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ABSTRACT 

THE ORIGIN OF POLYCYCLIC AROMATIC HYDROCARBONS IN 
DIESEL EXHAUST EMISSIONS 

Paul James Tancell 

Emission limits for diesel engine exhaust pollutants are being continually reduced in 
line with increasingly stringent emissions legislation. Essential to the task of reducing 
diesel exhaust emissions is an understanding of the origin of the exhaust pollutants. 
This research has investigated the origin of a group of compounds, polycyclic 
aromatic hydrocarbons (P AH), in diesel exhaust emissions using 14C-radiotracer 
techniques developed specifically to investigate the origin of the organic components 
in diesel emissions. The use of radiotracers in this research has enabled both the 
extent to which individual P AH survive combustion and the extent to which P AH are 
pyrosynthesized during combustion to be measured accurately. No other diesel 
emissions research technique has yielded information which is so unequivocal. 

Radio-chromatographic techniques were developed specifically for the identification 
and quantification of radioactive species present in diesel emissions resulting from the 
combustion of a single 14C-radiolabelled precursor. Radio-high performance liquid 
chromatography (radio-HPLC) was the main technique used and was applicable as 
both a tool for sample fractionation and for analytical measurement. Radio-gas 
chromatographic techniques (radio-GC) were also developed and applied to the 
identification of radioactive species in the exhaust emissions. 

Diesel exhaust samples were collected from a 2L direct injection Perkins Prima diesel 
engine using a novel exhaust sampling device, the Total Exhaust Solvent Stripping 
Apparatus (TESSA) devised previously to sample organic species from automobile 
exhausts. Diesel combustion experiments were performed on three 14C-radiolabelled 
PAH, fluorene, pyrene and benzo[a]pyrene (B[a]P), and 14C-n-hexadecane. These 
were spiked into the diesel fuel and were combusted in the Prima Engine. The extent 
of survival was 0.04% for B[a]P, 0.17% for pyrene and 0.87% for fluorene. The 
amount of each P AH in the exhaust emissions derived from pyrosynthetic sources 
ranged from <20% for B[a]P, to 26.5% for fluorene and 71% for pyrene. 

The extent to which individual P AH survive the diesel combustion process was 
correlated with the molecular orbital distribution of the molecule, and especially the 
energy levels of the lowest unoccupied molecular orbital (LUMO). It is concluded 
that the relationship between PAH survival and PAH molecular orbitals (MOs) is 
owing to the kinetics of combustion reactions and the chemical reactivity of the P AH. 

The extent to which individual P AH molecules are formed during combustion varies 
considerably. From the limited number of experiments performed in the current 
research it has not been possible to determine the mechanisms responsible for the 
formation of these P AH during combustion. Mass balance calculations have 
demonstrated that the degree of pyrosynthesis of the parent P AH molecules 
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investigated in this research may be accounted for by comparatively low rates of 
dealkylation of alkyl-substituted derivatives present in diesel fuel. 

The importance of dealkylation reactions during diesel combustion, was investigated 
by combusting a low aromatic fuel spiked with a non-radiolabelled alkyl-PAH, 2- and 
3-ethylphenanthrene (2- and 3-EtPa), which were synthesized for this purpose. The 2 
and 3-EtPa isomers were recovered in yields of 0.35% and 0.3% respectively No 
dealkylation of the EtPa was detected. A statistically significant increase in the 
emissions of 3-methylphenanthrene (3-MePa) was detected and was equivalent to a 
conversion rate of 0.0004% of the EtPa spike. It is proposed that the ease with 
which individual alkyl-PAH isomers are dealkylated varies for specific isomers, and is 
dependent on the position of the alkyl-substituent on the aromatic nucleus. The 
major product from the combustion of the EtPa was vinylphenanthrene (ViPa) which 
produced in a yield equivalent to a conversion ofO.Ol% ofthe EtPa spike. 

Radiotracer experiments with 14C-n-hexadecane were performed to investigate the 
origin of the aliphatic component of diesel emissions. The extent of hexadecane 
survival was 0.35%. Approximately two thirds of the hexadecane in the emissions 
was derived from pyrosynthetic sources. The most probable source of the 
pyrosynthesized hexadecane in the emissions was 'thermal cracking of higher 
molecular weight aliphatic species in diesel fuel during the combustion process. This 
process may account for a significant proportion of lower molecular weight n-alkanes 
emitted in diesel emissions. 
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Chapter 1 

INTRODUCTION 



1.1 The growth in the diesel car market 

In recent years the UK has experienced a significant increase in the number of 

new diesel cars sold. The number of new diesel passenger car registrations doubled 

between 1987 and 1992 and accounted for 12.6% of all new car registrations in 1992 

compared withjust 5.6% in 1987 (SMME, 1993). Substantial increases in diesel car 

sales have also been observed in other Western European countries and especially 

France and Germany (Fig. 1). 

No. of new diesel car registrations (thousands) 
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• • 0 
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Japan France USA 
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Figure 1. New diesel car registrations in selected European countries, the USA 

and Japan. 

Source: SMMT, 1993 

Several factors have contributed to the growth in diesel car sales. With 

increasing taxation on fuels, the superior fuel economy of diesel powered vehicles, 

compared to their petrol equivalents, has become an important factor for many 

consumers in their choice of vehicle. A substantial adjustment in the consumers 

general perception of the diesel engine. Sales of diesel powered passenger cars were 

previously disadvantaged by noisy driving conditions, lack of power and the emission 



of significant quantities of black smoke, all of which enforced the general impression 

of the diesel as suitable only for commercial use. Major advances in diesel engine 

design, resulting in increased power output and an improved engine performance, 

have largely overcome these problems. Advances in engine design have also 

improved the diesel combustion process with modem engines having very low 

emissions of particulate material. The relative fuel economy of diesels introduced 

significant financial incentives to the consumer to purchase diesel cars. In recent 

years however, tax incentives on unleaded petrol, introduced by the government to 

reduce the emission of leaded compounds into the environment, have reduced 

somewhat the attractiveness of diesels. 

1.2 Environmental impact of diesel exhaust emissions 

The increasing use of the diesel engine in automotive transportation has raised 

concerns regarding the potential environmental impact of an increase in the 

atmospheric burden of diesel exhaust pollutants. The effects are likely to be felt most 

strongly in urban areas, where exhaust pollutant levels already represent a hazard to 

public health (Quality of Urban Air Review Group, QUARG, January 1993). Of 

primary concern, are emissions of nitrogen oxides (NOx) and particulate matter (PM). 

Particulate emissions are 30 to lOO times greater from light-duty diesels than from 

comparable catalyst-equipped petrol engines (Andrews, 1993). Nationally, emissions 

of NOx and particulates from road transport sources are predicted to fall. In urban 

areas, however, pollutant concentrations may remain static for some time or even 

increase in the near future, owing to greater diesel usage (QUARG, December 1993). 

Diesel exhaust particulates are also a significant factor in the soiling of 

buildings in urban areas. Adsorbed organic compounds on the surface of the 

particulate make them prone to deposition on stone surfaces. The cost of the stone 

cleaning operation in the UK in has been estimated at 74 million pounds annually 

(Newbyetal., 1991). 

Whilst diesel emissions of NOx and particulates are a cause for concern, an 

increased market share of diesel vehicles may offer benefits with respect to emissions 

of CO and HCs, both of which are undesirable in terms of human health. HCs play 

an important role in the formation of photochemical smogs, which are a regular 
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phenomenon in larger European cities. Diesel emissions of HCs and CO are low 

owing to the high efficiency of the diesel combustion process and are comparable 

with emissions from catalyst equipped petrol driven vehicles. The low volatility of 

diesel fuel also results in low evaporative emissions of HCs in comparison with 

emissions from petrol vehicles. Diesels may also offer benefits in terms of cold-start 

emissions, which, it has been estimated, contribute a third of the total volatile organic 

carbon (VOC) emissions and CO emissions from passenger cars (Holman et al., 

1993). Cold start emissions of CO and HCs from diesels are considerably lower than 

those of catalyst-equipped petrol vehicles. An increase in diesel usage may offer 

positive environmental benefits by reducing cold start emissions ofHCs and CO. 

The greater fuel economy of diesels leads to emissions of C02, the primary 

greenhouse gas, that are on average 10% lower than their petrol counterparts (Wade 

et al., 1993). An increased market share of diesel powered passenger cars has been 

predicted to have only a small impact on the overall global warming potential from 

automotive transportation (Wade et al., 1993). 

1.3 Current and predicted levels of diesel emissions 

A detailed analysis of the contribution of diesel emissions to current and 

predicted levels of air pollutants in the UK for 1991 has recently been presented 

(QUARG, December 1993). The data in this section and in Table I I summarises the 

1991 information found in that report. 

The diesel contribution of carbon monoxide (CO), sulphur dioxide (S02) and 

volatile organic compounds (VOC) to the total is comparatively minor, and reflects 

both the composition of diesel fuel and the efficiency of the diesel combustion 

process. With respect to black smoke (which is essentially the carbon fraction of 

particulate matter) and NOx it is clear that diesel powered vehicles have become 

significant polluters, contributing 38.6% and 20.6% of the national total respectively. 

In urban environments, the diesel contribution to these pollutants is even more 

pronounced. For example, diesels as a whole were responsible for 86.6% of black 

smoke and 31.6% of NOx emissions in London. At present, in both urban and rural 

areas, heavy goods vehicles (HGVs) are the principle polluters accounting for 

between 70% and 80% of total diesel emissions, whilst passenger cars and light duty 
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vehicles (LDVs) each contribute on average about 7% to 8% of pollutants (Table 

1.1.). 

Table 1.1. Contribution of Diesels to UK National Air Pollutant Emissions, 

1991". 

Diesel contribution % Diesel Contribution % 
Pollutant (all vehicles) 

HGV Cars LGV Buses & coaches 

C02 5.9 71.6 7.4 7.4 13.7 
Black Smoke 38.6 71.7 7.3 6.8 14.1 
CO 2.3 68.3 8.5 8.5 14.6 
so2 1.2 71.7 7.1 7.0 14.2 
voc 6.5 70.5 8.4 8.4 12.7 
NOx 20.6 81.2 1.7 1.6 15.5 

"Adapted from Second Report of the Quality of Urban Air Review Group, December 

1993. 

Future trends in diesel emissions will be affected by a number of factors 

including new legislative limits for exhaust pollutants, the number of new diesel car 

sales and the implementation of exhaust gas "after treatment". The 1993 QUARG 

report assessed these and additional related factors and used this information to 

predict future emissions of NOx, particulates and S02. Diesel contribution of other 

pollutants such as VOC and CO are minor compared to the total UK emissions and 

were not considered in the report. 

NOx emissions arising from road transport have doubled smce 1970. An 

increase in the number of petrol vehicles is largely responsible for the majority of this 

increase. The diesel contribution to NO. decreased in this time from about 60% in 

1970 to 40% at the present. The forecast for NOx emissions predicts a decline to 

1970 levels by the year 2005 as a consequence of new emission limits, before rising 

again owing to increased mileage. The diesel contribution to NOx is predicted to 

become increasingly significant during this time. Since 1970, total black smoke 

emissions have almost halved. However, the relative contribution from road 

transport has increased significantly during this period, and is mainly a consequence 

of diesel emissions of black smoke. The situation is predicted to remain relatively 
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stable into the future, although a slight increase is expected up until 1996 when the 

implementation of more stringent particulate controls are expected to reduce 

emissions. After this period emissions have been predicted to remain relatively 

constant. The diesel contribution to road transport S02 is predicted to drop sharply 

in 1996 with the introduction of a sulphur limit for fuels of 0.05% (see Section 

1.8.3). Emissions ofS02 are then predicted to increase owing to increased mileage. 

1.4 European vehicle emission legislation 

Vehicle emissions legislation was first introduced in the early 1960s in Los 

Angeles as a response to the problem of photochemical smogs. Events in the US 

prompted the United Nations Economic Commission for Europe (UNECE) in the 

late 1960s to establish emission limits for European Countries. UNECE had no 

powers of enforcement and implementation of the regulations in member states was 

voluntary. However, following the incorporation of UNECE regulations into 

European Economic Community (EEC) law, in a series of directives, implementation 

of the regulations became mandatory for all states signatory to the European 

Community (EC) treaty. 

1.4.1 Test procedures 

The current EEC method for testing enuss10ns divides vehicles into two 

categories, light duty vehicles (LDVs) including cars and vans less than 3.5 tonnes in 

weight and heavy goods vehicles (HGVs) greater than 3.5 tonnes in weight. Only 

LDV legislation is considered in this review. Emissions from LDVs are measured on 

a chassis dynamometer, according to the test procedure ECE 15 + Extra Urban 

Driving cycle (EUDC). The ECE 15 test is that originally devised by the UNECE 

and is designed to simulate driving conditions that are encountered in an urban 

driving environment. The EUDC was introduced in 1991 and has been designed to 

include a period of simulated faster driving. 

1.4.2 Light duty vehicle emission standards - Historical development 

A brief summary of the development of emissions standards in Europe is 

presented in this section. For a more detailed review on this subject refer to Dunne, 
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(I993). Emissions legislation in Europe was first introduced in I970 through the 

UNECE in ECE regulation No. I 5 (UNECE, I970, quoted QUARG, 1993). This 

regulation covered only gaseous carbon monoxide (CO) and hydrocarbon (HC) 

emissions from the ECE I 5 drive cycle and applied only to vehicles of less than 3. 5 

tonnes. ECE Regulation No. I 5 was incorporated into EC Directive 70/220/EEC 

(European Community, 1970). 

After 1970, emission limits were progressively tightened in line with 

increasing environmental concerns over the impact of vehicle exhaust emissions. 

Four new regulations were introduced by UNECE and were incorporated directly 

into the corresponding EC directives up to I983: 

ECE RegNo. 15.01 -Directive/74/290/EEC 

ECE RegNo. I5.02 -Directive/77/102/EEC 

ECE RegNo. I 5.03 -Directive/78/665/EEC 

ECE RegNo. I 5.04 -Directive/83/35 I /EEC (introduced limits for NO.) 

In 1985, at the meeting of the Council of Ministers in Luxembourg, a change 

in the legislation was agreed to bring European standards into line with equivalent US 

legislation. Emission limits thus became dependent on engine capacity with three 

categories being defined:> 2L; I.4 to 2L; and <1.4L. The new limits were included 

in the EC directive 88/76/EEC. Subsequent EC directives, 88/436/EEC and 

89/458/EEC retained these categories whilst tightening the emission limits. Directive 

88/436/EEC introduced limits for the emission of diesel particulate matter (PM). 

1.4.3 Light duty vehicles - Current and predicted emission levels 

In I991 all preceding legislation was superseded by the Directive 

9I/441/EEC, (also known as the consolidated emissions directive) The emissions 

limits for passenger cars are summarised in Table 1.2. 
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Table 1.2. Directive 91/441/EEC limits for passenger cars designed for up to 6 

occupants 

CO HC +NO, Particulates 

New Models 
typeapprova1:1.7.92 2.72 0.97 0.14 

roduction conformit : 31.12.92 3.16 1.13* 0.18* 
Test Procedure: ECE Rl5 +the Extra Urban Drivin C cle 

*For DI diesels, production conformity limits for HC + NO, and particulates are 
multiplied by a factor of 1.4 until end December 1994. 

The Commission recently introduced Directive 93/59/EEC for vans which 

establishes emission limits for vans and light duty commercial vehicles below 3.5 

tonnes of similar severity to those for passenger cars. Limit values are specified in 

Table 1.3. The proposed introduction dates were I October 1993 for new vehicles 

and I October 1994 for conformity of production. The directive removed a loophole 

in Directive 91/441/EEC that allowed car-derived vans to comply with less-stringent 

emission limits than the catalyst equipped car itself 

Table 1.3. Proposed emissions limits for light duty vehicles: Directive for Vans 

LIMlT VALUES 
Vehicle Ref mass HC + NO, CO ?articulates 

1250-1700 

1700-

1.4.4 Passenger car emission limits 1995/6 

Directive 91/441/EEC states that further reductions in emission levels for 

passenger cars are to be introduced by 1 January 1996. In a Proposed Council 

Directive, COM (92) 572 Final SYN 448 (23 December 1992), the Motor Vehicles 

Emission Group (MVEG) for the EC have proposed new emission limits (Table 1.4). 
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Objections to the new emissions standards have been raised by some, since it is felt 

that by differentiating between vehicle types, the new emission limits could 

undermine the trend toward simpler, more uniform standards. 

Table 1.4. 1995/96 emission limits for passenger cars (category M*) 

CO HC+NOx Particulates 
(g/Km) (g/Km) (g/K.m) 

Gasoline vehicles 2.2 0.5 -----
Diesels: 

IDI 1.0 0.7 0.08 
DI** 1.0 0.9 0.10 

Type approval: 1.1.1995 
Conformity of Production 1.1.1996 

* Except-vehicles designed to carry more than 6 persons or whose maximum mass 
exceeds 2500Kg. 
**limits for HC + NOx and particulates are valid until 30 September 1999 

1.5 The diesel combustion process 

Diesel combustion operates under the mechanism of compression ignition 

(Cl) in contrast to the petrol engine which is spark-ignition (SI) operated. The 

majority of both types of engine in use at present, operate under a four stroke 

combustion regime. In the four stroke diesel the four stages of the operational cycle 

are: 

1) InJet stroke:- air is inducted into the cylinder 

2) Compression stroke:- the inducted air is compressed to 35-50 atm and is 

heated to 900-1 OOOK 

3) Expansion stroke:- shortly before the end of the compression stroke, fuel is 

injected into the cylinder where it mixes with the hot air and ignites, the increase in 

pressure forces the piston down 

4) Exhaust stroke:- the exhaust gases are forced out of the cylinder by the 

rising piston 

Diesel engines may be classified according to the fuel injection system used. 

In the indirect injection diesel engine (IDI), fuel is injected into a pre-chamber where 

fueVair mixing occurs and initial combustion takes place (Fig 1.2a). The partially 
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oxidised fuel mixture swirls into the main chamber where the combustion process is 

completed. In direct injection diesels (DI), fuel is injected as a fine spray directly into 

the combustion chamber into a bowl in the crown of the piston (Fig 1.2b.). The 

compression ratios in these two types of engine, I 0: I for petrol engines compared to 

18: I for IDI diesels or 22: I for DI diesels reflect the differences in the mechanism of 

combustion. Higher compression ratios are required in diesel combustion to generate 

the higher temperatures necessary to ignite the diesel fuel. 

The second major difference between petrol and diesel engine operation, is 

that diesel engines are able to operate with much wider fuel/air ratios, (e.g 120: I at 

idling to 20: I at full load). This is the principal reason for the versatility of the diesel 

engine particularly with regard to load carrying capacity. Petrol engines are 

restricted to operating within a much narrower range of fueVair mixtures, nominally 

10: I to 20: I, but operating ideally, as close to stoichiometric conditions as possible 

(14 7 1). 

During the diesel combustion cycle two different combustion regimes can be 

identified. A fraction of the fuel injected during the ignition delay period will 

evaporate to form a homogenous mixture and will bum under pre-mixed conditions. 

The remaining fuel injected will bum off the injector tip under diffusion controlled 

combustion (Barbella et al., 1989). Since the majority of diesel fuel is injected after 

ignition, the process of diesel fuel combustion is essentially diffusion controlled (Lida 

et al., 1988). The different physical and chemical processes occurring in these two 

stages are reflected in the emission characteristics. The premixed stage is 

characterised by cleaner and more complete combustion due to the well mixed nature 

of the fuel and oxidant. Fuel oxidation in the diffusion stage is generally less efficient 

owing to the reduced mixing of fuel and air. Particulates are formed predominantly 

during the diffusion burning period as the flame propagates towards the core of the 

fuel spray. Here, local air-fuel ratios will be richer than at the fuel periphery where 

combustion started, leading to incomplete combustion of the fuel and hence 

formation of soot (Fig. 1.3). At the core ofthe flame, the air/fuel ratio, 0, is greater 

than the rich flammability limits for combustion, 0R, and the fuel will not bum 

(Williams et al., 1986). Similarly, at the very edges of the flame front, 0 may be 

below the lean limit of combustion, 0L, and the mixture will be too lean for 
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combustion to take place (Williams et al. , 1986). In the latter case significant 

pyrolysis of the fuel vapour may occur. The combustion of many different fuel types 

have been studied under diffusion and premixed conditions to determine the 

mechanisms of soot formation (Haynes and Wagner, 1981). 

eating-plug 

Injector 

Figure 1.2 a) Indirect injection and b) Direct injection diesel injectors 

10 



combustion of 
fuel vapour 

., 
Too lean to-~­
burn where 

0<0R 

pyrolysis of 
fuel vapour 

~ Spray 
centerline 

Too lean to 
burn where 

~ 0<0L 
fuel 

survival 

~ 

Spray 
centerline 

Figure 1.3. Dlustration of the fuel spray distribution from a direct injection 

diesel showing regions of fuel survival and fuel pyrolysis 

where : 

0 air/fuel ratio 

0 R rich flammability limit for combustion 

0 L lean limit for combustion 

1.6 Diesel exhaust sampling 

Schuetzle (1983) describes two main approaches for the sampling of diesel 

exhaust: direct isokinetic sampling, and sampling once the exhaust gases have passed 
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through a cooling device. Dilution tunnel sampling is the most widely used example 

ofthe former system and is the current method with which regulatory emission levels 

are set and monitored. The aim of the dilution tunnel is to simulate the physical and 

chemjcal processes that effect exhaust gases entering the atmospheric environment 

from the exhaust pipe. The main components ofthe dilution tunnel system are shown 

in Figure 1.4. Exhaust gases are passed directly into a large tunnel where they are 

diluted with a known volume of filtered air of constant humidity and temperature. 

The exhaust is sampled by drawing the gases through a weighed glass fibre filter to 

trap out any particulate matter. 

INTAKE DILUENT AIR 

FILTER 

AIR CONDITIONER /DEHUMIDIFIER 

HEATER 

GAS SAMPLE 
TO BAGS 8 _..­
ANALYZING 
EQUIPMENT 

# <(..;s 

HOLDER -<-0 

VENT 

t 
t 

ISOKINETIC FLOW-MEASURING 
SAMPLING ORIFICE 
PROBE 

Figure 1.4 Construction of a standard dilution tunnel exhaust sampling system 

Volatile hydrocarbons not adsorbed to particulate material in the exhaust, are 

routinely collected on traps containing organic polymeric adsorbent resins such as 

XAD2 and Chromosorb 102 (Schuetzle 1983, Williams et al. 1985). XAD2 has been 

recommended by Schuetzle because of its chemical inertness to nitrogen oxides. 

Nelson (1989) reported collecting polycyclic aromatic hydrocarbons (P AH) of up to 

4 rings on a XAD2 resin trap maintained at 40-50°C. Williams (1985) also reported 
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that up to SO% of P AH containing four fused rings are in the vapour phase at diesel 

exhaust temperatures. These results illustrate the need for the use of resin traps in 

conjunction with dilution systems for the collection of P AH from diesel exhaust. A 

significant underestimation of the emission of these compounds may otherwise occur. 

Filter sampling methods have been criticised because of the possibilities that 

exist for artifact formation. Sampling artifacts result from an extended exposure of 

the sample collected on the filter to hot reactive exhaust gases such as NO, and 

ozone (03). The formation of artifacts may results in an underestimation of the 

emission rate of P AH. Pitts et al. ( 1978) were the first to identify sampling artifacts 

in diesel exhaust. Research by Beckman et al. ( 1989) demonstrated that the 

conversion of pyrene to nitro-pyrene increase with the length of time that the filter 

paper was exposed to the exhaust flow. 

The second approach, described by Schuetzle (1983), involves the sampling 

of exhaust after it has been passed through a cooling system such as that used by 

Grimmer ( 1973). In this system the raw exhaust is drawn through a condenser before 

the cooled exhaust gases pass through a filter for particulate collection. Several 

condensation sampling systems have been reported in the literature (Kraft and Lies 

1981 ). 

Other methods of exhaust gas sampling have been reported. Chan et al. 

(1981) used electrostatic precipitators to sample diesel exhaust. Stenburg et al. 

( 1983) developed a cryogradient system in combination with traditional filter 

sampling. Kruzel et al. ( 1991) sampled diesel exhaust gases close to the exhaust port 

using large vats of dichloromethane solvent. The exhaust was passed through three 

vats arranged in series cooled with water, C02 and liquid nitrogen respectively. The 

exhaust sample was concentrated after sampling by removing the dichloromethane 

(DCM) solvent using a Kuderna-Dumish apparatus. 

This research has utilised a novel exhaust gas sampling device, Total Exhaust 

Solvent Stripping Apparatus (TESSA). The TESSA has been designed specifically 

for the analysis of organic species in automobile exhaust gases. The system consists 

of a stainless steel tower through which the exhaust gases are directed. A 

downwards counter-current flow of solvent strips organic species from the exhaust. 

The construction and mode of operation of the TESSA system is outlined in more 
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detail in Section 2.2. The TESSA system has been shown to collect volatile exhaust 

HCs more efficiently than conventional dilution tunnel methods without adsorbent 

traps (Trier et al., 1988). This is essential if diesel exhaust is to be characterised 

accurately with respect to hydrocarbon emissions. 

1. 7 The nature of diesel exhaust emissions 

Individual components of diesel exhaust emissions can be classified according 

to whether they are present in the exhaust as either gaseous, vapour phase or 

particulate emissions. The principal gaseous compounds present in diesel exhaust are 

C02, CO, NOx, and S02. The major vapour phase component of diesel exhaust is 

water vapour which can react with gaseous oxides of nitrogen and sulphur in the 

exhaust to form nitric and sulphuric acids. Many unbumed hydrocarbons (UHCs) are 

also present in the vapour phase at the elevated temperatures encountered in diesel 

exhaust emissions. Particulate emissions from diesels are a complex mixture of 

organic and inorganic components. 

The following sections discusses the origin and chemical composition of these 

NO,, S02, UHCs and particulates in detail. The origin of S02 in the emissions is 

discussed in conjunction with the formation of sulphate in Section I. 7.3.1. 

1.7.1 Unburned hydrocarbons 

The term 'hydrocarbons" is a general one which includes a wide range of 

organic pollutants that are primarily the result of incomplete combustion of 

hydrocarbons present in diesel fuel and lubricating oil Many hydrocarbons are 

sufficiently volatile to exist in a gaseous state at diesel exhaust temperatures. In the 

absence of sufficient particulate matter to bind with, P AH with up to four fused rings 

are present in the vapour phase of diesel exhaust in significant (Lane, 1989). Straight 

chain n-alkanes up to C18 are also present in the vapour phase in diesel exhaust as are 

nitrated and oxygenated derivatives of Cw-C12 hydrocarbons and two and three 

ringed P AH (IARC, 1989). Many hundreds of individual hydrocarbons have been 

identified in diesel exhaust Schuetzle, 1983; Nelson, 1989; Rogge et al., 1993). 

These include aliphatic and aromatic hydrocarbons, that are present in diesel fuel and 

lubricating oil, and that have passed through the engine chemically unchanged, or that 
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have undergone partial oxidation to produce oxidized products such as aliphatic and 

aromatic ketones, quinones, aldehydes, carboxylic acids and nitro derivatives and 

many more (Schuetzle, 1983; Tong et al., 1984b). 

1. 7.2 Nitrogen oxides (NO,) 

The term 'NO;' is a general one and refers to the oxides of nitrogen; nitric 

oxide (NO), nitrous oxide (N20) and nitrogen dioxide (N02). NO is the primary 

oxide of nitrogen formed in combustion systems. NO is readily oxidised either during 

combustion or in the atmospheric environment to N02. NO in diesel exhaust may be 

formed from atmospheric nitrogen as thermal NO (Fig. 1.5), or from fuel bound 

nitrogen as 'prompt NO" (Fig. 1. 6) (Pourkashani, 1992). The formation of thermal 

NO from molecular nitrogen is highly temperature dependent, and occurs only at 

temperatures greater than 1800K. At lower temperatures insufficient energy exists to 

break the N2 triple bond and fix the nitrogen (bond dissociation energy 945kJ/mol; 

Handbook of Chemistry and Physics, 1992/3 ). The formation of thermal NO is also 

dependent on the oxygen concentration, increasing with greater 0 2 partial pressures. 

N"+ NO 

o·+ NO 

H +NO 

Figure 1.5 Formation of thermal NO 

Prompt NO can be formed in significant quantities m some combustion 

environments in low temperature, fuel rich conditions and short residence times. In 

this case breakage of the N 2 triple bond to yield reactive N atoms is catalysed by 

species resulting from fuel fragmentation e.g. CH, CH2, C2H etc.: 
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CH"+ N2 HCN + N" 

HCN +OH CN + H20 

CN + 0 2 NO+ CO 

N"+ 0 2 NO+ o· 

Figure 1.6 Formation of "prompt" NO 

The formation of 'prompt" NO from nitrogen-containing organic compounds 

m the fuel is significant during diesel fuel combustion. Carbazole and its alkyl 

derivatives are the major nitrogen containing compounds present in diesel fuel 

( = 1 SOppm total, Williams et al. 1986). The extent of conversion of fuel-bound 

nitrogen to NO is dependent on the local combustion characteristics and the initial 

concentration of nitrogen bound compounds. The thermal decomposition of these 

compounds yields radicals such as HCN, N, eN·, and NH which may undergo 

oxidation along reaction pathways similar to those for the formation of prompt NO 

(Pourkashani, 1992). 

1.7.3 Diesel particulate composition 

Diesel particulate matter has been defined by the EP A as any diesel exhaust 

effluent collected on a binderless glass filter in a dilution tunnel at temperatures below 

12S"F (52°C). The composition of a typical diesel exhaust particulate from DI and 

IDI light duty diesels are shown in Fig.!. 5 (Ketcher and Morris, 1991 ). Diesel 

particulates typically contain three distinct components. These are unbumed and 

partially burned fuel and lubricating oil components which constitute the solvent 

soluble organic fraction (SOF) of the particulate matter, an insoluble fraction of 

which soot is the major component, and sulphate and bound water. The contribution 

of each fraction to the total mass of the particulate matter varies greatly according to 

engine design and operating conditions. The contribution from the insoluble 

component of the particulate matter (i.e. soot) is generally greatest at high load 

where low air fuel ratios and high temperatures cause a greater conversion of fuel 
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carbon to elemental carbon (Kittelson, 1986). The contributions made by the SOF is 

generally more significant at low loads where combustion efficiencies are reduced 

due to the lower temperatures and factors such as poor fuel atomisation and fueVair 

mixing and a greater proportion of the fuel survives (Hunter et al. 1989). The 

contribution of sulphate and bound water to the particulate is determined by the 

sulphur content of the fuel. Oxidation catalysts can increase the contribution of 

sulphate to the particulates (see Section I. 7.3). 

I. 7 .3.1 Sulphate 

Diesel fuels currently contain 0.1-0.2% sulphur by weight, with the maximum 

permissible sulphur content at present being 0.2% in accordance with EEC Directive 

93/12/EEC. During combustion the organic sulphur is degraded by radicals such as 

H2S, HS, S or S2 and then oxidised via the SO radical to S02. Conversion of fuel 

sulphur to S02 is essentially quantitative. A small fraction of the S02 may be 

oxidised further to S03: 

so2 + 0 2 so3 + o · 
The reaction is exotherrnic and the equilibrium favours the formation of S03 at flame 

temperatures. Oxidation of S02 to S03 can take place homogeneously in the gas 

phase or heterogeneously on particulate surfaces. The main reaction responsible for 

homogenous oxidation is thought to be: 

so2 + o· +M 

so3 can combine with water vapour in the exhaust gases to form sulphuric acid 

vapour which can condense on the particulate as sulphate and add to the mass of the 

particulate. The mass of sulphuric acid is a factor of 3 larger than that of sulphur 

alone, and even small rates of conversions can result in a significant particulate mass. 

Most oxidation takes place in the gas phase with a small contribution from oxidation 

on the soot particles (Ciarke, 1992). 
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The influence of fuel sulphur to particulate emissiOns is well understood 

(Baranescu, 1988; Stradling et al., 1993). For all engine types the contribution of 

fuel sulphur to particulate sulphate and associated bound water is linearly dependent 

on the fuel sulphur content with typical conversion factors of between 1% and 3% 

(Ciarke, 1992; Stradling et al., 1993). For diesel vehicles fitted with oxidation 

catalysts the rate and efficiency of the conversion of S02 in the exhaust stream to 

sulphate can be greatly increased and can add substantially to the mass of the 

particulate (Naber et al., 1993; Brear et a/, 1992). Oxidation catalysts with improved 

selectivity are being developed (Floysand et a/, 1993). In an attempt to help the 

development of catalyst technology a reduction in fuel sulphur content to 0.05% by 

mass has been specified (EEC Directive 93/12/EEC). Reductions of fuel sulphur 

content from 0.15% to 0.05% have been shown to reduce the mass of the particulate 

from a diesel passenger car by 15% (Naber et al., 1993) although other workers have 

claimed a reduction of only 2.3% for a similar decrease in fuel sulphur content (Betts 

eta/., 1992). 

1.7.3.2 Insolubles (soot) 

The occurrence of soot m exhaust effluents is a consequence of the 

incomplete combustion and reduction of the hydrocarbon fuel and occurs in almost 

all combustion systems. In diesel engine combustion, soot is derived predominantly 

from pyrolysis of diesel fuel hydrocarbons. There is a small, but significant 

contribution, from lubricating oil hydrocarbons (Essig et al., 1990). Essig et al. 

(1990) estimated the lube oil contribution to the carbon fraction of the particulate to 

be between IS% and 20%. Individual fuels have different tendencies to form soot. 

The molecular structure of the fuels is an important parameter determining the 

amount and rate of soot formation. Others include the fuel/oxidant ratio, the gas 

temperature and the pressure. This sooting ability is often expressed in terms of a 

critical sooting equivalence ratio (<!>c). 

The sooting tendency of aromatic fuels is greater than that of aliphatic fuels 

(Olsen and Pickens, 1984). Aromatic molecules are essential intermediates in the 

formation of soot, largely owing to the ability of the aromatic structure to stabilise 

intermediate species (Pradho and Lahaye, 1983). The thermodynamic stability of 
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P AH enables them to survive the high temperatures associated with diesel 

combustion. The degree of stabilisation increases with the size of the conjugated 

system (Stein, 1985). In aliphatic fuels, the initial aromatic structures have to be 

synthesised from non-aromatic precursors. In this situation, the rate of formation of 

P AH will determine the rate at which the soot nuclei are produced which in turn 

controls the mass emission rate of soot. Olsen and Pickens (1984) assigned 

numerical rankings to the sooting tendencies of individual molecules: 

acetylene 0; alkenes 25-26; isoalkanes 61-70; n-alkanes 34-76 

alkylbenzenes 83-91; naphthalenes 100. 

The high ranking of naphthalene is a result of the ease of formation of the 

naphthalene radical by the facile abstraction of a hydrogen. The naphthalene radical 

has been identified as a key intermediate in the growth of soot nuclei (see Fig. 1.11 ). 

1-methylnaphthalene has been reported as one of the most prolific sooting 

compounds (Giassman, 1988), presumably for similar reasons. Nelson (1989) has 

identified several of the suggested key intermediate species in the growth of large 

polyaromatic species (e.g. styrene, phenylacetylene) in diesel exhaust emissions 

collected on an XAD2 resin trap. 

The actual process of soot particle formation as described by Haynes and 

Wagner (1983), consists of two more or less separate stages: 

a. nucleation/particle inception 

b. growth and agglomeration 

The first stage in soot production, nucleation, involves the conversion of neutral fuel 

molecules containing only a few carbon atoms into small nuclei containing many 

hundreds of carbon atoms. The nuclei are aromatic in nature and it is generally 

agreed that condensed polycyclic aromatic compounds are the main constituents of 

these particles (Lam, 1988). The early particles may have diameters as small as 2nm 

(Haynes and Wagner, 1981) and have a greatly increased carbon/hydrogen ratio (C/H 

ratio) of around 10, compared to a C/H ratio in the fuel of 0.3-0.5 (Cullis, 1986). 

The C/H ratio continues to increase as the nuclei dehydrogenate (age) in the high 

temperature flame. The carbon nuclei formed in the nucleation stage have highly 
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reactive surfaces and readily capture hydrocarbons in the gas-phase by physical and 

chemical means. This is the growth stage in the formation of soot particles. In the 

later stages of soot formation, particles agglomerate to form soot. 

1. 7.3.3 The solvent organic fraction of diesel exhaust particulates 

The solvent organic fraction of diesel exhaust particulates comprises mainly 

unbumed and partially oxidised fuel and lubricating oil components. The 

contribution from the two sources is influenced by engine conditions, especially with 

respect to load. The fuel contribution to the SOF is greatest at low power where 

factors such as poor fuel atomisation lowers the combustion efficiency (Andrews, 

1993 ). Lube oil contribution is greatest at low load and high speeds where oil 

consumption is high but in-cylinder temperatures are insufficient to completely 

oxidise the oil (Essig et al., 1990). Cartillieri and Tritthart (1984) investigated a 

range of diesel engines and found the lubricating oil contribution to the SOF to vary 

between 19% and 88%, whilst Hilden and Mayer (1984) found the contribution to 

vary between 30% and 50%. Most lube oil escapes to the cylinder through the ring 

gap, but contributions from leakage around the ring groove and between the ring and 

the liner can also be significant (Wong and Hoult, 1991; Essig et a/, 1990; Milazo 

and Bidini, 1992). A small amount of oil may also enter the combustion chamber 

down the valve stems (Deuring, 1981 ). 

A number of analytical techniques have been developed to estimate the SOF 

of diesel particulate Traditionally, soxhlet extraction with solvent has been used to 

determine the composition of particulate material and remains the standard test 

against which other methods are compared. Cuthbertson et al. (1987) developed a 

method using gas chromatography (GC) with solid sample injection. In this method, 

a portion of the filter paper was inserted into the injector port of the GC and the 

temperature of the injector was raised isocratically. Hydrocarbons were thermally 

desorbed from the filter and separated on the GC column. A cut-off temperature was 

specified in order to distinguish between lubricating oil and fuel derived 

hydrocarbons. Halsall et al. (1987) used a purged vacuum oven sublimation 

technique. The SOF is determined by placing the weighed filter in an oven which is 

evacuated and heated to about 200°C for eight hours. The filter is then reweighed 
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and the weight loss is a measure of the SOF of the particulate. Thermogravimetric 

analysis (TGA) has in recent years become widely used for SOF determination 

(Abass et al., 1991). In TGA analysis the filter is placed in the TGA and heated to 

550°C in an inert atmosphere. The weight loss is the mass of the SOF of the 

particulate. Once the mass of the SOF is known air is allowed into the TGA and the 

residual carbon is oxidised, the loss in weight representing the carbon content of the 

particulate. TGA enables analysis of the continuous weight loss of the sample and 

has been used to determine the contribution of fuel and lubricating oil to the SOF 

(Abasseta/.1991). 

1.8 Factors affecting diesel exhaust emissions 

A wide variety of factors influence the amount and composition of the 

emissions from diesel powered vehicles. Of these, engine design and technology has 

the greatest influence on the emission characteristics for a given vehicle. More 

recently, however, it has been demonstrated that fuel quality may also have a 

significant influence on the emissions from modem diesels. 

1.8.1 Engine design and technology 

To date, the process of lowering diesel emissions in step with ever tightening 

emission legislation has largely been achieved through improvements in engine design 

and technology. Continued advances in this field will remain central to the effort to 

comply with future emissions legislation. The primary concerns regarding diesel 

exhaust emissions are with respect to NOx and particulate emissions. A fundamental 

trade-off exists with respect to these pollutants in diesel combustion and the 

challenge to the engine designer is to develop engine technologies which 

simultaneously reduce emissions of both pollutants. 

NO formation occurs predominantly in the lean flame reg10n during the 

premixed phase of combustion, where both flame temperatures and local oxygen 

concentrations are high (Fig. 1.8). Particulates on the other hand are formed 

predominantly during the diffusion burning period. Actions designed to reduce NOx, 

lower the proportion of pre-mixed combustion, and consequently have the effect of 

increasing the diffusion burning period thereby increasing particulate formation and 
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vice versa. Technologies such as turbocharging and high pressure fuel injection can, 

by careful calibration, improve this fundamental trade-off with minimum loss of fuel 

economy (Lida et al., 1988; Horrocks, 1993). 
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Figure 1.6 Flame temperature distribution during the diesel combustion cycle 

Turbocharging has been reported to offer the best compromise in emissions 

reduction, (QUARG 1993) and has the added advantage of increasing the specific 

power output of the engine. The major contribution of the turbocharger is to reduce 

emissions of incomplete products of combustion. This is owing to the increased 

charge of air supplied by the turbocharger which facilitates a more complete 

oxidation of fuel hydrocarbons and particulates (Hunter et al. , 1989). A greater 

oxygen concentration also reduces the ignition delay period with turbocharged 

combustion. This lowers the amount of fuel injected before ignition which reduces 

the initial spike of heat release during the pre-mixed combustion phase. The lower 

temperatures counteract the effect of increased oxygen in the cylinder and the 

formation ofNOx is controlled. 

Turbocharging, whilst advantageous from the point of view of reducing 

exhaust emissions and improving fuel consumption, has the disadvantage of reducing 

torque at low engine speeds and can also lessen engine response. For this and other 

23 



reasons, naturally aspirated engines are likely to remain in demand for the time being 

(Shundoh et al., 1992). Technologies designed to reduce emissions from naturally 

aspirated diesels are also required to meet new emission limits. The main advances in 

this field in recent years have been in the development of new fuel injection systems 

and in combustion chamber design. 

In DI diesels, a steady trend towards increasing fuel injection pressures has 

occurred. Diesel injectors designed to operate at higher pressures have been shown 

to reduce particulate emissions (Kato et al. 1989, Shundoh et al., 1992). The 

primary effect of increasing fuel injection pressures is to enhance fuel atomisation and 

air entrainment in the fuel spray during the diffusion stage of combustion which 

improves fuel/air mixing. As with turbocharging, high pressure injection increases 

the initial combustion temperatures through the rapid compression of burned gases 

(Kobayashi et al. 1992). Higher flame temperatures improve the oxidation of 

hydrocarbons and particulates and these effects are manifest in a decrease m 

emissions of products of incomplete combustion. Recent research has shown that 

reductions in particulate emissions, through high pressure fuel injection, have not 

increased the emission ofNO. (Shundoh et al., 1992). 

The actual design of the injector in terms of the number of injector holes, 

spray direction and composition has been shown to have a major impact on the 

emission characteristics (Van Gerpen et al., 1985; Corcione et al., 1991). 

Centralised fuel injection in DI diesels has been reported to reduce emissions of NO. 

by virtue of lowering swirl, and hence air-fuel mixing, during the prernixed burning 

phase (Horrocks, 1993). Conversely, high swirl is desirable in the later stages of 

combustion to control HC and particulate emissions, although too large an induced 

swirl effect may create overlean conditions thereby increasing HC emissions (Van 

Gerpen et al. 1985). Konno et al. (1992) reported the use of an auxiliary combustion 

chamber into which fuel was injected during the main period of combustion. The flow 

of gases from this chamber into the main chamber created strong turbulence in the 

main stage of combustion. The authors reported a significant reduction in HC and 

particulates without an increase in NO •. 

Despite the advances that have been made, the NOxfparticulate trade-off 

remains and reductions in particulate emissions gained through technologies such as 
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turbocharging and high pressure fuel injectors, are generally paid for at the expense 

of small increases in NOx emissions. Technologies aimed at improving combustion 

efficiency may, however, be used to offset the detrimental effect of introducing 

technologies aimed specifically at reducing NO. emissions, such as retarded injection 

timing and exhaust gas recirculation (EGR). EGR involves directing a proportion of 

the exhaust gases back into the manifold of the combustion chamber. The reduced 

supply of oxygen lowers the rate of formation of NO. in the cylinder. 'Hot EGR' 

where the temperature of the recirculated gases is kept at a high level has been shown 

to simultaneously reduce NO, and particulate and HC emissions (Dumholz et al., 

1992). Similarly, retarded injection timing can be used to control NO.. This has the 

effect of reducing the amount of fuel burned under pre-mixed conditions and lowers 

peak flame temperatures that occur at this stage of the combustion cycle thereby 

reducing NO. emissions (Lid a et al., 1988). 

Engine management is a comparatively new technology that offers great 

potential for reducing emissions. Traditionally, comparatively expensive engine 

management technologies have not been fitted to small diesel vehicles since the profit 

margin on these engines is smaller relative to the larger diesel engines. In order to 

meet the new legislative limits however, engine management systems are increasingly 

being fitted to smaller diesel engines. Engine management has enabled precise 

control over the supply of fuel to the cylinder to optimise the air/fuel ratio for the 

cleanest combustion at specific engine conditions. The rate of EGR can also be 

controlled in this way to optimise the trade-off between emissions of incomplete 

products of combustion and NO •. 

1.8.2 Exhaust gas after-treatment 

Many manufacturers are turning to exhaust after treatment systems in an 

effort to break the NO.Iparticulate trade-off which is necessary to comply with future 

emission limits. Three-way catalysts cannot be fitted to diesels vehicles since they 

require near to stoichiometric conditions to operate. Instead, attention has focused 

on the use of oxidation catalysts and particulate traps. Through-flow oxidation 

catalysts reduce emissions of unbumed hydrocarbons(UHC), CO and particulate 

emissions by oxidation of adsorbed organics, and are the preferred exhaust after-
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treatment for LDVs in Europe (Beckmann, 1992; cited by Zelenka and Herzog, 

1993). Emissions of P AH have been reported to decrease with the use of flow­

through catalysts (Andrews et al., 1987). Oxidation catalysts have no effect on the 

carbonaceous centre of the particulate since this requires high temperatures for 

complete oxidation of the carbon to occur (550°C without a catalyst; Davies et al, 

1993). The use of catalysts reduces the temperature required to fully oxidise UHC 

and CO and thus improves performance at low exhaust temperatures. Oxidation of 

S02 to sulphate can be an undesirable side-effect of the catalytic activity. The 

development of selective catalysts has been shown to overcome this problem (Davies 

et al., 1993; Brear et al., 1992). 

Where control of diesel particulates is required the use of particulate traps is 

necessary. Diesel particulate traps are desirable from the position of allowing 

increased rates of EGR (so-called "clean EGR"). This offers benefits in terms of 

reduced engine wear over time and improved NOx emission rates. Regeneration of 

the particulate traps at low exhaust temperatures has proved a major hurdle in their 

development. Various solutions to this problem have been proposed including 

external heating sources and addition of catalysts to the fuel. 

Recent research has also focused on the catalytic reduction ofNOx emissions. 

Diesel combustion operates with an excess of air hence the necessity associated with 

this development is to achieve NOx reduction in a net oxidising environment. The 

use ofUHC present in diesel exhaust in conjunction with a suitable catalyst offers an 

elegant solution (Engler et al., 1993; Konno et al., 1992). However, UHC emissions 

from modem diesels are low and it may be necessary to intentionally increase their 

emission to achieve the necessary reduction ofNOx. 

1.8.3 The effect of diesel fuel quality on diesel exhaust emissions 

Diesel fuel quality has until recent years had comparatively little effect on the 

overall emissions from diesel vehicles. With the development of new ultra-low 

emitting diesel engines however, the relative contribution to the emissions from the 

diesel fuel itself will become proportionately greater. Consequently, efforts are being 

made to develop 'clean diesel fuels' that will contribute less to diesel emissions. 
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Diesel fuel quality can be specified according to a number of physical and 

chemical properties of the fuel. With regard to exhaust emissions, the principal fuel 

qualities of interest are density, cetane number, volatility, aromatics content, sulphur 

content and viscosity. At present no single standard governs the quality of diesel fuel 

in the EC with the exception of sulphur content. Sulphur contributes directly to the 

mass of the diesel particulate (see Section 1.6.3.1.) and has been limited to 0.3% by 

weight since 1975 (EC Directive 75/716/EEC). In order to comply with the more 

recent limits on particulate emissions, the sulphur content of diesel fuel must be 

reduced to 0.2% by weight by I October 1994 and 0.05% by 1 October 1996. In 

Britain specifications for automotive diesel fuel are set in British Standard, BS 2869: 

Part 1: 1988 (British Standards Institution, 1988). This standard is not legally 

enforceable. The European Committee for Standardisation (CEN) has developed a 

standard diesel fuel specification for introduction in 1996. 

The influence of diesel fuel properties on exhaust enuss10ns has been 

investigated by a number of workers (Tritthart et al., 1993; Floysand et al., 1993; 

Naber et al., 1993; Betts et a!,. 1992). Tritthart et al. (1993) tested advanced DI and 

IDI diesel engines equipped with oxidation catalyst, EGR, turbocharging and 

intercooling, on several commercially available fuels and over European, American 

and Japanese test cycles (FTP 75, FTP 72 hot; ECE IS+ EUDC cold & hot; Japan 

10.15 hot). Their results show that individual fuel parameters can have significant 

effects on the overall emission rates from advanced diesel engines. In general the Dl 

engine had greater emissions of HC, CO and NO. than the IDI diesel engine. The 

trend was not as prominent for total particulates. Increases in both the aromatic 

content and density of the fuel caused an increase in total particulates and gaseous 

emissions of CO and HC in both engines. The trend was more noticeable for the IDI 

engine. Emissions of HC and NO. for both DI and IDI engines were found to 

decrease with an increase in the fuel cetane number. Above a certain cetane number 

however, the particulate emissions from the DI engine began to increase because of a 

decrease in the period oflean pre-mixed burning in the combustion chamber. Due to 

the complex intercorrelation of fuel properties, these authors were unable to relate 

the emissions trends to any single fuel parameter. They concluded that fuels with 

cetane number >53 and density<0.835 would be advantageous in reducing emissions, 
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although too high a cetane number could detrimentally affect the emissions from DI 

diesels. 

In order to investigate the effects of individual fuel parameters on diesel 

emissions, various workers have attempted to break the correlation between 

individual fuel properties. Betts et al. (1992) using an IDI passenger car fitted with 

EGR investigated the emissions from a series of 37 fuels specifically designed to 

decorrelate the influence of cetane number, aromatics content and density, and also 

of sulphur content by doping fuels with tertiary butyl disulphide. The authors 

concluded that density was the key property influencing the emissions of particulates. 

They ascribed the influence of density on emissions to an overfuelling effect causing 

instantaneous lower air/fuel ratios and hence less complete combustion. Cetane 

number and aromatics content had a statistically insignificant effect on particulate 

enuss10n. Sulphur content was found to have a minor influence on particulate 

emissions. A decrease in sulphur content from 0.2% to 0.05% reduced particulate 

emissions by only 2.3%. In later tests, on the same car fitted with an oxidation 

catalyst (Fioysand et al. 1993), similar fuel effects on emissions were demonstrated. 

However, fuel effects had much less of an effect in reducing emissions than the 

catalyst itself Total emissions of HC's, CO and particulates were reduced 

considerably by the catalyst (59-77%, 81-95% and 23-54% respectively). 

Until recently, total aromatic content was considered to be a major factor in 

influencing particulate emissions from diesel engines, largely because of the role of 

aromatic species as precursors in soot formation. More recently it as been suggested 

that higher soot emission rates, previously attributed to aromatic content of fuels, 

could equally well be explained in terms of the density of those fuels. However, total 

aromatic content may be the wrong parameter with which to assess the effect of 

aromatic species in the fuel on particulate emissions (Floysand et al., 1993; Naber et 

al., 1993). The polyaromatic content of a fuel may be a more informative measure. 

There is a high correlation between density and polyaromatic content, hence the 

overfuelling phenomenon proposed (Stradling et al., 1993), may be in part, owing to 

a sudden increase in the polyaromatic species in the combustion chamber. Naber et 

al. (1993) also attempted to decorrelate diesel fuel parameters to study the individual 

effects of fuel parameters on particulate and NO. emissions. The study was 
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performed on a modem IDI passenger car diesel equipped with EGR and an 

oxidation catalyst. The authors concluded that the main factors influencing emissions 

were fuel density and sulphur content in agreement with other workers (Betts et al. 

1992; Floysand et al., 1993}. The authors also found that the variation in total 

particulates was dependent on polyaromatics content, with an increase in the 

polyaromatic content leading to an increase in the mass of the particulate. No 

distinction was made between the influence of di and tri-aromatics in this study. 

Mono-aromatics were found not to influence the particulate matter content of the 

exhaust emissions. 

1.8 4 Future diesel fuel requirements 

Fuel manufacturers will be hard pressed to produce diesel fuel at the refinery 

which can conform to increasingly stringent specifications. Whilst the quality of the 

refineries pool of diesel fuel will decrease in the future, the demand for diesel fuel is 

likely to continue to increase (Hutcheson and Van Passen, 1990; Lindsay et al., 1992; 

Rivers et al., 1993). The contradiction between the requirement, and the available 

oil, will almost certainly require an increased catalytic cracking, hydrogenation and 

desulphurization capacity on the part of the fuel producers. This however, has 

environmental implications in terms of additional energy consumption which equates 

with C02 emissions. In addition, diesel fuels that have undergone such treatments 

have been reported to be less stable (Batts and Fathoni, 1991}. The effects of certain 

fuel parameters on diesel emissions is not yet proved (i.e. diesel aromatics). 

Specifying diesel fuel quality with respect to parameters, which have not been shown 

to reduce emissions, may simply waste resources and energy. Even so, certain 

countries e.g. Sweden and California have introduced specifications for PAH and 

aromatic content of fuels (Table 1.5). 
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Table 1.5. Advanced Diesel Fuel Quality Standards 

Property/Specification CARB* CEN** Sweden 
1993 1996 Class 1 Class 2 Class 3 

Sulphur content, (wt %max) 0.05 0.05 0.001 0.005 0.300 
Aromatics, (vol % max) 10 ........ 5 20 ----
PAH, (vol% max) 1.40 ---- 0.02 0.10 ----
Cetane number (min) 48 49 50 47 ----
Cetane index, (min) 40 46 ---- ---- ----
Density, (kg/mJ) at I5°C 830-860 820-860 800-820 800-820 800-860 
ffiP °C (min) 170 ---- 180 180 180(10%) 
95% b.pt. (°C max) 320 (90%) 370 285 295 340-370 
* Reference fuel **Proposed 
CARB: California Air Resources Board; CEN: European Committee for Standardisation 

1.9 Health effects of diesel exhaust emissions 

The health effects of diesel exhaust have been the focus of much research 

during the last decade since the original findings that diesel exhaust emissions were 

potentially mutagenic (Huisingh, 1978). In 1989, diesel engine exhaust was officially 

classified as a probable human carcinogen (IARC). 

1.9 1 Health effects of diesel particulates 

The main perceived risk associated with diesel emissions in the last decade 

has been the role of diesel exhaust particulate matter in causing pulmonary cancers. 

Whilst diesel emissions of noxious gasses such as N02 and S02 are a cause for 

concern especially for more susceptible individuals such as asthmatics, their effects 

tend to be short-term and reversible as opposed to diesel particulates which may 

persist in the lungs of victims. 

Diesel exhaust particulates are readily inhaled owing to their small size (O.l-

0.31J-m diameter) and deposited in the unciliated regions of the lung, (Scheepers and 

Bos, 1992). Evidence from animal studies performed during the 1980's served to 

emphasise the risk to humans from diesel exhaust particulates. Recent reviews on 

older research however, has cast doubt on some of the assertions made in earlier 

studies. 

Kotin et al. (1954) was the first to demonstrate the potential carcinogenicity 

of diesel exhaust particulates when he found that mice developed skin tumours in 

epicutaneous tests with both gasoline and diesel exhaust condensates. During the last 
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decade the potential carcinogenicity of diesel exhaust has been confirmed in several 

studies, using experimental animals (e.g. Mauderly et al., 1986; Ishinishi et al. 1986). 

The carcinogenicity of diesel particulate matter has largely been attributed to the 

presence of organic species adsorbed to the surface of the particulate. This includes 

PAH's, some of which are known human carcinogens (e.g. benzo[a]pyrene and 

indeno[c,d]pyrene), and nitroarenes (e.g. 1-nitropyrene). More recently the validity 

of the experimental data presented in animal experiments has been questioned 

(Stober, 1992; Gerde et al., 1991). The high concentrations that these animals were 

subjected to are in excess of that which workers with even a high occupational 

exposure to diesel exhaust would normally encounter. In addition, significant tumour 

rates were encountered only in animals with a high particulate burden in the lung. 

Recent research has shown that the induction rate of lung tumours in rats from pure 

carbon (carbon black) is at least as great as that for diesel soot (Heinrich et al., 1990; 

Nikula et al. 1993). This, and similar evidence, has led the scientific community to 

recognise that genotoxic species, associated with diesel exhaust particulates, in 

causing cancers, is linked to the nature of the particulate, the burden in the lung and 

the rate and mechanism of clearance of the particle (Scheepers and Bos, 1992; Gerde 

et al. 1991 ). Synergistic effects with gaseous exhaust effluents has also been 

suggested (Scheepers and Bos, 1992). Whilst the evidence for the carcinogenic 

effect of diesel exhaust particulates has recently been questioned, equally recent 

research has concluded that air particulate matter from all sources, of less than 1 OJ.Lm 

in diameter (termed PM10), may be associated with increased mortality (Pope et al., 

1992). In view of the fact that diesel exhaust particulate matter makes a substantial 

contribution to the total atmospheric particulate burden, particularly in urban areas 

(QUARG, 1993), the effect of diesel particulates on public health remains a 

considerable cause for concern. 

1.9.2 Epidemiological evidence 

Epidemiological data from many studies performed during the last decade 

have been used to evaluate the risk posed by diesel exhaust to humans. To date 

epidemiological evidence has proved inconclusive in evaluating this risk. In part this 

has been due to the difficulty in identifying populations that have received sufficient 
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exposure to diesel exhaust to warrant study, despite the fact that diesel engines have 

been in use for many decades. In addition, contributing factors to the incidence of 

cancer such as smoking and exposure to asbestos, are difficult to remove from the 

equation in order to derive meaningful results. Stober ( 1992) has stated that, 'the 

epidemiological tool is too coarse to find a reliable small effect caused by diesel 

exhaust." 

Garshick et al. ( 1987 and 1988) in a case-study of railroad workers 

occupationally exposed to diesel exhaust, claimed an increased risk of lung cancer of 

41% for workers exposed to diesel exhaust relative to low risk, non-exposed 

workers. Hansen, ( 1993) observed an increased mortality in truck drivers from 

respiratory cancer and multiple myloma, relative to other unskilled male labourers 

and concluded that exposure to diesel exhaust contributed to the increased lung 

cancer risk. Emmelin et al. (1993) in a case-study of dockyard workers also 

concluded that diesel exhaust increased the risk of lung cancer in these workers. The 

effect was independent of smoking habits. In contrast, Guillemin et al. ( 1992) 

assessed the risk posed by occupational exposure to diesel exhaust for truck drivers 

and demonstrated no link between exposure to diesel exhaust and lung cancer. 

1.10 The origin ofPAH in diesel exhaust emissions 

The primary aim of the present study has been to investigate the origin of 

P AH in diesel exhaust emissions. This section has been devoted to a more detailed 

review of the possible sources of P AH in diesel exhaust. 

Diesel P AH are present in diesel exhaust emissions both adsorbed to and 

absorbed in particulate material as part of the SOF and in a gaseous state. Longwell 

( 1982) identified four sources for P AH in the exhaust gases of combustion systems: 

I. from unbumed fuel 

2. from unbumed lubricating oil 

3. from fuel that has undergone pyrolysis but has not passed through a flame 

zone 

4. from PAH produced during combustion (pyrosynthesised PAH) 

The PAH contribution from these sources is illustrated in Figure 1.9. Unbumed fuel 

and pyrosynthesis are the major contributors of P AH to the exhaust emissions of 
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diesel engines. The relative contribution of P AH from these sources has proved the 

subject of much debate and will be discussed in the following sections. 
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Figure 1.9 The sources of P AH in diesel exhaust emissions 

1.10 1 Diesel fuel PAH surviving combustion 

Diesel fuel contains a wide range of P AH. The predominant P AH in UK 

diesel fuels are naphthalenes, fluorenes and phenanthrenes and their alkyl homologues 

(Williams et al. , 1986). The P AH composition of the diesel fuel used in this research 

is presented in Section 2.2. Alkyl naphthalenes are the most abundant group ofPAH 

in all diesel fuels followed by alkylated fluorenes and phenanthrenes. Diesel fuel 

contains substantial amounts of heterocyclic P AH especially sulphur containing P AH, 

such as dibenzothiophene and nitrogen-containing P AH, such as carbazole. Similar 

P AH compositions for diesel fuel, originating from different refineries and crude oil 

stocks, have been reported (Nelson, 1989). Examples of the structures of the major 

P AH found in diesel fuels are shown in Figure 1.1 0. 
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Figure 1.10 Structures of major PAH present in diesel fuel 
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The similarity between the composition of the fuel and the SOF of exhaust 

particulates with respect to P AH was noted in early research in this field and led to 

the conclusion that P AH in automotive exhaust were primarily unbumed fuel 

components (Begeman and Colluci, 1970). Andrews et al. (1983) was the first to 

perform a detailed P AH analysis of both the fuel and the emissions. In that work the 

authors performed a mass balance on P AH consumption and emission in a four stroke 

single cylinder diesel and concluded that P AH in the exhaust originated primarily 

from unbumed fuel. This result was confirmed in later work on a modem Dl diesel 

(Williams et al., 1989). The importance of the unbumed fuel route to PAH emissions 

in the exhaust has been demonstrated by a number of other workers (Barbella et al., 

1989; Abbass et al., 1988; Henderson et al., 1984; Williams et al., 1987). The 

results from these experiments however, do not refer strictly to fuel survival. Rather, 

these results refer to a total recovery of P AH and include all possible sources by 

which P AH may have contributed to the emissions. 

The mechanisms whereby fuel may by-pass the high temperature flame zones 

in the cylinder, to be emitted unaltered to the exhaust, are well established. Fuel 

injected late in the combustion cycle from the nozzle sac (the residual sac volume), 

that is poorly atomised, will experience a low air/fuel ratio and may survive the 

combustion process. Fuel droplets that impinge on the wall of the combustion 

chamber will experience reduced combustion temperatures and may escape oxidation 

(Andrews, 1992). These engine conditions are realised predominantly when the 

engine is idling or at low load. High engine speeds generate overswirl and shorten 

the period over which combustion may occur and can also increase emissions of 

unbumed hydrocarbons (Rao, 1993; cited Collier et al., 1994} 

1.10.2 Formation of PAH during combustion (pyrosynthesis) 

The term pyrosynthesis refers to the process whereby P AH molecules are 

formed in the flame zone as a consequence of the kinetics of the combustion reaction. 

The pyrosynthesis of P AH during diesel combustion, occurs in high temperature 

zones where air/fuel mixtures are inside the flammability limits, and is a consequence 

of the chemical kinetic processes occurring during combustion. Polycyclic aromatic 

hydrocarbons may be formed from any type of hydrocarbon fuel. The specific P AH 
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formed, and their rate of production, will vary with fuel type and engine operating 

conditions. Control of P AH formed during combustion, may not be feasible, since 

their formation is a consequence of the chemical kinetic processes of diesel 

combustion. Improvements in engine design and fuel composition may lower the 

amount of combustion-formed PAH contributed to the exhaust, but are unlikely to 

eliminate this source entirely. 

A large number of combustion experiments have demonstrated the propensity 

of P AH to be pyrosynthesised from a variety of hydrocarbon chemical classes during 

combustion (Badger and Spotswood, 1960; Crittenden and Long, 1973; Cote et al., 

1984; Lam et al., 1988; Harris et al., 1988; Hamins et al., 1991 ). Virtually all the 

hydrocarbon types studied individually in these experiments are also present in diesel 

fuel. The possible pyrosynthetic routes to the formation of PAH during diesel 

combustion are manifold. Experiments have shown that the formation of PAH may 

be classified into two major pyrosynthetic pathways, distinguished according to the 

chemical class of the hydrocarbon precursor (Prado and Lahaye, 1983). These 

precursors are grouped into aliphatic and aromatic hydrocarbons. Most 

commercially available diesel fuels have an aromatic hydrocarbon content of between 

20% and 30% (v/v). PAH constitute approximately 5-7% of the total aromatics the 

remainder consists primarily of substituted benzenes. The remaining 70% of diesel 

fuel is comprised of aliphatic hydrocarbons. Straight-chain alkanes (n-alkanes) 

varying in carbon number from C9-C30 are the major aliphatic species present. A 

wide range ofbranched alkanes are also present (Gough and Rowland, 1990). 

1.10.2.1 Formation ofPAH from aliphatic hydrocarbons 

In the combustion of aliphatic fuels any aromatic species produced must be 

formed from aliphatic precursors. There is general agreement that the dominant 

pathways to P AH production involve free radical routes. Other mechanisms 

involving ions and Diels-Aider type addition reactions have also been proposed 

(Bamard and Bradley, 1985). At high temperatures aliphatic hydrocarbons are 

cracked and dehydrogenated to smaller saturated molecules and olefins (Tosaka et 

al., 1989). The further pyrolysis of olefins, and in particular ethylene, will produce 

acetylene (Crittenden and Long, 1973). Acetylenes and hydrogen are the major 
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gaseous species produced in the combustion of hydrocarbons, owing to their stability 

at high temperatures (Stein, 1985). Chain lengthening of acetylene may lead to the 

formation of unsaturated C2, C4, C6, C8 species which can stabilise as polyacetylenes. 

Alternatively, either by formation of a branched radical with ring closure or by 

cyclisation, unsaturated species may form an aromatic ring with a carbon side chain 

(Crittenden and Long, 1973). 

Frenklach et al. (1985) proposed a detailed mechanism for the formation of 

an initial aromatic ring (as a phenyl radical), by the combination of acetylene (C2H2) 

units (Figure 1.11 ). Further combination of acetylene with the phenyl radical and 

sequential hydrogen abstraction results in the formation of the naphthyl radical. 

Aromatic radicals such as phenyl and naphthalenyl are considered to be important 

intermediates in the production of larger polyaromatic species. The rapidity with 

which these intermediates are generated determines the rate at which larger 

polyaromatic molecules are formed. This explains why polyaromatics (and soot) are 

formed more rapidly and in greater abundance from fuels containing aromatic species, 

since the aromatic structure is already present in these fuels to promote the growth of 

PAH. 

1.10.2.2 Formation ofPAH from Aromatic Hydrocarbons 

The simplest route to the formation of polyaromatic molecules is the 

combination of two existing aromatic units (Stein, 1991). At high temperatures and 

in the presence of oxygen, hydrogen atoms are stripped from the aromatic ring 

thereby generating aryl radicals (Crittenden and Long, 1973; Bittner and Howard, 

1981 ). Subsequent displacement of hydrogen atoms on an aromatic ring by aryl 

radicals provides a simple means of irreversibly joining two aromatic units (Pradho 

and Lahaye, 1983 ). One factor limiting the extent to which aryl radicals influence the 

formation of PAH, is the strength of the C-H bond in the aromatic molecule. A 

second, is the tendency for aryl radicals to abstract labile hydrogen atoms, rather than 

to add to aromatic units. Hence, labile hydrogen atoms must be consumed before 

arylation can become significant (Stein, 1991) 
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The production of higher molecular weight PAR may also result from the 

reaction between aryl radicals and non-aromatic species, particularly acetylenic 

species (Pradho and Lahaye, 1983; Longwell, 1982). The aromatic ring is thought to 

aid the formation of larger polyaromatic species in this way by resonance stabilisation 

of key intermediate species (such as styrene and phenylacetylene) thereby preventing 

them from decomposing into the reactants (Prahdo and Lahaye, 1983). Addition of 

further acetylenic species is followed by rapid and irreversible ring closure. 

The structure of the aromatic molecule itself, affects the rate of soot 

formation. For example, aromatics with carbon side chains are thought to be most 

important intermediates in the formation of larger polyaromatic species and soot 

(Crittenden and Long 1973) owing to the relative ease in the formation of the aryl 

radical. Other PAR take no part in the formation of larger aromatic species 

occurring as stable by-products of the aromatic growth mechanisms. 

1.10.2.3 The Formation ofPAH During Diesel Combustion 

Combustion experiments clearly demonstrate the pyrosynthetic formation of 

PAR from both aliphatic and aromatic precursors (Section 1.9.2.1 and 1.9.2.2). It 

has been assumed that this process must also occur at the high temperatures and 

pressures associated with the diesel combustion process. The complexity of diesel 

fuel however, makes the identification of specific reaction mechanisms, leading to the 

formation of PAR during diesel combustion, almost impossible without the use of 

specialist techniques. One technique that has been widely used involves substituting 

normal diesel fuel with a simplified chemically-defined fuel substitute. Several diesel 

combustion investigations have been performed using single component fuels 

(Henderson et al., 1984; Abbass et al., 1988; Barbella et al., 1989; Ciajolo et al., 

1992). Abbass et al., (1989) used hexadecane as a fuel. A range of PAR were 

identified in the exhaust. Fluorene, phenanthrene and their alkyl-substituted 

homologues were most prevalent, although their abundance was significantly lower 

when compared with their concentration in diesel emissions from the combustion of 

normal diesel fuel. Total PAR emissions were 10% of those from normal diesel fuel. 

The authors concluded that the contribution of PAR from exhaust deposits on the 

walls of the dilution tunnel may have been responsible for PAR detected in the 
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exhaust. In a similar study, Barbella et al. (1989) used n-tetradecane as the fuel. A 

wide range ofPAH were detected in the emissions, including naphthalenes, fluorenes, 

phenanthrenes, dibenzothiophenes and their alkyl-substituents. These authors 

concluded that P AH emitted from the combustion of pure tetradecane were primarily 

products of combustion. The mass emission rates of the P AH from tetradecane 

combustion were also found to be less than the emission rate of P AH from normal 

diesel fuel although the actual rate of emission was not quantified. Ciajolo et al. 

(1992) investigated the effect of fuel aromaticity on diesel emissions using 

tetradecane and tetradecane spiked with I 0% 1-methylnaphthalene. The composition 

of P AH in the emissions from both fuels was similar. However, the emission of all 

P AH was increased by the addition of 1-methylnaphthalene to the tetradecane. In 

this experiment pyrene, phenanthrene and alkylnaphthalenes were the most abundant 

P AH species in the emissions. This confirms evidence from flame studies which 

suggest that pyrosynthetic reactions contributing to the formation of P AH favour the 

presence of existing aromatic species in the fuel which act as 'building bricks" in the 

formation oflarger PAH structures (Pradho and Lahaye, 1983; Crittenden and Long, 

1973). Similar conclusions were reached by Barbella et al. (1989). The authors 

observed greater emissions of larger 4 & 5-ringed aromatics such as pyrene and 

fluoranthene from commercial diesel fuel than from tetradecane/toluene fuel mixture. 

1.10.3 Lubricating Oil 

Lubricating oil has been shown to accumulate PAH as it ages (Williams et al., 

1989). Lubricating oil that has escaped into the combustion chamber and has 

survived the combustion process may in this way contribute to the P AH burden of 

diesel exhaust. Williams et a/ ( 1989) demonstrated that the contribution of oil 

derived unbumed hydrocarbons (UHC) and P AH to diesel exhaust increase of with 

the age of the oil. The authors concluded that the contribution of phenanthrene, 

methylphenanthrene (MePa), fluoranthene and pyrene to the emissions from lube oil 

that was 235 hours old, was 42%, 18%, 11% and 8% respectively. 

The contribution of P AH to the emissions with the lubricating oil is likely to 

be most significant for engine operating conditions where the lubricating oil 

contribution to the exhaust is significant, such as high speed and low load conditions, 
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or for poorly maintained and older, worn engines. For most operating conditions the 

lubricating oil contribution will be minor compared to P AH derived from unbumed 

fuel, owing to the considerably greater concentration ofPAH in diesel fuel relative to 

the concentration ofPAH in lubricating oil. 

1.10.4 Pyrolysed PAH 

Vaporised fuel when mixed with hot combustion products can pyrolyze and 

oxidise and these mixtures can by-pass the flame zone and become a component of 

the exhaust gases. In diesel combustion, the formation of P AH via pyrolysis 

reactions generally takes place in fuel rich conditions outside of the flammability 

limits of the mixture (Figure 1.3). Dealkylation of alkyl-substituted-PAR, which 

leads to the formation of the parent PAH molecule (see Chapter 4) is, strictly 

speaking, a pyrolysis reaction (Longwell, 1982). Dealkylation has been observed in a 

number of experiments and is a primary source of combustion-formed P AH (Herlan, 

1978; Trier et al., 1990; Barbella et al., 1990). The polar fraction of diesel exhaust 

particulates contains numerous partially oxidized P AH molecules and is a 

consequence ofthe pyrolysis oxidation ofPAH during combustion. Substituted PAH 

species, especially ketone, quinone, carboxylic acid, ketone and nitro derivatives are 

abundant in diesel exhaust (Schuetzle, 1983; Rogge, 1993). 

1.11 The use of 14C-radiotracers in diesel emission research 

The factors that control the distribution of P AH in diesel exhaust emissions 

are poorly understood. Little is known especially about the detailed mechanisms 

which lead to the formation of these compounds during combustion and the extent to 

which individual P AH molecules survive the combustion process and are emitted in 

the exhaust. Most existing diesel emission research techniques are unable to yield 

this kind of information. The use of radiotracers added individually to the fuel matrix 

can, however, yield detailed chemical information regarding the origin of PAH in 

diesel emissions and the fate of these compounds during combustion. Radio labelled 

PAH added to the diesel fuel are, moreover, in such tiny mass quantities that their 

presence disturbs the combustion characteristics of the fuel little, if at all, when 

compared with other diesel fuel spiking techniques. 
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The application of the use of 14C-radiotracers in the field of diesel emissions 

research is unique to Plymouth. Research has demonstrated the ability of the 

technique to yield unequivocal information with regard to the combustion of diesel 

fuel HCs that is unobtainable by any other technique, and which can provide a direct 

test of proposed theories (Petch et al., 1988; Rhead et al., 1990, Trier et al., 1990; 

Tancell et al., 1994). Previous experiments have investigated the combustion of 

aliphatic and aromatic components of diesel fuel. Petch et al. (1988) combusted 

radiolabelled 14C-9-methylanthracene in a single cylinder DI 21 Petter engine and 

demonstrated the pyrosynthetic formation of a variety of unidentified radiolabelled 

products of combustion. Rhead et al. ( 1990), using the same engine, investigated the 

combustion of radiolabelled 14C-benzene and 14C-octadecane. 14C-benzene was 

recovered in a yield of 0.08% and 14C-octadecane in a yield of 0.0004%. In both 

cases very low levels of radioactivity were detected throughout the exhaust sample 

indicating the formation of small amounts of a wide range of radioactive products of 

combustion. 

1.12 Aims of the current investigation 

The aims of this research were to further develop the radio labelling technique 

and to extend its application to the investigation of the combustion of specific diesel 

fuel HCs. The combustion of three PAH, (B[a]P, pyrene and fluorene) and one n­

alkane (hexadecane) has been investigated, using 14C-radiolabelled derivatives of 

these P AH. New radio-chromatographic techniques for the detection and 

quantification of radioactive products of combustion in diesel emissions have been 

developed and applied to the combustion of these radiotracers. The use of 

radiochemical specific activities has, for the first time, enabled a distinction to be 

made between the relative contribution of fuel hydrocarbons to the emissions from 

the sources of survival and pyrosynthesis. This information has given a clearer 

picture of the sources of individual P AH in the Prima emissions, and diesel engines in 

general, and the physical and chemical factors that control their relative contributions 

from these sources. 

It is proposed that dealkylation reactions are a significant source of 

pyrosynthesized parent P AH in diesel emissions. This research has investigated the 
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diesel combustion of an alkyl-PAR with the aim of detennining the extent to which 

this process influences diesel emissions of parent-PAR. The combustion of an alkyl­

PAR, ethylphenanthrene, synthesized for this purpose, has been investigated using 

non-radiolabelling techniques, developed during this research, to complement the 

radiolabelling technique. 
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Chapter 2 

EXPERIMENTAL METHODS 



2.1 Engine facility 

The engine used was a 2L direct injection Perkins Prima diesel engme 

mounted on a test bed and was connected by a Borghi & Saveri F A1 00 eddy 

current dynamometer which was controlled by a Test Automation Series 2000 

Compact Controller. The engine specifications are presented in Table 2.1. The 

Prima engine is fitted in both its naturally aspirated and turbocharged form in the 

Rover Montego and Maestro cars and vans and was among the first high speed DI 

diesel engines to be fitted in passenger cars (Ketcher, 1991 ). The engine has also 

found applications in the marine field. 

Table 2.1 Prima engine specifications 

No. of cylinders 4 
Cylinder arrangement in-line 
C_ycle Four stroke 
Induction system Naturally aspirated 
Fuel injection system Bosch EPVE pump with 

CA V multihole injectors 
Combustion system Direct Injection 
Cubic capacity 1,994 cm3 (122 in3

) 

Power (4500rpm) 60bhR 
Torque (2500rpm) 119Nm 
Compression ratio 18.1:1 
Nominal bore & stroke 84.5mm and 88.9mm 

The diesel fuel used was a standard A2 derv. Specifications for the diesel 

fuel are given in Table 2.2. 

2.2.P AB concentration in diesel fuel 

The P AH concentration in individual diesel fuels vanes considerably 

(Williams et al., 1986). Comparatively little published data exists on the detailed 

composition of the P AH component of diesel fuels. Where the P AH composition of 

diesel fuel has been investigated, the identification and quantification of individual 

P AH has been limited to the major parent P AH and prominant alkyl-derivatives. 
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Table 2.2 Class A2 diesel fuel specifications 

Class A2 diesel oil 
Density at 1soc 0.8619 Kg/1 
Sulphur content 0.141 %m(510ppm) 
Kinematic viscosity at 400C 3.493 eSt 
Kinematic viscosity at 50°C ) ----
Flash point (PM closed) ----
Cloud point ----
CFPP ----
SFPP ----
Pour point ----
Wax content ----
Melting point ofwax ----
Carbon residue (Con) on 10% residue ----
Distillation (IP 123) ----
IBP 186°C 
5% volume recovered at 221oc 
10% volume recovered at 2360C 
20% volume recovered at 2SSOC 
30% volume recovered at 2680C 
40% volume recovered at 278°C 
50% volume recovered at 2880C 
60% volume recovered at 298°C 
70% volume recovered at 310°C 
80% volume recovered at 325oc 

90% volume recovered at 3470C 

95% volume recovered at 365°c 
FBP 374oC 

Distillate/ Residue/ Loss 98.4%Vol/ 1.4 %Vol/ 
0.2%Vol 

Cetane number (D613) 49.0 
Hydrogen content ----
Carbon content ----
Calorific value (calculated): 

Net 42.58 MJ/Kg 
Gross 45.33 MJ/Kg 

Aromatics content (IP391): 
Mono 19.2 o/ovol 
Di 9.5 o/ovol 
Tri 2.6 o/ovol 
TOTAL 31.3 o/ovol 

Fuel analysis performed by BP Fuels Ltd, Sunbury 
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Alkyl-substituted P AH are usually quantified as a single group, because of the 

difficulty associated with the identification of individual isomers. Gas 

chromatographic retention indices (R.I) have been reported in the literature, for 

most of the alkyl derivatives of the major P AH in diesel fuel. There are, however, 

few commercially available standards to facilitate the identification process. In this 

research, mono, di and trimethyl derivatives of naphthalene in diesel fuel have been 

identified and quantified, using a combination of retention index data (Alexander et 

al., 1983; Rowland et al., 1984), and available standards. The concentrations and 

identity ofthe PAH identified in the fuel are shown in Table 2.3. Alkylnaphthalenes 

are the major P AH species in diesel fuel. Their isomer distribution reflects the 

greater stability of alkyl-substitution in the J3-position, relative to substitution in the 

a-position. The distribution of the dimethyl and trimethylnaphthalenes in diesel fuel 

as demonstrated by GC/MS molecular ions are shown in Figure 2. I. Quantification 

was performed by GC-FID and GC/MS (Section 2.10.2). 

2.3 Diesel exhaust sampling 

The Prima exhaust was sampled usmg the TESSA sampling system 

developed by the Combustion Research Group at Plymouth (Petch et al., 1987). 

The system comprises a vertical stainless steel tower, through which the exhaust 

gasses from the Prima are diverted. The organic components in the exhaust are 

removed by means of a downwards counter-current flow of solvent, which removes 

all solvent extractable material from the exhaust. The TESSA system has been 

designed specifically to sample organic species from exhaust gasses, and has the 

advantage over conventional filtration methods of exhaust sampling. The collection 

of lower molecular weight hydrocarbons is improved, without requiring the use of 

adsorbent traps at the exit of TESSA. This last point is readily demonstrated in the 

composition of the TESSA extracted samples (TES) which show a dominance of 

naphthalenes. 

The TESSA system also benefits from reduced artifact formation compared 

to filtration techniques. This is owing to a combination of sampling the exhaust 

close to the exhaust port and the rapid solvent removal of organics species from 

reactive gasses in the exhaust stream. 
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Figure 2.1 GC/MS molecular ion integration of C2-Nps and C3-Nps. 
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Table 2.3 PAD concentration in standard A2 diesel fuel 

PAD Concentration (ppm) 
Naphthalene (Np) 1875 
2-MeNp 5801 
1-MeNp 3874 
1 I 2-EtNp 1546 
2,6 I 2,7-diMeNp 5258 
1,3 & 1,6 I 1,7-diMeNp 9210 
1,4 I 2,3 & 1,5-diMeNp 2708 
1,2-diMeNp 1032 
1,3,7-triMeNp 2083 
1,3,6-triMeNp 2810 
1,3,5 I 1,4,6-triMeNp 2014 
2,3,6-triMeNp 1854 
1,2,61 1,6,7-triMeNp 2633 
1 ,2, 4-triMeNp 306 
1 ,2,5-triMeNp 702 
MeEtNps* 424 
MeEtNps* 356 
MeEtNps* 2239 
MeEtNps* 476 
MeEtNps* 754 
Fluorene (Fl) 774 
9-MeFl 507 
2-MeFl 845 
1-MeFI 1058 
diMeFl (total) 4313 
Dibenzothiophene (DBT) 930 
4-MeDBT 840 
2 I 3-MeDBT 453 
1-MeDBT 231 
diMeDBT (total) 2756 
Phenanthrene (Pa) 1255 
2-MePa 1153 
3-MePa 950 
9 I 4-MePa 835 
1-MePa 610 
diMePa (total) 3752 

Key: I I 2 indicates coeluting isomers not distinguishable. 
1 & 2 indicates isomers identified but not quantified individually 
* isomers not identified 
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Research at Plymouth has demonstrated that the formation of sampling artifacts, 

whilst minimised by the design of TESSA, has not altogether been eliminated 

(Collier et al, 1994). Collier et al. (1994) identified nitro-PAH in exhaust samples 

collected from TESSA. These compounds are, however, at lower levels than those 

encountered in filtered diesel exhaust samples collected using dilution tunnels, and 

confirms the efficiency of the TESSA system in reducing artifact formation 

The TESSA sampling system has been designed in three separate sections 

and is illustrated in Figure 2.2. Exhaust sampling takes place in the centre section 

of TESSA, which is filled with graded glass tubing to maximise the surface area of 

solvent for optimum removal efficiency of organics. The glass tubing is wetted with 

solvent immediately prior to sampling the exhaust to minimise any possible surface 

catalysed decomposition of organics before they can be removed by the solvent. 

The upper section of TESSA is designed to condense organic species not collected 

by the solvent and contains copper tubing through which cooled water ( 4"C) is 

pumped. The condensed organics are collected after sampling by rinsing TESSA 

with solvent. The solvent/sample eluent is collected at the base of TESSA in large 

conical flasks (SL) which contains distilled water (1L) to facilitate a separation 

between the aqueous methanol layer and the DCM layer in which the organic 

exhaust components from the exhaust are dissolved. The solvent used for sampling 

is a mixture of dichloromethane and methanol (I : I) and was chosen for optimum 

removal efficiency of organics from the exhaust. Dichloromethane samples the non­

polar and moderately polar species in the exhaust whilst the methanol samples more 

polar compounds. The solvent is delivered to the tower from reservoir a 

pressurized to 1 bar at a precisely controlled rate of flow to ensure that the sampling 

efficiency remains constant between samples over any length of time. The pressure­

controlled delivery of solvent has eliminated variations in flow rate which were 

experienced with the previous gravity fed system. 
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The capacity ofthe TESSA system is such that the exhaust gasses from one 

cylinder only may be sampled. The problem has been overcome, by splitting the 

exhaust manifold between the third and fourth exhaust ports and inserting a two­

way monocle plate which can be used to divert exhaust gasses from the cylinder 

either to TESSA or to exhaust (Figure2.3a and 2.3b). 

a) Engine 

Exhaust Take-Off Duct 
Lever Mounting Plate 

From Cyl inder -----1--

Monocle Plate 

X - --1 ..... y 

and Lever 

b) 

Exhaust Ducts 

ToTESSA ~ ~ 1b Main Exhaust 

... 

Figure 2.3. Schematic view of exhaust transfer valve showing 

a) Plan, with top part removed, and b) Elevation along line XY. 
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2.4 Materials and reagents 

All solvents were of HPLC grade (Rathburn) and were used as received. 

Ultra-pure water was obtained from a Milli-Q system (Millipore). P AH standards, 

Np, biphenyl; 2-ViNp; 1 & 2-MeNp; 1,2 1,3 1,4 1,5 1,6 1,7 and 2,6-diMeNap, 

1,3,5-triMeNp; Fl; 1-MeFI, DBT, Pa; 3 & 9-MePa; Fa; Py; Ch and B[a], (Aidrich) 

were of greater than 98% purity. 1,2,4- 1,2,5- 1,2,6- 1,3,6- 1,3,7- and 2,3,6-

triMeNp were obtained from Professor S. Rowland (University of Plymouth). d8-

Np, dw-Pa and d12-Ch internal standards (Aidrich) were greater than 98% pure. 

All glassware was soaked in Decon 90 (5%) for 24 hours and was rinsed 

thoroughly with tap water, distilled water and Milli-Q water. Before use, all 

glassware was rinsed twice with DCM. Silica and alumina adsorbents, glass fibre 

filter papers and magnesium sulphate drying agent were soxhlet extracted for 12 

hours with DCM. 

Reagents used m the synthesis of EtPa (viz: nitrobenzene, aluminium 

chloride, acetylchloride, hydrazine, triethylene and triethyleneglycol) were obtained 

from Aid rich and were of a purity greater than 98%. 

2.5 Radiochemical preparation 

[7,IOYC]B[a]P, [4,5,9,10-14C]pyrene (Arnersham International) and [9-

14C]fluorene (Sigma) were received dissolved in toluene. [ I- 14C]hexadecane 

(Arnersham International) was received dissolved in hexane. The structure and 

position of the 14C-Iabel in each of the radiochemicals is shown in Figure 2.4. All 

radiochemicals were of greater than 98% radiochemical purity and had specific 

activities of 248J..LCi/mg, 277J..LCi/mg, 88J.1Ci/mg and 2SOJ.1Cilmg respectively. 

Radiochemicals were stored under the manufacturers recommended conditions of 

s•c in the dark. Under these conditions the chemicals are relatively stable, but will, 

however, continue to degrade at between 1% and 5% per year. It was therefore 

necessary to confirm both the radiochemical purity and specific activity of the 

radiochemicals prior to each experiment. Radio-HPLC chromatograms illustrating 

the radiochemical purity ofthe three radiolabelled-PAH are displayed in Figure. 2.5. 

The specific activity of a radiochemical is defined as the quantity of radioactivity per 
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unit mass of chemical and is determined in units of ~Cilmg or MBq/mg, where 1 Ci 

is equivalent to 3.7x 1010Bq and lBq is equivalent to a single disintegration each 

second. 

[9-14C]tluorene 

[4,5,9, 1 0-14C]pyrene 

[7, 1 0-14C]benzo[ a]pyrene 

[ 1-14C]hexadecane 

Figure 2.4. Structures of selected 14C-radiolabelled hydrocarbons used in this 

research. The positions of the 14C-radiolabels are designated by "'. 
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Figure 2.5 Radiochemical purity of a) [9-14C]-fluorene b) [ 4,5,9, 1 0-14C]-pyrene 
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An aliquot of each solution (I OIJ.I), was removed from each stock radiochemical and 

was made up to 1 ml in toluene or hexane. The total mass of the chemical (both 

labelled and unlabelled) in the solution was determined by GC analysis, and the 

radioactivity by liquid scintillation assay. The specific activity, in units of 1J.Cilmg, 

was determined from this information. The radiochemical purity was assessed using 

reverse-phase HPLC with radiodetection (see section 2.9.3.1). An aliquot of the 

stock (I OOIJ.l) was taken and the solvent removed by nitrogen purge. The residue 

was redissolved in ACN and analysed by reverse-phase HPLC. The calculated 

specific activities and radiochemical purities are given in Table 2.4. In all cases the 

figures are in good agreement with the manufacturers values. 

Table 2.4 s fi Speci 1c activity and radiochemical purity of radiotracers 

Radiochemical Specific Activity (~J.Ci/mg) Radiochemical Purity(%) 

Received Determined Received Determined 

[7, 10-14C)B[a]P 248 2SO +/- 4 >98 96 

[4,S,9, 10-14C)pyrene 277 ------- >98 98 

r9- 14Clfluorene 88 90 +/- 1.2 >98 9S 

[ l- 14C)n-hexadecane 2SO 24S +/- s <98 96 

To simulate, as closely as possible, the normal chemical and physical 

processes taking place in the engine, the radiochemical was dissolved in a diesel fuel 

matrix in preparation for introduction into the combustion cylinder. This 

necessitated the removal of the solvent from the radiochemical. An aliquot of the 

radiochemical, (approximately 1001J.Ci) was taken, and the solvent evaporated by 

nitrogen purge in a fume cupboard at ambient temperature. The residue was 

redissolved in a known volume of diesel fuel ( 4SOIJ.I to SOOIJ.I). 

The total amount of radioactive precursor dissolved in the diesel fuel was 

determined by liquid scintillation assay. An aliquot of the solution ( 3 x I OIJ.I) was 

removed and was made up to I rnl in toluene. The dilution ensured that the 

radioactivity in the solution to be counted did not exceed the counting capacity of 

the scintillation counter. An aliquot (3 x 2S1J.I) of each of the three dilutions was 

ss 



counted. The radioactivity in the diesel fuel matrix was determined as an average of 

the three values. 

2.6 Introduction of the radiotracer 

Owing to the limited exhaust sampling capacity of TESSA, it was required 

that the radiochemical be introduced in its entirety into the single cylinder sampled 

by TESSA. The system developed by Trier et al. (1990) was used with minor 

modifications in this research. 

The introduction of the radiotracer to the single cylinder had been achieved 

by modifying the high pressure line connecting the fuel pump to the injector so that 

it incorporates two parallel lines for part of its length (Figure 2.6). One of the lines 

was fitted with an access plug through which the radiotracer was injected. The two 

lines are connected at either end by two three-way valves. The valves are air­

actuated and are remotely controlled. Only one line was active at any one time (i.e. 

would carry fuel to the injector), allowing the inactive line to be filled with the 

radiotracer dissolved in the fuel. By switching the valves, the off-line section 

containing the radiotracer becomes the active line during sampling and the 

radiotracer was introduced into the single cylinder. The pressure in the fuel injector 

lines is approximately 600 bar. The maximum working pressure of the three-way 

valves is 600bar. The pressure in the fuel lines is at the upper working range of the 

valves, with the consequence that their replacement was necessary at several times 

during the study. 

The supply of fuel to each cylinder is determined by the pressure in the lines 

connecting the pump with the injectors. Any variation in the volume of the fuel line 

would affect the pressure in the line and hence the volume of fuel supplied to the 

cylinder and the pattern of injection of fuel into the cylinder. This could affect the 

emission characteristics of the cylinder, hence it was necessary to maintain the 

volume of the altered fuel line as close as possible to that of the original lines. In 

practice, the volume of the modified injector line between the high pressure pump 

and the injector is within 10% of that of the unaltered lines connecting the pump 

with the injectors of the three remaining cylinders. 
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Fuel Lines 

Figure 2.6 Modification of high pressure fuel lines for radiochemical injection. 

2.7 Radiochemical injection procedure and diesel exhaust sampling using 

TESSA 

The engine was conditioned for 1 hour at high speed and load and then at 

the engine conditions to be investigated for 15 minutes prior to exhaust sampling. 

After the conditioning period, the engine was stopped and the radiotracer was 

injected into the off-line section via the access plug. Ideally the radiotracer would 

be introduced into the off-line section while the engine is running, however, in tests 

using non-radioactive fuel, engine vibration caused smalJ amounts of fuel to spill 

from the fuel line, consequently it was necessary to load the radiotracer after the 

engine had been stopped. The engine was then restarted and conditioned for a 

further 2 minutes at the engine test conditions. The exhaust sampJjng procedure 

was as follows: 

1. Solvent is allowed to run through TESSA for 20 seconds to wet aU ofthe 

glass surfaces. 

2. The exhaust port is switched so that the exhaust gases from the single 

cylinder exit through TESSA. 

3. After 5 seconds, the three-way valves were switched to introduce the 

radiotracer into the cylinder. 
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4. The exhaust was sampled for between 10 and 30 seconds depending on 

speed and load. 

5. After the sampling period the three-way valves were switched to their 

original configuration. After a further 5 seconds the exhaust port to TESSA was 

closed and the remaining solvent in the reservoir was allowed to run through 

TESSA. 

The sampling time has been minimised to maximise the specific activity of 

radioactive products in the. exhaust, which has benefits for the subsequent analytical 

procedures. For the engine conditions of speed and load at which radiotracer 

experiments have been conducted in this research (2500rpm I 50Nm and 3000rpm I 

IONm), fuel consumption is such that the total volume of the injector line (=700!!1) 

will be introduced into the cylinder in the order of a few seconds. A further 

advantage of the short sampling time is that duplicate and triplicate engine samples 

may be conducted before significant changes in the conditions of sampling, e.g. 

humidity of ambient air, can take place. 

2.8 Evaluation of PAB recoveries 

The use of several preparative HPLC stages in the sample preparation 

required that losses resulting from the various analytical stages be evaluated. 

Recoveries for P AH were evaluated using internal and external standards. 

Deuterated PAH (d8-Np, dw-Pa and d12-Ch) were used as internal standards. Their 

loss was evaluated using GC/MS by molecular ion integration. Quantification of 

P AH recoveries using external standards was performed using GC. The recoveries 

of P AH were evaluated using external standards by simulating the whole sample­

preparation with a standard mixture of PAH. For all PAH, there was good 

agreement between the recoveries calculated by internal and external standards. 

For P AH with more than 3-fused rings recoveries were greater than 90%. The 

greatest losses were, as expected, associated with naphthalene and varied between 

30% and 50%. Typical recoveries for representatives of the major PAH present in 

diesel fuel measured by external standard calibration are shown in Table 2.5. 
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Table 2.5 P AB recoveries 

PAH Recovery (%) 

naphthalene 60 +/- 10 
1-MeNp 75 +/- 8 
2,6-diMeNp 81 +/- 10 
2,3,5-tril\1eNp 92 +/- 4 
fluorene 84 +/- 8 
1-MeFI 85 +/- 8 
dibenzothiophene 90 +/- 8 
phenanthrene 94 +/- 5 
3-MePa 96 +/- 4 
fluoranthene 95 +/- 5 
pyrene 94 +/- 4 
chrysene 99 
benz[ a] pyrene 98 +/- I 

2.9 Isolation and concentration of exhaust sample from TESSA 

Exhaust samples collected from TESSA, were contained in methanoi:DCM 

(ea. 21). Deuterated naphthalene (d8-Np), phenanthrene (d 10-Pa) and chrysene {d12-

Ch) were added as internal standards to the samples prior to work-up. The 

procedure for isolating the exhaust extract involved two stages. First a separation 

between the methanol and DCM was achieved by adding excess water. The DCM 

layer containing the exhaust extract, was removed by liquid/liquid partition in a 

separating funnel (51) and was dried with anhydrous sodium sulphate. The aqueous 

methanol layer was extracted with DCM (3 x 50rnl) and the washings combined. 

The sodium sulphate was removed by vacuum filtration and the DCM removed by 

reduced pressure rotary evaporation and the exhaust sample transferred to a glass 

vial where the remaining solvent was evaporated and the residue redissolved m 

hexane (500J.!l). The analytical work-up procedure is outlined in Figure 2.7. 
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Figure 2. 7 Analytical procedure for the work-up and analysis of 14C-labelled 

diesel exhaust samples 

2.9.1 Sample clean-up and preliminary fractionation by silica column 

chromatography 

Various procedures have been employed in the separation into fractions of 

complex environmental samples such as diesel exhaust. Adsorption 

chromatography on gravity-flow open columns with alumina and silica oxides has 
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been widely used to achieve a chemical class separation of diesel fuels and diesel 

exhaust samples (Peterson et al., 1983; Cookson et al., 1984; Williams et al., 1986; 

Westerholm et al., 1988; Nelson, 1989; Gotze et al., 1991;). The separation is 

simple and inexpensive but suffers from two distinct disadvantages. Firstly, the 

highly adsorptive nature of these materials can cause catalytic degradation of 

sample components and irreversible sample adsorption (Later et al., 1985). 

Secondly, the reproducibility of the separation is highly dependent on the moisture 

content of the adsorbent and consequently materials need to be stored under 

carefully controlled conditions (Later et al., 1985). The former problems can be 

eradicated to a large extent by deactivation of the adsorbent with a known 

percentage of water. Later and eo-workers (1985) found the optimum activity for 

silica to be between 5-8% (w/w). In recent years solid-phase extraction (SPE) has 

replaced silica and alumina column chromatographic separations for many 

applications (Obuchi et al., 1984; Garrigues and Bellocq, 1989; Theobald, 1985; 

Bundt et al., 1991). SPE provides an extremely rapid separation mechanism with a 

wide variety of stationary phases available and good reproducibility between 

cartridges. 

Several commercially available SPE cartridges were evaluated in this 

research. Silica SPE cartridges produced separations of the exhaust extract similar 

to that obtained by traditional silica column chromatography, however this 

separation was not routinely used owing to plasticiser contamination of the 

aromatic fraction. Reverse-phase SPE using a C1s stationary phase and acetonitrile 

water mobile phases eliminated the problem of plasticisers but reduced the 

efficiency of the aliphatic/aromatic separation with respect to high molecular weight 

PAH (e.g. B[a]P) and the light n-alkanes (< C14). 

Other chemical class separations of diesel exhaust reported in the literature 

include isolation of PAC from alkanes and polar PAC using liquid/liquid partition 

with dimethylsulphoxide (DMSO) (Natusch and Tomkin, 1978), and by gel 

permeation chromatography (Bechtold et al., 1985). Preparative HPLC using nitro 

(Ruckrnick and Hurtubise, 1985) and amino (May and Wise, 1984) bonded silica 

stationary phases have also been used to isolate aromatics from various 

environmental samples. 
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2.9.2 Experimental method for silica column chromatography. 

Preparation of the silica adsorbent was performed according to the 

procedure of Later et al. (1985). The silica was cleaned by soxhlet extraction with 

dichloromethane for 24 hours before being fully activated at 185°C for 8-12 hours. 

Immediately prior to the separation, the silica was deactivated by injecting a 

weighed amount of Millipore grade water, equivalent to 5% by weight of the 

adsorbent, and homogenising for I hour on a mechanical shaker. Columns were 

slurry packed with a mixture of silica in hexane. The ratio of adsorbent to sample 

weight was not less than I 00: I. 

A solvent gradient of 2 column void volumes each of hexane, 

hexane/diethylether (10: I) and DCM/methanol (1:1) was used to elute aliphatics, 

non-polar P AH and heterocycles, and polar compounds respectively. The efficiency 

of each fractionation was verified by GC and, where required, by GC/MS. Gas 

chromatograms of the aliphatic and aromatic fractions of diesel fuel are shown in 

Figure 2.8. Each fraction was concentrated by rotary evaporation and transferred 

to a preweighed vial. Solvent was gradually removed by nitrogen purge at ambient 

temperature and the residue was redissolved in a known volume of solvent (DCM 

or ACN) for GC and HPLC analysis. 
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Figure 2.8 Gas chromatograms of a) the aliphatic and b) the aromatic fraction 

of a typical diesel exhaust sample 

(see section 2.11.1 for experimental conditions) 
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2.10 High performance liquid chromatography 

High performance liquid chromatography in both normal and reverse-phase 

modes, is a powerful technique for the analysis of P AH and their derivatives. 

HPLC is the preferred chromatographic method for non-volatile P AH and thermally 

unstable PAH which are not amenable to separation by GC (Fetzer et al., 1986). 

Analytical reverse-phase HPLC (RP-HPLC), offers unique selectivity for the 

separation of P AH isomers (Wise and Sanders, 1985). Highly selective HPLC­

detectors such as ultra-violet (UV), fluorescence and diode array UV detectors also 

have unique selectivity for isomeric PAH and have been widely used (Nielson, 

1979; Fetzer et al., 1986; Lafleur et al., 1987; Wang et al., 1988; Hansen et al., 

1991) The size and shape of the P AH molecule affects the 7t-electron energy levels 

in the molecule and determines the energy of the electronic transitions within the 

molecule. UV and fluorescence detectors exploit this property for their selectivity. 

A variety of other detectors have been used in HPLC including, refractive index 

(RI) detectors, thermal conductivity detectors, and electrochemical detectors. 

These are universal detectors which will respond to most analytes and are generally 

not used as detection methods for the analysis of P AH. The combination of mass 

spectrometric (MS) detection with HPLC is a comparatively new development and 

is finding increasing use in the field of PAH analysis (Singh et al., 1993). 

Microbore HPLC-MS has been reported for the analysis of PAC (Novotny et al., 

1984) and offers separations that are comparable to GC with the advantages of MS 

detection. 

2.10.1 A review of semi-preparative normal-phase HPLC for the isolation of 

PAH from environmental samples 

One of the major advantages associated with HPLC is its ability to be used 

as a fractionation method for other chromatographic or spectroscopic techniques. 

In PAH analysis, NP-HPLC is routinely used as a fractionation step prior to 

analytical RP-HPLC. Their combined use can achieve separations of complex 

mixtures such as diesel exhaust, that are comparable to GC. Sonnefeld et al. (52) 

reported the combined use of reverse and normal-phase HPLC in a single analytical 

procedure for the analysis of P AC in diesel exhaust. Claessens and V an Beuren 
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(1987) used an off-line two-dimensional HPLC procedure for the determination of 

P AH, which consisted of normal-phase fractionation on silica followed by RP­

HPLC on a Cu stationary phase. A similar experimental procedure was used by 

Marcomini et al. ( 1986) for the isolation of P AH from sediment extracts. The 

isolation ofPAH in diesel exhaust and their direct determination by coupled HPLC­

GC has been reported (Davies, 1987; Ostman et al., 1992; Kelly et al., 1992 and 

1993). The reported advantages of coupled LC-GC are increased sensitivity, 

reproducibility and ease of operation compared to equivalent off-line systems. 

Normal-phase preparative HPLC procedures have been used widely to 

achieve a separation of aromatic HCs according to ring-size. The majority of these 

separations have utilised alkylamine bonded silicas, -(RNH2) (Ostman and Colmsjo, 

1989; Grizzle and Slablotny, 1986; Pullen and Scammells, 1988; Cookson et al., 

1984). Other silica-bonded stationary phases that have been used to emulate this 

separation include diamine -R(NH2)2 (Grizzle and Thompson, 1982), nitro -(N02) 

(Ruckmick and Hurtubise, 1985), diol -(OH)2, cyanopropyl -(RCN) and nitrile -

(CN) (Chmielowiec and George, 1980), and 2,4-dinitroanilinopropyl (Grizzle and 

Thompson, 1982). Separation of P AH according to the number of fused aromatic 

rings by gel-permeation chromatography has also been reported (Fernandez et al., 

1988). Size exclusion was found to predominate although the structural 

characteristics of pericondensed and catacondensed P AH were found to influence 

the elution order. 

2.10.1.1 Normal-phase HPLC using underivatised silica 

Preparative HPLC using underivatised silica as stationary phase, has been 

widely used to fractionate environmental samples such as whole diesel exhaust 

(Schuetzle, 1983; Marcomini et al., 1986; Claessens and Van Beuren, 1987). The 

separation is similar to that achieved by silica column chromatography. However 

the efficiency and reproducibility of the separation is greater and continuous 

monitoring of the eluent enables a more precise fractionation of the exhaust into 

chemical classes. The adsorption characteristics, and hence the mode of separation 

on silica, is governed by the strength of the Lewis acid-type interaction of the 

analyte with the silanol groups -(SiOH) on the surface of the silica. For those 
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compounds most abundant in diesel exhaust the usual order of elution, as measured 

by the capacity factor (k'), is saturated hydrocarbons < olefins < aromatic 

hydrocarbons < nitro-PAH < esters < aldehydes < ketones < alcohols < arnines < 

amides < carboxylic acids. The degree of interaction between sample components 

and the silica is much greater than with the amino-bonded silica phase and hence 

analysis times are much increased. 

2.10.1.2 Experimental method for normal-phase HPLC using underivatised 

silica 

The system used for semi-preparative silica HPLC comprised of a 

quaternary pump (Perkin Elmer series 410 LC pump) equipped with UVMS and 

refractive index detectors m series, (Merck-Hitachi L-4200 UVMS 

spectrophotometer and Knauer 198 RI. detector) and manual injector (Rheodyne 

7125) fitted with a 1ml sample loop. The refractive index detector was used to 

monitor the elution of aliphatics and was particularly useful for multiple separations 

of diesel fuel into aromatic and aliphatic fractions. This compound class does not 

possess a chromophore and hence cannot be monitored with UV MS detection. In 

separations of whole diesel exhaust, where aromatics only were of interest, a 

backflush valve was incorporated into the system and allowed polar material 

concentrated at the head of the column to be swept-off by the reverse flow of 

solvent. This reduced analysis time and helped to extend the life of the column by 

minimising irreversible sample adsorption. A schematic representation of the 

system used for semi-preparative HPLC is shown in Figure 2.9. 

A solvent gradient was used for all separations of whole diesel exhaust and 

consisted of: hexane ( 5 mins) changed to 100% DCM over 20mins and held ( 10 

mins), changed to 100% ACN over 20rnins and held (20rnins). A flow rate of 

2mVmin was used and could not be increased to reduce analysis times owing to the 

instability that this created in the response of the radioactivity monitor. Figure 2.10 

illustrates a typical silica-HPLC separation of diesel exhaust monitored by UVNIS 

at 254nm. Fractions were collected manually and were concentrated by reduced 

pressure rotary evaporation. At the end of each analysis, a reverse solvent gradient 

was performed which maintained the reproducibility between separations. 
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(see section 2.10.1.2 for experimental conditions) 
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2.10.1.3 Normal-phase HPLC using an amino-bonded silica stationary phase. 

The separation, described originally by Wise et al. ( 1979) using an 

aminosilane stationary phase, has been most widely used to produce a ring-size 

separation of aromatics (Cookson et al., 1984; Grizzle and Slablotny, 1986; Pullen 

and Scarnmells, 1988; Ostman and Colmsjo, 1989). The mode of separation is 

dependent on a charge-transfer type interaction between the delocalized 1t-electrons 

of the aromatic system and the lone pair of electrons on the nitrogen (Wise, 1977). 

The separation is essentially unaffected by alkyl substituents, although alkyl-P AH 

elute slightly before the parent unsubstituted P AH, possibly due to shielding by the 

substituent group which reduces the interaction between the 1t-electrons and the 

amine. The degree of interaction increases with the number of delocalized 1t­

electrons, with the effect that larger aromatics are retained for a greater time on the 

column. Hence, pyrene with 8 pairs of 1t-electrons elutes before chrysene which has 

the same number of aromatic rings but 9 pairs of 1t-electrons. Synder and Schunk 

(1982) proposed a model for the retention mechanism on amino-bonded stationary 

phases. 

Aminosilane phases and bonded-silica phases in general, are not deactivated 

by small amounts of water, in contrast to unmodified silica and alumina. These 

phases also require relatively small volumes of solvent to re-equilibrate between 

analyses. 

One disadvantage associated with alkylamine stationary phases in the 

analysis of petroleum products however, is the tendency to form Schiff bases with 

carbonyl groups. Over a period of time the column is gradually deactivated with a 

consequential loss of selectivity and capacity. This effect has been observed in this 

research. The conversion of the Schiff base back to the amine and carbonyl 

functionalities occurs readily in aqueous acid conditions and is facilitated by using 

the column in the reverse-phase mode with water as mobile phase (Karlesky et al., 

1981). Karlesky et al. (1981) reported that 125 column void volumes of water 

were required to complete the conversion back to the amine and carbonyl. 
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2.10.1.4 Experimental method for the separation of aromatic hydrocarbons 

into ring size using an amino-bonded silica stationary phase 

Preparative HPLC was performed using dual pumps (Merck-Hitachi L-

6200A intelligent pump and L-6000 LC pump) equipped with UVMS detector 

(Merck-Hitachi L-4200 UVMS spectrophotometer) and manual injector 

(Rheodyne 7125) fitted with a 1ml sample loop. Separations were performed using 

a semi-preparative column (lOmm x 250mm) packed with amino bonded silica. A 

variety of commercially available aminosilane phases exist. In this research three 

phases have been tested, Spherisorb (5!lm), Techsphere (5!lm, HPLC Technology), 

Nucleosil (5!lm). HPLC columns were slurry packed with 2-propanol at 8,000psi 

using an air-driven liquid pump. 

The columns demonstrated essentially identical separations of diesel fuel 

aromatics as shown in Figure 2.11. The retention characteristics for all phases were 

similar, however, the capacity factors of the three phases varied considerably. This 

difference is due to variations in the efficiency of derivatisation of the silica 

substrate in the various manufacturing processes, and is measured in terms of 

carbon loading. No data was available for the carbon loading of the three columns. 

The separation was monitored by UV absorbance at 254nm which provides 

nearly universal detection for PAH. The solvent elution programme consisted of 

hexane isocratic for 25 minutes to 50% dichloromethane after 35 minutes at a flow 

rate of 2mVmin. Fractions were collected manually in round bottomed flasks 

( 1 OOml). The solvent was removed using reduced-pressure rotary evaporation and 

the residue was then transferred to glass vials, where it was redissolved in DCM or 

toluene ( 500!-ll), for GC and GC/MS analysis. An aliquot ( 1 OO!ll) was removed for 

reverse-phase HPLC analysis. The DCM solvent is not miscible with the 

water/acetonitrile mobile phases used in reverse-phase HPLC and was removed by 

nitrogen purge. The residue was redissolved in acetonitrile (100!-ll) for reverse­

phase HPLC analysis. 
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Figure 2.11 HPLC separation of diesel exhaust aromatics using 
a) Spherisorb-NH2 b) Techsphere-NH2 and c) Nucleosii-NH2 stationary phases 
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The reproducibility of the separation between analyses was maintained by 

passing DCM (SOml) through the column after each analysis and then 

reconditioning the column with hexane for 20 minutes prior to the next analysis. 

After long periods of storage it was found necessary to recondition the column by 

washing with a succession of eluents of decreasing polarity in a reverse step 

gradient (methanol, acetonitrile, dichloromethane and hexane). 

A typical exhaust aromatic sample from TESSA weighed about Smg. Semi­

preparative HPLC enabled the total sample to be fractionated in one step without 

overloading the column. The radioactive products in the exhaust were present at 

very low levels, close to the analytical limits of detection of the HPLC-radioactivity 

monitor. There was great benefit therefore, in being able to fractionate the total 

exhaust aromatics in a single procedure since this enabled sufficient radioactivity to 

be concentrated in a single aromatic subsample to be above the instrumental limits 

of detection in the subsequent reverse-phase radio-HPLC analysis. 

Each fractionation yielded five subsamples comprised of monoaromatics, 

naphthalenes and alkyl derivatives, a fraction containing fluorenes and 

dibenzothiophenes, phenanthrenes and alkyl homologues and a fraction containing 

P AH with more than four rings. The efficiency of each fractionation was confirmed 

by GC and GC/MS analysis of each subsample and is demonstrated in Figure 2.12. 

which shows gas chromatograms of the individual aromatic subsamples obtained by 

fractionation of diesel fuel. 
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2.10.2 Reverse-phase HPLC 

HPLC used in the reverse-phase mode is a powerful analytical technique for 

the determination ofPAH in environmental samples. RP-HPLC is most widely used 

with monomenc and polymeric octadecysilane (C 18) stationary phases. 

Tetraphenylporphyrin based silicas, and silicas bonded with multidentate phenyl 

groups have also been applied to the separation of PAH (Kibbey and Meyerhoff, 

1993; Jinno et al., 1990). Monomeric C1s phases are prepared using 

monofunctional silanes, their reaction with the silica substrate results in a single 

moiety on each derivatised surface silanol (Sander and Wise, 1990). Polymeric C18 

phases are prepared from the reaction of trifunctional silanes with silica in the 

presence of water. This generates extensive cross-linking to form polymers on the 

surface of the silica (Sander, 1990). The stationary phase of polymeric C 18 phases 

differs to that of the monomeric C1s phase in having a rigid, well defined surface 

structure maintained by the extensive crosslinking between the functional groups. 

Retention of PAH in RP-LC proceeds according to the number of fused 

rings and the degree of alkylation. Highly alkylated P AH elute with unsubstituted­

p AH of considerably larger size in contrast to normal-phase HPLC separations. 

The mode of separation is dependent on the degree of interaction between the 

solute and stationary phase, and the solute and mobile phase. In RP-LC, 

hydrophobic interactions between the non-polar solute and polar mobile phase 

partitions the solute into the stationary phase. Decreasing the polarity of the mobile 

phase by increasing the percentage of the organic solvent, reduces the retention of 

the solute. 

Once the solute has been partitioned into the stationary phase, the elution 

order and retention of the individual solutes is determined by the interaction 

between the two. In general, the polymeric phases are superior to the monomeric 

phases in the separation of P AH, particularly with regard to the separation of 

isomeric and alkyl-substituted P AH (Sander and Wise, 1987). The latter is an 

important consideration in the analysis of diesel fuels which are dominated by alkyl­

p AH. The rigid structure of the polymeric phase is thought to be more sensitive to 

the structure of the P AH. The planarity of the solutes in particular has been shown 

to determine the retention characteristics on polymeric C1s phases (Wise and 
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Sander, 1985). It is thought that planar P AH molecules penetrate deeper into the 

rigid surface structure of the polymeric phase and are retained longer. 

2.10.2.1 Experimental method for the reverse-phase HPLC analysis of 

aromatic subsamples 

RP-HPLC separations were performed using a Supelcosil LC-PAH column 

(Supelco Inc., 25cm x 4.5mm I.D.), with 511m octadecylbonded silica as stationary 

phase. The stationary phase was polymeric (Wise and Sander, 1993). 

Instrumentation comprised of dual pumps (Merck-Hitachi L-6200A intelligent 

pump and L-6000 LC pump), equipped with UV/VIS and fluorescence detectors in 

series (Merck-Hitachi L-4200 UVMS spectrophotometer and Merck-Hitachi F-

1050 fluorescence spectrophotometer). Samples dissolved in ACN were injected 

into a mobile phase of ACN/HzO at a flow rate of I mVmin. The volume of sample 

was 40111 and this was introduced into a I 00111 sample loop connected to a manual 

injector (Rheodyne 7125). A solvent gradient was used with an initial composition 

ranging from ACN/H20 (60/40) for analysis of 2 ring PAH samples, to an initial 

composition of ACN/H20 (80/20) for samples containing 4 & 5-ringed P AH. A 

linear solvent gradient to 100% ACN over 20 minutes and 10 minutes respectively, 

was used for the various P AH fractions. All mobile phases were degassed by 

helium purge for 20 minutes prior to their use. This was particularly necessary 

when using fluorescence detection since dissolved oxygen strongly quenches the 

fluorescence signal. 

Retention times for P AH were reproducible and were used to identify P AH 

by comparison with the retention times of standards. The fluorescence detector was 

operated at excitation (Aex) and emission (A,.,) wavelengths of 365nm and 427nm 

respectively for detection ofB[a]P, and Acx = 320nm and Acm = 430nm for detection 

of pyre ne. The selectivity of the fluorescence detector enhanced the response to the 

P AH of interest whilst suppressing that of other compounds eluting in this fraction. 

P AH were quantified using linear calibration graphs, (r2 > 0. 999 for all P AH) 

constructed from duplicate and triplicate injections of standard P AH solutions. 
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2.10 3 Radioactivity measurement 

Three methods of radioactivity measurement were utilised in this study, 

radio-HPLC, radio-GC and scintillation counting. The first two are on-line 

measurement systems whilst scintillation counting is an off-line counting technique. 

Radio-HPLC has been the major detection system used in this research. Radio-GC 

has been used for radiolabelled n-alkane analysis Static scintillation counting has 

been used as a confirmatory technique for quantification purposes. 

2.10.3.1 HPLC radioactivity measurement 

All HPLC analyses were performed with simultaneous on-line radioactivity 

measurement. The HPLC radiodetector used was a Berthold LB 505 C-1 

radioactivity monitor, equipped with a yttrium glass, solid scintillant measuring cell 

(150J.1l cell volume) and dual monitoring circuits for simultaneous measurement of 

14C and 3H isotopes.. 14C radioactivity measurement was performed in the high 

energy window. The internal amplifier settings describing the energy range of the 

window were 70mV for the lower level (LL) and 900mV for the upper level (UL) 

of the window. Noise and luminescence events were detected, and compensated 

for, using a coincidence circuit with a resolution time of 100 nanoseconds. The 

lower energy level (LL) of the high energy window used for 14C measurement, was 

set to exclude luminescence and phosphorescence events. The radiodetector was 

remotely controlled from a PC. Data handling and manipulation was performed 

using a Berthold HPLC programme. This allowed manual and automatic 

integration of radiopeaks, for quantification purposes. The quantity of radioactivity 

associated with a radiopeak was calculated using the following formulae: 

Radioactivity (Jl.Ci I Bq) = integrated counts (I) x flow rate (F. mllmin) 
cell volume (V, ml) x counting efficiency (E) 

The total number of counts in a given radio-peak was determined by manual 

integration. The counting efficiency of the radioactivity monitor was determined as 

65% by repeat, reverse-phase analyses of a solution of 14C-pyrene, the precise 

activity of which had been determined by liquid scintillation assay (section 2.9.3.2). 

The counting efficiency was found to vary marginally with the composition of 
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mobile phase according to the percentage water content (Figure 2.13). The level of 

background noise was determined prior to each analysis and background 

subtractions were performed in the subsequent quantification. 

counting efficiency(%) 
100.----------------------------------------------. 

90 

80 --

70 
.... ..... .... 

60 

50~----~----~------~----~------~----~'------~----~ 

w w 80 w 100 

mobile phase composition (% ACN) 

Figure 2.13 Variation in the counting efficiency of the HPLC radioactivity 
monitor with mobile phase composition. 

2.10.3.2 Radioactivity measurement by static liquid scintillation counting 

The method of radioactivity measurement using off-line, static scintillation 

counting offers the highest sensitivity and greatest accuracy of the radioactivity 

detection systems used in this research. This is owing to the longer residence times 

that radioactive sample components may spend in the measuring cell when 

compared with radio-GC and radio-HPLC detection systems, where the length of 

time a radioactive sample component can spend in the measuring cell is determined 

by the flow rate of the mobile phase. Owing to the high accuracy of the technique, 

liquid scintillation counting was used to calibrate the GC and HPLC radioactivity 

monitors used in this research. 

The major disadvantage associated with liquid scintillation counting is the 

limited resolution afforded by the technique. Extensive, pre-fractionation of the 

sample is required to achieve resolution comparable to the flow-through radio-GC 
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and radio-HPLC continuous monitoring systems. This degree of pre-fractionation 

is labour intensive. 

Liquid scintillation counting was performed using a Phillips PW4700 Liquid 

Scintillation Counter. Measurement of 14C ~-emissions was performed using the 

high energy window. The discrimination settings of the window were, LL = 40KeV 

and UL = 160KeV. The maximum energy of ~-emissions from 14C nuclei is 

0.156MeV. These settings ensured that all ~-particles from 14C disintegrations 

would be counted. A sample/scintillant ratio of 10:1 was determined as the 

minimum before the counting efficiency of the liquid scintillant was affected. The 

volume of samples to be counted was usually less than I OO!ll and were dissolved in 

2ml of scintillant. The scintillant used was 2-( 4' -tert-butylphenyl)-5-( -4-"­

biphenyl)1,3,4-oxydiazole (5%) in toluene. Samples were counted for 5 minutes or 

until 40,000 counts were registered. 

2.11 PAH analysis by gas chromatography 

Gas chromatography is ideally suited to the analysis of complex mixtures 

owing to its extremely high resolution. It has been widely used in the analysis of 

PAC in diesel exhaust (Tong et a/, 1984; Henderson et a/ 1984 & 1988; Cartellier 

and Tritthart, 1984; Williams et aL, 1986). GC is most suited to the analysis of 

small P AH, since the main prerequisite is that the molecule be volatile in the 

temperature range used. For most GC applications, this limits the range of PAH 

that may be analysed to those P AH containing up to 8 fused aromatic rings 

(molecular mass range < 350). The degree of condensation markedly affects the 

volatility of P AH. Less condensed P AH may be readily analysed by GC whilst 

more highly condensed P AH with the same number of carbons are often not 

amenable to analysis by GC (Fetzer, 1989). Naphtho[8,1,2abc]coronene (C30H 14) 

for example, cannot be analysed by GC except with the use of high-temperature 

applications, whereas pyranthene (C30H 16) can be readily analysed by GC (Figure 

2.14). Recently, the high temperature GC analysis ofPAH with relative molecular 

masses of up to 450 has been reported (Bemgard et a/, 1993). 
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N aphtho[8, 1 ,2abc ]coronene pyranthene 

Figure 2.14 Structures of Naphtho[8,1,2abc]coronene and pyranthene 

The compatibility of GC with element specific detectors also makes GC the 

preferred chromatographic method, for the analysis of heterocyclic P AH, 

particularly nitrogen and sulphur-containing P AH. The FID is the most widely used 

detector in GC because of its universality of response. It is the detector of choice 

for the GC analysis of hydrocarbons. The detection limits of the FID are however, 

comparatively high and its response to certain heterocyclic P AH, is poor compared 

to certain selective detectors. Where sensitivity to these compounds is required, 

flame photometric detectors (FPD) and therrnionic specific detectors are used. The 

FPD detector is sensitive to sulphur and phosphorus containing compounds whilst 

the thermionic detector responds to nitrogen containing compounds. The response 

of both detectors is far superior to the FID for these compounds. Both flame 

photometric and thermionic specific detectors have been used to analyse for sulphur 

containing thiophenes and nitrogen containing carbazoles in diesel fuel, (Williams et 

al., 1986). Other detectors that have been used in combination with GC for the 

analysis and detection of P AH include the electron capture detector (Grimsrud and 

Valkenburg, 1984) and the mass spectrometer (MS). 

GC in combination with mass spectrometry (GC/MS) is a most powerful 

tool in the analysis of complex mixtures, and has been extensively used for the 

identification of P AH in diesel emissions (Peterson et al., 1983; Henderson et al., 

1984; Tan, 1988; Farrar-Kan et al. , 1991; Lowenthal et al. , 1994). For most PAH 

analysis, GC/MS is used in the electron impact ionisation mode. Negative and 
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positive ion chemical ionisation techniques (NICI and PICI) are widely used in the 

analysis of polar, substituted P AH and to distinguish isomeric compounds (Oehme, 

1985; Bayona et al., 1988). GC/MS combines the high resolution of capillary GC 

with the molecular structure information provided by MS and often can lead to the 

complete identification of individual P AH. P AH are well suited to analysis by MS. 

The extensive 7t-electron delocalisation induces high stability in P AH. The mass 

spectra of P AH reflect this stability and contain an intense molecular ion and few 

fragment ions (Josefson, 1983). Alkyi-P AH, like the parent molecule, also generate 

clear mass spectra, dominated by a molecular ion, but with major fragment ions 

corresponding to the loss of the alkyl substituent also present in the mass spectra. 

2.11.1 GC-FID analysis ofPAH 

GC analysis were performed on a Carlo Erba HRGC (model 5300) equipped 

with FID detection and on-column injection. The GC was fitted with a DB-5 

(J & W Scientific,) capillary column (30m x 0.32mrn I.D., 0.2511-m film thickness). 

Hydrogen, at a flow rate of 2ml/min was used as carrier gas and nitrogen was used 

as make-up gas at a flow of 30mVrnin. The detector was maintained at a 

temperature of 320°C. Peak detection and integration was performed using a 

Shimadzu, C-R3A integrator. A temperature gradient was used and varied in its 

initial oven temperature according to the sample solvent. For most GC analysis the 

sample solvent was DCM, and an initial oven temperature of 40°C was used. This 

was raised linearly to a final temperature of 3000C at 50CJmin and held at 3000C 

for 10 minutes. Where toluene was used as the solvent the initial oven temperature 

was 110°C. Toluene was the preferred solvent for GC analysis of samples 

containing higher molecular weight P AH such as the 4 and 5 ringed P AH fractions. 

This was owing to the improved chromatography of later eluting P AH and reduced 

GC analysis times. High boiling point solvents such as toluene and xylenes have 

been reported to improve both the FID response and chromatography, of high 

molecular weight P AH in their analysis by GC using a splitless injection technique 

(Brindle and Li, 1989; Trevelin et al., 1992). 

Identifications of P AH by GC were performed using the linear retention 

index systems of Lee et al. (1979) and Vassilaros et a/(1982) with naphthalene, 
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phenanthrene, chrysene and B[a]P as internal standards. Retention Indices were 

based on duplicate or triplicate injections and were compared with the literature 

data. Quantification of P AH by GC was performed using linear calibration graphs 

(R2 not less than 0.999) constructed from the means of duplicate and triplicate 

injections of standard P AH solutions. Relative response factors for all of the major 

parent P AH, and representative isomers of their alkylated derivatives in diesel fuel 

were determined. The FID response to phenanthrene was taken as unity. Response 

factors were found to vary from 0.8 for naphthalene to 1 for B[a]P. This was in 

good agreement with the literature data (Tong et al., 1984; Blanco et al., 1992). 

The use of on-column injection avoided the problems of discrimination of higher 

boiling P AH that other injection techniques introduced. 

2.11.2 GC/MS analysis ofPAH 

GC/MS used in the El mode was employed routinely to confirm peak 

identifications performed by GC, and for quantification purposes. Two GC/MS 

systems were used in this research. GC/MSD was performed using a Hewlett 

Packard 5890 series 11 gas chromatograph equipped with a Hewlett Packard 7673 

autosarnpler and Hewlett Packard 5970 series mass selective detector (MSD). The 

MSD was operated in the scan mode with an ionizing potential of 70eV and an ion 

source temperature of 3000C. The GC was operated in the splitless injection mode 

with an injector temperature of 250°C and was fitted with an OV-1 (0.32mrn x 

12m) capillary column. The temperature programme was from 400C to 3000C at 

50C/min and held at 3000C for 20 minutes. 

GC with high resolution MS was performed usmg a Carlo Erba 

Strumentazione HRGC interfaced to a Kratos MS25 mass spectrometer. A DB-5 

(J & W Scientific, 30m x 0.32mm ID., 0 25Jlm film thickness) capillary column 

was installed in the GC. The ion source temperature was 230°C and the ionizing 

potential was 40eV. Cold on-column injection and He carrier gas were employed 

throughout. 
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2.12 Radio-gas chromatography 

Preliminary radio-GC investigations were performed on the system 

developed by Petch et al. (1988) which was based on the design of Wets ( 1977). In 

this system, the eluent from the FID is diverted upwards into a glass column, where 

a downward flow of 2-phenylethylamine (10%) in 2-methoxyethanol absorbed the 
14C02. The system however, demonstrated poor resolution and a low collection 

efficiency of the 14C02 gas. Several commercially available radio-GCs were 

investigated for their applicability in diesel emission research. 

The main difficulty associated with the use of radio-GC systems in this 

research is the ability to introduce sufficient radioactivity to the detector to be 

above instrumental limits of detection (LODs). TESSA exhaust samples generally 

have low specific activities. The difficulties associated with introducing sufficient 

radioactivity to be above the instrumental limits of detection that are encountered in 

radio-HPLC analyses, are accentuated in radio-GC by the lower sample loading 

capacity of GC columns compared with HPLC columns. The difficulties are 

exacerbated by the fact that only a portion of the sample is counted in radio-GC 

analysis, whereas the whole sample is measured in radio-HPLC analysis. The 

problem has been overcome to a great extent through the use of large diameter GC 

columns which have greater sample loading capacities and shorter exhaust gas 

sampling times which have increased the specific activities of the exhaust samples. 

2.12.1 Experimental method for the radio-GC analysis of diesel exhaust 

samples 

GC analyses were performed using a Chrompak 9000 gas chromatograph, 

equipped with on-column injection, and FID detector. A temperature programme 

was used and consisted of an initial oven temperature of 50°C raised linearly at 

5°C/min to 300°C which was held for 10 minutes. Two columns were evaluated in 

this research; a SPBS borosilicate glass column (Supelco, 0.75mm I.D. x 60m) with 

a nominal sample loading capacity of 100-150 Jlg, and a DBS megabore column 

(J&W Scientific, 0.53mm I.D. x 30m, 0.25Jlm film thickness) with a nominal 

sample loading capacity of SOJ.l.g. The separation of the aromatic fraction of diesel 

fuel, (IJ.l.l injection volume, !SOmg/ml sample concentration) performed using the 
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borosilicate glass column is shown in Figure 2.15. The Figure illustrates that peak 

resolution is retained despite the high sample loading. The carrier gas was a 

mixture of Argon/Methane (95 5) at a flow rate of 20mVmin and 8rnVmin for the 

SPB5 glass column and the DB5 megabore column respectively. The detector 

temperature was 320°C. 

A schematic illustration of the radio-GC system is shown in Figure 2.16. To 

improve resolution a retention gap was created at the column inlet using a length of 

deactivated capillary tubing (50cm), as described in the literature (Grob, 1982; Grob 

and Grob, 1983). Press-fit connectors (Jones Chromatography) were used to join 

the two lengths of capillary tubing. The eluent was split between the two detectors 

in a ratio of approximately 10: 1. The split is governed by the back-pressures in the 

two lines exiting the splitting device, and may be determined using a simple 

calculation: 

l 
10 

[====~r=====~l=l·=~=(U=~==l=.D=)=-----~ _____ _j_ __ --, • ToRadodclcdnr 

= 

c::====:~~~~;;::= ----· To FID 12. dl (032nmlD) 

QJ.AJ.VI 
pz.Az.Vz 

1t/4.DI2 VI 
1t/4.D/.Vz 

where: P1 & Pz are the density of the carrier gas (kg/m3
) 

V 1 & V 2 are the velocities of the carrier gas in the two lengths of tubing 

exiting the splitter (m/sec) 

m1 & mz are the mass transport rates of the carrier gas m the tubes 

(kgrn/sec) 

D 1 & Dz are the diameter of the tubing to the FID (0.32mm) and the 

radiodetector (0.53mm) respectively. 

h & h are the length of tubing connecting the splitter with the FID and the 

radiodetector, and need to be determined. 
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Since P1 = P2 & 7t/4 is the same for both flows: 

1 = D12.V1 - - - => VI = l X 0.532 = 0.27 
10 D/.V2 v2 10 o.322 

Assuming an equal pressure drop across the two pieces of tubing: 

~p = f{l/5).pJ.Vl~.(h/DI) = 
~p = f(1/5).p2.V/(h/D2) 

V1
2JI.Jh = 

V/.h.DI 

where: M is the pressure drop and is the same for both, 

f is the coefficient of friction and is the same for both 

1 = 0.27 X lJ.0.53 
h.0.32 

:.theratioofl1:h"' 6:1 

0.27 X 0.32 
0.53 

0.16 

This means that for SOcm length of tubing connecting the splitter with the furnace, a 

piece of tubing approximately 3m long connecting the splitter with the FID is 

required to achieve a 1 0: 1 split using this diameter tubing. 

In practice, back-pressure generated by the oxidation furnace reduced the 

ratio, (although the manufacturers claim the furnace generates negligible back­

pressures). This required that an additional flow of make-up gas was plumbed in 

after the splitter. Deactivated capillary tubing was used to connect the splitter with 

the FID and furnace. The oxidation furnace was operated at an internal 

temperature of 700°C using activated copper as catalyst. The external temperature 

was 70°C and did not interfere with temperature programming. A drying tube was 

fitted between the gas chromatograph and the radioactivity detector to remove 

moisture vapour from the FID effluent gasses, which would otherwise quench the 

scintillations during counting. The drying tube is primarily responsible for the 

reduced chromatographic efficiency of the radio-GC system. 
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Figure 2.15 Gas chromatogram of the aromatic fraction of diesel exhaust separated on the 0.75mm I.D borosilicate glass column. 
Sample loading 150J..Lg. (For chromatographic conditions see section 2.12.1) 
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Radioactivity measurement was performed usmg a Lablogic, GC RAM 

radiodetector. The scintillant gas was a mixture of argon/methane (95: 5). This was 

also used as the GC carrier gas. Ideally helium would be used as carrier gas, since it 

demonstrates superior chromatography. The counting efficiency of the GC 

radiodetector was >80% and is greater than that of the HPLC radioactivity monitor 

owing to the improved mixing scintilllant gas and the 14C02, compared with the 

liquid-solid interactions in the HPLC radioactivity monitor. The Radio-GC 

demonstrated background levels of less than 3cpm. The limit of detection was 

taken as 3xS/N and determined as lOcpm (although the radio-GC has not been used 

for quantitative work in this research owing to limited access to the instrument). 

2.13 Determination ofPAH in used lubricating oil 

Used lubricating oil has been shown to accumulate unbumed diesel fuel 

hydrocarbons, including P AH as it ages (Williarns et al., 1989), and this can 

contribute to the burden of these compounds in the exhaust. The concentration of 

P AH in the used oil will affect their contribution to the exhaust from used oil. It is 

necessary to evaluate this contribution. The determination of P AH in crude, heavy 

oil distillates usually proceeds by a preparative HPLC stage to isolate the aromatic 

fraction of the oil, followed by GC-FID and GC/MS identification of PAH 

(Palmentier et al., 1989; Matsuzawa et al., 1990; Ostman and Colmsjo, 1989). 

Lamprecht and Huber (1992) reported a two-dimensional HPLC technique with 

column switching and fluorescence detection for the determination ofB[a]P in oil 

distillates. The analysis of PAH in used oils is, however, complicated by the 

composition of the used oil. 

Used lubricating oil is a complex mixture of hydrocarbons, additives, 

carbonaceous particles and heavy metals. The mixture is kept homogenous by a 

variety of detergents and dispersants such as succinimides, succinate esters and 

alkylphenol amines (Liston, 1992), which may constitute up to 2-15% by weight of 

the oil (Vazquez-Duhault, 1989). The high additives and suspended particles. 

content precludes the direct chromatographic analysis of used lubricating oil, owing 

to the fact that carbonaceous particles and high molecular weight additives will 

deposit at the head of the chromatographic column. This can impair column 
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performance. It is necessary to remove the additives and suspended particles and 

isolate the base oil hydrocarbons from this mixture prior to GC analysis. Dialysis is 

routinely employed to this end. The base hydrocarbons pass freely through the 

dialysis membrane whereas high molecular weight species, comprised of additives 

and suspended particles (usually > 1000 daltons) are trapped. A second method 

employed in the recovery of base hydrocarbons from lubricating oil, utilises organic 

solvents that dissolve the base oil and cause the dispersant additives and suspended 

particles to flocculate and settle. The procedure has been termed 'extraction­

flocculation' (Reis and Jeronimo, 1988; 1990). 

2.13.1 Experimental method for the clean-up of used lubricating oil 

The method for extracting the base oil hydrocarbons from used lubricating 

oil is that based on the method outlined by Reis and Jeronimo ( 1988) with minor 

modifications in solvent volumes. Ds-Np, D1o-Pa and D12-Ch were added to the 

used lubricating oil prior to the extraction procedure to evaluate P AH losses. 2-

propanol with 1 Og!L potassium hydroxide (1 Oml) and hexane ( 1 ml) were added to 

used lubricating oil (ea. O.Sg). The KOH acts to destabilise the electrically 

stabilised dispersion generated by the polar solvent, and improves the flocculation 

of additives (Reis and Jeronimo, 1988; 1990). The solution was homogenised in an 

ultrasonic bath for 5 minutes and then allowed to stand for 30 minutes. The 

mixture was filtered using pre-extracted glass fibre filters (Whatman GF/F). Excess 

water (20ml) was added to the solution which was then extracted with hexane (3 x 

I Oml). Occasionally, on addition of water, the propanol solution would emulsify. 

Addition of aqueous KOH resulted in the formation of a gelatinous white 

precipitate, which was thought to consist of additives that had not been precipitated 

by the propanol. The precipitate was removed by filtration. The hexane extracts 

were combined and concentrated by rotary evaporation to a small volume (ea. 1 ml). 

The extract was transferred to a preweighed vial and the remaining solvent removed 

by nitrogen purge. The residue was redissolved in 1 ml of hexane for preparative 

silica-HPLC to isolate the aromatic fraction which was then analysed by GC and 

GC/MS. 
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The procedure was applied to a used oil sample (=80hrs old). Gas 

chromatograms of the aromatic and aliphatic fractions of the 'cleaned" oil are 

shown in Figure l7a and b. The aliphatics fraction obtained from silica-gel column 

chromatography accounted for 88% of the total oil by mass, and the aromatic 

fraction 8% of the oil by mass. The remaining mass was presumably made-up of 

polar material which had remained adsorbed to the silica column. PAH were 

quantified by GC/MS integration of their molecular ions. A range of P AH were 

detected in the aromatic fraction of the used lube oil that were not present in virgin 

oil. These comprised all of the major diesel fuel P AH including naphthalene, 

fluorene, dibenzothiophene, phenanthrene and their alkyl derivatives, and also 

fluoranthene and pyrene. The distribution ofPAH in the oil was changed relative to 

the fuel so that phenanthrene ( 13 ppm) and its methyl ( 1 OOppm total) and dimethyl 

(120ppm total) substituted homologues were most abundant. Naphthalenes, 

fluorenes and dibenzothiophenes were present in lower abundance. In the aliphatic 

fraction of the used oil, a series of n-alkanes ranging from n-Cts to n-C22, which 

were absent in the virgin oil, were identified. These results confirm the conclusions 

of other research that diesel fuel accumulates in the lure oil as it ages (Williams et 

a/, 1989). 
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Figure 2.17a Gas chromatogram of the aliphatic fraction of used lubricating oil after the clean-up procedure 
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Figure 2.17b Gas chromatogram of the aromatic fraction of used lubricating oil after the clean-up procedure 



Chapter 3 

COMBUSTION of14C-LABELLED DIESEL FUEL 

HYDROCARBONS in the PERKINS PRIMA DIESEL ENGINE 



3.1 Introduction 

Much debate exists concerrung the ongm of organic spec1es m diesel 

emissions. The primary sources for organic species in the emissions are from fuel 

survival, pyrosynthesis and lubricating oil carry over (Longwell, 1982; Williams et. 

al., 1989). This research has focused on the use of radiotracers added to the fuel 

prior to combusion to investigate the relative contributions from these sources of 

organic species in the emissions. The radiotracer technique, developed in Plymouth, 

can yield unequivocal information with regard to the relative contribution of specific 

components to the emissions from these sources, that is unavailable by any other 

technique. 

Of particular interest to both the environmental scientist and to the engine 

manufacturers are the emissions of P AH which are a hazard to human health owing 

to their carcinogenicity (IARC). Diesel engines are significant contributors to the 

atmospheric burden of PAH especially in urban areas (Stenburg, 1985). It is 

desirable therefore to understand the mechanisms which are responsible for the 

presence of P AH in diesel emissions and the relative contribution of P AH from these 

sources. 

This research has involved investigation into diesel combustion of three 14C-

radiolabelled PAH and one radiolabelled n-alkane: 

[9-14C]fluorene 

[ 4,5,9, I 0-14C]pyrene 

[7, JQYC]B[a]P 

[ l- 14C]hexadecane 

These species were chosen as representative P AH compounds with different ring size 

and structure type. Hexadecane was chosen because earlier work in the group had 

suggested that aliphatic hydrocarbons might be a source of aromatic products of 

combustion (Rhead et al., 1990). A major aim of the investigation was to determine 

unequivocally the degree of survival of individual fuel components (rather than 

recoveries reported elswhere in the literature). Fluorene and pyrene are major parent 

PAH species in diesel fuel at concentrations of 770ppm and 120ppm respectively. 

B[a]P is a minor constituent of diesel fuel(< lppm) but has been classified by the 
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IARC (IARC, 1989) as a probable human carcinogen. With the exception of 14C­

B[a]P, the experiments were performed in duplicate. 

3.2 Experimental 

3.2.1 Engine conditions 

Radiotracer experiments were performed at identical conditions of speed and 

load to facilitate comparisons between combustion of all HCs investigated. The 

engine was operated at an engine speed of 2500rpm and an engine load of SONm. 

The power output at these engine conditions was 13KW, equivalent to approximately 

half of full power, and simulates a period of high speed driving such as may be found 

on a motorway. The combustion process at these engines conditions is at its most 

efficient and emissions of fuel unbumed hydrocarbons (UHCs) from the Prima diesel 

engine are correspondingly at their lowest (Collier, 1994). 

3.2.2 Contribution of fuel HC to the emissions from lubricating oil 

The degree to which lubricating oil contaminants influence the exhaust 

composition depends on both the concentration of contaminants in the oil and extent 

of the lube oil carry over to the exhaust. In this research, the lubricating oil 

contribution to diesel emissions was quantified by gas chromatography, using a 

method similar to that outlined by Cuthbertson (1987). The average molecular mass 

of the lubricating oil was significantly greater than that of the fuel. Hydrocarbons 

contributed to the exhaust from either source were identified according to their 

retention times using gas chromatography. The aliphatic fraction of the lubricating 

oil, usually the most prevalent part of the oil, was undetected in the exhaust samples 

collected by TESSA from the Prima during this research. It was concluded, that for 

this engine under the stated conditions, lubricating oil carry over to the exhaust was 

negligible. 
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3.2.3 Assessment of the relative contribution to diesel emissions of HCs from 

fuel survival or pyrosynthesis using radiochemical specific activities of fuel 

spiked HCs 

Fuel survival and pyrosynthesis are the two major sources of hydrocarbons in 

the Prima emissions. The relative contribution from these sources was evaluated in 

this research using the radiochemical specific activities ofHCs added to the fuel. The 

specific activity of a radiochemical is defined as the quantity of radioactivity per unit 

mass of material and is measured in units of j..i.Ci/mmol or Bq/mmol. Calculation of 

the specific activity of a compound in the exhaust required that the both the mass of 

hydrocarbon and the quantity of associated radioactivity, was determined. 

The specific activity of the radiochemical spiked in the fuel was reduced 

during sampling owing to dilution from the unlabelled HC present in the fuel. The 

mass of the unlabelled hydrocarbon contributed by the fuel was quantified from its 

concentration in the fuel, the rate of fuel consumption and the sampling time and an 

average specific activity for the radiochemical entering the test cylinder was 

determined. The difference in the specific activity between the radiochemical in the 

fuel and in the emissions was used to establish whether pyrosynthesis was 

contributing to the exhaust burden of the HC, in addition to that from fuel survival. 

Constant specific activities for the hydrocarbon in the fuel and in the emissions would 

indicate that its sole source in the emissions was as a result of survival. A decrease in 

the specific activity, owing to dilution of the radiochemical by the pyrosynthesized 

nonlabelled hydrocarbon, would indicate that the hydrocarbon was being formed as a 

result ofpyrosynthetic reactions occurring in the combustion chamber. 

Unlike other quantification procedures, the use of radiochemical specific 

activities does not require that losses, owing to the analytical procedure, be 

evaluated, since these losses will occur equally to both the labelled and nonlabelled 

hydrocarbon. The ratio of the labelled to the nonlabelled hydrocarbon is expected to 

remain constant regardless of the number of analytical procedures the sample has 

passed through. 
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3.2.4 Introduction of the radiotracer into the fuel just prior to combustion 
14 

The method for introducing C-radiotracers into the Perkins Prima diesel 

engine has been developed to mimic as far as is possible the normal operation of the 

engine (Trier et al., 1991) and is described in more detail in Chapter 2. (section 2.5). 

The chemical reactions taking place within the combustion chamber should be 

unaffected by the spike. One limitation however, is the introduction of a mass of 

material associated with the radiochemical, that is in excess of the mass of the HC 

that would be contributed from the fuel under normal circumstances. In order to 

distribute the excess hydrocarbon burden from the radiochemical, over the maximum 

possible volume of fuel during the injection procedure, the volume of spike 

introduced into the fuel line was made as large as possible. In practice this volume 

was limited to about 560J..LI by the volume of the injector line between the high 

pressure injector and the cylinder. 

This problem was most apparent for the combustion of 14C-B[a]P. 91J..LCi of 

B[a]P dissolved in 500J..LI of fuel was introduced into the cylinder and had associated 

with it 366J..Lg of material. The concentration ofB[a)]P in the spiked fuel (732J..Lg/ml) 

was much in excess ofthe concentration ofB[a]P in normal diesel fuel (0.89J..Lg/ml). 

The extent to which this mass of B[a]P has affected the combustion process in the 

chamber is difficult to gauge. We have assumed that it has not significantly altered 

the combustion process because the mass of the B[a]P spike is still small compared 

to the other components of the fuel. The problem is less acute in the combustion of 

the 14C-fluorene and 14C-pyrene radiotracers. Their concentration in the spiked fuel 

was 2.6mg/ml and 0.86mg/ml, compared to a normal concentration of0.77mg/ml and 

119mg/ml respectively, in unspiked fuel. 

3.3 Results 

3.3.1 Diesel combustion of[7,10- 14C]B[a]P 

The preliminary stage in the analysis of the 14C-B[a]P in the emissions was 

the fractionation of the exhaust sample by semi-preparative HPLC using 

underivatised silica. Five fractions were collected and comprised a fraction 
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containing P AH and heterocyclic P AH, and four fractions containing exhaust 

components of increasing polarity. The radioactivity present in each fraction was 

determined by liquid scintillation counting and is presented in Table 3.1 as a 

percentage of the original radioactivity. 

Table 3.1. Radioactivity present in each of the five fractions of B[a]P exhaust 
collected from preparative silica-HPLC. 

14C-B[a]P Exhaust fraction 

in fuel aromatics 2 3 4 5 
Radioactivity 91 0.036 0.0032 0.0028 0.001 0.007 

(JlCi) 
Radioactivity as a 100 0.04 0.0038 0.0003 0.0013 0.008 
% of the original 

The bulk of the radioactivity isolated in the exhaust (==75%) was concentrated 

in the aromatic fraction. Minor amounts of radioactivity were present in the four 

remaining polar fractions. Radioactive products of combustion present in the polar 

fractions were not identified since the levels of radioactivity were well below the 

limits of detection of the HPLC radioactivity monitor. The radioactivity associated 

with these fractions was almost certainly owing to partially oxidised 14C-B[a]P 

species. GC/MS analyses of the less polar fractions 2 & 3, which corresponds to 

nitro and aldehyde derivatives, failed to identify individual compounds, with the 

exception of 9-fluorenone, owing to the poor detection limits of the instrument for 

these compounds . 

The aromatic fraction isolated by silica-HPLC, was further fractionated by 

normal-phase HPLC using an aminosilane column. Four aromatic subsamples were 

collected. Each subsample was analysed by reverse-phase radio-HPLC, with UV and 

fluorescence detection. A single radio-peak was detected in the subsample 

containing four and five ringed PAH (Figure 3.1). The identity of the radio-peak was 

confirmed as that of 14C-B[a]P, by comparison of its retention time, with the 

retention time of the B[a]P mass peak, monitored by fluorescence. Triplicate 

injections of a B[a]P standard established the retention time for B[a]P. The slight 

difference in retention times between the mass and radioactive peaks was owing to 

the delay period between the fluorescence and radioactivity detectors connected in 
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senes. Integration of the radio-peak indicated that the 14C-B[a]P survival, was 

equivalent to 0.04% of the original radioactivity. 

A B[a]P survival of 0.04% is substantially less than the recovery of B[a)P 

quoted in research by Williams et al. ( 1989). In their research, the authors sampled a 

4L DI Perkins diesel engine at a similar power output, and recovered >3% of the 

original mass ofB[a]P consumed. These figures represent a total recovery ofB[a]P 

from all sources including pyrosynthesis, as opposed to just B[a]P survival. A B[a]P 

survival of0.04% is, however, more in line with the recoveries quoted for other PAH 

of between 0.03% and 0.3%, in the same research. Our figure of 0.04% survival is 

also in better agreement with the results of Henderson (1984) where, in experiments 

spiking diesel fuel with lOg!L B[a]P greater than 99% of the B[a]P was combusted. 

In both cases however, no distinction between the relative contributions from 

lubricating oil and pyrosynthetic reactions could be made. Williams and Swarin 

(1979) investigated B[a]P emissions from 13 diesel, petrol and catalyst equipped 

petrol cars. Mass emission rates for B[a]P were determined, however, no analysis of 

the fuel concentration of B[a)P was performed and hence the recovery of B[a]P 

could not be assessed. 

The contribution of B[a]P to the emissions from pyrosynthetic sources was 

determined by measuring the variation in the specific activities ofB[a]P in the fuel 

and in the exhaust sample. This required that the mass input of B[a]P to the test 

cylinder was established. The concentration of B[a]P in the fuel could not be 

determined reliably by GC/MS of unfractionated fuel, owing to its low concentration. 

Instead, quantification was performed using RP-HPLC analysis of the B[a]P 

aromatic subsample of diesel fuel, with fluorescence detection. The fluorescence 

detector was operated at excitation (A. .. ) and emission (Acm) wavelengths of 365nm 

and 427nm. This enhanced the response to the B[a]P whilst suppressing that of 

other compounds eluting in this fraction and aided integration. B[a)P was quantified 

from a linear calibration graph, (~ > 0.999) constructed from duplicate and triplicate 

injections of standard B[a]P solutions. 
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Figure 3.1 HPLC analysis of 14C-B[a)P exhaust subsample showing 

a) fluorescence chromatogram and b) radioactivity chromatogram 

(for chromatographic conditions see Section 2.10.2.1) 
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The concentration of B[a)P in the fuel was found to be 0.85ppm, in 

agreement with the figure quoted by Williams et al. (1986) of< 1ppm. Owing to the 

low concentration of B[a]P in diesel fuel, the mass of B[a]P contributed from the 

fuel in the 10 second sampling period was a fraction of the mass ofB[a]P associated 

with the radiochemical. The reduction in the specific activity of the B[a]P 

radiochemical was, therefore, negligible in the 1 0 second sampling period and hence 

was ignored. The specific activity ofB[a]P in the exhaust was also quantified using 

fluorescence detection and was determined as 200J.!Cilmg +/- 10%. This compares 

with a specific activity ofB[a]P in the fuel of248J.!Cilmg. It was concluded that the 

majority ofB[a]P in the exhaust ("'80%) is owing to the survival of the B[a]P in the 

fuel. There is a small contribution ofB[a)P from pyrosynthesis (<20%). 

Trier et al. (1990) concluded that 4 and five ringed PAH including B[a]P in 

the emissions originated almost entirely from pyrosynthetic reactions in the 

combustion chiunber since these compounds were present in only trace amounts in 

the fuel. The extent of pyrosynthesis was not established. Williams et al. (1989), 

also found tentative evidence for the pyrosynthetic formation of 4 & 5-ringed P AH, 

including B[a]P, from smaller 2 and 3 ring PAH precursors. In later research, 

Abbass et al. (1989) concluded that the pyrosynthetic contribution to diesel exhaust 

P AH was, at most, 5% of the total P AH exhaust burden. A detailed kinetic 

mechanism for the formation of B[a]P has been proposed by Badger and Novotny 

( 1963) from the results of pyrolysis experiments. The results from such studies are 

not directly applicable to diesel combustion owing to the low temperatures at which 

pyrolysis studies take place, and the difference in combustion conditions. However, 

the suggested kinetic route is in agreement with the key features of later kinetic 

models proposed to account for PAH formation (Crittenden and Long, 1973; 

Frenklach, 1985). 

3.3.2 Combustion of [9.14C]fluorene. 

1 OOJ.!Ci and 120. 5J.!Ci of [9-14C]fluorene, dissolved in diesel fuel ("'550J.LI), 

were introduced into the Prima in two separate engine runs. The exhaust was 

sampled for 25 seconds for each engine run. The whole exhaust samples were 
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fractionated using silica-column chromatography into aliphatic aromatic and polar 

fractions according to the method described in Chapter 2 (section 2.8.1.1). The 

radioactivity, measured by scintillation assay, recovered in the aliphatic, aromatic and 

polar fractions after silica-column chromatography is shown in Table 3.2. 

Table 3.2 Radioactivity present in the fractions of Ouorene exhaust 

Exhaust fraction 
14C-FI in aliphatics aromatics polar 

fuel e4c-fluorene) 

Radioactivity (11-Ci) lOO & 120 nd 0.15 & 1.19 0.05 & 0.07 

Average activity (as 100 nd 0.87+/-0.1 0.06 +/- 0.01 
a% of the original) 

nd: not detected 

The aromatic fractions were further separated according to ring size by preparative 

HPLC on an aminosilane column. Analysis of each subsample by reverse-phase 

HPLC with radio-detection identified a single radioactive product present in the 

fluorene subsample. UV and radioactivity chromatograms for the HPLC analysis are 

shown in Figure 3.2. The peak (retention time 14mins 32seconds) represents the 

major radioactive product in the emissions and was identified as 14C-fluorene by 

comparison with retention time of the fluorene mass peak from the UV 

chromatogram. The radioactivity associated with 14C-fluorene in the exhaust was 

equivalent to a survival of0.77% and 0.97% in the duplicate engine runs. 

The specific activity of 14C-fluorene in the emissions was determined by GC 

quantification of the mass of fluorene, and liquid scintillation assay of the associated 

radioactivity in the fluorene subsample, and was established as 1611-Ci/mg and 

13 .811-Cilmg in the duplicate exhaust samples. This compares with values for the 

specific activities of 14C-fluorene in the fuel of 20.811-Cilmg and 19.711-Cilmg 

respectively (based on a fuel concentration of fluorene of 770ppm determined by 

GC/MS molecular ion integration). These results indicate that the major source of 

fluorene in the exhaust was as a result of survival (73.5% +/- 2.5%). A significant 

proportion of fluorene in the emissions however, (26.5% +/- 3%) was formed during 

combustion. 
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Figure 3.2 HPLC analysis of 14C-fluorene exhaust subsample showing 

a) UV chromatogram and b) radioactivity chromatogram 

(for chromatographic conditions see Section 2.10.2.1) 
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3.3.3 Combustion of [4,5,9,10-14C]pyrene 

113.6j.!Ci and 110j.!Ci of [4,5,9,10-14C]pyrene was introduced into the test 

cylinder of the Prima in duplicate engine runs. The exhaust was sampled for 30 

seconds. The whole exhaust sample was extracted and concentrated and was then 

fractionated into aliphatic, aromatic and polar fractions on a silica-column. The 

radioactivity present in each ofthe three exhaust fractions is presented in Table 3.3. 

Table 3.3 Radioactivity present in the fractions of pyrene exhaust 
Exhaust fraction 

14C-Py in fuel aliphatics aromatics polar 
C4C-pyrene) 

Radioactivity {j.!Ci) 113.6& 110 nd 0.20 & 0.18 0.10 & 0.08 
Average activity (as 100 nd 0.17 +/- 0.1 0.08 +/- 0.01 
a % of the original) 

A portion of the aromatic fraction was further separated into ring-size subsamples by 

preparative HPLC using an aminosilane column. Each aromatic subsample was 

analyzed by reverse-phase HPLC with either UV or fluorescence detection. A single 

radio-peak was detected in the 4 and 5-ringed aromatic subsample (Figure 3.3). This 

was identified as 14C-pyrene surviving combustion, by comparison with retention 

times. Integration of the radio-peak established the extent of 14C-pyrene survival as 

0.18% and 0.16% of the original radioactivity introduced in the duplicate engine 

runs. The radio-HPLC results were confirmed by radio-GC analysis (Figure 3.4). A 

single radio-peak was detected in the exhaust sample with a retention time that 

corresponded with that of a 14C-pyrene standard. 

The amount of pyrosynthesized pyrene was assessed from the specific 

activities of the radiochemical in the fuel and in the exhaust. The concentration of 

pyrene in the fuel was determined as 115ppm, by GC analysis of the corresponding 

fuel aromatic subsample. The specific activity of 14C-pyrene in the fuel was found to 

be 71.2j.!Ci/mg and 67j.!Ci/mg. This compared with a specific activity for pyrene in 

the exhaust of 20.4j.!Ci/mg and 19.2j.!Ci/mg. It was concluded, that the major 

contribution to pyrene in the emissions for this experiment was from pyrosynthesis 

(71% +I- 1 %). The contribution from fuel survival constituted the remainder of 

pyrene in the exhaust (29% +I- I%). 
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Figure 3.3 HPLC analysis of 14C-pyrene exhaust subsample showing 

a) UV chromatogram and b) radioactivity chromatogram 

(for chromatographic conditions see Section 2.10.2.1) 
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Figure 3.4 Radio-GC analysis of 14C-pyrene exhaust sample showing 

a) FID response and b) radioactivity chromatogram 

(for chromatographic conditions see Section 2.12.1) 

105 



3.4 Discussion 

3.4.1 Control of the PAH composition of diesel exhaust 

The distribution of PAH in the Prima emissions reflects the relative 

contribution ofPAH from fuel survival and pyrosynthesis. The contribution from the 

two sources is, to a large extent, determined by the physical and chemical properties 

of the P AH themselves, and particularly by their thermodynamic and kinetic stability. 

The distribution ofPAH in the emissions will vary according to whether the reactions 

that produce and destroy P AH are themselves thermodynamically or kinetically 

controlled. The following discussion is intended to place the results from the current 

research in this context and to provide a framework with which to interpret future 

experimental observations. 

3.4.1.1 The influence of thermodynamics on the distribution of PAD in diesel 

exhaust emissions 

In combustion systems, one of the maJor parameters govemmg the 

distribution of species in the emissions, is their stability at high temperatures. The 

stability of a compound can vary greatly with temperature. For example, acetylene, 

(C2H2) which is highly reactive at room temperature, is one of the most stable 

hydrocarbons at the high temperatures of diesel combustion. Conversely, alkanes, 

(C.H2n+2) which are stable at room temperature, are highly unstable at diesel 

combustion temperatures. The relative stability of one state compared to another is 

the realm of chemical thermodynamics and the equilibrium distribution of species at 

different temperatures may be anticipated in terms of their thermodynamic stability. 

Measurement of the thermodynamic stability of a molecule requires the 

calculation of three main thermochemical values (Stein, 1978; Alberty, 1989 and 

1990): 

enthalpy of formation at temperature T (MlrT, Kjmor1
) 

entropy offormation at temperature T (~Sl, J mor1 K 1
) 

heat capacities (Cp, J mor 1 K 1
) 

The enthalpy and entropy terms are combined in the Gibbs Energy to give an absolute 

measure of the total free energy offormation of a species: 
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The equilibrium distribution of individual components will favour those species with 

the lowest ~Gl (Lam, 1988). 

Recently, Stein et al. (1977) and Stein and Fahr ( 1978) applied an extension 

of the group additivity (GA) techniques developed by Benson (1969) to the 

estimation of these thermochemical properties. In this method, individual P AH 

molecules are broken down into four component groups for which thermochemical 

values have been determined experimentally from naphthalene and biphenyl. The 

contributions of these atomic groups, towards a specific thermochemical property, 

are then summed to obtain the corresponding thermodynamic value for the molecule. 

For unsubstituted PAH molecules, the groups are [Cs-(H)], [Csr(C8 )2(CsF)], [CsF­

(Cs)(CsF)2] and [Csr(CsFhl where Cs a carbon atom that is a member of only one 

aromatic ring and CsF is a carbon atom at the junction of two or three fused aromatic 

rings. These groupings are illustrated in Figure 3.5. Using this data, the authors 

predicted the most thermodynamically stable P AH m a modelled combustion 

environment at equilibrium, for a range of temperatures. Reactions were balanced 

using acetylene (C2H2) and H2, the most stable gaseous products of hydrocarbon 

combustion at high temperatures (Alberty, 1989). Alberty (1989, 1990) using the 

group values of Stein and Fahr (1978) determined ml, ~Sl, ~Cp and ~Gl for the 

pyrene and coronene series ofPAH. 

The thermodynamic stability of P AH at high temperatures is primarily a result 

the delocalised 1t-electron orbitals providing stable repositories for electrons. P AH 

with a low H/C ratio also tend to be more thermodynamically favoured. This factor 

can be visualised in the greater stability of pericondensed P AH (high C/H ratio) 

compared to catacondensed PAH (lower C/H ratio). For example pyrene, a 

pericondensed P AH, is less reactive and has a greater thermodynamic stability than 

chrysene, a catacondensed P AH, even though both have the same number of 

aromatic rings (Doel and Sanders, 1994). 
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)CadCa)l(Car) ), 

)Ca-(H)) , 

Figure 3.5 B[o:]P consists of 12(Ca-(H)], 4(Car(Ca)2(CaF)], 2(Car(Cs)(CsF)2] 

and 2[Car(CaFh] groups 

P AH in combustion systems may form part of a larger equilibrium existing 

between the smarter acetylenic molecules which react with P AH to form larger P AH 

in a mechanism similar to that outlined by Frenklach (1985). These addition 

reactions are reversible hence an equilibrium may be established between the 

reactants and products. The equilibrium distribution of products is then related to the 

Gibbs free energy of the reaction ~G? by: 

~Gl = RTlnKp 

where Kp is the equilibrium constant and R is the gas constant. The equation 

applies to reactants and products which behave as ideal gasses, a reasonable 

assumption in combustion systems (Bamard and Bradley, 1985; Alberty, 1989). 

The results of Lam et al. ( 1988), using a jet stirred, plug flow reactor with an 

ethene/air fuel, suggest that this particular combustion process was tending toward an 

equilibrium condition. In this work, the authors predicted the thermodynamically 

favoured distribution of P AH in the exhaust effluent for a range of temperatures, 

using the thermochemical data for P AH determined by Stein ( 1978). The authors 

established that small aromatics (such as benzene and phenylacetylene) reached their 
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predicted values. Profiles for the aliphatic hydrocarbons declined steeply toward 

their thermodynamically predicted values. 

Doel and Saunders (1994), also using the thermochemical values for PAR 

determined by Stein and Fahr (1978) investigated the influence of thermodynamics on 

the P AH distribution from diesel engines. The authors predicted the concentrations 

of several peri- and cata-condensed P AH found in diesel exhaust, at partial 

equilibrium with C2H2 and H2 for a variety of temperatures. They then compared 

these results with experimentally determined exhaust P AH distributions from the 

literature. The predicted P AH distribution, which demonstrated an increase in larger 

pericondensed P AH and a decrease in small catacondensed P AH, was not observed 

experimentally. Interestingly, the model predicted no effect of pressure on the 

equilibrium concentrations of P AH. The authors concluded that thermodynamics did 

not influence the P AH distribution in diesel exhaust. 

Their result is not surprising since the establishment of a thermodynamic 

equilibrium during diesel combustion seems unlikely, despite the rapidity of the free 

radical reactions that dominate the combustion process. Diesel combustion is 

characterised by short combustion times (<I m sec for the engine conditions used in 

this research), and is highly inhomogenous with regard to the fuel spray distribution, 

and the temperature regime of combustion. These, and other factors, may preclude 

the establishment of an equilibrium condition. 

3.4.1.2 The influence of kinetics on the distribution ofPAH in diesel combustion 

Kinetic mechanisms which lead to the formation of P AH are most difficult to 

investigate owing to the numerous possible reactions that may occur. It is generally 

accepted that the formation of P AH during combustion proceeds via the kinetics of 

rapid, reversible free radical pathways similar to that proposed by Frenklach (1985) 

(detailed in Section 1.9.2.1). In the absence of thermodynamic control, stable 

intermediate species, or end products of this type of pathway, are expected to 

increase in their relative abundance regardless of their thermodynamic stability. 

Certain combustion experiments where aliphatic fuels have been doped with 

aromatic compounds have demonstrated that the P AH distribution in the SOF is 

substantially affected by the composition of the fuel mixture, implying that kinetic 
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considerations influence the P AH species distribution of the emissions. Ciajolo et al. 

(1992) combusted pure tetradecane and a mixture of tetradecane/a­

methylnaphthalene in a diesel engine. They found a substantially increased rate in the 

emission of P AH for the tetradecane/a-methylnaphthalene fuel. Henderson et al. 

(1984) combusted pure hexadecane in a diesel engine spiked with a variety of P AH. 

The composition of the emissions in terms of P AH and soot production varied 

considerably with the composition of the fuel. Certain PAH (e.g. naphthalene and 

B[a]P) were shown to increase the emissions of all PAH and soot, whilst the 

combustion of hexadecane spiked with other PAH, (e.g. pyrene and phenanthrene) 

increased only the emissions of the same P AH. These observations, suggest that 

kinetic factors may have an important role to play in determining the emission of 

PAH. 

Hamins et al. ( 1990), in a study of a laminar methane diffusion flame doped 

with various aromatic species (toluene, styrene, ethylbenzene) observed soot 

formation to be relatively independent of the composition of the fuel mixture, 

'suggesting that kinetic factors are not important in soot (and therefore PAH) 

formation. However, experimental observations from simple flame studies may have 

little practical relevance in terms of the diesel combustion process. These studies 

employ a continuous combustion source, and under these conditions an equilibrium 

state may have time to become established. The thermodynamic stability of 

individual species as opposed to kinetic considerations, would, under these 

conditions, be expected to control their distribution in the emissions. 

3.4.2 The origin ofPAH in the Prima emissions. 

In this research, the use of radiochemical specific activities has enabled the 

relative contributions from survival and pyrosynthesis for several P AH to be 

calculated accurately. Differentiating between these two possible sources is only 

possible using the radiolabelling technique. It has been demonstrated that for certain 

PAH (e.g. pyrene), pyrosynthesis is the major source of this PAH in diesel exhaust, 

(see Figure 3.6.). For the other PAH studied (naphthalene, fluorene and B[a]P), 

survival is the major source of these P AH in the Prima emissions. The significant 
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variation in the relative contribution of P AH from the two sources suggests that for 

individual P AH selective formation mechanisms operate during combustion. 
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Figure 3.6. Relative contribution of P AH to the Prima emissions from 

pyrosynthesis and survival. 

*Rhead and Pemberton, 1994 

3.4.2.1 Pyrosynthesis ofPAH during diesel combustion 

Two primary routes to the formation of parent P AH exist. The first is 

through radical addition reactions of aromatic and aliphatic species in the combustion 

chamber and the second by dealkylation of the alkyl-substituted P AH derivative 

(Frenklach et al. , 1985; Longwell, 1982). The amount of pyrosynthesized PAH 

would be expected to vary depending on which pathway was dominant. If 

dealkylation reactions were the major source of pyrosynthesized P AH in the 

emissions, the pyrosynthetic contribution would be expected to be greatest for P AH 
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with a large number of alkyl-derivatives in diesel fuel. Where the kinetics of addition 

reactions was the dominant process in forming P AH, the pyrosynthetic contributions 

would be greatest for P AH that are intermediates or end products of favoured kinetic 

routes. 

The pyrosynthesis of fluorene is an interesting case to study of the four P AH. 

Pyrosynthesized fluorene accounts for 26.5% of the total amount of fluorene in the 

exhaust. Fluorene was not predicted as a thermodynamically stable P AH at high 

temperatures by Stein ( 1985) owing to the ring strain that the methylene group 

bridging the two benzene rings introduces into the structure. A kinetic route to the 

formation of fluorene via carbene identified from early coal tar pyrolysis studies has 

been proposed (Wiersum, 1992) and the possibility exists that fluorene may occupy a 

position in some favoured kinetic pathway during diesel combustion. On the other 

hand alkylated fluorenes are abundant in diesel fuel and dealkylation reactions may 

account for the pyrosynthesized fluorene. 

The small contribution of B[ a ]P from pyrosynthetic sources to the emissions 

is also an interesting result. Unlike fluorene, no alkyl-substituted B[a]P was detected 

in diesel fuel. The pyrosynthesized B[a]P cannot readily be explained by dealkylation 

reactions. Kinetic routes to the formation ofB[a]P have been identified (Badger and 

Novotny, 1963) from pyrolysis studies and may also occur during diesel combustion. 

For the two remaining PAH, pyrene and naphthalene, the pyrosynthetic 

contribution for these PAH to the exhaust amounted to 37% and 72% respectively. 

Both P AH were identified as the most thermodynamically stable isomers of this C/H 

ratio at high temperature equilibrium by Stein (1985). Both PAH also featured in a 

thermodynamically favoured pathway to the formation of large P AH through the 

addition of C2 and C4 species, in a mechanism similar to that proposed by Frenklach 

(1985). It is possible that the stability of these PAH and their presence in kinetic 

pathways to the formation of larger P AH molecules influence the extent to which 

they are pyrosynthesized during combustion. However, alkyl-derivatives of these 

PAH in diesel fuel are relatively abundant (especially alkylnaphthalenes). The loss of 

the alkyl substituent from these compounds (dealkylation) represents a facile route to 

the formation ofthe parent PAH during combustion. 
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The dealkylation of alkyi-P AH molecules during diesel combustion has been 

observed by a number of researchers (Trier et al., 1990; Herlan, 1978; Barbella et al., 

1989). Recently, research at Plymouth has proved unequivocally, that a dealkylation 

pathway operates during diesel combustion (Rhead and Pemberton 1994). In this 

research, the combustion of radiolabelled 14C-1-methylnaphthalene produced 14C­

naphthalene as a product. 

Alkyi-PAH are present in diesel fuel in much greater concentrations than the 

parent P AH. A dealkylation pathway may, therefore, have a substantial impact on 

the emissions of the parent molecule. The relative ease of dealkylation has been 

linked to the reactivity of the position of the aromatic ring, at the point of substitution 

(Smith and Savage, 1991). This implies that certain alkyi-PAH isomers may prove 

more susceptible to dealkylation than others. Limited evidence to support this theory 

exists (see Chapter 4.). The importance of a dealkylation pathway and its mode of 

operation, are reviewed more fully in Chapter 4. 

Of the PAH investigated in this research, with the exception of B[a]P, a 

dealkylation pathway during combustion could have accounted for the observed 

amount of pyrosynthesized naphthalene, fluorene and pyrene. A mass balance 

approach to the problem gives an indication of the rates of conversion of alkyi-P AH, 

that are required to account for the amount of pyrosynthesized P AH. The calculation 

assumes that all mono- and di-substituted P AH may contribute to the formation of 

the parent molecule by dealkylation. Tri-substituted species, such as the 

trimethylnaphthalenes have not been included in the mass balance since it is unlikely 

that the three alkyl side chains will be removed simultaneously to produce the parent 

PAH. 

Using these assumptions, a simple calculation establishes that, conversion 

rates of 3.8% for alkylnaphthalenes and "'6.0% for alkylfluorenes are required to 

account for the amount of the pyrosynthesized parent P AH. The required rate of 

conversion for the alkylpyrenes is >50% and is considerably greater than for either 

naphthalene or fluorene. This reflects the lower abundance of alkylpyrenes in diesel 

fuel relative to the parent P AH and the greater pyrosynthesis of pyrene during 

combustion. It also suggests that the ease with which pyrene undergoes dealkylation 

is necessarily greater than for naphthalene and fluorene, possibly owing to reduced 
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alkyl-aryl bond energies in larger aromatic structures, or greater reactivity at the 

point of alkyl substitution (refer to section 4.3). 

The total mass of alkylpyrenes (methylpyrenes and C2-pyrenes) in diesel fuel 

was "'400ppm. Quantification was performed by GC/MS integration of the molecular 

ion peaks ofmass 216 and 230 from a fraction of diesel fuel containing four and five 

ring aromatics (Figure 3. 7). Methylpyrenes were identified from by comparison of 

their mass spectra with a standard reference spectra (National Bureau of Standards, 

matches were 83% for 1-MePy, 89% for 2-MePy and 93% for 4-MePy) and from 

GC retention index data (Lee et al., 1979). MePy standards are not commercially 

available. No methylfluoranthene isomers were detected in the fuel which may have 

complicated the identification of the methylpyrenes owing to their similar mass 

spectra. It was assumed that all isomers of molecular mass 230, were isomers of 

dimethylpyrene and not dimethylfluoranthene isomers. 

No alkylated B[cx]P have been detected in diesel fuel in this research. It 

cannot be concluded therefore, whether or not sufficient alkyl-substituted B[cx]Ps 

exists to account for the small degree of pyrosynthesis observed experimentally for 

this compound. It should be noted however, that an experimental error of +/-10%, 

may reduce the observed pyrosynthesis ofB[cx]P to <10% and combustion reactions 

other than dealkylation may account for this small degree of pyrosynthesis. 

3.4.2.2 P AB Survival 

Fuel survival in diesel combustion may occur through a variety of physical 

processes. Primarily, these consist of fuel injected late in the cycle when cylinder 

temperatures are low, and fuel which experiences oxygen deficient environments in 

the combustion chamber (Section 1.9.1). In both situations, fuel molecules can by­

pass the high temperature flame zone and escape to the exhaust intact. Fuel survival 

has been regarded as a physical process whereby droplets of fuel in low temperature, 

oxygen deficient environments escape unscathed to the exhaust. If this were the 

case, the extent of survival for all P AH would be constant, regardless of the size, 

stability or chemical reactivity of individual molecules. The current results, however, 

demonstrate that the extent of survival of specific P AH is not constant. Indeed, there 

is a 10-fold increase in the rate of survival of fluorene relative to B[cx]P. 
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The rates of survival for each of the four P AH are shown in Table 3.4 and represent 

the extent to which these P AH survive combustion in the Prima engine at these 

engine conditions. 

Table 3.4 Survival ofPAH 

PAD Engine Run 1 Engine run 2 
Survival(%) Survival(%) 

[9-14C]fluorene 0.77 0.97 
[I ,4,5,8-14C]naphthalene 0.47 0.50* 

r4,5,9, I 0- 14Clpvrene 0.16 0.18 
[9, JOYC]B[a]P 0.04 

* Rhead and Pemberton (1994) 
Figures are averages of duplicate engine runs with the exception ofB[a]P 

The large variation in individual P AH survivals, suggests that the physical and 

chemical properties of individual P AH influence the extent to which they survive 

combustion. The thermodynamic stability of PAH is an obvious candidate. 

However, the experimentally determined survivals for the P AH contradict the order 

of survival predicted by thermodynamics (Stein, 1991 ). It was concluded therefore, 

that some additional factor was controlling the extent of survival of P AH during 

diesel combustion. 

P AH that by-pass a high temperature flame zone and hence have the 

possibility of surviving combustion, remain vulnerable to chemical attack from a wide 

range of chemically reactive species. Owing to the excess of air in the cylinder the 

primary attack will involve oxidative species such as molecular oxygen, OH and H 

(Santoro and Glassman, 1979; Prado and Lahaye, 1983; Barnard & Bradly, 1985). 

These species abstract H atoms to yield aryl radicals, which rapidly undergo further 

reactions. The ability of a molecule to resist oxidative attack will, in part, determine 

the extent to which it survives combustion. It follows that P AH which are less 

reactive toward the initial attacking species will have a greater chance of surviving. 

Combustion reactions can be interpreted like any other chemical reaction 

involving two or more reactant species which combine chemically to produce 

products. For two species to react and form products, their atomic or molecular 

orbitals must interact in some way to form new chemical bonds. The greatest 
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contribution to the stability of the product is made by the reaction of the frontier 

orbitals of the two reactants (Fiemming, 1978). For P AH chemistry, the principal 

reacting orbitals are those created by the delocalised C2pz 1t-electrons. The extent to 

which P AH oxidation proceeds and the rate of reaction, will be determined by the 

ease of interaction between the electronic orbitals of the reactants. This in turn is 

dependent on the distribution and relative spacing of the electronic orbitals in the 

attacking species relative to the P AH 1t-molecular orbitals. It is reasonable to 

suppose that the ability of individual P AH molecules to resist oxidation will be 

influenced by the structure of their 1t-molecular orbitals. 

Various theories have been developed to explain qualitatively and 

quantitatively the properties of molecules in terms of their molecular orbitals. The 

most used include, perturbation molecular orbital theory (PMO), self consistent field 

molecular orbital theory (SCF-MO) and the Huckel molecular orbital theory (Dewar 

and Dougherty, 1969; Salem, 1974, ). Of these, Huckel molecular orbital theory 

gives good qualitative and quantitative information for conjugated 1t-electron systems 

such as those found in P AH molecules, when compared with experimental values 

(Borden, 1975). Consequently, Huckel MO theory was used in this research to 

calculate 1t-MO parameters for each of the four P AH investigated. 

Huckel MO parameters were calculated using a MO calculator, computer 

software package (Trinity Software Ltd). The package allowed computation of the 

total 1t-electron energy of the system (the delocalization energy), molecular orbital 

energy levels, bond orders and bond charges, and 1t-orbital coefficients. As an 

illustration, the computed MO energy levels for naphthalene are shown in Figure 3.8 

Naphthalene, like all even altemant hydrocarbons, possesses a closed shell of 

electrons. Energy levels are defined in terms of the Resonance Integral (~) which is 

the energy associated with the electron density in the region of overlap between two 

nuclei. The MO energy levels are distributed symmetrically around a zero energy 

level. This is the energy associated with an isolated electron in the atomic orbital of 

an isolated atom. In the case of carbon, it corresponds to the energy of an electron in 

a C2p orbital and is called the coulomb integral (a). Both a and~ are constant for all 

C-C interactions. 
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Fig 3.8 Huckel MO energy levels for naphthalene (in units of~) 

The two most important orbitals with regard to chemical reactions are the 

highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular 

orbital (LUMO) of the reacting species (Flemming, 1978). At the high temperatures 

involved in diesel combustion, radical species are most abundant in the combustion 

chamber (especially 0", OH and H) and hence radical reactions dominate the 

combustion process. The initial attack on aromatic molecules during combustion are, 

therefore, likely to be dominated by reactions with radical species. The most 

important reaction between radicals and aromatic rings involve the LUMO of the 

aromatic nucleus and the singly occupied molecular orbital (SOMO) of the radical, 

since the interaction between these two molecular orbitals has the greatest energy 

lowering potential with regard to the newly formed M Os of the product (Flemming, 

1978). The relative energy spacing between these orbitals will determine the rate at 
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which the reaction proceeds (i.e. the kinetics of the reaction). Reactions will occur 

most rapidly for small differences in energy between the orbitals. 

The HOMO and LUMO energy levels, calculated from Huckel MO theory, 

for each of three P AH investigated in this research (and for naphthalene) are shown 

in Table 3.5. The relationship between PAH survival and the energy of the HOMO, 

the LUMO and the energy gap between the two was investigated and is illustrated 

graphically in Figures 3.9a to c. Of the three parameters, the best correlation (r2 = 

0.998) was observed with the LUMO (Figure 3.9a). The overall correlation between 

PAH survival and both the HOMO energy level and the HOMO-LUMO energy gap 

was poor. However, when the data for fluorene (the only non-altemant PAH 

investigated) was excluded from the correlation, and only the data for the remaining 

even-alternant P AH were considered, the correlation with both the HOMO energy 

level and the energy gap between the HOMO and LUMO is improved considerably 

(Fig. 3.9b and c, r = 0.995 for both). 

Table 3.5 PAH survival and HOMO and LUMO energy 

PAH Survival HOMO energy LUMO energy HOMO-LUMO 
(%) level level energy 2ap 

Fl 0.87 cx-0.181~ (X+ 0.812~ 0.993~ 
Np 0.47"' (X -0.618~ (X+ 0.618~ 1.236~ 

Py 0.17 (X -0.445~ (X+ 0.445~ 0.890~ 

B(a]P 0.04 (X -0.371~ cx+0371~ 0.742~ 

* Rhead and Pemberton, ( 1994) 

The high correlation between P AH survival and LUMO energy level suggests 

that the dominant factor controlling the extent to which P AH survive combustion 

under these engine conditions is the ease with which an attacking species can react 

with the LUMO of the PAH. In Huckel theory, the LUMO is a measure of the 

electron affinity of a molecule. The reaction with the LUMO must therefore include 

electron donation by the attacking species if the observed correlation is to be more 

than a coincidence. For PAH with LUMOs of higher energy the ease of this 

interaction is reduced since for these P AH the reaction pathway has a higher energy 
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transition state (Flemrning, 1978). The reactivity of the P AH is thus reduced and is 

reflected in the greater tendency for these P AH to survive combustion. 
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The results from the current research suggest that it is the kinetic stability of P AH as 

opposed to their thermodynamic stability that is the controlling factor in determining 

the extent to which P AH present in diesel fuel survive the diesel combustion process. 

It is worth noting that although this research has identified a relationship 

between P AH survival and molecular orbital structure, they contradict the view of 

Stein (1991), who pointed out a lack of '~my intrinsic relationship between whole 

molecule properties" such as the HOMO and LUMO energy levels '~.nd the reactivity 

of specific sites in the molecule." 

3.4.2.3 Implications of the current results for P AH emissions from diesel engines 

The results from the current study suggest that for the Perkins Prima engine 

the tendency is for high molecular weight P AH (those with a lower energy LUMO) 

to be combusted more efficiently than the low molecular weight P AH. This contrasts 

with the results of Williams et a/.(1989). In their research using a 41 DI Perkins 
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diesel engine, it was found that the engine burned lower molecular weight P AH (2 & 

3-rings) more efficiently than higher molecular weight PAH (4 & 5 rings). 

The trend in P AH survivals, identified in this research has implications for the 

carcinogenicity of diesel exhaust emissions. The results imply that the more 

biologically active P AH species will tend to be consumed more efficiently during 

combustion than other less active P AH, since these are, in general, the larger and 

more chemically reactive P AH. The contribution of P AH to the carcinogenicity of 

diesel exhaust may therefore be reduced. However, owing to the greater chemical 

reactivity of the larger P AH molecules, the contribution to the carcinogenicity of 

diesel exhaust from their oxidised derivatives (e.g. 1-nitropyrene) may be increased. 

Scintillation assay of the polar exhaust fractions demonstrated that no increase in the 

radioactivity present in the B[a]P polars relative to the other PAH had occurred 

(Table 3.6). 

Table 3.6 Radioactivity present in the polar fraction of diesel emissions 

Fluorene Pyrene B[a]P 
Radioactivity 0.006 0.008 0.0046 
(%)in polars 

3.4.3 Diesel combustion of 14C-n-Hexadecane (n-Ct6) 

Straight chain n-alkanes are the most abundant class of compound in diesel 

fuel. The n-alkane distribution of diesel fuel ranges from n-C9 to approximately 

n-C30, with the distribution peaking at around n-C1s (Figure 3.11). The behaviour of 

aliphatic molecules and especially the n-alkanes, is therefore of interest since these 

species are the most abundant hydrocarbons in diesel emissions. 

1 08jlCi and 1 07jlCi of 14C-hexadecane were introduced into the Prima in 

duplicate engine runs. The exhaust samples were fractionated into aliphatics, 

aromatics and polars by silica column chromatography. The radioactivity present in 

each fraction was determined by liquid scintillation assay and is given in Table 3.7. 
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Table 3. 7 Distribution of radioactivity in 14C-n-hexadecane exhaust 

Survival (% of original radioactivity) 
Aliphatics Aromatics Polars 

( 14C-n-hexadecane) 
Duplicate 1 0.3 0.014 0.019 
Duplicate 2 0.4 0.018 O.OI6 

Radio-GC analysis demonstrated a single radio-peak in the aliphatic fraction of the 

exhaust (Figure 3 .I 0). The extent of survival of the 14C-n-hexadecane was 

determined by liquid scintillation assay of the aliphatic fraction of the exhaust and 

was determined as 0.3% and 0.4% for the two duplicate runs respectively. Small 

amounts of radioactivity were found in the aromatic and polar fractions of the 

exhaust sample. These survivals are similar to those quoted by Williams et al. 

(1989), ofbetween O.I% and I% for hydrocarbons ranging from n-C12 to n-C3o, but 

again, that research was unable to distinguish between the various sources of 

hydrocarbons in the emissions. 

The specific activity of 14C-n-hexadecane in the fuel and in the emissions was 

used to assess the extent of pyrosynthesis of n-hexadecane in diesel combustion. The 

concentration of n-C16 in the fuel, was determined as II,418ppm by GC analysis of 

unfractionated diesel. The specific activity of the radiochemical was substantially 

reduced from 250!-LCilmg as received, to 2.3!-LCilmg and 1.8!-LCilmg in the fuel by 

dilution with nonlabelled n-hexadecane in the fuel. This compares with a specific 

activity of 14C-n-hexadecane in the exhaust of 0. 75!-LCi/mg and 0.6!-LCilmg 

respectively. The variation between the specific activities, indicates that a substantial 

proportion (two thirds) of n-hexadecane in the emissions is derived from reactions 

occurring in the combustion chamber. 

There is no obvious explanation for the construction of n-alkanes from 

smaller radical units. A more plausible explanation involves the formation of these 

species from the cracking of larger aliphatic species present in the fuel. Combustion 

of aliphatic fuels is reported to start with the thermal cracking of the higher molecular 

weight hydrocarbons to lower boiling point species. 
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Figure 3.10 Radio-GC analysis of 14C-hexadecane exhaust sample showing 

a) FID response and b) radioactivity chromatogram 
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The final products of this process are small (C2 and C4) acetylenes and olefins 

(Crittenden and Long, 1973). Tosaka (1989) pyrolysed a series of n-alkanes and 

small aromatics in an inert nitrogen atmosphere. The authors reported the formation 

of a range of lighter n-alkanes and alkenes from the cracking of n-alkanes. 

Further evidence for the formation of low molecular weight aliphatics from 

the thermal cracking of higher molecular weight species present in diesel fuel, is 

manifest in the distribution of the n-alkanes in diesel fuel relative to their distribution 

in the exhaust. A clear skew in the distribution, from the maximum n-alkane in the 

fuel (n-C 16) to the maximum n-alkane in the exhaust emissions (n-C 15) is visible 

(Figure 3.11 ). 

The relative increase in the abundance of light n-alkanes in the emissions 

suggests that they are created during combustion most probably as a result of the 

thermal cracking of larger aliphatic compounds in the fuel.. The effect cannot be 

explained in terms of evaporative losses of the lighter n-alkanes during the work-up 

procedure since this would have the effect of concentrating the heavier n-alkanes in 

the exhaust at the expense of the lighter compounds. Nelson (1989) observed the 

same effect in research sampling diesel emissions with an XAD-2 trap. The authors 

came to a similar conclusion that gas-phase cracking reactions were responsible for 

producing shorter chain material. 

The findings of the present research are in direct contrast to those reported by 

Williams et al. (1989). In this research the authors described a '}>referential burn-out 

of lower molecular weight (aliphatic) compounds." Their research was performed 

using a 41 DI diesel engine. The exhaust was sampled directly with a probe and was 

passed through a filter maintained at 52°C which trapped the exhaust particulates. It 

is well documented in the literature however, that a considerable proportion of 

exhaust components with a relatively high molecular weight (e.g. 200-250 a.m.u), are 

present in the exhaust gas stream in the vapour phase and not adsorbed to particulate 

material in the exhaust (Lane, 1989). It seems likely therefore, that the observations 

described by Williams et al. ( 1989) are at least in part the result of an inefficient 

sampling system. 
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Figure 3.11 Gas chromatograms of the aliphatic fractions of a) diesel fuel and 

b) diesel exhaust illustrating a shift in the relative distribution of n-alkanes to 

lower molecular weight species in the exhaust. 
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Chapter4 

DIESEL COMBUSTION of ALKYL-POLYCYCLIC 

AROMATIC HYDROCARBONS 



4.1 Introduction 

Alkyi-PAH are major aromatic constituents of diesel fuel. Alkyi-PAH that 

are most abundant are especially methyl-substituted naphthalenes, phenanthrenes, 

dibenzothiophenes and fluorenes. P AH substituted with ethyl and propyl groups are 

also present (Table 4.2}. The chemical and biological reactions of alkyl-PAH may 

differ substantially from their parent PAH. For example, it has been suggested that 

there is a greater tendency for aromatic molecules with alkyl side chains to form 

larger condensed aromatic structures during pyrolysis, which, in their turn are 

considered precursors to the formation of soot (Crittenden and Long, 1973; Bittner 

and Howard, 1981; Harris et al., 1988; Harnins et al., 1990}. In a recent study, 

Ciajolo et al. ( 1992) investigated the combustion of hexadecane and hexadecane/a­

methylnaphthalene and reported an increase in the emission of P AH, higher molecular 

weight species and soot from combustion of hexadecane spiked with a­

methylnaphthalene relative to hexadecane alone. Reactions of alkylated monocyclic 

aromatic compounds have been studied extensively in simple flame and pyrolysis 

studies (Badger and Spotswood, 1960; Bittner and Howard, 1981; Hamins et al., 

1990; Harris et al., 1988; Smith and Savage, 1991; Freund et al., 1990). Reactions 

of alkylated polyaromatics however, have received comparatively little attention even 

though differences in the pyrolysis pathways and kinetics between alkylated 

monocyclic and alkylated polycyclic aromatic compounds have been reported 

(Freund et al., 1990; Smith and Savage, 1991}. 

The carcinogenicity of alkyi-PAH may also differ from that of the parent 

P AH. Glatt et al. ( 1990) proposed that certain alkylated P AH may be as strong as or 

even more mutagenic and carcinogenic than the parent molecule. Longwell (1982) 

demonstrated the carcinogenicity of methylphenanthrenes. In view of their 

abundance in diesel fuel, the combined carcinogenicity of alkyi-PAH species, may be 

more significant than that of more highly carcinogenic but less abundant PAH (e.g. 

benzo(a)pyrene typically <1ppm in diesel fuel}. Yu and Rites (1981) concluded that 

methylphenanthrenes and methylfluorenes are the major mutagens in diesel exhaust 

rather than B[a]P. 

Evidence from pyrolysis studies has shown that pyrolysis of alkyl-aromatics 

yields the parent aromatics as products and it has been proposed that dealkylation of 
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fuel aromatics may take place in conditions of partial oxidation and at lower 

temperatures in combustion systems (Longwell, 1982; Herlan, 1978). With one or 

two exceptions, the specificity of this dealkylation process, in terms of the size of the 

alkyl group, the position of substitution on the aromatic nucleus and the size of the 

aromatic nucleus, has not been investigated. Smith and Savage ( 1991) pyrolysed a 

series of alkylated-PAH and found two major reaction pathways which resulted in 

cleavage of the aryl-alkyl bond, and cleavage of carbon-carbon bonds in the alkyl side 

chain, respectively. The preferred reaction was not affected by the length of the alkyl 

side chain but by the position of substitution in the aromatic molecule. This effect 

was correlated with reactivity indices for the point of substitution on the molecule 

and allowed predictions to be made regarding the ease of aryl-alkyl bond cleavage for 

other alkyi-PAH species. 

It has been assumed that dealkylation is likely to occur in the extreme 

conditions of temperature and pressure encountered in a diesel combustion chamber. 

Various authors have noticed a decrease in the abundance of methyl substituted P AH 

relative to the parent non-substituted P AH in diesel exhaust (Barbell a et al., 1991; 

Trier et al., 1991). This may implicate a dealkylation pathway during the diesel 

combustion process. Alternatively, it may be a consequence of the greater 

combustibility of alkyaromatics relative to the non-substituted aromatics. A 

dealkylation pathway may impact on the rate of soot formation from fuels if a 

difference in the sooting tendency between alkyl-aromatics and non-substituted 

aromatics exists. Similarly, a dealkylation pathway may have an effect on the 

mutagenicity of diesel exhaust if a significant difference in toxicity between the parent 

P AH and its alkylated derivatives can be proved. 

In the current experiment, a diesel fuel with a low aromatic content (7.0%) 

spiked with 2 and 3-ethylphenanthrene (2-EtPa, 0.28%; and 3-EtPa, 3.7%), was 

combusted in a 2L direct injection Perkins Prima diesel engine. The fuel contained 

less than 0.1% 3-ringed PAH (triaromatics) and was used to enable expected 

products of combustion, (phenanthrene and/or methylphenanthrene) to be identified 

more clearly. EtPa has not been detected in the diesel fuel used in this research, 

although, I and 2-ethylnaphthalenes (I and 2-EtNp) are present in substantial 

quantities (I460ppm), as are methylethylnaphthalenes (4,423 ppm total). 
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4.2 Experimental 

4.2.1 Modification of fuel supply lines 

The fuel lines to the engine were modified to enable the engine to be run on 

the test fuel. This was achieved by inserting a 51 reservoir, which contained the test 

fuel, in the main fuel line connected by two three-way valves. The valves were 

switched manually to form a closed system, isolated from the main fuel supply, in 

which the test fuel circulated. The reservoir was positioned as close to the engine as 

possible to minimise the volume of residual fuel left in the fuel lines and the engine. 

In practise the volume of residual A2 fuel was approximately 800ml, the greatest 

contribution coming from the fuel filter. 

4.2.2 Test fuel specifications 

The standard diesel fuel used was an A2 diesel fuel, the specifications of 

which are presented in Table 2.1. The specifications of the test fuel used are 

presented in Table 4.1. The test fuel has been used in this research primarily to 

facilitate the identification of products of combustion. The fuel specifications 

presented in Table 4.1 however, shows this fuel to be a 't:lean diesel fuel" blended to 

produce a sulphur content of 0.015%/m, an aromatic content of 7%/v, a cetane 

number of 63.6 and a fuel density of 0.8145Kg!l. The sulphur content meets the 

1996 sulphur limit for diesel fuels, whilst the fuel density, aromatics content and 

cetane number, the main additional factors influencing diesel emissions, are at values 

suggested by recent research for a '1ow emissions" fuel (Betts et al., 1993; Floysand 

eta!., 1993). 

The low density of the test fuel has been achieved by removing the higher molecular 

weight species normally present in diesel fuel. The composition of the test fuel in 

comparison with that of the standard A2 diesel with regard to the distribution of 

n-alkanes and aromatics reflects this. Thus the n-alkane series shows a maximum at 

n-C14 compared to a maximum at n-C16 for the standard fuel, whilst the aromatic 

content of the test fuel is much reduced and consists mainly of monoaromatics 

(6.45%). Naphthalenes are the main PAH species in the fuel, three ringed PAH are 

present only as a small percentage of the overall diesel. 
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Table 4.1. Test fuel specifications 

Diesel fuel reference number: G091/1030 
Density at 1 soc 0.8145 Kg/1 
Sulphur content 0.0510 %m (510 ppm) 
Kinematic viscosity at 4QOC 2.9 eSt 
Kinematic viscosity at sooc ) 2.39 eSt 
Flash point (PM closed) 98"C 
Cloud point -1S"C 
CFPP -20"C 
SFPP ----
Pour point ----
Wax content ----
Melting point of wax ----
Carbon residue (Con) on 10% residue ----
Distillation (IP123) ----
mP 216"C 
5% volume recovered at 235"C 
10% volume recovered at 240"C 
20% volume recovered at 2SO"C 
30% volume recovered at 256"C 
40% volume recovered at 261"C 
50% volume recovered at 267"C 
60% volume recovered at 272"C 
70% volume recovered at 279"C 
80% volume recovered at 288"C 
90% volume recovered at 303"L 

95% volume recovered at 317"L 

FBP 327"L 

Distillate/ Residue/ Loss 97.5 %VoV 1.5 %VoV 
O%Vol 

Cetane number (D613) 63.6 
Hydrogen content 14.0 %mass 
Carbon content 86.2 %mass 
Calorific value (calculated): 

Net 43.16 MJ/Kg 
Gross 46.07 MJ/Kg 

Aromatics content (IP391): 
Mono 6.45 %vol 
Di 0.46 %vol 
Tri <0.01 %vol 

Fuel analysis performed by BP Fuels Ltd, Sunbury 
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Gas chromatograms of the whole fuel and of the aromatic fraction isolated by 

normal-phase HPLC using amino bonded silica are shown in Figure 4.1 a and b. The 

concentration of individual PAH in the fuel are shown in Table 4.2. Their 

concentration in the test fuel during sampling is also shown and demonstrates the 

extent to which the test fuel was contaminated with P AH from the standard diesel 

whilst sampling the exhaust. 

4.2.3 Diesel exhaust sampling procedure 

The engine was conditioned for 1 hour at full power on the standard A2 

diesel before being conditioned for a further 1 5 minutes at the test conditions of 

3 OOOrpm and I ON m on the test fuel. Previous research had indicated that 

pyrosynthetic pathways, were most prevalent at conditions of low load and high 

speed (Collier et al., 1994). These conditions were, therefore, chosen for the initial 

experiment. To minimise contamination of the test fuel with triaromatics from the 

standard diesel fuel, the fuel return lines were diverted to waste for several minutes 

during conditioning on the test fuel until there was no visible trace of the standard 

diesel (to which red dye had been added) in the return line. This required the system 

to be purged with approximately 2L of the test fuel. The fuel return line was then 

diverted back into the auxiliary reservoir. Even with these precautions some dilution 

of the test fuel with the standard diesel occurred which increased the concentration of 

P AH in the test fuel during sampling. The increase was most pronounced for P AH 

which were at the lowest concentration in the test fuel i.e. dibenzothiophenes and 

phenanthrenes (see Table 4.2). 

The sampling procedure consisted of collecting five exhaust samples from the 

engine operating on the test fuel without the 3-EtPa spike and five exhaust samples 

collected with the engine operating on the spiked test fuel. The purpose of the first 

five samples was to establish a baseline for the emissions from the unspiked fuel with 

which to compare the emissions from the fuel with the EtPa spike. 
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Table 4.2 Concentration ofPAH in diesel fuel G091/1030 

PAH Conc'n in test fuel Conc'n in test fuel 
(ppm) during sampling (ppm) 

Naphthalene (Np) 144 238 
2-MeNp 327 620 
1-MeNp 259 460 
1 I 2-EtNp 67 !SS 
2,6 I 2,7-diMeNp 187 481 
1,3 and 1,6 I 1,7-diMeNp 404 878 
1,4 I 2,3 and 1,5-diMeNp 126 284 
1,2-diMeNp 40 98 
1,3,7-triMeNp 44 152 
1,3,6-triMeNp 71 211 
1,3,5 I 1,4,6-triMeNp 48 176 
2,3,6-triMeNp 48 112 
1,2,6 I 1,6,7-triMeNp 64 182 
1 ,2, 4-triMeNp 9 19 
1 ,2,5-triMeNp 27 58 
Me-Et-Nps* 10 16 
Me-Et-Nps* 16 35 
Me-Et-Nps* 9 38 
Me-Et-Nps* 54 168 
Me-Et-Nps* 12 95 
Fluorene (FI) 17 59 
9-MeFI s 29 
2-MeFI 11 53 
1-MeFI 20 76 
diMeFI (total) 35 297 
Dibenzothiophene (DBT) 
4-MeDBT 13 43 
2 I 3-MeDBT 7 22 
1-MeDBT s 12 
diMeDBT (total) 21 97 
Phenanthrene(Pa) 21 94 
2 I 3-MePa 13 132 
9 I 4-MePa 17 117 
diMePa (total) <LOD** 274 
3-EtPa spike --- 37,000 
2-EtPa spike --- 280 

Key: 1 I 2 indicates coeluting isomers not distinguishable. 
1 and 2 indicates isomers identified but not quantified individually 
* isomer not identified 
* * below limits of detection 
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Figure 4.1 Gas chromatograms of a) aromatic fraction of test fuel illustrating 

the reduced concentration of triaromatics and b) unfractionated fuel 

133 



Three fuel samples were collected at the beginning, middle and end of the two sets of 

samples to verifY the homogeneity of the fuel in terms of concentration of the spike, 

which was determined as 3.7% for 3-EtPa and 0.28% for 2-EtPa in each fuel sample 

by GC analysis. The exhaust sampling time was 1 minute. Fuel consumption during 

the experiment was determined using a 400ml graduated measuring burette. 

4.2.4 Synthesis of 2 and 3-ethylphenanthrene 

A commercial source of ethyl phenanthrene could not be found. It is possible 

to obtain either the 2- or 3-EtPa isomers in a pure form following the method of 

Haworth (1933). The synthetic procedure involves several stages and the final yield 

is low. Approximately 80g of a mixture of 2 and 3-EtPa was synthesised in a two 

step procedure. The first stage consisted of a Friedel Crafts acylation of 

phenanthrene following the method of Mossetig and Van de Kemp (1930). The 

second stage comprised a Wolf-Kishner reduction (Todd, 1948). 

4.2.4.1 Friedei-Crafts acylation of phenanthrene 

Phenanthrene (1.124 mols) was dissolved in nitrobenzene (6. 7 mols) in a 

3-necked reaction vessel equipped with a dropping funnel and mechanical stirrer. 

Acetylchloride (1.52 mols) was added to the solution whilst constantly stirring. The 

aluminium chloride catalyst (1.5 mols) was added in 4 aliquot's over a period of 90 

minutes. The reaction mixture was kept below 0°C throughout. At the end of this 

period a capillary tube was inserted into the reaction mixture and the pressure was 

reduced in the reaction vessel. Copious amounts of HCl gas were produced. After 

no more gas was evolved excess crushed ice was added to the reaction mixture and 

the nitrobenzene layer was separated and washed with two aliquots of dilute 

hydrochloric acid and 5% sodium carbonate solution ( 1 OOml) and finally distilled 

water. The acetylphenanthrene was isolated from the nitrobenzene by reduced 

pressure distillation. The acetyl phenanthrene distilled at 180°C at 1 mmHg and was 

collected in around bottomed flask. 

The product was recrystallized in hot ethanol. Fine needle shaped white 

crystals (m. pt. 133-138°C) were collected by filtration and dried. Infra-red 

spectroscopy of the crystals indicated that 2-acetylphenanthrene (m. pt. 143°C, 
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Dictionary of Organic Compounds, p53) was the maJor Isomer present. The 

remaining solvent was then rotary evaporated and a large amount of white powder 

(m. pt. 63-65°C) was obtained. It was assumed that this was the more soluble 

3-acetylphenanthrene isomer (m. pt. 73°C, Dictionary of Organic Compounds, p53). 

To further verifY the identity of the products a mixture of 2 & 3-acetylphenanthrene 

(1 0% and 90% respectively) was purchased from Aldrich. Retention indices and 

mass spectral data from GC-FID and GC/MS analysis confirmed the identity of the 

products as 2 and 3-acetylphenanthrene. 2-acetylphenanthrene was obtained in a 

final purity of >99% whilst 3-acetylphenanthrene was obtained in a yield of 92%, 

with the remainder being the 2-acetylphenanthrene. 

4.2.4.2 WolfT-Kishner reduction of acetylphenanthrene 

The acetylphenanthrene from the previous step was reduced to the 

corresponding ethylphenanthrene via a Wolf-Kishner reduction (Huang-Minlon 

modification) following the method ofVogel, (5th ed., Ch. IV). 3-acetylphenanthrene 

(0.17 mols) was dissolved in triethylene glycol (1.35 mols) in round bottomed flask 

(1L) equipped with a reflux condenser. Potassium hydroxide (0.4 mols) and 

hydrazine (0.37 mols) were added to the mixture which was refluxed for 3 hours. A 

small amount of a yellow precipitate formed rapidly and subsequently disappeared 

after an hour. Presumably, this was the less soluble hydrazone formed from the small 

amount of the 2-acetylphenanthrene present in the original mixture. The mixture was 

allowed to cool and was then extracted with ether (3 x lOOml). The ethereal extract 

was washed with 6M hydrochloric acid ( 2 x 50ml) and once with distilled water 

(50ml). The solution was then dried with anhydrous sodium sulphate, filtered and the 

ether removed by rotary evaporation to yield approximately 30g of fluorescent white 

leaflets (m. pt. 65-67°C) 

The final purity of the 3-EtPa was determined by GC analysis as 93% with the 

remainder being 2-EtPa (Figure 4.2a). The identity of the product was confirmed by 

infra-red spectroscopy and mass-spectroscopy. The I.R. spectra of the product is 

shown in Figure 4.3. The absence of a strong absorbance band at 1680cm·1 supports 

the fact that the carbonyl group has been completely reduced. Strong absorbance 

bands at 2850cm·1 to 2980cm·1
, characteristic of aliphatic CH stretching vibrations, 
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confirms the reduction of the carbonyl (CO) to a methylene (CH2) group. Similar 

conclusions can be made from mass spectral data. The molecular ion at rn/z 206 is 

clearly visible whilst fragment ions at rn/z 191 and rn/z 177 are characteristic of loss 

of CH/ and C2H5+ respectively (Figure 4.2b). 

4.3 Results 

3-EtPa was spiked in the fuel at a concentration of 3. 7% and 2-EtPa at a 

concentration of 0.28%. The total recoveries after combustion for these PAH 

amounted to 0.35% and 0.3% respectively. These are similar to the recoveries of 

other PAH determined at Plymouth (Collier et al., 1994). 

Evidence for the dealkylation of EtPa in this research would manifest itself as 

a relative increase in the emission of phenanthrene resulting from the combustion of a 

fuel spiked with EtPa, compared to the emission of phenanthrene ~om the 

combustion of the non-spiked fuel. The variation in phenanthrene emissions from the 

spiked and unspiked fuel were determined by ratioing the integrated areas of the 

phenanthrene molecular ion against that of the molecular ion for the d10-phenanthrene 

internal standard (d10-Pa I.S.) in each sample. Statistical analysis was performed on 

the two sets of data to establish any variation in emission rates. No significant 

variation in the eniission of phenanthrene between the two sets of exhaust samples 

was observed and it was concluded that for 2 and 3-EtPa a dealkylation pathway 

does not exist or at least is not significant during diesel combustion at these engine 

conditions. 

The same statistical procedure was applied to the emission of 

methylphenanthrenes (MePa). Fig. 4.4a and b show the integrated molecular ions for 

the MePa isomers in exhaust samples from spiked and non-spiked fuel. Individual 

isomers were identified using retention indices which agreed well with literature data 

(Vasillaros et al., 1982) and from coinjection with standards. The order of elution 

was identified as 2-MePa, 3-MePa, 9-MePa and 4-MePa coeluted, and finally 

1-MePa. 
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Figure 4.2 a) Gas chromatogram of2- and 3-EtPa showing purity and b) mass 

spectrum of 3-EtPa 

137 



....... 
w 
00 

Figure 4.3 Infra-red absorbance spectrum of the mixture of 2- & 3-ethylphenanthrene 

I 2 

I 

I 

,... 
V 

Jf"\ .. ~ 

' ~ , ... 

I 

' 
! 
i 

.I 



A visual inspection of Figure 4.4 suggests that there has been an increase in 

3-MePa relative to the 2-MePa in the spiked exhaust relative to the baseline exhaust. 

This was confirmed by ratioing the integrated peak areas of the molecular ions for the 

two isomers in the two sets of exhaust samples. Analysis of variance assigned the 

difference between the two sets of data a significance of 0.0009 at 95% C.I. No 

significant difference in the ratio between the 9 and 4-MePa and the 1-MePa in the 

spiked and non-spiked exhaust samples was detected. This was taken as a further 

indication that the increase in 3-MePa was a product of the combustion of 3-EtPa 

and was not a chance result. The increase in the emission of 3-MePa is equivalent to 

a conversion rate ofless than 0.0004% of the 3-EtPa spike. 

Gas chromatograms of two exhaust samples collected from the spiked and 

unspiked fuel are shown in Figure 4.5a and b. 2 and 3-EtPa surviving combustion are 

clearly visible at around 37 minutes. The two exhaust samples were compared in 

order to identify additional products of combustion of alkylated-P AH. A peak 

eluting at around 38 minutes was identified in the spiked exhaust sample that was not 

present in the baseline sample. Components eluting this late in the chromatogram are 

not usually encountered at this concentration in diesel exhaust samples collected from 

the Prima engine in this laboratory. This peak, representing a compound, formed 

presumably from the combustion ofEtPa, was identified as vinylphenanthrene (ViPa) 

by GC/MS mass spectral data and was present in a yield of0.01% of the 3-EtPa .. A 

vinylphenanthrene standard was not available with which to compare the mass 

spectrum of the compound. However, comparison of the mass spectra for the ViPa 

peak with a vinylnaphthalene (ViNp) standard confirmed the peak identification as 

ViPa. The mass spectra for ViNp and ViPa are shown in Figure 4.6. 
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Figure 4.4 GC/MS molecular ion integration ofMePa's from 
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Figure 4.5 Gas chromatograms of a) " baseline" exhaust sample collected from 

unspiked fuel and b) spiked exhaust sample, showing 2 & 3-EtPa surviving 

combustion and the ViPa product at retention times of ea. 32 minutes 
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4.4 Discussion 

The behaviour of alkyi-P AR during diesel combustion is of interest owing to 

their abundance in the fuel, and their importance in influencing the composition of the 

emissions. Comparatively little research has been performed in this area. In Chapter 

3 (section 3.3.2.1), a mass balance approach to the formation of the parent PAR 

during combustion has shown that comparatively small rates of dealkylation of 

individual alkyl-substituted homologues of the parent PAR (especially naphthalene 

and fluorene), are required to account for the amount of the parent PAR 

pyrosynthesized during combustion from the various daughter dealkylations. 

Evidence suggests, that the ease with which individual isomers are dealkylated may 

vary according to the position of substitution of the alkyl substituent on the aromatic 

nucleus, and with engine operating conditions. Evidence for the latter assumption 

may be found in the slight changes in the ratio between alkyl-PAR in the exhaust 

samples collected from the Prima at different engine conditions (Trier et al., 1990; 

Tancell, 1991 ). The thermodynamic stability of alkyi-P AR may influence their 

distribution in the emissions according to the temperature regime at that engine 

condition. Budzinski et al. ( 1991) used successfully the thermodynamic stability of 

di-, tri- and tetramethylnaphthalene isomers, estimated from the group additivity 

values of Stein et al. (1985), to predict their relative distribution in oils obtained from 

mature and immature sediments. 

The combustion of two alkyl-PAR isomers, 2 and 3-EtPa, is here described. 

This was achieved by combusting a low aromatic diesel fuel spiked with 2 and 3-EtPa 

and comparing these emissions with those collected from unspiked fuel. This 

technique allows the behaviour of individual diesel fuel molecules to be studied in 

detail and is complementary to the radiolabelling techniques developed at Plymouth 

(Petch et al., 1988; Rhead et al., 1990; Trier et al., 1991; Tancell eta/., 1994). 

Several researchers have noticed the tendency for the PAR emissions from 

diesel engines to be strongly dealkylated (Herlan, 1978; Barbella et al., 1989 Trier. et 

al., 1990). Pyrolysis experiments have also demonstrated the tendency for alkyl­

aromatics to be dealkylated (Smith and Savage, 1991; Badger and Spotswood, 1960; 

Hamins et al. 1990; Smith et al., 1979). Freund et al., (1991) studied the pyrolysis of 

1,20-di(1-pyrenyl)eicosane. These authors proposed that the dealkylation of PAR 
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may be regarded as a substitution reaction in which the alkyl side chain is replaced by 

hydrogen (Figure 4 .7). The critical step in the substitution reaction is the formation 

of the intermediate species. Several mechanisms leading to the formation of the 

intermediate have been proposed including, a) ipso hydrogen atom addition, 

b) radical hydrogen transfer c) internal hydrogen transfer. The importance of the 

individual reactions and their mechanistic details of the reaction pathways have not 

yet been resolved. 

... ... 

... + R· 

Figure 4.7 Proposed mechanism for the dealkylation ofPAH during pyrolysis 

(Freund et al., 1990) 

Smith and Savage (1991) investigated the pyrolysis chemistry of a series of 

alkylated naphthalenes, phenanthrenes, anthracenes, pyrenes and chrysenes and, from 

detailed GC-MS analysis of the products, proposed a reaction scheme for the 

pyrolysis of alkyl-P AH, which proceeds through two main parallel pathways. The 

first pathway operated mainly through scission of C-C bonds in the alkyl side chain 

and produced three product groups: 

1) methylated-P AH and the corresponding C0 • 1H 2n-2 alkene, 

2) styrene and the corresponding cn-2H2n-2 alkene, 

3) a series of minor products consisting of alkenes of varying chain 

lengths and the corresponding alkyl-P AH. 
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The second major pathway involved scission of the aryl-alkyl bond to yield 

the aromatic nucleus and an alkane. The importance of the two reaction pathways 

was found to be dependent not on the length of the alkyl side chain but on the point 

of substitution in the aromatic molecule. A relationship between alkyl-aryl bond 

cleavage and the localisation energy at the point of substitution, as measured by 

Dewar reactivity numbers, was determined. 

Smith and Savage (1991 ), like Freund et al. (1990), also considered the 

cleavage of the aryl-alkyl C-C bond to constitute a substitution reaction in which the 

alkyl side chain is replaced by a hydrogen atom (Smith and Savage, 1991 ). In 

anionic, cationic or radical substitution of even altemant P AH the intermediate is an 

odd altemant hydrocarbon and has the structure proposed by Wheland (Wheland, 

1942, cited by Dewar, 1952). The change in the 1t-energy of the system (Llli,) 

between the aromatic molecule and the intermediate should be the same for a given 

type of substitution by reagents of all three types since these differ only in the number 

of electrons present in their non-bonding molecular orbitals (Dewar and Dougherty, 

1975). Llli, of the substitution reaction is related to the reactivity number for. the 

position of the aromatic nucleus where the substitution occurs by the equation: 

Llli, = 2~(a.,, + a.,.) (Dewar, 1952) 

where: 

~ is the resonance integral, 

a., and a.,. are the coefficients for the non-bonding molecular orbitals at the 

positions adjacent to the point of substitution. 

the Dewar reactivity number is given by the term 2(a., +a.,,) 

Dewar reactivity numbers for the 5 substitution positions in phenanthrene have been 

calculated and are shown in Figure 4. 8. 

145 



Figure 4.8 Dewar reactivity numbers of phenanthrene 

Using Dewar reactivity numbers, Smith and Savage (1991) were able to 

predict that alkyl-aryl bond cleavage would occur only where the alkyl substituent 

occupied a carbon centre with Dewar reactivity number less than 1.33 . For alkyl­

p AH with the substituent at a centre with a Dewar reactivity number greater than 

1. 81 , cleavage of the C-C bond at the ~ position in the alkyl side chain was the 

dominant reaction pathway. For those P AH substituted at positions with 

intermediate Dewar reactivity numbers, a mixture of the two main product groups 

would be expected. 

The results from this research suggest that dealkylation reactions make a 

negligible contribution to emissions in the Prima engine under these engine conditions 

and for the 2 & 3-EtPa isomer. Instead, cleavage of the alkyl C-C bond is favoured 

over cleavage of the alkyl-aryl C-C bond. This may be explained in terms of bond 

energies. The alkyl-aryl C-C bond is the strongest in the alkyl chain and its bond 

dissociation energy is about 423K.Jmor1 (McMillen and Golden, 1982), whereas the 

bond energy of the alkyl C-C bond in ethylbenzene has been estimated as 264KJmor1 

(Szwarc, 1949). Szwarc (1949) suggested a mechanism for the formation of 

methyl benzene from the pyrolysis of ethyl benzene. The initial stage is a unirnolecular 

splitting of the alkyl C-C bond generating methyl and benzyl radicals. Subsequent 

capture of hydrogen by the benzyl radical would generate ethylbenzene. The same 

reaction mechanism applied to the formation of MePa from EtPa is shown in Figure 

4.9. 

Formation of methylated-P AH during diesel combustion has also been 

observed by Rhead and Pemberton (1994). These authors in a study of the 

combustion of 14C-1-methylnaphthalene ( 1-MeNp ), demonstrated that approximately 
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one third of the 1-MeNp collected in the exhaust was formed during combustion. It 

seems likely that the 1-MeNp was formed by a similar reaction mechanism to that 

identified for EtPa, i.e. loss of a methyl group from an ethyl substituted naphthalene . 

.. 
3-ethy lphenanthrene rrethyl phenanthrene radical 

+ RH .. 

3-rrethy !phenanthrene 

Figure 4.9 Proposed mechanism for the formation of MePa from EtPa during 

diesel combustion 

The results of the current work are in agreement with those of the pyrolysis 

experiments performed by Smith and Savage (1991). The mean localisation energy 

for the 3 position in phenanthrene is 2.04. On the basis of the model proposed by 

Smith and Savage alkyl-aryl bond cleavage would not be expected to occur. Instead 

cleavage of the C-C bond in the ethyl side chain would be preferred. The lack of any 

measurable increase in the emission of phenanthrene in the exhaust collected from the 

spiked fuel in the current experiment, supports this hypothesis. The radiolabelling 

experiments ofRhead and Pemberton (1994) however, are not in agreement with the 

proposed model. In their research radiolabelled 2-MeNp produced a small amount of 

radiolabelled naphthalene equivalent to a 5% conversion of the original 2-MeNp. 

The localisation energy for the 2-position in naphthalene is 2.12 and according to the 

model, dealkylation at this position would not be expected to occur. This suggests 

that the model proposed by Smith and Savage (1991) may not be applied literally to 

the dealkylation processes occurring during diesel combustion. Under the more 
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extreme conditions of diesel combustion the probability is that even the more stable 

alkyl-substituted PAH isomers may be dealkylated. However, the use of reactivity 

numbers, whilst not being able to specify whether or not a particular isomer will 

undergo dealkylation, may give an indication of the relative ease with which 

individual alkyl-substituted P AH are dealkylated. 

Aromatic substitution reactions result in a perturbation of the MOs at the 

point of substitution on the aromatic nucleus and a loss of aromaticity of the carbon 

atom at which the substitution is occuring. Dewar reactivity numbers are a measure 

of the degree to which the orbitals are perturbed. This explains their success in being 

able to predict the relative ease with which substitution will occur at a particular 

position in the aromatic nucleus. If on the other hand dealkylation reactions during 

diesel combustion involved predominantly homolytic fission of the alkyl-aryl C-C as 

opposed to substitution, then reactivity numbers should not be able to predict the 

relative ease with which substitution will occur at the various carbon centres on the 

aromatic nucleus since this process does not disrupt the aromaticity or perturb the 

Mos of the aromatic nucleus. In this research, no measurable dealkylation of the 

2- & 3-EtPa was observed. As shown, both the predictions of Smith and Savage 

( 1991 ), based on reactivity numbers, and alkyVaryl C-C bond energies are successful 

in predicting this result. This may suggest that the two factors, i.e the energy 

required to split the C-C bond, and the reactivity number of the alkyl-substituted 

carbon, are related, in that the localisation energy of the substituted carbon atom in 

the aromatic ring will influence the alkyl-aryl bond energy. 

The major identifiable product in this research was ViPa. Formation of vinyl­

aromatics from alkyl-aromatic precursors has been noted in research by a number of 

workers (Szwarc, 1949; Badger and Spotswood, 1960; Harris et al., 1988; Hamins et 

al., 1990; Smith and Savage, 1991). Vinylaromatics and in particular styrene, are 

thermodynamically stable at high temperatures owing to the stability introduced 

through conjugation of the 7t-electrons of the aromatic nucleus with the vinyl moiety 

(Stein, 1985). 

The initial stage in the formation of the vinyl group has been reported to be 

the loss of a hydrogen atom from the a-carbon through either abstraction with 0", 

OH and H radicals or simple bond homolysis (Hamins, 1990). The resulting aryl 
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radical regains aromaticity by subsequent loss of hydrogen to produce styrene. The 

proposed mechanism is illustrated in Figure 4.10. PAH with alkyl side chains longer 

than ethyl will, according to this reaction, decompose to form vinylaromatics and 

unsaturated alkenes (Badger and Spotswood, 1960). 

+oH· , H·, o· 
(or unirrnlecular decay) 

3-ethy !phenanthrene 

.. 

3-viny !phenanthrene 

+~O,OH· , H 

(orH·) 

+ H. 

Figure 4.10. Formation ofvinylphenanthrene from ethylphenanthrene 

These results suggest that the formation of vinyl-aromatics from alkyl­

aromatic precursors may be a common reaction pathway in diesel combustion. 

Further evidence in support ofthis has come from the identification ofViNp in diesel 

exhaust emissions. The absence ofViNp in diesel fuel suggests that it is a product of 

combustion, formed, presumably from alkylnaphthalenes (e.g. EtNp) present in diesel 

fuel by a similar reaction pathway. Styrene and similar structures have been identified 

as key intermediates in the formation of larger aromatic structures through 

combination with unsaturated aliphatics and acetylenic species (Crittenden and Long, 

1976; Bittner and Howard, 1981). It has also been suggested that similar diaromatic 

intermediates such as naphthyl and vinylnaphthalene may promote the formation of 

larger aromatic species and eventually soot (Glassman, 1988). The formation of 

these compounds may represent an important intermediate step in the formation of 

soot in diesel fuel combustion. 
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Chapter 5 

CONCLUSIONS and SUGGESTIONS for FUTURE WORK 



5.1 Conclusions 

This research has demonstrated that the use of radiotracers in the field of 

diesel emissions research dm yield information with regard to the origin of P AH in 

diesel emissions, that is unavailable by any other technique. There are, however, 

significant analytical difficulties associated with the technique. In the first instance, 

the levels of radioactivity in the emissions are very close to the analytical limits of 

detection. Secondly, the radioactive species present in the emissions sample are 

diluted by many hundreds of other exhaust components. In the current research, 

multi-dimensional, radio-chromatographic techniques designed to isolate and quantify 

radioactive species in diesel emissions, have been successfully developed and applied 

to a study of the combustion of several 14C-Iabelled P AH. 

P AH present in the exhaust emissions of the Perkins Prima Engine, originate 

primarily from the sources of fuel survival and pyrosynthesis. The contribution of 

P AH to the emissions with lubricating oil was negligible. Radiotracer experiments 

have demonstrated that the relative contribution from survival and pyrosynthesis 

varies considerably for individual PAH. For certain PAH (e.g. B[a]P) the 

contribution is greatest from fuel survival (80%). For other PAH (e.g. pyrene) the 

contribution to the emissions is greatest from pyrosynthesis (70%). 

It has not been possible in the current research to determine unequivocally 

those factors that are responsible for determining the relative contribution of P AH 

from the two sources. A mass balance calculation has determined that the amount of 

pyrosynthesized P AH in the exhaust may be accounted for in terms of a 

comparatively low conversion rate of alkyl-substituted P AH to their parent P AH ( 5% 

for alkyl-naphthalenes, SO% for alkyl-pyrenes), by dealkylation reactions. The 

dealkylation of alkyl-aromatics during diesel combustion has been investigated. 

Preliminary results suggest that the dealkylation process may be selective. The 

susceptibility of individual alkyl-PAH isomers to dealkylation may be related to the 

localisation energy of the aromatic nucleus at the point of substitution. 

The extent of P AH survival has been shown to be related to the molecular 

orbital distribution of the molecule and especially the energy level of the LUMO. It 

was concluded that the initial reaction responsible for the destruction of P AH during 

diesel combustion must involve the LUMO of the P AH and electron donation by an 
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unknown reacting spec1es. The extent to which P AH surviVe combustion is 

dependent on their kinetic stability and hence chemical reactivity as opposed to their 

overall thermodynamic stability. 

The combustion of 14C-radiolabelled hexadecane, a major n-alkane present in 

diesel fuel has also been investigated. The extent to which this fuel component 

survived combustion (0.35%) was demonstrated to be similar to that for PAH 

molecules. It was also demonstrated that a significant proportion of n-hexadecane in 

diesel emissions is derived from other pyrosynthetic sources during combustion. The 

most likely source is from the thermal cracking of higher molecular weight alkanes, 

present in the fuel, during combustion. An increase of lower molecular weight 

n-alkanes in the emissions relative to their concentration in the fuel was observed and 

supports this conclusion. 

5.2 Suggestions for Future Work 

The focus of this research has been the use of radiotracers to investigate the 

diesel combustion of P AH. It has been demonstrated from a limited number of 

experiments, that the sources of P AH in the emissions varies considerably for 

individual species. Future research will involve a comprehensive programme 

designed to investigate the combustion of all major P AH present in diesel fuel at a 

variety of speeds and loads. The contribution from pyrosynthesis and survival will be 

accurately determined for each PAH. The eventual aim of the research programme is 

to generate a database of results which will then be used to generate mathematical 

models to help predict the composition ofPAH in the emissions from a knowledge of 

their composition in the fuel. These results will be used to test the validity of 

thermodynamic models which have been used to predict the P AH emissions 

composition from combustion systems. 

Few 14C-radiolabelled hydrocarbons are commercially available. Synthesis of 

a wide range of hydrocarbons, especially alkyi-PAH and n-alkanes of varying chain 

length is required in order to perform a comprehensive investigation into the fate of 

diesel fuel in diesel combustion. Synthesis of wide range of alkyl-P AH standards is 

also necessary for identification work, especially methyl, ethyl and isopropyl­

substituted PAH of three and four ringed PAH. 
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The correlation between P AH survivals and their molecular orbital 

distribution, identified in this research, may be used as an empirical model to predict 

the extent of survival of individual PAH in specific diesel fuels. Further research is 

required to test the relationship between P AH survivals and molecular orbital 

distribution, especially at varying engine conditions. The model will be applied to the 

prediction of rates of survival for other PAH. Specifically, the combustion of 

phenanthrene and fluoranthene will be investigated. These PAH are present in diesel 

fuel and are available commercially as 14C-radiolabelled species. On the basis of the 

present results the model predicts survivals for phenanthrene and fluoranthene, of 

0.53% and 0.35% respectively at the specified engine conditions. Of the two P AH, 

the combustion of fluoranthene may prove of particular significance. Fluoranthene is 

a non-altemant P AH and its molecular orbitals of are not distributed symmetrically 

around the coulomb integral (a) It is likely therefore that, as has been observed with 

fluorene, the extent of survival of fluoranthene should correlate more precisely with 

the energy level of either the HOMO or the LUMO or the energy difference between 

the two. This will help to confirm which of the three molecular orbital measurements 

is the main parameter in determining the extent of PAH survival and hence should 

yield more information on the mechanistic processes responsible. In addition, the 

concentration of alkyl-fluoi-anthenes in diesel fuel is low. If dealkylation reactions are 

responsible for the observed pyrosynthesis of P AH, it might be predicted that the 

amount of pyrosynthesized fluoranthene in the emissions, determined from specific 

activities, would be small. 

In view of the abundance of alkylaromatic species in diesel fuel, and their 

importance in determining the P AH distribution in the emissions, a programme to 

investigate their behaviour during diesel combustion is proposed using both 
14C-radiolabelled and non-labelled alkyi-P AH. Mass balance calculations have 

indicated that dealkylation may account for the extent of pyrosynthesis of the parent 

PAH determined from radiotracer experiments. The combustion of 2-EtPa and 

3-EtPa described in Chapter 4 demonstrated that the importance of dealkylation 

reactions varies for individual alkyi-PAH isomers. The future research programme 

will, therefore, involve a methodical investigation into the combustion of all the major 

alkyi-P AH species in diesel fuel with a particular emphasis on the tendency for 
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specific alkyl-P AH isomers to undergo dealkylation. The ease with which methyl­

and dimethyl-substituted pyrenes are dealkylated is of especial interest owing to the 

high level of pyrosynthesized pyrene that has been observed in the present research. 

Hence, initial experiments will involve the synthesis of alkyl-PAR isomers of 3 and 

4-ring P AH to investigate the ease with which these species undergo dealkylation 

These experiments will use a low aromatic fuel as outlined in Chapter 4 to facilitate 

the identification and quantification of specific products of combustion. 

Arrangements for its aquisition from fuel companies have been made. 

In Chapter 3, the combustion of 14C-n-hexadecane was described. Aliphatic 

species are the major constituents of diesel fuel. It has been proposed that the extent 

to which aliphatic species survive combustion is a function of their size. This 

research has suggested that the formation of short chain n-alkanes from higher 

molecular weight n-alkanes occurs during combustion Further research is needed to 

investigate the relationship between the size of aliphatics and their origin in the 

emissions as a function of survival and pyrosynthesis. Investigations into the 

combustion of aliphatic species have been limited since the subsequent analytical 

procedure requires a radio-GC which has not been readily available during this 

research. The future availability of a radio-GC will now facilitate the proposed 

investigations feasible. 
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