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Abstract 

The study of the behaviour of the extreme values of a variable such as wave height is 

very important in engineering applications such as flood risk assessment and coastal design. 

Storm wave modelling usually adopts a univariate extreme value theory approach, essentially 

identifying the extreme observations of one variable and fitting a standard extreme value 

distribution to these values. Often it is of interest to understand how extremes of a variable 

such as wave height depend on a covariate such as wave direction. An important associated 

concept is that of return level, a value that is expected to be exceeded once in a certain time 

period. 

The main areas of research discussed in this thesis involve making improvements to 

the way that extreme observations are identified and to the use of quantile regression 

as an alternative methodology for understanding the dependence of extreme values on a 

covariate. Both areas of research provide developments to existing return level methodology 

so enhancing the accuracy of predicted future storm wave events. We illustrate the 

methodology that we have developed using both coastal and offshore wave data sets. 

In particular, we present an automated and computationally inexpensive method to select 

the threshold used to identify observations for extreme value modelling. Our method is 

based on the distribution of model parameter estimates across a range of thresholds. We 

also assess the effect of the uncertainty associated with threshold selection on return level 

estimation by using a bootstrap procedure. Furthermore, we extend our approach so that 

the selection of the threshold can also depends on the value of a covariate such as wave 

direction. As a biproduct of our methodological development we have improved existing 

techniques for estimating and making inference about the parameters of a standard extreme 

value distribution. 

We also present a new technique that extends existing Bayesian quantile regression 

methodology by modelling the dependence of a quantile of one variable on the values of 



another using a natural cubic spline. Inference is based on the posterior density of the 

spline and an associated smoothing parameter and is performed by means of a specially 

tuned Markov chain Monte Carlo algorithm. We show that our nonparametric methodology 

provides more flexible modelling than the current polynomial based approach for a range of 

examples. 
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Glossary of Terms 

This glossary of terms was constructed using definitions from Porkess (2005) and CHL (2008). 

Breaching Formation of a channel through a barrier spit or island by storm waves, tidal 

action, or river flow. Usually occurs after a greater than normal flow, such as during a 

hurricane. Alternatively, Failure of a dike allowing flooding . 

Conditional Probability The probability of an event occurring, given that another event 

has already occurred. 

Confidence Interval A random interval, calculated from a random sample that contains 

the value of parameter with a predetermined probability, known as the confidence level. 

For example, a 95% confidence interval for the population mean will contain the mean 

with probability 0.95. This means that on average 95% of repeatedly sampled intervals 

will contain the population mean. 

Confidence Level The probability that a confidence interval includes the true value or 

accepted reference value. 

Confidence Limits The maximum and minimum values which define the confidence 

interval. 

Correlation An index, taking values between -1 and 1, that quantify the linear relationship 

between a pair of variables. The sign indicates the direction of the relationship and 

the numerical magnitude its strength. 

Covariance The mean of the product of the derivations of two random variables from their 

respective means. 

Crest Highest point on a beach face, breakwater, seawall, dam, dike, spillway or weir. 

Design Wave In the design of harbours, harbour works, etc., the type or types of waves 

selected as having the characteristics against which protection is desired. 
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Design Wave Condition Usually an extreme wave condition with a specified return 

period used in the design of coastal works. 

Design Storm A hypothetical extreme storm whose waves coastal protection structures 

will often be designed to withstand. The severity of the storm (i.e. return period) is 

chosen in view of the acceptable level of risk of damage or failure. A design storm 

consists of a design wave condition, a design water level and a duration. 

Empirical Distribution Given a random sample of size n, the value of the Empirical 

Distribution Function at x is the number of elements in the sample less than or equal 

to x, divided by the sample size. 

Fetch The area in which seas are generated by a wind having a fairly constant direction 

and speed. Sometimes used synonymously with Fetch length. 

Fetch Length The horizontal distance (in the direction of the wind) over which a wind 

generates seas or creates a wind setup. 

Groundwater The water contained in interconnected pores located below the water table. 

Interpolation Estimation of a value of a variable between two known values. 

Inference Drawing conclusions about a parent population on the basis of evidence obtained 

from a sample. 

Joint Probability The probability of two (or more) events occurring together. 

Joint Probability Density Function specifying the joint distribution of two (or more) 

variables: Fx,y(x, y) = Pr(X ~ x, Y ~ y). 

Joint Return Period Average period of time between occurrences of a given joint 

probability event. 

Least-Squares The method of minimizing the sum of the squares of the residuals 

(residual=observed value-fitted value) as a method of fitting models to data. 
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Likelihood The probability mass function or probability density function of a random 

variable X from a given parametric probability distribution interpreted as a function 

of the parameters given the value x of X , instead of as a function of x given the values 

of the parameters. 

Marginal Probability The probability of a single variable in the context of a joint 

probability analysis. 

Marginal Return Period The return period of a single variable in the context of a joint 

probability analysis. 

Multivariate Distribution A probability distribution involving a number of distinct, 

but not necessarily independent, variables. If two variables are involved it is called 

bivariate. 

Overtopping Passing of water over the top of a structure as a result of wave runup or 

surge action. 

Piping Erosion of closed flow channels (tunnels) by the passage of water through soil; 

flow underneath structures, carrying away particles, may endanger the stability of the 

structure. 

Population Distribution The probability distribution of the entire set of values of a 

variable. 

Posterior Probability A posterior probability is a measure of belief about a situation after 

collecting experimental data. The posterior probability density is proportional to the 

product of the likelihood and the prior probability. 

Prior Probability A prior probability is a measure of beliefs about a situation prior to 

doing any experiments at all; this is often based on subjective judgement. 
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Probabilistic Model A mathematical model in which the behavior of one or more of the 

variables is either completely or partially subject to probability laws. 

Probability The chance that a prescribed event will occur, represented by a number (p) in 

the range 0 to 1. It can be estimated empirically from the relative frequency (i.e. the 

number of times the particular event occurs, divided by the total count of all events in 

the class considered) . 

Probability Density A positive function , the area under which is unity, having the area 

between a and b is the probability associated random variable takes values between a 

and b. 

Quantile The probability that a random variable takes values below its pth quantile is p . 

Regression A functional relat ionship between two or more variables that is of ten 

empirically determined from data and is used to predict values of one variable when 

values of the other variables are known. 

Sampling Distribution The distribution of a statistic obtained from a sample of a 

particular size, from a given population. 

Sea wall A structure separating land and water areas, primarily designed to prevent 

erosion and other damage due to wave action. 

Seepage The movement of water through small cracks, pores, interstices, out of a body of 

surface of subsurface water. The loss of water by infiltration from a canal, reservoir or 

other body of water or from a field. It is generally expressed as flow volume per unit 

of time. 

Significant Wave Height The average height of the one-third highest waves of a given 

wave group. 
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Significant Wave Period An arbitrary period generally taken as the period of the one

third highest waves within a given group. 

Standard Deviation A measure of spread of test data about the average, or mean, value; 

the square root of variance. 

Standard Error This is the standard deviation of the sampling distribution of a statistic. 

Statistic A numerical characteristic of a sample. 

Stochastic Process A series of random variable that develops over a period of time. 

Time Series A set of values of a variable recorded over a period of time. 

Variance A measure of spread of test data about the average, or mean value, defined as 

the average squared difference between each data point and the mean. 

Variance-Covariance Matrix A symmetric matrix in which the off-diagonal elements are 

covariates of pairs of variables and the elements on the diagonal are the variances of 

the variables. 

Wave Steepness The ratio of wave height to wavelength also known as sea steepness. 
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Introduction 

The purpose of any coastal defence is to prevent flooding or erosion which can endanger 

local properties and their inhabitants. The design of a coastal defence structure which is 

both reliable and effective is a complex task. The most effective defence structures can 

be associated primarily with knowledge of the future conditions which the defence must 

withstand over its design life. This research aims to improve some of the techniques for 

producing forecasts of future sea conditions, specifically extreme values of wave height. 

Coastal defences are relatively difficult to design due to the complicated nature of the sea's 

behaviour. The overall engineering aim is to create a design which balances as effectively as 

possible cost and the level of protection (e.g. protection against an extreme wave event that 

occurs once in 50 years or once in 100 years, known as 50- or lOO-year return levels). The 

success of any structural design relies on the availability and suitable analysis of data; poor or 

inaccurately analysed data lead to an unsuccessful design. The aim of this thesis is therefore 

to present and extend some existing techniques that play an important part in coastal defence 

design and to make them readily available to the wider engineering community. 
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Chapter 1. Int roduction 

1.1 Introduction to Flood Risk Assessment 

In recent years the problem of coastal flooding and erosion has become more evident through 

increasing media attention. This has led to a greatly increased requirement for improved 

strategies for flood prevention and flood risk assessment. Flooding in the UK is incurring 

annual costs of around £1 billion in damages with the current level of protection (Sayers 

et al. (2002)). 

SOURCE 
e.g. Rainfall, wind, waves 

! 
PATHWAY 

e.g. overtopping, overflow, 
flood , plain inundation 

! 
RECEPTOR 

e.g. Property, people, environment 

! 
CONSEQUENCE 

e.g . Loss of life, stress, material 
damage, environmental degradation 

Figure 1.1 : Source-Pathway-Receptor-Consequence flow diagram 

Defra studies valued UK assets at risk from coastal flooding to be in the region of £132.2 

billion and with another £7.8 billion of assets at risk from coastal erosion. However these 

valuations are set to rise in line with economic growth and climate change. 

The term 'flood risk' in coastal locations can be defined as the probability of occurrence 

of extreme events (storms, tsunamis) leading to coastal erosion or flooding, multiplied by 

the (socio-)economic damage caused by the extreme event. The link between hazard and 

consequence can be simplified concisely into the flow diagram shown in Figure 1.1 (Sayers 

et al. (2002)). 

To assess risk we therefore require a method to estimate the probability of the occurrence 

of extreme events. These probabilities can be transformed into return level plots from which 
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1.1. Introduction to Flood Risk Assessment 

fut ure levels of a subject wave condition, for example, wave height, can be forecast. To 

estimate accurately the required probabilities we also need to be able to identify extreme 

events so that a statistical model can be fitted to them. Existing techniques for extreme 

value identification and modelling are discussed in greater detail in Chapter 2. 

1.1.1 Wave Condition Variables 

In this section we introduce some definitions t hat are relevant to the wave condition variables 

from the data sets used in this thesis. Each variable describes a measurable element of the 

coastal wave conditions (see Sorenson (1978) and Reeve et al. (2004)) . The variables include: 

• Significant wave height (H8 ): This is the mean height of the highest t hird of waves 

in a given duration or wave group. 

• Wave direction (0) : This is direction t hat a wave is t ravelling. Current analysis 

techniques group wave direction into 10 degree sections and generate a model which 

is based on the elements wit hin each section. The use of wave direction dependent 

thresholds in extreme value modelling is discussed in Chapter 6. In Chapter 7 we 

present a new modelling technique that also uses wave direction as a covariate. 

• Wave period (Tz ): This is t he mean zero upcrossing period. 

• Still water level (SW L): It is a combination of three main components: astronomical 

t ide level, mean sea level and meteorological surge level. Tide and surge components 

are the main sources of variation as mean sea level is assumed to be relatively constant . 

• Steepness (S): Steepness is different from the other variables as it is calculated from 

wave period and wave height. Its definition is as follows: 

S = 27rH8 

gT} 

where g is the gravitational constant. This is a variable that has a t heoretical upper 

boundary due to the restriction that solitary waves with S larger than 1/7 will break 

(Reeve et a l. , 2004) . 
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Chapter 1. Introduction 

1. 2 Engineering Considerations for Coastal Defence Works 

In this section we focus on the technical performance of the defence design as our overall aim 

is to develop the statistical methods used to analyze wave conditions that provide insight 

into future extreme behaviour. By increasing the potential efficiency and sustainability of a 

defence design through the use of the techniques developed in this thesis, we aim to further 

improve the design's performance and durability. We now define specific terminology used 

to describe the performance and durability of coastal defence designs. 

1.2.1 Design or System Life 

The term 'design life' is temporal estimate of an object 's capability to perform to a 

satisfactory level, often used in the context of coastal defence design. Sayers et al. (2002) 

clarifies 'design life' as one of the following: 

Service Life The period of time over which the owner expects the structure to perform. 

This is the 'design life' on which guidance is often given in codes of practice. 

Appraisal Life The period of time over which the client and respective funders or risk 

owners expect to see a return on their investment. 

Element Life The period of time over which a certain element will provide sufficient 

strength to the structure with or without maintenance. 

Residual Life The period of time to when the defence is no longer able to achieve minimum 

acceptable values of defined performance indicators in terms of its serviceability 

function or structural strength. The residual life is often assessed when an inspection 

of the defence takes place. 

In this thesis we think of the 'design life' of a structure as referring to its ' service Hfe' . 

Service life is dependent on several different interacting factors. The design limitations are 

the points at which failure can occur. Reeve et al. (2004) describe some modes of failure of 

sea defences that include: 

• excessive overtopping (see Section 1.3.3) without structural failure; 
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1.3. Design Criteria of Coastal Defences 

• failure of surface protection leading to a crest level reduction which in turn leads to 

increased overtopping, washout and breaching (see Reeve et al. (2004) for definitions) ; 

• geotechnical failure of the structure or its foundation leading to reduction of crest level 

and breaching; 

• seepage or piping and internal erosion leading to breaching (see Reeve et al. (2004) for 

definitions). 

1.2.2 Performance Measures 

To assess the performance of a coastal defence we require criteria which the defence must 

satisfy. In commercial defence design and construction these criteria are specified as a basis 

of the contractual agreement. The primary criterion is cost; the defence must be produced 

on a realistic budget which is cost effective in relation to the value of the assets which it 

protects. The second most important criterion is the time allocated to the project including 

conception, design and construction. The defence should be constructed in a relatively short 

time frame so that it does not become redundant shortly after implementation, i.e. design 

life of 10 years with a construction time of 4 years is not satisfactory. 

The defence must be constructed to a high standard due to its purpose. Potential risk 

failures are highly correlated to the quality and standard of the construction. Therefore, 

the defence should be designed using the most efficient and up-to-date methods which 

lead to quality defects that are acceptable under the 1809000 series. Following on from 

this, health and safety during construction must also be a primary concern. The defence 

must comply with all statutory health and safety regulations. Regular safety reports and 

maintenance schedules should be in place from the beginning. Finally, the defence must be 

environmentally balanced allowing for sustainability and mitigating environmental impact. 

1. 3 Design Criteria of Coastal Defences 

In this section we aim to highlight coastal defence design criteria and the uncertainty 

associated with them; see Sayers et al. (2002). The techniques developed within this thesis 

are aimed to reduce the uncertainty associated with these design criteria. 

5 



Chapter 1. Introduction 

1.3.1 Event Frequency Considerations 

Definition of Extremes Values 

The correct definition and identification of extreme values such as storm events can lead 

to improved analysis accuracy as only appropriate data would be used in the modelling 

process. 

Joint Probability Method 

The joint probability method looks at t he effect of two variables such as wave height 

and wave period having extreme values simultaneously. Failure to take account of such 

joint probability considerations can amplify the effect of any resultant condit ions and so can 

increase the chance of defence failure due to overtopping. Conversely, incorrect application 

of joint probability techniques can also have an adverse effect as defence design conditions 

can be overestimated leading to harmful cost or environmental implications. 

1.3.2 Modelling Considerations 

Checking Model Results 

When using modelling techniques to determine design conditions it is necessary to 

validate the results that are obtained, to ensure that the most appropriate model is being 

used. Modelling must be validated using actual data rather than just simulated data. Also, 

oversimplification of the process to be modelled can result in its misrepresentation leading 

to design errors. There is a fine balance in any modelling activity to ensure that the model 

provides a good representation of the data without losing predictive accuracy due to over 

specification. In Chapter 6 we explain how to make the extreme modelling process more 

specific by incorporating a covariate based on wave direction into the extreme wave height 

model. In Chapter 7 we present a new modelling technique that also uses wave direction as 

a covariate. 
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1.3. Design Criteria of Coastal Defences 

1.3.3 Overtopping 

An engineering motivation for much of the work in this thesis is overtopping as it is 

regarded as one of the major sources of flooding and erosion. In Chapter 7 will present new 

modelling techniques and illustrate their engineering relevance by discussing improvements 

to overtopping return level estimation. 

EurOtop (2007) describe wave overtopping as the mean discharge Qm per linear metre of 

width. Wave overtopping is very random in time and volume, and hence there is no constant 

discharge over the crest of a structure during overtopping. 

Extreme waves will discharge a large volume of water over the crest of a coastal defence 

in a short period of time, often less than a wave period, and so are the main cause of 

overtopping. Smaller waves will produce little, if any, overtopping. 

Cw 

·I 

Figure 1.2: Diagram of a typical plane rough-armoured slope defence from Reeve et al. 
(2004). SWL stands for still water level. 

To illustrate the calculations of mean overtopping Qm, we follow the simple calculations 

from Reeve et al. (2004) applied to a plain rough-armoured slope as shown in Figure 1.2. We 

present this simple example calculation to motivate the use of techniques developed in this 

thesis. These calculations were presented in Owen (1980b) which was a technical guideline 

for overtopping calculations. We also note that a range of variations of this calculation are 

available for more complex structures, see EurOtop (2007). Firstly, we find the dimensionless 
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Chapter 1. Introduction 

freeboard parameter~ which is calculated by 

where Re is the height of the crest above the still water level called freeboard, g is the 

gravitational constant, T:z is wave period and H8 is significant wave height; formal definitions 

will be given in Section 1.1.1. 

Besley (1999) limits the validity of methodology, from Owen (1980b), for predicting mean 

overtopping discharges to dimensionless freeboard values falling in the range 0.05 < ~ < 

0.30. However, more recent analysis of data by Allsop and Pullen (2003) for 1:2 smooth 

slopes has shown that this range can be extended to 0.05 < ~ < 0.50. The next stage is to 

define a second parameter which we refer to as a dimensionless overtopping rate coefficient 

as 

where A and B are empirical coefficients dependent on the slope of the structure and r is t he 

roughness coefficient; see Reeve et al. (2004) for tabulated values. The mean overtopping 

discharge rate Qm per metre length of structure is then defined as 

Reeve et al. (2004) and EurOtop (2007) go into much more detail and present examples of the 

calculation of Qm for more complex structures. In our overtopping calculations of Chapter 7 

we continue to make the simplifying assumption of a perpendicular wave approach angle. 

Taking account of varying wave approach angles is considered to be a topic for further work 

as discussed in Chapter 8. 

1.4 Sustainability of Coastal Defences 

The sustainability of a coastal defence is another engineering consideration that underpins 

much of the work in this thesis. The following section, taken from UK (2001), discusses 

sustainability. The areas defined within this discussion provides some of the key motivations 

8 



1.5. Case Study: Dawlish, Devon 

for our developments of improved techniques for modelling extreme wave condit ions. By 

reducing the uncertainty in extreme value modelling we attempt to optimize the performance 

considerations discussed in Section 1.2 which dictate the sustainability issues listed below. 

Preserving and Enhancing the Environment 

In conducting any engineering development t here is likely to be a potential impact on the 

local environment. Minimizing the adverse impact of the development on the environment 

and hence on society can be achieved by ensuring all works must be environmentally neutral 

or positive. Furthermore, every effort must be made to minimize and otherwise avoid any 

resultant pollution caused by the works or completed development. 

Using Resources Efficiently 

It is possible for contractors to optimize efficient management of their resources. This 

can be achieved by aiming to use renewable or recycled construction materials, minimizing 

the volume of materials used, or even reducing or recycling surplus materials. A less obvious 

saving can also be made by opt imizing energy efficiency in the transportation of materials 

and the operation of the works or completed development. 

Long-term Viability 

Any defence design aims primarily to provide a good level of protection to local property 

and its inhabitants over a long term period. It is important to balance the efficiency of 

the maintenance and operation of t he design with the cost of the materials used to create 

a structure which is designed for long term viability. If possible, the structure should be 

adaptable during its entire design life to natural processes and climate change. In Section 1.5 

we present a case study based on a seaside town near Plymouth that illustrates some of the 

above concepts. 

1. 5 Case Study: Dawlish, Devon 

Located between Torquay and Exeter on the south coast of Devon, Dawlish is a small 

seaside town situated slightly inland from t he coast above high cliffs. Dawlish has a large 
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Chapter 1. Introduction 

area of commercial and private property which is vulnerable to coastal flooding and erosion, 

including the train line which serves as a main railway route into t he Devon and Cornwall 

region as well as providing local connections. This train line has been the subject of much 

media interest in recent years as under severe weather it has to be closed due to dangerous 

conditions or damage to tracks. The track is situated behind a seawall defence which has 

Figure 1.3: Image showing waves impacting the Dawlish seawall situated next to the train 
line. The train shown connects London with the Devon and Cornwall region. 

Figure 1.4: Image showing extreme waves impacting and overtopping the Dawlish seawall 
and flooding the train line. 

a beach directly in front of it, as shown in Figure 1.3. Under extreme wave conditions the 

seawall can be overtopped causing flooding or erosion or both in certain circumstances; an 

example is shown in Figure 1.4, whilst Figure 1.5 provides a diagrammatic cross-section 

representation. These effects are costly to repair and have safety and financial implications 
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1.5. Case Study: Dawlish, Devon 

for commuters and other train passengers. 

Figure 1.5: A diagrammatic cross-section representation of the Dawlish seawall area from 
Mockett and Simm (2002) 

In 1997 Hyder Consulting were commissioned to undertake a feasibility study of the 

maintenance or upgrade costs for the existing sea wall at Dawlish; see Mockett and Simm 

(2002). The aim of the study was to reduce the overall annual maintenance cost of over 

£1 million for minor repairs and major works by developing a 2G-25 strategy. The study 

highlighted several primary factor influencing the ineffective performance of the defence: 

Reduction in beach levels It was found that beach levels varied greatly along the stretch 

of sea wall. Some engineering works already existed to prevent sediment transport and 

erosion of the beach, but at particular locations these schemes had become ineffective. 

Undermining of the wall Due to erosion from wave action the toe of the sea wall had 

become exposed in certain locations causing removal of the infill material behind the 

structure. This action leaves voids within the defence that can lead to structural failure. 

Voids behind the wall Voids created by both ground water and wave action had led to the 

instability in the defences and structural support of the train line. Some maintenance 

operations using grouting techniques had provided an adequate repair but not a 

permanent solution to the voids. 

Overtopping As a result of low beach levels due to sediment movement and erosion, the sea 
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Chapter 1. Introduction 

wall had become exposed to large waves which are capable of overtopping the defence 

and causing train line closure due to damage of the track or waves impacting on the 

trains. Examples of wave overtopping can be seen in Figures 1.4 and 1.6. 

Hyder Consulting identified the key aims of the structure and devised a number of 

potential engineering proposals to reduce the maintenance costs and improve the defence's 

performance. These proposals were investigated further and some were approved. These 

decisions depended on the proposal's feasibility, cost and achievable benefit to clients. The 

proposals were categorized as follows: 

Rejected Proposals 

• The proposed coping for the seawall was considered to be not viable because, using 

probability analysis of waves and water levels, it was concluded that there was a small 

chance of green water overtopping within the next 50 years. Therefore, the proposed 

coping for the seawall was considered to be not viable. 

• The proposal to raise beach erosion protectors called groynes, by 500 mm would lessen 

impact on the beach. However, it was found that the additional forces on the groynes 

would reduce their design life considerably, and so this proposal was also rejected. 

• Offshore structures and beach de-watering systems were found to be expensive and not 

viable. 

Approved Proposals 

• Detection and repair of voids. 

• Construction of a new stepped toe on the seawall. 

• New facing works at Dawlish train station. 

• Masonry repairs to the face of the wall in sections which were significantly damaged. 

• Concrete spraying at the toe as an emergency measure. 

In the 2003-Q4 autumn and winter period bad storm surges caused serious damage to the line 

causing delays and safety issues. The BBC news web page quoted Professor Laurence Mee, 
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1.5. Case Study: Dawlish, Devon 

Figure 1.6: Image showing overtopping of the Dawlish seawall with potential flooding of the 
train line. 

director of the University of Plymouth Marine Institute, who said that " ... the more worrying 

concern is if it [the train line in the Dawlish area] is catastrophically washed away, which 

would really cut off a major part of the South West and affect the South West economy". 

In general it is the balance between associated risk and cost that is the driving factor 

of any defence scheme. The Dawlish seawall provides adequate performance for protection 

of the railway structure but allows considerable overtopping in certain circumstances. In an 

ideal situation a defence would be designed to allow no overtopping, but in real engineering 

scenarios this is a very impractical and costly operation. 

In this thesis we aim to improve some of the probability analysis techniques used to make 

assessment of potential overtopping in schemes such as the Dawlish sea wall. We achieve 

this by providing some improvement to the methodology used in wave height modelling to 

produce return levels. Accurate specification of return levels for wave height provides a great 

deal of information about the potential overtopping of existing and planned defence schemes 

and can therefore reduce the risk associated with overtopping of coastal defence schemes. 

Our methodological improvements were all developed using real data set, which we now 

discuss. 
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Chapter 1. Introduction 

1.6 Introduction to Data Sets 

The data used in this thesis were generated using a technique called Hindcasting. The 

hindcasting technique used by HR Wallingford combines both a wave prediction model 

(HINDWAVE) and a wave refraction model (TELURAY) to obtain the best possible 

generated wave condition results (see Wallingford (2005a,b) and Reeve et al. (2004)). 

Technical explanation of the HR Wallingford Hindcasting model is found in Appendix B. 

This technique uses wind records to generate wave condition data sets. The main benefit 

for using this technique is that large wind record data sets are more readily available than 

large wave condition data sets. The use of generated data rather than directly measured 

data overcomes the scarcity of good quality, reliable data which span an adequate t ime scale. 

All the methods discussed this thesis can, however, be applied to either measured or wind 

generated data. 

1.6.1 Data Set Information 

The data utilized in this thesis come from two sources. The first hindcast data sets were 

obtained from Dr Peter Hawkes at HR Wallingford. These hindcast data sets are based on 

wind condition records from the Met Office for the Selsey Bill area, located on the south 

coast of the UK, east of Portsmouth and the Isle of Wight. This area has significant existing 

coast defences to prevent coastal erosion and sediment transport, and has additional defences 

to prevent flooding of local commercial and private properties. 

The data set consists of hourly hindcast measurements of the variables significant wave 

height, wave period and wave direction over an approximate time span of 27 years. There 

are seven data sets, all of which are approximately 250,000 observations in length and refer 

to different tide states; hence a full tide spectrum is given. Measurements of still water level 

are unavailable. The variable Y of interest will be wave height, while the covariate t will be 

the cosine of wave direction. In this thesis we use a random sample of 10,000 observations for 

computational and presentational reasons. The data sets were initially stored in a format that 

is compatible with the Fortran 90 programs used for the current joint probability software 

JOINSEA. This software is described in Chapter 2. The data files were reformatted to a 
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universal . txt format which could be viewed using most word processing software. From 

this format they can be imported simply into the R statistical software used in this project, 

although R itself can handle a vast range of different formats. 

The majority of our model development used parts of the HR Wallingford data sets 

referring to 'high water level'. A range of samples of different sizes were taken from these 

data sets to reduce computational time when processing the data. 

The second source of data was Or Anna Zacharioudaki from the School of Engineering 

at the University of Plymouth. The data are also hindcast generated from wind records. 

The wind records upon which these data are based were courtesy of the Danish Climate 

Center and Danish Meterological Institute and were generated from a climate model; see 

Zacharioudaki (May 2008). These wave records refer to an offshore location in Poole Bay, 

UK (50.5246 N, -1.6410 E). There are three variables: Wave Height, Wave Period and Wave 

Direction, each having 86,384 observations at three hourly intervals, so amounting to just 

over 29 years of data. We include this data when validating the techniques that we have 

developed as these offshore wave data have a different underlying structure than the HR 

Wallingford coastal wave data. Wave heights in the offshore data are more uniform across 

wave direction than in the coastal data. 

1. 7 Research Performed and Structure of the Thesis 

As already discussed, one of the main aims of our research is to produce more reliable 

estimates of the future conditions that a coastal defence structure will need to withstand 

than are currently routinely available. This is achieved by improving existing techniques for 

identifying data for extreme value modelling and by investigating alternative methodology 

for understanding the dependence of extreme values on covariates such as wave direction. 

To be more specific, the improvements reported in this thesis include automating 

the threshold approach used in extreme value modelling and discussed in Chapter 2, 

and improving existing model parameter estimation methodology. We also extended our 

automated threshold selection technique to allow the selected threshold to depend on a 

covariate such as wave direction. In addition, we develop current quantile regression 

techniques for extreme value modelling that assume a polynomial dependence on the 
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covariate to allow a more general smooth relationship defined by a spline. 

The rest of the thesis is structured as follows. In Chapter 2 we present a literature review 

of current methodology for univariate and bivariate extreme value theory, discussing various 

approaches formatting inferences about these models. Chapter 3 reviews the JOINSEA 

software and methodology developed by HR Wallingford and Lancaster University. Chapter 4 

is a literature review of current methodology relevant to our quantile regression work in 

Chapter 7. In addition to introducing quantile regression, Chapter 4 discusses Bayesian 

inference and nonparametric modelling. In Chapter 5 we introduce a new, simple technique 

developed to replace missing observations within our data, so that subsequent analysis can 

be based on complete data sets. 

Chapter 6 presents our new, automated threshold selection technique for both univariate 

and bivariate extreme value modelling. This chapter also extends this technique to allow the 

selected threshold to depend on a covariate such as wave direction. Chapter 7 discusses an 

original technique for Bayesian quantile regression based on splines, as a natural extension 

to the Bayesian quantile regression methodology found in Yu and Moyeed (2001). 

Finally, Chapter 8 draws conclusions about the developments presented in this thesis, 

highlighting their new contributions to coastal engineering design and statistical method

ology. Appendices follow containing full details of mathematical calculations relevant to 

Chapter 6 and of the HR Wallingford Hindcast wave data generating technique. 
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Literature Review of Extreme Value Theory 

In this chapter univariate and bivariate techniques for Extreme Value Theory are introduced. 

These techniques have been developed to characterize values of an extreme nature within a 

sample space. This chapter discusses techniques which describe and model extreme data and 

which can subsequently be used as a basis for the improved methodology for the description 

and prediction of extreme sea conditions presented in Chapter 6. 

2.1 Univariate Extreme Value Theory 

Extreme value distributions have been used in a range of applications for quite sometime 

now. It is only during the last twenty years or so, the study of the extreme values of 

processes (especially natural ones) has increased in popularity with significant improvements 

to the techniques which describe their behaviour. Extreme analysis techniques were initially 

proposed as an alternative to the use of a model for the entire range of observations 

not specifically describing the extreme values. This led to two main approaches for the 

description of extremes. These are grouped maximum and threshold models, both of which 

we now present. 
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2.1.1 Group Maximum Methodology and the Generalized Ex

treme Value Distribution 

Classic Extreme Value Theory extracts extreme values by dividing time series data into a set 

of time intervals or blocks and selecting the maximum from each interval, creating a sample 

of maxima to which an extreme value model can be fitted (see Finkenstadt and Rootzen, 

2004). It is also possible to look at minima as extremes, although this study concentrates 

on maxima. 

Consider a sequence of independent random observations X 1 , ... , X n of a random variable 

X with common distribution function, F, where F(x) = Pr(X 2 x). An example of such 

data would be daily mean rainfall measurements. When considering the extremes of this 

sequence we adopt the notation 

where Mn is the maximum of then observations. The development of a model to describe the 

statistical behaviour of Mn is the basis of the approach that we will describe. It is possible 

to obtain the distribution of Mn as follows: 

Pr{Mn<z} Pr{Xt~Z, ... ,Xn~z} 

Pr{X1 ~ z} x ··· x Pr{Xn ~ z} 

{F(z)}n 

This requires that the distribution function F be known, which is uncommon in 

practice. Estimation of F results in small discrepancies which may be transferred to pn 

and consequently exaggerated, leading to an unreliable estimate of the distribution function 

of Mn. As an alternative, we investigate models for pn which are then fitted to the Mn data 

only. 

To understand the methodology used to obtain the form of the distribution pn, it is 

useful to explain the basis of the method, the Central Limit Theorem. We therefore begin 

by describing the method used to approximate the sampling distribution of the mean of a 
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random sample of observations (see Devore and Peck, 1994). 

Definition 2.1.1.1. General results concerning the sampling distribution of X. 

Let X be the mean of the observations in a particular random sample of size n from a 

population with mean J.L and standard deviation (J. Let the corresponding mean and standard 

deviation for X be J.Lx and (Jx respectively. The following apply: 

• J.Lx = J.L 

• (Jx = -Jn 

• When the population is normal, the sampling distribution of X is also normal for all 

sample sizes n. 

• If n is sufficiently large, the sampling distribution of X can be effectively approximated 

by a normal curve, even if the population is not normal. 

The Central Limit Theorem can be used to standardize a sample mean (linear 

renormalization), so that it will follow a standard normal distribution, provided that n 

is large enough. The Central Limit Theorem can be stated as follows: 

Theorem 2.1.1.2. The Central Limit Theorem 

If X 1, ... , Xn constitute a random sample from an infinite population with mean J.L, and 

finite variance (J 2 , then the limiting distribution of 

or alternatively 

X- J.L 
Z= (JI.Jii' 

X1 + · · · + Xn - n E(X) 

..jn Var(X) 

is the standard normal distribution. 

as n -HXJ 

Note that this theorem deals with a random variable of the form, Yn=(Sn - bn)/an , 

where Sn=X1 + · · · + Xn. The theorem shows that there exist constants an and bn, such that 

Yn converges in distribution to a non-degenerate distribution. 

The Central Limit Theorem tells us that the normal distribution is found as the limit for 

the sum of a number of random variables. There are, however, exceptions to this result. If the 
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underlying distribution F has very heavy tails, then a different distribution, called a stable 

distribution, will be the limit. A distribution is stable provided the following holds. If we 

have a number of independent identically distributed random variables which follow a stable 

distribution, then a linear combination of these variables will have the same distribution, 

with the exception of different location and scale parameters (also see page 22 for further 

discussion). 

Effectively, the distribution of the mean is altered due to the extremes from the sample, 

and this affects the asymptotic behaviour. The limit distribution is now the Pareto 

distribution, which corresponds to a random variable with infinite variance. 

An alteration to the Central Limit Theorem is required for the case of maxima rather 

than averages or sums. Linear renorrnalization is still required, since for z < z+ (z+ being 

the upper end point of F), Fn(z) --+ 0 as n--+ oo,with the result that the distribution of Mn 

degenerates to point mass on z+· The linear renormalization of Mn is denoted M~ and is 

defined as: 

where an > 0 and bn are sequences of constants. The careful selection of values for a,. > 0 and 

bn stabilizes the location and scale of M~ as n increases. Following this renormalization it is 

now possible to search for the limiting distributions for M~. Hence, we seek a distribution 

function G and a sequence of constants an > 0 and bn, such that the limiting distribution 

of M; = (Mn - bn)/a,. is G as n --+ oo . This is the initial stage of the Extremal Types 

Theorem; see Coles (2001) and Beirlant et al. (2004). 

Theorem 2.1.1.3. The Eztremal Types Theorem 

If there exists sequences of constants a,. > 0 and bn such that 

Pr{(Mn- bn)/a,. S z}--+ G(z) as n--+ oo 

where G(z) is a non-degenerate distribution function, then G(z) belongs to one of the 

following families: 

Gumbel 

G(z) = exp [- exp {- ( z: b)}] - oo < z < oo 
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F'rlchet 

Weibull 

G(z) = 

{ 

0 

exp{ -( z~bt"} 

z-:;b 

z>b 

G(z) = a 
{ 

exp{ -[-(•-b)")} z < b 

1 z ~ b 

where a > 0 and b are scale and location parameters respectively, and in the Frechet and 

Weibull cases, a> 0 is a shape parameter. 

The Extremal Types Theorem states that any suitably normalized variable M~ has a 

limiting distribution which must be one of the Gumbel, Frechet or Weibull distributions. 

This choice of limiting distribution is dependent on the underlying population distribution 

F. Unfortunately, F is unknown. We can however resolve this problem by combining the 

three families of models into the following Generalized Extreme Value Distribution (see Kotz 

and Nadarajah (2002), Coles (2001) and Beirlant et al. (2004)): 

(2.1.10) 

provided 1 + ~(z- J.L)/u > 0. This model has three specific parameters, each describing an 

element of the model: a location parameter, J.L; a scale parameter, u; and a shape parameter, 

~- The Generalized Extreme Value (GEV) Model can be reduced to each of the individual 

families by the selection of the shape parameter, 

• Gumbel : ~ = 0 

• Frechet : ~ > o 

• Weibull : ~ < 0 

Data comprising annual or monthly maxima, for example, can be effectively modelled 

using this method by considering the inference made on the shape parameter, as this 

determines the tail behaviour of the distribution. The Extremal Types Theorem, Theorem 

2.1.1.3 can be rewritten for the GEV (see Coles, 2001) as follows: 
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Theorem 2.1.1.4. Extremal Types Theorem: GEV adaption 

If there exists sequences of constants a, > 0 and bn such that 

as n--> oo (2.1.11) 

for a non-degenerate distribution function G(z), then G(z) is a member of the GEV family 

which is defined on the set {z : 1 + {(z- f.l)/a > 0}, where the parameters satisfy -oo < 

f.1 < oo, a > 0 and -oo < { < oo. 

The application of this theorem is restricted to large values of n, i.e. the maxima of large 

blocks is required. It is possible to avoid problems when normalizing constants are unknown 

as follows: from Theorem 2.1.1.4 we have 

(2.1.12) 

hence, 

( 2.1.13) 

where c• can be shown to be another member of GEV family. 

Hence, the theorem now also provides a method for estimation of the distribution of Mn, 

using a member of the GEV family. The parameters J.l, a and {of the GEV can be estimated 

by maximum likelihood estimation, as explained in Section 2.1.2. 

To justify the use of the Extremal Types Theorem (Theorem 2.1.1.4) introduction of an 

informal proof is necessary. We start by making the following definition from Coles (2001): 

Definition 2.1.1.5. A distribution G is said to be max stable if, for every n = 2,3, ... , 

there are constants O:n > 0 and !3n such that 
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since en is the distribution function of Mn = max{ XI' ... 'Xn}' when the X; are 

independent variables each with distribution function G, the max stability property holds for 

any distribution for which the process of sampling maxima leads to an identical distribution 

up to change of scale or location. Using the following key theorem, it is possible to determine 

the connection to the extreme value limit laws. 

Theorem 2.1.1.6. A distribution is max stable if, and only if, it is a generalized extreme 

value distribution. 

This theorem is then inserted as an integral part of the proof of Theorem 2.1.1.4 the 

Extremal Types Theorem. Let the maximum random variable in a sequence of n x k variables 

for any large n be denoted as Mnk, and let the limit distribution of Pr{(Mn- bn)/an} be G. 

Hence, for large values of n, 

Pr{(Mn- bn)/an:::; z} :=;:j G(z) 

. So it follows that for any integer k, since nk is large, 

Pr{(Mnk- bnk)/a,..k:::; z} :=;:j G(z) (2.1.14) 

However, Mnk is the maximum of k variables with the same distribution as Mn, so 

(2.1.15] 

Utilizing equations (2.1.14) and (2.1.15) respectively, 

and 

k (z- b ) Pr{ Mnk :::; z} :=;:j G ~ 

. Hence, we can conclude that G and Gk are identical apart from different location and scale 

coefficients. So we have shown that the limit distribution G is max stable. Theorem 2.1.1.6 

then tells us that G must be a member of the GEV family. A justification of this result can 
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be found in Coles (2001) 

We next present the technique used to estimate the parameters of the Extreme Value 

Models, known as maximum likelihood estimation (MLE). 

2.1.2 Maximum Likelihood Estimation for GEV Models 

Maximum likelihood estimation is a statistical technique used to make inferences about the 

parameters of the underlying probability density function of a given data set; see Hogg and 

Craig (1995), Eliason (1993) and Freund (1992). 

More precisely, if the underlying density function f depends on an unknown parameter 

B, we can use maximum likelihood estimation to estimate B. To do this, we consider the 

probability density function of all the data. If this joint probability density function is 

thought of as a function of B, it is known as the likelihood function. The maximum likelihood 

estimation method finds the value for (;I which maximizes the likelihood function. This 

is then used as an estimate for (;I and is denoted B. Mathematically, we have x1, ... , Xn 

which are independent realizations of a random variable with probability density function 

f(x; B) = :fxF(x; B), then the likelihood function is defined as 

n 

L(B) = ITf(xi;B) (2.1.16) 
i=l 

For simplicity in further calculations and numerical stability it is usual to take logs of the 

likelihood and use the log-likelihood function 

n 

logL(B) =f(B) = ~)ogf(xi;B) (2.1.17) 
i=l 

Because log is a monotonically increasing function, the same value of B maximizes e and L. 

Often the likelihood cannot be maximized analytically, so numerical optimization is adopted. 

When fitting a GEV model, a blocking method is first applied to split daily data, for 

example, in to m annual blocks. The maximum from each block is then recorded. These 

block maxima can be denoted z1, .•• , Zm and thought of as a sample from the population of 

maxima. The parameters of the GEV can then be estimated from this sample by means of 

the maximum likelihood estimation technique. 
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GEV maximum likelihood estimate assuming~ =f 0 (F'rechet and Weibull} 

If~ =f 0 (corresponding to the Frechet and Weibull), the log-likelihood for the GEV 

parameters will be 

e(J1, (J, ~) = -m log (J- ( 1 + Z) t log [ 1 + ~ ( z; ~ 11) J _ t [ 1 + ~ ( z; ~ 11) J -I/{ 

(2.1.18) 

provided that the following conditions are satisfied 

for i = 1, ... , m. (2.1.19) 

This condition is necessary to prevent data exceeding the end point of the distribution 

at particular combinations of the parameters, J1, (J, ~ causing the likelihood to be equal to 

zero and consequently the log-likelihood to equal -oo. 

GEV maximum likelihood estimate assuming ~ = 0 (Gumbel) 

If(~= 0) (corresponding to the Gumbel)form of the log-likelihood must be adapted 

(2.1.20) 

Given e(J1, (J, ~) in (2.1.19) and its special case f(J1, (J) in (2.1.20), a numerical optimization 

technique can be employed to find the parameters that maximize the log-likelihood. This 

is implemented in the function 'gev.fit' of the (R) package (ismev) (Coles and Stephenson 

(2006)). The above described blocking procedure can be wasteful of data as values which 

would otherwise be considered as extreme are missed if they fall within a block which has 

a maxima that is higher than these "extremes". We now present the second technique for 

modelling extremes, threshold modelling, which has the benefit that all extremes are included 

provided the threshold has been set properly. 
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2.2 Generalized Pareto Distribution 

2.2.1 Threshold Modelling 

The second method to describe and model extremes is based on setting a threshold and 

declaring exceedances of this threshold to be extreme values (see Davidson and Smith (1990)). 

However, the selection of the threshold is not a simple task; current methods are based on 

diagnostic plots from which the threshold is chosen based on the point where change in 

behaviour of the plot occurs. The identification of this change is performed purely on an 

empirical basis by the user. We will discuss this further in Section 2.2.2. In Chapter 6 we 

present methodology to improve upon existing threshold choice methodology which allows 

the threshold to be chosen automatically. As mentioned, the value of a variable X; with 

distribution function F is considered to be extreme if it exceeds a threshold u. The behaviour 

of extremes can be described by the following conditional probability: 

1-F(u+y) 
Pr(X > u + yiX > u) = 1 _ F(u) , y > 0. 

Just as in the Group Maximum methodology, the population distribution F is unknown, so 

an alternate means to estimate the distributions of extremes for the threshold exceedance 

approach is required. For the Group Maximum methodology the GEV distribution model 

was adopted as the non-degenerate distribution function of suitably scaled and shifted block 

maximum. In the threshold exceedance approach, the model must be altered to allow for the 

different form of the extremes. It turns out that the appropriate model is the Generalized 

Pareto Distribution (GPD) as described in the following theorem (see Coles (2001) and 

Davidson and Smith (1990)): 

Theorem 2.2.1.1. The Generalized Pareto Distribution (GPD) 

Let X 1 , ••• , Xn be a sequence of independent random variables with common distribution 

function F, and let 
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Suppose that F satisfies the Extremal Types Theorem, so that for large n, 

Pr{Mn:::; z} ~ G(z) 

where G(z) = exp {- [ 1 +' c: JL) r
11

~} 

for some JL, a> u and'· Then for large enough u, the distribution function of Y =X- u, 

conditional on X > u, is approximately 

[ ']-1/f. 
H(y) = 1- 1 + : 

where i7 =a+ '(u- JL) 

defined on {y: y > 0 and 1 +' y/i7) > 0}. 

As mentioned the threshold exceedance approach is usually considered to be much less 

wasteful of information then the group maximum methodology. Theorem 2.2.1.1 that if 

block maxima have an approximating GEV distribution, then extremes above a threshold 

should have an equivalent GPD. Furthermore, the parameters of the GPO are uniquely 

determined from the threshold u and the GEV parameters. In particular the GPO scale 

parameter i7 depends on the GEV parameters JLP and ' and upon the threshold u through 

i7 = a+ '(u- JL). We shall make considerable use of this result later. We find that the 

shape parameter is common in both distributions. The GEV has two additional parameters 

which are dependent on size and location, while the equivalent GPO does not have a location 

parameter. Because of this, the shape parameter' becomes the dominating influence on the 

GPO's behaviour. The upper limits of excesses are as follows: 

• If'< 0, then the distribution of threshold excesses has upper limit u- i7/,. 

• If' > 0 or' = 0, then the distribution has no upper limit. 

Note that when ' = 0, we should take the limit as ' --+ 0 of (2.2.5) so obtaining 

H(y)=1-exp(~), y>O 

for the distribution function. 
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2.2.2 Threshold Selection 

As mentioned above, current threshold selection procedures are based upon interpretation 

of plots relating to inferences about the model. The first technique that we will discuss is 

called the Mean Residual Life plot; for an example of such a plot, see Figure 2.1 reproduced 

from Coles (2001). This graph plots the mean excess values against a range of thresholds 

values. Let Y = (X- uaiX > u0) and assume that a GPD is valid for threshold excesses 

over threshold Uo, where the GPD has parameters O"uo and ~- Note here that we write O"uo 

for the GPD parameter a= u + ~(Uo- tt). It can be shown that 

E(Y) = ~ provided~< 1, otherwise the mean is infinite. 
1-~ 

This can be generalized to all thresholds u > u0 , with the scale parameter being altered 

accordingly. Therefore, 

since O"u = O"uo + ~( u- ua) Now, it is clear that this expected value can be estimated as the 

mean of the excesses over the threshold u. The estimates obtained should depend linearly 

on u, up to sampling error, provided that the GPD approximation holds. Hence, this leads 

us to produce the following Mean Residual Life Plot 

1 
nu 

{(u,- 2)x(i)- u)) : u < Xmax} 
nu i=l 

(2.2.10) 

where 

• X( 1), .•. , X( nu) are the nu observations that exceed u 

• Xmax is the largest X;. 

As mentioned above, an example of a Mean Residual Life Plot is shown in Figure 2.1. 

This is based on the daily rainfall data set, discussed in Example 1.6 of Coles (2001). To 

interpret the Mean Residual Life Plot, 95% confidence intervals are added to the plot. If we 

consider a threshold u0 to be the optimum threshold choice. If u0 is the lowest threshold 
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Figure 2.1: The Mean Residual Life plot for the daily rainfall data set of Coles (2001). 
Confidence intervals are shown as the broken lines. 

for which where the GPO provides a valid approximation to the distribution of excesses, 

then the plot should be approximately linear in u above u0 . hence the threshold choice 

is determined as the point at which linearity in the plot first occurs. For Figure 2.1 this 

could be Uo = 30, as the plot is linear after 30, up to sampling error, taking account that 

higher thresholds may have very few values that exceed them. This example makes it clear, 

however, that threshold choicer based on the Mean Residual Life plot is a very subjective 

procedure. 

The second threshold selection technique provides a much simpler methodology for 

threshold choice. The process plots the parameter estimates for the GPO model over a 

range of thresholds. The aim of the plot is to allow the detection of when the model is not 

sufficient, i.e. when the threshold is set too low or too high. 

As before, if it is assumed that the data X;, i = 1, ... , n are independent and the GPO is 

a viable model for the threshold excesses over the lowest possible threshold u0 , then excesses 

over a higher threshold u > u0 will also follow the GPO. As discussed in Section 2.2.1, the 

shape parameter for the GPO is the same as for the GEV. However, as we have already 

mentioned, the scale parameter for the GPO is not constant over the thresholds u but takes 

29 



Chapter 2. Literature Review of Extreme Value Theory 

the form 

au = auo + {(u- ua), ( 2.2.11) 

which depends on u unless e = 0. This dependency is overcome by a simple reparameteriza

tion to 

a*= au- eu ( 2.2.12) 

This reparameterized scale parameter is constant with respect to the threshold values u. 

Consequently, both the shape and this new scale parameters will be constant above the 

threshold u0 , up to sampling error, but may not necessarily be constant below u0 . 

The parameter estimates for a* and e are then plotted against thresholds u; the estimates, 

a* and e should remain constant up to sampling error. The threshold Uo is therefore selected 

as the lowest value for the threshold u for which the estimates are approximately constant. 

To increase the accuracy of this empirical choice, confidence intervals are added to the 

parameter estimate plots. These confidence intervals are determined differently for each of 

the parameters, as follows: 

30 

• Shape parameter e: 
The confidence intervals for e are determined from variance of the estimate 

f, found from the numerical optimization procedure. The variance

covariance matrix V: 

Var((u) 0 0 

V= 0 (2.2.13) 

, in which (u is an estimate of the probability that an individual observation exceeds 

the threshold u (2.2.6); v;,i is the ( i, j) term in the variance covariance matrix V of a 
and f,, the estimates of the scale and shape parameters respectively. So Var(f,) = v2,2• 

This variance estimate is used in the standard way to find a confidence for e. 

• Scale parameter a*: the delta method is used, as follows (see Coles, 2001) to find 

Var(&*) from V given in (2.2.13): 



2.2. Generalized Pareto Distribution 

(2.2.14) 

An example of this plot is shown in Figure 2.2. This is based on the daily rainfall data set, 

discussed in Example 1.6 of Coles (2001). 
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Threshold 

l ~ ~ ·-·-·-·-·-·-·-·-·-·-·-+-!-f-t-t-1-t-j,l 

I I I I I I 
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Figure 2.2: Parameter estimate against threshold for the daily rainfall data set of Coles 
(2001). 

2.2.3 Parameter Estimation 

The estimation of the GPO model parameters is achieved using maximum likelihood 

estimation (MLE) as discussed for the GEV distribution in Section 2.1.2; see also (see Eliason, 

1993). Other parameter estimation techniques are available including Method of moments 

(MoM) and Probability-Weighted Moments (PWM). The Method of Moments technique 

works by equating sample moments to the corresponding population moments and solving 

for the required parameter estimates, i.e. shape and scale parameters, e and (J respectively. 

Hosking and Wallis (1987) introduce the PWM technique and present comparative results 

between MLE, MoM and PWM, concluding that MoM and PWM are more reliable than 
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ML when sample size is less than 500. However, it is the case that the techniques presented 

in Chapter 6 are developed for large data sets due to the nature of the required output, i.e. 

techniques are developed to produce accurate wave condition forecasts for up to 1000 years 

ahead. As all the data for this work is collected on an hourly basis as discussed in Chapter 1, 

500 observations would amount to just over three weeks of data which would not produce 

suitably reliable long term forecasts. Hence larger data sets are used and the ML technique 

should produce sufficiently accurate parameter estimates, see Tawn and Coles (1994). 

Initially, one of the threshold selection techniques must be utilized to select an appropriate 

threshold choice. Then MLE can be applied (see Davidson and Smith (1990)) . The excesses 

of the variable of interest over a threshold u may be denoted y1, ... , Yk if there are k such 

excesses. In a similar way to the GEV case, the log-likelihood functions for the GPD 

parameters can be divided into two cases, depending on the value of the shape parameter, 

~ = 0: 

provided 1 + u-1~yi > 0 fori = 1, ... , k; otherwise f.(u, ~) = -oo. 

k 

f.(u) = - klogu - u- 1 LYi 
i=l 

(2.2.15) 

(2.2.16) 

Analytic maximization of the log-likelihood is not possible; hence a numerical optimiza

tion algorithm is used. This is implemented in the function 'gpd.fit ' of the R package ismev 

(see Coles and Stephenson (2006)). 

2.2.4 Model Fit Assessment 

The majority of work conducted within this thesis uses the Threshold Excesses Approach 

which involves modelling using a GPD, as described in Section 2.2.1 and 2.2.2. Hence only 

the diagnostic procedures for GPD models are described in this section although similar 

techniques can be applied to the GEV. When assessing the goodness of the GPD fit , there 

are several graphical diagnostic methods that can be applied. These include the following: 
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Probability Plots: 

The probability plot compares an empirical distribution against the fitted GPD (for more 

details, see Beirlant et al. (2004) and Finkenstadt and Rootzen (2004)). The more accurate 

the fit, the nearer to linear the probability plot should be. The points on this plot are defined 

as 

i = 1, ... ,k, (2.2.17) 

where i/(k + 1) is the value of the empirical distribution function corresponding to the ith 

point in the ordered data set, 

if r~ o. (2.2.18) 

(2.2.19) 

Quantile Plots: 

The quantile plot also compares an empirical distribution against the fitted GPO (for 

more details, see Beirlant et al. (2004) and Finkenstadt and Rootzen (2004)). However, this 

comparison is made on the scale of the quantiles, and not on a probability scale, using the 

following points 

i = 1, ... ,k. (2.2.20) 

where 

(2.2.21) 

and 

ii-1(p) = -(J log(y) (2.2.22) 

When the Quantile plot is approximately linear this indicates a satisfactory fit has been 

achieved. 

Density Plots: 

The density plot displays the density function of the fitted GPO overlaid on a histogram 

of the original values. An example of these plots is shown in Figure 2.5. 
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2.2.5 Ret urn Levels and Periods (GPD only) 

The idea of the return period can be best described with an example. In terms of an 

engineering coastal defence project, for instance a breakwater design, the breakwater will be 

constructed to particular criteria. More specifically, the coastal defence "fails" if and only if 

the "worst event" occurs, and so the mean life of the coastal defence is the return period 

of the "worst" event (Castillo et al. (2005) and Coles (2001)). Inferences about return levels 

can often be more useful than inferences about individual model parameters, particularly in 

an engineering design scenario. As we concentrate on the GPD in much of this thesis, we 

shall describe how to calculate return levels from the GPD. 

We make the assumption that a GPD with parameters a and e is an appropriate model 

for the excesses of some threshold u by a variable X. Hence, for x > u, we have 

Pr{ X > xi X > u} = [ 1 + e ( x ~ u)] -l/~ (2.2.23) 

This implies that 

(2.2.24) 

where (u = Pr{X > u}. It is now possible to define the level Xm, known as the m

observat ion return level, that is exceeded on average every m observations or, more 

precisely with probability 1/m, by rearranging the following equation: 

where we are assuming that m is sufficiently large for Xm to be greater than u. Solving for 

Xm we obtain: 

(2.2.26) 

This is of course only valid for e =J 0; when e = 0, we obtain by a simHar argument: 

Xm = U + a log(m(u) · (2.2.27) 

The return level can be shown graphically (Figure 2.5), by plotting Xm against m. A 
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logarithmic scale is used so that linearity is observed when the shape parameter has no 

effect, i.e. the return level plot is concave and tends to infinity if~ > 0 and convex with a 

finite asymptote if~ < 0, and so that return levels for small return periods can be seen. 

The scale of the return levels used is often important in practical application, for example 

coastal defence designs often uses return levels on an annual scale as this corresponds to a 

time scale for this type of design. It is possible to adopt this annual scale, as follows: 

The simple transformation requires the number of excesses per year, ny. Therefore, the 

N year return level , ZN is 

~ =f 0: 

setting m = N ny (2.2.28) 

~ = 0: 

ZN = u + log(Nny(u)· (2.2.29) 

2.2.6 Return Level Estimation 

Estimates of return levels are acquired by substituting maximum likelihood estimates of 

the parameters a and ~ into the above expressions. We also require an estimate of ( u, the 

probability of an individual observation exceeding the threshold u. The probability (u is 

estimated as 

(2.2.30) 

where k is the number of the n events that exceed u. In fact (u can easily be seen to 

be the maximum likelihood estimate of (u, since because of the independence the number 

of excesses of u follows a binomial distribution Bin(n, (u) . Furthermore, it is possible to 

use the properties of the binomial distribution to obtain that Var((u) ~ (u(l - (u)/ n or 

more precisely that Var(() = (u(l - (u)/n, and so the Variance-Covariance matrix for the 

parameter estimates can be written as 

V = 0 v1,1 v 1,2 (2.2.31) 
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Using the delta method (see Freund (1992)), we obtain the variance of the return level as 

where 

evaluated at ((u, a, t) 

Var(xm) ~ \lX~ V V Xm 

[
OXm OXm OXm] 
o(u' 0<7 ' a~ 

[ am{(t- 1, ~-1 { ( m(u){ - 1} , 

- a~-2 
{ (m(u){- 1} + <7~-1 (m(u){ log(m(u)] , 

2.2.7 Applied Example of Threshold Exceedance Approach 

(2.2.32) 

The example in this section uses t he p5data Hind cast data set (which refers to shallow water 

waves hindcast for a water level corresponding to high water springs) from Dr. Peter Hawkes 

at HR Wallingford (see Chapter 1). We will concentrate on significant Wave height (Ha) as 

the variable to be modelled. 

Using the techniques discussed in Section 2.2 we are able to produce a model for the 

excesses of an appropriate threshold. To fit t he t hreshold model we must first ly decide on an 

appropriate threshold choice. The threshold selection techniques based on the Mean Residual 

Life plot and plots of parameter estimates versus thresholds, as discussed in Section 2.2.2, 

are now employed as an empirical methods to aid t hreshold choice. 

Figure 2.3 shows the Mean Residual Life plot from which we can see an area of linearity 

in u between the red lines at u = 1.65m and u = 2.20m. This region's lowest value indicates 

t he appropriate threshold choice, i.e. 1.65m. We also see that we have other regions of 

linearity but thresholds lower than 1.65m are discounted as goodness of fit is lost. This can 

be confirmed by comparing the widths of confidence intervals on return level plots, or by 

calculating log-likelihood values. Similarly higher thresholds do not specify enough extremes 

to justify a satisfactory model representation of the data. 

Figure 2.4 shows parameter estimates against a range of corresponding threshold values 
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Figure 2.3: The Mean Residual Life plot for the p5data Hindcast data set for the wave height 
variable. 95% confidence intervals are shown as the broken lines. 

and indicates a significant change in behaviour at approximately 1.65m. 

As all threshold selection plots are in approximate agreement for an appropriate threshold 

at u = 1.65, we can find the maximum likelihood estimates of the parameters a and ~: 

(a-, t) = (0.392, -0.323) 

with a corresponding maximized log-likelihood of -77.38. The variance covariance matrix 

takes the following form 

[ 

0.00091 
V(a, ~) = 

-0.00143 

- 0.00143] 

0.00292 
(2.2.33) 

which leads to the corresponding standard errors of 0.0302 and 0.0541 for u and {respectively. 

The overall number of observations are 10000 of which 299 are deemed as extreme values 

being in excess of the threshold u set at 1.65m. Using these figures it is possible to complete 
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Figure 2.4: Graph showing parameter estimates against a range of t hresholds. 

t he variance covariance matrix for the ( (, fr, ~). This is achieved by calculation of the 

maximum likelihood estimate of (u = 299/10000 = 0.0299 and its corresponding variance 

estimate Var((u) = (u(1 - (u)/10000 = 0.0000029. Inserting Var((:) into the variance

covariance matrix V for ( ( , fr, ~) we obtain from the sub-matrix V in (2.2.33). 

V = 

0.0000029 

0 

0 0 

0.00091 -0.00143 

0 - 0.00143 0.00292 

(2.2.34) 

The quality of the model can be assessed using the diagnostic plots in Figure 2.5, discussed in 

Section 2.2.4. The model provides a relatively good fit because the points on t he probability 

plot and the quantile plot lie close to the straight line the points on the return level plot 

lie within the computed return level confidence envelope, and the fitted GPD density and 

histogram are similar. In Chapter 6 will present methodology to chase a suitable threshold 

in an automatic way. 
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Figure 2.5: Diagnostic Plots for the GPD fit with threshold 1.65m for the variable wave 
height from the p5data. 

2.3 Bivariate Extreme Value Theory 

Let us now assume that we have observations on not one but two random variables X and Y. 

Previously in t his chapter our approach would have been to model each variable separately, 

taking no account of the dependence between them. This is an assumption that is often 

made but can frequent ly be incorrect in practical applications. In this section we present 

characterizations and models for multivariate extremes, with a focus on bivariate extremes. 

We will revisit the techniques from earlier in this chapter and generalize t hese to t he bivariate 

case. Initially, we begin this section with some useful definitions to aid explanation of the 

joint probability techniques. 

2.3.1 Probability Definitions 

The probability of some event A, given the occurrence of another event B , is known as a 

conditional probability and can be written Pr(AIB) . The definition of a joint probability 

would be the probability of two (or more) simultaneously occurring events of interest to 

produce a particular outcome. A joint probability could be written as Pr(A n B) or Pr(A, B). 
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Consider our two jointly distributed random variables X and Y; the probability 

distribution of X without consideration of Y is known as the marginal distribution of X. 

This is calculated either by summation (discrete random variables) or integration (continuous 

random variables) of the joint probability distribution over Y. This can be expressed in 

mathematical notation as follows: 

Discrete: (Probability Mass Function, pmf) 

Pr(X = x) = :L:Pr(X = x , Y = y) = :L:Pr(X = xlY = y)Pr(Y = y) 
y y 

where Pr(X = x, Y = y) is the joint distribution of X and Y, and Pr(X = xlY = y) is the 

conditional distribution of X given Y = y defined to be Pr(X = x, Y = y)/Pr(Y = y). 

Continuous: (Probability Density Function, pdf) 

fx(x) = 1 !x,v(x, y)dy = 1 fxlv(xJy)fv(y)dy 

where !x,v(x, y) is the joint distribution of X and Y, and fxiY(xJy) is the conditional 

distribution of X given Yy =defined to be !x,v(x, y)j fy(y) . Figure 2.6, taken from Annis 

(2006) , clearly illustrates the relationship between the marginal, conditional and joint 

probability density functions . 

2.3.2 T he Bivariate Group Maximum Approach 

In our situation where information is available for several continuous variables, techniques are 

required to characterize the behaviour of these variables and their relationship to one another. 

Let (X1, Y1), (X2 , Y2) ... be a sequence of vectors that are independent observations of a 

random vector having distribution function F(x , y). Recall that classic univariate Extreme 

Value Theory is based on blocking the data and extracting group maxima; this idea can be 

transferred to the bivariate case by setting: 

Mx,n = _max {Xi} 
1-= l , ... ,n 

and My,n = . max {Yi} 
t.= l , ... ,n 
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Figure 2.6: Diagram illustrating the relat ionship between the marginal, conditional and 
joint probability density functions, taken from Annis (2006). The contours indicate the joint 
density of continuous random variables X and Y, denoted fx.Y · 

where Mn is a vector of componentwise maxima and the index i where the maximum of 

the Xi sequence occurs is not necessarily the same as the index of the maximum of the Yi 

sequence. In order to build the multivariate theory, first consider each variable separately. 

Let us assume that both Xi and Yi follow the standard Frechet distribution, with distribution 

function 

F(z) = exp(-1/z), z > 0. 

Using Theorem 2.1.1.3, this is a special case of the GEV distribution with parameters 

f.£ = 0, a = 1 and ~ = 1, after transformation by addit ion of 1. Now if X 1 , X2 , .• • is a 

sequence of independent standard Frechet variables, and if an = n and bn = 0, we have that 

Fn(nz) 

[exp{ -1/(nz)}t 

exp( -1/z) 
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for all n , for each fixed z > 0. A similar result would hold for Y1, }2, .. . and My,n· Hence 

the distribution of each suitably scaled maximum of Frechet random variables. Hence in the 

multivariate case, if we want to obtain standard univariate results for each margin, the Mn 

must be re-scaled to 

The following theorem presents the characterization of the limiting joint distribution of 

M~, as n -+ oo, providing a bivariate interpretation of the Extremal Types Theorem (see 

Theorem 2.1.1.3 and Coles (2001)) 

Theorem 2.3.2.1. Let M~ = (M;,n, M;,n) be defined by {2.3. 7), where the (Xi, }i) are 

independent vectors with standard Frechet marginal distributions. Then if 

Pr{M;,n ~ x , M;,n ~ y} ~ G(x, y), 

where G is a non-degenerate distribution function, then G takes the form 

G(x, y) = exp{-V(x, y)}, x > 0, y > 0 

where 

1
1 (w 1 w) V(x, y) = 2 

0 
max x, -y- dH(w) (2.3.10) 

and H is a distribution function on [0, 1] satisfying the mean constraint 

11 

wdH(w) = 1/2 (2.3.11) 

From this theorem, the family of distributions obtained as the limit of equation (2.3.8) 

is known as the class of bivariate extreme value distributions. This class is in direct 

correspondence with the set of distribution functions H on [0, 1]. If H is differentiable 

with density h satisfying J0
1 

wh(w)dw = 1/2, the integral for V(x , y) becomes 

1
1 (w 1 w) V(x , y) = 2 

0 
max x' -y- h(w)dw. 
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Bivariate extreme value distributions are also created using measures H that are not 

differentiable. As an example - see also Coles (2001), pages 146- 147- if H is a measure 

that allocates mass 0.5 on w = 0 and w = 1, then equation (2.3.11) is satisfied, and it can 

be shown that 

V(x, y) = x- 1 + y- 1 

using equation (2.3.10). The corresponding bivariate extreme value distribution is 

G(x, y) = exp{ -(x- 1 + y- 1 
)}, x > 0, y > 0. (2.3.12) 

This function can be factorized across x and y, and hence corresponds to independent 

variables. If H is a measure that places all its mass (i.e. unity) on w = 0.5, then following 

the same procedure we obtain a different bivariate extreme value distribution 

G(x, y) = exp{- max(x-1
, y- 1 

)}, x > 0, y > 0. (2.3.13) 

This is the distribution function of variables which are marginally standard Frechet, but 

which are perfectly dependent: X = Y with probability 1. It is possible to obtain the 

complete class of bivariate limits using the Generalized Extreme Value distribution (GEV). 

This can be achieved by letting 

Hence, the complete family of bivariate extreme value distributions, with GEV margins with 

parameters (J.Lx, ax, ~x) and (J.Ly , ay , ~y), has distribution function of the form 

G(x, y) = exp{-V(x, y) } , (2.3.14) 

provided that 1 + ~x(x- J.Lx)fax > 0 and 1 + ~y(y- J.Ly)/ay > 0, if the function V satisfies 

Equation (2.3.10) for some H that satisfies the mean constraint (2.3.11). 

We now present a sketch justification of Theorem 2.3.2.1. From (2.3.10) we can see that 
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for any given constant a > 0 t he following holds: 

we say t hat V is homogeneous of order -1. It t hen follows from equation (2.3.9) that 

for n = 2,3, .... (2.3.15 ) 

This means that if (X, Y) has G as its distribution function, t hen after re-scaling by n-1, 

M; will also have distribution function G. Hence, G now has an equivalent multivariate 

version of the max stability property given in Definition 2.1.1.5. This property forms the 

proof of Theorem 2.3.2.1, using the argument t hat limit distributions in equation (2.3.8) 

must have the property of max stability. Using equation (2.3.15) it is possible to show that 

distributions of the same type as equation (2.3.9) have the max stability property of max 

stability and are also t he only distributions with this property, condit ional on the marginal 

specification. 

From Theorem 2.3.2.1 we have a complete characterization of bivariate limit distribut ions. 

However, we have a very wide class of possible limits which are only constrained by equations 

(2.3.10) and 2.3.11 , causing t he limit family to have no general finite parameterization. This 

problem can be overcome using parametric sub-families of distributions for G; hence we work 

with a small subset of the complete class of limit distributions G. 

Parametric families for H on [0, 1] are required to have mean equal to 0.5 for every value 

of their defining parameters. When substituted into equations (2.3.10) and (2.3.9) , the 

corresponding family for G is obtained. There are several possible families for G that can 

be considered; see Kotz and Nadarajah (2002), Tawn and Coles (1994), and Joe (1997). 
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2.3.3 Bivariate Distribution Functions (bdf) 

Logistic 

In the special case when His a symmetric logistic distribution we have the following bdf 

(see Tawn {1988) and Kotz and Nadarajah {2002)): 

G(x, y) = exp {- (x- 1/a + y- 1
/

0
)

0
} , X> 0, y > 0, (2.3.16) 

for a parameter a E (0, 1). This distribution function is derived from (2.3.10) by letting the 

density function be 

(2.3.17) 

on 0 < w < 1. 

Asymmetric Logistic 

Alternatively, if H is an asymmetric logistic distribution we have the following bdf (see 

Tawn (1988) and Kotz and Nadarajah (2002)): 

[ 
1 _ '1/J 1 _ '1/J { (1/J ) 1/a (1/J ) 1/a}a] G(x,y) = exp - x x- y Y- ; + ; (2.3.18) 

where 0 ~ '1/Jx, '1/Jy ~ 1. Similarly to the symmetric Logistic bdf, we require the following 

density function to be used in (2.3.10) to obtain (2.3.18), 

(2.3.19) 

Negative Logistic 

The negative asymmetric logistic distribution has the following bdf (see Kotz and 

Nadarajah (2002)) : 

[ 
1 1 { (1/Jx)a (1/Jy) 0

}

1/al G(x,y) = exp -x- y + ~ + y (2.3.20) 

where 0 ~ '1/Jx, '1/Jy ~ 1. Similarly to the asymmetric logistic bdf, we require the following 
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density function to be used in (2.3.10) to obtain (2.3.20): 

(2.3.21) 

Bilogistic 

The bilogistic distribution function with parameters a and {3 is (see Coles (2001) and 

Tawn and Coles (1994)) 

{ (
q)l-a (1 q)l- /3 } G(x, y) = exp - x - - y- (2.3.22) 

which is obtained by inserting the following density function into (2.3.10) 

(2.3.23) 

on 0 < w < 1, where 0 < a < 1 and 0 < {3 < 1 and q = q( w; a, {3) is the root of 

(1 - a)(1 - w)(1- q) f3 - (1 - {J)wqa = 0 

Negative Bilogistic 

The negative bilogistic distribution function is as follows (see Kotz and Nadarajah (2002) 

and Tawn and Coles (1994)) , 

{ 
1 1 (q)l+a ( 1 -q) l+/3 } G(x, y) = exp -x - y + x + - y- (2.3.24) 

This is obtained by inserting the following density function into (2.3.10), 

(2.3.25) 

on 0 < w < 1, where a> 0 and {3 > 0 and q = q(w;a,{J) is the root of 

(1 + a)(1- w)qa- (1 + {3)w(1 - q)t3 = 0 
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Dirichlet ( Coles- Tawn) 

The Dirichlet or Coles-Tawn distribution function takes the following form (see Tawn 

and Coles (1994) and Coles and Tawn (1991)) 

G(x, y) = exp { -~ [1- Be(q; a+ 1, .B)]- tBe(q; a, .B + 1)}, 

which is obtained by inserting the following density function into (2.3.10) 

a,Br(a + .B + 1)(aw)0
-

1(,8(1- w)).B- 1 

h(w) = 2f(a)r(.B)(aw + .8(1- w))o+.B+l 

( 2.3.26) 

(2.3.27) 

on 0 < w < 1, where a > 0 and .B > 0. Here Be and r are the usual beta and gamma 

functions respectively. 

2.3 .4 Modelling the Group Maximum Approach 

Coles (2001) describes when modelling data from the Group Maximum approach we adopt 

Theorem 2.3.2.1 as a basis to work from. Consider the sequence of componentwise block 

maxima (zi,l,Z2,l), ... , (zl,m,Z2,m) created from the original series (xl ,YI) , ... ,(xn,Yn) of 

independent data vectors by blocking into m blocks. Assume the block maxima can be 

marginally modelled using the GEV distribution; more specifically for each j , ZiJ is considered 

an independent realization of a random variable Zi, for i= 1, 2, following a GEV: 

Now to obtain estimates (P,i , ai, ~i) we apply maximum likelihood estimation to the separate 

series. Hence, we may transform the variables into 

( 2.3.28) 

which are approximately distributed according to a standard Frechet distribution. Substi

tution of observations (z1.3, z2.3) into equation (2.3.28) returns (z1.3 , z2.3) which is a sequence 

of independent realizations of a vector with bivariate extreme value distribution G given 
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by (2.3.9).By differentiation, the probability density function is 

g(x,y) = {Vx(x, y)Vy(x, y)- Vx,y(x, y)}exp{-V(x, y)} , x > O, y > 0, 

where Vx , Vy and Vx,y denote the partial and mixed derivatives of V respectively. This leads 

to the likelihood 
m 

L(O) =IT g(zl ,j, z2,j), (2.3.29) 
i=l 

with the corresponding log-likelihood 

m 

f(O) = L logg(zl ,j , z2,j) · (2.3.30) 
i=l 

where e represents the parameters of t he adopted model for G or g, as discussed in 

Section 2.3.3, and of the marginal GEV parameters in (2.3.4). In this way we combine 

the above transformation and model fitting steps. 

2.3.5 Bivariate Threshold Excess Model 

When discussing univariate extreme value theory, we highlighted the disadvantage of the 

group maximum approach in comparison to t he 'Threshold Excess Approach' . We now 

look to extend the univariate 'Threshold Excess Approach' to the bivariate case. The 

bivariate theory presented in this section can be used in future applied work. The class of 

approximations to the tail of univariate distribution function F is described by the following 

family that derives from Theorem 2.2.1.1 via equation (2.3.23) 

G(x) = 1 - ( { 1 + ~(x; u) } - l / f. , x > u. 

Based on this equation there are parameters(, ~ and e7 that, for a sufficient ly high threshold 

u, imply that F(x) ~ G(x) for x > u. Using Equation (2.3.31) , it is possible to create a 

bivariate equivalent, which will give an approximation to t he arbitrary joint distribution 

F(x , y) on the regions x > ux, y > Uy, for large enough thresholds Ux and Uy · 

Let (x1, y1) , •. . , (xn, Yn) be independent realizations of the random variable (X, Y) with 
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joint distribution function F. From (2.3.23) each random variable has an associated threshold 

and marginal distribution defined by a set of parameters. For example the random variable 

X will have threshold Ux and marginal distribution of the form given equation (2.3.31) with 

parameter Set ( (x l 0" X l ex) • 

The following transformations create variables (X, Y) which have distribution functions 

which have standard Frechet margins for X> Ux and Y > Uy: 

Now using Theorem 2.3.2.1 and assuming n is large, we have 

F(x, ii) { - }1/n pn(i, Y) 

~ [exp{-V(i/n, yjn)}]11n 

exp{-V (i, ii)} 

(2.3.31) 

(2.3.32) 

where F is the joint distribution function of X and Y; the last equality is due to the 

homogeneity property of V. Therefore, since F(x, y) = F(i, y), the following holds 

F(x, y) ~ G(x, y) = exp{-V(i, y)} , x > Ux, y > Uy (2.3.33) 

so that the bivariate distribution function G(x, y) = exp{-V(i, y)} is an approximation to 

the bivariate tail. Making inference about this model is more complicated than for the group 

maximum case, as the thresholds define four regions. These regions are the following: 

no excess 

excess in X 

excess in Y 

Ro,o = ( -oo, Ux) X ( -oo, Uy) 

Rt,o = [ux, oo) X ( -oo, uy) 

Ro,1 = ( -oo, Ux) X [Uy, oo) 

excess in both X and Y R1,1 = [ux, oo) x [Uy, oo) 

If the data point lies in R1,1 then the model defined in equation (2.3.33) holds. For all 

the other regions, F is not defined and so the likelihood must be altered to allow for this. 

49 



Chapter 2. Literature Review of Extreme Value Theory 

The final likelihood function is defined as 

n 

L((); (x1, Yl) , · .. , (xn, Yn)) =IT 7J;((); (xi, Yi)), (2.3.34) 
i=l 

where() is the vector of parameters ofF and 

EPF I 
lh8y (x ,y) if (x, y) E R1,1 

8F I if (x, y) E R1,o 
'lj; (O; (x, y)) = 8x (x,u~) 

8F I if (x, y) E Ro,1 8y (u.,,y) 

F(ux, Uy) if (x, y) E Ro,o 

All the terms within the likelihood are derived from the joint tail approximation, given 

in equation (2.3.33) .It is for this reason that 'lj;(() ; (x, y)) = F(ux, uy) if (x, y) E Ro,o for 

example: since f (x, y) is not known for (x, y) E Ro,o, the contribution to the likelihood is 

replaced by the probability Pr(X < Ux, Y < uy) = F(ux, Uy), the form of which is known 

(by continuity of G). 

The standard dependence modelling techniques, for bivariate extreme values, which have 

been reviewed in this chapter, so far, have all relied on the assumption of max-stability. This 

type of modelling can often be insufficient, due to the lack of flexibility in the models,when 

looking at weaker forms of dependence or near independence. Ledford and Tawn (1996) 

present an alternate technique to characterize the joint tail region. The development was 

based on a simple bivariate case and introduced a coefficient of tail dependence parameter. 

They were able to show that the new coefficient dictated the dependence structure and could 

be manipulated to encompass a range of dependence structures from bivariate distributions. 

Ledford and Tawn (1997) t hen used t his coefficient to develop a specific joint probability 

model structure, establishing the coefficient as a driving factor in dependence modelling. 

In an impressive recent paper, Ramos and Led ford (2009) address some of the limitations 

of previous work by Ledford and Tawn (1996) and Ledford and Tawn (1997). In particular 

t hey propose a modelling framework based on a specially developed limit distribution in 

place of the methodology developed for specific examples in Ledford and Tawn (1997). 
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2.3.6 Applied Example of a Bivariate Threshold Excess Approach 

In Section 2.2.7, we saw an example of a univariate threshold excess model. We now present 

a bivariate equivalent using the same data set and selecting the two variables wave height Hs 

and wave period Tz to be modelled. The dependence between the variables can be modelled 

using a range of different dependence models discussed in Section 2.3.2. For this example 

we will be using the Logistic model, although this may not be the most appropriate choice 

of dependence model. The process uses (2.3.16) to produce a maximum likelihood estimate 

of the dependence parameter a. When deciding on the most suitable choice of dependence 

Plot of Wave height-period pairs 

0 

QO Q5 1~ 1B ~0 2B ~0 ~5 

Wave height (m) 

Figure 2.7: Scatter plot of wave period against wave height values. The horizontal and 
vertical lines indicate the thresholds defining the regions of excess or no excess. 

model we have several different methods available to us. The first would be the negative 

log-likelihood (NLLH) as discussed in Tawn and Coles (1994), which for fixed thresholds 

chooses the model with the smallest NLLH as the most appropriate; we adopt this approach 

in this project. An alternate method for dependence model choice would be investigation 

of AIC (Akaike's Information Criterion) values. AIC compares the goodness-of-fit of several 

competing models and ranks them according to their AIC, the one having the lowest AIC 

being the best. The general case of AIC is described as follows. If we have some statistical 
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model with parameters determined by the method of maximum likelihood, AlC was then 

defined by 

AIC = 2k- 2ln(£) (2.3.35 ) 

where k is the number of parameters in our statistical model, and L is the maximized value 

of the likelihood function for the estimated model (see Akaike (1974) for further details). 

We begin by looking at Figure 2.7 which shows wave period plotted against wave height. 

Sufficiently large marginal thresholds Ux and Uy are also shown. The determination of 

threshold values in the univariate case was discussed in Section 2.2.2. Using the thresholds 

Ux = 2.45 and Uy = 5 for the wave height and wave period marginals respectively, 

maximization of the likelihood (2.3.34) gave the estimate a= 0.711 for the model defined in 

(2.3.16) with a standard error ofO.Oll. This indicates a model with a reasonably weak level of 

dependence, but is however significantly different from independence. Further investigations 

into the effect of using different dependence functions are discussed in Tawn and Coles (1994) 

and Joe (1997). 
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JOINSEA: The Joint Probability of Waves and 

Water Levels 

In this chapter we review the JOINSEA software, discussing the methodology used and its 

implementation into the software. We review this software here as in Chapter 6 we introduce 

a new methodology to improve the modelling of extreme values and provide a comparison 

to the techniques used in JOINSEA. 

3.1 What is JOINSEA? 

HR Wallingford and Lancaster University were jointly commissioned by D.E.F.R.A (Depart

ment for Environment, Food and Rural Affairs, formerly MAFF) to research joint probability 

techniques for use in coastal defence strategies. The aim of the research was to produce 

a reliable technique and consequently software to improve the design of coastal defence 

structures. The resulting reports present a new approach for joint probability modelling 

of large wave heights and high water levels (see Wallingford, 1998a,b). The methods that 

were available before JOINSEA's development had limitations which seriously affected the 

accuracy of their results. These included: 

• The empirical estimates for quantifying dependence between variables, in combination 

with statistical estimates for t he distributions of individual variables, were generally 

considered unreliable at larger values as a means of joint probabilty modeling. 
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• The assumption that wave period is given exactly by significant wave height and the 

estimated constant wave steepness was considered invalid. 

• The assumption that the estimate of the probability of failure is based on a subset of 

the true failure region was considered to reduce the accuracy of the method. 

The JOINSEA software was designed to overcome these limitations. It was written in 

the FORTRAN 90 computer programming language which is used in many engineering 

communities for developing computer code. The software was written as five interlinked 

programs: 

• BVN(Bivariate Normal Distribution) 

• MIX(A mixture of two Bivariate Normal Distributions) 

• SIMBVN(Simulation of realizations from a Bivariate Normal Distribution) 

• SIMMIX(Simulation of realizations from a mixture of two Bivariate Normal Distri

butions) 

• ANALYSIS 

These programs will be discussed in detail in Section 3.3. The program layout is given in 

Figure 3.1. The programs must be run in sequence as the output from a previous program is 

the input to the next. The first program is either BVN or MIX with the choice of this being 

dependent on the data; usually BVN is fitted to data where the extreme wave conditions at 

the location all come from a single population, and MIX is used when the wave conditions 

are from two sources (e.g. swell waves as well as wind waves). 

The techniques employed in the JOINSEA software were developed based on the 

assumption that t he data would be well estimated by the distributions used in this modelling. 

However it should be noted that this is a limitation to this methodology, as we believe a 

large amount of data is required for these assumptions to hold. Furthermore, we note that 

JOINSEA specifies the thresholds in the marginal extreme model as the 95% quantile and so 

makes the assumption that the model is relatively insensitive to threshold choice. However, 

we believe threshold choice can influence model goodness-of-fit and we will discuss this in 

detail in Chapter 6. 
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Diagnostic 

BVN MIX 

SI M MIX 

SIM Data 

Figure 3.1: Flow diagram showing the JOINSEA program structure, taken from Wallingford 
(1998a,b). 
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3.2 Joint Probability in JOINSEA 

JOINSEA utilizes a joint probability technique to obtain an estimate of the probability 

that a structure variable would exceed a specified critical level so resulting in the failure of 

the engineering structure. This is highly dependent on the joint analysis of the bivariate 

sea condition variables X (wave height, wave period) from which the distribution of the 

structure variable is established. 

In engineering terms, the structure variable is typically a variable which characterizes 

the behaviour of the structure based on the effect of specific forces. An example of this 

type of variable would be crest level which is the height of a sea defence. If crest level is 

poorly specified as a result of underestimation of extreme sea conditions, it is possible that 

overtopping of coastal defences can occur causing flooding of flood risk areas. Crest level is 

not, however, the sole factor determining overtopping. 

Failure of the coastal defence occurs when the structure variable l::.(X) is greater than a 

critical level u: l::.(X) > u. The extreme values of X are a set Au, as follows: 

Au = {X : 6( X) ~ U}. 

The estimated joint distribution of sea condition variables can be used as a preliminary 

design tool for coastal defences; it uses the joint probability of specified sea conditions to 

calculate the probability of failure of a particular design variable. 

The key aim is to find an appropriate model that fits the data from the sea condition 

variable and that can then be used to simulate future conditions, which the defence can 

then be designed to withstand; in this way the sustainability and accuracy of the design 

specification is increased. 
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The joint probability technique adopted in JOINSEA is summarized as follows: 

1. An estimate of the joint density of the sea conditions is calculated, using the following 

approaches: 

• Estimate distributions for each separate variable, 

• Estimate the dependence between the separate variables. 



3.3. Program Structure 

2. An estimate of the probability of failure can be calculated by integration of this 

estimated joint density over the failure region of the sea conditions given by the set 

3. The final stage is a simple conversion of time scales. The time scale is updated from 

that of the observations to annual time unit. 

DATA 
(sea condition variables) 

/ ~ 
VARIABLE 1 I VARIABLE 2 

Fit extreme value Fit extreme value 
Distribution model (GPD) Distribution model (GPD) 

or or 
Regression model (Steepness) Regression model (Steepness) 

L._..._. Transform to I--normal scales 

! 
Fit bivariate normal 

model (dependence model) 

J 
Output model used to 
simulate future data 

Figure 3.2: Flow diagram showing the BVN program procedure, taken from Wallingford 
(1998a,b) 

3.3 Program Structure 

We now discuss the individual elements of the JOINSEA program, as shown in Figure 3.2. 

3.3.1 Bivariate Normal Distribution Program (BVN) 

This program's main function is to assess the upper joint tail of the distribution of the 

variables of interest and then fit to a Bivariate Normal Distribution. This is performed in 

57 



Chapter 3. JOINSEA: The Joint Probability of Waves and Water Levels 

two stages: first , separate Generalized Pareto distribution (GPD) models are fitted to the 

top 5% of each marginal. This allows each tail to be transformed to normality. A bivariate 

normal model is fitted to the transformed data. 

The program selects extreme values by setting a threshold for exceedance, hence 

determining those values to be modelled. A numerical study using several data sets suggested 

that extremes predictions were relatively insensitive to the threshold chosen and that the 

95% quantile was a reasonable value for the threshold, meaning that the GPD is fitted to 

the top 5% of observed values of the variable. The choice of threshold for GPD modelling 

was discussed in greater detail in Chapter 2. 

We can think of the above procedure of defining thresholds and then transforming 

marginal tails to normality so that a bivariate normal distribution can be fitted as a bivariate 

normal threshold modelling procedure. 

To describe the this procedure it is useful to introduce the Multivariate Normal 

Distribution and build from this idea. Firstly, we denote X = (X1, ... , Xkf as a random 

variable which follows a multivariate normal distribution with normal marginal distributions 

X;,"' N(J..L;,, o}). Let the mean vector J..L = (J..£1, ... , J..Lk)T. Then X has joint density function 

where I El is the determinant of the variance covariance matrix 

O"f 0"1 O"kPlk 

E= 
O";,O"jPi1 

(3.3.2) 
O"jO"i Pji 

O"kO"lPkl (Jz 

in which p;,1 is the correlation of X;, and X1 , which is related to the covariance O";,j between 

variables X ;, and X1 as follows: 

It follows from matrix algebra that the joint density for the bivariate case can be written as 
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follows 

For the JOINSEA approach it is necessary to transform each GPD marginal to follow a 

standard normal distribution (tt1 = tt2 = 0, a1 = a2 = 1), so that the dependence model 

fitted may be assumed to be a bivariate normal distribution with standard normal margins. 

The joint distribution of the bivariate normal random variable is denoted 

where (Xi, Xi) denotes the original input variables after transformation to normality. 

Assuming that the original marginals X1 and X2 are fitted to a GPD above thresholds 

u1 and u2, it follows that from (2.2.23) that Fx,(x;) = 1- (..,{1 + ~;(x;- Ui)/a;}~l/{•, 

forx; > U; where (u, = Pr(X; > U;) and a; > 0. We transform the excesses x; > u; to 

standard normality using the probability integral transform 

x; = 4>- 1(Fx,(X;)), fori= 1,2, 

with transformed thresholds 

u; = 4>- 1(Fx,(u;)), fori= 1,2, 

where here 4> is the cumulative distribution function of the standard normal. Fitting the 

dependence model is possible once the variables are in the correct form, using maximum 

likelihood estimation. The likelihood contribution for the observation (xj, x2) is 

where 1/l(xj, x2) is the joint density function of the bivariate normal distribution with standard 
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normal marginals. 

As mentioned previously, the GPD is fitted marginally to the data from each variable 

using maximum likelihood estimation. As this procedure is applied to both variables, two 

thresholds are required. These define four distinct regions for all the data. The diagram in 

Figure 7.16 shows these regions for a particular choice of u1 and U2- A data point (x1 , x2 ) 

1.() ..... 

0 ..... 
~ 
"0 
0 ·c: 
4l 
ll. 
4l 
> 

~ 
1.() 

0 

0 

Plot of Wave height-period pairs 

2 3 4 

8 0 
0 

0 

0 

0 

0 

o no exceedance 
o exceedance in 
o exceedance in Hs 
o exceedance in Tz 

5 6 7 

'Nave height (m) 

Figure 3.3: Graph shows Wave height against wave period with associated thresholds for 
each marginal. This defines four distinct regions for all the data. 

belongs to one of the four regions. Thus a similar situation to that discussed in Section 2.3.5 

results, with the likelihood contribution from point (x1, x2 ) depending on the region to which 

( x1 , x 2) belongs. The specific likelihood contributions for each region are as follows: 

• X1 ~ u1 and x2 ~ u2: likelihood contribution: 
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• X1 > u1 and x2 ::=:; u2: likelihood contribution: 

• x1 ::=:; u1 and x2 > u2 : likelihood contribution: 

• x1 > u1 and x2 > u2 : likelihood contribution: 

where 

dxj (,., {l t: ( )/ }-1-1/{< 
dx; 1>(xi)a; + <,i x; - u; a; + . 

following from (3.3.6), where here 1> is the standard normal probability density function. 

The estimates of the model parameters obtained by maximizing the associated likelihood 

are fed directly into the corresponding simulation program which can be used to generate 

time series for future sea conditions. These conditions then form the basis of creating an 

effective and sustainable coastal defence design. 

3.3.2 Two Bivariate Normal Distributions Program (MIX) 

This program follows a similar process to the BVN, with subtle changes to account for a 

mixture of distributions instead of just one distribution. The main difference is in using 

a dependence structure based on a mixture of two bivariate normal random variables. 

This would be appropriate when waves conditions come from two differing populations; 

for example, swell generated waves entering the system and locally generated wind waves 

from within the system. 

The MIX program allows variation in the dependence above the threshold unlike the 

single BVN program where dependence is assumed to be constant. This assumption of 

constant dependence can lead to inaccuracy when the model is used to simulate data through 
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extrapolation. In the programs the correlation between the variables is checked for constancy. 

If it is constant, then BVN is sufficient; otherwise the MIX program must be used to account 

for the addition populations of wave conditions. 

Unlike the single BVN, the MIX program assumes standard normal marginal variables 

rather than those from an extreme value distribution, and also uses a dependence model 

that utilizes a mixture of bivariate normal random variables. 

The MIX program models have several parameters to describe the differing form of 

dependence, and are again fitted using maximum likelihood. The parameters can be divided 

into three categories: 

1. PM is a single parameter which describes the proportion of data related to one type 

of dependence: PM = 0 or PM = 1 would indicate that a single dependence type is 

present. 

2. P1 and P2 are the correlation parameters which are associated to each dependence type. 

3. There are four Jl parameters which indicate the change in mean level among events 

generated from the differing populations once variables have been transformed to the 

standard normal marginal scale. 

It is possible to obtain the joint distribution function and associated likelihood; see 

Wallingford (1998a) and Wallingford (1998b) for full details. 

3.3.3 SIMBVN and SIMMIX Programs 

Both programs take their inputs from their respective joint probability prequel programs, 

BVN and MIX. SIMBVN utilizes the parameter values from the BVN that was fitted to the 

marginals. These are used to simulate larger data sets for designated return periods, for 

example 50 years worth of simulated wave heights. 

To begin the simulation of realizations, the diagnostic file which gives information on the 

degree of correlation at different thresholds is assessed. Then, if the correlations are assessed 

to be constant a threshold is chosen. As the inputs are focused on the use of return levels 

in years, another input specifying the number of events per year is required. 
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From resulting simulated data, the extremes can also be calculated and hence a design 

condition can be extracted, i.e. the worst case scenario can be identified and the design can 

be made appropriate to this. 

3.3.4 Analysis Program of Joint Exceedance Extremes and Struc-

tural Response Functions 

The last sub program in the JOINSEA software is called ANALYSIS. This program is not 

based on fitting distributions, but by using a count back approach to specify the extremes for 

use in the design and assessment of sea defences. The structural response functions including 

overtopping, run up and force, can be calculated using the generated future sea conditions. 

The structural response variables included in the ANALYSIS program are: 

• Overtopping rate This is the overtopping rate on a smooth slope calculated using 

the method of Owen (1980a); 

• Run-up The runup levels on a smooth slope is calculated using the formulae described 

in CIRlA/CUR (1991); 

o Wave force on a vertical wall Methodology in this section of the program is based 

on Allsop et al. (1996) which calculates the wave forces on vertical walls; 

• Armour size The rock armour size for a sea wall is calculated using the formulae 

described in CIRlA/CUR (1991). 

Details of all structural response functions can be found in Reeve et al. (2004) and Sorenson 

(1978). The main outputs of this program are marginal extremes for wave height and water 

level which are used to return a tabulated summary of return levels, and the joint probability 

extremes which also give the joint return levels, at return periods specified by the user. 
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3.4 Modern Approaches 

In Section 2.3 we discussed in detail existing methodology for modelling bivariate extremes. 

An impressive very recent paper by Ramos and Ledford (2009) has extended the existing 

treatment of multivariate extremes by developing an asymptotically motivated representation 

of extremal dependence that also encompasses asymptotic independence. 

Ramos and Ledford (2009) construct parametric models that can accommodate asymp

totic dependence, asymptotic independence and asymmetry within a straightforward 

parsimonious parameterization. They provide a fast simulation algorithm and detail 

likelihood-based inference including tests for asymptotic dependence and symmetry which 

are useful for submodel selection. In this way Ramos and Ledford (2009) provide significant 

extensions of both the theoretical and the practical tools that are available for joint tail 

modelling. This more recent work offers many advantages over the JOINSEA approach. 
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An Overview of the Bayesian Approach, and 

Non parametric and Quantile Regression 

In this chapter we provide a review of the Bayesian approach to statistical inference, and of 

the standard techniques of non parametric and quantile regression. We include this literature 

review of statistical techniques as they are the basis of the new methodologies developed in 

Chapter 7. 

We propose to use quantile regression as an improved method of modelling wave condition 

data, such as the data set shown in Figure 4.2. Quantile regression has been shown to 

provide significant benefits in modelling data in areas such as finance or medical statistics as 

quantile regression curves can provide a better inferential picture from the data compared 

to a standard regression approach. Yu et al. (2003) highlight the potential benefits in 

modelling extremes values using quantile regression, showing the relation between quantiles 

and return levels. We will build on their suggestion to illustrate the potential benefit of 

quantile regression techniques in coastal engineering applications. 

We begin by introducing the main concepts of the Bayesian approach and follow this 

with an outline of the nonparametric spline based techniques of regression modelling. We 

finally introduce the idea of quantile regression and give a summary of some fundamental 

concepts of this regression procedure. We finish the chapter by reviewing more recent work 

showing the developments due to combinations of the concepts presented in the chapter. We 
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draw particular attention to the paper by Yu and Moyeed (2001) as this provides a basis for 

techniques developed in Chapter 7. 

4.1 The Bayesian Approach to Statistical Inference 

Both Bayesian and non-Bayesian approaches to statistical inferences draw conclusions about 

model (or population) parameters from data. Both approaches are based on a similar 

framework of components: 

• A set of data x. 

• A set of model (or population) parameters (3 

• A data model7r(xlf3) 

Bayesian inference differs from non-Bayesian inference as it uses Bayes theorem to obtain 

7r((Jjx), the conditional probability density of the set of parameters given the data. Inference 

is based on this conditional probability density. In non-Bayesian inference, conclusions are 

based on 7r(xif3) the conditional probability density of the data given the parameter. Bayes 

Theorem takes the following form: 

Theorem 4.1.0.1. Bayes Theorem If A and Bare two events with P(A}> 0. Then 

P(BIA) 
P(B)P(AjB) 

P(A) 

ex P(B)L(AIB) 

where 
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• P(BIA) is the conditional probability of B given A, also known as the "posterior" 

probability of B given that the event A has occurred. 

• P(B) is the probability of B also known as the "prior". 

• P(AIB) is the conditional probability of A given B. 

• P(A) is the probability of A. 



4.1. The Bayesian Approach to Statistical Inference 

• L(AIB) is referred to as the "likelihood" when thought of as a function of B. 

To transfer Bayes theorem in Bayesian inference requires specification of the "prior" 

density 1r({3) of the set of model parameters /3 now thought of as random variables, and of 

a likelihood function 7r(xl/3) for random variables rather than for events. We therefore alter 

Bayes Theorem to: 

Theorem 4.1.0.2. Bayes Theorem (restated) 

1r(/3lx) 
7r(/3)7r(xl/3) 

7r(x) 
7r(/3)7r(xl/3) 

I 7r(/3)7r(xl/3)d/3 

ex 7r(/3)7r(xl/3). 

Hence, the posterior probability density 7r(/31x) is proportional to the prior probability 

density 1r(/3) multiplied by the data model7r(xl/3), referred to as the likelihood when thought 

of as a function of /3. Bayesian inference can depend on the choice of prior density for /3 as this 

represents the prior belief about /3 before the information in the data is introduced. From 

this posterior density we can also obtain posterior moments, quantiles, etc by expressing 

them as the posterior expectation of a function g of /3, 

E[ (/3)l ] = I g(/3)7r(/3)1r(xl/3)d/3 
g x I 7r(/3)7r(xl/3)d/3 

The Bayesian approach to statistical inference can therefore be summarized as the following 

steps: 

• Specification of a data model or likelihood 7r(xl/3), 

• Specification of a prior density 1r(/3), 

• Calculation of the posterior density 1r(/3lx) using Bayes Theorem; 

• Extracting inference about the model parameters /3 from the posterior distribution. 
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4.2 MCMC: Markov chain Monte Carlo 

When using Bayesian methodology in practice, it is often the case that the computation of 

the posterior density 1r(,6[x) given in ( 4.1.2) is not simple due to difficulties associated with 

computing the possibly multidimensional integral J 7r(,6}7r(x[,6)d,6. To overcome difficulties 

associated with this integral we can use a numerical simulation based technique called Markov 

chain Monte Carlo (MCMC). We will now introduce MCMC, discussing its constituent parts 

separately. 

4.2.1 Monte Carlo Integration 

To simplify notation let us assume that we have a possibly multidimensional random 

variable X distributed according to probability density function known upto a constant 

of proportionality. Then 

E[ (X)] _ J g(x)1r(x)dx 
g - J 1r(x)dx ' 

for some function of interest g(X), in which 1r is proportional to the probability density 

function of X. The purpose of Monte Carlo integration is to use realizations X~, t = 1, ... , n, 

of X and using these to approximate E[g(X)] as 

1 n 

E[g(X)J ~; Lg(Xt) 
t=i 

Therefore the 'population' mean of g(X) is approximated by the sample mean of g(X1), ••• , g(Xn)· 

When the realizations Xt are independent, the accuracy of the approximation to the 

expectation is proportional to the sample size n. However the assumption that independent 

realizations can be drawn often does not hold when the probability density of X takes a 

complicated form, as can occur in Bayesian modelling; see Gilks et al. (1996) and Gamerman 

(1997). In that case the accuracy of the approximation ( 4.2.2) is reduced. The reason why 

the realizations Xt, t = 1, ... , n, may not be independent is that they may have to be 

simulated using the MCMC class of algorithms, which, as we will see, will yield correlated 

realizations. 
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4.2.2 Markov Chain 

Gamerman (1997) describes a Markov chain as a specific stochastic process which character

izes sequences of random variables. This process satisfies the Markov property which means 

that given the present state, future states are independent of past states. This can be made 

more precise, as Gilks et al. (1996) for example point out: if we create a sequence of random 

variables, Xt, t = 1, 2, ... a "future" element Xt+ 1 is sampled from a density that depends 

on only the "present" state Xt. This means that if we know Xt, then Xt+l is not dependent 

on previous elements Xt-i, Xt_ 2 , ..• in the chain. The resulting sequence Xt, t = 1, 2, ... , is 

said to be a Markov chain. The probability density function that determines how the process 

moves from Xt to Xt+i is referred to as a transition kernel. It turns out that under certain 

regulatory conditions the distribution of these realizations Xt settles down as t ---+ oo to what 

is referred to as a stationary distribution. Moreover it is possible to define the transition 

kernel of a Markov chain in such a way that the stationary distribution takes a given form. 

In the case of the Bayesian approach the stationary distribution of the Markov chain has 

associated probability density function 11'(.81x) defined in (4.2.1). 

We can understand the posterior density using the realizations from it eventually 

produced by our Markov chain. We can, for example, approximate expectations using these 

realizations and expression (4.2.2). 

In summary, under specific regularity conditions a suitably generated Markov chain will 

converge to a unique stationary distribution with probability density function 11'(.81x). In 

other words, if ,B(l), .8(2), ... , ,B(t), ... are realizations from an appropriate chain, then as 

t -+ oo, ,B(t) will have probability density function 11'(,8lx). Hence, after a suitably chosen 

time B say, the realization ,B(t), t = B + 1, B + 2, ... can be thought of as a dependent sample 

from 11'(.81x). The realizations ,B(t), t = 1, ... , B, up to B are said to come from the burn-in 

phase and are discarded. Further details of this approach can be found in Gilks et al. (1996) 

and Gamerman (1997). 
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4.2.3 Metropolis-Hastings Algorithm 

There are two main algorithms used to define a Markov Chain with a desired stationary 

distribution. These are the Metropolis-Hastings (Metropolis et al. (1953) and Hastings 

(1970)) and Gibbs sampler (Geman and Geman (1984)). The Gibbs sampler is not 

appropriate for our coastal engineering application as this requires sampling from the full 

condtional density which in are case is difficult, hence we only discuss the Metropolis-Hastings 

algorithm. We begin with an initial value _8(0). The following steps define the transition 

kernel from .Bt to .Bt+ 1: 

• Sample a candidate point .8* from a proposal density q(.BI.B(tl). 

• Accept .8* as the next state _B(t+ 1l with probability 

(t) • _ . { 7r(.8*1x)q(_B<tli.B*) } 
o:(.B ,.8)- mm 1, 7r(_B<tllx)q(.8*1.B<tl) 

If .8* is accepted , the next state becomes _B(t+ 1l = .8*; if .8* is rejected the chain does 

not move, and _B(t) = _B<t-1>. As already stated this procedure will yield a sequence of 

values _B(O), _B< 1l, _B< 2l, ... such that provided the length B of the burn-in is sufficiently 

large, we can take _B(B+ 1l,_B(B+2l, ... to be a sample from the posterior density 7r(.Bix). 

Burn-in length can be determined by examination of trace plots of the Markov chains 

or via the Gelman-Rubin statistics which checks convergence (see Section 7.4.2 for 

details). The trace plot of the parameter of interest should be stable after removal 

of burn-in, hence we remove the initial record of the movement of the chain from its 

starting value. Figure 4.1 shows an example of burn-in and a typical burn-in allowance. 

As explained above, since this procedure defines a Markov chain, this is a dependent 

sample. Nevertheless, it can be used, in conjunction with (4.2.2) to understand 1r(.Bix) 

and associated posterior quantiles. 

4.2.4 Random walk Metropolis-Hastings 

The choice of the proposal density q(.BI_B(t)) is up to the user. This density may or may not 

depend on _B(tl. For example, if q is taken to be a uniform density over all possible values of 
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Figure 4.1: Example of a trace plot of some parameter g. 

/3, then the candidate /3* does not depend on f3(t) . If, on the other hand, q is, for example, 

taken to be a normal or t-density centred on f3(t), then /3* will depend on f3(t). We shall 

say that such a choice of q yields a random walk Metropolis-Hastings algorithm as the next 

position is chosen with reference to the current position. In Chapter 7, we shall implement 

a random walk Metropolis-Hastings algorithm. 

4.2.5 Obtaining Posterior Credible Intervals 

The realizations f3(t) , t = B + 1, ... , T , produced by the Metropolis-Hastings algorithm 

can be used to help us understand the posterior 7r(/31x). For example, the posterior mean 

E[!31x] = J /31r(!3!x)d/3 can be approximated by the sample mean L,'{'=B+l f3(t) j(T- B). 

In a similar way, a 95% posterior credible interval for /3 can be obtained by ordering the 

f3<t>, t = B + 1, ... , T, and taking the 0.025(T- B)th and 0.975(T- B)th elements of this 

ordered sample. 

4.3 Nonparametric Regression Techniques 

Nonparametric regression can be thought of as an extension of standard polynomial 

regression for modelling bivariate data of the form (ti, Yi) , i = 1, ... , n, where here n is 

the number of data points. 
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First a model of the form Y = g( t) + t:, in which E[€] = 0 for all values oft, is postulated. 

The task is then one of estimating the curve g from the available data (ti, Yi) , i = 1, ... , n. 

Note that since E[Y] = g(t) we can refer to this model as a mean regression. Nonparametric 

approaches can offer more flexible estimates of g than standard polynomial regression models, 

and are not formulated in terms of a parametric model. An example of a nonparametric 

regression model is the smoothing spline, which will be discussed in detail in Section 4.3.1. 

Figure 4.2 shows an example of a smoothing spline and a standard polynomial (cubic) 

regression curve; here we can see the clear difference in flexibility of the smoothing spline. 

In general, non parametric regression usually follows one of two approaches, said to be either 

kernel or spline based. Both methodologies can perform equally well for a range of smoothing 

problems. However, in this thesis we are mainly interested in spline based approaches. Hence 

we shall focus on the basic principles of a univariate roughness penalty spline based approach. 

Details of kernel methods can be found in Gamerman (1997) or Green and Silverman (1994). 

I() 
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Figure 4.2: Scatter plot of wave height against transformed wave direction with a cubic 
regression curve and a smoothing spline. 

Nonparametric spline based regression curves are in essence a series of polynomials 

regression curves which have been glued together to create one complete continuous curve; 

see de Boor (1978). The data is split into sections along the horizontal axis, here denoted t, 

and a curve is fitted in each section rather than across the entire data set. These individual 
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curves are constrained to fit in a sensitive way. Hence the overall fit is much more accurate 

as residual error can be greatly reduced due to the more localized fitting without producing 

a curve that is too rough in the sense that it fluctuates too rapidly. The boundaries between 

data sections are called knots. The choice of knots is up to the user. 

As mentioned, when fitting a curve through a bivariate data set, one important 

consideration is the roughness of the curve, i.e. how "wiggly" it is. More specifically, we tend 

to prefer smooth curves that have a reduced amount of rapid fluctuation, hence we wish to 

study the more slowly moving trend in the data, regarding very rapid variation as 'noise'. It 

should be noted that this is not always the case, in some situations modelling of the rapid 

variation is desirable. We are able to quantify the roughness of a curve g with continuous 

second derivative on the interval [a, b] by means of a roughness penalty which is defined here 

as the integrated squared second derivative J: g"(t) 2dt; see Green and Silverman (1994). A 

standard approach to curve fitting is based on a trade-off between the lack-of-fit of a curve 

to the data and its roughness, or, equivalently, between goodness-of-fit and smoothness, as 

discussed in Green and Silverman (1994). These authors also shown how this approach 

can be formalized within the Bayesian framework (see Gamerman (1997)) by having a prior 

distribution which quantifies probabilistically the roughness of the fitted curve. 

4.3.1 Formal Spline Definitions 

There are many different types of spline, for example, linear, quadratic, cubic, ... These are 

defined and discussed in detail in de Boor (1978) and Hastie et al. (2001). We shall shortly 

define a natural cubic spline as this will be the type of spline that we will use later. There are 

also several different techniques for using splines to make inferences from data, or, in simpler 

terms for fitting splines to data (t;, Y;), i = 1, ... , n. These techniques include interpolating 

splines, smoothing splines and quantile regression splines. They will be discussed later in 

this chapter. 

The Natural Cubic Spline 

A function g is said to be a cubic spline with N 2 2 knots r 1, ••• , TN, if g is a cubic polynomial 

between knots Ti-t and T;, i = 2, ... , N, and if g has continuous first and second derivatives 
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at T;, i = 2, ... , N- 1. Let a < Ti and b > TN. The curve g is said to be a natural cubic 

spline (NCS) on [a, b] if it is linear on the intervals [a, ri] and [rN, b] and if it has continuous 

first and second derivatives at Ti and TN; see Green and Silverman (1994), de Boor (1978), 

Hastie et al. (2001) and Venables and Ripley (2002) for further discussion. 

Let g; = g( r;) and "(; = g"(r;) for i = 1, ... , N, and let g = (gi, ... , 9N )T be a column 

vector of curve values at the knots. Since by definition of a NCS it follows that g"(ri) = 

g"(rn) = 0, we can represent these second derivatives as the vector"(= ('"Y2 , ... , 'YN-if· Any 

given vectors g and "( are consistent with coming from a NCS provided a certain condition 

holds. Before stating this condition, we need some further definitions. Let h; = Ti+i - T; for 

i = 1, ... , N- 1. Let the banded matrix Q be theN x (N- 2) matrix with entries Q;j, for 

i = 1, ... , N and j = 2, ... , N - 1, given by 

h-i 
Qj-i,j = j-i, h-i h-i 

Qjj = - j-i - j , h-i 
Qj+i,j = j 

and Qij = 0 for li - Jl 2': 2. Numbering of the elements of Q is based on "(, and hence the 

top left element is Qi 2 . The banded symmetric matrix R of dimension (N- 2) x (N- 2) is 

defined as follows: 

1 
T;; 3(11,;-i + h;) for i = 2, ... , N- 1, 

1 
r;,i+i ri+i,i = 6h; for i = 2, ... , N - 2, 

. and r;i = 0 for li - Jl 2': 2. Since R is strictly positive definite, we can define the N x N 

matrix K as 

The symmetric matrix K has rank N- 2. We can now state the above mentioned condition; 

the full proof of this theorem can be found in Green and Silverman (1994). 

Theorem 4.3.1.1. The vectors g and"( specify a NCS g if and only if the condition 
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holds. If QT g = R-y, then the roughness penalty will satisfy 

lb g"(t)2 dt = '"YT R-y = gT Kg. 

We shall make use of this expression for the roughness penalty in Section 4.3.2. We now 

move on to discuss interpolating splines for the points ( T1, g1), ... , (TN, 9N ). 

Interpolating Splines 

Given points ( T1, 91 ), ... , ( TN, 9N ), an interpolating function 9 through these points has the 

property that 9(7;) = 9;, i = 1, ... , N. To find such a 9, we could take 9 to be piecewise 

linear or polynomial between the points (T;, 9;). We have already stated that we prefer smooth 

curves so we immediately disregard the piecewise linear approach: the resulting curve 9 may 

have discontinuous derivatives at T;, i = 1, ... , N, and would not appear smooth. If we now 

consider piecewise polynomials, provided we have chosen the polynomial correctly and are 

careful to ensure that derivatives are continuous at T;, we may produce a curve g that is 

usually smooth. To further refine this idea to potentially the 'best' or 'smoothest possible' 

curve, we could use as our interpolating curve g, the one with continuous second derivatives 

that minimizes the roughness penalty J 9"(t) 2dt. Such a curve would be a natural cubic 

spline with knots at T1, ... , TN. 

Green and Silverman (1994) state the following theorem that asserts the uniqueness of 

this interpolating natural cubic spline: 

Theorem 4.3.1.2. Suppose N;:: 2 and that T1 < · · · < TN. Given any values 91, ... ,9N, 

there is a unique natural cubic spline 9 with knots at the points T; satisfying 

9(7;) = g; fori= 1, ... , N. 

See Green and Silverman (1994), page 15 for the full proof of this result. We will use 

this result again in Chapter 7. 
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Smoothing Splines 

Recall that we have data ( t;, Y;), i = 1, ... , n, where n 2: 3. Assume that t1, ... , tn are such 

that a < t1 < · · · < tn < b. Let S 2 [a, b] be the space of functions with continuous second 

derivatives on [a,b]. If we are given any function gin S2 [a,b], we can define S(g) to be the 

penalized sum of squares 

:f)r:- g(t;)}2 +a 1b {g"(t)}2dt 
i=l a 

where a is a positive smoothing parameter. This penalized sum of squares consists of two 

main elements, a measure of lack-of-fit to the data E~=I {Y;- g(t;) F and a roughness penalty 

J: {g"(t)} 2dt. The measure of lack-of-fit of g is the residual sum of squares which represents 

the discrepancy between our model g and the data. The estimate g of the curve is defined 

to be the minimizer of S(g) over the class S2 [a,b]. The estimate g represents a trade-off 

between lack-of-fit of the curve to the data and its roughness, a trade-off controlled by the 

smoothing parameter a. The choice of this smoothing parameter (or a parameter directly 

related to it) is discussed in Section 4.3.3. We shall refer to this g as a smoothing spline. 

Green and Silverman (1994) show that g is a natural cubic spline with n knots at t1, ... , tn; 

note that the linear segments beyond the range of the data do not contribute to the value 

of the functional S(g) defined in ( 4.3.5) since their second derivative is zero. 

4.3.2 Nonparametric Regression in a Bayesian Framework 

We can embed the ideas of the previous section in the Bayesian framework. To do this we 

adopt a prior density over curves g E S 2 [a,b] which is proportional to exp(-PJ:{g"(t)p), 

where A > 0. Let us further assume that Y; = g(t;) + E;, where E; ,...., N(O, a 2), i = 1, ... , n, 

independently. From this prior and data model we can determine the posterior log density 

of g given the observed data values, Y1, ... , Yn as 
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Where we use the notation ~ to indicate equality up to a constant. Hence, the smoothing 

spline g corresponds to the mode of this posterior. We can now use Theorem 4.3.1.1 to turn 

what seems to be an infinite dimensional problem into a finite dimensional one; see Green 

and Silverman (1994), for further details. This considerably simplifies the way in which we 

may think of this Bayesian approach. 

If g is a natural cubic spline taking values g1, .•. , 9n at knots t 1 , ... , tn, then Theo

rem 4.3.1.1 tells us that the log prior density can be represented as 

where g = (g1, ••• , 9n)T. We see that the higher the value of the roughness gT Kg associated 

with g, the lower the value of the associated prior density, with this effect being controlled 

by the smoothing parameter >.; higher values of >. result in less prior weight being given to 

curves with high roughness. The associated log posterior density now takes the form 

c 1 T 1 T lpost(g) =-
2
u 2 (Y- g) (Y- g)- 2>.g Kg, 

4.3.3 Choosing the smoothing parameter A 

For any smoothing problem, the choice of the smoothing parameter is crucial. With our 

smoothing spline approach, there is a computationally fast 'automated' approach for choosing 

the smoothing parameter in a way that is informed by the data. This methodology is called 

cross-validation and is based on the idea of prediction. Green and Silverman (1994) explain 

that g(t) should provide a good prediction of Y ·at a new value t, in the sense that the 

squared residual {Y(t)- g(t)P should be small. Unfortunately a new observation (t, Y) is 

not available. To overcome this, the cross-validation procedure generates a 'new' observation 

by omitting (t;, Y;) from the original data. The value of the smoothing spline fitted to the 

reduced data set at t; is denoted gHl(t;; >.). 

As the observation that we omitted from the original data was specified in an arbitrary 

way the overall predictive performance when >. is the smoothing parameter can be quantified 

77 



Chapter 4. An Overview of the Bayesian Approach, and Nonparametric and Quantile Regression 

by the cross-validation score 

Green and Silverman (1994) show that CV(>.) can be simplified to 

CV(>.) = ~ ~ { Y;- g(t;; >.) }2 
n L... 1 - A-(>.) 

i=l u 

( 4.3.10) 

where A;;(>.) is the i" diagonal element of the 'hat' matrix A(>.) such that g = A(>.)Y where 

g = (g(t 1), ••• , g(tn)f. The form (4.3.10) of CV(>.) requires the computation of smoothing 

spline g(t, >.) for each value of >. instead of the n computations gC-i)(t; >.); i = 1, ... , n, for 

each >. required in ( 4.3.9). The form ( 4.3.10) can be modified to the possibly more stable 

version 

(4.3.11) 

by replacing A;;(>.) by the average value traceA(>.)jn. As with CV(>.), GCV(>.) is minimized 

over >. to yield an estimate of the smoothing parameter. The generalized cross validation 

estimate of >. is usually preferred to the cross validation estimate, although often these 

estimates of>. can be very similar. Further discussion can be found in Green and Silverman 

(1994). 

4.4 Quantile regression 

In this section we introduce the key elements of quantile regression highlighting the main 

differences from the standard regression approach. 

4.4.1 Definitions 

We begin by defining the term quantile. The pth quantile, 0 :::; p:::; 1, of a random variable 

X is a value q such that Pr(X:::; q) = p. 

Consider now a regression model with covariate column vector xT and response variable 
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Y: 

where {3 is a vector of parameters and E[c] = 0 for all covariate values. This formulation 

effectively models the relationship between x and the conditional mean of Y given X = x. 

Such a model for E[YIX = x] helps us to understand how the mean of Y depends on x, 

but fails to deliver a complete picture of the behaviour of the distribution of Y as a function 

of x. An alternative method of modelling is therefore required which is not based on the 

means of Y, but which can capture its full distribution. This technique is known as Quantile 

regression. Quantile regression therefore models the conditional quantiles of Y given X = x, 

denoted Qp(YIX = x), where Qp(YIX = x) is such that 

P(Y ~ Qp(YIX = x)IX = x) = p 

We take the following passage from Koenker and Hallock (2000) as it provides an excellent 

summary for the reasoning behind the use of quanti le regression as an alternate to ordinary 

least-squares regression: 

"VVhat the (mean} regression curve does is give a grand summary for the averages of 

the distributions corresponding to the set of x 's. We could go further and compute several 

different regression curves corresponding to the various percentage points of the distributions 

and thus get a more complete picture of the set. Ordinarily this is not done, and so regression 

often gives a rather incomplete picture. Just as the mean gives an incomplete picture of a 

single distribution, so the regression curve gives a correspondingly incomplete picture for a 

set of distributions." 

Check Function 

In standard mean regression, the unknown parameter vector {3 is estimated by minimizing 

over {3 the residual sum of squares 

n 

~ .. )Y; - xf {3) 2 , 

i=l 
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Figure 4.3: Scatter plot of wave height against transformed wave direction with a range of 
quantile regression curves using cubic polynomials, i.e. setting xT = (1, x, x2, x3), where x 
is the cosine of wave direction. 

where xf is the ith row of the covariate matrix X over {3. This can be written as 2::~=1 r(Yi

xff3) where r is the quadratic loss function defined as r(u) = u2
. In quantile regression 

the equivalent loss function can be written as Pp(u) = u(p- I(u < 0)) in which p is the 

quantile of interest and I is the usual indicator function. The function pP is known as the 

check function. So just as in mean regression the parameters f3 are estimated by minimizing 

a sample estimate of E[r(Y- xT {3)] , so in quantile regression f3 minimizes a sample estimate 

of E[pp(Y- xT {3)]. Further discussion can be found in the book by Koenker (2005). The 

package quantreg (Koenker (2008)) that can be run in R can be used to fit quantile regression 

models by minimizing 2::~=1 pp(Yi- xf {3) , Figure 4.3 was produced using the function qr of 

this package. As an alternative inferential approach, we now place the above check function 

based minimization approach to quantile regression in a likelihood framework using the 

asymmetric Laplace density. 

Asymmetric Laplace Density Approach 

We begin by returning to the mean regression model (4.4.1) Let us assume now that the 

error has a Gaussian distribution E ""N(O, o-2), with standard deviation u . For our sample, 
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{ x;, Y;}~=J, the associated likelihood function for f3 is 

L((3) ex exp {- 2~2 t (Y; - x'[ {3)2
} . 

Least squares estimates can be obtained by maximization L(/3) over f3 and so are equivalent 

to maximum likelihood estimates. We now move to quantile regression and make the 

assumption that our model errors now has probability density function 

where Pp is the check function. This is known as the asymmetric Laplace density function. 

The associated likelihood function is L(/3) ex exp{- I:~= I pp(Y; - xr {3)}. This has the 

consequence that an estimate of f3 resulting from the 2::::~ 1 Pp(Y; - xf {3) is a maximum 

likelihood estimate; see Yu et al. (2003). 

4.4.2 A Nonparametric Approach 

Above we discussed the parametric approach to quantile regression based on the model 

Y = xT f3 +E. We now focus on the special case where xT = (1, x) and consider roughness 

penalty approaches to the quantile regression. Koenker et al. (1994) and Bosch et al. (1995) 

discuss computational difficulty of estimating what they refer to as a quantile smoothing 

spline g which minimizes 

i>p{Y; - g(x;)} + ,\ j {g"(xWdx, 
i=l 

where the range of integration for the roughness penalty contains x1 , ... , Xn· As these 

difficulties are hard to overcome, Koenker et al. (1994) sets up an alternate minimization 

problem 

L Pp{Y; - g(x;)} + ,\ (J lg''(xWdx) Jfq, 

As we can see the penalty function here is different from the roughness penalty. Koenker 

et al. (1994) particularly focus on q = 1 and q = oo. They found that when q = oo, an upper 
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bound is imposed on Jg''(x)J resulting in a piecewise quadratic estimate which is simple to 

compute. However, when q = 1 the function to be minimized is reduced to 

i>p{Y;- g(x;)} + ..\ j Jg"(x)Jdx. 
i=l 

This was introduced in earlier work by Koenker (2005), who claimed that the solution to 

( 4.4.8) is a parabolic spline. However, at a later stage this was found to be incorrect. This 

led Koenker et al. (1994) to reformulate the q = 1 penalty term. The paper by Bosch 

et al. (1995) considers a different approach to estimating the quantile functions that yields 

solutions that are cubic splines. Koenker (2005) also provides a short summary of these 

approaches. 

4.4.3 Bayesian Approach 

In this section we discuss the implementation of parametric quantile regression in a Bayesian 

framework presented by Yu and Moyeed (2001). Sections 4.1 and the above parts of this 

Section 4.4 provide the necessary foundations for the construction of the Bayesian quantile 

regression model. We adopt the model Y = xT f3 + t, where t follows an asymmetric La place 

distribution with density function given by (4.4.5). This leads to the likelihood function for 

f3 

As we saw in Section 4.1, we now need to specify a prior density 1r(f3) for {3. Any prior could 

potentially be used in this formulation but without substantial information on which to base 

this choice, an improper uniform prior distribution was adopted by Yu and Moyeed (2001); 

see their paper for a complete discussion justifying their prior choice. Now the likelihood 

and prior can be combined using Bayes theorem to find the posterior for {3: 

7r((3Jy) ex: 7r({3)L(f3). (4.4.10] 

As this posterior density is not available in closed form, inferences about f3 are based on 

the output of an MCMC algorithm. Yu and Moyeed (2001) take xT = (1,x,x2,x3) and 
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Figure 4.4: Scatter plot of wave height against transformed wave direction with 50% (p = 0.5) 
and 90% (p = 0.9) Bayesian quantile regression curves using cubic polynomials. 95% credible 
intervals are shown for both quantiles. 

(4.4.11) 

where dependence on p has been made explicit. Hence, Yu and Moyeed (2001) are performing 

inference on cubic quantile functions. We apply the approach ofYu and Moyeed (2001) to the 

data set introduced in Section 1.6. Posterior mean quantile regression curves for quantiles 

at p = 0.5 (median) and p = 0.9 are shown in Figure 4.4. A 95% credible interval is shown 

for both quantiles. This was calculated using the approach of Section 4.2.5. 
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Dealing with Missing Data 

5.1 Introduction 

In this chapter we describe a method to impute missing information between existing time 

series observations. Our technique was primarily developed for data used within this thesis as 

the other methodology that we have presented depends on complete time series information. 

With any data set there is a possibility of recording errors including completely missing 

values. These may be due to equipment failure, human error or unforeseen circumstances. 

They can be particularly prevalent in time series data. For our purposes it is important when 

analyzing time series that the data are complete since working with an incomplete data set 

can lead to biased inferences; for instance, extracting the maximum value within monthly 

time intervals may return a value below the actual maximum for the interval if the actual 

maximum is not present due to a recording error. 

Since the Hindcast data that we analyse (see 1.6 for a detailed discussion) has been 

simulated from wind records spanning many years, it is highly likely that some errors are 

present. Due to the volume of observations, it was particularly difficult to visually identify 

errors or missing readings directly from the data. Initial time series plots were produced to 

try to aid identification, but due to scaling issues, errors were extremely difficult to identify. 
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5.2 Replacing Missing Data using LOESS 

The remedy to the problem of identifying missing data automatically was found by 

considering the format of the data; as the data formed a time series, the temporal increments 

between observations were known. Because of this it was possible to create a temporal 

template to which the data should correspond. An R (R Development Core Team (2008)) 

function was created to generate such a template and to merge it with the existing time 

series. The resultant output inserted an "NA" (or Not Available) value at the times when 

no data value was recorded, revealing the missing values or gaps in the data. 

We needed to replace missing information that our template method identified with 

generated values that would follow the time series pattern, so future modelling of the data 

would only be affected in a limited way by missing values. Accordingly, we extended our R 

function to search for "NA"s and then to identify the pattern of readings in a designated 

time period before and after each "NA". This created a window of information upon which 

to base the estimation of each missing value. By using a sufficiently large, but localized 

window around each problem area to provide sufficient information either side of the void, 

we were able to replace the missing values between the known blocks of information. 

To achieve this replacement, a locally weighted least squares regression or loess model was 

fitted to the window of observations; see Harrell. Jr (2001) and Venables and Ripley (2002) 

for details. Fitted values could be extracted from the model to replace the missing values. 

We now briefly outline the loess technique. If we have bivariate data (X, Y), then to obtain 

a smoothed value of Y at X= x, we set a window around x that contains a fixed number of 

data points. We fit a weighted linear regression to these points rather than the full data set. 

The predicted value from this weighted regression at X = x is now our smoothed value of Y 

at X = x. As loess involves weighted least squares regression, the weights must be chosen 

appropriately: points closest to x are given the largest weighting and as the distance from 

the point x increases the weighting reduces. Hence data points which lie near the window 

boundaries are given a much small weighting than points near x. There are two parameters 

that the user can choose in the loess approach. These are the span of the window, that is the 

proportion of the full data set used in each window, and the degree of the polynomial fitted. 
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This can be 0 for locally constant, 1 for locally linear and 2 for locally quadratic regression 

loess. 
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Figure 5.1: illustration of the loess technique, showing the smooth curve, the window (dashed 
green vertical lines) at a particular x value (unbroken green vertical line) , the weights (circles) 
applied to each data point and the weighted linear regression fit (purple line). This plot was 
produced by the function loess .demo of the TeachingDemos package by Snow (2008) . 

We have seen that loess effectively uses a moving constant, linear or polynomial regression 

approach. This ensures good smoothing behaviour t hroughout the range of x . Another 

benefit provided by the loess procedure is robustness. After making initial local estimates 

of trend, the loess procedure will identify outliers from this trend; these are then reduced in 

weight and the trend is recalculated. This process is repeated up to three times to provide 

a trend approximation that is robust to outlying data values. 

Figure 5.1 , produced by the function loess . demo of the TeachingDemos package by Snow 

(2008), illustrates the loess technique applied to the famous simulated motorcycle accident 

data of Silverman (1985) . The point x is shown by the unbroken vertical line, while the 

window (here containing the nearest fifth of the data) is illustrated by the dashed vertical 

lines. The weight applied to each data point in the weighted linear regression within the 
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window is proportional to the area of the circle at that point. The value of the smooth curve 

at x is the value at that point of the fitted weighted linear regression linear which is also 

shown. 

The missing values in the original time series data were then replaced with the estimates 

from the loess procedure to produce a complete data set. We adapted the standard loess 

procedure in two cases. If there were a lot of missing values towards the beginning or end 

of our time series, or if there were large runs of missing values, then the window used for 

the local regression fitting would be expanded to allow a sufficient amount of information 

to inform our imputations. Figure 5.2 shows a time series plot of a section of hindcast wave 

period data, from the HR Wallingford data set, to which our loess method has been applied 

to replace missing information. The results of doing this are shown in red. A simulation 

study was performed to check that the choices of the models parameters were appropriate. 

The simulation study for a section of wave period data from the HR Wallingford data set is 

now described in the following section. 

0 20 40 60 80 100 

Time 

Figure 5.2: Time series plot of a section of the Hindcast Wave Period data from the HR 
Wallingford date set with missing observations. The gaps in the data have been imputed 
using the loess filling routine, the results of which are shown in red . 
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5.3 Loess Model Simulation Study 

Table 5.1 summarizes the study performed to calibrate our loess based method for replacing 

missing values. As mentioned above, there are two parameters that the user can choose: span 

which controls the proportion of data in each window, and degree which determines the type 

of local regression model. We used the following procedure to recommend good choices of 

these parameter for our data set. We took a section of data containing two missing values. 

These two missing values are referred to in Table 5.1 as N A1 and N A2 and were imputed 

using our loess technique. The "Empirical Model Fit Quality" provides us with a visual 

assessment of fit quality. While this is a subjective method of assessment, the results are so 

clear cut, as we will discuss, that we did not pursue our study further. A more objective 

approach would have been to omit some known values and to choose the parameters by 

minimizing over span and degree a badness-of-fit criterion such as root mean square error 

(RMSE) 

1 J 
- L(tru~- imputedY 
J i = l 

where the sum is over the J omitted values, and truei and imputedi are true and imputed 

values of the ith missing value. We can conclude from the results of the vi~ual assessment 

of fit quality presented in Table 5.1, that degree has a large effect on the fit of the model. 

Table 5.1: The empirical model fit quality for 30 

combinations of the span and degree parameters in our 

loess imputation procedure 

Model No. Parameters NA values Empirical Model 

span degree NA1 NA2 Fit Quality (%) 

1 0.2 0 5.5 2.5 80 

2 0.4 0 5.701 2.901 60 

3 0.6 0 5.740 3.114 40 

4 0.8 0 5.773 3.281 30 

5 1.0 0 5.882 3.706 20 
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6 1.2 0 5.878 3.800 20 

7 1.4 0 5.864 3.884 10 

8 1.6 0 5.900 3.923 10 

9 1.8 0 5.877 3.987 10 

10 2.0 0 5.857 4.040 10 

11 0.2 1 NA NA 0 

12 0.4 1 5.250 2.000 70 

13 0.6 1 5.594 2.678 50 

14 0.8 1 5.703 3.005 50 

15 1.0 1 5.792 3.605 30 

16 1.2 1 5.790 3.751 20 

17 1.4 1 5.779 3.876 10 

18 1.6 1 5.771 3.975 10 

19 1.8 1 5.760 4.048 10 

20 2.0 1 5.751 4.103 0 

21 0.2 2 NA NA 0 

22 0.4 2 NA NA 0 

23 0.6 2 5.521 2.317 80 

24 0.8 2 5.598 2.551 80 

25 1.0 2 5.729 2.544 80 

26 1.2 2 5.778 2.543 80 

27 1.4 2 5.820 2.550 80 

28 1.6 2 5.843 2.528 90 

29 1.8 2 5.867 2.537 90 

30 2.0 2 5.884 2.543 90 
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5.4 Performance Assessment 

Assessment of the accuracy of the values replaced by our loess methodology is a difficult 

problem as in practice 'true' values on whkh we would assess the accuracy are not available. 

As already mentioned, we can, however, replace some known data values by missing values 

and try to recover the known data. In this way we have known values on which to base 

our assessment of accuracy. We judge the accuracy of our replaced values by calculating 

the RMSE as defined in (5.3.1) for our loess imputation method and a linear interpolation 

method. Figure 5.3 shows a section of the HR Wallingford data with artificial missing values 

replaced by imputed values from our loess filling routine and by linear interpolated values 

shown as the blue and green lines respectively. The RMSE values for our loess filling routine 

:§: 
E 
"' ~ 
::t: 

i 

0 
ol 

"' ...; 

0 
...; 

"' 0 

0 
0 

True value 
linear lnterpolatior 

- Loess Method 

0 20 

~ I 

40 60 80 100 

Time 

Figure 5.3: Time series plot of a section of known data from the HR Wallingford data set. 
The gaps in the data have been added at locations where known values are available, then 
have been imputed using the loess filling routine and linear interpolation methods. 

and linear interpolation are 0.080 and 0.095 respectively. Hence we see that both methods 

recover missing values relatively well, but our loess performs better than linear interpolation. 
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5.5 Summary 

We developed a technique to replace observations missing from time series data with imputed 

values from a loess model. The loess approach was used as it was felt that this was the most 

locally sensitive and hence appropriate for this application. Loess stands for local weighted 

polynomial regression, as the model is fitted over a small window at each point using weighted 

least squares. More weight is given to data near the point at which the response is being 

imputed and less weight to data further away. We presented a study that informed our choice 

of the loess parameters. We quantified the performance of our loess based methodology and 

showed that it performed well, and better than linear interpolation. We applied our technique 

to all our data with success, so providing us with competes data sets to which to apply the 

techniques of Chapters 6 and 7. 
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Automated Threshold Selection Methods in 

Extreme Value Theory 

6.1 Introduction 

In Chapter 2 we discussed methodology based on the Generalized Pareto Distribution (GPO) 

used to provide inference about extreme values. We described the threshold selection 

methods employed in this methodology to define sufficiently large values for GPO fitting 

and illustrating them in Section 2.2.7. Examples of these threshold selection techniques can 

be found in Coles and Tawn (1991), Tawn and Coles (1994) , and Tawn and Bruun (1998) . 

The specification of an accurate threshold plays a major part in the quality of inference 

obtained. Coles (2001) and other authors explain that poor estimation or specification of 

the threshold can greatly affect the accuracy and utility of GPO models and their predictions. 

Threshold selection has received additional, recent attention in the literature. Dupuis 

(1999) presents a guide to threshold selection based on robustness considerations, while 

Tancredi et al. (2006) adopt a Bayesian approach and discuss how to take account of 

threshold uncertainty; see Section 6.5.1 for further discussion of Tancredi et al. (2006) 

and Guillou and Hall (2001) for related methodology. In this chapter we present a new 

threshold selection technique which improves on the performance of existing methods. We 

illustrate our technique using the sea conditions data discussed in Chapter 1. Our automated 

threshold selection method requires no external input other than the variable of interest, 
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and is considerably simpler and easier to implement than the computationally expensive 

approaches proposed in recent papers. 

We have also extended our threshold selection method to allow threshold choice to depend 

on a covariate such as the cosine of wave direction (we use the cosine transformation to reduce 

some of the problems associated with directional data), where our specific aim is to account 

for the directional effect when modelling wave height or wave period using GPDs. The 

practical advantage of our extended procedure is that it automatically identifies the wave 

directions associated with the highest waves and consequently can provide better estimation 

of wave height return levels. 

We also present adaptations to the parameter estimation methodology used to fit 

the GPO. These adaptations were established as a result of problems that arose when 

implementing our new threshold selection technique. Finally we show some of the software 

developed during this work by focusing on a Graphical User Interface that we have produced. 

This software was developed as a potential design tool to facilitate the inclusion of extremes 

analysis in the coastal design process. Examples are included throughout the chapter to 

highlight the applications of the techniques developed and to provide comparison to existing 

methods such as JOINSEA, as discussed in Chapter 3. 

6. 2 Automated Constant Threshold Selection technique 

Selection of an appropriate threshold u is routinely performed on a visual basis using plots 

such as those shown in Section 2.2. 7 and so can have a range of associated errors. These visual 

procedures require prior knowledge and experience of the accurate interpretation of these 

threshold choice plots to achieve a satisfactory model fit; see Chapter 2 and Davidson and 

Smith (1990), Walshaw and Coles (1994) and Coles (2001) for example. We now introduce 

the theoretical basis for our threshold selection methodology. 

The form of the GPO is given and discussed in Section 2.2.1. We reproduce it here for 

convenience. Let X be a random variable (such as Wave Height) and let u be a suitably 

large threshold. Then, under the condition of Theorem 2.2.1.1, the distribution function of 
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the exceedance Y = X - u, conditional on Y > 0, is approximately 

[ 

~ ] - 1/f. 
H (y) = 1 - 1 + a~ , 

where~ is referred to as the shape parameter and where the scale parameter au > 0 depends 

on the threshold u; see equations (2.2.27) and (2.2.11) and the discussion in Section 2.2.1. 

When fitting the GPD to data, CTu and ~ can be estimated using maximum likelihood 

estimation as discussed in Sections 2.1.2 and 2.2.3. To achieve a good model fit, we need to 

choose a suitable value of the threshold u. Figure 2.4 illustrates a routinely used threshold 

selection technique based on a plot of parameter estimates of GPDs fitted using a range 

of thresholds against the threshold, and is the basis for our automated threshold selection 

methodology. We now outline our methodology. 

Let u1, . . . , Un be n equally spaced increasing candidate thresholds. Let flu; and ~u; be 

maximum likelihood estimators of the scale and shape parameter based on data above the 

threshold Uj, j = 1, ... , n. Finally, let u be a suitable threshold, that is one for which values 

of y > u can be modelled using the GPD. It follows from equation (2.2.11) that, provided 

CTu;_1 = CTu + ~(Uj-1- u) and CTu; = CTu + ~(Uj- u); 

see also Coles (2001), page 83. Hence, 

Furthermore, standard maximum likelihood theory, as discussed in Coles (2001), tells us 

that E[flu;] ~ CTu; and E[~u;] ~ ~' for any j such that Uj > u. Let 

and consider the differences 

Tu; - Tu;_1 , j = 2, . . . , n; 
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it follows from (6.2.3) that E[Tu; - Tu;_ 1 ] ~ 0. Moreover, we can appeal to the same theory 

to conclude that the Tu; - Tu;-t approximately follow a normal distribution. This result leads 

us to the following procedure for finding a suitable threshold u: 

(1) Identify suitable values of equally spaced candidate thresholds u1 < u2 < · · · < Un· 

We found that setting n = 100 gives good results. We take u1 to be the median and 

Un to be the 98% quantile of the data, unless fewer than 100 values exceed this value, 

in which case Un is set to the 100tb data value in descending order. Our procedure 

performs well in such circumstances. Less reliable results were obtained from smaller 

data sets. 

(2) If u is a suitable threshold, then all differences Tu; - Tu;-t have an approximate normal 

distribution with mean 0 provided u ~ Uj- l < Uj. If u is unsuitable, then these 

differences may not follow a normal distribution. This suggests that a suitably applied 

test for normality is an effective method to determine u. 

The Pearson's Chi-square Test is used as a test of goodness-of-fit to establish whether 

or not the observed differences are consistent with a normal distribution with mean 0; 

see Greenwood and Nikulin (1996). Initially, we consider u = u1 and perform the 

Pearson normality test based on all the differences Tu2 - Tu1 , Tu3 - Tu2 , ••• , Tu.. - T u..- 1 • 

If the null hypothesis of normality is not rejected, u is taken to be a suitable threshold. 

If the null hypothesis is rejected, then we consider u = U-2 , remove Tu2 - Tu1 from the 

set of differences considered, and repeat the above procedure. We have found that a 

size 0.2 test generally performs well. Reducing the size of the test has the effect of 

lowering the chosen threshold. 

(3) Step 2 is iterated until the Pearson's Chi-square test indicates that the differences are 

consistent with a normal distribution with mean 0. If this does not happen, Un is 

returned with a warning. Our experience is that this latter situation occurs rarely. 

The above steps can be performed quickly, so yielding a procedure that is computationally 

inexpensive. We implemented our method in the freely available, open source statistical 

environment R (R Development Core Team (2008)). Before presenting examples of the 

application of our methodology in Section 6.4, we now discuss some adaptation of the 
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maximum likelihood methodology used to estimate the parameters ~ and (Ju. We made 

these adaptations in the light of estimation difficulties that we encountered while developing 

our automated threshold selection technique. 

6.3 Adaptation to the Parameter Estimat ion Methodology 

6.3.1 Current Parameter Estimation Technique 

Throughout this thesis we use maximum likelihood estimation (MLE) to estimate the GPD 

model parameters~ and (J (we now drop the subscript u for notational convenience). Further 

details about MLE can be found in Chapter 2; see also Eliason (1993) and Davidson and 

Smith (1990). Let the excesses of a threshold u be denoted y1, ... , Yk if there are k excesses. 

As we saw in Section 2.2.3 (equations (2.2.15) and (2.2.16)), the log-likelihood can be divided 

into two cases, depending on the value of the shape parameter~: 

~ f 0: 

~ = 0 : 

provided 1 + ~ > 0 for i = 1, ... , k; 

1 k 

£((]) = -k log (J- - L Yi; 
(J i=l 

we note that f((J) = lim f((J, ~), by Taylor expanding log(1 + ~Yi/(J). The following facts 
e-+o 

about the parameter estimates come from Smith (1985) and Coles (2001): 

~ > - 0.5 Maximum likelihood estimators have their usual asymptotic properties. 

-1 < ~ < -0.5 Maximum likelihood estimators are obtainable, but do not have usual 

asymptotic properties. 

~ < - 1 Maximum likelihood estimators are unlikely to be obtainable. 
Analytic maximization of the log-likelihood is not possible; hence a numerical optimization 

algorithm is used. When obtaining parameter estimates, we also aim to find the standard 

errors and correlations of these estimates. These can be obtained from the asymptotic 
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variance-covariance (VC) matrix which can be calculated from knowledge of the Hessian 

matrix. 

Definition 6.3.1.1. Hessian Matrix The analogue of the second derivative for functions 

of several variables is called the Hessian Matrix (see Lang {1981}, Dineen {1998} and Freund 

(1992}}. If f is a function of X = (x1 , . . . ,xn), then its Hessian H1(X) is the matrix 

In the present case our function of several variables is the log-likelihood f of the GPO 

model given in (6.3.1) and (6.3.2). In the~ > 0 case, the symmetric Hessian matrix H takes 

the general form 

( 

a2e(~{) 8
2
l(u,{) ) 

H = au ouo{ . 
82l(u,{) 82£(2,{) 

8{80' 8{ 

An approximate VC matrix can be obtained by inverting the negative Hessian and evaluating 

the result at the maximum likelihood estimates fJ and t provided by the numerical 

optimization routine applied to (6.3.1) and (6.3.2) . In practice the Hessian is usually 

estimated numerically as part of the optimization procedure; see Coles (2001). Development 

of our automated threshold selection method highlighted problems within the current 

approach of obtaining parameter estimates and their approximate VC matrix by means 

of the numerical estimation of the Hessian. The range of problems and their solutions are 

discussed in the following sections. 

6.3.2 Analytic Hessian Calculation 

The need for an analytic form of the Hessian matrix arose when 1Singularities' occurred due 

to its numerical estimation. The calculation of the approximate VC matrix of the parameter 

estimates requires the inversion of the negative Hessian Matrix. When determining the 

standard errors of the parameter estimates from the VC matrix, it is necessary to take the 

square root of each of the leading diagonal elements; if any of the elements to be square rooted 

is negative (corresponding to a negative variance estimate) , then a complex or undefined 
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value occurs causing the 'singularity'. The solution to the problem was to discover why a 

negative value was occurring in the approximate VC matrix. 

In general, if the true value of a positive quantity lies very near to zero then sometime 

numerical techniques can return a negative value. This can occur in the numerical evaluation 

of the Hessian. Adopting an analytic solution avoided this problem and provided a much 

tidier general solution, even though the numerical approach is often adequate. We now 

present analytic expressions for the elements of the Hessian matrix: 

The proof of these results is given in Appendix A. As mentioned, this analytical form of 

the Hessian matrix eliminated 'singularity' problems due to the numerical evaluation of the 

Hessian. 

6.3.3 Adapted Log-likelihood Function and Hessian Matrix when 

~ = 0 

In Section 6.3.1, we saw that we needed to take care when defining the likelihood f (u, ~) 

when e = 0, and so we defined f(u) in (6.3.2) , where f(u) = liml(u, e) , by using Taylor's 
{~0 

Theorem: 
1 k 

f(u) = -k log u-- LYi· 
(J i=l 
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It is also possible to use Taylor's Theorem to obtain expressions for the second derivatives 

of£ as e-+ 0 and hence for the limiting Hessian. As an example we have 

We used these limiting version of the log-likelihood function and associated Hessian matrix 

in our numerical optimization algorithm. 

6.3.4 New Boundary Conditions on Second Derivatives of the 

G PD Likelihood Function 

During our investigation and implementation of the maximum likelihood method for 

estimation of t he parameters e and (/ ' it was found that numerical optimization of 

the likelihood suffered problems due to the boundary conditions associated with these 

parameters: 

1 eYi o · 1 k +-> ,z = , ... , o (6.3.10) 
(/ 

If the maximum likelihood estimate were near t he boundary defined by (6.3.10) it was 

sometimes impossible to evaluate a positive definite approximate VC matrix. Figures 6.1 

shows the location of the maximum likelihood estimate for a case when it is situated well 

inside the region defined by (6.3.10). Figure 6.2 on the other hand , shows a maximum 

likelihood estimate just inside the region defined by (6.3.10). In t his case the numerical 

form of the approximate VC matrix was not positive definite. As an additional problem, if 

e < -0.5 we found that our procedure was unable to establish the approximate VC matrix 

correctly, as explained in Section 6.3.1. 

In order to overcome all these problems we imposed different constraints on the values 

of the parameters u and e when optimizing £(u, e). These were driven by the need for an 

approximate VC matrix that was positive definite. We restricted our numerical optimization 

routine to values of u and e for which the Hessian was negative definite, or, equivalently, 

the approximate VC matrix was positive definite. This eliminated the problems that we 

encountered up to this point. The benefit of this approach is that we no longer need to 

consider the categorization over values of e given in Section 6.3.1, as our new constraint 
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Figure 6.1: Plots corresponding to the case where the maximum likelihood estimates are 
within the boundary conditions given by (6.3.10). The log-likelihood .e(u, e) together with 
its gradients %c/( u, e) and te.e( u, e) in the u and e directions are shown. The maximum 
likelihood estimate is indicated by the circle. In this case the numerical form of the 
approximate VC matrix was positive definite. 

ensures that asymptotic properties are maintained. 

6.4 Applied Examples 

In this section we will apply our automated threshold selection methodology to the HR 

Wallingford Coastal Wave data set introduced in Chapter 1 and to the Offshore Wave data 

set from Zacharioudaki (May 2008) to illustrate the successful application of our technique 

to both types of data. 

6.4.1 Application to Univariate Coastal Wave Data 

We now apply the method presented in Section 6.2 to a real data set. The data used in this 

example relate to conditions near the Selsey Bill area (Hawkes, personal communication), as 

discussed in Chapter 1. These data were generated using the hindcast technique (see Reeve 

101 



Chapter 6. Automated Threshold Selection Methods in Extreme Value Theory 

log-likelihood I( a, I;) Gradient In a direction 

~ -18000-
- 20000 

"-' 
I 0 

~ 
I 

1.1340 1.1350 1.1360 1.1340 1.13150 1.1360 

0 0 

Gradient in I; direction 

~ 
"-' 

I 0 

~ 
I 

1.1340 1.1350 1.1360 

0 

Figure 6.2: The same functions as in Figure 6.1. The maximum likelihood estimate is again 
indicated by a circle and lies very near the boundary defined by (6.3.10). In such cases the 
numerical form of the approximate VC matrix may not be positive definitive. 

et al. (2004)) based on wind records. The data set consists of hourly hindcast measurements 

of the variables significant wave height, wave period and wave direction over a time span 

of 27 years. Wave hindcasting attempts to create the wind-wave conditions, and cannot 

account for the swell component. In this example we take a random sample of 10,000 

observations from the data set. This random sample has the same structure as the full 

data set; we take a sample to reduce computational processing time significantly. The 

resulting values are typical of data that are collected in similar studies and can be thought 

of as satifying the independence assumption that underlie maximum likelihood theory, as 

discussed in Section 2.1.2. A plot of wave height (in metres) against the cosine of wave 

direction is shown in Figure 6.3. Our automated threshold selection technique was applied 

to these wave height observations and indicated 0.487 m as a suitable threshold. This 

threshold is also shown in Figure 6.3. The values of the cosine of wave direction were not 

used in finding this threshold. Figure 6.4 plots differences Tu; - 'fu; -t against threshold u;-1, 

and as described in Section 6.2.1 is the basis of our threshold selection procedure. Figure 6.5 
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I() , • 

C'i 

-1.0 -0.5 0.0 0.5 1.0 

Cos(Wave direction) 

Figure 6.3: Scatter plot of wave height against the cosine of wave direction for 10,000 values 
from the Selsey Bill Coastal Wave data set. The horiwntalline was obtained by applying our 
automated threshold selection procedure to the wave height observation, taking no account 
of the cosine of wave direction. 

shows diagnostic plots, as discussed by Coles (2001) and produced by the ismev package 

of Coles and Stephenson (2006) run in R (R Development Core Team (2008)). These 

diagnostic plots indicate that the fitted GPD model is satisfactory. Both the probability 

and quantile plots show that there is little difference between empirical and fitted values 

from the model, indicating a good fit. Similarly, there is reasonable agreement between the 

data and the estimated return levels and associated 95% confidence envelope, and between 

the histogram of the data values above the chosen threshold and the fitted GPD density. 

This example shows that our proposed methodology can provide an automated, simple and 

computationally inexpensive threshold selection method that avoids the need for subjective 

interpretation of threshold choice plots with all their associated errors. 

6.4.2 Application to Bivariate Coastal Wave Data 

The application of the automated threshold selection techique to a bivariate data set is 

straightforward. The univariate automated threshold selection procedure is applied to each 

margin separately. The chosen thresholds are then fed into a bivariate model as discussed 
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Figure 6.4: Graph of the differences Tu; - Tu;-t against threshold Uj-l for the wave height 
data. The vertical line indicates the automated threshold selection choice. 
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Figure 6.5: Diagnostic plots for the GPO fit when the threshold is chosen using our 
automated threshold selection approach applied to the wave height data. 

in Section 2.3. Essentially the benefits from the univariate procedure are transferred to the 

bivariate case, improving the accuracy of the definition of exceedances and reducing the 

dependency on interpretation of diagnostic plots for threshold choice. Figure 7.16 presents 
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6.5. Performance and Uncertainty Assessments 
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Figure 6.6: Wave period against wave height with associated marginal thresholds. This 
defines four distinct regions for all the data. 

an example of the automated threshold selection technique applied to bivariate Coastal 

Wave condition data. The four regions identified corresponding to those of Figure 2.7; see 

Section 2.3 for discussion of the associated modelling uncertainty. 

6.5 Performance and Uncertainty Assessments 

6.5.1 Using Bootstrap Percentile Intervals to Assess Return Level 

Uncertainty 

Uncertainty associated with inferences from the GPD model can depend on two sources: 

firstly, the uncertainty associated with estimating the scale and shape parameters from the 

available exceedances; secondly, the uncertainty associated with the selection of the threshold 

that defines these exceedances. Uncertainty in parameter estimation can be relatively small 

in comparison to the uncertainty in the choice of threshold. It is therefore important when 
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discussing inferential process to include the effect of the uncertainty associated with threshold 

choice. 

As we saw in Chapter 2, return levels play a vital role in coastal engineering; see 

Section 2.2 and page 82 of Coles (2001) for a detailed discussion about the estimation 

of return levels and approximate confidence intervals from GPD fits. Standard software 

programmes, such as the i smev package (Coles and Stephenson (2006)), estimate return 

levels and approximate confidence intervals, as shown in Figure 6.5, but do not take into 

account uncertainty due to threshold selection. 

Tancredi et al. (2006) present a review of existing model based methodology to account for 

threshold uncertainty in GPD models, and then introduce their own technique. In contrast to 

conventional fixed threshold methods, Tancredi et al. (2006) work in the Bayesian framework 

and assume that the threshold is one of the parameters about which to make inference. To 

overcome the lack of a natural model below the threshold and to avoid over-restrictive 

parametric assumptions, they propose a flexible mixture of an unknown number of uniform 

distributions with unknown range for below-threshold data; we will adopt a somewhat similar 

approach for our simulation study in Section 6.5.2. T hey consider it reasonable to expect 

different estimates of return levels and precision of estimates for different thresholds. This 

essentially leads to a Bayesian mixing of all reasonable threshold values and parameter 

estimates to determine an overall estimate of return levels and their uncertainty. Their 

approach is, however, highly computationally intensive, requiring the use of a reversible 

jump Markov chain Monte Carlo algorithm to cope with the unknown number of uniform 

distributions used for below-threshold modelling; see Green (1995). It also requires a number 

of prior assumptions to be made, although Tancredi et al. (2006) argue that return level 

estimation is more robust to these assumptions than to threshold choice in a fixed approach. 

Because of these drawbacks, we take a different approach to assess return level uncertainty 

based on the bootstrap procedure. Mooney and Duval (1993) and Efron and Tibshirani 

(1993) provide a basic summary of this procedure as follows: 

1. Set b = 1. 

2. Draw a simple random sample of size m from the original data set y1 , ... , Ym with 

replacement. We call this a bootstrap sample. 
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3. For the bootstrap sample, calculate the quantity of interest, here a specific return level, 

and call it Bt. We calculate the return level by first estimating the threshold using the 

methodology in Section 6.2. We then make use of this threshold when estimating the 

GPD model. Finally, we use the GPD parameter estimates to calculate a return level 

estimate. 

4. Increase b by 1 and repeat steps 2 and 3 a total of B times, where B is a large number. 

We set B = 1000. 

5. Construct a probability distribution by attaching a 1/ B probability to each point, 

et,~ ... . ,oB. 

Uncertainty in the quantity of interest - in this case a specific return level- can be quantified 

by summarizing this probability distribution using a confidence interval. More precisely, we 

will use a bootstrap percentile interval. To obtain an (1 -a)-level interval we sort the B 

values er. 02, .. . , BB in ascending order and select the (~B)th and (1 - ~)Bth values as our 

confidence interval using the integer below and the integer above if these values are not 

themselves integers. We set a = 0.05, yielding 95% confidence intervals. 
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Figure 6.7: Histogram of the bootstrapped 100 year return levels and associated 95% 
bootstrap percentile interval (B = 1000 bootstrap iterations). The dashed lines are the 
percentile interval and the solid line is the return level based on the original data. 
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Figure 6.8: Histogram of the bootstrapped 1000 year return levels and associated 95% 
bootstrap percentile intervals. The dashed lines are the percentile interval and the solid 
line is t he return level based on the original data. 

We now present the result of applying the above bootstrap methodology to our Coastal 

Wave data set. Figure 6.7 shows a histogram of the bootstrapped 100 year return levels 

er, ... , Oj, and t he associated bootstrap percentile interval. Figure 6.8 is an analogous plot 

for the 1000 year return level. These percentile intervals enable us to quantify t he uncertainty 

in return level estimation in an accurate way, without ignoring threshold choice uncertainty 

and relying on the standard asymptotic t heory outlined in Section 2.2.6 and on page 82 of 

Coles (2001). Figures 6.7 and 6.8 show that the bootstrap percentile interval widths are 

approximately 0.6 m for the 100 year wave height return level and 0.8 m for t he 1000 year 

return level, indicating that uncertainty about these estimates is not particularly large from 

an engineering point of view. 

6.5.2 Simulation Study to Assess the Performance of our Auto-

mated Threshold Selection Method 

In this section we investigate the performance of our automated t hreshold selection method 

by means of a simulation study. Figure 6.9 shows a histogram of a data set comprising 10,000 
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simulated values of a random variable X with distribution function given by 

F(x) = {(1- !3)G1(x) + ,8}/[x > u] + G2(x)J[x::::; u], x > 0, 

where I is the usual indicator function and ,8 = P(X::::; u). G 1(x) is a GPD function with 

associated density function 

1 ( ~(x- u)) -( 1 /~+ 1 ) 
91(x)=- 1+ , 

u u 
X> U, 1 

~(x- u) 
0 + > ; 

u 

G2(x) is a truncated normal distribution function with associated density function 

1 ( ~) 
92(x) = ~ exp - 20 , X > 0. 

f"" 1 ( (x--y)2) d Jo o.../?.ii exp -~ x 

With this F, the distribution of the random variable X can be thought of as a mixture of a 

normal distribution truncated on (0, u] and a GPD on (u, oo) with weights ,8 and 1- ,8, with 

non-extreme values coming from the truncated normal and extreme values from the GPD; 

this is somewhat similar to the model assumed by Tancredi et al. (2006). Given ,8 and the 

parameters 1 and a of g2, we can find u from the condition 

Pr(X ::::; u) = G2(u) = L' 92(x)dx 

f" 1 ( (y-•rJ2) d Jo ~exp -2T y 

f"" 1 exp (- (y--y)2) dy. 
J 0 o.$ 2<>2 

For the simulated data set shown in Figure 6.9 we set ,8 = 0.9, 1 = 2 and a = 0.7, and 

solved for u to obtain u = 2.90. We choose the parameter u of the GPD so that there was 

no discontinuity at u in the probability density function of X. To do this we require 

With u = 2.90, this equation can easily be solved to yield u = 0.40. We set the shape 

parameter~ of the GPD to be 0.2. The resulting probability density function of X is shown 
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in Figure 6.9, together with the threshold u = 2.90 (dotted line). 

A random sample x 1, ••• , x N can be simulated from F as follows: 

• Set i = 1. Simulate y rv N('y = 2, a2 = 0.72); 

• If y < 0 reject it; 

• else if 0 < y < u, set Xi = y and increase i by 1; 

• else if y > u simulate x rv GPD(u = 2.90,o- = 0.4,~ = 0.2) , set Xi= x and increase i 

by 1. 

• Stop when i = N + 1. 
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Figure 6.9: Histogram of a data set of 10,000 simulated values of a random variable X 
with distribution function F . The associated probability density function is also shown. 
The individual values are indicated by a rug of dashes. Our automated threshold choice is 
indicated by a solid line, with the true threshold u = 2.90 being shown by a dotted line. The 
95% bootstrap percentile intervals is also presented using dashed lines. 

We applied our automated threshold selection method to the simulated data set of size 

N = 10, 000 shown in Figure 6.9. The selected threshold took the value 2.678 and can 

be seen to be close to the true value of u = 2.90. We next used the above simulation 

procedure to generate 1000 random samples of size N = 10, 000 from F. We applied our 

110 



6.5. Performance and Uncertainty Assessments 

0 ,... 

0 
<D 

~ 

(') 
!i c: 

G> 

"' er 
e u. ~ 

0 
N 

0 
~ 

mL 0 Jl ffh.f11l ,{h, 

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5 .0 

Selected Threshold from Random Sample 

Figure 6.10: Histogram of thresholds selected from 1000 random samples of size N = 10,000 
from F. The mean and median of the automated threshold choices for the simulated data 
sets are shown by dot-dashed and dashed lines respectively; while the true threshold u = 2.90 
is shown by a dotted vertical line. The 2.5% and 97.5% quantiles are shown as the outer 
solid lines. 

threshold selection technique to each random sample; a histogram of these 1000 thresholds, 

together with 2.5% and 97.5% quantiles (2.189,3.694), the true threshold u = 2.90 and mean 

Umean = 2.73 and median Umed = 2.67 values of the distribution of estimated thresholds are 

shown in Figure 6.10. The selected thresholds seem to be evenly and not very widely spread 

around the true threshold, suggesting that our method can recover a known threshold to a 

good degree of accuracy. Our method performed similarly well when applied to data sets 

simulated using different values of /3, {, a and ~ -

We now focus on the simulated data set shown in Figure 6.9 and repeat the bootstrap 

analysis discussed in Section 6.5.1, except that our bootstrap quantity of interest Ot now 

becomes selected threshold instead of a specific return level. Figure 6.11 shows a histogram 

of the bootstrap threshold choices together with the 95% bootstrap percentile interval 

(2.225,3. 732), our automated threshold choice of 2.678 for the original simulated data set, 

mean Umean = 2. 75 and median Umed = 2.68 values of the distribution of estimated thresholds 

and the true threshold u = 2.90. The 2.5% and 97.5% quantiles found above have also been 

added. The 95% bootstrap interval is also shown in Figure 6.9. We can see from these 
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plots that the 95% bootstrap percentile interval is not very wide and contains the true and 

selected thresholds. The actual interval values of (2.225, 3.732) compare well with the 2.5% 

and 97.5% quantiles (2.189, 3.694) indicating that the bootstrap assesses well the uncertainty 

associated with our threshold choice procedure. 
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Figure 6.11: Histogram of the bootstrap threshold choices. The automated threshold choice 
of 2.678 for the original simulated data set is shown as the solid red line. The mean and 
median of the automated threshold choices for the simulated data sets are shown by dot
dashed and dashed lines respectively; while the true threshold u = 2.90 is the dotted line. 
The 95% bootstrap percentile interval is shown as the dashed lines, with the 2.5% and 97.5% 
quantiles from Figure 6.10 being given using the outer solid lines. 

The conclusion of this simulation study is that our automated and computationally 

inexpensive procedure can recover a theoretical threshold from simulated data to a good 

degree of accuracy and that the bootstrap can be successfully used to assess the uncertainty 

associated with this procedure. In the next section we give a further example of the 

application of our procedure by comparing it to an existing technique utilized in the 

JOINSEA software. 
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Table 6.1: The chosen threshold, number of exceedances, GPO parameter estimates and 
standard errors from our new automated threshold selection method and the approach 
adopted in the JOINSEA software. 

New Technique JOINS EA 
Threshold Value 0.487 1.480 

Number of Exceedances 5372 497 
Maximum Likelihood Estimate, ~ -0.230 -0.271 
Maximum Likelihood Estimate, u 0.576 0.405 

Standard Error, ~ 0.00952 0.04094 
Standard Error, u 0.00940 0.02409 

6.5.3 Comparison of our Automated Threshold Selection Tech-

niques with the Approach Used in the JOINSEA Software 

We present a review of the JOINSEA software in Chapter 3; see also Wallingford (1998b). 

In this section we compare our automatic threshold selection technique with an existing 

approach used in the JOINSEA software. The JOINSEA approach for choosing an 

appropriate threshold assumes that exceedances can be identified for GPO modelling as 

values greater than the 95% quantile. We now use the Selsey Bill Coastal Wave data set 

to compare our choice of threshold and fitted GPO with those obtained from the approach 

adopted in JOINSEA. Table 6.1 gives the results from the two approaches. 

Figure 6.12 shows again a scatter plot of wave height against the cosine of wave direction 

for the Selsey Bill Coastal Wave data set, together with the two thresholds. The dashed 

line was obtained using our new threshold technique, while the solid line is the JOINSEA 

threshold. If we fit two GPO models to the wave height exceedances defined by each threshold 

then we obtain the results given in Table 6.1. 

We see from Table 6.1 and Figure 6.12 that the threshold values are very different, with 

the automated threshold being almost 1m below the JOINSEA threshold. Figures 6.13 and 

6.14 show comparisons of inferences (return levels, confidence intervals and fitted densities) 

from the fitted models based on each threshold. We can see that the resulting models 

are actually very similar indicating that our automated threshold selection technique is 

comparable to that of JOINSEA. The JOINSEA threshold yields fewer exceedances, which 

is the cause of the increased return level confidence interval widths in Figure 6.13. The 
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Figure 6.12: Scatter plot of wave height against the cosine of wave direction for 10,000 values 
from the Selsey Bill Coastal Wave data set. Our automated threshold choice is shown using 
the dashed line, while the solid line shows the threshold chosen by the JOINSEA software. 
Both threshold choices take no account of the cosine of wave direction. 
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Figure 6.13: Returns level curves and confidence envelopes from both automated and 
JOINSEA threshold model fits to the Coastal Wave data. 

narrower confidence intervals yielded by our threshold selection technique, together with the 

fact that it is more model based, lead us to prefer our methodology over the JOINSEA 
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approach. We also note that for data sets such as those simulated in Section 6.5.2 with 

f3 > 0.95 the JOINSEA approach is guaranteed to lead to non-extremes being included in 

future GPD analyses. 

0 
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Figure 6.14: Histogram of the exceedances of the Coastal Wave data from the JOINSEA 
threshold choice, together with the GPD fit (solid line). The GPD fit based on our threshold 
procedure is also shown (dotted line) . This GPD fit has been scaled so that the area under 
it above the J OINSEA t hreshold is one. 

We applied our automated threshold selection technique to different data sets which 

varied in size and data collection location, and found it performed consistently well in terms 

of model goodness-of-fit. 

We felt that in the case of the Selsey Bill Coastal Wave data our automated approach 

chose a relatively low threshold as a type of "average" threshold across the range of direction 

covariate values. This observation led us to extend our automated technique to allow the 

chosen threshold to vary with covariate value. We discuss our direction varying threshold 

methodology in detail in Section 6.6. 
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Table 6.2: The chosen threshold, number of exceedances, GPD parameter estimates and 
standard errors for our new automated threshold selection method and the approach adopted 
in the J OINSEA software. 

New Technique JOINSEA 
Threshold Value 1.746 1.97 

No. of Exceedances 7635 4311 
Maximum Likelihood Estimate ( 0.4101 0.4011 
Maximum Likelihood Estimate CJ -0.076 -0.085 

Standard Error ( 0.0065 0.0085 
Standard Error CJ 0.011 0.015 

Application to U nivariate Offshore Wave data 

We now a provide comparison between JOINSEA and our threshold selection technique 

based on Offshore wave data; for details on this data see Zacharioudaki (May 2008) . 
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Figure 6.15: Scatter plot of Hs. Our automated threshold choice is shown using the dashed 
line, while the solid line shows the threshold chosen by the JOINSEA software. Both 
threshold choices take no account of the cosine of wave direction. 

Figure 6.15 shows a scatter plot of wave height against the cosine of wave direction for 

the Offshore Wave data set, together with the two thresholds. The dashed line was obtained 

using our new threshold technique, while the solid line is the JOINSEA threshold. Fitting 
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the two GPD models to the wave height exceedances defined by each threshold yielded 

the results given in Table 6.2. Figures 6.16 and 6.17 show comparisons of inferences 
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Figure 6.16: Returns level curves and confidence envelopes from both automated and 
JOINSEA threshold model fits to the Offshore Wave data. 
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Figure 6.17: Histogram of the exceedances of the Offshore Wave data from the JOINSEA 
threshold choice, together with the GPD fit (solid line). The GPD fit based on our threshold 
procedure is also shown (dotted line) . This GPD fit has been scaled so that the area under 
it above the J OINSEA threshold is one. 
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{return levels, confidence intervals and fitted densities) from the fitted models based on 

each threshold. Figure 6.16 shows that our automated threshold has a smaller return level 

confidence interval width than the JOINSEA threshold due to the JOINSEA approach again 

yielding fewer exceedances. Despite this minor difference we can see from Figure 6.17 that 

the resulting models perform almost identically indicating that our automated threshold 

selection technique is comparable to that of JOINSEA. 

6.6 Extended Automated Threshold Selection Technique 

We have seen that the Selsey Bill Coastal Wave data set comprises information about wave 

direction as well as wave height. So far we have worked only with wave height. It is clear 

from Figure 6.12 that the behaviour of wave height varies with wave direction. It therefore 

makes sense to include the directional effect in our automated threshold selection procedure, 

rather than to have a threshold that is constant over wave direction. 

In extreme wave analysis directional effects are usually dealt with using one of two 

methods: either the data are split according to different directions with each separate data 

set being modelled independently, or the wave direction is included as a covariate as in 

Ewans and Jonathan {2006) and Jonathan and Ewans (2007), for example. In this section 

we propose a new approach to blocking the data. 

Our approach is based on the automated threshold selection procedure that we have 

already presented and is as follows: 

{1) First the data set is blocked according to the cosine of wave direction. The number of 

blocks is initially defined by the user; see Figure 6.18 for example where the covariate 

axis is split into 40 equal width blocks. Each block is then altered iteratively to its 

optimum size as described in {2). 

{2) The constant automated threshold selection procedure is applied to the data in each 

block. The block size can then be altered in order to achieve a satisfactory GPO fit 

in each block. If there is not a sufficient number of observations within the block or 

if the block's optimal threshold choice does not define enough exceedances to achieve 

a good GPO fit, then the block is merged with the next consecutive block and the 
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Figure 6.18: Scatter plot of wave height against the cosine of wave direction. The data has 
been split into 40 sections equally spaced along the covariate axis. 

process is repeated. The merging of consecutive blocks is continued until the required 

minimum values for the number of observations and the number of exceedances for the 

merged block allows satisfactory fits to be reached. Our optimal blocks are shown in 

Figure 6.19. The minimum values that we used were determined through a simulation 

study by fitting a number of GPD models to different data sets and assessing the 

dependence of model fit quality on these values. 

(3) Each block now has a constant optimal threshold associated with it. If these individual 

block thresholds are considered together a piecewise constant threshold function is 

defined. A threshold that is continuous in the cosine of wave direction covariate can 

be obtained by applying a smoothing spline, for example. We did this using the 

smooth . spline function of the R statistical programming language; see Green and 

Silverman (1994) and R Development Core Team (2008) . The resulting smoothed 

direction varying threshold function is shown in Figure 6.20. The more appropriate 

thresholds that this extended automated threshold selection technique provides can 

yield more accurate direction specific return level estimates. These in turn can lead 
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Figure 6.19: Scatter plot of wave height against the cosine of wave direction for the Coastal 
Wave data. The data has now been split into optimal blocks along the covariate axis. 
Individual automated thresholds have been chosen for each block and are shown by the solid 
horizontal lines. The dotted line shows the threshold chosen without reference to cosine of 
wave direction. 

to improved coastal defence designs that account for directional variations in extreme 

wave heights. 

In order to justify further the choice of these direction varying thresholds we show in 

Figure 6.21 probability density contours for a bivariate kernel density estimate (calculated 

using the kde2d function of the MASS library; see Venables and Ripley (2002)) based on wave 

height and the cosine of wave direction. We see that the chosen thresholds aline well with the 

tail of this probability density function across the range of cosine wave direction, supporting 

our direction varying threshold choice procedure. 

6. 7 Developed Software including Graphical User Interface 

During the course of our work, we have made considerate use of the JOINSEA software, 

as discussed in Chapter 3. Although this software provides excellent routines for univariate 

and bivariate extreme value modelling, we feel that its use may present some difficulties 
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Figure 6.20: The bivariate Coastal Wave data with piecewise constant and smoothed 
covariate varying thresholds. 
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Figure 6.21: Probability density estimate contours overlaid on the scatter plot of wave 
height against cosine of wave direction. The thresholds selected by the extended automated 
threshold selection technique are shown using the solid lines. 
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for practitioners unfamiliar with joint probability techniques or FORTRAN programming. 

JOINSEA requires the user to input information in several stages to achieve an accurate 

joint probability analysis. This degree of control on the analysis is useful to the experi

enced/advanced users, but may limit the uptake of the software by beginner/intermediate 

users as their knowledge of the procedures will be limited. 

These considerations motivated our investigation into automating some of the techniques 

used to produce a joint probability analysis, such as the new threshold selection techniques 

introduced in this chapter. A natural development of our methodological work was to 

implement these techniques into a user friendly interface which required minimum technical 

knowledge to operate and which produced both univariate and joint extremes analysis. 

The software was written in R and utilized the TclTk and Tc1Tk2 packages to create the 

Graphical User Interface (GUI). We now present and discuss some screen shots from the 

software windows. 

Upon starting the software, the "Xsea" introductory screen appears, shown in the upper 

image of Figure 6.22. This screen gives version and creator information. Pressing the 

"Continue ... " button takes the user automatically to the data input screen shown in the 

lower image of Figure 6.22. 

The data input screen allows the user to load a text or Excel data file. The format of 

the required data is simple: for example, three columns of data each with a variable name 

at the top of each column. This simple format reduces the amount of user formatting to 

a minimum. Once the data is loaded, the user is able to produce time series plots of each 

marginal data by following the "Which margin do you want?" prompt. Also on the data 

input screen the user is asked to decide between "Univariate" or "Bivariate" analysis. The 

user us now taken to the next screen that depends on the choice of analysis made. 

If the user chose univariate analysis, the program moves to the screen shown in the 

upper image of Figure 6.23. This screen asks the user to input the subject variable name, 

e.g. Hs, Wave Height or Wave Direction. The Wave Direction variable name is used if the 

user selected the use of a direction varying threshold. Otherwise, a constant threshold is 

selected which only requires the subject variable. Once this information has been inserted, 

the "start" button can be pressed and the software will begin its calculations. 

122 



6.7. Developed Software including Graphical User Interface 

_\.~sea: Joint Probability Software 
26109l06 Pul Tboa.peon. Uz:Wency ofPlTmol&h 

paul.lhomp~on J @plyomolllb llC. uk 

Continue ... 

. . ...... v., '" · c :-15 'XI 
........ 

"""G .nlow.c! 

Mill~ lalotwO\rto• 

\\-lliolo ....... ~- .. - .. 
~ .~ 1 

.. 1"1 

I• 

r 

Continue.. . l 
Figure 6.22: Screen shots from the Xsea GUI. The top image shows the introductory screen, 
while the bottom image shows the data input screen. 

Alternatively, the user may chose to perform a bivariate analysis which will lead to 

the screen shown as the lower image of Figure 6.23. The user is given several options 

for data presentation and diagnostic plots. The user is also provided with the option to 

manually chose the dependence function as discussed in Section 2.3.3; if the automatic 

choice is selected, then the software will fit all the dependence functions and select the most 

appropriate based on log-likelihood values, as suggested by Tawn and Coles (1994) . As 
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Figure 6.23: Screen shots from the Xsea GUI. The top image shows the univariate, while 
the bottom image shows the bivariate analysis screen. 

before, after making these choices, the "start" button can be pressed and the software will 

begin its calculations. 

The output graphs include probability, quantile and return level plots, histogram (with 

fitted model curve), plot of parameter estimate differences versus threshold, and displays of 

joint probability regions. Examples of this output would be figures seen in Section 6.4. 
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6.8 Summary 

We have presented a new automated method for selecting the threshold for the GPO in 

extreme value modelling. We have shown the practical applicability of our method by 

presenting relevant examples for coastal and offshore wave data. Our method uses a series 

of normality tests to find an appropriate threshold choice for a given data set. We have 

carried out a simulation study to check the performance of our approach and have assessed 

the effect of the uncertainty associated with our method on return level estimation using 

the bootstrap procedure. The simulation study has shown that our automated technique 

can recover a known threshold from a simulated data set to a good degree of accuracy, and 

the bootstrap enables us to obtain bootstrap percentile intervals to assess the accuracy of 

our automated technique. We have also provided comparisons of our new approach with an 

existing technique implemented in the JOINSEA software, pointing out why we prefer our 

method. 

We have extended our methodology to incorporate a direction covariate dependant 

threshold. This extension uses our automated threshold selection technique to segregates 

the data into optimal blocks based on goodness-of-fit and sample size requirements. Our 

methodology can lead to more accurate return level estimates, with their uncertainty properly 

quantified, which can inform and enhance the coastal design process. We have also made 

adaptations to the standard maximum likelihood based parameter estimation techniques 

that overcome some of the numerical difficulties that we encountered whilst developing our 

automated threshold selection methodology. 

We have implemented much of this methodology in a friendly GUI. This allows a range of 

users to perform both univariate and bivariate extreme value modelling without knowledge 

of FORTRAN or the JOINSEA program. 
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Bayesian Non parametric Quantile Regression 

Using Splines 

7.1 Introduction 

In Chapter 4 we discussed Quantile Regression, mentioning both the nonparametric and 

Bayesian approaches. There we saw that the overall aim was to estimate the conditional pn 

quantiles of a variable Y given the value of a covariate X: Qp(YIX = x). Furthermore we 

reviewed combinations of these approaches which give rise to more complex techniques, such 

as Bayesian Quantile Regression as presented in Yu and Moyeed (2001). In this chapter we 

present a new method that we call Bayesian non-parametric quantile regression using splines. 

The technique links elements of existing Bayesian quanti le regression (Yu and Moyeed (2001)) 

and nonparametric regression using splines. 

The Bayesian quantile regression (BQR) methodology developed in Yu and Moyeed 

(2001) adopts a parametric approach based on polynomial quantile functions; see sec

tion 4.4.3 for an example. Although Yu and Moyeed (2001) present excellent results, there 

are certain drawbacks associated with using polynomials. These include the influence of 

outliers and the need to choose the degree of the polynomial, possibly for each quantile 

considered. Also, the data may have a limited local effect on the shape of a polynomial 

regression curve especially when modelling extreme quantiles. In this chapter we present a 

nonparametric alternative to the parametric approach of Yu and Moyeed (2001) based on 
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using natural cubic splines (NCS) as defined in Section 4.3.1 rather than polynomials. Our 

approach provides a more versatile and flexible method of fitting a quantile regression curve. 

As our technique utilizes much of the theory described in Chapter 4, hence we will frequently 

refer to particular sections from that chapter. 

7. 2 Bayesian Modelling and Inference 

In this section we present a framework for Bayesian nonparametric quanti le regression using 

splines rather than polynomials as in Yu and Moyeed (2001). In our approach we model a 

quantile function of a covariate t using a NCS with N knots at points r 1 , ... , TN along the 

range of the covariate as defined in Section 4.3.1. The NCS is uniquely determined by its 

values g = (g1, ... , 9N l at these knots, since, by Theorem 4.3.1.2, there is a unique NCS 

that can be drawn through the points (ri, gi), i = 1, ... , N. As our approach is Bayesian, we 

begin by defining the prior density for g as multivariate normal; see Green and Silverman 

(1994), page 51 for a discussion about the use of the multivariate normal density as a prior 

in this context. 

Our prior for g is defined by means of the multivariate normal density 

)..(N-2)/2 ( 1 ) 
rr(gi>..) = (2rr)CN-2)/2(ttl ... ILN-2)1/2 exp -2}.. gT Kg ' 

in which tt1, . .. , ttN -2 are the inverses of the N- 2 non-zero eigenvalues of K, as defined in 

equation (4.3.2), and)..> 0 is an unknown parameter. More details about this multivariate 

normal distribution can be found in Rao (1973), page 528. Note that (7.2.1) depends on the 

roughness J: g"(t) 2dt = gT Kg of the NCS g uniquely defined by g; see Theorem 4.3.1.1. As 

larger values of).. result in more probability density being given to less rough curves g, we 

will refer to ).. as a smoothing parameter. 

We next require a prior on the smoothing parameter >.. which is constrained by a lower 

limit of zero. Hence, we follow standard practice by using the gamma distribution as our 

prior for ).. which takes the form 

rr(>..) = >..o-1 exp (->..j {3) ).. 
r(a)/3" , > o, 
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in which r is the usual gamma function. The user is able to specify the hyperparameters 

a and {3. Under this prior E[-\[ = af3 and Var[-\] = a{32 , results that can be used to guide 

hyperparameter choice. 

The final step in our Bayesian approach is to define the likelihood of the data (t;, y;), i = 

1, ... , n, given g. Let y = (y1 , ••• , Ynf· We proceed in accordance with the BQR approach 

of Yu and Moyeed (2001) by substituting our NCS g for their polynomial: 

where p is the probability corresponding to the quantile of interest, 0 < p < 1, and Pr> is the 

standard loss function 

pp(u) = u(p- I(u < 0)) 

in which I is the usual indicator function. The values of g(t;), i = 1, ... , n, in (7.2.3) are 

uniquely determined by g. We note that the likelihood is not dependent on -\. Combining 

7!"(-\), 11"(g[,\) and L(y[g), we can write the posterior density function of g and,\ as 

11"(g, -\]y) ex: L(y]g)11"(g]-\)7!"(-\). 

by means of Bayes Theorem as discussed in Section 4.1. We now simulate realizations of g 

and,\ from this posterior density using an MCMC approach implemented via the Metropolis

Hastings algorithm; see Gamerman (1997) and Section 4.2. Our inferences will be based on 

these posterior realizations. In particular, we shall use equation ( 4.2.2) to approximate the 

posterior mean of g as (g1 , ..• , 9N) yielding an estimate of Qp(t), the pn quanti le at t; again 

see Section 4.2 for a full discussion. Our algorithm can be summarized as follows: 

(i) Assign initial values g<0l and ,\(0) to g and ,\. We set g<0lto be the values at T1, ... , TN 

of the posterior mean cubic quantile regression curve obtained using the methodology 

of Yu and Moyeed (2001); see Section 4.4.3. The cubic quantile regression curve was 

chosen as this is also an example of a cubic spline, although a very constrained one. We 

obtain the value of ,\(0) by applying generalized cross validation (GCV) to the usual 

mean smoothing spline; see Green and Silverman (1994) and Section 4.4.3. We chose 
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this value, which we shall refer to as GCV(mean spline), because it can be found easily 

and quickly using R's (R Development Core Team (2008)) smooth. spline function (see 

Venables and Ripley (2002), for example). We set iteration number j = 1. 

(ii) We generate a candidate vector g* from the multivariate normal distribution 

g*jg<i-ll ~ MVN(g<i-ll,E) 

with mean gU-1) and variance-covariance matrix E = a2 K- /A, where K- is the 

generalized inverse of K. The constant a2 is specified by the user; see Section 7.4. 

(iii) We then calculate the acceptance probability of a move from gU-1) to g* which takes 

the form: 

. { n(g*, A(i- 1ljy)q(g<J-lljg*) } 
mm 1, n(gU-1l, A{J-1ljy)q(g*jg(j-1)) 

. { L(yjg*)n(g*jA(j-!J)q(g(j-1ljg*) } 
mm 1, L(yjg(J-!l)n(g(j-1JjA{J-!l)q(g*jg(i-ll) 

where the proposal density q(g*jgU-1l) is the probability density function of the 

multivariate normal specified in (7.2.6). In fact, because q is symmetric in its 

arguments, it cancels out of (7.2.7). 

(iv) A random variable u is simulated from a uniform distribution U(O, 1). If u ~ 

a(gU- 1l,g*), then g* is accepted by setting g(j) = g*, otherwise the chain does not 

move and gUl = gU-1). 

(v) We now generate a candidate A* from the log-normal distribution as follows: 
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A*= exp(J.L*), 

where the normal distribution (7.2.8) has mean log(A(i-1l) and variance a1. The 

variance a1 can be specified by the user; again see Section 7.4. 
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(vi) We then calculate the acceptance probability of a move from .>.<i-1) to ).* which takes 

the form: 

o:(.>.(j-1), .>.*) . { 7r(g(i), .A*Jy)q(.>.0-1lj.>.*) } 
mm 1, 7r(gW, ).(j-1ljy)q(.>.•JW-1l) 

. { 7r(g(jlj.>.*)7r(.A*)q(.>.(j-1)j.>.*) } 
mm 1, 7r(g(ilj).(i-ll)7r(.A<i-ll)q(.A*j.>.<i-ll) (7.2.10) 

where q is the log-normal probability density function specified through (7.2.8) and 

(7.2.9). In this case cancellation of the q terms in (7.2.10) is not possible as q is not 

symmetric in its arguments. 

(vii) A random variable u is simulated from a uniform distribution U(O, 1). If u :::; 

a(.>.<J-1l, .A*), then ).* is accepted by setting ).0) = .>.•, otherwise the chain does not 

move and).(])= .>.(j-1). 

(viii) We now increment j by 1, and repeat steps (ii)-(viii) for a total of d iterations. 

Whilst the methodology of Yu and Moyeed (2001) updates the parameters of a fixed 

degree regression polynomial at each iteration of the Metropolis-Hastings algorithm, our 

methodology updates both the entire vector of values g at the knots of the NCS and the 

smoothing parameter .>.. We set the number of iterations d to 500,000. We allow a burn

in of 50,000 iterations. Inference is based on thinned values of g and .>. produced by the 

Metropolis-Hastings algorithm after burn-in. We thin by taking every tenth value, partly 

because of storage consideration; see Section 7.4.2 for further discussion. Convergence issues 

are discussed in detail in Section 7.4. All code was written in R R Development Core Team 

(2008), using R's random number generating functions. 

A considerable advantage of the Bayesian approach is that we can calculate associated 

credible intervals to provide an idea of the associated posterior uncertainty. These credible 

intervals are obtained using the methodology of Section 4.2.5 by ordering the thinned g<il(ri) 

sequence over j > 50, 000 and extracting the values which correspond to, for example, the 

2.5% and 97.5% quantiles. A 95% posterior credible interval for.>. can be obtained in a similar 

way. In the next section we present some examples of applications of this methodology. We 

finish this section by remarking that another approach to quantile regression is based on the 
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minimization over curves g of 
n 

:~:>p(Yi- g(ti)) (7.2.11) 
i=l 

Often g is taken to be a 8-spline (Hastie et al. (2001)) or a NCS with pre-specified knots and 

hence smoothness. The minimizing g can be found using the quantreg package (Koenker 

(2008)) running under R R Development Core Team (2008); see Koenker (2005) for an 

example. Some other authors have considered the problem of minimizing over curves g 

belonging to a suitable space a version of (7.2.11) penalized for roughness such as 

(7.2.12) 

see Bosch et al. (1995) and reference therein, and Koenker et al. (1994) for further discussion. 

Koenker et al. (1994) also describe a similar minimization approach based on a total variation 

roughness penalty; software for this is again available in Koenker (2008). As far as we know, 

none of these approaches routinely yield confidence envelopes for the estimated curve, or 

choose the amount of smoothing in an automated way once the model has been specified. 

7.3 Applied Examples 

In this section we will apply our Bayesian nonparametric quantile regression to the HR 

Wallingford Coastal Wave data and Offshore Wave data kindly provided by Or Anna 

Zacharioudaki (Zacharioudaki (May 2008)), both introduced in Chapter 1, Section 1.6. We 

will also apply the developed methodology to the Immunoglobulin-G data set from Yu and 

Moyeed (2001) to provide a direct comparison to their Bayesian polynomial based quantile 

regression technique. We initially study the HR Wallingford data and apply the model for 

p = 0.9 and (p = 0.5) median quantiles. 

7.3.1 Application to Coastal Wave Data 

The data used in this example relate to conditions near the Selsey Bill area and were 

generated using a hindcasting technique (see Reeve et al. (2004)) using wind records. The 

data set consists of hourly hindcast measurements of the variables significant wave height, 
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Figure 7.1: Scatter plot of the Coastal Wave data showing the p = 0.9 Bayesian quantile 
regression curve using a cubic polynomial. A 95% credible envelope is also presented. 

wave period and wave direction over an approximate time span of 27 years. A good 

understanding of this type of data is important for the coastal design process, as illustrated 

by Thompson et al. (2008). Here, our variable Y of interest will be wave height, while the 

covariate t will be the cosine of wave direction. In this example we take a random sample of 

10,000 observations for computational and presentational reasons. The resulting data set is 

shown in Figure 7.1 and is denoted (t1 , yi) , ... , (tn , Yn) , where sample size n = 10,000. 

This plot also shows the parametric Bayesian quantile cubic regression curve of Yu and 

Moyeed (2001) for p = 0.9 together with a 95% credible envelope. For our spline based 

approach we set N = 30 and used a grid r 1 < · · · < r 30 of equally spaced knots over 

the range of covariate values t1 , ... , tn. We found that such a grid of knots allows flexible 

modelling without imposing a very high computational burden. We set the hyperparameters 

{3 = 10/GCV(mean spline) = 101 and a = GCV(mean spline)/{3 = 10- 13 in which 

GCV(mean spline) = 10- 6• With these hyperparameters the prior mean and variance of 

A are E[A] = 10- 6 and Var[A] = 10, representing a large amount of prior uncertainty about 

A. 

Figure 7.2 presents the resulting Bayesian nonparametric quantile regression curve and 
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95% credible envelope. To obtain the regression curve shown in Figure 7.2, we drew the 

unique NCS through the points (ri, 9i) , i = 1, ... , N. Similarly, we produce our 95% credible 

envelope by drawing NCSs through the 2.5% and 97.5% posterior quantiles found in Section 7. 

The more local nature of the fitting procedure is easily seen from Figure 7.2. In order to 
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Figure 7.2: Scatter plot of the wave data showing the p = 0.9 Bayesian nonparametric 
quantile regression curve using splines. A 95% credible envelope is also presented. 

judge the goodness-of-fit of both approaches we found empirical and fitted quantiles on a 

grid of size 100 along the covariate. We calculated the ' residual' in each piece of the grid as: 

residual = empirical quantile- fitted quantile. 

in which the empirical quantile is the pth quantile of the data values in the piece of the grid 

and the fitted quantile is the value produced by our model at the centre of the piece. As 

usual, smaller residuals in absolute value are associated with better fits. Figure 7.3 shows 

the absolute value of the residuals from both the cubic polynomial quantile regression curve 

shown in Figure 7.1 and the spline based curve shown in Figure 7.2 against the cosine of wave 

direction. A robust locally linear smoother provided by R's R Development Core Team (2008) 

loess function (see Venables and Ripley (2002) , for example) was added through each set 

of (covariate, lresiduall) points. These curves indicate that the spline based quantile curve 
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gives a better quality of fit through almost the full covariate range than the cubic polynomial 

quantile curve. This is due to the more local nature of the spline based fitting procedure. 

We also calculated the mean square error based on the residuals for each model as a further 

method of assessing goodness-of-fit. We obtained mean square error values of 0.010 and 0.016 

for the spline and polynomial based approach respectively. This is a further indication of the 

improvement that the nonparametric approach provides over its parametric counterpart. 

We do remark, however, that we did not build our model with only goodness-of-fit in 

mind as we have introduced the roughness penalty to relax the fitting to obtain a smoother 

curve. 
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Figure 7.3: The absolute values of the residuals against the cosine of wave direction with 
associated loess smoother from both the spline (dots, unbroken line) and the cubic (crosses, 
dashed line) quantile regressions. A grid of size 100 along the covariate was used in the 
calculation of the residuals. 

Finally, we calculated a 95% credible interval for the smoothing parameter >., which 

for this example is (0.0027, 2.746). This wide interval indicates that there is considerable 

posterior uncertainty associated with .A. This may be a reflection of the variation in the 

nature of the data over the direction covariate. 

We have chosen to show higher quantiles in this applied example as in Section 7.6 we 

present a novel application of this methodology for producing covariate dependent return 

level plots. However, as will be shown in this section we can fit the Bayesian nonparametric 
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regression at any quantile value. Figure 7.4 shows the Bayesian nonparametric median 

(p = 0.5) regression curve for the HR Wallingford Coastal Wave data. 
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Figure 7.4: Scatter plot of the wave data showing the median Bayesian nonparametric 
quantile regression curve. A 95% credible envelope is also presented. 

7.3.2 Application to Immunoglobulin-G Data 

Yu and Moyeed (2001) present an application of their Bayesian quantile regression technique 

using a data set containing the serum concentration (grams per litre) of immunoglobulin-G 

(IgG) in 298 children aged from 6 months to 6 years; see Yu and Moyeed (2001) and references 

therein for further information on this data set. We will show that our nonparametric 

technique performs in a comparable to the parametric case. Figure 7.5 shows a scatter plot 

of Immunoglobulin-G data with the p = 0.9 Bayesian nonparametric quantile regression 

curve using splines and the p = 0.9 parametric Bayesian quantile regression curve. We also 

include 95% credible envelopes for both Bayesian quantile regression curves. 

We can see from the Figure 7.5 that for the immunoglobulin-G data set both approaches 

produce a similar fit for the p = 0.9 quantile. We can also see that the average width of 

confidence interval in the non parametric model is less than that of its parametric counterpart, 

this is emphasized near the covariate end regions. As in the previous applied example we 

judge the goodness-of-fit by finding empirical and fitted quantiles on a grid of size 30 along 
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Figure 7.5: Scatter plot of the Immunoglobulin-G data showing the p = 0.9 Bayesian 
nonparametric quantile regression curve using splines and p = 0.9 parametric Bayesian 
quantile regression curve. 95% credible envelopes are also presented. 

the covariate. 'Residuals' were again calculated using equation (7.3.1) where smaller residuals 

in absolute values indicated a better fit. Figure 7.6 shows the absolute values of the residuals 

plotted against age with associated loess smoother for both the spline and the cubic quantile 

regressions. We can see from this plot that both approaches provide a comparable result 

which reflects the behaviour in Figure 7.5. We do however see from Figure 7.6 that the 

residual seem rather large. This is due to there being fewer data causing the empirical 

quantile to vary much more than in the previous example, as Figure 7.7 shows. We find that 

we do not have an improved result as in the previous example. This may be due either to 

the smaller data set which effects the degree of local variation in the data, or, more likely, 

to the data being more uniform over the covariate, meaning that a cubic polynomial will 

provide an adequate fit. However in more complex data we find the spline based approach 

provides improved accuracy as highlighted in the previous example. 
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Figure 7.6: The absolute values of the residuals against age with associated loess smoother 
from both the spline (dots, unbroken line) and the cubic (crosses, dashed line) quantile 
regressions. A grid of size 30 along the covariate was used in the calculation of the residuals. 
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Figure 7.7: Scatter plot of the Immunoglobulin-G data showing the p = 0.9 Bayesian 
nonparametric quantile regression curve using splines and the p = 0.9 parametric Bayesian 
quantile regression curve. The empirical p = 0.9 quantile is also shown and can be seen to 
be highly variable, leading to the relatively large residuals seen in Figure 7.6. 
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7.3 .3 Applicat ion to Offshore Wave Data 

The offshore wave data used in this section was kindly provided by Dr. Anna Zacharioudaki 

from the School of Engineering, University of Plymouth (Zacharioudaki (May 2008)). As 

we mention in Chapter 1, these wave records refer to an offshore location in Poole Bay, 

UK. There are three variables: Wave Height, Wave Period and Wave Direction, each having 

86,384 observations at 3 hourly intervals, which amounts to just over 29 years of data. We 

include this example to further illustrate and validate our approach as this data set had a 

different underlying structure from the HR Wallingford Coastal Wave data as there is less 

variation in the magnitude of values (including extremes) over the direction covariate. The 

data are shown in Figure 7.8, together with the p = 0.9 Bayesian quantile regression curves 

and associated credible intervals. Our nonparametric quantile regression curve using splines 

may provide us with a better understanding of the fine features of the p = 0.9 quantile than 

the cubic quantile regression curve. This may be particularly helpful with data sets of this 

size and visual complexity. 
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Figure 7.8: Scatter plot of the Offshore Wave data showing the p = 0.9 Bayesian 
nonparametric quantile regression curve using splines and p = 0.9 parametric Bayesian 
quantile regression curve. 95% credible envelopes are also presented. 

Figure 7.9 shows the absolute value of the residuals from both the cubic polynomial 
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quantile regression curve and the spline based curve against the cosine of wave direction. 

We can clearly see that our spline based approach again provides a better quality of fi t 

through the full covariate range than the cubic polynomial quantile curve. Again this is as a 

result of the more local nature of the spline based fitting procedure. This is more apparent 

in t his example as we have a greater amount of data points to work with meaning, local 

variation can be better identified than in smaller data sets. 
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Figure 7.9: The absolute values of the residuals against the cosine of wave direction with 
associated loess smoother from both the spline (dots, unbroken line) and the cubic (crosses, 
dashed line) quantile regressions. A grid of size 100 along the covariate was used in the 
calculation of the residuals. 

7.4 Markov Chain Monte Carlo Performance 

7.4.1 Choosing the Proposal Density and Acceptance Rate 

In step (ii) of the Metropolis-Hastings algorithm presented in Section 7.2 the candidate 

vector g* was drawn from a multivariate normal distribution with variance-covariance matrix 

E = o-2 K - /A . In t his way a candidate g* has similar structure to a g from the prior term 

7r(g iA) given in equation 7.2.1. We also considered generating g* from a multivariate normal 

distribution with E = o-2 IN where IN is theN x N identity matrix. As a third possibility we 
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updated a random subset of g1, ... , 9N again using independent normal distributions with 

variance (J
2. All three possibilities of generating g* performed similarly, with the choice of 

(J
2 having the greatest effect on the convergence of the Metropolis-Hastings algorithm. 

Bedard (2006a) introduced a technique that can be applied here to optimally choose 

the parameter (J
2 that controls the variance E = (J

2 K-/ .>. of the proposal density q for g 

in the Metropolis-Hastings algorithms. The technique plots an efficiency criterion against 

acceptance rates from the Metropolis-Hastings algorithm or against (J
2 • The acceptance rate 

or value of (J
2 that corresponds to the maximum efficiency can then be chosen. The key 
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Figure 7.10: Efficiency against acceptance rate when updating g in the Metropolis-Hastings 
algorithm. 

to this procedure is the use of the first order efficiency criterion which measures the average 

squared jumping distance for each parameter from one iteration to the next. In the case 

of the polynomial model of Yu and Moyeed (2001) in which the parameters /30 ,/31, (3.;. and 

rh are updated individually, Bedard (2006a) would define the first order efficiency criterion 

(FOE) for the ith parameter as 
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Figure 7.11: Efficiency against u2 for updating g in the Metropolis-Hastings algorithm. 

where the expectation is over iterations j. The definition can be easily extended to the case 

of the spline, in which all the parameters g = (g1, ... , 9N f are updated simultaneously, by 

using squared Euclidean distance as follows: 

where again the expectation is over iterations j. Figures 7.10 and 7.11 show plots of FOE 

against acceptance rate and against u2 for updating g. These plots allow the user to choose 

the acceptance rate or u2 corresponding to the highest value of FOE. From Figure 7.10 it 

can be seen that an acceptance rate of about 0.24 is most appropriate. This may seem rather 

low, but is due to the fact that we are updating a whole vector of parameters g and not just 

an individual parameter. It is also in agreement with some of the literature about optimal 

acceptance rates; see Booard (2006a), Booard (2006b) and references therein for example. 

A relatively low acceptance rate corresponds to a relatively high proposal variance which 

itself allows larger possible jumps for the vector of parameters g . A similar approach can be 

used to choose the value of u~ for updating the smoothing parameter >. in step (v) of the 

Metropolis-Hastings algorithm presented in Section 7.2. In our application we fixed a value 
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for o-1 and tuned o-2. We then fixed our chosen o-2 and tuned o-1. Finally, we fixed our chosen 

o-1 and re-tuned o-2. We found that we were able to achieve good convergence for both g and 

>. with these tuned values of o-2 and o-1, as we will discuss in Section 7.4.2. We also found 

that this approach yielded a value of o-1 that was relatively insensitive to the value of o-2. 

7.4.2 Assessing Markov Chain Monte Carlo Convergence 

Visual assessment of the convergence of the Metropolis-Hastings algorithm was found to be 

difficult as the simulated elements included N = 30 points along the spline rather than just a 

few model parameters. We found that the combination of a large number of sub-chains and 

an acceptance step based on a vector of points rather than an individual parameter could 

cause some convergence issues, although these could be overcome with good choices of o-2 and 

o-1 as discussed in Section 7.4.1. Convergence is generally slower in comparison with more 

usual parametric models. However this computational sacrifice is balanced by the improved 

localized fitting of the model which was seen in Section 7.3. The visual assessment of 

0 1()()()() 20000 30000 40000 50000 

~eration 

Figure 7.12: Thinned time series plot for >.. 

convergence of>. was also difficult as the parameter took a wide range of values as highlighted 

in Figure 7.12, where we can see that the time series converges around a lower value, with a 

tendency to jump to higher values (indicating smoother curves). We see that the time series 
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has moved away from the low initial value of ).(0) = w-6 and from the prior mean set to the 

same value. In fact, values of>. as low as w-6 produce curves (not shown) that are visually 

far too rough. 

After initially examining time series plots of individual chains, we used the more formal 

Gelman-Rubin statistic, discussed in Gelman and Rubin (1992), Gelman (1996) and Brooks 

and Gelman (1998), to assess convergence of g and of >.. The Gelman-Rubin procedure 

compares the variances between ·and within chains to monitor convergence and is based on 

the 'estimated potential scale reduction factor' R112 ,see Gelman and Rubin (1992) for details, 

which represents the estimated factor by which a credible interval for a parameter of interest 

may shrink if further simulation is carried out. Good performance is indicated by values 

of R112 close to 1. The value of R112 should certainly not exceed 1.2 as suggested in Kass 

et al. (1998). We calculated R112 for each sub-chain gi, i = 1, ... , N, and for >. and found 

that R112 took values between 1.0006 and 1.0152. Thinning was applied by taking every 

tenth value as particular sub-chains showed strong autocorrelations. As already mentioned, 

thinning also reduced storage requirements. Our examination of time series plots together 

with satisfactory values of the Gelman-Rubin statistic gave us confidence that the Metropolis

Hastings algorithm was producing realizations approximately from the posterior distribution 

7r(g, >.iy). 

7.5 Alternate Techniques for Performing Inference about the 

Smoothing Parameter .X 

Up to now we have performed inference about the smoothing parameter >. introduced in 

Section 7.2 in the Bayesian framework. However we have also explored an alternative 

method for estimating>. which we will discuss in Section 7.5.1. In Section 7.5.2 we mention 

methodology employed in de Pasquale et al. (2004) that can be used when performing 

inference about >. in the Bayesian framework if the normalizing constant in (7 .2.1) for example 

were unavailable. 
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7.5.1 Investigating a Range of Smoothing Parameters 

In this section we show the results of substituting a range of values for A into our Bayesian 

nonparametric quantile regression using splines methodology. We base our values of A 

on the automated approach for the choice of the smoothing parameter in the case of the 

mean regression problem, with estimate provided by the smoothing spline as discussed in 

Section 4.3. The actual methodology used was generalized cross-validation which is discussed 

in detail in Section 4.3.3 and in Green and Silverman (1994). 

We first consider the mean regression problem and estimate the parameter A of the 

associated smoothing spline by generalized cross-validation. We then found the associated 

spline based p = 0.9 quantile regression curves for this value of A and for eA for the following 

values of c : 0.0001, 0.1, 2, 10, 10000. All these curves are shown in Figure 7.13. We 

can see from Figure 7.13 that the quantile regression curves differ considerably across these 

values of A, with some curves appearing very rough. We found it hard to select a suitable 

smoothing parameter using this approach. It is for that reason that we included A in our 

Bayesian approach effectively making it fully Bayesian. 

7.5.2 Applying Fully Bayesian Methodology m the Absence of 

Normalization Constants 

In Section 7.2 we defined our prior for g, 1r(giA), through (7.2.1). When we first considered 

this multivariate normal prior, we did not know its normalization constant. In other words 

we wrote 

1 ( 1 T ) 1r(giA) = C(A) exp - 2A g Kg , 

where the function C(A) was unknown. A consequence of not knowing C(A) is that it 

is impossible to compute the acceptance probability a(A(j-l), A*) given in (7.2.10). The 

methodology that we now present allows us to apply our fully Bayesian methodology in 

the absence of knowledge of C(.X). We present it as useful general methodology. As we 

subsequently found a closed form expression for C(A), this methodology became redundant 

145 



Chapter 7. Bayesian Nonparametric Quantile Regression Using Splines 

10 
N 

0 

- N 
E -...... 
~ 
0> 10 ·a; ....... ::r: 
Q) 
> 

~ 0 
....... 

10 
c;j 

0 
c;j 

.. . ,,. ... 
.. . ... . ~ 

;·. 

-1.0 

•. .. . . . .. .. 

. -
... ·. :· ..... . 

·.·· :·. ·: ... . ... _,_ 
. .... 

-0.5 

.. 

0.0 

lambda 
2*1ambda 
10*1ambda 
0.1*1ambda 
0.0001*1ambda 
1000*1ambda 

. 
I I 

I I 

Cos(Wave direction) 

0.5 1.0 

Figure 7.13: Scatter plot of the HR Wallingford Coastal Wave data showing 90% (p = 0.9) 
Bayesian quantile regression curves for a range of smoothing parameter values c>., where >. 
is obtained by generalized cross-validation and c = 0.0001, 0.1 , 2, 10, 10000. 

in the present case. From (7.5.1) we see that 

and from (7.2.10) we see that we need to be able to evaluate ratios such as C(>.(j-l))/C(>.*). 

We now explain how this can be done; de Pasquale et al. (2004) use similar methodology for 
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a discrete random variable. We begin as follows: 

d 
d).. logC(>..) 

This expectation can be calculated using the MCMC output through equation ( 4.2.2). By 

integrating (7.5.3)over ).. we are now able to find an expression for log~<;};), for a fixed 

minimum value of >..0 , as follows: 

logC(>..) -logC(>..o) = (' E [--
2
1

gTKg] d>..'. 
} >.o g~7r(gJ >.') 

Hence 

1 c ()..) -1>. E [ 1 TK ] d \I og-- - --g g " 
C(>..o) >.o g~7r(g J>.') 2 ' 

an integration that can be performed numerically using Simpson's rule. If we can find 

log ~~)) for any value of >.., then we can compute 

C(>..) 
log C(>..*) 

C(>..)jC(>..o) 
log C(>..*)/C(>..o) 

C(>..) C(>..*) 
log C(>..o) -log C(>..o). 

In pract ice we compute log~<;};) on a grid of )..'s, and then the value of C(>..Ci- 1))/ C(>..*) for 

all possible )..Ci-1) and)..* for all possible )..Ci-l) and)..* by interpolation. All these calculations 

can be performed once and for all before the main Metropolis-Hastings algorithm is run. 
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7.6 Covariate specific return level plots 

In Section 7.2 we introduced our Bayesian quantile regression methodology. We illustrated 

examples of the methodology in Section 7.3. We now use our method to create return level 

plots incorporating a directional covariate for use in coastal defence design. 

7.6.1 Covariate dependent return level plots 

A return level plot shows the relationship between return period and return level. These 

concepts were discussed in detail in Section 2.2. Figure 2.5 shows an example of a return 

level plot. Reeve et al. (2004) define the return period as a measure of the rarity of an event. 

For example, if we have a return period of R years and n.y events in a year, then the R-year 

event would be the one with probability 1/(n.yR) of being exceeded. The return level is the 

associated magnitude of the subject variable (wave height) corresponding to a given return 

period. Traditionally, engineers need to consider extremes of the sea condition that their 

coastal defence design must withstand. A return level plot can provide a good indication of 

the potential extreme conditions of a subject variable such as wave height. We now show 

how to generate a return level plot using our Bayesian quantile spline functions. 

In Section 7.3.1 we modelled the variable wave height with the cosine of wave direction 

as covariate. The covariate can be incorporated into the return level plot so that the return 

levels can now be specific to cosine wave direction. This is of particular use where extremes 

from a specific directions are of interest, for example in the case of defences sheltered by 

natural geographic features. Let Qp(t) is the value of pth quantile when the covariate (e.g. 

the cosine of wave direction) takes the value t. Then Pr(Y > Qp(t)) = 1 - p, where the 

variable Y is wave height, with the consequence that the return period in years associated 

with the return level Qp(t) is n.(:-p), in which n.y = 10,000/27, since we are working with a 

data set of 10,000 observations observed over 27 years; see Section 1.6. Figure 7.14 shows a 

set of quantile curves for different return periods. Figure 7.15 is similar to Figure 7.14 except 

that it presents the traditional return level plots for specific directions rather than a curve at 

a specific return level over all directions. This plot is more useful in the design process than 

a non-covariate specific return level plot as the latter is effectively an average over the entire 
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Figure 7.14: Quantile regression splines for the variable wave height with cosine wave 
direction as a covariate. 
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Figure 7.15: Quantile regression return level curves for wave height for three specific 
directions. Also shown are 95% credibility envelopes. 

range of wave direction. We believe therefore that our methodology can improve defence 

design estimates as it allows direction to be properly included in the design process. 

7.6.2 Overtopping return level plots 

Overtopping occurs when some amount of sea water discharges over the crest (or highest 

point) of a sea defence such as the one shown in Figure 7.17 from Reeve et al. (2004). The 

amount of data about overtopping over a period of time depends on the severity of the wave 
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conditions and the sufficiency of the sea defence to prevent overtopping. Collecting large 

quantities of overtopping data may be problematic as in calm to moderate conditions no 

overtopping may be recorded. Effectively we are, in some sense, only dealing with extremes 

so the methodology would be restricted to defences which were designed to allow a certain 

degree of overtopping or existing failing defences. It is possible to construct an overtopping 
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Figure 7.16: Quantile regression based return level curves for overtopping level for three 
specific directions. 

return level plot based on the physical dimension and location of the defence, return level 

estimates of wave height and data about wave period. Once the dimension and location of 

the defence are defined, we require data at this location for the variables wave height H8 , 

wave period Tz and wave direction. In this methodology we assume the defence orientation is 

always perpendicular to the wave approach angle. A plot like Figure 7.17 can be very useful 

to engineers when assessing the effectiveness of their sea defence designs. Further work could 

produce overtopping return level plots to allow for different orientations of the defence. This 

work would incorporate different approach angles as the degree of wave overtopping can be 

significantly altered when considering angles which are not perpendicular to the defence. 
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7.7. Summary 

Figure 7.17: Diagram of a typical rough plane slope defence. SWL stands for still water 
level. 

7.7 Summary 

In this chapter we have developed methodology to extend fixed degree polynomial based 

quantile regression to nonparametric quantile regression within a Bayesian framework. We 

achieved this by using a spline based approach. We defined the posterior density of a NCS 

and an associated smoothing parameter. We sampled from this posterior by means of the 

Metropolis-Hastings algorithm and used our sample to make inferences that include the 

quantification of uncertainty by means of credible intervals. 

We have also presented applications of our Bayesian nonparametric quantile regression 

methodology to three examples providing comparisons with the existing parametric method 

of Yu and Moyeed (2001) that show improvement due to the greater flexibility of our model 

especially for large data sets. We have made suggestions for increasing the efficiency of our 

methodology by making a good choice of the proposal density in the Metropolis-Hastings 

algorithm. We have also created wave height and overtopping return level plots using our 

Bayesian quantile spline functions that incorporate a direction based covariate. These plots 

are of considerable use in the coastal design process. 
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Discussion of Results and Future Work 

8.1 Discussion of Results 

In this thesis we extended and improved the modelling techniques used in the analysis 

of extreme wave conditions. Improved modelling of these extremes can have important 

consequences for the cost and effectiveness of an engineering structure. The techniques 

considered in this thesis can be categorized into two general areas: Extreme Value Theory 

and Quantile Regression. 

All our work has been motivated by and tested on real data sets. These data sets can 

be divided into two broad categories: Coastal Wave data and Offshore Wave data. Some 

observations were missing from our data due to either breaks in recording or other errors. To 

ensure that we were working with complete data sets, we developed a technique to replace 

missing observations with predicted values from a loess model. The loess technique is based 

on locally weighted polynomial regressions, fitted using weighted least squares, with more 

weight being given to observations near the point at which the estimation is being performed. 

We adapted the loess technique to deal with missing values close to the start or end of the 

data set and with large gaps of missing values. This methodology is discussed in Chapter 5. 

In Chapter 2 we introduced extreme value theory, and discussed the Generalized Pareto 

Distribution (GPD) which models data defined as excesses over a user defined threshold. 

The GPD has two parameters, called the shape and scale parameters, that are estimated 

from the data, usually by maximum likelihood estimation. Existing methods for defining the 
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threshold position rely heavily on prior knowledge of the interpretation of threshold selection 

plots or on making an assumption that suitable values for GPO modelling are located above 

a particular quantile. There can be a range of errors associated with these approaches 

including incorrect assessment of the plots leading to considerable under- or over-estimation 

of the threshold, or selection of the wrong quantile value. 

Hence, in Chapter 6 we developed technique that clarified and automated threshold 

selection for the GPO model. This method was based on the distribution of parameter 

estimates across a range of possible threshold values and required no external input other 

than the data set itself. When compared with the quantile based threshold selection 

technique used in the JOINSEA software, reviewed in Chapter 3, it was found that our 

automated approach yielded more favourable results in the majority of cases. Automation 

of threshold selection also opens up extreme value analysis to a wider range of users as 

the amount of prior expertise required is reduced. We quantified the effect of uncertainty 

associated with threshold selection on return level estimation using the bootstrap procedure 

and in particular bootstrap percentile intervals. We used a simulation study to show that 

our automated technique can recover a known threshold to a good degree of accuracy. 

Development of our automated threshold selection technique required us to make three 

refinements to existing GPO model parameter estimation methodology. The first refinement 

was the calculation and use of an analytic Hessian matrix to obtain estimates of the variances 

of the maximum likelihood parameter estimates. The current numerical approximation of the 

Hessian matrix sometimes leads to negative variances and hence undefined standard errors. 

Our analytical version removed this problem. Our second refinement involved tightening 

the constraints on the parameters of the GPD to ensure that asymptotic properties always 

held and that the negative Hessian was positive definite. Our third refinement concerned 

the calculation of the Hessian matrix when the shape parameter was near zero. We used 

the Taylor expansion of the log function to ensure that the Hessian was correctly computed 

when the shape parameter was near zero. 

We have extended our automated threshold selection methodology to incorporate a 

covariate dependent threshold. This extension uses our automated threshold selection 

technique to segregate the data into optimal blocks based on goodness-of-fit and sample size 
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requirements. Our methodology can lead to more accurate return level estimates, with their 

uncertainty properly quantified, which can inform and enhance the coastal design process. 

Towards the end of Chapter 6 we also describe a Graphical User Interface (GUI) that we 

have produced to allow engineering practitioners easy access to a range of techniques for 

extreme value modelling. 

In Chapter 7 we focused on the use of quantile regression as a modelling technique 

to understand the behaviour of extreme values as a function of a covariate. We reviewed 

quantile regression itself and associated methodology in Chapter 4. Our work builds on the 

methodology for Bayesian quantile regression presented by Yu and Moyeed (2001). They 

adopt a parametric polynomial quantile regression model and perform inference from the 

posterior distribution of the parameters by means of a Markov chain Monte Carlo (MCMC) 

algorithm, also outlined in Chapter 4. 

We extended their polynomial based quantile regression methodology to nonparametric 

quantile regression within the Bayesian framework. We achieved this by using a spline based 

approach. We explained how to define the posterior density of a natural cubic spline and an 

associated smoothing parameter. We then sampled from this posterior density by means of 

a particular MCMC algorithm known as the Metropolis-Hastings algorithm. We used our 

sample to make inferences that include the quantification of uncertainty. We applied our 

Bayesian nonparametric quantile regression methodology to our wave data using a covariate 

based on wave direction and provided comparisons with the polynomial based methodology 

of Yu and Moyeed (2001) that show improvements due to the greater flexibility of our model. 

We presented suggestions for increasing the efficiency of our methodology by making a good 

choice of the proposal density in the Metropolis-Hastings algorithm. We achieved this by 

modifying a technique presented in Bedard (2006b) for choosing the proposal density in an 

efficient way. 

To our knowledge the quantile regression approach has not been applied to wave condition 

data before, and hence it provides a different perspective to the analysis of extreme wave 

conditions. We used our Bayesian nonparametric quantile regression technique to create 

some engineering design aids including a directional dependent wave height return level 

plot. From this plot we produced a directional dependent overtopping return level plot. The 
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advantages of these plots is that we can now understand how these extreme values depend 

on wave direction. This additional information may be considerably advantageous from a 

coastal engineering point of view especially when considering the location of a proposed 

coastal defence. 

8. 2 Future Work 

In this section we discuss several areas of future work arising from the methodology presented 

in this thesis. We provide a brief description of how each area of future development could 

be undertaken. 

Alternate covariates: In Chapter 6 we presented an automated threshold selection 

technique and extended it to depend on a directional covariate so creating a direction 

varying threshold. Wave direction is not, however, the only potential covariate. We 

could take other variables, such as fetch length, as a covariate to obtain a threshold 

which would be dependent on those covariates. We could extend our methodology to 

allow the threshold to depend on two or more covariates. To do this we would have to 

extend our method for defining blocks to two or more dimensions. 

Adaptive density gridding: It may also be possible to improve our blocking technique in 

the direction varying threshold method by using an adaptive density gridding which is 

used in numerical methods for parameter estimation as a block scaling method. 

Further applications of Bayesian nonparametric quantile regression using splines: 
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This methodology that we presented in Chapter 7 is not restricted to the application 

of extreme wave analysis, and can be used in a range of situations. We have already 

considered a medical application based on the Immunoglobulin-G data from Yu and 

Moyeed {2001). Our methodology is particularly appropriate for situations in which 

there is a clear non-polynomial process underlying the data; the famous but small 

motor-cycle data set analysed by Silverman {1985) provides an example of the type 

of data for which t he advantage of the spline based approach could be very clearly 

apparent. 



8.2. Future Work 

Increasing the number of knots used in the definition of the natural cubic spline: 

In Chapter 7 we adopted a natural cubic spline with N knots and set N = 30. 

We investigated only thirty knots because of computational considerations. We will 

investigate more sophisticated computational algorithms so that we can use more knots, 

so potentially increasing the flexibility of the model. It would be interesting to see the 

effect of having a knot at each unique covariate value. 

Further development of the Graphical User Interface: In Chapter 6 we presented a 

GUI that we produced to allow engineering practitioners easy access to a range of 

useful techniques. We believe that the interface's structure and functionality could be 

increased further. This could be achieved by creating a "stand-alone" piece of software 

written in a faster programming language such as C or C++. We also plan to incorporate 

our computationally demanding Bayesian nonparametric quantile regression modelling 

into our G UI. 
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Hessian Calculations 

The following sections present full details of the calculations of the elements of the Hessian 

matrix: 

where the associated log-likelihood is 

k 

£(a, ~) = - k log a - ( 1 + Z) f;log ( 1 + ~:i ) 

Let H be broken down as 

H = ( Element 1 Element 2 ) 

Element 3 Element 4 

We will consider each element in order. For all calculations in this appendix some basic 

differentiation rules are required: 

Addition Rule 
d 
dx[f(x) + g(x)] = f'( x) + g'(x) , 

where ' denotes differentiation 

Product Rule 
d 

dx[f(x)g(x)] = f(x)g'(x) + g(x)f'(x) 
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Quotient Rule 
!!:_ [f(x)] = g(x)f'(x)- f(x)g'(x) 
dx g(x) [g(x)J2 

Chain Rule 
d 

dx[f(g(x))] = f' (g(x))g'(x) 
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A.l Element 1 

Consider, 

using the Chain Rule (A.0.7) and the Addition rule (A.0.4) with 

Now consider 

f(u) = log(u) 

g(u) = 1 + ~Yi 
u 

f'(u) = ]:_ 
u 

g'(u) = _ ~Yi 
u2 

d k 
du [-klogu] = -~ ; 

hence, the first derivative of the likelihood function with respect to u is 

A.l. Element 1 

The second stage is to calculate the second derivative, so consider the following 

using both Chain Rule (A.0.7) and Product Rule (A.0.5) with 

giving 

1 
f(u) = -

u 
f'(u) = _ _!_ 

u2 
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Therefore, since ~ [ -~] =~, we have 

A. 2 Element 4 

First not that 
d 
~[-klogo-] = 0 

Now consider 

.!!_ - (1 + !) t log (1 + -~Yi ) . 
~ ~ ·-1 (T 

~~·-----~----~ 

Expression (A.2.2) can be evaluated using the Chain (A.0.7), Product (A.0.5) and Quotient 

(A.0.6) rules by first applying the Product rule where f(x) = a1 and g(x) = a2 , then applying 

the Quotient rule to Or.! and finally the Chain rule to a1. 

A pp lying the Quotient Rule to a2: 

Applying the Chain Rule to a1 : 

.!!_ [t log ( 1 + ~Yi ) ] = Yi 
~ i = l o- o- + ~Yi 

where the elements of the Chain Rule are 

f(u) = log(u) f'(u) =! 
u 

g(~) = o- + ~Yi 
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Putting the results from a1 and D-2 into the Product Rule (A.0.5), we obtain the first derivative 

for lll~,{) . 

From the first derivative we can now calculate the second as follows. Consider 

. To evaluate the derivative of b1 we use the Product Rule (A.0.5). Since f is 

so the derivative!'(~) is 

similarly the g element is 

, the derivative g'(~) is 

. Now applying the Product Rule we obtain 
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. Again, we need to apply the Product rule (A.0.5) to b2 . Since f is 

, the derivative!'(~) is 

1 
!(~) = ~2 

; similarly the g element is 

, so the derivative g'(~) is 

.!!._ I:: log 1 + ~Yi = L Yi 
[ 

k l k ~ i=l ( u ) i=l ( u + ~Yi) 
. Inserting these into the Product rule (A.0.5) applied to b2 , we obtain 

k k 

1 "\"' Yi 2 "\"' ( ~Yi ) 
t2 ~ ( ~ ·) - t3 ~log 1 + -
"' i=l u + y, "' i=l u 

The Addition rule (A.0.4) is used to complete the differentiation, giving the second derivative 

which can be simplified to the following 
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A.3 Elements 2 & 3 

Both these elements should be equal, and we confirm this by presenting both calculations. 

We initially calculate the second derivative by differentiating for~ then u. From Section A.2, 

we can use the calculation of the first derivative off with respect to e. 
k k 

of(u,e) ( 1)'""' Yi 1'""' ( ~Yi ) 8~ = - 1 + e fi' ( u + eYi) + e2 fi' log 1 + -; . 

If we evaluate the derivative of (A.3.1) with respect to u using the Addition Rule (A.0.4) , 

it is possible to consider c1 and c2 separately. We now consider c1 when differentiated with 

respect to u. This is found by using the Chain Rule (A.0.7): 

using 
1 

f(u) = -
u 

f'(u) = _2_ 
u2 

g'(u) = 1 

Now differentiate c2 using the Chain Rule (A.0.7) 

using 

f(u) = log(u) 

ey· 
g(u) = 1 + -' 

u 

f'(u) =.!. 
u 

'( ) ~Yi g u = --
u2 

Therefore, by expanding c1 , collecting the terms in c1 and c2 together, and taking out 
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the common factor, we obtain 

To check for consistency we now present the calculation of the second derivative of the 

log-likelihood function when differentiating with respect to u then f From A.l, we can use 

the calculation of the first derivative of f. with respect to u. 

k 

Ge(u,~) = -~ + (1 + ~)'""" ~Yi 
ou u ~ ~ u2 (1 + 516.) 

'-..;-/ t= l a 

Consider d1 and note that %e [-~] = 0. Now consider splitting ~ into the following 

components and using Product Rule (A.0.5) , 

Next evaluate %{[e1] : 

now evaluate %{[e2]: 

We evaluate this using the Quotient Rule (A.0.6) 

/(~) = ~Y;i f'(~) = Yi 
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. Substituting back, we obtain 

Now that parts e1 and e2 have been differentiated we can insert the derivative into the 

Product Rule (A.0.5) to obtain the derivative of d2 which yields 

(A.3.10) 

We now simplify this to the same form as 8~~~·p. Firstly expand (A.3.10) together, 

(A.3.11) 

Now we can extract the common term ;{ and simplify, 

(A.3.12) 

Hence, 

167 



HR Wallingford Hindcast General 

Methodology 

B.l HINDWAVE Wave Generation Model 

The purpose of Hindcasting is to provide large quantities of reliable wave data for sites for 

which otherwise little measured data is available. The process needs to be cost effective, 

reliable and also relatively fast due to the demand for speed within the engineering industry. 

The HINDWAVE wave generation model has two sources of input: the first represents the 

changing wind velocity at the location of interest and the other refers to the shape of the wave 

generation area. The program can function with just these inputs to produce directionally 

dependent wave distributions, or can be used with additional inputs such as measured wave 

data. Fetch length measured around the prediction point at 10 degree intervals, can be used 

as another input to the HINDWAVE model; it is primarily used in the sub-model for wave 

generation called JONSEY. The process which the model follows can be divided into two 

stages. The initial stage generates several hundred possible wave conditions based on the 

input wind information. The second stage uses the generated possible wave conditions as a 

reference and matches the most appropriate wave condition to a set of corresponding wind 

speed and direction data obtained from the Met Office. The outcome is a t ime series data 

set of wave conditions for a particular location. 

The model pairs t he duration and dominant set of wind condit ions at the specified 
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location with reference wave conditions by looking at each hourly or half hourly time segment. 

By vectorially averaging the wind velocities over the specified durations preceding them, an 

average speed and direction is found for each record. The largest of these is then chosen 

from the corresponding wave height values, along with the corresponding wave period and 

wave direction generated data to form the wave data sets. The model for particular locations 

may be based on data collected at a coastal location. If the prediction point is an offshore 

location then the model has to be calibrated using a speed up function. 

B.2 The TELURAY Refraction Model 

Any wave on the sea surface is subject to a number of external and internal forces acting 

upon it, both simultaneously and independently, which continuously alter its behaviour. The 

effect of these forces depends to a large extent on the depth of water in comparison to the 

wave length. When the depth of water is large in comparison to wave length the predominant 

forces acting are the stresses as a result of wind action and internal viscosity. Alternatively, 

if the depth of water is comparatively shallow then the effects of the sea bed becomes a 

predominant factor. 

In particular two cases are considered (see Wallingford, 2005b): shoaling and depth 

refraction. The shoaling effect is due to changes in wave height as a result of the waves 

slowing down as they travel through water of decreasing depth. Depth refraction generally 

occurs due to the waves travelling towards the coast undergoing a gradual change in direction 

as a consequence of a change in depth. This means the wave crests will have a tendency to 

align with the seabed contours. 

Another strong effect is current refraction which is predominant in areas with strong tidal 

currents that can influence waves. This influence is dependent on the spatial change of the 

current strength, and its direction relative to wave direction. If we think of waves entering 

a region of opposing currents of either increasing or decreasing strength then the waves will 

consequently be either steepened or stretched respectively. This in practice changes the ratio 

of wave height to wave length, i.e. stretched waves correspond to smaller wave height and 

longer wave length. However, in the majority of cases the course of the waves will be altered 

according to the current direction. 
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B.2. The TELURAY Refraction Model 

Table B .l: Table showing the significance of current effects on waves depends on the peak 
tidal velocity 

Peak Tidal Velocity Ranked Significance 
< 1 ms -l not significant 

1-2 ms- 1 may be important 
> 2 ms-1 likely to be important 

Further information on this model, please contact Peter Hawkes at HR Wallingford. 
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1 Introduction 

The successful design of a reliable and effective coastal defence structure can 
be associated primarily with knowledge of future extreme conditions which 
the defence must withstand. Typically, coastal defences are designed to pro
vide sufficient protection against flooding or erosion to a desired return level 
associated with a particular return period, e.g. 100 years. The estimation of 
return levels and their uncertainty therefore has considerable engineering im
portance, especially in the area of coastal defence design. Statistical method
ology for such estimation tasks requires as its input data about the extreme 
values of the conditions of interest. 

There are two main methods for defining extremes. The first is based on di
viding the time period over which the data are collected into blocks, with the 
most extreme value in each block being used for future analysis (e.g. daily or 
monthly maxima). The second method is based on exceedances over a specified 
threshold. In this paper we concentrate on the excesses over a threshold and 
provide an automated and computationally inexpensive threshold specifica
tion technique. Before presenting our technique, it is necessary to discuss how 
excesses over a suitable threshold can be modelled and analysed statistically. 

Let y be a value taken by the variable of interest, for example wave height, 
and let u be a threshold. Provided u is sufficiently large, values of y greater 
than u can be modelled using the generalized Pareto Distribution (GPO); see 
Coles [1], for example. The cumulative distribution function H of the GPO 
takes the form: 

( 1) 

where y > u and 1 + ~(y- u)/uu > 0. The parameters O'u and~ control the 
scale and shape of the distribution. Here we use the notation O'u to emphasize 
that the scale parameter changes with the threshold u, although we will drop 
the subscript u when this emphasis is no longer needed; the shape parameter 
~ does not change with u. The parameters O'u and ~ need to be estimated from 
available data, and this can be done using maximum likelihood estimation, 
as discussed in detail in Coles [1] and Smith [18]. Usually, selection of an 
appropriate threshold u is performed on a visual basis and so can have a range 
of associated errors. These visual procedures require prior knowledge of the 
accurate interpretation of threshold choice plots, such as the Mean Residual 
Life plot, to achieve a satisfactory model fit; again see Coles [1] for examples. 
We illustrate the difficulties associated with the interpretation of the Mean 
Residual Life plot in Section 2. 

Threshold selection has received some additional attention in the literature, for 
example, Dupuis [4] presents a guide to threshold selection based on robust-
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ness considerations, while Tancredi et al. (19] adopt a Bayesian approach and 
discuss how to take account of threshold uncertainty. The methods presented 
in these papers are complicated to implement and can be computationally 
demanding; see Section 2.3 for further discussion of Tancredi et al. (19] and 
Guillou & Hall (10] for related methodology. The automated threshold selec
tion method that we will present requires little external input other than the 
variable of interest, and is considerably simpler and easier to implement than 
the approaches proposed in these papers. 

We have also extended our threshold selection method to allow threshold 
choice to depend on a covariate such as the cosine of wave direction, where our 
specific aim is to account for the directional effect when modelling wave height 
or wave period using GPDs. The practical advantage of our extended proce
dure is that it automatically identifies the wave directions associated with the 
highest waves and consequently can provide better estimation of wave height 
return levels. 

The rest of this paper is organized as follows. In Section 2 we present our 
automated threshold selection technique and compare it with one of the cur
rently available subjective approaches. We also describe a bootstrap procedure 
for assessing the effect of uncertainty on return level estimation. In Section 3 
we describe a simulation study aimed at quantifying the effectiveness of our 
method. In Section 4 we compare our approach with the existing methodol
ogy used in the JOINSEA software (see (12] and (13]). In Section 5 we extend 
our method to allow threshold choice to depend on a covariate. Finally, in 
Section 6 we present some concluding comments. 

2 Automated Threshold Selection Technique 

2.1 Theoretical Basis 

When fitting the GPD to data, the scale and shape parameters Uu and~ can 
be estimated using maximum likelihood estimation. To achieve a good model 
fit, we need to choose a suitable value of the threshold u. Commonly used 
techniques involve visual assessment of threshold choice plots and rely upon 
prior experience of their interpretation; see Tawn & Coles (20] and David
son & Smith (3]. Such plots are found in Coles [1] for GPDs fitted to rainfall 
data. We shall discuss one of these plots, the Mean Residual Life plot, in 
Section 2.2.2 below. Another of these techniques plots parameter estimates 
of GPDs fitted using a range of thresholds against the threshold, and is the 
basis for our automated threshold selection methodology. We now outline our 
automated method for threshold selection. 
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Let ~1 , ... , Un be n equally spaced increasing candidate thresholds. Let i'J,., 
and e .. , be maximum likelihood estimators of the scale and shape parameter 
based on data above the threshold u;, j = 1, ... , n. Finally, let u be a suitable 
threshold, that is one for which values of y > u can be modelled using the 
GPD. It follows from Coles [1], page 83 that, provided u::; ui-l < u;, 

(2) 

Hence, 

(3) 

Furthermore, standard maximum likelihood theory, as discussed in Coles [1], 
tells us that E[i'!u,] ~ (JUj and E[~,,] ~ e, for any j such that Uj > u. Let 

(4) 

and consider the differences 

Tuj - Tu,_ 1 , j = 2, ... , n; (5) 

it follows from the above results about the expected values of maximum likeli
hood estimators and from (3) that E[T,,- T,,_ 1 ] ~ 0. Moreover, we can appeal 
to the same theory to conclude that Tu,- T"J- 1 approximately follow a normal 
distribution. The variability of this difference does not itself measure the vari
ability associated with our threshold selection procedure. This distributional 
result suggests the following procedure for finding a suitable threshold u: 

(1) Identify suitable values of equally spaced candidate thresholds u1 < u2 < 
· · · < Un· We found that setting n = 100 gives good results. We take 
u1 to be the median and Un to be the 98% quantile of the data, unless 
fewer than 100 values exceed this value, in which case Un is set to the 
lOO'h data value in descending order. Our procedure performs well in such 
circumstances. Less reliable results were obtained from smaller data sets. 

(2) If u is a suitable threshold, then all differences T,.,- T,j-1 have an approx
imate normal distribution with mean 0 provided u ::; u;_ 1 < u;. If u is 
unsuitable, then these differences may not follow a normal distribution. 
This suggests that a suitably applied test for normality is an effective 
method to determine u. 

The Pearson's Cm-square Test is used as a test of goodness of fit to 
establish whether or not the observed differences are consistent with a 
normal distribution with mean 0; see Greenwood & Nikulin [9]. Initially, 
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we consider u = u1 and perform the Pearson normality test based on all 
the differences Tu2 - T.,,, Tu5 - T,.2 , ••. , Tun - Tun_,. If the null hypothesis 
of normality is not rejected, u is taken to be a suitable threshold. If the 
null hypothesis is rejected, then we consider u = u2, remove T.,2 - Tu, 

from the set of differences considered, and repeat the above procedure. 
We have found from a simulation study that a size 0.2 Pearson normality 
test generally performs most consistently over a range of normality tests 
and sizes. Reducing the size of the test has the effect of lowering the 
chosen threshold. 

(3) Step 2 is repeated until the Pearson's normality test indicates that the 
differences are consistent with a normal distribution with mean 0. If this 
does not happen, Un is returned with a warning. Our experience is that 
this latter situation occurs rarely. 

The above steps can be performed quickly, so yielding a procedure that is com
putationally inexpensive. We implemented our method in the freely available, 
open source statistical environment R [16], which is becoming more widely 
used in engineering and related areas. 

2. 2 Pmctical Examples 

2.2.1 Coastal Wave Data 

We now apply the method presented in Section 2.1 to a real data set. The data 
used in this example relate to conditions near the Selsey Bill area (Hawkes, 
personal communication). They were generated using the hindcast technique 
(see Reeve et al. [17], for example) based on wind records. The data set con
sists of hourly hindcast measurements of the variables significant wave height, 
wave period and wave direction over a time span of 27 years. Wave hindcast
ing attempts to create the wind-wave conditions, and cannot account for the 
swell component. In this example we take a random sample of 10,000 obser
vations from the data set. The resulting values are typical of data that are 
collected in similar studies and satisfy the independence assumption that un
derlie maximum likelihood theory. A plot of wave height against the cosine of 
wave direction is shown in Figure 1. 

Our automated threshold selection technique was applied to these wave height 
observations and indicated 0.487 m as a suitable threshold. This threshold is 
also shown in Figure 1. The values of the cosine of wave direction were not 
used in finding this threshold. Figure 2 plots differences T,., - T,.,_, against 
threshold u1_1, and as described in Section 2.1 is the basis of our threshold 
selection procedure. Figure 3 shows diagnostic plots, as discussed by Coles [1] 
and produced by the freely available ismev package of Coles & Stephenson [2] 
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Figure 1: Scatter plot of wave height against the cosine of wave direction for 
10,000 values from the Selsey Bill data set. The horizontal line was produced 
by applying our automated threshold selection procedure to the wave height 

observation, taking no account of the cosine of wave direction. 
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Figure 2: Graph of the differences ruj - ruj -l against threshold ui- l for the 
wave height data. The vertical line indicates the automated threshold 

selection choice. 

run in R [16]. Such plots are now used routinely, and so have not been edited 
here; detailed explanation is provided in the caption. These diagnostic plots 
indicate that the fitted GPD model is satisfactory. Both the probability and 
quantile plots show that there is little difference between empirical and fitted 
values from the model, indicating a good fit . Similarly, there is reasonable 
agreement between the data and the estimated return levels and associated 
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Figure 3: Diagnostic plots for the GPO fit when the threshold is chosen 
using our automated threshold selection approach applied to the wave height 
data. This plot was generated using the ismev package [2] . In the third plot 

Return level refers to wave height (m). In the fourth plot x refers to the 
wave height (m), and f(x) to its probability density. See text for discussion 

of the individual plots. 

95% confidence envelope, and between the histogram of the data values above 
the chosen threshold and the fitted generalized Pareto density. This example 
shows that our proposed methodology can provide an automated, simple and 
computationally inexpensive threshold selection method that avoids the need 
for subjective interpretation of threshold choice plots with all their possible 
errors. 

2.2.2 Daily Rainfall Data 

We now compare the automated threshold selection method presented in Sec
tion 2.1 with a currently available subjective method by applying them to a 
data set considered by Coles [1]. The data comprise daily rainfall accumula
tions at a location in south west England recorded over the period 1914- 1962. 
Coles [1] presents this example to illustrate the currently available thresh
old selection techniques. Figure 4 shows a plot of the data together with the 
threshold of 30 mm as recommended by Coles [1] and our own automated 
choice of 20 mm. Figure 5 shows the Mean Residual Life plot (see Coles [1] 
for details) upon which Coles bases his choice. A threshold is usually identi
fied as a value beyond which the plot is linear (up to sampling error). The 
behaviour of the plot is linear (up to sampling error) beyond 60 mm, but few 
data points lie above this value. Linearity also occurs between 30 and 60 mm, 
and so Coles [1] recommends a value of 30 mm. A similar argument could also 
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Figure 4: Scatter plot of daily rainfall data against time. The dashed line 
shows our automated threshold choice, while the unbroken line is the 

threshold value recommended by Coles [1]. 
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Figure 5: Mean Residual Life plot for the daily rainfall data. The dashed line 
was produced by our automated threshold selection procedure. We have also 
added the threshold value recommended by Coles [1] as the unbroken line. 

The individual values are indicated by a rug of dashes. 

be used to justify our automated threshold choice of 20 mm. The subjective 
nature of and difficulties associated with the interpretation of the Mean Resid
ual Life plot are well illustrated by this example. Figures 6 show comparisons 
of inferences (fitted densities, return levels and confidence intervals) from the 
fitted models based on each threshold. We can see that the fitted models are 
relatively similar indicating that our automated threshold selection technique 
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(a): Histogram of the exceedances from threshold choice of 30 mm recom
mended by Coles [1], together with the GPD fit (solid line). The GPD fit 
based on our threshold of 20 mm is also shown (dotted line). This GPD fit 
has been scaled so that the area under it above 30 mm is one. 
(b): Returns level curves and confidence envelopes based on Coles's thresh
old [1] (unbroken) and our threshold (dashed). 

compares well to the subjective procedure. Coles's [1] threshold does yield 
fewer exceedances, which is the cause of the increased return level confidence 
interval widths in Figure 6 (b) . 

2.9 Using Bootstrap Percentile Intervals to Assess Return Level Uncertainty 

Uncertainty associated with inferences from the GPD model can depend on 
two sources: firstly, the uncertainty associated with estimating the scale and 
shape parameters from the available exceedances; secondly, the uncertainty 
associated with the selection of the threshold that defines these exceedances. 
Uncertainty in parameter estimation can be relatively small in comparison 
to the uncertainty in the choice of threshold. It is therefore important when 
discussing our technique to include the effect of the uncertainty associated 
with threshold choice in the inferential procedure. 

As we saw in Section 1, return levels play a vital role in coastal engineering; 
see page 82 of Coles [1] for a detailed discussion about the estimation of 
return levels and approximate confidence intervals from GPD fits . Standard 
software programmes, such as the ismev package estimate return levels and 
approximate confidence intervals, as shown in Figure 3, but do not take into 
account uncertainty due to threshold selection. 
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In an important and innovative paper Tancredi et al. [19] present a review 
of existing model based methodology to account for threshold uncertainty in 
GPO models, and then introduce their own technique. In contrast to con
ventional fixed threshold methods, Tancredi et al. [19] work in the Bayesian 
framework and assume that the threshold is one of the parameters about 
which to make inference. To overcome the lack of a natural model below the 
threshold and to avoid over-restrictive parametric assumptions, they propose a 
flexible mixture of an unknown number of uniform distributions with unknown 
range for below-threshold data. They consider it reasonable to expect different 
estimates of return levels and precision of estimates for different thresholds. 
This essentially leads to a Bayesian mixing of all reasonable threshold val
ues and parameter estimates to determine an overall estimate of return levels 
and their uncertainty. Their approach is, however, highly computationally in
tensive, requiring the use of a reversible jump Markov chain Monte Carlo 
algorithm to cope with the unknown number of uniform distributions used 
for below-threshold modelling; see Green [7]. It also requires a number of 
prior assumptions to be made, although Tancredi et al. [19] argue that re
turn level estimation is more robust to these assumptions than to threshold 
choice in a fixed approach. Because of these drawbacks, we take a different 
approach to assess return level uncertainty based on the bootstrap procedure. 
Mooney & Duval [15] and Efron & Tibshirani [5] provide a basic summary of 
this procedure as follows: 

(1) Set b = 1. 
(2) Draw a simple random sample of size m from the original data set 

y1 , ... , Ym with replacement. We call this a bootstrap sample. 
(3) For the bootstrap sample, calculate the quantity of interest, for example 

a specific return level, and call it Bt. We calculate the return level by first 
estimating the threshold using the methodology in Section 2.1. We then 
make use of this threshold when estimating the GPO model. Finally, we 
use the GPO parameter estimates to calculate the return level estimate. 

( 4) Increase b by 1 and repeat steps (2) and (3) a total of B times, where B 
is a large number. We present results for B = 1000. Other values of B, 
ranging from 250 to 3000, yielded similar results. 

(5) Construct a,pr?bability distribution by attaching a 1/ B probability to 
each point, or,~, ... , BB· 

Uncertainty in the quantity of interest - for example a specific return level -
can be quantified by summarizing this probability distribution using a confi
dence interval. More precisely, we will use a bootstrap percentile interval. To 
obtain an ( 1-o:)-level interval we sort the B values Or, h ... , Be in ascending 
order and select the (~B)'h and (1- ~)B'h values as our confidence interval 
using the integer below and the integer above if these values are not themselves 
integers. We set o: = 0.05, yielding 95% confidence intervals. We now present 
the result of applying the above bootstrap methodology to our data set. Fig-

10 



u 3.0 3.5 4.0 

100YoarRotum Lwol(m) 

Figure 7: Histogram of the bootstrapped 100 year return levels and 
associated 95% bootstrap percentile interval ( B = 1000 bootstrap 

iterations). The dashed lines are the percentile interval and the solid line is 
the return level based on the original data. 
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Figure 8: Histogram of the bootstrapped 1000 year return levels and 
associated 95% bootstrap percentile intervals. The dashed lines are the 

percentile interval and the solid line is the return level based on the original 
data. 

ure 7 shows a histogram of the bootstrapped 100 year return levels Or, ... , BB 
and the associated bootstrap percentile interval. Figure 8 is an analogous plot 
for the 1000 year return level. These percentile intervals enable us to quantify 
the uncertainty in return level estimation in an accurate way, without ignoring 
threshold choice uncertainty and relying on the standard asymptotic theory 
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outlined on page 82 of Coles [1]. Figures 7 and 8 show that the bootstrap per
centile interval widths are approximately 0.6 m for the 100 year return level 
and 0.8 m for the 1000 year return level, indicating that uncertainty about 
these estimates is not particularly large from an engineering point of view. 

We remark that there are more refined methods for obtaining bootstrap con
fidence intervals. Venables & Ripley (21] discuss 'normal', 'basic', BCa and 
studentized confidence intervals, in addition to percentile confidence intervals 
in their Section 5.7; see Oavison & Hinkley (11] and Efron & Tibshirani (5] 
for excellent and extensive further discussion. We chose to use percentile con
fidence intervals because they are simple to understand and implement. 

3 Simulation Study 

In this section we investigate the performance of our automated threshold 
selection method by means of a simulation study. Figure 9 shows a histogram 
of a data set comprising 10,000 simulated values of a random variable X with 
distribution function given by 

F(x) = {(1- /3)G1(x) + /3}I[x > u] + G2(x)I[x:::; u], x > 0, (6) 

where I is the usual indicator function and /3 = P(X:::; u). G1(x) is a GPO 
function with associated density function 

1 ( ~(x- u))-(1/<+
1

) 
91(x)=- 1+ , 

(J (J 
x >u, 1 

~(x- u) 
0 + > ; 

(J 
(7) 

G2(x) is a truncated normal distribution function with associated density func
tion 

-1-exp(-~) 
( ) o,f'br 2o2 O (8) 

92 X = roo _1_ ex (-~) dx' X> . 
JO o,f'br P 2o 

With this F, the distribution of the random variable X can be thought of as 
a mixture of a normal distribution truncated on (O,u] and a GPO on (u,oo) 
with weights /3 and 1- /3, with non-extreme values coming from the truncated 
normal and extreme values from the GPO. Given /3 and the parameters 1 and 
a of 92 , we can find u from the condition 

/3 = Pr(X :::; u) = G2(u) = lau 92(x)dx 

ru 1 exp (- (y-1)2) dy 
JQ a$ 2o 

= };00 - 1- exp (- (y-1)
2

) dy. 
0 0 ,f'br 2o 

(9) 
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Figure 9: Histogram of a data set of 10,000 simulated values of a random 
variable X with distribution function F. The associated probability density 

function is also shown. The individual values are indicated by a rug of 
dashes. Our automated threshold choice is indicated by a solid line, with the 

true threshold u = 2.90 being shown by a dotted line. The 95% bootstrap 
percentile intervals is also presented using dashed lines. 

For the simulated data set shown in Figure 9 we set {3 = 0.9, 1 = 2 and 
a= 0.7, and solved for u to obtain u = 2.90. We choose the parameter CJ of 
the GPD so that there was no discontinuity at u in the probability density 
function of X. To do this we require 

1-{3 
g2(u) = (1- {3)gt(u) = -. 

(J 
(10) 

With u = 2.90, this equation can easily be solved to yield CJ = 0.40. We set 
the shape parameter~ of the GPD to be 0.2. The resulting probability density 
function of X is shown in Figure 9, together with the threshold u = 2.90 
(dotted line). 

A random sample x1, ... , XN can be simulated from F as follows: 

• Set i = 1. Simulate y rv N('y = 2, a 2 = 0.72
) ; 

• If y < 0 reject it; 
• else if 0 < y < u, set Xi = y and increase i by 1; 
• else if y > u simulate X rv GPD(u = 2.90, (J = 0.4, ~ = 0.2) , set Xi = X and 

increase i by 1. 
• Stop when i = N + 1. 

We applied our automated threshold selection method to the simulated data 
set of size N = 10,000 shown in Figure 9. The selected threshold took the 
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Figure 10: Histogram of thresholds selected from 1000 random samples of 
size N = 10, 000 from F. The mean and median of the automated threshold 
choices for the simulated data sets are shown by dot-dash and dashed lines 

respectively; while the true threshold u = 2.90 is shown by a dotted line. The 
2.5% and 97.5% quantiles are shown as the outer solid lines. 

value 2.678 m and can be seen to be close to the true value of u = 2.90. We 
next used the above simulation procedure to generate 1000 random samples 
of size N = 10, 000 from F. We applied our threshold selection technique 
to each random sample; a histogram of these 1000 thresholds, together with 
2.5% and 97.5% quantiles (2.189,3.694), the true threshold u = 2.90 and mean 
Umean = 2.73 and median Umed = 2.67 values of the distribution of estimated 
thresholds are shown in Figure 10. The selected thresholds seem to be evenly 
and not very widely spread around the true threshold, suggesting that our 
method can recover a known threshold to a good degree of accuracy. Our 
method performed similarly well when applied to data sets simulated using 
different values of /3 , /, a and~-

We now focus on the simulated data set shown in Figure 9 and apply the boot
strap analysis discussed in Section 2.3, except that our bootstrap quantity of 
interest O'b now becomes selected threshold instead of a specific return level. 
Figure 11 shows a histogram of the bootstrap threshold choices together with 
the 95% bootstrap percentile interval (2.225,3.732), our automated threshold 
choice for the original simulated data set and the true threshold u = 2.90. The 
2.5% and 97.5% quantiles found above have also been added. The 95% boot
strap interval is also shown in Figures 9 and 11. We can see from these plots 
that the 95% bootstrap percentile interval is not very wide and contains the 
true and selected thresholds. The actual interval values of (2.225, 3.732) com
pare well with the 2.5% and 97.5% quantiles (2.189, 3.694) indicating that the 
bootstrap assesses well the uncertainty associated with our threshold choice 
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Figure 11: Histogram of the bootstrap threshold choices. The automated 
threshold choice for the original simulated data set is shown as the 

large-dash line, while the true threshold u = 2.90 is the dotted line. The 95% 
bootstrap percentile interval is shown as the dashed lines, with the 2.5% and 

97.5% quantiles from Figure 10 being given using the outer solid lines. 

procedure. 

In order to validate our bootstrap procedure further we performed an extensive 
study based on data sets simulated from distribution (6) to check the coverage 
of our bootstrap confidence intervals. Good results were obtained. We found 
that for the 1000 year return level, for example, the true coverage was 94%, 
very close to its 95% nominal level. The conclusion of all our simulation work 
is that our automated and computationally inexpensive procedure can recover 
a theoretical threshold from simulated data to a good degree of accuracy and 
that the bootstrap can be successfully used to assess associated uncertainties. 

In the next section we give a further example of the application of our pro
cedure by comparing it to an existing technique utilized in the JOINSEA 
software. 

4 Comparison to the JOINSEA Software 

In this section we compare our new method with an existing technique used 
in the JOINSEA software (see [12] and [13]) . The JOINSEA approach for 
choosing an appropriate threshold assumes that extremes can be identified 
as exceedances over a 95% quantile. We now use the Selsey Bill data set 
introduced in Section 2.2 to compare our choice of threshold and fitted GPD 
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with those obtained from the approach adopted in JOINSEA. Table 1 gives 
the results from the two approaches. 

New Technique JOINS EA 

Threshold Value 0.487 1.480 

Number of Exceedances 5372 497 

Maximum Likelihood Estimate, ~ -0.230 -0.271 

Maximum Likelihood Estimate, a 0.576 0.405 

Standard Error,~ 0.00952 0.04094 

Standard Error, a 0.00940 0.02409 

Table 1: The chosen threshold, number of exceedances, GPO parameter estimates 
and standard errors for our new automated threshold selection method and the 

approach adopted in the JOINSEA software. 

Figure 12 shows again a scatter plot of wave height against the cosine of wave 
direction for the Selsey Bill data set, together with the two thresholds. The 
dashed line was obtained using our new threshold technique, while the solid 
line is the JOINSEA threshold. We see from Table 1 and Figure 12 that the 
threshold values are very different, with the automated threshold being almost 
1 m below the JOINSEA threshold. Figures 13 (a) and 13 (b) show compar
isons of inferences (return levels, confidence intervals and fitted densities) from 
the fitted models based on each threshold. We can see that the resulting mod
els are actually very similar indicating that our automated threshold selection 
technique is comparable to that of JOINSEA. The JOINSEA threshold yields 
fewer exceedances, which is the cause of the increased return level confidence 
interval widths in Figure 13 (a). The narrower confidence intervals yielded by 
our threshold selection technique, together with the fact that it is more model 
based, lead us to prefer our methodology over the JOINSEA approach. We 
also note that for data sets such as those simulated in Section 3 with (3 > 0.95 
the JOINSEA approach is guaranteed to lead to non-extremes being included 
in future GPO analyses. 

We applied our automated threshold selection technique to different data sets 
which varied in size and data collection location, and found it performed con
sistently well in terms of model goodness of fit. We felt that in the case of 
the Selsey Bill data our automated approach chose a relatively low threshold 
as a type of "average" threshold across the range of direction covariate val
ues. This observation led us to extended our automated technique to allow 
the chosen threshold to vary with covariate value. We discuss our direction 
varying threshold methodology in detail in Section 5. 
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Figure 12: Scatter plot of wave height against the cosine of wave direction for 
10,000 values from the Selsey Bill data set. Our automated threshold choice 

is shown using the dashed line, while the solid line shows the threshold 
chosen by the JOINSEA software. Both threshold choices take no account of 

the cosine of wave direction. 
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(a): Histogram of the exceedances from the JOINSEA threshold choice, to
gether with the GPD fit (dashed line). The GPD fit based on our threshold 
procedure is also shown (unbroken line). This GPD fit has been scaled so that 
the area under it above the JOINSEA threshold is one. 
(b): Return level curves and confidence envelopes from both automated ( un
broken)and JOINSEA (dashed) threshold model fits. 
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(a): Scatter plot of wave height against the cosine of wave direction. The data 
has been split into 40 sections equally spaced along the covariate axis. 
(b) : Scatter plot of wave height against the cosine of wave direction. The data 
has now been split into optimal blocks along the covariate axis. Individual 
automated thresholds have been chosen for each block and are shown by the 
solid horizontal lines. The dotted line shows the threshold chosen without 
reference to cosine of wave direction. 

5 Extended Automated Threshold Selection Technique 

We have seen that the Selsey Bill data set comprises information about wave 
direction as well as wave height. So far we have worked only with wave height. 
It is clear from Figure 12 that the behaviour of wave height varies with wave 
direction. It therefore makes sense to include the directional effect in our 
automated threshold selection procedure, rather than to have a threshold that 
is constant over wave direction. 

In extreme wave analysis directional effects are usually dealt with using one 
of two methods: either the data are split according to different directions with 
each separate data set being modelled independently, or the wave direction is 
included as a covariate as in Ewans & Jonathan [6] and Jonathan & Ewans [14], 
for example. In this section we propose a new approach to blocking the data. 

Our approach is based on the automated threshold selection procedure that 
we have already presented and is as follows: 

(1) First the data set is blocked according to the cosine of wave direction. 
The number of blocks is initially defined by the user; see Figure 14( a) 
for example where the covariate axis is split into 40 equal width blocks. 
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Each block is then altered iteratively to its optimum size as described in 
(2). 

(2) The constant automated threshold selection procedure is applied to the 
data in each block. The block size can then be altered in order to achieve 
a satisfactory GPO fit in each block. If there is not a sufficient number of 
observations within the block or if the block's optimal threshold choice 
does not define enough exceedances to achieve a good GPO fit, then the 
block is merged with the next consecutive block and the process is re
peated. Through a simulation study we found that a sufficient number 
of observations would be the larger of 5% of the total number of obser
vations and 500, and a sufficient number of exceedances would be the 
maximum of 1% of the total number of observations and 50. The simu
lation study involved fitting a number of GPO models to different data 
sets and assessing the dependence of model fit quality on the number of 
observations and the number of exceedances. The merging of consecutive 
blocks is continued until the required minimum values for the number of 
observations and the number of exceedances for the merged block allows 
is reached. Our optimal blocks are shown in Figure 14(b ). 

(3) Each block now has a constant optimal threshold associated with it. A 
separate GPO can be fitted to the wave height data within each block, 
and associated direction specific inferences about return levels can be 
made. 

If the individual block thresholds shown in Figure 14(b) are considered 
together, a piecewise constant threshold function is defined. A threshold 
that is continuous in the cosine of wave direction covariate can be ob
tained by applying a smoothing spline, for example. We did this using 
R[16]'s smooth. spline function; see Green & Silverman [8], for example. 
The resulting smoothed direction varying threshold function is shown in 
Figure 15. 

In order to justify further the choice of these direction varying thresholds 
we also show in Figure 15 probability density contours for a bivariate kernel 
density estimate (calculated using the kde2d function of the MASS library; see 
Venables & Ripley [21]) based on wave height and the cosine of wave direction. 
We see that the chosen thresholds aline well with the tail of this probability 
density function across the range of cosine wave direction, supporting our di
rection varying threshold choice procedure. We conclude by remarking that, 
as mentioned, the more appropriate thresholds that this extended automated 
threshold selection technique provides can yield more accurate direction spe
cific return level estimates. These in turn can lead to improved coastal defence 
designs that account for directional variations in extreme wave heights. 
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Figure 15: The bivariate wave data with piecewise constant and smoothed 
covariate varying thresholds. Bivariate probability density estimate contours 
are overlaid on the scatter plot. 

6 Concluding Comments 

In this paper, we have presented a new, automated, simple and computation
ally inexpensive method for selecting the threshold for the G PD in extreme 
value modelling. Our pragmatic method uses a series of normality tests to find 
an appropriate threshold choice for a given data set. We have contrasted our 
methodology with one of the currently available subjective approaches. We 
have shown the practical applicability of our method using an example from 
coastal engineering. We have demonstrated that our automated technique can 
recover a known threshold from a simulated data set to a good degree of accu
racy. We have assessed the effect of the uncertainty associated with threshold 
selection on return level estimation using the bootstrap procedure. We have 
also provided comparisons of our new approach with the existing J OINSEA 
technique, pointing out improvements of our method over the existing one. 
In practice, our method can be seen as a additional tool that complements 
existing threshold selection methods. 

We have extended our methodology to incorporate a direction covariate depen
dant threshold. This extension uses our automated threshold selection tech
nique to segregate the data into optimal blocks based on goodness of fit and 
sample size requirements. 

Our methodology can lead to more accurate return level estimates, with their 
uncertainty properly qualified, which can inform and enhance the coastal de
sign process. 
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Abstract 

A new technique based on Bayesian quantile regression that models the dependence 
of a quantile of one variable on the values of another using a natural cubic spline is 
presented. Inference is based on the posterior density of the spline and an associated 
smoothing parameter and is performed by means of a Markov chain Monte Carlo 
algorithm. Examples of the application of our technique to two real environmental 
data sets and to a simulated data for which polynomial modelling is inappropriate 
are given. An aid for making a good choice of proposal density in the Metropolis
Hastings algorithm is discussed. Our nonparametric methodology provides more 
flexible modelling than the currently used Bayesian parametric quantile regression 
approach. 

Key words: Acceptance rate, coastal wave data, inference about smoothing 
parameter, Markov chain Monte Carlo, motorcycle accident data, proposal density 
choice 

1 Introduction 

Quantile Regression can be described as a method that provides a more com
plete inferential picture than ordinary least-squares regression. The latter tech
nique estimates the conditional mean of some response variable Y given the 
value t of a covariate, while quantile regression takes a different approach by 
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estimating the conditional quantiles of Y given t. More precisely, in quantile 
regression we are interested in estimating quantile functions qp(t) , 0 < p < 1, 
such that Pr(Y ~ qp(t) given that the covariate takes the value t) = p. This 
allows the full range of the data to be modelled and so can be beneficial when 
large values are of particular interest. It also means that quantile regression 
can be viewed as a data exploration technique. Koenker et al. [14] present 
a wide ranging discussion about the use of quantile regression. Quantile re
gression can be implemented in a range of different forms, and Yu et al. [27] 
provide an overview of some commonly used quantile regression techniques. 

Bayesian inference for quantiles has been considered by several authors, in
cluding Yu & Moyeed [26] and Dunson & Taylor [6]. Dunson & Taylor [6] 
discuss appropriate Bayesian inference for quantiles when the likelihood func
tion is not fully specified. They present an example based on linear quantile 
regression function. Kottas & Gelfand [17] consider Bayesian semiparamet
ric median regression modelling under a Dirichlet process mixing framework. 
Kottas & Krnjajic [18] extend this approach to general quantiles. 

The Bayesian quantile regression (BQR) methodology developed in Yu & Moy
eed [26] adopts a parametric approach based on a polynomial quantile regres
sion function. Inference about the posterior distribution of the parameters of 
this regression function is made by means of a Markov chain Monte Carlo 
(MCMC) algorithm. Although Yu & Moyeed [26] present excellent results, 
there are certain drawbacks associated with using polynomials. These include 
the influence of outliers and the need to choose the degree of the polynomial, 
possibly for each quantile considered. Also, the data may have a limited local 
effect on the shape of a polynomial regression curve especially when modelling 
high quantiles. Yu & Moyeed [26] work with low order polynomials; problems 
associated with using very high order polynomials may include over-fitting 
and poor M CM C convergence. 

In this paper we present a nonparametric alternative to the parametric ap
proach of Yu & Moyeed [26] based on using natural cubic splines rather than 
polynomials. Our approach provides a more versatile and flexible method of 
fitting a quantile regression curve. Section 2 of the paper provides an intro
duction to natural cubic splines. It then presents our Bayesian nonparametric 
quantile regression methodology by describing the posterior density of the 
spline and an associated smoothing parameter and outlining a MCMC algo
rithm for making inferences from this posterior. Section 3 presents applications 
of our methodology to two real environmental data sets and to simulated data. 
The first data set comprises coastal wave conditions from near the Selsey Bill 
area and were generated using a hindcasting technique (see Reeve et al. [22]) 
using wind records. The data comprise of hourly hindcast measurements of 
the variables significant wave height, wave period and wave direction over 
an approximate time span of 27 years. A good understanding of this type 

2 



of data is important for the coastal design process, as illustrated by Thomp
son et al. [24]. Here, our variable Y of interest will be wave height, while the 
covariate t will be the cosine of wave direction. In this example we take a 
random sample of 10,000 observations for computational and presentational 
reasons. The resulting data set is shown later in Figure 1 and will be denoted 
(t1 , y1), ... , (tn , Yn) , where sample size n = 10, 000. Our second application is 
similar, but consists of offshore wave data. The simulated data for our third 
application are based on a well known published data set for which polyno
mial modelling is inappropriate. Our applications allow us to illustrate learning 
about model parameters from data. We also discuss the advantages offered by 
our nonparametric methodology. In Section 4 we discuss the performance of 
our MCMC procedure and presents an aid for making a good choice of pro
posal density in the Metropolis-Hastings algorithm so improving its efficiency. 
Finally Section 5 is a short conclusion. 

2 Bayesian Nonparametric Quantile Regression Methodology 

When fitting a curve through a bivariate data set, one important considera
tion is the roughness of the curve, i.e. how "wiggly" it is. More specifically, we 
tend to prefer smooth curves that have a reduced amount of rapid fluctuation. 
We are able to quantify the roughness of a curve g with continuous second 
derivative on the interval [a, b] by means of a roughness penalty which is de
fined in this paper as the integrated squared second derivative J! g"(t)2dt; 
see Green & Silverman [11]. A standard approach to curve fitting is based 
on a trade-off between the lack-of-fit of a curve to the data and its rough
ness, or, equivalently, between goodness-of-fit and smoothness, as discussed in 
Green & Silverman [11] . These authors also shown how this approach can be 
formalized within the Bayesian framework (see Gamerman [7]) by having a 
prior distribution which quantifies probabilistically the roughness of the fitted 
curve; we describe this in detail in Section 2.2. 

In Section 2.1 we define natural cubic splines by following the standard ap
proach given by [11]. The aim of this paper is to include the natural cubic 
spline in the Bayesian quantile regression methodology of Yu & Moyeed [26] 
so extending and making their parametric technique more flexible. F\1ll details 
of our proposed methodology are given in Section 2.2. 

2.1 The Natural Cubic Spline and Associated Results 

We say that a curve g is a cubic spline with N 2: 2 knots T1 < · · · < TN if 
g is a cubic polynomial between knots Ti- l and Ti , i = 2, . .. , N , and if g has 
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continuous first and second derivatives at Ti, i = 2, ... , N - 1. Let a < T1 and 
b > TN. The cubic spline g is said to be a natural cubic spline (NCS) on [a, b] 
if it is linear on the intervals [a, TI] and [TN, b] and if it has continuous first and 
second derivatives at T1 and TN. This definition of a NCS is equivalent to the 
one given by Green & Silverman [11, pages 11-12]; see also Hastie et al. [12, 
Section 5.2]. 

We now introduce notation and present results that we will use later. Let 
g = (g1 , ... ,gN)T be a column vector of values 9i = g(Ti ), i = 1, .. . , N, of a 
NCS g at its knots T1, . .. , TN . Further, let ~ = Ti+1 - Ti, i = 1, .. . , N - 1, 
let Q be the N x (N- 2) banded matrix with entries Qij, i = 1, ... , N and 
j = 2, . . . , N -1, given by Qj-IJ = 1/hi_1, Qjj = -1/hi-1 -1/hi, Qj+l,j = 1/hi 
and Qij = 0 for li- Jl ~ 2, and let R be the (N- 2) x (N- 2) banded positive 
definite symmetric matrix with entries r ii = (hi_1 + hi)/3, i = 2, ... , N- 1, 
r i,i+1 = ri+1,i = hi/6, i = 2, . . . , N- 2, and rii = 0 for li- Jl ~ 2. We can now 
define theN x N symmetric matrix K with rank N - 2 asK= QR- 1QT. We 
will make use of Theorem 2.1 of Green & Silverman [11] that tells us that the 
roughness penalty satisfies 

lb g"(t)2dt = gT Kg. (1) 

We will also use Theorem 2.2 of [11] that establishes that, given any values 
91, ... , 9N, there is a unique NCS g with knots at T1, ... , TN satisfying g(Ti ) = 
9i , i = 1, .. . , N. 

2.2 Bayesian Nonparametric Quantile Modelling and Inference 

In this section we present a framework for Bayesian nonparametric quantile 
regression using splines rather than polynomials as in Yu & Moyeed [26] . In 
our approach we model a quantile function of a covariate t using a NCS with N 
fixed knots at points T1, .. . , TN that cover the range oft. The NCS is uniquely 
determined by its values g = (91 , . . . , 9N f at these knots, since, as explained 
in Section 2.1 , there is a unique NCS that can be drawn through the points 
(Ti, 9i ), i = 1, ... , N. As our approach is Bayesian, we begin by defining the 
prior density for g as multivariate normal; see Green & Silverman [11, page 51] 
for a discussion about the use of the multivariate normal density as a prior in 
this context. 

Our prior for g is defined by means of the multivariate normal density 

)...(N-2)/2 ( 1 ) 
7r(g i>..) = (27r)<N- 2)/2(J.L1 ... J.LN-2)1/2 exp -2>.. gT K g , (2) 

in which J.L1, .. . , J.LN- 2 are the inverses of the N - 2 non-zero eigenvalues of 
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K and >. > 0 is an unknown parameter. More detail about this multivariate 
normal distribution can be found in Rao [21, page 528]. Note that (2) depends 
through (1) on the roughness I! g"(t)2dt = gT Kg of the NCS g uniquely 
defined by g. As larger values of >. result in more probability density being 
given to less rough curves g, we will refer to >. as a smoothing parameter. 

We next require a prior on the smoothing parameter >. which is constrained by 
a lower limit of zero. Hence, we follow standard practice by using the gamma 
density as our prior for >. which takes the form 

(3) 

in which r is the usual gamma function. The user is able to specify the hy
perparameters a and {3. Under this prior E[>.] = a{3 and Var[>.] = a{32

, results 
that can be used to guide hyperparameter choice. 

The final step in our Bayesian approach is to define the likelihood of the data 
(ti, Yi), i = 1, ... , n , given g . Let y = (y1 , ... , Ynf· We proceed in accordance 
with the BQR approach of Yu & Moyeed [26] by substituting our NCS g for 
their polynomial. The resulting likelihood takes the form: 

(4) 

where pis the probability corresponding to the quantile of interest, 0 < p < 1, 
and PP is the standard quantile regression loss function 

Pp(u) = u(p- I(u < 0)) (5) 

in which I is the usual indicator function. The values of g( ti), i = 1, . .. , n, 
in (4) are uniquely determined by g . We note that the likelihood is not de
pendent on >.. Combining n(>.), n(gi>.) and L(yig) , we can write the posterior 
density function of g and >. as 

n(g, >.iy) a: L(yig)n(gi>.)n(>.). (6) 

We now simulate realizations of g and >. from this posterior density using 
an MCMC approach implemented via the Metropolis-Hastings algorithm; see 
Gamerman [7]. Our inferences will be based on these posterior realizations. In 
particular, we shall use the posterior mean (gi. . .. , 9N) of g to produce our 
estimated quantile. Our algorithm can be summarized as follows: 

(i) Assign initial values g (0l and >,(O) to g and >.. We set g (0lto be the values 
at T1, . . . , TN of the posterior mean cubic quantile regression curve ob
tained using the methodology of Yu & Moyeed [26]. The cubic quantile 
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regression curve was chosen as this is also an example of a cubic spline, 
although a very constrained one. We obtain the value of >.<0> by applying 
generalized cross validation ( GCV) to the usual mean smoothing spline; 
see Green & Silverman [11]. We chose this value, which we shall refer to 
as GCV(mean spline), because it can be found easily and quickly using 
R's [20] smooth. spline function (see Venables & Ripley [25], for exam
ple); Section 4.3 provides brief further discussion. We set iteration number 
j=l. 

(ii) We generate a candidate vector g* from the multivariate normal distri
bution 

g* igU-1> "' MV N(gU-l), E) (7) 

with mean gU-1> and variance-covariance matrix E = a 2 K- / >., where 
K- is the generalized inverse of K. The constant a2 is specified by the 
user; see Section 4.2. 

(iii) We set g U> to g* with probability: 

(j-1} * - . { L(yig*)7r(g*IJ.(i-1})q(g (j-1)ig*) } 
o:(g ' g ) -mm 1, L(y ig U-1})7r(g U-1}1J.{j-1})q(g* igU-1)) (8) 

where the proposal density q(g*igU-1>) is the probability density function 
of the multivariate normal specified in (7) . Because q is symmetric in its 
arguements, it cancels out of (8). Otherwise, g U> = gU-1>. 

(iv) We now generate a candidate ).* from the log-normal distribution as 
follows: 

1-£* ""'N(log(>.i-1
), a~), >.* = exp(J-L*) (9) 

where the normal distribution has mean log(>.U-1>) and variance a~ , 
which can be specified by the user; see Section 4.2. 

(v) We set >.U> to ).* with probability: 

(j-1> * - . { 7r(g Ci>i >.* )7r(.X*)q(>.U-1>i>.*) } 
o:(>. '>. ) - mm 1, 7r(g (i) i>.Ci- 1))7r(J.Ci-1))q(.A*IJ.(j - 1)) (10) 

where q is the log-normal probability density function specified through 
(9). In this case cancellation of the q terms in (10) is not possible as q is 
not symmetric in its arguements. Otherwise, >.U> = ;.U-1). 

(vi) We now increment j by 1, and repeat steps (ii)-(vi) for a total of d 
iterations. 

Whilst the methodology of Yu & Moyeed [26] updates the parameters of a fixed 
degree regression polynomial at each iteration of the Metropolis-Hastings al
gorithm, our methodology updates both the entire vector of values g at the 
fixed knots of the NCS and the smoothing parameter >.. We set the number 
of iterations d to 500,000. We allow a burn-in of 50,000 iterations. Inference is 
based on thinned values of g and>. produced by the Metropolis-Hastings algo
rithm after burn-in. Convergence issues are discussed in detail in Section 4.2. 
All code was written in R [20], using R's random number generating functions. 
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A considerable advantage of the Bayesian approach is that we can calculate 
associated credible intervals to provide an idea of the associated posterior un
certainty. These credible intervals are obtained by ordering the thinned g<il(T;) 
sequence over j > 50, 000 and extracting the values which correspond to, for 
example, the 2.5% and 97.5% quantiles. A 95% posterior credible interval for 
>. can be obtained in a similar way. In the next section an example of this 
methodology applied to the coastal wave condition data set discussed in Sec
tion 1 is presented. 

Although we have adopted the Metropolis-Hastings algorithm to simulate re
alizations from our posterior, we note that due to its multivariate nature, 
potentially more efficient samplers may be available. Neal [19] presents an al
ternative sampling technique called slice sampling, based on the principle that 
we can simulate from a distribution by sampling uniformly from the area below 
its plotted density function. The algorithm proceeds by alternating two steps: 
uniform sampling in the 'vertical' direction at the current 'horizontal' point, 
and uniform sampling from the 'horizontal' slice defined by the the current 
'vertical' position. This latter step can be computationally very demanding 
with the consequence that the computational expense of slice sampling may 
outweigh any potential advantages over our more simple Metropolis-Hastings 
algorithm. 

We finish this section by remarking that another approach to quantile regres
sion is based on the minimization over curves g of 

n 

L Pp(Y;- g(t;)). (11) 
i=l 

Often g is taken to be a B-spline (Hastie et al. [12]) or a NCS with pre
specified knots and hence smoothness. The minimizing g can be found using 
the quantreg package [16] running under R [20]; see Koenker [14] for an ex
ample. Some other authors have considered the problem of minimizing over 
curves g belonging to a suitable space a version of (11) penalized for roughness 
such as 

(12) 

see Bosch et al. [2] and reference therein, and Koenker et al. [15] for further 
discussion. Koenker et al. [15] also describe a similar minimization approach 
based on a total variation roughness penalty; software for this is again available 
in [16]. As far as we know, none of these approaches routinely yield confidence 
envelopes for the estimated curve. 
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Fig. 1. Scatter plot of the coastal wave data showing the p = 0.9 Bayesian quantile 
regression curve using a cubic polynomial. A 95% credible envelope is also presented. 

3 Applied Examples 

3.1 Application to Coastal Wave Data 

To illustrate the practical effectiveness of the approach described in Section 2 
we present results obtained from applying our methodology to the hindcast 
coastal wave data discussed in Section 1 and plotted in Figure 1. This plot also 
shows the parametric Bayesian quantile cubic regression curve of Yu & Moy
eed [26] for p = 0.9 together with a 95% credible envelope. For our spline 
based approach we used a fixed grid T1 < · · · < T30 of N = 30 equally spaced 
knots over the range of covariate values t1. ... , tn. We found that such a grid 
of knots allows flexible modelling without imposing a very high computational 
burden. We remark that in the context of mean regression some authors such 
as Denison et al. [4] and Dias & Gamerman [5] have also made inference about 
the number and position of knots. The resulting algorithm is based on the re
versible jump Markov chain Monte Carlo method of Green [10] and can be 
computationally highly demanding. 

We set the gamma prior hyperparameters {3 = 0.1/GCV(mean spline) ~ 105 

and a= GCV(mean spline)/{3 ~ 10-11 in which GCV(mean spline) ~ 10-6. 

With these hyperparameters the prior mean and variance of>. are E[>.] ~ 10-6 

and Var[>.] ~ 0.1, representing a large amount of prior uncertainty about>.. We 
set the hyperparameters to yield an sensible expected >. which is comparable to 
the GCV value for >. from the usual mean smoothing spline. Figure 2 displays 
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Fig. 2. Plot comparing the prior and posterior densities of>. given the coastal wave 
data. The prior is a gamma density with parameters a~ 10-11 and /3 ~ 105 and is 
effectively fiat over a large range of>. values. The posterior density is very different 
from the prior, clearly showing that learning about >. has taken place. 

the prior and posterior densities of>. for this example. The difference between 
the prior and the posterior of >. clearly shows that learning about >. has been 
achieved. This is to be expected for such a diffuse prior. Learning about >. can 
still be achieved with a much more informative prior as shown in Figure 3, 
with hyperparameters a = 160 and (3 = 0.025. Here the marginal posterior of 
>. lies between the prior and the posterior shown in Figure 2 based on much 
larger uncertainty about >.. 

Figure 4 presents the resulting Bayesian nonparametric quantile regression 
curve and 95% credible envelope for our first choice of gamma prior hyper
parameters. To obtain the regression curve shown in Figure 4, we drew the 
unique NCS through the points (Ti, gi), i = 1, . . . , N , using the R's spline 
function [20]. Similarly, we produce our 95% credible envelope by drawing 
NCSs through the 2.5% and 97.5% posterior quantiles found in Section 2.2. 
The more local nature of the fitting procedure is easily seen from Figure 4. In 
order to judge the goodness-of-fit of both approaches we found empirical and 
fitted quantiles on a grid of 100 sections along the covariate and calculated 
'residuals' as: 

residual =empirical quantile- fitted quantile, (13) 

in which for each grid section the empirical quantile is the p•h quantile of the 
data values in the section and the fitted quantile is the value produced by 

9 



! 

"! 

~ 

-i 
~ :;! 

f ... 
"! 
0 

;; 

~ 

q 
0 

- -donoily s[ 
- - - Prior c~oN~y,-....... ,eo. , = o.025 

~ 
0 3 

l. 

.. .. . . . . . . . . . . . : 

• 

Fig. 3. Plot comparing the prior and posterior densities of >. given the coastal wave 
data for a stronger prior with a = 160 and {3 = 0.025. The posterior density is 
different from the prior, showing that learning about >.has taken place. 

11) 

.,; 

0 
.,; 

g 
.E 
"' ~ 'ii ~ 
:I: 

~ 
~ q 

~ 

11) 

ci 

q 
0 

-1 .0 -(),5 0.0 0.5 1.0 

Cos('Nave direction) 

Fig. 4. Scatter plot of the coastal wave data showing the p = 0.9 Bayesian non
parametric quantile regression curve using splines. A 95% credible envelope is also 
presented. 

our model at the centre of the section. As usual, smaller residuals in absolute 
value are associated with better fits. Figure 5 shows the absolute value of the 
residuals from both the cubic polynomial quantile regression curve shown in 
Figure 1 and the spline based curve shown in Figure 4 against the cosine of 
wave direction. A robust locally linear smoother provided by R's [20] loess 
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Fig. 5. The absolute values of the residuals against the cosine of wave direction with 
associated loess smoother from both the spline (dots, unbroken line) and the cubic 
(crosses, dashed line) quantile regressions. A grid of 100 sections along the covariate 
was used in the calculation of the residuals. 

function (see Venables & llipley [25] , for example) was added through each set 
of (covariate, lresiduall) points. These smoothers indicate that the spline based 
quantile curve gives a better quality of fit through almost the full covariate 
range than the cubic polynomial quantile. This is due to the more local na
ture of the spline based fitting procedure. We also calculated the mean square 
error based on the residuals for each model as a further method of assessing 
goodness-of-fit. We obtained mean square error values of 0.010 and 0.016 for 
the spline and polynomial based approach respectively. This is a further in
dication of the improvement that the nonparametric approach provides over 
its parametric counterpart. We should, however, bear in mind that in general 
goodness-of-fit and smoothing are competing aims in curve fitting. 

Finally, we remark that the p = 0.9 Bayesian nonparametric quantile regres
sion curve using splines obtained with the gamma hyperparameters a = 160 
and (3 = 0.025 was very similar to that shown in Figure 4. The credible enve
lope was, however, somewhat smoother. Our experience is that an estimated 
quantile is relatively insensitive to hyperparameter choice. 

3.2 Application to Offshore Wave Data 

In our second example we use offshore wave data to further illustrate and 
validate our approach. These data refer to an offshore location in Poole Bay, 
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UK. There are three variables: wave height, wave period and wave direction, 
each having 86,384 observations at 3 hourly intervals, which amounts to just 
over 29 years of data. The data are shown in Figure 6. We can see that 
this data set has a different underlying structure from the coastal wave data 
as there is less variation in the magnitude of values (including high values) 
over the direction covariate. We also show in Figure 6 the same p = 0.9 
Bayesian quantile regression curves and associated credible intervals as before. 
Our nonparametric quantile regression curve using splines provides us with a 
better understanding of the fine features of the p = 0.9 quantile than the 
cubic quantile regression curve, which is also shown. This advantage can be 
particularly helpful with data sets of this size and visual complexity. 

- 0.9 Parametric 
- 0.9 Nonpan~metric 
- - - Parametric 95% credible Interval 
- - - Nonpan~metric 95% credlbht Interval 

-1 .0 -o.s 0.0 0.5 1.0 

Cos{Wave direction) 

Fig. 6. Scatter plot of the offshore wave data showing the p = 0.9 Bayesian non
parametric quantile regression curve using splines and p = 0.9 parametric Bayesian 
quantile regression curve. 95% credible envelopes are also presented. 

Figure 7 shows the absolute value of the residuals from both the cubic poly
nomial quantile regression curve and the spline based curve against the cosine 
of wave direction. We can clearly see that our spline based approach again 
provides a better quality of fit through the full covariate range than the cubic 
polynomial quantile curve. Again this is as a result of the more local nature 
of the spline based fitting procedure. This is apparent in this example as we 
have a large amount of data to work with meaning that local variation can be 
better identified than in smaller data sets. 
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Fig. 7. The absolute values of the residuals against the cosine of wave direction with 
associated loess smoother from both the spline (dots, unbroken line) and the cubic 
(crosses, dashed line) quantile regressions. A grid of 100 sections along the covariate 
was used in the calculation of the residuals. 

3.3 Application to a Simulated Data Set Bases on the Motorcycle Accident 
Data 

In our third example we apply our Bayesian nonparametric quantile regres
sion spline based methodology to a simulated data set generated from the 
famous motorcycle accident data, discussed by Silverman [23] and presented 
in Figure 8. The data set comprises the head acceleration in multiples of the 
acceleration due to gravity g at 133 times in milliseconds after a simulated 
motorcycle accident used to test crash helmets. This well known data set has 
been used frequently to motivate and demonstrate spline based methodol
ogy, since the nature of the underlying process makes polynomial modelling 
inappropriate. It provides a suitable test for our methodology. 

Figure 8 also shows a smoothing spline found using the R's spline fi.mc
tion [20] ; see Green & Silverman [11] for a detailed discussion about the 
definition and calculation of smoothing splines. We simulated 100 values of 
acceleration at each of 30 equally spaced time points from a normal distribu
tion with mean equal to the value of the smoothing spline at the time point, 
as shown in Figure 8 using filled dots, and standard deviation set to 20. We 
present the simulated data together with the smoothing spline in Figure 9. It 
is straightforward to calculate the true p = 0.95 quantile using mean + 1.96 
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Fig. 8. Scatter plot of the motorcycle accident data from [23]. A smoothing spline 
has been added using the R package splines [20]. The values of the spline at 30 
equally spaced times are shown using filled dots. 

standard deviation; this is also shown in Figure 9, together with the empirical 
0.95 quantile at each time point. We now apply our Bayesian nonparametric 
quantile regression spline based methodology to this simulated data set. We 
used N = 30 knots, one at each of the time points at which the data are gen
erated. The resulting curve is shown in Figure 10. It recovers the true quantile 
function well, so confirming the effectiveness of our methodology. 

4 Markov chain Monte Carlo Performance 

4.1 Choosing the Proposal Density and Acceptance Rate 

In step (ii) of the Metropolis-Hastings algorithm presented in Section 2.2 the 
candidate vector g* was drawn from a multivariate normal distribution with 
variance-covariance matrix ~ = CJ2 K- / >.. In this way a candidate g* has simi
lar structure to a g from the prior term 1r(g j>.). We also considered generating 
g* from a multivariate normal distribution with ~ = CJ2 IN where IN is the 
N x N identity matrix. As a third possibility we updated a random subset 
of 91 , .. . , 9N again using independent normal distributions with variance CJ2. 

All three possibilities of generating g* performed similarly, with the choice of 
CJ

2 having the greatest effect on the convergence of the Metropolis-Hastings 

14 



8 ...-----------------------, 
~ 

! I ~ 
! I: 

I I' Ill· 
I: ! I· 11,. . . I I I •. • 

I 1 - Smoothing Spline 
- True quantile 
- - Empirk:al quanale 

10 20 30 40 50 

Time (milliseconds after impact) 
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Fig. 10. Scatter plot of simulated data based on the smoothing spline shown in 
Figure 8. The true p = 0.95 quantile function is shown together with the p = 0.95 
Bayesian nonparametric quantile regression curve using splines. 

algorithm. 
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Booard [la] introduced a technique that can be applied here to optimally 
choose the parameter a-2 that controls the variance E = a-2 K- / >.. of the pro
posal density q for g in the Metropolis-Hastings algorithms. The technique 
plots an efficiency criterion against acceptance rates from the Metropolis
Hastings algorithm or against a-2 . The acceptance rate or value of a-2 that 
corresponds to the maximum efficiency can then be chosen. 

The key to this procedure is the use of the first order efficiency criterion which 
measures the average squared jumping distance for each parameter from one 
iteration to the next. In the case of the polynomial model of Yu & Moyeed [26] 
in which the parameters /3o, {31, !32 and !3a are updated individually, Bedard [la] 
would define the first order efficiency criterion (FOE) for the i•h parameter as 

FOEi = E [ (!3F+1>- f3ii>) 2
] , (14) 

where the expectation is over iterations j . 

The definition can be easily extended to the case of the spline, in which all the 
parameters g = (g1, . .. , 9N )T are updated simultaneously, by using squared 
Euclidean distance as follows: 

FOE= E [t. (g1i+l)- gii>) 2
] , (15) 

where again the expectation is over iterations j. 

Figures 11 and 12 show plots of FOE against acceptance rate and against 
a-2 for updating g . These plots allow the user to choose the acceptance rate 
or a-2 corresponding to the highest value of FOE. From Figure 11 it can be 
seen that an acceptance rate of about 0.24 is most appropriate. This may 
seem rather low, but is due to the fact that we are updating a whole vector of 
parameters g and not just an individual parameter. It is also in agreement with 
some of the literature about optimal acceptance rates; see Bedard [la-b] and 
references therein for example. A relatively low acceptance rate corresponds to 
a relatively high proposal variance which itself allows larger possible jumps for 
the vector of parameters g. A similar approach can be used to choose the value 
of u~ for updating the smoothing parameter >.. in step (v) of the Metropolis
Hastings algorithm. In our application we fixed a value for u~ and tuned a-2. 

We then fixed our chosen a-2 and tuned u~ . Finally, we fixed our chosen u~ 
and re-tuned (]2 . We found that we were able to achieve good convergence 
for both g and >.. with these tuned values of a-2 and u~ , as we will discuss in 
Section 4.3. We also found that this approach yielded a value of u~ that was 
relatively insensitive to the value of a-2

. 
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Fig. 11. First order efficiency criterion (FOE) against acceptance rate when updating 
g in the Metropolis-Hastings algorithm . 
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Fig. 12. First order efficiency criterion (FOE) against a 2 for updating g in the 
Metropolis-Hastings algorithm. 

4.2 Assessing Markov Chain Monte Carlo Convergence 

Visual assessment of the convergence of the Metropolis-Hastings algorithm 
was found to be difficult as the simulated elements included N = 30 points 
along the spline rather than just a few model parameters. We found that the 
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Fig. 13. Plot of >. (i) against thinned iteration j. 

combination of a large number of sub-chains and an acceptance step based on 
a vector of points rather than a individual parameter could cause some con
vergence issues, although these could be overcome with good choices of e72 and 
e7i as discussed in Section 4.1. Convergence for our nonparametric approach is 
generally slower than for parametric models. However this computational cost 
is balanced by the improved localized fitting of the model that we have seen. 
The visual assessment of convergence of ,\ was also difficult as the parameter 
took a wide range of values as shown in Figure 13, where we can see that the 
time series converges around a lower value, with a tendency to jump to higher 
values (corresponding to smoother curves) . We see that the time series has 
moved away from the low initial value of _x(o) = w-6 . In fact , values of,\ as 
low as w-6 produce curves (not shown) that are visually far too rough. 

After initially examining time series plots of _xU) and of the individual g}i) sub
chains as shown in Figure 14, we used the more formal Gelman-Rubin statistic, 
discussed in Gelman & Rubin [9], Gelman [8] and Brooks & Gelman [3], to 
assess convergence of g and of ,\. The Gelman-Rubin procedure compares 
the variances between and within chains to monitor convergence and is based 
on the 'estimated potential scale reduction factor' R112 , which represents the 
estimated factor by which a credible interval for a parameter of interest may 
shrink if further simulation is carried out. Good performance is indicated by 
values of R112 close to 1. The value of R112 should certainly not exceed 1.2 
as suggested in Kass et al. [13]. We calculated R112 for each sub-chain gi , i = 
1, ... , N , and for,\ and found that R112 took values between 1.0006 and 1.0152. 
Thinning was applied by taking every tenth value as particular sub-chains 
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showed strong autocorrelat ions. Thinning also reduced storage requirements. 

Our examination of time series plots together with satisfactory values of the 
Gelman-Rubin statistic gave us confidence that the Metropolis-Hastings algo
rithm was producing realizations from the posterior distribution 1r(g, >.iy). 

5 Conclusions 

In this paper we have developed a methodology within the Bayesian framework 
to extend fixed degree polynomial based quantile regression to nonparametric 
quantile regression by using a spline based approach. We sampled from the 
posterior density of a NCS and an associated smoothing parameter by means 
of a specially tuned Metropolis-Hastings algorithm and used our sample to 
make inferences that include the quantification of uncertainty. 

We have presented applications of our Bayesian nonparametric quantile regres
sion methodology to two real environmental data sets, providing favourable 
comparisons with an existing parametric method and illustrating that learning 
about model parameters from data has taken place. We have confirmed the 
effectiveness of our methodology using simulated data based on a well known 
published data set for which polynomial modelling is inappropriate. 
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