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MOLECULAR RESOLUTION OF MARINE NEMATODES FOR 
IMPROVED ASSESSMENT OF BIODIVERSITY 

Punyasloke Bhadury 

ABSTRACT 

Free-living nematodes are abundant in all marine habitats, highly diverse and can be important 

ecological indicators for monitoring anthropogenic impacts on the environment. Despite such attributes, 

nematode diagnostics has traditionally relied on detailed comparison of morphological characters which is 

often difficult and laborious, and as a result there is an increasing 'black hole' in fauna! inventories where the 

biodiversity of groups such as nematodes is typically underestimated. Molecular methods offer a potentially 

efficient alternative approach to studying the biodiversity of marine nematode communities, and the main 

focus of this thesis was to apply molecular ecological tools for improved understanding of nematode 

diversity in marine and estuarine environments. 

Denaturing gradient gel electrophoresis (DGGE) has been evaluated as a novel tool for the 

identification of marine nematodes and for rapid assessment of their diversity based on amplification of the 

nuclear 18S rRNA gene. This approach successfully identified nematode taxa based on banding pattern and 

was also able to detect the most abundant taxa in samples from marine and estuarine environments. 

A DNA barcoding approach based on the \SS rRNA gene was applied for the first time in marine 

nematology, in an attempt to speed up the identification process. The success rate of this approach, across a 

range of nematode groups, was found to be close to 97%. 

A combined morphometries and molecular approach was also undertaken to investigate 

cosmopolitanism and cryptic speciation by analysing populations of a cosmopolitan marine nematode, 

Terschellingia /ongicaudata, from different geographical regions. Results suggest that Terschellingia 

/ongicaudata is indeed truly cosmopolitan, with a wide geographic distribution. Two haplotypes that were 

divergent from most T. /ongicaudata were also identified in this study, indicating possible novel cryptic 

lineages or previously undescribed species of the genus. 

The final focus of this thesis was to develop methods for the molecular investigation of nematodes 

stored in formalin and other organic compounds. The effectiveness of formalin as a short term preservative 

was first evaluated, since this would allow morphological and molecular work to be conducted on the same 

specimen. Amplifiable DNA could be routinely obtained from specimens stored in formalin for periods of up 

to nine days. In addition the effectiveness of other organic solvents for the preservation of both molecular and 

morphological integrity of marine nematodes was investigated. The fmal part of this study developed and 

optirnized a novel DNA extraction technique that could be employed to recover DNA from archived formalin 

fixed marine nematode specimens so as to carry out subsequent molecular analysis such as PCR 

amplification and sequencing. 

11 



LIST OF CONTENTS 

Title Page 
Abstract 
List of Contents 
List of Figures 
List of Tables 
Abbreviations 
Acknowledgements 
Author's declaration 

Chapter 1 General Introduction 

1.1 Marine nematodes: diversity and ecological importance 
1.1.1 Species richness 

1.1.2 hnportance of nematodes in marine ecosystems 

1.1.3 The use of nematodes in biomonitoring 

1.1.4 Nematode morphology and taxonomy 

1.1.5 Cosmopolitanism and species delineation among marine 

nematodes 

1.1.6 Problems with nematode taxonomy 

1.2 The molecular revolution in nematology 

1.2.1 Molecular insights into species identification and diversity 

assessment 

1.2.1.1 Molecular markers for eukaryote systematics 

1.2.2 Techniques in molecular systematics 

1.2.2.1 Amplification and sequencing of a genomic region 

1.2.2.2 Molecular Barcoding 

1.2.2.3 Approaches for the rapid assessment of species richness 

1.3 Overview of thesis aims and chapters 

Chapter 2 Materials and Methods 

2.1 Materials 

2.2 Microbiological methods 
2.2.1 Media for microbiology 

2.2.2 Handling and culturing E. coli 

2.2.3 Preparation of chemically competent E. coli cells 

2.2.4 Transformation of chemically competent E. coli cells 

Ill 

Contents 

Page 

11 

Ill 

XI 

XIV 

XV 

XVI 

XVII 

1 

1 
2 

7 

7 

8 

12 

14 

15 

16 

16 

20 

20 

21 

22 

23 

24 

24 

26 
26 

28 

28 

29 



Contents 

2.2.5 Transformation using Invitrogen sub-cloning efficiencyTM DH5a TM 29 

competent cells 

2.2.6 Ampicillin stock solution preparation 30 

2.2. 7 Lac selection of plasmids 30 

2.2.8 Storage of transformed E. coli cells 30 

2.3 Nucleic acid methods 31 

2.3.1 Buffers and solutions 31 

2.3.2 DNA extraction from single nematode worm 32 

2.3.3 PCR amplification ofthe nuclear 18S rRNA gene from extracted DNA 32 

2.3.4 PCR amplification of the mitochondriai16S rRNA gene from genomic 33 

DNA 

2.3.5 PCR amplification of the mitochondrial cytochrome oxidase I gene 34 

(COXI) from genomic DNA 

2.3.6 Thermal cycler operation 34 

2.3.7 Electrophoresis ofDNA 36 

2.3.8 DNA recovery from agarose gels 36 

2.3.9 Enzymatic digestion of the vector pBiuescript SK- for molecular cloning 37 

2.3.10 Creating blunt termini in DNA 37 

2.3.11 Ligation of blunt termini PCR product into digested pBiuescript SK- 37 

2.3.12 Ligation ofPCR products into pGEM-T vector system 38 

2.3.13 Identifying recombinant clones by colony PCR 39 

2.3.14 Recovery ofrecombinant plasmid from E. coli 41 

2.3.14.1 Promega Wizard Miniprep DNA purification system 41 

2.3.15 DNA sequencing 42 

2.3.15.1 Cycle sequencing reaction 42 

2.3.15.2 Cycle Sequencing clean-up for DNA Sequencing 43 

(ABI Prism 310) 

2.3.15.3 Cycle Sequencing clean-up for DNA Sequencing 43 

(ABI Hitachi 31 00) 

2.3.15.4 Sequencing analysis 44 

Chapter 3 DGGE and nematode diversity 46 

3.1 Introduction 46 

3.1.1 Role of molecular techniques 47 

IV 



Contents 

3.1.2 PCR based molecular techniques 47 

3.1.2.1 Clone libraries 47 

3.1.2.2 Restriction fragment length polymorphism (RFLP) 49 

3.1.2.3 Terminal restriction fragment length polymorphism (T -RFLP) 49 

3.1.2.4 Ribosomal intergenic spacer analysis (RISA)/ 50 

automated ribosomal intergenic spacer analysis (ARISA) 

3.1.2.5 Single-strand conformation polymorphism (SSCP) analysis 50 

3.1.2.6 Denaturing Gradient Gel Electrophoresis (DGGE) 51 

3.1.2.6.1 Application ofDGGE for assessing microbial diversity 52 

3.1.2.6.2 Molecular marker selection for DGGE study 54 

3.1.3 Non-PCR based molecular techniques 55 

3.1.3.1 Nucleic acid hybridization 55 

3.1.3.2 DNA microarrays 55 

3.1.4 General limitations of molecular-based methods 56 

3.1.5 Microbial diversity associated within a micro-environment 57 

3.1.6 Aims of this study 58 

3.2 Materials and Methods 58 

3.2.1 Sediment collection 58 

3.2.2 Meiofauna extraction 59 

3.2.3 Denaturing gradient gel electrophoresis (DGGE) 60 

3.2.3.1 Selection of primers 60 

3.2.3.2 Gradient selection and electrophoresis conditions 61 

3.2.3.3 DGGE band excision, cloning and sequencing 61 

3.2.4 Species separation in a denaturing gel without mung bean nuclease 62 

treatment ofPCR fragments 

3.2.5 Species separation in a denaturing gel following mung bean nuclease 63 

treatment ofPCR fragments 

3.2.5.1 Mung bean nuclease treatment of the PCR products 64 

3.2.6 Minimum detectable concentration of nematode DNA in a denaturing 64 

gradient gel 

3.2.7 Application ofDGGE for assessment of marine nematode diversity 64 

following total nematode extraction from sediment samples 

3.2. 7 .I Phylogenetic tree construction based on excised band sequences 65 

3.2.8 Morphological analysis of a sediment sample from Saltash 66 

V 



Contents 

3.2.9 Total DNA extraction from sediment samples for molecular detection of 66 

marine nematodes 

3.2.9.1 Total DNA extraction from sediment samples using the Macrae et 66 

al. (200 I) method 

3.2.9.1.1 PCR amplification ofDNA samples using MN18FGC 67 

and 22R primers and subsequent DGGE analysis 

3.2.9.2 Extraction of total DNA using FastDNA® Kit for Soil 68 

(Qbiogene Inc) 

3.2.9.2.1 PCR amplification of total DNA using the G18FGC and 69 

22R primers and DGGE analysis 

3.2.9.3 PCR amplification and subsequent DGGE analysis using 70 

MN18FGC and 22R primers 

3.2.9.4 Phylogenetic tree construction based on excised sequences 70 

amplified using MN l8FGC and 22R primers 

3.2.10 Influence of sediment sample sizes on the assessment of nematode 70 

diversity 

3.2.10.1 PCR amplification and DGGE of amplification products 72 

3.2.11 Investigating eukaryotic assemblages in nematodes from marine and 72 

estuarine environments 

3.2.11.1 PCR amplification ofthe18S rRNA gene for DGGE analysis 73 

3.2.11.1.1 Band excision, amplification and sequencing 73 

3 .2.11.2 Scanning electron microscopy 7 4 

3.2.11.3 Isolation of marine derived fungi from sediments of Jennycliff 74 

and Plymouth Breakwater 

3.2.11.3.1 Ribosomal characterisation of the isolates 75 

3.3 Results 75 

3.3.1 Species separation in a denaturing gel without mung bean nuclease 75 

treatment ofPCR amplicons 

3.3.2 Species separation in a denaturing gel after post treatment ofPCR 76 

amplicons with mung bean nuclease 

3.3.3 Minimum detectable concentration of nematode DNA in a denaturing gel 78 

3.3.4 PCR-DGGE of nematode samples after extraction from estuarine and 78 

marine sediments 

3.3.5 Morphological analysis of sediment sample from Saltash, Tamar estuary 81 

VI 



3.3.6 PCR-DGGE of DNA extracted from sediments using a modified 

Macrae et al. (2001) protocol 

Contents 

83 

3.3.7 DGGE profiling of DNA extracted from marine and estuarine sediment 84 

using FastDNA Spin Kit 

3.3.8 DGGE pattern of DNA templates amplified using MN18FGC and 22R 86 

pnmers 

3.3.9 Influence of sediment sample sizes on assessment of nematode diversity 88 

3.3.10 Investigating eukaryotic assemblages in nematodes from marine and 91 

estuarine environments 

3.4 Discussion 93 

Chapter 4 DNA barcoding of marine nematodes 103 

4.1 Introduction 103 

4.1.1 The concept of DNA barcoding 104 

4.1.2 Molecular markers for DNA barcoding I 05 

4.1.3 Advantages of DNA barcodes 107 

4.1.4 Drawbacks ofbarcoding 109 

4.1.5 DNA Barcoding in practice 110 

4.1.5.1 Barcoding in nematology 112 

4.1.6 Aims ofthis chapter 112 

4.2 Materials and Methods 114 

4.2.1 Sediment collection 114 

4.2.2 Meiofauna extraction and nematode identification 114 

4.2.3 PCR amplification of the 18S rRNA gene 119 

4.2.3.1 Cloning and sequencing of the 18S rRNA gene 120 

4.2.3.2 Phylogenetic analysis of marine nematodes based on 18S rRNA 120 

sequences 

4.2.4 PCR amplification of the D2/D3 segment of nuclear large subunit 121 

ribosomal RNA gene (28S rRNA) 

4.2.4.1 Cloning and sequencing of the partial 28S rRNA gene 121 

4.2.5 PCR amplification and sequencing of the mitochondrial 16S rRNA gene 121 

4.2.6 PCR amplification and sequencing ofthe mitochondrial cytochrome c 122 

oxidase I gene (COXI) 

VII 



Contents 

4.2. 7 PCR amplification and sequencing of the partial ribosomal 18S rRNA 122 

gene for molecular barcoding 

4.2. 7.1 Phylogenetic analysis to test the reliability of molecular barcodes 123 

4.3 Results 123 

4.3.1 Amplification and sequencing ofthe 18S rRNA gene 123 

4.3.2 Amplification and sequencing of the 28S rRNA gene 125 

4.3.3 Amplification and sequencing of the mitochondrial genomic regions 126 

4.3.4 Molecular barcoding of marine nematodes based on 18S rRNA 126 

sequences 

4.4 Discussion 130 

Chapter 5 Cosmopolitanism in Terschellbrgia lo11gicaudata 136 

5.1 Overview 136 

5.1.1 The model species used in this study 138 

5.1.2 Aims 139 

5.2 Materials and Methods 139 

5.2.1 Sample collection 139 

5.2.2 Sample processing 140 

5.2.3 Molecular analyses 141 

5.2.3.1 PCR amplification and sequencingofthe 18S rRNA gene 141 

5.2.3.2 DNA extraction and PCR amplification from formalinised 142 

Merbok samples 

5.2.3.3 Phylogenetic analysis of 18S rRNA sequences 142 

5.2.3.4 PCR amplification ofthe 28S rRNA gene for Ras al Barr and 142 

North Tubli Bay specimens 

5.2.3.5 PCR amplification of the COXI gene 143 

5.2.3.6 PCR amplification of the mitochondrial cytochrome oxidase 143 

subunit li gene (COXII) 

5.2.3.7 PCR amplification ofthe ITS1 and ITS2 region 143 

5.2.3.8 PCR amplification of the NADH dehydrogenase subunit gene 144 

5.2.4 Morphometric analysis 144 

5.2.5 Data analysis 145 

5.3 Results 147 

VIII 



5.3.1 PCR amplification and sequencing of 18S rRNA gene from T. 

longicaudata specimens collected from different geographic 

localities 

Contents 

147 

5.3.2 Phylogenetic analysis 152 

5.3.3 Amplification and sequencing of the 28S rRNA gene from Ras al Barr 152 

and North Tubli Bay specimens 

5.3.4 PCR amplification of the mitochondrial COXI and COXll gene 152 

5.3.5 Amplification of the internal transcribed spacer regions 152 

5.3.6 Multivariate analyses of the complete character sets for all individuals 153 

5.3.7 MDS analyses of the complete character sets for males and females 155 

5.3.8 ANOSIM results for males and females 157 

5.3.9 Similarity percentage (SIMPER) results 160 

5.4 Discussion 161 

Chapter 6 Effectiveness of organic compounds for 
preservation 

nematode 
168 

6.1 Introduction 168 

6.1.1 Formaldehyde and its effects 169 

6.1.1.1 Mechanism of formaldehyde fixation 169 

6.1.1.2 Nucleotide modifications 171 

6.1.2 Fixation and storage conditions and DNA recovery 172 

6.1.3 Common extraction techniques 173 

6.1.4 Contamination 174 

6.1.5 Other organic compounds used for specimen fixation 175 

6.1.6 The problems faced in Nematology 177 

6.2 Materials and Methods 178 

6.2.1 Formalin time series investigation 178 

6.2.1.1 Sediment fixation and meiofauna extraction 178 

6.2.1.2 Nucleic acid extraction and PCR amplification 179 

6.2.1.3 DNA sequencing ofPCR amplicons 180 

6.2.2 Study oflong term and short term archived marine nematode materials 180 

6.2.2.1 Nucleic acid extraction 181 

6.2.2.2 PCR amplification ofthe nuclear 18S rRNA gene from long-term 181 

and short-term formalin preserved nematode specimens 

lX 



6.2.2.3 Cloning and DNA Sequencing 

6.2.3 Prevention of contamination 

6.2.4 Phylogenetic tree construction 

6.2.5 Evaluation of acetone and butanol for nematode worm fixation 

6.3 Results 

6.3.1 Formalin time series experiment 

6.3.2 Amplification ofrecovered DNA from long-term and short-term 

formalin preserved nematode specimens 

Contents 

182 

182 

182 

183 

183 

183 

186 

6.3.3 Evaluation of acetone and butanol for nematode worm fixation and 191 

molecular analysis 

6.4 Discussion 

Chapter 7 Final Discussion and Future work 

Appendix A 

References 

X 

193 

199 

208 

213 



Figures 

LIST OF FIGURES 

Page 
No 

Figure 1.1: Buccal cavities of selected living marine nematodes showing a range of 10 

morphologies. 

Figure 1.2: Tail shapes of selected marine nematodes. to 

Figure 1.3: Examples of cuticle patterns in the posterior oesophageal region of selected 11 

marine nematodes. 

Figure 1.4: The ribosomal RNA (rRNA) cistron. 19 

Figure 2.1: Diagrammatic representation of the position of primers for amplification of 33 

almost the entire 18S rRNA gene. 

Figure 2.2: Promoter and multiple cloning sequence site of the pGEM-T vector system. 39 

Figure 3.1: Separation of marine nematode taxa in a denaturing gel showing artefactual 76 

double band fonnation. 

Figure 3.2: (A) PCR-DGGE analysis of the 18S rRNA gene from Sabatieria sp., 77 

Thalassironus britannicus and Enoploides sp. in a 25% to 60% denaturing gel. (B) 

PCR-DGGE analysis of the 18S rRNA gene from Sabatieria sp., Thalassironus 

britannicus and Enoploides sp. in a 25% to 50% denaturing gel. 

Figure 3.3: DGGE gel showing minimum detectable level of DNA from Thalassironus 78 

britannicus. 

Figure 3.4: Banding patterns of marine nematode communities from four locations. 80 

Figure 3.5: Neighbour-Joining tree showing relationship between DGGE bands 81 

amplified using G18F and 22R primers (18S rRNA) and most similar sequences of 

known nematodes. 

Figure 3.6: PCR-DGGE of total DNA extracted from sediments from four stations 83 

using a modified Macrae et al. (2001) protocol. 

Figure 3.7: Banding patterns of marine nematode communities from five stations 85 

amplified using G 18FGC and 22R primers. 

Figure 3.8: Banding patterns of marine nematode communities from five 87 

environmental stations amplified using MN18FGC and 22R primers. 

Figure 3.9: Neighbour-Joining tree showing the relationship between the DGGE bands 88 

amplified using MN18F and 22R primers and most similar sequences of known 

nematodes. 

Figure 3.10: DGGE analysis of marine nematode communities based on !SS rRNA 90 

amplicons from replicates of different sediment sizes. 

Figure 3.11: Plots showing the relationship between sample size and observed taxa in 91 

XI 



Figures 

DGGE gels. 

Figure 3.12: Scanning electron micrograph images of nematode body surfaces showing 92 

hyphae-like and globular structures. 

Figure 4.1: Diagrammatic representation of the process of DNA barcoding for taxon 108 

identification (modified from Blaxter, 2004). 

Figure 4.2: Amplified 18S rRNA fragment of approximately 920 bp from different 124 

marine nematodes using the MN18F and Nem_l8S_R primers. 

Figure 4.3: Neighbour joining tree with boot strap values (1000 replicates) analysis of 125 

twenty six marine nematode taxa from South West England based on 18S rRNA 

sequences. 

Figure 4.4: Neighbour joining tree with bootstrap values (1000 replicates) showing 128 

relationship between Tamar estuary nematode 18S rRNA sequences and sequences 

from known marine nematodes. 

Figure 4.5: Neighbour joining tree with bootstrap values (1000 replicates) showing 129 

relationship between Plym estuary nematode 18S rRNA sequences and sequences from 

known marine nematodes. 

Figure 5.1: Light micrograph of an adult female Terschellingia /ongicaudata (taken at 138 

xI 0 magnification). 

Figure 5.2: Alignn1ents showing similar haplotypes of T. longicaudata 18S rRNA 148 

sequences from different geographic locations in UK (Tamar estuary, Rame Head, 

Plym estuary, Southampton) and across the globe (Brittany, Cancun). 

Figure 5.3: Alignment of 18S rRNA sequence (another haplotype) from a single 149 

specimen from the Tamar estuary, two specimens from Rame Head and another 

specimen from Cancun along with T. /ongicaudata sequence showing degree of 

conserved and variable regions. 

Figure 5.4: Alignments showing high degree of variation between specimens from Ras 150 

a! Barr and North Tubli Bay in Bahrain and T. /ongicaudata 18S rRNA sequence. 

Figure 5.5: Neighbour joining tree of 18S rRNA sequences from populations 151 

morphologically identified as T. /ongicaudata and selected additional nematode taxa. 

Figure 5.6: Multidimensional scaling (MDS) ordination of Tersche//ingia /ongicaudata 154 

males and females from different geographical locations based on all morphometric 

characters. 

Figure 5.7: MDS plot of males and females from different geographical locations based 155 

on non-sexual characters. 

Xll 



Figures 

Figure 5.8: MDS plot of females from different geographic locations based on 156 

morphometric characters. 

Figure 5.9: MDS plot of male specimens from selected geographic locations based on 157 

fourteen characters. 

Figure 6.1: Gel showing partial 18S rRNA gene amplification products of T. 185 

longicaudata specimens extracted from formalin after 2, 3, 4, 5, 6, 7, 9, 11, 13, 15 and 

30 days. 

Figure 6.2: Gel showing results of PCR amplification of 18S rRNA gene after 11, 13 186 

and 15 days using Accuprime Pfx DNA polymerase. 

Figure 6.3: Gel image showing amplified nematode 18S rRNA gene fragments from 187 

long-term archived marine nematode worms. 

Figure 6.4: NJ tree with 1000 bootstrap replicates showing relationship between long- 190 

tem1 archived marine nematode sequences and most similar sequences of known 

nematodes. 

Figure 6.5: NJ tree with 1000 bootstrap replicates showing relationship between short- 191 

tem1 archived nematode sequences and most similar sequences of known nematodes. 

Figure 6.6: Images of nematode worms fixed in acetone and butanol under low and 192 

high resolution. 

Figure 6.7: Gel image of nematode 18S rRNA gene amplified using Gl8F and 22R 193 

pnmers. 

X Ill 



Tables 

LIST OF TABLES 

Page 
No 

Table 2.1: Annealing temperatures used for PCR amplification of specific regions in 35 

the nematode genome. 

Table 3.1: Denaturing gradients prepared from denaturing stocks for DGGE. 61 

Table 3.2: Water-ethanol ratio for dehydration process. 74 

Table 3.3: Nematodes identified from Saltash sample by morphological characteristics. 82 

Classification to family is according to Meldal (2004). 

Table 4.1: Morphological identifications and corresponding molecular tags for 116 

specimens from the Tamar estuary used to test the barcoding concept. 

Table 4.2: Morphological identifications and corresponding molecular tags for 118 

specimens from the Plym estuary used to test the barcoding concept. 

Table 4.3: Primers with their respective base positions in relation to Caenorhabditis 120 

elegans 18S rRNA sequence. 

Table 5.1: Details of the localities and habitats from where sediments were collected in 140 

this study. 

Table 5.2: Characters measured for each Terschellingia longicaudata spectmen 145 

processed. 

Table 5.3: Summary of results from one-way ANOSIM for female specimens. 159 

Table 5.4: Summary of results from one-way ANOSIM for male specimens. 160 

Table 6.1: DNA sequences from short-term archived nematode worms picked up from 188 

bulk meiofauna samples with closest BLAST search results. 

Table 6.2: DNA sequences from long-term archived nematode specimens collected 189 

from Tamar estuary with the closest BLAST matches. 

XIV 



APS 

bp 

BSA 

DGGE 

DNase 

dNTP 

DNA 

dsDNA 

E.coli 

g, mg, J.Lg, ng 

IPTG 

Kb 

LB 

L, mL, J.LL 

Ltd 

M, mM, J.LM 

M in 

mtDNA 

18S rRNA 

OD 

PCR 

rATP 

RCF 

rpm 

sec 

TAE 

TE 

TEMED 

T. longicaudata 

u 
uv 
v/v 

w/v 

X-gal 

ABBREVIATIONS 

Ammonium persulphate 

Base pairs 

Bovine serum albumin 

Denaturing gradient gel electrophoresis 

Deoxyribonuclease 

Deoxynucleotide 5'-triphosphate 

Deoxyribonucleic acid 

Double stranded DNA 

Escherichia coli 

Gram, milligram, microgram, nanogram 

Isopropyl thiogalactoside 

Kilobase pair 

Luria-Bertani Broth 

Litre, millilitre, microlitre 

Limited 

Molar, millimolar, micromolar 

Minute 

Mitochondrial DNA 

Nuclear small subunit ribosomal RNA 

Optical density 

Polymerase Chain Reaction 

Rat adenosine 5'triphosphate 

Relative centrifugal force 

Revolutions per minute 

Second 

Iris-acetate-EDT A buffer 

Tris-EDTA buffer 

N,N.N' ,N- tetramethylethylenediamine 

Terschel/ingia longicaudata 

units 

Ultraviolet 

Volume/volume percentage 

Abbreviations 

Weight per volume 

5-bromo-4-chloro-3-indolyl-~-D-galactopyranoside 

XV 



Acknowledgements 

Acknowledgements 

I have, in fact, no words sufficient to express my heart-felt gratitude to all my 

supervisors: Melanie Austen, Gary Smerdon from the Plymouth Marine Laboratory, David 

Bilton from the University of Plymouth, John Lambshead from the Natural History 

Museum and Alex Rogers from the British Antarctic Survey for making this PhD project 

possible and for their help and guidance over the last three years. I would especially like to 

thank Me!, Gary and David for their help, support and guidance throughout the project. 

Their optimism about my ability and performance followed by sincerest motivation 

inspired and led me to go ahead with the project. 

I am undoubtedly thankful to Plymouth Marine Laboratory for the provision of a 

PhD Studentship. 

My thanks are equally due to Sarah Dashfield and Hazel Needham from Plymouth 

Marine Laboratory for teaching me everything about nematode taxonomy and also helping 

out with nematode identifications during this project. I am undoubtedly thankful to Roy 

Moate (Electron Microscopy Centre, University of Plymouth) for helping me with the 

microscopic analysis. 

Thanks to all past and present members of the molecular biology laboratory (Room 

1 16) and also colleagues in Room 110 for their support and encouragement. I also take the 

privilege of expressing my thanks to Mike Alien (Plymouth Marine Laboratory) for his 

valuable suggestions during the thesis write up. 

Last but not the least I would like to thank my parents, my father Pradyot Nath 

Bhadury and my mother Nandita Bhadury for their help and support during all these years. 

I specially thank my parents for their much valued advice and blessings without which I 

could not have reached here. Finally I would like to thank my fabulous sister Punyarupa 

for her continued encouragement. 

XVI 



Declaration 

Author's Declaration 

At no time during the registration for the degree of Doctor of Philosophy has the author 

been registered for any other University award. 

This study was financed with the aid of a studentship from the Plymouth Marine 

Laboratory and was carried out in collaboration with Plymouth Marine Laboratory. 

Training was obtained towards the use of specialised bioinformatics and statistical 

software programmes as part of this research study. 

Relevant scientific seminars and conferences were regularly attended at which work was 

often presented and two papers were prepared for publication. 

Publications: 

(I) Cook AA, Bhadury P, Debenham NJ, Meldal BHM, Blaxter ML, Smerdon GR, Austen 

MC, Lambshead PJD, Rogers AD (2005) Denaturing gradient gel electrophoresis (DGGE) 

as a tool for identification of marine nematodes. Marine Ecology Progress Series 291: 103-

113 

(2) Bhadury P, Austen MC, Bilton DT, Lambshead PJD, Rogers AD, Smerdon GR (2005) 

Combined morphological and molecular analysis of individual nematodes through short

term preservation in formalin. Molecular Ecology Notes 5: 965-968 

Meetings and Conferences attended: 
(1) Research seminar series. University of Plymouth, December 2003 

Oral presentation: 'DGGE as a tool for identification of marine nematodes'. 

(2) Graduate Research Forum research seminar series, Plymouth Marine Laboratory, June 

2005 

Oral presentation: 'Effectiveness of formalin for short term preservation of marine 

nematode specimens'. 

XVll 



'Declaration 

'(3) FirstJntemationali DNA.Barcoding;Conference, London,,Eebruary:2005r 

rPoster presentation: 'Jdentificatlon ofmar:ine nematodes: a molecular approach.', 

Wor(Hcount: .65,120 Signed: rP. ... --. • ;·,I! I ,J. .-.,_. ·_' ~ ,_ .. ·.- -- ~VWTWOUV .. T 
. - 'iii~J ·fL .. t:.,n. "·-~ r Bate: . I· L--- · ~-

1 
MJI:.Fo , 

XVIII-



Introduction 

1. General Introduction 

1.1 Marine nematodes: diversity and ecological importance 

The phylum Nematoda is both speciose and biologically as well as ecologically 

diverse (Chitwood and Chitwood, 1974; Andnissy, 1976; Anderson, 1992; Malakhov, 

1994; Lambshead et al., 2003). Nematodes are found at the bottom of deep oceans, in 

terrestrial soils and inshore muds, in the frozen desert of Antarctica and are present in an 

incredible numerical abundance. In addition to existing as free living forms in marine and 

terrestrial environments, they frequently live as parasites within the bodies of plants and 

other animals including humans (Nickle, 1991; Anderson, 1992; Blaxter and Bird, 1997). 

Despite being small and inconspicuous, free living marine nematodes are of 

fundamental importance in the ecology of seas and estuaries (Austen, 1986; Austen and 

Warwick, 1989; Coull, 1999; Austen, 2004; Lambshead, 2004). Despite their relatively 

conserved body plan, many groups of nematodes show appreciable morphological 

diversity and individual species differ according to their habitats, e.g. species found in fine 

sediments are short, while those in coarse sands are often either very small or very elongate 

(Platt and Warwick, 1980). In addition nematodes occupy very different trophic positions 

in sediments. Many species feed on bacteria, on algae or both; some eat detritus and 

possibly utilize dissolved organic matter and a considerable number are predators, feeding 

on other nematodes, oligochaetes, polychaetes, etc. This diversity in feeding is reflected in 

species diversity, indeed the number of nematode species in most marine habitats is 

thought to be much higher than that of any other metazoan group (Lambshead and 

Boucher, 2003; Lambshead, 2004). Therefore nematode abundance in both marine and 

terrestrial domains is surprisingly high. 
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1.1.1 Species richness 

As a phylum, the Nematoda is highly speciose and possibly hyperdiverse (species 

richness in excess of 1 million). The deep ocean in particular has been recognised as a 

potentially hyperdiverse environment. This presumption is based on a series of datasets 

indicating high local diversity in deep sea sedirnents, the generality of which is unclear 

(Grassle and Maciolek, 1992; Groombridge, 1992; Lambshead, 1993; Boucher and 

Lambshead, 1995; Heywood, 1995). Nematode abundance in marine environments is 

undoubtedly high and could be in the region of 1 05 to 108 animals per square meter. 

According to Cook et al. (2000) nematode abundance in marine sediments declines with 

depth and distance from continents and is related to food supply and local productivity. 

Therefore, the highest nematode abundance is generally observed in marshes and marine 

mud around the coastal regions (Alongi, 1987; Boucher and Clavier, 1990). The pattern of 

declining abundance with productivity suggests a null hypothesis where species richness 

and ecological diversity mirrors the basic abundance pattern. 

Measuring nematode species richness is often problematic, especially where the 

region to be assessed is very large, has no biogeographical boundaries and is 

environmentally diverse. This has therefore limited marine nematode biodiversity research, 

and the taxonomy of the group is relatively immature in that few of the extant species 

appear to have been described. In addition, descriptions tend to be clustered in particular 

biogeographical regions and concentrated in easily sampled habitats such as the littoral. 

Estimation of global nematode diversity is therefore a difficult task. Nevertheless, 

Lambshead (2004) has suggested three ways to estimate global diversity based on local 

sampling. These are (i) by extrapolation methods from known regions to cover unknown 

regions (May, 1998), (ii) calculation based on total global nematode abundance and (iii) 

estimating global species richness by generating species accumulation curves along a 

transect. One of the major problems with the first approach is that marine nematodes from 

offshore habitats are relatively understudied in any part of the world. For example, British 
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waters are amongst the most well-known in the world, but only 450 species have been 

recorded and described so far. This accounts for about 10% of the global described fauna, 

but is probably an underestimate because many offshore habitats have been under sampled 

even in the UK. Indeed even systematic surveys of European inshore waters have revealed 

that 30-40% of species recorded are new to science {e.g. Boucher (1980a) in sublittoral 

sands in Brittany, Lambshead (1986) in Clyde sandy beaches}, making extrapolations to 

other regions problematic. In the second method global nematode species richness is 

estimated by working backwards from total global nematode abundance but this relies on 

assumptions about the number of individuals per species in nematodes, which are fraught 

with difficulties (Lambshead, 2004). 

Accumulation curves are the most widely used method for estimating global 

species richness in many organismal groups including rain forest insects (Erwin 1982, 

1988) and deep-sea benthic macrofauna (Grassle and Maciolek, 1992). Based on species 

accumulation with distance, global species richness of marine nematodes has been 

estimated from a regional data set which covered more than 3000 km of abyssal plain in 

the north-central equatorial Pacific (Brown, 1998). From these data, the global richness of 

marine nematodes was estimated to be in the order of 107 species (Lambshead, 2004), 

which was very close to the estimates ofErwin (1988) and Grassle and Maciolek (1992) 

for tropical rain forest canopy fauna and bathyal deep-sea macrofauna respectively. The 

curve showed a rapid accumulation of species and then settled down to a linear relationship 

between species accumulation and distance. 

On the other hand, when the species curve was calculated from south to north 

(degrees of latitude), the species accumulation showed a concave curve with an asymptotic 

pattern and the calculated global diversity was in the order of 105
, a difference of two 

orders of magnitude from the previous estimate (Lambshead, 2004). The reason for this 

discrepancy may be due to the existence of a latitudinal gradient of organic flux to the 

seabed which declines from the equator northwards. It is well known that deep sea 
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nematode abundance and species richness tends to be positively associated with organic 

flux (Lambshead et al., 2000) and this may be why the species accumulation curves were 

asymmetric in the central equatorial Pacific. It is also clear from Brown's datasets that 

nematodes are more speciose in northern stations in comparison to southern stations in the 

central equatorial Pacific. 

In addition to this difference in estimates depending on how species accumulation 

curves are assembled, datasets such as Brown's have other limitations which are relevant 

here such as small number of samples, the immature nature of nematode taxonomy 

(difficult to spot how many species there really are) etc. This study showed for the first 

time the problem of estimating global diversity from a regional dataset, and some of the 

drawbacks associated with the estimations taking into consideration such as physical 

disturbances and flaws in sampling. The species accumulation method is also based on 

assumptions and therefore the estimations are somehow debatable. 

Grassle and Morse-Porteus (I 992) have suggested that the high diversity observed 

in deep sea nematodes forms a small-scale spatio-temporal mosaic, where similar patches 

with similar species are repeated over large areas, resulting in modest global diversity. As a 

result, although alpha diversity may be high, beta and gamma diversity may actually be 

relatively modest (Whittaker, 1970). This hypothesis has been tested to some degree by 

analysing data sets from smaller, less well-sampled stations (around 1 km diameter) from 

the North Atlantic abyssal plains. As opposed to the central Pacific, the deep North 

Atlantic tends to be divided into distinct basins separated into two groups, east and west, 

by the mid-Atlantic Ridge. The data available include the High Energy Benthic Boundary 

Layer Experiment (HEBBLE) site off Newfoundland, the Porcupine Abyssal Plain 

(southwest of the British Isles) and the Madeira Abyssal Plain (Lambshead et al., 2000). 

While the HEBBLE and Porcupine datasets fit the model the Madeira datasets did not. 

Because the Madeira site was located in the area of a disturbance caused by turbidity, the 
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estimated regional species richness, like alpha diversity, appears to be reduced by the 

impact of their physical disturbance (Lambshead et al., 2001). 

The only suitable bathyal data set available for the analysis of regional diversity is 

from the San Diego Trough (Lambshead et al., 1994). These data produced the lowest 

estimated regional species richness for all the deep sea data despite having high alpha 

diversity (Boucher and Lambshead, 1995). This region is, however, apparently anomalous 

in having unusually low nematode abundance. 

Nematode diversity is undoubtedly best understood in coastal regions, and here 

attempts have been made to determine where species richness is concentrated. Comparing 

habitats within coastal regions suggests that nematode alpha diversity is significantly lower 

in intertidal and estuarine stations as opposed to abyssal and bathyal depths where 

nematode ecological diversity is at its peak (Boucher and Lambshead, 1995). In intertidal 

sites estimated nematode species richness is comparatively lower than offshore habitats. 

For example, lowest species richness have been reported in an intertidal mud transect at La 

Rochelle (J Rzeznik et al., unpublished) and an intertidal mangrove site in Guyana (Ragot 

et al., 1999) ( 49 and 76 species respectively). The Clyde sandy beach data (Lambshead, 

1986) showed a low species richness in comparison to offshore sites but still relatively 

high (133) considering that the datasets were collected from a single habitat and the 

nematode assemblages were exposed to wave action. Relatively high species richness 

(150-327) has been observed in British estuarine intertidal samples (TJ Ferrero, NJ 

Mitchell and PJD Lambshead unpublished). However this probably results from the sharp 

ecological gradient present in such sites and low alpha diversity is typically observed at 

individual estuarine stations (Boucher and Lambshead, 1995). 

The relatively low species richness observed in intertidal compared to deeper-water 

stations may be a consequence of the nature of the habitat. Physical disturbances such as 

wave action tend to dominate the intertidal, and it may be that such processes reduce the 

importance of small-scale patchiness and so lead to relatively low local and regional 
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species richness (Lambshead and Boucher, 2003). Lambshead (2004) has therefore 

speculated that fragmentation of intertidal habitats may be instrumental in low species 

richness in these habitats. 

For coastal offshore habitats nematode species richness has been found to be similar 

to abyssal sites. For example, in the Irish Sea, regional species richness (221) is similar to 

that seen in abyssal sites (100-281) (TJ Ferrero, unpublished). The highest regional species 

richness estimates have been recorded in shallow water regions that include a range of 

different biotopes. A transect study carried out from Dover to Brittany (G Boucher 

unpublished data) following the English Channel showed high total species richness (922) 

with high alpha diversity and included nematode habitats such as muddy sand in the bay of 

Plymouth, coarse sand off North Brittany and in the Bay de Seine, and pebbles in the 

Dover Straight. Boucher (1997) also found high nematode species richness (702) in the 

southwest New Caledonia lagoon where three different sediment types are found (Chardy 

et al., 1988). Interestingly, there is no evidence of a latitudinal influence on estimated 

coastal nematode regional species richness, replicating the alpha diversity analysis of 

Boucher and Lambshead (1995). Species richness in Ono Reef lagoon in Fiji (138) and 

Moorea in Polynesia (56) was similar or sometimes lower than estimated for coastal 

habitats at higher latitudes. Similar regional diversity patterns with no latitudinal influence 

have been recorded by Kendall and Aschan (1993) and Ellingsen and Gray (2002) for 

Norwegian shelf macro fauna. 

To conclude it seems that the biodiversity in coastal regions tends to show lower 

alpha diversity than the deep sea because disturbance tends to predominate over the effects 

of patchiness, especially in the intertidal regions and estuaries, but a high beta and gamma 

diversity because of the variety of closely packed, ecologically different habitats. Ellingsen 

and Gray (2002) also found that beta and gamma diversity was positively associated with 

environmental variability. To conclude, whilst deep sea nematode species richness 

undoubtedly seems relatively high, it is difficult to be certain whether it is actually 
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hyperdiverse and close-packed habitats such as coastal regions contain a higher percentage 

of global nematode species than some workers have suggested. 

1.1.2 Importance of nematodes in marine ecosystems 

Being highly speciose and abundant, nematodes play a major role in marine 

decomposition processes through the direct consumption of detritus, but more importantly, 

through grazing on, and hence increasing the productivity of, heterotrophic bacteria 

involved in decomposition (Yeates and Coleman, 1982; Austen, 2004). Nematodes along 

with other meiofauna mechanically break down detrital particles and cause them to be 

more susceptible to increased bacterial action (Coull, 1999). Gerlach (1978) also argued 

that grazing by meiofauna such as nematodes keep bacterial growth in the log phase, and, 

therefore, the bacteria metabolize faster. Nematodes also aid the recycling of nutrients in 

the marine environment (Nicholas, 1975), and form an important component of the food 

chain for other invertebrates and for juvenile fish and shellfish (Gaston, 1992; Austen, 

2004). There are reports that nematodes dominate the gut content of bottom feeding 

juvenile fish (Feller and Coull, 1995; Colombini et al., 1996). 

1.1.3 The use of nematodes in biomonitoring 

Because of their high abundance in estuarine as well as in coastal habitats, there has 

been an increase in awareness of the importance of nematodes along with other meiofauna 

in the functioning of marine systems and their potential role in monitoring anthropogenic 

impacts in the environment (Coull and Chandler, 1992; Somerfield et al., 1995; 

Lampadariou et al., 1997; Austen, 2004). This is primarily due to several size-related 

advantages of the meiobenthos over the macrobenthos. These include their high densities 

which permit the collection of smaller samples, and shorter generation times combined 

with a general lack of a planktonic phase in their life cycles, which suggest a potentially 

shorter response time and therefore higher sensitivity to anthropogenic disturbance (Coull 
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and Giere, 1988; Heip et al., 1988; Moore and Bett, 1989; Giere, 1993; Warwick, 1993). 

Moreover meiofaunal components such as nematodes and copepods are abundant and 

diverse even in habitats which are subjected to natural, physical and chemical stress, and 

where very few, if any, macrofaunal species remain. 

Numerous studies have been conducted, including rmcrocosm and mesocosm 

experiments, to look at the effects of anthropogenic disturbance on free-living marine 

nematode communities. Most of these studies have looked into the effects of 

contamination caused by metals (Warwick et al., 1988; Millward and Grant, 1995; Austen 

and McEvoy 1997a; Austen and Somerfield, 1997), anti-fouling paints or tributylin tin 

(Austen and McEvoy, 1997b; Schratzberger et al., 2002), oil-related contamination 

(Boucher, 1980b; Warwick et al., 1988), organic enrichment (Gee et al., 1985; Olafsson, 

1992; Schratzberger and Warwick, 1998), hypoxia (Modig and Olafsson, 1998) and 

disposal of dredgings and associated contaminants (Schratzberger et al., 2000a, b). Other 

studies have examined the effects of anthropogenic disturbances on nematode and other 

meiofaunal communities in natural environments (Marcotte and Coull, 1974; Boucher 

1980b; Lambshead, 1986; Sandulli and De Nicola-Giudici, 1990; Warwick et al., 1990; 

Somerfield et al., 1994; Lampadariou et al., 1997). Experiments in microcosm and 

mesocosm with natural nematode communities have provided statistically important results 

regarding the impacts of anthropogenic factors (Austen, 2004). In most of these studies 

visible changes in the nematode communities were observed due to the impacts of 

anthropogenic disturbances (Austen and McEvoy, 1997a; Boyd et al., 2000; Gheskiere et 

al., 2005; Mahmoudi et al., 2005). This led to the conclusion that nematodes along with 

other meiofauna could be exploited as an effective tool for biomonitoring. 

1.1.4 Nematode morphology and taxonomy 

At the microscopic level, free living manne nematodes are highly variable 

morphologically, and no one species can be considered as truly representative. Most adult 
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nematodes are elongated cylindrical worms, generally 1-2 mm m length, and are 

sufficiently transparent to allow their internal anatomy to be seen, considerably increasing 

the number of characters available for identification purposes. Of the 4,000 or so species of 

free living marine nematodes described, some 450 representing 154 genera have been 

identified from British waters based on morphological characters (Platt & Warwick, 1983). 

Free living marine nematodes are usually identified under a compound microscope using a 

combination of the following key morphological characters (Wieser, 1954; Warwick, 

1973; Jensen, 1979; Coomans et al., 1979; Platt 1984, 1985; Vincx, 1986): 

• Buccal cavity (Figure 1.1) 

• Structure of the amphids (these are specialised sensilla situated laterally on the 

head) 

• Tail shape (Figure 1.2) 

• Cuticular patterns, ornamentation, etc (Figure 1.3) 

Besides these, special characters such as the presence of gubernacula (male sexual organ), 

precloacal supplements, structure of the oesophageal bulb, etc. are extensively used by 

taxonomists for the identification of individual species (Filipjev, 1918; Wieser, 1959; 

Gerlach, 1963; Riemann, 1966; Rao, 1969; Andnissy, 1976; Ott, 1977; Jensen, 1979; 

Hope, 1982; Platt and Warwick, 1983; Platt and Warwick, 1988; Castillo-Fernandez and 

Decraemer, 1993). 
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Figure 1.1: Buccal cavities of selected living marine nematodes showing a range of 

morphologies. A. Minute form; B. Unarmed form; C. Form with fixed teeth; D. Form 

with moveable mandibles (after Platt and Warwick, 1983). 

Figure 1.2: Tail shapes of selected marine nematodes. A. Short and round; B. 

Conical; C. Conico-cylindrical with swollen tip (clavate); D, Elongated, filiform (after 

Platt and Warwick, 1983). 
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Figure 1.3: Examples of cuticle patterns in the posterior oesophageal region of 

selected marine nematodes. A. Smooth without dots; B. Coarsely striated, resembling 

annulation; C. Externally fairly smooth, striations appearing to be the result of 

deeper structure; D. Transverse rows of dots; E. Covered with fme dots, sometimes 

irregular laterally, although the surface appears smooth; F. Longitudinal rows of 

structures (after Platt and Warwick, 1983). 

Taxonomists who identify marine nematodes by morphological means often use 

morphometries in addition to the qualitative study of the above characters. Morphometric 

analysis is the quantification of variation in form and typically involves measuring 

morphological characters such as body length, body diameter, number of cephalic setae, 

male amphids, etc. It is a useful and important method for the differential diagnosis of 

genera (Platt and Warwick, 1983; Bett and Moore, 1988; Warwick and Robinson, 2000) 

and for differentiating between species belonging to the same genus. Because nematode 

identification involves observation of minute characters, it is often difficult and time 

consuming for taxonomists to identify them under the microscope. Only specialists in the 
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field of marine nematology can assign nematodes to particular genera and species, 

especially in the case of species complexes or assemblages of cryptic or sibling species. 

1.1.5 Cosmopolitanism and species delineation among marine nematodes 

Marine species are defined as cosmopolitan if they are reported from two or more 

oceans including connected seas (Sterrer, 1973). Cosmopolitan species have been reported 

from a wide array of major taxa displaying a broad range of life styles including the 

phylum Mollusca (Canapa et al., 2003), Echinodermata (Ciarke and Downey, I 992) and 

Porifera (Nichols and Barnes, 2005). Marine invertebrates which have pelagic larval and 

juvenile stages may in some cases achieve broad geographic ranges through passive 

dispersal in the water column (Scheltema, 1986), and in some cases genetic studies have 

revealed that such taxa are genuinely cosmopolitan (Westheide, 1990). On the other hand, 

it may be expected that meiofaunal species may have relatively restricted geographical 

ranges because of life-history traits such as a short life cycle, relatively small number of 

offspring, the general absence of a pelagic larval stage and the relatively limited swimming 

ability in adults (Giere, I 993; Schmidt and Westheide, 2000). 

Free living marine nematodes lack a planktonic phase in their life cycle, and are 

thought to be dispersed by passive transport in the bedload and water column (Palmer, 

I988; Armonies, I994; Sun and Fleeger, I994). Tidally induced vertical and horizontal 

displacements have been observed in nematodes by Rieger and Ott (197I) in the Adriatic 

Sea, and studies have shown that nematodes closest to the sediment-water interface may be 

most susceptible to transport (Warwick and Gee, 1984; Eskin and Palmer, I985). There are 

also reports of swimming activity in some nematodes (Jensen, 1981; Palmer, I988), 

although the role of such active movement in dispersal is unclear, and indeed the dispersal 

ability of marine nematodes is generally poorly understood, but considered to be relatively 

low (DePatra and Levin, I989; Sun and Fleeger, 1994). 
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Despite these expectations, cases of apparently cosmopolitan taxa have been 

reported in a number of meiofaunal groups, including Nematoda (Gerlach, 1962), 

Ostracoda (Rulings, 1971), Tardigrada (Renaud-Momant and Pollock, 1971), 

Gnathostomulida (Sterrer, 1973), and Gastrotricha (Hummon et al., 1994). Nevertheless, it 

is questionable whether populations of several groups of meiofauna such as nematodes 

reported from the coasts of various continents actually do represent cosmopolitan species. 

A central point of debate over the presumed cosmopolitan distribution of meiofauna 

including free living marine nematodes concerns species identification. In particular, critics 

have questioned the reliability of species identifications from geographically distinct areas 

especially when made by different investigators using different methods. In fact, careful 

morphological analysis has shown that some species with a presumed wide geographic 

range are actually complexes of closely related taxa also termed sibling or cryptic species 

(Westheide, 1987; Specht and Westheide, 1988; Giere, 1993; Evans, 1994; Warwick and 

Robinson, 2000). 

Sibling or cryptic species are species that are difficult or impossible to distinguish 

based on morphological characters (Mayr and Ashlock, 1991). Sibling species in the 

narrow sense often have minute morphological differences that are only noticed once 

species are recognised for other reasons. In some instances these morphological differences 

are subtle but diagnostic (Knowlton, 1993). Recent advent of molecular technologies has 

uncovered cryptic species in various marine invertebrate groups (reviewed in Knowlton 

2000). Many of the marine nematode species which have wide geographical distributions 

may in fact be complexes of such sibling species. A classic example of a new sibling 

species of marine nematode is Pontonema mediterranea described by Warwick and 

Robinson (2000) based on morphometries and subtle morphological characters, and cryptic 

species have been also detected in groups of nematode with socio-economic importance 

(Chilton et al., 1995; Romstad et al., 1998; Hung et al., 1999). Defining species boundary 

for sibling species is a significant problem since they are thought to be widespread in the 
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marine environment (Knowlton, 1993; Coyne and Orr, 2004). Molecular technologies in 

combination with traditional taxonomy could provide detailed information about the nature 

of cosmopolitanism and species in marine meiofauna including free-living nematodes, and 

recent applications of such methods to in marine organisms have proved illuminating 

(Rogers et al., 1995; Schmidt and Westheide, 2000; Tarjuelo et al., 2001; Veliz et al., 

2003; Sponer and Roy, 2002; Lee and 6Foighil, 2004; Legentil-L6pez and Turon, 2004). 

In contrast to the above, recent surveys using highly reproducible techniques (e.g. 

high resolution video microscopy) have suggested that cosmopolitanism appears to remain 

a widespread phenomenon among certain meiofaunal groups (Westheide, 1990; Schmidt 

and Westheide, 2000; Hummon, 1994). Such approaches have relied entirely on observable 

phenotypic characters, however, and do not exclude the possibility that so-called 

cosmopolitan species are in fact complexes of morphologically inseparable taxa. 

1.1.6 Problems with nematode taxonomy 

From the above discussions it is clear that nematodes are highly species rich 

(Lambshead, 2004) and abundant in marine environments, and these organisms, along with 

other benthic meiofauna, are potentially important in monitoring anthropogenic impacts. 

On the other hand it is obvious that nematode taxonomy which is based on careful 

measurements and comparison of morphological characters is often difficult and laborious 

and beyond the scope of most ecologists working in the field of marine science. To make 

matters worse, nematode species can be variable in morphology and the differences 

between valid species obscured by cryptic diagnostic differences (De Ley et al., 1999). In 

addition, the global coverage of identified nematode species is highly uneven. In general, 

northwest European coastlines are reasonably taxonomically described with scattered 

information from other European coastlines and North America (Lambshead, 2004). Most 

of the rest of the world is effectively unknown territory. For example, 65% of nominal 

species collected from Clyde beaches could be named (Lambshead, 1986), but only 38% 
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from the Irish Sea (TJ Ferrero unpublished), 4% from the deep Norwegian Sea (Jensen, 

1988) and just 1% from deep water in the Venezuela Basin (Tietjen, 1984). As a result, 

ecological studies and surveys of nematode diversity are usually restricted to 

identifications at genus level in most cases while taxonomic surveys hardly ever approach 

completeness in identifying all species isolated from all but a few samples. 

Given these difficulties, there is a need for applying other technologies such as 

molecular methods in conjunction with traditional taxonomy to speed up nematode 

identification and to improve our ability to rapidly assess nematode diversity from marine 

environments. Such approaches could revolutionise the use of nematodes in biomonitoring, 

which is currently restricted by the availability of taxonomic expertise, and a coupling of 

molecular and morphological methods will also aid our understanding of cosmopolitanism 

and cryptic speciation in nematodes. 

1.2 The molecular revolution in nematology 

The advent of molecular technologies such as the polymerase chain reaction and 

DNA sequencing have revolutionised research in biological sciences including marine 

biology. In the last few years a substantial number of papers have been published in the 

marine biology literature dealing with issues of species diagnosis, ecology and 

biodiversity, biogeography and evolution using molecular markers (Lindeque et al., 1999; 

Donald et al., 2001; Sparagano et al., 2002; Cook et al., 2005; Dawson and Hamner, 2005; 

Groben and Medlin, 2005; Hackett et al., 2005; Lidie et al., 2005; Van Oppen et al., 2005). 

Nematology has benefited from these technological developments and some ground

breaking studies on the molecular phylogenetics and evolution have already been 

published (Biaxter et al., 1998; Kampfer et al., 1998; Aleshin et al., 1998), although such 

work has been concentrated on the economically important parasitic and soil-dwelling 

taxa, and molecular investigations of marine nematodes remain very few (Meldal, 2004; 

Bhadury et al., 2005; Cook et al., 2005; De Ley et al., 2005). Molecular methods also offer 
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an efficient approach to studying the biodiversity of marine communities. This is true for 

meiofaunal communities such as marine nematodes where systematic expertise is limited, 

taxonomy is immature and morphological characters may be inadequate for species 

identification. Molecular methods may, therefore, offer ways of analysing manne 

meiofaunal communities including free-living nematodes. The following sections will 

provide a brief overview of the type of molecular markers used in nematode phylogenetic 

studies and how the use of molecular markers in combination with other techniques could 

speed up the process of marine nematode species identification and the rapid assessment of 

nematode diversity from marine and estuarine environments. 

1.2.1 Molecular insights into species identification and diversity assessment 

Accurate identification of nematodes from marine and estuarine environments has 

important implications in studies of systematics (taxonomy and phylogeny), and ecological 

diversity. Nucleic acid techniques, in particular PCR based methodologies and DNA 

sequencing (Sanger et al., 1977; Saiki et al., 1985; Mullis and Faloona, 1987) has 

advanced the identification of marine microbial eukaryotes and macro fauna. To date, these 

techniques have yet to be applied to marine meiofaunal communities such as nematodes, 

but have been explored in soil and parasitic nematode identification and diversity studies. 

The following section provides background on molecular markers that are routinely used in 

identification and diversity studies of eukaryotes including soil and parasitic nematodes 

and some of the concepts and techniques that apply. 

1. 2.1 .1 Molecular markers for eukaryote systematics 

Genomic DNA sequences evolve at different rates depending on the degree of 

functional constraint they are subjected to. Non-coding and non-transcribed sequences 

generally evolve faster than protein coding sequences. In addition mitochondrial DNA 

appears to evolve faster than nuclear DNA. For addressing issues of systematics and 
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phylogeny, a segment of DNA that has accumulated changes at a rate comparable to the 

phyletic events under study is the preferred choice. Generally a rapidly evolving gene is 

selected for analysing populations or congeneric species. For species identification and 

diversity studies, a segment of DNA that carries information from the past as well as from 

the recent history along with very little variation within members of a taxon is most 

appropriate. 

For identification and diversity studies a wide range of molecular markers have 

been used in different groups of organisms. The most commonly used marker is the 

nuclear small subunit ribosomal RNA gene, also known as 18S rRNA or the SSU gene. 

This gene has been used in different groups of organisms such as protists, plankton, 

molluscs, annelids and polychaetes. The other gene most commonly used for molecular 

identification is mitochondrial cytochrome c oxidase I also known as COXI. The COXI 

gene has been proposed as a metazoan target for identification studies based on 

amplification and sequencing (Hebert et al., 2003). The choice of gene depends on factors 

such as the presence of conserved and variable regions for primer design, copy numbers in 

the genome, and suitability for amplification. In addition, other genes such as rbcL and 

mitochondrial 16S rRNA have also been implemented in the identification of eukaryotic 

orgamsms. 

In the phylum Nematoda, a number of different genes such as cytochrome c 

(Vanfleteren et al., 1994), globin (Vanfleteren et al., 1994), RNA polymerase li (Baldwin 

et al., 1997), heat shock protein 70 (Snutch and Baillie, 1984), ribosomal RNAs and their 

spacer segments (Aleshin et al., 1998; Blaxter et al., 1998; Kampfer et al., 1998; Dorris et 

al., 1999) and mitochondrial genes (Hyman and Slater, 1990; Anderson et al., 1993; 

Blouin et al., 1997; Keddie et al., 1998) have been used for phylogenetic studies. For 

identification of soil and parasitic nematodes the 18S rRNA gene has been most widely 

used, and mitochondrial COXI and nuclear 28S rRNA (also known as large subunit 

17 



Introduction 

ribosomal RNA or LSU) have been evaluated within some parasitic genera (Floyd et al., 

2002; Blaxter, 2004; Powers, 2004; De Ley et al., 2005). 

Ribosomal RNA (rRNA) genes are found in all organisms and retain a basic shared 

function. They are a vital component of the cellular ribosomes, the site of protein 

synthesis. There are generally four nuclear rRNA genes and two organellar (mitochondrial 

and chloroplast) rRNA genes. In Eukaryotes, three of the nuclear genes occur in an array 

starting with the external transcribed spacer region (ETS), followed by the small subunit of 

the rRNA (18S), the first internal transcribed spacer (ITS-I), the 5.8S gene, the second 

internal transcribed spacer (ITS-2) and the large subunit (28S) (Figure 1.4). The ETS and 

both ITS regions contain signals for processing the rRNA transcript (Hillis & Dixon, 

1991). They often show intragenomic variation and are usually only used for analyses of 

intra-specific relationships. The small subunit (18S) is generally the one with the slowest 

rate of evolution and is therefore used for reconstructing deep phylogenies including the 

tree of life (Hillis & Dixon, 1991). The large subunit (28S) has some regions that evolve 

faster than the small subunit and some regions that evolve as slowly as the small subunit. 

The two smallest units (SS and 5.8S) have been used for phylum level analyses but are too 

small to be used for robust phylogenetic reconstructions (Halanych, 1991 ). Organellar 

rRNAs have higher mutation rates and are therefore used mainly for the inference of 

relationships of closely related taxa. 
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Figure 1.4: The ribosomal RNA (rRNA) cistron. Sizes are approximate and not to 

scale. The rRNA cistron is present in ~5 directly repeated copies per nematode 

genome; each cistron comprises the 18S rRNA gene, the internal transcribed spacersl 

(ITSl), the 5.8S gene, ITS2 and the 28S rRNA gene. An external nontranscribed 

spacer (ETS) separates each transcribed cistron. Observed rate of sequence variation 

has been shown in the diagram and illustrates that the SSU and LSU sequences are 

the most conserved, followed by the ITS region. The ETS region is the most variable 

in length and sequence. Additionally the genes are comprised of highly conserved and 

variable regions (modified from Ellis et al. 1986). 

In nematodes, they are present in multiple copies per genome and provide a large molar 

excess of target in polymerase chain reactions compared with single copy genes. 

Caenorhabditis elegans has about 55 sets of rRNA genes (Ellis et al. , 1986), and although 

the number present in other nematodes is not known it is likely to be similar. Each copy of 

the rRNA cistron is thought to be identical and the copies can be regarded as orthologous. 

Nematodes have evolved and diverged over a long period of time and relatively 

invariant sequences are required for analysis. Therefore, the 18S rRNA gene is the 

preferred and most widely used marker in nematode studies. The 18S rRNA gene at around 

1700 base pairs is easier to amplify and sequence and contains highly conserved domains. 

Moreover, sequences from this gene have been determined for a large nwnber of soil and 

parasitic nematode taxa distributed across the phylum (Ellis et al., 1986; Zarlenga et al., 
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1994 a, b; Fitch et al., 1995; Fitch and Thomas, 1997; Aleshin et al., 1998; Blaxter et al., 

1998; Kampfer et al., 1998; Dorris et al., 1999). As a consequence the ribosomal gene has 

been used extensively in nematode phylogenetic studies (Aleshin et al., 1998; Blaxter et 

al., 1998; Litvaitis et al., 2000) and has been evaluated for identification and diversity 

studies (Floyd et al., 2002; Powers, 2004; Blaxter et al., 2005). 

1.2.2 Techniques in molecular systematics 

One of the first steps towards identification and diversity assessment is the 

extraction of DNA from fresh, frozen or ethanol preserved specimens or from 

environmental samples such as sediment or water. Successful DNA extraction and 

subsequent molecular processes depends on the type of preservative used. For molecular 

studies specimens are usually preserved in ethanol but small metazoans such as nematodes 

shrink much faster due to the effects of ethanol preservation and this affects morphology 

based identification under a microscope. Such effects have also been observed in other 

metazoans such as polychaete worms and annelids (see Chapter 6). On the other hand 

specimens preserved with fixative such as formalin maintain their morphological integrity 

but this preservative is generally seen as compromising subsequent molecular work. 

Further discussion of the use of formalin-preserved material is found in Chapter 6. The 

next step following DNA extraction is the amplification of a genomic region based on PCR 

methodology. A number of approaches and methodologies commonly used in molecular 

systematics are discussed below, with particular reference to marine systems, and 

techniques used in this thesis. 

1. 2. 2.1 Amplification and sequencing of a genomic region 

Establishment of a PCR approach relies on target sequences that can be detected 

from information based on similar organisms, and primers conserved in sequences across a 

range of phyla are often employed in PCR methodology. This approach can then be used 
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for characterisation of nuclear or mitochondria genomic regions. Subsequently, a small 

fraction of the amplification product is subjected to cycle sequencing reaction (Murray, 

1989), a PCR-based modification of the dideoxy method (Sanger et al., 1977) and then 

used for sequencing analysis. DNA sequencing is a powerful tool which is widely used for 

the accurate identification of organisms and for phylogenetic studies. Automated DNA 

sequencing based on the principle of Sanger et al. (1977) is the most widely used method. 

The combination of these two methods has revealed unexpected diversity in marine 

microbial eukaryotes such as plankton from deep sea and ocean trenches (Diez et al., 

2001a; Massana et al., 2002). These techniques have also been exploited for the 

identification of soil and parasitic nematodes and have been recently tested for the 

identification of marine nematodes from British coastal waters (Bhadury et al., 2005; Cook 

et al., 2005). 

1.2.2.2 Molecular Barcoding 

Amplification and sequencing of a genomic region have paved the way towards a 

new concept called molecular barcoding. Molecular barcoding is essentially an 

identification system which represents ways of discriminating organisms based on the 

analysis of a small segment of the genome and can be used for rapid species diagnosis 

(Hebert et al., 2003).This concept has been tested for identification of metazoan organisms 

and has been very successful over the last few years (Hebert et al., 2003; Janzen et al., 

2005; Smith et al., 2005). The concept is discussed in detail in Chapter 4 but essentially 

involves three stages. 

The first stage is the creation of a DNA sequence database for the taxonomic group 

of interest, from specimens which have been identified using taxonomic keys. The next 

stage involves amplification and sequencing of the same molecular marker from 

unidentified specimens within the phylum. Finally, generated sequences are compared with 

known sequences using phylogenetic approaches and sequences from unidentified 
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specimens are subsequently assigned to genus and species level. The other option involves 

bioinformatics analysis where unidentified sequences are compared within databases 

containing sequences from a wide range of phyla and specimens are subsequently assigned 

to taxa based on similarity scores. For molecular barcoding the most widely used markers 

are the nuclear 18S rRNA and 28S rRNA, mitochondrial 16S rRNA and COXl, and 

internal transcribed spacer regions (ITS 1 and ITS2) from the ribosomal RNA cistron 

(Floyd et al., 2002; Hebert et al., 2003; Powers, 2004; Blaxter et al., 2005). The use of 

molecular barcoding for nematode identification is relatively limited, but has been 

implemented in the identification of soil and parasitic nematodes (Duncan et al., 1999; 

Floyd et al., 2002; Blaxter, 2004; Brito et al., 2004; Powers, 2004). It has also been tested 

recently on marine nematodes from British waters and some of the initial published results 

look promising (Cook et al., 2005). 

1.2.2.3 Approaches for the rapid assessment of species richness 

For rapid studies of the diversity of taxa within a particular environment or 

sampling area, PCR amplification and sequencing approaches have been applied in a 

variety of different groups of organisms. For example, in soil nematodes 18S rRNA 

sequences have been used to define operational taxonomic units (OTUs) and comparisons 

made with sequence from known taxa to attach taxonomic and ecological attributes. A 

potentially rapid way of assessing diversity is to extract DNA from environmental samples 

and subsequently amplify a specific region of genomic DNA using phylum specific or 

universal primers, followed by sequencing or separation ofPCR products by fingerprinting 

techniques. A wide variety of methods and commercial kits are available for extraction of 

total DNA from sediment or water samples (Waite et al., 2003; Fortin et al., 2004; 

Corinaldesi et al., 2005). Diversity can then be assessed using a number of approaches. 

These include the generation of clone libraries followed by subsequent sequencing, 

fingerprinting PCR products using denaturing gradient gel electrophoresis (DGGE), and 
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restriction fragment length polymorphism (RFLP) and tenninal restriction fragment length 

polymorphism (t-RFLP) studies. These have been discussed in detail in Chapter 3. 

1.3 Overview ofthesis aims and chapters 

The main aims of this thesis are to develop and apply molecular techniques to 

increase our understanding of the biodiversity of marine nematodes from estuarine and 

coastal environments. Chapter Two of the thesis will provide information about material 

and methods that were used in this study. In Chapter Three, a PCR based DGGE technique 

has been evaluated as a rapid assessment tool for marine nematode diversity. The principal 

focus of Chapter Four has been to evaluate DNA barcoding whose application should 

speed up marine nematode identification. The suitability of both nuclear and mitochondrial 

genomic regions has been thoroughly explored using representative marine nematode taxa 

from South West England waters. In Chapter Five populations of a supposedly 

cosmopolitan marine nematode, Terschel/ingia longicaudata, from varied geographical 

locations have been investigated using both molecular and morphometric methodologies, 

to examine the level of intra-specific variation in this morphologically defined species, and 

determine whether it may in fact be a complex of cryptic species. The final section of this 

thesis evaluates the effectiveness of formalin and other organic preservatives for short term 

preservation of marine nematode specimens for molecular work without compromising 

morphological integrity (Chapter Six). Additionally, a novel extraction technique has been 

optimised and evaluated to recover DNA from archived formalin-fixed marine nematode 

specimens for subsequent genetic studies. 
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2. Materials and Methods 

2.1 Materials 

The following materials were used for molecular work: 

Enzymes 

Accuprime Pfx DNA polymerase 

DNA Ligase 

Mung bean nuclease 

Pfu DNA polymerase 

Restriction endonucleases 

Taq DNA polymerase 

Chemical 

Agarose 

Ammonium persulfate (APS) 

Bactotryptone 

Custom oligonucleotides (primers) 

Glycerol 

Hydrochloric Acid 

Isopropyl-thiogalactoside (IPTG) 

3-(N-Morpholino)propanesulfonic acid (MOPS) 

Rain X 

Sodium Hydroxide 

SYBR Gold Nucleic Acid Stain 

Tetramethylethylenediamine (TEMED) 

Triton-X 

Urea 
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Supplier 

Invitrogen UK 

Promega UK Ltd 

Promega UK Ltd 

Promega UK Ltd 

Promega UK Ltd 

Promega UK Ltd 

Supplier 

Promega UK Ltd 

Sigma-Aldrich UK 

Difco Laboratories 

MWG Biotech UK 

Sigma-Aidrich UK 

Sigma-Aldrich UK 

Sigma-Aidrich UK 

Sigma-Aldrich UK 

Halfords (Plymouth, UK) 

Sigma-Aldrich UK 

Molecular Probes Inc 

Promega UK Ltd 

Sigma-Aldrich UK 

Sigma-Aldrich UK 



Yeast extract 

5-bromo-4-chloro-3-indolyl-P-D-galactopyranoside 

(X-gal) 

6x loading dye 

40% (w/v) Acrylamide/Bis-acrylamide (37.5:1) 

Materials and Methods 

Difco Laboratories 

Promega UK Ltd 

Promega UK Ltd 

Sigma-Aldrich UK 

Other chemicals were obtained from Sigma, Promega or VWR, and were of molecular 

biology grade or equivalent. Reagents were stored and handled in accordance with 

suppliers' recommendations. 

Molecular Biology Kits 

GenomiPhi™ Amplification kit 

FastDNA® Kit for Soil 

SoilMaster™ DNA Extraction kit 

Powersoil™ DNA Isolation Kit 

PCR purification kit 

pGEM-T Easy Vector System 

Wizard Miniprep DNA purification system 

Wizard® MagneSil™ GREEN 

Oligonucleotides used in this study 

Supplier 

Amersham Biosciences 

Qbiogene Inc 

Epicentre Inc 

MoBio Inc 

Promega 

Promega 

Promega 

Promega 

G18F (forward primer) 5'-GCTTGTCTCAAAGATTAAGCC-3' 

22R (reverse primer) 5'- GCCTGCTGCCTTCCTTGGA-3' 

MN18F (forward primer) 5'-CGCGAATRGCTCATTACAACAGC-3' 

Nem _18S _ R (reverse primer) 5'-GGGCGGT ATCTGATCGCC-3' 

NEMFl (forward primer) 5'-GTGGTGCATGGAATAATAG-3' 

23R (reverse primer) 5'-TCGCTCGTTATCGGAAT-3' 
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23F (forward primer) 5'-ATTCCGATAACGAGCGAGA-3' 

18P (reverse primer) 5'-TGATCCWKCYGCAGGTTCAC-3' 

D2aF(forward primer) 5'-ACAGTACCGTGAGGGAAAGT-3' 

D2aR (reverse primer) 5'-TGCGAAGGAACCAGCTACTA-3' 

NC5F (forward primer) 5'-GTAGGTGAACCTGCGGAAGGATCA TT -3' 

NC2R (reverse primer) 5'-TTAGTTTCTTTTCCTCCGCT-3' 

NClR (reverse primer) 5'-AACAACCCTGAACCAGACGT-3' 

16SF1 (forward primer) 5'-AATGGCAGTCTTAGCGTGAG-3' 

16SR1 (reverse primer) 5'-AA(AT)ACAACATCGATGTAAAA-3' 

MNCOXIF (forward primer) 5'- TTT TTT GGG CAT CCT GAG GTT TAT-3' 

MNCOXIR (reverse primer) 5'- TAA ASA AAR AAC ATA ATG AAA ATG -3' 

LC01490F (forward primer) 5'-GGTCAACAAATCATAAAGATATTGG-3' 

HC02198R (reverse primer) 5'-T AAACTTCAGGGTGACCAAAAAA TCA-3' 

C02.105CD (forward primer) 5'-CATCAATGATACTGAAGTTATGA-3' 

C02.215R (reverse primer) 5'-CAATTGGTATAAAACTATGATTTGC-3' 

mb5F (forward primer) 5'-GGCTGGCTTATTATTAAAATTAG-3' 

mb9R (reverse primer) 5'-CAAAGAATAATAAAAAGATACCAA-3' 

All the oligonucleotides were obtained from MWG Biotech and were of high purity salt 

free (HPSF) quality. 

2.2 Microbiological methods 

2.2.1 Media for microbiology 

LB Broth (Luria Bertani) 

Yeast extract 5 g L-1 

Bactotryptone 10 g L-1 

pH Adjusted to 7.0 with NaOH 

For LB Agar 15 g L-1 of agar was added 
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SOB media 

Yeast extract 

Sodium Chloride (NaCl) 0.5 g L-1 

Bactotryptone 

2 mL of 1 M KCl was added to a litre. pH adjusted to 7.0 with NaOH 

SOC media 

SOC media= SOB media+ 11200 volume 2M MgCh + 1/50 volume 1 M glucose 

TfB I (Transformation Buffer D 

RbCl 100mM 

MnCiz 50mM 

KOAc 35 mM 

CaCiz 10mM 

Glycerol 15% (v/v) 

pH adjusted to 5.8 with 1 M Acetic acid. The solution was finally filter sterilised 

TfB II (Transformation Buffer ID 

MOPS 10mM 

CaCh 75 mM 

RbCl lOmM 

Glycerol 15% (v/v) 

pH adjusted to 6.8 with 1 M KOH. The solution was finally filter sterilised. 

All buffers and solutions were made with MilliQ water and were autoclaved or filter 

sterilised. 
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2.2.2 Handling and culturing E. coli 

For plasmid transformations the following strain of Escherichia coli was used 

(genotype included). 

XLl-BlueMRF' ~(mcrA)183 ~(mcrCB-hsdSMR-mrr)l73, endAl, supE44, thi-1, 

recAl, gyrA96, re/Al, lac[F'proAB laclqZ M115 TnlO (TetR)] 

E. coli were handled using standard aseptic techniques as described by Sambrook et 

al. (1989). E. coli cells were streaked onto LB agar plates containing ampicillin to achieve 

single colonies. The plates were incubated inverted overnight at 37°C. Colonies of E. coli 

were maintained (sealed with paraffin) at 4°C for short term storage. Liquid cultures were 

grown by inoculating a single colony in universal tubes and Erlenmeyer flasks containing 

LB broth. The cultures were incubated overnight at 37°C with a shaking speed of 225 rpm 

on an Orbital Incubator SI50 (Stuart Scientific, UK). Cell densities were measured using 

OD600 values in an EppendorfBiophotometer. 

2.2.3 Preparation of chemically competent E. coli cells 

A single colony of E. coli was streaked onto a LB agar plate and incubated 

overnight at 37°C. A single colony from the plate was then picked and used to inoculate a 

5 mL LB broth preculture, which was grown overnight in an orbital shaker at 37°C and 

225 rpm. One millilitre of this culture was used to inoculate 50 mL of prewarmed (37°C} 

LB broth in a 500 mL Erlenmeyer flask. The flask was shaken at 37°C until the cells 

reached the exponential phase (OD600=0.6-0.8) of growth. The 50 mL culture was again 

used to inoculate 250 mL LB broth which was incubated at 37°C and 225 rpm until an 

O.D.= 0.6-1.0 was reached. The cultures were then transferred to four Oakridge centrifuge 

tubes (Nalgene) and incubated on ice for 10-15 m ins. Cells were pelleted at ooc for 4 m in 

(RCF= 2,500) in an Eppendorf refrigerated centrifuge (5810R), and the pellets washed 

with 25 mL of ice cold transformation buffer I (TfBI). The cells were divided into two 
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eppendorf tubes and centrifuged at 0°C for 4 m in (RCF= 2,500). The pellets were again re

suspended in 50 mL of ice cold TfBI buffer per tube and incubated on ice for a further 30 

minutes. The cells were pelleted at 0°C for 4 min (RCF= 2,500) and the pellets re

suspended in 6 mL ice cold transformation buffer 11 (TfBII} per tube. Finally the cells were 

snap frozen in 0.5 mL aliquots in liquid nitrogen and stored at -80°C for future use. 

Additionally, sub-cloning efficiency™ DH5a ™ E. coli competent cells were 

purchased from Invitrogen Inc for performing routine transformations and stored at -80°C 

prior to use. 

2.2.4 Transformation of chemically competent E. coli cells 

Chemically competent E. coli cells were removed from storage at -80°C and thawed 

on ice. The thawed cells were mixed and 100 f.ll aliquots placed into pre-cooled Falcon 

2059 polypropylene tubes. Ligated DNA (1-3 f..lL) (Section 2.3.11; Section 2.3.12) was 

added to each aliquot and mixed gently. The mixture was left on ice for another 40 mins 

followed by heat shock treatment at 42°C for 45 seconds in a water bath. The mixture was 

again placed on ice for 2 min followed by the addition of 900 f..lL of SOC media 

(containing 10 mM MgS04). The cells were shaken (225 rpm) at 37°C for 1 hour before 

being spread onto LB agar plates containing ampicillin (Section 2.2.6) (in 250 f..lL aliquots 

per plate) for plasmid selection. The plates were incubated inverted overnight at 37°C 

(Gallenkamp Economy Incubator). 

2.2.5 Transformation using Invitrogen sub-cloning efficiency™ DHSaT111 competent 

cells 

A 50 f..lL aliquot of chemically competent DH5a cells was thawed on ice for 

approximately ten minutes. DNA (2-3 f..LL} was added to the aliquot and stirred gently. The 

mixture was left on ice for another 30 minutes prior to heat shock treatment at 37°C for 20 
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seconds. The mixture was left on ice for a further 2 mins followed by the addition of 450 

J..LL of LB medium. The cells were subsequently shaken for an hour at 37°C (225 rpm). 

Finally 50 flL of the cell suspension was spread onto LE-Ampicillin agar plates containing 

15 flL of X-gal. The cell suspension was allowed to soak into the plates in a laminar flow 

hood before being incubated at 37°C overnight. 

2.2.6 Ampicillin stock solution preparation 

Ampicillin powder was dissolved in MilliQ water to a final concentration of 50 mg 

mL-1 and was subsequently filter sterilised. The stock solution was stored at -20°C. The 

stock was added to pre-cooled autoclaved media (temperature below 60°C) to a final 

concentration of I 00 Jlg mL-1
• 

2.2.7 Lac selection of plasmids 

Luria Bertani agar plates were surface dried in a laminar flow hood and 20 flL of 5-

bromo-4-chloro-3-indolyl-P-D-galactopyranoside (X-gal) and 2 flL of isopropyl

thiogalactoside (IPTG) were added to each plate by spreading over the surface with a 

sterilised glass spreader. The plates were again surface-dried before transformed E. coli 

cells were spread on the surfaces. After an overnight incubation at 37°C, the X-gal plates 

were incubated at 4°C to allow the development ofblue colour in non-recombinants. 

2.2.8 Storage of transformed E. coli cells 

The recombinant E. coli cells were streaked onto LB agar plates with ampicillin 

selection. Plates were incubated overnight at 37°C before sealing with parafilm, and 

storing at 4°C for a maximum of four weeks. For long term storage a single recombinant 

colony was inoculated in 5 mL LB broth containing ampicillin and shaken at 37°C (225 

rpm) overnight. 0.5 mL of the culture was added to a cryovial containing 0.5 mL 30% 
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sterile glycerol (final concentration of glycerol, 15%). The cells were frozen in liquid 

nitrogen and stored at -80°C. 

2.3 Nucleic acid methods 

2.3.1 Buffers and solutions 

50x TAE Buffer (stock solution) 

Tris base 242 g 

Glacial Acetic acid 57.1 mL 

0.5 M EDTA (pH 8.0) 100 mL 

Water added to a final vohune of 1 Litre. 

1x TAE buffer was prepared by dilution from the stock with MilliQ water for agarose gel 

electrophoresis and denaturing gradient gel electrophoresis. 

0% denaturant (DGGE) 

40% Acrylarnide stock 15 mL 

(acrylarnide:bis-acrylamide in the ratio of37.5:1) 

T AE Buffer (50x) 2 mL 

MilliQ water to make up a final volume of 100 mL 

80% denaturant (DGGE) 

40% Acrylarnide stock 15 mL 

TAE Buffer (50x) 2 mL 

Urea 33.6 g 

Deionised formamide 32 mL 

MilliQ water to make a final volume of 100 mL 
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2.3.2 DNA extraction from single nematode worm 

The DNA extraction method initially proposed by Floyd et al. (2002) has been 

modified for use with marine nematodes. A single nematode worm placed in a 0.5 mL 

microfuge tube containing 20 JlL of 0.25 M sodium hydroxide (NaOH) was frozen 

overnight at -20°C followed by incubation at 60°C for 12 hours. The tube was then heated 

to 99°C for three minutes and the solution allowed to cool to room temperature before 

centrifugation (RCF =16,000; 30 sec). 4JlL of lM hydrochloric acid (HCl), lOJ.!L 0.25M 

Tris-HCl (pH 8.0) and 5J.!L 2% Triton X-100 were added to the tube and its contents mixed 

briefly followed by heating once again to 99°C for three minutes and cooling to room 

temperature. The extracted DNA was used as a template for PCR amplification. 

2.3.3 PCR amplification of the nuclear 18S rRNA gene from extracted DNA 

PCR is the in vitro amplification of a segment of DNA between two regions of 

known sequence (Mullis et al., 1986; Scharf et al., 1986; Saiki et al., 1988). Amplification 

requires the use of primers that are complementary to sequences on opposite strands of the 

template DNA. The major components of polymerase chain reaction are template DNA, 

primers (forward and reverse), deoxynucleotide triphosphates (dNTPs) and DNA 

polymerase enzyme. A series of steps are used for amplifying the target DNA molecule 

which includes (i) denaturation, where the double-stranded DNA template is separated into 

single strands; (ii) annealing, where the primers bind to the target sequences on the DNA 

template; and (iii) extension, where the DNA polymerase extends the primers and copies 

the DNA template. 

For PCR amplification, a nested PCR approach was followed where two pairs of 

PCR primers were used sequentially to amplify a single locus. The first primer set was 

used to amplify the locus and the second primer set was used to bind within the first PCR 

product producing a second PCR product shorter in size than the first one. The logic 

behind this strategy was that if a non-specific locus were amplified in the first round of 
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PCR, the probability is very low that it would also be amplified a second time by a second 

pair of internal primers. Two primers Gl8F (forward primer) and 23R (reverse primer) 

were used for nested PCR. The second primer set used in this study were MN18F (forward 

primer) and Nem_ l8S_R (reverse primer). For the first primer set, the amplification 

product size was 1300 bp (approx.) whereas for the second one the product size was 930 

bp (approx.). To cover the rest of the fragment two primers namely NemF1 (forward 

primer) and 23R (reverse primer) were used for amplification. The remaining region of the 

18S rRNA gene was amplified using 23F (forward primer) and 18P (reverse primer) 

(Figure 2.1). The product size in this case was close to 500 bp. 

--·· ___.... Gl8F MN 18F 

SSU gene (1700 base pairs) 

-+ +---- +----
NEMFI Nem 18S R 23R 

-+ 
23F 

+----
18P 

Figure 2.1: Diagrammatic representation of the position of primers for amplification 

of almost the entire 18S rRNA gene. Positions of the primers are approximate and not 

to scale. 

Each of the primers was diluted to a final concentration of 10 pmol J.lL-1 from 100 

pmol J1L-1stock. Routine PCRs were conducted with 5 J.lL of the extracted DNA, 5 J.lL 10X 

buffer with MgCh, 5 J.lL of 2mM dNTPs, 2 11L of each primer (1 0 pmol J.lL-1
), 0.5 J.lL of 

Taq DNA polymerase (5U/!1L) and water to make a total volume of 50 J.lL for each sample. 

All samples were stored on ice prior to thermal cycling. 

2.3.4 PCR amplification of the mitochondriai16S rRNA gene from genomic DNA 

A small fragment of the mitochondrial 16S rRNA gene of approximately 300 bp 

was amplified using a step-up PCR methodology. In step-up PCR, the starting annealing 

temperature is always a few degrees lower than the optimum annealing temperature to 

promote primer binding and is subsequently adjusted to the optimum annealing 
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temperature specific for amplification of the marker. Two primers namely 16SF1 (forward 

primer) and 16SR I (reverse primer), were used in this study. 

2.3.5 PCR amplification of the mitochondrial cytochrome oxidase I gene (CO XI) from 

genomic DNA 

A partial fragment (approximately 440 base pairs) from the mitochondrial 

cytochrome oxidase I gene was amplified using a step-up PCR methodology. Two primers, 

namely MNCOXIF (forward primer) and MNCOXIR (reverse primer), were used in this 

study. 

2.3.6 Thermal cycler operation 

PCR amplifications were carried out in a PTC-1 00 progammable thermal cycler 

(MJ Research Inc). The PCR reactions consisted of the initial denaturation at 95°C for 5 

min, followed by certain number of cycles of denaturation, annealing and extension and a 

final extension at 72°C for 5 ruins followed by a holding temperature of 4°C. Annealing 

temperature used for each primer set is shown in Table 2.1. The annealing temperatures 

used for polymerase chain reaction mediated amplification throughout the study were 

optimised initially using a gradient block thermocycler (MJ Research PTC-200). Thermal 

cycle parameters used for denaturing gradient gel electrophoresis are discussed in the next 

chapter (Section 3.2.4). 
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Table 2.1: Annealing temperatures used for PCR amplification of specific regions in 

the nematode genome. 

Primers Genomic region Thermal cycle parameters 

GI8F and 23R 18S rRNA 
95°C-1 min J 
51 oc-1 min 30 cycles 

noc-2 min 

MN18F and Nem 18S R 18SrRNA 

noc-2 min 

NEMFl and 23R 18SrRNA 

37 cycles 
50°C-1 min 

noe-l min 

23F and 18P 18SrRNA 

55°C-I min 

noe-l min 

J "''"" 
16SF1 and 16SRev mitochondrial 16S rRNA 

MNCOXIF and MNCOXIR mitochondrial COX! gene 

n°C-30 sec 

34 cycles 

noC-90 sec 
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2.3. 7 Electrophoresis of DNA 

Agarose gel electrophoresis is a simple and highly effective method for separating, 

identifying, and purifying DNA fragments. The protocol can be divided into three stages: 

(1) a gel is prepared with an agarose concentration appropriate for the size of DNA 

fragments to be separated; (2) the DNA samples are loaded into the sample wells and the 

gel electrophoresed at a voltage and for a time period that will achieve optimal separation; 

and (3) the gel is stained or, if ethidiwn bromide has been incorporated into the gel, 

visualized directly upon illwnination with UV light (Sambrook et al., 1989). 

The yield of the PCR products was determined by agarose gel electrophoresis using 

the Mini sub cell GT system (Bio-rad Laboratories). 5 IlL of each PCR product was mixed 

with 2 11L of 6x loading dye and loaded onto the gel. Electrophoresis was performed for 30 

minutes by supplying a steady current of 120 volts. To estimate the size of the DNA 

fragments, samples were eo-migrated with appropriate DNA markers. The following DNA 

markers (with their sizes) were used: 

A. Hind Ill: 23.1 Kb, 9.4 Kb, 6.5 Kb, 4.3 Kb, 2.3 Kb, 2.0 Kb and 0.5 Kb (Sanger et al., 

1982) 

Bp ladder: 100 bp-1 000 bp in 100 bp increments (Promega, UK) 

After the completion of electrophoresis the gel was removed and examined under a 

UV transillwninator (U.V.P. Inc). Photographs were taken using SYNGENE Gel 

Docwnentation System which was attached to a thermal printer. 

2.3.8 DNA recovery from agarose gels 

PCR products were recovered from agarose gels using a Qiaex gel extraction kit 

(Qiagen) according to manufacturer's instructions. The final elutions were performed in 20 

JlL MilliQ water. 
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2.3.9 Enzymatic digestion of the vector pBluescript SK for molecular cloning 

The plasmid pBluescript SK" was used for cloning. Plasmids were prepared for 

ligation by digestion with a restriction enzyme for which there is a single restriction site in 

the polylinker. The restriction enzyme EcoRV was used to linearise the plasmid in order to 

create blunt termini. The following components were added to a 0.5 mL microcentrifuge 

tube and incubated for I hr at 37°C:-

pBluescript SK" (360 ng/f.!L) 3 f.lL 

I Ox reaction buffer I f.lL 

EcoRV I f.lL 

MilliQ water 

The digested plasmid was examined by electrophoresis through a I% agarose gel for 30 

min at 120 volts and observed by transillumination. 

2.3.10 Creating blunt termini in DNA 

The following components were added to the purified PCR products (recovered 

from the agarose gel) (Section 2.3.8) in a 0.5 mL micro centrifuge and incubated at 72°C 

for 30 min to create blunt termini for ligation with pBluescript SK" 

Purified PCR product I 0 f.lL 

2 mM dNTPs I f.lL 

I Ox Pfu reaction buffer I f.lL 

Pfu DNA polymerase I f.lL 

The polished PCR product was used for ligation or stored at 4°C until further use. 

2.3.11 Ligation of blunt termini PCR product into digested pBiuescript SK 

Prior to ligation, the PCR products were tested to see if they contained digestion 

sites for EcoRV. fu the absence of such sites the fragments were ligated into the 
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corresponding digested plasmids i.e., if no EcoRV site was found in PCR products the 

fragments would be cloned into EcoRV digested plasmids. This enabled EcoRV to be 

added to the ligation reaction to prevent self-ligation ofthe plasmids. No digestion site was 

found in any individual PCR products used in this study. The following components were 

then assembled: 

Digested pBluescript SK 1 JlL 

!Ox Ligase reaction buffer I JlL 

10 mM rATP 0.5 flL 

PCR product (blunt termini) 5.5 flL 

EcoRV 

T4 DNA Ligase 

Each ligation reaction was incubated for 2-3 hours at room temperature or l5°C overnight. 

The ligation reactions were then used for transformation or stored at 4°C for future use. 

2.3.12 Ligation ofPCR products into pGEM-T vector system 

In addition to pBluescript SK, pGEM-T vector (Promega™) was also used for 

cloning purposes. The vector is supplied pre-cut with EcoRV and with an additional 

terminal 3' thymidine on both strands (Figure 2.2). As a result the efficiency of ligations of 

PCR product into the vector improves through prevention of recircularisation. 

Additionally, the use of Taq DNA polymerase enhances the addition of a terminal 

adenosine at the 3' end of the PCR product thus making it more compatible with the vector. 
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MJ3F T7 promoter 

5'---TG TAAAA CGACG GCCAG TGAAT TGTAA TACGA CTCAC TA TAG GGCGAATTGG 

AC A TTTT GCTGC CGGTC ACTTA ACA TT ATGCT GAGTG AT ATC CCGCT TAACC 

GCCCG ACGTC GCATG CTCCC GGCCG CCATG GCGGC CGCGG GAATT CGAT-T[Cloned 

CGGGC TGCAG CGTAC GAGGG CCGGC GGTAC CGCCG GCGCC CTTAA GCTA 

Ins: J ATCAC T AGTG AA TIC GCGGC CGCCT GCAGG TCGAC CAT AT GGGA GAGCT 

TAGTG ATCAC TTAAG CGCCG GCGGA CGTCC AGCTG GTATA CCCT CTCGA 

CCCAACGCGTTGGATGCATAGCTTG AGTATTCTAT AGTGTCACCT AAA TA GCTTG GCGTA 

GGGTTGCGCA ACCTA CGTATCGAACTCATAAGATA TCACA GTGGA TTTATCGAAC CGCAT 

ATCATGGTCA TAGCTGTTTCC ...... 3' 

TAGTA CCAGT ATCGA CAAAG G 

MI3R 

Figure 2.2: Promoter and multiple cloning sequence site of the pGEM-T vector 

system. 

Ligations were prepared using the pGEM-T vector system according to the manufacturer's 

instructions. The following components were added in a 0.5 mL tube: 

2x Rapid Ligation Buffer S flL 

pGEM-T 1 flL 

PCR product x flL 

T4 DNA Ligase (3U/f.lL) 1 flL 

De-ionised water to make a final volume of 10 J.lL 

Reactions were incubated at room temperature for one hour or overnight at 4°C prior to 

transformation. 

2.3.13 Identifying recombinant clones by colony PCR 

Recombinant 18S rRNA clones were identified by a blue/white system of Lac 

selection on X-gal LB agar plates. The clones containing inserts were further identified by 
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amplification of the inserted DNA usmg the primers complementary to regions 

approximately 300 bp outside the pBluescript SK polylinker. The primers used were BSlF 

forward primer (5'-AAA GGG GGA TGT GCT GCA AGG CG-3') and BSlR reverse 

primer (5'-GCT TCC GGC TCG TAT TGT GTG-3'). Individual colonies were picked from 

the transformation plates using sterile loops. Each colony was re-suspended in a 0.5 mL 

microcentrifuge tube containing 10 J.lL of MilliQ water. The same loop was used for 

patching out on LB ampicillin agar plate. 

Colonies were propagated overnight at 37°C and subsequently stored at 4°C after 

the plates were wrapped in parafilm. Colonies resuspended in MilliQ water were boiled for 

4 mins and placed on ice. For amplification the following components were added to 10 

J.lL of individual colony suspension to make a final volume of20 J.1L: 

2 mM dNTPs 2 J.lL 

I Ox buffer w/MgCh 2 J.lL 

BSlF primer (lOO ng J.!L- 1
) 0.5 J.1L 

BSIR primer (100 ng J.!L-1
) 0.5 J.1L 

Taq DNA polymerase 

MilliQ water 

0.2 JlL 

4.8 J.1L 

A positive control of unmodified pBluescript SK" plasmid and a negative control (no 

template) to detect any level of contamination were also used in the colony PCR. The 

thermal cycler parameters used for the colony PCR were 5 min at 94°C for initial 

denaturation, followed by 25 cycles at 68°C (1 min), 72°C (1 min) and 94°C (I min). The 

final annealing phase of 2 min at 68°C was followed by an extension phase for 2 min at 

72°C which completed the PCR followed by a holding temperature at 4°C until further use. 

Each of the colony PCR products (2 J.lL) was analysed by 1% agarose gel electrophoresis 

using a 1 OObp ladder. Plasmids containing the 18S rRNA gene inserts were identified by 

the increase in size of the amplification products compared to that of control plasmid. 
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For the pGEM-T Vector system, successful transformations were also identified by 

colony PCR as described above except that two different primers, namely Ml3F (5'-TGT 

AAA ACG ACG GCC AGT-3') and Ml3R (5'-GGA AAC AGC TAT GAC CAT G-3'), 

were used for amplification. An annealing temperature of 57°C was used in this case. 

2.3.14 Recovery of recombinant plasmid from E. coli 

2.3.14.1 Promega Wizard Miniprep DNA purification system 

Colonies with the inserts which were grown overnight on LB ampicillin plates were 

used to inoculate 5 mL of LB broth containing ampicillin in sterile universal tubes (30 

mL). The cultures were incubated at 37°C with a shaking speed of 225 rpm for 12-15 

. hours. The cultures were harvested in 1.5 mL microfuge tubes by centrifugation for 5 min 

(RCF=IO,OOO). The supematant from each culture was poured off and the tubes blotted on 

paper towels. Cell resuspension solution (250 j.lL) was added to each tube to completely 

resuspend the pellets followed by the addition of 250 j.lL of cell lysis solution. The tubes 

were mixed well by inverting each individual tube four times, and tubes were then left to 

incubate at room temperature for approximately 5 min. Alkaline protease solution (10 j.lL) 

was added to each tube and mixed by inversion another four times and tubes were left to 

incubate at room temperature for 5 min. Wizard Plus SV Neutralization Solution (350 j.lL) 

was then added to each tube and mixed immediately by inverting four times. Soon after, 

the bacterial lysates were centrifuged (RCF=l7,000) in a microcentrifuge for 10 min at 

room temperature. Each lysate was subsequently transferred to the spin column by 

decantation. Individual spin columns were centrifuged for 1 minute (RCF=l7,000). The 

eluate from the collection tube in the spin column was discarded. Column wash solution 

(750 IlL) was then added to each column and centrifuged for I minute at maximum speed. 

The eluate was again discarded. The process was repeated once more by adding 250 IlL of 

column wash solution in each column. Each column was re-centrifuged for 2 minutes 

41 



Materials and Methods 

(RCF=I7,000) at room temperature. After completion of centrifugation the columns were 

transferred to new I.5 mL microfuge tubes. The elute in the collection tubes was discarded 

once more. Plasmid DNA in each column was finally eluted by addition of IOO J.LL of 

nuclease-free water. The columns were once again centrifuged (RCF=I7,000) for 1 minute. 

Eluted plasmid DNA was stored at -20°C for future use. Prior to DNA sequencing, the 

concentration of the plasmids was measured in a Biophotometer. The DNA concentration 

for each sample was calculated from the O.D. value at 260 nm (I O.D. at 260 nm for 

double-stranded DNA= 50 ng/mL of dsDNA). 

2.3.15 DNA sequencing 

To investigate whether the inserts in the plasmid DNA were nematode I8S rRNA, 

eluted plasmids were subjected to DNA sequencing. The most commonly used sequencing 

method is the Sanger dideoxy method (Sanger et al., I977; A vi se, 1994; Ferraris and 

Palumbi, 1996; Hillis et al., 1996). The Sanger method is the basis of automated DNA 

sequencing and was carried out using both a single capillary sequencer (Applied 

Biosystems Prism 31 0) and multi-capillary sequencer (Applied Biosystems Hitachi 31 00). 

2. 3.15.1 Cycle sequencing reaction 

Plasmids containing 18S rRNA inserts were prepared for cycle sequencing using 

the BigDye v2.0 Cycle Sequencing Kit (ABI Ltd) in 200 J.LL polypropylene PCR tubes by 

the addition of the following components: 

(i) Template DNA (150-300 ng)- I J.LL 

(ii) Ready Reaction Mix (supplied by ABI)- 2 J.LL 

(iii) 2.5 x Sequencing Buffer- 3 J.LL (contains 200 mM Tris-HCl pH 9.0, 5 mM MgC12) 

(iii) Primer (T7 or T3) - 2 J.LL (3.2 pmoliJ.LL concentration); M13F or Ml3R in case of 

pGEM-T. 

(iv)Water- to a final volume of20 J.LL 
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The contents of the tubes were briefly centrifuged, and placed in the PTC-1 00 (MJ 

Research Inc) thermal cycler to commence the reactions. The thermal cycler was 

programmed to cycle through the following parameters: 

96°C for 1 m in, followed by 25 cycles of 96°C for 10 sec, 50°C for 5 sec, 60°C for 4 min 

and finally a holding temperature of 4°C. 

After the completion of cycle sequencing, templates were prepared for sequence analysis. 

2.3.15.2 Cycle Sequencing clean-up for DNA Sequencing (AB! Prism 31 0) 

Removal of unincorporated dye terminators is an important step for successful 

sequencing. To each 20 J..1L of cycle sequencing reaction product, 5 J..1L of 125 mM EDTA 

and 60 J..lL of absolute alcohol was added and was mixed well by inverting the tube four 

times. The tubes were left to incubate at room temperature for 20 min to allow the reaction 

products to precipitate. After precipitation, tubes were centrifuged (RCF=16,000) for 20 

min at 4°C in a refrigerated centrifuge (Eppendorf 5810R). A note of the orientation of the 

tubes was made to identify the deposition of the product on the tubes. All supematant from 

the tubes was discarded and 70 J..1L of 70% ethanol was added to each tube to wash the 

pellet. Once again the tubes were centrifuged for 15 min (RCF=16,000) at 4°C. The 

supematant from each tube was removed and the pellet dried in a thermal cyder at 95°C 

(lid open). After drying, 20 J..ll of template suppression reagent was added to each tube and 

vortexed. The tubes were heated for 2 min at 95°C. The tubes were kept on ice until 

required for sequence analysis. 

2.3. 15.3 Cycle Sequencing clean-up for DNA Sequencing (AB! Hitachi 31 00) 

Unincorporated dyes were removed using Wizard® MagneSii™ GREEN (Promega 

Inc) according to manufacturer's instructions. To each 20 J..lL cycle sequencing reaction 

product, 180 J..lL of the Magnesil green particles were added followed by resuspension of 
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the particles with vigorous shaking. Each reaction was left to incubate at room temperature 

for 5 minutes. The reaction was mixed by pipetting at 0, 2.5 and 5 minutes. The 

polypropylene tube was later placed onto the MagnaBot 11 magnetic separation device to 

capture the green particles. The liquid portion was removed and discarded. Care was taken 

to avoid removing the green particles. Each tube was removed from the MagnaBot device 

and placed on a stand. One hundred IlL of 90% ethanol was added to each sample and left 

to incubate for 5 minutes. Each sample was mixed thoroughly by pipetting at 0, 2.5 and 5 

minutes. Once again each tube was placed on the MagnaBot device. The liquid was 

removed and discarded. The steps were continued for a total of two washes. After the 

completion of the wash the particles were allowed to air dry for approximately 10 minutes 

at room temperature. Hi-dye™ formarnide (20 IlL) was added to the particles and 

incubated at room temperature for 1-2 minutes. Again the tubes were placed on MagnaBot 

device to capture the particles. The purified sequencing reactions were transferred to a 

clean tube for automated DNA sequencing. 

2.3.1 5.4 Sequencing analysis 

Samples were analysed using an ABI Prism 310 Genetic Analyzer. Experimental 

conditions were as follows: Electrophoresis voltage 12 kV, Electrophoresis current 4.0 jlA, 

Laser power 9.9 mW, Gel temperature 50°C, Injection time 60 sec, Run time 150 min. In 

the case of the ABI Hitachi 3100 Genetic Analyzer following conditions were 

implemented for sequencing: Electrophoresis voltage 12.2 kV, Electrophoresis current 68.0 

jlA, Laser power 15.0 mW, Laser current 4.7 A, Oven temperature 50°C, Run time 147 

mins (for 16 samples). Sequencing in each case was carried out in both directions. 

Sequences were checked for quality using the Chromas Pro software. Ambiguous 

sequences were re-sequenced to resolve ambiguous bases. The results of the sequences 

were then compared with those of known nematode sequences held on-line at GenBank, 

EMBL, DDBJ and PDB usmg 
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{http://wW:W,hcbi,nlin.ruh:gov/Bf.AST). Seq\)ences .were aligned ~using ,fue Clustal-X 

alignment program ,using default parameters {Thompsqn .et a{, 1~97; Je~oj.igiti· .et ,iJf~ • 

.1998). 

45 



DGGE and nematode diversity 

3. An evaluation of denaturing gradient gel electrophoresis (DGGE) for 

the study of marine nematode biodiversity 

3.1 Introduction 

Meiobenthic communities are represented by small metazoans, many of which have 

short generation times, all year round reproduction and undergo in situ benthic 

development without any planktonic larval stages (Heip et al., 1988; Warwick, 1993; 

Austen and McEvoy, 1997a). Generally, the communities have high density and high 

diversity (Austen and McEvoy, 1997a). Free living marine nematodes are the most 

ecologically important component in marine and estuarine meiobenthos (Austen and 

Warwick, 1989; Lambshead, 1993; Coull, 1999; Austen et al., 2003; Austen, 2004; 

Lambshead, 2004) and are useful indicators for environmental monitoring, particularly in 

relation to marine pollution {Tietjen and Lee, 1984; Lambshead, 1986; Coull and Chandler, 

1992; Somerfield et al., 1995; Bongers and Ferris, 1999; Boyd et al., 2000; Ahnert and 

Schriever, 2001). Despite such attributes marine nematodes remain largely neglected in 

ecological studies due to the nature of nematode taxonomy. To date there have been 

limited attempts to apply molecular techniques to facilitate the use of nematode taxonomy 

in ecological studies. Blaxter et al. (2002) and Meldal (2004) used the 18S rRNA gene for 

barcoding nematodes and molecular phylogenetics respectively, but as yet molecular 

techniques have not been applied to measurements of diversity in free living marine 

nematode populations from estuarine and marine benthic habitats. 

This introduction provides an overview of the molecular-ecological techniques that 

are available and routinely used in assessing prokaryotic diversity and in some micro-

eukaryotic groups such as plankton. Although numerous studies have been carried out with 

prokaryotes, almost no studies are available for assessing benthic eukaryotic diversity in 

organisms such as marine nematodes that play a very important role in the benthic 

ecosystem. Therefore the main focus of this chapter will be to evaluate nematode diversity 
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from estuarine and marine environments using molecular approaches. Initial work carried 

out as part of this thesis (discussed in the following sections) has shown frequent eo

amplification of fungal 18S rRNA regions along with nematode 18S rRNA amplicons from 

two sites in Plymouth Sound. Some of these fungal genera have also been detected in 

sediment samples from the Plymouth Sound based on PCR-DGGE. Therefore the other 

focus of this chapter will be to combine microbiological and molecular techniques to 

investigate whether some of these reported fungal taxa are found in association (existence 

of any parasitic or symbiotic relationships) with nematodes since bacterial associations 

with nematodes are well documented (Polz et al., 1999). 

3.1.1 Role of molecular techniques 

In contrast to the relative lack of application of molecular techniques to meiofaunal 

groups, such techniques have changed our view of diversity and evolution of microbial life 

(van Hannen et al., 1998). PCR based methods such as DNA cloning and sequencing, 

RFLP, DGGE, TGGE, ribosomal intergenic spacer analysis {RISA), automated ribosomal 

intergenic spacer analysis (ARISA) and other methods such as nucleic acid hybridization 

are now widely accepted as methods of choice for microbial diversity studies. Some of 

these techniques have been found to have some drawbacks when used for diversity 

estimation, however. In the following section a concise overview of these methods is 

provided, their potential disadvantages assessed, and justification given for selecting and 

applying DGGE to assess nematode diversity in this study. 

3.1.2 PCR based molecular techniques 

3.1.2.1 Clone libraries 

This approach basically involves PCR amplification of genes from a particular 

group of organisms or from environmental DNA and subsequent ligation into a plasmid 

vector so as to generate clone libraries. Individual clones from the library are subject to 
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direct PCR to re-amplify organismal sequence contained within the plasmid. The PCR 

product is then digested using restriction enzymes. Resulting fragments of DNA are 

usually separated by electrophoresis and visualised using DNA specific stains. Cluster 

analysis is typically then used to identify identical restriction fragment length 

polymorphism (RFLP) patterns from different clones and a few single representative 

clones from each RFLP pattern are sequenced and compared to a DNA database of known 

sequences. Rarefaction curves can be constructed to estimate whether the majority of 

species in the environment have been sampled and to compare the species diversity of 

samples taken from different sites and or at different times. Sometimes colonies from the 

library are directly sequenced to get an idea of composition of the respective phyla. Robust 

automated DNA sequencing systems have greatly facilitated the screening and analysis of 

large gene libraries generated by the PCR clone approach. 

Although this approach has not been utilised to study the diversity of marine 

nematode communities, it has been implemented in the assessment of prokaryotic (Wise et 

al., 1997; Bowman and McCuaig, 2003) and marine micro eukaryotic diversity (Diez et 

al., 2001a; Massana et al., 2002; Dawson and Pace, 2002; Guillou et al., 2004) and soil 

nematode diversity (Waite et al., 2003). Being PCR dependent the clone library approach 

has some drawbacks. For example, there is evidence to show that sampling and 

preservation methods can influence estimates of species composition in prokaryotic studies 

(Muyzer, 1998). In addition, the preferential amplification of genomic regions by PCR in 

some groups lead to an underestimation of species diversity using the clone library 

approach (Reysenbach et al., 1992). Generation of artefacts such as chimaeric PCR 

products, deletion errors and point errors along with biases in the cloning process itself can 

also affect the estimation of species diversity in samples (Muyzer, 1998; Stackebrandt et 

al., 2000). 
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3.1.2.2 Restriction fragment length polymorphism (RFLP) 

Restriction fragment length polymorphism (RFLP) is a tool that has been used to 

study microbial diversity and relies on the principle of DNA polymorphisms. In this 

technique PCR products amplified using specific primer sets are digested with one or more 

restriction endonucleases and then separated by using agarose or non-denaturing 

polyacrylamide gel electrophoresis for community analysis (Liu et al., 1997; Tiedje et al., 

1999). RFLP banding patterns can then be used to screen clones as mentioned earlier or 

used to measure community composition. The technique has been tested for assessing 

diversity in different organisms including soil nematodes (Weidner et al., 1996; Liu et al., 

1997; Massana et al., 2000; Waite et al., 2003). Despite these examples RFLP has some 

drawbacks. The method is useful for detecting structural changes in microbial communites 

but cannot be used as a measure of diversity or detection of specific phylogenetic groups 

(Liu et al., 1997). Sometimes banding patterns in diverse communities become too 

complex to analyze using RFLP method because a single species may have four to six 

restriction fragments (Tiedje et al., 1999). 

3.1.2.3 Terminal restriction fragment length polymorphism (T-RFLP) 

T -RFLP is a molecular technique that addresses some of the limitations of RFLP 

(Tiedje et al., 1999). In t-RFLP, PCR amplification of environmental DNA for a region of 

the DNA is carried out, the only difference being that one primer is labelled with a 

fluorescent dye. The PCR product is then digested with a restriction enzyme and the 

resultant DNA fragments separated on a capillary gel-automated sequencing system. Each 

differently sized fragment generally corresponds to a separate species. In addition to 

showing species richness, the fluorescence peaks provide an approximate estimate of 

relative species abundance in the initial sample (Acinas et al., 1997; Liu et al., 1997; 

Tiedje et al., 1999; Lukow et al., 2000; Tonin et al., 2001). Although the technique can 

allow analysis of complex communities as well as providing information on diversity 
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including species richness and evenness as well as similarities between samples (Liu et al., 

1997; Casamayor et al., 2002; Buchan et al., 2003), it is thought to be limited by PCR 

biases which are related to different gene copy number in different organisms. Sometimes 

incomplete digestion during T-RFLP may also lead to an overestimation of diversity 

(Osbom et al., 2000). 

3.1.2.4 Ribosomal intergenic spacer analysis (RJSA)Iautomated ribosomal intergenic 

spacer analysis (ARJSA) 

RlSA and ARlSA are similar in principle to RFLP and T-RFLP and provide 

ribosomal-based fmgerprinting of the microbial community. In RlSA, the sequence 

polymorphisms are detected using silver staining whilst in ARlSA the forward primer is 

fluorescently labelled and automatically detected (Fisher and Triplett, 1999). Both these 

techniques have been implemented in the assessment of microbial diversity (Bomeman and 

Triplett, 1997; Ranjard et al., 2000; Hewson and Fuhrman, 2004) but have some 

disadvantages. Both the methods provide highly reproducible bacterial community 

profiles. However RlSA requires large quantities of DNA, is relatively time consuming, 

silver staining is somewhat insensitive and resolution tends to be low (Fisher and Triplett, 

1999) but recent development in staining techniques may be useful in future microbial 

studies (LR Noble pers comm ). ARlSA on the other hand is sensitive and less time 

consuming, but is still subject to PCR bias (Fisher and Triplet!, 1999). 

3.1.2.5 Single-strand conformation polymorphism (SSCP) analysis 

PCR-based SSCP is technically relatively simple and can be used effectively to 

display major sequence types over short sequence lengths (usually approximately 100-400 

base pairs). SSCP relies on conformational intrastrand differences in DNA of different 

sequences. In SSCP, PCR products are heat-denatured and plunged into ice prior to 

electrophoretic separation on a polyacrylamide gel. SSCP has been successfully 
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implemented to characterise 14 species of parasitic nematodes by analysis of the ITS-2 

region of rRNA gene (Gasser and Monti, 1997). The technique has been recently applied to 

investigate mitochondrial DNA variation and cryptic speciation within the marine 

nematode Pellioditis marina (Derycke et al., 2005). The SSCP technique is known to have 

some limitations where single-stranded DNA can form more than one stable conformation 

and therefore one sequence may be represented by more than one band on the gel (Tiedje 

et al., 1999). 

3.1.2.6 Denaturing Gradient Gel Electrophoresis (DGGE) 

Denaturing gradient gel electrophoresis (DGGE) was first described by Fischer and 

Lerman (1983) and entails electrophoresis of DNA fragments at high temperature (50-

600C) in a polyacrylamide gel containing a gradient of denaturant (such as urea or 

formamide) (Myers et al., 1985a, b, c, 1987). The principle of the method is that it allows 

the separation of DNA fragments of similar length but with different sequences based on 

the decreased electrophoretic mobility of a partially melted double-stranded DNA within 

gels containing a linear gradient of DNA denaturants (Muyzer and Smalla, 1998). As the 

DNA fragment enters the concentration of denaturant where its lowest temperature domain 

melts, the molecule begins branching and, hence, slows down at a unique position in the 

gel. This results in separation of fragments with different sequences at different points after 

the completion of the run. The attachment of a GC-rich segment in the forward primer, 

called a GC clamp, which never denatures at the conditions chosen for the experiment, 

allows for a branched-shaped molecule whose shape is anchored as a double-stranded 

molecule by the GC clamp. Using this strategy, detection of almost all single-base changes 

in the fragment is possible. The GC clamp was introduced by Myers et al. (1985b) during 

PCR amplification of the DNA fragments. They observed that the addition of guanine and 

cytosine increased the resolution of detection by roughly 40%. A GC clamp between 40-45 

bp in length, as proposed by Sheffield et al. (1989), is routinely applied in a number of 
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studies. The DGGE method has been widely used for analysing diversity in prokaryotes 

and eukaryotes from different environments by allowing separation of a heterogeneous 

mixture of PCR amplified genes on a denaturing gel. Individual bands may be 

subsequently excised, re-amplified and sequenced (Ferris et al., 1996) or challenged with a 

range of oligonucleotide probes (Muyzer et al., 1993) to give an idea of the composition 

and diversity of the community. 

3.1.2. 6.1 Application of DGGE for assessing microbial diversity 

DGGE has been used extensively to evaluate prokaryotic microbial diversity from 

marine and fresh water environments. Riemann et al. (1999) studied the bacterial 

community composition during two consecutive NE monsoon periods in the Arabian Sea 

by DGGE of rRNA genes. Wieringa et al. (2000) studied the depth distribution and 

diversity of sulphate-reducing bacteria of sandy marine sediment of the Dutch island 

Schiermonnikoog by DGGE. Similarly, Schafer et al. (2001) looked into the microbial 

community dynamics in Mediterranean nutrient-enriched seawater mesocosms by 

fingerprinting cellular rRNA in a denaturing gel. Kisand and Wikner (2003) combined 

three molecular methods (DGGE, quantitative DNA-DNA hybridization and a 16S rRNA 

gene clone library) to estimate the richness of estuarine bacterioplankton consuming 

riverine dissolved organic matter. Koizumi et al. (2003) characterised the depth-related 

microbial community structure in lake sediment by denaturing gradient gel electrophoresis 

of amplified 16S rRNA and reverse transcribed 16S rRNA fragments. Bowman et al. 

(2003) studied prokaryotic community activity and structural characteristics in Antarctic 

continental shelf sediments by DGGE analysis of amplified bacterial 16S rRNA genes. 

Gillan (2004) studied the effect of an acute copper exposure on the diversity of a microbial 

community in North Sea sediments by DGGE. Rees et al. (2004) evaluated DGGE 

technique for studying the diversity of the Kenyan soda lake alkaliphiles based on 16S 

rRNA amplicons. Webster et al. (2004) studied the diverse microbial communities that 
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inhabit Antarctic sponges using the DGGE technique. In a related study, Taylor et al. 

(2004) also explored the relationship between microbial diversity and host specificity in 

marine-sponge bacterial associations with 16S rRNA and rpoB genes based DGGE. 

Demergasso et al. (2004) applied PCR-DGGE to study the distribution of prokaryotes in 

the lakes of the Atacama Desert, Northern Chile. Dahl!Of and Karle (2005) also used 

DGGE to study the relative abundance of bacterial species in marine sediment nitrogen 

fluxes caused by organic enrichment. Postec et al. (2005) investigated the microbial 

diversity of thermophiles inhabiting deep-sea hydrothermal ecosystems through DGGE 

analysis of 16S rRNA gene. 

The application of DGGE to the study of marine eukaryotic diversity is limited to a 

few groups of organisms, in particular microbial eukaryotes such as plankton. Niibel et al. 

(2000) studied the phylogenetic diversity and distribution of phototrophic micro-organisms 

including diatoms along a salinity gradient by PCR-DGGE and sequencing. Diez et al. 

(2001 b) applied DGGE to study the diversity of marine picoeukaryotic assemblages using 

the 18S rRNA gene and compared DGGE with other molecular techniques. Casamayor et 

al. (2002) studied the changes in the diversity of eukaryotic and prokaryotic assemblages 

in a multipond solar saltern using three different molecular methods including DGGE. 

Savin et al. (2004) used DGGE to evaluate plankton diversity from the Bay of Fundy, 

Canada using the 18S rRNA gene. Zeidner and Beja (2004) used DGGE to analyse 

naturally occurring marine oxygenic picophytoplankton usmg the conserved 

photosynthetic psbA gene from Red Sea and Mediterranean waters. Work in this thesis has 

led to a publication by Cook et al. (2005) where the diversity of marine nematodes from 

British waters was investigated by PCR-DGGE of 18S rRNA gene. 

The DGGE technique has had a wide application in terrestrial microbiology 

(Agnelli et al., 2004; da Mota et al., 2005; Laverman et al., 2005), ecology and diversity of 

fungal communities (Brodie et al., 2003; Marshall et al., 2003; Yergeau et al., 2005), soil 

and parasitic nematology (Gasser et al., 1996; Gasser et al., 1998; Foucher and Wilson, 
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2002; Waite et al., 2003; Foucher et al., 2004), microbial dynamics during bioremediation 

studies (Kirk et al., 2005; Roest et al., 2005; Sercu et al., 2005), food microbiology 

(Minelli et al., 2004; Rantsiou et al., 2004) and also in diagnostic microbiology (Rasiah et 

al., 2005). PCR based DGGE has been widely implemented in different groups of 

organisms and provided vital information towards our understanding of diversity. DGGE 

has the advantages of being reliable, reproducible, highly sensitive, rapid, easy to set up 

and relatively inexpensive. Multiple samples can be analyzed concurrently and PCR 

fragments separated in the gel can be isolated and subsequently sequenced to get an idea of 

the community composition. In addition, the methodologies are simple and non

radioactive. Because of these advantages, the DGGE technique was selected as a tool for 

identification and diversity assessment of nematodes in this study. 

3.1.2.6.2 Molecular marker selection for DGGE study 

Molecular marker selection is one of the most important aspects for the success of 

DGGE. The 16S rRNA gene is the preferred choice for most prokaryotic studies although 

several others genes such as nirS (nitrite reductase), pmo-A (coding for the a-subunit of 

particulate methane monooxygenase), mxa-F (coding for the a-subunit of methanol 

dehydrogenase) have been also used for functional diversity studies in prokaryotes 

(Fjellebirkeland et al., 2001; Goregues et al., 2005; Kleikemper et al., 2005). For 

eukaryotic diversity assessment, the nuclear small subunit ribosomal RNA (18S rRNA) 

gene has been the preferred molecular marker (Diez et al., 200lb; Waite et al., 2003; 

Foucher et al., 2004; Cook et al., 2005). The chosen marker must be within a particular 

size range as DGGE works optimally with fragments from 200 base pairs to I Kb (Potts, 

1996). The other important aspect is the presence of conserved and variable regions as this 

is extremely important for designing primers. 

For this study, the 18S rRNA gene was chosen as a molecular marker since it can be 

reliably used for developing primer sets which is a pre-requisite for PCR-dependent 
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DGGE. The 18S rRNA gene contains variable regions flanked by conserved regions, tends 

to be species specific, and has been researched extensively for parasitic and soil nematodes 

(see Chapter 1 and Blaxter et al., 1998; SchlOtterer, 1998; Dorris et al., 1999; Foucher and 

Wilson, 2002; Waite et al., 2003). Moreover several nematode sequences ofthe 18S rRNA 

gene are also available from taxa spread widely across the phylum although the sequences 

are predominantly for terrestrial nematodes (Ellis et al., 1986; Zarlenga et al., 1994 a, b; 

Fitch et al., 1995; Fitch and Thomas, 1997; Aleshin et al., 1998; Blaxter et al., 1998; 

Kampfer et al., 1998; Dorris et al., 1999). Existence of 18S rRNA sequences from 

different nematodes is an added advantage for designing consensus-based primers. 

3.1.3 Non-PCR based molecular techniques 

3.1.3.1 Nucleic acid hybridization 

Nucleic acid hybridization using specific probes is an important qualitative and 

quantitative tool in molecular ecology (Griffiths et al., 1999; Clegg et al., 2000; Theron 

and Cloete, 2000). The hybridization techniques can be performed on extracted nucleic 

acids (DNA or RNA) or in situ. Oligonucleotide or polynucleotide probes designed from 

known sequences can be tagged with a fluorescent marker at the 5' end (Theron and 

Cloete, 2000). One of the principal limitations of in situ hybridization or hybridization of 

nucleic acids extracted from environmental samples is the lack of sensitivity. The other 

factor is the copy number of the sequences. Unless the sequences are present in high copy 

number they are often undetectable. 

3.1.3.2 DNA microarrays 

In recent years, DNA-DNA hybridization has been used together with DNA micro

arrays to assess microbial diversity from varied environments (Greene and Voordouw, 

2003). Microarrays are high throughput systems that provide information on a very large 

number of genes and on changes in the expression of genes. The microarray has been 
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found to be a valuable tool in diversity studies since a single array can contain thousands of 

DNA sequences with high specificity (Cho and Tiedje, 2001). A microarray may contain 

specific target genes such as nitrate reductase, nitrogenase, etc. to provide functional 

diversity information or a sample of environmental standards (DNA fragments with less 

than 70% hybridization) that represent different species found in the environmental 

(Greene and Voordouw, 2003). Microarrays have been most widely used in prokaryotic 

diversity studies (Murray et al., 2001; Cho and Tiedje, 2002; Wilson et al., 2002; 

Taroncher-Oldenburg et al., 2003) rather than studies of eukaryotes. De Santis et al. (2005) 

used rnicroarrays for rapid quantification and taxonomic classification of environmental 

DNA from both prokaryotic and eukaryotic origins. Microarrays are not subjected to PCR 

bias; however, it is an expensive method. 

3.1.4 General limitations of molecular-based metbods 

Molecular techniques based on PCR have been used to overcome the limitations of 

culture-based methods used in microbiology. Nevertheless they have their own limitations. 

Various problems with nucleic acid extraction methods can result in bias and 

inconsistencies in diversity estimation. Extraction methods such as bead beating can shear 

the nucleic acids, leading to problems in subsequent PCR detection (Wintzingerode et al., 

1997). Different nucleic acid extraction methods result in different yields of DNA 

(Wintzingerode et al., 1997). For environmental samples, it is imperative to remove 

inhibitory substances such as humic acids, which can be eo-extracted and generally 

interfere with PCR analysis. Subsequent purification steps can result in loss of DNA or 

RNA, again potentially biasing molecular diversity analysis. Preferential amplification of 

target genes can also result in biased interpretation of diversity. Wintzingerode et al. 

(1997) detailed issues surrounding differential PCR amplification including different 

affmities of primers to templates, different copy numbers of target genes, hybridization 

efficiency and primer specificity. In addition, sequences with lower G+C content are 
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thought to separate more efficiently in the denaturing step ofPCR and, therefore, could be 

preferentially amplified (Wintzingerode et al., 1997). Nevertheless molecular-based 

methods could provide vital information about the prokaryotic and eukaryotic microbial 

communities as opposed to traditional methods such as culture-based techniques, 

microscopy, etc. 

3.1.5 Microbial diversity associated within a micro-environment 

Almost all environments including soil and sediment harbour a high diversity of 

microorganisms (Torsvik et al., 1996). Application of molecular technologies using 

cloning and DGGE has revealed great and previously unknown diversity from different 

environments (Borneman et al., 1996; Bornemann and Triplet!, 1997). High prokaryotic 

diversity has been observed in association with marine invertebrates. Researchers such as 

Polz et al. (1999) have shown great diversity and heterogeneity of epibiotic bacterial 

communities on the surface of the marine nematode Eubostrichus dianae. Such 

associations are also well documented in different groups of marine invertebrates e.g. 

sponges and isopods (Pile et al., 2003; Taylor et al., 2004; Lindquist et al., 2005). Most of 

these associations are symbiotic in nature and the symbionts are overwhelmingly 

prokaryotic. On the other hand reported associations between marine invertebrates and 

micro-eukaryotes are very rare. Zande (1999) reported fungal-marine invertebrate 

association in a gastropod Bathynerita naticoidea. It is thought that the ascomycetes living 

in the gills of the gastropod may act to detoxify the hydrocarbons and sulfide compounds 

of the seep environment that the gastropod inhabits, or may be parasites that have infected 

the gill tissue. There are currently no reports on the diversity and existence of eukaryotic 

assemblages that are found to be in close association with nematode micro-environments 

such as their body surfaces. 
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3.1.6 Aims of tbis study 

The purpose of this chapter was to investigate five main aims: 

• To test whether denaturing gradient gel electrophoresis (DGGE) could be 

used as a tool for identification of marine nematode taxa. 

• To investigate the minimum level of marine nematode DNA that could be 

resolved in a denaturing gel. 

• To test whether DGGE could be used as a rapid tool for assessing nematode 

diversity from estuarine and marine sediments. 

• To investigate whether sample size affects the overall interpretation of 

nematode diversity by DGGE. 

• To investigate eukaryotic assemblages that might be present in 

microenvironments such as the body surface of nematodes from estuarine 

and marine environments. 

3.2 Materials and Metbods 

3.2.1 Sediment collection 

Sediments were collected subtidally using a van Veen grab from muddy and muddy 

sand substrates in South West England from the Tarnar estuary (1-5 m depth) (50. 24' N, 

4· 12' W), from Plymouth Sound at Jennycliff (10m depth) (so· 20' N, 4· 08' W) and 

Plymouth Breakwater (15m depth) (so· 20' N, 4° 08' W) and offRame Head (50m depth) 

(so· 17' N, 4" 17' W) and Cawsand (12m depth) (50° 19' N, 4° 11' W) and also from the 

North of England at the National Marine Monitoring Programme (NMMP) site off the 

Humber estuary (70m depth) (54. 00' N, 2· 00' E). All samples were taken from the 

surface sediment of the grab and one half of each sediment sample was immediately fixed 

in a storage pot containing 98% molecular grade ethanol (Hayman Limited, England) and 

the other half in a storage pot containing 4% formalin. 
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3.2.2 Meiofauna extraction 

Prior to processing, sediment samples (100 gm) from each site were fixed overnight 

in 98% ethanol (molecular grade). Each sediment sample was then washed twice with tap 

water on a 63 ).liD sieve to remove finer sediment components, and drive off any alcohol. 

The washing was continued until the water passing through the sieve became clear. 

Extraction then followed Somerfield and Warwick's (1996) flotation method, where the 

sediment containing fauna was suspended in a fluid having a specific gravity similar to that 

of the nematodes in which the animals remain neutrally buoyant and become suspended 

whereas the sediment component slowly sinks in the fluid medium. The residue sediment 

and fauna was concentrated at the edge of the sieve and was saturated with Ludox TM 

(specific gravity 1.15) before being washed into 100 mL beakers. The mixture of sediment 

and Ludox was thoroughly stirred and then left for at least two hours to allow the animals 

to become suspended and separated from the sediment. The supematant was poured into a 

63 ).liD sieve to collect the fauna. Extracted fauna were washed once again with distilled 

water and then stored in 98% alcohol. Nematode specimens used for DNA extraction were 

picked out of the extracted samples using a sterile needle under a binocular stereo 

microscope (50X) and placed into a cavity block containing approximately 5% glycerol 

and 10% ethanol. Each specimen was then mounted on a slide (76mm x 26mm) containing 

a drop of glycerol in the middle and a square cover slip (18mm x 18mm) placed on top. 

Before mounting, the slides and cover slips were washed in molecular grade alcohol and 

dried with tissue papers. The cover slip was then sealed with paraffin wax. Only one 

nematode was mounted on each slide. The slides were labelled and stored before 

morphological identification. Under a compound microscope each specimen was identified 

to genus and species level wherever possible based on morphological characters, using 

pictorial keys for the identification of marine nematodes from North West Europe (Platt 

and Warwick 1983, 1988). After identification the cover slips were carefully removed from 

the slides using a sterile scalpel and the specimens individually placed in 0.5 mL PCR 
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tubes containing 20 )lL of 0.25 M NaOH for DNA extraction. Each individual was then 

subjected to DNA extraction, PCR amplification and DNA sequencing techniques as 

described in Chapter Two. 

3.2.3 Denaturing gradient gel electrophoresis (DGGE) 

3.2.3.1 Selection of primers 

Three sets of primers were initially selected and designed based on the nematode 

SSU rRNA molecule for DGGE studies. However, one of the primers sets, 22F forward 

[5 '-GCCTGCTGCCTTCCTTGGA-3 '] and 26R reverse [5'-

CATTCTTGGCAAATGCTTTCG-3'] (Biaxter et al., 1998) was later abandoned because 

of apparent eo-amplification of fungal ribosomal RNA fragments. Two sets of primers 

were therefore used for PCR amplification of the nematode 18S rRNA in this study. The 

primers were (i) Gl8F forward and 22R reverse and (ii) MN18FGC forward and 22R 

reverse. The first primer set has been used in previous studies related to nematode 

phylogenetics (Meldal, 2004; Blaxter et al., 1998) and electrophoretic separation of marine 

nematodes in a denaturing gel (Cook et al., 2005). A new forward primer was designed in 

the case of the second primer set so as to selectively amplify nematode 18S rRNA regions 

and to prevent eo-amplification of other eukaryotic ribosomal regions. The forward primer 

designed in this study was based on a consensus of nematode 18S rRNA sequences held 

online in GenBank and EMBL databases. Both the forward primers in this study were 

synthesised with addition of a 40 bp GC clamp at the 5' end to prevent the complete 

denaturation of DNA (Myers et al., 1985a). The primer sets yielded PCR products of 

approximately 400 bp and 345 bp respectively. DGGE analysis was carried out using a 

Bio-Rad Dcode™ mutation analysis system (Bio-Rad, Hercules, CA, USA). For DGGE 

analysis 0% and 80% stock denaturant solutions were used. 
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3.2.3.2 Gradient selection and electrophoresis conditions 

Two types of gradient namely 25% to 50% and 25% to 60% were prepared (15 mL 

each) using the 0% and 80% denaturant stocks. The following table details gradient 

preparation (15 mL volume) from denaturant stocks: 

Table 3.1: Denaturing gradients prepared from denaturing stocks for DGGE. 

Concentration 20% 25% 30% 35% 40% 45% 50% 60% 

80%(Denaturant 3.75 4.7 5.6 6.5 7.5 8.4 9.4 11.25 

Stock) (mL) 

0% (Denaturant 11.25 10.3 9.4 8.5 7.5 6.6 5.6 3.75 

Stock) (mL) 

Electrophoresis was initially carried out at 200 V for 30 minutes followed by an 

adjustment to 60V for overnight electrophoresis. Following electrophoresis, denaturing 

gels were stained with SYBR Gold Nucleic Acid stain (I JlL of the stain in 10 mL of lx 

TAE buffer) (nucleic acid concentration 10,000X). The staining gel was left for an hour 

away from light. After an hour, the gel was visualised and recorded using a SYNGENE 

Gel Documentation System. 

3.2.3.3 DGGE band excision, cloning and sequencing 

Bands from the denaturing gel were excised, re-amplified, cloned and sequenced 

when necessary to confirm the identity and homology with nematode ribosomal sequences 

available online in nucleotide sequence databases. Prominent bands from the denaturing 

gel were excised using Unicores (1 mm internal diameter, Sigma Aldrich, UK) and placed 

into 0.5 mL PCR tubes containing 20 JlL of MilliQ water. The tubes were left overnight 

(12-14 hours) at 4°C. PCR reactions were performed in a final volume of 50 JlL. For the 

first set of primers (G18F-22R) the following program was used for PCR amplification: 

95°C for 5 min, followed by 36 cycles for 1 min at 95°C, 1 m in at 51 °C, 2 m in at 72°C. A 
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final annealing temperature of 2 min at 51 oc and an extension of 5 min at 72°C completed 

the PCR. For the second set of primers (MN18F and 22R) the following PCR conditions 

were implemented: 95°C for 5 m in, 36 cycles of 30 sec at 95°C, 1 min at 56°C and 1 min 

at 72°C and a final extension of 5 min at 72°C. Amplified PCR fragments were cloned 

using the pGEM-T Easy Vector System. Plasmid DNA containing the inserts was cycle 

sequenced in both directions using the Ml3F forward and M13R reverse primers. 

Sequencing reactions were cleaned following the protocol previously described (Chapter 

Two) and subsequently sequenced in an ABI Hitachi 3100 Sequencer. Three to four 

colonies for each clone were sequenced to confirm the sequence identity. Generated 

sequence data were checked for ambiguities and errors and compared with the nucleotide 

sequence databases in the BLAST search engine. Sequences were also checked for 

chimeras using the CHECK CHIMERA program at the Ribosomal Database Project URL 

(Maidak et al., 1994). 

3.2.4 Species separation in a denaturing gel without mung bean nuclease treatment of 

PCR fragments 

Two nematode specimens belonging to different taxa were selected from marine 

sediment and morphologically identified under the compound microscope as Thalassironus 

britannicus and Sabatieria sp. Genomic DNA was extracted from each worm using a 

modification of the Floyd et al. (2002) nucleic acid extraction method as previously 

described (Chapter Two). Two primers G 18FGC and 22R were then used to amplify 

approximately 400 base pairs from the 5' end of the 18S rRNA gene. Additionally, DNA 

from the two taxa were mixed together and used as a template for PCR amplification. 

The following components were added in each PCR tube for amplification:-

dNTPs- 5 JlL, template- 5 JlL each, primers 2 JlL each, 10x Pfu buffer- 5 JlL, Pfu DNA 

polymerase- 0.5 JlL and milliQ water to make up a final volume of 50 JlL. The programme 

used in the thermal cycler for amplification was 2 min at 96°C, 35 cycles of 1 m in at 94°C, 
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1 min at 55°C, 1 min 30 sec at 72°C and finally one cycle of2 min at 55°C, 5 min at 72°C 

followed by a holding temperature of 4°C. The PCR products were analysed in 1% agarose 

gel prior to DGGE analysis. To confirm that the primers were amplifying ribosomal 

regions of the nematode nuclear genome, amplification products were sequenced in both 

directions using forward and reverse primers prior to DGGE analysis (G18F and 22R 

primers). The amplification products were subsequently loaded in a 25% to 60% 

denaturing gel and underwent electrophoresis at 60V for 16 hours at 60°C. 

3.2.5 Species separation in a denaturing gel following mung bean nuclease treatment 

of PCR fragments 

Three nematode specimens belonging to three different taxa were selected from 

sediment and morphologically identified under a compound microscope as Sabatieria sp., 

Thalassironus britannicus and Enoploides sp. Genomic DNA was extracted from each 

worm and subsequently PCR amplified with G18FGC forward and 22R primers. DNA 

from the three taxa was mixed together and used as a template for PCR amplification using 

the same set of primers as in the previous experimental set up (Section 3.2.4). Mung bean 

nuclease treatment of PCR amp I icons prior to DGGE removed the artefactual double bands 

that arise due to the formation of some secondary product as a result of prematurely halted 

elongation in PCR amplification (Janse et al., 2004). Artefactual double bands could 

hamper interpretation and analysis of DGGE gels as they may lead to an overestimation of 

sequence diversity. The mung bean nuclease enzyme ensures degradation of the double 

stranded DNA from both ends to yield 5' -phosphoryl terminated products (Ardelt and 

Laskowski, 1971; Kroeker et al., 1976) and thereby removes the artefactual double bands. 
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3.2. 5.1 Mung bean nuclease treatment of the PCR products 

PCR amplicons from Sabatieria sp., Thalassironus britannicus and Enoploides sp. 

were therefore treated with mung bean nuclease before being loaded onto a DGGE gel. 

The following components were added to the individual PCR product: 

PCR product 1 0 J.1L 

Mung bean nuclease 1 Jll (2U/J.1L) 

1 Ox reaction buffer 2 JlL 

MilliQ water 7 JlL 

The mixtures were then incubated at 30°C for 30 mins. The amplification products were 

subsequently loaded in 25-50% and 25-60% denaturing gradients and electrophoresed at 

60V for 16 hours at 60°C. 

3.2.6 Minimum detectable concentration of nematode DNA in a denaturing gradient 

gel 

To detect the minimum level of marine nematode DNA that could be resolved in a 

denaturing gradient, a dilution series experiment was performed. Genomic DNA extracted 

from a single Thalassironus britannicus individual was used as template for PCR 

amplification (G 18FGC and 22R). The templates were added in the following order to 

carry out PCR amplification: 8, 5, 3, 1, 0.5 and 0.1 JlL. The PCR products were loaded in a 

25% to 60% denaturing gradient for electrophoresis using previous electrophoretic 

conditions (Section 3.2.5.1 ). 

3.2.7 Application of DGGE for assessment of marine nematode diversity following 

total nematode extraction from sediment samples 

To investigate the potential ofDGGE as a tool for diversity assessment, 5 grams of 

sediment from the sampling stations at Rame Head, Cawsand, Plymouth Breakwater and 

Tamar estuary (Saltash) previously fixed in 98% alcohol were subjected to total 
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meiofaunal extraction following the flotation method of Somerfield and Warwick (1996). 

On average there were 90-100 nematodes from each sample. Subsequently all nematodes 

from each site were carefully picked under a binocular microscope, placed together in a 

single sample which was then subjected to total DNA extraction. 18S rRNA gene was 

selectively amplified using the DGGE primer G 18FGC and 22R and following the 

parameters described earlier in section 3.2.4. The resultant amplicons were separated using 

DGGE with a 25-60% denaturing urea gradient. Gels were run for 16 hours at 60 volts and 

then stained with SYBR-Gold. Stained gels were visualised and recorded using the 

SYNGENE Documentation System. Some of the prominent bands from each site in the gel 

were excised under a blue light source (DR45 Transilluminator, GRI UK), reamplified and 

sequenced to verify specificity of the primers. Bands excised and sequenced were assigned 

unique reference numbers on the gel. 

3. 2. 7.1 Phylogenetic tree constroction based on excised band sequences 

A phylogenetic tree was constructed from the excised band sequences, 18S rRNA 

sequences from marine nematode sequences generated in this study and additional 

nematode 18S rRNA sequences from the GenBank and EMBL databases. GenBank and 

EMBL sequences used in this study were Ascolaimus elongatus (AY85231), 

Chromadoropsis vivipara (AF047891), Enoplus meridionalis (EMY16914), Daptonema 

procerus (AF04 7889), Metachromadora remanei (A Y854216), Metachromadora sp. 

(AF036595) and Sabatieiria sp. (A Y854236). Prior to tree construction sequences were 

aligned in the Clustal-X program using default parameters (Thompson et al., 1997; 

Jeanmougin et al., 1998). A neighbour-joining tree was constructed with the program 

MEGA v2.0 (Kumar et al., 2001) using Gamma corrected Kimura distance parameters 

(Blaxter et al., 1998) and was subsequently validated using 1000 bootstrap replicates. 
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3.2.8 Morphological analysis of a sediment sample from Saltash {Tamar estuary) 

Sediments (5 gm) from the Tamar estuary that had been fixed in formalin were 

subjected to morphological analysis under a compound microscope. All the meiofauna 

were extracted from the sediment and washed onto a small 63 11m sieve with a mixture of 

10% dilute ethanol and 5% glycerol. The meiofauna were then transferred into a cavity 

block and washed once again with the same mixture. The cavity block was placed on a 

warm hotplate (20-30°C} for at least 24 hours to allow the water and ethanol to evaporate 

leaving the sample material in glycerol. The contents of the cavity block were then 

mounted on microscope slides as described in section 3.2.2. In addition the slide 

preparations were permanently sealed with two coats ofBioseal, a xylene-resistant sealant, 

and identifications were confirmed by several experienced taxonomists. 

3.2.9 Total DNA extraction from sediment samples for molecular detection of marine 

nematodes 

One of the mam objectives of this study was to evaluate a method for rapid 

assessment of marine nematode diversity from total DNA extracted directly from estuarine 

and marine sediments. To extract total DNA from the samples two methods were evaluated 

in this study. 

3.2.9.1 Total DNA extraction from sediment samples using the Macrae et al. (2001) 

method 

A method first described by Macrae et al. (2001) and subsequently modified in this 

study was used to extract total DNA from estuarine and marine sediments. Sediment 

samples from Jennycliff, Plymouth Breakwater, Rame Head and Tamar estuary were used 

for DNA extraction. Briefly, 1 gm of sediment was weighed into a 15 mL centrifuge tube 

(Fisherbrand) containing 0.5 g of glass beads (212-300 microns, Sigma), 0.7 mL of 120 

mM extraction buffer (pH 8.0, 30 mM Na2HP04 and 90 mM NaH2P04) and 0.6 mL 
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phenoUchloroformlisoamyl alcohol (25:24:1, v/v) was added and the tube vortexed for 

bead beating (10 mins). Samples were then centrifuged for 5 min (RCF=12,000) and the 

upper aqueous phase removed and collected in a fresh 2 mL screw-top tube. A further 0.5 

mL of extraction buffer was added to the original tube and the bead beating and 

centrifugation steps repeated. After centrifugation, the aqueous phase was pooled with that 

from the first extraction. An equal volume of chloroform/isoamyl alcohol (24: 1 v/v) was 

added and the sample vortexed and centrifuged to remove residual phenol. The upper layer 

of the tube was carefully removed to a fresh tube and 0.1 volume of 3 M sodium acetate 

and 0.6 volumes of isopropanol were added to it. The mix was left at room temperature for 

10 minutes prior to centrifugation (RCF=12,000) for another 10 minutes. The supematant 

was discarded and the DNA pellet washed in 250 IJ.L of 70% (v/v) ethanol. The 

supematant was discarded after centrifugation (RCF=12,000) for 5 minutes. The sample 

was air-dried at 37°C for 30 minutes. 100 f.lL of MilliQ water was added to resuspend the 

DNA and the sample stored at -20°C prior to amplifications. 

3.2.9.1.1 PCR amplification of DNA samples using MN18FGC and 22R primers and 

subsequent DGGE analysis 

The concentration of total DNA extracted using the modified Macrae et al. (2001) 

method was quantified in a spectrophotometer (Eppendorf Inc). Briefly, 2 11L of template 

DNA was suspended in 198 IJ.L of MilliQ water in a UV cuvette and measured using the 

dsDNA (double stranded DNA) program. 

DNA samples were subsequently PCR amplified using the MN18FGC and 22R 

primers. PCR reactions were performed on 0.5 IJ.L aliquots of the extracted DNA and Pfu 

DNA polymerase used for amplification. 1.0 f.LL of BSA (Bovine Serum Albumin, 10 

mg/mL} was added to the PCR reactions. The following program was used for 

amplification: 2 min at 95°C, 38 cycles of 1 min at 94°C, 1 min at 56°C, 90 seconds at 
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72°C and fmally one cycle of 2 ntin at 56°C, 30 ntins at 72°C followed by a holding 

temperature of 4°C. DGGE analysis was carried out in a 25% to 60% denaturing gradient. 

15 J.LL ofPCR product was loaded into each well of the gel for electrophoresis. 

3. 2. 9.2 Extraction of total DNA using FastDNA@ Kit for Soil (Qbiogene /ne) 

A second DNA extraction method was tested using the commercially available 

FastDNA® Kit. Estuarine and marine sediment samples from five sampling stations, 

Plymouth Breakwater, JennyCliff, Rame Head, Saltash (Tamar estuary) and the NMMP 

site, were selected for total DNA extraction using the FastDNA® Spin Kit. Approximately 

500 mg of sediment from each sampling station was added to Lysing Matrix E tube. 978 

J.LL of Sodium Phosphate buffer and 122 J.LL of MT buffer were added to each tube. The 

Lysing Matrix E tubes were centrifuged (RCF=14,000) for 30 seconds. Supematant from 

each tube was carefully transferred to a clean tube and 250 J.LL of PPS (Protein 

Precipitation Solution) reagent was added to it. The solution was mixed by shaking 10 

times. The tubes were centrifuged (RCF=14,000) for 5 minutes to precipitate protein 

pellets. Supematant from each tube was transferred to clean 15 mL tubes. 1 mL of Binding 

Matrix Suspension was added to the supematant. The Binding Matrix Suspension was 

handled carefully because it contained Guanidine thiocyanate which is highly toxic and a 

skin irritant. The suspension was thoroughly resuspended before use. The tubes were 

inverted by hand for 2 minutes to allow binding of DNA to matrix. The tubes were then 

placed in a rack for 3 minutes to allow settling of the matrix. 500 J.LL of supematant from 

each tube was carefully removed to avoid settled Binding Matrix. The supematant was 

discarded. The Binding Matrix was resuspended in the remaining amount of supematant. 

Approximately 600 JlL of the mixture from each tube was carefully transferred to a 

SPIN™ Filter and centrifuged (RCF=l4,000) for 1 ntinute. The catch tube was emptied in 

each case and the remaining supematant was added to the SPIN™ Filter and spun again. 
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500 f.LL of SEWS-M (Salt/Ethanol Wash Solution) was added to the SPIN™ Filter and 

centrifuged (RCF=14,000) for 1 minute. The flow-through was decanted and the SPIN™ 

Filter was replaced in the catch tube. The filter was centrifuged (RCF=l4,000) for another 

2 minutes to dry the matrix of residual SEWS-M wash solution. The SPIN™ Filters were 

carefully removed and placed in a fresh kit- supplied catch tube. The SPIN™ Filters were 

air dried for 5 minutes at room temperature. 50 f.LL of DES (DNase/Pyrogen Free Water) 

was added to each filter and the matrix was gently stirred with a pipette tip to resuspend 

the silica for efficient elution of the DNA. The filters were centrifuged (RCF=l4,000) for 1 

minute so as to transfer eluted DNA to Catch Tubes. The spin filters were discarded and 

DNA samples were stored in -20°C until further use. 

3.2.9.2.1 PCR amplification of total DNA using the GJ8FGC and 22R primers and DGGE 

analysis 

Prior to PCR amplification, the concentration of total DNA from all the five sites 

was quantified in a spectrophotometer (see Section 3.2.9.1.1). 

DNA from four sites, namely Plymouth Breakwater, JennyCliff, Rame Head and 

Saltash (Tamar estuary), were used for PCR amplification using the G 18FGC and 22R 

primers. PCR reactions were performed on 0.5 f.LL aliquots of the extracted DNA and I f.LL 

of BSA was used in each PCR reaction. DGGE analysis was carried out in a 25% to 60% 

denaturing gradient and electrophoresis followed previous conditions. 15 f.LL of PCR 

amplified DNA from the four sites was loaded into each well in the denaturing gel. Gels 

were stained using procedures as described earlier (Section 3.2.2.2) and subsequently 

visualised and recorded. Some of the prominent bands from each site in the gel were 

excised and sequenced. Bands that were excised and sequenced have been assigned unique 

reference numbers on the gel. 
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3.2.9.3 PCR amplification and subsequent DGGE analysis using MNJBFGC and 22R 

primers 

A second set of primers, MN18FGC and 22R were tested on the DNA samples from 

all the sites. PCR amplifications were performed as described previously (Section 

3.2.9.1.1) using the same thermal cycle parameters. DGGE analysis was performed in a 

25% to 60% denaturing gradient at 60°C for 16 hours at 60V and subsequently visualised. 

Some of the prominent bands were excised, re-amplified, cloned into pGEM-T vectors and 

sequenced. Three to four colonies from each clone were sequenced to confirm sequence 

identity. Selected bands that were excised have been assigned reference numbers on the 

gel. 

3.2.9.4 Phylogenetic tree construction based on excised sequences amplified using 

MNJBFGC and 22R primers 

A phylogenetic tree was constructed from excised band sequences and additional 

partial ssu marine nematode sequences generated in this study as well as sequences from 

GenBank and EMBL databases. GenBank and EMBL sequences used in this study were 

Daptonema oxycerca (A Y854225), Daptonema normandicum (A Y854224), 

Paracanthonchus sp. (AF047888), Atrochromadora microlaima (A Y854204), 

Dichromadora sp. (A Y854209). Tree construction was carried out following the steps 

described in section 3.2.7.1. 

3.2.10 Influence of sediment sample sizes on the assessment of nematode diversity 

The influence of sediment sample sizes on the assessment of nematode diversity 

was investigated using sediments from the Tamar estuary. Three sample sizes, 0.01g, O.lg 

and l.Og were evaluated. DNA was extracted using the Soi!Master™ DNA Extraction kit 

following the manufacturer's instructions (Epicentre, Wisconsin, USA). Briefly, four 

replicates ofO.Olg, O.lg and l.Og estuarine sediment were used for DNA extraction. Four 
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replicates of each sample size were weighed and placed into 1.5 mL eppendorf tubes. 250 

J!L of Soil DNA Extraction buffer and 2 JlL of Proteinase K (50 mg/mL) were added to 

each tube and vortexed briefly for 2 minutes. To increase the yield of DNA the tubes were 

shaken for 10 min at 37°C. 50 JlL of Soil Lysis Buffer was added to each tube and 

vortexed briefly for 2-3 minutes. The tubes were subsequently incubated at 65°C for 10 

minutes. Following incubation, the tubes were centrifuged for 2 min (RCF=1,000). 180 JlL 

of the supernatant from each tube was transferred to new tubes. This was followed by the 

addition of 60 JlL of Protein Precipitation Reagent and thorough mixing by inverting each 

tube. The tubes were incubated on ice for 8 minutes and then centrifuged at maximum 

speed for 8 min on a table-top centrifuge. Prior to transfer of the supernatant from the 

centrifuged tubes directly onto the spin columns, 550 JlL of Inhibitor Removal Resin was 

added to each empty spin column and centrifuged for 1 minute (RCF=2,000) to pack the 

column. The flow-through was decanted and the columns were placed back into the same 

collection tubes. Another 550 JlL of Inhibitor Removal Resin was added to each packed 

column and centrifuged once again for 2 minutes (RCF=2,000). The columns were 

transferred into clean 1.5 mL collection tubes. 100-150 JlL of supernatant from each tube 

(centrifuged for 8 mins previously) was transferred to individual prepared Spin Columns 

containing the collection tubes. The spin columns were centrifuged for 2 minutes 

(RCF=2,000). The columns were discarded thereafter and to each collection tube 6 JlL of 

DNA Precipitation solution was added and the tube vortexed for one minute. The tubes 

were incubated for another 5 minutes at room temperature and then centrifuged for 5 

minutes at maximum speed. The supernatant from each tube was carefully decantated. The 

pellets were washed with 500 JlL of Pellet Wash Solution. The tubes were inverted for 

thorough mixing and then spun for another three minutes at maximum speed in a 

centrifuge. Once again the supernatant from each tube was carefully decantated. The wash 
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and spin procedure was repeated once more. The pellets were finally resuspended in 300 

JlL ofTE Buffer (pH 7.5). 

To test that there was no bias with the DNA extraction method, two replicates ofO.l 

g of sediment from the Tamar estuary were subjected to total DNA extraction using the 

SoilMaster™ DNA Extraction Kit and Powersoil™ DNA Isolation Kit (MoBio 

Laboratories, Inc USA). The Powersoil DNA kit relies on bead beating and is effective at 

removing PCR inhibitors from sediment with high humic acid content through a humic 

substance removal procedure. DNA was extracted following manufacturer's instructions. 

3. 2.1 0.1 PCR amplification and DGGE of amplification products 

Four replicates of each of the sample sizes namely 0.01 g, 0.1 g, and 1.0 g were then 

used for PCR amplification. Amplification was carried out using the primers MN18FGC 

and 22R. 0.5 JlL of template DNA from each replicate was used in the PCR reactions. 

DNA extracted from sediments using the Powersoil DNA Kit and Soil Master DNA Kit 

was also subjected to PCR amplification using the same set of primers and amplification 

parameters. DGGE analysis was carried out in a 25%-50% denaturing gradient and the gel 

was subsequently stained and photographed. Prominent bands from each replicate were 

also excised, amplified, cloned and sequenced in order to get an idea about the community 

structure. Excised bands were assigned reference numbers on the gel. 

3.2.11 Investigating eukaryotic assemblages in nematodes from marine and estuarine 

environments 

To investigate the occurrence of non-nematode eukaryotic assemblages in 

microenvironments such as the nematode body surface, 5 g of sediment from Jennycliff, 

Plymouth Breakwater, Tamar estuary and Plym estuary were subjected to meiofauna 

extraction following Somerfield and Warwick's (1996) method described in section 3.2.2. 

Nematodes (n=l6) were randomly picked from each site following meiofauna extraction 
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using a binocular mtcroscope. Each nematode was placed into 0.5 mL PCR tubes 

containing 0.25 M NaOH. All the nematodes were subjected to DNA extraction following 

the modified Floyd et al. (2002) protocol. 

3. 2.11.1 PCR amplification of the JBS rRNA gene for DGGE analysis 

All the nematodes were subjected to PCR amplification using the G 18SFGC and 

22R primers. Briefly, 3 j.lL of template DNA from each nematode was used in PCR 

amplification. Prior to DGGE, PCR amplicons were treated with mung bean nuclease 

according to manufacturer's instructions. Arnplicons were separated in 25% to 60% 

denaturing gradient gels following standard electrophoretic conditions. 

3. 2.11.1.1 Band excision, amplification and sequencing 

Prominent bands in the gel for each site were excised and eluted in 20 J.LL ofMilliQ 

water. Bands were re-amplified using G 18F and 22R primers. Successful PCR amplicons 

were treated with ExoSAP-IT according to manufacturer's instructions (USB Corporation). 

ExoSAP-IT utilizes two hydrolytic enzymes, Exonuclease I and Shrimp Alkaline 

Phosphatase, together in a specially formulated buffer to remove unwanted dNTPs and 

primers that remain in the PCR product after the completion of amplification process. This 

is to stop them interfering during sequencing or SNP (single nucleotide polymorphism) 

analysis. Briefly, 5 J.LL of PCR product was mixed with 2 J.LL of ExoSAP-IT in a 0.5 m! 

PCR tube. The tube was then heated at 37°C for 10 mins followed by 15 mins at 87°C. 2.5 

IlL of the ExoSAP-IT treated PCR product was cycle sequenced using a BigDye 

Terminator Kit (Applied Biosystems, Warrington, UK.) and cleaned using the Wizard 

Magnesil™ system (Promega, UK.). Sequencing was performed in both directions using 

the same set of primers in an ABI PRISM 3100 Genetic Analyser (Applied Biosystems). 

Generated sequences were then compared with the available eukaryotic sequences held 

online at GenBank and EMBL using the BLAST search engine. 
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3.2.11.2 Scanning electron microscopy 

Sediments from Jennycliff and Plymouth Breakwater were fixed in 5% formalin prior 

to electron microscopy. Nematodes from both the samples were subsequently extracted 

using the protocol of Somerfield and Warwick (1996) (Section 3.2.2) and stored in 

fonnalin. Nematodes extracted from both the sites were put into porous pots of type K850 

(Emitech Ltd, Kent, UK) to remove the formalin by repeated washes with distilled water 

and subsequently the specimens were fixed in glutaraldehyde for 30 mins. Dehydration of 

the samples was achieved by a series of increasing concentrations of ethanol (30% to 

absolute) according to the following table:-

Table 3.2: Water-ethanol ratio for dehydration process. 

Water(%) Ethanol(%) Duration (min) 

70 30 10 

50 50 10 

30 70 10 

20 80 10 

10 90 10 

0 100 20 

Dehydrated nematodes were then subjected to critical point drying under carbon dioxide in 

an E3000SII critical point dryer (Poleron, UK) and subsequently coated with gold using a 

K550 sputter coating (Emitech, UK) to increase the electrical conductivity. The 

micrographs were taken using a JEOL JSM 5600 Scanning Electron Microscope. 

3.2.11.3 Isolation of marine derived fungi from sediments of Jennycliff and Plymouth 

Breakwater 

Sediments from Jennycliff and Plymouth Breakwater were mixed with sterile sea 

water and a series of dilutions were made. From the di lutions, 0.5 mL volumes were 
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pipetted onto petri dishes containing fungal media and incubated at 30°C for two weeks. 

Fungal strains were isolated from plates and subcultured until a pure culture was obtained. 

3.2.11.3.1 Ribosomal characterisation of the isolates 

Fungal isolates were subsequently characterised by PCR amplification of the partial 

small subunit ribosomal RNA gene. Two primers, G l8F and 22R were used for PCR 

amplification. Amplified PCR fragments were treated with ExoSAP-IT and cycle 

sequenced using Big Dye Terminator mix. Sequencing was carried out in both directions in 

an ABI Prism 3100 sequencer. Sequences were then compared with the available fungal 

sequences held online at GenBank and EMBL using the BLAST search engine. 

3.3 Results 

Prior to DGGE analysis for species separation, amplified 18S rRNA genes from 

nematode worms were sequenced and compared with the available nematode sequences 

held on line at GenBank and EMBL. All the sequences showed high similarity with the 

available nematode ribosomal sequences. Sequences found to be chimaeric in this study 

were discarded and not used in phylogenetic analyses. 

3.3.1 Species separation in a denaturing gel without mung bean nuclease treatment of 

PCR amplicons 

The PCR amplicons of the partial 18S rRNA from Sabatieria sp. and Thalassironus 

britannicus were subjected to electrophoresis individually and as a mixture in a denaturing 

gel. Both the taxa separated individually and also in the mixture producing unique banding 

patterns (Figure 3.1). More than one band was observed in each lane for both taxa in the 

denaturing gradient. The amplicon separation experiment was re-done following mung 

bean nuclease treatment of the PCR amplicons. 
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1 2 .J 

_) 

Figure 3.1: Separation of marine nematode taxa in a denaturing gel showing 

artefactual double band formation; Lane 1: 18S rRNA amplicon from TllalassirOIIUS 

britannicus; Lane 2: 18S rRNA amplicon from Sabatieria sp. with artefactual double 

bands; Lane 3: Amplified mixed template DNA from Sabatieria sp. and T. 

britannicus. 

3.3.2 Species separation in a denaturing gel after post-treatment of PCR amplicons 

with mung bean nuclease 

The PCR amplicons of the 18S rRNA gene of Sabatieria sp., Thalassironus 

britamzicus and Enoploides sp. were subjected to electrophoresis in two denaturing 

gradients. To detect whether the PCR method led to biased amplification, template DNA 

from Sabatieria sp., 17wlassironus britannicus and Enoploides sp. were mixed and the 18S 

rRNA gene was amplified. All the PCR amplicons including the mixed PCR product were 

treated with mung bean nuclease prior to DGGE analysis. The mixed PCR product was 

loaded in the same gel containing the Sabatieria sp., Thalassironus britannicus and 

Enoploides sp. amplicons. After the completion of the run it was observed that all the three 

taxa differentiated successfully in both the denaturing gradients (25 to 50% and 25 to 

76 



DOGE and nematode diversity 

60%), thereby producing unique banding patterns (Figure 3.2 A and B). The mixed DNA 

amplicons also showed clear separation in the same gradient and the patterns completely 

matched to that of Sabatieria sp., Thalassironus britannicus and Enoploides sp. (Figure 3.2 

A and 3.2 B). There was no selective amplification in mixed DNA and each taxon 

differentiated in a denaturing gel generating characteristic banding patterns No additional 

bands were observed for each taxon in the same gel. The separation of nematode taxa was 

much clearer in the 25% to 60% gradient than the 25% to 50% gradient. 

1 2 3 4 5 1 2 3 4 5 

(A) (B) 

Figure 3.2: (A) PCR-DGGE analysis of the 18S rRNA amplicons in a 25% to 60% 

denaturing gel. Lane 1: Sabatieria sp.; Lane 2: Thalassironus britannicus; Lane 3: 

Enoploides sp.; Lane 4: Mixed DNA from the three nematodes (PCR amplified); Lane 

5: Negative control. (B) PCR-DGGE analysis of the 18S rRNA amplicons in a 25% to 

50% denaturing gel. Lane 1: Negative control showing no DNA contamination; Lane 

2: Mixed DNA from the three nematodes (PCR amplified); Lane 3: Enoploides sp.; 

Lane 4: Thalassironus britannicus; Lane 5: Sabatieria sp. 
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3.3.3 Minimum detectable concentration of nematode DNA in a denaturing gel 

The limit of detection of DNA extracted from an individual nematode m a 

denaturing gel is shown in Figure 3.3. This indicates that the limits of detection are in the 

region of 0.5 !!L of template DNA that represents 2.5% of the DNA extractable from a 

single nematode specimen. Template concentration is in the range 0.5 to 3.0 ngi!!L (n= lO, 

where n= number of specimens), thus giving a limit of detection for genomic DNA of 

approximately 250 pg (before PCR and DGGE detection). 

123 4 5 67 

Figure 3.3: DGGE gel showing minimum detectable level of amplified DNA from the 

following volumes of template from Thalassironus britannicus; Lane 1: 0.1 JLL; Lane 

2: 0.5 JLL; Lane 3: 1 JLL; Lane 4; 3 JLL; Lane 5: 5 JLL; Lane 6; 8 JLL; Lane 7: Negative. 

3.3.4 PCR-DGGE of nematode samples after extraction from estuarine and marine 

sediments 

One of the main objectives of this work was to investigate the potential ofDGGE as 

a tool for assessing marine nematode diversity. PCRJDGGE analysis of nematode samples 
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taken from Cawsand, Rame Head, Plymouth Breakwater and Saltash (Tamar estuary) is 

shown in Figure 3.4. The result showed almost similar banding patterns for each of the 

sites. Approximately 15 bands could be distinguished from each site possibly representing 

15 putative taxa. Some of the prominent bands that were excised showed high sequence 

similarity to the nematode sequences held online at GenBank and EMBL. This indicates 

that the primer/DGGE system is capable of targeting and resolving 18S rRNA of marine 

nematodes selected from environmental samples. The phylogenetic placement of the 

excised sequences suggests that some of them share high sequence similarity with the 

marine nematode Terschellingia longicaudata (Envl), Sabatieira punctata (Env2}, 

Enoplus meridionalis (Env3), Tha/assironus britannicus (Env4), Sabatieira celtica (Env6), 

Metachromadora remanei (Env7 and Env8) and Daptonema procems (Env9) in the tree 

(Figure 3.5). The sequence similarities ranged between 97 and 100% for most of the 

excised and sequenced bands. Some of these sequences have been submitted to the EMBL 

database and published (Cook et al., 2005) and their accession numbers are AJ867815 to 

AJ867818. 
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1 2 3 4 

Figure 3.4: Banding patterns of marine nematode communities from four locations; 

Lane 1: Cawsand; Lane 2: Plymouth Breakwater; Lane 3: Rame Head; Lane 4: 

Saltash (Arrows indicate bands extracted and sequenced). 
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Figure 3.5: Neighbour-Joining tree showing relationship between DGGE bands 

amplified using G18F and 22R primers (18S rRNA) and most similar sequences of 

known nematodes. Scale= 0.05 substitutions/site. Numbers beside branches indicate 

bootstrap values (1,000 replicates). 

3.3.5 Morphological analysis of sediment sample from Saltash, Tamar estuary 

Morphological analysis of the estuarine sediment sample from Saltash (Tamar 

estuary) revealed the presence of 25 nematode taxa. Most of the taxa were identified to 

genus or species level using the pictorial keys. Some of the dominant taxa in the samples 

were Terschellingia longicaudata, Ptycholaimellus ponticus, Sabatieria pulchra and 

Daptonema setosum. Identified taxa are listed in Table 3.3. 
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Table 3.3: Nematodes identified from Saltash sample by morphological 

characteristics. Classification to family is according to Meldal (2004). 'n' denotes 

number identified. 

Taxon 

Anoplostoma sp. Butschli, 1874 

Viscosia viscosa Bastian, 1865 

Micro/aim us sp. De Mann 1880 

Molgolaimus tenuispiculum Ditlevsen, 1921 

Atrochromadora sp. Wieser, 1959 

Chromadora sp. Bastian 1865 

Ptycholaimellus ponticus Filipjev, 1922 

Cyatholaimus sp. Bastian 1865 

Metachromadora remanei Gerlach 1951 

Metachromadora sp. Filipjev, 1918 

Desmodora pontica Filipjev, 1922 

Sabatieria pulchra (Schneider, 1906) 

Sabatieria celtica Southern, 1914 

Setosabatieria hilarula (De Man, 1922) 

Terschellingia longicaudata De Man, 1907 

Terschellingia communis De Man, 1888 

Tersclzellingia gourbaultae Austen, 1989 

Sphaerolaimus sp. Bastian, 1865 

Theristus acer Bastian, 1865 

Daptonema setosum (Butschli, 1874) 

Daplonema oxycerca (De Man, 1888) 

Daplonema normandicum (De Man, 1890) 

Daptonema sp. Cobb, 1920 

Axonolaimus paraspinosus Stekhoven and Adam, 1931 

Odontophora sp. Butsch1i, 1874 
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Family/Order 

Anop1ostomatidae 

Oncholairnidae 

Microlaimidae 

Microlaimidae 

Chromadoridae 

Chromadoridae 

Chromadoridae 

Cyatho1airnidae 

Desmodoridae 

Desmodoridae 

Desmodoridae 

Comesomatidae 

Comesomatidae 

Comesomatidae 

Linhomoeidae 

Linhomoeidae 

Linhomoeidae 

Sphaero1airnidae 

Xya1idae 

Xyalidae 

Xya1idae 

Xyalidae 

Xya1idae 

Axono1aimidae 

Axono1airnidae 

n 

3 

9 

5 

2 

6 

3 

5 

3 

3 

2 

8 

5 

9 

7 

4 
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3.3.6 PCR-DGGE of DNA extracted from sediments using a modified Macrae et aL 

(2001) protocol 

The DNA concentrations extracted from Tamar estuary, Plymouth Breakwater, 

Jennycliff and Rame Head were 75.2 j.!g/mL, 58.7 j.!g/mL, 58.4 j.!g/mL and 60.7 j.!g/mL 

respectively. The ribotype diversity was visibly lower in the denaturing gel for DNA from 

Jennycliff, Plymouth Breakwater, Rame Head and Saltash (Tamar estuary) sediments 

extracted using a modified Macrae et al. (2001) protocol and amplified by MN18FGC and 

22R primers (Figure 3.6). This was probably due to inhibition of the PCR amplification or 

the failure of the extraction method to recover enough DNA from the sediments. 

1 2 3 4 5 

Figure 3.6: PCR-DGGE of total DNA extracted from sediments from four stations 

using a modified Macrae et al. (2001) protocol. Lane 1: Tamar estuary; Lane 2: 

Plymouth Breakwater; Lane 3: Jennycliff; Lane 4: Rame Head; Lane 5: negative to 

detect any contamination. 
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3.3.7 DGGE profiling of DNA extracted from marine and estuarine sediment using 

FastDNA Spin Kit 

The DNA concentration for Tamar estuary, Plymouth Breakwater, JennyCiiff, 

Rame Head and NMMP were 129.9 J.lg/mL, 45.0 J.lg/mL, 57.3 J.lg/mL, 119.4 J.lg/mL and 

45.0 J.lg/mL respectively. DNA from Jennycliff, Rame Head, Plymouth Breakwater and 

Saltash (Tamar estuary) sediments amplified by G 18FGC and 22R primers generated 

banding patterns that were characteristic for each site, with certain bands more prevalent at 

each site (Figure 3.7). Some of the prominent bands that were excised and sequenced were 

compared in the GenBank and EMBL database using the BLAST search engine. Most of 

the sequences showed significant similarity (98-99% percent) to that of available nematode 

ribosomal sequences. However some of the sequences were found to show homology to 

other eukaryotic ribosomal regions. Four sequences showed similarity with the fungi 

Paecilomyces fumosoroseus (99% similarity), Rhinocladiel/a aquaspersa (98% similarity) 

and Syspastospora parasitica (98% similarity). 
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1 

BW Fungi I 

Figure 3.7: Banding patterns of marine nematode communities from five stations 

amplified using G18FGC and 22R primers; Lane 1: Negative to check for 

contamination; Lane 2: Plymouth Breakwater (BW); Lane 3: JennyCliff (JCF); Lane 

4: Saltash (Tamar estuary) (SH); Lane 5: Rame Head (RH) (Arrows indicate bands 

that were extracted and sequenced). 

Additionally, three sequences showed homologies with an uncultured stramenophile clone 

IAFDv26 (99% similarity), uncultured marine eukaryotic clone mj223 (99% similarity) 

and a polychaete Caulleriella parva (98% similarity) respectively. The marine nematode 

sequences generated in this study have been submitted to EMBL under the accession 

numbers AJ966665 (BWl), AJ966666 (JCFl) AJ969109 (JCF2). Fungal and other 

eukaryotic sequences reported in this section have been submitted in EMBL and their 

accession numbers are AJ965493 (JCFFungil), AJ965494 (JCFFungi2) AJ965671 

(BWFungil), AJ971292 (JCFEukaryotel), AJ971293 (RHEukaryote2). 
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3.3.8 DGGE pattern of DNA templates amplified using MN18FGC and 22R primers 

DNA templates from the above four sites and additionally from the NMMP site off 

the Humber estuary amplified with the newly designed MN18FGC and 22R primers 

showed characteristic banding patterns. The ribosomal RNA diversity differed between 

sites in terms of DGGE banding patterns with certain bands prevalent at each site (Figure 

3.8). Approximately 10 bands or ribotypes could be distinguished representing 10 putative 

taxa for Rame Head, NMMP and Saltash (Tamar estuary) in the gel, whereas for Jennycliff 

and Plymouth Breakwater the number of bands was between 7 and 8. All of the extracted 

bands showed high sequence similarity to the available nematode sequences in GenBank 

and EMBL. eo-amplification of other eukaryotic !SS rRNA genes including fungi was not 

recorded. The placement of some of the excised sequences in the phylogenetic tree (Figure 

3.9) suggests that they share high sequence similarity with Terschellingia longicaudata 

(SH3), Atrochromadora microlaima (BWl), Bathylaimus sp. (RHl) and Sabatieria 

pulchra (JCFI, BW4 and JCF2). Some of these nematodes have been reported widely by 

Austen (1986) and Cook et al. (2005) from Southwest England in previous studies. Some 

of the marine nematode sequences reported in this section have been deposited in the 

EMBL database and the accession numbers are AJ867491 (NMMPl), AJ867492 (JCF2), 

AJ867493 (SH2), AJ867494 (JCFl), AJ867495 (RHl), AJ867496 (BW2), AJ867497 

(NMMP3), AJ867498 (NMMP2), AJ867499 (NMMP4), AJ867500 (RH2), AJ867501 

(RH3), AJ867502 (JCF3), AJ868129 (SHl), AJ868130 (BWl), AJ868131 (BW3), 

AJ868132 (NMMP5), AJ971294 (BW4). 
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Figure 3.8: Banding patterns of marine nematode communities from five 

environmental stations amplified using MN18FGC and 22R primers; Lane 1: 

Negative control; Lane 2: NMMP site off Humber estuary; Lane 3: Jennycliff; Lane 

4: Plymouth Breakwater; Lane 5: Rame Head; Lane 6: Saltash (Tamar estuary) 

(Arrows indicate bands that were extracted and sequenced). 

87 



45 

,----BW2 

Dory/a/mopsls puncta/a 

Setosabatleria hflarula 

S ab at/aria eel/lea 

.------ Dap/onema n orm and/cum A Y854224 

DGGE and nematode diversity 

,------------ Daptonema oxycerca A YB54225 

Daptonema setosum 
99 

'--------1 Daptonema hirsutum 

Daptonema sp . 

.---------1'-=00-"-4 S H 3 
Terschalllngla longlcaudata 

.--------- Parallnhomeus sp. 

'---------Ascolaimus alongatus 

,------- Hallchoanolalmus d ol/ch urus 

,----------------BW3 

99 ,--------- D asmodora pontlca 

Spfrinla parasitlfera 

,-------- NMMP5 

'----- -- NMMP1 

.------- Paracanthonchus caecus AF047888 

Praeacanthonchus sp. 

Cyatholaimus sp. 

,---------- E noploldes sp. 

P arodontophora sp. 

~'--------~ 
99 

B a thylalmus sp. 

82 .---- Vls c o s ia vlsc o s a 

100 '------ Onc h o lafmu s s p . 

'--- ---- Adoncholalmus fus c us 

'----------------- Sphaerolaimus hirs utus 

.------------------- NMMP2 

'------------------- Trlpylo ldes sp. A Y854 2 0 2 

Neochromadora sp. A Y854210 

'------ SH2 

Dic hromadora sp. A Y85 4 209 

'------- ----------- ----
100

-::-::-1 NMMP3 

0 .05 

A l rochromadora mlc rola/ma A YB54 204 

R H 2 

JCF3 

RH3 

Figure 3.9: Neighbour-Joining tree showing the relationship between the DGGE 

bands amplified using MN18F and 22R primers and most similar sequences of known 

nematodes. The distance scale indicates 0.05 substitutions/site. Numbers beside 

branches indicate bootstrap values (1 ,000 replicates). 

3.3.9 Influence of sediment sample sizes on assessment of nematode diversity 

There were characteristic banding patterns for each of the sediment sample stzes 

(0.01 g to 1.0 g sediment) (Figure 3.1 0). A graphical representation of the relation between 
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sample size and number of taxa observed in denaturing gels is plotted in Figure 3.11. The 

ribotype diversity for 0.01 g sediment replicates was between 8 and 10 taxa while for 1.0 g 

sediment replicates it was between 16 and 18 taxa. Additionally, replicate 1 of the 0.01 g 

sediment showed unique band positions compared to the other three replicates. The 

average ribotype diversity of the 0.1 g sediment replicates was somewhere between 10 and 

12. The results of the DNA extraction method comparisons also showed characteristic 

banding results. The number of visible bands for the 0.1 g sediment extracted using the 

SoilMaster DNA Kit was somewhere between 10 and 12 whereas using the Powersoil 

DNA Kit the diversity was approximately between 12 and 15 taxa (Figure 3.1 0). 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Figure 3.10: DGGE analysis of marine nematode communities based on 18S rRNA 

amplicons from replicates of different sediment sizes; Lanes 1-4: replicate 1-4 with 

0.01 g sediment; Lane 5-8: replicate 5-8 with 0.1 g sediment; Lane 9-12: replicate 9-12 

with 1.0 g sediment; Lane 13: negative; Lane 14: 0.01 g sediment sample extracted 

using the SoilMaster DNA J(jt; Lane 15; 0.01 g sediment sample extracted using the 

PowerSoil DNA Extraction J(jt. (Arrows indicate bands that were extracted and 

sequenced). 

90 



>. 

DGGE and nematode diversity 

20 

18 

-----------16 

-----------14 

-------12 

/ 10 

8 

6 +------,,------,------.-------,------,------~ 

0 0.2 0.4 0.6 

X 

0.8 1 1.2 

Figure 3.11: Graph showing the relationship between sample size and observed taxa 

in DGGE gels where x= amount of sediment (g) and y= number of taxa (as 

represented by number of bands on the gel). 

3.3.10 Investigating eukaryotic assemblages in nematodes from marine and estuarine 

environments 

PCR amp !icons of putative nematode DNA from each site were electrophoresed in 

denaturing gels. A significant proportion of the excised bands from Jennycliff and 

Plymouth Breakwater showed similarities with fungal 18S rRNA sequences in addition to 

nematode 18S rRNA sequences held online at GenBank and EMBL. The fungal sequences 

showed homologies with Paecilomyces fum osoroseus (Deuteromycotina: Hyphomycetes), 

Verticillium insectorum (Deuteromycotina: Hyphomycetes), Syspastospora parasitica 

(Ascomycota: Sordariales) and Rhinocladiella aquaspersa (Deuteromycotina: 

Hyphomycetes) sequences. All the excised bands from the Plym and Tamar estuaries 

showed sequence similarity with nematode ribosomal sequences (97% to 99% similarity). 

No fungal sequences were detected in Plym and Tamar estuary specimens. Artefacts were 

also detected in some cases. 

Scanning electron microscope Images of nematode worms from Jennycliff and 

Plymouth Breakwater showed the presence of some secondary structures on their body 
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surfaces (Figure 3.12). Some of these structures were globular and some of them 

resembled fungal hypha! attachments. 

18S rRNA gene sequencing of the fungal strains from Jennycliff and Plymouth 

Breakwater sediment samples did not provide any additional information. Only one strain 

of fungus was isolated from the starch agar media and the ribosomal sequence showed 

homologies to Aspergillus sp. sequences held online in GenBank and EMBL databases. 

Figure 3.12: Scanning electron micrograph images of nematode body surfaces 

showing hyphae-like and globular structures. 
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3.4 Discussion 

In this Chapter, denaturing gradient gel electrophoresis was employed to evaluate 

its potential for identifying individual species of marine nematodes and to explore 

nematode diversity from estuarine and marine environments as well as to investigate 

eukaryotic assemblages in nematodes. Throughout this study Pfu DNA polymerase was 

used instead of Taq DNA polymerase (except in few cases) for PCR amplifications 

because of its better proofreading properties (Lundberg et al., 1991; Flaman et al., 1994; 

Cline et al., 1996). Firstly, from a methodological viewpoint, the separation of ribosomal 

RNA amplicons from three different taxa individually and as a mixture in denaturing 

gradients clearly demonstrates that there is no template bias during PCR amplification and 

amplicons can be separated by DGGE. The unique band position for each taxon could be 

employed as a molecular tool for identification of marine nematode species. This tool may 

be particularly useful to characterize deep sea-nematodes, since to date very little is known 

about them in terms of either genetic diversity or traditional taxonomy. For the nematode 

diversity studies involving amplification of DNA templates extracted from sediment 

samples, artefactual double bands have been eliminated by increasing the final extension 

time period during PCR to thirty minutes. 

One of the principal aims of this study was to critically evaluate the DGGE 

methodology using DNA extracted from marine and estuarine sediments so as to determine 

the concentration at which target DNA could be amplified to a level sufficient for detection 

in a denaturing gel. The technique was able to detect PCR products greater than nanogram 

level where sample had original template of at least 0.25 ng of DNA. In estuarine and 

marine sediments only a few nematode species tend to be abundant, with many of the 

species occurring as only a few or even single individuals in an environmental sample 

(Heip et al., 1985). This is almost certainly the reason that the DGGE analysis of an 

environmental sample from Saltash (Tamar estuary) and other sites detected only 15 

ribotypes or 15 putative taxa. Moreover differences in diversity between sites were not 
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evident in the denaturing gel. While the total nematodes collected and subsequently 

electrophoresed from habitats such as the sandy sediment of Cawsand would normally 

show different ribotype diversity in comparison to that from Rame Head which is 

characterised by deep sub tidal sediment, the DGGE gel (Figure 3.4) on the other hand 

showed almost similar ribotype pattern between the sites and presence of additional bands 

in few sites. When a morphological analysis of half of the sample from Saltash (Tamar 

estuary) was carried out using traditional taxonomic methods it showed the presence of 

more than 25 marine nematode taxa. There may be have been some minor differences in 

terms of species composition within two halves of the same Saltash sample, but it is 

unlikely that they will be sufficient to explain the considerable difference in numbers of 

taxa detected using molecular versus morphological methods. Such variation between 

morphological and molecular datasets indicated that possibly preferential amplification led 

to biased amplicon production during PCR and DNA from abundant taxa were getting 

preferentially amplified over other taxa which were represented in very few numbers even 

though all the worms were carefully extracted from sediments and picked out under a 

microscope for DNA extraction and subsequent PCR DGGE analysis. Detailed 

morphological studies carried out previously from Saltash (Tamar estuary) have shown the 

presence of at least 40 different species of marine nematodes (Austen, 1986). Many of the 

species occur in low numbers while a few others such as Terschellingia longicaudata, 

Terschellingia communis, Sabatieria pulchra and Ptycholaimellus ponticus form the major 

part of the nematode community (Austen, 1986). The assumption of preferential 

amplification of abundant taxa is well supported by the fact that excision of bands from the 

DGGE gel and subsequent sequencing and phylogenetic analysis revealed the presence of 

the dominant taxa from these sites. These results show significant similarity with the 

DGGE results for microbial communities, where the method detects abundant taxa within a 

sample (Chan et al., 2002; Koizumi et al., 2003). It is evident that the DGGE approach is 

resolving the dominant species and not the less abundant taxa. The DGGE results for 
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marine nematodes also show a marked similarity with the soil nematode study where 

DGGE detects only a small percent of the taxa actually present (Foucher et al., 2004). This 

conclusion is once again supported by the nematode phylogenetic tree constructed on 

excised band sequences and known marine nematode sequences, where some of the 

sequences resolved into groups of known marine nematode sequences which are thought to 

be dominant in estuarine and marine environments. Such lack of congruity between 

morphological and molecular methods has been also observed while assessing eukaryotic 

diversity of other organisms in marine environments (Savin et al., 2004). 

The major emphasis of this chapter was to develop and evaluate a method that could 

be employed rapidly to assess nematode diversity directly from the natural sediment 

environment without undergoing the time consuming process of extracting all the 

nematodes from sediments with subsequent PCR amplification and DGGE. Two protocols 

namely, Macrae et al. (2001) and FastDNA® kit that relied on the principal of bead 

beating, homogenisation and subsequent lysis were applied in this study. DNA extracted 

by a FastDNA Spin Kit was amplified using the universal primer set and electrophoresed 

in a denaturing gel. Subsequent band excision and sequencing revealed eo-amplification of 

eukaryotic 18S rRNA genes in addition to marine nematode 18S rRNA amplicons. 

Amplified fungal 18S rRNA and other eukaryotic 18S rRNA genes were recorded from 

Plymouth Breakwater and Jennycliff in Plymouth Sound and also from Rame Head. This 

indicated that the consensus primers initially designed on nematode 18S rRNA sequences 

were picking up ribosomal regions from other eukaryotes possibly because of the high 

abundance of the ribosomal gene from these organisms in DNA templates extracted from 

sediment samples. 

As a result, the forward primer was re-designed so that it could selectively amplify 

nematode 18S rRNA regions from estuarine and marine sediments. A new region around 

100 bp inward from the 5' end of the 18S rRNA molecule was selected for consensus 

primer design where the variable region was flanked by conserved regions. The newly 
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designed primer was based on an alignment of nematode and fungal sequences from 

GenBank and EMBL databases. The re-designed forward primer, which is located 100 bp 

inward from the 5' end of the 18S rRNA gene, along with the reverse primer, was tested on 

total DNA extracted from sediments for PCR and subsequent DGGE analysis. The 

amplicons resolved clearly in a 25%-60% denaturing gradient. To evaluate whether the 

primers were amplifying only nematode 18S rRNA, a number of bands were excised from 

the gel, re-amplified, cloned and sequenced. All the bands showed high sequence similarity 

with nematode sequences indicating that the primers as well as the DGGE technique were 

capable of targeting and resolving 18S rRNA of marine nematodes from environmental 

sediment samples. 

DGGE of PCRs using nematode specific primers on DNA directly extracted from 

the sediment showed unique ribotype diversity and there was some degree of variation 

between the sites. For some sites the number of bands visible on the gel was possibly eight 

while for others it was close to ten and therefore each band in the gel possibly represented 

a single taxon. This however contrasts with published data available for Rame Head, 

Jennycliff and Saltash where mean numbers of species were 35, 35 and 18 (Austen and 

Warwick, 1989; Austen and McEvoy, 1997a, Austen et al., 2003) from 50 gm and 70 gm 

of sediment. In a previous study, Cook et al. (2005) recorded more than 20 different taxa 

from a sediment sample in the Tamar estuary, South-West England. Despite this, 

approximately 5-l 0 species constitute more than 80% of nematode abundance at some of 

these sites (Austen and Warwick 1989, MC Austen unpublished), such patterns being 

typical for sub-tidal marine sediments (Heip et al., 1985). It was apparent, therefore that 

the DGGE approach was once again resolving only the dominant marine nematode species 

and not the less abundant taxa. This is visible from the phylogenetic tree where some of the 

sequences resolved into groups of known marine nematode sequences which are dominant 

in these environments. The results of the DGGE based on direct amplification of total 
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DNA from sediments showed marked similarity, in terms of failing to resolve the less 

abundant taxa, to the previous study conducted by Cook et al. (2005). 

It appears then that the DGGE measure of diversity is rapid but will probably only 

be effective for monitoring patterns of diversity within the dominant component of the 

nematode community in estuarine and marine environments. The differences in band 

intensity in a denaturing gel could also perhaps be used as a surrogate measure of relative 

abundance and the number of bands used to indicate taxon richness, with a larger number 

of bands probably being indicative of taxon-rich environments (Si evert et al., 1999; Smalla 

et al., 2001). In this study the nematode diversity pattern showed similarities with 

previously observed microbial diversity patterns where the true diversity is probably 

underestimated in complex communities because taxa that are of low abundance generally 

go undetected (Muyzer et al., 1993; Holben et al., 2004). However the methodology has 

been improved in these studies and the new primers developed were more nematode

specific in comparison to the primers used by Foucher and Wilson (2002), Waite et al. 

(2003) and Cook et al. (2005) for DGGE studies, or in previous studies related to 

nematode phylogenetics and soil nematode barcoding (Blaxter et al., 1998; Floyd et al., 

2002). 

Quantification of organisms by PCR-based methods may result in certain biases and 

this could have resulted in biased ribotype diversity patterns in DGGE gels from the above 

studies. PCR biases could be due to the differences in rRNA gene copy number, which 

may be very important for eukaryotic organisms which may contain up to several thousand 

copies of the rRNA gene per genome. Moreover during PCR some phylotypes can be 

preferentially amplified because of preferential priming or differences in elongation rates 

between amplicons. There also is also evidence that bias in a PCR can occur if the number 

of cycles is increased, because the amplicons tend to reach equimolar concentration 

according to the kinetic model (Suzuki et al., 1998). A combination of all these factors can 
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change the relative concentration of PCR products so that the resulting ribotypes probably 

do not reflect the actual composition of the native community. 

Very little success was achieved when a modified Macrae et al. (2001) protocol was 

used to extract DNA from natural samples. Ribotype diversity was completely different 

from that observed in environmental samples extracted using the commercially available 

FastDNA Spin Kit. Although a higher volume of sediment was used (I gm) to extract DNA 

using the Macrae et al. (2001) protocol, the difference in diversity was still not clearly 

visible in a denaturing gel. The bead beating technique was possibly ineffective in 

recovering DNA from sedirnents or it could have also resulted in shearing of DNA. 

Potential bias in PCR amplification could also have yielded low diversity patterns. 

Presence ofPCR-inhibitory substances in sediment might have also affected the overall the 

PCR yield (Miller, 200 I; Wilson, I 997). There is evidence that humic acids or humic 

substances eo-extracted with nucleic acids strongly inhibit DNA polymerase enzymes. 

Tebbe and Vahjen (1993) used a commercial preparation of humic acids and found 

minimum inhibitory concentrations of 0.64, 0. I6 and 0.08 llg mL·' for three Taq DNA 

polymerases. Another reason could have been the loss of nucleic acids in the purification 

steps, although the spectrometry data do not back up this suggestion 

To determine the influence of sediment sample size on nematode diversity 

assessment four replicates of three sample sizes were subjected to PCR and DGGE 

analysis. There was an increase in the ribotype diversity between the replicates when the 

sediment sample size was gradually increased. This result agrees with literature data that 

shows that diversity is closely linked to the size of the sample, making the analysis of 

larger or replicated samples critical in establishing taxon diversity (Williams, I964; 

Sanders and Hessler, I969; Browne, I98I; Hutson, I994; Kendall et al., 2003; Vives and 

Salicni, 2005). However, careful analysis of the diversity pattern in the denaturing gel 

revealed some interesting results. Some of the bands that were visible in the O.OI g 

replicates were not evident in 0. I g and I .0 g replicates. The conclusion has been supported 
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by sequencing some of the bands from three sample sizes. For example, Band 11 and 12 

from the 0.01 g replicate were not present in the other two sample sizes indicating that rare 

species go undetected in larger samples possibly because DNA from dominant species 

tends to get preferentially amplified. This probably suggests that some of the marine 

nematode taxa present in very low numbers remain undetected when a large sample size is 

used for diversity studies. It also supports the hypothesis that the PCR technique, which is 

in vitro, most likely amplifies the dominant nematodes preferentially to rare nematodes 

since these are present in higher number in bigger sediment volumes as compared to 

smaller volumes. This means there is even less chance that rare species are detected in 

larger samples. To get a true idea about the nematode diversity from estuarine and marine 

environments using the DGGE methodology, it is likely to be necessary to include sample 

sizes of several low volumes such as 0.01 g. Valuable information in terms of nematode 

diversity might be overlooked if assessments of nematode communities are based on large 

samples alone. The sediment sample size results showed marked similarities to those from 

bacterial communities, where replicates of small samples show more variation in genetic 

community structure than large samples (Santegoeds et al., 1996; Ellings111e and Johnsen, 

2002). 

To check that there was no bias during DNA extraction from sediments, two 

extraction methods using commercial kits were evaluated. The DGGE profiles revealed 

that nematode diversity assessments were probably dependent on the DNA extraction 

method used. The ribotype diversity was comparatively higher for samples extracted using 

the Power Soil method, which employs a humic acid removal procedure, than those using 

the Soil Master method. Such bias in different DNA extraction methods has been recorded 

in prokaryotic microbial diversity studies (Kresk and Wellington, 1999; Martin-Laurent et 

al., 2001; Webster et al., 2003). In conclusion, sediment sample size and DNA extraction 

methods can affect the apparent abundance and composition of the nematode community 
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and overall estimate of nematode diversity when assessed by DOGE. PCR bias can also 

occur. 

It was difficult to find or confirm the existence of a relationship between nematodes 

and other eukaryotes in the assemblages. In this study eo-amplification of fungal 18S 

rRNA was detected frequently through sequencing with primers that had been used 

previously for nematode phylogenetic studies. Most of this eo-amplification was detected 

in nematodes from Jennycliff and Plymouth Breakwater. No fungal eo-amplification was 

observed in nematodes from the Plym and Tamar estuary sites. Additionally, almost 

similar fungal homologies were also detected from total sediment DNA templates from 

Jennycliff and Plymouth Breakwater. Most of the fungal taxa that were detected in this 

study were found to be entomopathogenic, facultative (can grow in marine and terrestrial 

environments) and are actively used in microbial pesticides. The presence of fungal 

assemblages on nematode body surfaces was also hypothesised in this study. These might 

be similar to prokaryotic microbial assemblages that are found associated with the 

nematode Eubostrichus dianae, for example (Polz et al., 1999). DOGE profiling of 

nematodes confirmed the presence of these fungi in Plymouth Sound only. Most of the 

fungal sequences showed similarities with sequences of Paecilomyces fumosoroseus, 

Verticillium insectorum, Syspastospora parasitica and Rhinocladiella aquaspersa held 

online at GenBank and EMBL databases. At the same time scanning electron microscope 

images did show some epizoic structures on nematode body surfaces. These structures 

were mainly globular but in some cases resembled fungal hypha! attachments. To ensure 

that these fungi were not present in the sediments of Jennycliff and Plymouth Breakwater, 

fungal cultures were grown and isolated and subsequently identified based on 18S rRNA 

sequences. Only one strain was successfully grown indicating the difficulties that are 

usually associated with growing marine derived fungi under laboratory conditions. 

Although the cultured strain did not conform to any ofthe previously identified fungal taxa 

based on 18S rRNA sequences, it was difficult to confirm the absence of taxa such as 
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Paecilomyces fumosoroseus, Verticillium insectorum or Syspastospora parasitica in 

sediment samples in and around Plymouth Breakwater and Jennycliff. Overall there was no 

clear evidence that fungal assemblages were growing in rnicroenvironments such as the 

nematode body surface. Clearly more work is needed to investigate and understand the 

extent of fungal amplification in nematode worms from Jennycliff and Plymouth 

Breakwater. It may be that parasitic or symbiotic relationships occur between fungi and 

some nematodes in the waters of Plymouth Sound. 

There is also a possibility that the fungal 18S rRNA genes that were getting picked 

up consistently during PCR amplification were ingested materials or intestinal contents of 

nematode worms. Thomas et al. (1997) have reported such possibilities in a previous 

study. On the other hand absence of fungal or any other eukaryotic sequences in nematodes 

from the Plym and Tamar estuaries makes it more speculative whether these fungi were 

actually part of the gut contents. In another study, R. Floyd et al. (unpublished) amplified a 

wide range of fungi along with nematode 18S rRNA. When isolating DNA of small 

organisms such as nematodes from complex marine environments it becomes difficult to 

avoid extracting DNA from a wide range of biological materials and therefore eo

amplification is always a possibility. Such problems can be avoided by designing group

specific primers that will selectively amplify organisms of interest rather than eo

amplifying regions of other eukaryotic ribosomal RNA. This approach has been adopted in 

this study where nematode specific primers were designed and evaluated for DOGE 

studies. 

To conclude it seems that currently DOGE is only capable of identifying relatively 

abundant taxa in an environmental sample. This is suitable for identifying major changes in 

the species composition between samples, but not for a direct assessment of species 

richness; thus, the technique is useful as a rapid system for community analysis in a similar 

manner to the way it is used for microbial ecological studies. The primers that were 

designed and used in this study were very specific and would work well in detecting 
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marine nematodes from estuarine and marine environments. Even with several limitations 

DGGE provides a useful way of detecting changes in communities of marine animals that 

are small or difficult to identify (including larvae). It has also been shown that selection of 

sediment sample size and DNA extraction procedures can affect the interpretation of the 

nematode diversity when assessed by DGGE. In future DGGE could be implemented in 

combination with small and large volume of sediment samples in order to give a more 

accurate estimate of nematode diversity. 
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4. DNA sequence-based approaches to marine nematode identification 

4.1 Introduction 

Taxonomy forms the basis for much biological research. Recently, for example, 

much effort has been focused on understanding the biological impacts of climate change 

(e.g. Caldeira and Wickett, 2003; Lynam et al., 2004; Hays et al., 2005), research which 

often depends upon taxonomic identifiers to monitor any changes which may be occurring 

in the biota. These changes are happening at a time when there is a serious crisis in 

taxonomic expertise throughout the scientific community (Gaston and May, 1992; Da1y, 

1995; May, 1997; Buyck, 1999; Lammers, 1999; McAJlister, 2000; Hopkins and 

Freckleton, 2002), resulting in the neglect of many highly diverse groups of organisms. 

This is particularly the case for organisms that live in marine habitats, especially those 

from benthic sediments. These habitats contain species-rich communities of metazoans 

including large numbers of nematodes, polychaetes, crustaceans and molluscs (Grassle and 

Maciolek, 1992; Heip et al., 1985; Coull, 1999; Austen, 2004; Larnbshead, 2004). Free 

living marine nematode worms, which are numerically the most abundant component of 

the marine meiofauna, are often difficult to identify and require considerable taxonomic 

expertise (see Chapter 1). Moreover, the existence of cryptic species complexes, whose 

members may have different functional responses, and difficulties in the identification of 

juvenile stages, have resulted in the relative neglect of nematodes in many meiofaunal 

studies (Warwick and Robinson, 2000; Cook et al., 2005). Marine ecologists typically 

view nematode identification as a laborious and specialist task, beyond the scope of those 

engaged in routine surveys. 

So-called DNA barcoding offers one route to increase the speed of marine 

nematode species identification in ecological or biomonitoring studies. The following 

section discusses the rationale and use of DNA barcodes, including their application across 

different animal phyla. A DNA barcoding approach is then developed and applied, as a 
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novel way to identify free living nematodes from estuarine and marine environments based 

on the sequencing of particular regions of the genome. 

4.1.1 The concept of DNA barcoding 

Genomic identification systems, which represent ways of discriminating organisms 

based on the analysis of a small segment of the genome, show considerable promise for 

rapid species diagnosis (Hebert et al., 2003). Indeed genomic identification approaches 

based on short DNA sequences have become common practice in prokaryotic studies. In 

the last decade or so, studies involving amplification and sequencing of the 16S rRNA 

gene have revolutionised microbial research independent of culture-dependent methods 

(Giovannoni et al., 1990; Fuhrman et al., 1992; Woese, 1996; Pace, 1997; Hugenholtz et 

al., 1998; Allander et al., 2001). DNA sequence data has led to the establishment of the 

'genospecies' concept in bacterial studies where organisms are identified on the basis of 

sequence identity (Stackebrandt and Goebel, 1994; Cohan, 2002). On the other hand this 

'molecularisation' of taxonomy has been considerably slower in multicellular organisms, 

largely due to serious reservations among the taxonomic community and the existence of 

morphology-based alternatives (Dunn, 2003; Seberg et al., 2003; see Section 4.1.4). 

Within an individual's genome there is enough space for storing information on 

individual identity and group membership (Blaxter, 2004). For example, it has been 

estimated that within the human population each umelated pair of individuals will differ at 

around 0.1% of their DNA bases (Biaxter, 2004). Such differences within a taxon are 

largely distributed as clusters in the intronic and intergenic regions of the genome (Blaxter 

2004). Thus there are also regions of the genome that are more or less identical between 

the members of a taxon, but at the same time vary between taxa. These regions of the 

genome are potentially useful for barcoding as their DNA sequences hold the necessary 

information from (their past or recent) evolutionary history. Therefore a DNA barcode in 

the form of sequences carries both specific and taxonomic data for an organism. Like the 
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machine readable tagging systems that hold necessary information about a product, 

individual genomic regions hold specific information about the identity and relationship of 

taxa, and act as barcodes (Hebert et al., 2003; Consortium for the Barcode of Life website). 

4.1.2 Molecular markers for DNA barcoding 

The choice of molecular marker for barcoding depends on the following factors: (i) 

the ease of isolation and amplification from a sample (ii) copy number within the genome 

(iii) presence of conserved flanking sites (iv) variation within and between individuals (v) 

ease of alignment and further analysis (vi) number of known sequences from identified 

specimens and (vii) suitability of the marker for barcoding (Blaxter, 2004; Kress et al., 

2005). 

Researchers like Saccone et al. (1999) have argued for the use of mitochondrial 

genomic regions for barcoding animal taxa on the basis of lack of introns, limited exposme 

to recombination and haploid nah1re of inheritance. Hebert et al. (2003) have proposed 

mitochondrial cytochrome c oxidase I gene (COXI) for barcoding metazoan targets for two 

reasons: The universal primers for this gene can amplify the 5' end of the molecule from 

almost all animal phyla (Folmer et al., 1994; Zhang and Hewitt, 1997), and COXI has a 

greater phylogenetic signal than any other mitochondrial gene. Knowlton and Weight 

( 1998) noted that in the COXI gene, third position nucleotides show a high incidence of 

base substitutions in comparison to other protein-coding genes resulting in a rate of 

molecular evolution which is three times greater than the 12S or 16S rRNA genes of 

mitochondria. Cox and Hebert (2001) and Wares and Cunningham (2001) also found that 

the COXI gene could discriminate not only closely allied species but phylogenetic groups 

within one species. Although the cytochrome c oxidase I gene has been widely used across 

different phyla for molecular barcoding (Hebert et al., 2003; Hogg and Hebert, 2004; 

Lambert et al., 2005), PCR success rates are well below 50% in many groups within the 

phylum Nematoda (De Ley et al., 2005). Cook et al. (2005) were faced with this problem 
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while trying to amplify COl from marine nematode taxa from British waters. Reasons for 

such difficulties using universal primers may relate to the emerging evidence that 

nematode mitochondrial genomes are highly variable and prone to recombination (Lunt 

and Hyman, 1997), insertional editing (Vanfleteren and Vierstraete, 1999) and 

multipartitioning (Annstrong et al., 2000). As a consequence, designing cytochrome c 

oxidase I primers that would work universally across different taxa in this phylum may be 

genuinely impossible. 

The nuclear 18S rRNA has also received great attention as a barcoding locus, this 

time largely in micro-eukaryotes such as plankton, in fungi and in nematodes (Floyd et al., 

2002; Massana et al., 2002; Blaxter, 2004; Powers, 2004; Cook et al., 2005). The 18S 

rRNA gene generally has a high success rate with PCR but this requires optimization in 

different phyla. Polymorphism is very rare in the 18S rRNA molecule and the sequence 

carries high phylogenetic resolution. The LSU gene is also truly universal and is found in 

every organism and there are universal primer sets that work well across most animal 

phyla. Intraspecific polymorphism within this molecule is very limited and it apparently 

performs well in cryptic species identification studies (De Ley et al., 1999; Omilian and 

Taylor, 2001 ). In nematodes, the D2/D3 segment (a variable region of the LSU gene) has 

been widely used for phylogenetic studies and has recently been tested for molecular 

barcoding in terrestrial nematode taxa and a handful of marine nematode taxa (De Ley et 

al., 2005). 

In contrast to the above, markers such as the internal transcribed spacer region 

(ITS) have seen limited applications in molecular diagnostic studies, largely due to the 

nature of the molecule. Of particular concern is the fact that the ITS region often varies by 

insertions or deletions within an individual, making sequencing very difficult (Elbadri et 

al., 2002). As a result phylogeny reconstruction based on ITS sequences is often hampered 

by problems with alignment because of insertions or deletions. Several recent studies in 

nematodes have revealed the occurrence of multiple ITS haplotypes and high degrees of 
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polymorphism, making direct sequencing impossible (Hugall et al., 1999). Nevertheless 

the ITS region has been used for identification of nematodes of socio-economic importance 

(Powers, 2004). Presently there are more than 30,000 sequences each for the ITS and SSU 

genes across all taxa and roughly 17,000 sequences representing COl and rbcL genes in 

various databases (pers obs). 

4.1.3 Advantages of DNA barcodes 

One of the great advantages of DNA barcoding is that a single technique can be 

applied to all taxa across different phyla. The technique, which involves DNA extraction, 

PCR amplification of a genomic region and DNA sequencing, can be applied on a large 

inventory (Figure 4.1 ). Sequences can be obtained from single specimens irrespective of 

their life cycle stages, in many cases without affecting morphological identification. 

Moreover all life stages are amenable to study, as the system depends on genotype not 

phenotype (Gaston and O'Neill, 2004), and little information is required regarding the 

taxonomy of the group studied. Similar techniques could also be applied to environmental 

DNA to detect the presence of certain groups of organisms. Already PCR-cloning

sequencing approaches from environmental DNA have yielded valuable information about 

the micro-eukaryotes that are found in oceans and deep seas (Massana et al., 2004; 

Countway et al., 2005). 
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Figure 4.1: Diagrammatic representation of the process of DNA barcoding for taxon 

identification (modified from Blaxter, 2004). 

Barcoding techniques are potentially applicable where traditional methods are 

unrevealing: identification of eggs for instance, and analysis of stomach contents or excreta 

may assist in the detem1ination of food web structure. In addition, DNA-based 

identification could be useful in highlighting specimens that represent undescribed, often 

cryptic taxa. At the same time sequences generated from specimens could be used to place 

MOTUs (Molecular Operational Taxonomic Units) within the phylogenetic hierarchy. A 

specimen's barcode could be compared with existing sequences, and when a close match is 

found traditional keys and monographs could then be employed to help understand the 

biological properties of the identified MOTU and their close relatives (Floyd et al. , 2002) 

followed by phylogenetic analyses which generate testable hypotheses of MOTU 

relatedness. Therefore the success of the MOTU approach is usually dependent upon two 

factors. Primarily the DNA segment to be used as a molecular barcode should be 

orthologous between species and secondly it must encompass suffic ient variability to allow 

discrimination between biological species. 
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4.1.4 Drawbacks of barcoding 

As with any other technique or methodology, DNA barcodes have certain 

drawbacks, some of which are considered here. Often differences in sequences between 

supposedly conspecific specimens arise, which could be due to either within-OTU 

variation or methodological error. In terms of the former, multiple copies of particular 

genes within individuals can differ in sequence. A classic example of this is seen in 

Plasmodium falciparum (malaria parasite) which has multiple different ribosomal RNA 

cistrons that are differentially expressed over its life cycle (Mercereau-Puijalon et al., 

2002). Such a situation can also arise when the nuclear and organellar genomes are 

heterozygous and therefore the target gene differs in sequence (Blaxter, 2004). It has been 

also recorded in different organisms such as Trypanosoma cruzi (Zingales et al., 1999). On 

the other hand methodological errors can potentially be rectified by multiple resequencing 

of the specimen in order to assess both PCR and sequencing-related errors. Generally 

sequencing directly from PCR products rather than clones eliminates most PCR-introduced 

error as well as the problem of chimaeric clones which arise from between-an1plicon 

priming. High throughput sequencing technologies that are available nowadays are 

generally robust as well as accurate and therefore experimental error rates are much lower 

than formerly. 

Another key drawback of barcoding is essentially philosophical, smce some 

taxonomists have questioned whether DNA barcodes for species can actually replace 

morphological identification and classification systems. It has been argued that DNA 

barcoding would diminish rather than enhance traditional morphology-based taxonomy. 

Some researchers have speculated that the amount of genetic divergence in some molecular 

markers used for barcoding may lead to incorrect species recognition whereas other have 

raised the question about the increased use of DNA barcodes for phylogeny reconstruction 

whereas its main objective is actually identification (Kress et al., 2005). Some reviews 

have widely questioned the overall validity of the DNA barcoding concept (Stoeckle, 
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2003; Lee, 2004; Will and Rubinoff, 2004). Nevertheless proper implementation of 

methodologies in DNA barcoding studies along with validation of generated DNA 

sequences is proving useful in conjunction with traditional taxonomy in order to provide 

necessary detailed information towards the identification of difficult groups of organisms. 

Increasingly barcoding approaches based on amplification and sequencing is being applied 

to different groups of organisms (Blaxter et al., 2005; Chase et al., 2005; Hajibabaei et al., 

2005). 

To conclude it seems that DNA barcoding is in fact a potentially very useful 

approach in a range ofbiodiversity studies especially for groups such as nematodes where 

traditional taxonomy is immature and relatively difficult. In these groups of organisms 

DNA barcoding could speed up the process of identification which in turn would assist 

greatly with biodiversity and biomonitoring studies. At the same time, from a taxonomic 

point of view care has to be taken to ensure that DNA barcoding is not used as the sole 

method to identify species, but should be employed in conjunction with morphology based 

taxonomy and at the same time a good quality control should be in place to ensure that the 

raw data (DNA sequences) generated from the studies are of highest quality. 

4.1.5 DNA Barcoding in practice 

The success of prokaryotic studies based on amplification and sequencing of the 

16S rRNA gene prompted many researchers to test similar methods on eukaryotic systems. 

Based on the 18S rRNA gene library and sequencing, an incredible amount of previously 

underestimated eukaryotic diversity, mainly in planktonic groups, has been unearthed from 

deep sea, open ocean and deep-sea vent environments (Diez et al., 200la; Lopez-Garcia et 

al., 2001; Massana et al., 2002; Moreira and Lopez-Garcia, 2002). In each case novel 

sequence-defmed taxa have been discovered, including some belonging to recently 

recognized lineages such as stramenopiles and alveolates (Diez et al., 200la). Incidentally 

some of these micro-eukaryotes were included with the prokaryotes before the DNA 
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sequencing approach was undertaken (Diez et al., 200la; Massana et al., 2002). Similar 

approaches have been adopted with great success in other eukaryotes such as soil and 

rhizosphere fungi where morphological identification based on the examination of spores 

is often problematic (Vandenkoornhuyse et al., 2002) and also in endophytic fungi (Guo et 

al., 2000). 

Implementation of DNA barcoding approaches in the animal kingdom, including 

soft bodied metazoans, has been comparatively slow when compared to prokaryotes and 

micro-eukaryotes. Vences et al. (2005) demonstrated that the mitochondrial 16S rRNA 

gene fulfils the requirements for a universal DNA barcoding marker in amphibians. It has 

been argued that 16S rRNA could be used as a standard DNA barcoding marker for 

vertebrates as a complement to the COl gene (Vences et al., 2005). Recently, Hebert and 

colleagues have used the mitochondrial cor gene as a metazoan barcoding target across 

different phyla. One of his foremost works was the development of a COl profile from 200 

closely allied species of lepidopterans, which was 100% successful in correctly identifying 

subsequent specimens based on COl sequences (Hebert et al., 2003). Similar approaches 

have been undertaken for biological identification of springtails (Hexapoda: Collembola) 

(Hogg and Hebert, 2004). Barrett and Hebert (2005) employed the DNA barcoding concept 

in spiders which contain around 40,000 species and often represent difficulties in species 

identification. They generated COl profiles for 168 arachnid species which were then used 

to assign subsequent specimens to the appropriate species with a reported success rate of 

100%. Hebert et al. (2004a) used similar approaches based on COl profile to identify birds. 

In that study barcodes were developed for the rapid identification of 260 species of North 

American birds. As a result four probable new species of birds were discovered. Even in 

larger organisms, molecular tags have been used to define new taxa e.g. the African forest 

elephant (Grubb et al., 2000; Roca et al., 2001). Such an approach has also yielded 

promising results among other groups of organisms e.g. barcoding a micro-alga (Akase et 

al., 2004), flowering plants (Kress et al., 2005), and chlorophytes (Verbmggen et al., 
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2005). Molecular barcodes have been also used to reveal cryptic speciation in different 

groups of organisms, such as the neotropical skipper butterfly Astraptes fulgerator (Hebert 

et al., 2004b) and the mosquito Anopheles gambiae (Towson et al., 1999). It has been also 

applied for assigning unknown life-history stages to adult organisms (Hebert et al., 2004b; 

Thomas et al., 2005), and in exploratory studies to discover potentially undescribed 

candidate species (Hebert et al., 2004a; Venter et al., 2004). For the first time a new 

species of moth from New Guinea has been described based on DNA barcode and 

morphological characters (Brown et al., 2003). 

4.1.5.1 Barcoding in nematology 

To date, molecular barcodes have been implemented for soil nematodes and 

nematodes of socio-economic importance (Floyd et al., 2002; Powers, 2004). Floyd et al., 

(2002) sequenced the 5' end segment of the 18S rRNA gene to barcode unknown soil 

nematodes and subsequently developed a molecular operational taxonomic unit (MOTU) 

scheme where sequences from unknown taxa were compared with sequences from known 

taxa so as to attach taxonomic and ecological attributes. Recently, De Ley et al. (2005) 

used a combinatorial approach involving morphological vouchering and barcoding of 

nematodes based on the highly variable D2/D3 segment of the nuclear 28S rRNA gene. 

Bhadury et al. (2005) and Cook et al. (2005) have also tested the suitability of the 18S 

rRNA gene as a marker for barcoding marine nematodes from British waters. Researchers 

including Tautz et al. (2003) have argued for an increased use of nuclear ribosomal RNA 

genes so as to barcode specimens across different phyla. 

4.1.6 Aims of tbis chapter 

Marine ecologists always face a problem while trying to assess the diversity of 

meiofauna as opposed to macrofauna from estuarine and marine environments. Assessing 

diversity of meiofaunal groups such as nematodes is extremely difficult, especially when 
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their taxonomy is immature and requires specialist skills. Thus it is obvious that different 

organism groups are not equally well determined. Molluscs, annelids, crustaceans are 

relatively easily identified because they are well documented and well studied. On the 

other hand some animals, such as free living marine nematode worms, flatworms and 

nemerteans remain mostly undetermined in a biological sample. The biodiversity of 

nematodes is often underestimated due to the great similarity between different species 

(Dorris et al., 1999). Most of them are a couple of millimetres in length and taxonomic 

identification is based on minute morphological characters. Only a small fraction of 

nematode species has been described (Lambshead, 1993) and therefore only specialists 

with extensive taxonomic knowledge can work with this group. 

DNA barcoding could be employed to facilitate as well as speed up manne 

nematode identification for biomonitoring and diversity studies. This concept has worked 

well for soil and parasitic nematodes as well as in other metazoan phyla (see above), 

although to date no studies have explored the use of barcodes for the identification of 

nematodes from estuarine and marine environments. In this chapter, the utility of nuclear 

and mitochondrial regions as DNA barcodes in marine nematodes is evaluated. Such an 

approach in turn will help fill up the 'black hole' in many ecological surveys of marine 

sediments. 

The chapter focuses on two main aims: 

• To amplify and sequence nuclear 18S rRNA and 28S rRNA genes and 

mitochondrial 16S rRNA and cytochrome c oxidase I (COXI) genes from 

representative abundant marine and estuarine nematode taxa from South West 

English waters so as to create DNA sequence profiles against which unknown 

individuals can be barcoded. 

• To assess the reliability of DNA barcoding in marine nematode identification by 

assigning unknown specimens to genus and species level when evaluated against 

known DNA sequence profiles. 
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4.2 Materials and Methods 

For general molecular methods and primer sequences see Chapter 2. For this study 

only sequences generated by the author, or validated sequences from the GenBank and 

EMBL databases (from nematode specimens identified morphologically by specialist 

taxonomists), have been used for phylogeny reconstructions. Other available sequences 

have not been used due to their possible unreliability. Accession numbers that were used in 

this study are detailed in the relevant sections. 

4.2.1 Sediment collection 

Sediments were collected subtidally from muddy and muddy sand sediments in 

South West England. Details of sampling locations etc. are given in Chapter Three. 

Additionally sediments were collected for this study from the Plym estuary (Saltram site) 

in South West England. All samples taken from the surface sediments were collected using 

a van Veen grab and immediately fixed in storage pots containing 98% molecular grade 

ethanol (Hayman Limited, England). 

4.2.2 Meiofauna extraction and nematode identification 

Meiofauna were extracted from sediments following the flotation method of 

Somerfield and Warwick (1996). Nematode specimens used for DNA extraction were 

picked from extracted samples and mounted onto slides using standard procedures 

described in Chapter Three (Section 3.2.2). Some nematodes reduced in size due to the 

effects of ethanol preservation. Nevertheless, each specimen was carefully identified to 

genus and species level based on morphological characters under a compound microscope 

using available keys for the identification of marine nematodes (Platt and Warwick 1983, 

1988). After identification, each specimen was carefully removed from its slide and placed 

in a 0.5 mL PCR tube containing 20 JlL of0.25 M NaOH for DNA extraction. 
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To test the DNA barcoding concept and its applicability for taxon level 

identification of nematode specimens based on DNA sequences, sediments from the Tamar 

and Plym estuaries were fixed in molecular grade ethanol and subsequently subjected to 

meiofaunal extraction. Forty individuals from each site were randomly selected and placed 

on slides for taxonomic identification. After taxonomic identification, unique numbers 

were assigned to each specimen and these were randomised before being subjected to 

molecular analyses. The identity of individual specimens based on morphological 

characters and their unique reference numbers are given in Tables 4.1 and 4.2. 
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Table 4.1: Morphological identifications and corresponding molecular tags for 

specimens from the Tamar estuary used to test the barcoding concept. 

Molecular tag Morphological ID 

Tamarl Adonclwlaimus fuscus 

Tamar2 Spirinia parasitifera 

Tamar3 Sabatieiria sp. 

Tamar4 Dichromadora sp. 

Tamar5 Terschellingia longicaudata 

Tamar6 Praeacanthonchus sp. 

Tamar7 Enoploides brzme/tii 

Tamar8 Metachromadora remanei 

Tamar9 Sphaerolaimus hirsutus 

TamarlO Sabatieria celtica 

Tamarll Atrochromadora microlaima 

Tamar12 Terschellingia longicaudata 

Tamar13 Terschellingia longicaudata 

Tamar14 Ascolaimus elongatus 

Tamar15 Terschellingia sp. 

Tamar16 Viscosia viscosa 

Tamar17 Terschellingia longicaudata 

Tamar18 Sabatieira celtica 

Tamar19 Setosabatieria hilarula 

Tamar20 Daptonema setosum 

Tamar21 Paralinlwmeus sp. 

Tamar22 Sabatieira pulchra 

Tamar23 Terschellingia longicaudata 

Tamar24 Desmodora pontica 

Tamar25 Halichoanolaimus doli churus 

Tamar26 Axonolaimus helgolandicus 
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Tarnar27 Adoncholaimus sp. 

Tarnar28 Anoplostoma sp. 

Tarnar29 Terschellingia longicaudata 

Tarnar30 Theristus acer 

Tarnar31 Paracanthonchus sp. 

Tarnar32 Neochromadora sp. 

Tarnar33 Metachromadora sp. 

Tarnar34 Cyatholaimus sp. 

Tarnar35 Daptonema normandicum 

Tarnar36 Daptonema oxycerca 

Tarnar37 Terschellingia longicaudata 

Tarnar38 Metachromadora sp. 

Tarnar39 Praeacanthonchus sp. 

Tarnar40 Terschel/ingia longicaudata 
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Table 4.2: Morphological identifications and corresponding molecular tags for 

specimens from the Plym estuary used to test the barcoding concept. 

Molecular tag 

Plyml 

Plym2 

Plym3 

Plym4 

Plym5 

Plym6 

Plym7 

Plym8 

Plym9 

PlymlO 

Plymll 

Plym12 

Plyml3 

Plyml4 

Plyml5 

Plyml6 

Plyml7 

Plyml8 

Plyml9 

Plym20 

Plym21 

Plym22 

Plym23 

Plym24 

Plym25 

Plym26 

118 

Morphological ID 

Praeacanthonchus sp. 

Anop/ostoma vivipanun 

Paracanthonchus sp. 

Daptonema setosum 

Metachromadora sp. 

Sabatieria pulchra 

Tersche/lingia sp. 

Sphaerolaimus hirsutus 

I11eristus sp. 

Metachromadora sp. 

Tersche/lingia sp. 

Terschellingia longicaudata 

Paralinlwmeus sp. 

Sphaerolaimus hirsutus 

Sphaerolaimus sp. 

Axono/aimus lze/go/andicus 

Metachromadora suecica 

Daptonema sp. 

Sabatieria sp. 

Daptonema lzirsutum 

Sabatieira sp. 

Sabatieira sp. 

Enoploides sp. 

Adonclzo/aimus sp. 

Sphaero/aimus hirsutus 

Adoncholaimus sp. 



DNA Barcoding 

Plym27 Enoploides sp. 

Plym28 Sphaerolaimus hirsu/us 

Plym29 Unidentified Cyatholaimid 

Plym30 Theristus acer 

Plym31 Melachromadora remanei 

Plym32 Metachromadora remanei 

Plym33 Neochromadora sp. 

Plym34 Sphaerolaimus hirsutus 

Plym35 Paralinhomeus sp. 

Plym36 Sphaerolaimus sp. 

Plym37 Daptonema hirsutum 

Plym38 Paralinhomeus sp. 

Plym39 Terschellingia sp. 

Plym40 Tripyloides sp. 

4.2.3 PCR amplification of the 18S rRNA gene 

The 18S rRNA gene in nematodes is approximately 1700 base pairs in length. Four 

sets of primers were used to amplify almost the entire 18S rRNA gene from 26 marine 

nematode taxa commonly found in South West English waters. The primers and their 

respective base positions in relation to the Caenorhabditis elegans 18S rRNA gene are 

given in Table 4.3. Most of these primers have been used previously in nematode 

phylogenetics and molecular identification studies (Biaxter et al., 1998; Floyd et al., 2002; 

Meldal, 2004; Bhadury et al., 2005; Cook et al., 2005). 

119 



DNA Barcoding 

Table 4.3: 188 rRNA primers with their respective base positions in relation to the 

Caenorllabditis elegans 188 rRNA sequence. 

Primer name 

GI8S4F 

23R 

MN18F 

Nem 18S R 

NEMFI 

23F 

18P 

Position in C. e/ega11s 

sequence 

30-49 

1298-1280 

111-123 

998-1015 

737-756 

1280-1298 

3' end 

4.2.3.1 Cloning and sequencing of the 18S rRNA gene 

References 

Blaxter et al. (1998) 

Biaxter et al. (1998) 

Bhadury et al. (2005) 

Floyd et al. (2005) 

P. Bhadury (unpublished) 

Blaxter et al. (1998) 

Blaxter et al. (1998) 

PCR fragments from the 26 marine nematode taxa were cloned with pBlueScript 

SK- vector and the pGEM-T Easy vector system (Promega Inc). Plasmid inserts were 

sequenced in both directions using the T7 and T3 primers for pBluescript SK and M13F 

and M13R primers for pGEM-T vector respectively. Three to four colonies from each 

clone were sequenced to confirm the sequence identity. Sequence traces were checked with 

Chromas Pro software package {Technelysium Pty Ltd) for any ambiguities and /or errors. 

4.2.3.2 Phylogenetic analysis of marine nematodes based on 18S rRNA sequences 

18S rRNA sequences were aligned in Clustal-X using default parameters 

{Thompson et al., 1997; Jeanmougin et al., 1998). A phylogenetic tree was reconstructed 

using neighbour joining analysis and gamma-corrected Kimura distances with MEGA v2.0 

(Kumar et al., 2001). The NJ tree was validated using 1,000 bootstrap replicates. 
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4.2.4 PCR amplification of the D2/D3 segment of nuclear large subunit ribosomal 

RNA gene (28S rRNA) 

The large subunit ribosomal gene in nematodes is approximately 3400 bp in length. 

A set of primers was used to amplify approximately 780 bp from the D2/D3 expansion 

segment of the 28S rRNA gene. The primers used in this study were D2a forward and D3b 

reverse (De Ley et al., 2005). The forward primer corresponds to the 355-375 position 

while the reverse primer corresponds to the 1006-986 position with the C. elegans 28S 

ribosomal RNA gene. PCR reactions were performed in 0.5 mL tubes containing 4 JlL 

template DNA, 5 JlL lOX/MgCh buffer, 5 JlL 2 mM dNTPs, 2 JlL of each of the primers, 1 

JlL BSA (1 Omg/mL) and water to a final volume of 50 JlL. Thermal cycle parameters were 

94°C for 5 min, 38 cycles of94°C for 30 sec, 55°C for 1 min, 72°C for 2 min followed by 

an extension of 10 min at 72°C and final a holding temperature of 4°C. 

4.2.4.1 Cloning and sequencing of the partial28S rRNA gene 

Amplified LSU fragments were cleaned with ExoSAP-IT (USB Corporation, USA) 

according to manufacturer's instructions as mentioned previously (Section 3.2.11.1.1). 2.5 

JlL of the ExoSAP-IT treated PCR product was cycle sequenced using a BigDye 

Terminator Kit (Applied Biosystems, Warrington, UK) and cleaned using the Wizard 

Magnesil™ system (Promega, UK). Fragments were then sequenced in both directions 

using the same set of primers (D2a forward and D3b reverse). Amplification products 

which failed to produce good quality sequences were cloned into pGEM-T vector system 

and subsequently sequenced in both directions with M13F and M13R primers. Sequence 

traces were checked with Chromas Pro for ambiguities and errors. 

4.2.5 PCR amplification and sequencing of the mitochondrial16S rRNA gene 

Two primers were designed in this study based on available nematode 

mitochondrial 16S rRNA sequences held online at GenBank and EMBL. These were 
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16SFI forward and 16SRI reverse. The forward primer corresponds to the 10839-10858 

position and the reverse primer corresponds to the 11167-11151 position with the C. 

elegans mitochondrial genome. PCR and sequencing parameters have been elaborated in 

Chapter Two (Table 2.1 ). 

4.2.6 PCR amplification and sequencing of tbe mitochondrial CO XI gene 

Two sets of primers, namely LC01490 and HC02198 (Folmer et al., 1994) and 

MNCOXIF and MNCOXIR, were used to amplify a partial fragment of the COXI gene. 

The MNCOXIR and MNCOXIR primers were designed by the author on available 

parasitic nematode COX! sequences and correspond to the 730-754 and ll70-ll47 

positions of the mitochondrial COXI gene in C. e/egans. The primer sets yielded 

amplification products of 700 bp and 440 bp respectively. For the Folmer et al. (1994) 

primers, the thermal cycle parameters consisted of one cycle of: I min at 94°C; five cycles 

of 1 m in at 94°C, 1.5 min at 45°C and 1.5 min at 72°C; 35 cycles of 1 min at 94°C, 1.5 min 

at 50°C and 1 m in at 72°C; and a final cycle of 5 min at 72°C. Amplified fragments were 

subsequently sequenced with the same set of primers. 

4.2.7 PCR amplification and sequencing of tbe partial ribosomal 18S rRNA gene for 

molecular barcoding 

To test the molecular barcoding concept in marine nematodes, a small fragment 

from the partial5' end of the small subunit rRNA gene was selected for amplification. Two 

primers, namely MNI8F and 22R, were used to amplify a fragment of approximately 345 

bp. PCR was carried out with an MJ Thermocycler using the following cycling parameters: 

95°C for 5 rnins, followed by 37 cycles of95°C for 30 sec, 56°C for I min, 72°C for l min 

30 sec and a final extension of 72°C for 5 min and the PCR tubes were cooled at 4°C. In 

total, 80 individuals from Saltram (Piym estuary) and Saltash (Tamar estuary) were PCR 

amplified and sequenced. 
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4.2. 7.1 Phylogenetic analysis to test the reliability of molecular barcodes 

Prior to phylogenetic analysis, 18S rRNA sequences from known marine nematode 

taxa from South West England and selected sequences from the GenBank and EMBL 

databases were aligned with sequences from Plym and Tamar estuary specimens in the 

Clustal-X program using the default parameters. GenBank accession numbers of the 

sequences used in this study were AY854202, A Y854209, A Y854204, AF047888, 

AY854210, AY854212, AY854224, AY854225 and AY854238. Neighbour-joining trees 

were constructed with the program MEGA v2.0 using gamma-corrected Kimura distance 

parameters (Blaxter et al., 1998). To assess the reliability ofNJ trees bootstrap tests were 

carried out using 1,000 replicates. 

4.3 Results 

4.3.1 Amplification and sequencing of the 18S rRNA gene 

Successful PCR amplification and sequencing were achieved in almost all major 

marine nematode taxa tested from South West English waters (Figure 4.2). Each taxon 

possessed a different DNA sequence at the 18S rRNA gene. A distinct pattern of conserved 

and variable regions was observed in the 18S rRNA molecule among all these taxa. The 

partial 5' end of the 18S rRNA molecule exhibits a mix of conserved and variable regions 

which were later tested for molecular barcoding (see below). Almost all sequences showed 

a similarity of99% or above when compared with the nematode sequences available online 

in GenBank and EMBL using the BLAST tool. 18S rRNA sequencing revealed that 

Daptonema hirsutum and D. setosum were identical at the 18S rRNA level. The genetic 

analysis revealed that there may be a systematic problem in D. hirsutum and D. setosum or 

a problem during morphological identification of the specimens prior to molecular 

analysis. Identical sequences were also found for two other nematode species (or 

'congeners'), Setosabatieria hilarnla and Sabatieria celtica. Similar observations were 

also recorded by Meldal (2004) in a separate study. The phylogenetic analysis exhibited 
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good resolution of the major nematode orders Enoplida, Chromadorida and Monohysterida 

(Figure 4.3). Most of the species cluster into the genera and families described from 

morphological studies. 

Figure 4.2: Amplified 188 rRNA fragment of approximately 920 bp from different 

marine nematodes using the MN18F and Nem_18S_R primers. 100 bp ladder at the 

extreme left 
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Figure 4.3: Neighbour joining tree with boot strap values (1000 replicates) for twenty 

six marine nematode taxa from South West England based on 18S rRNA sequences. 

The scale indicates 0.05 substitutions/site. 

4.3.2 Amplification and sequencing of the 28S rRNA gene 

Successful PCR amplification and sequences were obtained for ten out of fifteen 

marine nematode taxa tested, giving a success rate of just over 66%. The D2/D3 expansion 

segment was highly variable between these taxa. Clearly more optimization is needed for 

the primers to work in all taxa. The BLAST percentage score was on average 94% for most 
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of the 28S rRNA sequences. Only one taxon, namely Adoncholaimus sp., matched 

GenBank data with a BLAST percentage identity score of 99%. Given the low 

amplification and sequencing success rate, the use of 28S rRNA gene for barcoding marine 

nematodes was abandoned. 

4.3.3 Amplification and sequencing of the mitochondrial genomic regions 

Amplification and sequencing of two mitochondrial genes, namely 16S rRNA and 

COXI, were attempted using both nematode-specific and universal primers. In most cases 

PCR was unreliable and yielded no products. DNA from a single marine nematode taxon, 

namely Daptonema sp. was amplified and sequenced using mitochondrial 16S rRNA 

primers. For the COXI gene, three taxa were amplified and sequenced using the Hebert et 

al. (2003) primers and nematode-specific primers. These were Metachromadora remanei, 

Metachromadora sp. and Daptonema setosum respectively. Further work with these genes 

was abandoned due to the low PCR success rate observed. 

4.3.4 Molecular barcoding of marine nematodes based on 188 rRNA sequences 

Successful PCR amplification and sequencing was achieved for all eighty 

individuals from the Tamar and Plym estuaries identified morphologically prior to DNA 

analyses. All sequences showed similarities of between 97-100% with GenBank and 

EMBL nematode 18S rRNA sequences. The phylogenetic analysis of the eighty sequences 

along with known marine nematode 18S rRNA sequences showed clear resolution and 

most of the sequences were resolved to genus and species level in both the trees (Figures 

4.4 and 4.5). In the Tamar estuary only one specimen (Tamar 3) was not assignable to 

species level in the phylogenetic tree. This was placed within the genus Sabatieria on the 

basis of its 18S rRNA sequence, and indeed was identified as Sabatieria sp. based on 

morphological characters prior to molecular analysis. In the Plym estuary, 6 out of 40 

specimens were not readily assignable to species level in the tree. Out of these, three were 
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assignable to genus level as Praeacanthonchus (Plyml), Terschellingia (Plym12), and 

Sabatieria (Plym22), and had been identified as such based on morphological characters 

prior to molecular analyses. The Plym17 specimen was morphologically identified as 

Metachromadora suecica, and indeed clustered with the Metachromadora species included 

in the tree, despite being relatively divergent, differing by seven base pairs from M. 

remanei. Plym19 and Plym 29 clustered with Atrochromadora microlaima and 

Dichromadora sp. in the phylogenetic tree. 
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Figure 4.4: Neighbour joining tree with bootstrap values (1000 replicates) showing 

relationship between Tamar estuary nematode 188 rRNA sequences and sequences 

from known marine nematodes. The scale indicates 0.5 substitutions/site. 
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Figure 4.5: Neighbour joining tree with bootstrap values (1000 replicates) showing 

relationship between Plyrn estuary nematode 18S rRNA sequences and sequences 

from known marine nematodes. The scale indicates 0.5 substitutions/site. 
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4.4 Discussion 

The main objectives of this study were to amplify and sequence nuclear and 

mitochondrial genes from nematode genomes to create DNA sequence profiles useful for 

the identification of marine nematodes. In total, four genes from both nuclear and 

mitochondrial genomes were tested in this study. Nuclear 18S rRNA genes were 

successfully amplified and sequenced from all the taxa tested, and proved to be a valuable 

marker for barcoding studies. Initially PCR amplification and sequencing was hindered by 

frequent amplification of fungal 18S rRNA sequences (see Chapter 3). Because most 

environments harbour a high level of eukaryotic diversity, it becomes difficult to avoid eo

extracting DNA from other biological material such as micro-organisms and fungal spores 

and as a result eo-amplification becomes a problem. Therefore, new primer sets were 

designed and evaluated. The newly designed primers based on available marine nematode 

sequences were specific and amplified only nematode I 8S rRNA sequences (see Chapter 

3). 

The 18S rRNA gene in marine nematodes contains both highly conserved and 

variable regions, and there is high inter-specific variation between taxa. Such patterns are 

common and have been observed across many metazoan phyla (Abouhei f et al., 1998). The 

mix of conserved and variable regions amongst the 18S rRNA molecule makes it suitable 

for the design of primers to amplify segments of the gene that are variable amongst 

different species of nematodes. The partial 5' end of the molecule contains a mix of 

conserved and variable regions which were exploited for molecular barcoding studies. In 

this study two nematodes (Setosabatieria hilarula and Sabatieria celtica) were shown to 

have identical 18S rRNA sequences and this may have arisen through homoplasy or the 

retention of ancestral polymorphism within the 18S rRNA region for these taxa (Avise, 

1994; Manen, 2004; Cook et al., 2005). Homoplasy could arise either due to convergent 

evolution, evolutionary reversals or due to hybridization but not (by definition) due to 

common ancestry (Sanderson and Hufford, 1996; Lowrey et al., 2001). Similar results 
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have also been observed among members of Anoplostomatidae and Enoplidae in the 

phylum Nematoda (Pegova et al., 2004). Therefore there is always a possibilty that the 

history of this gene may not actually reJect the history of the two species (Setosabatieria 

hilarula and Sabatieria celtica). The other possibilities are methodological or sequencing 

error, although it is unlikely as the 2nd and 3'd amplified segments of the ISS rRNA gene 

overlap, giving a high confidence in sequence data as effectively the same regions were 

sequenced several times. DNA amplification and sequencing of other genomic regions, 

namely 28S rRNA or mitochondrial 16S rRNA, could provide vital information on the 

relationship between these two species. 

PCR and direct sequencing of the highly variable D2/D3 segment of 28S rRNA 

yielded mixed results. Out of 15 taxa tested, amplification and sequencing was successful 

for I 0 taxa and thus it was clear that further optimisation or designing primers based on 

other regions of 28S rRNA was required to achieve 100% success with all the marine 

nematode taxa investigated. De Ley et al. (2005) used the same set of 28S rRNA primers 

and found the PCR success rate was just over 80% among terrestrial and a few marine 

nematode taxa. An alternative approach, where template DNA from representative taxa 

was initially amplified using a GenomiPhi amplification kit and subsequently used as 

templates for D2/D3 amplification was adopted by De Ley et al. (2005) to test the concept 

of barcoding. In this study D2/D3 fragments were directly amplified from low 

concentration DNA templates (typically 0.5-3 ng/j.tL) and therefore the GenomiPhi method 

used by De Ley et al. (2005) may improve amplification from marine nematodes. In this 

study the success rate with the 28S rRNA gene was just above 66%. Most of the sequences 

obtained were highly variable because of high divergence between taxa, which may create 

alignment ambiguities and uncertainty in phylogenetic analysis (De Ley et al., 2005). 

Given such problems, and the relatively low PCR success rate, the use of this gene was 

abandoned here, although it may prove useful in the future barcoding studies. 
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In this study two genes present in the mitochondrial genome, namely 16S rRNA and 

COXI, were also tested for ease of amplification and sequencing from different marine 

nematode taxa. PCR amplification of 16S rRNA was unsuccessful in all except one out of 

twenty taxa tested. Similarly for the COXI gene amplification failed in most of the taxa. 

Only three taxa were successfully amplified and sequenced using the Folmer et al. (1994) 

primers and primers designed as part of this study. Meldal (2004) and Cook et al. (2005) 

also found similar problems while trying to amplify the COXI gene from marine 

nematodes. Reasons for such failure may relate to the fact that nematode mitochondrial 

genomes are highly diverse compared to other metazoans, and display unusual properties 

such as recombination, insertional editing and multipartitioning (Lunt and Hyman, 1997; 

Blouin, 1998; Keddie et al., 1998; Annstrong et al., 2000; Lavrov and Brown, 2001). 

Therefore designing phylum-wide primers for mitochondrial genes may be problematic, 

seriously limiting their future use in barcoding across the phylum. 

Based on PCR amplification and sequencing success rates, the 18S rRNA gene 

proved to be more consistent than other nuclear and mitochondrial genes. The 18S rRNA 

gene is generally conserved and has a high success rate with PCR. Therefore it has 

received great attention in recent literature as a barcoding locus (Floyd et al., 2002; 

Blaxter, 2004; Powers, 2004). In this study, a region of approximately 345 bp from the 5' 

end of the molecule was selected for barcoding studies and evaluation of its potential to 

assign specimens to genus and species level. The validity of the technique was evaluated 

by identifying specimens using traditional taxonomic methods followed by their 

subsequent randomization, sequencing and inclusion in phylogenetic analysis. Almost all 

the specimens from the Plym and Tamar estuaries resolved to genus and most of them to 

species level when compared with representative marine nematode sequences in 

phylogenetic trees. However there were some exceptions to this. In the Tamar estuary only 

one specimen (Tamar 3) was not assignable to species level in the phylogenetic tree. This 

did, however, fall within the genus Sabatieria on both molecular and morphological 
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characters, and may represent a previously unsequenced species of the genus, or indeed a 

novel cryptic taxon. As stated above, in the Plym estuary, 6 out of 40 specimens were not 

clearly assignable to species level. Three were correctly identifiable to genus level, 

however, using 18S rRNA sequences, and indeed these specimens could not be identified 

further on the basis of morphology, even by accomplished taxonomists. Two specimens 

from Plym estuary (Piym19 and Plym29) branched with different taxa in the tree although 

one of them Plym 19 was identified morphologically as Sabatieria sp. and the other 

Plym29 could not be identified but was grouped under the Cyatholairnidae. 

Misidentification or contamination of DNA could have been responsible for wrong 

derivation to genus or species level in the tree. The possibility of novel cryptic taxa or 

sequences from previously undescribed species cannot be ruled out for these two 

specimens. Therefore, amplification and sequencing of other genomic regions for these 

two specimens could provide vital information for subsequent assignment to correct genus 

and species level. 

Throughout the study, NJ analysis using gamma-corrected Kimura distances was 

adopted for tree building following the methodology ofBlaxter et al. (1998). Additionally, 

multiple nematode specimens with similar genotypes from the Plym and Tamar estuaries 

were included for analysis so as to evaluate whether 18S rRNA barcoding marker can 

resolve specimens (with similar genotypes) correctly to genus and species level in a 

phylogenetic tree. NJ analysis has been successfully applied as a tree building tool for 

DNA barcoding studies in the past (Hebert et al., 2003; Blaxter 2004; Ward et al., 2005; 

Hajibabaei et al., 2006) and was therefore applied in this study. Besides, NJ analysis is fast 

and thus suited for large datasets and for bootstrap analysis as well as permitting lineages 

with largely different branch lengths. While the bootstrap values for some of the branch 

lengths were low in both the trees (Figures 4.4 and 4.5), this was possibly due to the fact 

that a small fragment of 345 bp from the 18S rRNA molecule was evaluated in the analysis 

rather than the complete 18S rRNA molecule (1.7 kB). On the other hand, the majority of 
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the outgroups had bootstrap values of 98 and above, confirming the that specimens were 

correctly assigned to genus and species level by NJ analysis, and previously confirmed 

BLAST values (98%-100%) from the sequence data sets strongly support this argument. 

Based on 18S rRNA amplification and sequencing, 77 out of 80 specimens were 

correctly assigned to genus or species level, indicating that the success rate of molecular 

barcoding using this sequence is close to 97%. At the same time, taxonomic placements of 

most specimens using molecular data matched those based on morphology. The success 

rate of the 18S rRNA based DNA barcoding conducted here is slightly lower than that of 

Hebert et al. (2003) where the success rate was 100% based on COXI profiles. Clearly 

more work is needed to include a larger number of l8S rRNA sequences from marine 

nematode taxa for the barcoding approach to be more accurate. At the same time 

traditional taxonomic methods should be continued in order to develop keys for new 

species of marine nematodes so as to bring a congruency between the two methods 

(molecular and morphological). 

This study shows for the first time the feasibility of developing an l8S rRNA-based 

identification system for small metazoans such as nematodes that are abundant in the 

marine and estuarine environments. PCR products were recovered from all the individuals 

and there was no evidence of any complications with the molecular methods. Moreover, 

the alignment of the sequences and subsequent phylogenetic analysis was straightforward, 

as indels and polymorphisms were uncommon for this gene. 

Such DNA identification based on 18S rRNA sequences could prove to be useful 

for marine nematodes and indeed other metazoan groups that form a major part of the 

meiofauna in the marine environment. The future success of DNA barcoding lies with the 

development of an l8S rRNA database for identification of marine meiofauna including 

nematodes. Approaches based on ribosomal sequences could be employed in future for 

molecular surveys of nematode diversity from marine environments. For more extensive 

surveys, a cheaper oligonucleotide-hybridization approach could be taken, where the l8S 
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Cosmopolitanism and cryptic speciation 

5. Genetic differentiation in the cosmopolitan marine nematode 

Terscllellingia longicaudata 

5.1 Overview 

Many benthic invertebrate species are considered to have a worldwide distribution 

and are often termed cosmopolitan. A taxon is defmed as cosmopolitan if it is reported 

from two or more oceans including connected seas (Sterrer, 1973). Within the 

meiobenthos, cosmopolitan species have been reported from a wide array of major taxa 

displaying a broad range of life styles (Scheltema 1968, 1971, 1988; Rogers et al., 1995; 

Todaro et al., 1996; Lee and 6Foighil, 2004). Some marine benthic invertebrates have a 

broad geographic distribution because of pelagic larval and juvenile stages, which drift for 

weeks and months in the water colunm and are thereby dispersed over long distances. On 

the other hand, many of the supposed cosmopolitan meiofauna living in littoral sediments 

have no pelagic stages of dispersal, and juveniles, like the adults, are incapable of active 

swimming. Given such observations, it would be expected that such taxa would have 

relatively small geographic ranges, and indeed the cosmopolitan nature of some 

meiofaunal species has been questioned (Gerlach, 1977; Giere, 1993; Schmidt and 

Westheide, 2000). 

A central point of debate over the presumed cosmopolitan distribution of 

meiofaunal taxa concerns species identification. In particular, critics have questioned the 

reliability of species identifications from geographically distant areas, especially when 

made by different investigators using different methods and differing personal opinions to 

place specimens within a given taxon. Careful morphological analysis has sometimes 

shown that some species with a presumed wide geographical range are actually composite 

assemblages of different species (Grassle and Grassle, 1976). In addition, several 

potentially cosmopolitan species have been identified as cryptic species based on 
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molecular analyses (Baric and Sturmbauer, 1999; Dawson and Jacobs, 2001; Williams et 

al., 2001; Quattro et al., 2001; Larsen, 2001). 

Equally recent surveys using highly reproducible techniques have confirmed that 

true cosmopolitanism does appear to occur among certain meiofaunal groups (Hummon, 

1994; Todaro et al., 1995; Schrnidt and Westheide, 2000). In light of these contrasting 

results, and the awareness of the possible existence of cryptic species, different approaches 

to species identification should be combined in studies which attempt to determine the 

status of supposed cosmopolitan taxa. 

Free living nematodes which often dominate the meiofauna include several taxa that 

appear to have a broad scale cosmopolitan distribution. Marine nematodes generally show 

little evidence of active dispersal (Palrner, 1988) and probably move by passive dispersal 

in the bedload and water column (See Chapter 1 and Palmer, 1988; Armonies, 1994; Sun 

and Fleeger, 1994). Dispersal by other means such as erosion of sediment, or tidally 

induced vertical and horizontal displacements have also been reported by several 

researchers in some marine nematode taxa (Rieger and Ott, 1971; Gerlach, 1977; 

Hagerman and Rieger, 1981; Commito and Tita, 2002), yet it is unclear how such 

mechanisms could lead to a cosmopolitan distribution. The lack of planktonic phases in the 

life cycle of nematodes raises the question whether some of the cosmopolitan species that 

have been reported from different oceans and estuaries actually comprise complexes of 

cryptic species. Morphological measurements have demonstrated the presence of cryptic 

species in the marine nematode genus Pontonema (Warwick and Robinson, 2000) with a 

broad geographical distribution. Recently studies conducted by Derycke et al., (2005) have 

revealed cryptic species assemblages in another marine nematode species Pe/lioditis 

marina from a small biogeographic region based on molecular datasets. To date, however, 

no study has investigated cosmopolitanism in marine nematodes using a combination of 

morphological and molecular techniques. 
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5.1.1 The model species used in this study 

Marine nematodes occur in virtually every marine benthic habitat, and several have 

a cosmopolitan distribution. One such supposed cosmopolite is the marine and estuarine 

species Terschellingia longicaudata De Man, 1907. It is typically one of the dominant 

species in soft sediments in inshore waters and is 1.5-1. 7 mm in length, a size typical of a 

wide range of related species (Figure 5.1 ). 

Figure 5.1: Light micrograph of an adult female Terschelliflgia loflgicaudata (taken at 

xlO magnification). Note the long tail filament visible at the left-hand side of the 

picture. 

T. longicaudata is reported extensively from British waters in particular from South 

West England, North East England and parts of Scotland. It has been also reported from 

many parts of the world's oceans, including the Atlantic coast of France, the Black Sea, the 

USA (Gulf of Mexico), China (Qingdao province), New Zealand and the Solomon Islands 

(Sergeeva, 1991; Zhang and Ji, 1994; Burgess et al., 2005; PJD Lambshead pers comm). 
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5.1.2 Aims 

The aims of this study were: 

(i) To examine and compare the phenotypic and genotypic relationships between 

populations of the Terschellingia /ongicaudata using a combination of 

morphometries and genetic analysis. 

(ii) To determine whether molecular or morphological analysis suggest the presence of 

a cryptic species complex or true cosmopolitanism in T. /ongicaudata. 

5.2 Materials and Methods 

5.2.1 Sample collection 

For morphological and molecular studies populations were collected from the 

geographically distinct environments described in Table 5.1. Details of the sediment 

collection from UK waters are available in Chapter 3 (Section 3.2.1). For sites in Bahrain, 

Mexico and France surface sediments (2-10 cm deep) were sampled by hand and stored 

either in formalin or alcohol for subsequent analysis. Details of the sediment collection 

from the Malaysian site are available in Somerfield et al. (1998). 
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Table 5.1: Details of the localities and habitats from where sediments were collected 

in this study. 

Country Locality Habitat Depth Collector 

UK Tamar estuary Intertidal 1-5m P. Bhadury 

UK RameHead Subtidal 50m P. Bhadury 

UK Plym estuary Subtidal 7-lOm P. Bhadury 

UK NMMPsite Subtidal 70m Michaela 

Schratzberger 

France L'orient, Coastal area Intertidal Melanic Austen 

Brittany 

Bahrain North Tubli Bay Sheltered bay, Intertidal Melanic Austen 

extensive 

mudflats 

Bahrain Ras al Barr Sandy beach Intertidal Melanic Austen 

Malaysia Sungai Merbok Estuarine Intertidal Paul Somerfield 

estuary mangrove 

vegetation 

Mexico Cancun Sandy beach Intertidal Rachel Jones 

(Atlantic coast) 

5.2.2 Sample processing 

Sediments from each location were divided into two parts. One part was fixed in 

molecular grade ethanol for molecular studies and the other part was fixed in formalin for 

morphometric studies. For alcohol fixed sediments, specimen extraction and identification 

was carried out following the protocol described in Chapter Three (Section 3.2.2). Merbok 

meiofauna were already stored in 4% buffered formalin and T. longicaudata specimens 

were carefully picked from stored meiofauna for subsequent molecular and morphological 

analyses. Washed meiofauna were extracted from formalin-fixed sediments, following 
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Somerfield and Warwick's (1998) protocol, and then divided into several cavity blocks, 

each containing 4 mL of a solution of 5% glycerol and 10% IMS (Industrial Methylated 

Spirit) and left on a thermostat hot-plate (37°C} overnight. This slow evaporation 

procedure transfers the fixed nematodes to pure, anhydrous glycerol, a medium suitable for 

permanent whole mounts (Riemann, 1988). Each nematode was carefully placed on a 

microscope slide (76 x 26 mm, thickness 1.0 mm, Bluestar) containing a drop of glycerol 

and subsequently a cover-slip (13 mm diameter, thickness 0, VWR International) was 

applied and sealed carefully with Bioseal 2, a xylene resistant sealant thereby reducing the 

risk of squashing the specimens. Specimens were then checked under a compound 

microscope to confirm their identity prior to morphological measurements. 

5.2.3 Molecular analyses 

Primers and their sequences used in this study have been described in Chapter Two. 

For molecular studies fifteen individuals from the Tamar estuary, the Plym estuary, 

NMMP and Rame Head were used. For Bahrain sites, five individuals from North Tubli 

Bay and five individuals from Ras al Barr were available for molecular studies. Due to lack 

of specimens, only five individuals from Brittany (France), three individuals from Merbok 

(Malaysia) and two individuals from Cancun (Mexico) were used for amplification and 

sequencing. In this study both nuclear (18S rRNA, ITSI and ITS2, 28S rRNA) and 

mitochondrial genes (COXI, COXII, NADH) were targeted for amplification and 

sequencing. 

5.2.3.1 PCR amplification and sequencing of the JBS rRNA gene 

Nematodes identified as Terschel/ingia longicaudata from mne geographical 

regions were carefully taken off slides and individually placed in 0.5 mL PCR tubes 

containing 0.25 M NaOH. DNA extraction was carried out following a modification of the 

Floyd et al. (2002) protocol. Two primers, MN18F and Nem_l8S_R, were used to amplify 
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approximately 926 bp of the 18S rRNA gene. PCR fragments were subsequently 

sequenced in both directions using the same set of primers. 

5.2.3.2 DNA extraction and PCR amplification from formalinised Merbok samples 

Merbok (Malaysia) T. longicaudata specimens previously fixed in formalin were 

subjected to DNA extraction using the modified protocol of Chase et al., (1998) described 

in Chapter Six (Section 6.2.2.1). Following extraction, genomic DNA from each individual 

was subjected to amplification of the 18S rRNA gene using MN18F and 22R primers. 

Amplicons were subsequently sequenced in both directions using same set of primers. 

5.2.3.3 Phylogenetic analysis of JBS rRNA sequences 

Prior to phylogenetic analysis, 18S rRNA sequences were aligned in Clustal-X 

usmg default parameters. Neighbour joining trees were constructed in MEGA. A T. 

longicaudata sequence from Southampton waters (UK) submitted to GenBank 

(A Y854230) was also included in the phylogenetic analysis, together with other 

authenticated marine nematode sequences generated in this study. NJ trees were 

subsequently validated with bootstrap analysis of 1000 replicates. 

5.2.3.4 PCR amplification of the 28S rRNA gene for Ras al Barr and North Tubli Bay 

specimens 

Material identified as T. longicaudata from Bahrain produced 18S rRNA sequences 

which were highly divergent from remaining T. longicaudata material (see results). In the 

light of this observation, all the specimens from Ras al Barr and North Tubli Bay that were 

used for 18S rRNA amplification were also subjected to amplification of the D2/D3 

expansion segment from the 28S rRNA gene using the same set of primers and thermal 

cycler parameters as described in Chapter Four (Section 4.2.4), in an attempt to confirm 

their phylogenetic placement. 
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5.2.3.5 PCR amplification of the COX! gene 

Two methods were implemented to selectively amplify the COXI gene in T. 

longicaudata. The first method involved amplification directly from genomic DNA. In the 

second method, a GenomiPhi™ Amplification kit (Amersham Biosciences, USA) was 

used to amplify genomic DNA following the manufacturer's instructions. GenomiPhiTM 

DNA Amplification Kit offers a simple method for isothermal, representational whole 

genome amplification. The method employs the unique biochemical properties of Phi29 

DNA polymerase, a highly processive enzyme with excellent strand displacement activity. 

Microgram quantities of high molecular weight DNA are produced overnight from 

nanogram amounts of starting material. Amplified genomic DNA was subsequently diluted 

I ,000 to 10,000 times and used as templates for amplification of CO XI. In this study two 

sets of primers were used. They were (i) MNCOXIF and MNCOXIR and (ii) LCO 1490F 

and HC02198R (Folmer et al., 1994). For PCR amplifications, both Taq DNA polymerase 

and Accuprime Pjt DNA polymerase were used. 

5.2.3.6 PCR amplification of the mitochondrial cytochrome oxidase subzmit I! gene 

(COX!!) 

Two primers, C02.105CD forward and C02.215R reverse (T Powers,pers comm), 

were used to amplify the COXII gene. The following program was used for amplification: 

94°C for 2 min, 8 cycles of94°C for 30 sec, 50°C for 30 sec, 72°C for 30 sec followed by 

34 cycles of 94°C for 30 sec, 47°C for 1 min, 72°C for 1 min and a final extension 

temperature of 72°C for 5 m in followed by a holding temperature of 4°C. 

5.2.3. 7 PCR amplification of the ITSJ and ITS2 region 

Two primers, NCSF and NC2R, were used to amplify the ITS 1 and ITS2 region 

from the nematode ribosomal RNA gene. Another set of primers flanking the end of the 

18S rRNA gene and covering the ITS 1 spacer region were also used for amplification. 
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These were 23F forward and NClR reverse. For NCSF and NC2R primers an annealing 

temperature of 51 oc was implemented whereas for the 23F and NC 1 R primers the 

annealing temperature was adjusted to 55°C. PCR reactions were performed using 

Accuprime Pfx DNA polymerase enzyme. 

5.2.3.8 PCR amplification of the NADH dehydrogenase subunit gene 

Two primers, mb5F forward and mb9R reverse were also used to amplify a small 

fragment of the protein-encoding NADH dehydrogenase subunit gene from the 

mitochondrial genome. PCR reactions were carried out using Accuprime Pfx DNA 

polymerase enzyme. Thermal cycle parameters used in this study were 36 cycles at 94°C 

for 30 sec, 48°C for I min 30 sec, 72°C for 2 min. 

5.2.4 Morphometric analysis 

Ten individuals from each site in the UK were mounted for morphometric analysis. 

Fewer specimens were available for morphometric study from non-UK sites and the 

numbers mounted for North Tubli Bay and Ras al Barr (Bahrain) were eight and five 

respectively and for Merbok (Malaysia), Cancun (Mexico) and Brittany (France) sites one, 

two and five specimens were mounted. Morphometric analysis was performed using a 

compound microscope with camera lucida and interference phase optics. Character lengths 

were traced directly from the microscopic field of view on to paper, with x 10 

magnification for the larger character measurements, such as body length, and x 100 

magnification for the smaller characters such as amphids and oesophageal bulb diameter. 

The character traces were then measured using a ruler, divider or map measurer for curved 

characters and subsequently calibrated and converted to a millimetre scale (mm). Decisions 

regarding the choice of characters for analysis were based on recommendations by Platt 

and Warwick (1983) and, most notably, characters considered diagnostic for this species. 
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The characters used for morphometries are detailed in Table 5.2. Morphometric 

measurements of all specimens are available in Appendix A. 

Table 5.2: Characters measured for each Terscllellingia lo11gicaudata specimen 

processed. 

Males 

Body length 

Maximum body diameter 

Anal body diameter 

Tail length 

Oesophagus length 

Oesophageal bulb diameter 

Head diameter 

Amphid diameter 

Cephalic seta length 

Sub-cephalic seta length 

Somatic seta length 

Cervical seta length 

Gubernaculum length 

Spicule length 

5.2.5 Data analysis 

Females 

Body length 

Maximum body diameter 

Anal body diameter 

Tail length 

Oesophagus length 

Oesophageal bulb diameter 

Head diameter 

Amphid diameter 

Cephalic seta length 

Sub-cephalic seta length 

Somatic seta length 

Cervical seta length 

Distance from vulva to head 

Multivariate analysis of the morphometric data was performed using the PRIMER 

software package version 5.1 (Clarke and Warwick, 1994). The software, designed to study 

changes in biotic communities, has proved to be useful in numerical taxonomy (Warwick 

and Robinson, 2000). Lower triangular dissimilarity matrices were constructed in PRIMER 

using the normalized Euclidean distance measure, without prior data transformation. 

Normalised distance measures are applicable to character ranges such as body length, 
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maximum body diameter and therefore have been used in this analysis (Clarke and 

Warwick, 1994). Non-metric multidimensional scaling (MDS), an ordination technique 

which is robust in representing high dimensional data (indicated by acceptable stress 

values) was then applied to the dissimilarity data. This ordination technique is based on a 

complex numerical algorithm which is conceptually simple and makes few model 

assumptions about the form of the data or the inter-relationship of the samples, and the link 

between the graphical representation and data is relatively transparent and easy to explain. 

Additionally it has great flexibility both in the definition and conversion of dissimilarity to 

distance and its rationale is the preservation of these relationships in the low-dimensional 

ordination space (Clarke and Warwick, 1994). For each ordination, there were 10 random 

starts of the MDS in order to allow the program sufficient repetition to find the best 

solution. MDS ordinations were carried out on together (male and female) using all 

characters and excluding sexual characters and separately on males and females. 

ANOSIM (Analysis of Similarity) was applied to determine the degree and 

significance of differences between populations based on multiple morphometric 

characters. The calculation in ANOSIM results in a test statistic (R) which is 1 if all 

individuals within a population are more similar to each other than to any individual in 

another population and 0 indicates no difference between populations (and the unlikely 

value of -1 would occur if all individuals in a population are more similar to individuals in 

other populations than to any in their own) (Warwick and Robinson, 2000). R is calculated 

both globally and also between individual pairs ofpopulations. The significance test is then 

achieved by randomly re-allocating population labels to each specimen, in this case 5000 

times, and re-calculating the R statistic. The significance level is then determined by the 

number of times the value of R in the random simulations exceeds the true measured value, 

again in both global and pair wise fashion. 

SIMPER (Similarity Percentages) was used to investigate the contribution of 

individual morphological characters to the separation of populations resulting in the 
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observed clustering pattern (in MDS) or for significant differences between sets of samples 

(in ANOSIM). It should be noted, however, that SIMPER is an exploratory analysis and 

not a statistical testing framework (Clarke & Warwick, 1994). 

5.3 Results 

5.3.1 PCR amplification and sequencing of 188 rRNA gene from T. longicaudata 

specimens collected from different geographic localities 

Successful PCR amplification and sequencmg were achieved for all 

morphologically identified T. longicaudata specimens collected from nine geographical 

locations. Approximately 926 bp of the 18S rRNA gene were sequenced from each 

individual in this study. Most sequences showed 100% homology with the T.longicaudata 

sequence held online at GenBank. The majority of the sequences from Tamar, Plym, Rame 

Head, NMMP, Brittany, Cancun and all sequences from Merbok (formalin preserved) were 

identical (Figures 5.2 & 5.5). For Merbok samples only 350 bp of the 18S rRNA gene were 

amplifiable. 

Some samples from a number of localities produced divergent 18S rRNA 

sequences. Seven individuals from the NMMP site shared a sequence showing 97% 

homology to that found in the majority of T. /ongicaudata specimens. Four individuals, 

from two UK sites (Tamar estuary, Rame Head) and Cancun, Mexico, shared another 

sequence with 96% homology to the commonest genotype (see the alignment Figure 5.3). 

Sequences from nematodes identified as T. longicaudata from sites in Bahrain were very 

different from other specimens identified as this species, showing <90% homology with 

the commonest T. longicaudata sequence, and indeed having much higher levels of 

sequence homology with other taxa (see Figure 5.4 and 5.5). 
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Tamarestua 106 
RameHead 1 06 
Southampto 106 
Plymestuar 106 
NMMP Humbe 1 06 
cancUn 1 06 
Brittany 1 06 

Tamarestua 212 
RameHead 212 
Southampto 212 
Plymestuar 212 
NHMP Humbe 212 
Canciin 212 
Brittany 212 

Tamarestua 318 
RameHead 318 
southampto 318 
Plymestuar 318 
NHHP Humbe 318 
Cane \in 318 
Brittany 318 

Tamarestua 424 
RameHead 424 
Southampto 424 
Plymestuar 424 
NMMP Humbe 424 
Cane \in 424 
Brittany 424 

Tamarestua 5)0 
RameHead 530 
Southampto 530 
Plymestuar 530 
NMHP Humbe 530 
cancUn 530 
Br1ttany 530 

Tamarestua 636 
RameHead 636 
Southampto 636 
Plymestuar 636 
NHHP Humbe 636 
CancUn 636 
Brittany 636 

Tamarestua 742 
RameHead 742 
Southampto 742 
Plymestuar 742 
NMMP Humbe 742 
CancUn 742 
Br1ttany 742 

Tamarestua 848 
RameHead 848 
Southampto 848 
Plymestuar 848 
NMMP Humbe 848 
CancUn 848 
Br~ttany 848 

Tamarestua 926 
RameHead 926 
southampto 926 
Plymestua r 926 
NKMP Humbe 926 
Cane tin 926 
Brit t any 926 

Figure 5.2: Alignments showing similar haplotypes of T. lo11gicaudata 18S rRNA 

sequences from different geographic locations in UK (Tamar estuary, Rame Head, 

Plym estuary, Southampton, NMMP) and across the globe (Brittany, Cancun). 
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Figure 5.3: Alignment of 188 rRNA sequence (another haplotype) from a single 

specimen from the Tamar estuary, two specimens from Rame Head and another 

specimen from Cancun along with T. longicaudata sequence showing degree of 

conserved and variable regions. 
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Figure 5.4: Alignments showing high degree of variation between specimens from Ras 

al Barr and North Tubli Bay in Bahrain and T.longicaudata 18S rRNA sequence. 
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Figure 5.5: Neighbour joining tree of 18S rRNA sequences from populations 

morphologically identified as T. longicaudata and selected additional nematode taxa. 

The scale bar indicates 0.05 substitution/site. Numbers beside branches indicate 

bootstrap values (1,000 replicates). 
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5.3.2 Phylogenetic analysis 

The majority of specimens of supposed T. longicaudata share a single 18S rRNA 

sequence, and appear together in the NJ tree (Figure 5.5). However some specimens from 

Rame, Tamar estuary, and NMMP (UK) and Cancun (Mexico), which had divergent 18S 

rRNA sequences, form a separate cluster (sequences A & B on the tree). In addition, 

specimens from North Tubli Bay and Ras al Barr (Bahrain) were segregated from the 

remaining sequences, appearing in different parts of the tree altogether. Ras al Barr 

sequences clustered with Sphaerolaimus hirsutus whereas North Tubli Bay sequences 

clustered with those of Bathylaimus sp. and Parodontophora sp. 

5.3.3 Amplification and sequencing of the 28S rRNA gene from Ras al Barr and 

North Tubli Bay specimens 

Amplification for all specimens from the Ras al Barr and North Tubli sites failed in 

this study. 

5.3.4 PCR amplification of the mitochondrial COXI and CO XII gene 

For the mitochondrial COXI gene, amplification failed in all T. longicaudata 

specimens. Varying annealing temperatures did not produce any amplicons. No amplicons 

were obtained when genomic DNA was amplified by GenomiPhi™ kit and subsequently 

used as a template for COXI amplification. As a result amplification and sequencing of this 

region was abandoned. Similarly no PCR products were obtained for the mitochondrial 

COXII gene in individuals. 

5.3.5 Amplification of the internal transcribed spacer regions 

PCR amplification for the spacer regions (ITS 1 and ITS2) was erratic in most cases, 

yielding very little or no products. Wherever amplicons were obtained, sequencing and 

BLAST searches revealed amplified fungal ITS regions. Some of these amplified fungal 
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ITS regtons were identified as Filobasidium globisporum, Fi/obasidium e/egans and 

Cryptococcus magnus based on 100% homologies with those held in GenBank and EMBL 

databases. Most of these fungi have been reported from a variety of environments 

including aquatic habitats. 

5.3.6 Multivariate analyses of the complete character sets for all individuals 

The MDS plot for 60 individuals (male and female included and all characters used) 

from nine geographic locations is shown in Figure 5.6. This may be considered as an 

average representation of the multivariate information, as the stress value is 0.15 (Clarke 

and Warwick, 1994). There was considerable overlap between populations, and only a 

single cluster was observed when all the characters were included, albeit with some 

outlying specimens such as T1 (male) and T4 (female) from the Tamar estuary (UK), BF4 

(female) from Brittany (France), NTBah2 (female) from North Tubli Bay (Bahrain) and 

PI 0 (male) from the Plym estuary (UK). The morphological characters that make these 

specimens markedly different from the rest of the set are absence of setae (subcephalic and 

somatic) and relatively longer spicules and gubernaculum. 
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Figure 5.7: MDS plot of males and females from different geographical locations 

based on non-sexual characters. Sites as follows: (1) Ras at Barr (Bahrain) (2) 

Brittany (France) (3) Cancun (Mexico) (4) Merbok (Malaysia) (5) NMMP (UK) (6) 

North Tubli Bay (Bahrain) (7) Tamar estuary (UK) (8) Plym estuary (UK) and (9) 

Rame Head (UK). 

5.3.7 MDS analyses of the complete character sets for males and females 

Females 

The MDS plot for 44 females from nme geographical locations based on 13 

morphometric characters (Figure 5.8) is an average representation of the multivariate 

information, wi th a stress value of 0. 16. Locations were not clearly seprared but there were 

some outlying specimens such as NTBah2, RaB2, BF4, T4 and Ra3. 
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Figure 5.8: MDS plot of females from different geographic locations based on 

morphometric characters. Numbers correspond to sites as detailed in Figure 5.6 

Males 

The number of male specimens available for this study was relatively fewer (16 

individuals in total) and the MDS ordination had a stress value of 0.12. There was very 

little difference between the sites although there were outlying specimens such as Tl , Pl 0, 

Ra4 and RaB3 (Figure 5.9). 
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Figure 5.9: MDS plot of male specimens from selected geographic locations based on 

fourteen characters. Numbers correspond to sites as detailed in Figure 5.6 

5.3.8 ANOSIM results for males and females 

The results of the ANOSJM for females and males are presented in Tables 5.3 and 

5.4. For one way ANOSIM of fema les, two sites, Merbok and Cancun, were excluded 

because of the lack of sufficient rep licate specimens. The global R statistic in this test was 

0.296. Comparison of the values of R from the pair wise tests indicate that specimens were 

sign ificantly different morphologically between some sites e.g. those from Ras a l Barr (site 

1 as in Figure 5.6) were significantly di fferent from those in Brittany (site 2 as in Figure 

5.6), the Plym estuary (site 8 as in Figure 5.6), and Rame (site 9 as in Figure 5.6) but not 

significantly different from those at North Tubli (site 5 as in Figure 5.6), NMMP (site 6 as 

in Figure 5.6) or the Tamar (site 7 as in Figure 5.6). For one way ANOSIM analysis in 

males, few individuals were avai lable. Here the global R value was 0.091 but there were no 

significant differences between si tes in the pairwise tests. There was probably no 

difference between male specimens from sites 5 (North Tubli) and 8 (Rame) as indicated 

by the '0' value in ANOSIM result. Similarly the value of -0. 148 possibly indicates that 

the male populations between sites 5 (North Tubli) and 9 (Rame) are more likely to be 
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Table 5.3: Summary of results from one-way ANOSIM for female specimens. Value 

of ANOSIM statistic (R) for test for differences between sites. Number of 

permutations = 5,000. Global R value was 0.296. R values in bold indicate 

statistically significant differences (p<0.05). 

Sites R 

Ras al Barr, Brittany 0.467 

Ras a1 Barr, North Tubli 0.262 

Ras a1 Barr, NMMP 0.022 

Ras al Barr, Tamar Estuary 0.093 

Ras a1 Barr, P1ym Estuary 0.702 

Ras al Barr, Rame Head 0.516 

Brittany, North Tubli 0.235 

Brittany, NMMP 0.513 

Brittany, Tamar Estuary -0.038 

Brittany, P1ym Estuary 0.164 

Brittany , Rame Head 0.272 

North Tubli, NMM:P 0.119 

North Tubli, Tamar Estuary 0.156 

North Tubli, Plym Estuary 0.276 

North Tubli, Rame Head 0.297 

NMMP, Tamar Estuary 0.358 

NMMP, P1ym Estuary 0.676 

NMMP, Rame Head 0.531 

Tamar Estuary, Plym Estuary 0.221 

Tamar Estuary, Rame Head 0.066 

P1ym Estuary, Rame Head 0 
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Table 5.4: Summary of results from one-way ANOSIM for male specimens. Value of 

ANOSIM statistic (R) for test for differences between sites. Number of permutations 

= 5,000. Global R value was 0.091. 

Sites R 

NMMP, Tamar Estuary 0.031 

NMMP, Plym Estuary 0 

NMMP, Rame Head -0.148 

Tamar Estuary, Plym Estuary 0.396 

Tamar Estuary, Rame Head 0.185 

Plym Estuary, Rame Head 0.5 

5.3.9 Similarity percentage (SIMPER) results 

Similarity percentage calculations were determined on males and females combined 

firstly including all morphometric characters and then excluding sexual characters, then on 

only males and only females but including all characters. Merbok was excluded from the 

analysis because of the limited number of individual specimens. For the females-only 

analyses, the dissimilarity values between sites were generally low with the lowest value of 

6.59% (Cancun, Plym Estuary) and the highest value of 21.49% (Cancun, North Tubli 

Bay). Despite low dissimilarity values, characters such as body length and distance from 

vulva to head contributed significantly towards separation of populations between 

statistically significant sites revealed by the ANOSIM analysis for females. The average 

dissimilarity values in males were also very low. The characters that contributed towards 

the separation of male populations between sites were body length and tail length but these 

results have little importance since there were no significant morphological differences in 

males between sites in the ANOSIM. Combining males and females and when all the 

characters were taken into consideration in the analyses the lowest and the highest average 

dissimilarity values were 12.39% (Brittany, NMMP) and 23.70% (Mexico, NMMP) 

respectively. The characters that contributed significantly towards separation of the 
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populations between sites were body length, tail length, distance from vulva to head and 

spicule length. When the SIMPER analysis was carried out on combined males and 

females but excluding sexual characters the lowest and highest average dissimilarity values 

were recorded as 5.79% (Cancun, Plym Estuary) and 18.31% (Cancun, North Tubli Bay) 

respectively. The characters that contributed towards separation of populations between 

sites were tail length and body length. The SIMPER analysis results are available in 

Appendix A. 

5.4 Discussion 

The main purpose of this study was to investigate populations of the cosmopolitan 

marine nematode species Terschellingia longicaudata from different geographical 

locations using a combination of morphometric and molecular techniques. The majority of 

specimens that were morphologically identified as true T. longicaudata following the 

diagnostic characters as described by De Man ( 1907) and later confirmed by Platt and 

Warwick (1988) shared a single 18S rRNA sequence. Such a finding suggests that T. 

longicaudata as currently defined is truly cosmopolitan in distribution. In addition, it is 

worth noting that individual samples come from a wide range of environments, including 

intertidal mud and shelf sediments at 70 m, low and full salinity waters, so the ecological 

range ofT. longicaudata also appears to be genuinely wide. 

There were some exceptions to this general pattern. Sequences from four 

individuals from the Tamar estuary and Rame Head in UK and Cancun in Mexico were 

identical and differed by 25 bases from the T. longicaudata sequence (Figure 5.3). In 

addition seven specimens from the NMMP site had a sequence that differed by 19 bases. 

Molecular data from all specimens collected from Ras al Barr and N Tubli Bay in 

Bahrain showed very little similarity with T. longicaudata sequences (Figure 5.4). 

Sequences from Ras al Barr showed 99% homology with Sphaerolaimus hirsutus 18S 

rRNA sequence, differing at only 4 base positions. 18S rRNA sequences from North Tubli 
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Bay showed a 93% match with Enoploides brunettii, a species in the Order Enoplida, a 

quite different phylogenetic lineage of nematodes to that occupied by Terschellingia 

longicaudata, which is in the Order Monohysterida. The presence of these aberrant 

sequences in specimens from Bahrain, identified as T. longicaudata, is intriguing, and has 

a number of possible explanations. 

Throughout the study, NJ analysis usmg gamma-corrected Kimura distances 

approach was adopted for tree building following Blaxter et al. ( 1998) methodology. 

Multiple specimens with similar genotypes from all geographical locations were included 

for the phylogenetic analysis due to the reasons as mentioned earlier in Chapter Four. 

While the bootstrap values for some of the branch lengths was low in the tree (Figure 5 .5), 

this was possibly due to the fact that only half of the entire 18S rRNA sequence was 

included for phylogenetic analysis. On the other hand, outgroups had bootstrap values of 

99 and above confirming the fact that genotypes with similar sequences were correctly 

assigned to T. longicaudata using NJ analysis and previously confirmed BLAST values 

(100%) from the sequences strongly supports this arguement. 

In this study all specimens were carefully checked under a compound microscope 

by experienced nematode taxonomists and confirmed as T. longicaudata prior to molecular 

analyses. Sequences from selected Rame, Tamar and Cancun specimens (A in Figure 5.3) 

cluster closely with the majority of T. longicaudata material, as do those from selected 

NMMP individuals (B in Figure 5.3), but these sequences differ by 25 and 19 base pairs 

respectively from the common T. longicaudata sequence. The presence of these variant 

!SS rRNA sequences suggests either that this region of the 18S rRNA is variable in T. 

/ongicaudata, or that these specimens represent additional members of the genus, possibly 

previously unrecognized cryptic taxa. It is well known that the genus Terschellingia 

comprises more than 25 species (Gerlach and Riemann, 1973; Austen, 1986). Some of 

these species in addition to T. longicaudata have been reported from different oceans and 

estuaries and are thus widespread (e.g. T. communis) whereas some have restricted 
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geographical ranges (indeed T. gourbaultae IS so far reported only from the Tamar 

estuary). All of these species have smaller oesophageal bulbs than T. longicaudata, 

however, and should have been detected though morphological examination, making it 

possible that the specimens with divergent 18S rRNA sequences indeed represent 

previously undetected cryptic taxa. 

As discussed above, sequences from Bahrain individuals are highly divergent from 

T. longicaudata. The specimens from Ras al Barr showed 99% homology with 

Sphaerolaimus hirsutus with a difference of 3-4 bases. Both S. hirsutus and T. 

longicaudata belong to the Order Monohysterida but they are placed in separate families. 

Morover S. hirsutus is identified on morphological features that are significantly different 

from Terschellingia, e.g. S. hirsutus and other members of this genus have a buccal cavity 

surrounded by a heavily sclerotised buccal capsule which is completely absent in T. 

longicaudata. Whilst contamination of genomic DNA from S. hirsutus during experimental 

work on specimens from Ras al Barr site cannot be ruled out it appears unlikely. In the 

DNA barcoding study the D2/D3 segment of the 28S rRNA gene was readily amplifiable 

in S. hirsutus but when the same set of primers were used on Ras al Barr specimens no 

amplicons were obtained. The amplification parameters were changed and repeated several 

times but no products were obtained. 

Sequences from the North Tubli Bay site showed considerable homologies with 

Enoploides brunetti and also with Parodontophora sp. These taxa belong to a different 

order to T. longicaudata and are again morphologically very different from the genus 

Terschellingia. It is still unclear why the specimens from North Tubli Bay that were 

identified as T. longicaudata generated sequences which show minimal homology with 

actual T. longicaudata 18S rRNA sequence. Once again contamination cannot be ruled for 

North Tubli Bay specimens. 

Error during sequencing can be ruled out in both these cases, because amplification 

and sequencing were repeated for all these specimens and the sequence data generated in 
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this study has been validated extensively. Morphological changes due to ethanol 

preservation could potentially have led to misidentification of these specimens due to 

shrinkage, although the characteristic long tail of T. longicaudata tends to remain distinct 

despite this. One possible explanation is that the specimens selected from the Bahrain sites 

for molecular analyses may have been juveniles, which had not yet developed the adult 

characters which allow positive identification (Platt and Warwick, 1988), and could 

inadvertently have been assigned to the wrong genus. 

Three mitochondrial genes were targeted in this study but no amplicons were 

achieved for any of these, which could be due to several reasons. Because amplification 

failed in T. longicaudata it may be that the arrangement of the mitochondrial genome in 

this species is different from that of previously studied (i.e. parasitic) nematodes. It is well 

known that nematode mitochondrial genomes are prone to recombination rearrangements 

and insertional deleting (Blouin, 1998; Keddie et al., 1998; Armstrong et al., 2000; Lavrov 

and Brown, 2001). The cytochrome oxidase I primers that were used in this study were 

designed on available parasitic nematode mitochondrial genomic sequences and there is a 

possibility that there was no match between the primer sites and genomic regions in T. 

longicaudata. This is supported by the fact that genomic DNA from T. longicaudata 

initially amplified by GenomiPhi kit and subsequently diluted for amplification with COXI 

primers failed to produce any PCR products. 

Ironically, Derycke et al. (2005) successfully amplified mitochondrial cytochrome c 

oxidase I gene fragments from different populations in the marine nematode Pellioditis 

marina using the same set of primers that were designed and applied in this study. The 

success with this marine nematode could be due to its membership of the family 

Rhabditidae which also includes another well known nematode, Caenorhabditis elegans. 

Therefore there is a possibility that the mitochondrial genome of Pellioditis marina 

matched the primers that were designed on available sequences belonging to members of 

Rhabditidae as well as other families in the phylum Nematoda. While the cytochrome 
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oxidase subunit II gene failed to amplify in T. longicaudata, the primers successfully 

amplified around 220 bp in Oncholaimus sp., a marine nematode taxon belonging to the 

order Enoplida. The results make it more likely that the mitochondrial genomic 

arrangement could be unique in T. longicaudata. Use of high fidelity enzymes, and varying 

annealing temperatures for primers did not increase the success with any of the 

mitochondrial genes in this study. 

Two sets of primers used for amplifying the spacer regions between the nuclear 

small subunit (18S rRNA) and the large subunit gene (28S rRNA) were also tested in this 

study. Sequencing results revealed fungal ITS I and ITS2 regions in all cases instead of 

nematode internal transcribed spacer sequences and the homologies were I 00% in most 

cases. The primers tested in this study have been used in the past for molecular systematic 

studies of strongyloid nematodes, which are taxonomically very different from marine 

nematode groups (Hung et al., 2000; Chilton et al., 2001) yet in the present study there was 

a considerable problem with extensive eo-amplification of fungal spacer regions. As a 

result the use of these molecular regions was abandoned. 

The application of morphometries on populations collected from different 

geographical locations suggested that these are morphologically similar, and did not 

generally point to the presence of cryptic species. MDS plots showed very little differences 

between the populations, although there were some outlying specimens in the MDS 

ordination plots. These specimens differed considerably from the rest of the populations 

based on presence or absence of certain morphometric characters. Generally there was no 

difference between the populations from UK sites and other global locations. Indeed for 

sites such as NMMP, Rame and the Tamar Estuary, the majority of the specimens turned 

out to be T. longicaudata based on 18S rRNA sequencing and the MDS seems to be 

support such interpretation where differences are almost negligible in morphological space. 

Even when females were used for MDS analysis generally no differences were observed 

between the sites. For males, the interpretation of the MDS was largely restricted due to 
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the shortage of replicates for analysis. The ANOSIM values showed statistically significant 

differences between females from some locations. Very little information was obtained for 

males, possibly due to the lower number of sites that could be analysed due to the limited 

number of male specimens at some sites. SIMPER analyses showed that characters such as 

body length, tail length, oesophagus length, distance between the vulva and head and 

spicule length contributed towards the population separation that did occur between some 

sites. The technique was not sufficiently powerful to distinguish potentially cryptic species 

shown in molecular analyses (A and B) but this may have been due to insufficient replicate 

specimens of these potentially cryptic species. While Warwick and Robinson (2000) were 

able to use morphometries to distinguish population differences and cryptic species 

assemblages, morphological analyses of specimens from much more widely separated 

geographical locations in this study did not provide any conclusive evidence of cryptic 

species in Terschel/ingia longicaudata. Based on the limited datasets available the 

differences between populations from all the geographical locations were very low 

indicating the possibility that T. longicaudata is a true cosmopolitan species and has a wide 

geographical distribution ranging from UK to Mexico as well as in Far East Asia such as 

Malaysia. 

To conclude, studies of 18S rRNA in T. longicaudata suggest that the species is 

truly cosmopolitan, since samples from different oceans share the same DNA sequence. In 

addition, the study points to the possible presence of two previously unrecognised cryptic 

species. Morphometric analysis of individuals from the same populations (although 

admittedly not the same individuals) suggests that these cryptic species are 

morphologically indistinguishable from typical T. longicaudata using standard 

morphometric approaches. Such morphologically indistinguishable species have been 

reported from a wide range of organisms, including marine meiofauna (Westheide, 1990; 

Schmidt and Westheide, 2000). Further work is needed to confirm these results, however, 

which are based on a single genetic locus, where possible intra-specific variability in 
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nematodes is poorly understood. Interestingly, one of the divergent 18S rRNA sequences 

reported here is itself widespread (UK & Mexico), suggesting that one of these cryptic 

forms is also widespread in distribution. Neither of the divergent sequences occurs 

exclusively within localities either, instead being found together with typical T. 

longicaudata genotypes. Such an observation suggests that the potential cryptic taxa may 

be genetically differentiated despite being apparently indistinguishable morphologically. 
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6. Effectiveness of formalin and other organic compounds for the short 

term preservation of marine nematodes for combined molecular and 

morphological studies 

6.1 Introduction 

The development of PCR and automated DNA sequencing in the last two decades 

has facilitated many areas of research in marine biology. Increasingly molecular tools are 

applied to address questions of phylogenetics and evolution and genetic variation within 

and among populations in meiofaunal groups, such as the free living marine nematodes. 

Since nematode taxonomy relies on microscopic examination of morphological features of 

specimens, including body shape and relative proportions, thus distortion during specimen 

fixation should be kept to a minimum. Additionally, molecular and morphological studies 

need to be integrated to avoid associating sequence data with the wrong taxon; ideally both 

techniques should be applied to the same specimen. 

Traditionally, formalin and its derivatives have been the preferred choice of 

compound for preserving or fixing marine specimens, including the free-living benthic 

nematodes, for long term studies because these are inexpensive, effective and low-

maintenance preservatives, and they maintain the morphological integrity of specimens 

(Bucklin and Alien, 2004). Formalin is a 37% aqueous solution of formaldehyde (CH20), 

the most reactive of all the aldehydes. It has been widely used as a principal ingredient in 

different fluids used for preserving biological and medical samples (Blum 1893, 1894; 

Jones, 1976; Fox et al., 1995). Museums and scientific institutions all over the world have 

large collections of animal specimens including marine invertebrates preserved in 

formaldehyde and its derivatives. A significant proportion of remaining archival specimens 

in museums were fixed in formaldehyde prior to storage in alcohol (Chatigny, 2000). In the 

last two decades with the increasing application of molecular technologies the possibility 

has arisen to use archival specimens in molecular diversity studies. Unfortunately 
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specimens fixed in formalin for a long period of time are considered to be unsuitable for 

DNA work due to the effects of this fixative on tissue components, including nucleic acids. 

In the following section details of the effects offormaldehyde on tissues and nucleic acids 

are elaborated followed by a section on extraction techniques that are used to recover DNA 

from formalinised archived tissues and organisms. 

Although formalin is a good preservative, it is thought to have direct and indirect 

effects on tissues and nucleic acids. Almost no systematic studies are available to date 

exploring the possibility of using formalin and other organic compounds for short term 

preservation of soft bodied metazoans such as nematodes so as to carry out simultaneous 

morphological and molecular work. Therefore the focus of this chapter is to investigate 

whether morphological as well as molecular works could be performed on nematodes 

through short-term preservation in formalin and other organic compounds. If short term 

preservation works it would allow both morphological and molecular analysis to be 

performed on the same individual. The development and optimisation of a technique that 

could be used to recover DNA from formalin preserved archival nematode worms stored in 

museums and research institutions for molecular diversity studies is also explored. 

6.1.1 Formaldehyde and its effects 

6.1.1.1 Mechanism of formaldehyde fzxation 

French and Edsall (1945) and Walker (1964) were foremost in reviewing the 

chemistry behind formalin fixation in biological tissues. Formaldehyde acts in the fixation 

process by combining with the functional groups of certain amino acids, thereby 

denaturing proteins in tissues. During the primary reaction process the oxygen atoms in 

formaldehyde undergo hydrogen bonding with primary amines to cross-link proteins. The 

reactions with the proteins are complex and involve combination with a number of 

different functional groups. All these reactions are highly dependent on physical factors 

such as pH, buffers, concentration, temperature, fixation time, etc. (Thompson, 1966; 
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Crisan and Mattson, 1993; Hamazaki et al., 1993; Koshiba et al., 1993). Some of these 

reactions are rapid and some slow; some are reversible and others irreversible (French and 

Edsall, 1945; Freifelder and Davison, 1963; Jackson, 1978; Chaw et al., 1980). 

Formaldehyde has been shown to cause the formation of DNA-DNA, DNA-protein 

and protein-protein hybrids through the formation of cross links (Chaw et al., 1980; Ma 

and Harris, 1988; Crisan and Mattson, 1993; Chang and Loew, 1994). Some of these cross

links can be partially broken, permitting limited success with PCR, electrophoresis and slot 

blot experiments (Jackson, 1978; Jackson and Chalkley, 1981; Solomon and Varshavsky, 

1985; Orlando and Pardo, 1993). At a neutral pH, formaldehyde can react with three of the 

bases of DNA: cytosine, guanine and adenine (Fraenkel-Comat, 1954; McGhee and von 

Hippel 1975 a, b, 1976 a, b; Neubauer et al., 1992) resulting in the creation of a reactive 

compound via the methylene group. It is thought that this reactive state can hinder primer 

annealing, inhibit renaturation, and suppress the replication procedure in PCR (Karlsen et 

al., 1994). Karlsen et al. (1994) also noted that only 2.5% ofDNA-protein cross-links need 

to remain to cause the polymerase enzyme to malfunction after 200 bp. Chang and Loew 

(1994), however, reported that AT -rich regions of the DNA molecule are more susceptible 

to reaction with formaldehyde than regions dominated by GC bases and suggested that 

base composition may influence the success ofPCR. To date, the precise effects on nucleic 

acids of long term exposure of specimens or tissues to formaldehyde are not well 

characterized. For example, Rumph and Williams (1986) noted that less formaldehyde 

could be eluted from tissue stored for I 00 days than from tissue stored for 50 or 75 days 

suggesting possible secondary reactions. In addition, the effects of substances such as 

formic acid, methanol, methylal, methyl formate and polymers of various compositions 

formed during prolonged formalin storage on DNA remain largely uninvestigated. 
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6.1.1.2 Nucleotide modifications 

As mentioned previously, formaldehyde fixation induces apparent nucleotide 

substitution in DNA molecules. Karlsen et al. (1994) reported that there is a high risk of 

modification of double stranded DNA molecules when kept exposed to formaldehyde. 

Wong et al. (1998) and Williams et al. (1999) detected artificial mutations from partially 

degraded DNA recovered from formalin-fixed paraffin-embedded tissues. Williams et al. 

(1999) recorded up to one mutation artefact per 500 bases of DNA sequence from 

formalin-fixed material and through comparison of PCR products amplified by Taq DNA 

polymerase and Pfu DNA polymerase found that the error frequency was one per 683 

bases and one per 2050 bases respectively. A number of infidelities were also found in a 

634 bp rRNA fragment amplified from fixed tissue of the nematode worm Caenorhabditis 

elegans when compared to sequences from unfixed specimens (De Giorgi et al., 1994). 

The artefacts consisted of single-site mutations where G and T were inserted into the 

sequence. Chaw et al. (1980) using reverse-phase high-pressure liquid chromatography 

have shown that formaldehyde treated nucleic acids undergo changes and form cross 

linked nucleosides. Masuda et al. (1999) found a heterogeneous increase in the molecular 

weight of RNAs recovered from formalin-fixed samples and through MALDI-TOF mass 

spectrometry showed addition of mono-methylol ( -CH20H) to all the four bases at various 

rates. The modification rate varied from 40% for adenine to 4% for uracil. In addition, 

some adenines also underwent dimerization through methylene bridging. The authors were 

able to remove most of the methylol groups from the bases by simply elevating the 

temperature in formalin-free buffer and restored the template activity of RNA from fixed 

tissue (Masuda et al., 1999). Conversely France and Kocher (1996) and Bhadury et al. 

(2005) did not find any infidelities while working with formalin-preserved deep sea 

crustaceans and marine nematodes respectively. Whilst workers should be aware of the 

possibility of formalin-induced substitutions, their extent, and the influence of factors 

discussed above on their frequency, are both poorly understood at present. 
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6.1.2 Fixation and storage conditions and DNA recovery 

As discussed above, DNA degradation occurs in specimens or tissues fixed in 

formaldehyde. Formalin-fixed tissues typically provide low yields of extractable DNA and 

RNA that exhibit significant degradation (Dubeau et al., 1986; Rupp and Locker, 1988). A 

study by Shibata (1994) concluded that because of this degradation PCR targets from 

formalin-preserved samples should be less than 400 bp in length. Goelz et al. (1985), 

however, have reported recovery of DNA fragments of up to 10,000 bp from tissues fixed 

in 4% neutral-buffered formaldehyde, and Savioz et al. (1997) successfully amplified an 

838 bp fragment from 46 year old formaldehyde-fixed tissue. The success of obtaining 

high quality DNA from fixed and embedded tissues appears to be dependent on the 

following factors (Crisan and Mattson, 1993): (a) the chemical composition of the fixative 

(b) duration and temperature of fixation (c) size of the specimen and its permeability to the 

fixative (d) the duration of tissue hypoxia (which is proportional to the amount of DNA 

degradation) and finally (e) the length of storage time. 

One of the problems with archived zoological material is the limited amount of 

information available regarding the details of fixation which in turn could affect the overall 

DNA yield. For example, the formaldehyde may or may not have been buffered, fixation 

time can vary from a few hours to many years and fixation temperatures vary drastically. 

Indeed, Waren (1983) reported that in some cases boiling formaldehyde solution was used 

to fix specimens so as to speed up the fixation process, and as Koshiba et al. (1993) have 

shown, higher fixation temperatures result in higher DNA degradation. 

Neutral-buffered formaldehyde is a better fixative in terms of DNA preservation 

than low pH formaldehyde (e.g. Nuovo and Silverstein, 1988; Hamazaki et al., 1993), and 

there is evidence to show that formaldehyde with low pH or formaldehyde with high 

formic acid content causes greater degradation of DNA than neutral buffered formaldehyde 

(Koshiba et al., 1993). Similarly specimens or tissues fixed in non-buffered formaldehyde 

for prolonged periods give low DNA yields (Rogers et al., 1990; Greer et al., 1991; 
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Forsthoefel et al., 1992; Hamazaki et al., 1993; Karlsen et al., 1994; Inoue et al., 1996). 

Karlsen et al. (1994) found that DNA could be isolated from tissues fixed in formaldehyde 

for between 8 and 48 hours, but the extraction failed in tissues fixed for 96 hours, 

indicating that a longer formaldehyde reaction time can change the DNA extraction 

capacity. In another study, Inoue et al. (1996) extracted DNA from tissues fixed in non

buffered formaldehyde for up to 6 days, but not for 7. Although prolonged storage of 

specimens in formalin decreases the recovery of DNA, useful DNA has been extracted 

from tissues up to 85 years old (Shiozawa et al., 1992; Gall et al., 1993; Wang et al., 1994; 

Pavelic et al., 1996; Shedlock et al., 1997; Chase et al., 1998; Schander and Halanych, 

2000). 

6.1.3 Common extraction techniques 

Optimization of extraction procedures is critical in obtaining DNA usable for PCR 

amplification from formaldehyde fixed specimens. According to Whittier et al. (1999) 

extraction methods can also differ in their performance with different species. Jackson et 

al. (1990) found compounds such as sodium dodecyl sulphate (SDS) used in DNA 

extraction protocols could inhibit Taq polymerase resulting in lower yields of PCR 

products. Nevertheless it has been used in several protocols for DNA extraction from 

archival animal tissues and these have yielded sufficient amounts of PCR products 

(Shiozawa et al., 1992; De Giorgi et al., 1994; France and Kocher, 1996). Studies 

involving prolonged digestion of tissues or animal specimens with Proteinase-K give 

higher yields of DNA than other methods (Shiozawa et al., 1992; Crisan and Mattson, 

1993; France and Kocher, 1996; Shedlock et al., 1997). Wang et al. (1994) and Shedlock 

et al. (1997) reported that extraction methods involving phenol chloroform could damage, 

or result in the loss of a large amount of, fragile archival DNA. On the other hand, 

techniques involving Chelex-100 have resulted in high DNA yield (Walsh et al., 1991; Gill 

et al., 1992; Wang et al., 1994; Kirby and Reid, 2001). 
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One of the earliest studies conducted by Shiozawa et al. (1992) successfully 

implemented proteinase K extraction to recover and amplify a 120 bp fragment D loop 

region of mitochondrial DNA from museum specimens of fish that had been stored for 

over 66 years. De Giorgi et al. (1994) also used proteinase K and phenol chloroform 

precipitation to investigate the effects of formalin on DNA using both formaldehyde-fixed 

and fresh material from the nematodes Xiphinema sp and Caenorhabditis elegans. They 

were able to amplify and sequence a 643 bp long fragment of the 26S rRNA gene and 

reported a number of infidelities from formalin-preserved nematode material. Similarly, 

France and Koch er ( 1996) performed DNA extractions on formalin fixed, ethanol

preserved deep sea crustaceans using a modification of Shiozawa et al., protocol. They 

found that nucleotide sequences for mitochondrial 16S rRNA and COXI genes can be 

recovered from collections of varying age and that these sequences remained unmodified 

compared with those derived from frozen specimens. Yue and Orban (2001) implemented 

the Chelex-100 method to recover and successfully amplify DNA from formalinised fish 

scales. Kirby and Reid (2001) also used this method to amplify and sequence from a larval 

sandeel (Ammodytes sp.) stored in buffered formalin. Shedlock et al. (1997) used 

prolonged soaking of invertebrate as well as vertebrate tissues in GTE buffer (100 mM 

glycine, 10 mM Tris-HCl pH 8.0, 1 mM EDT A) and subsequent proteinase K digestion for 

DNA extraction and subsequent amplification. They amplified 570 bp of mitochondrial 

16S rRNA and 470 bp of Cyt b genes from recovered DNA samples. Dorris et al. (2002) 

also used GTE buffer and proteinase K to recover and amplify DNA from formalin-fixed 

nematodes. Some researchers have also modified commercially available DNA extraction 

kits for extracting DNA from archived organisms (Chase et al., 1998). 

6.1.4 Contamination 

One of the critical aspects of DNA related studies from archived tissues and whole 

organisms is the extent of contamination affecting the amplification process. Cawkwell and 
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Quirke (2000) reported that contaminants constitute a serious problem for amplification 

when the archival DNA is more or less degraded. The combination of low concentration 

template DNA from formalin fixed tissues or specimens along with numerous 

amplification cycles and dynamics of primer annealing may contribute to eo-amplification 

of contaminants (Boyle et al., 2004). Boyle et al. (2004) also encountered contaminants 

such as human, chicken, cow, and even limpet DNA getting amplified along with deep sea 

macrofaunal samples. Similar observations were also recorded by Chase et al. (1998) and 

Schander and Halanych (2003) while amplifying minute deep sea bivalve specimens 

respectively. Such sporadic contamination could be avoided by using species-specific 

primers and performing routine extraction and amplification procedures in separate work 

spaces (Boyle et al., 2004; Bhadury et al., unpublished). 

6.1.5 Other organic compounds used for specimen fixation 

Given the difficulties discussed above, other organic compounds are typically used 

for specimen fixation for molecular work. Whilst most of these may have no measurable 

effects on DNA integrity, their influence on specimen morphology can vary considerably. 

Molecular grade ethanol is the most common form of compound used for specimen and 

tissue fixation (Kiesling et al., 2002; Black and Dodson, 2003; Han et al., 2004; Lapegue 

et al., 2004; Cook et al., 2005). Ethanol preserves specimen by inhibition of cellular 

enzymes which would otherwise lead to sample degradation. Ethanol is generally 

considered a good preservative for maintaining specimen and DNA integrity (Post et al., 

1993; Dessauer et al., 1996; Takemoto et al., 1995; Floumoy et al., 1996; Koch et al., 

1998). For small soft bodied metazoans such as nematodes and polychaete worms, 

specimens preserved in ethanol tend to deteriorate and shrink rapidly (BHM Meldal pers 

comm.; SNMNH, 2005). Such observations have also been noted for small arthropod 

specimens and other benthic invertebrates (Morin et al., 2004; NHMUSA, 2005). Moku et 

al. (2004) reported significant shrinkage in the body length of myctophid fish larvae when 
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preserved in 70% isopropyl alcohol, 70% and 90% ethanol. The shrinking was rughest for 

specimens fixed in isopropanol, followed by 90% ethyl alcohol and 70% ethyl alcohol. 

Takizawa et al. (1994) found that denaturation and dehydration induced by alcohol makes 

it difficult to obtain accurate measurements of body sizes and body mass values in 

organisms such as fish larvae. Kruse and Dalley (1990) reported that preserved capelin 

(Mallotus villosus) larvae shrinked much faster when preserved in anhydrous alcohol; there 

was also differential shrinkage with total length decreasing at a faster rate than standard 

length. Tucker and Chester (1984) showed that shrinkage was species-specific and that it 

varied depending on the size of individuals of the same species. Dorris (2000) and Dean 

and Ballard (2000) noted that extraction of DNA from ethanol preserved nematodes and 

other invertebrates becomes difficult over time because DNA preserved in ethanol 

apparently degrades. Such observations were also made by Corthals and Feinstein (2002). 

Dawson et al. (1998) who compared 70% ethanol, lysis buffer, DMSO-NaCI solution, 

NaCVCTAB solution and urea extraction solution as preservatives for four classes of 

marine invertebrates (Anthozoa, Gastropoda, Polychaeta and Scyphozoa). They found 

DMSO-NaCI to be the most effective method for maintaining integrity of specimens and 

DNA. Kilpatrick (2002) also reported that a long period in DMSO solution did not 

apparently affect the integrity of DNA molecules. Further studies by Lee and Beynon 

(2004) found nail varnish remover (NVR) (a mix of acetone, benzyl alcohol and esters) to 

be a suitable material for the short-tenn preservation of whole barnacles for PCR analysis. 

Fukatsu (1999) reported acetone as a good preservative for insects for molecular studies 

and proposed that the organic compound maintains the rustological integrity of specimens 

thereby aiding in ultrastructural or taxonomic works. In another study Milton and 

Venkatesan (1999) used Bouin's fluid in addition to fonnalin for fixing egg capsules of the 

aquatic belostomatid bug Diplonychus indicus. Mikulski et al. (2005) used a mixture of 

modified saline-ethanol and l 0% fonnalin to fix and store Karenia brevis ( dinoflagellate) 

cells for seven months and later successfully labelled those cells with a large subunit 
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ribosomal RNA probe for flow cytometry analysis. With the exception of the effects 

reported with ethanol based preservatives, there is no information on how these additional 

preservatives affect the morphological integrity of soft-bodied animals. 

6.1.6 The problems faced in Nematology 

Although formalin is a good fixative in terms of specimen integrity, specimens 

fixed for long time periods are generally thought of as being unsuitable for DNA work (see 

above). Increasingly in nematology, and indeed many other branches of biology, 

specimens are being fixed in ethanol for subsequent molecular studies, despite the 

drawbacks in terms of specimen integrity. At times alcohol preservation of small, soft

bodied metazoans such as nematodes and polychaete worms result in shrinkage of 

specimens, often making accurate morphological identification impossible (Bhadury et al., 

2005; BHM Meldal pers comm). Such shrinkage has serious implications in 

morphometries where the shape and size of individual animals is extremely important. 

Additionally, a huge number of marine invertebrates fixed in formalin are currently stored 

in research collections. These specimens could be exploited for genetic studies through 

recovery of archival DNA in order to address questions of evolution and population 

genetics. 

There is a lack of systematic investigation into the effects of formalin on metazoan 

DNA and whether the success of DNA amplification is dependent on the time scale of 

fixation. Such data would be extremely useful to enable morphological and molecular 

studies on the same individual. To date most of the studies looking at the effects of 

formalin on DNA sequences, including infidelities and nucleotide modifications, used 

standard polymerase enzymes in PCR amplification. Standard Taq polymerase enzymes 

are prone to higher error rates because they lack the proof reading capacity of other 

polymerases such as Pfx and Pfu DNA polymerase (Eckert and Kunkel, 1991). Therefore, 

application and comparison of high fidelity and standard polymerase enzymes on DNA 
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templates exposed to formalin for a certain time period could provide information 

regarding nucleotide substitutions and artefacts. Additionally there have been very few 

studies investigating whether the use of other organic compounds for fixing small soft 

bodied metazoans such as nematodes would compromise specimen integrity and 

subsequent molecular analyses. 

With these considerations in mind, the purpose of this chapter was to investigate 

four main aims. These were: 

• To investigate whether nematodes preserved in formalin for relatively short periods 

of time could provide DNA suitable for molecular analyses, and, if so, to determine 

the duration of this time window (Formalin time series investigation). 

• To investigate formalin-induced changes by comparing DNA sequences amplified 

from formalin and alcohol-fixed nematode worms using high fidelity DNA 

polymerases. 

• To optimise an extraction technique that could be used for recovering DNA from 

archived formalin-fixed marine nematode specimens. 

• To test whether organic preservatives such as acetone, a ketone compound, and 

butanol, a tertiary alcohol, could be used for nematode worm fixation without 

affecting the morphological integrity and subsequent molecular analysis. 

6.2 Materials and Methods 

6.2.1 Formalin time series investigation 

6.2.1.1 Sediment fixation and meiofauna extraction 

For the purpose of this study, individuals of the cosmopolitan free living 

marine/estuarine nematode Terschellingia longicaudata De Man, 1907 were examined. 

This species is reported from most of the world's oceans and estuaries, and is typically one 

of the dominant species in soft sediments in inshore waters (see Chapter Five, Figure 5.1). 

Twenty five grams of intertidal mud from Saltash (low water neaps) (50. 24' N, 4" 12' W) 
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on the Tamar estuary, Cornwall (UK) was fixed in 200 mL of 5% unbuffered formalin 

(Sigma, UK) and stored overnight at room temperature (20°C). The formalin-fixed 

sediment was subjected to meiofaunal extraction the next day following Somerfield and 

Warwick's (1996) flotation method. Extracted fauna were then stored in a 50 mL Falcon 

tube containing 4% unbuffered formalin. T. longicaudata specimens (n=6) were picked 

from the Falcon tube after selected time intervals of 2, 3, 4, 5, 6, 7, 9, 11, 13, 15 and 30 

days. Individual specimens were then placed in 0.5 m! PCR tubes containing 20 IlL of 0.25 

M NaOH for nucleic acid extraction. 

6.2.1.2 Nucleic acid extraction and PCR amplification 

DNA was extracted using the modification of the method of Floyd et al. (2002) 

described in Chapter Two (Section 2.3.2). The extract was then used for PCR amplification 

as described below. Two primers, namely G18F forward and 22R reverse were used for 

PCR amplification of the partial l8S rRNA gene (Biaxter et al., 1998) producing an 

amplification product of approximately 400bp. PCR reactions were performed on 5 IlL 

aliquots of the extracted DNA as mentioned in Chapter 3 (Section 3.2.3.3). Pfx DNA 

polymerase (Invitrogen, UK) was also used in addition to Taq DNA polymerase to amplify 

individuals picked on the llth, 13th, 15th and 30th day. Pfx DNA polymerase is a 

proofreading enzyme with 3' to 5' exonuclease activity that provides higher fidelity than 

Pfu DNA polymerase and works on complex templates (Ciine et al., 1996). From the 11th 

day until the 30th day Pfx DNA polymerase (Invitrogen, UK) was used for PCR 

amplification to investigate whether there was any template DNA available which would 

not normally amplify with Taq DNA polymerase due to the enzymes lack of processive 

and high fidelity properties. The PCR reactions were set up according to manufacturer's 

instructions. 5 IlL of each of the PCR products were analysed in 1% (w/v) agarose gels 

using the Mini sub cell GT systems (Bio-rad Laboratories, USA). A 100 bp ladder 

(Promega, UK) was used as a size marker. 
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6.2.1.3 DNA sequencing ofPCR amp/icons 

To check the integrity and identity of the amplicons as well as to investigate any 

formalin-induced nucleotide substitution PCR products amplified using Pfx DNA 

polymerase from the 11 1
h day specimens were directly treated with ExoSAP-IT according 

to the manufacturer's instructions (USB Corporation, USA). Sequencing was carried out in 

both directions (forward and reverse) using an additional nematode specific internal 

forward primer MN18F and the 22R reverse primer in an ABI Prism 3100 Genetic 

Analyzer. Additionally, the 18S rRNA gene from T. longicaudata specimens preserved in 

molecular grade ethanol (Hayman Limited, UK) was amplified and sequenced using the 

same protocol. The generated sequences from formalin-fixed specimens were then 

compared with those from alcohol-preserved specimens, to check for possible ambiguity 

and errors, in the Clustal-X alignment program using default parameters (Jeanmougin et 

al., 1998; Thompson et al., 1997). 

6.2.2 Study of long term and short term archived marine nematode materials 

Marine nematode worms collected in two previous studies were used for DNA 

extraction and subsequent molecular analysis, in addition to the materials used in the 

unbuffered formalin time series experiment. The first of the specimens were collected in 

1984, fixed in formalin and mounted in anhydrous glycerol onto slides as part of a study 

investigating the factors affecting meiobenthic community structure in the Tamar estuary, 

Southwest England, United Kingdom (Austen, 1986). A number of individual nematodes 

were mounted on each slide, and some of the nematodes on the slides were 

morphologically identified as Atrochromadora microlaima, Dichromadora sp., Sabatieira 

pulchra, Molgolaimus tenuispiculum, etc during a previous study (Austen 1986). For the 

second set of specimens, nematodes were picked from short term bulk meiofauna samples 

extracted from estuarine sediments of Tamar estuary and stored in buffered formalin at 
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room temperature for 8-9 months. Some of these nematodes were identified as 

Terschellingia sp., Dichromadora sp., and Chromadorid under a compound microscope. 

6.2.2.1 Nucleic acid extraction 

DNA was extracted from long and short-term archived nematodes usmg an 

extended hot lysis protocol, a modification of the method of Chase et al. (1998). 

Nematodes (n=8) were carefully taken off the slides with a sterilised scalpel and placed in 

0.5 mL PCR tubes containing 200 JlL of ATL tissue lysis buffer from the DNeasy Tissue 

Kit (Qiagen, Germany). Nematodes (n=5) from the short term bulk meiofauna samples 

were randomly picked and similarly placed individually in 0.5 mL PCR tubes containing 

200 JlL of ATL tissue lysis buffer. Nematodes (n=5) from the unbuffered formalin time 

series experiment that failed to show any amplicons for day 15th and 30th (see results) were 

also placed individually in ATL buffer. The tubes were incubated at 56°C for 24 hours. 

Subsequently, 5 JlL of proteinase K (50mg mL-1
) and an additional 80 JlL of the ATL lysis 

buffer were added to each tube and incubated for another 96 hours at 55°C. The extraction 

procedure was then completed according to the DNeasy kit (Qiagen Inc) manufacturer's 

instructions. Finally DNA was eluted in 80 JlL ofTris-HCl (buffer pH 8.0). The templates 

were stored at -20°C until further use. 

6.2.2.2 PCR amplification of the 18S rRNA gene from long-term and short-term formalin 

preserved nematode specimens 

Two primers Mn18F forward and 22R reverse were used to amplify the partial18S 

rRNA gene in extracted DNA from all the worms. The amplification product size was 

approximately 345 bp. PCR reactions were performed on 15 JlL aliquots of the extracted 

DNA. 0.5 JlL Bovine Serum Albumin (BSA, lOmg mL-1
) (Promega Inc) was also added to 
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each PCR reaction. PCR cycle parameters have been detailed in Chapter 3 (Section 

3.2.3.3). PCR products were electrophoresed to check the quality of amplicons. 

6.2.2.3 Cloning and DNA Sequencing 

PCR products were cloned using the pGEM-T Easy vector system (Promega Inc) 

according to the manufacturer's instructions. PCR products were cloned into vectors in 

order to generate high quality sequences. The clone libraries were therefore readily 

available for future works related to phylogenetics and evolutionary studies. Plasmid DNA 

containing the inserts was cycle sequenced using BigDye Terminator Kit (Applied 

Biosystems). Cycle sequencing reactions were cleaned using the Wizard Magnesil™ 

system (Promega). Sequencing was carried out in both directions using M13F and M13 

primers in an ABI Hitachi 3100 Genetic Analyzer. Four to five colonies from each clone 

were sequenced to confirm the identity of the sequences. The resulting sequences were 

then compared with those of known 18S rRNA nematode sequences held on-line at 

GenBank, EMBL, DDBJ and PDB usmg the BLAST query engme 

(http://www .ncbi .nlm .nih.gov/BLAST). 

6.2.3 Prevention of contamination 

Several measures were taken to limit possible contamination during DNA extraction 

and PCR amplification. DNA extraction, PCR amplification, and cloning were conducted 

in different rooms, using different pipette sets for each step and sterile filter tips 

(Biosphere, SARSTEDT). Negative control amplifications (no template DNA) were also 

carried out during each round of DNA amplification. 

6.2.4 Pbylogenetic tree construction 

Phylogenetic trees were constructed usmg the sequences from formalin fixed 

archived nematode specimens and nematodes from bulk meiofauna samples along with 
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additional marine nematode partial ssu sequences generated in this study. Some partial 

marine nematode sequences from the GenBank and EMBL databases were also 

incorporated into the trees. GenBank and EMBL accession numbers used in this study 

were AY854209, AY854204, AY854238 and AY284713. Prior to phylogenetic analysis, 

nematode sequences were aligned in Clustal-X using default parameters (Thompson et al., 

1997; Jeanmougin et al., 1998). Neighbour-joining trees were constructed with the 

program MEGA v2.0 (Kumar et al., 2001) using Gamma corrected Kimura distance 

parameters (Blaxter et al., 1998). To assess the reliability ofNJ trees, bootstrap tests were 

carried out using 1000 replicates. 

6.2.5 Evaluation of acetone and butanol for nematode worm fixation 

Five grams of sediment from Tamar estuary (Cornwall, UK) were fixed in two 100 

mL pots containing 80% acetone and 60% butanol respectively (Hayman Limited, UK). 

Both the pots were left at room temperature (20-22°C} for a month. Acetone and butanol 

fixed sediments were subjected to meiofaunal extraction following Somerfield and 

Warwick's (1996) flotation method. Following extraction, 10 nematode worms from 

acetone and butanol fixed meiofauna were fixed onto slides for morphological analysis. 

Subsequently all the worms were carefully transferred to 0.5 mL PCR tubes containing 

0.25 M NaOH. DNA was extracted following the modified Floyd et al. (2002) protocol. 

Subsequent PCR amplifications were carried out using the G 18F and 22R primers 

following similar parameters described earlier. BSA (lOmg/mL} (Promega Inc) was used 

in all the PCR reactions. 

6.3 Results 

6.3.1 Formalin time series experiment 

The electrophoresis images clearly show that there is little apparent inhibition of 

PCR amplification in individuals fixed in formalin for up to 9 days (Figure 6.1 ). Visible 
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changes in the quantity of 18S rRNA gene amplicons were observed in individuals fixed in 

formalin from day 11 onwards until day 30. PCR amplification was apparently inhibited 

for all the nematodes from day 11 onwards as evident by the absence of PCR amplicons 

and the presence of highly smeared DNA with distinct primer dimers (Figure 6.1 ). 

Standard Taq DNA polymerase was used for PCR amplification of nematodes from all the 

above days. 

There was partial amplification success for individuals fixed for 11 days, which 

produced some amplicons with Accuprime Pfx DNA polymerase enzyme (Figure 6.2). 

However, there were no visible PCR products in case of 13 and 15 day individuals or those 

fixed for I month. 

18S rRNA PCR amplicons from 11 day nematodes (n=5) that were amplified using 

Accuprime Pfx DNA polymerase were sequenced and compared with the sequences from 

absolute alcohol preserved nematodes (n=5) amplified using standard Taq DNA 

polymerase. Sequences from formalin preserved specimens showed no apparent ambiguity 

or error when aligned with sequences from alcohol preserved specimens in a Clusta!X 

alignment program using default parameters. In other words, the sequences were all 

identical. Indeed all the T. longicaudata 18S rRNA gene sequences generated in this study 

showed 100% similarity with the T. longicaudata sequence held on line in GenBank. 
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Figure 6.1: Gel showing partial 18S rRNA gene amplification products of T. 

longicaudata specimens extracted from formalin after 2, 3, 4, 5, 6, 7, 9, 11, 13, 15 and 

30 days and a 100 bp ladder in the left band side of image. 

185 



Nematode preservation 

1500bp 

500bp 

Figure 6.2: Gel showing results of PCR amplification of 18S rRNA gene after 11, 13 

and 15 days using Accuprime Pfx DNA polymerase. Limited amplification is visible 

in some of the day 11 samples, but no amplification can be detected after longer time 

periods No amplification was observed from specimens fixed for one month. 100 bp 

ladder at left hand side of the gel. 

6.3.2 Amplification of recovered DNA from long-term and short-term formalin 

preserved nematode specimens 

Successful PCR amplicons of the 18S rRNA gene were achieved on recovered 

template DNA from long term (Figure 6.3) and short-term archived nematode specimens 

using ribosomal primers. All the sequences showed similarities between 97% and 100% 

with GenBank and EMBL nematode sequences (Table 6.1 and 6.2). The phylogenetic 

placement of the long tem1 archived nematode sequences in the tree (Figure 6.4) suggests 

that some of them are close to Dichromadora sp., Atrochromadora microlaima and 

Sabatieria sp. , etc based on sequence simmilarities. This show a significant degree of 

correspondence to the morphological identification as the dominant taxa were originally 

identified as Atrochromadora microlaima, Sabatieria pufchra, Dichromadora sp., 

Mofgofaimus tenuispicufum from slides (Austen, 1986). Phylogenetic analysis of the 

sequences from short term archived meiofauna samples suggests that the specimens are 

close to Dichromadora sp., Atrochromadora microfaima, Terschellingia longicaudata etc 

(Figure 6.5). Some of these worms had been identified as Terschellingia sp., 
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Dichromadora sp., Cbromadorid based on morphological features prior to nucleic acid 

extraction. Nematodes from the unbuffered formalin time series experiment did not 

produce any amplicons in this study. 
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Figure 6.3: Gel image showing amplified nematode 188 rRNA gene fragments from 

long-term archived marine nematode worms; Lane 1: 100 bp molecular marker; 

Lane2 to 9: PCR products (350 bp approx); Lane 10: Control amplification without 

any template DNA. 
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Table 6.1: DNA sequences from short-term archived nematode worms picked up 

from bulk meiofauna samples with closest BLAST search results. 

Band 

FonnalinSeq I 

FormalinSeq2 

FonnalinSeq3 

FonnalinSeq4 

FormalinSeq5 

Closest BLAST match 

Terschellingia longicaudata 

Nematode ISS rRNA JCFI 

Nematode ISS rRNA SHI 

Dichromadora sp. 

Atrochromadora microlaima 

Nematode ISS rRNA BW4 

Chromadorid 

Chromadoropsis vivipara 

Nematode 18S rRNA JCFI 

Nematode 18S rRNA SH I 

Dichromadora sp. 

Atrochromadora microlaima 

%similarity 

97 

99 

100 

96 

99 

188 

Reference 

Meldal (2004) 

Bhadury et al., (2005) 

Meldal (2004) 

Bhadury et al., (2005) 

Helder et al., (2004) 

Aleshin et al., (1998) 

Bhadury et al., (2005) 

Meldal (2004) 
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Table 6.2: DNA sequences from long-term archived nematode specimens collected 

from Tamar estuary with the closest BLAST matches. 

Band Closest BLAST match % similarity Source 

ArchTamarl Uncultured nematode band JCFI 100 Bhadury et al., (2005) 

Uncultured nematode band SH I Meldal (2004) 

Dichromadora sp. 

Atrochromadora microlaima 

ArchTamar2 Chromadorid 97 Helder et al., (2004) 

Chromadoropsis vivipara Aleshin et al., (1998) 

ArchTamar3 Chromadorid 97 Helder et al., (2004) 

Chromadoropsis vivipara Aleshin et al., ( 1998) 

ArchTamar4 Sabatieira sp. 210-BHMM 99 Meldal (2004) 

Uncultured nematode band SH I Bhadury et al., (2005) 

ArchTamar5 Adoncholaimus fuscus 100 Meldal (2004) 

ArchTamar6 Spirinia parasitifera 100 Meldal (2004) 

ArchTamar7 Uncultured nematode band JCFI 100 Bhadury et al., (2005) 

Uncultured nematode band SH I Meldal (2004) 

Dichromadora sp. 

Atrochromadora microlaima 

ArchTamar8 Uncultured nematode band JCFI 100 Bhadury et al., (2005) 

Uncultured nematode band SH I Meldal (2004) 

Dichromadora sp. 

Atrochromadora microlaima 

189 



Nematode preservation 

66 Chromadorid A Y284713 

60 ~ Chromadoropsis vivipara AF047891 

.------99-ln ArchTamar3 

90 ArchTamar2 -
98 1 

ArchTamar6 
'---l 

99 I Spirinia parasitifera 

'- Metachromadora remanei 35 -

13 
1 
ArchTamar5 

'---------------------! 
100 I Adoncholaimus fuscus 

- Sabatieria pu/chra 

a~ ArchTamar4 

17 
92 L Sabatieria sp. A Y854238 

r- ~ 

19 

80 ~r---- Dory/aimopsis punctata 

84 '------ Sabatieria sp . 

.-------------- Terschellingia longicaudata 

3~..------ Asco/aimus elongatus 

73 Paralinhomeus sp. 

~ Cyatholaimus sp. 

I . L_ Praeacanthonchus sp. 

1
.---- --- - -- Enoploides sp. 

'---------1[ Bathylaimus sp. 99.._ ___ --t 
100 I Parodontophora sp . 

90 

..------ --- Ha/ichoanolaimus dolichurus 

-
22 

94 .------ ----- - Daptonema setosum 
..-------1 

'------------ Theristus acer 

.------------------ Sphaerolaimus hirs utus 

ArchTamar7 
'---

43 Atrochromadora micro/aim a A Y854240 

'---------------------! Dichromadora sp. A Y854209 
100 

ArchTamar1 

ArchTamarB 

0.02 

Figure 6.4: NJ tree with 1000 bootstrap replicates showing relationship between long-

term archived marine nematode sequences and most similar sequences of known 

nematodes. The scale indicates 0.02 substitutions/site. Arch Tamar indicates 

sequences slide mounted archived marine nematode from the Tamar estuary. 
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Figure 6.5: NJ tree with 1000 bootstrap replicates showing relationship between 

short-term archived nematode sequences and most similar sequences of known 

nematodes. The scale indicates 0.02 substitutions/site. Formalin sequence indicates 

nematodes from formalin fixed bulk meiofauna samples. 

6.3.3 Evaluation of acetone and butanol for nematode worm fixation and molecular 

analysis 

In this study the effectiveness of other organic compounds such as acetone and 

butanol was also evaluated. Nematode worms fixed in acetone showed very little shrinkage 

compared to the worms fixed in butanol (Figure 6.6). Morphological characters such as the 

position of gubemaculum, amphid, tail shape and cuticular pattems were also well 

preserved for acetone preserved worms. On the other hand butanol fixed worms shrank in 

size affecting the overall morphological integtity of the specimens. Nevertheless, 18S 
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rRNA gene from worms preserved in acetone and butanol was successfully amplified using 

nematode ribosomal primers (Figure 6.7). 

Figure 6.6: Images of nematode worms fi.Xed in acetone and butanol under low and 

high resolution. (AP indicates acetone preservation; BP indicates butanol 

preservation). 
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Figure 6.7: Gel of nematode 18S rRNA gene amplified using G18F and 22R primers. 

Lane 1: 100 bp molecular marker; Lane 2 to 6: Amplified DNA from nematode 

worms ftxed in acetone; Lane 8 to 12: Amplified DNA from nematode worms fixed in 

butanol. 

6.4 Discussion 

The primary objective of this work was to investigate whether unbuffered formalin 

could be used as a fixative agent for short periods of time, without inhibiting or otherwise 

compromising subsequent molecular analyses. This study shows that formalin can be used 

to fix small invertebrates such as marine nematodes for molecular biological work for a 

short period of time. This would allow both morphological and molecular work to be 

conducted on the same individual, providing it is done relatively rapidly after collection. It 

has been shown that the average PCR yield after up to nine days in forma]jn was relatively 

high, with a rapid drop-out subsequently and no visible PCR products from day 11 

onwards. Researchers such as Ben-Ezra et al. (1991) have shown that the formalin fixation 

procedure lowers the success of polymerase chain reaction and this probably could have 

been the reason why no PCR products were obtained from nematode DNA from day 11 

onwards when amplified with Taq polymerase. When proof-reading and high fidelity Pfx 

DNA polymerase was used, in some instances it was possible to obtain PCR products from 
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specimens preserved in formalin for upto 11th day but not for 15th and 30th days. This 

possibly indicated that template DNAs from nematodes preserved in formalin for 15 and 

30 days might have cross-linked and therefore did not amplify in the presence of high 

fidelity Pfx DNA polymerase enzyme. One of the major reported problems of 

formaldehyde fixation is that it induces apparent substitutions in nucleotides. In this study 

no such modification or substitutions were observed when nuclear 18S rRNA sequences 

from 11 day worms amplified by Pfx DNA polymerase were compared with alcohol 

preserved worms amplified by Taq DNA polymerase. Similar observations were also noted 

in a study conducted by Thomas et al. (1997). France and Kocher (1996) also found that 

nucleotide sequences from formalin fixed collections of varying age remain unmodified 

when compared with those derived from frozen specimens. Similarly, Shiozawa et al. 

(1992) and Bucklin and Alien (2004) did not encounter sequence modification or damage-

induced sequence artefacts in formalin preserved specimens of trouts and zooplank:ton 

respectively. On the other hand researchers like De Giorgi et al. (1994) while working with 

formalin fixed nematodes, found that although PCR products appeared to be of the correct 

length, sequencing revealed misincorporated, or missing, nucleotides; purines in particular 

were affected. However in that study Taq DNA polymerase was used for amplification and 

there is evidence to show that Taq polymerase tends to misincorporate nucleotides during 

amplification (Eckert and Kunkel, 1991; Hultman et al., 1991). Hamazaki et al. (1993) 

have argued that formalin fixation does have an effect on DNA and PCR amplification. 

They found that lambda phage DNA fixed in buffered formalin showed incomplete 

digestion on restriction endonuclease treatment. Lambda phage DNA fixed in unbuffered 

formalin showed poor PCR amplification due to degradation of DNA during fixation. 

Although, the lambda phage DNA fixed for three months showed some amplification there 

was no amplification from tissues kept in unbuffered formalin for longer than 6 months 

(Hamazaki et al., 1993). In this study, no PCR products were obtained from nematode 

worms that were exposed to unbuffered formalin for one month. It is difficult to conclude 
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whether any formalin induced substitution occurred during this study. Perhaps a detailed 

study involving amplification of more genomic regions in nematodes and sequencing of 

several individuals may throw some light on DNA modification due to formalin exposure. 

The application of high fidelity Pfx DNA polymerase for PCR amplification and sequence 

comparisons were novel, yet there was no conclusive evidence of nucleotide mismatch or 

substitution. 

One of the major emphases of this chapter was to develop and optimise a DNA 

extraction protocol that could be applied to recover DNA from archived marine nematodes 

for subsequent genetic diversity studies. A modified Proteinase K digestion methodology 

was implemented and tested on marine nematodes collected as part of a study in Tamar 

estuary approximately 20 years ago. Successful 18S rRNA amplicons were obtained for all 

the worms. All the sequences showed similarity of between 97%-100% when compared 

with known nematode sequences held online at GenBank and EMBL databases. The DNA 

extraction technique was also tested on nematodes picked from bulk meiofauna stored for a 

short time period in buffered formalin for 8-9 months. In this case successful amplification 

products and sequences were generated for all the worms. This indicated that possibly 

DNA degradation was much slower in nematodes exposed to formalin and was therefore 

available for PCR amplification. It could be that the chemical modifications caused by 

buffered formalin on DNA molecules were temporary and were therefore reversible by 

proteinase-K treatment. It was relatively difficult to conclude whether there was any 

nucleotide modification due to formalin exposure from DNA sequences from long-term 

and short-term archived nematode specimens. DNA sequences from slide-mounted worms 

and nematode worms from bulk meiofauna showed 97-100% similarity with GenBank and 

EMBL nematode ribosomal sequences. Moreover the BLAST results and taxonomic data 

for these worms seem to suggest that the sequences were probably assigned correctly in the 

phylogenetic tree and in BLAST queries. However when the same methodology was 

applied to nematodes collected from the unbuffered formalin time series experiment they 
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failed to produce any amplicons. There is evidence to show that tissues or specimens 

preserved in unbuffered formalin for prolonged periods generally become unsuitable for 

DNA extraction and subsequent molecular applications (see paper by fuoue et al., 1996). 

This is because nuleic acid degrades and undergoes chemical alteration and some of these 

chemical alterations are irreversible (Cbaw et al., 1980; Chang and Loew 1994; fuoue et 

al., 1996). This was the reason why no amplicons were obtained from nematode specimens 

that were preserved in unbuffered formalin as part of the formalin time-series experiment. 

This study shows the importance of buffering formalin when used for long term 

preservation ofmeiofauna specimens. 

Several factors were taken into consideration in order to successfully carry out 

DNA extraction from archived nematodes. Firstly, the primers that were used in this study 

were nematode-specific which prevented eo-amplification of contaminants if any were 

present in this study. fu a separate study Dorris et al. (2002) also used nematode-specific 

primers to avoid contamination when amplifying approximately 150 bp of 18S rRNA gene 

from bulk terrestrial nematode samples stored in formalin. Application of group- or 

phylum-specific primers could help to prevent the problem of eo-amplification of 

contaminants when archived DNA samples are used in molecular ecology studies. Finally 

all the steps including DNA extraction and PCR amplification were carried out in separate 

places to limit contamination. 

fu this study successful PCR amplicons were obtained from archival nematodes 

preserved in buffered formalin for long-term and short-term periods. For both long-term 

and short-term archived nematodes, a proteinase-K digestion method was implemented, as 

there is some evidence that this can remove the inhibitors which interfere with the activity 

of the PCR reactions (An and Fleming, 1991). It could be that the proteinase K digestion 

method along with the purification steps was able to reverse creation of the mono-methylol 

groups that might have formed with the DNA bases due to formalin exposure. Recovery of 

DNA and further amplification was successful in short-term and long-term archival 
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nematodes. In contrast, in the formalin time series experiment no PCR amplicons were 

obtained from nematodes picked up from day 13 onwards. This could once again be due to 

the cross-links that might have formed in presence of unbuffered formalin. Clearly more 

work is needed to investigate and also to see iflonger PCR fragments (above 400 bp) could 

be also amplified from formalin-preserved nematode specimens. 

Effectiveness of other organic compounds for fixation of small soft bodied 

metazoans such as nematodes was also tested in this study. The ketone based compound 

propanone, commonly known as acetone, and a tertiary alcohol, butanol, were tested for 

fixing marine nematode worms. Worms fixed in butanol and acetone were readily 

amplified with 18S rRNA primers indicating that there was no inhibitory effect of the 

compounds on the amplification process and that DNA did not degrade during the fixation 

process. Worms fixed in acetone preserved and maintained all the morphological 

characters necessary for taxon identification under a compound microscope but butanol 

fixed worms were relatively shrunken in size. Fukatsu (1999) also reported acetone as a 

better preservative than ethanol for fixing insects and that it maintained all the necessary 

histological structures of the insects necessary for identification. It was also shown that 

molecular analysis was successful in insects that were stored in acetone for up to three 

years (Fukatsu, 1999). In addition, recently a DMSO (Dimethyl sulfoxide) salt solution 

based preservation technique has been tested on nematode worms and has shown 

promising results (PJD Lambshead, pers comm). Presently there is not enough data testing 

the effectiveness of acetone for long term preservation of soft bodied metazoans such as 

nematodes and clearly more work is needed to test the suitability of this organic 

compound. 

To conclude, in future, small soft-bodied invertebrates such as nematodes could be 

stored in unbuffered formalin for short periods possibly for 7 days but perhaps up to 2 

weeks. This would allow taxonomists to carry out morphological and morphometric 

analyses followed by the application of molecular investigations on the same individual. 
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Such coupling of morphological and molecular analyses is critical in many groups where 

identification requires close examination, particularly to avoid assigning sequence data to 

the wrong organism. The modified DNA extraction technique described in this chapter 

could be also employed to investigate the genetic diversity of archived nematode 

specimens provided they were stored in buffered formalin for a prolonged period of time 

but the technique needs further modification so as to become cost effective and less time 

consummg. 
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7. Final Discussion and Future work 

In comparison to other areas of marine biology, the application of molecular 

techniques to meiofaunal communities and in particular marine nematodes are still limited 

despite the potential of these tools for the improved understanding of biodiversity. In this 

study molecular ecological tools were applied for the first time to obtain a better 

understanding of nematode diversity, and to speed up the process of nematode 

identification from estuarine and marine environments. Problems in the assessment of 

nematode diversity, and species identification were addressed in detail for the first time in 

this study and a better understanding gained regarding the nature of cosmopolitanism in 

one genus at least. 

Nematodes are highly abundant in estuarine and oceamc waters and reqmre 

specialist taxonomic skills for their identification. The relatively immature nature of 

nematode taxonomy along with their high species diversity has partly led to a neglect of 

this group by many ecologists working in marine and estuarine environments. A wide 

range of molecular tools were evaluated during this study, in an attempt to find molecular 

solutions to some ofthese problems. 

Firstly, DGGE was evaluated as a novel method for the identification of nematodes 

from marine environment. The technique showed clear separation of 18S rRNA amplicons 

from different nematode taxa in a denaturing gel with the generation of a characteristic 

banding pattern for each taxon. These banding patterns could be potentially exploited to 

identify nematodes from estuarine and marine environments; and in particular this rapid 

and relatively cheap technique may prove useful for the identification of deep sea 

nematodes which are particularly under-investigated. Such an approach has already proved 

useful in the identification of soil nematodes (Foucher and Wilson, 2002). 
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One of the main focuses of this thesis was to evaluate a molecular technique that 

could be implemented as a rapid tool for assessing nematode diversity from marine and 

estuarine environments. DGGE was the obvious choice because of its technological 

advantages as well as its varied application in the estimation of diversity of prokaryotes as 

well as in other marine micro-eukaryotes. DGGE was employed to test its suitability for 

assessing nematode diversity from marine and estuarine sediments. Two methods, one 

involving extraction of total nematodes from sediments followed by DNA extraction and 

the other where total community DNA was extracted directly from sediments were 

employed. The resulting DNA was subjected to PCR amplification with 18S rRNA primers 

and subsequent electrophoresis in denaturing gradients. The ribotype diversity was in both 

cases found to be relatively similar across sites, since the method only detected the most 

abundant taxa present in the samples. This was confirmed by morphological analysis of 

sediment samples where the number of taxa detected was much higher than that estimated 

using DGGE. Nevertheless tentative phylogenetic affiliations of some of the bands were 

determined by subsequent sequencing and phylogenetic analysis. Thus DGGE was able to 

provide an assessment of nematode diversity from marine and estuarine environments and 

a picture of community composition (Cook et al., 2005), but is apparently restricted to 

providing information on the most abundant taxa. In the light of this finding, DGGE 

should be applied with caution in diversity studies, and only used when it is appropriate to 

the question being asked. In particular, studies which aim to assess the total species 

richness of a site must continue to use other, complementary approaches. The assessment 

of nematode diversity by DGGE conducted here mirrored prokaryotic and other eukaryotes 

studies where only the abundant taxa were detected from the environment (Muyzer et al., 

1993; Foucher et al., 2004; Holben et al., 2004; Savin et al., 2004). Especially studies 

conducted in soil nematodes have shown inconsistency between morphological entities and 

PCR based DGGE (Waite et al., 2003; Foucher et al., 2004). The importance of sample 

size and its effect on subsequent estimates nematode diversity was also assessed. It became 
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clear that to get a detailed idea of nematode diversity several small volumes of sediment 

were needed for DNA extraction and subsequent DGGE. Additionally the primers that 

were designed and evaluated here were nematode-specific and have an added advantage 

over other primer sets that were used in previous nematode identification and diversity 

studies (Foucher and Wilson 2002; Waite et al., 2003; Cook et al., 2005). 

During the course of this study eo-amplification of fungal 18S rRNAs was 

frequently encountered while trying to amplify individual nematodes. Some of the 

amplified fungal 18S rRNA fragments were dominated by Paecilomyces fumosoroseus, 

Verticillium insectorum, Syspastospora parasitica and Rhinocladiella aquaspersa. In 

particular, eo-amplification of the above fungal species was found to be frequent from two 

locations namely Jennycliff and Breakwater close to Plymouth. Using a combination of 

microbiological and molecular techniques the possibility of an association between fungi 

and nematodes was investigated. Electron micrograph images revealed some secondary 

hyphae-like structures as well as globular formations on the body surface of nematodes 

collected from Jenny Cliff and Breakwater. Studies conducted by Polz et al. (1999) have 

shown the presence of bacterial communities growing on the body surfaces of nematodes 

with a possibly symbiotic relationship. Such associations have been also observed in other 

marine organisms (see Chapter Three). No conclusive evidence was found in this study 

regarding the prevalence of fungal taxa in sediment samples or in close association with 

nematodes. Clearly more work is needed to get a better idea whether any relationship 

exists between fungal communities and nematodes in the marine environment or whether 

these amplified fungal DNAs constitute part of the gut contents in nematodes or merely 

represents some sort of contamination. 

Since nematodes are relatively difficult to identify under a microscope and typically 

require confirmation by an experienced nematologist, one of the aims of this study was to 

develop a technique that could speed up the process of nematode identification from 

estuarine and marine environments for biomonitoring or biodiversity studies. In this study 
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a novel methodology based on amplification and sequencing of a region of the genome was 

evaluated for the first time for the identification of marine nematodes. The genomic 

identification system, also known as DNA barcoding, was evaluated via amplification and 

sequencing of a small region of the nematode 18S rRNA gene (around 345 bp). The 

success rate of 18S rRNA-based amplification and sequencing in the assignment of 

unidentified nematode specimens to genus and species level was found to be close to 97%. 

Although this success rate was slightly lower than that achieved by Hebert et al. (2003) the 

technique was still able to assign unidentified nematode specimens to genus or species 

level. In a recent meeting in 2005 researchers agreed in principle to use DNA barcoding in 

addition to morphology based method to speed up identification of organisms from 

different habitats including marine environments, supporting the importance of this 

molecular based methodology (details in Barcoding of Life website). In this study other 

genomic regions such as the nuclear 28S rRNA gene and mitochondrial 16S rRNA and 

COXI genes were also evaluated for DNA barcoding. While amplification failed in almost 

all the representative marine nematode taxa tested for the 16S rRNA and COXI gene, there 

was partial success with the 28S rRNA gene. Clearly more work is needed to resolve 

amplification failures for mitochondrial genes in marine nematodes. Such failure in 

amplification of nematode mitochondrial genes is well documented (Meldal, 2004; Cook et 

al., 2005). At the other end of the spectrum mitochondrial genes have worked well in 

parasitic nematodes and have been also evaluated as barcoding loci (see review by Powers, 

2004). In order to successfully amplify and sequence mitochondrial genes in marine 

nematodes an approach based on designing consensus primers specific to order or family 

level may prove to be profitable. At the same time there is a need to sequence 

mitochondrial genomes from marine nematode taxa to get an idea about the genome 

organisation which in turn would create a platform for future molecular ecological and 

population genetic studies. Similarly with the 28S rRNA gene further optimisation and 
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selection of different regions within the molecule needs to be undertaken to investigate the 

gene's potential as a barcoding marker. 

Unlike many meiofaunal species, some nematodes are thought to have a worldwide 

distribution and are considered to be cosmopolitan. Until now, only a handful of studies 

have investigated cosmopolitanism and cryptic speciation among marine nematodes 

(Warwick and Robinson, 2000; Derycke et al., 2005). None of these studies combined 

morphological and molecular techniques to address issues of cosmopolitanism but used 

separate morphological (Warwick and Robinson, 2002) or molecular techniques (Derycke 

et al., 2005). In this study a combination of morphological and molecular techniques was 

used for the first time to investigate populations of an ostensibly cosmopolitan marine 

nematode, Terschellingia longicaudata, from different geographic locations. Populations 

from different geographical localities were examined by amplification and sequencing of 

the 18S rRNA gene. Three different haplotypes were revealed. The first haplotype 

consisted of the majority sequences from morphologically defined T. longicaudata 

specimens from locations across UK, France, Mexico and Malaysia. The second haplotype 

occurred in a few sequences from two sites in the UK and a single site in Mexico and 

differed from the majority sequence by 25 bases, whilst the third haplotype consisted of 

sequences from a site in the UK and differed from the actual majority T. longicaudata 

sequence by 19 bases. Given the degree of sequence conservation normally reported in the 

18S rRNA gene within taxa, it is possible that these sequences represent two additional 

cryptic species of Terschellingia. Interestingly, at least one of these is also apparently 

cosmopolitan, and both eo-occur with the most common taxon suggesting that they may be 

genetically divergent, despite their apparent morphological similarity. 

Sequences from Bahrain showed very little similarity with those ofT. /ongicaudata 

and were in fact closer to taxa belonging to either completely different families or orders. 

This result was entirely unexpected, and may have resulted from the misidentification of 

these specimens. 
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The morphometric data did not provide any additional information about the 

populations from different geographical locations besides confirming the fact distinct 

geographical morphotypes could not be recognised. This study did suggest that, based on 

18S rRNA sequences and morphology T. longicaudata is apparently a truly cosmopolitan 

species since samples from different oceans share the same DNA sequence. As well as 

being geographically cosmopolitan, this species apparently has a wide ecological range, 

being found in a range of coastal and near shore locations. Morphometric analysis supports 

the fact that these taxa are morphologically indistinguishable from typical T. longicaudata 

using standard morphological techniques. This study is the first to collate both phenotypic 

and genotypic data in an attempt to understand cosmopolitanism and cryptic speciation in 

marine nematodes. Molecular approaches have also shown the occurrence of cosmopolitan 

species among other benthic organisms (Westheide et al., 2003). At the same time this 

study also raises the question of how benthic organisms such as marine nematodes with 

low dispersal capabilities can have cosmopolitan distribution. More work is needed with 

nuclear and mitochondrial markers for better understanding of cosmopolitanism. Studies 

conducted by Derycke et al. (2005) on a supposedly cosmopolitan marine nematode, 

Pellioditis marina, have shown cryptic lineages based on mitochondrial cytochrome c 

oxidase and nuclear ITS regions. It would be interesting to investigate whether 18S rRNA 

sequences from different populations of the Pellioditis marina show identical or different 

haplotypes in future studies. This would then give a better idea about the concept of 

cosmopolitanism and cryptic species assemblages based on multiple molecular markers. 

During the course of this study it became apparent that nematode specimens that 

were fixed in absolute alcohol for molecular analyses shrink rapidly and lose their 

morphological integrity. This in turn causes problems in identification which is typically 

based on careful observation of minute morphological characters under a compound 

microscope. In order to maintain their morphological integrity, marine nematodes are 

usually fixed in formalin but such specimens are usually seen as being useless for 
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molecular analysis due to formalin-induced changes in DNA. For the first time the 

possibility of combined morphological and molecular analyses of nematode specimens 

based on short-term preservation in unbuffered formalin was explored in this study. Novel 

specimen preservation for a short time period (up to 9 days) was developed allowing 

morphological and molecular analyses to be conducted on the same specimen. The 

development of this methodology would therefore give some time for taxonomists to 

preserve sediments from offshore locations in unbuffered formalin and bring them back to 

the laboratory for morphological and molecular work. This study explored the possibility 

of using other organic compounds for nematode storage besides the conventional 

compounds such as ethanol and formalin. Acetone and butanol were evaluated for their 

effectiveness in maintaining morphological integrity of nematodes without hindering 

subsequent molecular work. Whilst both of these compounds worked well at the molecular 

level it became clear that acetone was a better preservative than the other since it maintains 

the morphological integrity of specimens. Studies by Lee and Beynon (2004) have also 

explored the possibilities of using other organic compounds for preservation of marine 

organisms which could be evaluated for nematode preservation as possible alternatives to 

acetone. Considerable progress has been made towards utilising cryogenic methods for 

nematode preservation (P JD Lambshead pers eo mm). 

In this study a novel technique based on an extended hot lysis methodology was 

developed and optirnised for the recovery of DNA from formalin-preserved archived 

nematode specimens which are stored in research organisations and are currently seen as 

being unavailable for molecular analyses. The technique that was developed in this study 

was able to successfully recover and amplify 18S rRNA fragments from archived 

nematode specimens. In almost all the cases, amplified fragments of approximately 345 bp 

could be amplified using nematode specific primers, enough to provide phylogenetic 

resolution and tentative affiliations to known taxa. The technique was validated on a wide 

variety of specimens as well as on Tersche/lingia longicaudata from Merbok in Malaysia 
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which was investigated as part of the cosmopolitanism and cryptic species study. This 

methodological development would be useful in future in order to address a wide range of 

issues in systematics and population biology, including the study of temporal changes in 

population structure. 

Future work 

The techniques and approaches evaluated here provide a valuable framework for the 

future application of molecular systematics in marine nematology that will speed 

identification of marine nematodes for future biomonitoring and biodiversity surveys. 

In addition, the future of molecular identification and diversity assessment of 

nematodes from marine and estuarine environments will depend on the development of 

high throughput hybridisation analysis using microarrays or 'DNA phylochips'. For 

fingerprinting nematode communities from estuarine and marine environments, the use of 

a DNA macro-array would be an important extension of the approaches used in this study. 

Microarrays are high throughput systems that provide information on a large number of 

genes and changes in the expression of genes. On the other hand a DNA macroarray has 

been used for studying the dynamics of microbial communities and functional genes from 

various environments (Jenkins et al., 2004; Steward et al., 2004). An appealing feature of 

hybridisation-based methods such as DNA arrays is that discrimination among sequences 

is primarily a function of their overall similarity to probes of known sequence and it 

reflects true diversity of communities from environmental samples. Initial studies with 

DNA macroarrays towards the identification of nematode communities from estuarine 

environments have been promising (P Bhadury, unpublished) although more works are 

needed towards the development of a cost-effective DNA macroarray. Additionally, clone 

libraries and sequences of the 18S rRNA gene from representative nematode taxa now 

exist that could be exploited towards the development of this concept. In addition, the 

development of methodologies based around mass spectrometry for screening single 
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nucleotide polymorphisms (SNPs) (Haff and Smimov, 1997) may be useful for rapid 

screening ofPCR amp I icons from environmental samples. 

The future study of cosmopolitanism and cryptic speciation in marine nematodes 

depends on the use of multiple loci from the nematode genome in conjunction with 

morphometric methods for better understanding of these concepts. The time is right to 

vigorously pursue the decoding of the mitochondrial genomes of marine nematodes and 

indeed technologies such as the genomic amplification kits are gradually becoming 

available that could provide information about the arrangement of the mitochondrial 

genome at the molecular level. 

Nematodes are an extremely important component of the benthic meiofauna and 

play a vital role in marine ecosystem and are thought to be an extremely useful 

biomonitoring tool for determining the anthropogenic impacts on marine environments. 

This study has shown the effectiveness of implementing molecular techniques into marine 

nematology and its clear potential for better understanding of marine nematodes in their 

environment. 

207 



Appendix A 
Morphometries measurements of populations of Terschellingia longicaudata collected from different geographical locations as follows: RaB: 
Ras al Barr, BF=Brittany, Mex= Cancun, NMMP= NMMP site off Humber estuary, NTBah= North Tubli Bay, T= Tamar estuary, P= Plym 
estuary, Ra= Rame Head. Characters included are as follows OL= oesophagus length, OBD=oesophageal bulb diameter, HD= head diameter, 
TL= tail length, BL= body length, MBD=maximum body diameter, AD= amprud diameter, ABD= anal body diameter, CS= length of cephalic 
seta, SCS= length of sub-cephalic seta, SS= length of somatic seta, SP= spicule length, GB=gubemaculum length, CerS= length of cervical seta, 
VtoH= distance between vulva to head. 

RaBI Ra82 Ra83 Ra84 BFI BF2 BF3 BF4 BFS Mexl Mex2 Merbokl NMMPl NMMP2 NMMP4 NMMPS 
OL 0. 14 0.009 0.1 1 0.08 0. 11 0.12 0. 14 0.15 0. 1 0.1 0. 14 0.12 0.1 0.14 0.11 0. 14 
OBD 0.023 0.023 0.026 0.02 0.021 0.031 0.033 0.034 0.031 0.025 0.026 0.031 0.023 0.03 0.024 0.028 
HD 0.016 0.013 0.015 0.0 13 0.012 0.018 0.018 0.018 0.018 0.014 0.0 16 0.018 0.0 12 0.018 0.01 4 0.0 15 
TL 0.44 0.22 0.34 0.42 0.46 0.46 0.42 0.29 0.26 0.39 0.48 0.38 0.22 0.36 0.41 0.3 
BL 1.32 0.9 1.45 1.2 1 1.38 1.46 1.65 1.14 I. I I 1.54 1.67 1.21 0.85 1.49 1.44 1.42 
MBD 0.031 0.031 0.028 0.027 0.028 0.04 0.044 0.05 0.038 0.031 0.032 0.048 0.033 0.038 0.03 0.039 
AD 0.007 0.008 0.007 0.007 0.008 0.01 0.008 0.01 0.008 0.009 0.008 0.009 0.006 0.009 0.009 0.008 
ABD 0.018 0.016 0.019 0.0 18 0.018 0.025 0.022 0.03 0.023 0.022 0.023 0.025 0.018 0.02 0.02 0.022 
CS 0.006 0.006 0.007 0.005 0.004 0.004 0.003 0.002 0.004 0.003 0.004 0.004 0.005 0.003 0.004 0.005 
scs 0.006 0.007 0.007 0 0 0 0.004 0.005 0 0.004 0.005 0 0 0.003 0.004 0.004 
ss 0 0.003 0 0 0.004 0.005 0.005 0 0.004 0.004 0.006 0 0 0.005 0 0 
SP 0 0 0.03 0 0 0 0 0 0 0.032 0 0 0 0 0.045 0.04 
GB 0 0 0.013 0 0 0 0 0 0 0.018 0 0 0 0 0.025 0.023 
CerS 0.008 0.007 0.007 0 0.003 0 0.006 0 0.005 0.006 0.005 0.007 0 0.003 0.004 0.004 
VtoH 0.53 0.4 1 0 0.43 0.62 0.59 0.73 0.45 0.41 0 0.75 0.54 0.42 0.58 0 0 
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NMMP6 NMMP7 NMMPS NMMP9 NMMPlO NTBahl NTBah2 NTBah3 NTBah4 NTBahS NTBah6 NtBah7 NTBah8 T1 T2 T3 

OL 0. 1 0. 12 0.11 0.12 0.14 0.085 0.08 0.08 0.08 0.07 0.07 0.08 0.09 0.14 0. 12 0.13 

OBD 0.024 0.025 0.025 0.022 0.029 0.022 0.025 0.015 0.026 0.02 0.02 0.025 0.022 0.04 0.03 0.03 

HD 0.01 1 0.0 13 0.013 0.015 0.013 0.0 15 0.012 0.01 2 0.0 15 0.016 0.0 12 0.015 0.014 0.028 0.016 0.017 

TL 0.31 0.28 0.38 0.36 0.44 0.38 0.39 0.3 0.36 0.33 0.2 1 0.28 0.29 0.46 0.37 0.35 

BL 0.9 1 1.09 1.54 1.07 1.54 1.05 1.05 1. 12 1. 16 1.03 I 1.16 1.09 1.64 1.52 1.39 

MBD 0.025 0.028 0.032 0.025 0.033 0.035 0.038 0.03 0.03 0.032 0.026 0.032 0.029 0.042 0.038 0.042 

AD 0.007 0.009 0.008 0.008 0.0 1 0.008 0.006 0.009 0.007 0.008 0.005 0.007 0.008 0.009 0.006 0.009 

ABD 0.018 0.0 18 0.023 0.0 18 0.022 0.015 0.029 0.014 0.017 0.016 0.017 0.018 0.018 0.017 0.019 0.021 

CS 0.004 0.003 0.005 0.003 0.005 0.005 0.009 0.008 0.005 0.008 0.005 0.003 0.004 0.006 0.003 0.004 

scs 0 0.004 0.006 0.003 0.007 0 0 0 0 0 0.005 0.006 0.005 0.007 0.003 0.003 

ss 0 0 0 0.003 0.004 0 0.008 0 0 0 0.003 0 0 0.003 0 0.003 

SP 0 0 0 0 0.051 0 0 0 0 0 0 0 0 0.037 0 0.05 1 

GB 0 0 0 0 0.018 0 0 0 0 0 0 0 0 0.019 0 0.024 

CerS 0 0 0.004 0.003 0.005 0.005 0 0.005 0 0.004 0 0.005 0.005 0.007 0.005 0.006 

T4 TS T6 T7 TS T9 TIO Pl P2 P3 P4 PS P6 P7 PS P9 PlO Rat Ra2 Ra3 Ra4 RaS 
OL 0.12 0. 14 0. 11 0.13 0.13 0.13 0.12 0. 12 0. 1 0.14 0.12 0. 13 0. 12 0. 13 0.1 0. 15 0.13 0.14 0.12 0.13 0.11 0. 14 
OBD 0.041 0.03 1 0.022 0.027 0.028 0.032 0.03 0.028 0.038 0.031 0.038 0.032 0.028 0.025 0.028 0.027 0.025 0.025 0.032 0.031 0.025 0.028 
.HD 0.017 0.0 15 0.0 11 0.018 0.015 0.015 0.015 0.0 18 0.018 0.0 15 0.019 0.017 0.018 0.016 0.015 0.0 13 0.0 14 0.012 0.016 0.014 0.015 0.015 
TL 0.26 0.38 0.32 0.31 0.37 0.35 0.47 0.36 0.44 0.55 0.38 0.41 0.46 0.46 0.29 0.45 0.57 0.47 0.42 0.24 0.17 0.33 
BL 1.4 1.21 1. 16 1.34 1.48 1.45 1.45 1.47 1.39 1.61 1.55 1.53 1.44 1.76 1.4 1.4 1.5 1.43 1.69 0.88 0.82 1.19 
MBD 0.051 0.04 0.027 0.034 0.037 0.042 0.037 0.03 0.038 0.035 0.045 0.036 0.038 0.03 1 0.03 1 0.038 0.036 0.03 0.045 0.028 0.03 0.031 
AD 0.006 0.007 0.008 0.009 0.0 1 0.009 0.01 0.009 0.009 0.009 0.0 1 0.01 0.009 0.008 0.01 0.008 0.011 0.008 0.007 0.008 0.009 0.007 
ABD 0.018 0.0 18 0.018 0.015 0.023 0.02 0.021 0.023 0.027 0.021 0.025 0.021 0.021 0.023 0.025 0.02 0.023 0.022 0.023 0.016 0.0 18 0.02 
CS 0.004 0.005 0.005 0.004 0.004 0.004 0.003 0.004 0.004 0.004 0.005 0.007 0.004 0.004 0.004 0.005 0.007 0.004 0.004 0.004 0.005 0.005 
scs 0 0.004 0.005 0.005 0.006 0.004 0.004 0.003 0.006 0.005 0.003 0 0 0.006 0.005 0.005 0.005 0.004 0.005 0.006 0.005 0.004 
ss 0.004 0.003 0.004 0.003 0.004 0.005 0.004 0 0.003 0 0 0.004 0 0 0.002 0.005 0 0.003 0 0 0 0 
SP 0 0.032 0 0.04 0 0.042 0.039 0 0 0.031 0 0 0 0 0 0 0.45 0.028 0 0 0.0 19 0 
GB 0 0.0 17 0 0.018 0 0.022 0.021 0 0 0.018 0 0 0 0 0 0 0.021 0.015 0 0 0.014 0 
CerS 0.005 0.003 0.005 0.004 0.006 0.005 0.004 0.007 0 0.004 0 0.007 0 0.006 0.005 0.005 0.007 0.005 0.006 0.007 0.003 0.005 
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Ra6 Ra7 Ra8 Ra9 RalO 
OL 0. 15 0.16 0. 14 0.15 0.14 
OBD 0.027 0.033 0.032 0.025 0.03 
HO 0.012 0.018 0.0 15 0.015 0.017 
TL 0.42 0.39 0.41 0.32 0.47 
BL 1.43 1.54 1.58 1.5 1.47 
MBD 0.032 0.043 0.042 0.035 0.042 
AD 0.01 0.009 0.008 0.009 0.008 
ABO 0.023 0.028 0.022 0.02 0.025 
CS 0.006 0.005 0.004 0.005 0.006 
scs 0.004 0.004 0.005 0.005 0.004 
ss 0 0 0.004 0.005 0.004 
SP 0 0 0 0.033 0 
GB 0 0 0 0.019 0 
CerS 0.004 0.007 0.005 0.005 0.007 
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Lowest and highest SIMPER (Similarity Percentages) value based on female characters. 

Groups designate geographical sites as detailed in Figure 5.6. 

Groups 3 and 8 

Average dissirrrilarity = 6.59 

Group3 GroupS 
Species Average Average Average Dissimilarity/ Contribution% Cumulative% 

characters Abundance Abundance Dissimilarity Standard 
Deviation 

Body length 1.67 1.49 3.37 2.55 51.15 51.15 
Tail length 0.48 0.41 1.25 1.19 18.99 70.14 
Vulva to 0.75 0.68 1.21 1.24 18.39 88.53 
Head 
Oesophagus 0.14 0.12 0.36 1.65 5.45 93.98 
length 

Groups 3 and 6 

Average dissimilarity = 21.49 

Group3 Group6 
Species Average Average Average Dissimilarity/ Contribution% Cumulative% 

characters Abundance Abundance Dissimilarity Standard 
Deviation 

Body 1.67 1.08 11.28 8.31 52.46 52.46 
length 
Vulva to 0.75 0.47 5.36 4.74 24.94 77.40 
Head 
Tail length 0.48 0.32 3.14 2.52 14.60 92.00 

Lowest and highest SIMPER (Similarity Percentages) value based on all characters (male 

and female included). Groups designate geographical sites as detailed in Figure 5.6. 

Groups 2 and 6 

Average dissimilarity= 12.39 

G 2 roup.: G 6 TO~Q( 

Species Average Average Average Dissimilarity/ Contribution% Cumulative% 
characters Abundance Abundance Dissimilarity Standard 

Deviation 
Body length 1.35 1.08 5.65 1.43 45.57 45.57 
Vulva to 0.56 0.47 2.65 1.48 21.36 66.93 
Head 
Tail length 0.38 0.32 2.19 1.62 17.66 84.60 
Oesophagus 0.12 0.08 0.97 2.16 7.84 92.44 
length 
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Groups 3 and 6 

Average dissimilarity= 23.70 

G 3 roup~ G 6 roup< 

Species Average Average Average Dissimilarity/ Contribution% Cumulative% 
characters Abundance Abundance Dissimilarity Standard 

Deviation 
Body length 1.61 1.08 11.03 7.42 46.56 46.56 
Vulva to 0.38 0.47 8.21 2.63 34.65 81.21 
Head 
Tail length 0.44 0.32 2.44 1.61 10.29 91.50 

Lowest and highest SIMPER (Similarity Percentages) value based on characters excluding 

sexual ones (male and female included). Groups designate geographical sites as detailed in 

Figure 5.6. 

Groups 3 and 8 

Average dissimilarity= 5. 79 

Group) GroupS 

Species Average Average Average Dissimilarity/ Contribution% Cumulative% 
characters Abundance Abundance Dissimilarity Standard 

Deviation 
Body length 1.61 1.51 3.11 1.64 53.69 53.69 
Tail length 0.44 0.44 1.68 1.39 29.04 82.73 
Oesophagus 0.12 0.12 0.47 1.42 8.16 90.88 
length 

Groups 3 and 6 

Average dissimilarity= 18.31 

Group) Group6 

Species Average Average Average Dissimilarity/ Contribution% Cumulative% 
characters Abundance Abundance Dissimilarity Standard 

Deviation 
Body length 1.61 1.08 13.51 6.22 73.77 73.77 
Tail length 0.44 0.32 3.03 1.57 16.56 90.34 
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