 Nm) 

within the engine's range, during eight engine sampling sessions. A complete list of all 

engine runs performed, fuel consumption, and sample masses obtained are given below in 

Table 7. 
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engine conditions date of sampling emission sample fuel consumption mass of 
speed (rpm) load (Nm) session _(1/ min_l sam_Q_Ie __{_m_& 

3500 75 25.01.96 ES 3 0.146 107.6 
ES 4 71.4 
ES 5 71.2 
ES 6 65.9 
ES 7 65.0 

1000 55 25.06.96 ESI7 0.034 17.3b 
ES18 49.5 
ESl9 43.6 
ES20 39.0 
ES21 44.8 
ES22 54.2 

3000 5 27.06.96 ES23 0.044 184.5 
ES24 101.5b 
ES25 129.0 
ES26 121.5 
ES27 132.8 
ES28 20.1b 
ES29 709.73 

1000 5 02.07.96 ES30 0.011 36.7 
ES31 27.1 
ES32 33.4 
ES33 31. I 
ES34 18.4 
ES35 17.2b 

1000 55 02.07.96 ES36 0.034 224.-t 

2000 30 16.01.97 ES70 0.043 52.9 
ES71 87.8 
ES72 86.5 
ES73 86.3 
ES74 63 .6 

2000 ss 17.01.97 ES75 0.034 79.2 
ES76 82.8 
ES77 59.3 
ES78 86.8 
ES79 9 1.9 

3000 30 20.01.97 ES80 0.068 84.2 
ES8 1 123.2 
ES82 145.1 
ES83 129.2 
ES84 116.8 

3000 55 22.01.97 ES85 0.096 166.5 
ES86 132.5 
ES87 132.9 
ES88 139.9 
ES89 128.5 
ES90 132.3 

1000 55 22.0 1.97 ES9 1 0.034 29 1.8
3 

• samplmg tune of 5 mmutes mstead of usual 2 mmutes 
b part of emission sample lost during work up procedure 

Table 7. Diesel engine runs performed, fuel consumption, and sample masses achieved 

from each consecutive 2 minute sampling session 
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2.1.5 Sample preparation 

To prepare samples for testing and obtain an accumte sample mass, carbonaceous 

particulate matter and all traces of extraction solvent were removed. All procedures were 

performed under subdued lighting, and equipment surrounded in aluminium foil, to 

minimise photo-degradation of light sensitive species. Winchester flasks were removed 

from cold storage and the contents filtered through glass micro-fibre filters (Whatman GF

F, previously soxlet extracted overnight in DCM) under pressure to remove particulates 

from the sample. By washing with solvent, all emission sample compounds were removed 

from the solid matter. Filters were changed several times for each sample. The methanol 

was then removed from the sample by liquid-liquid partition. The filtered sample was then 

poured into a 5 I sepamting funnel, to which 0.5 I of de-ionised water was added, the 

contents carefully mixed and allowed to settle into two distinct phases. The lower phase, 

which contained the emission sample in DCM only, was then drained into a 500 ml round 

bottomed flask. The aqueous phase was re-extracted with two aliquots of 50 ml of DCM, 

again collected in the flask. To remove DCM, the sample was rotary evaporated to a 

volume of approximately 20 ml. At this stage the sample was examined for the presence 

of water which settled onto the surface, and if present the liquid-liquid partition was 

repeated on a smaller scale. The sample was transferred to a 25 ml round bottomed flask 

and rotary evaporation continued until a volume of less than I ml obtained. The sample 

was transferred to a pre-weighed vial and blown down to a constant weight under a gentle 

stream of nitrogen. Labelled samples were then stored at -20°C until required. 

2.2 Fuel and engine emission samplefractionation 

An overview of the fmctionation of samples performed in this study is shown in Figure 5. 

The separation of the emission and fuel samples into aliphatic, aromatic and polar 

compounds was performed because the complex diesel fuel and emission samples gave 
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conflicting results when tested as a whole (Kingston, 1994). Separation enabled testing to 

be concentrated on those fractions which were thought to be the most mutagenic from 

bacterial tests, or suggested by the chemical make-up of particular fractions. Fractionation 

also enabled further testing of those emission samples that were cytotoxic at low 

concentrations (Kingston, 1994), and thus to investigate whether cytotoxicity was masking 

mutagenicity within the complex chemical mixture of such samples. 

2.2. 1 Silica gel column fractional ion of fuel and whole emission samples 

Engine emission and fuel samples were separated by silica gel column fractionation into 

three groups of compounds - aliphatic, aromatic and polar. The aliphatic fraction, eluted 

using hexane (Rathbums, HPLC grade), is comprised of straight chain hydrocarbons and 

PAH. The aromatic fraction, eluted with DCM (Rathbums, HPLC glass distilled grade), 

contains organic compounds with a de-localised electron ring. The final elution with 

methanol (Rathbums, HPLC grade) removes all remaining chemicals from the column and 

makes up the polar fraction. 

Prior to fractionation, all glassware was washed in 1-2% Decon (BDH), rinsed in 

tap water, distilled water and finally deionized water and left to dry completely. Silica gel 

(Aidrich, 60-100 mesh) and acid washed sand (BDH) were soxlet extracted in DCM for 24 

hours, dried, and stored in a hot air oven. The silica gel was activated by oven drying for 

24 hours at 185°C before use. To carry out the separation, a glass fretted chromatography 

column (SOL Ltd, 30 cm x 1 cm) was carefully rinsed with DCM, then hexane, and then 

refilled with hexane. Hexane was then added to 8 g of pre-weighed silica and stirred for a 

few seconds until no further gasses evolved, the column tap was opened, and the silica in 

hexane slurry rapidly added to the column. To ensure even distribution of the silica, the 

column was tapped with a rubber tube until the silica settled and the hexane drained until 

level with the top of the silica. The silica was kept wet at all times until the final elution to 
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prevent cracking of the column. A plug of approximately 0.5 cm depth of acid washed 

sand was then added to the column to avoid disturbing the silica when samples added. 

A sample of mass 50 to 100 mg was weighed and then added to a few drops of 

hexane. The sample was added to the column using a long-form Pasteur pipette, and the 

tap opened to allow the sample to enter the silica. Fractions, in solvent, were collected into 

a 50 ml round bottomed flask. The sample vial was rinsed twice again with hexane, and 

the rinsings added to the column each time. This helps to ensure a tight band of the sample 

on the column facilitating a cleaner sepamtion. Approximately 3 ml of hexane was then 

added to the column, the tap opened and allowed to run down, this was repeated and then 

the remainder of 20 ml of hexane added to the column and the tap opened to slowly elute 

the aliphatic fmction. This procedure was then repeated with 20 ml ofDCM, including the 

rinsing of the vial, to elute the aromatic fraction. Finally, the polar fraction was eluted in 

the same manner using 20 ml methanol. The addition of methanol to the column causes 

the silica to crack. Each fraction is then rotary evaporated to a volume of approximately 

0.5 ml, transferred to a pre-weighed vial, and dried to a constant weight under a gentle 

stream of nitrogen. A small aliquot each sample was retained separately for chemical 

analysis by gas chromatography (GC). The first fractionated samples, and randomly 

chosen subsequent fractions, were analysed by GC to check that the separation into 

fractions was successful and as expected. 

A total of twenty one emission samples, two or more from each set of engine 

conditions, and two diesel fuel samples were fmctionated in this manner. Selection of 

emission samples for fractionation was based upon similarity of mass, and where possible, 

samples which were collected consecutively from the engine. The first two minute sample 

from each sampling session was not used as the mass was frequently inconsistent with the 

masses of subsequent samples, which may be a reflection of the tower not being 
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completely washed prior to commencement of the sampling session. Where samples were 

combined before fractionation to give adequate sample mass, consecutive emission 

samples were always selected, for example ES 18 ( 1000 rpm/55 Nm, mass 49.5 mg) was 

combined with ES 19 (1000 rpm/55 Nm, mass 43.6 mg). The details of samples 

fractionated together with fraction masses obtained are given in section 3.2.1. 

2.2.2 Fractionation of the aromatic group of compounds by HPLC 

Further separation of the aromatic fraction of the fuel and of two engine emission samples 

(ES 29,3000 rprn/5 Nm; ES 36 and ES 91, 1000 rpm/ 55 Nm) into 1-ring, 2-ring, and 3+-

rings was performed using HPLC. The engine emission samples were specially collected 

for further separation by sampling for 5 minutes instead of the usual two minutes to 

provide a greater sample mass. The separation by HPLC was carried out by a Dr Robin 

Pemberton from the Environmental Sciences department at the University with my 

assistance. Samples were fractionated by normal phase semi-preparative HPLC. The 

solvent programme used was hexane 3ml/min for 50 minutes, DCM 3ml/min for 50- 100 

minutes, and hexane 3mUmin until column equalised, with a column pressure for pure 

hexane at 146 bar. Retention times were calculated from fractionation of a small sample, 

mass 30 mg, and were as follows: 

aliphatic 

mono-aromatic 

di-aromatic 

tri- + aromatic 

15 - 24 minutes 

24- 33 minutes 

33 - 46 minutes 

46- 68 minutes 

To assess the success of the fractionation, samples were analysed and assessed by Dr 

Pemberton by gas chromatography /mass spectrometry (GC/MS). Results indicated a good 

separation with low contamination of the fractions. The mono-aromatic fuel fraction (93 .3 

mg), for example, was contaminated with 3.31 mg of di- and tri-aromatics (3.54 %), the di

aromatic fraction (24.5 mg) was contaminated with 1.34 mg (5.47 %), and the tri-aromatic 

fraction (7.1 m g) was contaminated with 0.08 mg ( 1.23 %). 
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~ ENGINE EMlSSION SAMPLE ij 
1000 rpm/ 5 Nm I I 3000 rpm/ 5 Nm 

I 2000 rpm/ 30 Nm 
11 

3000 rpm/30 Nm 

1000 rpm/ 55 Nm 
11 

2000 rpm/55 Nm 
11 

3000 rpm/ 55 Nm 

3500 rpm/ 75 Nm 

sil ica gel column fractionation 

ALIPHATIC 
FRACTIONS 

1-RING 
fractions 

AROMATIC 
FRACTIONS 

1000 rpm/ 55 Nm 

3000 rpm/ 5 Nm 

2-RING 
fractions 

POLAR 
FRACTIONS 

3+ -RING 
fractions 

Figure 5. Scheme of fractionation for diesel fuel and engine emission samples collected 

over a range of engine speeds ( 1000 - 3000 rpm) and loads (5 to 75 Nm) 
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2.3 Mammalia11 cell line characterisation 

2.3.1 CHO-KI cell line details 

The continuous cell line derived from the Chinese hamster, CHO-K I, was used for all 

testing during the study. The benefits of this cell line are described in section 1.9.4.3. All 

cell manipulations were performed in a horizontal laminar flow hood, and all chemicals 

used were sterile and of cell culture quality. Chinese hamster ovary cells (CH O-K 1) were 

obtained from the European collection of animal cell cultures (ECACC, number 85051 005) 

as a growing culture, which was expanded to provide sufficient cells for freezing to 

conserve this particular stock. Upon receipt, the 25 cm2 flask of growing cells was 

incubated at 37°C for 2 days, with a change of culture medium after 24 hours. The flask 

was then sub-cultured (section 2.4.1) into 75 cm2 flasks at a concentration of 5 x 104 

cells/ml and incubated at 37°C. When semi-confluent, the cells within these flasks were 

combined and frozen at -70°C and in liquid nitrogen (section 2.4.2) to establish the first 

stock. Cells were routinely sub-cultured for a maximum of fifteen times during the study 

in order to maintain karyotypic stability (Galloway et al., 1985), and resuscitated from 

frozen stocks when required. 

2.3.2 Cytogenetic characterisation of the eel/line 

The karyotype and chromosome number of the CHO-K I cell line were established at the 

start of the study. The level of polyploidy and endoreduplication, together with the 

spontaneous aberration rate, were then also checked. To assess the normal chromosome 

complement of the CH O-K l cell line after sub-culture at Plymouth, two thousand well 

spread metaphases from untreated cultures were identified and their chromosome number 

recorded. The number of polyploid (tetraploid) and endoreduplicated cells was also noted. 

Photographs were taken of several cells with undamaged chromosomes, and one was 

selected from which a karyotype was prepared. Chromosomes were cut from the original 

photograph and placed in descending order of size, and then re-photographed to give the 
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karyotype presented in the Results section. An initial assessment of the level of 

spontaneous chromosome aberrations was also performed (as in section 2.6.4) in a similar 

manner from examination of untreated preparations, and was repeated by scoring of 

control cultures during experimentation. 

2.4 Cell line handling and maintenance 

2.4.1 Routine sub-culture 

Cells were cultured in medium consisting of nutrient mixture Ham's Fl2 with L-glutamine 

(at 146 mg/ml) (Gibco) supplemented with lO% foetal calf serum (Gibco, reserved batch 

number 30A0760A). Routine sub-culture of cells took place at confluency, typically every 

3-5 days. The culture medium was gently poured away and the monolayer washed twice 

with 2 x 5ml ofDulbecco's phosphate buffered saline (PBS) (Gibco), before lml oftrypsin 

(Gibco, 0.25%, I :250) was added and washed over the cells. The excess trypsin was 

poured away and the flask placed at 37°C until cells detached from the surface of the flask 

and rounded up, checked by microscopic examination. Trypsin action was halted by 

gently resuspending the cells in 10 ml of culture medium. The resuspended cells were 

counted using a haemocytometer and set in 25cm2 and 75cm2 disposable flasks (Falcon) at 

a concentration of 5 x 1 0~ cells/m I, and incubated at 37°C. 

2.4. 2 Freezing and resuscitation of cells 

Semi-confluent flasks of cells were selected and the cells detached from the flask with 

trypsin as described above. Detached cells were resuspended in culture medium and 

transferred in 5ml batches into sterile centrifuge tubes, with a little being removed for 

counting. Cells were centrifuged at 850 rpm for 10 minutes, and then gently resuspended 

in freezing medium A or 8 (Table 8) at a concentration of 4 to 6 x I 06 cells/m I. Freezing 

medium A, consisting of 91 % foetal calf serum, was recommended by the ECACC for 
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maximal cell survival upon resuscitation. Freezing medium B, 20 % foetal calf serum, was 

the medium routinely used for freezing cells in the laboratory. Both were used to enable a 

direct comparison. Cells resuspended in freezing medium were then transferred in I ml 

aliquots into cryovials (Nunc, BDH Ltd) and placed in an insulated box at -70°C for 24 

hours to facilitate a slow reduction in temperature (1 °C per minute) to maintain cell 

integrity. After 24 hours, half of the vials were transferred to liquid nitrogen for longer 

term storage, and half were stored at - 70°C as a backup against the potential problem of 

fai I ure of I iquid nitrogen. 

nutrient mixture Ham' s F12 with 
L-glutamine 

glycerol cryoprotectant (Sigma) 

foetal calf serum 

total 

Freezing Medium N 

0.9ml 

9.1 ml 

IOml 

As recommended by ECACC for maximum cell survival 
2As used routinely in the laboralory 

Freezing Medium 8 2 

6ml 

2ml 

2ml 

10 ml 

Table 8. Constituents of alternative freezing media used to store Chinese hamster ovary 

CHO-Kl cells at -70°C and in liquid nitrogen (-l96°C) 

To resuscitate frozen cells, a vial was removed from liquid nitrogen or -70°C 

freezer, and thawed quickly by running the base of the vial under a warm tap. Once 

thawed, cells were gently pipetted into a 25 cm2 flask containing 7 ml of pre-warmed 

culture medium. To allow maximum initial cell attachment, the flask was left in the 

laminar flow hood for 1 hour, and then transferred to an incubator at 37°C. After 24 hours, 

the initial medium was replaced with 7 ml of fresh culture medium. Once confluent, cells 

were sub-cultured in the normal manner. 

100 



2.4.3 Sterility checking of media and cell cultures 

All cultures and medium were routinely checked for bacterial and yeast infections. 

Aliquots of 0.5 ml of media and cells in suspension were added to 5 ml of nutrient broth 

and to 5 m! of thioglycollate broth and incubated at 33°C and 37°C for 1 week, checking 

daily for the presence of infection. Tryptone Soy Agar (TSA) and yeast extract spread 

plates were also prepared, incubated at 33°C and 37°C, and checked daily for the growth of 

colonies. 

Growing cultures were checked for mycoplasma using the Hoechst 33258 method 

(Freshney, 1993). Cover slips were washed in phosphate-free soap (7X, Gibco ), rinsed in 

distilled water and then sterilised in a hot air oven. Cells were seeded onto coverslips (in 

sterile 35 mm petri-dishes) at 5 x I 04 cells/m I, gassed with 50 ml of C02 and incubated at 

37°C in 1 litre airtight boxes until they reached 20-50% confluence. The monolayer was 

rinsed firstly with PBS, and then with a I: 1 mix of PBS and cold fixative (3: 1 

methanol:glacial acetic acid), and finally with pure fixative. Fresh fixative was then added 

at about 0.5 ml/cm2 and left for 10 minutes. The fixative was poured away and the 

monolayer rinsed with deionized water. A freshly prepared 50 ng/ml solution of Hoechst 

33258 (Sigrna) in PBS was added and left for 5 minutes at room temperature. The stain 

was decanted and the coverslips again rinsed with water. The coverslip was mounted cell 

side down onto a slide containing one drop of mountant (50% glycerine in 0.44M citrate, 

0.11 M phosphate buffer, pH 5.5). Pre-fixed positively and negatively infected Human 

Vero cell preparations (ECACC) were stained and mounted in the same way as described 

above. Cells were examined under UV fluorescence at xlOO magnification for the 

presence of fluorescing cocci or filaments. 
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2. 5 Cytoge11etic tech11iques 

Metaphase preparations of CHO-K 1 cells were made by suspension harvest of the cells in 

culture (section 2.5.1). Fixed cells were then dropped onto slides, stained and mounted, 

and then examined under the microscope (section 2.5.4). 

2.5.1 Cell harvesting 

Cells to be harvested were incubated with colcemid (Sigma, 2.5 J.lg/ml final concentration), 

a spindle inhibitor, present for the final two hours. The medium was then carefully poured 

away and the cell monolayer washed twice with 5 ml of PBS. Trypsin (1 ml) was added to 

each flask, washed over the cells, and the excess poured away. Flasks were incubated for 

about 5 minutes at 37°C until cells starting to detach from the base of the flask, checked by 

examination under the inverted microscope. Rounded up cells were then gently 

resuspended in 5 ml of fresh culture medium, and the cell suspension transferred to 

centrifuge tubes and spun at low speed (600 rpm) for 5 minutes. The supematant was 

carefully removed, and the cell pellet resuspended in 5 ml of freshly prepared KCI (BDH 

Ltd, 0.56%) using a short form siliconised glass pasteur pipette. After 10 minutes at room 

tempemture, the tubes were again centrifuged for 5 minutes at 600 rpm, and then the 

supematant removed. Ice-cold freshly prepared fixative (3: I methanol:glacial acetic acid) 

was added drop-wise to each tube to resuspend the cells in the first fix. Cells were then 

centrifuged at a higher speed (1000 rpm) for 5 minutes, the supematant poured away, and 

the pellet resuspended in fresh fixative for the second fix. The centrifugation and 

resuspension were repeated to give the third fix, in which the cells were left for at least 30 

minutes. After this time, tubes were centrifuged at I 000 rpm for 5 minutes, the supematant 

poured away, and the cells resuspended in several drops of fresh ice-cold fixative to give 

an opaque cell suspension. 
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2.5.2 Slide preparation and staining 

Metaphase spread preparations were made using the dropping technique. Clean grease

free twin-frosted microscope slides (Chance Proper, BDH) were soaked in ice cold 

distilled water. Slides were removed from the water just prior to use and blotted on clean 

paper towels to leave a thin film of water over the surface. The freshly resuspended cells 

were then dropped from a long-form siliconised pasteur pipette onto the cold wet slides 

from a height of approximately 9 inches. Four or five drops along the surface of the slide 

was usually suflicient to produce a suitable cell preparation for examination. Slides were 

placed on a hot plate at 36°C and allowed to dry. To stain, slides were placed in staining 

trays and immersed in a 5% solution of Gurr Giemsa's stain (improved R66 solution, 

BDH) in buffer pH 6.8 (Gurr, BDH) for 20 minutes. The stain was washed away from the 

dish, the slides rinsed and allowed to dry at room temperature. 

Each slide was then permanently mounted with a 22 x 50 mm coverslip. Because 

of the nature of the mounting materials, all mounting was carried out in a fume cupboard. 

Xylene (BDH) was washed over the slide using a pasteur pipette, and then a drop of Gurr 

DePeX mounting medium (BDH) added to the centre of the slide. A coverslip was placed 

over the mountant and gently pushed down using a mounting needle to remove any 

bubbles. Slides were then placed on a high temperature hot plate for several hours to 

encourage an even spread of mountant, then left to cool and harden. Stained, mounted 

slides were then ready for examination under the microscope. 

2.5.3 Giemsa handing 

For Giemsa G-banding, actively growing cells were harvested in the normal manner 

(section 2.5.1) and dropped onto clean slides. Once dry, slides were stored for 3-5 days at 

room temperature to age the preparation. To commence banding, slides were placed in 

pre-heated 2 x SSC (standard saline citrate buffer - 0.3 M NaCI with 0.03 M trisodium 
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citrate) in coplin jars in a 60 °C waterbath for 1 hour. Trypsin (0.25%), diluted 1 in 50 

with PBS, was washed over the slide for 20 seconds, and then rinsed off with distilled 

water. Slides were stained with 5% Giemsa for 20 minutes, mounted with DePeX and 

examined under the microscope. 

2.5.4 Microscopy and photomicrography 

Cell preparations were examined on a Reichert-Jung Polyvar microscope equipped with 

x40 and xI 00 planapochromat objectives, with the green filter in position. Cells of interest 

were photographed with a Konica 35mm camera with automatic exposure control on the 

Polyvar microscope, which incorporated a x2 supplemental lens. Black and white 

photographs were taken using llford Delta 400 film. For fluorescence work, the Ul 

incident light fluorescence module was used with ultra-violet (BP330-380) exciter filter, 

dichroic mirror (DS420), and barrier filter (LP418). 

2.6 Mutagenicity Testi11g 

All samples for testing were firstly assessed for cytotoxic effect on CH O-K I cells using 

neutral red vital staining (2.6.1 ), to indicate the range of concentrations to be tested. 

Samples were then tested in the chromosome aberration assay both with (2.7.6) and 

without metabolic activation (2.6.2). The criteria for aberration identification is also 

described here (2.6.4). 

2.6.1 Cytotoxicity testing 

It is recommended (OECD and US EPA, Lee et al., 1994) that suspected clastogens are 

tested to a maximum concentration of 50 % toxicity (section 1.8.5). Lnitial cytotoxicity 

assays were therefore performed on all samples to establish doses which would reduce cell 

viability by about 50%, thus selecting the highest concentration for testing in subsequent 
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chromosome aberration assays. The method followed was that of dye uptake by viable 

cells after Fiennes et al. ( 1987). An aqueous stock solution of neutral red (BD H) at 0.1% 

w/v was prepared, autoclaved, then acidified with 2 drops of glacial acetic acid per lOO ml, 

and stored in the dark at 4°C. A 24 well multi-well plate (Falcon) was seeded at 4 x l 04 

celUml, placed in a I litre sealed plastic container, and incubated for 24 hours at 37°C. 

Two wells were included with medium only as background controls for the neutral red dye 

uptake. A set of concentrations of the sample to be tested, usually increasing by ten-fold, 

was prepared and lO 111 of each concentration added to wells in duplicate. Control wells 

with no treatment were included. The cells were then incubated for a further 14-18 hours, 

after which the medium was removed. Neutral red stock solution was diluted l :9 with pre

warmed PBS and I ml added to the wells. The cells were incubated for a further 2 hours to 

allow neutral red dye uptake. The residual neutral red dye was then discarded and each 

well rapidly washed with PBS, ensuring careful aspiration of the second wash. Cold 

extraction buffer ( l: l absolute ethanol: 0.1 M citrate buffer pH 4.2) was added to each well 

in aliquots of l ml to release intracellular dye. After 20 minutes, dye uptake was detected 

spectrophotometrically against an extraction buffer blank at 540 nm m a 

spectrophotometer. Cytotoxic effects of exposure to samples were then assessed by 

comparison of absorbance readings of treated wells to controls. 

2.6.2 Chromosome aberration testing 

All chromosome aberration tests were carried out following the basic method of Galloway 

et al. ( 1985, 1987). Stock solutions of fuel and engine emission samples for testing were 

prepared in dimethyl sulphoxide (DMSO, BDH). 25cm2 flasks were seeded with CHO 

cells at 5 x 104 celUml and incubated overnight at 37°C to allow cell attachment and 

division. Replicate cultures were set so that two flasks were set per concentration to be 

tested, as well as two control flasks containing solvent only, and two positive control 

flasks. The following day, all flasks were removed from the incubator and the test sample 
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added in volumes of no more than 40J.ll. This meant that the solvent, DMSO, was kept at a 

concentration of no more than 0.05 % as per guidelines (Kirkland, 1990). At the same 

time, 40 J.ll of DMSO was added to the control flasks, and 80 J.ll of freshly prepared N

methyi-N'-nitro-N-nitrosoguanidine (MNNG) added to each of the positive control flasks 

to give a final concentration of0.15 J.lg/ml. The flasks were returned to the incubator for a 

further 16-18 hours, with colcemid present for the final two hours. Cells were then 

harvested and slides prepared as described in 2.5.1 and 2.5.2. A summary of all fuel and 

emission samples assayed for chromosome aberrations is given in section 2.8. 

2.6.3 Assessment of mitotic rate 

The mitotic indices of control and treated cultures were assessed at each dose level. One 

thousand cells were randomly counted across each slide using the x 10 objective, and the 

number of these cells in mitosis was recorded. This provided a mitotic rate, MR, per 1000 

cells. 

2.6.4 Scoring metaphase preparations for chromosome aberrations 

One hundred metaphase cells per dose level, where possible, were selected for scoring on 

the basis of good morphology and with a chromosome number of modal number ± 2 

(Galloway et al., 1985). Where it was not possible to score 100 cells from one slide, 

consecutive slides from that dose level were recorded until this figure was reached or until 

all slides had been examined. Each slide was scanned under xlO magnification, and 

selected metaphase cells examined under xl 00 oil immersion for the presence of 

aberrations. The chromosome number of each cell examined was recorded on a data sheet 

to ensure that the correct number of cells had been examined. Where aberrations were 

found, the vernier reading and type(s) of aberration were also recorded. The identification 

of the type of aberration followed the recommendations of Scott et al. (1983 ), whereby 

aberrations were firstly divided into two main groups; chromosome - where both 
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chromatids affected; and chromatid - where only one chromatid affected (Table 8). Within 

each group, aberrations were identified and recorded individually and then classified after 

Galloway et al. (1985). The separation into classes was to provide information about types 

of aberration, and are listed in Table 9. 

Gaps, defined here as a discontinuity of the chromatid smaller than its width, or 

greater than the width with connecting strands of DNA or protein visible, and 

endoreduplications were recorded but not included in totals for aberrations. A continuous 

assessment of polyploidy was also undertaken, with polyploid cells defined as those with 

one or more extra haploid sets of chromosomes, expressed as number of polyploid 

cells/1 00 cells examined. Results were expressed as total number of aberrations per dose, 

and as percentages of cells with aberrations. The latter was used as the base unit for the 

assessment of damage, as once one aberration has occurred in a cell the usual consequence 

is that the cell will die and thus additional aberrations have little or no further biological 

relevance (Richardson et al., 1989). 

group class type of aberration 

simple breaks 

chromosome complex exchanges, including dicentric with fragment, centric ring 
type 

and fragment, and acentric rings (double minutes) 

other pulverised cells, heavily damaged chromosomes 

simple break or deletion, isochromatid break or deletion 
chromatid 
type complex exchanges, including inter- (e.g. quadradial) and 

intrachange, chromatid exchange (e.g. triradial) 

Table 9. Classification of structural chromosome aberrations 
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2. 6.5 Chromosome aberration assay of a known mutagen in the CH O-K I eel/line 

To check the potential of the CH O-K I cell line for identifYing mutagens, and to select a 

positive control compound, the cells were assayed with the known direct-acting mutagen, 

MNNG (Sigma). The standard aberration assay method was followed (2.6.2). Briefly, ten 

flasks of CH O-K I cells were set at 5 x I 04 cells/m! and incubated for approximately 24 

hours. A stock solution ofMNNG was prepared in sterile water, and then added to flasks 

to give replicate cultures with final concentrations of 0.075, 0.15, 0.30, and 0.60 J.lg/ml. 

This range of concentrations includes doses with published effects (Galloway et al., 1985; 

Is hi date, 1988). The final two flasks were left untreated (control cultures). Cells were 

incubated in the presence of the mutagen for 18 hours, and then harvested with colcemid 

present for the final two hours. Slides were prepared and examined for chromosome 

aberrations, and a dose response curve produced (Kirkland and Fox, 1993) which is 

presented in section 3.4.4. Aberrations were compared to published data to ensure a 

suitable level of activity within the cell line. 

1. 7 Metabolic activation 

2. 7.1 Introduction 

Most chemical carcinogens and mutagens are biologically inactive until they are converted 

enzymatically into electrophilic, genotoxic metabolites. The key reation for most chemical 

classes is oxidation, catalysed by microsomal NADPH-dependent cytochrome P448/P450 

mixed-function oxidases (Dean & Danford, 1984). CHO cells in culture lack the ability to 

metabolically activate chemicals at a significant rate because of low mixed function 

oxidase activity, and therefore enzyme-rich fractions of mammalian tissue homogenates 

are added to the cell culture system to represent human activation. In this case, the 

enzyme-rich fractions are in the form of Aroclor-1254-induced rat liver S9. 
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2. 7. 2 Preparation of rat liver S9 fraction 

The method followed was basically that of Venitt et al. (1984), and the procedure was 

carried out under Home Office Project Licence PPL 30/1139. Male Wistar rats of 6-8 

weeks old (approximately 200g) were injected intraperitoneally with 0.1 ml of a 200 

mg/ml solution of Aroclor 1254 in peanut oil by a licensed technician. The Aroclor 1254, 

a mixture of polychlorinated biphenyls, serves as a pre-treatment for the liver increasing 

enzyme activity. Five full days after treatment the rats were killed and their livers 

removed. To ensure sterility of the S9, all work was carried out aseptically with sterile 

equipment and chemicals. Each liver is placed immediately into a covered beaker of ice

cold saline on ice, and when all have been removed they were transferred to a sieve and 

washed with 750 ml ice-cold saline. Excess fluid was removed by shaking and blotting 

with gauze. The livers were weighed and 3 volumes of 0.15M KCI reserved and kept on 

ice. The livers were chopped finely using scissors and then homogenised with a Potter 

hand-homogeniser, a little at a time, with some of the reserved KCI. Once all the liver was 

homogenised, the remaining KCI was added and shaken well until the contents uniform. 

The homogenate was then centrifuged at 9000g for 20 minutes in cooled centrifuge tubes 

at 2°C. When centrifugation was complete, the supernatant was carefully poured into a 

fresh flask, shaken to uniformity, and then dispensed into cryovials standing in a dry-ice/ 

alcohol freezing mixture. The vials were then transferred to liquid nitrogen. 

2. 7.3 Sterility checking ofS9 mix 

To ensure the preparation procedure had not resulted in any contamination of the S9 mix, 2 

ml was reserved from each batch for sterility checking. For bacterial contamination, 200J,ll 

was spread onto two nutrient agar plates, and for yeast contamination, 200 Jll onto two 

yeast extract plates. The plates were incubated and checked daily for 7 days for any sign 

of contaminant growth. 
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2. 7.4 Determination of cytochrome P450 

To give an indication of the activity of each S9 preparation, the total cytochrome P450 

content (the sum of all the various isoenzymes) was detennined spectrophotometrically 

(Lake, 1987). When the reduced P450 enzymes combine with carbon monoxide, a 

characteristic absorption spectrum with a maximum at 450 nm is given. The method used 

was as follows. First, the microsomal fraction was diluted 1 :2 with 0.2M phosphate buffer, 

pH 7.4, and placed on ice. A small quantity of sodium dithionite was added and mixed 

gently. The sample poured into a cuvette and scanned to give a baseline reading between 

400 and 500 nm. The contents of the cuvette are then bubbled gently with carbon 

monoxide for 1 minute, and the difference spectrum recorded. A prominent absorption 

maximum at around 450 nm was seen. To calculate the cytochrome P450 concentration, 

the difference between absorption maximum at around 450 nm and at 490 nm (corrected 

for absorption difference between wavelengths prior to bubbling with CO) is detennined 

[~A (450-490)nm]. The cytochrome P450 concentration of the sample is given by the 

following fonnula: 

cytochrome P450 concentration (nmol P450/ ml S9 fhlction) 

llA(450-490)nm x: 1000 x: vol. S9 sample (m() + vol. phosphate buffer 
I 91 • vol. of S9 sample 

• molar extinction coefficient of cytochrome P450 has been determined to be 91 cm2/nmol (Omura & Sato, 1964) 

2. 7.5 Composition ofS9 mix 

The S9 metabolic activation system is NADPH dependent, and hence requires the addition 

of cofactors before incorporation into the cultures. The S9, cofactors, and any buffer are 

collectively known as the S9 mix. A wide variety of varying S9 mixes have been 

described (Galloway et al., 1985; Sofuni et al., 1990; Dean & Danford, 1984). One of the 
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simplest is that described by Benford and Hubbard (1987), which was adopted for use in 

this investigation. For assays that proved negative with the normal concentration S9 mix, 

selected tests were repeated with twice the volume of S9 in the mix, 2 x S9, as 

recommended (Kirkland, 1990). The constituents and volumes of the S9 mixed used are 

shown below in Table I 0. 

Component S9 mix (I x S9) S9 mix (2 x S9) 

Serum free Ham's F 12 media 43.05 ml 41.55 ml 

S9 fraction 1.5 ml J.Oml 

NADP solution (80 mM) 0.225 ml 0.225 ml 

Glucose-6-phosphate solution (I OOmM) 0.225 ml 0.225 ml 

Total 45.0 ml 45.0ml 

Table I 0. Composition of S9 mixes used in cytotoxicity and chromosome aberration 

assays requiring metabolic activation 

2. 7.6 Characterisation ofS9 activity in chromosome aberration assays 

To gauge the suitability of the activity of the S9 for use in the chromosome aberration 

assay, aberration assays were carried out with a known indirect-acting mutagen 

cyclophosphamide (CP) over a range of concentrations. The results were scored and 

compared to data given by Galloway et al. ( 1985) for S9 used regularly in their laboratory. 

The outline method used in all aberration assays was that of Galloway et al. ( 1985, 1987), 

and for assaying S9 activity was as follows. Twelve 25 cm2 tissue culture flasks were set 

with CHO cells at a concentration of 5 x I 04 cells/ml, and incubated overnight at 37°C. 

The following day, solutions of the cofactors NADP (80mM) and G-6-P (IOOmM) were 

prepared and frozen. A solution of the mutagen cyclophosphamide was also prepared at 

room temperature. Vials of S9 were removed from liquid nitrogen and were left to thaw at 

room temperature with the cofactors, and were then stored on ice. The S9 mix was 
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prepared on ice in the laminar flow hood. The medium was poured off the cells, the 

monolayer washed with PBS, and then 8 ml of S9 mix added. The relevant volume of CP 

was measured and added to each flask. Flasks were incubated for 2 hours in the presence 

of S9 mix and CP at 37°C, after which time the flasks were removed and the monolayer 

washed twice with PBS. Fresh complete culture medium was then added to each flask in 

volumes of 8 ml, and the flasks returned to the incubator for a further 12-14 hours, with 

colcemid (0.1 ml of a 200)..lg/ml solution) present for the final two hours. The cells were 

then harvested and slides prepared as described in sections 2.5.4 and 2.5.5. After 

preparation of a dose response curve, aberrations were scored and compared to published 

data (Galloway et al., 1995) for similar experiments to ensure an adequate level of S9 

activity (section 3.6.3). The experiment was repeated for the second batch ofS9 prepared. 

2. 7. 7 Cytotoxicity testing with metabolic activation 

The cytotoxicity assay was repeated for fuel and emission samples in the presence of 

metabolic activation, following the method described in 2.6.1. A 24 well multi-well plate 

was seeded at 4 x I 04 cell/m I, placed in a 1 litre sealed plastic container, and incubated for 

24 hours at 37°C. Two wells were included with medium only as background controls for 

the neutral red dye uptake. The following day, S9 mix was prepared as described 

previously (2. 7.6), together with a set of concentrations of the sample to be tested, usually 

increasing by ten-fold. The existing medium was removed from each well (by pipette), 

and the wells rinsed with PBS. One ml of S9 mix and then the sample were added to each 

well, and the cells incubated at 37°C. After 2 hours, the S9 mix and sample were removed, 

the cell monolayer washed twice with PBS, and then replaced with fresh culture medium. 

The cells were then returned to the incubator for a further 12-16 hours, after which the 

medium was removed and diluted neutral red dye added. The procedure was then identical 

to that used for assay without S9 (section 2.6.1 ). Finally, dye uptake was detected 
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spectrophotometrically against an extraction buffer blank at 540 nm. Cytotoxic effects of 

exposure to samples were then assessed by comparison of absorbance readings of treated 

wells to controls. 

2. 7.8 Chromosome aberration assay with metabolic activation 

For testing for chromosome aberrations with metabolic activation, the method of Galloway 

et al. ( 1985, 1987) was again followed where cells were exposed to the test chemical in S9 

mix (Table 10) for 2 hours, the medium replaced, and cells harvested 14-16 hours later. 

The method used was as follows - flasks were set and incubated overnight as described in 

previous sections. The next day, solutions of the cofactors NADP (80mM) and G-6-P 

(JOOmM) were prepared and frozen. A solution of the indirect-acting mutagen, 

cyclophosphamide (CP), was also prepared at room tempemture. Vials of S9 were 

removed from liquid nitrogen and were left to thaw at room temperature with the cofactors, 

and were then stored on ice. The S9 mix was prepared on ice in the laminar flow hood. 

The medium was poured off the cells, the monolayer washed with PBS, and then 8 ml of 

S9 mix added. The relevant volume of each test chemical was measured and added to each 

flask, with S9 mix and DMSO only added to control flasks, and 50 fll ofCP (to give a final 

concentmtion of 25 f.!g/ml) added to positive control flasks. Flasks were incubated for 2 

hours at 37°C, after which time the flasks were removed and the monolayer washed twice 

with PBS. Fresh complete culture medium was then added to each flask in volumes of 8 

ml, and the flasks returned to the incubator for a further 12-14 hours, with colcemid 

present for the final two hours. The cells were then harvested and slides prepared as 

described in sections 2.5.1 and 2.5.2. 
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2.8 Summary of cytotoxicity and chromosome abe"atlon assays performed 

A summary of all fuel and emission samples assayed for their effect cytotoxic and 

clastogenic effect are given below in Table 11. 

sample fraction 

sample aliphatic aromatic polar 1-ring 
aromatic 

fuel .tt .t .t 

1000 rpm/ 5 Nm .tt .t .t 

1000 rpm/ 55 Nm .tt .t .t 

2000 rpm/ 30 Nm .t• 
2000 rpm/55 Nm ./• 

3000 rpm/ 5 Nm .t 
3000 rpm/30 Nm .t• 
3000 rpm/ 55 Nm .t• 

• samples assayed without S9 only t samples assayed for cytotoxicity only 

2-ring 
aromatic 

.t 

3+ -ring 
aromatic 

Table 11. Summary of all fuel and emission samples assayed for their cytotoxic effect in 

the neutral red dye assay in CH O-K I cells, and subsequently for their clastogenicity in the 

chromosome aberration assay in CH O-K I cells. Assays were performed both with and 

without metabolic activation (rat liver S9 fraction) except those marked * 

2. 9 Statistical a11alyses 

For analysis of the statistical significance of increases in chromosome aberrations, the cell 

was taken as the base unit for assessment, as opposed to the chromosome or chromatid (i.e. 

aberrations per cell). This is the practice adopted by Galloway et al. (1985) and other 

authors (Richardson et al., 1989). Therefore, although the total number of chromosome 

aberrations at each dose was recorded, analysis was based on the percentage of cells with 

chromosome aberrations so that once one aberration has occurred in a cell further 

aberrations were not included, and this also solves the potential problem of cells with 

multiple aberrations. The statistical tests were adopted following guidelines of the 

UKEMS (Richardson et al., 1989) and the latest recommendations of a US and Japanese 

114 



collaboration described in Galloway et al. ( 1997). Variation between replicate cultures 

was assessed using appropriate dispersion statistics (2.9.1), and significance of absolute 

increase in aberrations over the solvent control at each dose assessed with Fisher's exact 

test (2.9.2). 

2.9.1 Variation between replicate cultures in percentage of cells with aberrations 

Where replicate cultures were scored, a test for homogeneity was performed to assess the 

validity of combining data for further analysis. The binomial dispersion test, as described 

by Richardson et al. ( 1989), was used. The test statistic, X2
, was calculated from the 

following formula: 

1 nu ( )2 x2 = .L.L ry- nypi 
i=O J=l n!ip;( I - p;) 

The treatments are numbered from 0 to t, where tO is the solvent control. In the ith 

treatment (i = 0 tot), the number of replicate cultures is m; (in this case 2). From thejth 

replicate (j = I to m;), nu cells are sampled of which 'iJ are found to contain aberrations. 

The proportion of aberrant cells in the ith treatment is p; = r;l n;. The X2 test statistic, with 

I 

L(m;-l) degrees of freedom 
i=D 

was then compared to the upper percentage points of the X 2 distribution with to assess the 

heterogeneity between replicate cultures (X2 < critical value at upper 5 % point indicating 

no evidence of heterogeneity). If there was no significant difference between replicate 

cultures, data from the replicate cultures were then pooled for analysis of chromosome 

aberrations. 
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2.9.2 Chromosome aberration data 

The proportion of aberrant cells at each concentration was compared to the proportion of 

aberrant cells in the solvent control using Fisher's exact test (Galloway et al., 1997; 

Richardson et al., 1989). The Fisher's exact test was developed for use with small 

samples, and therefore a test such as chi-squared may appear more appropriate. However, 

the assessment of chromosome aberration data is special in that whilst a high number of 

cells are normal, a low number of cells are damaged. Thus examination of a small change 

in the number of damaged cells is required, for which Fisher's exact test is now generally 

used. Calculations were performed using a statistical program (Langsrud, 1999), which 

was validated using the published figures of Richardson et al. ( 1989). The criteria for 

classifying test compounds as positive, weak positive, and negative clastogens follows that 

of Galloway et al. ( 1997). This brought together features of both the National Toxicology 

Program (USA) studies (Galloway et al., 1987) and the criteria used in Japan (Sofuni et al., 

1990), and is summarised below in Table 12. 

To compensate for the multiplicity of data comparisons against a common control, 

a Bonferroni correction was applied (Lovell, 1990). Data were tested at the 5 % 

significance level in all cases, and therefore to assess probability that the number of 

aberrant cells was increased sufficiently over the control level to be clastogenic the 

significance level was divided by the number of comparisons made (the number of doses, 

for example 0.05 I 4 doses = 0.0 125). As the exact significance varies between samples 

depending upon the number of concentrations assayed, the significance actually tested 

against is quoted in Tables in the results section for each sample. ln the general text, 

probabilities are referred to as significant (P < 0.05) or not significant (P > 0.05) to avoid 

confusion. 
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criteria decision 

2 doses significant (P :S 0.05) or POSITIVE 

I dose significant and~ 10% cells with aberrations 

I dose significant (P :S 0.05) but< 10% cells with aberrations WEAK POSITIVE 

no significant increases NEGATIVE 

Table 12. Criteria for classification of results of statistical analyses of data produced from 

chromosome aberration assays (based on Galloway et al., 1997). 
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3. RESULTS 
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3.1 Engine runs performed and emission samples collected 

Three sets of diesel emission samples were collected over a mnge of speed and load 

conditions (Table 7, section 2.1.4). Initial samples collected in January 1996 were based 

on predictions of aromatic content from maps of the engine performance supplied by the 

engine manufacturers (Appendix D). The second set of engine conditions were chosen for 

direct comparison with earlier work on the total emission samples (Kingston, 1994 ), and 

were collected in June and July 1996. The final set of samples were collected in January 

1997, the conditions for which were chosen to ensure a more complete picture of emissions 

over the engine range of speed and load. Six repeats of each two minute sample were 

collected immediately after one another to ensure consistency of collection conditions. For 

further HPLC fractionation into aromatic ring compounds, greater masses of emission 

sample were required. To ensure a greater mass of sample without overheating the engine, 

non-standard collection was performed over 5 minutes with emissions passing through the 

tower on a one minute on, one minute off basis (three minutes on in total). Two sets of 

conditions of speed and load were selected, 3000 rpm/5 Nm, and 1000 rpm/55 Nm. For 

the 1000 rpm/55 Nm load sample (ES 36), a sample mass of 224.7 mg was collected, 

which was felt to be too small for further studies. A repeat sample was therefore collected 

6 months later in January 1997 (ES 91, 291.8 m g). Because these samples were collected 

6 months apart, they were fractionated separately and analysed by GC/MS (section 3.2.2) 

before being combined for testing. 

3.1.1 Mass of total engine emission samples collected 

Individual masses for each total emission sample collected are presented in Materials and 

Methods, section 2.1.4. The average mass of a 2 minute sample (from the six samples 

collected consecutively) is plotted against its speed and load below in Figure 6. A clear 

relationship between increasing engine speed and increasing total emission sample mass 

can be seen, with the exception of the samples collected at 3500 rpm and 75 Nm. The 
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erruss10n sample mass also increases with increasing engine load, although to a lesser 

extent. The figure highlights the wide difference in sample masses obtained during each 2 

minute sampling session, from an average 27.3 mg at 1000 rpm speed and 5 Nm load to 

138.8 mg at 3000 rpm speed and 55 Nm load. Such differences emphasise the fact that for 

certain speeds and load conditions, it was necessary to combine samples before and after 

fractionation to obtain sufficient sample masses for testing (section 3.2.1 ). 

emission sample 
mass in mg 

(average from 2 
minute sampling) 

140 

engine speed (rpm) 

engine load (Nm) 
3000 rpm 3500 rpm 

Figure 6. Average mass of total emission sample obtained from six consecutive 2 minute 

engine emission sampling sessions at each set of engine speed and load conditions 

3.1.2 Fuel consumption of the test engine during sample collection 

For each condition of speed and load that samples were collected under, the fuel 

consumption was measured as described in section 2. 1.3, the results of which are presented 

here in Table 13. Although not a quantitative measure, fuel consumption gives an 

indication of the engine' s operating efficiency during sample collection for each set of 

conditions. Fuel consumption was lowest during sampling at 1000 rpm and 5 Nm 
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(consumption 0.011 1/min), conditions of low speed and load where the burden on the 

engine was small. At the opposite extreme, a high fuel consumption of 0.146 1/min was 

recorded during engine conditions of high speed (3SOO rpm) and high load (7S Nm), when 

the burden on the engine was at its greatest. lntennediate engine conditions exhibited 

intennediary levels of fuel consumption, with both the engine speed and load applied to the 

engine being contributory to fuel expenditure. For example, the fuel consumption was 

higher at 2000 rpm speed with SS Nm load (0.061 1/min) than with a higher speed of 3000 

rpm and lower load of S Nm (0.046 1/min). Fuel expenditure was closely matched when 

high speed, low load conditions (3000 rpm/S Nm) are compared to mid speed and mid load 

(2000 rpm/30 Nm). 

Under the same engine parameters of speed and load, fuel consumption was almost 

identical when measured on different dates. This suggests, therefore, that the condition of 

the engine did not deteriorate or alter significantly between collections. 

Engine speed (rpm) Engine load (Nm) Sampling date Fuel consumption (1/min) 

3SOO 7S 2S/01/96 0.146 

3000 ss 22/01/97 0.096 

3000 30 20/01/97 0.068 

2000 ss 17/01197 0.061 

3000 s 27/06/96 0.044 

2000 30 16/01/97 0.043 

1000 ss 2S/06/96 0.034 

1000 ss 02/07/96 0.034 

1000 ss 22/01197 0.034 

1000 s 02/07/96 0.011 

Table 13. Engine diesel fuel consumption (litres/min) recorded during sample collection 

for each set of engine conditions of speed and load 
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3.2 Fuel a11d emissio11 samp/efractiollalioll 

3. 2. I Silica gel column fractional ion of fuel and whole emission samples 

Selected fuel and engine emission samples collected were fractionated into aliphatic, 

aromatic and polar groups of compounds by silica gel column fractionation (section 2.2.1) 

for testing in the chromosome aberration assay. Emission samples were combined both 

prior to and post-fractionation to provide a sufficient mass of sample to complete all assays 

where possible. Samples combined were always those collected successively on the same 

day under the same conditions to ensure consistency. In addition, samples of similar mass 

were chosen to be combined and tested. This usually excluded the first sample taken under 

each set of conditions, which was frequently of dissimilar mass to the rest of the set. Such 

a difference may have arisen where the tower was not 'washed' in between sampling 

sessions, and ignoring this sample ensured that cross contamination of organic species 

from different sampling conditions did not occur. In all cases where samples were 

combined, this took place prior to testing to ensure all assays were performed with a 

uniform, consistent sample. 

The mass of emission sample obtained after each 2 minute engine sampling was 

dependent upon the engine conditions of speed and load (Table 7, section 2.1.4 ), in a 

similar way to fuel consumption. Higher engine speeds correlated to larger sample masses, 

and to a lesser extent increased engine load was also correlated with larger sample masses. 

For example the average sample mass of the six emissions samples collected at 1000 rpm 

and 5 Nm was 27.3 mg, which was increased to an average 75.4 mg at 2000 rpm and 30 

Nm, and to a high average mass of 138.8 mg at engine conditions 3000 rpm speed and 55 

Nm load. The emission and fuel samples chosen for fractionation are given in Table 14, 

together with the masses of each fraction recovered. Post fractionation recovery was high 

with an average 90.7 % (83 - 99 %) of the original fraction recovered when individual 

fraction masses are combined. A minimum of approximately 25 mg of sample was 
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required to conduct a full range of testing for cytotoxicity and then in the chromosome 

aberration assay both with and without metabolic activation, with the actual mass required 

dependent on the range of concentrations to be tested. For less cytotoxic samples, each 

assay required a range of larger sample concentrations. 

Several of the fractions were selected for chemical analysis by gas chromatography 

(GC, section 2.2.1) to confirm the success of the fractionation. The GC operation and 

subsequent analysis of traces was performed by Dr Pemberton from the Environmental 

Sciences department at the University. The chemical make up of all fractions tested was as 

expected, validating the fractionation technique. 

For the fuel fractionation, the initial sample was limited only by the maximum mass 

that could be applied to each glass column at one time (approximately I 00 m g). Two large 

initial samples were therefore separated at one time to give sufficient fraction masses for 

testing throughout. The aliphatic sample masses ( 123 and 110 mg) and aromatic masses 

(80.9 and 56.6 mg) were sufficient for all assays. As the fuel contains minimal polar group 

compounds, the small masses of this fraction achieved after separation were attributed to 

the probable presence of detergents in the fuel. For the emission samples, the mass 

available for fractionation was limited in the first place by the mass achieved during each 2 

minute engine sampling. In the case of two of the emission samples ( 1000 rpm/55 Nm and 

1000 rpm/5 Nm), total emission samples were combined prior to fractionation to ensure a 

sufficient mass of sample for consistent silica gel column separation. This was particularly 

important for engine samples collected at 1000 rpm speed and 5 Nm load, where the 

average TES was a low 27.3 mg. Combination of ES 30 and ES 31 gave a mass of 63.8 

mg for fractionation, and ES 32 plus ES 33 were combined to a mass of 64.5 mg for 

fractionation. 
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emission engine sample aliphatic aromatic polar total fraction 
sample (ES) conditions mass fraction fraction fraction mass (mg) 

(rpm/Nm) (mg) mass (mg) mass (mg) mass (mg) (recovery%) 

FUEL 233.7 123 F7 80.9 F8 7.7 F9 211.6 (91) 

FUEL 187.9 110 F 10 56.6 Fll 1.9 F 12 168.5 (90) 

4 3500/75 71.4 18 14.6 33.9 66.5 (93) 

5 71.2 11.7 13.0 34.2 58.9 (83) 

6 65.9 9.8 11.6 * 

18+19 1000/55 93.1 35.5 ES43 28.2 ES44 19.2 ES45 82.9 (89) 

21+22 99 37.2 ES46 33.7 ES47 22.5 ES48 93.4 (94) 

26 3000/5 121.5 50.4 ES 37 36.0 ES 38 27.4 ES 39 113.8 (94) 

27 132.8 47.8 ES40 34.9 ES41 28.9 ES42 111.6 (84) 

30+31 1000/5 63.8 20.8 ES49 18.9 ES 50 23.3 ES 51 63.0 (99) 

32+33 64.5 18.2 ES 52 18.9 ES 53 20.5 ES 54 57.6 (89) 

71 2000/30 87.8 * * 31.0 ES 107 

72 86.5 • * 30.5 ES 110 

78 2000/55 86.8 * * 31.1 ES 113 

79 91.9 * • 31.8 ES 116 

83 3000/30 129.2 * * 37.9 ES 119 

84 116.8 * • 36.2 ES 122 

86 3000/55 132.5 • * 49.0 ES 125 

87 132.9 * * 51.9 ES 128 

• fractions were not evaporated to dryness therefore no sample mass •s available 

Table 14. Summary of the silica column fractionation of fuel and diesel engine emission 

samples collected during 2 minute sampling over a range of engine conditions of speed and 

load, the fraction masses achieved, and percentage recovery of the original sample. 

Sample numbers (F/ES) are given in blue for those samples used in subsequent testing 

The relative mass of each fraction obtained was not consistent for samples collected 

under different engine conditions (Figure 7). For this reason it was not possible to predict 

accurately how much of each fraction would be achieved and therefore be available for 
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testing. This was another reason for combining samples to ensure that there were 

sufficient fraction masses for each assay. For the fuel for example, the aliphatic fraction 

made up the majority 61 .5 % of the original sample, with aromatic compounds forming an 

average 36 %, and polar a minimal 2.5 %. At conditions of low speed and low load (1000 

rpm/5 Nm), the polar fraction predominated being 36 % of the total fraction, with almost 

equal percentages of aliphatic and aromatic compounds at approximately 32 %. The 

aliphatic fraction was the greatest by sample mass for both emission samples collected at 

3000 rpm/5 Nm and 1000/55 Nm. These two samples also had very similar polar 

fractions, at 24 and 25% of the total sample mass. The aromatic compound contribution to 

the 1000 rpm/55 Nm sample was greater at 35 % compared to the 3000 rpm/5 Nm sample 

(31 %). The aromatic fraction, for all three of the emission samples where percentage 

contribution was calculated, was similar and within a 3% range (32 - 35 %). 
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Figure 7. The average mass of aliphatic, aromatic and polar group compounds, expressed 

as a percentage of the total mass recovered, from silica column separation of combined 

samples of diesel fuel and engine emission samples collected at 3000 rpm/5 Nm, 1000 

rpm/55 Nm and 1000 rpm/5 Nm 
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3.2.2 Fractionation of the aromatic group of compounds by HPLC 

Three high mass engine samples (ES 29, ES 36, and ES 91) were obtained by altering the 

emission sample collection timing as discussed in section 3.1. These samples, together 

with fuel, were fractionated by HPLC into 1-ring, 2-ring and 3+ aromatic ring fractions 

(section 2.2.2). Sample masses achieved are given in Table 15. The fractionation of the 

high mass 5 minute engine samples was performed completely by HPLC, and therefore the 

mass of aromatic compounds prior to separation is not known. The contribution of 3-ring 

and larger ring compounds to the aromatic fraction as a whole can be seen to be small for 

all four of the sepamtions performed. Contamination of each fraction with other 

compounds was assessed by gas chromatography/mass spectrometry (GC/MS) by Dr 

Pemberton, the results of which showed that there was less than 6 % contamination of each 

fraction (section 2.2.2). GC/MS chromatography traces were provided for the 3+ -ring 

fractions (fuel and emission sample collected at 3000 rpm and 5 Nm), and are shown in 

Appendix C. The relative abundance of selected compounds with significant peaks are 

given in Figure 123, Appendix C. 

Sample Engine conditions Total mass Fraction mass (mg) Total fraction 
(rpm/Nm) (mg) 

I -ring 2 -ring 3+ -rings 
mass (mg) 

FUEL 186 R40 103.7 R26 13.1 R 27 3028 

ES 29 3000 I 5 709.7 44 R41 91.5 R32 17.6 R 33 153.1 

ES 36 1000 I 55 224.7 38.6 R 28 17.6 R 29 2.6 R 30 58.8 

ES91 1000 I 55 291.8 41 R 37 14.3 R38 3.7 R39 59 

Table 15. Fuel and diesel engine emission samples collected during 5 minute sampling at 

three different engine conditions of speed and load, their total mass and the masses of 

aromatic ring fractions obtained after sepamtion by HPLC. Sample numbers (R) are given 

in blue for those samples used in subsequent testing 
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At t 1 % oftbe total fraction recovered, the 3+ -ring fraction of the emjssion sample 

collected at 3000 rpm and 5 Nm (ES 29) is, however, more than twice the 3+ -ring fraction 

of the fuel or the second emission sample (Figure 8). The contribution of the 1-ring and 2-

ring compounds to each of the total fraction masses differs widely. The 1-ring fraction 

comprises 62 % of the fuel aromatic sample, a much lower 29 % of ES 29 (3000 rpm/5 

Nm), and a majority 68 % of ES 36 and ES 91 (1000 rprn/5 Nm emission samples 

combined). The 2-ring fraction forms a majority 60% of the mass of the aromatic fraction 

of ES 29 (3000 rprn/5 Nm), and much lowers percentages of the fuel (34 %) or of the 

emission samples collected at I 000 rpm and 5 Nm (ES 36 and ES91) at 27 %. 

.!::! 100% 1 

iO 
CV E 
VI e 
CV CV 00% 

C:-o 
.Q ~ 
u Cii 
~ > 00% 

- 0 
01 UV1 
c: e VI 

~~E 
40% l.) 0 

cv-
~-

- 0 0 ~ 
VIOl 
VI 1'0 20% eve 
E ~ 

0 ..... 
~ 
a. 

0% 

i ;~ ·~ 

• .t; 

fuel 1000 rpmJ5 Nm 3JOO rpmJ5 Nm 

fuel or emission sample fractionated 

[] 3-ring can pounds 

• 2-ring canpolllds 

[] 1-ring compolllds 

Figure 8. The average mass of 1-ring, 2-ring, and 3+ -ring compounds, expressed as a 

percentage of the total aromatic mass recovered, from HPLC separation of samples of 

diesel fuel and engine emission samples collected at 3000 rpm/5 Nm, and combined 

emission samples collected at 1000 rpm/5 Nm 
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3.3 Chinese ltamster ovary eel/line characterisation 

The cell line purchased for dedicated use in these experiments is detailed in section 2.3.1. 

Upon receipt, the cell line was allowed to settle and then sub-cultured to enable frozen 

stocks to be established. The cells were then checked for sterility and mycoplasma 

infection (section 2.3.4). Actively growing cells, including cells resuscitated from frozen 

stocks, were harvested, stained and mounted over several months to provide a stock of 

slides for assessment and analysis. 

3.3. 1 Karyotype of CH O-K 1 cell line after sub-culture at Plymouth 

During initial assessment of the suitability of the cell line for aberration assays, slides of 

untreated cells were examined for well spread metaphases with few or no crossovers of 

chromosomes, which were photographed. From these photographs, karyotypes were 

prepared (section 2.3.2) and a 'representative' karyotype was selected (Figure 9, Plate I). 

The cell selected has 20 chromosomes, including 2 pairs of large metacentrics, a pair of 

large acrocentric chromosomes, and several medium sized meta- and submetacentrics. The 

remaining smaller chromosomes are made up of a range from telocentric to metacentric. 

Under continuous culture, there has been a well documented deviation of the CHO cell line 

from the chromosomes of the diploid tissue from which it was derived which has a 

chromosome number 2n = 22 (Deavan and Peterson, 1973). In the solid stained karyotype 

prepared, twelve of the chromosomes can be paired (i.e. 6 pairs of homologous 

chromosomes, or chromosomes with large regions of homology), with the remainder being 

significantly different from each other as to be unmatched. In their detailed examination of 

the CHO cell line in 1973, Deaven and Petersen concluded that with only minor 

exceptions, one haploid set of chromosomes had remained intact in the CHO cell, and that 

all of the template active genome had been retained (CHO differs from CHO-KI in having 

one extra small telocentric chromosome). This appears to be true in general for the CHO

K I cell line used during this study. G-banding of one chromosome 1 from CH O-K 1 cells 
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maintained at Plymouth shows that the banding pattern is largely unchanged from the 

ideogram of the Chinese hamster chromosome 1 published in 1976 by Ray and Mohandas 

(Figure 1 0). 

(a) Chinese hamster (b) CHO-K1 

p 

q 

chromosome 1 chromosome 1 

Figure 10. Ideogram of chromosome 1 from the Chinese hamster Cricetulus griseus (a) 

and photograph of a G-banded chromosome 1 from the Chinese hamster ovary cell line 

CHO-K1 (b). Arrows indicate the presence of corresponding dark bands present on both 

chromosomes. 

For other chromosomes there have, however, been major rearrangements from the 

original Chinese hamster cell. Using chromosome specific DNA libraries and FISH, 

Balajee and colleagues (1995) analysed some of the spontaneous rearrangements of 

chromosome material in cell lines including CHO-Kl. They highlighted rearrangement of 

certain chromosomes, for example DNA from chromosome 3 of the Chinese hamster 

exhibited signals from 5 separate chromosomes in the CHO-K1 cells line, indicating at 

least 3 major rearrangements. G-banding of the CHO-K1 cell line used shows that whilst 

the q arm and centric regions of chromosome 3 are largely unchanged, the upper portion of 

3p differs from that of the Chinese hamster ideogram presented (Figure 11 ). This concurs 
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with the rearrangement described by Balajee et al. (1995) for chromosome 3. For other 

chromosomes, for example chromosome 4, rearrangement has been so extensive that 

tracking changes would be almost impossible without high resolution G-banding or FISH 

molecular studies (Figure 12). 

(a) Chinese hamster (b) CHO-Kl 

chromosome 3 chromosome 3 

Figure 11 . Ideogram of chromosome 3 from the Chinese hamster Cricetulus griseus (a) 

and photograph of a G-banded chromosome 3 from the Chinese hamster ovary cell line 

CHO-Kl (b). Arrows indicate the presence of corresponding dark bands present on both 

chromosomes, and • indicates dissimilar region 

(a) Chinese hamster (b) CHO-Kl 

<---· 

chromosome 4 chromosome 4 

Figure 12. Ideogram of chromosome 4 from the Chinese hamster Cricetulus griseus (a) 

and photograph of a G-banded chromosome 4 from the Chinese hamster ovary cell line 

CHO-Kl (b). The arrow indicates centromeric position 
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The X chromosome in the CHO cell line has a secondary constriction on its long arm 

(Slijepcevic and Natarajan, 1995), which was identifiable in many of the metaphase 

spreads examined. The area of the secondary constriction, when observed, was a paler 

staining region compared to the rest of the chromosome. In some cells there was a definite 

chromosome gap formed at this junction, however these were not included in scoring of 

aberrations because of their suspected nature as a preferential breakpoint (Galloway et al., 

1997). 

Figure 13. Giemsa-banded metaphase preparation of a Chinese hamster ovary CHO-K 1 

cell (from which the chromosomes in Figures 10- 12 are derived) 

3.1.1 Assessment of chromosome number and polyploidy of CHO-K1 eel/line after sub
culture at Plymouth 

From untreated cells, metaphase preparations were examined for polyploidy and to assess 

the normal chromosome complement in the CHO-K1 line sub-cultured at Plymouth 
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(section 2.3.2). Two thousand well spread metaphases were identified and their 

chromosome number counted. The most frequent chromosome complement (modal 

number) was 19 chromosomes, with 40.4 % of the cells examined having this chromosome 

number (Figure 14 ). The number of ce11s with a chromosome complement of 20 was just 

slightly Less at 36.5 % of the two thousand metaphases examined. Therefore, most of the 

cells scored had a chromosome number of 19 or 20 chromosomes (76.5 % of all 

metaphases in total). In all subsequent assays, cells for aberration analysis were selected 

not only on the basis of good morphology under low power, but also those with a 

chromosome number in the range 17 to 21 i.e. the modaJ number 19 ± 2, following the 

recommendations of Dean & Danford ( 1984). Polyploidy, in the form of tetraploidy (4n), 

was observed at a level of approximately 6 % within the cell Line during this initial 

assessment. The level of polyploidy was reduced to 2-3% by careful culture techniques, 

and thereafter assessed regularly throughout the study. 
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Figure 14. Chromosome number in 2,000 metaphases of the Chinese hamster ovary CHO

Kl cell line following subculture at Plymouth 
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3.3.3 Assessment of basal chromosome aberration rate of untreated CHO-KJ cells 

The CH O-K I cell line was assessed for its suitability for use in chromosome aberration 

assays by measurement of the chromosome aberration rate in untreated cells, both with and 

without rat liver S9 metabolic activation. Cells resuscitated after freezing in liquid 

nitrogen and at -80°C were also evaluated. The background rate was initially assessed at 3 

to 5 %. The cell line was therefore deemed suitable for use in mutagenicity testing as the 

levels of spontaneous aberrations were within UKEMS guidelines of 5 % maximum (Scott 

et al., 1990). Subsequently, the spontaneous aberration frequency was checked regularly 

from analysis of untreated control cultures. During the three years of experimentation, the 

spontaneous aberration rate remained at 5 % or below. 

3.3.4 Chromosome aberration assay of/mown mutagens in the CHO-KJ cell line 

The initial assessment of the cell line included assaying CHO-KI cells with the known 

direct-acting mutagen, N-methyi-N'-nitro-N-nitrosoguanidine (MNNG) to check their 

potential for identifying mutagens and assess MNNG as a positive control. MNNG was 

tested at 0.075, 0.15, 0.30, and 0.60 J..lg/ml, a range that included concentrations previously 

assessed in other studies (Galloway et al., 1985; Ishidate, 1988). Aberrations observed 

ranged from 8 to 35 %, which were consistent with those of Galloway et al. (1985). A 

dose response curve showed that the number of aberrations increased with increasing 

MNNG concentration (Figure 15). From these assay results, the 0. 15 J..lg/ml dose was 

selected for use as the direct-acting positive control in all future aberration assays. At this 

concentration the number of aberrations observed ranged from I 0-12 %, making MNNG 

sufficiently sensitive to detect low levels of clastogenicity. 
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Figure 15. Dose response curve for the direct acting mutagen MNNG showing the number 

of chromosome aberrations induced in Chinese hamster ovary CHO-Kl cells 

3.4 Types of chromosome aberration observed in CHO-Kl cells 

Chromosome aberrations in metaphase preparations of the CHO-Kl cell line were 

identified and recorded following the classification given by Dean and Danford (1984, 

section 2.6.4.). A range of aberration types were observed in control and treated cultures, 

with the more complex exchange-type more prevalent in positive control and emission 

fraction treated cells. 

3.-+.1 Polyploidy and endoreduplication 

Polyploid (tetraploid, 4n) and endoreduplicated cells (Figure 16) were observed in all 

cultures within acceptable background rates of 5 % and 2-3 % respectively. The rates of 

these two were not significantly raised in any of the treated cultures. 
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3.4.2 Chromosome gaps and 'simple' aberrations 

Chromosome gaps were recorded when a discontinuity in the DNA was less than the width 

of the chromatid arm, or when 'connecting' strands of DNA or proteins were visible in the 

gap region (Figure 17). Larger discontinuities in the DNA, or where the chromatid arm 

was displaced, were recorded as chromatid or chromosome breaks. 

3.4.3 Complex chromosome aberrations 

Unresolved interchange between chromatid arms resulted in the formation of several 

complex-type chromosome structures such as dicentric (Figure 18a) and ring (Figure 18b) 

chromosomes, dicentric tri-radials (Figure 19a), and tricentric chromosome structures 

(Figure 19b). Under more extreme clastogenic exposure, single CHO cells were observed 

containing multiple aberrations (Figure 20a and b). 
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Figure 16. Example of a Giemsa stained metaphase preparation of a Chinese hamster 

ovary CHO-Kl cell in which endoreduplication has occurred 

Figure 17. Example of a chromatid gap type of aberration observed in Giemsa stained 

metaphase preparations of Chinese hamster ovary CHO-Kl cells during the study (aberrant 

chromosome indicated by arrow) 
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(a) dicentric chromosome 

(b) ring chromosome 

Figure 18. Examples of chromosome type aberrations observed in Giemsa stained 

metaphase preparations of Chinese hamster CH O-K 1 cells during the study (aberrant 

chromosome indicated by arrow) 
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(a) dicentric triradial 

(b) tricentric structure 

Figure 19. Examples of complex exchange aberrations observed in Giemsa stained 

metaphase preparations of Chinese hamster CH O-K I cells during the study (aberrant 

chromosome indicated by arrow) 
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(a) multiple aberrations 

(b) multiple aberrations 

Figure 20. Examples ofGiemsa stained metaphase preparations of Chinese hamster Cl-:1.0-

K L cells observed containing multiple aberrations (selected aberrant chromosome indicated 

by arrow) 
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3.5 Metabolic activation 

Metabolic activation for chromosome aberration assays was provided in the form of rat 

liver 89 fraction, prepared under Home Office licence from male Wistar rats as described 

in section 2.4.1. 

3.5.1 Fractions ofS9 collected 

The collection of 89 for testing was performed twice. The second collection was necessary 

to provide a greater volume of S9 for subsequent use. In addition, the activity of S9 is 

gradually lost when stored for greater than a year (Venitt et al., 1984). In January 1995, 

the pre-treated livers from two male Wistar rats of weight 240 g each (combined liver 

weight 27.1 g) were homogenised and the S9 fraction prepared (section 2.4.1 ), which gave 

a total S9 volume of 58 ml. Aliquots of the S9 were used to check sterility, the results of 

which were negative confirming that the S9 fraction was sterile. The remainder was frozen 

in volumes of I and 2 ml and stored at - 80°C. Any S9 thawed and not used on the same 

day during testing was discarded and not re frozen on the advice of Venitt et al. ( 1984 ). 

The second collection of S9 was during July 1996 from the livers of seven male Wistar 

rats, weight approximately 190 g each. From the rats' total liver weight of74.83 g, 200 ml 

of S9 volume was produced. Again sterility checks were negative confirming that the S9 

fraction prepared was not contaminated, and samples were stored in volumes of 2 ml at 

-80 °C. 

3.5.2 Cytochrome P450 in preparations ofS9 collected 

When complexed with CO, reduced cytochrome P450 gives a characteristic absorption 

spectrum with a maximum at 450 nm. The total cytochrome P450 (all various isoenzymes) 

of each batch of S9 was therefore determined spectrophotometrically as described in 

section 2.4.3, with the resulting absorbance spectra shown below in Figure 21. The 

absorbance spectra for each of the two batches showed a similar pattern, with a prominent 
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absorption maXJmum at 450 nm in both cases. From the difference between this 

absorbance at 450 nm and the absorbance at wavelength 490 nm, the concentration of 

cytochrome P450 was calculated. 
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Figure 21 . Absorbance spectra of reduced cytochrome P450 in two batches (prepared in 

January 1995 and July 1996) of the S9 fraction of rat I ivers form male Wistar rats, pre

treated with Aroclor 1254 

For the first batch of S9 (January 1995), the cytochrome P450 concentration was 

calculated as 9.198 nmol I ml of S9. The second batch of S9 had slightly improved activity 

at 11.0 I nmol cytochrome P450 /ml of S9. The increased activity of the second batch may 

have been due to the younger age of the rats used with a contribution from greater 

competency in techniques. The P450 concentration was deemed sufficient provided the 

activity was confirmed by testing in the chromosome aberration assay itself. 
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3.5.3 Characterisation of S9 activity with a known indirect acting mutagen, 

cyclophosphamide 

To assess the activity and suitability of the S9 produced for use in the chromosome 

aberration assay, assays were performed in the presence of the known indirect-acting 

mutagen cyclophosphamide (CP). CP was assayed with the standard S9 mix (lx, section 

2.7.5) at concentrations of 12.5, 25, 50, and 100 J..lg/ml for both batches of S9. A dose-

related increase in the number of aberrations was observed (Figure 22). The aberrations 

produced when using the two different batches of S9 were consistent with each other. The 

concentration 25 J..lg/mJ, which produced aberrations in the range 14 - 17 % aberrant cells, 

was selected for use in future testing. This is the dose used by Galloway et al. (1985), and 

the number of aberrations seen in this study were consistent with their published figures. 
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Figure 22. Dose response curves for the indirect-acting mutagen cyclophosphamide with 

two batches of S9 showing the number of chromosome aberrations induced in Chinese 

hamster ovary CH O-K 1 cells 
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3. 6 Cytotoxicity testing 

Under guidelines (UKEMS, 1990; US EPA, OECD), it is recommended that known and 

unknown samples are tested to a maximum of 50% toxicity. At more than 50% toxicity, 

evidence of mutation induction should be interpreted with great caution as sampling error 

at high levels of kill may lead to spurious results. There is also a need to assess 

cytotoxicity because in many cases, a detectable level of chromosome aberrations is only 

found at doses of clastogens which induce some evidence of cytotoxicity (Scott et al., 

1990). All fuel and emission samples were therefore assayed for their cytotoxicity prior to 

testing in the chromosome aberration assay. Under the method selected (Fiennes et al., 

1987), cells are incubated with the test chemical (with or without metabolic activation) and 

then with neutral red dye, which is taken up by the remaining live cells. The length of 

exposure to the test chemical was the same as used in the aberration assays. For assays 

without metabolic activation, cells were exposed to the test sample for 16 -18 hours 

continuously. With metabolic activation cells were exposed to each sample for 2 hours 

only, followed by a 16 hour recovery in the presence of fresh medium. The dye uptake is 

measured spectrophotometrically, with cytotoxic effects assessed by comparison of treated 

samples to controls. Lowered absorbance readings therefore corresponded to low dye 

uptake and therefore low cell viability. During chromosome aberration assays, the 

cytotoxicity was re-measured by calculation of the mitotic index at each concentration to 

ensure that cytotoxic levels were achieved in the assays itself A fall in mitotic rate is an 

indicator of increased cytotoxicity, although the fall may also reflect other cellular effects 

such as cell cycle delay. 

The concentrations chosen for cytotoxicity assays were over a wide range (ten-fold 

increases in doses) to ensure any toxicity present was detected. Most assays were 

performed in duplicate at concentrations of 2, 20, and 200 J..lg/ml , with an additional dose 

at 50 J..lg/ml in selected cases. Replicate solvent control wells (DMSO) and untreated 
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control wells were included in all assays. To assess background neutral red not removed 

during washing, wells were incubated with CHO medium only. These wells gave an 

average absorbance reading of 0.05 units. Thus when the absorbance falls to this level, 

there can be assumed to be total cell killing. 

3.6.1 Cytotoxicity of aliphatic fractions of diesel engine emission samples 

As the aliphatic fraction of diesel fuel and engine emissions is generally regarded as 

containing only unreactive straight chain hydrocarbons, it was not expected to be 

mutagenic, but was tested for completeness. The aliphatic fractions of the engine run set 

collected in June 1996 together with the fuel were assessed for cytotoxicity, both with and 

without metabolic activation. The aliphatic fraction of one emission sample, that collected 

at 3000 rpm speed and 5 Nm load (ES 37+40) was selected for the full range of testing in 

the cytotoxicity and chromosome aberration assays both with and without metabolic 

activation. 

3.6.1.1 Cytotoxicity of the aliphatic fraction of dieselfiiel 

When fractionated, 223.7 mg of fuel produced an aliphatic fraction of 123 mg (F7}, which 

made up 58 % of the total fractionated mass. Sample F7 was tested for its cytotoxicity at 

concentrations from 2 j.tg/ml to 200 j.tg/ml, with and without metabolic activation. The 

results are presented !,'Taphically in Figure 81 (Appendix A). The mean of the replicate 

cultures assayed is shown, with the solvent control taken as the value at concentration zero. 

Without metabolic activation, there was a slight reduction in neutral red dye uptake with 

increasing concentration of aliphatic fuel fraction F7. Even at the highest concentration 

tested of200 j.tg/ ml, however, the absorbance recorded did not fall below the lower levels 

of absorbance observed in the control wells. 
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The absorbance for the solvent controls was in fact slightly lower than the 

absorbance of treated wells, but this can be accounted for in the variability of the 

technique. There was therefore no toxicity exhibited by the fuel aliphatic fraction without 

metabolic activation. With metabolic activation (Figure 82, Appendix A), there a small 

reduction in absorbance at the lowest concentration of 2 f.J.g/ml compared to controls, 

which levelled out between 2 f.J.g/ml and 200 f.J.g/ml. The difference between cell viability 

for controls and the fuel aliphatic fraction at 200 f.J.g/ml was small and therefore not 

significant in view of the variability in absorbance levels recorded. 

The aliphatic fraction of the diesel fuel used during these experiments was therefore 

not cytotoxic without metabolic activation up to concentrations of 200 f.J.g/ml. In the 

presence of S9, the fuel aliphatic fraction showed some evidence of a toxic effect at 2 

f..lglml. At higher concentrations of the aliphatic fraction of fuel there was a small dose 

related reduction in neutral red absorbance, with a reduction in cell viability to 64 % of 

control levels at 200 f..lg/ml. Cell viability was not reduced to the 50 % level at any 

concentration tested. The difference in baseline levels between assays with and without 

metabolic activation is again due to the variability of the technique - the assays were 

perfonned at different times with different batches of neutral red, disposable plastics and 

cuvettes. In all cases for the cytotoxicity assay, the main comparison is between the 

solvent control and concentrations tested within that assay. 

3.6. 1.2 Cytotoxicity of a/iphatic fraction of the diesel emission sample collected a/ 3000 

rpm speed and 5 Nm load 

Diesel engine emission sample ES 26 (mass 121.5 mg) collected at 3000 rpm speed and 5 

Nm load was fractionated and produced an aliphatic fraction of mass 50.4 mg (ES 37), 

which was 44% of the total fractions recovered. In the same way, ES 27 (mass 132.8 mg) 

was fractionated to produce an aliphatic fraction of 47.8 mg (ES 40), 43 % of the total 
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fractions recovered. The two aliphatic fractions from these engine emission samples 

collected at 3000 rpm and 5 Nm, ES 37 and ES 40, were then combined and used for all 

subsequent testing. 

Without metabolic activation, there was no notable reduction in neutral red dye 

uptake in the wells treated with aliphatic fraction ES 37+40 when compared to control 

wells (Figure 83, Appendix A). The absorbance for the solvent controls was in fact 

slightly lower than the absorbance in all treated wells. There was therefore no toxicity 

exhibited by this aliphatic fraction without metabolic activation. With metabolic activation 

in the form of rat liver S9, there was again no reduction in absorbance for the treated wells 

at any concentration tested compared to controls (Figure 84, Appendix A). The results 

show that at the concentrations tested (up to a maximum of 200 ~glml), the aliphatic 

fraction of diesel engine emissions collected at 3000 rpm speed and 5 Nm load had no 

effect on CHO cell viability, and was therefore not cytotoxic. 

3. 6. 1. 3 Cytotoxicity of aliphatic fraction of the diesel emission sample collected at 1000 

rpm speed and 55 Nm load 

The mass of total emission samples at this speed and load was relatively low, and therefore 

TES from successive engine runs were combined prior to fractionation (ES 18 with ES 19, 

and ES 21 with ES 22). Fractionation of ES 18+ 19 (combined mass 93.1 mg) gave an 

aliphatic fraction of mass 35.5 mg (ES 43, 38 % of the total fractionated mass). 

Fractionation ofES 21+22 (combined mass 99 mg) gave an aliphatic fraction of 37.2 mg 

(ES 46, again 38% of the total fmctionated mass). The two aliphatic fractions ES 43+46 

were then combined and used for all subsequent testing (an aliphatic fraction of 72.7 mg 

from total 8 minutes engine sampling). When assayed both with and without metabolic 

activation (Figures 85 and 86, Appendix A), there was a slight variation in the neutml red 

absorbance and therefore cell viability over the range of concentrations tested (2 to 
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200 J.tg/ml). There was, however, no ovemll reduction in cell viability compared to 

controls. The aliphatic fraction ES 43+46, collected at 1000 rpm and 55 Nm, was therefore 

not cytotoxic to CHO cells. 

3.6. 1.4 Cytotoxicity of aliphaticfraction of the diesel emission sample collected at 1000 

rpm speed and 5 Nm load 

As with the previous sample, the masses of the 2 minute total emission samples produced 

at this speed and load were low (average mass 27 mg for 2 minute emission sampling). 

The TES from two successive engine runs were combined prior to fmctionation (ES 30 

with ES 31, and ES 32 with ES 33). Fractionation of ES 30+31 (combined mass 63.8 mg) 

gave an aliphatic fraction of mass 20.8 mg (ES 49, 33 % of the total fmctionated mass). 

Fractionation of ES 32+ 33 (combined mass 64.5 mg) again gave an aliphatic fraction of 

18.2 mg (ES 52, 28 % of the total fmctionated mass). The two aliphatic fmctions ES 

49+52 were then combined and used for all subsequent testing (an aliphatic mass of 39 mg 

from a total of 8 minutes engine sampling). 

The level of absorbance recorded when ES 49+52 was tested for cytotoxicity 

showed a slight variation, but this was not a dose related decrease. The absorbance and 

therefore cell viability at the highest concentration of 200 J.tg/ml was higher than controls, 

in both assays with and without metabolic activation (Figures 87 and 88, Appendix A). 

The aliphatic fraction ES 49+52, collected at 1000 rpm and 5 Nm, is not cytotoxic to CHO 

cells with or without metabolic activation up to a concentration of200 J.tg/ml. 

3. 6.2 Cytotoxicity of the aromatic fractions of dieselfue1 and engine emissions 

The aromatic fractions of the diesel fuel and of the three engine emission samples collected 

during June 1996 were assayed to assess their cytotoxicity. 
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3. 6. 2. 1 Cytotoxicity of the aromatic fraction of diesel fuel 

Diesel fuel fractionated in September 1996 produced an aliphatic fraction of mass 80.9 mg 

(F8), which was 38 % of the total fractions recovered. Without metabolic activation, the 

aromatic fraction of the fuel exhibited a marked cytotoxic effect on the CHO cell 

monolayer at a concentration of 50 IJ.g/ml, with absorbance falling from a control level of 

0.321 units to 0.084 units. At the highest concentration tested of 200 IJ.g/ml there was a 

near complete cell killing (Figure 89, Appendix A). Within the confines of the assay, this 

equates to a near total cell killing because of the background level of neutml red dye not 

completely washed away during the harvesting procedure. From the graph, the critical 50 

% reduction in cell viability was estimated to take place at a concentration of 30 ~1g/ml. 

The aromatic fuel was therefore tested up to a concentration of 40 IJ.g/ml in the 

chromosome aberration assay without metabolic activation. 

In the presence of S9 there was a less marked reduction in cell viability for the 

aromatic fuel fraction compared to non-metabolically activated cells (Figure 90, Appendix 

A). The direct comparison is, of course, not strictly relevant because of the difference in 

exposure times of the two assays. At the highest concentration tested of 200 IJ.g/ml there 

was a slightly less than 50 % reduction in cell viability. Absorbance levels fell sharply 

between aromatic concentrations of 2 and 50 IJ.g/ml, with a more gentle slope of reduction 

then from 50 to 200 IJ.g/ml. When an initial chromosome aberration assay was performed, 

however, the fuel aromatic fraction had a marked effect on mitotic index. At 

concentrations of I 00 and 200 IJ.g/ml there were insufficient metaphases to enable scoring. 

A re-test was therefore performed with concentrations up to 40 IJ.g/ml. The aromatic 

fraction of diesel fuel therefore has a toxic effect on CHO cells, with the most severe 

outcome seen without metabolic activation. 
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3.6.2.2 Cytotoxicity of aromatic fraction oft he diesel emission sample collected at 3000 

rpm speed and 5 Nm load 

Engine emission sample ES 26 and 27 were fractionated separately and the resulting 

aromatic fractions combined to give a sample mass of 70.9 mg (ES 38+41 ), the aromatic 

being 31 % of the total fractions recovered. This fraction, ES 38+41, was used for all 

subsequent testing (aromatic fraction mass of 70.9 mg from a total of 4 minutes engine 

sampling). 

The aromatic fraction ES 38+41 exhibited marked cytotoxicity on CHO cells at a 

concentration of 50 f.J.g/ml when compared to control wells. The toxic effect of this 

fraction was dose dependent with the most marked effect between doses of 20 and 50 

flg/ml, when cell viability fell from approximately 80% to 15%. The 50 % cytotoxic level 

was estimated from the graph (Figure 91, Appendix A) to be at a concentration of around 

30 f.J.g/ml. When the aromatic fraction was metabolically activated with S9, the cytotoxic 

effect was less marked although a dose related decrease in cell viability was evident 

(Figure 92, Appendix A). There was a significant variation between the replicate cultures 

at the critical dose of 50 f.J.g/ml, where what may be an erroneous point skewed the overall 

response. The cytotoxic effect was however clear with a 72 % reduction in cell viability at 

the highest concentration of 200 f.J.g/ml. 50 % cytotoxicity was estimated to take place at a 

concentration of approximately 100 flg/ml. The aromatic fraction of the diesel engine 

emissions collected at 3000 rpm speed and 5 Nm load were therefore cytotoxic to CHO 

cells at concentrations between 50 and 200 !lg/ml, both with and without metabolic 

activation. 
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3.6.2.3 Cytotoxicity of aromatic fraction of the diesel emission sample collected at/000 

rpm speed and 55 Nm load 

The masses of the 2 minute total emission samples produced at this speed and load were 

reduced in comparison to other samples, and therefore samples from two successive engine 

runs were combined prior to fractionation (ES 18 with ES 19, and ES 21 with ES 22). 

Fractionation of ES 18+ 19 (combined mass 93.1 mg) gave an aromatic fraction of mass 

28.2 mg (ES 44, 30 % of the total fractionated mass). Fractionation of ES 21+22 

(combined mass 99 mg) gave an aromatic fraction of 33.7 mg (ES 47, 34% of the total 

fractionated mass). The two aromatic fractions ES 44+47 were then combined and used 

for all subsequent testing (an aromatic fraction of 61.9 mg from total 8 minutes engine 

sampling). 

When not metabolically activated, the aromatic fraction ES 44+47 exhibited a 

strong cytotoxic effect, reducing cell viability to near minimal at a concentration of 50 

f.lg/ml (Figure 93, Appendix A). The toxic effect increased with increasing aromatic 

fraction concentration from little or no effect at 2 f.lg/ml to maximal effect at 50 J.lg/ml -

almost complete toxicity induced over a fairly narrow range ofconcentrations. A level of 

50% cell killing was achieved at a concentration of less than 30 J.lg/ml. In the presence of 

metabolic activation, the aromatic fraction ES 44+47 again had a toxic effect on the CHO 

cells (Figure 94, Appendix A). At a concentration of 50 f.lg/ml there was a large difference 

between the absorbance level in replicate cultures making interpretation difficult as either 

it was could not be assumed that either value was correct. The average was therefore taken 

for the purposes of assessing an approximate 50 % cytotoxicity, which gave a 

concentration of 80 J.lg/ml. 
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3. 6. 2. 4 Cytotoxicity of aroma/ ic fraction of the diesel emission sample collected at I 000 

rpm .\peed and 5 Nm load 

The masses of the 2 minute total emission samples produced at this speed and load were 

low (average mass 27 mg for 2 minute emission sampling). The TES from two successive 

engine runs were combined prior to fractionation (ES 30 with ES 31, and ES 32 with ES 

33). Fractionation of ES 30+31 (combined mass 63.8 mg) gave an aromatic fraction of 

mass 18.9 mg (ES 50, 30 % of the total fractionated mass). Fractionation of ES 32+ 33 

(combined mass 64.5 mg) again gave an aromatic fraction of 18.9 mg (ES 53, 29% of the 

total fractionated mass). The two aromatic fractions ES 50+53 were then combined and 

used for all subsequent testing (an aromatic mass of 37.8 mg from a total of 8 minutes 

engine sampling). 

Like the other aromatic fractions, the fraction ES 50+53 collected at 1000 rpm 

speed and 5 Nm load exhibited a marked cytotoxic effect in the neutral red dye assay 

without metabolic activation (Figure 95, Appendix A). There was no effect on cell 

viability at the lowest concentration tested, 2 J.lg/ml. Between the next two concentrations 

of 20 J.lg/ml and 50 J.lg/ml, cell viability was reduced to a minimal 16 %. The aromatic 

fraction ES 50+53 is therefore highly toxic to CHO cells, with a 50 % cell killing at a 

concentration of less than 30 ~tg/ml. When assayed with S9, the aromatic fraction ES 

50+53 was cytotoxic, but to a lesser extent than without S9 (Figure 96, Appendix A). The 

replicate cultures were not closely matched, especially at 50 J.lg/ml, exhibiting an 

approximate 30 % difference in neutral red absorbance. For this reason the mean 

absorbance was used to estimate 50 % viability. Approximately 50 % of cells were 

destroyed at a concentration of just less than 50 J.lg/ml. 
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3.6.3 Cytotoxicity of the /-ring aromatic fractions of diesel fuel and engine emission 

samples 

The aromatic fraction of diesel fuel and of emission samples collected at 3000 rpm and 5 

Nm, and 1000 rpm and 55 Nm were further fractionated by HPLC into 1- ring, 2- ring and 

3+ -rings (Section 2.2.2). The ring fractions were then assessed for their cytotoxicity in the 

neutral red dye assay prior to being assayed for chromosome aberrations. 

3.6.3.1 Cytotoxicity of the diesel fuel /-ring aromatic fraction 

Diesel fuel was fractionated by HPLC to produce 186 mg of 1-ring group compounds (R 

40), which was 61 % of the totalled fractions recovered. The 1-ring aromatic fraction of 

fuel had a severe toxic effect on CHO cells, reducing cell viability almost completely at the 

highest concentration tested of 200 j.tg/ml. There was no effect at 2 j.tg/ml, then an acute 

reduction in absorbance at 20 Jlg/ml which levelled off at 50 j.tg/ml before sharply 

decreasing again to a minimal level at 200 ~-tg/ml. The levelling off between 20 and 50 

j.tg/ml was identical in both replicates, and made evaluation of 50 % cytotoxicity more 

difficult. From the graph (Figure 97, Appendix A), the concentration which resulted in an 

approximate 50 % cell death was estimated as 60 ~-tg/ml. With metabolic activation, there 

was a slight reduction in cell viability at 20 j.tg/ml, but this reduction was not sustained at 

higher concentrations (Figure 98, Appendix A). At the highest concentration of 200 j.tg/ml 

the number of cells surviving was only slightly less than controls, a viability of 80 %. 

Therefore, the 1-ring aromatic fraction of diesel fuel exhibits cytotoxicity at 20 j.tg/ml only. 

When assayed in the presence of S9, the 1-ring diesel fuel is not cytotoxic up to the 

maximum concentration tested of200 j.tg/ml. 
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3.6.3.2 Cytotoxicity of the /-ring aromatic fraction of the diesel emission sample collected 

at 3000 tpm speed and 5 Nm load 

An aromatic fraction of210.7 mg from a TES (709.7 mg) collected at 3000 rpm and S Nm 

(S minute sampling) was fractionated by HPLC to produce 44 mg of 1-ring group 

compounds (R 41 ), which was 29% of the totalled fractions recovered. Without metabolic 

activation, the I -ring aromatic fraction R4l exhibited a marked cytotoxic effect on CHO 

cells (Figure 99, Appendix A). The toxic effect could be seen as early as at 2 11g/ml, where 

there was an approximate 20 % reduction in cell viability from control levels. The 

reduction in cell viability was approximately dose related, with complete toxicity at the 

highest concentration of 200 11g/ml. The level of SO %toxicity was estimated at 80 11glml. 

When assayed with S9, the action on cell viability was very different (Figure 100, 

Appendix A). The absorbance levels showed a small reduction at 2 and 20 11g/ml, but 

returned to controls levels at SO 11g/ml. At the highest concentration of 200 llglml, there 

was a small but significant reduction in cell viability compared to control levels. 

Therefore, the I -ring aromatic fraction collected at 3000 rpm and S Nm is cytotoxic at 

low concentrations without metabolic activation, and exhibits a weak toxic effect at high 

concentrations when assayed with metabolic activation. 

3. 6. 3. 3 Cytotoxicity of the /-ring aromatic fraction of the diesel emission sample collected 

at 1000 rpm speed and 55 Nm load 

TES of mass 291.8 mg and 224.7 mg collected at 1000 rpm and SS Nm (S minute 

sampling) were fractionated by HPLC to produce 38.6 mg (R 28) and 41 mg (R 37) of 1-

ring group compounds, which were combined for testing. The 1 -ring aromatic fraction R 

28+ 37 showed a conclusive dose related reduction in cell viability when assayed in the 

neutral red vital staining assay. There was a SO % reduction in cell survival by a 

concentration of less than 20 llglml, with complete cell killing at the highest concentration 

tested of 200 11g/ml (Figure 101, Appendix A). In the presence of S9, the toxic effect at 
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lower concentrations was less obvious, with a marginal increase in absorbance at 50 !J.g/ml. 

At 200 !J.g/ml, however, the toxic effect was conclusive, with a reduction to approximately 

20% cell survival. 50% toxicity was estimated from the graph (Figure 102, Appendix A) 

to be at a concentration of 150 !J.g/ml. 

3.6.4 Cytotoxicity of the 2-ring aromatic fractions of diesel fuel and engine emission 

samples 

The HPLC separated 2- ring fraction of diesel fuel, and of engine emission samples 

collected at 3000 rpm and 5 Nm, and 1000 rpm and 55 Nm were assessed for their 

cytotoxicity in the neutral red dye assay in CH O-K I cells. 

3. 6. 4.1 Cytotoxicity of the diesel ji1el 2-ring aromatic fraction 

Diesel fuel was fractionated by HPLC to produce 103.7 mg of2-ring group compounds (R 

26), which was 34 %of the totalled fractions recovered. The 2-ring fraction of diesel fuel 

had a severe effect on cell viability without metabolic activation (Figure I 03, Appendix 

A). There was a sharp dose related fall in the absorbance level from the DMSO solvent 

control at 2-ring fraction concentrations of 2 and 20 !J.g/ml, the latter causing a 86 % 

reduction in cell viability. The level of cell viability continued to decrease, with a less 

acute effect, up to the highest concentration tested of 200 !J.g/ml where there was minimal 

cell survival. The dose which resulted in an approximate 50 % cell killing was estimated 

at less than 15 !J.g/ml. In the chromosome aberration assay, the 2-ring fraction of the fuel 

was assayed up to 40 !J.g/ml to allow for overestimation of the cytotoxic effect at such low 

mass of fraction, with concentrations clustered at the lower doses. 

When tested with metabolic activation in the form of rat liver S9, the 2-ring 

fraction of diesel fuel had a less severe effect than when tested without. Whilst there was 
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again a near total cell killing at the highest concentration of 200 J.tg/ml, the effect at lower 

concentration was not dose related and therefore unclear (Figure 104, Appendix A). There 

was a reduction in cell viability of 33 % at 20 J.tg/ml in both replicate wells, however at SO 

J.tg/ml the cell viability was returned to control levels (again for both replicates). As 

replicate cultures showed almost identical values of neutral red, it was not possible to 

exclude any single points as possibly erroneous. A dose level for a SO % reduction in cell 

survival was difficult to estimate because of the inconclusive results obtained from the 

cytotoxicity assay, and therefore testing in the aberration assay with S9 was performed 

over a wider range of concentrations, up to a maximum of 200 J.tg/ml. 

3. 6.4.2 Cytotoxicity of the 2-ring aromatic fraction oft he diesel emission sample collected 

at 3000 rpm speed and 5 Nm load 

An aromatic fraction of 210.7 mg from a TES (709. 7 m g) collected at 3000 rpm and S Nm 

(S minute sampling) was fractionated by HPLC, and produced 91.S mg of 2-ring group 

compounds (R 32). For this engine emission sample, the 2-ring fraction formed the 

majority 60 % of the total of fractions recovered. Without metabolic activation, the 2-ring 

aromatic fraction R32 exhibited a marked cytotoxic effect on CHO cells (Figure lOS, 

Appendix A). There was an acute reduction in cell viability at concentrations of 2 and 20 

J.tg/ml of the 2-ring fraction (to 26 %of control levels at 20 J.tg/ml), and at 200 J.tg/ml the 

cell survival was minimal. The dose which produced an approximate SO % reduction in 

cell viability was estimated at lS J.tg/ml. In the chromosome aberration assay, the 2-ring 

fraction R32 was assayed up to 40 J.tg/ml, with concentrations clustered at the lower doses. 

The 2-ring fraction of the emission sample collected at 3000 rpm and S Nm was 

assayed for its cytotoxic effect in the presence of metabolic activation. An overall 

reduction in cell viability was observed, with minimal cell survival at the highest 

concentration tested of 200 J.tg/ml (Figure I 06, Appendix A). As with the 2-ring fuel 
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aromatic fraction, the cytotoxic effect did not follow a clear dose response pattern. There 

was a 30% reduction absorbance levels at 20 jlg/ml, but this was returned to control levels 

at 50 jlg/ml. Again, this made estimation of 50 % absorbance levels impossible, and 

therefore the 2-ring fraction R 32 was assayed over a wider range of concentrations up to a 

maximum 200 jlg/ml in the chromosome aberration assay with S9. 

3.6.4.3 Cytotoxicity of the 2-ring aromatic fraction of the diesel emission sample collected 

at 1000 1pm speed and 55 Nm load 

TES of mass 291.8 mg and 224.7 mg collected at 1000 rpm and 55 Nm (5 minute 

sampling) were fractionated by HPLC to produce 17.6 mg (R 29) and 14.3 mg (R 38) of 2-

ring group compounds, which were combined for testing. The 2-ring aromatic fraction R 

29+ 38 showed a conclusive dose related reduction in cell viability when assayed in the 

neutral red dye vital staining assay (Figure I 07, Appendix A). A 50 % reduction in cell 

viability was achieved at a concentration of less than 20 jlg/ml, with complete cell killing 

at the highest concentration tested of 200 jlg/ml. The 2-ring fraction of the engine 

emission sample collected at l 000 rpm and 55 Nm (R 29+ 38) was therefore assayed up to 

40 jlg/ml in the chromosome aberration assay, with concentrations clustered at the lower 

doses. 

When the cytotoxicity assay of 2-ring fraction R29+ 38 was repeated in the presence 

of rat liver S9, the effect on CHO cell survival was less severe. The response was not 

strictly dose-related, as the absorbance levels fell up to 20 jlg/ml, and then rose slightly at 

50 jlg/ml, although the solvent control level of absorbance was not attained at this dose 

(Fib'Ufe 108, Appendix A). Cell viability was minimal at the highest concentration of the 

2-ring fraction (200 jlg/ml). The absence of a clear dose response made estimation of 

50 % cytotoxicity more difficult, although the overall cytotoxic effect of this fraction was 
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more severe than the 2-ring fuel or R 32 (3000 rpm/ 5 Nm) samples when assayed with S9 

(summary graph, Figure 26b). The 2-ring fraction R29+38 was therefore assayed over a 

wider range of concentrations up to a maximum of I 00 ).lg/ml in the chromosome 

aberration assay. 

3.6.5 Cytotoxicity of the 3+ -ring aromatic fractions of diesel fuel and engine emission 

samples 

The HPLC separated 3+ -ring fraction of diesel fuel and of the engine emission sample 

collected at 3000 rpm and 5 Nm were assessed for their cytotoxicity in the neutral red dye 

assay in CHO-K I cells. As the combined mass of the 3+ -ring fraction of the engine 

emission sample collected at 1000 rpm and 55 Nm was only 6.3 mg, there was insufficient 

to perform both cytotoxicity and chromosome aberration assays. This sample was 

therefore reserved for testing in the chromosome aberration assay only. 

3. 6. 5. I Cytotoxicity of the diesel fuel 3 + -ring aromatic fraction 

Diesel fuel was fractionated by HPLC to produce 13.1 mg of 3-ring group compounds (R 

27), which was 4 % of the totalled fractions recovered. The 3-ring fraction of diesel fuel 

caused a clear dose related fall in cell viability from 2 to 50 ).lg/ml, at which point CHO 

cell survival was minimal (Figure I 09, Appendix A). By a concentration of 20 ).lg/ml, the 

3-ring fraction R 27 had reduced cell viability to 27 % of solvent control levels. R 27 was 

assayed in the chromosome aberration up to a maximum of 40 ).lg/ml. 

When assayed in the presence of metabolic activation, the cytotoxic effect of the 

3+ -ring fraction of diesel fuel was less clear at lower concentrations. Cell viability was 

reduced from solvent control levels at concentrations of 2 and 20 ~-tg/ml, but then rose to 

unaffected levels at 50 ).lg/ml (Figure 110, Appendix A). At 200 ~-tg/ml, there was an 85% 
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reduction in CHO cell viability. Thus a dose related pattern of cytotoxicity was not 

observed. From the graph, 50 %cell killing was estimated at a concentration of just under 

150 J..Lg/ml of the 3+ -ring fuel sample. This sample was therefore assessed in the 

chromosome aberration assay with rat liver S9 at concentrations up to 200 J..Lg/ml. 

3.6.5.2 Cytotoxicity of the 3-t- -ring aromatic fraction of the diesel emission sample 

collected at 3000 rpm speed and 5 Nm load 

An aromatic fraction of 210.7 mg from a TES (709. 7 mg) collected at 3000 rpm and 5 Nm 

(5 minute sampling) was fractionated by HPLC, and produced 17.6 mg of 3+ -ring group 

compounds (R 33 ). The 3+ -ring fraction formed 11 % of the total of fractions recovered. 

The engine emission 3+ -ring aromatic fraction R33 had a severe, dose related effect on the 

viability of CHO cells in the neutral red assay without metabolic activation (Figure Ill, 

Appendix A). Cell survival was reduced to 67% at 2 J..Lg/ml, 18% at 20 J..Lg/ml, and at 50 

J..Lg/ml the 3+ -ring sample resulted in almost total cell killing. A 50 % reduction in cell 

viability was estimated at a dose of I 0 J..Lg/ml. ln the chromosome aberration assay, the 

3+ -ring fraction R 33 was assayed up to 40 J..Lg/ml, with doses concentrated in the lower 

range. 

The cytotoxicity assay was repeated in the presence of S9 metabolic activation. A 

dose related fall in the neutral red absorbance and therefore CHO cell viability was 

observed, with a less acute effect than without S9 (Figure 112, Appendix A). At 20 J..Lg/ml 

cell viability was reduced to 74 % of solvent control levels, and the metabolically activated 

3+ -ring emission sample fraction caused a complete cell killing at 200 J..Lg/ml. The dose 

which resulted in a 50 % reduction in cell survival was estimated at 15 J..Lg/ml. The fraction 

R 33 was, however, assayed up to 200 J..Lg/ml in the chromosome aberration assay with S9 

for direct comparison with the fuel 3+-ring sample. 
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3.6.6 Cytotoxicity of the polar fractions of diesel engine emission samples collected 

during June 1996 

The polar fractions of the three engine emission samples collected during June 1996 (3000 

rpm/5 Nm, 1000 rpm/55 Nm, and 1000 rpm/5 Nm) were assayed to assess their 

cytotoxicity both with and without metabolic activation in the neutral red vital staining 

assay in CHO cells. Each fraction was assayed at concentrations of 0.2, 2, 20, and 200 

j.tg/ml without metabolic activation, with an additional dose of 50 j.tg/ml included in assays 

with S9. A further four polar group fractions from engine runs performed during January 

1997 (2000 rprn/30 Nm, 2000 rpm/55 Nm, 3000 rpm/30 Nm, and 3000 rpm/55 Nm) were 

assayed for their cytotoxicity without metabolic activation. These later polar fractions 

were not assayed with metabolic activation in view of the fact that the first polar samples 

displayed direct-acting cytotoxicity. The range of concentrations was also altered to 2, 20, 

50, and 200 j.tg/ml, the 0.2 j.tg/ml dose omitted and a dose of 50 j.tg/ml included to provide 

more detailed infonnation over the range of doses shown to be cytotoxic for the original 

polar fractions. The fuel has negligible polar !,'fOUp compounds within it (from 

manufacturers data), and therefore the low mass polar fraction obtained form silica gel 

column separation of the fuel was not assayed. 

3.6. 6.1 Cytotoxicity of polar fraction of diesel emission sample collected at 3000 rpm and 

5Nm 

Engine emission sample ES 26 and 27 were fractionated separately, and the resulting polar 

fractions combined to give a sample mass of 56.3 mg (ES 39+42). The polar fraction was 

25 % of the total fractions recovered. This fraction, ES 39+42, was used for all subsequent 

testing (polar fraction mass of 56.3 mg from a total of 4 minutes enbrine sampling). 

There was a sharp fall in cell viability for the polar fraction ES 39+42 from the 

solvent control to 20 j.tg/ml, where approximately 50% cytotoxicity was exhibited by the 
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sample (Figure 113, Appendix A). The cytotoxic effect continued to a less acute extent up 

to the maximum concentration of 200 ~g/ml, which resulted in almost complete cell 

killing. A clear dose response was evidenced. The polar fraction of the emission sample 

collected at 3000 rpm and 5 Nm was therefore tested up to a maximum 30 ~g/ml in the 

chromosome aberration assay without metabolic activation. In the presence of rat liver S9, 

the polar fraction ES 39+42 exhibited a less severe cytotoxic effect on the CHO cells 

(Figure 114, Appendix A). No reduction in cell viability was induced at any of the first 

three (0.2, 2, and 20 ~g/ml) concentrations tested, indeed cell viability was higher than that 

for the solvent control. At 200 ~g/ml, cell survival was reduced to a level of 36 %, 

although the variation between replicate cultures at this concentration was high (mean 

absorbance 0.107 units, s.d. 0.103). 50% cytotoxicity was estimated at a polar fraction 

dose of 150 Jlg/ml, which was selected as the maximum dose for chromosome aberration 

assay testing with S9. 

3.6.6.2 Cytotoxicity of the polar fraction of the diesel emission collected at 1000 rpm 

.1peed and 55 Nm load 

The masses of the 2 minute total emission samples produced at this speed and load were 

reduced in comparison to other samples, and therefore samples from two successive engine 

runs were combined prior to fractionation (ES 18 with ES 19, and ES 21 with ES 22). 

Fractionation of ES 18+ 19 (combined mass 93.1 mg) gave a polar fraction of mass 19.2 

mg (ES 45,23% of the total fractionated mass). Fractionation ofES 21+22 (combined 

mass 99 m g) gave a polar fraction of 22.5 mg (ES 48, 24 %of the total fractionated mass). 

The two polar fractions ES 45+48 were then combined and used for all subsequent testing 

(a polar fraction of 41.7 mg from total 8 minutes engine sampling). 

After an initial increase, the polar fraction ES 45+48 caused a dose related 

reduction in the viability of CHO cells as seen by neutral red absorbance (Figure 115, 
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Appendix A). Absorbance fell to 53 % at 20 J.lg/ml and 18 % at the maximum 

concentration of 200 J.lg/ml. The lower concentrations of the polar fraction, 0.2 and 2 

J.lg/ml, did not correspond with a cytotoxic effect. The polar fraction of this engine 

emission sample was assayed at concentrations up to 30 llglml in the chromosome 

aberration test. Metabolic activation of the polar fraction ES 45+48 did not increase its 

cytotoxic effect on CHO cells. In the presence of S9, the absorbance levels rose 

margi11ally up to 20 J.lg/ml, and then fell to 83 % of the control at 50 J.lg/ml followed by a 

dramatic reduction to 12 % at 200 J.lg/ml (Figure 116, Appendix A). The dose which 

resulted in a SO % reduction in cell viability was estimated to be 120 J.lg/ml. The polar 

fraction of the emission sample collected at engine conditions of 1000 rpm and SS Nm was 

tested up to a concentration of I SO J.lg/ml in the chromosome aberration assay. 

3.6.6.3 Cytotoxicity of the polar fraction oft he diesel emission sample collected at 1000 

rpm .1peed and 5 Nm load 

The masses of the 2 minute total emission samples produced at this speed and load were 

low (average mass 27 mg for 2 minute emission sampling), and it was therefore necessary 

to combine fractions to provide sufficient mass of sample for testing. The TES from two 

successive engine runs were combined prior to fractionation (ES 30 with ES 31, and ES 32 

with ES 33). Fractionation ofES 30+ 31 (combined mass 63.8 mg) gave a polar fraction of 

mass 23.3 mg (ES S 1, 37 % of the total fractionated mass). Fractionation of ES 32+ 33 

(combined mass 64.5 mg) gave a polar fraction of 20.5 mg (ES 54, 36 % of the total 

fractionated mass). The two polar fractions ES S 1+54 were then combined and used for all 

subsequent testing (a polar mass of 43.8 mg from a total of 8 minutes engine sampling). In 

contrast with other engine emission samples, the polar fractions from engine runs at I 000 

rpm and 5 Nm were the majority fraction by mass. 
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The pattern of cytotoxicity exhibited by polar fraction ES 51 +54 was consistent 

with the polar fractions of emission samples previously tested. The viability of CHO cells 

fell with increasing polar fraction concentration, so that cell viability was reduced by 38 % 

at 20 jlg/ml, and 81 % at 200 jlg/ml (Figure 117, Appendix A). The level of 50 % 

cytotoxicity was estimated at a concentration of less than 50 jlg/ml. This sample was 

assayed up to a concentration of 30 jlg/ml in the chromosome aberration assay without 

metabolic activation, in line with the other polar fractions. When sample ES 51 +54 was 

metabolically activated, a reduction in cell viability to 13 % of the solvent control level 

was observed at the highest dose tested of 200 jlg/ml (Figure 118, Appendix A). The 

response at lower concentrations was less clear, with a reduction in cell viability of 32 % at 

0.2 jlg/ml, although the difference between replicate cultures was wide (mean absorbance 

0.202 units, s.d. 0.082). This was followed by a return to near control levels at 2 and 20 

jlg/ml, and a marginal cytotoxic effect exhibited at 50 jlg/ml ( 11 % reduction in cell 

viability). The absence of a clear dose response effect made estimation of 50 % 

cytotoxicity difficult. The polar fraction ES 51+54 was finally tested in the chromosome 

aberration assay with S9 to a maximum concentration of 100 jlg/ml, which was dictated by 

the small mass of sample available for testing. 

3.6. 7 Cytotoxicity of the polar fractions of diesel engine emissions collected in January 

1997 

Fractionation of the total emission samples from engine runs performed during January 

1997 (at speed and load 2000 rpm/30 Nm, 2000 rpm/55 Nm, 3000 rpm/30 Nm, and 3000 

rpm/55 Nm ), provided a further four polar group fractions for analysis. The four samples; 

ES 125 (3000 rpm/55 Nm), ES 119 (3000 rpm/30 Nm), ES 116 (2000 rpm/55 Nm), and ES 

107 (2000 rpm/ 30 Nm) were assayed for their cytotoxicity in the neutral red dye assay in 

CHO cells without metabolic activation. These later polar fractions were not assayed with 
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metabolic activation in view of the fact that the first polar samples tested displayed direct-

acting cytotoxicity. The range of concentrations was also altered to 2, 20, 50, and 200 

J..lg/ml, the 0.2 J..lg/ml dose omitted and a dose of 50 J..lg/ml included to provide more 

detailed information over the range of doses shown to be cytotoxic for the original polar 

fractions. 

The dose related reduction in cell viability produced by all four of these polar 

fractions was almost identical, and they are therefore discussed together here. Graphs of 

the response exhibited by individual samples are given in Appendix A - Figure I 19 (ES 

I 07), Figure 120 (ES I 16), Figure 121 (ES 119), and Figure 122 (ES 125). An average 54 

% reduction in CHO cell survival was exhibited at 20 J..lg/ml, followed by a further fall to 

almost total cell killing at 50 J..lg/ml. The level of 50 % cytotoxicity was estimated at just 

under 20 J..lg/ml, and therefore all four of the polar fraction samples were tested up to a 

maximum dose of30 J..lg/ml in the chromosome aberration assay without S9. 

3. 7 Overview of tire cytotoxicity of diesel engine emission sample fractions 

3. 7. I Cytotoxicity of the aliphatic fractions 

The results for the cytotoxicity testing of the four aliphatic fractions assayed without S9 are 

shown together in Figure 23(a) overleaf. The absorbance recorded was restricted to a 

small range in all cases, with no significant reduction in cell viability for any of the 

samples assayed. 

The cytotoxic effect of the four aliphatic fractions assayed with S9 is shown in 

Figure 23(b). In this case, the aliphatic fractions of the three engine emission samples 

show matching results, with no overall reduction in cell viability. In contrast, however, the 

minor cytotoxic effect of the fuel aliphatic fraction with S9 can be clearly seen. 
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Figure 23. Cytotoxicity of the aliphatic fractions of diesel fuel and of emission samples 

collected at 3000 rpm/5 Nm, 1000 rpm/55 Nm and 1000 rpm/5 Nm in the neutral red dye 

assay in Chinese hamster CH O-K I cells 
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3. 7.2 Cytotoxicity oft he aromatic fractions 

A graph of all four aromatic fractions, assayed for cytotoxic effect without metabolic 

activation, is shown in Figure 24(a). Without metabolic activation, the marked reduction 

in cell viability is almost identical in the four different samples, with the aromatic fractions 

having a very similar cytotoxic effect on the CHO cells. 

When assayed with metabolic activation (Figure 24b), all three aromatic diesel engine 

emission samples exhibited a similar pattern of cytotoxic effect. The diesel fuel aromatic 

fraction exhibited a less marked affect, especially at the highest concentration assayed of 

200 J.lg/ml. 

3. 7. 3 Cytotoxicity of the /-ring aroma/ ic fracl ions 

The results of the three cytotoxicity assays of the fuel, emission samples collected at 3000 

rpm/5 Nm and 1000 rpm/55 Nm are shown graphically in Figure 25a (without S9), and 

Figure 25b (with S9). Without metabolic activation, the curves for all three samples show 

a similar pattern. There are, however, small but significant differences in their 

cytotoxicity, with R 28+37 (1000 rpm /55 Nm) showing the greatest toxic effect on CHO 

cells. At 200 J.lg/ml, all three samples were, however, clearly completely toxic to the cells. 

With S9, the results were variable but comparable for all three samples at the lower 

concentrations tested. At the highest concentration, the fuel and R 41 (3000 rpm/5 Nm) 

show similar non-cytotoxic effects. The sample collected at 1000 rpm and 55 Nm again 

exhibits a greater toxicity, with a significant decrease in cell viability at the 200 J.lg/ml. 
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Figure 24. Cytotoxicity of the aromatic fractions of diesel fuel and of emission samples 

collected at 3000 rpm/5 Nm, 1000 rpm/55 Nm and 1000 rpm/5 Nm in the neutral red dye 

assay in Chinese hamster CH O-K I cells 
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3. 7.4 Cytotoxicity (!fthe 2-ring aromatic fractions 

The 2-ring aromatic fractions of the fuel and engine emission samples collected at 3000 

rpm/5 Nm and I 000 rpm/55 Nm exhibited similar patterns of cytotoxic effect on CHO 

cells when assayed without metabolic activation (Figure 26a). All three fractions had 

reduced cell viability to less than 50 %by 20 J..Lg/ml. The 2-ring fraction R 32 (3000 rpm/ 

5 Nm) had slightly reduced toxicity in comparison to the other two samples. The cytotoxic 

effect of the three samples assayed with S9 was less clear, although cell viability was 

reduced to a minimal level at 200 J..Lg/ml in each case. The summary gmph (Figure 26b) 

shows that while each of the three curves followed a similar pattern, it is evident that the 2-

ring fraction of emission sample collected at I 000 rpm and 55 Nm has a greater cytotoxic 

effect on the CHO cells at all concentrations assayed. The cytotoxic effect at 50 J..Lg/ml was 

less in all three cases than the effect at 20 J..Lg/ml, despite it being a higher concentration of 

sample. 

3. 7.5 Cytotoxicity of the 3+ -ring aromatic fractions 

Only two of the samples separated by HPLC produced sufficient mass of 3+ -ring aromatic 

fraction for cytotoxicity testing. When assayed, both the fuel and fraction R 33 (3000 

rpm/5 Nm) both exhibited a similar, severe direct-acting effect on the viability of the CHO 

cells (Figure 27a). Absorbance levels fell steeply, so that less than 25 % of cells survived 

at 20 J..Lg/ml. The cytotoxicity of the emission sample fraction was slightly greater than the 

fuel 3-ring fraction up to 50 J..Lg/ml. Jn contrast, in the presence of metabolic activation, the 

cytotoxic effect of the 3+ -ring samples assayed were not matched. The fuel sample 

exhibited a less severe cytotoxic effect than that of the emission sample fraction R 33. The 

graph shows the difference between the two curves is large, until the maximum 

concentration of200 J..Lg/ml is reached (Figure 27b). At this point the level of cell killing is 

more than 85 % for both samples. 
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Figure 26. Cytotoxicity of the 2- ring aromatic fractions of diesel fuel and of emission 

samples collected at 3000 rpm/5 Nm and lOOO rpm/55 Nm in the neutral red dye assay in 
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Figure 27. Cytotoxicity of the 3+ - ring aromatic fractions of diesel fuel and of the 

emission sample collected at 3000 rpm/5 Nm in the neutral red dye assay in Chinese 

hamster ovary CH O-K 1 cells 
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3. 7.6 Cytotoxicity of the polar fractions collected in June 1996 

The three polar fractions exhibited a similar dose-related fall in the viability of CHO cells 

when assayed without metabolic activation (Figure 28a). There were small differences in 

the cytotoxic effect for each fraction, but these were not larger than the variation between 

replicates (as indicated by the error bars). 

When metabolically activated, the three polar fractions ES 51 +54, ES 45+48, and ES 

39+42 all exhibited a toxic effect on cells at 200 IJ.g/ml (Figure 28b). The fraction ES 

39+42 (3000 rpm/5 Nm) was approximately 20% less cytotoxic than the other two polar 

fractions at each concentration assayed. 

3. 7. 7 Summary of the cytotoxicity of the polar fractiom· collected in .January 1997 

The second set of polar fractions were collected at the new engine conditions of 2000 

rpm/30 Nm, 2000 rpm/55 Nm, 3000 rpm/30 Nm, and 3000 Nm/55 Nm. All four of the 

polar fractions caused a matched, acute dose dependant decrease in CHO cell viability 

(Figure 29). At 200 IJ.g/ml there was minimal cell survival for each sample, as evidenced 

by neutral red absorbance. 
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Figure 28. Cytotoxicity of the polar fractions of the emtsston samples collected at 

3000 rpm/5 Nm, I 000 rpm/55 Nm, and I 000 rpm/5 Nm in the neutral red dye assay in 
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3. 7.8 Summary of cytotoxic assays performed without metabolic activation 

Summaries of cytotoxicity assays on the aliphatic, aromatic, aromatic ring, and polar 

fractions which were derived from the fuel and each total emission sample are shown in 

Table 16. The aliphatic fractions show no evidence of cytotoxicity up to the maximum 

concentration assayed of 200 J.lg/ml. From the whole aromatic fraction through increasing 

aromatic ring fractions a progressively more severe dose related increase in cytotoxic 

effect can be seen. For example for the fuel fmctions, the aromatic fraction exhibits a 50-

80 % reduction in cell viability ( ++) at 50 J.lg/ml, the 1-ring fraction achieves the same 

'++' reduction at a lower concentration of 20 J.lg/ml, and the 2-ring fraction exhibits a 

maximal 80- 100% reduction(+++) at 20 J.lg/ml. The pattern is not clear cut, however, as 

the 3+ -ring fuel fraction is slightly less cytotoxic (50 - 80 % reduction in cell viability) 

than the 2-ring fraction (maximal 80- 100% reduction) at 20 J.lg/ml. The general increase 

in dose related cytotoxicity with increasing ring size is repeated with each of the engine 

emission sample fractions. The most toxic fraction appears to be the 3-ring fraction of the 

engine emission collected at 3000 rpm and 5 Nm, which shows a small cytotoxic effect (25 

-50% reduction in cell viability) at 2 J.lg/ml, and then maximal cytotoxic effect (80- 100 

% reduction) at remaining concentrations assayed of 20 - 200 J.lg/ml. All seven polar 

fractions exhibit increasing cytotoxicity with increased concentration. There is also a 

correlation with increased cytotoxicity at low dose (20 J.lg/ml) for the polar fractions of 

engine emission samples collected at high speed (3000 rpm). Ovemll, the ring fractions of 

the fuel and emission samples assayed exhibit the greatest cytotoxic effect without 

metabolic activation, closely followed by the polar fractions of several samples, in 

particular those collected at high speeds of 3000 rpm. 

175 



sample concentration {j.!g/ml) 
fuel or emission sample 

fuel 

I 000 rpm/5 N m 

1000 rpm/55 N m 

3000 rpm/5 Nm 

2000 rpm/30 Nm 

2000 rpm/55 N m 

3000 rpm/30 N m 

3000 rpm/55 N m 

aliphatic 
aromatic 
aromatic 

aliphatic 
aromatic 

polar 

aliphatic 
aromatic 
aromatic 

polar 

aliphatic 
aromatic 
aromatic 

polar 

polar 
polar 

polar 
polar 

1-ring 
2-ring 

3-ring 

1-ring 

2-ring 

1-ring 
2-ring 
3-ring 

0.2 2 

+ 

+ 

20 

++ 
+++ 
++ 

+ 
+ 

+ 
++ 

+++ 
+ 

++ 
++ 

+++ 
++ 

+ 
+ 

++ 
++ 

nil or minimal cytoto:Oc effect(< 25% reduction in cell viability) 
+ small cytotoxic effect (25 - SO% reduction in cell viabil ity) 

++ large cytotoxic effect (SO- 80% reduction in cell viability) 
+++ maximal cytotoxic effect (80 - I 00% reduction in cell viabi lity) 
blank cells indicate sample not assayed at that concentration 

50 

++ 
++ 

+++ 
+++ 

+++ 

+++ 
++ 

+++ 

+++ 
+ 

++ 
+++ 

++ 
+++ 
+++ 
++ 

200 

+++ 
+++ 
+++ 
+++ 

+++ 
+++ 

+++ 
+++ 
+++ 
+++ 

+++ 
+++ 
+++ 
+++ 
+++ 

+++ 
+++ 
+++ 
+++ 

Table 16. Cytotoxic effect of diesel fuel and engine emission sample fractions, collected 

over a range of engine speed and load, on the viability of Chinese hamster ovary CH O-K 1 

cells measured in the neutral red dye assay 
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3. 7. 9 Summary of cytotoxic assays performed with metabolic activation (rat liver S9) 

Summaries of cytotoxicity assays repeated in the presence of metabolic activation, for 

aliphatic, aromatic, aromatic ring, and polar fractions of fuel and emission samples are 

shown in Table 17. Initial examination shows that with S9, over the same range of 

concentrations as previously assayed, each of the samples is generally less cytotoxic. 

Although the time between initial exposure and harvest is the same in both assays with and 

without S9, the S9 mix and sample are washed off after 2 hours and replaced with fresh 

medium so that direct exposure was for 2 hours only. In tests without S9, the sample is left 

in contact with the cell monolayer for the full 17 hours until harvest, and direct comparison 

is therefore not applicable. There is slight evidence of a fall in cell viability for one of the 

aliphatic fractions (the fuel aliphatic), which exhibited no direct acting cytotoxicity. There 

is a dose related increase in cytotoxicity at higher concentrations of aromatic fractions, and 

overall the 2- and 3+ -ring aromatic fractions are the most effective at reducing cell 

numbers. The polar fractions exhibit a cytotoxic effect at the highest concentration only of 

200 J.ig/m I. 
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fuel or emission sample 
sample concentration (!lg/ml) 

fuel 

1000 rpm/5 Nm 

1000 rpm/55 N m 

3000 rpm/5 Nm 

aliphatic 

aromatic 

aromatic 

aliphatic 

aromatic 

polar 

aliphatic 

aromatic 

aromatic 

polar 

aliphatic 

aromatic 

aromatic 

polar 

1-ring 

2-ring 

3-ring 

!-ring 

2-ring 

!-ring 

2-ring 

3-ring 

0.2 2 20 

+ 

+ 
+ 
+ 

+ 

+ 

++ 

+ 
+ ++ 

nil or minimal cytotoxic effect(< 25% reduction in cell viability) 

+ small cytotoxic effect (25 - 50% reduction in cell viability) 

++ large cytotoxic effect (50- 80 % reduction in cell viability) 

+++ maximal cytotoxic effect (80 - I 00% reduction in cell viability) 
blank cells indicate sample not assayed at that concentrat ion 

50 

+ 

++ 

+ 

+ 

+ 

++ 

200 

+ 
+ 

+++ 
+++ 

+++ 
+++ 

++ 
+++ 
+++ 
+++ 

++ 

+++ 
+++ 
++ 

Table 17. Cytotoxic effect of diesel fuel and engine emission sample fractions, collected 

over a range of engine speed and load, on the viability of Chinese hamster ovary CHO-K I 

cells measured in the neutral red dye assay with metabolic activation (rat liver S9 fraction) 
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3.8 Cllronwsome aberration assay results 

3.8.1 The a/iphatic fraction 

The aliphatic fraction from the total emission sample collected at 3000 rpm and 5 Nm was 

assayed for its clastogenicity in the chromosome aberration assay, both with and without 

metabolic activation, as described in section 2.6.2. The full data are given in Tables 54 and 

55, Appendix B. During the cytotoxicity assay there was no reduction in cell viability up to 

the highest concentration tested of 200 J.lg/ml (Figures 83 and 84, Appendix A). The 

aliphatic fraction was therefore tested in the chromosome aberration assay to a maximum 

concentration of 600 J.lg/ml. This was the maximum final concentration that could be 

achieved from the pre-prepared stock solution, and very close to the limit of solubility in 

DMSO. 

3.8.1.1 The a/iphatic fraction without metabolic activation 

In cultures treated with the aliphatic fraction ES 37+40, there was a dose related decrease 

in mitotic rate from 104 /1000 in the solvent control, to 8011000 at 300 j.lg /ml and 59 

/1000 at 600 J.lg/ml (Figure 30). Overall a near 50 % reduction in mitotic rate was 

achieved at the highest concentration. There was no corresponding increase in 

chromosome aberrations over this range of concentrations tested, with the number of 

aberrations remaining below the 5 % background level. None of the doses assayed 

produced a statistically significant increase in aberrations (P > 0.05, Fisher's exact test) 

over the solvent control (Table 18). 
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Figure 30. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CH O-K I cells after exposure without metabolic activation to the aliphatic 

fraction of the diesel engine emission sample collected at 3000 rpm and 5 Nm (ES 37+40) 

concentration no. cells with total probability number of doses clastogenicity 

(!lg/ml) aberrations p i significant of sample 3 

/cells scored (P ~ 0.0125) 2 

0 l/ 100 

75 2/ 100 0.3 11 

150 2/ 100 0.3 11 

300 4/ 100 0.107 

600 3/ 100 0. 186 

0 negative 

Fisher's exact test (Richardson el al., 1990), companson to DMSO control (concentration Lcro above) 
2 probability testing at 5% significance level I\ ith Bonferroni corrcctton for multtplc dose compansons (0.05/4 doses) 
3 criteria based on Galloway et al. ( 1997), section 2.9.2 

Table 18. Chromosome aberrations induced in Chinese hamster ovary CH O-K l cells 

exposed without metabolic activation to the aliphatic fraction of the diesel engine emission 

sample collected at 3000 rpm and 5 Nm (ES 37+40) 
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3.8.1.2 The aliphatic fraction with metabolic activation 

In the presence of metabolic activation, the aliphatic fraction was again tested up to a 

concentration of 600 J..lg/ml. The mitotic rate remained relatively constant, at around 25 

metaphases per 1,000 cells, from solvent control through the concentrations assayed 

(Figure 31 ). Whilst not giving a 50 % reduction in cell viability, testing was restricted to 

600 J..lg /ml because it was the highest soluble dose and the greatest concentration that 

could be achieved while keeping the maximum CHO exposure to DMSO to 0.5 %. There 

was no significant increase (P > 0.05) in the number of chromosome aberrations over 

control levels at any concentration assayed (Table 19). 

The aliphatic fraction of ES 37+40 (3000 rprn/5 Nm), when tested either with or 

without metabolic activation, resulted in no significant increase in chromosome aberrations 

in CHO-Kl cells at any dose tested, and was therefore not clastogenic. 
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Figure 31. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CH O-K 1 cells after exposure with metabolic activation (rat liver S9 

fraction) to the aliphatic fraction of the diesel engine emission sample collected at 3000 

rpm and 5 Nm (ES 37+40) 

concentration no. cells with total probability number of doses clastogenicity 

(Jlg/ml) aberrations pi significant of sample 3 

/cells scored (P 5. 0.0 125) 2 

0 2/ 100 

75 3/ 100 0.342 

150 1/ 100 0.688 

300 2/ 100 0.500 

600 3/ 100 0.342 

0 negative 

Fisher"s exact test tRichardson el al., 1990), comparison to DMSO control (concentration zero above) 
2 probability testing al 5% significance level wilh Bonfcrroni correction for multiple dose comparisons (0.05/4 doses)1 

3 cri teria based on Galloway et al. ( 1997), section 2.9.2 

Table 19. Chromosome aberrations induced in Chinese hamster ovary CHO-K 1 cells 

exposed with metabolic activation (rat liver S9 fraction) to the aliphatic fraction of the 

diesel engine emission sample collected at 3000 rpm and 5 Nm (ES 37+40) 
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3.8.2 The aromatic fractions 

The aromatic fraction of the fuel (F8) and three engine emission samples ES 38+41 (3000 

rpm!S Nm), ES 44+47 (1000 rprniSS Nm) and ES 50+53 (1000 rpm!S Nm) were tested for 

their mutagenicity in the chromosome aberration assay, both with and without metabolic 

activation (Tables 56 to 64, Appendix B). 

3.8.2.1 The aromatic fractions without metabolic activation 

When assayed without metabolic activation, the aromatic fraction of the fuel (Figure 32) 

and the three engine emission samples assayed (Figures 33 to 35) showed a reduction in 

mitotic rate with increasing aromatic concentmtion. At 30 J.lg/ml, a decrease in cell 

viability of at least SO % was observed in all cases. The maximum concentration tested 

was 40 J.lg/ml, when mitotic mte fell to around IS % of the control mte. Aberrations were 

scored at this concentration with awareness that any positive response would be 

questionable at such high levels of toxicity. There was no increase in the rate of total 

chromosome aberrations over control and spontaneous values for either the fuel or the two 

emission samples collected at engine speed 1000 rpm (Tables 20, 22 and 23). 

When assayed, the number of aberrations observed in response to the aromatic 

fraction ES 38+41 (3000 rpm/5 Nm) were elevated over normal background levels of 

::,; S %(Figure 33). The percentage of cells in the control with aberrations was S %, and at 

concentrations of 10, 30, and 40 J.lg/ml this was raised to 7 %. Although not statistically 

sibrnificant (P > 0.05, Table 21 ), this was the first observation of an increase in 

chromosome aberrations over the 5 % level. 
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Figure 32. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CH O-K 1 cells after exposure without metabolic activation to the aromatic 

fraction of diesel fuel (F 8) 

concentration no. cells with total probability number of doses clastogenicity 

(11g/ml) aberrations pi significant ofsample 3 

/cells scored (P ~ 0.0125) 2 

0 I/ 100 

10 3/ 100 0.186 

20 2/ 100 0.311 

30 4/ 100 0. 107 

40 51 100 0.060 

0 negative 

1 Fisher' s exact test (Richardson el al., 1990), comparison to DMSO control 
1 probability testing at 5% signilicance level" 1th Bonferroni correction for muluple dose comparisons (0 05/4 doses) 
1 criteria based on Galloway et al. ( 1997), section 2 9 2 

Table 20. Chromosome aberrations induced in Chinese hamster ovary CH O-K 1 cells 

exposed without metabolic activation to the aromatic fraction of the diesel fuel (F 8) 
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Figure 33. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-Kl cells after exposure without metabolic activation to the aromatic 

fraction of the diesel engine emission sample collected at 3000 rpm and 5 Nm (ES 38+41) 

concentration no. cells with total probability number of doses clastogenicity 

(J.Lg/ml) aberrations pi significant of sample 3 

/cells scored (P .:;; 0.0125) 2 

0 51 lOO 

10 7/ 100 0.285 

20 7/ 100 0.285 

30 4/ 100 0.625 

40 7/ 100 0.285 

0 negative 

1 Fisher's exact test (Richardson et al. , 1990), comparison to DMSO control tconcentrution zero above) 
2 probability testing at 5% significance level with BonJimoni correction for mul tiple dose comparisons (0.05/4 dosesi 
3 criteria based on Galloway e1 nl. (1997), section 2.9.2 

Table 21. Chromosome aberrations induced in Chinese hamster ovary CH O-K 1 cells 

exposed without metabolic activation to the aromatic fmction of the diesel engine emission 

sample collected at 3000 rpm and 5 Nm (ES 3 8+41) 
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Figure 34. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-K I cells after exposure without metabolic activation to the aromatic 

fract ion of the diesel engine emission sample collected at 1000 rpm and 55 Nm (ES 44+47) 

concentration no. cells with total probabil ity number of doses clastogenicity 

{!-lg/ml) aberrations pi significant ofsample3 

/cells scored (P -::; 0.0125) 2 

0 3/ 100 

10 3/ 100 0 500 

20 4/ 100 0.36 1 

30 51 100 0.250 

40 4/ 100 0.36 1 

0 negative 

1 Fisher's exact test (Richanlson et al., I 990), comparison to DMSO control (c-Oncentration zero abo\·c) 
2 probability testing at 5% significance lc,·cl with Bonfcrroni correction for multiple dose comparisons (0.05/4 doses) 
3 criteria based on Galloway et al. (1997), so:clion 2.9.2 

Table 22. Chromosome aberrations induced in Chinese hamster ovary CHO-K I ceJis 

exposed without metabolic activation to the aromatic fraction of the diesel engine emission 

sample collected at I 000 rpm and 55 Nm (ES 44+47) 
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Figure 35. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-K 1 cells after exposure without metabolic activation to the aromatic 

fraction of the diesel engine emission sample collected at 1000 rpm and 5 Nm (ES 50+53) 

concentration no. cells with total probability number of doses clastogenicity 

(J..Lg/ml) aberrations pi significant of sample 3 

/cells scored (P ~ 0.0125) 2 

0 3/ 100 

10 4/ 100 0 .361 

20 3/ 100 0 .500 

30 2/ 100 0.658 

40 3/ 100 0 .500 

0 negative 

1 Fisher's exact test (Richardson el al., 1990), comparison to DMSO control (concentration zero alxwe) 
1 probability testing. at 5% stgnilicance level with 13onferroni correction for multiple dose comparisons (0.05/4 doses) 
3 ctiteria based on Galloway e/ al. ( 1997), section 2.9.2 

Table 23. Chromosome aberrations induced in Chinese hamster ovary CH O-K l cells 

exposed without metabolic activation to the aromatic fraction of the engine emission 

sample collected at 1000 rpm and 5 Nm (ES 50+ 53) 
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The aromatic fraction of fuel and the three emission samples assayed resulted in a dose 

dependent reduction in mitotic rate to levels below 50 % cytotoxicity at the highest 

concentration tested of 40 J..lg/ml. The aromatic fraction of neither the diesel fuel nor either 

of the 1000 rpm emission samples caused an increase in chromosome aberrations over 

background levels. The third aromatic emission sample assayed (from total emission 

samples collected at 3000 rpm and 5 Nm) showed slightly elevated levels of chromosome 

aberrations, but these were not statistically significant nor dose related. Therefore the 

aromatic fractions from diesel fuel and emissions collected under speed and load 

conditions described show no evidence of clastogenicity in the chromosome aberration 

assay in vitro without metabolic activation (Figure 36). 
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Figure 36. Summary of the percentage of cells with total aberrations induced in Chinese 

hamster ovary CH O-K 1 cells after exposure without metabolic activation to aromatic 

fractions of diesel fuel and emission samples ES 38+4l (3000 rpm/5 Nm), ES 44+47 (1000 

rpm/55 Nm) and ES 50+53 (1000 rpm/5 Nm) 

188 



3. 8. 2. 2 The aromatic fractions assayed with metabolic activation 

The assessment of the mutagenic potential of the four aromatic fractions (3.8.2) was 

repeated in the presence of metabolic activation at concentrations 0, 10, 20, 30 and 

40 J.lg/ml. Results are given in Tables 57, 59, 60, 62 and 64 (Appendix B). 

For two of the samples, the fuel aromatic fraction F8 and ES 50+ 53 (1000 rpm and 

5 Nm), there was a fall in mitotic rate with increasing concentration, resulting in an overall 

reduction in mitotic rate of 1,rreater than 50% at 40 J.lg/ml (Figures 37 and 40). The mitotic 

rate of the aromatic fraction ES 44+47 (1000 rpm/55 Nm) also fell with increasing sample 

concentration, but only as far as 59 % of control levels (Figure 39). For the remaining 

aromatic fraction, ES 38+41 (3000 rpm/5 Nm), there was no reduction in mitotic rate from 

control levels at any concentration tested (Figure 38). The assay was then repeated with an 

additional concentration of 100 J.lg/ml with 2x S9 mix (Table 60, Appendix B), which 

contains a double concentration of S9 within the mix (section 2.7.5). A reduction in 

mitotic rate was observed, but the reduction was still less then the 50 % recommended for 

maximum dosage levels. 100 J.lg/ml was, however, the maximum concentration that could 

tested within the limits of the stock solution prepared. 

When scored for aberrations, the aromatic fractions of the fuel (F8), and emission 

samples ES 38+41 (3000 rpm/5 Nm) and ES 44+47 ( 1000 rpm/55 Nm) caused no 

significant increase in either the number or type of chromosome aberrations over normal 

spontaneous levels (Tables 24 to 26). The maximum number of aberrations observed was 

5 %of cells with aberrations. In the third emission sample, ES 50+53 (1000 rpm/5 Nm, 

Figure 40), a total of 7 % of cells were aberrant at a dose of I 0 J.lg/ml. This was above 

normal background rates, and was statistically significant (P < 0.05, Table 27) when 

compared to the DMSO solvent control. Under the decision criteria adopted (after 

Galloway et al., 1997), this aromatic fraction ES 50+53 was therefore classified as a 
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' weakly positive' clastogen. However, this positive result was not repeated at any of the 

three higher concentrations tested which all fell within the spontaneous range. In addition, 

the rate of aberrations in the solvent control was particularly low in this case (0 aberrations 

/100 cell scored), which has an effect on the statistical significance. 
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Figure 37. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-K 1 cells after exposure in the presence of metabolic activation (rat 

liver S9 fraction) to the aromatic fraction of the ctiesel fuel (F 8) 

concentration no. cells with total probability number of doses clastogenicity 

(J.lg/ml) aberrations pi significant of sample 3 

/cells scored (P s 0.0125) 2 

0 1/ 100 

10 4/ 100 0.107 

20 4/ 100 0.107 

30 2/ 100 0.311 

40 4/ 100 0.107 

0 negative 

Fisher' s eXl!ct lest (Ricbnrdson e1 al. , 1990), comparison to DMSO control (conccntmtion zero abo\·e) 
2 probabi lity lesling at 5% significance level with Oonfcrrom correction for multiple dose comparisons (0.05/4 closes) 
1 criteria based on Gullowny et al. (1997), section 2.9.2 

Table 24. Chromosome aberrations induced in Chinese hamster ovary CHO-K l cells 

exposed in the presence of metabolic activation (rat liver S9 fraction) to the aromatic 

fraction of diesel fuel sample F 8 
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Figure 38. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CH O-K 1 cells after exposure with metabolic activation (rat Liver S9 

fraction) to the aromatic fraction of the diesel engine emission sample collected at 3000 

rpm and 5 Nm (ES 38+41) 

concentration no. cells with total probability number of doses clastogenicity 

(!lg/ml) aberrations pi signi ficant of sample 3 

/cells scored (P ~ 0.01} 2 

0 4/ 100 

10 0/ 100 0.970 

20 51 lOO 0.374 

30 51 lOO 0.374 

40 51 lOO 0.374 

100 4 5/ 100 0.500 

0 negative 

Fisher' s exact test (Richardson et al., 1990), comparison to DMSO control (concentration zero above) 
2 probability testing at 5% sigllJfieancc level \\lth Bonferroru correction for multiple dose comparisons {0.05/4 doses) 
3 critena based on Galloway et al. {1997), section 2.9.2 
4 assayed with 2 x S9 mix, wi th statistical comparison to a diflcrent DMSO solvent control (5/100 aberrant cells) 

Table 25. Chromosome aberrations induced in Chinese hamster ovary CHO-Kl cells 

exposed with metabol ic activation (rat liver S9 fraction) to the aromatic fraction of the 

diesel engine emission sample collected at 3000 rpm and 5 Nm (ES 38+4 1) 
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Figure 39. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-K 1 cells after exposure with metabolic activation (rat liver S9 

fraction) to the aromatic fraction of the diesel engine emission sample collected at I 000 

rpm and 55 Nm (ES 44+47) 

concentration no. cells with total probabi lity number of doses clastogenicity 

(~tg/ml ) aberrations pi significant of sample 3 

/cells scored (P ~ 0.0125) 2 

0 3/100 

10 2/ 100 0.777 

20 2/ 100 0.777 

30 1/ 100 0.893 

40 3/ 100 0.639 

0 negative 

F1sher's exnctlesl (Richnnlson et al. , 1990), comparison to DMSO control (cone<.'lltration zero above) 
l proba bility testing at 5% sigmlicancc le•·cl 11 uh 13onferrom correcllon for muluple dose comparisons (0.05/4 doses) 
'cntcria based on Gullowa) et al. ( 19'n), section 2 9.2 

Table 26. Chromosome aberrations induced in Chinese hamster ovary CHO-K I cells 

exposed with metabolic activation (rat liver S9 fraction) to the aromatic fraction of the 

diesel engine emission sample collected at I 000 rpm and 55 Nm (ES 44+47) 

192 



30 l I 0 

aberrations ' , 70 
L o • mitotic rate .. - 60 

~ 
25 .. 

~ 
_ .. 

~ !!.... • 1/) 50 4i 
c 

20 1 
0 

0 ~ 

' 8 ~ I 0 .... J 40 .-
Q) .... .a 

15 i Q) 
!11 .9: 
£ ; 30 2 ·~ 

~ 
.!!! 10 ; 0 4i , 20 ~ 
0 B 
0 .E 
z 

5 ~ 10 

0 ! 0 
0 5 10 15 20 25 30 35 40 45 

concentration {ug/m!) 

Figure 40. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-K 1 cells after exposure with metabolic activation (rat liver S9 

fraction) to the aromatic fraction of the diesel engine emission sample collected at I 000 

rpm and 5 Nm (ES 50+53) 

concentration no. cells with total probability number of doses clastogenicity of 

(~glml) aberrations pl significant sample 3 

/cells scored (P s 0.0125) 2 

0 0/ 100 

10 7/ 100 5. 12 X 10"3 

20 1/ 100 0.373 

30 3/ 100 0.0912 

40 2/ 100 0.185 

weak positive 

Fisher"s exacllestlRichardson et al., 1990), comparison to DMSO control lconct.'"fltmtlOn zero abo\·c) 
2 probability lestmg at5 o/o sigmlicance le\ cl with Bonferrom correction for multiple do ·e comparisons (0 05/4 doses) 
3 criteria based on Galloway et al. ( 1997), secuon 2.9.2 

Table 27. Chromosome aberrations induced in Chinese hamster ovary CHO-K 1 cel ls 

exposed with metabolic activation (rat liver S9 fraction) to the aromatic fraction of the 

diesel engine emission sample collected at I 000 rpm and 5 Nm (ES 50+ 53) 
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ln summary, the aromatic fractions of the fuel and both emission samples collected at 1000 

rpm effected a dose dependant fall in mitotic rate when assayed with metabolic activation. 

Over the same range of concentrations, the aromatic fraction of ES 38+41 (3000 rpm /5 

Nm) had no adverse effect on the mitotic rate in CHO cells. The aromatic fraction of the 

diesel fuel (F 8) and of emission samples collected at 3000 rpm/5 Nm (ES 38+41) and 

1000 rpm /55 Nm (ES 44+47) did not exhibit clastogenicity in CHO-Kl cells when 

assayed with metabolic activation (Figure 41 below). The aromatic fraction from the total 

emission sample collected at I 000 rpm/5 Nm (ES 50+53) was identified as a weak 

clastogen as exposure of CH O-K 1 cells to this fraction caused a statistically significant 

increase in aberrations at one dose only. 
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Figure 41 . Summary of the percentage of cells with total aberrations induced in Chinese 

hamster ovary CHO-Kl cells after exposure to aromatic fractions of diesel fuel and 

emission samples ES 38+41 (3000 rpm/5 Nm), ES 44+47 (1000 rpm/55 Nm) and ES 

50+53 (1000 rpm/5 Nm), assayed with metabolic activation (rat liver S9 fraction) 
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3.8.3 The !-ring aromatic fractions 

The diesel fuel and two emission samples were fractionated by HPLC to separate ring 

fractions from each other (section 2.2.2). The 1-ring fraction, containing a group of 1-ring 

aromatic compounds, was then assayed for its mutagenicity in the chromosome aberration 

assay both with and without metabolic activation, the results of which are shown in Tables 

65 to 70, Appendix B. 

3.8.3.1 Clastogenicily oft he /-ring aromatic fractions without S9 

In the cytotoxicity assays, the 1-ring fuel fraction R 40 and l-ring emission sample fraction 

R 41 (3000 rpm/5 Nm) exhibited a similar effect on cell viabi lity and were therefore both 

tested at 0, 12.5, 25, 50 and 75 J.lg/ml in the chromosome aberration assay without S9 

(Figures 42 and 43). There was a reduction in mitotic rate with increasing ring fraction 

concentration, with the fuel fraction exhibiting a more marked decrease (to 34% of control 

at 50 J.lg/ml whereas R 41 fell to only 54% of control level at the same concentration). The 

mitotic rate at 75 J.lg/ml in both cases was less than 10 % of controls and therefore 

aberrations were not this assessed at this concentration. There was no significant increase 

in the percentage of cells with total chromosome aberrations over background levels for 

either the fuel (R 40) or emission sample R 41 at any concentration tested up to the 

maximum of 50 jlg/ml (Tables 28 and 29). 

The third 1-ring fraction tested, R 28+37 (1000 rpm/55 Nm), had a more marked 

effect on cell viability in the initial cytotoxicity assay. This sample was therefore tested for 

its effect on chromosome aberrations at reduced concentrations of 0, I 0, I 5, 20, and 50 

jlg/ml (Figure 44). A dose dependant decrease in mitotic rate was seen over the range of 

concentrations tested, so that at 20 jlg/ml the mitotic rate had fallen to 55 % of untreated 

levels. At the highest concentration of 50 jlg/ml the mitotic rate was only 4 % of control 

195 



level, and therefore aberrations were not scored. With the fall in mitotic rate there was no 

corresponding increase in the total number of chromosome aberrations for the 1-ring 

fraction of the emission collected at I 000 rpm speed and 5 Nm load. The level of 

aberrations were not significantly different from background levels at any concentration 

tested (Table 30). 
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Figure 42. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CH O-K 1 cells after exposure without metabolic activation to the 1-ring 

aromatic fraction of the diesel fuel (R 40) 

concentration no. cells with total probability number of doses Clastogenicity 

(~tg/ml) aberrations pi significant of sample 3 

/cells scored (P $; 0.0167) 2 

0 2/ 100 

12.5 4/ 100 0.224 

25 2/ 100 0.500 

50 3/ 100 0342 

0 negative 

Fisher' s exact test (Richardson et al. , 1990), comparison to DMSO control (concentration zero above) 
2 probability testing at 5% significance level with Bonferroni correction for multiple dose comparisons (0.05/3 doses) 
3 criteria based on Galloway et al. (1997), section 2.9.2 

Table 28. Chromosome aberrations induced in Chinese hamster ovary CH O-K 1 cells 

exposed without metabolic activation to the 1-ring aromatic fract ion of the diesel fuel 

(R 40) 
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Figure 43. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-K I cells after exposure without metabolic activation to the 1-ring 

aromatic fraction of the diesel engine emission sample collected at 3000 rpm and 5 Nm 

(R 41) 

concentration no. cell s with total probability number of doses clastogenicity 

(~tg/m l) aberrations pi signi ftcant of sample 3 

/cells scored (P $ 0.0167) 2 

0 2/ 100 

12.5 3/ 100 0.342 

25 3/ 100 0.342 

50 2/ 100 0.500 

0 negative 

Fisher' exact tL'St (R ichardson et al. , 1990}, companson to DMSO control (conccntrn tron Lcro abo\'c) 
2 probability tcsllng at 5% signifi~nce le\'el \\iU1 Bonferronr correction for multiple dose compan sons (0.0513 doses) 
3 cri tena based on Galloway el al. ( 1997), sec lion 2 9. 2 

Table 29. Chromosome aberrations induced in Chinese hamster ovary CHO-Kl cells 

exposed without metabolic activation to the 1-ring aromatic fraction of the diesel engine 

emission sample collected at 3000 rpm and 5 Nm (R 41) 
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Figure 44. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-K 1 cells after exposure without metabolic activation to the !-ring 

aromatic fraction of the diesel engine emission sample collected at I 000 rpm and 55 Nm 

(R 37) 

concentration no. cells with total probability number of doses clastogenicity 

(J..lg/ml) aberrations p t significant of sample 3 

/cells scored (P :S 0.0167) 2 

0 0/ 100 

10 1/ 100 0.373 

15 3/ 100 0.09 1 

20 4/ 100 0.045 

0 negative 

Fisher's exocltest tllichardson el al., 1990), comparison to DMSO control (conocntrotion zero above) 
1 probab1lit} testing at 5% sigml"icancc level" 1th 13onferroni correction for muluplc dose comparisons (0.05/3 doses) 
3 cri1cria based on Galloway et al. ( 1997), secuon 2 9 2 

Table 30. Chromosome aberrations induced in Crunese hamster ovary CHO-Kl cells 

exposed without metabolic activation to the !-ring aromatic fraction of the engine emission 

sample collected at 1000 rpm and 55 Nm (R 28+37) 
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To summarise, the 1-ring fractions of the diesel fuel and emission samples R 41 (3000 

rpm/ 5 Nm) and R 37 (1000 rpm/ 55 Nm) caused a dose related reduction in the mitotic 

rate of CH O-K 1 cells over a range of concentrations. When scored for chromosome 

aberrations to a maximal dose that effected a 50 % reduction in mitotic rate, there was no 

significant increase (P ~ 0.05) in the total number of cells with aberrations over solvent 

control levels (Figure 45). 
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Figure 45. Summary of the percentage of cells with total aberrations induced in Chinese 

hamster ovary CH O-K I cells after exposure without metabolic activation to 1-ring 

aromatic fractions of diesel fue l R 40 and emission samples R 41 (3000 rpm/ 5 Nm), and 

R 28+37 ( 1000 rpm/55 Nm) 
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3.8.3.2 lastogenicity of the /-ring aromatic fraction with metabolic activation 

The !-ring aromatic fractions of diesel fuel and two emission samples (R 41 and R 37) 

were assessed for their clastogenicity in the presence of metabolic activation in CHO cells. 

From infonnation gained from cytotoxicity assays, all three samples were tested at 0, 25, 

50, I 00, and 200 ~g/ml. Fraction R 28+ 37 ( 1000 rpm/55 Nm) was tested additionally at 

!50 ~g/ml. Full data are given in Tables 66, 68, and 70, Appendix B. 

The assessment of the effect of the 1-ring fractions on mitotic rate was inhibited by 

a low mitotic rate in the control ( 42/1 000) which was increased at the low concentrations 

of some of the samples assayed (maximwn 61 / 1000). However, for all three fractions 

there was a clear decrease in mitotic index with increasing fraction concentration (Figures 

46 to 48). The effect on mitotic rate was greatest for fraction R 28+ 37 (which fell by 

approximately two thirds at 200 ~g/ml), then the fuel R 40 (to 66 % of controls at 200 

~g/ml), with the least overall effect on mitotic rate effected by fraction R 41 (a fall of 

approximately 25 % at the highest concentration tested of 200 ~g/ml). This was a similar 

pattern as seen for each fraction when assayed without S9 (section 3.8.3.1 ). The number 

and type of chromosome aberrations was scored up to 200 ~g/ml for all three samples. For 

all three of the !-ring fractions assayed with S9, the number of aberrations observed 

remained at 5 % or below, and therefore not raised above nonnal background levels. 

There was no statistically significant increase (P > 0.05) in chromosome aberrations for 

metabolically activated !-ring aromatic fractions (Tables 31 to 33). 
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Figure 46. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-K l cells after exposure with metabolic activation (rat liver S9 

fraction) to the 1-ring aromatic fraction of diesel fuel (R 40) 

concentration no. cell s with total probability number of doses clastogenicity 

(~g/ml) aberrations pl significant of sample 3 

/cells scored (P ~ 0.0125) 2 

0 3/ 100 

25 51 100 0.250 

50 2/ 100 0.658 

100 3/ 100 0.500 

200 3/ 100 0.500 

0 negative 

1 Fisher's exact test (Richardson el al., 1990), comparison to DMSO conlrol (concentration zero above) 
1 probability testing at 5% significance level with l:lonferroni correction for multiple dose comparisons (0.05/4 doses) 
3 criteria based on Galloway et al. (1997), section 2.9.2 

Table 3l. Chromosome aberrations induced in Chinese hamster ovary CH O-K 1 cells 

exposed with metabolic activation (rat liver S9 fraction) to the 1-ring aromatic fraction of 

the diesel fuel (R 40) 
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Figure 47. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CH O-K I cells after exposure with metabol ic activation (rat liver S9 

fraction) to the 1-ring aromatic fraction of the diesel engine emission sample collected at 

3000 rpm and 5 Nm (R41 ) 

concentration no. cells with total probability number of doses clastogenicity 

(11g/ml) aberrations pl significant ofsample3 

/cells scored (P ~ 0.0125) 2 

0 3/ 100 

25 1/ 100 0.814 

so 51 100 0.250 

100 3/ 100 0.500 

200 51 lOO 0.250 

0 negative 

Fisher's clillcltcst (Richardson et al., 1990), comparison to DMSO control (conccntmtion zero olxl\e) 
1 probability testing at 5% significance level with Bonferroni correction for multiple dose compansons (0.05/4 doses) 
3 criteria based on Gallo\\8)' et al. (1997), scction2.9.2 

Table 32. Chromosome aberrations induced in Chinese hamster ovary CHO-Kl cells 

exposed with metabolic activation (rat liver S9 fraction) to the 1-ring aromatic fraction of 

the diesel engine emission sample collected at 3000 rpm and 5 Nm (R 41) 
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Figure 48. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-Kl cells after exposure with metabolic activation (rat liver S9 

fraction) to the 1-ring aromatic fraction of the diesel engine emission sample collected at 

1000 rpm and 55 Nm (R 28+ 37) 

concentration no. cells with total probability number of doses clastogenicity 

(llglml) aberrations pi significant of sample 3 

/cells scored (P ~ 0.01) 2 

0 3/ 100 

25 2/ 100 0.658 

50 1/ 100 0.814 

lOO 3/ 100 0.500 

150 3/100 0.500 

200 3/ 100 0.500 

0 negative 

Fisher's exact test (Richardson et al., 1990), comparison to DMSO control (concentration zero nbove) 
1 probability testing at 5% significance level with Bonferroni correchon for mulliple dose comparisons (0.05/5 doses) 
J criteria based on Gullm\ ay et al. ( 1997), section 2.9.2 

Table 33. Chromosome aberrations induced in Chinese hamster ovary CH O-K I cells 

exposed with metabolic activation (rat liver S9 fraction) to the 1-ring aromatic fraction of 

the diesel engine emission sample collected at 1000 rpm and 55 Nm (R 28+ 37) 
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The J -ring aromatic fractions of diesel fuel R40 and two engine emission samples R 41 

and R 37 (3000 rprn/5 Nm and 1000 rpm/55 Nm) were assayed for their clastogenicity in 

the presence of metabolic activation. In all three samples a dose-related fall in mitotic rate 

was exhibited, although the extent ofthe reduction in mitotic rate varied between samples. 

Non of the three samples caused an increase in the number of chromosome aberrations at 

any concentration over spontaneous rates previously seen (Figure 49), and all thJee were 

therefore classed as not clastogenic. 
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Figure 49. Summary of the percentage of cell s with total aberrations induced in Chinese 

hamster ovary CHO-K J cells after exposure with metabolic activation (rat liver S9 

fraction) to 1-ring aromatic fractions of diesel fuel R 40 and emission samples R 4 1 (3000 

rpm/5 Nm), and R 28+ 37 (1000 rpm/55 Nm) 
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3. 8.-1 The 2 -ring aroma/ ic fractions 

As stated, the diesel fuel and two emission samples (3000 rpm/5 Nm and 1000 rpm/55 

Nm) were fractionated by HPLC to separate into different ring group fractions. The 2-ring 

fraction, containing a group of 2-ring aromatic compounds, was then assayed for its 

mutagenicity in the chromosome aberration assay both with and without metabolic 

activation. Full results are given in Tables 71 to 76, Appendix B. 

3.8.-1.1 1'lle 2-ring aromatic fractions assayed without metabolic activation 

Following the results of the effect of the 2-ring group compounds in cytotoxicity tests, all 

three 2-ring fractions were tested in the chromosome aberration assay at concentrations of 

0, 5, I 0, 15, 20, and 40 Jlg/ml. For all three fractions, a dose related reduction in mitotic 

rate was seen (Figures 50 to 52). With the fuel 2-ring fraction (R 26), mitotic rate 

remained fairly stable up to 15 J.tg/ml, then fell sharply to 39 % of controls at 20 Jlg/ml , 

with no mitotic cells visible at the highest concentration of 40 J.tg/ml (Figure 50). The 2-

ring fractions of the two emission samples (R 32 and R 29+ 38) exhibited a more severe 

effect on the number of cells in mitosis. ln both cases, the mitotic index fell to around 39 

% of control levels at 15 Jlg/ml and less than 30 % at 20 J.tg/ml (therefore these were not 

scored for aberrations). 

The adverse effect of the diesel fuel R26 and emission sample R 32 (3000 rpm/5 

Nm) 2-ring fractions on mitotic rate did not correspond to a significant increase in the 

number of chromosome aberrations (Tables 34 and 35). The total number of chromosome 

aberrations found in CHO cells after exposure to R 26 and R 32 without metabolic 

activation did not increase above 5 % at any concentration tested. For the third 2-ring 

sample assayed without metabolic activation R 29+38 (1000 rpm/55 Nm), the number of 

aberrations rose to 6 % of cells with total aberrations at the highest concentration scored of 

15 J.tg/ml (Figure 52). This very si ight rise above the normal background rate was not 
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statisticaUy significant (P > 0.05, Table 36), and bas to be assessed with a note of caution 

as the mitotic index at this concentration was reduced to 37% of control levels. That being 

said, however, it may be an early indication of the clastogenicity of compounds within this 

group which is masked by cytotoxicity. 
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Figure 50. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-K 1 cells after exposure without metabolic activation to the 2-ring 

aromatic fraction of diesel fuel (R 26) 

concentration no. cells with total probability number of doses clastogenicity 

(~-tg/ml) aberrations p' significant ofsample3 

/cells scored (P ~ 0.01 25) 2 

0 3/ 100 

5 4/ 100 0.36 1 

10 3/ lOO 0.500 

IS 3/ 100 0.500 

20 4/ 100 0.361 

0 negative 

1 Fisher' s exact test (Richardson e/ al., 1990), comparison to DMSO control (concentration zero above) 
1 probability testing at 5% significance le\•el using Bonferroni correction for multiple dose comparisons (0.05/4 doses) 
3 criteria based on Galloway et al. ( 1997), section 2.9.2 

Table 34. Chromosome aberrations induced in Chinese hamster ovary CH O-K 1 cells 

exposed without metabolic activation to the 2-ring aromatic fraction of diesel fuel (R 26) 
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Figure 51 . Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-K 1 cells after exposure without metabolic activation to the 2-ring 

aromatic fraction of diesel engine emission sample collected at 3000 rpm and 5 Nm (R 32) 

concentration no. cells with total probability number of doses clastogenicity 

(llg/ml) aberrations pl significant of sample 3 

/cells scored (P ~ 0.0167) 2 

0 3/ 100 

5 2/ 100 0.658 

10 2/ 100 0.658 

15 2/ 100 0.658 

0 negative 

1 Fisher' s eXllct test (Richardson et nl., 1990), comparison to DMSO control (conccntllltion zero above) 
1 probability testing at 5 % significance level usmg.l3onfcrrom correction for multiple dose comparisons (0.0513 doses) 
3 cnterio based on Galloway et al. (1997), section 2 9 2 

Table 35. Chromosome aberrations induced in Chinese hamster ovary CHO-Kl cells 

exposed without metabolic activation to the 2-ring aromatic fraction of the diesel engine 

emission sample collected at 3000 rpm and 5 Nm (R 32) 
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Figure 52. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-K l cells after exposure without metabolic activation to the 2-ring 

aromatic fraction of diesel engine emission sample collected at 1000 rpm and 55 Nm 

(R 29+38) 

concentration no. cells with total probability number of doses clastogenicity 

(Jlg/ml) aberrations pl significant of sample 3 

/cells scored (P s 0.0167) 2 

0 3/ 100 

5 3/ 100 0.500 

10 4/ 100 0.361 

15 6/ 100 0.167 

0 negative 

Fisher's exact test (Richard.son et al. , 1990), comparison to DMSO control (concentmtion zero above) 
1 probability testing al 5% significance level using Bonfcrroni correction for multiple dose compansons (0.05/3 doses) 
3 criteria based on Galloway et al. (1997), section 2 9.2 

Table 36. Chromosome aberrations induced in Chinese hamster ovary CHO-Kl cells 

exposed without metabolic activation to the 2-ring aromatic fraction of the diesel engine 

emission sample collected at 1000 rpm and 55 Nm (R 29+ 38) 
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Therefore, the 2-ring aromatic fractions of the fuel and two emission samples (3000 rpm/5 

Nm, 1000 rpm/55 Nm), when tested in the CHO cell chromosome aberration system 

without S9, caused a dose related reduction in mitotic rate over a range of relatively low 

concentrations. There was, however, no corresponding statistically significant increase in 

the total nwnber of aberrations for any of the three samples (Figure 53). The 2-ring 

aromatic fractions of diesel fuel and emission samples were therefore not clastogenic 

without metabolic activation at any of the concentrations assayed. 
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Figure 53. Summary of the percentage of cells with total aberrations induced in Chinese 

hamster ovary CHO-K I cells after exposure without metabolic activation to 2-ring 

aromatic fractions of diesel fuel R 26 and diesel emission samples R 32 (3000 rpm/5 Nm), 

and R 38 (1000 rpm/55 Nm) 
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3.8.-1.2 The 2-ring aromatic fractions assayed with metabolic activation 

A dose related cytotoxic effect over the full range of concentrations assayed was not 

observed for any of the three 2-ring aromatic fraction samples when assayed with S9, 

although almost complete cell killing was achieved in each case at the highest 

concentration tested of 200 ~glml. This made the effect of these fractions on cell viability 

more difficult to interpret and therefore the selection of doses for aberration testing less 

straightforward. The 2-ring fractions of the fuel (R26) and emission sample R 32 (3000 

rpm/5 Nm) were tested in the chromosome aberration assay over a wider range at 

concentrations of 0, 25, 50, 100, 150, and 200 ~glml. The reduction in cell viability for the 

second emission sample, R 29+ 38 ( I 000 rpm/55 Nm), was more marked and this sample 

was therefore tested at 0, 10, 20, 40, and 100 ~g/ml. Full aberration and mitotic rate scores 

are given in Tables 72, 74, and 76, Appendix B. 

A reduction in the mitotic index of the CHO cells with increasing concentration 

was observed for all three 2-ring samples with S9. The effect was slightly obscured by a 

low mitotic rate in the controls of 45/1000. For the fuel ring fraction there was an 

approximate 50 % reduction in mitotic rate at the highest concentration scored for 

aberrations (200 ~g/ml , Figure 54). At this concentration, the mitotic rate for emission 

sampleR 32 had fallen more sharply to 27 % of the control rate (Figure 55). For emission 

fraction R 29+ 38, the mitotic index was reduced to 59% at 40 ~g/ml , and to 17% at I 00 

~g/ml (Figure 56). 

For the first time, exposure of cells to emission sample fractions from different 

sources resulted in differing effects on the number of aberrations, and therefore 

clastogenicity. The number of chromosome aberrations in CHO-K 1 cells exposed to the 2-

ring fraction of diesel fuel increased with increasing fraction concentration when metabolic 

2 10 



activation was present (Figure 54). Aberrations rose from 2 % of cells in the solvent 

control, to 11 %at 25 J.tg/ml and fina lly to 14% at 200 J.tg/ml. The increase in the number 

of aberrations from control levels was statistically significant (P < 0.05) at 25 and 50 

J.tg/ml, and highly significant (P < 0.01) at 100 and 200 J.tg/ml (Table 37). As the 2-ring 

aromatic fraction of the fuel showed a statistically significant increase in aberrations at 

more than two concentrations when assayed with S9, this fraction met the criteria 

described in section 2.9.2 and was classified as clastogenic. 

The amount and type of aberrations were recorded after exposure of emission 

fraction R 32 to CHO cells, to a maximum concentration of 150 J.tg/ml (Figure 55). The 

significant cytotoxic effect exhibited at 200 J.tg/ml precluded the scoring of this 

concentration for aberrations. The total percentage of cells with aberrations remained 

within the 5 % background rate at all concentrations, and there was thus no significant 

increase (P > 0.05) in the total number of cells with aberrations (Table 38). Therefore the 

2-ring aromatic fraction of the emission sample collected at 3000 rpm and 5 Nm was not 

clastogenic when assayed with metabolic activation. 

For the 2-ring fraction R 29+ 38 ( 1000 rpm/5 Nm) the mitotic rate at the highest 

concentration tested of lOO J.tg/ml was too low (7/ 1000) to make the scoring of aberrations 

informative. Chromosome aberrations were therefore scored at concentrations of 0, 10, 20, 

and 40 J.tg/ml. As can be seen in Figure 56, the number of aberrations rose above the 5 % 

background rate at each of the three concentrations tested, to 8, 11 , and 9 % of cells with 

total aberrations. Although the increase in the number of aberrations was statistically 

significant (P < 0.05) at only one of the doses assayed, 20 J.tg/ml (Table 39), the fraction 

was classified as clastogenic as the percentage of cells with aberrations was increased 

above I 0 % at this dose (Galloway et al., 1997). 
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Figure 54. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-Kl cells after exposure with metabolic activation (rat liver S9 

fraction) to the 2-ting aromatic fraction of the diesel fuel (R 26) 

concentration no. cells with probability number of doses clastogenicity of 

(J..lg/ml) total aberrations pl significant sample 3 

/cells scored (? ~ 0 .0125) 2 

0 2/ 100 

25 11/ 100 5.240 X 10'3 

so 12/ 100 2.845 X 10'3 

100 13/ 100 1.525 X 10'3 

200 14/ 100 8.404 x 104 

4 positive 

1 Fisher's exact tesl (Richnrdson et al., 1990), companson to DMSO control (concentration zero above) 
2 probability testing at 5% significance level using Bonfcrroni correction for multiple dose comparisons (0.05/4 doses) 
1 criteria based on Galloway e/ al. (1997), section 2.9.2 

Table 37. Chromosome aberrations induced in Chinese hamster ovary CH O-K 1 cells 

exposed with metabolic activation (rat liver S9 fraction) to the 2-ring aromatic fraction of 

the diesel fuel (R 26) 
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Figure 55. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-K I cells after exposure with metabolic activation (rat liver S9 

fraction) to the 2-ring aromatic fraction of the diesel engine emission sample collected at 

3000 rpm and 5 Nm (R 32) 

concentration no. cells with probability number of doses clastogenicity 

(~g/ml) total aberrations pl significant of sample 3 

/cells scored (P ~ 0.0 125) 2 

0 21 100 

25 51 lOO 0. 141 

so 41 100 0.224 

100 51 100 0.141 

200 51 100 0. 141 

0 negative 

Fisher' s exactlesl (Richardson et al., 1990), companson to DMSU control (concentration zero ubo>e) 
2 probability testing at 5% stgnificance le\'el using Bonferroni correction for multiple dose compansons (0.05/4 dos<-'S) 
3 cnteria based on Gallo\\!1)' et al. (1997), sccuon 2 9 2 

Table 38. Chromosome aberrations induced in Chinese hamster ovary CHO-K I cells 

exposed with metabolic activation (rat liver S9 fraction) to the 2-ring aromatic fraction of 

the diesel engine emission collected at 3000 rpm and 5 Nm (R 32) 
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Figure 56. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-K I cells after exposure with metabolic activation (rat liver S9 

fraction) to the 2-ring aromatic fraction of the d iesel engine emission sample collected at 

I 000 rpm and 55 Nm (R 29+ 38) 

concentration no. cells with probability number of doses clastogenicity 

(1-!g/ml) total aberrations pi significant of sample 3 

/cells scored (P ~ 0.0167) 2 

0 3/ 100 

10 8/ 100 0.0681 

20 11 / 100 0.0 148 

40 9/ 100 0.0417 

positive 

Fisher ' s exact test (Richardson et al. , 1990), comparison to DMSO cont rol (concentration zero nboYc) 
2 probability test ing at 5% signilicance lc\'el usmg Bonferroni correction for multiple dose comparisons (0.05/3 doses) 
'criteria based on Galloway et al. ( 1997), section 2 9 2 

Table 39. Chromosome aberrations induced in Chinese hamster ovary CH O-K I cells 

exposed with metabolic activation (rat liver S9 fraction) to the 2-ring aromatic fraction of 

the diesel engine emission collected at 1000 rpm and 55 Nm (R 29+ 38) 

2 14 



In the chromosome aberration assay with S9, the 2-ring aromatic fractions exhibited 

differing effects on the percentage of CHO cells with aberrations. Exposure to all three 

samples caused a dose-related fall in mitotic index, although the concentrations over which 

tnis decrease was exhibited varied between samples. The 2-ring aromatic fraction R 32 

(3000 rpm/5 Nm) did not result in an increase of chromosome aberrations over normal 

spontaneous rates when assayed with S9. The second engine emission sample, R 29+38 

(1000 rpm/55 Nm), was more cytotoxic and was therefore tested for effect on aberrations 

at lower concentrations. The total number of cells with aberrations was increased to a 

maximum of ll %, which was statistically significant when compared to the solvent 

control. The 2-ring aromatic fraction of the diesel fuel (R 26), when exposed to the CHO 

cell system with S9, resulted in a statistically significant increase in the number of 

aberrations over controls at all concentrations tested (Figure 54). The 2-ring fraction of the 

diesel fuel and emission sampleR 29+ 38 (1000 rpm/55 Nm) were therefore clastogenic in 

CH O-K 1 cells in the presence of metabolic activation. 
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Figure 57. Summary of the percentage of cells with total aberrations induced in Chinese 

hamster ovary CHO-K 1 cells after exposure with metabolic activation (rat liver S9 

fraction) to the 2-ring aromatic fractions of diesel fuel R 26 and the diesel emission 

samples R 32 (3000 rpm/5 Nm) and R 29+ 38 (1000 rpm/55 Nm) 
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3.8.5 The 3+ -ringaromaticfractions 

The diesel fuel and two emission samples (collected at 3000 rpm/5 Nm and 1000 rpm/55 

Nm) were fractionated by HPLC to separate into different ring group fractions. The 3+ 

-ring fraction, containing a group of 3-ring and greater aromatic compounds, was then 

assayed for its mutagenicity in the chromosome aberration assay both with and without 

metabolic activation (results shown in Tables 77 to 80, Appendix B). The fractionation of 

the emission sample collected at 1000 rpm/55 Nm produced a very small sample of 3+ -

ring group compounds. A second engine collection and fractionation produced more 

sample to give combined total mass of 3.2 mg. This was sti ll insufficient to perform the 

fu ll range of testing, and was reserved until the results of the other 3-ring assays were 

known. The sample was then exposed to CHO cells in the chromosome aberration assay 

with S9 at concentrations of 0, 25, 50, and lOO J..lg/ml. Assay of this fraction however 

produced poor chromosome preparations which were unfortunately unsuitable for 

aberration scoring, and there was insufficient sample for a repeat test to be performed. 

There are therefore no results presented for the 3+ -ring fraction of the engine emission 

sample collected at 1000 rpm and 55 Nm. 

3.8. 5.1 The 3-ring aromatic fractions assayed without metabolic activation 

After initial cytotoxicity testing, the 3+ -ring fraction of the fuel R 27 and emission sample 

fraction R 33 (3000 rpm/5 Nm) were tested in the chromosome aberration assay without S9 

at concentrations of 0, 5, I 0, 20, and 40 J..lg/ml. The emission sample fraction R 33 was 

assayed additionally at 2.5 J..lg/ml. The mitotic index fell with increasing sample 

concentration for both 3+ -ring fract ions (Figures 58 and 59). The reduction followed a 

similar pattern in both samples, wi th a mitotic index of around 39 % of controls at 20 

J..lg/ml (the highest concentration scored for aberrations), and to less than 5% at 40 J..lg/ml. 
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The fall in mitotic rate with increasing diesel fuel 3+ -ring fraction concentration is 

shown in Figure 58. Along with the reduction in mitotic rate, an increase in the number of 

aberrations can be seen. The total percentage of cells with chromosome aberrations was 

raised above the 5 % background rate (to 8 %) at the highest concentration scored of 20 

J..lg/ml. This increase was not statistically significant (P > 0.05, Table 40), and occurred at 

a concentration which effected a greater than 50 % reduction in mitotic rate. Further 

separation of this fraction would be needed to fully assess clastogenicity, which may be 

masked here by cytotoxicity. 

Exposure of the 3+ -ring fraction of emission sample R 33 (3000 rpm/5 Nm) to 

CHO cells resulted in a reduction in mitotic rate with increasing concentration, shown in 

Figure 59. Corresponding with this fall in mitotic index was an increase in the number of 

chromosome aberrations with increasing ring fraction concentration. The total percentage 

of cells with aberrations was raised above the spontaneous 5 % level at all concentrations 

scored for aberrations, to a maximum of 9 % of cells with aberrations. The increase in 

aberrations was not statistically significant at any dose when probabilities were corrected 

for multiple dose comparison (P > o.os, Table 41 ). Prior to correction, however, the 

mcrease in aberrations to 9/l 00 at the highest dose of 20 J..lg/ml was significant (P = 

0.0417). ln addition, at the two lower doses assayed, the increase in aberrations gave a 

probability of close to 5 % (P = 0.0681 for both samples). The borderline increases in 

aberrations observed here for the 3+ -ring aromatic fraction of the diesel emission collected 

at 3000 rpm and 5 Nm indicates that further investigation into the clastogenicity of this 

sample is warranted. 
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Figure 58. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CH O-K 1 cells after exposure without metabolic activation to the 3+ -ring 

aromatic fraction of diesel fuel (R 27) 

concentration no. cells with probabi lity number of doses clastogenicity 

(J..Lg/tnl) total aberrations pi signi ficant of sample 3 

/cells scored (P s 0.0 167) 2 

0 3/ 100 

5 4/ 100 0.3610 

10 4/ 100 0.36 10 

20 8/ 100 0.0681 

0 negative 

1 Fisher·s exact test (Richardson et al., 1990), comparison to DMSO conlrol (conccnlrution zero above) 
1 probability testing a l 5% significunce level using 13onferront correction for muluplc dose comparisons (0.05/J doses) 
3 criteria based on Galloway et al. ( 1997), section 2.9 2 

Table 40. Chromosome aberrations induced in Chinese hamster ovary CHO-K 1 cells 

exposed without metabolic activation to the 3+ -ring aromatic fraction of diesel fuel (R 27) 
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Figure 59. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CH O-K I cells after exposure without metabolic activation to the 3+ -ring 

aromatic fraction of diesel engine emission sample collected at 3000 rpm and 5 Nm (R 33) 

concentration no. cells with probability number of doses clastogenicity 

(J.lg/ml) total aberrations P' signi ficant of sample 3 

/cells scored (P s 0.0167) 2 

0 3/ 100 

5 8/ 100 0.068 1 

10 8/ 100 0.068 1 

20 9/ 100 0.0417 

0 negat ive 

Fisher's exacllesl (Richardson et al., 1990), comparison to DMSO control (concentration 7cro above) 
1 prooob1lily testing al 5% significance levclusing13onferroni correction for multiple dose comparisons (0.05/3 doses) 
'crih:ria based on Galloway et al. ( 1997), section 2 9 2 

Table 41. Chromosome aberrations induced in Chinese hamster ovary CHO-K I cells 

exposed without metabolic activation to the 3+ -ring aromatic fraction of the diesel engine 

emission sample collected at 3000 rpm and 5 Nm (R 33) 
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3.8.5.2 The 3-ring aromatic fractions assayed with metabolic activation 

lnitial cytotoxicity testing in the presence of metabolic activation for the 3+ -ring fraction 

of the fuel R 27 gave inconclusive results in the critical concentration range. The 

cytotoxicity results for emission sample fraction R 33 (3000 rpm/5 Nm) were less 

irregular, but to ensure aberration testing included concentrations that effected a 50 % 

reduction in cell viability, a wider range of concentrations was selected. The 3+ -ring 

fractions were therefore tested at concentrations of 0, 25, 50, 100, and 200 ~-tg/ml in the 

presence of metabolic activation. The emission sample fraction was assayed additionally 

at 150 f.!g/ml. 

Both the fuel and the emission sample 3+ -ring fractions effected a dose related 

reduction in mitotic index (Figures 60 and 61 ), although the low control mitotic rate made 

the effect less clear. For the fuel fraction R 27, the mitotic rate was reduced to 67 % of 

controls at 100 f.!g/ml , with no mitoses at all detectable at 200 ~-tg/ml. The effect of the 

emission fraction on mjtotic rate was more marked. The number of mitoses fell to 51 %at 

100 flg/ml, with no detectable mitotic cells at either 150 or 200 f.!g/ml. Both samples were 

therefore scored for aberrations up to a concentration of lOO ~-tg/mJ . 

With the fall in mitotic rate, a corresponding increase in the percentage of cells 

with aberrations was seen for the 3+ -ring fraction of the fuel with S9 (Figure 60). The 

total number of aberrations rose from 13 % of cells at 25 f.!g/ml , to 16 % at 50 ~-tg/ml , and 

21% at 100 IJg/ml. The increase to 13% of cells with aberrations at 25 f.!g/ml was 

statistically significant when compared to the solvent control (P < 0.05, Table 42). At the 

highest concentrations assayed of 50 and 100 ~-tg/rnl , the rise in the number of aberrations 

over the solvent control was highly significant (P < 0.01). As there was a signjficant 

increase in the percentage of cells with aberrations at more than two doses, the 3+ -ring 

220 



fraction of the diesel fuel was classified as clastogenic m the presence of metabolic 

activation. 

In a similar response to the fuel 3+ -ring fraction, the percentage of cells with 

aberrations after exposure to emission fraction R 33 (3000 rpm/5 Nm) with S9 was 

increased over control levels (Figure 61 ). The increase in the number of aberrations was 

dose related, from 9 % of cells with aberrations at 25 J..lg/ml to 20 % of cells with 

aberrations at 100 J..lg/rnl. At the two higher concentrations assessed, 50 and L 00 J..lg/m 1, 

the increase in the number of aberrations over the solvent control was highly statistically 

significant (P < 0.0 I). As the 3+ -ring fraction R 33, when exposed to CHO cells in the 

presence of metabolic activation, resulted in a significant increase in the number of 

aberrations at two dose levels, this also was classified as an indirect-acting clastogen 

(Table 43). 
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Figure 60. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-K 1 cells after exposure with metabolic activation (rat liver S9 

fraction) to the 3+ -ring aromatic fraction of diesel fuel (R 27) 

concentration no. cells with probability number of doses clastogenicity 

(~g/ml) total aberrations pl significant of sample 3 

/cells scored (P :s; 0.0167) 2 

0 4/ 100 

25 13/ 100 0.0123 

50 16/ 100 2.405 X 10'3 

100 2 1/ 100 1. 176 x 1 o·3 

3 positive 

1 Fisher' s exact test (R.ichardson et al., 1990), comparison to DMSO control (conccntrnlion zero above) 
2 probability testing at 5% signi ficance level using Bonferroni correction for multiple dose comparisons (0.05/3 doses) 
3 criteria based on Gullmvay et nl. ( 1997), seclion 2.9.2 

Table 42. Chromosome aberrations induced in Chinese hamster ovary CHO-K 1 cells 

exposed with metabolic activation (rat liver S9 fraction) to the 3+ -ring aromatic fraction of 

diesel fuel (R 27) 
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Figure 61 . Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CH O-K l cells after exposure with metabolic activation (rat liver S9 

fraction) to the 3+ -ring aromatic fraction of diesel engine emission sample collected at 

3000 rpm and 5 Nrn (R 33) 

concentration no. cells with probability number of doses clastogenicity 

(~g/ml) total aberrations pl significant of sample 3 

/cells scored (P ~ 0.0167) 

0 4/ 100 

25 9/ 100 0 .0830 

50 18/ 100 7.480 x 104 

100 20/ 100 2.213 X 104 

2 positive 

Fisher's exact lest (Richardson et al., 1990), comparison to DMSO control 
2 probability testing at 5% s•gni!icancc lc\·el using Bonferrom correction for multiple dose comparisons (0.05/3 doses) 
3 cnteria based on Gallo\~O} et al. ( 1997), sectwn 2.9.2 

Table 43. Chromosome aberrations induced in Chinese hamster ovary CH O-K 1 cells 

exposed with metabolic activation (rat liver S9 fraction) to the 3+ -ring aromatic fraction of 

engine emission sample collected at 3000 rpm and 5 Nm (R 33) 
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3.8.5.3 Summary of the 3+ -ringfractions 

Without metabolic activation, exposure of CHO cells to the 3+ -ring fractions of the fuel 

and R 33 (3000 rpm/5 Nm) did not result in a statistically significant increase in aberration 

levels over the solvent control. The percentage of cel ls with aberrations was raised above 

the background rate for one concentration of the fuel 3+ -ring fraction (20 J..lg/ml), and for 

all three concentrations scored for the emission sample 3+ -ring fraction. The high level of 

toxicity of these two fractions may be masking a mutagenic effect. When the 3+ -ring 

fractions of the fuel and the emission sample collected at 3000 rpm/5 Nm were assayed in 

the presence of S9, they resulted in a highly significant increase in the total number of 

aberrations at 2 or more doses. Both of these 3+ -ring fractions are therefore clastogenic in 

CH O-K I cells with metabolic activation. The aberration results are summarised in Figure 

62, below. 
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Figure 62. Summary of the chromosome aberrations induced in Chinese hamster ovary 

CH O-K I cells after exposure without, and with, metabolic activation (rat liver S9 fraction) 

to the 3+ -ring fract ions of diesel fuel (R27) and the engine emission sample collected at 

3000 rpm and 5 Nm (R 33) 

224 



3.8.6 The polar fractions 

The polar fractions of seven emission samples were assayed for their mutagenicity in the 

chromosome aberrations assay. Fractionation of the fuel did not produce a polar fraction 

of any significance, which corresponded with the composition data provided by the fuel 

suppliers. The polar fractions of the first three engine emission samples, ES 39+42 (3000 

rpm /5 Nm), ES 45+48 (1000 rpm/55 Nm) and ES 51+54 (1000 rpm/5 Nm) were assayed 

both with and without metabolic activation (results shown in Tables 81 to 92, Appendix 

B). 

Following the method of Galloway et al. ( 1987), one hundred metaphase cells from 

each dose were normally scored for the presence of aberrations during this study. To 

confirm the positive results exhibited, and to assess the conformity between replicate 

cultures, one hundred cells were scored from each of two replicate cultures for the three 

polar emission fractions described above. Homogeneity between replicate cultures was 

tested using the binomial dispersion test (section 2.9.1 , Richardson et al. , 1990). No 

evidence of heterogeneity was found (results shown in Tables 82, 84, 86, 88, 90, and 92, 

Appendix B) and therefore the aberration data from replicates were combined prior to 

significance testing using Fisher' s exact test. From the final series of engine runs, the 

polar fractions of four emission samples collected at 2000 rpm/30 Nm (ES 107), 2000 rpm 

/55 Nm (ES 116), 3000 rpm/30 Nm (ES 119) and 3000 rpm/ 55 Nm (ES 125) were assayed 

for their effect on chromosome aberrations in the absence of metabolic activation only 

(Tables 93 to 96, Appendix B). 
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3.8.6.1 The polar fractions collected during June 1996, assayed without metabolic 

activation 

Polar emission fractions from a total of seven different engine emission samples were 

assayed for their mutagenicity in the chromosome aberration assay without S9. During 

cytotoxicity assays (section 3.7.6), almost matched effects on cell viability were exhibited 

by each of the polar fractions. Therefore al l of the fractions were assayed for aberrations at 

concentrations of 5, 10, 20, and 30 ~-tg/ml. An additional concentration of 1 11g/ml was 

included in the firs( series of testing, and was analysed for one sample only (ES 51 +54, 

1000 rpm/5 Nm). 

When tested in the CHO cell chromosome aberration assay, the polar fraction 

ES 39+42 (3000 rprn/5 Nm) exhibited a concentration dependant reduction in mitotic rate 

(Figure 63). The number of mitoses fell from average 53.5/1000 in the solvent controls to 

23 .5/1000 at 30 ~-tg/ml polar fraction concentration, the highest dose tested (a decrease in 

mitotic rate of approximately 44 %). At 5 and 10 ~-tg/ml , there was no increase in the 

percentage of ce11s with aberrations over the expected background rate of 5 %. At 20 

~-tg/ml fract ion concentration, there was a sharp increase in the number of aberrations to 19 

%, with a further increase at 30 ~-tg/ml to mean 25 %. At both these concentrations, the 

increase in the number of aberrations over control levels was highly significant (P < 0.0 1, 

Table 44). With two positive doses, the polar fraction of the engine emission collected at 

3000 rpm and 5 Nm was classified as clastogenic without S9, and therefore as a direct 

acting clastogen. 

Over the range of concentrations tested, the polar fraction ES 45+48 (1000 rpm/55 

Nm) effected a dose dependant reduction in mitotic index, to around 32 % of the control 

level at 30 ~-tg/ml (Figure 64 ). The number of chromosome aberrations found in cells after 
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exposure to this polar fraction remained below 5 % at doses of 5 and 10 Jlg/ml, and thus 

they were not different statistically from the solvent control. Once the concentration was 

increased to 20 Jlg/ml, the number of aberrations rose significantly to 26/ 200, with a 

further increase at 30 ).!g/ml to 43/ 200 - a dose related increase in the number of 

aberrations. At both the higher doses, the increase in the number of aberrations over 

control levels was highly significant (P < 0.0 1, Table 45). The polar fraction of the diesel 

engine emission collected at 1 000 rpm and 55 Nm was therefore clastogenic in the in vitro 

chromosome aberration assay without metabolic activation. 

The mitotic index of the CHO cells fell with increasing polar fraction concentration, after 

exposure of ES 51 +54 (1000 rpm/5 Nm). Whilst a similar response to polar fTactions ES 

39+42 and ES 45+48, the reduction in the number of mitoses in this case was more 

marked. The mitotic rate at 20 )lg/ml was reduced to 34 % of the control rates, and to only 

15 % at 30 Jlg/ml (Figure 65). A dose related increase in the percentage of cells with 

chromosome aberrations was exhibited over the full range of concentrations tested with ES 

51. At concentrations of l , 5, and I 0 Jlg/ml, the number of aberrations was increased 

above the 5% expected spontaneous rate, to a maximum of 8.5% of cells with aberrations. 

These increases were not, however, statistically significant when compared to the solvent 

controls (P > 0.05, Table 46). Increases in the percentage of cells with aberrations were 

higher at 20 )lg/ml (to 19% of cells) and at 30 Jlg/ml (to mean 26.5 % of cells). At these 

higher concentrations the increase in the numbers of aberrations was highly significant (P 

< 0.01) in both cases compared to controls. The polar fraction of the engine emission 

sample collected at 1000 rpm and 5 Nm was therefore clastogenic to CJ-10-K 1 cells 

without metabolic activation. 
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Figure 63. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-K I cells after exposure without metabolic activation to the polar 

fraction of the diesel engine emission sample collected at 3000 rpm and 5 Nm (ES 39+42) 

con cent ration no. cells wi th probability number of doses clastogenicity 

(~lg/ml) total aben-ations pt significant of sample 3 

/cells scored (P $ 0.0125) 2 

0 6/ 200 

5 7/200 0.394 

10 9/200 0.223 

20 38/200 6.495 X 10·M 

30 50/200 1.742 X 10·11 

2 positive 

Fisher·s exact test tR1clmrdson et al. , 1990), comparison to DMSO control {concentration LCro abo\c) 
1 probabiiH) tcshn~ at 5% significance Jc,·cl usmg Bonferroru correcllon for mulllplc dusc compansons tO 05/4 doses) 
'criteria ha sed on Ciu llo\\ ay et al. ( 1997), section 2 9 2 

Table 44. Chromosome aberrations induced in Chinese hamster ovary Cl-10-Kl cell s 

exposed without metabolic activation to the polar fraction of diesel engine emission sample 

collected at 3000 rpm and 5 Nm (ES 39+42) 
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Figure 64. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-K I cells after exposure without metabolic activation to the polar 

fraction of the diesel engine emission sample collected at 1000 rpm and 55 Nm (ES 45+48) 

concentration no. cells with probabil ity number of doses clastogenicity 

(J.lg/ml) total aberrations P' signi ficant of sample 3 

/cells scored (P ~ 0.0 125) 2 

0 7/200 

5 8/ 200 0.400 

10 10/200 0.236 

20 26/200 2.493 X I 04 

30 41 / 200 3.535 X J0-7 

2 positive 

Fisht:r's C'(I!Ct test (Richardson et al., 1990), companson to DMSl I control (concentmtion Lcro above) 
2 probabilil} testing at 5% sigmlicancc level usmg l3onferrom cnrrccllon for multiple dose comparisons (0 05/4 doses) 
3 criteria based on Gallm\ a) et al. ( 1997), section 2.9 2 

Table 45. Chromosome aberrations induced in Chinese hamster ovary CHO-K 1 cell s 

exposed without metabolic activation to the polar fraction of diesel engine emission sample 

collected at 1000 rpm and 55 Nm (ES 45+48) 
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Figure 65. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CH O-K l cells after exposure without metabolic activation to the polar 

fraction of the diesel engine emission sample collected at 1000 rpm and 5 Nm (ES 51 +54) 

concentration no. cells with probability number of doses clastogenicity 

(~glml) total aberrations P' significant of sample 3 

/cells scored (P :-:::; 0.01) 2 

0 7/200 

14/200 0.062 

5 17/200 0.019 

10 16/200 0.028 

20 38/200 2.376 X 10'7 

30 53/200 9.814 X 10-12 

2 positive 

Fisher's exact test (Richardson e/ al., 1990), comparison to DMSO control (concentration zero above) 
2 probabtlity tesllng at 5% si!!Jlilicance level usmg Bonferrom correction for multtple dose comparisons (0.05/4 doses) 
3 cri tcna based on Galloway e/ al. (l997), secllon 2.9 2 

Table 46. Chromosome aberrations induced in Chinese hamster ovary CHO-K 1 cells 

exposed without metabolic activation to the polar fraction of engine emission sample 

collected at 1000 rpm and 5 Nm (ES 51 +54) 
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3.8.6.2 The polar fractions collected during January 1997, assayed without metabolic 

activation 

After exposure to the polar fraction ES 107 (2000 rpm/30 Nm), the mitotic rate of cells 

was unchanged at the lower concentrations (Figure 66). A reduction in mitotic rate was 

evidenced at the higher concentrations of 20 and 30 J..lg/ml (to approximately 50 % of the 

control rate). The percentage of cells with total chromosome aberrations rose steadily with 

increasing polar fraction concentration, from total 1 aberration at 5 J..lg/ml, to a significant 8 

aberrations at 10 J..lg/ml (P < 0.05), 20 aberrations at 20 J..lg/ml, and finally 24 aberrations at 

30 J..lg/ml (both highly significant, P < 0.0 I, Table 47). With three positive doses, the polar 

fraction ES 107 (2000 rpm/30 Nm) was clearly clastogenic without metabolic activation. 

The effect of the polar sample ES 116 (2000 rpm/55 Nm) on mitotic rate was 

similar to the previous polar sample, ES 107, with a near control rate until 10 J..lg/ml and 

then a dose related fall at subsequent concentrations. The reduction at the highest 

concentration was, however, less marked, being 69 % of the control mitotic index. The 

number of chromosome aberrations increased steadily with increasing fraction 

concentration (Figure 67). At 5 and 10 J..lg/ml, the percentage of cells with aberrations was 

not signjficantly increased from the background level. At the higher concentrations, the 

polar fraction has a clear mutagenic effect, with the percentage of cells with total 

aberrations increased to 18 at 20 J..lg/ml and 2 1 at 30 J..lg/ml. The increase in the number of 

aberrations at both of these doses was highly significant (P < 0.01) when compared to 

controls (Table 48). With two significant doses, the polar fraction ES 116 (2000 rpm/55 

Nm) was classified as clastogenic in CHO-K l cells without metabolic activation. 

After exposure to the polar fraction ES 119 (from emission sample collected at 

3000 rpm and 30 Nm), the mitotic rate in CHO cells was largely unaffected at 5 and 10 
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Jlg/ml (Fi!:,JUre 68). At higher concentrations, the mitotic index was reduced by the polar 

fraction in a dose dependant manner. At the highest concentration assayed, the mitotic rate 

was 41 % of that recorded in the control. The percentage of cells with chromosome 

aberrations rose steadily from within spontaneous rates at 5 Jlg/ml, to l 0 % of cells with 

aberrations at I 0 Jlg/ml (not statistically significant, P > 0.05). At 20 J..tg/ml and 30 J..tg/ml 

the percentage of cells with aberrations was 17 and 24 % respectively, both of which were 

highly signi ftcant (P < 0.0 I) compared to the control (Table 49). The polar fraction of the 

engine emission collected at 3000 rpm and 30 Nm, when assayed without S9, was 

therefore clastogenic. 

ln the polar fraction of the engine emission collected at 3000 rpm and 55 Nm (the 

most extreme polar fraction assayed in terms of engine conditions) the effect on cultured 

CHO cells in terms of mitotic rate was more clearly dose dependant than for other polar 

fractions, with a fall in mitotic index from the lowest concentration tested (Figure 69). In 

similarity with other polar fractions, the effect on dividing cells was more severe at the 

higher concentrations tested, leading to a mitotic rate that was 44 % of the control rate at 

30 J..tg/m I. The effect of polar fraction ES 125 exposure on chromosome aberrations was 

comparable to previous polar fractions. No effect could be detected at 5 ~Lglml, a slight but 

non-significant effect at 10 J..tg/ml, and then highly significant increases (P < 0.01) in the 

percentage of cells with chromosome aberrations at 20 and 30 J..tg/ml (Table 50). The total 

number of aberrations detected at the highest concentration was 29, which were found in 

23 % of cells overall . The polar fraction ES 125 was therefore clastogenic without 

metabolic activation. 
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Figure 66. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-Kl cells after exposure without metabolic activation to the polar 

fraction of the diesel engine emission sample collected at 2000 rpm and 30 Nm (ES 1 07) 

concentration no. cell s with probability number of doses Clastogenicity 

(!!g/ml) total aberrations pi significant of sample 3 

/cells scored (P ~ 0.0 125) 2 

0 1/ 100 

5 1/ 100 0.501 

10 8/ 100 9 .5 10 x 10·3 

20 20/ 100 2 .085x 10-6 

30 24/ 100 9 .358 X 10-l! 

3 positive 

F1sher's exact test (Richardson et al. , 1990), companson to OM. 0 control (concentmtion zero abo\e) 
1 probability testing at 5% Sl[llli licancc le ,·clusUJg 13onferroni correction li.lr multiple dose comparisons (0 05/4 doses) 
3 criteria based on Galloway et nl. (1997), section 2 9 2 

Table 47. Chromosome aberrations induced in Chinese hamster ovary CH O-K 1 cells 

exposed without metabolic activation to the polar fraction of the diesel engine emission 

sample collected at 2000 rpm and 30 Nm (ES 1 07) 
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Figure 67. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CH O-K l cells after exposure without metabolic activation to the polar 

fraction of the diesel engine emission sample collected at 2000 rpm and 55 Nm (ES 116) 

concentration no. cells with probability number of doses clastogenicity 

(~glml) total aberrations pi significant of sample 3 

/cells scored (P ~ 0.0 125) 2 

0 1/ 100 

s S/ 100 0.061 

10 6/ 100 0.033 

20 18/ 100 9.341 X 10~ 

30 2 1/ 100 9.726 X 10-7 

2 positive 

Fisher's exact test (Richardson et al., 1990), comparison to DMSO control (concentration zero above) 
1 probab1hty tcstmg ot 5% s1gnilicance le\ e) usmg 13onferrom correction for multiple dose comparisons (0.0514 doses) 
1 cntena based on Cla lloway et al. ( 1997), section 2 9 2 

Table 48. Chromosome aberrations induced in Chinese hamster ovary CHO-Kl cells 

exposed without metabolic activation to the polar fraction of the diesel engine emission 

sample collected at 2000 rpm and 55 Nm (ES 116) 
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Figure 68. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CH O-K l cells after exposure without metabolic activation to the polar 

fraction of the diesel engine emission sample collected at 3000 rpm and 30 Nm (ES 119) 

concentration no. cells with probability number of doses clastogenicity 

(J.lg/ml) total aberrations P' significant of sample 3 

/cells scored (P ~ 0.0 125) 2 

0 3/ 100 

5 4/ 100 0.361 

10 10/ 100 0.025 

20 17/ 100 4.358 X 104 

30 24/ 100 3.937 X 10~ 

2 positive 

Fisher's exact test (Richardson et al., 1990), comparison to DMSO control (concentration zero above) 
1 probability testing at 5% significance level usmg Bonferroui correction for multiple dose comparisons (0 05/4 doses) 
3 criteria based on Galloway et al. (1997), section 2 9.2 

Table 49. Chromosome aberrations induced in Chinese hamster ovary CHO-Kl cells 

exposed without metabolic activation to the polar fraction of the diesel engine emission 

sample collected at 3000 rpm and 30 Nm (ES 119) 
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Figure 69. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CH O-K 1 cells after exposure without metabolic activation to the polar 

fraction of the engine emission sample collected at 3000 rpm and 55 Nm (ES 125) 

concentration no. cells w ith probability number of doses c lastogenicity 

{~-tg/ml) to tal aberrations pl significant of sample 
3 

/cells scored (P ~ 0.0 125) 2 

0 3/ 100 

5 4/ 100 0.36 1 

10 7/ 100 0. 108 

20 20/ 100 6.224 X 10-5 

30 23/ 100 7.990 X 10-6 

2 positive 

1 fisher 's exact test tRichan:lson et al., 1990), comparison to DMSO control (concentration zero aho\'e) 
1 probabili ty testing at 5% significance lc,·cl using IJonfcrrom correction for multiple dose comparisons (0.05/4 doses) 
J criteria based on Gallo\\ay et al. ( 1997), section 2.9 2 

Table 50. Chromosome aberrations induced in Chinese hamster ovary CH O-K I cells 

exposed without metabolic activation to the polar fraction of the diesel engine emission 

sample collected at 3000 rpm and 55 Nm (ES 125) 
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Figure 70. Number of chromosome aberrations induced in Chinese hamster ovary CHO

K I cells after exposure without metabolic activation to the polar fractions of seven engine 

emission samples collected over a range of engine conditions of speed and load 

To summarise, all seven polar fractions from engine runs at different speeds and loads 

were assayed for their direct-acting mutagenicity in the chromosome aberration assay. The 

effect on mitotic rate followed a similar pattern for each fraction . There was little or no 

reduction in mitotic index at the lower concentrations, followed by a sharper fall at the 

higher concentrations. At 30 J..l.g/ml, the mitotic index averaged 43 % of the control mitotic 

index, although within this were two extremes - 16 % of control for polar fraction ES 

51 +54 (I 000 rpm/5 Nm) and 69% of control for ES 116 (2000 rpm/55 Nm). The effect of 

exposure to the polar fractions on the percentage of cells with chromosome aberrations is 

shown in Figure 70, above. The traces for fractions from engine emissions collected at 

widely differing conditions of speed and load are very similar to each other in most cases. 

At the highest concentration assayed, a slightly greater number of aberrations were 

observed after exposure to fractions from emission samples collected at low engine load 

(5 Nm). The onJy outlying curve is that for ES 45+48 (1000 rpm/55 Nm), which appears 

to exhibit a marginally less mutagenic effect than the other fractions. 
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3.8.6.3 The polar fractions assayed with metabolic activation 

The polar fraction of the three total emission samples collected during the engine run series 

of June 1996 were assayed for mutagenicity in the chromosome aberration assay with rat 

liver S9. Cytotoxicity assays in the presence of metabolic activation showed each fraction 

to have an inconsistent effect on cell viability. The fractions were therefore assayed for 

aberrations over a wider range of concentrations: 25, 50, I 00, and 150 J.lg/ml. Because of a 

small initial sample mass, fraction ES 51 +54 (from the emission sample collected at 1000 

rpm and 5 Nm) was assayed to a maximum concentration of 100 J.lg/ml only. 

There was no effect on mitotic rate of the cultured cells after exposure to the polar 

fraction ES 39+42 (3000 rpm/5 Nm) with S9 at 25 J.!g/ml. At subsequent higher doses, the 

mitotic rate fell in a dose dependant manner, to 54 % of the control mitotic index at the 

highest concentration of 150 J.lg/ml (Figure 71 ). The number of chromosome aberrations 

scored was within normal spontaneous rates at concentrations of 25 and 50 J.lg/ml (and 

therefore non-significant, P > 0.05). At \00 J.lg/ml the total number of aberrations rose to 

23 (from 200 metaphases), and a further increase to 36 (again from 200 metaphases) was 

seen at 150 J.lg/ml (Figure 3.7.14). The corresponding increase in the percentage of cells 

with aberrations was highly significant (P < 0.01) at both higher doses when compared to 

controls (Table 51). The polar fraction of ES 39+42 was therefore designated as 

clastogenic in the in vitro chromosome aberration assay with metabolic activation. 

There was a gradual fall in mitotic rate in cultures exposed to polar fraction ES 

45+48 ( lOOO rpm/55 Nm) with increasing fraction dose in the presence of S9. At the 

highest dose of 150 J.lg/ml, the mitotic index of treated cells was reduced to 49 % of the 

control rate (Figure 72). The number of chromosome aberrations scored after exposure to 

polar fraction ES 45+48 rose above background levels from 16 in 200 cells at 

concentration I 00 J.lg/ml to 26 in 200 cells at 150 J.lg/ml. The increases in the percentage 
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of cells with aberrations were statistically significant at 100 J.lg/ml (P < 0.05), and highly 

significant at 150 J.lg/ml (P < 0.01). With two clear positive dose levels (Table 52), the 

polar fraction of the engine emission collected at 1000 rpm and 55 Nm was classified as 

clastogenic when assayed in the presence of metabolic activation. 

A dose dependant reduction in mitotic index was observed in cultures exposed to 

the polar fraction ES 51 +54 ( 1000 rpm/5 Nm) from a concentration of 50 J.lg/ml in the 

presence of S9. At 100 J.Lg/ml, the highest concentration assayed, the number of mitoses 

had fallen to 50 % of the control level (Figure 73). The number of chromosome 

aberrations was increased to 29 out of 200 cells at I 00 J.lg/ml, a highly significant increase 

over the control level (P < 0.01, Table 53). At lower concentrations assayed, the number 

of aberrations remained within expected background values, with no significant increases. 

Although this polar fraction was positive at only one concentration, as the percentage of 

cells with total aberrations was increased above I 0 %, it was classified as clastogenic. The 

testing at a higher concentration was not possible because of restricted sample mass 

available. Repeat engine sampling and fractionation rounds would enable testing at higher 

concentrations to provide a more conclusive data set. 
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Figure 71. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CH O-K I cells after exposure with metabolic activation (rat liver S9 

fraction) to the polar fraction of the diesel engine emission sample collected at 3000 rpm 

and 5 Nm (ES 39+42) 

concentration no. cells with probability number of doses clastogenicity 

(!lg/ml) total aberrations pi significant of sample 3 

/cells scored (P ~ 0.0125) 2 

0 51200 

25 6/200 0.386 

50 6/200 0.386 

100 20/200 9.361 X 10-1 

I SO 33/200 4.156x 10-7 

2 positive 

1 
Fisher's exact test (Richardson et al. , 1990), comparison to DMSO control (concentration zero alxwe) 

2 probability testing ut 5% significance lc,·c lus ing Bonferroni correction for multiple dose comparisons (0.05/4 doses) 
3 criteria based on Galloway et al. ( 1997), secllon 2.9 2 

Table 51. Chromosome aberrations induced in Chinese hamster ovary CHO-Kl cells 

exposed with metabolic activation (rat liver S9 fraction) to the polar fraction of the diesel 

engine emission sample collected at 3000 rpm and 5 Nm (ES 39+42) 
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Figure 72. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-K 1 cells after exposure with metabolic activation (rat liver S9 

fraction) to the polar fraction of the diesel engine emission sample collected at 1000 rpm 

and 55 Nm (ES 45+48) 

concentration no. cells with probability number of doses clastogenicity 

(Jlg/ml) total aberrations P' significant of sample 3 

/cells scored (P ~ 0.0125) 2 

0 5/ 200 

25 10/ 200 0.101 

50 9/200 0.147 

lOO 15/200 0.012 

ISO 26/200 3. 11 7 X 10'5 

2 positive 

Fisher's exact test (Richardson et al., 1990), comparison to DMSO control tconccntration zero a hove) 
2 probabil ity testing at 5% significance level using Flnnferroni correction for multiple dose comparisons (0.05/4 doses) 
3 criteria based on Galloway et a/. (1997), section 2.9.2 

Table 52. Chromosome aberrations induced in Chinese hamster ovary CH O-K 1 cells 

exposed with metabolic activation (rat liver S9 fraction) to the polar fraction of the diesel 

engine emission sample collected at I 000 rpm and 55 Nm (ES 45+48) 
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Figure 73. Mitotic rate and number of chromosome aberrations induced in Chinese 

hamster ovary CHO-K 1 cells after exposure with metabolic activation (rat liver S9 

fraction) to the polar fraction of the diesel engine emission sample collected at 1000 rpm 

and 5 Nm (ES 51+54) 

concentration no. cells with probability number of doses clastogenicity 

(Jlg/ml) total aberrations pi significant of sample 3 

/cells scored (P s; 0.0167) 2 

0 5/200 

25 6/200 0.386 

50 8/200 0.208 

lOO 29/200 5.118 X 10-{; 

positive 

Fisher's exnct test (Richardson et nl., 1990), comparison to DMSO control (concentration zero above) 
2 probability testing at S% significance level using 13ouferroni correction for multiple dose comparisons (0.05/3 dost.'S) 
3 criteria based on Galloway et nl. l)997), section 2.9.2 

Table 53. Chromosome aberrations induced in Chinese hamster ovary CHO-Kl cells 

exposed with metabolic activation (rat liver S9 fraction) to the polar fraction of the diesel 

engine emission sample collected at 1000 rpm and 5 Nm (ES 51+54) 
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Figure 74. Number of chromosome aberrations induced in Chinese hamster ovary CHO

Kl cel ls after exposure with metabolic activation (rat liver S9 fraction) to the polar 

fractions of three diesel engine emission samples collected at 3000 rpm/5 Nm, I 000 

rpm/55 Nm, and I 000 rpm/5 Nm 

To summarise, the polar fractions of all three engine emissions assayed caused a dose 

dependant reduction in mitotic rate over a range of concentrations when tested in the 

presence of metabolic activation. A fall to an approximate 50 % of the control mitotic 

index was exhibited at the rughest concentrations tested. The effect of exposure on the 

number of aberrations is shown together in Figure 74, above. The increase in the number 

of aberrations scored at the highest dose was highly significant in each case. For ES 39+42 

and ES 45+48, there were significant increases at two or more doses, and both were 

therefore classified as clastogenic in the presence of metabolic activation. Testing of ES 

51 +54 was restricted due to its sample mass, although the graph clearly shows that the 

increase in aberrations seen at I 00 J...lg/ml exceeds that of the other two polar fractions. 
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3.9 Summary of diesel engine emission fraction clastogenicity in CHO-Kl cells 

A swnmary table of all diesel emission sample fractions assayed and their clastogenic 

potential observed in Chinese hamster ovary CHO-Kl cells is shown in Figure 75. 

Fraction types in which no clastogenicity was observed are unshaded (for example 

aliphatic fractions of both diesel fuel and emission samples). Fractions types where some 

weak clastogenic activity was observed are lightly shaded (for example 3+ -ring fractions 

assayed without metabolic activation), and full shading is given in areas where a clearly 

positive clastogenic activity was observed (for example polar fractions). 

3.10 Overview of chromosome aberration type observed in CHO-Kl cells in response to 

diesel emission fraction exposure 

The number and type of chromosome aberrations observed in CH O-K l cells after exposure 

to the fractions of diesel emissions were identified and recorded following the 

classification given by Dean and Danford (1984, section 2.6.4), and are given in full in 

Appendix B. Photographs of the type of simple aberrations (including gaps and breaks) 

and complex aberrations (dicentric chromosomes and exchanges) that were observed are 

shown in Section 3.4. A comparison of the ratios of simple to complex aberrations 

observed in positive emission samples is shown in section 3.10.1. Finally, as well as the 

standard types of simple and complex chromosomal aberrations, aberrant cells were 

observed showing evidence of centromeric disruption after exposure to polar fractions of 

diesel engine emissions, which is discussed in section 3.1 0.2. 
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Figure 75. Summary of diesel fuel and engme emtsston samples assayed and their 

resultant clastogenic activity in the chromosome aberration assay in Chinese hamster ovary 

CH O-K 1 cells, assayed both with and without metabolic activation (rat liver S9 fract ion) 
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3.10.1 Aberration types observed in c/astogenicfractions 

The proportion of simple type to complex type chromosome aberrations in the diesel fuel 

and engine emission fractions found to be clastogenic was examined. Although numbers 

in some fractions were small, the proportions within each group of compounds was 

relatively consistent, for example the three polar fractions assayed produced an average of 

1.5 : 1 simple aberrations to complex aberrations, with a range of 1.3 : 1 to 1. 7 : I. 

Distinctive differences between proportions produced by the alternate groups of 

compounds were revealed (Figure 76). The figure shows that for the polar group of 

compounds, there was a clear excess of simple type aberrations to the complex type 

( 1.6:1 ). This was also true for the polar fractions when assayed with metabolic activation, 

although to a slightly lesser extent ( 1.5:1 ). 

In contrast to the clastogenic effect of the polar fractions, the 2-ring group 

compounds effected an excess of complex type aberrations when assayed with S9. The 

complex aberrations were more than twice the number of simple aberrations for the 2-ring 

fractions (1:2.1 simple:complex). The clastogenic 3+ -ring fractions, when assayed with 

S9, produced almost equal numbers of simple to complex aberrations (I : l. l ), a differing 

ratio again to those already described. 
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Figure 76. The ratios of simple to complex chromosome aberrations induced in Chinese 

hamster ovary CHO-K I cells after exposure to clastogenic fractions of diesel engine fuel 

and emission samples (polar group compounds, polar group compounds with rat liver S9 

metabolic activation, 2-ring aromatic group compounds with S9, and 3+ -ring aromatic 

group compounds with S9) 

3./0.2 Centromeric disruption after exposure to the polar fractwns of diesel engine 

emissions 

Each of the polar fractions of the diesel engine emission samples, when assayed without 

S9, caused a breakdown of the chromosome structure to varying degrees in up to 5 % of 

cell s. This was tenned centromeric disruption of the CH O-K I cell chromosomes. A range 

of cells were visible over a single slide showing DNA and associated chromosomal 

proteins with progressive disruption of chromosome architecture (Figures 77a to 78b). In 

what appeared to be the latter stages of separation, chromosomes could not be identified, 

the remains appearing to be fragments of DNA and associated proteins. A similar effect 

has been observed in Chinese hamster ovary chromosome exposed to sodium arsenite 

(Radha and Natarajan, 1998). 
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(a) stage 1 centromeric disruption 

(b) stage 2 centromeric disruption 

Figure 77. Centromeric disruption of Chinese hamster ovary CHO-Kl cells after exposure 

to the polar fraction of diesel engine emission samples collected over a range of engine 

speed and load conditions. Apparently sequential disruption of the chromosome 

architecture is shown through Figure 77(a) to 78(b). 
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(a) stage 3 centromeric disruption 

• 
• 
4 

(b) stage 4 centromeric disruption 

Figure 78. Centromeric disruption of Chi ne se hamster ovary CH O-K 1 cells after exposure 

to the polar fraction of diesel engine emission samples collected over a range of engine 

speed and load conditions. Apparently sequential disruption of the chromosome 

architecture is shown through Figure 77(a) to 78(b). 
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4. DISCUSSION 
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4.1 Metllodology variatiotzs and issues raised during tile investigation 

4. 1.1 11Je diesel engine emission sampling method 

There have been a number of different systems developed to sample diesel exhaust 

emissions. The choice of sampling system is important in that the method of collection 

may produce samples with different composition, for example through preferential 

collection of certain diesel group compounds or through artefact formation. The Total 

Exhaust Solvent Scrubbing Apparatus (TESSA), used in this study, was originally 

designed to aid in the determination of the origin of the components of diesel engine 

exhaust emissions. The design therefore necessitates the sampling apparatus being as close 

to the combustion chamber as possible (Trier, 1988). The rapid removal of the solvent 

from the exhaust stream is designed to prevent artefact formation. One possible criticism 

of this system is that emission samples collected may not therefore be representative of the 

emissions actually expelled from exhaust pipes of diesel powered vehicles, which are 

diluted with air as they pass along the exhaust. During the developmental work for 

TESSA, Trier ( 1988) did find that extension of the sample transfer tube length to simulate 

an exhaust system lead to alteration of the emission sample collected. Whilst the aromatic 

and polar groups of compounds appeared largely unchanged, there was a 40 % reduction in 

aliphatic compounds. Hayano et al. ( 1985) observed a similar reduction in aliphatic 

compounds sampled from the combustion chamber directly in comparison to aliphatic 

compounds sampled from the exhaust. Reduction in the aliphatic fraction does not 

necessarily detract from suitability of the TESSA sampling method for genotoxicity testing 

of diesel emissions. The aliphatic fraction of diesel exhaust emissions has been suggested 

to have little mutagenicity associated with it when assayed in bacteria (Lewtas, 1988; 

Schuetzle et al., 1980). This has been confinned by the present study for mammalian cells 

(section 3.8.1 ), at least for the aliphatic fraction from an engine running at 3000 rpm speed 

and under 5 Nm load. Therefore an increase in the aliphatic component post combustion 
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chamber may not be significant in assessing genotoxicity of diesel emissions. It would 

seem to be more important that the biologically significant fractions of aromatic and polar 

group compounds are largely unaltered (Trier, 1988), although a full characterisation has 

not been performed. Characterisation and comparison of near combustion chamber and 

exhaust pipe expelled aromatic and polar b'TOUP compounds would be an important area of 

further work. 

In the major alternative to TESSA, the United States Environmental Protection 

Agency dilution tunnel sampling system, an attempt is made to mimic the natural dilution 

and cooling of exhaust as it leaves the exhaust tailpipe. Sampling by this method, 

however, is not without significant drawbacks. The filter used for collection at the end of 

the tunnel fails to efficiently collect hydrocarbons and Polycyclic Aromatic Compounds 

(P A C) that have remained in the vapour phase (Petch el al., 1987). In addition, the long 

sampling times required to collect adequate sample mass for genotoxicity testing leads to 

artefact formation on the carbon particles collected on filters by the continuous stream 

passing over compounds that have already settled (Lach and Winkler, 1988). HN03 and 

N02 for example, present in the exhaust stream, have been shown to cause significant 

degradation of PAH adsorbed onto particulate matter, and a subsequent increase in 

mutagenicity of the solvent extracts of these particulates (Linskog, 1983). 

The concentration of 1-nitropyrene in emission samples collected by TESSA was 

found to be lower than those generally quoted in the literature (Collier, 1995). Thus the 

dilution of diesel emissions in the exhaust may account for b'Teater nitration of PAH 

compared with nitration of PAH within the combustion chamber, leading to the potential 

under representation of biologically significant nitro-PAH in samples collected from 

TESSA. However, it has to be considered that the mechanism of post combustion nitro

PAH fonnation may be over estimated because of the documented liability of dilution 
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tunnels for artefact nitro-PAH (Lach & Winkler, 1988). Further clarification of the nitro

P AH component of diesel engine emissions expelled from the exhaust is needed. 

The work up procedure of emission samples collected from TESSA was devised 

and has been developed to facilitate maximum extraction of emission organics with 

minimal artefact formation. Radiochemical precursors spiked into the fuel have been used 

to assess percentage recoveries (Collier, 1995; Pemberton, 1997). Early evaluation by 

Trier showed recoveries in excess of 90 % for most P AH species (Trier, 1988), with 

factors such as solubility in water (used during liquid-liquid separation) affecting 

individual compound recovery. More recently, Collier (1995) showed that laboratory 

losses of nitro-PAH were low with 80 - 90 % of nitro-PAH species recovered. 

Identification of the most genotoxic components of the diesel exhaust, followed by 

quantification of their losses during sample work up, will provide a better picture of the 

contribution of certain compounds to diesel genotoxicity. 

As the dilution tunnel system has been the most \videly adopted for sampling of 

diesel emissions, there is a lack of published data for direct comparison of TESSA or 

TESSA-Iike emission samples, especially with respect to genotoxicity. The more recent 

use of specially desi!,'lled sampling devices to collect the semivolatile phase compounds 

(for example Andersson et al., 1998) in addition to the standard filter collection of 

particulate adsorbed organic emissions from the dilution tunnel (Schuetzle et al., 1980; 

Enya et al., 1997; Bunger et al., 1998) provides a more complete picture of complete 

engine emissions, and therefore is more directly comparable to TESSA samples. Further 

information is required lo completely evaluate two different sampling systems and will 

come as more of the chemical data is published on the components of their emissions. 
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The TESSA has provided a reliable method for collecting sufficient emission 

sample masses for in vitro genotoxicity testing. It has advantages over other sampling 

systems, not least of which is the minimal artefact formation discussed. Several potential 

drawbacks of the TESSA sampling system, in particular those that would affect the 

genotoxicity of the emissions, appear to have been minimised by careful checking 

procedures (such as the spiking of the fuel and subsequent recovery). Further evaluation 

on the affect of the dilution of the exhaust stream after it leaves the combustion chamber 

would be advantageous/informative. 

4. 1.2 Emission sample work up and collection during this study 

For the first engine run series (ES 3 to 7, 3500 rpm/ 75 Nm), the 2 minute sample masses 

(Table 7, section 2.1.4) were low and apparently inconsistent with sample masses from 

other engine conditions which generally increased with increasing speed and load. For this 

reason samples from this series were used for trial fractionations, cytotoxicity and 

chromosome aberrations assays only. The low mass samples achieved may have been a 

reflection of inexperience in the chemical techniques. Consultation of manufacturer's 

engine emission maps (summarised in Appendix D) shows 3500 rpm and 75 Nm to be a 

particular low spot for hydrocarbon emissions, which may also be contributory to the low 

masses achieved. 

The use of liquid-liquid partition during emission sample work up resulted in 

contamination of the total emission sample with water, which occurred in less than 10 % of 

samples. This was removed by re-partitioning once the sample had been rotary evaporated 

to less than 20 ml. If the second separation was not successful in removing all traces of 

water, the problem was recorded and the sample was not used for further testing. It was 
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possible to discard samples because 6 repeats of each 2 minute sample were coiJected at 

each speed and load, and only a maximum of four samples were used for genotoxicity 

testing. Repeated separation rounds resulted in small losses of the total emission sample, 

with the concern that these losses would alter the complex balance of chemicals in the 

sample. 

During silica-gel column chromatography, the final elution with methanol 

removed trace amounts of silica from the column along with the polar group compounds, 

as observed previously (Kingston, 1994). Pre-mixing of methanol with the preceding 

elutant (DCM) reduced the 'shock' to the column and therefore the stripping of silica 

fragments. Polar fractions with visible silica-gel contamination were not used for 

aberration assay testing. 

4.1.3 Chinese hamster ovary CHO-Kl eel/line freezing 

Stocks of ceiJs purchased from the ECACC (European Collection of Animal Cell Cultures) 

were frozen upon receipt and regularly throughout the study to maintain a frozen stock 

(Section 2.4.2). Cells were divided each time and half frozen in medium containing 91 % 

foetal calf serum and 9 % cryoprotectant, the other half in medium containing 20 % foetal 

calf serum and 20 % cryoprotectant. The former was recommended by the ECACC to 

promote maximal cell survival, which was found to be the case particularly after 12 

months or more in storage. The latter medium is used regularly in the Department and was 

adequate for medium term storage, and had the advantage of reduced cost as the foetal calf 

serum was the most expensive component. 
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4. 1.4 Cytotoxicity assay methodology 

During the neutral red dye assay to assess cytotoxicity, absorbance readings for the uptake 

of neutral red into control Chinese Hamster Ovary cells which were treated with DMSO 

solvent (or with DMSO plus S9 mix) exhibited wide variation between assays (control 

absorbance values of 0.2245 to 1.156 units, Appendix A). Control values with S9 mix 

were generally marginally lower than without S9, and this would initially point to a toxic 

effect of the S9 mix on the cells. The contribution of physical shock to the cells which 

occurs during the rounds of cell medium changes and monolayer washing, together with 

alterations in culture environment during these processes (in particular temperature) 

cannot, however, be underestimated. The small surface area of each well in the multi-well 

vessel used during cytotoxicity assays gives a less robust cell monolayer making cells 

more susceptible to physical stress than during aberration assays (25 cm2 flasks). The age 

of the neutral red dye, variation in absorbance of disposable cuvettes, and critically 

dispensing of cells during set up were also possibly contributory to variation within and 

between assays. The neutral red dye was controlled to some extent by storing at the 

recommended 4°C in the dark for a maximum of I week prior to use (recommended 

maximum 3 weeks, Fiennes et al., 1987), after which time a fresh stock was prepared. 

Such variation is commonly observed, with cytotoxicity assays known as largely non

reproducible (Scott et al., 1990). Patterns of dose-related reductions in cell viability from 

control levels were observed generally throughout the study and taken as confirmation of 

the procedure. 

4.1.5 Chromosome aberration assay methodology 

During the chromosome aberration assays, a period of recurrent problems with bacterial 

cell contamination occurred, which were not traced to one particular source. The 
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contamination coincided with major building works in the Department over several 

months, in the area around the cell culture rooms. After the completion of work, the area 

was thoroughly cleaned and CHO-K1 cells resuscitated from frozen stocks, which resolved 

the infection problem. Cells were routinely cultured and stored without antibiotics so that 

any contamination was easily detected (following the recommendations of the ECACC). 

The karyotype of the CH O-K 1 altered during the 3 years of the study so that the 

predominant cell line observed at the end was that with 20 chromosomes. As the CH O-K I 

cell line with 20 chromosomes had been present in significant numbers at the start of the 

experiment (Figure 14, section 3.3.2), and the line with 19 chromosomes was still very 

much in evidence, this was not considered a problem. Karyotypic stability was generally 

maintained by not passaging the cells for more than 16 times, with replenishment from 

frozen stocks where necessary (following recommendations of Galloway et al., 1985 and 

other authors). The sporadic high incidence of chromosome damage occasionally observed 

by other authors in cultures of some Chinese hamster lines (Tweats and Gatehouse, 1988), 

particularly when incubated with rat liver S9 (Kirk land et al., 1989) was not observed here. 

There was a slight increase in the mean number of cells with aberrations in the control with 

S9 at 2. 75 %compared to the control without S9 (2.61 %). This is less than the variation 

observed by other authors (Margolin et al., 1986; Kingston, 1994 ). 

In the absence of metabolic activation, cells were routinely exposed to the test 

sample for approximately 1.5 x the cell cycle time (around 18 hours in total) following the 

protocol of Galloway (1987). Following international collaboration and discussion, 'two 

phase' testing has been recommended where full testing of a sample (one test) would 

consist of 1 or 2 phases. The major difference is for 'Phase I' where treatment with the 

test chemical is for 3-6 hours, with harvesting at 1.5 x normal cell cycle time as previously 

(OECD, 1996; Kirkland, 1998). This was brought about through analysis of available data 

257 



which showed that more clastogens are positive after short treatments than after continuous 

treatments. This is assumed to be because higher concentrations will be tolemted in the 

short treatments, and may also reflect the importance of a recovery period shown to be 

important for certain chemicals (Galloway et al., 1997). 'Phase 2' testing, with continuous 

treatment with the test sample for l.5 x the normal cell cycle time, is as used in this study 

and previously (Galloway et al., 1987). Continuous exposure has been shown to be 

required for clastogenic assessment of certain compounds (Galloway et al., 1997). Further 

work from this study could include a 3-6 hour pulse treatment of each diesel fraction when 

assaying without metabolic activation. This would potentially permit the testing of higher 

concentrations of diesel emission fractions and may uncover genotoxic responses presently 

masked by the cytotoxic effect of certain fractions on the CHO cells. 

4.2 Overview of testing 

This study adopted the use of bioassay directed fmctionation in an attempt to unravel the 

very complex mixture of compounds that make up diesel emissions. Samples collected 

over the engines range of speed and load conditions were each separated into aliphatic, 

aromatic, and polar group fractions (section 2.2.1). The aromatic fraction was then further 

fractionated by HPLC into 1-ring, 2-ring, and 3+-ring group compounds (section 2.2.2). 

Nitro-PAH, a component of the aromatic fraction (Collier, 1995), has been proposed as the 

major mutagenic component of diesel engine emissions in assays in bacterial systems 

(Pederson and Siak, 1981; Nakagawa et al., 1983; Stmndell et al., 1994; Enya et al., 1997). 

The polar fmction of diesel emissions has also been shown to exhibit a significant 

proportion of the total direct-acting mutagenicity of diesel engine emissions (Nakagawa et 

al., 1983; Hayakawa et al., 1997). It was therefore in these areas that work was 

concentrated, with the aliphatic fraction of one engine emission sample assayed for 

clastogenicity for completeness. 
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4.3 Cytotoxicity of fuel and engine emission samplefracdons 

When assayed, the cytotoxicity of some of the fuel and engine emissions fractions were 

shown to be more closely related to the fraction type than to their source in terms of engine 

conditions of speed and load (Section 3.6). Polar emission sample fractions from all 

sources, for example, showed a more direct relationship to each other than to the engine 

conditions they were collected under (Figures 28 and 29, section 3.7.6 and 3.7.7). This is 

suggestive of each fraction being homogenous in nature in relation to its toxic effect on 

CHO cells, or that one or several compounds produced within that fraction being 

predominately responsible for toxicity. It is also possible that the combination of 

compounds within each fraction is the most important factor in its cytotoxicity, and that 

their synergistic and antagonistic effects within the fraction work to determine its effect 

irrespective of the masses of individual chemicals (which vary depending on the speed and 

load- section 4.4.4). Determination of synergistic and/or antagonistic effects within each 

fraction would be an informative area of further work. 

The aliphatic fractions of the engine emission samples assayed showed no evidence 

of cytotoxicity up to concentrations of 200 J.lg/ml with or without metabolic activation, and 

the fuel fraction showed a slight cytotoxic with S9 at 200 J.lg/ml (section 3.6.1). Therefore 

the types of compounds typically found within this fraction, predominately straight chain 

hydrocarbons and PAH (Schuetzle et al., 1980), are not toxic to cells in vitro. Some 

indication of toxicity is preferential prior to mutagenicity testing as many mutagenic 

compounds are only active at concentrations which induce some degree of cytotoxicity 

(Scott et al., 1990). Repeated rounds of sampling and fractionation would provide 

sufficient mass of sample to assay up to the recommended maximum of 10 mM (Kirkland, 

1998) or 2 to 3 mg/ml (Scott et al., 1990) provided that the osmolarity of the culture 

medium remains unaffected. The practical upper limit for testing of 1 OmM was based 

upon the highest in vitro concentrations needed to detect in vivo clastogens. The further 
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work described would provide conclusive data to rule out completely any cytotoxic effect 

of the aliphatic fractions of diesel emissions from the engine conditions sampled during 

this study. 

All of the aromatic fractions assayed for their cytotoxicity in CHO cells (both fuel 

and emission fraction) displayed significant toxicity at SOJ.lg/ml without S9 (Section 3.6.2). 

The fuel aromatic fraction exhibited a slightly reduced effect on cell viability in 

comparison to the emission sample aromatic fractions. Whilst the aromatic fractions show 

comparative cytotoxicity at the same concentration, the actual mass of aromatic fraction 

produced per unit of time varies with the engine operating conditions of speed and load. 

Thus a snapshot of the toxicity of the emissions expelled from the engine at any one time 

will be dependant on the speed and load conditions the engine is operating under. 

The high level of cytotoxicity exhibited by the whole aromatic fraction was 

postulated as a barrier to informative clastogenicity testing, with cytotoxicity masking 

genotoxicity. The breakdown of the aromatic fraction by HPLC into 1-, 2-, and 3+ -ring 

fractions enabled further investigation of cytotoxic effects within the aromatic fraction 

compounds. The ring fractions, when assayed for their effect on cell viability in the 

neutral red vital staining assay, each showed greater cytotoxicity than their respective 

aromatic fraction over the same range of concentrations (sections 3.6.3 to 3.6.S). This 

suggests that the ring fractions therefore exhibit antagonistic etfects on each other when 

combined, making the aromatic fraction as a whole less toxic. The mass of each ring 

fraction contributing to the aromatic fraction may be important- the aromatic fraction is 

made up of mostly 1-ring compounds for the fuel aromatic fraction ( 62 %) and the 

aromatic emission sample collected at 1000 rpm/SS Nm (68 %), although the 3000 rpm/S 

Nm aromatic emission sample is predominantly 2-ring (60%), with 1-ring 29 %. 
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Without S9, there was a correlation of increasing cytotoxicity with increasing ring 

size, hinting at the more mutagenic/toxic compounds thought to be present in the greater 

ring size fractions (e.g. I ,8-dinitropyrene, a 4-ring aromatic compound which exhibits one 

of the highest recorded mutagenicities in bacterial systems; Enya et al., 1997). The 

uncombusted diesel fuel has comparable cytotoxicity to engine emission fractions, and thus 

PACs present in the fuel prior to combustion have a significant toxic effect, and supports 

the suggestion that majority of PAC survive combustion unaltered (Collier et al., 1995). 

With S9, the ring fractions of the engine emissions collected at 1000 rpm and 55 Nm were 

more cytotoxic than the fuel or 3000 rpm and 5 Nm ring fractions. At I 000 rpm speed and 

55 Nm load there appears to be a particular 'hots pot' for measured engine outputs of Bosch 

smoke, hydrocarbons, NOx, and carbon monoxide. At this speed and load all four factors 

are greater than at any other speed and load conditions sampled in this series (Appendix 

D). This 'hotspot' of engine output may be contributory to the increased cytotoxicity of 

the I 000 rpm/55 Nm ring fractions over the fuel and other emission sample assayed. The 

effect in relation to genotoxicity is discussed in section 4.4.3.2. 

All seven of the polar fractions tested exhibited almost identical direct-acting 

cytotoxic effects on CHO-KI cells (sections 3.6.6 and 3.6.7), with significant direct-acting 

toxicity exhibited at 50 J.lg/ml (comparable to the cytotoxicity of the aromatic fractions). 

ln the presence of S9, a severe cytotoxic effect was exhibited at 200 J.lg/ml for all three 

fractions assayed. Cytotoxic effects with metabolic activation were more evident in the 

aromatic fractions at lower concentrations. As discussed, variations of sample speed and 

load had minimal effect on the concentrations at which cytotoxicity was exhibited. 

Chemical analysis of the polar fractions would be required to determine if the similarities 

in cytotoxic effect were due to chemical homogeneity of samples collected at different 

speed and load conditions. Homogeneity of fractions collected at different speeds and 

loads is not suggested from the GC/MS analysis of ring aromatic fractions (section 3.2.2). 
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Chemical analysis is problematic because of the difficulty in analysing non-volatile polar 

compounds directly by GC/MS (discussed in section 1.10.4), but would be an area of 

further work. 

4.4 Clastogenicity of diesel fuel and e11gi11e emlssio11 sample fractions 

Previous genotoxicity testing of whole emission samples collected over a range of differing 

engine conditions using TESSA gave a variety of responses, some positive and some 

negative, with and without metabolic activation (Kingston, 1995). At the more extreme 

conditions of speed and load, many of the samples were cytotoxic which prevented 

analysis of clastogenic effects. One of the initial aims of this study was to repeat some of 

the engine sampling at the same engine conditions, fractionate and then assay the emission 

sample fractions produced to provide information about their chemical nature and to 

account for differences in clastogenicity between samples collected at different speeds and 

loads. The comparison of the results observed in this work to those of other authors 

working on the mutagenicity of diesel emissions has to take into account the variability in 

emission sample collection (section 1.1 0.3) which may contribute to differences in the 

chemical constituents of certain fractions. 

4. 4.1 The aliphatic fraction of diesel engine emissions 

The aliphatic fmction of the engine emission sample collected at 3000 rpm and 5 Nm was 

not clastogenic with or without S9 up to 600 f..lg/ml, the maximum concentration possible 

within the scope of this study (Section 3.8.1 ). This is in line with previous findings in 

bacterial assays (Schuetzle et al., 1980; Hayakawa et al., 1997), and in brain lesions in the 

rat (Andersson et al., 1998) and reflects the nature of chemicals known and assumed to be 
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found in this fraction which are non-carcinogenic (Grimmer et al., 1987). There has, 

however, been a recent report of tubular necrosis and renal failure occurring twice in a 

patient overexposed to aliphatic hydrocarbons (Landry and Langlois, 1998). It would 

therefore be informative to repeat testing at concentrations up to the recommended 

maximum to rule out a clastogenic potential for the aliphatic fraction of diesel emissions at 

high concentrations. Testing of aliphatic emission samples collected at different speed and 

loads would be required for a complete investigation, as the aliphatic fractions of diesel 

emissions are not necessarily homogeneous when engine conditions are altered. As the 

fuel aliphatic fraction exhibited a slight toxic effect at 200 J.lg/ml in this study, this fraction 

is now suggestive of an important first fraction to eliminate by higher dose testing. 

4.4.2 The aromatic fractions of diesel engine emissions 

Although they showed clear evidence of direct acting cytotoxicity at 50 J.lg/ml, none of the 

three aromatic fractions assayed produced statistically significant increase in the number of 

aberrations at any concentration, with or without S9 (section 3.8.2). They were therefore 

all classified as non-clastogenic. 

This is in contrast to mutagenicity work in bacterial assays where the aromatic 

fractions have been generally shown to exhibit a high degree of direct-acting mutagenicity 

(Schuetzle et al., 1980; Hayakawa et al., 1997; Ostby et al., 1997). lndeed many authors 

have concluded that aromatic fraction of diesel emissions accounts for most of the direct

acting mutagenicity ( 40 to 61.5 %) of the crude extract (Schuetzle et al., 1980; Strandell et 

al., 1994; Hayakawa et al., 1997). Several nitro-PAH, including dinitropyrenes 

(Nakagawa et al., 1983; Tokiwa et al., 1987) and 3-nitrobenzanthrone (Enya et al., 1997), 

have been proposed as the major mutagenic species in diesel emissions. The aromatic 
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fraction of diesel emiSSions has been shown to contain nitro-PAC, for example, 1 ,6-

dinitropyrene (Collier, 1995). Nitro-PAC are strong direct-acting mutagens in bacterial 

assays (section 1.10.6.3), a response ascribed to the inherent nitroreductase activity of the 

Salmonella bacteria used in Ames assays (Beland et al., 1995; Fu, 1990), as 

nitroreductases are capable of activating nitro-PAC to reactive epoxides. Native 

nitroreductase activity is however minimal in mammalian cells in culture and in vivo 

(Nachtman and Wolff, 1982), which would explain the lack of direct-acting mutagenic 

potential of many nitro-PAC in CHO cells (Boyes et al., 1991). This would therefore be a 

possible explanation for the non-clastogenic response of the CHO cells to the aromatic 

fractions of diesel emissions assayed here. The high levels of mutagenicity found by 

previous authors in the aromatic fractions of diesel emissions may also be artificially 

inflated due to artefact formation during dilution tunnel sampling as discussed (section 

4. 1.1 ). It is of course possible that the opposite is true - nitro-PA 1-1 compounds may be 

underrepresented in emission samples collected from TESSA (such as in this study), 

therefore reducing the mutagenicity that would be present in the aromatic fraction. 

There was a lack of clastogenic activity for the aromatic fractions even in the 

presence of supplementary metabolic activation enzymes (rat liver S9 fraction), and 

therefore the aromatic fraction was not clastogenic in CI-I O-K I cells (section 3.8.2.2). 

Nitroreductase enzymes in rat liver S9 may have been insufficient to activate potentially 

clastogenic nitro-PAH compounds. It is also possible that the clastogenic potential of the 

aromatic fractions assayed here was masked by the cytotoxic effects of the fraction as a 

whole. Thus the toxic effects of certain compounds within the fraction prohibited testing 

of mutagenic compounds at sufficiently high concentrations for them to exert an effect. 

It may be important that after exposure to the 3000 rpm/5 Nm aromatic fraction 

without S9, greater than 5 % of cells with aberrations were observed at three 
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concentrations (all 7 %, not dose related; Table 21 ). Several possible intimations can be 

made - the fraction may be clastogenic over a narrow concentration range which was just 

touched upon, or it may be again that cytotoxicity is masking genotoxicity, or that a cell 

cycle delaying effect caused by this group of compounds made the standard sampling time 

sub-optimal. It is also possible that there are genotoxic compounds present within the 

aromatic fraction but their effect is largely masked by the presence of other inhibitory P AC 

compounds. For example, several PAC have been shown to exhibit antagonistic effects on 

benzo[a]pyrene and 1-nitropyrene (mutagenic compounds previously identified in the 

aromatic fraction of diesel engine emissions) (Hermann, 1981; Chemg et al., 1996). To try 

and unravel this question, and following the scheme of bioassay directed fractionation, the 

aromatic fraction was further separated by HPLC into groups of aromatic rings. 

4.4.3 Aromatic ringfi'actions 

The fractionation of the aromatic diesel engine fuel and emission samples into 1-ring, 2-

ring, and 3+ -ring fractions, and subsequent assay for genotoxicity is novel and therefore 

direct comparison to the work of other workers is not possible. References are therefore 

made to related work on known or suspected compounds present in the fractions. 

4.4.3.1 1-ring aromatic diesel emission sample fi'actions 

All three !-ring aromatic fractions, derived from the fuel and two diesel emission samples 

( 1000 rpm/55 Nm and 3000 rpm/5 Nm), were negative in the chromosome aberration assay 

when assayed with or without S9 (section 3.8.3). Benzene, a typical 1-ring aromatic 

compound identified in diesel emissions (Scheepers and Boss, 1992), has been shown to be 

clastogenic when metabolically activated (lshidate, 1988). It has also been classified as 

carcinogenic (IARC, 1989). The combination of chemicals that make up the 1-ring 
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fractions tested here exhibited significant cytotoxic effects at low concentrations without 

S9 (>50 % cell killing at 20 J.lg/ml) in all three cases, and the possibility of toxicity 

masking any genotoxic effects remains. Further fractionation and chemical classification 

of the !-ring aromatic samples is required to fully study their genotoxicity. 

4. 4. 3. 2 2-ring aroma/ ic diesel emission sample fracl ions 

Without S9, the 2-ring fractions of the fuel and the two diesel emission samples exhibited 

no clastogenic effects on CHO cells (section 3.8.4.1). As with the 1-ring fractions, toxicity 

was significant at low concentrations, although in this case even more severe (minimal cell 

survival at 20 J.lg/ml). As well as further fractionation as a key to understanding the nature 

of the 2-ring fraction, one approach for further investigation may be to repeat the assay 

with a shorter pulse exposure time (3-6 hours), in line with recent recommendations for the 

chromosome aberration assay (Kirkland, 1998). In the presence of supplementary 

metabolic activation, the fuel and the 1000 rpm/55 Nm emission sample 2-ring fractions 

were clastogenic, with statistically significant increases in chromosome aberrations at at 

least one concentration (section 3.8.4.2). This finding is consistent with the presence of 

indirect-acting mutagens in the 2-ring group of compounds. Napthalene, a 2-ring aromatic 

compound, is an example of an indirect-acting clastogen (Ishidate, 1988) which has been 

detected in diesel emissions (Schuetzle et al., 1980). Assay of the third 2-ring sample with 

metabolic activation (from emission sample collected at 3000 rpml5 Nm) did not result in a 

significant increase in chromosome aberrations and was therefore not clastogenic. 

The opposing results from the 2-ring samples was the first real indication that 

although the fractions contained the same type of compounds, their actual chemical make

up differed. The emission sample collected at I 000 rpml55 Nm clearly contains indirect-
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acting genotoxic compounds, whilst at the same concentration the 2-ring fraction from an 

emission sample collected at a different speed and load (3000 rpm/S Nm) was not 

clastogenic with S9. Thus this second fraction must contain less of the active genotoxic 

chemical compounds, or contain more of certain compounds that suppress the active 

compound's genotoxicity. Compounds in the fuel (for example PAC) may survive 

combustion unaltered, may be completely combusted under 'ideal' engine operating 

conditions, or they may be partially broken down and take part in pyrosynthetic reactions 

which may result in the formation of new P A C. As the uncombusted fuel 2-ring fraction 

was also clastogenic with S9, it suggests that genotoxic compounds present in the fuel 

survive the combustion process for an engine operating at 1000 rpm/SS Nm, although it is 

of course possible that it is different chemical compounds in these two fractions exhibiting 

a similar genotoxicity. The combustion efficiency of PAC in the fuel described above is 

related to conditions in the combustion chamber such as temperature, oxygen 

concentration, swirl, and the kinetics of the PAC reaction (Scheepers and Boss, 1992; 

Collier et al., 199S; Pemberton et al., 1997). Research suggests that at high speed and low 

load (for example 3000 rpm/S Nm) pyrosynthetic reactions are more favoured, so that fuel 

PAC are pyrosynthesised in the combustion chamber to form altered PAC. At high engine 

loads, combustion efficiencies are ~:,rreater so that for the I 000 rpm/SS Nm emission sample 

fuel PAC are more likely to be completely combusted, and those PAC not combusted are 

more likely to survive unaltered (Collier et al., 199S). 

The emission sample collected at 1000 rpm/SS Nm corresponds to a point in the 

combustion chamber where the four measured engine outputs of smoke, NOx, 

hydrocarbons, and CO are greatest (a 'hotspot'), shown in Figure 124, Appendix D. The 

greater amounts of these four engine outputs at this speed and load may be related to the 

fraction's constituents and therefore its increased genotoxicity over the second 2-ring 

emission fraction (3000 rpm/S Nm). It may be particularly significant that the NOx 
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(oxides of nitrogen) content of the combustion chamber and the exhaust is thought to be a 

crucial factor in respect to the formation of mutagenic nitro-PAC emissions (Collier, 

1995). NOx measured at 1000 rpm/55 Nm is much greater at 1450 ppm compared to only 

200 ppm at 3000 rpm/5 Nm. This is suggestive of the presence of higher levels of nitro

PAC in the 2-ring fraction collected at 1000 rpm/55 Nm. The presence of sufficient levels 

of nitro-PAC in this fraction may account for some of the indirect-acting genotoxicity 

observed here in this mammalian cell test system, because as discussed nitro-PAC are 

indirect-acting mutagens in mammalian systems (Boyes et al., 1991; Nachtman and Wolff, 

1982). The contrasting activity of nitro-PAH in bacterial to mammalian cell systems is 

thought to be due to the presence of nitroreductase and has been discussed. Increases in 

nitro-PAH formation would not, however, explain the observed clastogenicity of the fuel 

2-ring aromatic fraction when assayed with metabolic activation as it has obviously not 

been subjected to NOx in the exhaust. This may suggest therefore that in light of the 

combustion efficiency of the engine at 1000 rpm/55 Nm, the majority of PAC present in 

the sample are those that have survived from the fuel unaltered. Thus the genotoxic PAC 

in the 2-ring fuel sample are similar to those in the emission sample. Combustion 

efficiency is less at 3000 rpm/5 Nm, and therefore more PAC and related compounds are 

only partly combusted facilitating pyrosynthesis of new compounds. These new 

compounds would then have to be the significant portion of the sample and non-genotoxic 

at the concentrations assayed, or one or more particular pyrosynthesised compounds may 

be suppressing the activity of the fraction from this speed and load. As well as comparison 

of the chemical make up of the 2-ring fractions, genotoxicity testing of emission sample 2-

ring fractions collected over a wider range of engine conditions where combustion 

efficiencies are known would be informative. 

Another major difference between the emission samples collected at I 000 rpm/55 

Nm and 3000 rpm/5 Nm was the relative percentages of ring fractions that made up the 
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aromatic fraction, as mentioned in section 4.3. Whilst the fuel and the I 000 rpm/SS Nm 

aromatic fractions are predominantly 1 -ring compounds (62 - 68%), the 3000 rprn/S Nm 

aromatic emission sample is mainly comprised of 2-ring aromatic compounds. This may 

be related to combustion efficiencies, but does clearly demonstrate the variation in the 

chemical structure of emission samples that are emitted depending upon the speed and load 

at which an engine is operating. 

4.4.3.3 3+ -ring aromatic diesel emission .mmplefractions 

Although without S9, there was no statistically significant mcrease m number of 

chromosome aberrations after exposure to the 3+ -ring fractions, the percentage of cells 

with aberrations was raised above the background S % rate (section 3.8.S.I ). For the fuel 

3+ -ring fraction, there were greater than S% aberrations at one concentration (8 % at 

highest concentration), and greater than S% aberrations at 3 concentrations for 3000 rprn/S 

Nm emission sample fraction (8, 8, and 9 %). Direct-acting mutagens are either not 

present in the 3+ -ring fractions in amounts sufficient to result in statistically significant 

numbers of chromosome aberrations, or the activity of such compounds is reduced or 

masked by other compounds in the fraction. The rise in the number of aberrations above 

background rates may be an indication of direct-acting genotoxicity, where the exposure 

timing or the range of concentrations were not optimal for detecting clastogenicity of these 

samples, or as suggested genotoxicity is masked by cytotoxicity of other compounds 

within a fraction, or antagonistic effects of other compounds within a fraction. 

With S9 supplementary activation, both 3+ -nng fractions assayed (fuel and 

emission sample collected at 3000 rprn/S Nm) showed a statistically significant clastogenic 

effect in CHO cells (section 3.8.S.2). This confirms the presence of one or more indirect-
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acting mutagens in this fraction. 1-nitropyrene, isolated from diesel exhaust emissions, is 

an example of a 4-ring aromatic compound which if present would therefore fall into this 

category. Although 1-nitropyrene has been shown to exhibit strong direct-acting 

mutagenicity in bacterial systems (Schuetzle, 1983; Tokiwa et al., 1987), its mutagenicity 

in a variety of mammalian short term assays is dependant upon the presence of 

supplementary metabolic activation (Heflich et al., 1985; Matsuoka et al., 1991; Ensell et 

al., 1998), which would explain the genotoxic activity here with S9. The 3+ -ring fuel and 

emission samples exhibited a similar clastogenic effect, but possibly for different reasons 

as an initial examination of the GC/MS traces provided shows that the chemical make-up 

of the two fractions is not identical (Figure 79 below and Appendix C). Compounds such 

as biphenylene, fluorene and methyl-fluorene are minimal in the fuel fraction and more 

abundant in the emission sample fmction, for example fluorene has an abundance of 

400,000 units in the fuel fraction and a much greater 3,400,000 units in the emission 

sample fraction. Other compounds, such as trimethylphenanthrene, are more abundant in 

the fuel 3+ -ring fraction (1,900,000 units) compared to the emission sample fraction 

(1,200,000 units). This is as expected as one of the major reactions the combustion 

chamber is de-methylation. 

The amount of 3+ -ring fraction within the aromatic fraction, and hence within the 

emission sample as a whole, is small. The relative contribution of the 3+ -ring fmction to 

the aromatic fraction is the least at 4.3 % of the fuel, 5.3 % of the 1000 rpm/55 Nm 

aromatic fraction, and 11.5 % of the 3000 rpm/5 Nm aromatic fraction. Antagonistic 

effects of compounds within the other two ring fractions (1-ring and 2-ring) may therefore 

be responsible for lack of genotoxic activity observed in the aromatic fractions as a whole. 
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Figure 79. Relative abundance of selected aromatic compounds in the diesel fuel and 

engine em1sston 3+ -ring fractions detected by GC/MS (gas chromatography/ mass 

spectrometry) 

4.4.4 The polar fractions of diesel engine emission samples 

All of the polar emission sample fractions assayed exhibited significant clastogenicity both 

with and without metabolic activation (section 3.8.6). This suggests that the polar group of 

compounds is a mix of indirect and direct-acting mutagens, or that it is comprised of 

direct-acting mutagens unaffected by S9 mix. During bacterial testing of extracts diesel 

exhaust particulates, the addition of S9 has been shown to lower the genotoxic response 

(Wang et al., 1981 ; Clark and Vigil, 1980; Bunger et al. , 1998). Genotoxic activity does 
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not appear to have been suppressed in this system although it is not possible to say with 

certainty as experimental conditions such as exposure time (2 hours versus 18 hours) and 

concentrations assayed (maximum 30 J.lg/ml versus 150 J.lg/ml) were different for assays 

with and without S9. The genotoxicity of each polar fraction did not differ significantly 

from other polar fractions collected at different speed and load conditions when assayed at 

the same concentration. This is generally suggestive of a relatively homogeneous mixture 

of chemicals in the polar fractions, or the presence of sufficient quantities of one or two 

highly genotoxic compounds sufficient to make the relative contributions of other polar 

compounds to the fraction unimportant. 

Despite the generally homogeneous nature of the polar fractions, there was a slight 

increase in direct-acting clastogenicity for low engine load polar emission fractions at the 

highest concentration assayed of 30 J.lg/ml (Figure 70, section 3.8.6). With S9, the low 

load emission sample fraction (1000 rpm/5 Nm) showed a sharper increase in chromosome 

aberrations (Figure 74) than other emission sample polar fractions, although it could not be 

assayed at the full range of concentrations. At low engine load, the unbumt fuel zone in 

the combustion chamber is larger, leading to a greater survival and generation 

(pyrosynthesis) of PAC (Collier, 1995). It may be that PAC generated under low load 

conditions are more genotoxic, or that genotoxic compounds are favourably produced, 

increasing overall fraction genotoxicity. Collection and assay of a wider range of low load 

polar emission fractions would confirm this and highlight a major area of possible engine 

or vehicle design improvement. 

The polar aberration assay results indicate that the polar fraction compounds are 

responsible for a si!,>nificant contribution to the clastogenicity of diesel exhaust emissions. 

The polar fraction is 25 % by mass of the total emission sample collected at 3000 rpm and 

5 Nm. Without metabolic activation, this polar fraction is responsible for the majority 68% 
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of the direct acting genotoxicity, with the 3+ -ring fraction responsible for the remaining 

32% (despite being only 3.4% of the total emission sample). This relationship is altered 

in the presence of S9, where the polar fraction is responsible for 33 % of the direct acting 

genotoxicity, and the majority due to the 3+ -ring fraction. This contribution of the polar 

fraction to the overall genotoxicity of diesel emission is in agreement with some authors 

(Crebelli et al., 1995), but is inconsistent with the conclusions of others (Ostby et al., 1997; 

Westerholm et al., 1991; Hayakawa et al., 1997). Direct comparison with my work and 

that of the latter 3 authors is not possible, however, because they describe the major 

mutagens in the aromatic fraction as nitro-PAH which, as stated, may be artificially 

inflated due to artefact formation during dilution tunnel sampling. The use of the Ames 

assay by these authors increases the significance of nitro-PAH genotoxicity because of 

their inherent nitroreductase activity. Crebelli et al. ( 1995) found mutagenic profiles of 

diesel emissions in nitroreductase deficient strains of T A98 suggested only a small 

contribution of the dinitropyrenes in particular to the responses observed, and importantly 

his direct sampling system was designed to include sampling of gas phase compounds and 

to minimise the chance of secondary transformations (which is more like the TESSA 

sampling system than the dilution tunnel). For some work, for example Schuetzle et al. 

(1980), comparison is again invalid as although they described the aromatic fractions as the 

most mutagenic, they did not assay the final, most polar fraction at that time. It is 

interesting and may be relevant that particulate matter samples from urban air show the 

polar fraction to exhibit the most mutagenicity without S9 (Schuetzle and Daisey, 1990; 

Helmig et al., 1992; Enya et al., 1997). 

Regarding engme operating conditions, several studies have proposed a link 

between increased diesel engine emission mutagenicity in bacteria and NOx emissions 

(Bechtold et al., 1986; Courtois et al., 1993; Kingston, 1994 ). As discussed, this would 

correspond to the results observed in this study of increased clastogenicity with S9 for the 
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1000 rpm/55 Nm 2-ring fraction (NOx 1450 ppm) compared to the 3000 rpm/5 Nm 2-ring 

fraction (NOx 200 ppm). The results of the polar fractions do not, however, follow 

through. They exhibit very similar levels of genotoxicity with no clear relationship 

between engine conditions and individual sample genotoxicity. As previous assays were 

of whole diesel emission samples, it may be that the increased NOx affected only the 

aromatic compounds within the whole sample (increasing nitro-PAH formation) which 

could obviously not be discerned. Increased nitro-PAH would not be expected to be 

reflected by increased genotoxicity of polar group compounds. Emission sampling and 

assay of the aromatic ring fractions obtained over a wider engine range, with differing 

levels of NOx emissions, would provide more conclusive information about the 

relationship between NOx emissions, aromatic ring fractions, and nitro-PAH. 

4.5 Mass of emission samplefracdmr obtained during standard sampling 

Although many of the fractions exhibited cytotoxic or clastogenic effects at the same 

concentration, the engine conditions of speed and load are relevant and important to 

exposure risk. This can be illustrated clearly for the polar fractions, where all seven 

fractions assayed exhibited direct-acting clastogenicity at a concentration of20 j.lg/ml. The 

mass of each polar fraction produced during each 2 minute sampling session is, however, 

not the same and is very dependant upon the engine speed and load as shown in Figure 80. 

As emission sampling is from one of the four cylinders only, mass obtained from TESSA 

sampling has been multiplied by four to represent the approximate mass that would be 

expelled from the exhaust each minute. At low engine speed and load the mass of polar 

fraction produced per minute is 23.4 mg (1000 rpm/5 Nm), at mid speed and load this is 

increased to 62.0 mg (2000 rpm/30 Nm), and at high speed and load (3000 rpm/55 Nm) a 

maximal 98.0 mg of polar fraction compounds is emitted. Thus when an engine is 
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operating at high engine speeds and loads, it is producing the greatest mass of these highJy 

genotoxic polar compounds which are released into the atmosphere. 
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Figure 80. The extrapolated mass of polar fraction group compounds emitted per minute 

from the diesel test engine for various engine conditions of speed and load tested 

4. 6 Type of cl~romosome aberrations observed 

The difference in ratios of simple to complex aberrations induced by the clastogenic 

fractions (section 3.1 0.1) may indicate different modes of action for clastogenic chemicals 

within each fraction. It has been shown, for example, that the processes leading to the 

formation of dicentrics and translocations are different (Natarajan et al., 1994 ). Aberration 

assays of restriction endonucleases and ionizing radiations in CHO cells have shown 

breakpoints preferentially occurring in G-light bands (Folie et al., 1998). PAC are al l S-

dependent mutagens, and therefore the formation of the initial DNA lesion is critical and 
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suggested as being dependent on the type of chemical compound. Further work in this area 

is required, especially to increase sample sizes and therefore statistical significance of 

differences in aberration types. Although specific sites of chromosomal attack were not 

noted, G-banding of the CHO-KI cells may enable the detection of such sites and any 

relationship with compound type. 

CHO cells exposed to higher concentrations of the polar fraction compounds were 

affected by loss of chromosome structure in approximately 3 % of cells (section 3.1 0.2). 

The atTect on chromosome structure was similar to that observed after exposure to arsenite 

and sodium arsenite (Radha and Natarajan, 1998), and other chemicals such as mimosine 

(Jha et al., 1995), where abnormal cells with pulverised chromosomes and decondensed 

chromatin are observed. This abnormal separation of the chromosomes and loss of 

chromosome structure may be important in the formation of aneuploid cells. In human 

cells, for example, precocious centromere separation has been proposed by Angell ( 1997) 

as a possible mechanism for the induction of aneuploidy after the finding of loss of sister 

chromatid cohesion in Meiosis l of oocytes. The observations here may also aid in the 

determination of compounds within the polar fraction, which has been hampered by the 

generally non-volatile nature of polar compounds which cannot be analysed by GC/MS 

without derivatization. lt may be productive to look for compounds with structural 

similarity to arsenite. 

4. 7 Implications of tile results for llealtll and tlte e11vironme11t 

Although there have been conflicting reports about the potential health effects of diesel 

emissions (section 1.4), there is a consensus that at the very least the contribution of diesel 

to particulate load in urban air is resulting in premature death of susceptible individuals 

(DoE, 1996). Several authors have gone much further than this and suggested that 
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particulate exposure is affecting all people, particularly in urban areas, and reducing life

span (Pope et al., 1995). A relationship between particulate emissions and lung (HEI, 

1995; Bhatia et al., 1998) and other types of cancer (IARC, 1989; Nielson et al., 1996) 

have also been described. 

This study has confirmed previous work in showing that the diesel particulates 

emitted have mutagenic compounds adsorbed onto them, even those compounds emitted 

from engines powered by modem fuels. A mode of action for diesel activity in humans 

has not yet been ascertained, although several studies have described increases in the 

activation of airway epithelial cells after exposure (Ohtoshi et al., 1998; Takano et al., 

1998; Miyabara et al., 1998), a potential model for the observed allergic airway response. 

Despite the concern over the potential health effects of diesel, and the implementation of 

emissions legislation, there has been a continued rise in the number of diesel cars sold. In 

some countries where diesel cars now account for 50 % of new car sales, implementation 

of tighter emissions controls has been negated by the maintenance of new car sales. 

A mechanism of action for diesel emissions in humans is essential to prove the 

causation that is implied from epidemiological studies. Identification of mutagenic PAC 

may aid in the uncovering of a mode of action and this study has been a step in that 

direction by determination of fractions of diesel emissions that are highly mutagenic in 

mammalian cells. 

4.8 Conclusions 

As the majority of testing of fractionated diesel emissions has been performed in bacterial 

systems, the use of a mammalian cell system in this study was important to further our 

understanding of the complex area of diesel mutagenicity. The !ARC (1989) suggested 
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that results on diesel emission testing from existing cytogenetic studies were inconclusive 

and that further work in this field was required. Despite this, there has remained a lack of 

in vitro testing of diesel emissions, particularly fractionated samples. The continued 

general movement to improve airborne pollution has lead to many recent advances in 

diesel technology, and therefore revised mutagenicity testing is appropriate. A relatively 

new low sulphur diesel fuel was therefore used in a modem diesel engine in this study. 

One of the pnmary objectives of this investigation was to identify the most 

mutagenic components of diesel engine emissions through the use of bioassay directed 

fractionation. This has been achieved in a number of ways. The most mutagenic portion 

of the diesel emissions was identified as the polar fraction. In contrast to the different 

clastogenic responses of the ring fractions collected at different engine speeds and loads, 

the polar fractions were collected over a wide engine range and yet exhibited very similar 

strong genotoxic effects. A small correlation between increased clastogenicity and low 

engine load (5 Nm) was observed. The highly toxic response of the aromatic fractions 

assayed promoted isolation of aromatic ring fractions by HPLC, the assay of which showed 

increasing genotoxicity with increasing number of rings. The design of the study was also 

to test diesel fuel fractionated in the same way as emission samples to facilitate a pre- and 

post-combustion comparison, and this has revealed the fuel itself as a genotoxic mixture. 

lt has also been shown that similar levels of clastogenicity may be observed when complex 

mixtures of differing chemical composition are assayed. 

One of the mam advantages of this study has been the ability to make direct 

comparisons between samples as the only variation between them should be the speed and 

load at which they were collected. This provides infonnation about the engine conditions 

at which the majority of genotoxic compounds will be emitted into the atmosphere. For 

example for an engine operating at 3000 rpm and 55 Nm, 98 mg of highly genotoxic polar 
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group compounds, which are clastogenic to CHO cells at concentrations as low as 

20 f.lg/ml, will be emitted into the atmosphere (section 4.5). This study has shown that the 

polar group compounds are of particular concern because of their strong direct-acting 

genotoxicity. The testing performed during this investigation has therefore shown that 

engine conditions of speed and load are important, for some fractions giving a greater 

clastogenic response, for example the increased genotoxicity of polar fractions collected at 

low engine loads. Such information can be used by engine manufactures and policy 

makers to aid in the reduction of airborne pollution. At 1000 rpm and 55 Nm, the 2-ring 

fraction of the diesel emission sample was clastogenic when assayed with S9. This 

corresponds to an area in the engine where NOx emission are at their highest, because high 

temperatures promote the formation of NOx from nitrogen and oxygen in the combustion 

chamber. Engine and fuel development could therefore work at reducing the effect of this 

engine 'hotspot', although more than a simple reduction in combustion chamber 

temperature is required as this would merely increase particulate emissions through the 

incomplete fuel combustion that takes place at lower temperatures. As the emission of 

particulates is a major area of public health concern (section 1.4), any increase in 

particulate emissions despite a reduction in the release of genotoxic compounds would not 

be beneficial. 

The genotoxicity of diesel emissions will continue to be relevant for as long as there 

is an increased market penetration of diesel car sales, and increased car ownership and 

usage in general aggravating the particulate load in the atmosphere particularly in urban 

areas. The almost certain adverse effect of diesel particulate emissions on public health 

will promote the search for a mechanism of action for diesel particulates, for which one of 

the fundamental requirements is a better understanding of the chemical and mutagenic 

nature of the emissions. 
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APPENDIX A 

CYTOTOXICITY ASSAYS 

The cytotoxicity of all diesel fuel and engine emission sample fractions was assessed to 

indicate a range of concentrations suitable for chromosome aberration testing. The method 

followed was that of dye uptake by viable cells after Fiennes et al. ( 1987) as described in 

section 2.6.1. The cytotoxic effect of sample fractions was assessed after incubation of the 

test sample with Chinese hamster ovary CH O-K l cells over the same time period as used 

in the aberration assay. Surviving cells were quantified spectrophotomertrically following 

incubation with neutral red dye for the final two hours. A minimal amount of neutral red 

dye was retained in wells that contained medium only (no cells), and therefore absorbance 

levels of less than 0.0 I were regarded as representing no viable cells. Data from duplicate 

wells is presented as mean absorbance values with error bars representing ±2 standard 

deviations. 
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Figure 81 . Cytotoxicity of the aliphatic fraction F 7 of the diesel fuel in the neutral red dye 

assay in Chinese hamster ovary CH O-K I cells, without metabolic activation 
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Figure 82. Cytotoxicity of the aliphatic fraction F 7 of diesel fue l in the neutral red dye 

assay in Chinese hamster ovary CHO-K 1 cell s, with metabolic activation (rat liver S9 

fraction) 
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Figure 83. Cytotoxicity of the aliphatic fraction ES 37+40, from diesel engine emission 

sample collected at 3000 rpm/5 Nm, in the neutral red dye assay in Chinese hamster ovary 

CHO-Kl cells without metabolic activation 
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Figure 84. Cytotoxicity of the aliphatic fraction ES 37+40, from diesel engine emission 

sample collected at 3000 rpm/5 Nm, in the neutral red dye assay in Chinese hamster ovary 

CHO-K 1 cells with metabolic activation (rat liver S9 fraction) 
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Figure 85. Cytotoxicity of the aliphatic fraction ES 43+46, from diesel engine emission 

sample collected at 1000 rpm/55 Nm, in the neutral red dye assay in Chinese hamster 

ovary CHO-Kl cells without metabolic activation 
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Figure 86. Cytotoxicity of the al iphatic fraction ES 43+46, from diesel engine emission 

sample collected at I 000 rpm/55 Nm, in the neutral red dye assay in Chinese hamster 

ovary CHO-Kl cells with metabolic activation (rat liver S9 fraction) 
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Figure 87. Cytotoxicity of the aliphatic fraction ES 49+52, from diesel engine emission 

sample collected at 1000 rpm/5 Nm, in the neutral red dye assay in Chinese hamster ovary 

CH O-K 1 cells without metabolic activation 
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Figure 88. Cytotoxicity of the aliphatic fraction ES 49+52, from diesel engine emission 

sample collected at 1000 rpm/5 Nm, in the neutral red dye assay in Chinese hamster ovary 

CHO-K I cells with metabolic activation (rat liver S9 fraction) 
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Figure 89. Cytotoxici ty of the aromatic fraction F 8 of diesel fuel in the neutral red dye 

assay in Chinese hamster ovary CH O-K I cells without metabolic activation 
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Figure 90. Cytotoxicity of the aromatic fraction F 8 of diesel fuel in the neutral red dye 

assay in Chinese hamster ovary CHO-Kl cells with metabolic activation (rat liver S9 

fraction) 
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Figure 9 1. Cytotoxicity of the aromatic fraction ES 38+41 , from diesel engine emission 

sample collected at 3000 rpm/5 Nm, in the neutral red dye assay in Chinese hamster ovary 

CHO-K 1 cells without metabolic activation 
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Figure 92. Cytotoxicity of the aromatic fraction ES 38+41 , from diesel engine emission 

sample collected at 3000 rprn/5 Nm, in the neutral red dye assay in Chinese hamster ovary 

CHO-Kl cells with metabolic activation (rat liver S9 fraction) 
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Figure 93. Cytotoxicity of the aromatic fraction ES 44+47, from diesel engine emission 

sample collected at 1000 rpm/55 Nm, in the neutral red dye assay in Chinese hamster 

ovary CH O-K I cells without metabolic activation 
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Figure 94. Cytotoxicity of the aromatic fraction ES 44+47, from diesel engine emission 

sample collected at 1000 rpm/55 Nm, in the neutral red dye assay in Chinese hamster 

ovary CHO-K 1 cells with metabolic activation (rat liver S9 fraction) 
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Figure 95. Cytotoxicity of the aromatic fraction ES 50+53, from diesel engine emission 

sample collected at I 000 rpm/5 Nm, in the neutral red dye assay in Chinese hamster ovary 

CHO-K I cells without metabolic activation 
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Figure 96. Cytotoxicity of the aromatic fraction ES 50+53, from diesel engine emission 

sample collected at lOOO rpm/5 Nm, in the neutral red dye assay in Chinese hamster ovary 

CHO-Kl cells with metabolic activation (rat liver S9 fraction) 
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Figure 97. Cytotoxicity of the 1- ring aromatic fraction R 40 from diesel fuel in the neutral 

red dye assay in Chinese hamster ovary CHO-K 1 cells, without metabolic activation 
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Figure 98. Cytotoxicity of the !- ring aromatic fraction R 40 from diesel fuel in the neutral 

red dye assay in Chinese hamster ovary CHO-Kl cells, with metabolic activation (rat liver 

S9 fraction) 
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Figure 99. Cytotoxicity of the !- ring aromatic fraction R 41, from diesel engine emission 

sample collected at 3000 rpm and 5 Nm, in the neutral red dye assay in Chinese hamster 

ovary CHO-K I cells without metabolic activation 
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Figure I 00. Cytotoxicity of the !- ring aromatic fraction R 41 , from diesel engine emission 

sample col lected at 3000 rpm and 5 Nm, in the neutral red dye assay in Chinese hamster 

ovary CHO-K I cell s with metabolic activation (rat liver S9 fraction) 
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Figure 10 l. Cytotoxicity of the ]- ring aromatic fraction R 28+ 37, from diesel engine 

emission sample collected at 1000 rpm and 55 Nm, in the neutral red dye assay in Chinese 

hamster ovary CH O-K I cells without metabolic activation 
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Figure 102. Cytotoxicity of the !- ring aromatic fraction R 28+37, from diesel engine 

emission sample collected at 1000 rpm and 55 Nm, in the neutral red dye assay in Chinese 

hamster ovary CHO-K 1 cells with metabolic activation (rat liver S9 fraction) 
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Figure 103. Cytotoxicity of the 2- ring aromatic fraction R 26 from diesel fuel in the 

neutral red dye assay in Chinese hamster ovary CH O-K l cells, without metabolic 

activation 
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Figure l 04. Cytotoxicity of the 2- ring aromatic fraction R 26 from diesel fuel in the 

neutral red dye assay in Chinese hamster ovary CHO-K l cells, with metabolic activation 

(rat liver S9 fraction) 
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Figure 105. Cytotoxicity of the 2- ring aromatic fraction R 32, from diesel engine emission 

sample collected at 3000 rpm and 5 Nm, in the neutral red dye assay in Chinese hamster 

ovary CHO-K 1 cells without metabolic activation 
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Figure 106. Cytotoxicity of the 2- ring aromatic fraction R 32, from diesel engine emission 

sample collected at 3000 rpm and 5 Nm, in the neutral red dye assay in Chinese hamster 

ovary CHO-K 1 cells with metabolic activation (rat liver S9 fraction) 
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Figure 107. Cytotoxicity of the 2- ring aromatic fraction R 29+ 38, from djesel engtne 

emission sample collected at 1000 rpm and 55 Nm, in the neutral red dye assay in Chinese 

hamster ovary CHO-K 1 ceiJs without m~tabolic activation 
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Figure I 08. Cytotoxicity of the 2- ring aromatic fraction R 29+ 38, from diesel engme 

emission sample collected at I 000 rpm and 55 Nm, in the neutral red dye assay in Chinese 

hamster ovary CHO-K l cells with metabolic activation (rat liver S9 fraction) 
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Figure 109. Cytotoxicity of the 3- ring aromatic fraction R 27 from diesel fuel in the 

neutral red dye assay in Chinese hamster ovary CH O-K I cells, without metabolic 

activation 
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Figure 110. Cytotoxicity of the 3- ring aromatic fraction R 27 from diesel fuel in the 

neutral red dye assay in Chinese hamster ovary CHO-K I cells, with metabolic activation 

(rat liver S9 fraction) 
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Figure 111. Cytotoxicity of the 3-ring aromatic fraction R 33, from diesel engine emission 

sample collected at 3000 rpm and 5 Nm, in the neutral red dye assay in Chinese hamster 

ovary CH O-K 1 cells without metabolic activation 
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Figure 11 2. Cytotoxicity of the 3- ring aromatic fraction R 33, from diesel engine emission 

sample collected at 3000 rpm and 5 Nm, in the neutral red dye assay in Chinese hamster 

ovary CHO-Kl cells with metabolic activation (rat liver S9 fraction) 
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Figure 11 3. Cytotoxicity of the polar fraction ES 39+42, from diesel engme emtsston 

sample collected at 3000 rpm and 5 Nm, in the neutral red dye assay in Chinese hamster 

ovary CHO-K 1 cells without metabolic activation 
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Figure 114. Cytotoxicity of the polar fraction ES 39+42, from diesel engme emtsston 

sample collected at 3000 rpm and 5 Nm, in the neutral red dye assay in Chinese hamster 

ovary CHO-K I cel ls with metabolic activation (rat liver S9 fraction) 
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Figure 115. Cytotoxicity of the polar fraction ES 45+48, from diesel engtne emtsston 

sample collected at I 000 rpm and 55 Nm, in the neutral red dye assay in Chinese hamster 

ovary CHO-K I cells without metabolic activation 
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Figure 116. Cytotoxicity of the polar fraction ES 45+48, from diesel engtne em1sston 

sample collected at I 000 rpm and 55 Nm, in the neutral red dye assay in Chinese hamster 

ovary CHO-KJ cells with metabolic activation (rat liver S9 fraction) 

298 



0.6 • solvent control 

0.5 

~ 0.4 ' ·c; ' 2.. I 

<I) 0.3 0 
c: ' CO 

1---- --e 
0 0.2 
Vl -----.Q 
CO 

0.1 
' I 

0 ...,-

0 50 100 150 200 250 

concentration (ug/ml) 

Figure 117. Cytotoxicity of the polar fraction ES 51 +54, from diesel engine emission 

sample collected at 1000 rpm and 5 Nm, in the neutral red dye assay in Chjnese hamster 

ovary CHO-K l cells without metabolic activation 
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Figure 118. Cytotoxicity of the polar fraction ES 51 +54, from diesel engine emission 

sample collected at l 000 rpm and 5 Nm, in the neutral red dye assay in Chinese hamster 

ovary CHO-K l cells with metabolic activation (rat liver S9 fraction) 
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Figure 11 9. Cytotoxicity ofthe polar fraction ES 107, from diesel engine emission sample 

collected at 2000 rpm and 30 Nm, in the neutral red dye assay in Chinese hamster ovary 

CHO-K1 cells without metabolic activation 
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Figure 120. Cytotoxicity of the polar fraction ES 116, from diesel engine emission sample 

collected at 2000 rpm and 55 Nm, in the neutral red dye assay in Chinese hamster ovary 

CHO-K I cells without metabolic activation 
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Figure 121. Cytotoxicity of the polar fraction ES 119, from diesel engine emission sample 

collected at 3000 rpm and 30 Nm, in the neutral red dye assay in Chinese hamster ovary 

CHO-K 1 cells without metabolic activation 
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Figure 122. Cytotoxicity of the polar fraction ES 125, from diesel engine emission sample 

collected at 3000 rpm and 55 Nm, in the neutral red dye assay in Chinese hamster ovary 

CHO-K 1 cells without metabolic activation 
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APPENDIXB 

CHROMOSOME ABERRATION ASSAY DATA 

Diesel fuel and enbrine emission sample fractions were exposed to Chinese hamster ovary 

CHO-KI cells both in the presence and absence of metabolic activation (rat liver S9 

fraction). Clastogcnic response to sample exposure was recorded as the number of 

chromosome aberrations observed in each category (simple, complex, total: section 2.6.4), 

and as the percentage of cells with chromosome aberrations at each concentration. Where 

replicate cultures have been scored they arc recorded, together with the results of 

dispersion test calculations. The DMSO solvent control is represented as concentration 

zero. Aberration data for positive controls MNNG and CP are also given, together with 

mitotic rate at each sample concentration assayed. 
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simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of %cells number of %cells number of %cells 
(1-!g/ml) rate 1 scored aberrations aberrations aberrations 

0 104 100 1 0 0 

75 91 100 2 3 2 

150 95 100 0 0 2 2 2 2 

300 80 lOO 3 3 4 4 

600 59 100 1 2 2 3 3 

MNNG 2 39 100 9 8 6 6 15 14 

1 number of mitoses per I ,000 cells scored 
2 direct acting positive conLrol MNNG, concentration 0. 15 Jlg/ml 

Table 54. Chromosome aberrations observed in Chinese hamster ovary CHO-K I cells 

after exposure to aliphatic diesel emission sample ES 37+40 (3000 rpm speed/ 5 Nm load) 

without metabolic activation 

simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of %cells number of %cells number of %cells 
(J..Lg/m!) rate 1 scored aberrations aberrations aberrations 

0 57 100 0 0 2 2 2 2 

75 62 100 2 2 3 3 

150 57 100 0 0 

300 53 100 2 3 2 

600 64 100 0 0 3 3 3 3 

CP 3 38 100 10 8 12 10 22 17 
1 number of mitoses per I ,000 cells scored 
3 indirect acting positive control cyclophosphamide, concenlration 25 f.!g/ml 

Table 55. Chromosome aberrations observed in Chinese hamster ovary CHO-Kl cells 

after exposure to aliphatic diesel emission sample ES 37+40 (3000 rpm speed/ 5 Nm load) 

with metabolic activation (rat liver S9 fraction) 
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simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of % cells number of % cells number of %cells 

(1-lg/ml) rate 1 scored aberrations aberrations aberrations 

0 70 100 0 0 1 

10 60 100 2 2 3 3 

20 49 100 0 0 3 2 3 2 

30 34 100 3 3 2 5 4 

40 9 100 2 2 3 3 5 5 

MNNG 2 29 100 5 5 5 5 10 10 

1 number of mitoses per 1,000 cells scored 
2 direct acting positive control MNNG, concentration 0.15 f!g/1111 

Table 56. Chromosome aberrations observed in Chinese hamster ovary CH O-K I cells 

after exposure to the aromatic fraction F 8 of diesel fuel , without metabolic activation 

simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of %cells number of % cells number of % cells 
(11g/ml) rate 1 scored aberrations aberrations aberrations 

0 83 100 0 0 1 

10 68 100 3 3 1 1 4 4 

20 52 100 3 3 4 4 

30 58 100 2 2 

40 40 100 3 3 4 4 

CP 3 8 lOO 8 7 6 6 14 13 

number of mitoses per I ,000 cells scored 
3 indirect acting positive control cyclophosphamide, concentration 25 f!g/ml 

Table 57. Chromosome aberrations observed in Chinese hamster ovary CHO-Kl cells 

after exposure to the aromatic fraction F 8 of diesel fuel , with metabolic activation (rat 

liver S9 fraction) 
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simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of % cells number of % cells number of %cells 
(J.!g/ml) rate 1 scored aberrations aberrations aberrations 

0 80 100 2 2 3 3 5 5 

10 106 100 4 4 5 3 9 7 

20 96 100 3 3 4 4 7 7 

30 21 lOO 3 3 4 4 

40 10 100 4 4 3 3 7 7 

MNNG 2 90 100 5 5 5 5 10 10 

1 number of mitoses per I ,000 cells scored 
2 direct acting positive control MNNG. concentration 0.15 J..lg/ml 

Table 58. Chromosome aberrations observed in Chinese hamster ovary CH O-K 1 cells 

after exposure to aromatic diesel emission sample ES 38+41 (3000 rpm speed/ 5 Nm load), 

wi thout metabolic activatjon 
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simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of %cells number of %cells number of %cells 
(Jlg/ml) rate 1 scored aberrations aberrations aberrations 

0 68 100 3 3 4 4 

10 68 100 0 0 0 0 0 0 

20 87 100 3 3 2 2 5 5 

30 11 2 100 3 3 2 2 5 5 

40 75 100 4 4 5 5 

CP 2 26 100 11 11 7 5 19 16 

number of mitoses per I ,000 cells scored 
2 indirect acting positive control C)-clophospha rmde. concentration 25 f.lg/ml 

Table 59. Chromosome aberrations observed in Chinese hamster ovary CH O-K l cells 

after exposure to aromatic diesel emission sample ES 38+41 (3000 rpm speed/ 5 Nm load), 

with metabolic activation (rat liver S9 fraction) 

imple aberrations omplex aberrations Total aberrations 

Concentration Mitotic Cells umber of %cells umber of % cell umber of %cells 
(pg/ml) rate 1 sl:ured aberTatiuns aberrations aberrations 

0 83 100 3 3 2 2 5 5 

100 52 100 4 4 5 5 

CP 2 31 100 10 9 7 7 17 16 

1 number of m1toses per 1.000 cells scored 
2 indirect acting positive control C) clophospharnrde. concentration 25 11g/ml 
1 rat liver S9 fraction increased to 6.7% of the S9 mix, Section 2.7.5 

Table 60. Chromosome aberrations observed in Chinese hamster ovary CHO-K I cells 

after exposure to aromatic diesel emission sample ES 38+41 (3000 rpm speed/ 5 Nm load), 

with 2 x S9 mix metabolic activation (double concentration of rat liver S9 fraction)3 
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simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of % cells number of %cells number of % cells 
(j.!g/ml}_ rate 1 scored aberrations aberrations aberrations 

0 70 100 2 2 3 3 

10 68 100 3 2 4 3 

20 54 100 3 3 4 4 

30 27 100 3 2 3 3 6 5 

40 8 100 2 2 2 2 4 4 

MNNG 2 23 100 6 5 7 6 13 I 1 

1 number of mitoses per I ,000 cells scored 
2 direct acting positive control MNNG, concenlration 0.15 ~~g/ml 

Table 61 . Chromosome aberrations observed in Chinese hamster ovary CHO-KI cells 

after exposure to aromatic diesel emission sample ES 44+47 (1000 rpm speed/ 55 Nm 

load) without metabolic activation 

simple aberrations complex abcrrntions total aberrations 

concentration mitotic cells number of % cells number of % cells number of % cells 
(j.!g/ml) rate 1 scored aberrations aberrations aberrations 

0 68 100 3 3 4 4 

10 103 100 2 2 

20 53 100 2 2 

30 57 100 0 0 

40 40 100 2 2 3 3 

CP 3 26 100 11 11 7 5 19 16 

1 number of mitoses per I ,000 cells scored 
3 indtrect acting positi,·e conlrol cyclophosphamide. conccnlration 25 ~tg/ml 

Table 62. Chromosome aberrations observed in Chinese hamster ovary CHO-K l cells 

after exposure to aromatic diesel emission sample ES 44+47 ( 1000 rpm speed/ 55 Nm 

load) with metabolic activation (rat liver S9 fraction) 
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simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of %cells number of %cells number of %cells 
lgg/ml) rate 1 scored aberrations aberrations aberrations 

0 72 100 2 2 2 4 3 

10 76 lOO 3 3 4 4 

20 49 100 2 2 3 3 

30 25 lOO 2 2 

40 11 lOO 2 2 3 3 

MNNG 2 65 100 6 5 6 6 12 I 1 

1 number of mitoses per I ,000 cells scored 
2 direct acting positive control MNNG, concentration 0.15 ~tg/ml 

Table 63. Chromosome aberrations observed in Chinese hamster ovary CHO-K l cells 

after exposure to aromatic diesel emission sample ES 50+53 (1000 rpm speed/ 5 Nm load) 

without metabolic activation 

simple aberrations complex aberrations total aberrations 

concentration mitotic Cell s number of %cells number of %cells number of %cells 
(flg/ml) rate 1 scored aberrations aberrations aberrations 

0 53 100 0 0 0 0 0 0 

10 61 lOO 5 5 2 2 7 7 

20 47 100 0 0 

30 56 100 2 2 3 3 

40 23 100 2 2 

CP 3 22 lOO 12 8 8 6 20 13 

number of mitoses per I ,000 cells scored 
3 indirect acling positi,•e control cyclophosphamide, concentration 25 11g/ml 

Table 64. Chromosome aberrations observed in Chinese hamster ovary CHO-K l cell s 

after exposure to aromatic diesel emission sample ES 50+ 53 (1 000 rpm speed/ 5 Nm load) 

with metabolic activation (rat liver S9 fraction) 
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simple aberrations complex aberrations total aberrations 

mitotic cells number of % cells number of % cells number of % cells 
rate 1 scored aberrations aberrations aberrations 

0 

12.5 

25 

50 

75 

MNNG 2 

68 

72 

42 

23 

2 

47 

100 

100 

100 

lOO 

* 
lOO 

• mitotic rate too low to score aberrations 
1 number of mitoses per I ,000 cells scored 

1 

2 

8 8 

2 direct acting positive control MNNG, concentration 0.15 1-1g/ml 

3 3 

2 2 

6 5 

2 

4 

3 

3 

14 

2 

4 

2 

3 

13 

Table 65. Chromosome aberrations observed in Chinese hamster ovary CHO-K 1 cells 

after exposure to !- ring aromatic fraction of diesel fuel (R 40) without metabolic 

activation 

simple aberrations complex aberrations total aberrations 

mitotic cells number of %cells number of %cells number of %cells 
rate 1 scored aberrations aberrations aberrations 

0 42 100 2 2 1 3 3 

25 37 too 2 2 3 3 5 5 

50 39 100 2 2 0 0 2 2 

100 41 100 2 2 3 3 

200 28 100 3 2 4 3 

CP 3 23 100 11 10 8 8 19 17 

number of nutoscs per I ,000 cells scored 
3 indirect acting posili \'e control cyclophosphamide, concentration 25 1-1g/ml 

Table 66. Chromosome aberrations observed in Chinese hamster ovary CH O-K I cells 

after exposure to 1- ring aromatic fraction of diesel fuel (R 40) with metabolic activation 

(rat liver S9 fraction) 
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simple aberrations complex aberrations total aberrations 

concentration mitotic cells number or %cells number of %cells number or %cells 
(IJ.g/rnl) rate 1 scored aberrations aberrations aberrations 

0 68 100 2 2 

12.5 65 \00 2 2 2 4 3 

25 45 100 2 2 3 3 

50 37 100 0 0 2 2 2 2 

75 * 
MNNG 2 47 100 8 8 6 5 14 13 

• mitotic rate too lo\1 to score aberrations 
1 number of mitoses per I ,000 cells scored 
2 direct acting positive control MNNG, conccntrallon 0.15 Jlg/ml 

Table 67. Chromosome aberrations observed in Chinese hamster ovary CHO-K 1 cells 

after exposure to l- ring aromatic diesel emission fraction R 41 (3000 rpm speed/5 Nm 

load) without metabolic activation 

simple aberrations complex aberrations total aben·ations 

concentration mitotic cells number of I % cells number of I % cells number of I % cells 
(~-tg/ml) rate 1 scored aberrations aberrations aberrations 

0 42 100 2 2 3 3 

25 57 lOO 2 0 0 2 

50 47 100 
.., 
.) 3 2 2 5 5 

100 32 100 2 2 
.., 
.) 

.., 

.) 

200 38 100 2 2 3 3 5 5 

CP 3 23 100 l I 10 8 8 19 17 

number of mitoses per 1.000 cells scored 
' indirect acting posiu,·e control cyclophospham1de. conccntrallon 25 Jlg/ml 

Table 68. Chromosome aberrations observed in Chinese hamster ovary CHO-K I cel ls 

after exposure to 1- ring aromatic diesel emission fraction R 41 (3000 rpm speed/5 Nm 

load) with metabolic activation (rat liver S9 fraction) 
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simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of %cells number of %cells number of %cells 
(J.lg/ml) rate 1 scored aberrations aberrations aberrations 

0 97 100 0 0 0 0 0 0 

10 82 100 1 0 0 

15 65 100 2 2 3 3 

20 54 100 4 4 0 0 4 4 

50 4 * 
MNNG 2 39 100 8 8 7 7 15 14 

* mitotic rate too low to score aberrations 
1 number of mitoses per I ,000 cells scored 
1 direct acting positive control MNNG, concentration 0.15 ~g/ml 

Table 69. Chromosome aberrations observed in Chinese hamster ovary CHO-K I cells 

after exposure to 1- ring aromatic diesel emission fraction R 28+ 37 ( 1000 rpm speed/55 

Nm load) without metabol ic activation 

simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of %cells number of %cells number of %cells 
(}.lg/ml) rate 1 scored aberrations aberrations aberrations 

0 42 100 2 2 3 3 

25 61 100 2 2 0 3 2 

50 53 100 0 0 

100 61 100 3 2 4 3 

150 39 100 2 2 2 4 3 

200 20 100 2 2 3 3 

CP 3 24 100 11 10 8 8 19 17 

1 number of mitoses per I ,000 cells scored 
3 indirect acting positive control cyclophosphamide, concentration 25 ~Jg/ml 

Table 70. Chromosome aberrations observed in Chinese hamster ovary CHO-K 1 cells 

after exposure to 1- ring aromatic diesel emission fraction R 28+ 37 ( 1000 rpm speed/55 

Nm load) with metabolic activation (rat liver S9 fraction) 
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simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of %cells number of %cells number of %cells 
(11g/ml) rate 1 scored aberrations aberrations aberrations 

0 75 lOO 1 2 2 3 3 

5 58 100 3 3 4 4 

10 72 100 2 2 3 3 

15 62 100 2 2 3 3 

20 29 100 2 2 2 2 4 4 

40 * 
MNNG 2 49 100 5 5 9 8 14 13 

• mitotic rate too low to score aberrations 
1 number of mitoses per 1,000 cells scored 
2 direct acting positive control MNNG, concentration 0.15 ~glml 

Table 71. Chromosome aberrations observed in Chinese hamster ovary CH O-K 1 cells 

after exposure to the 2- ring aromatic fraction R 26 of diesel fuel without metabolic 

activation 

simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of %cells number of %cells number of %cells 
(11g/ml) rate 1 scored aberrations aberrations aberrations 

0 45 100 2 2 0 0 2 2 

25 52 100 6 6 5 5 I l ll 

50 38 100 5 5 8 8 13 12 

lOO 41 lOO 4 3 13 11 17 13 

150 4 26 100 

200 25 100 2 2 12 12 14 14 

CP 3 38 100 7 7 5 5 12 11 
1 nwnber of mitoses per I ,000 cells scored 
3 indirect acting positive control cyclophosphamide, concentration 25 J.l!Vml 
4 aberrations not scored at this concentration as higher concentration suitable for scoring 

Table 72. Chromosome aberrations observed in Chinese hamster ovary CH O-K l cells 

after exposure to the 2- ring aromatic fraction R 26 of diesel fuel with metabolic activation 

(rat liver S9 fraction) 
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simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of % cells number of %cells number of % cells 
(11g/ml) rate 1 scored aberrations aberrations aberrations 

0 75 LOO 2 2 3 3 

5 82 lOO 1 2 2 

10 51 100 3 2 0 0 3 2 

15 30 100 2 2 0 0 2 2 

20 25 * 
40 3 * 
MNNG 2 49 100 5 5 9 8 14 l3 

• mitotic rate too low to score aberrations 
1 number of mitoses per 1,000 cells scored 
2 direct acting positive control MNNG, concentration 0.15 ~tg/ml 

Table 73. Chromosome aberrations observed in Chinese hamster ovary CH O-K J cells 

after exposure to the 2- ring aromatic diesel emission fraction R 32 (3000 rpm speed/5 Nm 

load) without metabolic activation 

simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of % cells number of %cells number of %cells 
(~Lg/ml) rate 1 scored aberrations aberrations aberrations 

0 45 100 2 2 0 0 2 2 

25 46 100 3 ... 
-' 2 2 5 5 

50 29 lOO 3 3 2 2 5 4 

100 23 100 3 3 2 2 5 5 

150 26 100 2 2 3 3 5 5 

200 12 * 
CP 3 38 100 7 7 5 5 12 11 

• mitotic rate too low to score aberrations 
1 number of mitoses per 1.000 cells scored 
3 indirect acting positive control cyclophosphamide, concentration 25 J.lg/ml 

Table 74. Chromosome aberrations observed in Chinese hamster ovary CHO-K 1 cells 

after exposure to the 2- ring aromatic diesel emission fraction R 32 (3000 rpm speed/5 Nm 

load) with metabolic activation (rat liver S9 fraction) 
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simple aberrations complex aberrations total aberrations 

concentration mitotic cell s number of %cells number of %cells number of %cells 
. (llg/ml) rate 1 scored aberrations aberrations aberrations 

0 75 100 2 2 3 3 

5 69 100 2 2 2 4 3 

10 63 100 3 3 4 4 

15 28 100 3 3 3 3 6 6 

20 19 * 
40 9 * 
MNNG 2 49 100 5 5 9 8 14 13 

* mitotic rate too low to score aberrations 
1 number of mitoses per I ,OUU cell s scored 
? d1rcct aclmg positi\'e control MNNG. concentration 0. 15 ~Lg/ml 

Table 75. Chromosome aberrations observed in Chinese hamster ovary CHO-K l cel ls 

after exposure to the 2- ring aromatic diesel emission fraction R 29+ 38 ( 1000 rpm speed/ 

55 Nm load) without metabolic activation 

simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of % cells number of % cells number of % cells 
(~g/ml) rate 1 scored aberrations aberrations aberrations 

0 42 100 2 2 3 3 

10 39 100 3 3 5 5 8 8 

20 46 100 3 3 8 8 11 11 

40 25 100 5 5 7 5 12 9 

100 7 * 
CP 3 23 100 11 10 8 8 19 17 

* m1tollc rate too low to score aberrations 
1 number of mitoses per LOOO cells scored 
3 indirect acting positi' e control C) clophosphamidc, concentration 25 11g/ml 

Table 76. Chromosome aberrations observed in Chinese hamster ovary CHO-KJ cells 

after exposure to the 2- ring aromatic diesel emission fraction R 29+ 38 (I 000 rpm speed/ 

55 Nm load) \vith metabolic activation (rat liver S9 fraction) 
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simple aberrations complex aberrations total aberrations 

concentration 
(!lg/ml) 

mitotic cells number of %cells number of %cells number of % cells 
rate 1 scored aberrations aberrations aberrations 

0 

5 

10 

20 

40 

MNNG 2 

67 

54 

33 

26 

0 

41 

100 

100 

100 

lOO 

* 
100 

* mitotic rate too low to score aberrations 
1 number of mitoses per I ,000 cells scored 

2 2 

7 5 

2 direct acting positive control MNNG, concentration 0.15 IJ.g/1111 

3 

3 

3 

6 

7 

2 

3 

3 

6 

7 

4 

4 

4 

8 

14 

3 

4 

4 

8 

12 

Table 77. Chromosome aberrations observed in Chinese hamster ovary CHO-K I cells 

after exposure to the 3- ring aromatic fraction R 27 from diesel fuel without metabolic 

activation 

simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of %cells number of % cells number of %cells 
(~tg/ml ) rate 1 scored aberrations aberrations aberrations 

0 37 100 4 4 0 0 4 4 

25 38 100 7 7 8 8 15 13 

50 25 100 7 6 11 11 18 16 

100 25 101 13 13 8 8 21 21 

200 0 * 
CP 3 28 100 6 5 9 8 15 12 

* mitotic rate too low to score aberrations 
1 number of mitoses per I ,000 cells scored 
3 indirect acting positive control C) clophosphamidc, concentration 25 ~1g/m l 

Table 78. Chromosome aberrations observed in Chinese hamster ovary CHO-K I cells 

after exposure to the 3- ring aromatic fract ion R 27 from diesel fuel with metabolic 

activation (rat li ver S9 fract ion) 
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simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of %cells number of %cells number of %cells 
(~g/ml) rate 1 scored aberrations aberrat ions aberrations 

0 67 100 1 3 2 4 3 

2.5 4 57 

5 38 100 6 6 3 3 9 8 

10 37 100 2 2 6 6 8 8 

20 25 100 6 6 4 4 10 9 

40 6 * 
MNNG 2 41 100 7 5 7 7 14 12 

* mitotic rate too low to score aberrations 
1 number of mitoses per I ,000 cells scored 
2 direct acting positive control MNNG, concentration 0. 15 ~lg/ml 
4 aberrations not scored at this concentration as other concentrations tested more suitable for scoring 

Table 79. Chromosome aberrations observed in Chinese hamster ovary CHO-K 1 cells 

after exposure to the 3- ring aromatic diesel emission fractio n R 33 (3000 rpm speed/ 5 Nm 

load) without metabolic activation 

simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of %cells number of %cells number of %cells 
(~tg/ml) rate 1 scored aberrations aberrations aberrations 

0 37 lOO 4 4 0 0 4 4 

25 4 1 100 5 5 5 5 10 9 

50 30 lOO 7 7 12 12 19 18 

lOO 19 100 10 lO 10 10 20 20 

150 0 * 
200 0 * 
CP 3 28 100 6 5 9 8 15 12 

* mitotic rate too 10\v to score aberrations 
1 number of mitoses per I ,000 cells scored 
1 indirect acting positive control cyclophosphamide, concentration 25 ~~gfml 

Table 80. Chromosome aberrations observed in Chinese hamster ovary CHO-K l cells 

after exposure to the 3- ring aromatic diesel emission fract ion R 33 (3000 rpm speed/ 5 Nm 

load) with metabolic activation (rat liver S9 fraction) 
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concentration 
(~g/ml) 

0 

0 

5 

5 

10 

10 

20 

20 

30 

30 

MNNG 2 

MNNG 2 

mitotic 
rate 1 

56 

51 

46 

49 

47 

45 

39 

35 

24 

23 

24 

31 

cells 
scored 

100 

100 

100 

lOO 

100 

100 

100 

100 

100 

lOO 

lOO 

100 

simple aberrations 

number of 
aberrations 

0 

2 

0 

2 

2 

2 

10 

10 

23 

22 

9 

10 

%cells 

0 

2 

0 

2 

2 

2 

lO 

9 

19 

17 

7 

10 

1 nwnber of mitoses per I ,000 cells scored 
2 direct acting positive conlrol MNNG, concenlration 0.15 1-!g/ml 

complex aberrations 

number of 
aberrations 

3 

3 

3 

2 

3 

10 

14 

9 

7 

5 

4 

%cells 

3 

2 

3 

2 

3 

9 

10 

8 

7 

5 

4 

total aberrations 

number of 
aberrations 

3 

3 

3 

5 

4 

5 

20 

24 

32 

29 

14 

14 

%cells 

3 

3 

2 

5 

4 

5 

19 

19 

27 

23 

12 

14 

Table 81. Chromosome aberrations observed in Chinese hamster ovary CH O-K I cells 

after exposure to the polar diesel emission fraction ES 39+42 (3000 rpm speed/5 Nm load), 

without metabolic activation 

calculated test 
StatistiC X2 

I 

1.875 

degrees of critical X 2 value test outcome 
freedom (upper 5% point) 

5 11 .070 no evidence of heterogeneity between cultures 

method of Richardson et al., 1990 

Table 82. Binomial dispersion test calculated for replicate cultures of the polar emission 

fraction ES 39+42 (3000 rpm speed/5 Nm load) when assayed in the chromosome 

aberration assay in CH O-K 1 cells without metabolic activation 
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concentration 
(~g/ml) 

0 

0 

25 

25 

50 

50 

100 

100 

150 

150 

mitotic 
rate 1 

63 

69 

64 

70 

48 

41 

36 

37 

36 

35 

56 

54 

cells 
scored 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

simple aberrations 

number of 
aberrations 

3 

4 

0 

8 

7 

9 

13 

8 

6 

%cells 

3 

4 

0 

8 

6 

8 

11 

8 

6 

number of mitoses per 1.000 cells scored 

complex aberrations 

number of 
aberrations 

2 

0 

2 

0 

2 

4 

4 

7 

7 

8 

9 

%cells 

2 

0 

2 

0 

2 

3 

4 

7 

7 

8 

9 

2 ind1rect acting positi\'e control cyclophosphamide. concentration 25 ~Lg/m l 

total aberrations 

number of 
aberrations 

2 

3 

3 

3 

4 

2 

12 

1 I 

16 

20 

16 

15 

%cells 

2 

3 

3 

3 

4 

2 

11 

9 

15 

18 

15 

15 

Table 83. Chromosome aberrations observed in Chinese hamster ovary CHO-K I cells 

after exposure to the polar diesel emission fraction ES 39+42 (3000 rpm speed/5 Nm load), 

with metabolic activation (rat liver S9 fraction) 

calculated test degrees of critical X 2 value test outcome 
Statistic X2 

I freedom (upper 5 % point) 

1.44 1 5 11 .070 no evidence of heterogeneity between cultures 

method of Richardson et al.. 1990 

Table 84. Binomial dispers ion test calculated for replicate cultures of the polar emission 

fraction ES 39+42 (3000 rpm speed/5 Nm load) when assayed in the chromosome 

aberration assay in CHO-K I cells with metabolic activation (rat liver S9 fraction) 
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simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of %cells number of %cells number of %cells 
_fug/m I) 

0 

0 

5 

5 

10 

10 

20 

20 

30 

30 

MNNG 2 

MNNG 2 

rate 1 

90 

101 

104 

95 

63 

72 

55 

57 

32 

29 

33 

36 

scored 

100 

100 

100 

100 

100 

100 

lOO 

lOO 

lOO 

lOO 

100 

lOO 

aberrations 

0 

2 

3 

5 

8 

14 

19 

10 

10 

1 number of m1toses per 1.000 cells scored 

0 

2 

3 

5 

8 

14 

17 

10 

9 

2 direct acting positi \'c conlrol MNNG, conccnlration 0.15 ~lg/m l 

aberrations 

4 

2 

2 

3 

4 

2 

6 

8 

7 

7 

4 

2 

4 

2 

2 

3 

4 

2 

6 

8 

6 

6 

4 

2 

aberrations 

4 
..., 
..) 

4 

4 

5 

5 

11 

16 

21 

26 

14 

12 

Table 85 . Chromosome aberrations observed in Chinese hamster ovary CHO-K l cells 

after exposure to the polar diesel emission fraction ES 45+48 ( 1000 rpm speed/55 Nm 

load), without metabolic activation 

calculated test degrees of crit ical X 2 value test outcome 
StatistiC X2 I freedom (upper 5% point) 

I 13 I 5 I I. 070 no evidence of heterogeneity between cultures 

method ofRichardson et al., 1990 

4 

3 

4 

4 

5 

5 

I I 

15 

19 

22 

14 

11 

Table 86. Binomial dispersion test calculated for replicate cultures of the polar emission 

fraction ES 45+48 (1000 rpm speed/55 Nm load) when assayed in the chromosome 

aberration assay in CH O-K l cells without metabolic activation 
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simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of %cells number of %cells number of %cells 
(Jlg/ml) 

0 

0 

25 

25 

50 

50 

100 

100 

150 

150 

rate 1 

69 

63 

60 

65 

53 

48 

46 

50 

34 

31 

56 

54 

scored 

lOO 

lOO 

100 

lOO 

100 

100 

lOO 

100 

100 

100 

100 

100 

aberrations 

3 

4 

2 

2 

6 

2 

10 

6 

8 

6 

1 number of mitoses per 1.000 cells scored 

3 

4 

2 

2 

6 

2 

10 

6 

8 

6 

aberrations 

2 

2 

4 

2 

3 

5 

4 

6 

8 

9 

2 indirect acting posit.ive control C}clophosphamidc, concentration 25 11g/ml 

2 

2 

3 

2 

3 

4 

4 

6 

8 

9 

aberrations 

2 

3 

5 

5 

6 

4 

9 

7 

14 

12 

16 

15 

Table 87. Chromosome aberrations observed in Chinese hamster ovary CHO-K1 cells 

after exposure to the polar diesel emission fraction ES 45+48 (I 000 rpm speed/55 Nm 

load), with metabolic activation (rat liver S9 fraction) 

calculated test 
Statistic X2 

I 

1.147 

degrees of critical X 2 value test outcome 
freedom (upperS% point) 

S 11 .070 no evidence of heterogeneity between cu ltures 

method of Richardson et al., 1990 

2 

3 

5 

5 

5 

4 

9 

6 

14 

12 

15 

15 

Table 88. Binomial dispersion test calculated for replicate cultures of the polar emission 

fraction ES 45+48 ( 1000 rpm speed/55 Nm load) when assayed in the chromosome 

aberration assay in CHO-Kl cells with metabolic activation (rat liver S9 fract ion) 

320 



simple aberrations complex aberrations total aberrations 

concentration mitotic cell s number of %cells number of %cells number of %cells 
(J.lg/ml) rate 1 scored aberrations aberrations aberrations 

0 90 100 0 0 4 4 4 4 

0 101 lOO 2 2 3 3 

95 100 3 3 3 3 6 6 

90 100 4 4 4 4 8 8 

5 88 100 6 6 7 7 

5 94 100 7 7 4 3 11 10 

10 87 100 5 4 4 4 9 8 

10 88 100 4 4 4 4 8 8 

20 30 100 18 16 3 3 21 19 

20 35 lOO 15 14 6 6 21 19 

30 11 100 20 19 11 10 31 26 

30 19 100 19 16 13 12 32 27 

MNNG 2 33 100 10 10 4 4 14 14 

MNNG 2 36 100 10 9 2 2 12 11 

1 number of mitoses per I ,000 cells scored 
2 direct acting positive control MNNG, concentration 0.15 1-1glml 

Table 89. Chromosome aberrations observed in Chinese hamster ovary CH O-K 1 cells 

after exposure to the polar diesel emission fraction ES 51 +54 ( 1000 rpm speed/5 Nm load), 

without metabolic activation 

calculated test degrees of critical X 2 value test outcome 
Statistic X2 

I freedom (upper 5% point) 

1.060 6 12.592 no evidence of heterogeneity between cultures 

method of Richardson et al., 1990 

Table 90. Binomial dispersion test calculated for replicate cultures of the polar emission 

fraction ES 51 +54 ( 1000 rpm speed/5 Nm load) when assayed in the chromosome 

aberration assay in CH O-K 1 cells without metabolic activation 
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concentration 
(!lg/ml) 

0 

0 

25 

25 

50 

50 

100 

100 

mitotic 
rate 1 

77 

72 

78 

82 

53 

47 

39 

36 

56 

54 

cells 
scored 

lOO 

100 

100 

lOO 

100 

100 

100 

100 

100 

100 

simple aberrations 

number of 
aberrations 

2 

2 

2 

2 

3 

12 

8 

8 

6 

%cells 

2 

2 

2 

2 

3 

10 

8 

8 

6 

1 number of mitoses per 1.000 cells scored 

complex aberrations 

number of 
aberrations 

0 

2 

2 

6 

9 

8 

9 

%cells 

0 

2 

2 

6 

9 

8 

9 

2 indirect acting posili\·c control cyclophosphamide. concentration 25 ~tg/ml 

total aberrations 

number of 
aberrations 

2 

3 

3 

" .) 

4 

4 

18 

17 

16 

15 

%cells 

2 

3 

3 

3 

4 

4 

14 

15 

15 

15 

Table 91. Chromosome aberrations observed in Chinese hamster ovary CHO-K I cells 

after exposure to the polar diesel emission fraction ES 5 1 +54 ( 1000 rpm speed/5 Nm load), 

with metabolic activation (rat liver S9 fraction ) 

calculated test 
Stati stic X2 

I 

0.245 

degrees of critical X 2 value test outcome 
freedom (upper 5% point) 

4 9 488 no evidence of heterogeneity between cultures 

method of Richardson et al., 1990 

Table 92. Binomial dispersion test calculated for replicate cultures of the polar emission 

fraction ES 51 +54 (I 000 rpm speed/5 Nm load) when assayed in the chromosome 

aberration assay in CHO-K I cells wi th metabolic activation (rat liver S9 fraction) 
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simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of %cells number of %cells number of %cells 
(~g/ml) rate 1 scored aberrations aberrations aberrations 

0 42 100 0 0 1 

5 41 lOO 2 0 0 2 

10 44 100 3 3 5 5 8 8 

20 30 100 10 9 12 l ] 21 20 

30 22 100 15 14 14 12 29 24 

MNNG 2 30 100 8 8 8 7 16 14 

1 number of mitoses per I ,000 cells scored 
2 direct acting positive control MNNG, concentration 0.15 l!g/ml 

Table 93. Chromosome aberrations observed in Chinese hamster ovary CHO-K I cells 

after exposure to the polar diesel emission fraction ES 107 (2000 rpm speed/ 30 Nm load), 

without metabolic activation 

simple aberrations complex aberrations total aberrations 

mitotic cell s number of %cells number of %cells number of %cells 
rate 1 scored aberrations aberrations aberrations 

0 42 100 0 0 

5 53 100 5 5 2 2 7 5 

10 47 100 4 4 2 2 6 6 

20 31 100 10 10 9 9 19 18 

30 29 100 20 17 6 6 26 21 

MNNG 2 30 100 8 8 8 7 16 14 

1 number of mitoses per I ,000 cells scored 
2 direct acting positi\ e control MNNG. concentration 0.15 llg/ml 

Table 94. Chromosome aberrations observed in Chinese hamster ovary CHO-Kl cells 

after exposure to the polar diesel emission fraction ES 116 (2000 rpm speed/ 55 Nm load), 

without metabolic activation 
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simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of %cells number of %cells number of %cells 
(~g/ml) rate 1 scored aberrations aberrations aberrations 

0 66 100 2 2 3 3 

5 68 100 3 3 4 4 

10 63 lOO 6 6 5 5 I I 10 

20 38 LOO 10 9 I 1 8 21 17 

30 27 100 22 17 10 9 32 24 

MNNG 2 41 100 9 7 6 6 15 L3 

1 number of mitoses per I ,000 cells scored 
2 djrect acting positive control MNNG, concentration 0.15 ~tg/ml 

Table 95. Chromosome aberrations observed in Chinese hamster ovary CH O-K 1 cells 

after exposure to the polar diesel emission [Taction ES 119 (3000 rpm speed/ 30 Nm load), 

without metabolic activation 

simple aberrations complex aberrations total aberrations 

concentration mitotic cells number of %cells number of %cells number of %cells 
(~tg/rnl) rate 1 scored aberrations aberrations aberrations 

0 66 100 2 2 3 3 

5 60 100 4 4 0 0 4 4 

10 54 100 5 5 3 3 8 7 

20 35 100 15 13 9 9 24 20 

30 29 100 21 18 8 7 29 23 

MNNG 2 41 lOO 9 7 6 6 15 13 

1 number of mitoses per I ,000 cells scored 
2 direct acting positive control MNNG, concentration 0. 15 ~tg/ml 

Table 96. Chromosome aberrations observed in Chinese hamster ovary CHO-Kl cells 

after exposure to the polar diesel emission fraction ES 125 (3000 rpm speed/ 55 Nm load), 

without metabolic activation 

324 



APPENDIXC 

GC/MS TRACES FOR AROMA TrC 3+ -RING FRACTrONS 

GC/MS (gas chromatography/mass spectrometry) was used to assess the success of HPLC 

fractionation of the aromatic fraction of diesel fuel and engine emission samples into ring 

fraction groups. GC/MS traces for the 3+ -ring fractions of the fuel and of the emission 

sample collected at 3000 rpm and 5 Nm were provided and are shown here. Selected 

peaks have been identified and the compounds and their relative abundance's are given. 
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(b) 3+ -ring aromatic fraction of the diesel engine emission sample collected at 3000 rpm 

and 5 Nm 
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Figure 123. GC/MS trace for the 3+ -nng aromatic fractions, obtained by HPLC 

fractionation of the diesel fuel and engine emission sample collected at 3000 rpm and 

5 Nm, showing relative abundance of peak compounds 
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APPENDIXD 

DIESEL ENGINE OUTPUT MEASUREMENTS 

Specified diesel engine outputs including Bosch smoke, hydrocarbon production, NOx 

emissions, and carbon monoxide are regularly assessed on site at Plymouth by the engine 

manufacturers. Engine outputs measured at each speed and load that emission samples 

were collected under during this study are given in graphical form. 
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Figure 124. Measured outputs of smoke, hydrocarbons, NOx, and carbon monoxide for 

the diesel test engine used during this study measured at each condition of speed and load 

used for emission sampling 
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