
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

1998

A VISUAL DESIGN METHOD AND ITS

APPLICATION TO HIGH RELIABILITY

HYPERMEDIA SYSTEMS

NEWMAN, ROBERT MALCOLM

http://hdl.handle.net/10026.1/2660

http://dx.doi.org/10.24382/4646

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

I

·.e ,.,

:.•
'
'

I

1~.
I' -
I

, .

••

. .

AV'isu~ill De$'ign 'M.etlhod :a~n:dl ots
App~ication to, Hnglh !Relnarbinty
Hy

1
perm·edi·a Systems; ·

•

•

•

•

•

•

•

•

•

•

•

•

A VISUAL DESIGN METHOD AND ITS APPLICATION TO HIGH

RELIABILITY HYPERMEDIA SYSTEMS

ROBERT MALCOLM NEWMAN

A thesis submitted in partial fulfilment of the University's

requirements for the Degree of Doctor of Philosophy

27 APRIL 1998

Coventry University

•

•

•

•

•

•

•

•

•

•

•

•

Abstract

This work addresses the problem of the production of hypermedia

documentation for applications that require high reliability, particularly

technical documentation in safety critical industries. One requirement of this

application area is for the availability of a task-based organisation, which

can guide and monitor such activities as maintenance and repair. In safety

critical applications there must be some guarantee that such sequences are

correctly presented. Conventional structuring and design methods for

hypermedia systems do not allow such guarantees to be made. A formal

design method that is based on a process algebra is proposed as a solution

to this problem. Design methods of this kind need to be accessible to

infonnation designers. This is achieved by use of a technique already

familiar to them: the storyboard. By development of a storyboard notation

that is syntactically equivalent to a process algebra a bridge is made

between information design and computer science, allowing formal analysis

and refinement of the specification drafted by infonnation designers .

Process algebras produce imperative structures that do not map easily into

the declarative fonnats used for some hypermedia systems, but can be

translated into concurrent programs. This translation process, into a

language developed by the author, called ClassiC, is illustrated and the

properties that make ClassiC a suitable implementation target discussed.

Other possible implementation targets are evaluated, and a comparative

illustration given of translation into another likely target, Java .

2

I

•

•

•

•

•

•

•

•

•

•

•

•

Contents

Chapter 1: Introduction .. 6

Chapter 2: Hypermedia documentation for high reliability applications 11

2.1 Introduction ... 11

2.2 The move towards hypermedia technical documentation 11

2.3 User's requirements .. 16

2.4 Safety Criticallndustries .. 19

2.5 Design Principles .. 21

2.6 Design methods for hypermedia systems .. 23

2.7 The need for a methodology .. 26

Chapter 3: Current work in the design of hypermedia systems 29

3.1 Areas of work in hypermedia systems ... 29

3.2 Content Authoring ... 30

3.3 Content Presentation .. 35

3.4 Content Structure .. 37

3.5 Database Organisation .. 42

3.6 Navigation ... 46

3.7 Program based organisation ... 47

3.8 Relationships with this work .. 47

3

•

•
Chapter 4: A methodology for design of large hypermedia systems 51

• 4.1 Introduction ... 51

4.2 High reliability large Hypermedia databases .. 52

4.3 Existing design methods ... 55

• 4.4 Multimedia as document ... 56

4.5 Multimedia as game .. 57

4.6 Multimedia as movie ... 58

• 4.7 Multimedia as database .. 59

4.8 Multimedia as program .. 60

4.9 Multimedia as hypermedia .. 61

• 4.10 Design choices for the hypermedia designer 62

4.11 Methods and notations .. 65

4.12 Selecting a process algebra ... 71

• 4.13 Dealing with size and complexity ... 7 4

4.14 Framing safety conditions .. 76

• 4.15 Applying process algebras to hypermedia systems 77

4.16 A graphical notation ... 82

4.17 Software tools .. 85

• 4.18 Analysing and proving designs .. 87

4.19 Structures produced using process algebras 90

4.20 How the method is used .. 90

• 4.21 Separation of structure and content.. ... 92

4.22 An example .. 93

4.23 Comparison with Eventor ... 99

• 4.24 Conclusions ... 103

4

•

•

•
Chapter 5: Implementing high reliability multimedia systems 105

• 5.1 Introduction ... 105

5.2 The form of the specification ... 107

5.3 Introduction to C00Ls ... 112

• Chapter 6: Translating CCS specifications to COOLs 115

6.2 The ClassiC language ... 118

6.3 Translating CCS specifications into ClassiC .. 153

• 6.4 Conclusion .. 160

Chapter 7: Java, JavaScript and HyTime ... 162

7.1 HyTime .. 163

• 7.2 Java .. 163

7.3 JavaScript ... 169

7.4 Comparing Java, JavaScript and ClassiC .. 171

• 7.5 Translation Rules to Java .. 172

7.6 Including text, sound, animation and models ... 178

• 7.7 Conclusion .. 179

Chapter 8: Conclusion .. 181

8.1 Results .. 181

• 8.2 Issues ... 182

8.3 Future work ... 183

•

•
5

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 1: Introduction

This thesis is the synthesis of two different of two different areas of

work which together provide an original solution to one of the major

problems to be faced in the building of hypermedia technical documentation

systems for safety critical applications .

For some time the author has had both a research and a teaching

interest in real-time systems, particularly concurrent object oriented

programming systems and event based specification methods. This has

resulted in a body of work including the development of a concurrent

object-oriented programming language and the exploration of the

consequences of particular aspects of the language design, in particular he

mechanisms adopted for process instantiation, inter process

communication and the provision of non-deterrninacy .

More recently the author has been engaged in a European Union

funded research project investigating the requirements for the production of

large multimedia technical documentation systems. One of the outcomes of

this work has been the realisation that a multimedia information system can

be seen as a variety of concurrent program. lt has also become clear that

some documentation systems may truly be as "safety-critical" as the real

6

•

•

•

•

•

•

•

•

•

•

•

•

time computer systems in the products that they document. One

consequence of this is that there is a need for design methodologies that

bring increased rigour to the design process of such systems. To this end,

the previous work on the formal semantics of concurrent programming has

been applied to the application are of multimedia systems design. The

outcome is a method of multimedia systems design based on the formal

methods used in concurrent systems design. In order to make this method

acceptable to information designers a semi-graphical specification

language has been devised with the general appearance of a storyboard, a

design planning concept familiar to many multimedia designers. One of the

attractive features of this notation is that it can form a "bridge" between the

non-formal, practice based world of the information designers who are likely

to be responsible for the design of such systems and the software

engineers who will be responsible for their implementation and verification.

This thesis is composed of eight chapters, of which this is the first.

Chapter Two discusses the application area of multimedia for technical

documentation, drawing particularly on the investigations undertaken in the

project mentioned above. lt explains that there is a widespread need in the

engineering industries to be able to produce high-quality multimedia

documentation systems, for both economic and practical reasons. The

important issues of the field are explored. Central to those issues is the

need for methods of authorship that can guarantee high quality, in terms of

correctness, systems and maintain a high or increased level of authoring

productivity. The likely user requirements, in terms of constituent media,

7

•

•

•

•

•

•

•

•

•

applications and usage of such systems are discussed. In particular, it is

proposed that in some applications the technical documentation is "safety

critical", in that errors in the documentation system can cause systems

failures due to maintenance errors. For this reason it is suggested that

rigorous methods for design of hypermedia systems are required. Methods

currently used are discussed in this light.

Chapter Three surveys the current state of the art in the design and

maintenance of large multimedia systems. Most of this work has been in

the domain of construction of multimedia databases and the query

mechanisms to go with them. lt is argued that a database model is not

particularly suitable for maintenance documentation systems, for which a

task-directed, procedural design is more suitable. Little work has been done

on methods for producing large-scale systems according to such a model.

What work has been done has tended to concentrate on interactive

authoring techniques or development of scripting languages .

Chapter Four introduces the new method for designing these

systems. The method is based on process algebras. The background of

these is explained and a rationale given for their selection as a suitable

starting point for the new method, along with the reasoning behind the

selection of the process algebra, CCS, which underpins the new method.

The method uses a semi-graphical notation which combines elements of

the traditional storyboard, used for planning films and more recently

multimedia presentations, while at the same time including the symbolic

content of CCS. This allows designs produced in this notation to be

8

•

•

•

•

•

•

•

•

•

•

•

•

translated to CCS to allow analysis and verification to occur using

established methods. This process is explained and a worked example

given.

Chapter Five explains how designs produced using the method may

be refined into working multimedia systems. The structures produced by

the method are best implemented using a structured scripting or

programming language. One class of language, concurrent object-oriented

languages, or COOLs, has characteristics that make the languages that

belong to it suitable targets. This class of programming language is

introduced in this chapter .

The COOL that the author has developed, ClassiC, is introduced in

Chapter Six and an illustration of the translation process is given. The

design features of ClassiC, which render it a particularly simple translation

target for this type of system are discussed.

Unfortunately, ClassiC is unlikely to be available to implementers of

hyperrnedia systems, and they are likely to have to use established

hyperrnedia languages such as Java, JavaScript or HyTime. ClassiC has

many similarities to Java, and, since JavaScript is derived from Java, to

JavaScript as well. The three languages are compared in Chapter Seven

and the applicability of the work on ClassiC to Java is established and it is

shown how translation of CCS specifications to Java may be achieved .

These translation rules are compared with those to ClassiC.

Chapter Eight is the conclusion of the thesis. lt draws together the

pieces of work and proposes how the various methods introduced in the

9

i

::e:
'

•••

;". ,.._ __ ---- • ..:_:•_- -"="'"-~:-: """"<

work' mightbe;combined: together with appropriate 1tools:to:develop a

complete:methodology. for diweilopment .of large· multimedia systems for

technical documentafior:J.,

10

u -,-..

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 2: Hypermedia documentation for high reliability

2.1

2.2

applications

Introduction

This chapter discusses the requirements for authoring methodologies

for large multimedia systems to be used for technical documentation. lt

argues that some fundamental issues concemed in the production of these

systems are often over1ooked. These issues include those of the verifiable

correctness of such systems, both in terms of their content and other issues

such as sequence of presentation. lt is argued that the addressing of these

issues is essential to the development of technical documentation systems

that are of sufficient quality to be used for safety critical applications such

as the transport industry. The requirements that viable design

methodologies for these applications must address are discussed,

providing a research agenda for the field of design methods for technical

documentation multimedia systems .

The move towards hypermedia technical documentation

Maintenance documentation is an application domain that seems

tailor made for multimedia systems. The ability to demonstrate

11

•

•

•

•

•

•

•

•

•

•

••

maintenance procedures using advanced graphics and animation, to offer

on-line diagnostic support and the promise of a replacement for the

inconvenience of paper based media in such a situation suggest that this

technology will provide greatly enhanced documentation support for

maintenance organisations .

There are many different motivations for the adoption of hypermedia

documentation. Some of these have been researched in the studies

undertaken by the Online Multimedia Information for Maintenance and

Operation (OMIMO) project [Newman et. al. 1997]. This was a feasibility

project funded under the Telematics Applications Programme of the

European Union. The consortium members of the project were the Visual

and Information Design Research Centre at Coventry University, Rolls

Royce PLC, VTT- the Finnish national research agency, Etnoteam S.p.A.,

and Caplan Systems and Research. As a part of the project VTI undertook

a survey, based on their previous work in this area [VTT Automation, 1996]

of nine selected Finnish companies, particularly those producing capital

goods. The findings of this survey were that most companies considered

that multimedia documentation would be important in the future, but that

there was a decided reluctance to invest, partially due to the perceived

risks of the development process. One large company, Kone Elevators,

took a much more positive view. The reasons that they gave for the

importance of hypermedia documentation were as follows .

Firstly there was the scale of the technical documentation operation in

their organisation. Documentation consumed 20-40% of company costs .

12

•

•

•

•

•

•

•

•

•

•

•

•

With this scale of spend, any reduction of documentation costs would have

a dramatic effect on the business. The ways in which electronic

documentation might contribute efficiency gains are discussed below.

Secondly, there are distribution difficulties. The company operates in

countries all over the world, maintaining more than 450 000 elevators,

almost all maintenance is on site and there is large variation between

individual installations - only 50% of elevators are considered to be volume

"products" and nearly a quarter were manufactured by other companies.

The maintenance distribution of such a diverse collection of maintenance

documentation presents a major problem. The use of information

technology, together with networked communication, is seen to offer one

route to the solution of this problem.

The third reason given was that use of advanced technology for

support documentation was seen to give a possible marketing advantage. lt

was felt that its support operation could project a very efficient and forward-

looking image by making use of such systems .

Rolls-Royce documented their experiences and requirements in the

project's deliverables. The company is rather more advanced in adoption of

hypermedia documentation, having already produced one system, DRUID,

and is maintaining a major company initiative to continue development in

this field. They state their reasons for moving towards hypermedia

documentation as follows. [Newman et. al. 1997]

lt is widely recognised that the use of physical documentation incurs
heavy costs, constrains the effectiveness of communication and can
be time consuming with respect to finding the required information .

13

•

•

•

•

•

•

•

•

•

•

•

•

The application of multi-media on-line technology has the potential to
better meet the information needs of the operator and maintainer .

At the same time, their previous attempts to solve these problems

have not been universally successful.

Non-digital information such as paper manuals do offer some
advantages over digital methods, e.g. portability and cost. Future
digital systems must ensure that they offer superior performance with
respect to all criteria.

There is widespread activity in the field within the aerospace industry

as a whole. Systems have been developed by British Airways (DISC

system, described in [Jones, 1991], Luftansa's BISAM [Or1owski, 1995] and

the widely publicised example of the Boeing On-Line Documentation

system ,BOLD, developed alongside the 777, described in [SIT A , 1996]

and many other places. There are similar activities underway at

Aerospatiale, Airbus and Alenia Aerospace and, in the motor industry,

Rover and BMW. Public information and descriptions in the literature in

such systems tends to be scarce for reasons of commercial confidentiality

and the traditions of technical publishing departments who are generally

responsible for such work.

The US Department of Defense has for some years been promoting

hypermedia documentation systems development as part of its Continuous

Acquisition and Life-Cycle Support (GALS) Initiative [Department of

Defense, 1994]. The aim of GALS is to migrate from paper intensive

documentation systems to highly automated acquisition and support

processes. Potential benefits are stated to be:

14

•

•

•

•

•

•

•

•

•

•

•

•

Improved information quality for acquisition, management, re
procurement and maintenance .

Reduced acquisition and support costs through elimination of
duplicative, manual and error-prone processes.

Reduced space, weight and storage requirement for digital media (in
comparison with paper media)

Increased responsiveness to industrial base through development of
integrated design and manufacturing capabilities.

One central part of the CALS strategy is the Contractor Integrated

Technical Information Service (CITIS) [Department of Defense, 1993], in

which a customer (the Department of Defense) will have direct access to

contractors documentation databases. Within the initiative are a number of

standards defining such things as interaction style [Mii-M-87268 (GCSFUI)

1992] and database services [IETM 1992]

There has also been a substantial amount of work done and reported

to prototype or demonstrate such systems by research institutions,

including the work by Fischer [Fischer, 1997) at Coventry University,

Farrington [Farrington, 1994] and the Engineering Research and

Development Centre (EDRC) at Hertfordshire University [Wu et. al, 1997],

related to the aerospace industry, and by Alty and Bergan [Aity, Bergan

1993, 1995] at Loughborough University for the nuclear process industry .

The reasons for making the (at that time, prospective) switch to

electronic documentation had been rehearsed in 1988 by Ventura [Ventura,

1988] and re-iterated by Horton in 1993 [Horton, 1993]. This argument

relates mostly to the volume and complexity of modem technical

documentation. An example given is the comparison between the Piper

15

•

•

•

•

•

•

•

•

•

•

•

•

Cub aeroplane's maintenance documentation during the Second World

War, which consisted of only 20 pages, a mid 60's F 101 8 fighter, which

required 25 000 pages and the current F-15 fighter's technical information,

which needs over 1 million documentation pages to be fully operationaL

Electronic documentation, it is proposed, offers the means to store the

documentation compactly and to retrieve it easily.

2.3 User's requirements

The scope and ambition of these systems varies considerably. Some,

such as the Rolls-Royce DRUID system, are essentially replicas of the

paper based documentation. The aim has been to utilise the advantages of

digital storage systems to reduce the bulk and publication cost of paper

systems by distributing using a digital medium such as a CD. In the DRUID

system the opportunity has been taken to enhance the page based system

by addition of embedded links in the pages, allowing direct access to

references in the field. lt is difficult to determine whether this enhancement,

by itself, makes a qualitative improvement to the documentation, since the

system itself was little used. (The major reason for this was that it was not

portable, and therefore not available on-site) .

The OM IMO project spent considerable effort researching user's

requirements for hypermedia technical documentation. To a large extent

this activity was constrained by the lack of awareness of many companies

of the nature of the technology, and a corresponding inability to frame

requirements. Thus the requirements were largely drawn up by Kone

16

•

•

•

•

•

•

•

•

•

•

•

•

Elevators, working with VTT, and Rolls-Royce. In addition service

personnel from British Airways, NA YAK Aircraft Service and Lufthansa

were interviewed. These results are set out in [Fischer et al, 1996]. Those

that are summarised here are selected to include only requirements related

to hypermedia systems (the project envisaged a complete service support

structure, which integrated documentation with communications, history

logging, and interlinked with stock, catalogue and other management

systems). These requirements are numbered for clarity of future reference .

There is no intended priority.

1. Simplicity of navigation was an often-cited requirement. Often this

requirement was derived from direct experience of using

hypermedia documentation. The experience of becoming "lost in

hyperspace" [Edwards, Hardman 1989] was felt to be a major

drawback to acceptability and usability of hypermedia

subsystems. Linked to this requirement, fragmented, multi

windowed presentation of information, as is presented by

browsers following a link organised hypermedia system, was

considered undesirable. An integrated, planned presentation style

was considered preferable .

2. Robust reliable and timely delivery of information at the point of

use, generally users are not interested in printing off data for use

in the field. Some experience with existing systems has

suggested that they are too slow to be usable. Boeing has

suggested 15 seconds as the maximum acceptable response

17

•

•

•

•

•

I.
•

•

•

•

•

•

time for on line information. The ideal was felt to be an interactive

system portable enough for service engineers to use in the field,

and to interact with while performing the maintenance tasks.

Ideally the system should guide the engineer through the task,

and document completion of it.

3. Interactive support is considered important. This is supported by

Fischer's evaluation of his prototype [Fischer, 1997], where his

dynamic and animated documentation system was significantly

more effective in communicating maintenance task information

than the non-interactive alternatives. Rolls-Royce commented that

animated systems diagrams had proved to be effective.

4. Rolls-Royce felt that availability of 3-D models in the

documentation was important. They commented that:

3-D geometry viewing of products with simple and responsive
interface that allows natural walk around and inspection of
product [is a requirement]. At Rolls-Royce fitters found this far
superior to illustration in many situations .

This requirement was directly contradicted by most other

companies studied, who felt that 3-D models were an

unnecessary complication (although there is no evidence that this

view is actually based on experience of their use).

5. lt was felt that the documentation had to be differently organised

for different tasks. Current systems (including the paper based

ones) have rigid organisation that doesn't support any task

18

•

•

•

•

••

•

•

•

•

•

ll
i ~ \ t
I,
I ,,.
/o

~

t'l"'

I
I I;
!.
~. '

'~·

particularly well. Unstructured systems suffer from the navigation

problems noted·above .

6. lihe two most important roles identified for maintenance

documentation was in the-field support for service engineers and

for training of service engineers .

7. Integration, of the various supporting systems within the

documentation system is required. An example·given is of a

person performing a repair, Who needs access· to part details,

tools, consumables, facilities and workflow instructions. However

it is stated thatthis integration must be·achieved without the

"fragmentation" typical of hyper-structur.es.

8. The hypermedia documentation system must be complete, that is

itmust:provide all'the documentation resources necessary,

without the need to keep backup paper or microfiche systems.

Neither the manufacturers nor the users have any desire to

maintain two parallel documentation systems.

With the exception of the disagreement noted on the use of 3-D

models.there was surprising unanimity as to the failures of current

documentation systems and the type of properties needed by hypermedia

systems that will replace them .

2.4 Safety Critical Industries

Although there was no particular prioritisation intended in the list of

requirements stated above, some are clearly verydmportant indeed. lt is

19

•

•

•

•

•

•

•

•

•

•

•

•

worth noting that all the industries examined are in some sense "safety

critical", that is the result of systems failure could very possibly be loss of

life. As a result of this many of these industries exist in a regulatory

framework which controls the way they design and operate their products.

The Aerospace industry is a good example of this. Standards, generally set

out by the national aviation authorities, exist that dictate design practice

and maintenance procedures. Such standards extend to software design,

including specification and implementation methods. As concern for safety

increases, and the occasional incident of an accident caused by software

failure gains widespread publicity, there is increasing pressure for the

adoption of formal methods of specification and verification of systems

software. For instance, SNCF, the French Railway Company, now insists

that all embedded software system used by the railway are specified and

verified using the B method [Bieber, April1996, December 1996].

There are arguments that hypermedia technical documentation

should be similarly regarded as safety critical software. If we examine the

requirements given above, 3 and 5 suggest that direct interactive support

should be given for tasks such as maintenance, which suggests that the

system will guide the engineer through the maintenance processes .

Requirement 7 suggests that the engineer should be able to access

additional information related to the task in hand, but without the

"fragmentation" caused by multiple concurrent contexts. What this suggests

is a system that leads the engineer along the maintenance path, but allows

diversions to explore such things as spares availability. If, after the

20

•

•

•

•

•

•

•

•

•

•

•

•

diversion, the user was led to the wrong part in the sequence, so that,

maybe, a vital step in the maintenance sequence was missed, then the

results could quite easily be life threatening. Thus one is led to the

conclusion that maintenance support systems are also safety critical

software, and likely at some point to be subject to the same rigour

demanded for embedded systems software in the same industries. Such

design rigour demands a rigorous design method to achieve it. Such a

method must be developed for hypermedia systems design. lt must be

usable by the people responsible for authoring documentation systems who

are often information designers, not software engineers .

2.5 Design Principles

Rubens and Krull [Rubens, Krull 1988] have classified many types of

on-line information, most of which can be argued to be present in some

form in technical documentation. For the purpose of this work we will focus

of those most relevant ones for in the field maintenance systems, which are

support for interactive tasks and tutorial and canned demonstration. For

both of these the most commonly used authoring styles, and those that the

users support most strongly, are task based, narrative styled

documentation, that leads the user, step by step, through the maintenance

task in hand. The need for this type of organisation has been argued

before, specifically in the context of aircraft maintenance by Taylor [Taylor,

1990] in which an organisation is described where the engine management

schedule is embodied in documents or work flow software which triggers

different types of operational and maintenance .

21

•

•

•

•

•

•

•

•

•

•

•

•

In order to meet requirement 5, above, in the context of maintenance

support it is likely that the essential structure of the system should be task

oriented. The idea of designing systems using a task-oriented approach

has gained considerable support, particularly in the field of user interface

design. Here the idea is use task analysis to analyse the tasks that the

system user is carrying out and design the system to match the

requirements of that task. One commonly used task analysis method is

Task Knowledge Structures (TKS) (Johnson et al. 1988]. Sutcliffe and

Faraday [Sutcliffe, Faraday, 1994] describe a method for the selection of

suitable media and interaction dialogues for multi-media systems, based on

task analysis. Benyon [Benyon, 1992] discusses the use of task analysis for

the design of interactive computer based systems, and the relationship to

systems analysis. He notes the weaknesses, mainly due to loss of system

structure, that may be introduced if the task-based design is not informed

by principles of systems analysis. User interface design using task analysis

as the starting point is described by Copas and Edmonds [Copas,

Edmonds, 1994]. They describe executable task analysis for production of

user interfaces and discuss the issues of integration. Casner [Casner,

1991] describes a system for automated design of "graphic presentations"

which is based on an analysis of the task which the graphic is designed to

support. This is developed by substituting logical inferences with perceptual

inferences in a way that is claimed to be provably equivalent. lt is claimed

that such design demonstrably reduces users' task performance time.

Faraday and Sutcliffe apply task analysis to the issue of multimedia

interface design, presenting a method based on the technique. The

22

•

•

•

•

•

•

•

•

•

•

•

•

AMTOSS system referred to above is also based on task oriented design

principles.[Farringdon, 1994].

In summary, there is a considerable body of work supporting the

application of task-based design to interactive and hypermedia systems .

The task analysis methods, such as TKS, described above are used to

model the nature of complex tasks, the structure of which may not be

apparent by simple inspection. In the field of maintenance documentation

the tasks are usually well documented and explicit, so in many cases the

job of task analysis will have already been done by the designers of the

maintenance procedures .

2.6 Design methods for hypermedia systems.

Faraday and Sutcliffe [Sutcliffe, Fraday, 1994] counterpose their

design method to the "intuitive" design process commonly used for

multimedia systems. This characterisation of general practice is not entirely

fair, since there is a design method generally taught (see for instance the

course notes of Hogg at Sunderland University [Hogg, 95]) and used and it

is task oriented. The task analysis takes the form of a storyboard, a comic

strip like sequence of illustrations, in which the illustrations document key

events in the task and the sequence of frames indicates the ordering of

those events. This method is described in a number of textbooks, as for

instance [Bunzel, Morris, 1992] [Helier, Helier, 1996] [Murie, 1994] (

Schwier, Misanchuk, 1993] [Bergman, Moore, 1990] and is described in

some case studies [Fallenstein-Hellman, James, 1995]. Some of these

23

•

•

•

•

•

•

•

•

•
I

I

I

'

•

•

texts [Schwier, Misanchuk, 1993] (Bergamn, Moore, 1990] suggest

extended storyboards with annotation to indicate interaction but these

suggestions, and the use of storyboards themselves, are not well

underpinned by research reported in the literature. The storyboard

technique comes from movie making practice, and is a natural method to

be adopted by those who view multimedia as a kind of interactive movie.

Obviously the simple sequence of a storyboard is not sufficient to represent

the interactive nature of hypermedia, whereby the user can interact with the

system and change the sequence of images or other media presented. This

is often handled by embedding storyboard sequences in a flowchart, which

provides a simple programming structure which is reflected in the operators

of the scripting languages commonly used to program such systems. As

stated above, there is little mention of this method in the literature outside

multimedia authoring textbooks, one of the fullest treatments being given in

[Bunzel, Morris 1992], but it does appear to be general practice within the

multimedia content authoring industry. Certainly the majority of authoring

tools support such a method either explicitly or implicitly. There are several

companies that provide a direct mail (ore-mail) order service1
, translating

storyboard ideas into multimedia presentations. lt is also the method

generally employed for the design of computer games, where the

implementation vehicle is more likely to be a programming language, and

now there are general purpose programming tools appearing which give

direct support to "design by storyboard" .

1 See, for instance, the service offered by E-media at http://www. e-

24

•

•

•

•

•

•

•

•

•

•

•

•

If a widely accepted design method for hypermedia systems exists,

why can't it be applied to the production of technical documentation? There

are a number of reasons

Firstly, the control structures (flowcharts) belong in a bygone age of

programming. They reflect directly the control structures of primitive, first

and second generation programming languages such as assembly code,

FORTRAN and BASIC. These languages have been superseded for any

software with any pretensions to reliability because the unstructured control

flows that they allow almost inevitably lead to programs that cannot be

analysed, verified or even debugged. This was first noted by Dijkstra

[Dijkstra, 1968], and although the view was controversial at the time in the

world of software systems construction such languages, termed

unstructured programming languages, are now practically unused .

Secondly, the storyboardlflowchart has no formal semantic model

associated with it. This means that it is unsuitable as a starting point for any

rigorous development or analysis process .

Thirdly, the method relates to "programming in the small". Methods

for designing large software systems must handle the interfaces between

the different people working to develop the system. This involves such

concepts as modularity, the clean separation of the system into different

components, unambiguous definition of the interface and function of

different modules and the hiding of the internal workings of modules, lest

media.com/german/storybrd-g.html

25

•

•

•

•

•

•

•

•

•

•

•

•

other parts of the system unintentionally affect them. The

storyboardlflowchart has none of these characteristics .

2.7 The need for a methodology.

The widely used methods described above do not form the basis for a

methodology for hypermedia design, in the sense of the word used by

software engineers. The design methods or theories described by Sutcliffe

and Faraday or by Fischer are not methodologies in the software

engineering sense. They are concerned with means of producing designs

or specifications for systems that best match the goals or psychological or

cognitive characteristics of the user community at which they are aimed.

This is largely to do with the ergonomics of interaction of the system, and

are aimed at producing an optimum design, or specification for the system

for the conditions in which it will be used.

The overloading of the word "design" can cause much confusion. For

the software engineer, the process design starts when the specification is

complete. For the designer, that is when it stops! Software design

methodologies are to do with ensuring that the finished product actually

performs in the way that was originally specified. That achieving this goal is

not trivial is attested to by the wealth of software engineering

methodologies that have appeared in the last two decades .

In 1993 Alty [Aity, 1993] observed that the emergent technology of

multimedia was being driven by the increasing power and availability of the

enabling technology, but that there was not the methodological

26

•

•

•

•

•

•

•

•

•

•

•

•

development to match the technological development. The situation has not

noticeably improved since then. There is an assumption that once the

system has been designed (in the designer's sense of the word) that the

technology will deliver a faithful realisation of that design. This may be true

for simple systems, as it is for simple programs. However, the analogy of

program development (of which multimedia development is, after all, a part)

suggests that as the system grows to a certain complexity we can have no

such assurance. Particularly for safety critical applications, which, we have

argued, include technical documentation, there must be a software design

methodology, based on a sound theory, to ensure this .

Much of the methodological work in multimedia and hypermedia,

surveyed in the following chapter, has concentrated on a different, but

related, problem. This work acknowledges the problem of assembling huge,

heterogeneous collections of information in different media and producing a

system that handles all the media correctly. This is undoubtedly a major

issue that must be, and is being, addressed, but is ultimately rooted in a

view that sees hypermedia systems as being collections that are

assembled, rather than an integrated piece of documentation that is

designed. The design of hypermedia systems is, as noted above, an

essentially similar problem to the design of large software systems. This

being the case, it might be expected that methods established in that field

would be simply transferable .

Jeffcoate, in her survey of multimedia technology [Jeffcoate, 1995]

notes that:

27

•

,.
•

I

•

•

•

•

•

•

•

•

•

The existing process of systems analysis is neither appropriate nor
sufficient for the development of multimedia systems. This is because
building a multimedia application will involve parallel streams of
activity to create the content and develop the computer program that
will create it.

The nub of the problem with designing a methodology for hypermedia

is that it must be usable by all the people involved in the production of the

systems. Current systems analysis and development methodologies are

really only usable by those with a substantial background in discrete

mathematics and formal logic, a group that does not even include all people

trained in computer science, yet alone the information designers,

illustrators, directors and technical authors who will need to subscribe to a

methodology for hypermedia design. If hypermedia is to be used for the

production of the only technical documentation system for highly complex,

safety critical products, in systems comprising millions of pages of

information, then it is essential that such a methodology be developed.

Such a methodology will be based around a specification method that can

form a bridge between the "creative" world of the information designer and

the "formal" world of the software engineer .

28

•

•

•

•
I

I•

•

•

•

•

•

•

Chapter 3: Current work in the design of hypermedia

systems

3.1 Areas of work in hypermedia systems

Hypemedia is a technology that has developed in an evolutionary

manner, as a hybrid of hypertext and multimedia. Hypertext structures are

dynamic documents in which each node or page contains links to other

pages, leading to a non-linear structure, as opposed to the linear structure

of traditional books, paper documents or word processors files or other

computer structures based on them. Multimedia has come to refer to

computer systems that integrate together representations of objects in

media other than text with textual information. Such media may include

images of several types, animations and movies, sound and interactive

objects including navigable 3-D models - although the latter are generally

held to be in the domain of "virtual reality" as opposed to hypermedia. The

combination of hypertext and multimedia gives hypermedia. A definition of

this medium has been given as [Halasz 1988]

the style of building systems for the creation, manipulation,
presentation and representation of information in which: the
information is stored in a collection of multi-media nodes; the nodes
are explicitly or implicitly organised into one or more structures

29

•

•

•

•

•

•

•

•

•

•

•

•

(commonly a network of nodes connected by links); users can access
information by navigating over or through the available information
structures .

This definition provides a starting point for the classification of work in

hypermedia systems. Creation and manipulation of the contents of

hypermedia documents have together provided a large number of topics for

investigation which might broadly be grouped together under the heading

Content Authoring. Similarly investigations of presentation and

representation will be considered under the heading Content Presentation .

The next headings are to do with the explicit (link based) or implicit

(database based or program based) organisation of the system. These are

considered under the headings Content Structure, Database Organisation

and Program Based Organisation respectively. Finally there is the issue of

Navigation .

3.2 Content Authoring

Any feasibility study for implementation of a major documentation

system using hypermedia will indicate that authoring time and cost is a

major obstacle. There are two independent concerns, both of which need

substantial improvements in productivity if hypermedia technical

documentation is to be feasible when assessed against economic and time

metrics. The first of these is content generation, ensuring that the

information contained in the hyperbase is generated effectively and easily .

The second is structure authoring, the provision of means for the imposition

by the author of the required navigation structure on the hyperbase, within

the underlying structural architecture of the hypermedia system. Of course,

30

•

•

•

•

•

•

•

•

•

•

•

•

often the two can become mixed together, especially when using

embedded link systems such as HTML.

Much of the work on making content generation more productive has

concentrated on the concept of "data mining". The goal of data mining has

been defined [Kuntz1996) to be

... to enable database users to get more and better information out of
the data that they possess and to perceive regularities or kinds of
coherence that would otherwise go unnoticed. Ultimately this better
understanding of the data overall enables conclusions to be drawn
that are impossible to discover from all the data records taken
individually.

Briefly, the aim is to use automatic or semi-automatic search tools to

hunt in a database or group of databases and find information that may be

of value in a hypermedia system. One mechanism has been defined by

Kuntz as scavenging. This is a hybrid process whereby the user browses

the database, in the sense of interactively following a set of data values,

rather than following links, and the system makes co-operative queries of

the database based on 'learning' of the user's requirements. Other work on

data mining is described in [Brachman, Anand 1994) [Faloutson, Lin 1994].

Loosely related to the field of data mining is content based retrieval. In the

context of content generation, content based retrieval is used to locate

suitable data for inclusion in the hyperbase. lt can also be used as a

navigation method in its own right and is dealt with later in that context.

Various approaches to content based retrieval, mostly applied to image

databases, are described in [Chiueh, 1994][Faloutsos et. al. 1994](Mehrotra,

Gary 1995].

31

•

•

•

•

•

•

•

•

•

•

•

•

Another approach to tackling the issue of sourcing data is that of

open hypermedia systems. Such systems, which are open at the data

format level aim to aid the availability of data by being able to build

hypermedia from a variety of data sources. One approach is by the building

of systems that can use data in a variety of different forms in an open

ended way. Such an approach is exemplified by the Microcosm system

designed at Southampton University [Fountain et. al. 1990]. This system is

well described in [Goose 1997], as well as other sources. The other

approach to data format openness is openness by translation. The key to

this is a common format that is a suitable target for all of the source data

formats envisaged, and is open to enhancement as new formats appear.

Such common formats are obvious targets for standardisation, with

existing, and proposed formats including HyTime (Hypermediarrime Based

Structuring Language)[lntemational Standards Organisation 1992] and

MHEG (Multimedia and Hypermedia information coding Experts Group)

[Bertrand, Colaitis, Leger 1992]. These two views of openness spring from

fundamentally different views of the nature of a hypermedia system. The

former approach is based on a view that sees hypermedia systems as

heterogeneous collections of data from diverse sources, while the latter

sees it as an integrated, and authored, system containing objects with

heterogeneous behaviours. One might expect the former approach to suit

distributed, decentralised, systems such as the World Wide Web or its

descendants while the latter would be better suited to complete hypermedia

systems for a limited user community, conceived and designed as a whole

but possibly using data from a variety of sources .

32

•

•

•

•

•

•

•

•

•

•

•

•

The explicit authoring of the structure of such a hypermedia system is

another area of research. Four different classes of authoring tools have

been identified. [Hardman, Bulterman, 1995]

• Structure-based authoring systems support the explicit
representation of the structure of a presentation. This gives the
advantage of being able to group items together in terms of "mini
presentations" which can be manipulated as a whole. Another
advantage can be given by deriving the timing relations in the
presentation from the structure, so that alterations in durations of
objects are propagated through the presentation by the system .

• Timelines show the constituent media items placed along a time
axis, possibly on different tracks. These are useful for giving an
overview of which objects are placed on the screen when.

• A flowchart gives the author a visual representation of the
commands describing a presentation. While systems using this
approach are deemed simpler to use, they tend to become
unwieldy for large presentations.

• A script-based system provides the author with a language where
positions and timings of individual objects can be specified.
Although scripting languages provide a flexible authoring interface,
they have the disadvantage of becoming unmanageable in large
presentations. Structures such as scene boundaries or timing
relations between media items are difficult to recognise in the
script.

In the cited work, the characteristics of a number of authoring

systems are discussed in detail, both commercial products and those cited

in the literature. These include CMIFed, Athena Muse, MET++ and M build,

which are structure authoring systems; Director, the Integrator and

MAEstro which are timeline based authoring systems; Authorware,

lconAuthor,and Eventor which are flowchart based systems and Videobook

and Harmony which are script based systems.

Given the perceived weaknesses of timelines, flowcharts and script-

based approaches identified by Hard man and Bulterman, most work

33

•

•

•

•

•

•

•

•

•

•

•

•

addressing authoring systems for large hypermedia systems has

concentrated on a structured approach .

Yu and Xiang Describe a system in which the temporal and spatial

structure is abstracted away from conventional geometric page layout

[Yu,Xiang 1995]. Other work has investigated integrated structure editors

[Hardman, Rossum, Bulteman 1993]. Here an integrated structure and

content editor is presented which structures the presentation in terms of a

high level abstraction called a media channel. These may be specified

declaratively in terms of spatial and temporal relationships, and other

properties such as text style and graphics presentation. One aim here has

been to provide a declarative style of control, where the author declares the

properties of and relations between objects and the presentation system

sorts out the details of presentation .

An ideal would be to develop a structured system which had the ease

of use of a flowchart based system and the clarity of temporal presentation

of a timeline based system, while avoiding the multiple views characteristic

of many of the systems described. Two of the systems mentioned above

merit particular mention here, in that the approach is similar to the one

proposed in this work .

MET++ [Ackermann, 1994] is a structured application framework

which structures a presentation as a hierarchy of serial and parallel

compositions of media items. The presentation is built from time layout

objects and media objects, each with a starting point, a duration and an

associated virtual timeline. These are composed together in a tree structure

34

•

•

•

•

•

•

•

•

•

•

•

with media objects as leaf nodes and layout objects as intermediate nodes.

When the start time or duration of an object is changed the timing of the

complete presentation is recalculated. There are several views of the

presentation structure, including a timeline representation that charts the x

and y position, or other parameters of objects relative to each other .

Eventor [Eun, et al, 1994] presents three different views of the

presentation, a temporal synchroniser, a spatial synchroniser and a user

interaction builder. Eventor aims to incorporate the characteristics of both

time based systems and event based systems (timeline and flowchart

based systems) in one authoring system. The system, like that put forward

by the author in this work, is based around the Calculus of Communicating

Systems [Milner, 1989] as a specification of the behaviour of the system.

Given the close relationship between this and the author's work, they will

be compared more closely later.

3.3 Content Presentation

Issues of content presentation cover a number of concerns. The first

is simply the quality of images and sound presented to the user. This is

largely a matter of hardware and systems and coding design, so that little

work is separately concerned with the issues specific to hypermedia

design. Some years ago, when hypermedia was in its infancy, there was a

wealth of reports charting the future hardware, software and coding

developments that enabled the technology. The author prepared one in the

context of an E.U. funded research project [Newman, 1990], and others

35

•

•

•

•

•

•

•

•

•

•

•

appeared in the literature [Fox, 1991). Nowadays the technical feasibility of

hypermedia is taken for granted and fewer such reports appear. One

continuing concern relates to the issues of finding means of presentation

that are consistent across a number of hardware and systems platforms.

Addressing this issue entails abstracting the presentation away from the

structure in some way. This is the aim of the Amsterdam Hypermedia

Model [Hardman, Bulteman 1995) and other work [van Rossum et al, 1993].

Improved content presentation has been seen as one means of

tackling the navigation problems inherent in unstructured hypermedia. Such

research concentrates on finding novel ways of visualising structural or

temporal location [Burrill, Kirste, Weiss, 1994] [Newman, 1993)[Cypher,

Stelzner, 1991), or of presenting visual, or sometimes, audio [Arons, 1991)

cues or 3-D binocular presentation to aid location .

An entirely different view of presentation has been taken by Fischer

[Fischer, 1997). He defines presentation as:

the activity of users who present, to themselves and to others, their
understanding of a particular problem through the use of various
resources such as technical manuals, diagrams, or conversations.

From this definition it is argued that design of hypermedia systems

needs to consider the complete process of information flow from

information provider to user, rather than concentration on abstract structural

issues. This work is interesting and relevant because it comes from an

information design perspective, rather than from the information systems

experts who dominate the field. The work included the authoring of an

36

•

•

•

•

•

•

•

•

•

•

•

•

industrial strength hyperrnedia technical documentation system using

"traditional" authoring tools [Fischer, Richards, 1995].

3.4 Content Structure

The seminal work in defining the structure of hyperrnedia systems is

the Dexter Hypertext Reference Model [Halasz, Schwartz 1990][Halasz,

Schwartz 1994]. The Dexter model defines a layered model, following the

paradigm of computer system organisation description established by the

Open Systems Interconnect (OSI) layered model of communications

protocol structure. In Dexter three layers are defined, with interfaces

between them as illustrated in figure 3.1 .

Layer

Run Time

Presentation Specifications

Storage

Anchoring

Wrthln Component

Figure 3.1: The Dexter model

Concern

Presentation,
User Interface, dynamics

Database, nodes and
links

Structure within
nodes

The Dexter model has provided a common basis for the

understanding of the structure of hypermedia systems and has formed the

basis for classification of work in the field. lt is supported by a formal model

in Z [Spivey 1989], which provides an unambiguous definition of the model.

37

•

•
One weakness of layer based models is that they can compartmentalise

• work into a particular layer when the concerns of that work may be better

addressed using a more holistic view of the subject, which considers the

influence of individual components on the whole. This has indeed occurred

• with the Dexter model, particularly with the identification of the dynamics of

the system with the run-time layer. Many hyperbase systems include

dynamic components, such as video clips or scripted segments. According

• to the Dexter model such data resides within the "Within Component" layer,

although its behaviour affects the dynamics of the system, which is a

concern of the "Run Time" layer. This issue crucially affects the present

• work and will be addressed in more detail later .

•
The strength of a layered model, and in particular the separation of

•
concerns of storage with those of presentation and node content is that it

makes the integration of diverse pieces of information together into

something that has the appearance of a single system very much easier.

• The layered structure abstracts away to different layers those aspects of

content and structure that do not concern the purpose of a particular layer.

At the level of any particular layer the problem of integration is simplified

• because the limited domain of that layer restricts the range of objects and

behaviours that must be integrated. lt is possible to integrate within a

particular layer without consideration of the content of other layers. In the

• case of the Dexter model, integration of heterogeneous content to a

common presentation can occur at the storage or the run-time layers .

•
38

•

•

•

•

•

•

•

•

•

•

,.
•

•

The first approach is typical of the many browser systems for the

World Wide Web [Bemers-Lee et. al. 1992] that are available today. The

Web was developed as a means of distributing hypertext documents to the

research community at CERN and was developed on top of the existing

Internet services. As such it has had to cater for the multiplicity of services

and protocols that already exist on the Internet. Web browsers typically

have to deal with FTP [Bhushan, 1972], Gopher [Aibertini et. al.], POP

(Myers, 1994] and other existing protocols as well as that more usually

associated with the Web, HTIP. Web browsers must contain integral

support for the component encodings included within HTML documents

[Berners-Lee, Conolly, 1995], including several types of image and

animation files. As new document types are defined the browsers can be

extended using plug-ins, helper software packages which extend the

capability of the browser. The cost of this approach is that integration of

these additional services is dependent on the hypermedia functionality of

the plug-ins. If they do allow hypertink navigation then the integration of the

new media reaches a full stop unless the plug in itself includes the

functionality to handle any media type encountered at the end of the link.

Such contingencies can be handled by adopting a component based

architecture which allows the plug-in to use the resources of the browser for

navigation.

The second approach is to include the integration in the storage layer.

This has been the approach taken by many "open" hypermedia systems.

Such systems are open in the sense that information may be included from

39

•

•

•

•

•

•

•

•

•

•

•

•

a number of different sources and stored using several encodings. They

may depend on the use of compatible browser/viewers and are therefore

not necessarily open at the run-time level. Some of these systems conform

to a link based network model of hypermedia structure while others have

imposed a more structured database modelled structure. The latter are

dealt with in the next section.

Link service and management systems include lntermedia {Xerox

PARC) [Haan et. al. 1992], Sun Link Service {Sun Microsystems) [Pearl,

1991], Multicard {INRIA) [Rizk, Sauter, 1992], PROXHY [Kacmar, Leggett,

1991], Chimera {University of lrvine) [Anderson et. al. 1994], SP3 {Texas A

& M University) [Leggett, Schnase, 1991] and Microcosm {Southampton

University) [Fountain et. al. 1990].

These systems were generally developed before, or in parallel with,

the World Wide Web. Although several of them have distinct advantages

over the structure and organisation of the Web, none have managed to

maintain their position in the face of the overwhelming uptake of Web

technology and its spread from the Internet to intranets. These systems are

generally "end-to-end", that is they require specific software to handle both

server and viewer, and sometimes specialised authoring tools as well.

Thus, although they proclaim openness, and indeed many are open in

terms of data formats handled, they appear closed compared with the

plurality of browser, server and authoring software associated with the

World Wide Web. As a result of this, and withdrawal of vital software

40

I

: .
•

components, several of these systems, including lntermedia and Sun Link

• Service, are no longer being developed .

Link service systems are generically separated from the World Wide

Web, which in this context means an HTML based system, in that they

• separate content and structure, as opposed to HTML systems, which have

links embedded in the data. The consequence of embedding structure

• information in the documents is that documents become specific to one

application, which limits the reuse and multiple use of data sources.

Moreover, the database for the system is constrained to exist in the format

• that defines the embedded links, namely HTML. To overcome this there is

a growing tendency on web sites for HTML to form only the framework

within which other data is held, allowing helper applications to view the

• embedded non-HTML data. This data is then not integrated with the

hypertext structure and navigation directly from views of this data ceases to

be possible. Lately some common document formats, such as Microsoft

• Word and other proprietary formats have included hypertext links to

overcome this problem, but at best this must end up as an untidy and

inelegant solution. Use of a link service would have avoided this necessity

• by abstracting the links away from the content. The goal of an open link

server is to interface one or more viewing tools with a heterogeneous

collection of content objects. The way this function relates to the Dexter

• model is shown in figure 3.2. The openness of the system is achieved by

designing the link service to handle components with a number of different

structures and formats .

•
41

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 3.2: Link service related to the Dexter model

The key factor in the production of a successful link service is the

maintenance of coherence between the links database, in whatever form it

takes, with the component data. This is rendered more difficult if a high

degree of openness and extensibility is built into the system. The design of

the system becomes a formidable data modelling problem. This is reflected

in the large amount of research into data modelling for hypermedia systems

that has been carried out both within and separated from the projects

discussed above .

3.5 Database Organisation

Link servers conform to the classic network structured link based

model of hypermedia. One problem with such a structure is that it is very

easy for the user to get "lost" within this unstructured system [Conklin ,

1987][Edwards, Hardman, 1989][de Young, 1990]. An obvious solution to

42

•

•

•

•

•

•

•

•

•

•

•

•

this is to provide a greater level of structure to the system. The data

modelling work described in the previous section leads quite naturally to the

use of database models to structure the system, as opposed to a network

of links. Such systems are similar to the link servers described above, but

in place of a links database use structure information based on a database

model, with relational or object oriented models being the favourites. The

relationship with the Dexter model is illustrated in figure 3.3. Such systems,

often called "hyperbase" systems, include Hyper-G (Technical University of

Graz) [Knappe et. al. 1993), DeVise Hypermedia or OHM {Aarhus

University) [Gronbaek, Trigg, 1992], HB3 (Texas A & M University)

[Leggett, Schnase 1994, and HyperDisco) {Aalborg Universityffexas A &

M University) [Wijl, Leggett, 1996].

Figure 3.3: Hyperbase system referred to the Dexter model

These systems have tended to suffer from the hegemony of the Web

and HTML in the same way that the link servers have. The ability to impose

higher levels of structure on the information base does, however, give an

43

•

•

•

•

•

•

•

•

•

•

•

•

important competitive advantage when compared to unstructured systems.

At least one of them, Hyper-G, has been adapted to take advantage of this .

The original specialised data formats interfacing from the data manager to

the data storage and the viewer have been replaced by HTML, so that the

documents are stored in HTML format and the server generates HTML on

the fly to feed the viewers. The result is a system that can be integrated

with the Web in cases where additional robustness is required .

The understanding and imposition of structure in hypermedia systems

has been and will continue to be a fertile area of research. This work has

been driven by several concerns. First, the need to understand the

properties of the data objects that make up hypermedia systems. This

requirement was to the fore in the production of the Dexter Reference

Model. The Hypertext Abstract Machine, HAM [Cambell, Goodman 1988],

in which an abstract machine plays the part of the conceptual schema,

providing an operational semantics for hypertext, was one of the earliest

attempts to produce such a model. Its age is reflected in a lack of flexibility,

openness and expandability. HB1 (Schnase et. al. 1993], the predecessor

to HB3 described above, was based on a sophisticated data model

describing the relations between media objects, anchors and links. The MD

data model [Gu,Heuhold, 1993] provides data schema describing the

conceptual, logical and layout structure of a multimedia document. lt

describes the structure of the content, the layout structure and the extent of

their occurrence in space and time. The VIMSYS data model[Gupta 1991]

deals with the storage of images, providing support for information derived

44

•

•

•

•

•

•

•

•

•

•

•

directly from the image. Hypermedia DBMS [Pruckler, Schreff, 1996] uses a

quadruple schema system, separating presentation, content, media and

storage schema in order to separate concerns of content with those of

physical data content. SNITCH [Maytield, Nicholas, 1993] adopts a similar,

though simpler data model.

Data modelling is also central to another strand of open hypermedia

work. Here the objective is to provide filters which translate between the

data formats used in objects derived from different sources and a database

system which stores the data in a common format. This approach is similar

to the STEP data interchange formats used for the shared use of data

between CAD systems, a very similar application domain. Step is based

around a data modelling meta-language (Express) which is used to define

the interface to the file content for the different application functionalities

which are to be shared. These defined application interfaces, termed

"application protocols", or APs, are also included in the standard, although

many have still to be defined". This conversion directed data modelling is

central to the Hypermedata project[Cook et. al. 1996]. The AMOS system

[Boii,Lohr, 1996] provides a Hyperbase server which presents a standard

data interface called VML to its clients but can access and convert data

stored in SGML, MHEG, OCPN and HyTime formats .

• Interestingly, there is a direct link between the two fields. Several CAD vendors, unwilling
to wa~ for the defin~ion of the APs, are integrating their products using Web browsers such
as Netscape, w~h appropriate plug-ins to allow viewing of the different data formats in use.

45

•

•

•

•

•

•

•

•

•

•

•

•

3.6 Navigation

As noted above, navigation of hypermedia systems can pose

problems, especially when the system is large and loosely structured. One

approach to this problem, considered above, is to attack the structure issue

by imposition of defined, database based or other structures. Another line

of approach has been from user-interface considerations, enhancing user

interfaces to alleviate the navigation problems. Such navigation tools

generally depend on the presentation of structure information in the form of

maps, history lists, graphs or guided tours to the user as an aide-memoir to

the location within the hyperbase. These methods have been documented

by Nielsen [Nielsen, 1990] and many, such as history trails, are now de

rigeur in any browsing system. These methods require some form of

visualisation of the underlying structure of the hyperbase and therefore

almost inevitably become entangled in issues of data modelling.

Specialised versions of these enhanced interfaces are described related to

navigation through movies [Geissler, 1996] [Anderson, 1988], speech

[Arons, 1991] and video editing [Ueda, 1994].

One direction of approach is content based retrieval. The aim here is

to provide a database like query interface to unstructured data by

associative access to the content. This approach is particularly attractive for

those dealing with large amounts of video data and various techniques and

data models have been described by several authors [Dimitrova,Golshani,

1994] [Petrakis, Orphanoudakis, 1993] [Wu et. al. 1995] .

46

\

'

•

•

•

•

•

•

•

•

•

•

•

•

3.7 Program based organisation

Most of the literature views the organisation of hypermedia structure

as a data structuring issue, with declarative structuring techniques applied

to temporal as well as spatial and logical structure. An alternative,

imperative based view that sees the structure in program type terms is less

evident, at least as concerns deep and large-scale structure. Scripting

languages have been part of multimedia from the earliest days, but are

generally confined to the behaviour of a single object, rather than the

hyperbase as a whole. As a result scripting languages are generally small

program languages which cannot deal with large scale structure, illustrated

by a comparison between Java (a programming language designed for

"programming in the large") [Sun 1996] and JavaScript (a scripting

language) .

A substantial amount of work investigating the application of program

like structuring techniques, namely the use of process algebras, to user

interface design, including application to hypermedia systems, has been

carried out by Johnson and Johnson [Johnson, Johnson 1991].

3.8 Relationships with this work

The majority of workers in the field have chosen to view hypermedia

systems as a heterogeneous collection of objects, each with their own

internal spatial and possibly temporal structure. This has led to a view of

hyperbase structure that is essentially external to the content of the objects

within the database. Thus most work has concentrated on database

47

•

•

•

•

•

•

•

•

•

•

•

•

derived methods of data and temporal modelling. This attitude is valid for

many of the types of hypermedia systems seen in the world today, which

are essentially libraries of objects, each with its own internal structure. In

this wor1d view there is unlikely to be any overall designer of the system, if it

is large. There will be a systems designer or designers responsible for

designing and imposing some sort of structure on the system, but the

content of individual objects is likely to have been designed by independent

authors. In a sense the system is designed and the individual content

objects are authored. The field of hypermedia studied in this work is

somewhat specialised - high reliability technical documentation systems. In

this field of work the overall dynamic behaviour, in the sense of the ordering

of events and actions is important. In this context the system designers

must be aware, and be able to verify, the dynamic behaviour of individual

objects, including any scripts contained in them. This necessitates a top

down, integrated approach to the design of the system, and a design

method must cover the structure and temporal behaviour of the whole

system, from overall database structure to the behaviour of individual

interactive scripts at the leaves of the structure graph .

Such considerations go along with an understanding that the

producers of such systems must act as designers of the system as a whole,

rather than just collators of information. The work of Fischer [Fischer

1997], an information designer rather than a technologist, is illuminating on

this issue. Fischer's thesis argues that even in cases in which the system is

"designed", rather than "collected", typically the separation of expertise of

48

•

•

•

•

•

•

•

•

•

•

•

•

the system designers and the experts who are using the medium to present

their information can cause systems to be of less than optimal utility for the

users. He presents a theory of presentation that views the design process

as the presentation of information from expert to user. Even systems that

are designed, rather than collected, are not necessarily suitable for the role

of useful technical documentation.

Taken in this light much of the current research work on hypermedia

structure does not impact on the current work as strongly as might first

have appeared to be the case. By separating the small-scale structure from

the large-scale structure of the system the system compiler is separated

from the authors of the individual objects, and in fact much of the work on

open hypermedia has been focussed on achieving just this separation .

The work on temporal properties of hypermedia has generally been

directed towards a declarative approach, stemming from the HyTime

specification, which was one of the first attempts to provide a format that

could describe the temporal relationships within a hypermedia system.

Hardman and Bulterman [Hardman, Bulterman 1995] argue strongly for a

declarative approach to temporal structuring .

Two of these approaches (to authoring of hypermedia systems) are to
(a) program the presentation in terms of what happens next on the
screen and (b) state the timing and layout relations among items
declaratively and leave it to an interpreter to derive the actions
required. lt is this latter approach we take Here, the author is
protected from having to produce tedious procedural specifications
(for example, place this picture on the screen in area A, then play this
subtitle in area B), and can concentrate on creating relations among
the objects (such as this subtitle goes underneath this picture). This
allows greater flexibility in changing both small and large parts of the
presentation .

49

•

•

•

•

•

•

•

•

•

•

•

•

Against this argument one can place as a counter the difficulties that

many users of declarative programming languages have had, particularly in

applying temporal structure. This opinion is based on the author's

experience in teaching of programming and has been discussed in

[Newman et. al. 1994] and [Newman et. al1995]. In approaching this issue

the author has chosen to apply his background in software production for

real-time systems, a field which is dominated by an imperative, program

structured approach. This does not signify any statement about the relative

theoretical merits of the two approaches.

In taking the imperative approach, the work of Johnson and Johnson

[Johnson, Johnson, 1991] in pursuing the temporal issues in a related field,

user interface design, has been directly relevant. So too has the work of

Milner [Milner 1989], Hoare [Hoare 1978] and others in the development of

process algebras. This work, not being directly related to hypermedia, has

not been discussed in this chapter, but is, in some detail, in Chapters Four

and Seven .

50

•

•

• Chapter 4: A methodology for design of large hypermedia

systems

•
4.1 Introduction

Hypermedia is a young medium and design methods for hypermedia

• systems are in a relatively early stage of development. Current design

methods have followed one of three different paths. They are Scripting,

based on simplified programming languages that allow definition of the

• content and sequence of the system; interactive tools which allow the

system to be constructed by form filling and "programming by example" and

database methods which treats the system as a database of visual

• information. This paper proposes a new method for the design of very

large, highly interactive, hypermedia databases for which correctness and

reliability is a major requirement. Examples of such databases are the

• technical documentation systems for safety critical systems. When applied

to systems of this type existing methods show severe shortcomings. The

• interactive and scripting methods because they cannot guarantee

correctness or reliability and the database methods because they cannot

guarantee the required interactive properties. The new method is based on

•
51

•

•

•

•

•

•

•

•

•

•

•

•

•

one of the most successful methodologies for the rigorous design of real

time systems software, where the formal description of the system uses

process algebras. Real time systems share many basic characteristics with

interactive systems and the application of their design methods allows

systems to be rigorously designed both with respect to their content and

their interactive behaviour. Furthermore, the use of these methods offers

the prospect of the formal verification of the operational characteristics of

these systems, if not the correctness of their content. lt is argued that a

design method based on process algebras possesses the necessary

properties for large, safety critical documentation systems and also that, if

correctly structured, such a method should be accessible to hypermedia

designers.

4.2 High reliability large Hyperrnedia databases

Hypermedia, the combination of hypertext or non-linear text systems

and multimedia, is' beginning the transition from a hi-tech toy to a more

serious medium. As yet the "serious" applications are relatively

undemanding (in terms of data complexity, if not in terms of the graphic and

media design). Typical applications are marketing, computer aided teaching

and catalogue data. These applications remain simple for different reasons.

Marketing or advertising data may have complex interactive content

and often quite a rich structure. On the other hand there is no great

demand for correctness or ease of access or navigation. The "rich"

52

•

•

•

•

•

•

•

•

•

•

•

•

structure is in fact unstructured, designed in an ad-hoc manner by the

multimedia author without any reference to any particular specification .

Catalogue information is highly structured, but according to well

known and well-understood database structures. Such systems contain

little interactivity, the user interaction being limited to the application of a

particular search strategy, usually selected from a fairly small list of options.

The design of computer aided teaching material has tended to

concentrate on the interactive nature of the medium, and the techniques

used are often derived from the film world. Design will usually start with a

storyboard, showing a fixed sequence of frames. Selection of alternative

sequences is described using a flowchart referring to the different strands

of storyboard. These are then realised using an interactive tool such as

Director or FrontPage. Again, the level of structure is relatively low,

sometimes to the detriment of the more complex material. In general,

however, the underlying structure, being based on material with a fairly

simple linear sequence of lessons, remains simple and the need for higher

levels of structure is not great for many subject areas.

The author has recently participated in a project to define complex

multimedia systems suitable for technical documentation [Newman et. al.

1997]. The research undertaken within this project has shown that

applications of this type have a much tighter requirement for structure and

ordered presentation than those application types given above. Moreover,

the access patterns are very much more complex than are those given

above. The characteristics of this type of application are discussed below .

53

•

•

•

•

•

•

•

•

•

•

•

•

There will be many possible navigation routes through a multimedia

technical documentation database. As stated in Chapter 2, for maintenance

documentation a task-based organisation has been found to be

appropriate, in line with earlier research results [Johnson et. al. 1988]. The

information is sequenced according to a number of set maintenance tasks .

These maintenance procedures are usually set out in the paper-based

documentation as flowcharts. The task descriptions in the paper

documentation contain references to other relevant material, such as

component descriptions or other maintenance procedures. In hypermedia

systems these are implemented as links which cut across the task based

organisation, since it is possible for the user to follow such a link and then

fail to return to the task based sequence.

There are often different ways of using the same database. For

instance, as well as supporting maintenance operations, the same

information may be used for training, diagnostics and repair. Each of these

different activities will require a different navigation path through the

documentation. Each such path will have cross links and the overall

structure of the database will become unmanageably complex.

A further level of complexity is caused by the need to cater for

different variants and maintenance specifications. The required procedures

may change depending on the precise build specification or maintenance

history of the unit under maintenance. The maintenance procedures can be

modified and refined over time as well, so that any given path through the

54

•

•

•

•

•

•

•

•

•

•

•

•

database may need to be replicated several times to cater for these

variations .

The requirements for correctness for such systems are also strict. For

safety critical applications it is vital that the maintenance procedures are

preserved in the correct sequence and are complete. While this is simple

for a straightforward linear sequence, once we take into account the huge

number of possible variations and alternative paths through the database

great care must be taken in the design and implementation .

4.3 Existing design methods

Existing methods for the design of multimedia systems are based

around a number of basic metaphors that dictate the overall approach of

the designer. Unsurprisingly, these metaphors reflect the heritage of the

user community which developed them, and each can be identified with

one of the communities that can claim some kind of ownership of the

multimedia field. The use of a particular metaphor gives rise to a method of

working related to that metaphor, which in turn influences the priorities and

constraints put on the multimedia designer, and ultimately the form and

function itself. Mixtures of the metaphors are possible, and nowadays even

common, but like most mixed metaphors, they do not always produce a

well-structured or elegant product. These metaphors are detailed below .

55

•

•

•

•

•

•

•

•

•

•

•

•

4.4 Mtaitimedia as document

As word processing and document management systems have

become more sophisticated they have begun to grow in the number of

different media that can be included within the document. The early word

processors had a page layout model based on a typewriter, with fixed pitch

fonts and simple page layouts. As printing technology has advanced the

documents have begun to include variable width fonts, a multiplicity of

different typefaces (commonly all in the same document!), complex page

layout including multiple columns, inset text and illustration boxes, tables,

charts, line illustrations, photographs, multiple colours and full colour

images. Today's word processors have capabilities beginning to

approximate more to a typesetting system than a typewriter.

Along with advances in printing technology there have been parallel

advances in display technology, allowing the document to be presented on

the screen in a fairly close approximation to its printed appearance. Along

with the increasing availability of powerful, high quality personal computers,

the consequence is that many documents are viewed only on the computer

screen, and need never be printed. For such documents there is the

opportunity to include non-printable media such as moving illustrations and

sound annotation. At this point the document ceases to be simply a

document and becomes a multimedia presentation. The document heritage

is still very clear, however. The primary component is still the text, and all

other structure is dictated by the textual structure of the document. Non

textual media remain very much a subsidiary concern. Illustrations and the

56

•

•

•

•

•

•

•

•

•

•

•

•

structure remains very much rooted in its paper ancestry, namely a paper

based, page orientated structure, which by comparison with other

multimedia forms is quite rigid and static.

The tools used to create and manipulate this type of multimedia are

typically document creation systems, word processors and desktop

publishing systems, which now include the ability to embed non-paper

based media within a document. These tools include word processors such

as Microsoft Word, Novell WordPerfect and Lotus Word Pro, document

layout systems such as Quark Express, Adobe PageMaker and Xerox

Ventura. Tools and standards have also been produced for the storage and

distribution of such documents (Adobe Acrobat, etc) .

4.5 Multimedia as game

Another multimedia lineage springs from the computer game. Once

again, advances in technology have presented games manufacturers with a

steady stream of new or improved media to increase the impact of their

products. The essential element of a computer game has always been its

interactivity. Starting from the first commonly available game, Pong, in the

early 1970s, the aim has been to increase the effectiveness and reality of

games by using improvements in computer graphics and other media such

as sound. Currently games typically make extensive use of 3-0 computer

graphics, sometimes added to or mixed with video, and sound. Servo

motors are beginning to be included in games playing equipment to provide

sensory feedback, acceleration and gravity effects. Binocular 3-0

57

•

•

•

•

••

•
I

I

•

•

•

•

•

presentation is being used. Doubtless soon to come, wind, odours and

other sensory stimulation. Recently games have been the benchmark by

which other computer graphics media have been judged.

Typically games have a very high level of interactivity and a low level

of structure. Games players seem willing to tolerate dysfunctional user

interfaces, and partially working or failure prone systems in a way that few

other computer users would. Traditionally games software has been

developed by "hackers", people talented in code production but not

necessarily in its construction. Their work has been constrained by the

limited nature of the hardware used to run games, and as a result, until

recently software engineering methods have rarely been employed to

assure the quality of the product With the increasing use of servo-motors in

such equipment it is likely that concems for the safety of the user in the

event of a malfunction will result in the enforcement of a more rigorous

development regime.

4.6 Multimedia as movie

Another way of looking at interactive multimedia systems, particularly

those in the entertainment industry, is as an extension of the movie,

allowing the added feature of audience participation. To an extent this view

is an extension of the games view, but the history is different. Influences

include the experience of use of computer graphics for special effects in the

film industry and the move of film producers and distributors into the video

and video games market.

58

•

•

•

•

•

•

•

•

•

•

•

•

4.7 Multimedia as database

To those trained in information systems it is natural to view a

multimedia system as a database. A database is simply an organised

collection of records, and if the records happen to include data that could

be viewed as a picture or a movie or some other medium then you have a

multimedia system. The advantage of the database view of the world is that

there is a very well developed theory and methodology for the construction

of very large, reliable, well-ordered databases. Much of the modem world's

data systems depend on such databases. To the database designer the

content of the database is immaterial; the structures will work whatever the

content. What is more problematic is how the material is accessed. In

database terms, the query mechanism. Database query methods are based

on textual records, and so long as the database contains text linked to the

non-textual data then such well understood mechanisms can be used.

When it doesn't, query methods based on some other record content will

have to be used, and there is much active research on this topic .

There are other issues associated with multimedia databases. One is

that of providing query tools that allow access to the different media - most

database tools have a very basic textual presentation mechanism. There

are several different approaches to this issue. One is to produce a query

tool which includes presentation mechanisms for the different media (such

as, for instance OHM [Gronbaek, Trigg, 1992]), another is to use the

database system as a "back-end" which orders the data which is presented

by some other systems, such as a web browser. Hyper-G [Knappe et. al .

59

•

•

•

•

•

•

•

•

•

•

•

•

1993], for example, has evolved into a system of this type in order to

integrate with an HTML dominated world. Another is an object oriented

approach, where the records themselves contain or imply the presentation

mechanism, using some standardised way of distributing presentation

programs such as Java .

The properties of database based systems are derived directly from

database systems themselves. While the contents of the database will be

well ordered, they will be ordered only in the manner intended by the

designers. Typically a the design of a database will not include sequence or

other temporal properties, and there is unlikely to be any interactive

behaviour except that provided by the query mechanism. Thus a database

is liable to be a fairly static, non-interactive data repository.

4.8 Multimedia as program

The other branch of the computer science profession is that of the

program designers and software engineers. For these people it is natural to

see any system that includes interactivity and adaptive response to user

input as a program. The activity that other multimedia designers see as

'scripting' will be viewed by software designers as 'programming', and the

design of multimedia systems as program design. This is evidenced by a

look at the various scripting languages used for the production of

multimedia systems. These are clearly derived from and in most cases still

are, programming languages. The fact that they are simple languages fits

well with the simplicity, when viewed as a program, of most current

60

•

•

•

•

•

•

•

•

•

•

•

•

multimedia applications. Real computer programs, on the other hand, need

real programming languages and real software engineering methods to

produce them. However, many computer programs, particularly computer

graphics programs such as CAD and visualisation programs, may be

viewed as multimedia applications in their own right. With multimedia

applications becoming increasingly complex it is perhaps fair to ask why

"real" program development methods shouldn't be used for them as well.

Currently such methods are accessible only to computer science

professionals (who would probably favour such a limitation), and also are

unlikely to have the productivity required to produce technical

documentation on a serious scale.

4.9 Multimedia as hypermedia

The final view of multimedia systems is derived from the hypertext

model. Hypertext is derived from computer-based training or help systems,

where words or phrases in a text can be linked to some other piece of text .

The connections between the text form a graph that can be navigated by

selecting the links in each piece of text. Interest in hypertext as an

organisational model for multimedia systems has been high because it

seems to overcome the structural limitations of traditional media. In fact,

any structure that can be represented as a graph is possible. Hypertext

systems have now gained access to other media to become hypermedia

systems, still with the same link based structure. The best known and most

widely used hypermedia system is the World Wide Web, and many other

multimedia systems have adopted the same organisational model. These

61

•

•

•

•

•

•

•

•

•

•

•

•

systems are so well known that for some hypermedia and multimedia have

become synonymous, although as discussed here, other organisations for

multimedia systems are possible.

4.10 Design choices for the hypermedia designer

All of the paradigms discussed above have met with success as

models for the design of multimedia systems. The aim here is to select a

model suitable for "serious" multimedia applications, namely large scale,

high reliability technical documentation. Considered in this light, the choice

of design paradigm is rather different. That chosen must be capable of

supporting rigorous design methodologies that will allow the production of

high quality documentation systems with confidence. This constraint rules

out the game, movie and hypertext models, simply because such

methodologies have not been developed for these models.

The remaining paradigms are those of document, program and

database. The document model may be ruled out because although there

are established principles and procedures for quality assurance of

documents they are not based on any mathematical idea of correctness.

They are unlikely therefore to be susceptible to computerisation, which will

be necessary if the required productivity is to be achieved. This leaves the

two models rooted in computer science, the database and the program

model. Both come with well-established bodies of theory and practice

aimed at ensuring correctness. Between these the choice will have to be

made according to performance issues .

62

•

•

•

•

•

•

•

•

•

•

•

•

Most current work on large multimedia systems has concentrated on

database models. There are two reasons for this. Firstly most of that work

has concentrated on the requirements of large data repositories, rather

than on very clearly goal directed systems which also happen to be large. lt

is this factor which makes interactive performance much more important in

the case of technical documentation, and leads to the conclusion that the

program based structure is superior. The second reason is that database

design and planning methods are in many ways more mature than formal

methods for the design of programs. Whereas almost all serious database

systems are formally designed and validated, the penetration of formal

methods into software design is much smaller. Although most large

software systems are designed using "semi-formal" methodologies, that is

methods which have some sort of formalised method of working but are not

based on any mathematical rigour, fully formal methods have a smaller,

although growing, level of acceptance. This is partially due to the low level

of accessibility of the methods to those who have not been trained in the

mathematics that underpins them. In some cases this causes an alienation

from the methods which can amount to outright hostility. Another reason is

that when it comes to large-scale systems many of these methods have still

to prove their capability. They are ultimately based on the concept of

mathematical proof; in real-life systems the size and complexity of the

theorems that must be proved lie outside the capabilities of the average

human mind .

63

•

•

•

•

•

•

•

•

•

•

•

•

This discussion seems to be leading to the conclusion that the

program paradigm for multimedia systems is also unsuitable for large high

reliability systems, but the arguments above can be countered by several

other arguments. Firstly, ways are being found of making the operation of

formal methods easier. Such things as specification editors, proof

assistants and editors, and integrated specification tools can make the task

tractable and have become accepted, indeed required, in some safety

critical industries. Secondly, production of systems of this scale is a

multidisciplinary exercise. Undoubtedly there is a requirement for people

with the correct type of formal mathematical training to undertake the

verification work, but that does not dictate that these people must form the

whole team. So long as notations can be devised that allow the transfer of

ideas between different parts of the team, that are accessible to the whole

team and which can fulfil the requirements both of the creative and

analytical side of the work then the scenario remains viable.

Wrth this in mind it is suggested that program based organisation

should be considered as a suitable model for the design and construction of

large, high-reliability hypermedia systems. To enable this a methodology is

required which can encompass the entire development team. A notations is

required which will allow individuals working on development to

communicate with and also support the formalism required to assure the

quality of the product. The rest of this chapter will put forward such a

notation and describe the methods it supports .

64

•
I

•

•

•

•

•

•

•

•

•

•

•

4.11 Methods and notations

The previous section suggests that a good starting place in the

search for a methodology for multimedia system design would be formal

notations for programs. In order to begin the development of his

methodology two questions need to be answered. The are "what kind of

programs are hypermedia systems?" and "what kind of method is best

suited to the development of this type of program"?

To answer the first of these we need to consider which kind of

program best aligns with multimedia systems. As was argued above

interactive multimedia systems are essentially programs, in that the system

defines the sequence or control flow of a series of events in the same way

that a computer program does. This identification immediately suggests

one particular programming paradigm, the imperative paradigm as opposed

to the various app/icative paradigms. This is underlined by examination of

the various scripting languages used in multimedia authoring systems: all

are imperative. One could speculate on the practicality of a functional

scripting language- it is certainly theoretically possible, but would be

difficult for those not familiar with such languages to grasp or to program. lt

is difficult to find examples of the successful programming of interactive

systems using functional languages. The most commonly cited example of

such a case is the use of the language Lisp [McCarthy, 1960] as the base

programming language for the Symbolics Lisp Machine or as the macro

language for the AutoCAD CAD program. However, Lisp is not a pure

functional language since it includes variables and assignment, introduced

65

•

•

•

•

•

•

•

•

•

•

•

•

into the language precisely to simplify the data handling surrounding

sequential events .

Systems modelled on the database paradigm will tend to be designed

using data modelling languages and accessed using query languages. Both

are applicative and as a consequence (or maybe vice-versa) the systems

are not substantially interactive.

The imperative paradigm is also a good match for the subject area.

Many of the procedures involved in maintenance, repair and diagnostics

are defined as step by step lists of instructions. lt is not unusual to see

them expressed in manuals as flowcharts - a notation which originated in

programming but is now, ironically, rare in that field. Thus we might expect

that an imperative model would be accessible to the various people

involved in authoring technical documentation .

Advanced multimedia systems go beyond the behaviour describable

using a simple imperative programming language. In particular it is

common to have different things happening on different parts of the screen .

A look at many pages on the World Wide Web will show them to be full of

animated images, to contain "buttons" which are not simply links but spawn

new browsers which can view other pages while the original remains

displayed. In short, these system are concurrent systems. A look at the

languages used to implement them reinforces this view. Java, the language

most often put forward as the language of advanced distributed multimedia

systems, is a concurrent programming language .

66

•

•

•

•

•

•

•

•

•

•

•

•

Thus it is likely that we will find the inspiration for multimedia design

methods in the methods used for concurrent software systems .

Reassuringly, this is also the body of knowledge that covers the design of

real time and embedded systems. Such software systems are used in

computer controlled interactive products and these are often safety critical

applications. Due to the need for assured software quality in these

applications, the theory of concurrent programming and the design

methods that go with it is well advanced .

We will now proceed to consider the next question: what kind of

method would be suitable? One theory of program correctness for

imperative programs is derived from the predicate calculus. Predicates are

associated with the state of the system before and after execution of each

part of the program and the job of the program proof is to show that the

execution of the program transforms the first predicate, the precondition,

into the second, the postcondition. In this view of the world the role of the

specification is to define the required precondition and postcondition, to say

what he program must do, rather than how it must do it. The drafting of

such specifications requires a notation that contains the necessary symbols

and operators for the operation of formal logic on the specifications, since

formal logic is the mechanism by which the predicate transformations are

demonstrated. Such notations are called specification languages, typified

by Z [Spivey, 1989] and VDM [Jones, 1990]. These are possible candidates

as the starting point for the development of a notation for multimedia

design .

67

•

•

•

•

•

•

•

•

•

•

•

•

This view of a program is essentially a "batch process" view of the

program. All that is important about it is how it starts off and what it

produces, what it does in between the specified start and end points is

unimportant. In interactive systems and other real time systems what

happens in the middle is vitally important, because it is these events that

define the interaction with the system. As far as the precondition and

postcondition of a program is concerned the ordering of two events is

immaterial, on the other hand, as far as the user is concerned, if the two

events occur in the incorrect order the system may be unusable. One way

to produce specifications which cater for this is to introduce predicates,

which describe the intermediate states before and after each necessary

event, and to prove that the program transforms one to the next in the

correct sequence. The specification is now a set of predicates that define

these states and the order in which they must occur. Such methods have

been developed and applied with some success to the formal design and

specification of concurrent programs [Andrews, 1991]. This approach is

called a state based specification method, since it seeks to describe the

ordering of the system by defining the sequence of states that it must go

through .

An alternative approach is an event based one. Here it is

acknowledged that the events themselves are of primary importance and

as a consequence how the job is done is as important as the end result. In

an event based model the specification specifies which events the system

will enter into and in which order. As a result of this event based

68

I

•

•

•

•

•

•

•

•

•

•

•

•

specification languages look very like programming languages - in both

cases they seek to describe a (possibly flexible and adaptive) ordering of

events - and many of the concepts, constructs and operators are very

similar. This has advantages and disadvantages. On the one hand it has

already been noted that imperative programming languages seem to be

easily adopted by many people, and at least superficially, it is the same

with event based specification methods. Most people can write down the

order in which they think things should happen. On the other hand it can be

very difficult to maintain clarity about what level of abstraction is in use at

any time. When the specification language looks very like a program it can

sometimes seamlessly evolve into that program, and one is left wondering

whether a formal specification ever really existed.

Of course, the essence of a formal method is that it is amenable to

formal analysis, and this is where the event based specification differs from

a program. As well as a specification language it is an algebra, more

specifically a process algebra, the symbols and formulae of which describe

processes of events and the rules of which allow the formulae to be

manipulated to analyse those processes. Using this algebra a calculus can

be constructed allowing the analysis and verification of systems of

processes. A semantic model that describes the meaning of the symbols

and the way the rules are applied underpins the algebra. As long as one

believes that the semantic model aligns with reality then the process

algebra forms a sound basis for analysis of the properties of the system

being designed. The suitability of process algebras for design of structured

69

•

•

•

•

•

•

•

•

•

•

•

•

dialogues has been investigated previously, notably by Alexander

[Alexander, 1990) and Johnson [Johnson, 1991). Application to hypermedia

is a natural extension.

Compared with the state based specification methods the process

algebra approach has advantages and disadvantages. As noted above it is

more readily accepted by a larger group of people, at least superficially,

than the more esoteric predicate systems. As a system based on events it

is a much more natural fit to event based products such as multimedia

systems. Intellectually it is certainly much easier to specify the sequence of

events that needs to occur than it is to convince oneself that everything that

needs to be said about a particular state has been expressed in the

predicate which is supposed to specify it. However, the ease of

specification is not matched by a corresponding ease of analysis. Process

algebras have a lot of rules. Far more than, for instance, Boolean algebra

with which many people are familiar. Constructing proofs in Boolean

algebra can be hard enough as it is, and those in process algebras are

more difficult still. lt is unlikely that it will be possible to prove completely

any complex system. Instead the aim is to define safety properties (things

that must not happen) and /iveness properties (that the system will

operate). lt seems to be much easier to frame these properties as

predicates that as sequences of events.

For the domain of hypermedia technical documentation the positive

features of process algebras seem quite compelling. Not only do they

match the requirements of the area well, but they have at least a chance of

70

•

•

•

•

•

•

•

•

•

•

•

being adopted by a community which has taken to scripting languages

readily enough. A further refinement in their use would be to adopt a semi

graphical notation, still consistent with the underlying structure of a process

algebra, which also has some commonality with the methods used by the

"creative" people in the authoring process, namely the graphic artists and

information designers.

4.12 Selecting a process algebra

There are a number of different process algebras that have been

developed each with its own proponents. Each is based around broadly

similar concepts, although the notation for each and therefore the "look and

feel" is very different.

The earliest process algebra was Hoare's Communicating Sequential

Processes (CSP). CSP [Hoare, 1978] introduced the notion of a process as

a sequence of events, with a rather elegant recursive definition of a process

as an event leading to a process. The other notion introduced by CSP was

a model of processes transferring information between themselves in a

simple, ordered, synchronised way. This simplification of the inter process

communication model allowed the issues of transfer of information between

processes and synchronisation between them to be handled without

recourse to shared variables, allowing a huge simplification of the analytical

apparatus needed. CSP has a very terse, mathematical syntax with a

wealth of unusual symbols denoting operators and standard events and

processes, which can be daunting to those not comfortable with

71

•

•

•

•

•

•

•

•

•

•

•

•

mathematical notations. CSP has been developed into a range of different

variants, including Timed CSP, Receptive Process theory (RPT), and

Theory of Asynchronous Processes. For our purposes CSP is adequate.

There are also a number of semantic models that have been developed to

underpin CSP. Again, for our purposes the simplest, the traces model, will

be sufficient.

LOTOS [van Eijk et. al., 1989], or Language of Temporal Ordering

Specification, is a process algebra proposed by the International Standards

Organisation as an international standard for the specification of concurrent

and real time systems. LOTOS has a Pascal like syntax which makes it

appear very much like a programming language, improving its user

friendliness to the programming community, but making it very much more

complex to manipulate .

CCS, Calculus of Communicating Systems, was developed in 1989

by Milner [Milner, 1989]. This language shares many common features with

CSP, but is notationally quite different, although still highly "mathematical"

in appearance. CCS is a simpler algebra than CSP, lacking any concept of

data, among other things. CCS specifications concentrate on events and

their ordering, whereas CSP can say something about data values as well .

As a result of this simplification the rules and verification of CCS

specifications is simpler. There is an associated logic, Hennesey-Milner

Logic [Stirling, 1991], or HML, which can be used for reasoning about

specifications. The semantics of CCS is based on an operational semantic

model. CCS has also been developed into a family of languages, but there

72

•

•

•

•

I.
I

•

•

•

•

•

•

•

is much more semantic commonality between them than is the case with

the variants of CSP

For the purposes of specifying the sequence of events in interactive

multimedia systems any of the above would be suitable. CSP suffers from

having been developed before the semantic models were fully developed .

Different workers have developed different semantic models, and to

accommodate them the language has grown, with many operators, the

subtle differences of which are apparent only with reference to a particular

semantic model. By contrast CCS has had a well-developed semantic

model from the start, and this concentration on one or, more accurately,

two equivalent semantic models has allowed the language to remain tiny in

comparison with CSP. CCS has the advantage that it concentrates on the

nub of the problem which concems us, the ordering of events, and

therefore is more closely optimised to this particular application. An earlier

version of the notation was based on CSP. The notation was very much

more complex than the one presented here, and it was not at all clear that it

allowed any greater expressivity. The author was required to distinguish

between the subtly different nuances of CSP semantics, for instance

between "demonic" and "non-demonic" choice. The adoption of CCS

brought a great simplification, to the point where the apparent simplicity of

the notation belies its power.

CCS also has the advantage of a good range of available support

tools and quite an amount of active research associated with it, reviewed,

73

•

•
for instance, in [Fencott, 1996], so that the body of knowledge concerned

with CCS continues to grow .

•
4.13 Dealing with size and complexity

Formal specification systems such as a process algebra tend to be

• best at handling small systems. As soon as the system reaches any size

then the increase in size of the state space of the system makes any sort of

•
reasoning about it very complex, even with the help of computerised

reasoning assistance. This is precisely the same problem as that of

keeping track of the design of large programs. Even though the design

• notation works at a level of abstraction that strips away the irrelevant detail,

the amount of relevant detail can still be too much to be handled easily.

The solution to this problem is to allow a way of raising the level of

• abstraction still further, that is to separate the system into component parts

and at the top level of design to concentrate on the component parts and

their interface. What occurs internally to those component parts is irrelevant

• so long as the part operates correctly and can be viewed as a "black box'',

so that the internal workings are need not be visible.

• To design a system in this way requires two conditions to be fulfilled .

One is that the design notation is modular or hierarchical in style, and can

support this abstraction process. Process algebras partially meet this

: . condition, since processes can be composed to form other processes, and

I

a process can be used to form the basic building block of the system.

Where they fail fully to meet the requirement is with respect to the internal

•
74

•

•

•

•

•

•

•

•

•

•

•

•

•

invisibility requirement. In most process algebras all names are visible

throughout the system, which in a large system produces the likelihood of

the phenomenon known as "unintentional capture", or more simply dual use

of the same name for different purposes. To overcome this they allow an

operation known as "hiding" where a name is hidden from the outside world

to allow it to be used again without fear of capture. Modular programming

languages, by contrast, "hide" names by default. To make them visible to

the outside world requires explicit use of an "exporr operation. In devising

a methodology for multimedia systems design using process algebras one

could either accept the additional need for discipline on the part of the

designer that this condition imposes, maybe with some help from the

design tools, or to adapt process algebras to follow the "programming"

model. If existing process algebra tools are to be used in the methodology

then the former is probably preferable .

The second condition is that the designers conceive and structure the

system in such a hierarchical, top down fashion. This tends not to be the

case at the moment, but this is partially due to the use of unstructured

design methods. Experience of software engineering methodologies

suggests that as structured methods are introduced software designers

have become used to designing their software in a structured way, even if it

is less "intuitive". lt is to be hoped that the same will be true in the field of

multimedia systems design .

75

•

•

•

•

•

•

•

•

•

•

•

•

4.14 Framing safety conditions

The other important part of the specification is an account of the

features critical for the success of the system. In concurrent system design

parlance these are the safety conditions. The safety conditions define the

conditions that must be present for the system to operate safely. Often a

safety condition is defined as a negation of some condition that must not be

present if safety is to be maintained. In the context of multimedia

documentation they are likely to be concerned with sequence or

completeness of presentation. A critical sequence must be presented in its

entirety and a sequence of critical assembly or disassembly operations

cannot be presented in the wrong order .

There are two crucial issues in identifying the safety conditions. The

first is identifying the conditions themselves. In a large system correctly

identifying the critical areas of the domain will be no trivial task. lt will

always remain subject to domain expertise, and is a part of the job that no

formal method can help with. The fact that a method demands that these

critical areas be identified might, however, help focus the minds of the

domain experts on analysis of the usage of their documentation.

The second issue is the translation of these conditions into a

formalism suitable for use in analysis. The formalism associated with CCS

is Hennesey-Milner Logic (HML) and its extensions. This process has two

parts. The first is expressing the activity which comprises the condition as

an agent in CCS or its semi-graphical equivalent. The second is composing

a predicate in HML which expresses the condition whether or not this agent

76

•

•

•

•

•

•

•

•

•

•

•

•

exists within the correct set of temporal and state conditions. Although HML

is not as complex some formal logics, use of such logics is likely to remain

the domain of trained logicians. While there is much mileage in developing

a designer friendly, graphical notation for the process algebra itself, this is

probably not the case for the associated logic. The values of the logic are

the agents and events of the process algebra, and these may be specified

using a graphical notation. Manipulation of these values by mathematicians

will be achieved more easily in a classical mathematical notation .

4.15 Applying process algebras to hypermedia systems

The value of a design method based on a formalism is not

necessarily that everything will be proved to be correct. lt is more that

modes of design are encouraged which lend themselves to be provably

correct, and are therefore more likely to be correct. In particular, the

freedom of the designer is constrained in such a way that structures which

are likely to produce unanaiysable (and therefore unprovable) results, are

not permitted. The task for hypermedia system design is to define a set of

design primitives that satisfy this requirement, but still allow sufficient

expressivity to allow definition of systems with the required characteristics .

Such a set of primitives exists within the realm of process algebras.

Process algebras, such as CCS, model the world as systems of co

operating sequential processes This forms a suitable starting point for the

hypermedia design method .

77

•

•
The basic entities in process algebras are events and processes. In

CCS a process, more usually called an agent is simply a sequence of

• events.

de/
p = e' .e 2 .e J ...

•
where e1,e1.eJ are events. The'.', or prefix, operator indicates the

sequence of events, that the event on the left hand side precedes the event

• or agent on the right hand side. The '=' with the word 'def above indicates a

definition. The mapping of these concepts to hypermedia design is simple.

The event corresponds to a user interaction (clicking on a button or link) or

• display (or sound) output, the process corresponds to the sequence of

inputs and presentation that results. Since the definition of a process can

include any number of events it can include any further events, leading to

• other processes, corresponding to the interaction points included within

those pages. A short example, of an agent to provide interactive help, is

given below .

•
de[

Help = helpscreen .helpbutton .HelpTopic

• This definition indicates that the process or agent Help consists of the

event helpscreen, which we might interpret as the display of a help screen

containing a button marked "help" which the user presses to get help. This

• is followed by an event helpbuuon, corresponding to the pressing of the

button. After this comes the invocation of an agent called HelpTopic, which

• 78

•

•

•
will consist of a further sequence of events and agents. lt should be noted

• that in CCS there is no distinction between "input'' and "output'' events .

lt is necessary for a page to include a number of different action

points. If we allow the user to select only one at a time then we can use the

• CCS choice operator to signify the available choices. The form of the

choice operator is as follows .

•
lt generates a process which behaves as P1 if ifs first event (button

• press) occurs and P2 if that process' first event occurs. An example of the

use of the '+' operator is as follows.

• de[

HelpMenu = helpscreen .(button 1 .Topic 1 + button 2 .Topic 2)

This indicates that the HelpMenu is defined as the display of the help

• screen, as before, but now there follows a choice, dependent on whether

button] or button2 is pressed first. Button] invokes the Topicl agent, button2

invokes the Topic2 agent. This definition of HelpMenu allows a single

• choice to be made, and then terminates. We can use a recursive definition

to allow the menu to run continuously .

• dtf

HelpMenu 2 == helpscreen .(button I.Topic I+ button 2.Topic 2).HelpMenu 2

•
79

•

•

•

•

•

•

•

•

•

•

•

•

There are two possible ways of sequencing the pages. Pages can

either follow on from each other sequentially or else can be opened in a

new window, and can continue concurrently with the original page. These

situations are handled by the CCS sequential and parallel composition

operators. The '.' or prefix operator, is used as follows .

This indicates two pages following on sequentially. The operator is

the same as the prefix operator seen previously. Since an agent is simply a

set of events, so the prefix operator may separate two agents as well as an

event and an agent. The parallel composition operator is used as follows .

This indicates two pages displayed simultaneously. This state of

affairs occurs when a button invokes its agent in a new pop-up window,

rather than replacing the screen contents. The process HelpMenu3 below

operates in this fashion .

d•f

HelpMenu 3 =

he/pscreen .(button I.(PTopic tiHelpMenu 3) +button 2.(PTopic 2iHelpMenu 3))

80

•

•

•

•

•

•

•

•

•

•

•

•

Sometimes it will be necessary for one process to cause some effect

on another. In the following example the buttons control a video player

window, which has two simple controls, start and stop.

def

VideoPiaye r =

videoscree n.(startbutto n.(PiayjVideoPiaye r) + stopbutton .stop . .VideoPiaye r)
def

Play = nextjrame Play +stop .0

In this example VideoP!ayer displays the control screen and then

either invokes the process Play in parallel with a recursive invocation of

VideoP/ayer if startbutton occurs or, if stopbutton occurs, it "outputs" the

communication event stop with an overbar. This event has a

complementary event stop without the overbar, the two of them together

represent synchronisation using the named channel stop. The video player

is defined by the agent Play, which either displays the next frame in the

sequence or, if the event stop occurs, does nothing and terminates. "Doing

nothing" is symbolised by the primitive process 0 .

In the context of the design of large systems, and particularly to allow

reasoning about equivalence between agents, we will need to use the CCS

hiding operator, which hides a name from external view. Use of this

operator allows reuse of components that make common use of names, by

hiding those names form each other. In the textual syntax of CCS hiding is

indicated by a ·r, so

81

•

•
d•f

Q = P\name

•
indicates that Q is defined to be the same as the agent P with the

name name hidden from external view .

• This set of entities and operators is all that is needed for the majority

of hypermedia systems. lt should be noted that only the event sequence,

not the content of the pages is being described. The content could be text,

• images, diagrams or continuous sound or animation without affecting the

basic structure. Means of defining the content will be suggested later in this

paper .

•
4.16 A graphical notation

In the raw mathematical form put forward above process algebras are

• unlikely to be acceptable to practising multimedia designers. What is

required is a more accessible graphical design notation that can be simply

•
translated to algebraic form if required for analysis and proof .

The notation described below has been designed so as to maintain a

form familiar to authors while at the same time maintaining a strict one to

• one mapping with the CCS notation above. The construction rules also

obey the construction rules of CCS. The graphical notation is designed to

be drawn on a grid of frames, where each frame may contain a story board

• sketch .

•
82

•

•

•

•

•

•

•

•

•

•

•

•

•

Each frame may represent an event, or a process invocation. The

bulk of the frame is given over to the storyboard sketch, the frames are

labelled at the bottom to identify them. The names follow normal CCS

conventions with agent (process) names starting with an upper case letter

and event names starting with a lower case letter. A definition is indicated

by a name contained in box over, rather than under, the frames.

Sequential composition (the '.' operator) is denoted by juxtaposition

from left to right and parallel composition (the T operator) or choice (the '+'

operator) by juxtaposition from top to bottom. Parallel composition is

denoted by a vertical bar running down the left side of the frame, choice by

a '+' symbol in the centre of the left border of the frame.

Names are hidden by shading in the name box. Where a name

appears more than once in a definition a single shading hides every

occurrence.

A process definition is shown in Figure 4.1 .

Process!

event ProcessA ProcessB

ProcessC

ProcessD ProcessE

Figure 4.1 : A graphical notation

83

•

•
This defines Process1 to be event followed by parallel invocations of

• ProcessA followed by ProcessB, ProcessC and ProcessD followed by

ProcessE. In CCS this definition would be equivalent to

•
def

Process = event .(Pr ocessA . Pr ocessB)IPr ocessC j(Pr ocessD. Pr ocessE)

In the case where we are describing only the composition of

• processes we may decide to do away with the storyboard boxes to make

the layout more compact. The second example, shown in Figure 4.2 is the

Video Player process translated into this semi-graphical notation .

•
VideoPlayer I

• videoscreen - startbut1on Play

VideoPlayer

+ stopbut1on stop VideoPlayer I
• Play

-1- nextframe Play

-1- stop 0

• Figure 4.2: The video player in the graphical notation

In this example a "storyboard" box has been used for the initial

• videoscreen event to allow the required screen to be illustrated. All other

boxes relate to simple events or invocations of other processes, so they

have been compacted to just the label.

•
84

•

•

•

•

•

•

•

•

•

•

•

•

•

The important feature of this notation is that although it looks like a

conventional storyboard albeit with the enforcement of some more rigorous

layout conventions than most information designers would be used to, it is

in fact simply CCS using a graphical, rather than textual symbol set. Thus

storyboards produced in this way may be readily translated to CCS

expressions. Indeed, if they are created on a computer using a suitable

editor then the translation can be automatic. The CCS expressions can

then be verified using standard procedures and tools .

4.17 Software tools

The notation described above works quite feasibly using paper. An

extension is possibly needed to allow definitions to extend over multiple

sheets of paper. This is achieved by leaving boxes open ended to the right

to signify that the box continues on the next sheet. Tthis will usually occur

only with the name box at the top of a definition. The continuation is

likewise open ended to the left, with the name repeated to avoid the need

for reference back to preceding pages. A continuing sequence of boxes is

indicated by ellipsis to the right, with the continuation indicated by ellipsis to

the left. All continuation should occur at the same height on the page as the

continued boxes. An extended version of the video player example, with

continuation onto another sheet, is shown in figure 4.3 .

85

•

•

•

•

•

•

•

•

•

•

•

•

VideoPlayer

videoscreen -~ startbutton Play

+ stopbutton stop stopscreen I
Page boundary

VideoPiayer

. .. I VideoPiayer

Figure 4.3: Page continuation

While with these extensions paper is a viable medium for the

storyboard notation, much will be gained by generating it on a computer.

Although, being graphically very simple, it can be generated using almost

any 20 graphical editor, and some word processors, a purpose made editor

would allow additional functions that will be valuable in producing a

complete methodology based on the method .

The content of the storyboard will be in the form of image, movie,

simulation and other content files. In the paper based notation this can only

be indicated by an illustration in the storyboard box and possibly a written

reference to the file. Using a computer based editor this written reference

could be replaced by a hypertext link, which would allow the definition files

output by the tool to include references to the correct file. lt would then be

86

•

•

•

•

•

•

•

•

•
'

I

le

•

•

possible to produce further tools to be used later in the production process

which would automatically compose the correct content files into the

appropriate part of the sequence.

4.18 Analysing and proving designs

The process of verification is described here in outline. Firstly it

should be noted that there is no question within the current state of the art

of proving total, or even partial, correctness of a specification. What is

required is to be able to demonstrate the presence of some important

properties. In the case of our safety critical documentation systems

discussed earlier these properties are the safety properties that have been

defined along with the original system specifications. HML allows the

construction of properties to express the satisfaction of conditions

concerning the presence or absence of specified agents at particular times.

There are several extensions to HML. The one that gives the minimum

possible coverage of the analysis requirements here is THML•, as

described in [Fencott, 1996],which includes a linear time temporal logic

(hence the prefix T, for Temporal). The syntax of THML+ is defined here in

BNF .

p ::= tt I·P I p 1\ pI [K]P I {t}P I GP I PUP

Pis a property, tt signifies true,~ signifies negation, !\conjunction,

{K}P signifies that the occurrence of an action in the set K of necessity

leads to condition P, {t}P signifies that before some instant t P may be

87

•

•
satisfied, GP signifies that P will always be satisfied and PUP signifies that

• P is satisfied until Q is true. In addition to these definitions there are derived

operators and results, as follows.

de[

• ff=-tt
de[

{a)P=-{a}-P
de[

FP= -G-P

• {a)tt
[alff

• These signify false, that after a it is possible to satisfy P, that at some

time P will be satisfied, all agents which can accept a and all agents which

cannot accept a respectively. The formal semantics and derivation of these

• results is given in the cited work .

Given a set of conditions in HML the task is to prove or disprove

these conditions. This is done by finding agents within the specification

• which are equivalent to those within the conditions and demonstrating that

they occur only within the temporal bounds expressed in the HML. lt should

be noted that the goal is to find equivalence, not identity. Several possible

• levels of equivalence exist ranging from weak, or observational,

equivalence, which requires only the externally observable behaviour of the

agents to be equivalent to strong equivalence, which requires internal and

• external behaviour to be the same. For our purposes observational

equivalence is sufficient. A strengthened form of observational equivalence,

• observational congruence, forms the basis of a set of algebraic laws which

88

•

•

•

•

•

•

•

•

•

•

•

•

•

allow the manipulation of CCS equations (or, more accurately

"observational congruence-ions"). These laws allow the transformation of

CCS formulae into equivalent, or observationally congruent, forms. By

manipulation of the specifications using the laws we can construct

mathematical proofs where the propositions are the conditions that must be

demonstrated.

Obviously, such a task is daunting, even for an accomplished and

patient mathematician. Luckily, proof automation is a rapidly advancing

technology and tools such as Jape [Bomat, Sufrin 1994], the B-Tool

[Bieber, 1996] and, for CCS, the Concurrency Work Bench [Moller, 1992]

are available. The complexity of CCS and the associated laws is much

smaller than for other process algebras, so satisfactory proof assistance

should be relatively straightforward .

At the end of this process it will have been demonstrated that the

specified safety conditions are met, at least as far as external observation

is concerned. lt is not possible to verify the sequence of internal events in

this way, but as they are not observable they do not affect the users

perception of the system. Of course, none of this guarantees the

correctness of the original specifications, or that the specified set of safety

conditions is correct or complete, but it should ensure that so long as the

implementation is an accurate refinement of the specification it will not

violate any of the safety conditions which have been specified .

89

•

•

•

•

•

•

•

•

•

•

•

•

4.19 Structures produced using process algebras

lt is worth observing at this stage that the structures that will be

produced using this method are quite unlike conventional hypertext

systems. Hypertext uses a simple link, and thus is structurally a simple

directed graph, with no control over structure of such systems are prone to

produce structures known colloquially amongst programmers as

"spaghetti". The simple link is, in terms of control structures, the precise

equivalent of the old "goto" command in assembly code and simple

programming languages such as BASIC (and, incidentally, most scripting

languages). Programmers using these languages were often accused of

producing "spaghetti code", but the structure produced were much simpler

than that in hypermedia systems, which are likely to produce results more

akin to a pasta factory .

Being an essentially structured method, the method proposed here

gives a much more structured product. In particular, invocation of new

pages of information is done in an environment which retains the original

context. In programming terms the invocation is a "call and return" rather

than a "goto" .

4.20 How the method is used

Using the proposed method the steps in designing a multimedia

documentation system are as follows .

The starting point for the design is a statement of requirements or

requirements specification. This needs to detail the purpose of the system,

90

•

•

•

•

•

•

•

•

•

•

•

•

the overall structure, the data sources and the safety conditions, the

properties that must be preserved in any implementation of the system.

These specifications are non-formal in that they are prose specifications,

not mathematically framed requirements .

The next stage is to design the top-level structure of the system,

defining it as a system of processes using the graphical or textual process

algebra notation. This stage will require the first major design decisions to

be made as to the operation system -for instance in a multi-purpose

system whether it is designed as a moded or modeless system. The output

of this stage is a set of top-level process specifications. These

specifications go through a process of successive refinement, detailing the

internal structure of the processes in terms of other processes and

ultimately single events. At each stage of refinement any safety conditions

relevant to that level of abstraction must be framed formally and the

specifications verified for consistency and for presence of the safety

conditions using the appropriate analysis logic.

At the end of this process the design is complete. The design will

provide a set of storyboards for the artists and designers to use, and can be

translated into a formal specification of the sequencing of those events, a

sequence which has already been verified as meeting the initially specified

safety requirements. This sequence needs to be translated into a program

that will sequence the images, graphics, models and sounds generated by

the designers. The most likely way of doing this is using a structured

scripting language such as HyTime or JavaScript or a programming

91

•

•

•

•

•

•

•

•

•

•

•

•

language such as C, ClassiC [Newman, Payne, 1994] or Java. Note that

the method produces a structured program style, call and return invocation

of processes, rather than a "goto" style control transfer as is typical of

hypertext, so conventional hypertext scripting languages such as HTML or

Director Script are not suitable for this purpose. Using a suitable scripting

language the translation from specification to program is straightforward

and could be made automatic .

4.21 Separation of structure and content

One of the important points to note about the discussion on the use of

this method is that, by applying the method, we have separated out the

dynamic behaviour and structure of the system from the content. This

separation occurs when the "storyboard" notation, which contains a formal

definition of the structure and an informal indication of the content, is

translated into the textual process algebra notation, which contains only

structure and dynamic behaviour. This separation of concerns should

achieve some of the goals of increasing authoring productivity by allowing

the use of libraries of pre-verified process structures to be used templates

into which the content itself can be slotted. Such a system could be used to

cater for detail variations in documentation without the need for rewriting he

whole of the specification. Future developments of the notation could

include some more formal definition of the content, such as indicators for

frame and control style and positions, and allow the production process

from the initial specifications to be more completely automated .

92

•

•

•

•

•

•

•

•

•

•

•

4.22 An example

This section introduces a worked example of the operation of the

method. The example is taken from a motor car maintenance manual (both

car and manual will remain anonymous) and is interesting because it

demonstrates the complexities that can quickly arise in the design of

multimedia documentation and also that conventional manuals can also

contain procedural bugs. The part of the maintenance procedure we are

concerned with is the periodic changing of the camshaft drive belt. In the

car concerned this procedure differs depending on whether the engine is in

or out of the car. If the engine is out of the car, say for a general overhaul,

then all that needs to be done is to remove the cam belt covers and swap

the belt. If the engine is still in the car then the procedure is more complex

since the belt passes around one of the engine mountings. Since the belt is

continuous it can only be changed if the engine mounting is first removed.

Removing the engine mounting involves partially dismantling the front

suspension to gain access, and that in turn requires the jacking up of both

car and engine.

This state of affairs raises some fairly basic system design issues. On

the one hand, the two procedures can easily be conducted with a purpose

made sequences of pages, but this would require unnecessary duplication

of the data, and along with that would come unnecessary duplication of

authoring resources. Instead we need to design two separate processes,

for engine overhaul and service, which both make use of sequences which

are common. As a safety condition, we need to ensure that no attempt is

93

•

•

•

•

•

•

•

•

•

•

•

•

made to remove the mounting if it is supporting the engine. For the

purposes of designing the documentation we make the maybe rash

assumption that being shown the page describing that part of the procedure

is the same thing as carrying out the procedure itself (in really critical

applications the documentation system would require the engineer to

confirm each procedure as it was carried out). Several other safety

conditions for this procedure are obviously required, such as ensuring that

the engine mounts are not removed before the engine has been supported,

or ensuring that if the front suspension is dismantled then it is remantled,

but for the purposes of this example the one condition will suffice .

One design aim will be to use as much common content as possible.

For this reason we will specify a single agent for the actual change of cam

belt, as shown in Figure 4.4.

ChangeCamBelt

removecovers I securepulleys I changebelt I freepulleys I replacecovers

Figure 4.4: The change cam belt agent

This is a simple sequence of five screens illustrating the procedures

for removing the protective covers, securing the belt pulleys to maintain

their respective alignment, swapping the belt, removing the restraints on

the pulleys and replacing the covers. This agent can be used, so long as

the engine mounting has been removed. There are several ways of

94

•

•

•

•

•

•

•

•

•

•

•

•

ensuring that this is done. One is to use the choice operator as shown in

figure 4.5.

CheckAndChange

enginelnCar? -1 I- no ChangeCamBelt

• I-yes MountAndBelt

MountAndBelt

removeMount I I ChangeCamBelt I ReplaceMount 1

Figure 4.5: Asking the user to select the procedure

This displays a prompt screen, and depending on which selection the

user makes selects either the raw ChangeCamBelt agent, or else one

prefixed by an agent illustrating the procedure for removal of the engine

mount and followed by one illustrating its replacement. Note that the

responses to the prompt have hidden names, since the names "yes" and

"no" are likely to be well used elsewhere. In operational terms this is likely

not to be the optimum solution, since it involves a user intervention at a

critical stage of the process. Discussions with users have shown a clear

preference of task-orientated documentation, so a preferable option would

be include the appropriate agent into the agents for the engine overhaul

and the engine service. These are shown in Figure 4.6 .

95

•

•
EngineOverhaul

Rc:moveEngine I Overhaul! I ChangeCamBelt I Overhau\2 I Rc:placeEngine

• RemoveEngine

attachHoist I Rc:moveMotmts I HoistOutEngine

RemoveMow1ts

removeMount I I rc:moveMount2 I removeMount3

• EngineService

ServiceTasks l r MountAndBelt I ServiceTasks2

ReplaceEngine

• HoistlnEngine 1 Rc:placeMounts J rc:moveHoist

Figure 4.6: Engine overhaul and engine service task based procedures

• These procedures make use of the previously defined MountAndBelt

agent. Some dummy agents, Overhaul1 , Overhaul2, ServiceTasks1 and

Service T asks2 have been introduced to represent the details of these tasks

• not relevant to this discussion.

Since these storyboards are simply a graphical version of CCS, they

can be simply transformed into CCS, to give the following definition

• equations.
dtf

ChangeCamBelt = removecov ers. securepu/leys.changebeltfreeplllle}6.replacecov ers

dt/
Check4ndCirmge = enginelnCa· ?.(no.ChangeCamBelt + yes},t/o rmtAndBelt) \ {yes, no}

dtf

AfounL4ndBelt = remove.\lowt I.ChangeCamBelt.replaceMortrt I •
dtf

EngineOve!lwul =Re moveEngineOverlraull .ChangeCamBe/t.Overlrau/2. Re place Engine
dtf

Re move Engine= attach Hoist. Re move.Mozmts.HoistOutEngine
dtf • Re moveA4ozmts = removeA!owt l .removeAfowt 2.removeJ\fowt3

dtf

EngineSenice = Service Tasks I }vformL4ndBelt .ServiceTasks2
d•f

Re place Engine = HoistlnEni}ne. Re placeA4owztt.removeHoist

•
96

•

\

•

•
Similarly, our safety condition, that no attempt is made to remove the

• mounting if it is supporting the engine, can be translated into HML. We

require to say that all agents including the event removeMount1 will occur

after the event takeStrain, which ensures that the weight of the engine is

• supported. This is essentially a statement based on the state of the system.

As noted earlier, these conditions are framed much more easily using

• predicate logic, using an event based logic the framing of the condition

becomes quite difficult. This is particularly the case with HML, which deals

with future potential, rather than past traces, as does, for instance, the

• traces semantics of CSP. One way of capturing the state is to observe that

the hoist can only be removed if it has been attached. We can only be sure

of this if we separate the agents in the system which occur after attachHoist

• and ensure that only they contain removeHoist. This property, of the

system as a whole, is expressed as follows.

•
d•f

HA = (attachHoist)F(removeHoist)tt

HA signifies that acceptance of attachHoist leads to a state which at

• sometime will be satisfied by an agent accepting removeHoist. Thus there

are no attachHoists not matched by a removeHoist -this is an important

correctness property in its own right. The property ~F(removeHoist)tt

• denotes the set of agents from which an agent accepting removeHoist will

not occur at some time, so agents satisfying HA exclude those which will

not accept removeHoist at some time .

•
97

•

•

•

•

•

•

•

•

•

•

•

•

•

So long as HA is satisfied for the system as a whole we can be sure

that acceptance of removeHoist implies a previous acceptance of

attachHoist., so long as we don't meet an attachHoist along the way This

property can be expressed as shown below .

d<f

HB =[attachHoi!IJ!JU(removeHoi:l)tt

There will be no state accepting attachHoist until removeHoist. The last

part of the condition is to specify that any state accepting removeMountl, 2

or 3 must lead to a state satisfying HB. This can be framed as follows .

dtf

HC =[removeMoun ti,removeMoun t2,RemoveMount 3]HB

Verification of these properties can be achieved in a number of ways,

including algebraic manipulation and exhaustive specification animation. In

a system of this size the latter is simpler. If we consider the EngineOverhaul

agent, this can be expanded to the following

d•f

EngineOver haul =
attachHois t .

removeMoun tl.removeMoun t2.removeMoun t3

.Overhauli.remove coy ers. sec urepulleys .changebelt .

freepulley s.replace coy ers .Overhaul 2.

HoistlnEng ine. Re placeMount s.removeHois t.O

Note the null agent 0 has been appended to make this a complete

system specification. This trivially satisfies HA, since the agent starts with

attachHoist and finishes with removeHoist. The set denoted by

98

•

•

•

•

•

•

•

•

•

•

•

•

~F(removeHoist)it is simply {0}. which clearly satisfies the condition. The

only agent following removeMountl, 2 or 3 is

Overhaull.remove covers. sec urepulleys .changebelt .

freepulley s.replace covers .Overhau/2 .

HoistlnEng ine. Re placeMount s.removeHois 1.0

Which clearly satisfies HB .

4.23 Comparison with Eventor

The authoring tool Eventor [Eun et. al., 1994] was discussed in

chapter three. Eventor is uniquely related to the method put forward here in

that it too is based around the CCS process algebra. For this reason, the

detailed differences between the two are discussed here .

One fundamental difference is the view of the system structure

presented to the user. Eventor seeks to abstract away from the underlying

CCS structure by presenting three different views of the presentation to the

author, a temporal synchronizer, a spatial synchronizer and a user

interaction builder. By contrast, the present work adopts a single view, the

storyboard, that is both directly, and explicitly, derived from the CCS and

also is similar to existing storyboard notations used in common practice.

The illustrations in the storyboard contain the spatial and content

specification.

Eventor seeks to conform to an object-based view of the system, by

identifying as the basic building blocks for the system "basic objects" that

99

•

•

•

•

•

•

•

•

•

•

•

•

correspond to CCS agents rather than events. The objects have intemal

structure, which specifies the communication and synchronisation between

objects but not the sequence of presentation within the object. To cater for

different types of behaviour it has been necessary to define different types

of object and a separate type of composite object to compose defined

agents together. The storyboard method identifies events as the basic

building block of the system. These events include presentation, interaction

and synchronisation and the author is expected to specify them explicitly

using the storyboard notation. The CCS agents produced include both

presentation and synchronisation specifications. Since a CCS agent is

simply a collection of events there is no need for a separate composition

object to compose other objects together, agent definitions compose events

and other agents freely. This is one of the advantages of CCS over, for

instance, CSP that requires different composition operators for agents and

events and does not allow hem to be freely composed together. The

specifications produced by Eventor are very "CSP like" in that they include ·

many agent definitions which have the sole purpose of composing agents

and events. For instance, in [Eun, No et al, 1994] an example is given of a

video player agent.

teacherVid eo = SCA11? .Play Video

Play Video = s l! .Play Video l

PlayVideo l = s2!.PlayVideo 2

PlayVideo 2 = s3!.PlayVideo 3

PlayVideo 3 = s4!.PlayVideo 4

PlayVideo 4 = sS!.endVideo

endVideo = endVideo !.teacherVid eo

100

•

•

•

•

•

•

•

•

•

•

•

•

This example is presented in its original form from the cited work. The

CCS notation used is different to that used in this thesis, in that a simple

equality symbol is used rather than the "definition equality" used here, and

in that a synchronisation event is represented by an e?,e! pair, rather than

the notation used here. The normal convention of starting event names with

a lower case and agent names with an upper case has not been used, and

there is some confusion between events and agents. The final two lines of

this specification are incorrect CCS, since an agent is used as a

synchronisation event, a semantic and syntactic impossibility. The example

given is presented again here, corrected and translated to the version of

the CCS notation used in this thesis.

d•f-
TeacherVid!o = scaiLP/ayVideo

d•f
PlayVideo= si.PiayVided

d•f
PlayVided = s2.PiayVidecfl.

d•f
Play Vide& = s3.PiayVidew

d•f
PlayVidew = s4.PiayVideol

d•f
PlayVideol = s5.EndVideo

d•f
EndVideo= endVideaTeacherVid!o

By substitution this can be translated to a single agent definition.

dof __

TeacherVid eo = scai l.sl.s2.s3.s4.s5.endvideo IeacherVid eo

This substitution makes the content of the agent much clearer. lt may

be noted that the agent includes only the synchronisation events, with no

101

•

•

•

•

•

•

•

•

•

•

•

•

presentation information and that after the last video clip there is a

sequence of two synchronisation events, s5 and endvideo. lt is not known

whether this was the intention of the authors. Insertion of events to

represent the playing of the clips gives the following .

"'' TeacherVideo =

scai l.s l.c/ipl.s2.c/ip2 .s3 .c/ip3 .s4 .c/ip4 .s5 .c/ip5.endvideo.TeacherVideo

In the example given the purpose of the synchronisation events s 1 -s5

is to synchronise the playing of the sound tracks to the video clips. In the

Eventor model, where objects are represented by agents, these must be

separate agents, each specified using a specification of several lines of

definitions, similar to that for Teacher Video. If CCS is used in the way

suggested in this thesis the sound clips are represented by events in the

same way as the video clips, and can simply be composed in parallel with

the corresponding video clip, as shown below .

"" TeacherVicio =

scml(c/ipll soundl).(c/ip21 sound2).(clip31 sound3).(c/ip41 sound4).(c/ip51 soundS)
.endvideaTeacherVicio

This can be represented graphically using the storyboard notation,

which expresses the relative sequencing of the sound and video clips

clearly. The content boxes have been omitted, since there is no indication

of the content of the video clips in the cited work .

102

•

•

• Teacher Video

- cJjo J clio2 clio3 clio4 clioS endvideo jTeacherVideo sea I

sound! sound2 cound3 sound4 soundS

• Figure 4. 7: Storyboard notation for Eventor example

The authors of Eventor identify the use of formal specification as one

• of the advantages of their system and suggest that formal specification may

allow verification of the correctness of the syntax of the system. The use of

formal specification is one of the requirements of the storyboard method, in

• order to allow the semantic verification of safety critical documentation

systems. The possibility of semantic verification in Eventor is limited

because the agents do not include any content events, and therefore it is

• not possible to reason about their sequence of presentation. Eventor is

therefore not suitable as a specification method for safety critical systems.

• 4.24 Conclusions

The method proposed for design of multimedia systems is

underpinned by the theory that has been developed to allow the rigorous

• design of safety critical real time software systems. lt relies on a body of

theory that has proved to be quite accessible, at least in underlying

concepts, to those with experience in the programming disciplines. The

• semi-graphical notation that has been developed provides a means both to

link in the content of the system (the images, models, sound and movies)

• and to provide a way of defining the sequence of presentation in a way that

103

•

•

•

•

•

•

•

•

•

•

•

•

•

is similar to traditional storyboard techniques. A system specification

developed using this notation can be translated into a textual process

algebra, and is then susceptible to analysis and verification using the

techniques of that algebra. This specification method can form the basis of

a complete methodology allowing the development of large, multimedia

technical documentation systems, a need that has been observed and

commented upon frequently within technical documentation operations

within industry .

104

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 5: Implementing high reliability multimedia

systems

5.1 Introduction

The first part of this thesis has shown how process algebras may

form the basis of a method for the formal design of hypermedia systems for

use in technical documentation applications, and indeed, any applications

where reliability and correctness are at a premium. Formal design methods

provide a means of producing a specification for a product that has been

verified against some identified requirements. In the case of this method

the specifications can be verified against a set of safety properties, that is

conditions, generally sequences of presentation, that must be maintained if

the processes that the documentation is guiding are to be correctly

performed.

However, a verified specification is of little use if the final realisation of

the system does not preserve the properties established in the

specification. In order to be sure of this the implementation process must

maintain the function defined all the way down to the machine code running

on the computer system. The process of implementation is a process of

105

•

•

•

•

•

•

•

•

•

•

•

•

refinement. Specifications that operate at one level of abstraction are

refined into implementations at a lower level of abstraction. This

implementation in tu m provides the specification for the next step of the

refinement process until ultimately the output is an executable program

(which is a specification of the sequence of states that the hardware must

go through to provide the specified sequence of sounds, images and

interactions for the user). To maintain complete confidence in the

refinement process requires that each link in the process, from specification

to executable code, must be susceptible to verification against the next

higher level of specification .

There will be some parts of this process where it is simply not

possible to provide the next link in the chain of verifiability. For instance,

there is no way that the formal specification can be verified against the

initial prose specifications, since English (or any other human language)

does not have formally specified semantics. Even were it to, there can be

little confidence that such semantics would actually correspond to the

intentions of those who wrote the specification. At this stage in the chain we

have to rely on informal processes such as review and "walk through" of the

specification by domain experts.

Similarly, it is impossible to complete the chain at the other end of the

refinement sequence. Unfortunately, there is little practical choice but to

accept the quality of commercial language implementations. While few

have been formally verified most have at least been extensively tested,

although this does not guarantee correctness .

106

I

I

, .
•

•

•

•

•

•

•

•

•

•

•

A third area where we cannot provide any formal level of confidence

is that of the content itself. There can be no assurance as to the

correctness of the message conveyed by the images or models in the

documentation. There is little hope of including rigorous semiotic analysis

into the method. Ensuring the appropriateness and correctness of the

content will have to rely on sound design practice and established quality

assurance methods .

Even though the links cannot be made at the end of the chains, there

is value in maintaining the sequence of verification for the other processes

involved. Errors can easily be introduced in the refinement process and the

process of formal verification helps detect those that have. Another means

of preventing introduction of human errors is the automation, so far as is

possible, of the refinement process.

This chapter investigates the possible processes of refinement for

hypermedia systems whose specifications have been produced using the

method introduced in the first part of the work.

5.2 The form of the specification

The first stages of the design method are the storyboard production,

its translation to CCS and the formal verification structure. The output from

these stages is a formal definition of the dynamic structure of the system, in

the form of a CCS specification, and an indicative definition of the content,

in the form of the illustrations in the storyboard frames. The refinement task

107

•

•

•

•

•

•

•

•

•

•

•

•

consists of two separate jobs: generating the content and animating the

dynamic structure that contains that content.

Content generation may use a number of methods depending on the

nature of the medium. The precise methods of content creation are outside

the scope of this work. lt will be sufficient to assume that the contents are

generated and stored in a heterogeneous series of content files. One

assumption that has been made consistently throughout this work is that

the contents are static, that is that they contain no behavioural information

beyond display of information for a period of time. All information on the

dynamic behaviour of the system must be contained within the dynamic

structure definition contained in the CCS specifications. To assume

otherwise prejudices the ability to make any rigorous analysis of the

dynamics of the system since dynamic behaviour will exist which is not

described by the CCS formulae. This requirement does place a limitation

on the formats in which the information may be held, or at least how they

are used. Formats which contain dynamic information and links, such as

HTML, may be used so long as no dynamic information is included. In

essence the situation is similar to that in a link or database service based

hypermedia system, the dynamic information must be abstracted away

from the content. Objects such as video clips may be represented as a

CCS agent, since they are simply a sequence of frames with no internal

choice or concurrency. Their behaviour is predictable and they cannot

interact with other objects except by playing through their full sequence.

Those that do need to interact with other agents, as, for instance, the video

108

•

•

•

•

•

•

•

•

•

•

•

•

player example given in Chapter Four, must be provided with a complete

CCS specification defining their behaviour.

The dynamic information needs to be constructed using a notation

that has a good semantic match with CCS. CCS, in common with all

process algebras, produces a program like structure, in which actions map

to instructions, agents to procedures, choice to "if' instructions and

parallelism to program forks. Thus the most natural structure to map CCS

into is a programming language, and moreover one which contains these

elements. There are very many different programming languages and

scripting languages that could be suitable. The target language should also

have the characteristics of modularity and data and control abstraction that

would be necessary for the implementation of large-scale systems by

teams of programmers. Recently the trend has been for such languages to

conform to the object-oriented programming paradigm.

As is the case for much technical terminology, the term object

oriented has been sufficiently abused by marketing executives and

journalists to render its meaning ambiguous. Object oriented languages are

usually identified by possession of a set of characteristics, rather than by

adherence to a hard definition. Such a set of characteristics is identified in

[Bal, Grune, 1993] as the following:

Encapsulation of the state of the program into objects. An object

contains data and provides operations for accessing these data. The

operations are the interface to the object for users of the object

109

•

•

•

•

•

•

•

•

•

•

le

•

.,
•

Use of the principle of data encapsulation to establish a firewall

between the user of an object and the code implementing it, thus achieving

information hiding.

The provision of inheritance, to allow different kinds of objects to be

built hierarchically, with the most general at the top and the more specific

ones at the bottom.

The use of dynamic binding. Since code is encapsulated with data in

objects, and objects will be bound at run time, the selection of code to be

run will be made at run time .

The use of type polymorphism, so that a procedure (or method) may

accept parameters of different data types, so that a formal parameter can

correspond to actual parameters of different types in different calls .

Several of these characteristics will be very helpful for the

implementation of hypermedia systems. By their nature, hypermedia

systems will contain many different types of display object. Polymorphism

will allow them to be handled in a common, consistent way.

Data encapsulation, and the information hiding that comes with it,

provides the means for large teams of programmers to co-operate

successfully. The interfaces between their individual pieces of code are

tightly defined by the class definitions that define the objects and

information hiding guarantees that the internal state of their objects is not

vulnerable to unintentional modification by some other programmer.

110

•

•

•

•

•

•

•

•

•

•

•

•

For this application we are also looking for languages which are

amenable to formal analysis and verification, in order to allow the chain of

verification to be completed from the initial storyboard specification to the

final executable code. From this point of view, object oriented languages

are simply imperative languages, with the same sequential, instruction

ordered semantics. Thus such languages, if their semantics are formally

specified, are amenable to verification using established methods such as

Hoare logics [Hoare, 1969] or weakest precondition calculus [Dijkstra, 1976]

The object based structures of these languages means that the order

of development of a proof becomes somewhat different from that for non

object-oriented languages, although the underlying principles remain the

same. Meyer [Meyer, 1993] has introduced a specification and verification

method for object-oriented languages called "design by contracf'. Here the

weakest preconditions required for use of each method and the post

conditions after execution for each object are included as assertions within

the definition of the object. The object can be internally verified to comply

with the conditions using conventional proof methods. Users of the object

can now adopt these assertions as defining the behaviour of the object, and

can use them to produce the pre and post-conditions of any call of any

method of the object.

Thus, object-oriented languages, as a class, would appear to be a

good implementation target for the design method. As stated above, the

target language will also be required to support concurrency. lt is therefore

111

•

•

•

·•
I

•

•

•

•

•

•

•

•

likely to belong to a class of languages called Concurrent Object Oriented

Languages (COOLs)

5.3 Introduction to COOLs.

lt has been observed by Bertrand Meyer, the designer of Eiffel, that

there is an obvious match between many of the properties associated with

concurrent programming constructs and those supporting object

orientation. In particular both support local variables, persistent data,

encapsulated behaviour, restrictions on exchange of information and a

communication mechanism often modelled on some form of message

passing.[Meyer, 1993] Concurrent Object Oriented languages (COOLs)

exploit these similarities to create programming systems which support

both concurrency and object orientation in an integrated way so that the

facilities supporting object orientation, such as type inheritance, data

abstraction and polymorphism are also available to support concurrency.

Such languages include Eiffel// [Caramel, 1990], POOL [America, 1987],

ACT++ [Kafura, Lee, 1990], Java [Sun, 1995][Sun 1996], and

ClassiC[Newman, Payne 1994][Newman 1995]. There are also languages

in which the concurrent and object oriented extensions have been made in

an orthogonal way, so that the two sets of constructs are separate. This

group includes Concurrent C++ [Gehani, Roome, 1988] and Ada95[[Ada9X

1992a][Ada9X1992b]. Such languages are not only syntactically larger but

they lack some of the expressive power possible in the true COOL.

112

•

•

•

•

•

•

•

•

•

•

•

•

Minimising the amount of additional syntax has been an important

consideration in the design of COOLs. Meyer, in [Meyer, 1993] cites this

reason as a reason for not including conventional synchronised inter

process communications methods within a COOL. In COOLs the process of

a conventional concurrent language becomes simply an active instance of

an object. Inter process communication is performed simply by calling the

methods of that object. If such calls are synchronised it is necessary to

include some facility for a selective wait or an exception mechanism to

provide the necessary non-determinacy. lt is argued that such an extension

will clutter the syntax of the language and negate some of the advantages

of the integration of concurrent and object oriented programming

constructs. Caramel argues that asynchronous communication relieves

synchronisation dependencies between classes, allowing them to be self

contained modules [Caramel, D 1993]. However in real time systems,

control of synchronisation is an important issue, as is the analysis of

timeliness of communication and susceptibility to deadlock. and livelock .

These analyses are simplified using a synchronous communications model,

which is amenable to the methods established by Hoare using CSP [Hoare,

1978].

Concurrent real time systems require structured programming

methods in two domains. The first domain is that of procedural structure as

with non-concurrent systems. In this domain object-oriented structure has

become a favoured paradigm and has been reflected in the development of

object oriented design methods specifically for real time systems .

113

•

•

•

•

•

•

•

•

•

•

•

•

The second domain of structure is that of concurrency. Although there

is a school of thought that sticks to the certainties and predictability of the

cyclic executive [Bums, Welling, 1990], many practitioners in real time

systems favour a system structured as concurrent co-operating processes .

Hoare [Hoare, 1972] has demonstrated how such systems are amenable to

formal analysis and can thus deliver the same degree of predictability as

the cyclic executive with the added advantage of improved program

structure, clarity and maintainability.

COOLs use method calls as the vehicle for inter process

communication. The control and synchronisation of access to the methods

varies. In one model access to methods is controlled by the internal state of

the object to which they belong, each method is identified with named

states in which access is permitted. Typical of this approach are actor

languages such as ACT++. Another model provides completely

asynchronous method calls, with calls buffered until the object can handle

them and results buffered until used by the calling process, as is the case

in Eiffel//. lt is claimed that such a scheme simplifies programming and

eliminates unnecessary synchronisation and serialisation. lt does, however,

make predictable synchronisation difficult to achieve and also makes

program verification significantly more complex.

114

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 6: Translating CCS specifications to COOLs

CCS specifications produced using the subset of the notation which

has been used here require the following constructs to be translated into a

program structure. These are:

• The basic entities, the events .

• Compositions of events, the agents.

• Agent definitions .

• Prefix, the '.' Operator.

• Choice, the '+' operator .

• Association, the '(' and ')' operators.

• The parallel composition operator T .

6.1.1 Events

Events can be subdivided into several categories. These are: display

events, which cause the display (or replay) of some kind of data; user

events, which create some kind of user control; input events which respond

to user actions and synchronisation events which cause synchronisation

between agents.

115

•

•

•

•

•

•

•

•

•

•

•

•

Display events .

A display event is mapped to a call of the appropriate display method

of an instance of a specialised class that displays the appropriate type of

object, using the appropriate data. Such class definitions will form part of

the environment in which the translation process is undertaken, and will

map into the corresponding system calls to load and present the data. One

advantage of object-oriented program construction in this application is that

a single class definition may be made to serve a number of different media

types, using the properties of polymorphism and type inheritance. These

properties also make it possible to include new data types into the system

without the need to rewrite all of the class definitions. The new types are

handled as extensions of the old types .

User events and input events

User events come in the form of posting interaction controls that will

at a later time be responded to and will cause input events. Because the

two are so closely associated they are dealt with together here. Like display

events, user events will map to a call of a method in an appropriately

designed control object, causing the required interactive control to appear

on the screen. Generally user input in COOLs is dealt with by inter-process

communication from an imaginary process representing the outside world .

If this mechanism is used then the user input will come in the form of an

inter-process communication, for most COOLs a method call.

116

•

•

•

•

•

•

•

•

•

•

•

•

Synchronisation events

Synchronisation events will use the synchronisation method provided

in the COOL. If the COOL uses synchronous communication this will simply

be an inter-process communication action .

6.1.2 Prefix, the '.' Operator.

The'.' Operator represents sequential composition. In a sequential

programming language such as a COOL this is represented simply by

using the instruction sequence of the language .

6.1.3 Agents.

Agents need to be classified as either belonging to the set of agents

that must be capable of sustaining an independent thread of activity or

those which are simply convenient groupings of actions. The former will

require a process, in COOL terms an active object while the latter may be

implemented simply using a procedure, while the. A tidier solution would be

to use an object (i.e. a class definition) to represent both, with the

difference that the agent which requires an independent thread of activity is

an active object as opposed to a passive one .

6.1.4 Agent definitions.

If agents are represented as method and class definitions the

association of the agent name with its definition is automatic. Where name

hiding is required the appropriate scope rules of the COOL may be used to

ensure that the name is invisible outside the object.

117

•

•

•

•

•

•

•

•

•

•

•

•

6.1.5 Choice, the '+' operator .

The provision of the choice operator is more complex. Some COOLs

provide a direct equivalent to the CCS choice operator, which is modelled

on the Dijkstra multi-armed "if' statement [Dijkstra, 1976] and for these the

translation will be directly to that statement. For those that do not, a

majority of COOLs, some more complex mapping will need to be

performed .

6.1.6 Association, the '(' and ')' operators.

The parenthesis operators provide explicit control of the association

of the composition and choice operators. This control is provided by the

block structure in a block structured programming language, which most

COOLs are .

6.1. 7 The parallel composition operator 'I'.

Finally we consider the parallel composition operator. We can

consider the production of a parallel composition operator to be a process

fork. Those COOLs that provide an explicit process fork will be able to

provide a direct mapping. Once again, those languages that do not provide

this facility will require a more complex translation.

6.2 The ClassiC language .

The author has developed a COOL which has the characteristics

which identified above as necessary for the implementation of hypermedia

systems using the method. This language is called ClassiC (an

118

•

•

•

•

•

•

•

•

•

•

•

•

abbreviation of Class integrated Concurrency). ClassiC has adopted a

synchronous method call scheme. The semantics of the method call are

very similar to those for an Ada rendezvous and as such analytical and

verification techniques for it are well understood, essentially being an

extension to the semantics of synchronous message passing as discussed

by Hoare and others .

6.2.1 Object oriented concurrency.

ClassiC builds its model of concurrency around the idea that a

process is simply an object which has a strand of processing associated

with it, in terms that have been used elsewhere, an active object. This is

differentiated from passive or inactive objects, which rely on activation of

one of their methods for any activity. This is in line with the design

approach used in most COOLs, but differs from that used in Meyer's

concurrent extension to Eiffel, which adds the abstraction of a processor,

and ACT++, which is based around the actor model of concurrency. While

each approach has its proponents, the use of the process model does have

some key advantages .

1. The process abstraction is familiar and well understood by

programmers of concurrent systems and many design methods

are based around it.

2. The process model fits naturally with formal methods based on

process algebras, including CSP, CCS and LOTOS .

119

•

•

I.
I

•

•

•

•

•

•

•

•

•

3. The process model fits neatly with process based operating

systems and schedulers. This is particularly important in the field

of real-time systems, where the majority of work on

schedulability has been done using process models .

A process in the ClassiC model has exactly the same properties as

objects (defined by classes) and in addition possesses an independent

strand of processing. The ideas of data abstraction, encapsulation and

inheritance which are associated with a class in C++ are also properties of

a process in ClassiC .

The unification of concurrency and program structure within the

object-oriented model of structure, the class, is the definitive feature of all

COOLs, including ClassiC. lt brings with it a number of advantages over the

alternative approach of separation of the concerns of concurrency and

program structure. These can be summarised as follows:

1. The amount of syntax in the language is smaller, since one set of

syntactic constructs supports both processes and classes.

2. The programmer's conceptual model is simpler. As discussed in the

introduction, many of the concerns of processes and objects are the

same. When there are two different sets of constructs the programmer

is required to assimilate two similar, but different, entities .

3. The expressive power of classes is also usable for processes. The

facilities available for classes, in particular inheritance, simple

instantiation and initialisation, and interface definition are also available

120

•

•

•

•

•

•

•

•

•

•

•

•

for a process, resulting in a much richer process model than is normal

in a concurrent language.

6.2.2 Inter process communication .

An object is defined by the operations that can be performed on it.

Thus the definition of an active object, from the point of view of other

objects, must also be in terms of the operations that can be performed on it.

From the standpoint of C++ the operations are defined by the members of a

class.

In the concurrent view of the world, objects are processes,and the

operations and interactions between them are defined by the inter-process

communication. If we are to adopt a unified object based model for both

concurrent and non-concurrent objects then the model of inter-process

communication must match the way that operations are modelled for non

concurrent objects, that is classes .

The conclusion drawn from this is that inter-process communication

must be defined in terms of members of a class, usually functions. This

leads to a picture of the inter-process communication method being the

provision by a process of a set of functions which can be called by other

processes, with suitable arrangements being made to ensure mutual

exclusion between the two processes while that function is called .

This is in fact very close to the inter-process communication model

provided by Ada, the Ada rendezvous, although simplified. The Ada

rendezvous implies synchronisation at two points in the rendezvous, having

121

•

•

•

•

•

•

•

•

•

•

•

•

a body of code inside the accept statement. The ClassiC accept is a simple

statement, and implies that the process is blocked at that point for the

duration of the execution of the entry by the other process involved in the

rendezvous. Actions taken as a consequence of the rendezvous must be

coded around the accept instruction. Whereas Ada provides the

rendezvous as a specific facility for inter-process communication,

separated from the constructs used for data abstraction (the package) and

inheritance (the tagged record) in the case of ClassiC all these concerns

are bundled together, and the rendezvous fits naturally into the existing

encapsulation and abstraction mechanisms .

Given the blocking nature of the inter-process communication

mechanism it is necessary to have some means of either testing for

readiness to rendezvous or a selective wait mechanism. As the former

leads to awkward coding and encouragement of polling the latter has been

used, based on Hoare's choice operator in CSP, as in Ada and occam 2

[INMOS, 1984]. The select statement is potentially a source of difficulty and

inefficiency in implementation. We believe that the clarity and simplicity of

programming offered by it outweigh this factor, and in any case ClassiC

allows more efficient communication mechanisms between related

processes. These can be used to create tightly coupled processes weth

very efficient communication .

122

•

•

•

•

•

•

•

•

•

•

•

•

6.2.3 The ClassiC process.

The ClassiC process is simply an extension of the existing class

construct. A class declaration may be annotated with a priority, which

indicates that the class may have some active behaviour. The priority

annotation serves the same purpose as the similar annotation in Modula-2:

it signifies that mutual exclusion is guaranteed between processes

accessing members of the class, that is instances of the class have monitor

semantics .

There is more to a ClassiC process than a simple monitor, however.

Instances of the class may also have associated with them their own thread

of execution, or process. Such classes are called active classes. Those that

don't are inactive classes. The means of association of the thread of

execution with a class is unusual, and produces some particular

characteristics which provide additional expressive power within the

language.

The majority of COOLs imbue a class with activity by inheritance from

a special active class, typically called Thread or Process. Once a class has

inherited this active class it is active, and so will be all its descendants. The

mechanism used within ClassiC is much more flexible, allowing active

descendants of passive classes, multiple inheritance from active classes

and even active and passive variants of the same class. The latter property

is of use when activity is a secondary characteristic of an object, which

modifies its temporal behaviour but leaves the logical specification the

same. A typical example of the use of this is the introduction of buffering

123

•

•

•

•

•

•

•

•

•

•

•

•

into a system to selectively relax timing constraints. Using this

characteristic the buffered and unbuffered variants of an object may be

freely interchanged where this is appropriate.

A ClassiC class may have one or more members which are

constructors, called at instantiation of objects of that class for initialisation .

In an active class the constructors take on an added significance. After

initialisation the constructor returns control to the process which called it by

means of a coretum statement. Coretum causes a process fork, the parent

process returning to the caller while the child continues execution of the

constructor. The use of coretum , which is an original feature of ClassiC

(cobegin, is a more commonly used construct) has a number of happy

consequences. lt fits easily into the structures of C++, placing the process

fork clearly at the point where the parent process gives birth to the child

process, the constructor function. The placing of the fork within the

constructor also localises initialisation of process variables at the point of

process instantiation .

As will be explained later, another effect of the use of the coretum

method of causing a process fork, as opposed to inheritance from a special

class which is used in some COOLs, is freedom from the "inheritance

anomaly". Moreover provision of multiple constructors allows alternative

process bodies to be provided for one class, or even for active and inactive

variants of the same class. As far as the users of the class are concerned,

they do not need to know whether the class is active or inactive, so long as

124

•

•

•

•

•

•

•

•

•

•

•

•

it performs the desired functions. Not only are data and control abstracted

but processes are as well .

Once the active class has been defined, creation of the associated

process is simply a matter of creating an instance of that class, in the same

way as an instance of any other C++ class. No additional programming

constructs are needed. The lifetime of the new process is the same as that

of the instance of the class with which it is created. If the destructor for that

instance is called the process will be terminated .

6.2.4 The ClassiC rendezvous.

The design of the inter-process communication mechanism within

ClassiC has fallen out naturally from the combining of processes and

classes. The means of communication between classes is by the calling of

the member functions of one class by another and it is natural that

communication between active processes should be achieved in the same

way. However since concurrency is involved care must be taken to achieve

the required mutual exclusion between the two processes.

In addition to the public, private and protected declarations that exist

in C++, the ClassiC class definition may also contain entry declarations .

These are members of the class, which are accessible to processes other

than that which owns the class. Access to these members is controlled to

ensure synchronisation and mutual exclusion between the two processes .

The mechanism used is similar to the Ada rendezvous. In Ada the

shared procedure which forms the communication mechanism between tw

125

•

•

•

•

•

•

•

•

•

•

•

processes is called an entry. A process which accesses an entry will be

blocked until the process which owns the entry executes an accept

statement for that entry. Unlike the Ada accept the ClassiC version is a

simple statement.

Once a process has executed an accept statement it is suspended

until the corresponding entry has been completely executed, that is until the

process using the entry has returned from it. The process executing the

entry executes no code within the entry and so the complications that occur

in Ad a when an exception is raised within an entry do not occur. For the

process using an entry, the entry has the normal semantics of a function

call, except that its execution is synchronised with execution of the accept

statement by the owner and thus exceptions may be raised in the normal

way .

The entry itself is defined in precisely the same way as any other

member of a class. While executing within that entry a process may have

access to members of the class. Data hiding is associated with the class

rather than the thread of execution. These rules are consistent with those

for a normal (non-concurrent) class.

The ClassiC select statement is modelled on the C switch for reasons

of syntactic consistency. The basic form of the statement is:

select guarded-statement

The guarded statement following the select consists of one or more

arms each of which is a guarded statement with the form:

126

•

when expression: statement;

• where the statement following the colon must be terminated by a

break as in switch.

The expression following the when is a condition expression which

• may include an accept operation .

The ClassiC select follows a simplified execution pattern that is

essentially sequential but maintains the effect of the simultaneous

• evaluation of the guards and non-determinate selection of one of them. A

non-determinate choice is made as to which arm to evaluate first, and

•
thereafter the arms are evaluated sequentially. The condition expression is

evaluated. If it includes an operation which may involve synchronisation

with some other process (an accept or a call of an entry for another

• process) a check is made to see if another process is waiting to

rendezvous. If so the accept is taken and after execution of the entry by the

waiting process the corresponding arm of the select is executed.

• In the case that the condition expression, including the accept if

present, evaluates false the next when statement is evaluated. If the end of

the select instruction is encountered evaluation continues with the first arm .

• If no arm evaluates true, but there are one or more arms dependent on a

rendezvous the process waits for the first such rendezvous to occur.

• The ClassiC select does not contain a default arm as, for instance, in

Ada or the C switch. If all guards evaluate false and there are no pending

rendezvous then the program is terminated .

•
127

•

•

•

•

•

•

•

•

•

•

•

•

•

6.2.5 Process inheritance.

Since the ClassiC processes are simply active classes, they share all

the inheritance properties of the inactive classes. This means that an active

class may be derived from another active class, from an inactive class or,

using multiple inheritance, from a combination of the two .

In the case where behaviour is inherited from another active class,

clear rules are necessary concerning the order of activation. In fact, those

rules are precisely the same as those defined for an inactive class. The

constructors of the base class or classes will be called sequentially.

Initialisation will be performed before the base constructor executes the

coreturn statement allowing the next constructor to be called. The

behaviour of the object will be provided by the processes for both the base

and derived classes executing concurrently .

The second inheritance case is that in which an active class inherits

from an inactive one. This is likely to be quite a common occurrence, with

the inactive base class providing a data abstraction to which the derived

class adds an activation process. If the base class has not been declared

with a priority (and therefore has monitor semantics) there exists the

possibility of concurrent access to members of the base class without the

guarantee of mutual exclusion. lt is therefore best for the programmer to

ensure that all base classes have a declared priority by annotating the

class heading appropriately .

The third case is that in which an inactive class inherits from an active

one. This is also likely to be quite common, with the active class providing

128

•

•
some generic behaviour, for instance that of a buffering mechanism, while

the derived class implements the buffer for some particular data type. In

• this case the monitor semantics of the base class are again needed to

guarantee mutual exclusion between processes.

• The issue of multiple inheritance of active classes is one which has

caused several problems in the design of COOLs. The process instantiation

method used in ClassiC provides a resolution of most of these problems, as

• is discussud in Section 13

6.2.6 Event handling.

I I.
I

I

The intention is to use ClassiC as an implementation language for

embedded systems. As such it is necessary to provide some support for

interfacing to external devices. Within C and C++ such concerns are left to

• the operating system, as is the issue of concurrency. In ClassiC

concurrency is integrated into the language and device support needs to be

as well .

• As a 'low-level' high level language, C allows direct access to device

registers (operating and memory management systems permitting) simply

• by pointer manipulation. Such a mechanism is about as satisfactory as any

other way of low level device handling that has been proposed, and is

retained for ClassiC. For event handling, however, something better needs

• to be done .

The mechanism used is the provision of a built in active class

Interrupt. The constructor for class Interrupt takes as a parameter

•
129

•

•

•

•

•

•

•

•

•

•

•

•

•

the vector number (or other interrupt identification required by the

hardware) and has an entry virtual int operator ++ (). Instances of

the class will accept this entry once only for each occurrence of the

associated interrupt or event. lt is of type int to allow the entry to be used

in select condition expressions. lt always returns the value 1. The function

is made virtual to allow it to be overloaded in the definition of derived

classes. This can be used to allow broadcasting of interrupts, as is

illustrated by the example below. To allow the derivation of multiple

instances of classes derived from Interrupt without propagating interrupt

handlers unnecessarily within the run time support Interrupt is also

provided with a parameterless constructor. When this is called (for instance

by instantiation of a derived class) no link to an interrupt is made.

Using this mechanism the statement

Interrupt clock(l);

creates an instance clock of the Interrupt class which is

associated with interrupt vector 1 .

Interrupt dead;

creates an instance dead which does nothing .

The statement

clock++;

suspends this process until the associated interrupt occurs .

130

•

•

•

•

•

•

•

•

•

•

•

•

6.2. 7 Comparison of ClassiC with other concurrent and object oriented

languages and environments .

C++

C++ is the base language for ClassiC, and is thus provides the core

syntax for ClassiC. C++ is not, however, a concurrent language. Any

support for concurrency must be explicitly programmed using the basic

sequential operators of the language .

Concurrent C++

Concurrent C++ was produced by merging the concurrent extensions

used for Concurrent C with C++. As such the concurrent parts of the

language are orthogonal with the object oriented features, and the

language cannot be classified as a COOL. The concurrent extensions are

similar in design to the concurrent feature of Ada, and are therefore similar

to those in ClassiC. However, since a process is not associated with a

class, there is no process inheritance and no concept of active objects .

Ada and Ada 95

Ada as originally specified is a concurrent language, with a model of

concurrency similar to that used in ClassiC. Ada95 added the ability to build

derived data types in the form of the "tagged record". When combined with

the existing facilities for encapsulation and data abstraction this has led

Ada95 to be described as an object oriented language, although it might

more correctly be described as a being a language which more easily

131

•

•

•

•

•

•

•

•

•

•

•

•

supports an object oriented style of programming than its predecessor.

However, these facilities do not work together in an integrated manner, so it

does not qualify as a COOL and the majority of design issues discussed in

this paper do not apply .

Eiffel and Eiffel//

Eiffel is a 'pure' object oriented language designed by Meyer. Meyer's

concurrent development of Eiffel includes concurrent extensions based on

a processor, rather than a process, based paradigm. Eiffel// is another

concurrent extension of Eiffel which includes a process model of

concurrency, with objects inheriting activity from a special class PROCESS .

The consequences of such a design choice as opposed to the coretum

method used in ClassiC, have been discussed above .

ACT++

ACT++ is an extension of C++, in the form of a class library, that

provides concurrency following the actor model of concurrency [Agha,

1986]. In this model the active objects are actors, which each have a set of

different behaviours. Active objects process messages concurrently, and

after processing each message adopt a replacement behaviour. The

process state of each active object is encapsulated in its current behaviour.

The similarity of the actor model to that of active objects communicating by

message passing has been noted [Bal, Grune, 1994]. The difference is that

the actor model enforces a particular discipline on changes of process

state, as outlined above, whereas the process model used in ClassiC and

132

•

•

•

le

•

•

•

•

•

•

•

•

others follows a more conventional programming model, with program state

determined by object variables .

Para/le/libraries and operating systems.

This group of languages, libraries and operating systems are

considered together. They share their roots in the parallel programming,

rather than the concurrent programming community. While parallelism and

concurrency are often stated to be synonyms as, for instance by Burns and

Welling [Burns, Welling, 1990], the choice of term is indicative of a clear

difference of concerns. The parallel programming community is concerned

with achieving maximum parallelism of computation. Within such languages

synchronisation is a secondary concern, required to ensure the correct

operation of parallel algorithms but essentially viewed as an obstacle to the

primary aim of parallelism. Parallel languages, libraries and operating

systems such as PVM [Benguelin et. al., 1990], Linda [Carriero, Gerlernter,

1989], CHAOS [Hwang et. al. 1995] and CHAOS++ [Chang et. al. 1995]

concentrate on the easy spawning of parallel threads of computation .

Synchronisation tends to be more cumbersome, and efficiency of execution

will tend to dominate over considerations of language structure and

consistency. Concurrent languages, such as ClassiC, have been designed

for systems whose behaviour includes concurrency. Here the major

concern is temporal behaviour, and therefore synchronisation is extremely

important. The emphasis in the design of these languages is concise

expression of communication and synchronisation patterns, sometimes at

the cost of an efficient parallel implementation. In the case of ClassiC, the

133

•

•

•

•

•

•

•

•

•

•

•

•

encapsulation of code and data and the small scale nature of a process

would be a considerable obstacle to the construction of very high

performance parallel versions.

POOL

POOL is an object oriented language designed for parallel

programming (and hence concurrency). lt has the unusual characteristic

that all objects are considered active, and that the notions of subtyping and

inheritance are separated. Unlike ClassiC it has introduced a completely

new syntax and is not a derivation of an existing, commonly used language .

Java

Java, although now promoted as an applications language for the

Internet, was originally designed for use in embedded systems. The

language supports concurrency, using the common COOL method of

inheritance from a special active class. The relative merits of this method in

comparison with that used for ClassiC have been discussed above. Like

ClassiC, Java was derived from C++, with influences from other languages,

but although much of the syntax is similar there are quite profound

differences in the semantics of the language and many features have been

deleted. ClassiC is a pure superset of C++.

Other languages

Concurrency and object-oriented programming are two active areas

of research, and as such it is not surprising that many languages covering

134

•

•

•

•

•

•

•

•

•

•

•

•

Other languages

Concurrency and object-oriented programming are two active areas

of research, and as such it is not surprising that many languages covering

these areas have been proposed. There are also many concurrent

operating systems and kemels, including many that are said to be "object

based". This paper considers only programming languages. Those not

discussed in detail above may be classified as follows .

Languages that support concurrency but not object orientation include

Algol68, Mesa, Concurrent Pascal, Modula-2, occam, Ada, SR and many

others. Object Oriented Languages that do not support concurrency as an

integral language facility include Smalltalk, C++, Eiffel, Objective C and

several others. Object Oriented Languages which do support concurrency,

but not in a manner integrated with the class system, and therefore not

qualifying as COOLs, include Modula-3, Oberon and Concurrent Smalltalk.

Readers are referred to [Bai,Grune, 1994] for a more complete

consideration of these many languages .

6.2.8 An illustration.

This section develops an example of ClassiC programming in order to

demonstrate the features of the language and their use. The example

selected is a clock process which provides delay, wakeup and "tick"

functions, deriving its timing from a regular clock interrupt.

135

•

•

•

•

•

•

•

•

•

•

•

•

The first definition is for a class tick which provides a regular tick.

This class is derived from the built in Interrupt class so that the clock

can be propagated along a chain of similar objects.

#include <bool.h>
class tick(l): Interrupt{
public:

tick lint count= 1);
virtual int operator++();
void operator@() {);

protected:
static Interrupt* chain = 0;

//Count gives entry:
11 for next tick
//Tick propagated

This completes the definition of the derived class. The constructor

takes as a parameter the period of the tick required, with a default of 1, the

same period as the hardware clock. The new class overloads the ++

operator, providing a new source of tick interrupts for future instances of

tick. Client processes wait for ticks by executing the unary @ operator on

the instance of the tick. The @ operator is defined within the declaration .

Since it has nothing to do except synchronise, the function body is empty.

The++ operator must in addition return a value of 1 so as to be compatible

with the Interrupt ++ operation. lt is defined below .

int operator++()
return 1

The body of the constructor, which is also the main body of the

process is shown below.

tick: :tick(int count)
Interrupt& source; //source of ticks
if (chain == 0) (

11 first instance of tick
Interrupt clock(CLKVEC);
source = clock;

else (
/1 previous instances
source = *chain;

136

•

•

•

•

•

•

•

•

•

•

•

•

chain = this; //link for next instance
11 initialisation finished
coreturn;
11 remaining text executed by new process
int t = 0;
bool event = FALSE;
do {

11 main loop of new process
select {

when (event&&accept(operator++())):
11 clock tick propagated
event = FALSE;
break;

when (source++):
11 tick from source
event = TRUE;
t == MAXINT ? t = 0: t++;
break;

when ((t>count)&&accept(operator@()):
11 divided tick to client
t -= count;
break;

while TRUE;

The initialisation is entirely to do with chaining through the hardware

clock ticks for other instances of the tick (or derived) types. The main loop

consists entirely of the select statement, one arm of which serves each of

the external interfaces. There is no need to provide a termination condition

for the loop. lt will terminate automatically when the destructor (in this case

the default destructor) is called.

The definition below shows how a time of day clock may be

constructed using the tick class, but derived from an inactive class.

class Time (
public:

Time(int h = O,int
operator++();
// ... other access

m= 0, int s = 0);
11 increment one second

functions

class TimeOfDay (0): Time {
public:

137

•

•

•

•

•

•

•

•

•

•

•

•

TimeOfDay(int h = O,int m= 0, int s = 0);

TimeOfDay: :TimeOfDay(int h, int m, int s):
Time(h,m,s)

hours = h; minutes = m; seconds s;
coreturn;
11 child process starts here
tick secs(TICKSPERSECOND);
do {

@secs;
operator++();

while TRUE;

//explicit call of own
11 operator function

Here the inactive class Time has been endowed with activity by the

derived class TimeOfDay. Instances of TimeOfDay have the same

properties as those of Time because they share the same access functions

but aT imeOfDay has the added property that it tells the time.

6.2.9 Scheduling issues .

The language definition of ClassiC makes no assumptions about the

underlying process model, except that processes have some initial priority

Since there is, as yet, no way defined to change that priority, the priority

model is static. This may well change as the language develops,

particularly if it proves to be attractive for the implementation of real time

systems .

The language as defined is entirely conventional in its underlying

process, inter-process communication and synchronisation models, and as

such is likely to be as subject to already identified scheduling problems

such as process starvation, priority inversion, deadlocks and so on as any

other such language. By the same token, the established methods for

138

•

•
dealing with these issues are applicable also to programs written in

ClassiC .

•
6.2.1 0 Derivation of active classes.

COOLs follow a conventional concurrent sequential model of

• computation. Each active object has associated with it its own independent

thread of execution. Generally the execution of the thread begins on

instantiation of the object, with a special method forming the program for

• that thread of execution.

One design problem that remains is what to do when a new class is

• derived from an existing active class. There are a number of considerations

that need to be taken into account. We consider a number of possibilities.

1. An inactive class is derived from an inactive class. This is the

• normal object oriented derivation. Both classes are merely

abstract data types and no change in state can occur except

within a method call.

•
2. An active class is derived from an inactive class. Here a new

thread of activity must be provided for the active derived class.

• Presumably this thread of execution will access class members

defined by the base class.

3. An inactive class is derived from an active class. The resultant

• object is, surprisingly, active, the activity being provided by the
'

process supporting the base class. In this case the derived class

• 139

•

•

•

•

•

•

•

•

•

•

•

•

•

may provide additional data members and additional methods, or

overload existing methods .

4. An active class is derived from an active class. This is the most

difficult case, because the activity of the new class presumably

includes the activity of the base class and that of the derived

class.

To provide for this derivation some way must be found to combine the

two supporting processes. If this is not done the programmer will have to

provide a completely new process body for the new, derived, class - in the

process losing many of the advantages of derivation. This problem has

been observed within the design of several concurrent object oriented

languages and has been named the "inheritance anomaly" by America and

others [Matsuoka et. al. 1993]. As will be seen below, the design of ClassiC

provides an elegant solution to this problem.

The type inheritance model of a COOL is likely to allow multiple levels

of inheritance and multiple inheritance, allowing a new class to be the leaf

of an inheritance tree that could include a mixture of both active and

inactive classes. Any solution to active class inheritance must address this

situation as well.

The problems associated with case 1 are simply the well known ones

of controlling shared data. Once these have been overcome then they

provide a solution to case 2 as well, since all this adds is one new process.

Thus the access pattern is the same as the generic one for multiple

processes accessing the same object. In the design of ClassiC this is

140

•

•

•

•

•

•

•

•

•

•

•

•

covered by guaranteeing that method calls of any object which change its

state are atomic, guaranteeing mutual exclusion between processed calling

methods of a common object.

Case 3 provides no additional concurrent activity, so there are no

additional problems in terms of synchronisation or mutual exclusion. The

additions can make no changes to the activity of the class, otherwise this

would be an active extension of the class, so any extensions are limited to

additional methods or data members whose state changes only in a

method call. The addition of methods requires that the supporting process

be augmented in some way to cater for the extra methods .

Case 4 is the most difficult case, since it is not obvious how to provide

a new supporting process for the composite object that mixes the activity of

the derived and base object in a sensible way. The most usual solution is to

overload the process body, requiring the programmer to produce a

completely new body for the derived class, which includes the required

activity from the base class. While this is a simple solution for the simple

case, in the case of extended derivation, where the derived class is the leaf

of a large derivation tree the programmer is left with the task of re

implementing the activity of all the active classes from which the new class

is derived (the inheritance anomaly). This is not far from re-implementing

the whole class, so the value of derivation is marginal.

141

•

•

•

•

•

•

•

•

•

•

•

•

6.2.11 ClassiC solutions.

The solutions adopted in the design of ClassiC come about as a

natural extension of two of its basic characteristics. The first is the use of

synchronous method calling discussed earlier. The second is the way in

which active objects are instantiated. ClassiC is an extension of C++. The

constructor for a class serves for both initialisation and as the body for an

active class. After initialisation a coretum instruction causes a program fork.

The parent process executes a return from the constructor while the child

continues execution of the rest of the constructor, which fonns the body of

the support process for the active object

The semantics of C++ derived class instantiation dictate that the

constructor(s) for base classes will be called in turn before the constructor

of the derived class. The simple application of this to the constructor as

modified for ClassiC provides a solution to the derivation of active classes

from other active classes, in the process avoiding the inheritance anomaly.

Below are schematic outlines for two active classes .

class base {
public:

base () {
baseinit();
coreturn;
basebody{);

entry:

class derived: base{
public:

derived ()
derivedinit();
cc return;
derivedbody();

142

•

•

•

•

•

•

I.
•

•

•

•

•

entry:

Consider an instantiation of the class derived. Firstly the

constructor of the base class, base () , will be called. This will proceed to

initialise the object by calling baseini t () and then execute the

core turn. The parent process will return and proceed to execute the

constructor derived (). Meanwhile the child process will execute

basebody (), providing the activity for the base class. Execution of the

constructor of the derived class may assume initialisation of the base class.

In addition, any methods called in the base class will be supported, since

the base object is already active. Execution of the coreturn causes a

second process fork and return of the parent process. The end result is that

the derived object's activity is supported by two concurrent processes, one

supporting the base part, the other supporting the derived part. These two

processes obey the normal rules of inter-process communication, so the

derived process may access the base class by synchronised method calls

in the normal way. The programmer of the derived class has only to provide

a process body defining the modified behaviour of that class and the

inheritance anomaly does not arise .

6.2.12 Producing a buffered derivative of a class.

The type inheritance features of ClassiC can be used to provide

asynchronous method calls in a number of different ways. The required

non-synchronisation can be introduced into the call itself, by programming

an intermediary class which buffers parameter values and executes a

143

•

•

•

•

•

•

•

•

•

•

•

•

method call allowing the original caller to proceed while it waits for the

called method. Where a value is retumed a similar ''wrapper'' class can be

used to pass the result back to the caller while the called object continues.

A combination of the two can also be used.

A ''wrapper'' class for an existing base class is designed as follows:

class base {
public:

base() ;
entry:

virtual m{);
virtual ml(int i);

The derived "wrapper'' class has the same entries (concurrent

method calls), and is defined as follows

class wrapper: base {
public:

wrapper() {
coreturn;
for (; ;) {

select

entry:
m(){)

when accept(m): base::m(); break;
when accept(ml): base::ml(ti); break;

ml(int i) {ti i;)
private:

int ti;

The wrapper class, derived from the base class, overloads its

methods with methods which do nothing but call the corresponding base

class method. They perform the call within the main loop in the constructor

for the wrapper class. The calling process can proceed without waiting for

the base class process to be accept the rendezvous. The wrapper class is

used precisely like the base class, so a blocking method call

144

•

•

•

•

•

•

•

•

•

•

•

•

base b;

b.m()

is replaced by a non blocking call

wrapper w;

w.m()

The derived class has the same behaviour as the base class but its

supporting process buffers method calls allowing the calling process to

continue even though the process base may not be ready to handle the

method call. This example is singly buffered, although it is possible to

produce multiply buffered versions at the cost of complexity .

6.2.13 Analysis of the ClassiC rendezvous.

If an object has a supporting process associated with it then it is an

active process. In this case calls to the methods of that object take on the

nature of a rendezvous between processes. The calling object is delayed

until the called object executes an accept instruction specifying the method

called by the other process. The called object is then suspended until the

calling object has completed execution of the method, or, in an alternative

view the called object is interrupted and executes the method while the

caller is suspended. Both views are equivalent, the former perhaps easier

to visualise in terms of program flow, the latter being more useful from the

point of view of program analysis, as will be seen below. Subsequently both

objects continue execution concurrently .

The method is defined precisely as a normal C++ method, or class

member function, with the body of the rendezvous being provided by the

145

•

•

•

•

•

•

•

•

•

•

•

•

member function. The only addition to normal C++ is the accept instruction.

The call of the method happens within the scope of the called object, just

as is the case in standard C++, so during that call the method object has

access to the private and protected members of the called object. This

provides an inter-process communication model that is very similar to the

Ada rendezvous, with one important exception. In the ClassiC rendezvous

the program text of the "entry" resides in the member function of the object

whereas Ada has an extended syntax for the entry in which the program

text for the entry resides within the entry block. As explained above, this

difference produces an important simplification with respect to exception

handling .

Just as the Ad a rendezvous is supplemented by a select guarded

alternative command so is the ClassiC rendezvous. The ClassiC select

allows a number of program arms, each guarded by a condition which may

include one or more accept instructions. If an accept is matched by a call

of the corresponding method it evaluates to true, a value which is available

to form a part of a boolean expression in the guard. Should more than one

guard evaluate to true then an indeterminate choice is made as to which

guard to execute. Should no guard evaluate to true but there is at least one

guard containing an accept instruction then the object will be delayed until

there is a matching method call. If there are no guards that evaluate to true

and there are no guards containing an accept instruction then the object

terminates. In the absence of accept instructions the select instruction is

equivalent to the Dijkstra guarded if[Dijkstra, 1976]. Should one or more of

146

•

•
the guards contain an accept instruction then it is equivalent to the select

instruction in Ada .

• Analysis of this kind of rendezvous is well understood. The analysis

given here is based on that by Andrews [Andrews, 91]. A rendezvous

• occurs when a calling or client object calls a method m in a server object

supplying a parameter list p and that server object executes a matching

select. Method m has a formal parameter list p1, contains an instruction list

• S and returns the value r which is assigned to s in the client. This

rendezvous can be simulated using synchronous message passing, where

the method call

• s = server.m(p)
is simulated by the sequence

server ! m(p); server? s
where ! is a synchronous message send operation to the object

• server and ? is a matching synchronous receive operation as used in CSP.

Using Hoare programming logic [Hoare, 1969] we can write a triple

• for the axiom for the call

Rendezvous Call Axiom:

(U) s = server.m(p) (W)

• This axiom allows anything to appear in the postcondition W since the

rendezvous may never complete thus in terms of a partial correctness proof

for the sequential program client a postcondition false would be a valid

• result. Sound use of the axiom will depend on a satisfaction rule

• 147

•

•

•
encapsulating the interaction between the two objects. By writing in the

message passing simulation a proof outline is obtained .

• U) server ! m(p) { V) server ? s { W) (1)

Considering now the server, its part of the rendezvous is the

• execution of the accept instruction followed by the instruction list Sm,

contained in the method m. Again we can write a simulation using message

passing.

• client? m(pf); Sm; client r

If P is the precondition of the accept instruction and Q is the postcondition

• then we can write a proof outline for the message based simulation of the

accept instruction.

P) client ? m(pf) (R) Sm I T) client ! r I Q) (2)

• Once again we are unable to say anything about the assertions R,T

and Q, since the message operations may never complete. We await the

satisfaction rule for the rendezvous .

• We should also consider the more general case in which the accept

instruction appears as part of a guard in a select instruction. In this case we

use the inference rule for the select instruction . •
Select Rule:

I R~ A B,) S; (T1) , 1 ~ i < n

• I R)

select
when accept (md && B:: smu Sti break;

when accept (m,) && B,.: Sm,; Sni break;

•
148

•

•

•

•

•

•

•

•

•

•

•

•

•

(T }

For execution of one arm of the select we can use the select rule and

proof outline (2) to obtain a further proof outline.

P } client ? m(pd (RI\B } Sm [Tm } client ! r (Q } (3)

Note that Tm is the post-condition of the statement list Sm contained

in the method definition, and that we also have

(Tm} Sn {T}

The matching message operations in (3) and (1) must satisfy the

satisfaction rule for synchronous message passing, which is that for all

such matching pairs of communication instructions it must be shown that

(XAY) :::::> (CAD)\

where X and Y are the preconditions of the receive and send

instructions respectively and C and D are their postconditions, x is the

target of the receive and y is the value supplied to the send. As well as this

it must be shown that the assertion V in (1) is implied by U in (1) if pis

assigned to p,. If this condition is satisfied then application of the

satisfaction rules for the two matching pairs of communication gives the

satisfaction rule for the rendezvous as :

For every pair server.m(p) and accepf(m) show that

The other requirement is to show that the proofs of the two objects

are interference free. Techniques for avoiding interference include the use

149

•

•

•

•

•

•

•

•

•

•

•

•

of disjoint variable sets for the two objects. In fact the encapsulation of

classes in C++ (and therefore ClassiC) guarantees that the variable sets of

two objects are disjoint so long as global variables are not used and the

static attribute is not employed for class members. If either of these

conditions is breached then it will be necessary to employ global invariants

within the proofs for the two objects.

6.2.14 A Proof Example

The example above showed how a wrapper class may be used to

loosen the synchronicity of the ClassiC rendezvous. This will be used as an

example to show how the proof techniques discussed may be applied to

the ClassiC rendezvous.

The objective is prove that a call of wrapper: :m or wrapper: : ml

will always result in a call of base: :m or base: : ml. There are two

rendezvous involved, that between the caller of the wrapper as it executes

w. m () and that between the wrapper and its base class when it calls

base: :m().

The call w. m () is simulated by message passing to give the proof

outline, from (1),

(U } w ! m () { V } w ? void { W }

Since m () is a void function the result list is not used (received into

void). The wrapper object must execute the matching accept statement to

complete the rendezvous. This gives the proof outline, from (3),

150

•

•

•

•

•

•

•

•

•

•

•

•

{ P } main ? m () { R } { T } main void { Q }

since the guard condition B is true in this case. To show that the

rendezvous occurs and that s ynch: :m () is called we need to establish

the satisfaction rule

For every pair server .m (p) and accept (m) show that

Since the parameter list is empty, the returned result is not used, the

condition B is true and T = R, this reduces to

(UAP) ::::) (R) 1\ (V/\R) ::::) (WAQ}

Now R is the precondition for the select instruction, which in this case

is simply the precondition for the for instruction and is true so long as the

object w has been initialised, which occurred with execution of the

constructor, thus R is true and (UAP) ~ (R). In this case, where no retum

value is sent, the statements w?void and main! void can cause no

change of program state so (V) ~ (WAQ). A similar analysis can be

performed for the single parameter case, ml, although here account must

be taken of the assignment to ti.

6.2.15 Absence of deadlock

Although synchronous communication apparently makes deadlock

more likely it does have the advantage that the incidence of possible

151

•

•

•

•

•

•

•

•

•

•

•

•

deadlock is localised to the parts of the program which communicate. In the

case of ClassiC this is the method calls and accept instructions. Deadlock

will not occur so long as every method call is matched (eventually) by an

accept instruction. To show absence of deadlock it is necessary to show

that executions of an accept instruction for a method occur the same

number of times as the calls of that method. This may be relatively

straightforward in the case where communication is limited to a pair of

objects. lt is likely to be more complex in the case of server type objects

which serve a large number of clients or where the accept instruction is

embedded in a select instruction. Many servers are likely to have both

characteristics, with the body of the object consisting of a select statement

enclosed by an endless loop, as shown below

for (; ;) (
select

when accept(ml): service!() break;
when accept(m2): service2() break;

In such a program it is necessary to show that each arm of the select

will run to completion to guarantee that every call will be serviced. Once

again, where the statement lists include calls of methods of other active

objects the situation becomes more complex. Deadlocks can occur in

cases where those objects are ultimately dependent on the server. While

such situations are susceptible to analysis this can become very complex.

The author is investigating the use of visualisation aids to help in this task .

In any case, the task is made easier by the localisation of communication

inherent in the rendezvous model.

152

•

•

•

•

•

•

•

•

•
I

•

•

•

6.3 Translating CCS specifications into ClassiC

lt will be seen from the above description of ClassiC that it does

contain most of the characteristics that are necessary for implementation of

CCS based hypermedia systems. This section will show in more detail how

the translation may be made .

6.3.1 Events

Display events.

A display event is mapped to a call of the the display method of an

instance of a class that displays the appropriate type of object. There is no

defined environment for ClassiC, so some appropriate display toolkit will

need to be provided. Since ClassiC is derived from, and link compatible

with, C and C++, toolkits available for those will be usable but are generally

operating system dependent. The examples given here use an adaptation

of the Abstract Windowing Toolkit (AWT) that is part of the Java language

environment [Sun, 1996] but is modified to work with a concurrent, rather

than event-based interaction style. In the event based style, as operated by

Java, the X window system toolkit [Nye, O'Reilly, 1990] and several other

windowing systems, program control is invested in a hidden "event loop"

within the user interface system, with the program being structured as a set

of event handlers. In the concurrent style the user interface is operated by

an explicit process which communicates with user processes using normal

153

•

•

•

•

•

•

•

•

•

•

•

•

inter process communication mechanisms. In ClassiC the graphics context1

could be implemented as an active object, as follows .

Class GC {
Public:
GC (pixmap b ...);
-GC;
boolean drawimage(iclass Image, int px,py,sx,sy,

GC & where);
Boolean postControl(controlType c, void (*response) ())

Ellipsis (...) has been used to indicate detail that has been omitted as

not pertinent to this discussion. In the GC defined above the constructor,

GC, is provided with a pixel map buffer and other initialisation information .

This GC is an active object, so the constructor will produce a process fork

by executing a coreturn instruction, leaving a process running to handle

the graphics context. Other processes communicate with this using the

methods such as drawrmage and postcontrol. Their function is

explained more fully in the sections below.

Using the a graphics context g as defined above, the translation of

the display event becomes

Image= getimage(<imageURL>);
boolean b = g.drawimage(Image,px,py,px+x,py+y,this);

1
"Graphics oontext" is a term borrowed from the X window systems and encapsulates the

state of a particular display area, in X ij operates in the X server and by caching the state
locally avoids unnecessary network traffic. The grouping of all relevant display state into one
object has proved to be useful enough that the use of graphic oontexts is now common in
graphics packages whether or not they are network based in the same manner as X .

154

•

•
Here the first line initialises an Image object containing the image

data referred to by the Uniform Resource Locator (URL). The second line

• renders the image at the location in the display window given by px, py

with a size x, y pixels, using a method, drawrrnage, of the current graphics

context g. Both get Image and drawrrnage are polymorphic, in that they

• will handle a wide range of displayable data, including still and moving

images. Sound data will not be handled by this combination of methods,

• which means that sound based events will require to be separated out and

realised using their own access and "display" objects.

User events and input events

• User events come in the form of posting interaction controls that will

at a later time be responded to and will cause input events. A class is

• defined to post control buttons

control new Button(label);
boolean b = postControl(control, &response);

• The first line initialises the control, in this case a button, the second

line posts the control to the GC process, causing it to display it. The second

parameter is a pointer to one of the current process' entries, which will be

• used to notify a control action by the user.

The input event is handled simply by waiting for the call of that entry,

• by executing an accept statement, as follows .

accept(response);

• 155

•

•

•

•

•

•

•

•

•

•

•

•

•

This will cause the process to wait until the response entry has been

called by the GC process after which it will continue at the next statement.

Synchronisation events

Synchronisation uses a similar mechanism, simply utilising the

synchronised rendezvous that is provided by ClassiC. This if two agents,

agentA and agentB need to synchronise on an event pair e, e, then an

entry, e, in agentA is used to represent the pair. Agent 8 represents e using

a call of the entry, as follows.

AgentA. e ();

AgentA represents the other half of the event e using an accept

statement.

accept(e);

Since the rendezvous is synchronised, synchronisation between the

two agents will occur .

6.3.2 Prefix, the'.' Operator.

The '.' Operator represents sequential composition. In a sequential

programming language such as ClassiC this is represented simply by using

the instruction sequence of the language .

156

•

•

•

•

•

•

•

•

•

•

•

•

6.3.3 Agents and agent definitions.

A CCS agent is composed of a composition, both parallel and

sequential, of sequential agents. If these agents are to be composed in

parallel they will require independent processes to run them, which in

ClassiC requires the use of active objects. A single agent definition may be

instantiated both in sequential and parallel composition. Fortunately

ClassiC allows both active and passive variants of the same class, and so

this can be achieved. The following shows an outline of a class to represent

an agent.

class agent
public:
agent(boolean active);
{

if (active) coreturn;
agent_body();

private:
agent_body();

I

The sequence of events that makes up this agent is coded in

agent_ body. In order to create an instance of the agent a variable of type

agent is created, and instantiated with using the appropriate constructor

parameter to signify whether it is active or passive. Sequential composition

of agents will use passive agents. Thus the CCS

agentA.agentB

would be represented using two class definitions, styled on that above, and

instantiated as follows .

157

•

•

•

•

•

•

•

•

•

•

•

•

AgentA aa=false;
AgentB ab=false;

Here the assignment to false causes the constructor to be called with

a parameter value of false, which reduces to a call of the agent _body, so

the above is equivalent to

AgentA::agent_body; AgentB: :agent_body

which is simply sequential composition of the two agents .

6.3.4 The parallel composition operator 'I'.

Having defined the dual purpose agent class above, we can us it to

produce parallel composition. The CCS AgentAIAgentB is represented by

the following.

AgentA aa=true;
AgentB ab=false;

The AgentA constructor is called with a parameter value of true, and

thus is equivalent to

coreturn;
agent_body();

The execution of coreturn will cause a process fork. While one

process executes agentA's agent_ body the other, on return, executes

AgentB's constructor with a parameter value of false, causing a direct

execution of agentB's agent_ body. Thus we have the two agents acting

concurrently .

158

•

•

•

•

•

•

•

•

•

•

•

•

6.3.5 Choice, the '+' operator.

The CCS choice operator is modelled on the Dijkstra multi-armed "if'

statement [Dijkstra, 1976], as is the ClassiC select instruction. The CCS

'+' operator results in an agent being guarded by its first event, while the

ClassiC select separates out the guard event from the body of the select

arm. To use the ClassiC select the CCS agents will require to be

reconstructed in a similar fashion. The following CCS expression

agentA +agentS

will need to be recast as

headA. taiiA+headS. tailS

where head represents the first event in the agent and tail represents

subsequent events. These events will be input events, which are

represented by entry acceptances, so the above translates to the following

ClassiC.

select
when accept headA:

tailA ta = false;
break;

when accept headB:
tailB tb=false;
break;

The first entry to be called, headA or headB will cause the

corresponding arm of the select statement to be executed, resulting in the

execution of the tail of the agent.

159

•

•

•

•

•

•

•

•

•

•

•

•

6.3.6 Association, the '(' and ')' operators.

The '(' and ')' operators are used to associate agents without naming

them. In the examples given above named agents have been used as the

operands of the various operators. Since Classic does not include lambda

expressions, which would allow the construction of unnamed aggregates of

instructions, the alternative of using named objects, where the names are

meaningless, or simply automatically generated, will need to be used. So

the agent (agentA.agentB.agentC) would be translated to the following .

class agen tOOO (
public :
agentOOO(bool ean active) ;
(

if (active) coreturn ;
agent_body() ;

private:
agent_body () ;
{

)
)

AgentA aa=false ;
AgentB ab=false ;
AgentC a c=false;

Here agentOOO is an arbitrary name given to the agent. Otherwise is

simply an agent containing the sequential composition of three agents, as

described above .

6.4 Conclusion

This chapter has discussed how programming languages may be

used to realise CCS based specifications, and has focussed in particular on

one class of programming language, the concurrent object oriented

160

•

•

•

•

•

•

•

•

•

•

•

•

language (COOL). A detailed account has been given of one such

language, ClassiC developed by the author. This language has particular

characteristics that make it a suitable vehicle for realising CCS

specifications. Examples of translation from CCS operators and agents to

ClassiC code have been given, and the process can be seen to be

generally straightforward. This simplicity of translation is due to several

characteristics of the language. Firstly, the language provides a process

based model of concurrency and fits well with a process based model of

user interface construction. Both of these are a natural fit with a process

algebra such as CCS. Secondly, ClassiC contains the necessary construct

to translate directly the CCS operators, namely a process fork (in the form

of coretum) and a choice operator (in the form of the select statement).

Finally, and unusually amongst COOLs, ClassiC provides the means

producing both active and inactive instances of a class, thus allowing

classes to be used to represent agents without needing to duplicate

definitions to allow for parallel and sequential composition. This is, in fact,

an example of the absence of the inheritance anomaly. If the language

suffered from this anomaly redefinition of the class would have been

necessary, simply because of the possession of activity by one of the

variants of the class .

161

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 7: Java, JavaScript and HyTime

The previous chapter has shown that CCS hypermedia specifications

may be translated fairly straightforwardly into the concurrent object-oriented

language ClassiC. Although as a language it has a suitable structure and

semantics to be a good vehicle for implementation of these systems,

ClassiC does suffer from a major shortcoming, the lack of acceptance of

the language as a standard programming or scripting language. The

importance of openness in hypermedia has been put forward in many

influential works, starting with from [Halasz, 1988]. Reliance on a non

standard, or not widely accepted, implementation method would severely

prejudice the chances of acceptance of any design method. However, the

method is not dependent on any particular implementation language, and

there are languages widely accepted as implementation vehicles for

hypermedia systems that may be suitable for realising CCS specifications,

although, as we shall see, the code produced may be less elegant than that

produced using ClassiC. Three possible languages are discussed here,

Java, JavaScript and HyTime .

162

•

•
7.1 HyTime

HyTime is considered in this chapter because it is a format for

• hypermedia description that includes description of temporal behaviour,

and is in that sense closer to a programming or scripting language than

other markup formats which seek solely to describe content and

•

•

•

•

•

•

•

•

•

connectivity. HyTime is a standardised hypermedia structuring language for

representing hypertext linking, temporal and spatial event scheduling, and

synchronisation. The HyTime approach to ordering and synchronisation is

essentially declarative, as opposed to the imperative nature of process

algebras and programming languages. HyTime separates structure from

content information, and included within the structure information can be

attributes that declare an object's existence in a temporal, as well as spatial

frame. The temporal frame can be according to a reference frame or with

respect to other objects, allowing sequence and duration to be expressed .

As such, HyTime forms a more difficult target from process algebra based

specifications that traditional imperative scripting and programming

languages .

7.2 Java

The programming language Java [Sun, 1995] has recently received

much attention as a standard implementation language for World Wide

Web applets. The ambitions of Sun Microsystems, the language's

originator, spread much wider than that, however. The previous chapter

has argued that they are suitable implementation vehicles for a wider range

163

•

•

•

•

•

•

•

•

•

•

•

•

of "serious" multimedia documentation, particularly technical

documentation .

The origins of Java lie with C++ and C. Java includes facilities to

handle concurrency, and is a purer object oriented language than its

ancestor, C++ (or, for that matter, ClassiC) .

When considered as a language that is amenable to formal analysis

Java is a huge improvement over both C and C++. The Java language has

jettisoned almost all of the language features that made C so

"dangerous"(Sun, 1995]. Experience has shown that it is just these features

that make programs difficult, if not impossible, to verify formally.

Some features of Java would seem to be unsuited to formal analysis .

in particular all functions (or rather, object methods) may operate on object

variables using side effects [Sun, 1996], and all parameters that are objects

are passed by reference, and are therefore also amenable to modification.

Of course, such features are part and parcel of the object oriented

programming style, and Java is a pure object oriented language, in that

facilities such as type definition and procedures and are only available

within an object oriented context, that is in the guise of classes and

methods thereof .

Meyer has proposed techniques of formal verification when using

object oriented languages. The idea is summed up in the heading "design

by contract''(Meyer, 1993). Here the required state for correct operation of

an object is encapsulated into an object invariant that is true after

construction of the object by the constructor and must remain true after

164

•

•

•

•

•

•

•

•

•

•

•

•

each method call. In addition each method is defined by a required

precondition and a postcondition. The obligations of the creator of the

object are to ensure that each method maintains the object invariant and

that it produces the required postcondition from the precondition. Likewise

the obligation of the user of the method is to ensure the precondition. Under

the normal laws of programming logic if all obligations are met the method

will produce the correct results.

This method is also robust when used with the type inheritance

facilities of an object oriented language. The invariant for a derived object is

simply the conjunction of its own invariant and those of its ancestors. The

principle is simple enough, although the complete invariant for a leaf class

of a large inheritance tree might be a large and unwieldy predicate.

Meyer proposed this method for use with his own language, Eiffel,

which includes mechanisms for assertions to verify the invariants and pre

and postconditions built in. Java lacks these facilities (although assertions

can be easily programmed if required) but in other ways is as pure an

object oriented language as Eiffel, indeed many of its design features were

derived from that language. Many of the features of Java make such

methods simpler For instance, the restriction on multiple inheritance

simplifies the construction of object invariants. The definition of standard

behaviours by means of "interfaces" can similarly be included in the

method. Since interfaces contain only constants and method signatures

they introduce no new state and therefore require no additional invariants of

their own. Classes that implement the interface must, however, ensure that

165

•

•

•

•

•

•

•

•

•

•

•

•

all implementations of the interface methods preserve the class invariant,

which may capture the constant names declared in the interface .

The formal verifiability of Java programs is aided by the formality of

the language definition. While this does not extend to a formal semantic

model care has been taken in its design to ensure that operations, primitive

data types and relationships within the specification are precisely defined

7.2.1 Concurrency

Java has taken the approach of creating active classes using

inheritance of a special active class. Activity is bestowed either by inheriting

the class Thread or by implementing the interface Runnable. The problem

of multiple inheritance of active classes does not occur, since multiple

inheritance itself is not included in the language. This does not, however,

protect against the inheritance anomaly .

lt is also necessary to provide a means of inter process

communication. Java provides a low level mechanism, essentially using

monitors. As has been noted in a previous chapter the coupling of monitor

semantics with method calls can provide an inter-process communication

method with very similar semantics to the Ada rendezvous. The

requirement for this to be achieved is that the body of the active method

serving the rendezvous be notified of the use of one of its methods by

another object. While Java does not do this automatically, the low level

facilities (essentially waiUsignal) provided can be used to provide the same

effect, but programmer discipline is obviously required to program the

166

•

•

•

•

•

•

•

•

•

•

•

•

correct operations. Programming in this style is discussed later in the

paper. Also absent from Java is a non-deterministic choice instruction (as

the Ada or ClassiC "select" or occam "AL T"), which greatly simplifies

programming using such rendezvous. This can also be provided by the

programmer, again at a cost in program complexity and syntactic

inelegance.

7.2.2 Temporal properties

Java includes no explicit facilities for temporal assertion or

programming of temporal properties. lt does, however, provide delay and

time-out operations that have a resolution down to one nanosecond! Using

such real time modelling techniques as timed CSP specifications can be

produced which could be refined to Java implementations. The difficulty

would be to try and predict accurately the time performance of the run time

system, particularly the memory allocation and garbage collection system.

lt would be possible to construct and realise a model that would be subject

to run time time-outs and temporal errors due to additional overheads

produced by the operation of the memory system. Fortunately, technical

documentation systems are unlikely to have hard temporal constraints. As

interactive systems they need to respond sufficiently quickly to not cause

interaction errors, but the major temporal constraints that have been put

forward earlier in this work have been to do with sequence rather than

absolute time .

167

•

•

•

•

•

•

•

•

•

•

•

•

7.2.3 Java for large systems

The objectives of this work are to propose design and implementation

methods for large multimedia technical documentation systems. The

discussion above has covered in outline the suitability of Java so far as

reliability considerations are concerned. The second issue is, is it a suitable

implementation vehicle for large systems?

The keys to meeting these requirements are program structure and

data abstraction. Object-oriented programming, the paradigm on which

Java is based, is a development of data abstraction. lt provides a means of

packaging the data type and its implementation routines in a unified

package and a mechanism, called inheritance, whereby new data types

can be created by modification and extension of existing ones, rather than

complete revision. This brings further advantages, in that data types have a

greater consistency between functionally similar types, making the task of

defining and using the consistent interfaces on which co-operative

programming depends simpler .

In fact, Java is designed from the start around a model of co

operative programming in which the monolithic application programs of the

past are replaced by an assembly of "applets", which can be loaded into a

running program to enhance its functionality. The program level

implementation of an applet is the basic Java object construct, a class. To

allow applets to be loaded into running programs, Java programs operate

as an assembly of different class definitions which are loaded from diverse

sources as required. To allow the sources to be truly diverse classes are

168

•

•

•

•

•

•

•

•

•

•

•

•

given identifiers that operate within a global name space! This is a potential

breach in the program security of Java, in that however well your own

program has been designed and verified, if you import applets from

external sources there are no guarantees as to their quality. The Java run

time system takes measures to prove them against outright crashes or

corruption of the software's operating environment, but does not guarantee

correctness against any specifications - indeed, commonly there will be no

specifications available. Addressing this issue is outside the scope of this

work, and for the type of development that is envisaged here it is likely to

be the case that the whole development will be firmly controlled by the

company whose product the documentation supports. Sufficient to observe

that the support for co-operative development offered by Java should be at

least sufficient for the type of development situation likely for large

documentation systems .

7.3 JavaScript

JavaScript is a hypermedia scripting language developed to be

similar to Java by Netscape Inc. as a way of introducing interactive

behaviour to World Wide Web documents that was quicker and easier to

use than Java. JavaScript is defined as a scripting language rather than a

programming language, which Java is. To the authors mind this distinction

is spurious, so-called scripting languages are merely programming

languages, albeit simplified and often unstructured ones. Being based on

Java, JavaScript has the rare distinction of being a structured scripting

language. For this reason it should be considered alongside Java as a

169

•

•

•

•

•

•

•

•

•

•

•

•

candidate for implementation of large multimedia databases. JavaScript is,

in terms of the language rather than the implementation, a simplification of

Java. As well as simplifying the language parts of the data model have

been relaxed in a way that reduces the safety and verifiability of the

language. The data model has been modified by relaxing the type checking

and introducing a mixed data model in which some basic types of data are

directly supported as first order values. The type checking is also relaxed

and automatic coercions between types introduced. Object types are not

defined as a class, but constructed dynamically by assigning values to the

features of the object. Some basic object types (classes) are built in.

Functions, separate from object methods, have been reintroduced. As a

result of these modifications JavaScript is in many ways closer to C++ than

Java, although obviously without the complexity of C++. As a scripting

language, for small programs, it does not include support for co-operative

development in itself, however it is designed to be embedded in HTML

documents, which would allow the document to be used as the basic unit of

modularity. HTML mechanisms such as frames would also be necessary to

support concurrency, which is not directly supported in the language.

While such workarounds are possible, this type of compromised

solution is hardly desirable as an implementation vehicle for systems for

which a high degree of confidence is required. The conclusion must be that

Java is a more suitable vehicle for this purpose than JavaScript.

170

•

•
7.4 Comparing Java, JavaScript and ClassiC.

The table below, adapted from [Bell, Parr, 1998] summarises the

• comparison between the three languages.

Java JavaScript ClassiC

Object OOonly None OOand

• Orientation procedural

Inheritance Single None Multiple

Templates No No Yes

Concurrency Active objects None Active .objects

• Thread Inherit from None Coretum
instantiation Thread

Inheritance Yes,butno No No
anomaly multiple concurrency

inheritance, so

• not serious .

IPC Shared None Rendezvous
variables (method calls)
(method calls)

Synchronisat "Synchronised None Monitor

• ion "(monitor) classes
methods

Non Event driven None Select
determinism programming statement

Memory Dynamic, Dynamic, Static • model garbage interpreted
collection

Pointers Call by No pointers Call by
reference, no reference,
explicit pointer pointers,

• arithmetic pointer
arithmetic.

Modularity Packages None Separate files,
Unix
conventions,

• namespaces

• 171

•

•

•

•

•

•

•

•

•

•

•

•

HyTime has not been included in this comparison. As a declarative

language it is too dissimilar from the other three to be easily compared in a

simple table. As has been observed earlier, an imperative language is a

much easier target for refinement from a process algebra specification, so

the choice falls between Java and JavaScript. JavaScript lacks many of the

basic attributes necessary, such as modularity and concurrency, so the

Java has been used in the following section illustrating refinement to this

language from CCS.

7.5 Translation Rules to Java

7.5.1 Base Classes

The base class for all sequential agents is illustrated below.

class SeqAgent<x> extends Thread (
private Graphics g;
private Image image;
private int x=O, y=O, px = 0, py
public semaphore sem;

0;

public SeqAgent<x>(graphics gr, int ix, int iy, int ipx, int ipy) (
g = gr;
x = ix; y = iy; px = ipx; py = ipy;
sem =new semaphore(O);

public void run()
<event sequence x>

Figure 7.1: The sequential agent class

172

•

•

•

•

•

•

•

•

•

•

•

•

Each separate definition of a sequence (but not each instance) will

require a new version of seqAgent<x>, with the <x> replaced by a unique

name and the appropriate event sequence defined.

The class variables are explained as follows: g provides the graphics

context for display operations; image provides a handle for any image

data (further variables will be needed for other types of data); x and y give

the size of the screen area that this Agent controls; semis a semaphore

object used for communication with controls and synchronisation events

and px and py give the position on the screen. The semaphore object is a

slightly modified form of a standard semaphore in that it allows a non-zero

value to be passed between the threads operating the wait and signal

operations (here called P and v to avoid a name clash with the Java wait.

7.5.2 Events

Events can be subdivided into several categories. These are: display

events, which cause the display (or replay) of some kind of data; user

events, which create some kind of user control; input events which respond

to user actions and synchronisation events which cause synchronisation

between agents .

Display events.

A display event is mapped to a call of the appropriate display method

of an instance of a specialised class that displays the appropriate type of

object, using the appropriate data. Such classes form part of the normal

173

•

•

•

•

••

•

•

•

•

•

•

Java environment, so the display event maps simply to a call of this,

preceded by an operation to load the image file .

Image= getimage(<imageURL>);
boolean b = g.drawlmage(image,px,py,px+x,py+y,this);

Figure 7.2: Code for a display event

User events and input events

User events come in the form of posting interaction controls that will

at a later time be responded to. Because the two are so closely associated

they are dealt with together here. The posting of a control is most easily

done using an Applet object. Such an object type must be defined as in

Figure 7.3.

Class UserEvent<x> extends Applet (
private Button control;
public void init(String label)

control= new Button(label);

public boolean action(Event event, Object arg) [
if (event.target == control)

seqAgent<x>.sem.P(l)
repaint;
return true;

Figure 7.3: User event apple!

The other component that is required is the code fragment in the

Thread of execution to invoke this apple! and waits for the input event. This

is shown below .

UserEvent<x> ue
sem. V {) ;
ue = null;

new UserEvent<x>["label");

Figure 7.4: lnline code to invoke a user event

•

•

•

•

•

•

•

•

•

•

•

In this example the code instantiates the user event, waits for a

response and then removes the user event again, letting the garbage

collection system clean up after it.

Synchronisation events

Synchronisation between two agents can only occur using a shared

variable, which must be positioned in scope for both agents, possibly

declared as a variable in the root class. The variable requires strong

synchronisation. A suitable class definition to achieve this is the following

strengthening of the semaphore class.

Class StrongSem {
private flag = 0;
public synchronised void P () I

while (flag==O)
try {wait () ; }
catch (InterruptedException e) ()

flag = 0;
notify();

public synchronised void V() I
flag = 1;
notify();
while (flag==!)

try (wait();)
catch (InterruptException e) {)

Figure 7.5: The strong semaphore class

The class is used as follows. Consider two agents, one entering into

event, the other into event. The first agent uses a strong semaphore to

represent the event, using its v method. The second uses the P method .

175

•

•

•

••

•

•

•

•

•

•

•

•

7.5.3 Prefix, the'.' Operator.

The '.'operator represents sequential composition. In a sequential

programming language such as Java this is represented simply by using

the instruction sequence of the language .

7.5.4 Agents.

Agents need to be classified as either belonging to the set of agents

which must be capable of sustaining an independent thread of activity or

those which are simply convenient groupings of actions. The former must

be implemented within the body of a seqAgent<x> instance, the latter

may be defined as one of its methods and invoked accordingly. Where

such an agent will require to be used in several different seqAgent<x>

class definitions it should be defined as a separate class and included as a

variable in each .

7.5.5 Agent definitions.

Since agents are represented as method and class definitions the

association of the agent name with its definition is automatic. Where name

hiding is required private attributes on declarations can be used .

7.5.6 Choice, the'+' operator.

The provision of the choice operator is more complex. As discussed above,

. the use of the event driven paradigm in Java dictates that this role be taken

by a hidden event loop. An extension of the technique used for the user

and input events can be used to model the multi way choice instruction .

176

•

•

•

•

•

•

•

•

•

•

•

•

Figure 7.6 shows how this may be done.

Class MultiEvent<x> extends Applet (
private Button control!, control2, control3 ... ;
private int buttonUsed=O;
public void init(String label!, String label2, String label3 ...) (

control! new Button(labell);
control2 new Button(label2);
control3 new Button(label3);

public boolean action(Event event, Object arg) I
switch (event.taget) I

case control!: buttonUsed 1; break;
case control2: buttonUsed
case control3: buttonUsed

2; break;
3; break;

default: repaint; return true;

seqAgent<x>.sem.P();
repaint;
return true;

public int branchTaken()
return buttonUsed

Figure 7.6: Multiple input event handling .

The user event handler now stores a value identifying the event which

happened. The input event code in the main thread now simply has to

interrogate this and execute a switch statement to make the choice .

MultiEvent<x> me = new
MultiEvent<x>("labell","label2","label3" ...);
sem.V();
int tmp = ue.branchTaken();
ue = null;
switch (tmp)

case 1: .. .
case 2: .. .
case 3: .. .

Figure 7.7: In line code to handle the choice

177

•

•

•

•

•

•

•

•

•

•

•

7.5.7 The parallel composition operator 'I'·

Finally we consider the parallel composition operator. We can

consider the production of a parallel composition operator to be a process

fork. A system A.(BIC) only requires two threads of execution, since A has

terminated before B and C are instantiated. Thus this can be modelled in

Java by the creation of one new Thread, as follows

The abbreviated outline of the class for the new thread is shown in

the top part of the figure, while the lower part shows the code in the original

threat that invokes it.

class seqAgentC extends Thread {

<header information as seqAgent<x>

public void run() {

<instructions for C>

Figure 7.8: Implementing parallel composition

Note the requirement at the end for the join method call, to ensure

that both threads have completed before another agent commences .

7.6 Including text, sound, animation and models.

The illustrations above have been restricted to the showing of

methods for events displaying images and using buttons for interaction.

Using the AWT (Abstract Windowing Toolkit) of Java the facilities exist to

178

•

•

•

•

•

•

•

•

•

•

•

use the same methods to invoke events handling text, sound and animation

as well. The interaction library can include the most commonly used user

interface techniques, including mouse position events which can be used to

implement "hot links" embedded in text. The techniques for all of these are

similar to those shown above, although, of course the detail of the

implementation will be different. The Java libraries already include code to

read the most commonly used data formats found in hypermedia systems.

The display and manipulation of 3-D and other models obviously

requires a more sophisticated library of access libraries, but these are

steadily becoming available in the guise of Java beans and COR BA IDLs.

Using these the translation principles outlined above will hold good for

these media as well.

7.7 Conclusion

The previous section has outlined how each major component of the

CSP specification may be translated into Java code. The code produced is

in places clumsy and inelegant, particularly when compared directly with

the much simpler translations produced using the ClassiC language. This is

due to the lack in Java of the three attributes which rendered Classic so

suitable a translation target, the process based model of concurrency, and

a choice operator and the means producing both active and inactive

instances of a class. Additional complication is caused by two other

properties of Java. One is the reliance on event driven, the second is the

lack of a high level inter-process communication and synchronisation

179

•

•

•

•

•

•

•

•

•

•

•

•

mechanism, which results in the use of rather convoluted code to achieve

these objectives .

Although some of the solutions are inelegant, and the code and

definitions long winded in places this may not be a problem in practice,

since the translation definitions are mechanical enough to be able to be

automated. Working from these translation outlines it should be possible to

produce an automatic code generator which will produce at least the

framework of the system, leaving only the correct access methods for the

media in use and the final decisions about screen layout and user interface

techniques to be left to the user. If the storyboard notation were extended

to include absolute definitions of data sources, screen layout and control

use, then this could be automated as well .

180

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 8: Conclusion

8.1 Results

The storyboard method of hypermedia design provides a design route

that is both accessible to information design practitioners, being based on

their current practice, and also provides a means by which documentation

designs can be verified for adherence to a defined set of safety conditions.

lt is clear from the investigations of the OM IMO project that

hypermedia systems usage is beginning to penetrate into areas where they

are indeed safety critical. Where embedded systems software is similarly

safety critical there are already requirements for its design to be based on

sound and verifiable software engineering principles, and it can only be

expected that the same will be true of technical documentation systems.

Much of the current work in the field of "industrial strength" hypermedia

does not address this problem at all. The story board method, and the

associated translation techniques to COOLs such as ClassiC and Java

provide the basis for a design methodology which can produce soundly

software engineered technical documentation systems .

181

•

•

•

•

•

•

•

•

•

•

•

•

The design of such documentation systems should be seen as a

conscious process, taking into account the properties of the complete

production as well as the component pieces of content. This is in contrast

to the building of many hypermedia systems, which can be viewed more as

a process of compilation. While appropriate for libraries and other

collections, such a design approach is not suitable for self contained and

highly directed and specified systems such as technical documentation

systems.

8.2 Issues

Several issues have been raised by this work.

Much of the current research work on large, industrial strength

hypermedia separated hyperbase structure from the dynamic content of

individual objects within the hyperbase. lt is argued here that in the case of

safety-critical documentation systems complete control over temporal

ordering is necessary, and therefore such a separation is undesirable .

The implementation method used produces a hypermedia system

structured as a single program. With a large body of work directed towards

system openness using layered, Dexter based system models, it is likely to

emerge as a requirement for at least some technical documentation

systems that they be structured in this way. lt remains to be seen whether a

task based design method, such as the one proposed, could be mapped to

such a model. The question is posed of whether such layered models,

although they do encourage abstraction of structure from content, can ever

182

•

•

•

•

•

•

•

•

•

•

•

•

produce the control of temporal properties that is required in safety critical

applications.

As well as the program translation route put forward, there are other

possible realisation methods. One would be to construct a CCS engine,

along similar lines to the original Hypertext Abstract Machine, to execute

the specifications directly. lt should also be possible to make a translation

to declarative formats such as HyTime, although it would require

considerable work to be done to establish the equivalent semantics

between the two systems .

8.3 Future work

As discussed above, there is considerable development work that still

needs to be done on the storyboard specification method. For a start,

construction of a demonstrator system using this technique would be

valuable and would help to establish the potential of the technique, as well

as the feasibility of the refinement process. Secondly, the technique itself

requires further development. At its current state of development it is a very

simple precursor to more powerful techniques, similar to the original

versions of CSP or CCS. While the temporal and structural specification is

probably sufficient, several aspects could do with enhancement. In

particular, a more formal definition of content and the placement and

location of controls and links would allow the refinement process to become

more automatic. Also, in its current form, the method does not make any

183

•

•
explicit allowance for modularity. Such an enhancement would facilitate its

• use in larger development teams.

The storyboard specification technique appears to be a powerful way

• of bridging the "semantic gap" between the informal specifications of

industry and the mathematical formalisms of computer science. lt does this

by combining a graphical, intuitive appearance with a formal content. lt

• would seem to have many applications outside the field of hypermedia

design. One of the author's colleagues is currently using storyboards to

document test procedures for CAD software (this use of storyboards was

• devised by him independently of the work in this thesis. The storyboard

notation outlined here could be used to provide a formal description of

those test conditions, to be feed back into the design process. The

• accessibility of the storyboard idea makes it a good candidate for the

specification of many dynamic systems, from human-computer interfaces to

embedded systems based products .

• Methods for realising such specifications need to be developed in

more detail. The Java based method discussed here provides one route, as

I does the "CCS engine" discussed above. Translations into established '. formats such as HyTime, using data modelling techniques working from the

formal semantics of CSP are also a possibility.

• The method could also be developed into a fully-fledged

"methodology''. To do this would require the development of the supporting

toolset. Some existing CCS analysis tools, such as the concurrency

• workbench (CWB) [Moller, 1992] could be used as part of his toolset, but

184

•

•

•

•

•

•

•

•

•

•

•

•

•

others require to be developed. In particular, a storyboard editor, syntax

guided by the graphical syntax of the storyboard system and a content

assembly editor, structurally guided by the CCS storyboard, could form a

part of the toolset.

Within the current method the framing of safety conditions is still very

hard work, since the workings of Hennesy-Milner Logic are quite obscure. If

a similar storyboard technique could be devised to help with this the

method would be much easier to use.

The storyboard specification and refinement method offers a great

deal of potential for the specification of high reliability hypermedia

documentation systems, but there is a great deal of work to be done to

develop and establish it.

185

•

•

•

•

•

•

•

•

•

•

•

•

Acknowledgements

I would like to acknowledge the help given to me by a number of

people who have aided and abetted me in this work and the final

submission of this thesis. Firstly I must thank Dr. Jim Tabor, my director of

studies, who has provided much sensible advice and has been ever

conscious of the constraints involved in the pursuit of a part-time

programme of study. I must also thank Prof. Glyn James for encouraging

my registration and providing the budgetary support for this programme of

study and also Prof. Clive Richards for his continued interest and

encouragement in the progress of this work. I would also like to pick out

some of my colleagues who have been particularly willing to act as a

sounding board for the ideas that have gone into this work, and have also

suggested avenues of study. They are Sam Porter, who has diligently read

my drafts and given much useful advice, Frank Giannasi, who has also

acted as one of my supervisors, Mike Poppleton and the late Gustavo Jara

Martinez. Finally, I should thank my wife, Edwina, and my family who have

supported this work consistently, even when it meant that I wasn't doing

other things that I should have been doing .

186

•

•

•

•

•

•

•

•

•

•

•

•

Bibliography

Ackermann, P., 1994. Direct Manipulation of Temporal Structures in a
Multimedia Application Framework. Proc. Multimedia '94, ACM.

Ada 9X Project Office, 1992. Ada 9X Mapping Document, vol.1: Mapping
Rational, lntermetrics ..

Ada 9X Project office, 1992. Ada 9X Mapping Document, vol 2: Mapping
Specification. lntermetrics.

Agha, C. H. 1986. ACTORS: A Model of Concurrent Computation in
Distributed Systems. MIT Press, Cambridge, Mass., USA.

Albertini, B., Anklesaria, F., Lindner, P, McCahill, M., Torrey, D. The
Internet Gopher Protocol: A Distributed Search and Retrieval Protocol.
Available at
ftp://boombox.micro.umn.edu/publgopher/gopher_protocol/protocol.txt

Alexander, H., 1990. Structuring dialogues using CSP, in M.D.Harrison,
H.W.Thimbleby (eds) Formal methods in Human Computer Interaction,
Cambridge.

Alty, J., 1993. Multimedia: We Have the Technology But Do We Have the
Methodology?, Proceedings of EUROMEDIA '93, Maurer, H. (ed), AACE ,
Orlando, Florida, pp. 3-10 .

Alty, J.,Bergan, M. 1993. Multimedia and Process Control: Some Initial
Experimental Results', Computers and Graphics, 17(3), pp. 205-218.

Alty, J.L.,Bergan, M. 1995. Multi-media Interfaces for Process Control:
Matching Media to Tasks", Control Engineering Practice, 3(2), pp. 241-
248.

America, P., 1987. POOL-T: A parallel object-oriented language. Object
Oriented Concurrent Programming Tokoro, M and Yonezawa, A (Ed.) MIT
Press .

187

•

•

•

•

•

•

•

•

•

•

•

•

Anderson, K.M., Taylor, R.M., Whitehead, E.J., 1994, September. Chimera:
Hypertext for Heterogeneous Software Environments. Proc. ACM Hypertext
'94. Edinburgh. Pp. 94-107.

Anderson, T., 1998. Beyond Eisenstein. A case study in Interactive
Television. Interactive Multimedia. Visions of Multimedia for Developerrs,
Educators and Information Providers. Microsoft Press, Redmond. pp. 193-
213

Andrews, G. R., 1991. Concurrent Programming Principles and Practice.
Benjamin Cummins. pp. 494-509.

Arons, B., 1991. December. Hyperspeech: Navigating in Speech-Only
Hypermedia. In Proceedings: ACM Hypertext '91, San Antonio, TX, pp. 133
-146.

Bal, H.E., Grune, R., 1994. Programming Language Essentials, Addison
Wesley.

Bell, D., Parr. M., 1998. Java for Students. ISBN 0-13-858440-0, Prentice
Hall Europe.London.

Benguelin, A. Dongarra, J.,Geist, A., Marrichek, R.,Sunderam, V., 1990.
User's Guide to PVM Parallel Virtual Machine, Oak Ridge National
Laboratory Report ORNL!TM-11826 .

Benyon, D., 1992. The Role of Task Analysis in Systems Design,
Interacting with Computers 4, pp. 102-123.

Bergman, R.E., Moore, T.V., 1990. Managing interactive video/multimedia
projects. Educational Technology Publications .

Bemers-Lee, T. Calliau, R. Groff, J.,Pollerman, P. 1992. World-Wide Web:
The Information Universe. CERN.

Bemers-Lee, T.,Conolly, D., 1995. Hypertext Mark-up Language
Specification 2.0. RFC1866Available at
http :1/SLinsite .doe. ic.ac .u~Jrfc/rfc1866. txt.

Bertrand, F., Colaitis, F. Leger A .. , 1992. The MHEG Standard and its
Relation with the Multimedia and Hypermedia Area. Proc. lEE Conference
on Image Processing and its Application .

Bhushan. A.K. 1972., File Transfer Protocol (FTP): RFC 0414. Available at
http://sunsite doc.ic.ac.uk/rfc/rfc0414. txt.

Bieber, P., 1996 April. Interpretation d'un modele de securite. Techniques
et Sciences lnformatiques, 15(6), Editions Hermes .

188

•

•

•

•

•

•

•

•

•

•

•

•

Bieber. P., 1996, December. Formal Techniques for an ITSEC-E4 Secure
Gateway. Proc. 12th Annual Computer Security Applications Conference,
IEEE computer society press.

Boil, S., Lohr, M., 1996, March. Interactive Multimedia Presentation
Capabilities for an Object-Oriented DBMS, 9th ERG/M Database Research
Group Workshop on Multimedia Database Systems Darmstadt, Germany .

Bornat, R., Sufrin, B.A., 1994, August. The Gist of Jape. Oxford University
Programming Research Group Research Monograph.

Brachman, R., Anand, D., 1994, August. The process of knowledge
discovery in databases: A first sketch. Proc AAA/ KDD-94 Workshop,
Seattle. pp. 1-11 .

Burns, A., Welling, A., 1990. Real-Time Systems and their Programming
Languages. Addison-Wesley, London.

Burrill, V.A., Kirste, T., Weiss, J.M., 1994, April. Time-varying sensitive
regions in dynamic multimedia objects: a pragmatic approach to content
based retrieval from video, Information and Software Technology Journal
36(4), Butterworth-Heinemann ,pp. 213-224.

Cambell, B.,Goodman. J.M., 1988, July. HAM: A general-purpose hypertext
abstract machine. Comm. AGM, 31 (7), pp856-861 .

Caromel, D., 1990. Programming Abstractions for Concurrent
Programming. Proc. TOOLS Pacific 90. Sydney.

Caromel, D., 1993, September. Towards a method of Object-Oriented
Concurrent Programming. Communications of the AGM 36, 9, pp 90-101 .

Carriero, N. Gerlemter, D., 1989, April. Linda in Context. Communications
of the ACM 32.

Casner, S.M., 1991. A Task-Analytic Approach to the Automated Design of
Graphic Presentations. AGM Transactions on Graphics 10, pp.111-151 .

Chang, C. ,Sussman, A., Salz, J., 1995, January. Support for Distributed
Dynamic Data Structures in C++, University of Maryland: Department of
Computer Science Technical Report CS-TR-3416 and UMIACS-TR-95-19.

Chiueh.T.C., 1994. Content-based image indexing. Proc. VLDB 94
Conference. pp. 582-593.

Conklin. J., 1987, September. Hypertext: An Introduction and Survey. IEEE
Computer. pp 17-41 .

189

•

•

•

•

•

•

•

•

•

•

•

•

Cook, S. Kohoutkova, J., Jeffrey, K., 1996, March. Hypermedata: Meta
structures for Exchanging Hypermedia Documents. , 9th ERG/M Database
Research Group Workshop on Multimedia Database Systems Darmstadt,
Germany.

Copas, C.V. and Edmonds, E.A., 1994. Executable Task Analysis:
Integration Issues', People and Computers IX, Cockton, G., Draper, S.W.,
and Weir, G.R.S. (eds), Cambridge University Press. , pp. 339-352

Cypher, A. Stelzner, M., 1991. Graphical knowledge-based model editors.
In: J. W Sullivan & S. W Tyler (eds): Intelligent user interfaces, New
York/Reading MA: ACM Press, Addison Wesley. pp. 403-420.

Department of Defense, 1994. Continuous Acquisition and Ufe-Cycle
Support (GALS) Implementation Guide. MIL-HDBK-598.

Department of Defense, 1993. Contractor Integrated Technical Information
Service (CIT/S). MIL-STD-974.

Dijkstra, E.W. 1976., A Discipline of Programming. Prentice-Hall .

Dijkstra, E.W., 1968, March. Goto Statement Considered Harmful, Comm.
AGM.

Dimitrova, N. Golshani, F., 1994. RX for Semantics Video Database
Retrieval, Proc. AGM Multimedia '94 .

Edwards, D.M., Hardman, L., 1989. 'Lost in Hyperspace': Cognitive
mapping and navigation in a hypertext environment. E. McAieese (ed)
Hypertext: theory into practice. Intellect. Oxford ..

van Eijk P.H.J., Vissers, C.A.,Diaz M.(eds), 1989. The formal description
technique Lotos, North Holland.

Eun, S., No, E.S., Kim H.C.,Yoon, H., Maeng S.R., 1994. Eventor: An
Authoring System for Interactive Multimedia Applications. Multimedia
Systems 2. pp. 129-140 .

Fallenstein-Hellman, M.F., James, W.R., 1995 The Multimedia Casebook.
VNR.

Faloutsos, C., Barber, R., Flickner, M.,Hafner, J., Niblack, W.,Petkovic, D.,
1994 Efficient and effective querying by image content. Journal of
Intelligent Information Systems. 3. pp. 231-262.

Faraday.,P. Sutcliffe. A., 1993. A Method for Multimedia Interface Design,
ACM Computer Graphics, People and Computers VIII. pp. 173-190 .

190

•

•

•

•

•

•

•

•

•

•

•

•

Farrington, G., 1994. Air maintenance task oriented support system
(AMTOSS). Proc. Communicating '94 .

Fayyad, U., Uthurusamy, R.(eds.), 1995, August. Proc. 151 /ntenational
Conference on Knowledge Discovery and Data Mining, Menlo Park, Calif.

Fencott, C., 1996. Formal Methods forConcurrency, ISBN 1-85032-173-6,
International Thompson Computer Press, London. pp.281-282 .

Fischer, D., 1997. A theory of presentation and its implications for the
design of online technical documentation. Ph.D. Thesis. Coventry
University.

Fischer, D., Richards, C. J. , 1995.The presentation of time in interactive
animated systems diagrams In: Rae A Eamshaw & John A Vince (eds):
Multimedia systems & applications. London/San Diego: Academic Press.

Fischer, D., Heino, 1., Cotterel, D., 1996. OM/MO System: User
Requirements. Project Deliverable D3, OMIMO Project, Telematics
Applications Programme, IE2054

Fountain, A., Hall, W., Heath, 1., Davis, H. C., 1990, November. Microcosm:
An Open Model for Hypermedia With Dynamic Linking. In Rizk, A., Streitz,
N., Andre, J. (eds.), Hypertext: Concepts, systems and Applications,
Proceedings of the Hypertext '90 Conference, INRIA, France. pp. 298-311 .

Fox. E., 1991, October. Advances in Interactive Digital Multimedia
Systems, IEEE Computer.

Gehani, N. H., Roome, W. D., 1988, December. Concurrent C++:
Concurrent programming with class(es). Software -Practice and
Experience 16, 12.

Geissler. J., 1996, March. Navigating Hypermovies. 9th ERG/M Database
Resean::h Group Workshop on Multimedia Database Systems Darmstadt,
Germany .

Goose. S., 1997, July. A Framework for Distributed Open Hypermedia.
PhD. Thesis, University of Southhampton.

Gronbaek, K. Trigg. R. H., 1992, November. Design Issues for a Dexter
Based Hypermedia System. Proc AGM Hypertext '92 Conference, Milano,
Italy. pp. 191-200 .

Gu, J., Heuhold, E.J., 1993, November. A data model for multimedia
information retrieval. Proc. First lntemational Conference on Multi-Media
Modeling, World Scientific, Singapore. pp.113-127 .

191

•

•

•

•

•

•

•

•

•

•

Gupta, A., Weymouth, T., Jian. R., 1991, September. Semantic queries
with pictures: The VIMSYS model. Proc International Conference on Very
Large Databases '91, Barcelona. pp. 69-79.

Haan B.J., Kahn, P.,Riley, V.A., Coombs, J.H, Meyrowitz, N., 1992,
January. IRIS Hypermedia Services. Comm. AGM, 35(1). pp. 36-51.

Halasz, F. G., 1988, July. Reflections on NoteCards: Seven Issues for the
Next Generation of Hypermedia Systems, Comm. AGM, 31(7). pp. 836-
852.

Halasz, F. G., Schwartz, M., 1990. The Dexter Hypertext Reference Model.
Proceedings of the NIST Hypertext Standardisation Workshop, NIST
Special Publication SPS00-178, pp. 95-133 .

Halasz, F.G., Schwartz. M., 1994. The Dexter Hypertext Reference model,
Comm. AGM, 31(2). pp. 30-39.

Hardman, L.,van Rossum, G., Bulterrnan, D.C.A. 1993, August. Structured
Multimedia Authoring. Proc.ACM Multimedia 93, pp. 283-290 .

Hardman, L. Bulterman, D.C.A., 1995, November. Using the Amsterdam
Hypermedia Model for Abstracting Presentation Behavior, ACM Workshop
on Effective Abstractions in Multimedia, San Francisco.

Hinson, D. 1991. Computer-aided fault-finding documentation.
Communicator, Vol. 2, No. 3, pp. 2-9.

Hoare, C. A. R., 1969, October. An axiomatic basis for computer
programming. Communications of the AGM 12. pp. 576-583 .

Hoare, C. A. R., 1978. Communicating Sequential Processes. Comm.
AGM 21 (8). pp. 666-677.

Hoare, C. A. R., 1972. Towards a theory of parallel programming, In
Operating Systems Techniques, C.A.R Hoare, RH.Perrot (eds), Academic
Press .

Hogg, R. 1995. Teaching notes

http://www.sunderland.ac.uk/-tsObho/lect mat/mm lev 1/flowcht.htm.

Horton, W. K., 1993. Let's do away with manuals Communicator, Vol. 4,
No. 4, pp. 18-21.

Horton, W. K., 1990. Designing & writing online documentation: help files
to hypertext. John Wiley & Sons.

192

•

•

•

•

•

•

•

•

•

•

Hwang, Y-S., Moon. 8., Sharma, S.D., Ponnusang, R., Das, R., Salz, J.H.,
1995 June. Runtime and Language Support for Compiling Adaptive
Irregular Programs on Distributed Memory Machines. Software practice and
Experience 25, 6.

IETM 1992., Data Base, Revisable: Interactive Electronic Technical
Manuals, For The Support Of. MIL-D-87269 .

INMOS Ltd., 1984. Occam Programming Manual. Prentice-Halllnt.,
Englewood Cliffs, NJ.

International Standards Organisation, 1992. Hypermedia/Time-based
Structuring Language (HyTime), ISO/IEC Standard 10744 .

Jeffcoate. J., 1995. Multimedia in Practice, Technology and Applications.
Prentice-Halllntemational.

Johnson, P., Johnson, H., Waddington, R., Shouls, A., 1988. Task Related
Knowledge Structures: Analysis, Modelling and Application. People and
Computers IV, Cambridge University Press .

Johnson, P, Johnson, H., 1991. Knowledge Analysis ofTasks: task
analysis and specification for human-computer systems. A. Downton (ed),
Engineering the Human Computer Interface, McGraw Hill, London .

Jones, C.B., 1990. Systematic Software Development Using VDM (~
Edition), Prentice-Hall.

Jones, S., 1991. Text and Context. Document processing and storage.
London Springer-Verlag.

Kacmar, C. J., Leggett, J. J., 1991. A Process-Oriented Extensible
Hyperte.xt Architecture. ACM Transactions on Information Systems, 9(4). pp
399-419.

Kafura, D., Lee, K. H., 1990. ACT++: Building a concurrent C++ with
Actors, Journal of Object Oriented Programming, 3, 1.

Knappe, F., Pani, G., Schnable, F., 1993. The Architecture of a Massively
Distributed Hyperrnedia System.lntemet Research: Electronic Networking
Applications and Policy, 3(1). pp. 10-24.

Kuntz. M., 1996, March. Mining Multimedia Data: New Problems and
Interaction based solutions. 9th ERCIM Database Research Group
Workshop on Multimedia Database Systems Darrnstadt, Germany.

Leggett, J. J., Schnase, J. L.., 1991. Dexter with Open Eyes. Comm ACM,
37(2). pp. 77-86 .

193

•

•

•

•

•

•

•

•

•

•

•
I

(j)

Lin, C. K-1., 1995. FastMap: A fast algorithm for indexing, data-mining and
visualisation of traditional and multimedia datasets. Proc. SIGMOD95
Conference. pp. 163-174.

Matsuoka, S. Wakita, K. Yonezawa, A., 1993. Inheritance Anomaly in
object-oriented concurrent programming languages. Research Directions in
Object-Based Concurrency, G. Agha, P. Wegner, A Yonezawa Eds, MIT
Press .

Mayfield, J., Nicholas, C., 1993. SNITCH: Augmenting hypertext
documents with a semantic net. International Journal of Intelligent and Co
operative Information Systems, 2(3). pp. 335-351.

McCarthy, J., 1960, April. Recursive Functions of Symbolic Expressions
and their Computation by Machine, Part I. Comrn. AGM, 3(4). pp. 185-195.

Mehrotra, R., Gary, J., 1995, March. Feature-index-based similar shape
retrieval. Proc. IFIP 2.6 Conference of Visual Database Systems,
Lausanne .

Meyer, B., 1993, September. Systematic Concurrent Object-Oriented
Programming. Communications of the AGM 36(9)

Mii-M-87268 (GCSFUI), 1992 Interactive electronic technical manuals.
General content, style, format and user-interaction requirements .

Milner, R., 1989. Communication and Concurrency. Prentice-Hall, Hemel
Hempstead.

Moller, F., 1992. The Edinburgh concurrency workbench (version
6.1). Technical Report, User Manual. Laboratory for the Foundations of
Computer Science, University of Edinburgh.

Myers, J., 1994. Post Office protocol (POP3):RFC1734. Available at
http://sunsite.doc. ic.ac. uk/rfc/rfc 1734.Lxt.

Newman, R., 1990, June. Lea mer Workstation Hardware Specification, in
Definition of Standard Training Tools for Industrial Training Environments
and an Outline Functional Specification for a Learner Workstation, DEL TA
Project D1004/P7064.

Newman, R., 1993, March. A crystallisation model for program
visualisation, Proc Visual Aspects of Man-Machine Systems, 93 Ed. J
Polak, Prague.

Newman, R., Richards, C. J., Fischer, D., Patera, V. Heino, I. Virta, H.
Koelling, U., Cotterell, M., 1997, May. OM/MO Final Report. Telematics
Applications Programme, Information Engineering sector, Project IE2054 .

194

•

•

•

•

•

•

•

•

•

•

•

•

Newman, R., Payne, R., 1994, September. Integration of Object Oriented
and Concurrent Programming. Proc Euromicro 94, Liverpool.

Newman, R., Payne, L., Monk, K., 1995, August. Teaching Transferable
Programming Skills for Varied Subject Areas, 3rd Annual Conference on
Teaching of Computing, Dublin.

Newman. R., 1995, September. Synchronised Method Calls and
Verification of Concurrent Object Oriented Programs, Proc Euromicro 95,
Como.

Newman, R., 1996, September. Using Java for Real Time Systems, Short
Papers Proceedings, Euromicro 96 Prague .

Newman, R., 1996, December. From Engineering Data to Documentation:
Managing the Authoring Process, Applications for the European Information
Society, Telematics Applications Programme Conference, Brussels.

Newman, R., 1998. The ClassiC Programming Language and Design of
Synchronous Concurrent Object Oriented Languages, Journal of Systems
Architecture, Elsevier Scientific, In Press.

Newman, R., 1998, September, A methodology for design of large
hypermedia systems, Euromicro '98, Vasteras, Sweden (accepted for
presentation) .

Newman, R., Gatward, R., Poppleton, M., 1994. Paradigms for Teaching
Introductory Programming, Proc. Software Engineering in Higher
Education, Southampton.

Nielson, J., 1990, March. The Art of Navigating through Hypertext, Comm .
ACM, 33(3). pp. 296-310.

Nye, A., O'Reilly, T., 1990. X Too/kit lntrinsics Programming Manual.
O'Reilly and Associates, lnc, Sebastopol, CA.

Orlowski, 1995. BISAM. Broadband integrated services for aircraft
maintenance. Lufthansa internal presentation, FRA OB/M 24/4/95.

Pearl, A., 1991, November. Sun's Link Service: A Protocol for open Linking.
Proc. Hypertext '89, Pittsburgh, PA .. pp 137-146.

Petrakis, E.G., Orphanoudakis, S.C., 1993, October. Methodology for the
Representation, Indexing and Retrieval of Images by Content, Image and
Vision Computing, 11 (8). pp. 504-521.

Pruckler, T.,Schreff, M., 1996, March. An Architecture of a Hypermedia
DBMS Supporting Physical Data Independence, 9th ERCIM Database

195

•

•

•

•

•

•

I.
•

•

•

•

Research Group Workshop on Multimedia Database Systems Darmstadt,
Germany .

Rizk, A., Sauter, 1., 1992, November. Multicard: An Open Hypermedia
Syatem. Proc AGM Hypertext '92 Conference, Milano, pp. 4-10.

van Rossum, G., Jansen, J. Mullender, K.S. , Bulterman, D.C.A., 1993,
August. CMIFed: a presentation environment for portable hypermedia
documents. Proc AGM Multimedia '93, Anaheim CA .. pp. 183-188.

Rubens, P., Krull, R., 1988. Designing Online Information. Barrett E (ed.).
Text, ConText, and Hypertext. The MIT Press, Cambridge, MA .. pp. 291-
309 .

Schnase, J. L., Leggett, J. J., Hicks, D. L., Szabo, R. L., 1993. Semantic
data modelling of hypermedia associations. ACM Transactions on
Information Systems, 11 (1). pp. 27-50.

Schwier, R. A., Misanchuk, E. R., 1993. Interactive Multimedia Instruction.
Educational Technology Publications, Englewood Cliffs. ISBN 0-87778-
251-2. pp. 294-296.

SIT A., 1996, August. Aeronet- propelling the industry forward. SITA Global
Network News, 8/96. pp 1-8 .

Spivey, J. M., 1989. The Z Notation- A Reference Manual, Prentice
Haii,London. ISBN 0-13-983768X

Stirling, C., 1991. An introduction to modal and temporal logics for CCS.
Lecture notes in Computer Science, (491) pp. 2-20.

Sun Microsystems, Inc., 1995. The Java Language: A White Paper.
http:/~ava.sun.com/1.0alpha3/doc/overview~avalindex.html.

Sun Microsystems, Inc., 1996. The Java Language Specification.
http://java.sun.comfnewdocs.html#dev .

Sutcliffe, A., Faraday, P., 1994. Systematic design for task-related
multimedia interfaces. Information and Software Technology 36(4).

Taylor, J. C., 1990. Organizational context for aircraft maintenance and
inspection. Proceedings of the Human Factors Society 34th Annual
Meeting, Vol. 2. pp. 1176-1180 .

Ueda, H., 1994. Automatic Structure Visualisation for Video Editing. Proc.
INTERCHI '93. pp. 137-141 .

196

•
I

•

•

•

•

•

•

•

•

•

•

•

Ventura C., 1988. Why Switch from Paper to Electronic Manuals? Proc.
ACM Conference on Document Processing Systems, Santa Fe, New
Mexico. pp. 111-116.

VTI Automation, Electronics and Information Technology, 1996,
November. Multimedia based maintenance support.

Wiil, U. K., Leggett, J. J., 1996, March. The HyperDisco Approach to Open
Hypermedia Systems. Proc. ACM Hypertext '96 Conference, Washington
D.C., U.S.A., pp 140-148.

Wu, G., Baird, S., Robinson, B., 1997. HyTech- A HyTime Application,
EDRC Research Report, University of Hertfordshire .

Wu, J. K., Narasihalu, A. D., Mehtre, B. M., Lam, C. P, Gao, Y. J., 1995,
February.CORE: A Content-based Retrieval Engine for Multimedia
Information Systems, Multimedia Systems 3(1). pp. 25-41.

de Young, L., 1990. 'Linking considered harmful'. In: N Streitz, A Rizk J
Andrei (eds): Hypertext: Concepts, systems and applications, Cambridge
University Press. pp. 238-249.

Yu, J., Xiang, Y., 1995. Hypermedia Presentation and Authoring System,
Hyper Proceedings, et" International WorldWide Web Conference, at
http://www6. nttlabs. com/HyperNews/geUPAPER91. html

197

