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Abstract 

The dynamic characteristics of autonomous underwater vehicles (AUVs) present a control 

problem that classical methods cannot often accommodate easily. Fundamentally, AUV dynamics 

are highly non-linear, and the relative similarity between the linear and angular velocities about 

each degree of freedom means that control schemes employed within other flight vehicles are not 

always applicable. In such instances, intelligent control strategies offer a more sophisticated 

approach to the design of the control algorithm. Neurofuzzy control is one such technique, which 

fuses the beneficial properties of neural networks and fuzzy logic in a hybrid control architecture. 

Such an approach is highly suited to development of an autopilot for an AUV. 

Specifically, the adaptive network-based fuzzy inference system (ANFIS) is discussed in 

Chapter 4 as an effective new approach for neurally tuning course-changing fuzzy autopilots. 

However, the limitation of this technique is that it cannot be used for developing multivariable 

fuzzy structures. Consequently, the eo-active ANFIS (CANFIS) architecture is developed and 

employed as a novel multi variable AUV autopilot within Chapter 5, whereby simultaneous control 

of the AUV yaw and roll channels is achieved. Moreover, this structure is flexible in that it is 

extended in Chapter 6 to perform on-line control of the AUV leading to a novel autopilot design 

that can accommodate changing vehicle pay loads and environmental disturbances. 

Whilst the typical ANFIS and CANFIS structures prove effective for AUV control system 

design, the well known properties of radial basis function networks (RBFN) offer a more flexible 

controller architecture. Chapter 7 presents a new approach to fuzzy modelling and employs both 

ANFIS and CANFIS structures with non-linear consequent functions of composite Gaussian form. 

This merger of CANFIS and a RBFN lends itself naturally to tuning with an extended form of the 

hybrid learning rule, and provides a very effective approach to intelligent controller development. 



Acknowledgements 

The work detailed within this thesis would not have been possible without the 

encouragement of my supervisory team. I would sincerely like to thank Dr Robert 

Sutton (Director of Studies) for his technical input, advice and constant good humour 

which made my Ph.D program a smooth and enjoyable one. I would also like to express 

my gratitude towards Professor Roland S. Bums for providing continual 

encouragement and advice, and Dr Yong-Ming Dai for his expertise in mathematical 

modelling with MATLAB/Simulink. They are both acknowledged for their careful 

reading of this thesis. 

Thanks are extended to Simon Corfield and Don Cowling of the Defence Evaluation 

and Research Agency, Winfrith; the provision of their underwater vehicle model 

created the impetus for this work, and their technical support has proved very useful. 

The financial support of the Engineering and Physical Sciences Research Council is 

also acknowledged. 

I would also like to express my gratitude towards Dr Miroslaw Kwiesielewicz and 

Professor Antonio Tiano for their continuing help, advice and friendship. 



~. ,,. 
.. ~-~.,-- ' . I 

Jrt particular !thank my family .for their:continuing support. Without . .th~m. this the_sis. . . . 

. would-not illave:been 1possible. 

Fin~lly, 'th!: unfaltering support of my closest friend! 1l!..ucy. to whofn this .thesis is. 

dedicated is greatly appreciated; ;a spedalithartk you goes :out to hel', 



Declaration 

• The work presented within this thesis is original; no part of this work has been 

used for any other award or degree at any time. 

• During the candidature, the author has not been registered for any other award 

at any other institution. 

PaulJasonCraven 
15th January 1999. 



Contents 

1 

2 

Introduction 

1.1 Motivation 
1.2 Research Objectives 
1.3 Thesis Overview 
1.4 Contributions of the Thesis 

References 

Artificially Intelligent Control Strategies for Unmanned 
Underwater Vehicles 

1 

1 
4 
5 
8 
9 

10 

2.1 Introduction . 10 
2.2 Fuzzy Logic Control Schemes 11 

2.2.1 Fixed Rule-Based Fuzzy Control 14 
2.2.2 Fuzzy Self-Organizing Control 15 

2.3 Artificial Neural Network Methods 17 
2.3.1 Applications . 20 

2.4 Neuro-Fuzzy Schemes 26 
2.5 Summary: Fuzzy Logic, Neural Networks or an Informed Fusion?. 33 

References 35 



CONTENTS ii 

3 Underwater Vehicle Modelling and System 
Performance Criteria 39 

3.1 Introduction 39 
3.2 Modelling the Vehicle Dynamics 39 

3.2.1 Equations of Motion 40 
3.2.2 Modelling Assumptions 44 
3.2.3 Actuator Modelling 45 
3.2.4 Sea Current Model 46 

3.3 System Performance Specifications and Autopilot 
Selection Criteria 47 
3.3.1 Suitability of Available Data . 47 
3.3.2 Model Validation and Verification 48 
3.3.3 Robustness Experiments 49 

3.4 Open Loop Simulations 51 
3.4.1 Initial Experiments 51 

3.5 Benchmark Autopilot Designs 57 
3.5.1 Traditional Autopilot Design . 57 
3.5.2 Fuzzy Logic Autopilot Design 57 

3.6 Concluding Remarks 67 
References 68 

4 A Neural Network Approach to AUV Fuzzy Autopilot Design 69 

4.1 Introduction . 69 
4.2 Tuning the 9 Rule Autopilot 70 

4.2.1 The Neuro-Fuzzy Autopilot Structure 70 
4.2.2 Tuning Algorithms 73 

4.2.2.1 The Hybrid Learning Rule 74 
4.2.2.2 The Chemotaxis Algorithm 82 
4.2.2.3 The Simulated Annealing Algorithm . 83 

4.3 Results and Discussion 87 
4.3.1 Initial Tuning Experiments 87 
4.3.2 Simultaneous Premise and Consequent Parameter Tuning 96 

4.4 Autopilot Robustness . 104 
4.4.1 Vehicle Coefficient Variations 104 
4.4.2 Line of Sight Guidance 107 

4.5 Concluding Remarks 114 
References 116 

5 Multivariable ANFIS Autopilot Design Approach 117 

5.1 Introduction . 117 



CONTENTS iii 

6 

5.2 A Brief Review of Multi variable UUV Autopilot Designs 118 
5.3 CANFIS- A Multi variable Design Technique 121 
5.4 Results and Discussion 124 

5.4.1 Non-Interacting Multi variable Control System Design 124 
5.4.2 Applying ANFIS to Simultaneously Control the 

Yaw and Roll Channels 131 
5.4.3 CANFIS Control of the AUV Yaw and Roll Channels 134 

5.5 Robustness Testing for the Yaw and Roll Autopilot . 141 
5.5.1 Vehicle Coefficient Variations 141 
5.5.2 Line of Sight Guidance 147 

5.6 Concluding Remarks 153 
References 154 

On-Line Neuro-Fuzzy Autopilot Design and Simulation 

6.1 Introduction . 
6.2 Existing On-Line Control Strategies 
6.3 The On-Line Learning Scheme 

6.3.1 The Hybrid Learning Rule- On-Line Control 
6.4 Results and Discussion 

6.4.1 Course Changing Results 
6.4.2 CANFIS On-Line Autopilot Results 

6.5 Robustness Properties of On-Line Control 
6.5.1 Vehicle Coefficient Variations 
6.5.2 Line of Sight Guidance 
6.5.3 Measurement Noise 

6.6 Concluding Remarks 
References 

156 

156 
157 
160 
162 
165 
165 
174 
180 
181 
190 
193 
199 
200 

7 Non-Linear Consequent Models for Fuzzy Autopilot Design 201 

7.1 Introduction . 201 
7.2 The ANFIS Approach to Function Modelling 203 
7.3 Topographic Approximations using Radial Basis Function 

Techniques 207 
7.3.1 The Approximation Problem . 212 
7.3.2 A Review of Radial Basis Function Approaches to 

Control System Design 216 
7.4 Non-Linear Consequent Functions of n-Dimensional Form . 218 

7.4.1 The Flexibility of Gaussian Radial Basis Functions 219 
7.4.2 The Modified Fuzzy Inference Mechanism 221 

7.5 Results and Discussion - Course Changing 223 
7.5.1 Applying the Hybrid Learning Rule . 224 



CONTENTS iv 

8 

7.5.2 Towards Computationally Efficient Gaussian Implementation 229 
7.5.2.1 Implementing the Theory within an Autopilot 231 
7.5.2.2 Results and Discussion 232 

7.5.3 A Natural Extension to the Hybrid Learning Rule 233 
7.6 Results and Discussion- Multivariable Control 239 

7.6.1 Course Changing and Roll Regulating Autopilot 240 
7.7 Gaussian Autopilot Robustness 245 

7.7.1 Vehicle Coefficient Variations 245 
7.7.2 Measurement Noise . 252 
7.7.3 Line of Sight Guidance 256 

7.8 Concluding Remarks 260 
References 262 

Concluding Remarks 

8.1 
8.2 
8.3 

Discussion 
Research Objectives 
Recommendations for Future Research 
References 

264 

264 
265 
267 
269 

Appendices 
A Publications 
B Classical and Modem Control Strategies for Unmanned Underwater 

Vehicles 
C The Premise Tuned Autopilot Information 
D The Premise and Consequent Tuned Autopilot Information 
E Non-Interacting Control System Design 
F The Hybrid Rule Tuned Roll Autopilot Information- 9 Rules 
G The CANFIS Autopilot Information- 16 Rules 
H The On-Line Tuned Gaussian Autopilot Information - 16 Rules (i) 
I The On-Line Tuned Gaussian Autopilot Information - 16 Rules (ii) 
J The Hybrid Rule Tuned Gaussian Inference Autopilot 

Information - 9 Rules 
K Modelling a Non-Linear Function- Gaussian Inference 'v' ANFIS 
L The Extended Hybrid Rule Tuned Gaussian inference 

Autopilot Information- 16 Rules 



List of Figures 

Figure No. Page No. 

1.1 The 'Turtle' of Bushnell 2 

2.1 Fuzzy Inference System Structure 13 
2.2 Mamdani Fuzzy Inference Diagram 13 
2.3 Takagi-Sugeno-Kang Fuzzy Inference Diagram 14 
2.4 The Fuzzy Self-Organizing Controller 16 
2.5 The Basic Features of a Biological Neuron 18 
:2.6 The McCulloch and Pitts Neuron Model 19 
2.7 The Feed-forward Multilayer Perceptron 20 
2.8 Error Backpropagation 23 
2.9 The ANFIS Architecture for a 

Takagi-Sugeno-Kang FIS 27 

3.1 The Body-Fixed and Earth-Fixed 
Reference Frames 45 

3.2 A Typical Radius of Acceptance p 51 
3.3 The x-y trajectory of the AUV when 

subjected to a unit step input on the low 
canard rudder in the open loop 54 

3.4 The cross coupled motion of the AUV when 



LIST OF FIGURES VI 

subjected to a step input on the low canard 
rudder in the open loop 54 

3.5 The x-y trajectory of the AUV when subjected 
to a step input on the locked upper and lower 
canard rudders in the open loop 55 

3.6 The cross coupled motion of the AUV when 
subjected to a unit step input on the locked 
upper and lower canard rudders in the open loop 55 

3.7 The complete control authority of the AUV 56 
3.8 Input space partitioning methods 59 
3.9 The input fuzzy sets for the 9 rule autopilot 59 
3.10 AUV yaw and low canard responses for each 

fuzzy autopilot over a 40 degree course-changing 
demand at 7.5-knots 62 

3.11 Control surfaces for the untuned fuzzy autopilots 63 
3.12 AUV yaw and low canard responses for the 4, 

9, 16 and 25 rule fuzzy autopilots over the 
verification course at 7 .5-knots 65 

3.13 AUV yaw and low canard responses for the PD 
and 9 rule fuzzy autopilots over a 40 degree 
course-changing demand at 7.5-knots 66 

3.14 AUV yaw and low canard responses for the 
PD and 9 rule fuzzy autopilots over the 
Verification course at 7.5-knots 66 

4.1 The adaptive network architecture 71 
4.2 The Boltzman Probability Distribution 85 
4.3 The input fuzzy sets defined on the interval 

[-1,1] for the pre-tuned 9 rule TSK style autopilot 89 
4.4 Training and checking error histories for the 

backpropagation algorithm 89 
4.5 The training error history for the chemotaxis 

search algorithm 90 
4.6 The cost function history during simulated 

annealing learning 90 
4.7 The tuned input fuzzy sets 92 
4.8 AUV responses to a course-changing 

manoeuvre of 40° at 7.5-knots 93 
4.9 The control surfaces for the tuned 9 rule TSK 

fuzzy autopilots 94 
4.10 AUV responses to a verification course at 

7.5-knots using the tuned and untuned 9 
rule fuzzy autopilots 95 

4.11 Training and checking error histories for the 



UST OF FIGURES vii 

hybrid learning rule 98 
4.12 The tuned input fuzzy sets 99 
4.13 AUV responses to a 40° course change at 

7.5-knots when employing the tuned fuzzy 
autopilots 101 

4.14 A comparison of the hybrid rule tuned and 
chemotaxis tuned autopilots robustness at 5 
knots 102 

4.15 AUV responses to a verification course at 
7.5-knots using the tuned and untuned 9 rule 
fuzzy autopilots 103 

4.16 The control surfaces for the tuned 9 rule 
TSK fuzzy autopilots . . 104 

4.17 Mass variation during a 40 course 
change when employing the hybrid tuned 
autopilot 105 

4.18 Hydrodynamic coefficient variations during a 
40" course-changing manoeuvre when 
employing the hybrid tuned autopilot 106 

4.19 Line of Sight responses over the verification 
track in the absence of current disturbances 109 

4.20 Line of sight responses over the verification 
track in the presence of a current disturbance 
of 2 ms·1 along the Northerly axis . 110 

4.21 Line of sight responses over the verification 
track in the presence of a current disturbance 
of 2.5 ms·1 along the Northerly axis . 111 

4.22 Yaw responses over the verification track in the 
presence of a current disturbance of 2.5 
ms·1 along the Northerly axis . 112 

4.23 Figure 4.23: Line of sight responses over the 
verification track in the presence of a current 
disturbance of 2 ms"1 along the Westerly axis 113 

4.24 Line of sight responses over the verification track 
in the presence of a current disturbance of 
3 ms·1 along the Westerly axis 113 

4.25 Line of sight responses over the verification 
track in the presence of a current disturbance 
of 2.83 ms·1 in the North Westerly direction .. 114 

5.1 SISO approach to control of multiple UUV 
degrees of freedom 119 

5.2 A typical CANFIS tuning architecture for 
two outputs 123 



UST OF FIGURES viii 

5.3 Non-Interacting control system design 125 
5.4 Roll cross-coupling with respect to a 

canard rudder step, and the approximation 
of Eqn.(5.3) 127 

5.5 Yaw cross-coupling with respect to a stem 
hydroplane step, and the approximation of 
Eqn.(5.4) 127 

5.6 Roll cross-coupling with respect to a stem 
hydroplane step, and the approximation of 
Eqn.(5.5) 128 

5.7 Yaw cross-coupling with respect to a canard 
rudder step, and the approximation of 
Eqn.(5.6) 128 

5.8 Yaw and roll responses for the AUV 
employing the de-coupling elements G 12 

and Gu 130 
5.9 Low canard and stem hydroplane responses 

for the AUV employing the de-coupling 
elements G 12 and Gu . 130 

5.10 The evolution of the fuzzy sets for the roll 
regulating autopilot during learning 132 

5.11 Yaw and roll responses of the A UV when 
employing the individual course-changing 
and roll-regulating 9 rule TSK autopilots 
at 7.5-knots for a 40' course-changing 
manoeuvre 133 

5.12 Low canard rudder and stem hydroplane 
responses of the AUV when employing the 
individual course-changing and roll 
regulating 9 rule TSK autopilots at 7.5-knots 
for a 40' course-changing manoeuvre. 133 

5.13 The original and tuned fuzzy sets for the 
16 rule multivariable autopilot 136 

5.14 Yaw and roll responses of the A UV when 
employing the 16 rule multivariable fuzzy 

0 

autopilot at 7 .5-knots for a 40 course 
changing manoeuvre . 137 

5.15 Low canard rudder and stem hydroplane 
responses of the AUV when employing the 
16 rule multivariable autopilot at 7.5-knots 138 

5.16 Yaw and roll responses of the AUV when 
employing the 16 rule multi variable fuzzy 
autopilot at 5 and 10-knots 138 

5.17 Low canard rudder and stem hydroplane 
responses of the AUV when employing 



LIST OF FIGURES ix 

the 16 rule multi variable autopilot at 5 
and 10-knots 139 

5.18 Mass variation during a 40° course 
change when employing the CANFIS 
autopilot - yaw and roll responses 141 

5.19 Mass variation during a 40° course 
change when employing the multi variable 
CANFIS autopilot -low canard and stem 
hydroplane responses . 143 

5.20 Varying Y uv hydrodynamic coefficient during 
a 40° course change when employing 
the multivariable CANFIS autopilot . 143 

5.21 Varying Y ur hydrodynamic coefficient during 
a 40° course change when employing 
the multi variable CANFIS autopilot . 144 

5.22 Varying Kuv hydrodynamic coefficient during 
a 40° course change when employing 
the multi variable CANFIS autopilot . 144 

5.23 Varying Kur hydrodynamic coefficient during 
a 40° course change when employing 
the multi variable CANFIS autopilot . 145 

5.24 Varying Kup hydrodynamic coefficient during 
a 40° course change when employing 
the multi variable CANFIS autopilot . 145 

5.25 Varying Nuv hydrodynamic coefficient during 
a 40° course change when employing 
the multivariable CANFIS autopilot . 146 

5.26 Varying Nvr hydrodynamic coefficient during 
0 

a 40 course change when employing 
the multivariable CANFIS autopilot . 146 

5.27 Varying Nur hydrodynamic coefficient during 
a 40° course change when employing 
the multivariable CANFIS autopilot . 147 

5.28 Line of sight responses over the verification 
track in the presence of a current disturbance 
of 3 ms-1 along the Westerly axis 149 

5.29 Roll responses over the verification track in 
the presence of a current disturbance 
of 3 ms-1 along the Westerly axis 149 

5.30 Line of sight responses over the verification 
track in the presence of a current disturbance 
of 2.5 ms-1 along the Northerly axis . 150 

5.31 Roll responses over the verification track 
in the presence of a current disturbance of 



LIST OF FIGURES X 

2.5 ms·' along the Northerly axis 150 
5.32 Yaw responses over the verification track 

in the presence of a current disturbance of 
2.5 ms·' along the Northerly axis . 151 

5.33 Line of sight responses over the verification 
track in the presence of a current disturbance 
of 2.83 ms·' in the North Westerly axis 151 

5.34 Roll responses over the verification track 
in the presence of a current disturbance of 
2.83 ms·' in the North Westerly axis . 152 

5.35 Yaw responses over the verification track in 
the presence of a current disturbance of 
2.83 ms·' in the North Westerly axis . 152 

6.1 Conceptual schematic of the state 
transition diagram . 161 

6.2 Y aw responses of the A UV for a 40 course 
changing manoeuvre for A.=0.99, A.=0.97 
andA-=0.95 166 

6.3 Low canard rudder responses of the A UV for 
a 40• course-changing manoeuvre for 
A.=0.99, A.=0.97 and A-=0.95 167 

6.4 Transitions of the first consequent parameter 
for the 40. course-changing manoeuvre for 
A.=0.99, A-=0.97 and A-=0.95 168 . 

6.5 Yaw responses of the AUV for a 40 
course-changing manoeuvre for A.=0.99, 
A.=0.97 and A-=0.95 170 

6.6 Low canard rudder responses of the AUV 
for a 40. course-changing manoeuvre for 
A-=0.99, A-=0.97 and A-=0.95 171 

6.7 First consequent parameter transitions 
for the 40. course-changing manoeuvre 
for A-=0.99, A-=0.97 and A-=0.95 171 . 

6.8 Y aw responses of the A UV for a 40 course 
changing manoeuvre with a step size of 5%, 
10% and20%. 173 

6.9 Low canard rudder responses of the AUV 
for a 40. course-changing manoeuvre with a 
step size of 5%, 10% and 20% 173 

6.10 First parameter transitions for a 40• course 
changing manoeuvre with a step size of 5%, 
10% and 20%. 174 



LIST OF FIGURES xi 

6.11 Y aw, low canard rudder and parameter 
0 

transition responses for a 40 course 
changing manoeuvre using a forgetting 
factor of 0.95 and a step size of 20% . 175 

6.12 Roll response of the AUV for a 40° course 
changing manoeuvre with a step size of 5% 176 

6.13 Yaw and roll responses of the AUV for 
a 40° course-changing manoeuvre using a 
forgetting factor of 0.975 and a step size 
of5% . 177 

6.14 Low canard rudder and stem hydroplane 
responses of the AUV for a 40 course 
changing manoeuvre using a forgetting 
factor of 0.975 and step size of 5% 177 

6.15 Parameter transition for a 40° course 
changing manoeuvre using a forgetting 
factor of 0.975 and a step size of 5% . 178 

0 

6.16 Yaw and roll responses of the AUV for a 40 
course-changing manoeuvre using a forgetting 
factor of 0.99 and a step size of 5% 178 

6.17 Low canard rudder and stem hydroplane 
responses of the AUV for a 40 course 
changing manoeuvre using a forgetting 
factor of 0.99 and a step size of 5% . 179 

6.18 Parameter transition for a 40° course-changing 
manoeuvre using a forgetting factor of 0.99 
and a step size of 5% . 179 

6.19 Mass variation during a 40° course 
change when employing the on-line CANFIS 
autopilot - yaw and roll responses 181 

6.20 Mass variation during a 40° course 
change when employing the on-line CANFIS 
autopilot - low canard rudder and stem 
hydroplane responses . 182 

6.21 Mass variation during a 40° course 
change when employing the on-line CANFIS 
autopilot with a step size transition rate 
of 20% - yaw and roll responses 183 

6.22 Mass variation during a 40° course 
change when employing the on-line CANFIS 
autopilot with a step size transition rate 
of 20% - low canard rudder and stem 
hydroplane responses . 183 

6.23 Varying Y,. hydrodynamic coefficient during 



UST OF FIGURES xii 

a 40° course change when employing 
the on-line multivariable CANFIS autopilot . 185 

6.24 Varying Y., hydrodynamic coefficient during 
a 40 o course change when employing 
the on-line multi variable CANFIS autopilot . 186 

6.25 Varying K •• hydrodynamic coefficient during 
a 40° course change when employing 
the on-line multivariable CANFIS autopilot . 186 

6.26 Varying Kur hydrodynamic coefficient during 
a 40 ° course change when employing 
the on-line multi variable CANFIS autopilot . 187 

6.27 Varying Kup hydrodynamic coefficient during 
a 40° course change when employing 
the on-line multivariab1e CANFIS autopilot . 187 

6.28 Varying N •• hydrodynamic coefficient during 
a 40° course change when employing 
the on-line multi variable CANFIS autopilot . 188 

6.29 Varying N., hydrodynamic coefficient during 
a 40° course change when employing 
the on-line multivariable CANFIS autopilot . 188 

6.31 Line of Sight responses over the verification 
track in the absence of current disturbances 190 

6.32 Yaw angle over the verification track in 
the absence of current disturbances 191 

6.33 Low canard and stem hydroplane angles 
over the verification track in the absence 
of current disturbances 192 

6.34 Line of Sight responses over the verification 
track in the presence of a current disturbance 
of 2.5 ms·1 along the Northerly axis . 192 

6.35 Line of Sight responses over the verification 
track in the presence of a current disturbance 
of 3 ms·1 along the Westerly axis 193 

6.36 Noise sequences at 1%, 5% and 10% SNR 194 
6.37 Yaw and Roll responses for the on-line and 

off-line autopilots in the presence of a 1% SNR 195 
6.38 Low canard and stem hydroplane responses 

for the on-line and off-line autopilots in the 
presence of a 1% SNR 195 

6.39 Yaw and Roll responses for the on-line and 
off-line autopilots in the presence of a 5% SNR 196 

6.40 Low canard and stem hydroplane responses 
for the on-line and off-line autopilots in the 
presence of a 5% SNR 196 



LIST OF FIGURES xiii 

6.41 Yaw and Roll responses for the on-line and 
off-line autopilots in the presence of a 10% SNR 197 

6.42 Low canard and stem hydroplane responses 
for the on-line and off-line autopilots in the 
presence of a 10% SNR 197 

7.1 Piecewise interpolation of a non-linear 
function using linear rule outputs 204 

7.2 A two dimensional representation of a 
Gaussian radial basis function 215 

7.3 Gaussian basis function modelling of a 
smooth surface 217 

7.4 Mamdani fuzzy inference diagram 221 
7.5 Takagi-Sugeno-Kang fuzzy inference 

diagram 222 
7.6 The proposed composite Gaussian fuzzy 

inference diagram 222 
7.7 The proposed Gaussian FIS for two inputs 

and one functional output 223 
7.8 The yaw response of the AUV when employing 

the pre-tuned Gaussian autopilot for a 40' 
course-changing manoeuvre . 224 

7.9 Low canard rudder response of the A UV 
when employing the Gaussian autopilot for 

0 

a 40 course-changing manoeuvre 225 
7.10 The input fuzzy sets before and after 300 

epochs of tuning with the hybrid learning 
algorithm for the Gaussian FIS 225 

7.11 The yaw response of the AUV when employing 
the hybrid tuned Gaussian autopilot for a 40' 
course-changing manoeuvre . 228 

7.12 Low canard rudder response of the A UV when 
employing the hybrid tuned Gaussian autopilot 
for a 40' course-changing manoeuvre. 228 

7.13 The computationally efficient Gaussian 
autopilot structure 232 

7.14 The input fuzzy sets before and after tuning 
with the extended hybrid learning algorithm . 234 

7.15 The yaw response of the AUV when employing 
the extended hybrid tuned Gaussian autopilot for 
a 40' course-changing manoeuvre 236 

7.16 Low canard rudder response of the AUV when 
employing the extended hybrid tuned Gaussian 



UST OF FIGURES XIV 

autopilot for a 40° course-changing manoeuvre 236 
7.17 The yaw response of the AUV when employing 

the extended hybrid tuned Gaussian autopilot for 
a 40° course-changing manoeuvre- 5 and 10-knots 238 

7.18 Low canard rudder response of the AUV when 
employing the extended hybrid tuned Gaussian 
autopilot for a 40° course-changing 
manoeuvre -5 and 10-knots 238 

7.19 The original and tuned fuzzy sets for the 16 rule 
Gaussian Inference multi variable autopilot 239 

7.20 Yaw and roll responses when employing the 
extended hybrid rule tuned multi variable 
Gaussian autopilot 243 

7.21 Low canard rudder and stem hydroplane 
responses when employing the extended hybrid 
rule tuned multi variable Gaussian autopilot . 243 

7.22 Yaw and roll responses when employing the 
extended hybrid rule tuned multi variable 
Gaussian autopilot - 5 and 10-knots . 244 

7.23 Low canard rudder and stem hydroplane 
responses when employing the extended hybrid 
rule tuned multi variable Gaussian autopilot-
5 and 10-knots. 244 

7.24 Yaw and roll responses when employing the 
extended hybrid rule tuned multi variable 
Gaussian autopilot- mass variation 245 

7.25 Low canard rudder and stem hydroplane 
responses when employing the extended hybrid 
rule tuned multivariable Gaussian autopilot -
mass variation. 246 

7.26 Varying Yuv hydrodynamic coefficient during 
a 40° course change when employing 
the multivariable Gaussian autopilot . 248 

7.27 Varying Yur hydrodynamic coefficient during 
a 40° course change when employing 
the multi variable Gaussian autopilot . 248 

7.28 Varying Kuv hydrodynamic coefficient during 
a 40° course change when employing 
the multivariable Gaussian autopilot . 249 

7.29 Varying Kur hydrodynamic coefficient during 
a 40° course change when employing 
the multivariable Gaussian autopilot . 249 

7.30 Varying Kup hydrodynamic coefficient during 
a 40° course change when employing 



LIST OF FIGURES XV 

the multi variable Gaussian autopilot . 250 
7.31 Varying N,.. hydrodynamic coefficient during 

a 40. course change when employing 
the multivariable Gaussian autopilot . 250 

7.32 Varying N., hydrodynamic coefficient during 
a 40. course change when employing 
the multi variable Gaussian autopilot . 251 

7.33 Varying Nur hydrodynamic coefficient during 
a 40" course change when employing 
the multi variable Gaussian autopilot . 251 

7.34 Yaw and Roll responses for the Gaussian and 
CANFIS autopilots in the presence of a 1% SNR 252 

7.35 Low canard and stern hydroplane responses 
for the Gaussian and CANFIS autopilots in the 
presence of a 1% SNR 253 

7.36 Yaw and Roll responses for the Gaussian and 
CANFIS autopilots in the presence of a 5% SNR 253 

7.37 Low canard and stern hydroplane responses 
for the Gaussian and CANFIS autopilots in the 
presence of a 5% SNR 254 

7.38 Yaw and Roll responses for the Gaussian and 
CANFIS autopilots in the presence of a 10% SNR 254 

7.39 Low canard and stern hydroplane responses 
for the Gaussian and CANFIS autopilots in the 
presence of a 10% SNR 255 

7.40 Line of sight responses over the verification 
track in the presence of a current disturbance 
of 3 ms·1 along the Westerly axis 257 

7.41 Yaw responses over the verification track 
in the presence of a current disturbance 
of 3 ms·1 along the Westerly axis 257 

7.42 Line of sight responses over the verification 
track in the presence of a current disturbance 
of 2.5 ms·1 along the Northerly axis . 258 

7.43 Yaw responses over the verification track 
in the presence of a current disturbance 
of 2.5 ms·1 along the Northerly axis . 258 

7.44 Line of sight responses over the verification 
track in the presence of a current disturbance 
of 2.83 ms·1 in the Northerly and 
Westerly axes . 259 

7.45 Yaw responses over the verification track 
in the presence of a current disturbance 
of 2.83 ms·1 in the Northerly and 
Westerly axes . 259 



List of Tables 

Table No. 

3.1 
3.2 

4.1 
4.2 
4.3 

4.4 

4.5 

5.1 

5.2 

Limitations imposed on the AUV actuators 
AUV responses to a course-change of 40° 
at 5, 7.5 and 10-knots . 

The chemotaxis algorithm 
The simulated annealing algorithm 
Autopilot robustness to fmward speed 
variations - course-change of 40° 
AUV responses to a course-change of 40° 
at 5, 7.5 and 10-knots . 
Co-ordinates of the way-points within the 
mission management system . 

Performance comparisons of yaw and roll 
control autopilot strategies developed within 
sections 5.4.1 and 5.4.2 
Performance comparisons for non-interacting 
and 16 rule CANFIS yaw and roll control 
autopilot strategies at 7 .5-knots 

Page No. 

46 

60 

83 
86 

91 

100 

108 

134 

140 



LIST OF TABLES xvii 

6.1 The novel on-line tuning algorithm 170 

7.1 Performance comparisons between hybrid 
rule tuned and pre-tuned Gaussian autopilots 
for a course-change of 40° at 7.5-knots 229 

7.2 Comparative assessment of the number of 
floating point operations arising from each 
autopilot strategy 233 

7.3 Performance comparisons between hybrid rule 
tuned ANFIS autopilot and extended hybrid 
rule tuned Gaussian autopilot for a course-
change of 40° at 7 .5-knots 237 

7.4 Performance comparisons between the 
CANFIS and Gaussian yaw and 
roll autopilots at 7.5-knots 242 



Nomenclature 

UUV Dynamics 

[u,v,w,p,q,r] 

[x, y,z,Q),6,lfl] 
X,Y,Z 
K,M,N 

Xa,Ya,Zo 
m 
w 
B 
l 
g 
XG,yG,ZG 

Xs,Ys,Zs 

p 
Ix,ly,I, 

Gx, .... ,GN 

X""'a"·e'''"''Nwm'e 

linear and angular velocities 

position and euler angles 

hydrodynamic forces 

hydrodynamic moments of forces 

earth-fixed frame of reference 

vehicle mass in air 
vehicle weight in air 
vehicle buoyancy in air 
vehicle length 
force due to gravity 
position of the vehicle centre of gravity 

position ofthe vehicle centre of buoyancy 

density of water 

moments of inertia about body-fixed coordinate system 

hydrostatic forces and moments 

wave forces and moments 

forces arising from control surfaces 



NOMENCLATURE 

TP, .... ,T, 

x,;. , .... ,N~Irl 
X currenJ • YcurrenJ • Z currenJ -

X velociry ' Yvelociry ' Z velociry -

sse 

forces arising from thrusters 

velocity dependent hydrodynamic coefficients 

current forces along earth-fixed axes 

constant current component velocities of the total current 

yaw integral of time squared error 

canard integral of time squared error 

roll integral of time squared error 

stem hydroplane integral of time squared error 

course-change rise time 

peak course overshoot 

steady-state course error 

Fuzzy Inference Systems 

pi,qi, •••••• ,Vi 

W; 

Il 
N 
I 

#(k) 
1] 
1( 

N,Z,P 
Tm.p 
o;.p 

premise membership functions 

the i1hfuzzy rule output (consequent function) 

linear coefficients within the i,hfuzzy consequent function 

weight of the i,hfuzzy rule 

normalized weight of the i,hfuzzy rule 
the crisp control output 

inputs and outputs to a FIS 

product or T-norm operator 
ratio of the ith rule to all other rules 
summation of incoming signals 
the i,h premise membership function 
the total parameter set of the FIS 

the output of the i,h node within layer k 

the number of nodes within layer k 
learning rate during gradient transition 
step size during gradient transition 
negative, zero and positive fuzzy sets 
the m,h component of the Pth target output vector 

the m,h component of the Pth output layer node 

xix 



NOMENCLATURE 

V. 
X 

1111 

gradient with respect to x· 

L2-norm of vector denoted by* 

Artificial Neural Networks 

wii 

~wii 

E 
lk 

Yk 
Ok 

inputs and outputs 

weighted connection between irh and j,h layers 

change in weighted connection between i,h andjth layers 

error measure at the output of the ANN 
training pattern k 
output k of the ANN 
output of the krh layer neuron 

Gaussian Inference Systems 

On-Line Control 

t 

k 
h 

x(t0 +kxh) 

xAto +kxh) 

Acronymns 

ANFIS 
ANN 
AUV 

linear weighting coefficient for the k,h fuzzy rule 
krh non-linear radial function of the input variables 
summation ofthe radial consequent functions 
width of the k,h radial basis function 
centre of the k,h radial basis function 

discrete sample time 
sample number 
sampling interval width 
actual state of the plant at t = t0 + k x h 

desired state of the plant at t = t0 + k x h 

Adaptive Network-based Fuzzy Inference System 
Anificial Neural Network 
Autonomous Underwater Vehicle 

XX 



NOMENCU.TURE 

BP 
CANFIS 
FIS 
PLC 
ITSE 
LOS 
MATLAB 
MJMO 
MISO 
NGC 
PID 
RBF 
RBFN 
ROV 
SANN 
SISO 
SNR 
TSK 
uuv 

Back-Propagation 
Co-active ANFIS 
Fuzzy Inference System 
Fuzzy Logic Controller 
Integral Square Error over Time 
Line Of Sight 
MATrix LABoratory 
Multi Input- Multi Output 
Multi Input- Single Output 
Navigation, Guidance and Control 
Proponional plus Integral plus Derivative 
Radial Basis Function 
Radial Basis Function Network 
Remotely Operated Vehicle 
Stage Adaptive Neural Network 
Single Input- Single Output 
Signal to Noise Ratio 
Takagi-Sugeno-Kang 
Unmanned Underwater Vehicle 

xxi 



Chapter 1 

Introduction 

1.1 Motivation 

Although Boume can be credited with producing the first conceptual design for a 

submarine in 1578, the first one built was constructed in 1620 by Van Drebbel. 

Nevertheless, it was not until 1776 that a submarine was specifically launched to take 

part in naval operations. Bushnell's submarine the Turtle was designed to destroy the 

Royal Navy men-of-war, which were participating in naval blockades during the 

American War of Independence. Fortunately for the British fleet, the attacks by the 

human powered Turtle (Figure 1.1) were unsuccessful. The Turtle's single crew 

member blamed the ineffectiveness of the assaults on the inability to lay 150 pound 

charges against the hulls of the ships owing to their reputed copper sheathing. In actual 

fact, the British warships were not sheathed. A more probable explanation has been 

postulated by Coverdale and Cassidy (1987) who propose it was due to the crew member 



CHAPTER 1 INTRODUCTION 2 

Figure 1.1: The 'Turtle' of Bushnell (after Batchelor et al. (1979)). 

being physically exhausted and affected by the build up of unacceptable carbon dioxide 

levels in the vessel by the time it reached an intended target. Reader et al. (1989) light

heartedly suggested that this may have been the initial impetus for the search for 

unmanned underwater vehicles (UUVs)! Clearly since those pioneering days, manned 

submarine technology has advanced dramatically. However, the common potential 

weakness throughout their evolution has been the reliance on humans to perform 

operational tasks. 
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Some of the earliest developments in UlN technology can be attributed to the cable

controlled underwater recovery vehicle design and construction programme instigated 

by the US Navy in 1958. In 1963 one of these craft was used in the search for the ill

fated USS Thresher which tragically sank off the New England coast in 1400 fathoms 

of water. Later another was used to help recover the US Navy hydrogen bomb lost off 

the coast of Palomares, Spain, in 1966. Notwithstanding those successes and the 

accompanying publicity, the commercial potential of UUVs was not recognized until 

the discovery of offshore oil and gas in the North Sea. More specifically, remotely 

operated vehicles (ROVs) began and continue to be used extensively throughout the 

offshore industry. Whereas, both in the naval and commercial sectors, autonomous 

underwater vehicle (AUV) usage was limited. Even so, more recently, interest in the 

possible use of both types of vehicle has been heightened. This has been prompted by 

the needs of the offshore industry to operate and explore in extreme depths in a 

continuously hostile environment and the requirements of navies to have low cost 

vehicles capable of undertaking covert surveillance missions and performing mine 

laying and disposal operations. This revival is also coupled with the current and 

ongoing advances being made in control techniques. 

More specifically, the dynamic characteristics of UlNs present a control system design 

problem which classical linear design methodologies cannot accommodate easily. 

Fundamentally, UUV dynamics are non-linear in nature and are subject to a variety of 

disturbances such as vorticity effects and currents. Therefore they offer a challenging 

task in the development of suitable algorithms for motion and position control in the six 

degrees of freedom in which they operate, and are required to be robust in terms of 

disturbance rejection and varying vehicle speeds and dynamics. It should be noted that 

the term "unmanned underwater vehicle" as used here is a generic expression to 

describe both an AUV and an ROV. An AUV is regarded as a marine craft which 

fulfils a mission or task without being constantly monitored and supervised by a human 

operator, whilst an ROV is a marine vessel that requires instructions from an operator 

via a tethered cable or an acoustic link. 
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1.2 Research Objectives 

The objectives of the programme of research were to: 

(a) Critically review the current UUV control literature 

(b) Define non-linear models pertaining to the yaw and roll degrees of 

freedom 

4 

(c) Develop traditional single-input single-output (SISO) control algorithms 

for the yaw and roll degrees of freedom 

(d) Investigate various neuro-fuzzy algorithms and structures for yaw and 

roll control 

(e) Produce candidate neuro-fuzzy control algorithms for each degree of 

freedom 

(f) Employ suitable neuro-fuzzy algorithms within a multi-input multi

output (MIMO) configuration to control yaw and roll simultaneously

this configuration should be flexible to allow full six degree of freedom 

control 

(g) Critically assess the perfonnance of the chosen multi variable controller 

configuration and provide flexible alternatives to the underlying 

algorithm 
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1.3 Thesis Overview 

Intelligent control and intelligent systems have recently received a great deal of interest 

within the control community. However, it is still not apparent as to what these phrases 

mean in the context of control theory. Many definitions of intelligence are given 

throughout the literature, yet no one definition provides a complete picture of the 

factors which influence a systems' intelligence. 

Essentially, all definitions have certain key factors in common. An intelligent system or 

controller must possess the ability to learn a process, adapt its behaviour in light of 

process changes, store and recall relevant information and autonomously improve its 

performance when required to do so. Indeed a control system which can retrieve 

information about a situation that has previously occurred is highly desirable, yet in 

addition it is important that such a system is able to adapt to register new information as 

well. The previous sentence summarizes the distinction between a learning system and 

an adaptive system respectively. The aim of any intelligent approach to control or 

system design is to incorporate aspects from each area to enhance the overall 

performance when faced with non-linear dynamic process changes and/or the 

requirement to interpolate between known situations. Subsequently, the design 

technique should be transportable to reduce the cost of re-employing the algorithms 

within novel plant architectures. 

Chapter 2 of this thesis provides the interested reader with a critical review of artificial 

intelligence approaches to control system design for unmanned underwater vehicles. 

This review is sub-divided into artificially intelligent techniques, and modem and 

classical approaches to UlN control. The review of classical and modem control 

techniques as applied to UlNs is included in Appendix B for brevity. The 

attractiveness of neuro-fuzzy approaches to control system design is discussed, 

clarifying the motivation behind the work submitted within this thesis. 
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The dynamic characteristics of the underwater vehicle are detailed in Chapter 3, along 

with results of preliminary open loop experiments for the yaw and roll channels. 

Various performance specifications used within the ensuing work are outlined, 

including the design of suitable benchmark autopilots and a line of sight algorithm for 

autonomous vehicle guidance. The chapter concludes by suggesting two autopilots 

from a possible five, to be used on a comparative basis with the results of the following 

chapter. 

The neuro-fuzzy concepts developed within this work are detailed in Chapter 4. 

Specifically, the adaptive network-based fuzzy inference system (ANFIS) of Jang 

(1993) is explained fully as the architecture for the application of various parameter 

tuning algorithms. Initially, the backpropagation, chemotaxis and simulated annealing 

algorithms are employed to tune the input fuzzy sets of a 9 rule fuzzy course-changing 

autopilot designed in Chapter 3. The results pertaining to these tuning regimes lead to a 

clear strategy for autopilot tuning. Subsequently, the full parameter set of the 9 rule 

fuzzy autopilot of Chapter 3 is considered for adaptation, using the hybrid learning rule, 

and the chemotaxis and simulated annealing algorithms. Comprehensive results 

concerning autopilot robustness, generalization and autonomous guidance are included, 

leading to a definitive strategy for multi input- single output (MISO) autopilot tuning. 

The inability of the ANFIS technique to control multiple input - multi output (MIMO) 

plant is discussed within Chapter 5. A novel approach to multivariable control is 

presented which accounts for the cross-coupling between vehicle degrees of freedom. 

This autopilot design approach is considered as a natural extension to the ANFIS 

technique. Results are presented which compare the developed tuning architecture to 

the ANFIS approach and a traditional non-interacting control system design approach. 

The effectiveness of this new design technique is illustrated through numerous AUV 

simulations examining autopilot robustness, generalization and autonomous guidance. 

Notwithstanding, the inability of the developed approach to adapt to incoming data 

signals prompts further development of the neuro-fuzzy algorithm used for tuning. 
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Consequently, Chapter 6 discusses a natural progression of the autopilot designs of 

Chapters 4 and 5 towards on-line control. Essentially, the resulting autopilots employ a 

sequential least squares algorithm fused with gradient descent to adapt their parameter 

sets to represent incoming data. The respective autopilot structures are encoded as stage 

adaptive networks within the modelling framework. The results demonstrate the 

feasibility of the new autopilot schema, but detail the inadequacies of the sequential 

least-squares algorithm for AUV control. Thus an improved control algorithm, 

employing a switching facility during transient periods of motion, is developed as a 

novel control scheme. 

The results of Chapter 7 document original work carried out within the context of 

neuro-fuzzy AUV control, and indeed control theory. The traditional method of radial 

basis function approximations is combined with the ANFIS modelling approach to 

create a new control architecture. By replacing the typical linear rule consequents 

within the ANFIS regime with composite non-linear rules of Gaussian form a non

linear fuzzy inference system (FIS) is produced. The resulting non-linear gain

scheduling controller proves effective, particularly for multivariable control of the 

AUV yaw and roll channels. However, the new consequents are more computationally 

expensive to implement than the original linear rules of the ANFIS regime. 

Consequently, section 7.5.2 is devoted to computationally efficient implementation of 

these consequent functions. The inherent multiplication of each scaling coefficient 

within the consequent functions is replaced with a series of additions to produce a 

smaller computational burden within the network structure. The result is an autopilot 

that produces an almost identical AUV response but with a lower computational cost. 

Concluding remarks and a summary of the thesis' objectives are presented in Chapter 8 

for completeness. 
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1.4 Contributions of the Thesis 

The major contributions of this work are seen as: 

• The adaptive network-based fuzzy inference system (ANFIS) technique 

has been applied directly to the problem of autopilot design for an AUV. 

• A novel multivariable control scheme based on the eo-active ANFIS 

(CANFIS) regime of Mizutani and Jang (1995) has been developed. 

Consequently, a MATLAB dependent C library has been produced for 

application to a wider range of modelling problems. 

• On-line control of an AUV has been investigated via the use of a neuro

fuzzy control algorithm based on the above work. 

• A more sophisticated modelling approach has been introduced which 

employs Gaussian consequent functions as opposed to the linear rule 

outputs of the ANFIS technique. Results gained through use of this 

approach are superior to those achieved previously. 

8 
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Chapter 2 

Artificially Intelligent Control 
Strategies for Unmanned 
Underwater Vehicles 

2.1 Introduction 

The purpose of this chapter is to review a number of artificially intelligent approaches 

that have been adopted to control the dynamic behaviour of UlNs. For the interested 

reader Appendix B contains a review of classical and modem techniques for UlN 

control system design. Where relevant, additional references will be reviewed within 

the appropriate chapters. Craven et al. (1998) details many classical, modem and 

artificially intelligent aspects of UlN control. 

Classical linear control system design methods are adequate to control linear systems. 

However, such approaches are often notably lacking in robustness when the system to 

\ 
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be controlled exhibits characteristics of non-linearity, time dependence and high 

complexity. Notwithstanding, human operators still manage to control dynamical 

systems displaying such characteristics. The emergence of fuzzy logic has enabled the 

vagueness of human laf!guage to be mathematically quantified. Consequently, the 

control decisions of an experienced plant operator could be formulated into an 

algorithm to control the desired plant. Such an approach may therefore be capable of 

controlling an UlN very successfully. 

2.2 Fuzzy Logic Control Schemes 

Basically, a fuzzy inference system (FIS) consists of five key elements as shown in 

Figure 2.1. The fuzzijication unit receives crisp input signals and transforms them into 

fuzzy values based upon their degree of match with the pre-defined fuzzy input 

membership functions (sets) of the data base. Similarly, the defuzzification unit 

converts the values of the consequent terms into crisp output signals, again using the 

information contained within the database. The decision-making element provides a 

logical inference of the linguistic rules contained within the rule base. This rule base 
' 

typically consists of a number of linguistic rules. Within the context of an UlN 

autopilot and its internal structure, these rules could take the form: 

If yaw error is positive small and yaw rate is positive big 
then rudder demand is zero 

where the terms "positive smaJ.r•, and "positive big" are fuzzy sets defined within 

the input space. The term "zerd' in the output space can also be represented by a fuzzy 

set, yet in control applications is often written as a linear combination of the input 

variables: 

If yaw error is positive small and yaw rate is positive big 
0 

then rudder demand is Pa'lle + qa 'If+ ra. 
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Depending upon the choice of consequent (output) set, various defuzzification 

strategies are commonly used. Figures 2.2 and 2.3 depict FISs based upon Mamdani 

and Takagi-Sugeno-Kang (TSK) (Takagi and Sugeno, (1985)) inference styles 

respectively. Other methods of inference can be employed such as Tsukamoto style 

fuzzy inference. However, the methods shown herein represent the more popular styles 

of inference for control applications. 

In order to elicit a deterministic value from the resultant fuzzy control output set, the 

centre of area method (Eqn(2.1)) is often employed in Mamdani FISs: 

N 

L,u;U(u;) 
i=l (2.1) 

where Uo represents the crisp output of the FIS due to the N fuzzy control rules, and u; is 

the consequent fuzzy subset in question. Alternatively, due to the crisp nature of TSK 

consequent sets, the weighted average defuzzifier is typically employed: 

N 

L,wJ; 
uo i=l (2.2) 

N 

L,w; 
i=l 

where wi is the weight of the i1h fuzzy rule and.fi is the i1h linear function of the inputs. 
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Figure 2.1: Fuzzy inference system structure (after Jang(1993)). 
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Figure 2.2: Mamdani fuzzy inference diagram (after Jang(1993)). 
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Figure 2.3: Takagi-Sugeno-Kang fuzzy inference diagram (after Jang (1993)). 

Control systems that are based on fuzzy logic are often robust to parametric 

uncertainties and can deal with the inherent non-linearities of the plant under 

consideration. They therefore offer the potential to control UUVs in an effective 

manner. 

2.2.1 Fixed Rule-Based Fuzzy Control 

One particular implementation of interest here is the study conducted by de Bitetto 

(1995), who applied fuzzy logic to the depth and pitch control of an UUV. A fixed rule 

base is used containing fourteen rules for depth, pitch and ballast control. Good overall 

performance is achieved, although simulation results are obtained at a forward speed 

that is considered too slow for cross-coupling effects between the yaw and pitch 

channels to be influential. However, due to the use of fuzzy rules, allowing an insight 

into the control strategy, the control rule base could be easily modified. 
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Smith et al. (1993) applied fixed rule based TSK style fuzzy controllers simultaneously 

to the channels yaw, heave and pitch of the Ocean Voyager AUV. Two problems were 

addressed: (i) the low level control problem of developing a control system which could 

reliably and efficiently manoeuvre the AUV, and (ii) the high level problem of docking 

the AUV in a confined space. Promising results were achieved using this approach 

although a more detailed analysis and comparison of the fuzzy controller to more 

conventional methods was not forthcoming. 

Although fixed rule base control strategies have received a great deal of attention in 

past years, adaptive fuzzy control schemes are more common in the UUV control 

literature. The following section details various self-organizing fuzzy controller studies. 

2.2.2 Fuzzy Self-Organizing Control 

In some circumstances it may be difficult to obtain a clear set of fuzzy rules which 

describe the controller action required, particularly in the case of non-linear, time

varying processes. To overcome this problem, fuzzy self-organizing controllers (FSOC) 

have been developed [Shao (1988), Daley and Gill (1986), Mandic et al. (1985), 

Tanscheit and Scharf (1988), Procyk and Mamdani (1979), and Farbrother (1991)] 

which generate their own fuzzy rule-base by continual performance feedback, thus 

assessing the rule bases' effectiveness. A schematic of a self-organizing fuzzy 

controller is shown in Figure 2.4. 
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Figure 2.4: The fuzzy self-organizing controller. 
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Essentially the architecture of a FSOC is similar to that of a fixed rule based fuzzy 

controller but has the added refinement of a higher hierarchical level superimposed 

upon it. The hierarchical structure consists of three elements, namely, an appropriate 

performance index (PI), a simplified model of the plant and a rule modification 

algorithm. An excellent explanation of FSOC is detailed in Harris et al. (1993) 

including a review of FSOC applied to ship yaw control. 

The learning mechanism in this control system uses the values of error and change in 

error to initiate any improvements to the rules driven by the PI. Assuming the plant is in 

an undesired state, the PI relates the measured values to a rule correction (dr), which is 

then related to the rule modification algorithm via the simplified plant model. 

Essentially, dr represents the magnitude of the proposed rule modification within the PI. 

For a single-output system, the simplified plant model can be a sign change of unity, 

whereas for a multi variable system, a matrix of its steady-state gains will suffice. 

Clearly the above is a simplified description of a FSOC. A detailed exposition of a 

FSOC adapted to form the basis of a ship autopilot can be found in Sutton and Jess 

(1991). The fuzzy algorithm within the autopilot operates as in the case of a fixed rule 

base fuzzy controller with the exception that the compositional rule of inference is 

interpreted differently. The composition rule of inference is written as: 
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U = (E x CE) o R (2.3) 

where U is the control signal, E is the error, CE is change in error, R represents the 

rulebase and "o" normally denotes the max-min product. However, Yamazaki (1982) 

has found that better control responses result from using the max-max product. Thus, 

for this autopilot Eqn.(2.3) is rewritten as: 

v [E(e) ACE (ce) v R (el' cep uk)] 
eeE 
ceeCE 

(2.4) 

Farbrother and Stacey (1990) developed and applied a fuzzy logic fixed rule base 

controller to the yaw channel of an ROV. This study provided encouraging results, but 

achieved limited success. This was due to the changing dynamics and external 

disturbances (such as noise) when applied to mine-counter measures. Encouraged by 

these simulations, and those of Sutton and Jess, Farbrother et al. (1991) have developed 

and applied a self organizing fuzzy logic controller to the same problem. Consequently, 

the controller achieved a much more robust performance in the presence of external 

disturbances. 

Polkinghorne et al. (1996) reviewed the criteria to be considered in the performance 

assessment of such a control scheme with respect to full scale sea trials obtained on an 

11 metre vessel capable of approximately 20-knots. Results highlighted the somewhat 

heuristic nature of the selection of suitable gains for scaling the penalisation of poor 

performance signals. 

2.3 Artificial Neural Network Methods 

The artificial neural network (ANN) is a biologically inspired computing technique 

(Figure 2.5) that in its simplest form is a fully connected structure of basic units which 

are themselves based on the McCulloch and Pitts (1943) neuron model shown in Figure 
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2.6. This model forms the basis for the early perceptron learning algorithm [Rosenblatt 

(1962)] and the later, and now widely known, backpropagation feedforward algorithm 

of Rumelhart and McClelland (1986) for training the multi-layer perceptron (MLP). 

With an ability to appro?Umate non-linear functions such feedforward networks have 

been used extensively for classification and recognition problems [Sejnowski and 

Rosenberg (1987), Beale and Jackson (1990)] for which more conventional techniques 

would have been less tractable. Figure 2.7 illustrates the form of the feedforward, fully 

connected multi-layer perceptron. 

synapse 

axon 

Figure 2.5: The basic features of a biological neuron.( after Beale and Jackson(1990)). 

Here the input vector x is mapped to the output vector y via the nodes in the hidden 

layer j and the weighted connections wji and wki: 

y=f(x,wji'wki) xE R",y E Rm (2.5) 

There are three methods generally used in order to train neural networks, these being 

supervised learning, reinforcement learning and unsupervised learning. 
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rasb 

Threshold Function 

Figure 2.6: The McCulloch and Pitts neuron model (after McCulloch and Pitts (1943)). 

Supervised learning depends upon a target being available for each input pattern to 

compare to the actual output of the network. Reinforcement learning does not require a 

target output to be available but only a cost function signal to indicate whether changes 

in weight connections provide better or worse performance. Unsupervised learning is 

used when no target pattern and no cost function are easily available to perform 

training. This requires that the network itself has the ability to recognize common 

features across the range of input patterns and modifies its internal state to model the 

features found in the training data. 

One commonly used method of supervised learning is the aforementioned 

backpropagation (BP) rule. For each set of input data there is a corresponding output 

set, thus enabling the computation of an error measure between actual and desired 

output data sets on presentation of an input data set. The alteration of weights and 

biases within the ANN is therefore possible. The BP algorithm aims to alter the ANN 

weights and biases so that progression is made in the direction of the greatest rate of 

change of error reduction. To allow this behaviour, a function based upon the derivative 

of the error at the output of the previous layer is backpropagated through the ANN on 

completion of each training epoch or iteration. This principle is highlighted in Figure 

2.8. Further details can be found in Beale and Jackson (1990). 
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Figure 2.7: The feedforward multi-layer perceptron. 

2.3.1 Applications 

Output 
(y) 

Owing to the ability of ANNs to represent non-linear mappings of systems for which 

the underlying rules are unknown, they have been applied extensively to the control of 

marine vehicles. In the majority of applications to date, ANNs have been employed as a 

robust controller, where the network is generated through a period of learning and 

reinforcement. Usually the network is then frozen at this point because to perform on

line calculations generally requires a large amount of computer power. This problem 

has limited most controllers to date to be non-adaptable once a suitable level of control 

has been achieved. 

Yuh (1990), in his paper on the application of an ANN controller for an AUV, 

describes the application of two and three layer architectures to the problem of 

trajectory control. The two layered architecture is seen to provide a limited degree of 

success, proving unreliable in the advent of unknown vehicle dynamic situations and 

environmental uncertainties. A three layered network, conversely, gave much more 
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robust perlormances but was insufficiently documented as concerns simulation results 

to make satisfactory conclusions on its overall perlormance. 

Waldock et al. (1995) used a BP algorithm to train architectures of differing structure to 

control an UUV to follow the terrain of the seabed. The chosen architecture, based on 

the smallest sum squared error after testing, was the single hidden layer three neuron 

feedforward network. Initial training was then improved upon by using an alopex 

algorithm to find a minimum global error solution. 

Johnson (1995) perlormed a similar study again using differing architectures, but using 

a chemotaxis algorithm over the commonly employed BP algorithm. The resulting two 

hidden layered ten neuron per layer network was seen to give better overall control than 

a classical PID controller with which it was compared in terms of reduced thruster 

revolutions. 

An example of a neural network controller for an AUV which uses an on-line learning 

technique to update nodal weights has been designed and implemented by Venugopal et 

al. (1992). A four layered neural network is used which is trained by the BP algorithm. 

This implementation differs from many on-line strategies in that it employs a gain 

factor (proportional to the inverse of the Jacobian of the dynamics) which adapts to 

changes in the vehicle dynamics in order that the controller accounts for dynamical 

change in its control action. Simulation results are divided into three distinct categories: 

(i) maintaining a desired pitch, (ii) maintaining a desired heading and (iii) maintaining a 

desired depth. 

In case (i), the controller (beginning from a random start) soon achieves a good control 

action. Perturbations are introduced into the vehicles forward speed dynamics to assess 

the perlormance of the adaptive gain network. Better simulation results were achieved 
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when the learning rate of the network was increased, suggesting that the ANN be better 

equipped to generalize to disturbances in vehicle dynamics at a higher learning rate. 

In case (ii), an increased learning rate provided faster convergence to the desired 

heading but also increased oscillatory behaviour about the desired heading. However, 

good simulation results were achieved and as time increased the on-line learning 

capabilities of the ANN controller reduced the oscillatory behaviour. The vehicle 

parameters were again disturbed and it was noted that the higher learning rate again 

improved the controller's ability to adapt to varying dynamics. 

Finally in case (iu), the controller achieved adequate control action even at a small 

learning rate. 

It is obvious from this study that the learning rate is a critical feature of the ANN 

controllers performance in the event of varying vehicle dynamics. A criticism of this 

study is the lack of attention devoted to this important feature. For example, could the 

learning rate be increased incrementally, perhaps less initially to avoid oscillatory 

behaviour and then in larger increments as on-line learning improves controller 

performance in latter stages? Also the paper mentions the applicability of the chosen 

architecture and technique to multi input - multi output (MIMO) controller design, but 

no simulations were even mentioned. Obviously it is a difficult task to choose an 

appropriate ANN learning rate for a MIMO controller which will optirnize the learning 

rate of all three degrees of freedom simultaneously. However, this paper presents an 

alternative approach to the usual ANN AUV implementations and provides 

encouraging results for single input - single output (SISO) control of the vehicle in the 

presence of varying vehicle dynamics. 
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is backpropagated from the previous layer 

Figure 2.8: Error backpropagation (after Waldock(1995)). 

Another interesting application of an ANN control strategy for an UUV is that given by 

Ishii et al. (1993). Again this is an adaptive on-line control scheme called 'imaginary 

training' applied to a 'self organizing neural-net controller' (SONCS) which attempts to 

improve or shorten the training times involved in the learning phase of the control 

scheme. The SONCS consists of real world ANN and imaginary world ANN sections 

that are connected to form an adaptive link. In the real world ANN section the AUV is 

operated according to its objective, and in the imaginary world ANN section the 

imaginary training takes place based upon simulated state variables which are 

calculated without knowledge of actual simulation data. The imaginary training is 

executed independently of the actual operations of the AUV via an identification ANN. 

The controller of the real world part adjusts its network weights based on the adjusted 

values obtained in the imaginary world part. This ANN is chosen for its specific 

structure and consequent ability to identify dynamical systems via a forward model 

network. 
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To assess the effectiveness of the imaginary training, the proposed scheme was 

implemented on the Twin-Burger AUV for the yaw channel only. The resulting 

simulations show that the SON CS can control the heading of the AUV sufficiently well, 

even in the event of noise corruption in the teaching period. Also the controller shows 

good performance in the event of dynamical changes to the vehicle and its environment. 

One criticism proposed is the relatively infrequent sampling of the teaching data from 

the state variables, for the adaptation of the weights in the imaginary training controller 

network. It is thought that a vehicle with a relatively small time constant, such as an 

AUV, will be very susceptible to environmental and dynamical perturbations. Thus 

twenty seconds per sample of data is seen as a rather long time period in which to let 

the teaching of the real world controller weights remain 'untaught', especially in the 

initial stages of learning by the controller. 

Yuh and Lakshmi (1993) document a multi-layered ANN controller that estimates the 

control error using a 'critic' or punish/reward system. The most appropriate architecture 

is again investigated in the initial stages of the paper. A three layered ANN controller is 

chosen and compared using three learning algorithms: the BP algorithm, the parallel 

recursive prediction error algorithm (PRPE) and the modified parallel recursive 

prediction error algorithm (MPRPE). 

The critic equation upon which controller network weights are adapted is a function of 

the actual velocity vector and the desired velocity vector, where the desired velocity 

vector is computed via the desired position vector, actual position vector and sampling 

period. The equation is then based upon a one step performance measure of the vehicle 

position and velocity. 

Case studies performed on the ANN controller were considered in the lateral plane, i.e. 

in the yaw, surge and sway degrees of freedom. Initial tests investigated the 

performance of each learning algorithm whilst keeping the vehicle parameters constant. 
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Resulting graphs indicate that the BP and MPRPE algorithms have good learning 

ability whilst the PRPE algorithm produces consistently high values of mean squared 

error in horizontal plane control. Results obtained using the MPRPE learning algorithm 

to train the ANN controlJer show that on-line training is effective and can adequately 

cope with the addition of random noise and also the effects of varying vehicle dynamics 

and parameters. 

This study, although somewhat taking into account some of the cross-coupling effects 

of such a vehicle, does not provide any de-coupled results in this plane against which to 

compare these simulations. Thus no comparisons can be made in terms of controller 

perlormance as concerns reduced effectiveness in any particular channel arising due to 

any cross-coupling effects. 

Kodogiannis et al. (1996) describe the application of a model predictive control (MPC) 

strategy whereby the model takes the form of a neural network. Real time 

implementation of the controller structure was assessed in both simulation experiments 

and within an on-line configuration for the 'Aquacube' underwater vehicle. Results 

were presented for SISO control of the vehicle based upon MPC with autoregressive 

recurrent (ARNN) and Elman neural networks, both models employing a five step 

ahead prediction horizon. 

Although the Elman neural network controller is typically only suitable for modelling 

linear systems due to its simple architecture, it displayed effective trajectory following 

in comparison to the desired response. However, the ARNN was the more accurate of 

the two models and thus the preferred one. Future studies are said to include extensions 

to multi variable system control. 
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2.4 Neuro-Fuzzy Schemes 

At present there is a great deal of interest concerned with the unification of neural 

networks and fuzzy logic to produce intelligent neuro-fuzzy controllers. The aim of thls 

union is to retain the robustness, non-linear mapping ability and numerical data 

utilization of ANNs whilst incorporating the linguistic advantages of fuzzy logic. Thus 

a controller designed using a neuro-fuzzy approach has immediate advantages over 

either an ANN or fuzzy logic controller. 

The structure of neuro-fuzzy controllers is invariably such that no previous knowledge 

of the modelled process is required for the ANN to identify the existing input/output 

mapping. (It should be noted however that i priori knowledge of the modelled process 

should improve the training time of such controllers.) It is thus possible that a controller 

can be designed which is applicable to other non-linear dynamic situations, even if 

knowledge of process dynamics is unknown. 

Training of a neuro-fuzzy controller is usually based on one of two methods, either 

gradient descent as with the BP algorithm or reinforcement learning, although some 

applications have employed combinations of both methods. The hierarchical structure 

of such controllers means that the learning process usually consists of the ANN 

converging on an improved set of fuzzy parameters. Taylor (1995) suggests that using 

an ANN to imitate a fuzzy autopilot and thus producing a 'black box' form of controller 

is inferior to the aforementioned method whereby knowledge is retained of process 

dynamics. 

The adaptive network based fuzzy inference system (ANFIS) was designed and 

implemented by Jang (1993). This approach uses an ANN that differs from most in that 

not all nodes are connected through weighted links. This has the consequence that not 

all the nodes are modifiable with respect to their weights. Jang has implemented the 

ANFIS in dynamic control of an inverted pendulum problem, whereby an 
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approximation to the Jacobian matrix is used for backpropagation of the overall system 

error as opposed to the network error, thus creating a specialized learning approach to 

neuro-fuzzy control. Figure 2.9 illustrates the typical layout of an ANFIS architecture. 

Square nodes in this structure represent the parameter sets of the membership functions 

detailing the TSK fuzzy model. Circular nodes are thus static or non-modifiable and 

simply perfonn operations on the incoming signals, such as product or min calculations. 

Because the consequent functions are linear with respect to the network inputs, a hybrid 

learning rule is used for accelerating parameter adaptation based upon sequential least 

squares in the forward pass to identify the consequent parameters, and backpropagation 

in the backward pass for the premises. 

layer 1 layer 2 layer 3 layer 4 layer 5 

X 

y 

Figure 2.9: The ANFIS architecture for a Takagi-Sugeno-Kang FIS. 

Jang and Sun (1995) give a review of fundamental and advanced developments in 

neuro-fuzzy synergisms for modelling and control. In this review the basic concepts of 

fuzzy logic and adaptive networks are discussed as a prelude to discussions on the 

hybrid learning rule of the ANFIS architecture and its superiority over the usual BP 

algorithm. To conclude the review a number of design techniques are given for neural 

and fuzzy controllers, and the common problems encountered in their implementation. 
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One such technique is 'BP through time and real time recurrent learning', a scheme 

whereby the controller, and often plant simulation blocks are replaced by adaptive 

ANNs which cascade to form a large single network. The parameters to be adjusted in 

this process are the fuzzy controller parameters in the ANFIS. This temporal learning 

approach was successfully employed by Nguyen and Widrow (1990), for control of a 

tractor-trailer vehicle in a confined zone operating environment. 

Another implementation of neuro-fuzzy control by Jang and Gulley (1995) is that of 

gain-scheduled neuro-fuzzy control. This technique exists under certain conditions so 

that a first order TSK fuzzy model becomes a gain-scheduler that switches between 

several sets of feedback gains. The MATLAB fuzzy logic toolbox contains Jang's 

implementation of this technique applied to the inverted pendulum system, where the 

scheduling variable is the pole length and the control action is the smooth switching 

between three sets of feedback gains. 

A recent application of neuro-fuzzy control is detailed by Tao and Burkhardt (1994), 

with application to the control of a flame process. In order to control the supply of the 

input variables gas and oxygen, a neural network based fuzzy logic controller is 

implemented through a personal computer. The optimal burning state is sought by the 

fine-tuning of the fuzzy parameters. Prior expert knowledge is incorporated into the 

control action through the initial fuzzy rule base. Two methods of network training 

were adopted; supervised learning and reinforcement learning. Supervised learning was 

employed in one instance when it was assumed that training data were available; 

reinforcement learning was otherwise used. This paper provides the reader with an 

alternative example of an application of neuro-fuzzy control. Although no results are 

presented the system is said to be able to control the flame to find its optimum state. 
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Taylor (1995) provides a review of neural-fuzzy algorithms for control applications. 

This work highlights the clear distinction between two classes of learning algorithm, 

those of supervised learning and those of unsupervised or reinforcement learning. 

Tomera and Morawski (1996) employed the ANFIS scheme of Jang (1993) to produce 

an autopilot suitable for both course-keeping and course-changing behaviour. A 

sophisticated non-linear container ship model was used throughout the results. Fifteen 

fuzzy rules based on course-changing error and rate of change of course-changing error 

control inputs were adopted and tuned. The resulting autopilot proved equally as 

effective (if not more so) as a classical PID autopilot in light of simulated wind and 

wave disturbances for the limited simulations presented. Additionally, the ease of 

implementation and simplicity of the controller structure proved a strong point in 

favour of the method as an autopilot design technique. 

Jang (1993b) has successfully applied the more computationally inexpensive temporal 

difference methods of Sutton (1988) in conjunction with his own ANFIS architecture to 

control the benchmark pole balancing on a moving cart problem. This approach falls 

into the supervised learning category due to the use of temporal backpropagation. The 

method therefore relies on a' priori knowledge of the underlying model of the pole 

problem. This approach is seen to be capable of balancing the pole on the cart, when the 

cart moves unrestrictedly, after only one controller parameter set adjustment. The 

parameter consequents and antecedents are initially set to zero and cover the input 

space respectively. The controller was also seen to be robust to variations in pole 

lengths and initial conditions. 

Barto and Anderson (1983) have applied a reinforcement algorithm to the balancing 

pole problem, whereby the reinforcements are used to update the weights of an ANN, 

the action selection network (ASN) which has a partially connected architecture and is 

derived from a set of fuzzy conditional statements. An action evaluation network 
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(AEN) is also used to generate a reinforcement signal based on the effectiveness of the 

previous control action. The learning aim of the ASN is to increase the output from the 

AEN, thus providing more improvements in control action. This controller required 

thirteen rules in its fuzzy rule base to balance the pole. Results showed good robustness 

to rule omission or degradation. This method also requires a model for off-line training 

or that a failure signal is generated, in on-line training, by the plant. 

Hiraga et al. (1995) applied a fuzzy neural network (FNN) to the problem of ship 

collision avoidance, by the acquisition of suitable fuzzy control rules. Essentially, rules 

based upon ship steering control and also ship steering and speed control were 

generated through a backpropagation tuned FNN. The results obtained proved very 

effective when the object in the collision path approached from an angle greater than 4·. 

This was considered due to a 4· heading lying at the border of the left and fore steering 

decision region of the fuzzy sets. The autopilot thus could not define a correct evasive 

rudder angle. Future research is aimed at producing FNN collision avoidance 

controllers for the ship in the presence of multiple collision objects under more 

complicated conditions. It would also prove interesting from a control point of view to 

consider the effects of wind and wave disturbances upon the ship, as in the work of 

Uoyd(1989). 

Albus (1975) designed and implemented the cerebellar model articulation controller 

(CMAC) architecture, an associative ANN which employs piecewise 'constant' basis 

functions, the number of which is determined by the designer via a generalization 

parameter. Also a number of knot functions is then necessary to fuse together these 

basis functions to cover the input space. The network output can consequently be 

written as a function of the sum of the individual weights of the network, which are 

determined from a supervised training scheme such as a least mean squares law. 
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If the CMAC network is used to interpret a fuzzy controller, as in Pedrycz (1993), the 

network consists of the following layers: 

(a) A sensory layer - provided with inputs fuzzy sets of perhaps 

'error' and 'change in error', 

(b) An association layer- this consists of logical AND nodes and is 

used to aggregate the individual signals of the Sensory Layer. 

(c) A post association layer - this consists of logical OR neurons is 

used to summarize the AND aggregates above. 

(d) A defuzzification layer - transforming the results of all three 

above layers into one single valued output. 

The learning scheme is by reinforcement and a single scalar value is used to determine 

a group of connections in the network. Also the amount of i priori knowledge 

necessary to construct or design the controller is reduced. 

An alternative neural-fuzzy control strategy, the differential competitive learning (DCL) 

algorithm, was proposed by Kosko (1992) and eo-workers [Pacini and Kosko (1992), 

Kong and Kosko (1992)]. Individual neurons in the network architecture are in 

competition with each other. Fuzzy rules containing multiple antecedents are 

decomposed and then reformulated to produce more fuzzy rules which can be 

considered as the unions of individual decomposed rules, where fuzzy sets are defined 

as quantization vectors of membership function values. These are termed fuzzy 

associative memories (FAM) and combine to produce the FIS, each FAM representing 

a particular area of the input/output space. The aim of DCL is to cluster the quantization 

vectors and consequently generate fuzzy rules. The ANN architecture has an input layer 
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and a 'competition layer' connected together by a weight matrix and an intra-weight 

matrix in the competition layer that has positive diagonal elements and negative non

diagonal elements to excite the neurons. If a neuron becomes unexcited then learning 

will occur, caused by th~ weight changes' dependence on the change in competing 

neurons output. Thus many fuzzy rules may be defined but only those having a number 

of quantization vectors assigned to them are used. Kosko (1992) demonstrates 

successful controller performance using the DCL method, which is not reliant on a' 

priori knowledge of the plant model. 

Richter et al. (1996) developed a fuzzy-neural autopilot with predictive control 

capability for control of a Mariner Hull type ship. A neural model of the ship was 

identified using a pseudo random binary sequence input signal based upon a pre

definition of the crucial input/output ship relationships to be modelled. The design of 

the fuzzy autopilot was presented in some detail. Results claim a performance 

improvement of 50% over previous autopilot designs when employed in actual sea 

trials, yet no corroborating evidence is provided. It is suggested that the main failing 

with the majority of intelligent autopilots to date is the retrospective learning aspects, 

which produce corrective learning action if and when degraded performance is 

encountered. The heuristic nature of a typical FSOC falls into this category as the 

performance index is developed heuristically. By introducing the predictive element 

into the autopilot it is suggested that the strategy will possess the ability to learn correct 

commands in advance. However, no actual results for ship sea trials are presented in the 

paper. Additionally, some concern may be centred upon the selective pre-definition of 

training data pairs in producing the ship neural model. Due to the vast training history 

associated with the model (4 million epochs), if these training data pairs are incorrectly 

chosen the resulting model will not provide good generalization to unseen ship 

behaviour. Additionally, the overall structure of the autopilot is somewhat complicated 

in comparison to effective design techniques already described. Whilst the approach 



CHAPTER 2 ARTIFICIALLY INTELLIGENT CONTROL STRATEGIES FOR UNMANNED 33 
UNDERWATER VEHICLES 

holds great promise, results collected over comprehensive sea trials are required for 

completeness. 

Sutton et al. (1996) investigated the use of ANNs in the design of fuzzy autopilots for 

controlling the yaw dynamics of a modem Royal Navy Warship model. A network was 

chosen based on the ANFIS network and subsequently trained using the BP, alopex 

[Unnikrishnan and Venugopal (1994)], chemotaxis [Koshland (1980)] and simulated 

annealing [Kirkpatrick et al. (1983)] algorithms. The input fuzzy sets for the autopilot 

were chosen as yaw error and yaw rate. Simulation results were given and comparisons 

made with a traditional PD linear autopilot. Overall, it was found that the autopilot 

trained using the simulated annealing algorithm performed the best with respect to 

overshoot, rise time and the integral square error of rudder angle and yaw error. 

However, a significant drawback of the simulated annealing algorithm is that it required 

longer training periods to converge than the gradient based algorithm of BP. 

Future applications of neuro-fuzzy techniques to the control of marine vehicles are 

expected, mainly due to the fact that such techniques do not require a model of the 

process dynamics to produce a control action. 

2.5 Summary: Fuzzy Logic, Neural Networks or an 
Informed Fusion? 

Fuzzy logic control systems are inherently robust to non-linear, time-varying plant but 

remain reliant upon a rule base. Indeed, the self-organizing fuzzy logic controller 

develops its own rule base but requires some initial performance criterion. Such 

approaches have proved to be very successful at controlling UUVs, possibly due to their 

transparency. 
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Similarly, neural network paradigms are clearly very effective as controllers when no 

underlying model of the plant is available, but retain their 'black box' structure upon 

completion of learning. 

The fusion of fuzzy logic and neural network control methodologies offers a means by 

which the inherently robust and non-linear nature of the fuzzy controller can be 

combined with the powerful learning abilities of the neural network. Basically, the 

human understanding of linguistic control rules needed to describe the trained neural 

network are available and the resulting fuzzy rule base can learn to adapt its 

performance suitably to improve its knowledge base. 

Although there are examples of such fusions as applied to ship autopilot designs, 

limited attention has been given to the design of AUV autopilots using these 

techniques. Consequently, the use of neuro-fuzzy approaches to control the dynamic 

behaviour of an AUV could offer significant technological advances in the field of 

AUV autopilot design and thus provide an excellent research area. 
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Chapter 3 

Underwater Vehicle Modelling 
and System Perforn1ance Criteria 

3.1 Introduction 

This aim of this chapter is to provide a detailed description of the autonomous 

underwater vehicle (AUV) simulation model, and to discuss system performance 

criteria used within this thesis. Additionally, close attention will be given to the design 

of benchmark autopilots with which to compare the results of the following chapter. 

3.2 Modelling the Vehicle Dynamics 

The model employed throughout this study was purposely designed to provide a 

common design framework within the United Kingdom UUV research community in 

the navigation, guidance and control (NGC) fields. If required, the cable dynamics 
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pertaining to a remotely operated vehicle (ROV) can be included during simulation. 

The vehicle is considered herein as an AUV, but the following description of the 

dynamics is equally applicable to a ROV. Obviously, the package alleviates the 

requirement for an in-depth study of the UlN background modelling work, facilitating 

research that addresses the more important NGC issues. 

3.2.1 Equations of Motion 

To implement the vehicle equations of motion use is made of a MATLAB/Simulink 

simulation model termed Release Version 1.0/UUVmod-GEN supplied by the Defence 

Evaluation and Research Agency (DERA), Sea Systems Sector, Winfrith. This model 

has been validated against standard DERA hydrodynamic code using tank test data and 

an experimentally derived set of hydrodynamic coefficients from the Southampton 

Oceanography Centre's (SOC) AUTOSUB vehicle. 

The inertial terms within the AUV equations of motion are given by Eqn.(3.1): 

(3.1) 
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The hydrodynamic force model provided by the DERA is as follows: 



CHAPTER 3 UNDERWATER VEHICLE MODEWNG AND SYSTEM PERFORMANCE 42 
CRITERIA 

1 2 r, ' 2 ' ' ' ' ] Y=-pl LY •• u +Y""uv+Yvwvw+Y.vTP+Y.vT, 
2 

1 2 2 r.,' ~ ' ' ' ] 
+-pl U l!wu&;ru 0 bru +Yuu&>rlObrl +Yuua.ruOsru +Yuua.rlOsrl 

2 

+ ~ pl
3 [ y;' ~+ Y ~up + Y ~ur + Y ~ vq + Y ~ wp + Y ~' wr J 

+ ~ pl3 [r;lrl&>ruulrlobru + Y.'lrl&>rlulrlobrl + Y.'lrl&ruulrlo,ru + Y.'lrl6srlulrlo,rl] 

+ ~ pt
4

[ r; ~+ r; ;+ r;1p1PIPI + Y~ pq + Y~,qr] + Ywav• + Gr 

1 3[ ' . ' ' ' ] +lpl Z~ w+Z1111 uq+Z,'Pvp+Z.,vr 

+ ~ pl3 [+ z~lqlo;pulqlo,P + z~lql&suiqloss + z:lqlwlwlq I wiTb + z:lq'wlwlq I wiTJ 

and the hydrodynamic moment model is: 

(3.2) 
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(3.3) 

where the hydrostatic terms (Gx, ... ,N) acting upon the vehicle are commonly referred to 

as restoring forces and moments. 
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Naturally, gravitational forces act down through the vehicle centre of gravity, whereas 

the force provided by the buoyancy of the vehicle acts through the vehicle centre of 

buoyancy. With respect to the underwater vehicle used within this study, the Euler 

angle representations of these restoring forces and moments are thus given by 

Eqn.(3.4): 

G x = -(w - B )sin (e) 
Gr = (w - B )cos (e )sin(§>) 
G z = (w - B )cos (e )cos (§>) (3.4) 
G x = (Ya W - y 8 B )cos (e )cos(§>)- (za W - z 8 B )cos (e )sin(~) 
GM = -(xaW - x 8 B )cos (e )cos(~)- (zaW - z 8 B )sin (e) 
G N = (xaW - x 8 B )cos (e )sin(§>)+ (ya W - y 8 B )sin (e) 

With respect to Eqn.(3.1), Eqn.(3.2), Eqn.(3.3) and Eqn.(3.4) the following parameters 

describe the AUV model used herein: 

W= 35316 N 
p = 1025.2 kgm"3 

2 lxy = 0 kgm 
XG=0.34m 
xs=0.34 m 

B= 35316N 
fx = 320 kgm2 

lxz = 0 kgm2 

YG=Om 
Ys=Om 

l= 7.0m 
ly = 8304 kgm2 

lyz= 0 kgm2 

ZG=0.02 m 
zs=Om 

m= 3600kg 
lz = 8304 kgm2 

g = 9.81 ms·2 

It should be noted that whilst the full 6 degree of freedom equations of motion are 

reproduced here, the hydrodynamic coefficients of the model remain the property of the 

DERA. 

3.2.2 Modelling Assumptions 

As aforementioned, the effects of forces and moments due to the inclusion of a ROV 

umbilical are ignored within this thesis, the vehicle being considered of an autonomous 

form. 
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The calculation of the vehicle path relative to the earth fixed frame of reference is 

performed through an Euler co-ordinate transformation, as given in Fossen (1994). It 

should be noted however that other co-ordinate transformations can be employed 

(Fjellstad and Fossen (1994)). 

All simulations assume that the AUV remains below 30 metres (approximately) as sea 

surface effects arising within the surface layer are not modelled within the simulation 

package. 

3.2.3 Actuator Modelling 

In addition, the model structure also takes into account the dynamic behaviour of the 

actuators by describing them as first order lags with appropriate slew rate limits. The 

movement of these actuators is defined such that a diving turn to port makes all control 

angles positive. Consequently, a positive deflection of the rear hydroplanes will cause a 

negative pitching effect (down direction) and a positive deflection of the rudders 

mounted at stem causes a negative yawing movement (to port), as shown in Figure 3.1: 

X (x, u. ~) 

y . 
(y. v. v) 

Figure 3.1: The body-fixed and earth-fixed reference frames. 
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Table 3.1 provides information concerning the angular and slew rate limitations 

imposed upon the vehicle actuators. Additionally, the maximal thrust available from 

each set of thrusters is given for completeness. 

Thrusters Limitation Control surfaces Limitation 

Main longitudinal ± 450N Canard rudders (bow) ± 25.2 deg 

(X-axial) slew rate - canards ± 9.9 deg/s 

Stem rudders ± 25.2 deg 

Horizontal auxilliary ± 120N 
slew rate - stems ± 9.9 deg/s 

(Y-axial) 
Hydroplanes (bow) ± 25.2 deg 

slew rate - bow hydro ± 9.9 deg/s 
Vertical auxilliary ± 120N 

Hydroplanes (stem) ± 25.2 deg 
(Z-axial) 

slew rate - stem hydro ± 9.9 deg/s 

Table 3.1: Limitations imposed on the AUV actuators. 

3.2.4 Sea Current Model 

-
A disturbance model is included within the simulation package. This block describes 

the forces arising from sea currents within the hydrodynamic forces and moments 

(Eqn(3.2) and Eqn.(3.3)) as calculated along the translational axes as follows 

(Marshfield (1992)): 

X curreru = X vetocity [cos(lfl )cos(6 )]+ Yvetociry [- sin(lfl )cos(6 )] 

+ zvelociry [sin (o )] 

Y CUITe>U = X vaocity [- sin (VI )cos (1/J )+ cos (IJI )sin (6 )sin (1/J )] 

+ Y.docity [-cos (lfl' )cos~)- sin (lfl' )sin (8 )sin (1/J )]+ Zvelocity [-cos (8 )sin (1/J )] 

z CUrrtlll = X velocity [sin (IJI )sin (1/J )+ cos (IJI )sin (6 )cos (1/J )] 

+ y velodry [cos (lfl' )sin (1/J )- sin (lfl' )sin (8 )cos (1/J )] + z velocity [- cos (e )cos (f/J )] 

(3.5) 
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where the terms X vtloclry , Yvelocily and Zvelociry represent the constant current component 

velocities of the total current velocity vector with respect to the X, Y and Z axes of the 

earth fixed frame of reference. The resulting current forces in each axis are obtained 

through a direction cosine matrix translation involving the yaw, pitch and roll angles. 

3.3 System Performance Specifications and Autopilot 
Selection Criteria 

The selection of a suitable autopilot model is clearly dependent on various criteria. In 

order that each autopilot is chosen based upon its merits, validation and verification 

tests must be designed which are unbiased and interpretable. 

3.3.1 Suitability of Available Data 

Within any modelling paradigm, the suitability of the resulting model is highly 

dependent on the amount and quality of the data used to generate it. It is one problem to 

create models which behave like the function from which the data has been gathered. 

However, to produce final models that generalize (interpolate) well to unseen inputs 

requires the data set used during training to suitably represent this function. Various 

techniques are available for assessing the performance of an autopilot including: 

• Cross validation - traditionally the data set taken from the modelled 

function is split into two portions. One portion is employed during the 

learning phase, and the remaining portion is used to cross validate the 

resulting model. 

• Verification- given that a model has been validated, it is then usually 

verified. This process concerns the testing of a model over a wide range 

of possible inputs to assess its overall suitability to the required task. 
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• Hypothesis testing - a set of models is produced which is designated as 

the model set. A cost function, which is often based on model size and 

model accuracy, is then formed and the model that displays the lowest 

cost is chosen as the most suitable. 

• Expert inspection - can be exploited if the resulting model is in a 

simple enough form. A property of fuzzy models is that they typically 

exhibit good inspection properties, and are linguistically transparent. An 

expert can therefore verify the resulting autopilot by direct inspection. 

Examination of the resulting control surface (for a 2 input - 1 output 

system) can provide an insight into the smoothness of interpolation 

between rules within the autopilot rulebase. 

• Correlation testing - if a more rigorous statistical approach to model 

selection is sought, the most commonly used technique is residual 

examination. A set of monomial functions is developed based on the 

product of input vector elements, output vector elements and errors. lf 

any correlation exists between the residuals and the monomial functions 

the model is deemed unsuitable. 

3.3.2 Model Validation and Verification 

Throughout this work the autopilot models are based upon fuzzy linguistic rules which 

are subsequently tuned to improve their performance. The tuning methods employed 

within this thesis lend themselves naturally to the use of cross validation testing and 

verification. 

To verify the performance of a given autopilot, certain AUV modelling performance 

criteria are also specified within this section. To quantify off-course error, yaw induced 
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roll motion, course-changing control effort and roll-minimizing control effort the 

following performance measures based upon the integral square of error over time 

(ITSE) were employed respectively (in their discrete form): 

,, 
VIe= I(VJd -VJ.Jdt 

,, 

,, 
f/Je =I (f!Jd - f/Ja J dt 

r, 

,, 
8can =I (8can-d - 8,an-a )

2 
dt 

,, 

t, 

8 hydro = J (8 hydron-d - 8 hydran-a Y dt 
,, 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

where If/ d , ifJ d , o c•• _ d and IS hydro represent desired yaw angle, roll angle, canard 

demand and stem hydroplane demand respectively; If/ • ' rp a ' 0 can-a and 0 lrydro -· 

represent actual yaw angle, roll angle, canard angle and stem hydroplane angle 

respectively. To assess the course-changing response speed of the AUV model, figures 

pertaining to the rise time ( T R ·~"~ ) were collected. Rise time is considered here as the 

time to reach 99 per cent of the course-change demand. 

In addition to the quantitative performance measures of Eqn.(3.6) - Eqn.(3.9) each 

autopilot is assessed qualitatively to provide an overall measure of applicability to the 

required control task. 

3.3.3 Robustness Experiments 

Robustness (in this context) refers to the ability of the closed loop system, when 

employing an autopilot, to perform satisfactorily in light of unmeasured environmental 
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disturbances and vehicle configuration changes. Clearly, for an AUV it is required that 

the autopilot remains effective when operating at varying vehicle speeds, changing 

vehicle payloads and in the presence of environmental disturbances, such that all 

available sensor and on board systems remain functional. To simulate these effects, 

autopilot robustness to forward speed is tested at the nominal design speed of 7.5-knots 

and also at 5 and 10-knots. These tests are imperative because the equations of motion 

are non-linear with respect to the forward speed of the vehicle. 

Additionally, variations within the AUV hydrodynamic coefficients are simulated. 

Robustness to mass and hydrodynamic coefficient variations is an important facet of 

any autopilots suitability to the given task. 

Finally, if appropriate, the AUV model is simulated using a line of sight (LOS) 

guidance algorithm in the presence of sea current disturbances. This provides a method 

by which autonomous guidance may be implemented. This guidance law is determined 

by pre-specifying a number of target way-points [Xk, Yk]; k=l,2, ... ,n, which are stored 

in the vehicles mission planner prior to embarkation. Essentially, the guidance 

algorithm calculates the desired heading angle between the vehicles current position 

[xa(t), Ya(t)] and that of the target way-point using the following trigonometric rule: 

(3.10) 

-
The next way-point is then selected given that the vehicle is within a radius of 

acceptance /Jof the current way-point, where Pis calculated as follows: 

(3.11) 

An example of such a way-point is given in Figure 3.2. Autopilot robustness to sea 

current disturbances is simulated whilst employing this guidance law. 
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Desired Heading 

Figure 3.2: A typical radius of acceptance {3. 

3.4 Open Loop Simulations 

Due to the high complexity and non-linearity of the AUV model, initial simulation 

experiments were conducted in the absence of a controller. This stage of the design 

process is necessary as the behaviour of the plant must be identified in some manner 

before it can actually be controlled; it is important to know approximately what is to be 

controlled before an autopilot system can be designed. 

With respect to the AUV model this implies some form of initial experiments designed 

to ascertain how the AUV reacts to the use of individual and also combinations of its 

fourteen actuators. As the channels to be investigated within this work are those of yaw 

and roll, the basis of this study was to ascertain which actuators are most effective at 

instigating motion, or indeed suppressing cross-coupled motion, in these channels. 

3.4.1 Initial Experiments 

The nominal surge velocity during these open loop tests was set to 7.5-knots (3.859 

metres per second). Typically, when an underwater vehicle is travelling at speeds in 

excess of roughly 1-knot (0.5 metres per second) control surfaces are employed in 
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preference to thrusters. The hydrodynamic forces acting upon the rudders and 

hydroplanes of the vehicle at such speeds provides much greater manoeuvring potential 

than the use of auxiliary thruster mechanisms, and are thus a more efficient means of 

controlling the vehicle motion (Cowling (1996)). Additionally, low speed control using 

rudders and hydroplanes is subject to reversal effects. 

The positioning of the thrusters and control surfaces on the AUV hull provides some 

insight into the most effective actuators for a particular manoeuvre. For example, the 

bow and stem rudders are almost always associated with lateral plane motions such as 

yawing and sway changing, as one would expect. Also the hydroplanes (mounted on 

the side of the hull section) are typically employed in longitudinal motion control as 

perhaps roll stabilizers or heave actuators. 

Examination of the AUV dynamics provides an important insight into the use of 

actuator strategies for particular control scenarios. For example, the roll moment 

equation (K equation within Eqn.(3.3)) details the use of port and starboard stem 

hydroplanes as the actuators which are influential in roll manoeuvring. Indeed, yaw 

control could be effected by manipulation of the main axial port and starboard stem 

thrusters. However, Cowling and Corfield (1995) examined this approach and found it 

to be unsatisfactory due to induced roll effects, which produced a cyclic oscillation in 

the heading angle. This was considered to be a function of thruster switching and was 

subsequently considered an inappropriate control strategy, the response time also being 

relatively slow for this type of vehicle. A more appropriate means for achieving yaw 

control is via the use of locked upper and lower canard rudders. Employing these 

actuators in this manner leads to a cancellation of the rolling moment normally 

produced by the use of an individual rudder or differential main X-axial thruster 

strategy. 
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A simple open loop test was devised to compare the use of single and locked rudder 

strategies for course-changing. The open loop AUV model is subjected to a 25.2° step 

input on: 

(i) the low canard rudder, and 

(ii) the locked upper and lower canard rudders. 

Results from experiment (i) are illustrated in Figures 3.3 and 3.4 whilst those pertaining 

to experiment (ii) are shown in Figures 3.5 and 3.6. (NB: The upper canard rudder was 

not employed individually as this lead to the AUV heaving in the negative direction 

and leaving the water!). 

The AUV follows a clearly defined circle when employing locked canard rudders 

(Figure 3.5) whereas the use of the lower canard (Figure 3.3) leads to instability due to 

increased cross-coupling in the other AUV degrees of freedom. From the plots of 

Figure 3.4, it is clear that the pitch angle (B) has reached -90• and thus a singularity in 

the Euler transformations between earth-fixed and body-fixed reference frames has 

occurred. Consequently, the vehicle behaviour becomes unstable beyond this point in 

the simulation. 

Conversely, the open loop simulations employing locked canard rudders (Figure 3.6) 

display no evidence of such behaviour. This effect was borne out during extended 

simulation periods and varying degrees of rudder angle steps. Consequently, the upper 

and lower canards were used in locked formation throughout the remainder of the 

course-changing simulation studies. 

Figure 3.7 shows the complete control authority of the AUV model. The torpedo-like 

appearance of the vehicle suggests its use as a mine-hunting device. However, various 

mission scenarios are envisaged ranging from under ice dilta collection to covert 

surveillance and ordnance disposal. 
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Figure 3.3: The x-y trajectory of the AUV when subjected to a saturated 
step input on the low canard rudder in the open loop. 
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Figure 3.4: The cross-coupled motion of the AUV when subjected to a 
saturated step input on the low canard rudder in the open loop. 
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Figure 3.5: The x-y trajectory of the AUV when subjected to a saturated step 
input on the locked upper and lower canard rudders in the open loop. 
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Figure 3.6: The cross-coupled motion of the AUV when subjected to a saturated 
step input on the locked upper and lower canard rudders in the open loop. 
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Due to the small metacentric height of the vehicle (2 centimetres) the propensity for the 

AUV to exhibit roll cross-coupling motion when performing course-changing is quite 

pronounced (as shown in Figures 3.4 and 3.6). Indeed, when applying a step input to 

differential port and starboard stem hydroplanes, the open loop response of the AUV in 

the roll channel exhibits a ramp type response. This behaviour can be accredited to the 

existence of a free integrator within the open loop roll dynamics, which can 

subsequently be approximated using: 

{D(s) _ 20 

os,tr _hyAs)- s(s + 1) 
(3 .12) 

Chapter 5 discusses the implementation of various control strategies for roll regulation, 

one of which is based upon this transfer function approximation (Eqn.(3.12)) and was 

designed using a Nichols plot approach. 

ROLL CONTROL 
HEAVE CONTROL 

PITCH CONTROL 

SWAY CONTROL 

Figure 3.7: The complete control authority of the AUV. 
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3.5 Benchmark Autopilot Designs 

The design of a classical autopilot for course-changing control of the AUV requires 

explicit knowledge of the open loop yaw dynamics. The following sections pursue the 

modelling and design of course-changing autopilots based on the following 

approximation to this dynamic response. 

Yaw manoeuvring was found to be most effective by considering locked actuation of 

high and low canard rudders. As aforementioned, the use of locked rudders also 

eliminates some undesirable cross-coupling effects. The open loop yaw response with 

respect to a 25.2° step on differential upper and lower canard rudders is depicted in 

Figure 3.6. Approximating this response using the typical Nomoto first order transfer 

function form (Fossen (1994)) yields the open loop yaw to canard rudder transfer 

function: 

ll'(s) 33.518 

b'can (s)- s(1.45s + 1) 
(3.13) 

3.5.1 Traditional Autopilot Design 

From this transfer function it was possible to produce a well designed linear autopilot. 

Examination of the uncompensated system via a Nichols plot confirmed that a phase 

lead network autopilot would introduce suitable phase advance yet retain a reasonable 

bandwidth. The corresponding compensator was taken as: 

G (s) = 1 + 1.204s 
c."' 1+0.708s · 

(3.14) 

3.5.2 Fuzzy Logic Autopilot Design 

A detailed discussion of fuzzy logic control systems is omitted here so as not to impair 

the readability of this thesis. For the interested reader some excellent references are 

available [Sutton (1987)], [Lee (1990)], [Harris et al. (1993)], and [Jang et al. (1997)]. 



CHAPTER 3 UNDERWATER VEHICLE MODELliNG AND SYSTEM PERFORMANCE 58 
CRITERIA 

This chapter continues with the development of four Takagi-Sugeno-Kang (TSK) 

(Takagi and Sugeno, (1985)) style fuzzy autopilots for course-changing control of the 

AUV. The most suitable autopilot structure is highlighted and proposed for use within 

subsequent course-changing autopilot designs. 

Fuzzy logic controllers were developed for course-changing control of the AUV using 

traditional derivative based methods (i.e. error and rate of change of error as inputs). 

The consequent functions were chosen as fliSt order polynomial functions based upon 

the TSK style of fuzzy inference. However, for simplicity and to provide a direct 

comparison amongst each autopilot the consequent functions were initially taken as 

fuzzy singleton spikes, equally spaced over the output universe of discourse. 

Partitioning of the input space was performed using the grid partitioning approach for 

simplicity. Fuzzy systems which involve a large number of input variables, often suffer 

from the curse of dimensionality, which states that: 

"as the number of inputs increases, the number of fuzzy rules 
required also increases, but exponentially" 

which means that as the number of system inputs grows, the fuzzy model size often 

becomes prohibitively large. An alternative method of input space partitioning is to 

employ scatter partitioning. This approach places rules within the areas that contain the 

most rich data sources. Figure 3.8 illustrates these methods of partitioning where a) 

represents grid partitioning and b) scatter partitioning. Although scatter methods of rule 

positioning are efficient, they are heavily reliant upon the data set used to initialize the 

fuzzy rule base and were not considered at this juncture. 
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Figure 3.8: Input space partitioning methods. 

Yaw Error universe of discourse: degrees 

Figure 3.9: The input fuzzy sets for the 9 rule autopilot. 

Varying the number of premise membership functions provided some initial insight 

into how the number of fuzzy rules in each autopilot affects the course-changing 



CHAPTER 3 UNDERWATER VEHICLE MODELUNG AND SYSTEM PERFORMANCE 60 
CRITERIA 

control action of the AUV. The number of membership functions considered on each 

input universe of discourse were 2, 3, 4 and 5 leading to rulebases of 4, 9, 16 and 25 

rules under a grid partitioning approach. The resulting input fuzzy sets for the 9 rule 

autopilot are depicted in Figure 3.9. The input fuzzy sets for the 4, 16 and 25 rule 

autopilots are not reproduced here to avoid turgidity. 

The developed fuzzy autopilots were applied to the non-linear AUV simulation model 

using locked actuation of upper and lower canard rudders for course-changing control. 

The AUV responses to a 40° course-changing demand, at the nominal forward speed 

of 7.5-knots, are depicted in Figure 3.10. 

To ascertain the robustness of each fuzzy autopilot to forward speed, the AUV model 

was also required to simulate the 40° course change at forward speeds of 5 and 10-

knots. The results for the three course-changing simulations are given in Table 3.2, 

where lp E and 0 E are defined in Eqn.(3.6) and Eqn.(3.8) respectively. 

AUV model 4 rule fuzzy auto ilot 9 rule fuzzy auto pilot 
1/1, o, T. M,(t) sse 1/1, o, T. M,(t) sse 

(•J (·J sec % % (oJ (oJ sec % % 

5 knots 4313.6 2884.0 8.17 0.58 0.00 6898.5 1030.3 23.44 0.26 0.00 
7.5 knots 3050.5 1702.0 8.65 0.03 0.00 5039.6 620.95 18.27 0.02 0.00 
10 knots 2373.6 2466.4 4.48 -0.25 0.00 4152.7 432.31 16.49 0.00 0.00 

AUVmodel 16 rule fuzzy autopilot 25 rule fuzzy autopilot 

"'· o, T. M,(t) sse 1/1, o, T. M,(t) sse 

(oJ (·J sec % % (·J (oJ sec % % 

5 knots 4347.6 4927.3 6.35 13.18 0.00 5682.4 1399.7 16.14 1.15 0.20 
7.5 knots 3045.1 4008.0 4.45 16.22 0.00 4077.8 872.68 12.24 0.69 0.11 
10 knots 2580.4 4029.3 3.46 27.50 0.00 3279.9 605.19 10.61 0.50 0.11 

Table 3.2: AUV responses to a course change of 40° at 5, 7.5 and 10-knots. 

The 4 rule autopilot performs the desired course change quickly with no evidence of 

steady-state error, at each vehicle speed. However, at 10-knots the result pertaining to 
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peak overshoot (Table 3.2) displays a value of -0.25%, which illustrates that the AUV 

failed to reach the desired 40° course-change. Examination of the low canard response 

pertaining to this course-change illustrates a bang-bang control effect which suggests 

that either the rule base contains too few rules or that the lack of fuzzy sets centred 

around zero (on their input universes of discourse) causes oscillatory behaviour. 

Indeed, examination of the control surface for the four fuzzy autopilots (Figure 3.11) 

highlights the steep areas of transition between end rules on the 4 rule autopilot surface, 

which has consequently lead to this bang-bang control effort effect. That is, there are 

insufficient rules to interpolate the range of possible control effort demands. 

The 9 rule autopilot performs the course-change demand effectively with no evidence 

of steady-state errors and the smallest peak overshoots of all the autopilot results, at all 

three surge velocities. The low canard rudder response supports the smooth course

changing behaviour, with no saturation (unlike the 4 rule autopilot case), and a 

maximum incurred angle of approximatelyl4°. 

The results pertaining to the rise time are much in excess of those for the 4 rule 

autopilot but overall performance is superior over this course-change. Examination of 

the control surface for this autopilot illustrates the smooth interpolation between rules. 

The speed of response is notably slower arising from the ample coverage of the output 

domain by the fuzzy rules. This leads to a flatter control surface and thus a less 

pronounced or slower transition between rules at opposing ends of the rule base. 

As in the case of the 4 rule autopilot, the 16 rule results show no evidence of steady

state errors at any speed, although large overshoots are experienced. The low canard 

rudder response pertaining to the 7 .5-knot simulation illustrates the bang-bang control 

effect as experienced when employing the 4 rule autopilot. As the number of rules has 

quadrupled with respect to the 4 rule autopilot, and the 9 rule autopilot can be seen to 

control the AUV successfully, this effect can be purely accredited to the lack of a 

central fuzzy set on the input universes of discourse. 
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Figure 3.10: AUV yaw and low canard responses for each fuzzy autopilot over a 40 
degree course-changing demand at 7.5-knots. 
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Figure 3.11: Control surfaces for the untuned fuzzy autopilots. 

Finally, the 25 rule autopilot shows smooth course-changing characteristics with 

moderate response times and relatively low results for peak overshoot. However, this 

autopilot was the only autopilot with evidence of steady-state errors. The reason for 

these errors was thought to be due to the large number of rules which provide a greater 

degree of inter-rule interpolation and consequently a diluted amount of canard action in 

response to off-course errors. Effectively, the coverage of the output domain is too 

great and each rule does not possess a significant degree of control effort to correct 

minor steady-state errors. Additionally, the maximum incurred canard demand was 

greater than that of the 9 rule autopilot at almost 19° . Indeed, the canard effort 

employed was far greater at all three forward speeds. 

To further verify the course-changing ability of each fuzzy autopilot, a course 

consisting of a number of positive and negative course-changing steps of varying 
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magnitude was developed. This course includes a 100° course-changing demand in 

order to examine the properties of each autopilot with respect to yaw induced cross

coupled motion, and also whether the autopilots can control the AUV in the presence of 

sustained periods of canard saturation. The response of the AUV when employing the 

4, 9, 16 and 25 rule TSK fuzzy autopilots over the verification course is depicted in 

Figure 3.12 for the 7.5-knot nominal AUV surge velocity. 

From these initial simulations it can be seen that the 4 and 16 rule autopilots provide 

poor overall AUV course-changing control displaying some initial oscillatory motion 

which subsequently leads to unstable behaviour. This inability to follow the verification 

course accurately is considered due to the lack of a fuzzy set centred on zero on each 

input universe of discourse. Consequently, a bang-bang control effort effect is produced 

when the crisp yaw error and rate of change of yaw error input values to these 

autopilots is close to zero. 

Additionally, the 25 rule autopilot was rejected on the basis that the canard control 

effort was not considerably less than that of the 9 rule autopilot, even though the rule 

base contained a much greater number of rules. Indeed, the 25 rule fuzzy autopilot also 

exhibited some steady-state error for the 40° course change. 

Hence, based on the results from these preliminary closed loop simulations, the 9 rule 

TSK style fuzzy autopilot was chosen as the most effective fuzzy autopilot for AUV 

course-changing control. 

The performance of this autopilot was consequently compared to that of the classical 

phase lead network autopilot design of Eqn.(3.14) under the conditions introduced thus 

far. The responses of the linear PD style autopilot in comparison to the untuned 9 rule 

TSK autopilot are reproduced in Figure 3.13 and 3.14 with respect to a 40° course 

change and the verification track. 
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Figure 3. 12: AUV yaw and low canard responses for the 4, 9, 16 and 25 rule fuzzy 
autopilots over the verification course at 7.5-knots. 
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Figure 3.13: AUV yaw and low canard responses for the PD and 9 rule fuzzy 
autopilots over a 40 degree course-changing demand at 7 .5-knots. 
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Figure 3.14: AUV yaw and low canard responses for the PD and 9 rule fuzzy 
autopilots over the verification course at 7.5-knots. 
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Clearly, the linear compensator performs particularly well in comparison to the untuned 

fuzzy autopilot under the given conditions. 

3.6 Concluding Remarks 

Benchmark autopilots have been designed and tested for course-changing control of the 

AUV model of section 3.2. The classically designed autopilot displays excellent 

performance. Additionally, the 9 rule TSK fuzzy autopilot proved very effective with 

respect to the 4, 16 and 25 rule TSK autopilots. However, this autopilot is not tuned at 

present. Consequently, the course-changing autopilot designs of the following chapter 

illustrate the application of various tuning regimes to the 9 rule TSK fuzzy autopilot. 

The resulting autopilots will thus be compared with the traditional and 9 rule TSK 

fuzzy autopilots. 
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Chapter 4 

A Neural Network Approach to 
AUV Fuzzy Autopilot Design 

4.1 Introduction 

Chapter 2 discussed the inherent ability of fuzzy logic and neural network systems for 

controlling plant of diverse characteristics. It was noted that the fusion of these 

techniques yields various methods by which a fuzzy inference system (FIS) can be 

taught to follow a desired trajectory, based on the choice of suitable training data and 

learning paradigms. This chapter focuses on the implementation of FISs as single-input 

single-output (SISO) course-changing autopilots for the AUV model described in 

Chapter 3. These autopilots are subsequently tuned to improve their performance by 

adapting the parameters of their structure. The algorithms used to perform this 

adaptation, namely the hybrid learning rule, the chemotaxis algorithm and the simulated 

annealing algorithm, are discussed in detail within this chapter prior to an examination 
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of the results achieved. The work concerning the use of the hybrid learning rule for the 

tuning of course-changing AUV autopilots is to the best of the present authors 

knowledge a novel application in the field. Similar studies have been conducted into 

ship autopilot design (Taylor (1995), Tomera and Morawski (1996)). 

4.2 Tuning the 9 Rule Autopilot 

By encoding a Takagi-Sugeno-Kang (TSK) (Takagi and Sugeno (1985)) FIS as an 

adaptive network the parameters of that structure can be tuned to vary the performance 

of the FIS. This architectural approach to fuzzy membership function adaptation, based 

on the work of Jang (1992), allows the fuzzy system to learn, and consequently improve 

its performance when tuned with suitable training data. By comparing the actual output 

of this network structure with the desired output, an error measure (or cost function) 

can be formulated which illustrates the learning history of the FIS. 

Three algorithms are employed within this chapter to tune the 9 rule TSK fuzzy 

autopilot of the preceding chapter. These algorithms are discussed in detail in the 

ensuing sections. The method by which the fuzzy autopilot is encoded as a network 

architecture is also discussed in depth. The resulting autopilot designs are compared to 

the pre-tuned 9 rule TSK fuzzy autopilot, and a traditional proportional plus derivative 

(PD) autopilot, also from the previous chapter, for completeness. Additionally, all 

autopilot designs are verified by assessing their generalization capabilities. The most 

suitable autopilots are then tested for their robustness to hydrodynamic coefficient and 

mass variations as well as forward speed changes. 

4.2.1 The Neuro-Fuzzy Autopilot Structure 

If it is assumed that the fuzzy inference system under consideration has multiple inputs 

(x;) and one functional output (f) then the fuzzy rule-based algorithm may be 

represented in the first order TSK form as shown below: 
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Rule 1 : If XI is AI and x 2 is BI and .. . and Xn is P1 

thenj1 =Pi XJ + q1 x 2 + ... + VJ 

Rule 2 : If x 1 is A 2 and x 2 is B1 and ... and Xn is P1 

thenh = P 2 XI+ q 2 x 2 + .. . + v 2 

Rule n : If XJ is An and x 2 is Bn and ... and Xn is Pn 

thenfn = P n X)+ qn X2 + ... + Vn 

(4.1) 

where Ai, Bj, .. . ,Pj are membership functions and Pn. qn •... ,vn are constants within the 

consequent functions. The corresponding autopilot architecture is shown in Figure 4.1 . 

layer 1 layer 2 
(premise parameters) 

layer 3 layer 4 layer 5 
(consequent parameters) 

Figure 4.1: The adaptive network architecture. 
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Node functions within each individual layer of the architecture belong to the same 

family as follows: 

Layer 1: Every node in this layer is an adaptive node with a node output defined by 

01,i = f-Ir;(.~) (4.2) 

where x; is the input to the ith node and J1 is the fuzzy set associated with the nodes 

pertaining to input x;, that is J1 can take on the values of the premise membership 

functions given by A&BiJ .... ,P;. These membership functions can be any appropriate 

parameterized shapes. Here A;,BiJ .... ,P; are characterized by the generalized bell 

function 

(4.3) 

where {a;, b;, c;} is the parameter set pertaining to that particular node. Parameters in 

this layer are referred to as premise parameters. 

Layer 2: Every node in this layer is a fixed node labelled n, which multiplies the 

incoming signals and outputs the product or T-norm operator result, e.g. 

i = 1,2, ... ,n. (4.4) 

Each node output represents the firing strength of a rule. 
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Layer 3: Every node in this layer is a fixed node labelled N. The ith node calculates 

the ratio of the ith rules' firing strength to the sum of all rules' firing strengths 

- w. 
o3.i=w;=~. 

£.J W; 
i = 1,2, ... ,n. 

that is, the outputs of nodes within this layer are nonnalizedfiring strengths. 

Layer 4: Each node in this layer is an adaptive node with a node function 

(4.5) 

(4.6) 

and w; is the output of layer 3 and [p;, q;, ... , v;} is the parameter set pertaining to the ith 

node, v; being the constant term within the generic linear consequent functions. 

Parameters in this layer are hereby referred to as consequent parameters. 

Layer 5: The single node in this layer is labelled L, which computes the overall 

output as the summation of incoming signals 

Os,i = overall output = (4.7) 

Thus, an adaptive network architecture that performs exactly the same function as a 

single output TSK FIS may be constructed. 

4.2.2 Tuning Algorithms 

In order to examine the influence of the premise parameters on the approximation 

power of the developed FIS, two strategies were adopted for parameter tuning. Firstly, 
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the premise parameters were adapted whilst the consequents remained fixed. 

Alternatively, tuning of both the premise and consequent parameters took place 

simultaneously. Both experiments employed the hybrid learning rule, the chemotaxis 

and simulated annealing ~gorithms. 

4.2.2.1 The Hybrid Learning Rule 

This section discusses the hybrid learning rule of Jang (1992) which fuses two 

algorithms to systematically adapt the membership functions of the premise and the 

consequent portions simultaneously. With regard to the tuning architecture of Figure 

4.1, in the forward pass data is presented to the network structure and is propagated 

forward until layer 4 whereby the sequential least squares algorithm is employed to 

assign the parameters of the consequent terms. Next, the data is fed through to the 

output of the network structure and the cost function is evaluated based on the newly 

assigned consequent function parameters. Finally, the rate of change of the cost 

function with respect to each nodes output is back-propagated through the network in 

order to tune the premise membership functions with gradient descent. 

When tuning the premise parameters, the backpropagation element of the hybrid 

learning rule can be solely employed. Conversely, by employing the complete hybrid 

rule, the cost function obtained after the first forward pass (0.5 epochs) is somewhat 

reduced due to the ability of this technique to generate an initial estimate of the 

consequent portions of the fuzzy rules. 

Suppose that a given adaptive network has L layers and the krh layer has #(k) nodes. The 

node in the irh position of the krh layer can thus be denoted by (k,i),and its node function 

(or node output) by 0;1 
. Since a node output depends upon its incoming signals and its 

parameter set 

Ok 0 k (ok-l 0 1-1 b ) ; = ; 1 , •••• , ll(k-l)'a, ,c, .... (4.8) 
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where a,b,c, ... etc are the parameters pertaining to that node. Assuming the given 

training data has P entries, the error measure (or cost function) for the Pth 

(1::;; p::;; P)entry of training data can be defined as the sum of squared error 

(4.9) 

where Tm.p is the m,h component of the Pth target output vector, and o!;,.P is the m1h 

component of the adaptive networks output vector, produced by the presentation of the 

Pth input vector. Hence the overall error measure (for all P training vectors) is 

(4.10) 

In order to develop a learning procedure that implements gradient descent in E over the 

oE 
parameter space, first the error rate -:!- must be calculated for the Pth training data 

oO 

and for each node output 0. The error rate for the output node at (L,i) where 

(1::;; i ::;;#(L)) can be calculated readily from Eqn.(4.9) 

")r;o p 
(Jc.,P ~ {. L ) 
dOL = -2 L.J \Tm.p- Om.p 

i.p p=l 

(4.11) 

For the internal node at (k,i), the error rate can be derived by the chain rule: 

iJE #(k+l) iJE ()(Jk+l 
_P_ = ~ __ P _ __!!!;£_ 
(}() k L.J .:1r> k+ I . .:1r> k 

i.p m=l 0\.Jm,p oui,p 

(4.12) 
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where (1 ~ k ~ L -1). That is, the error rate of an internal node can be expressed as a 

linear combination of the error rates of the nodes in the following layer. Therefore for 

oE 
all {1 ~ k ~ L) and (1 ~ i ~#(k )}. --+ can be found using Eqn.(4.11) and Eqn.(4.12). 

ooi.p 

Now if a is a parameter of the given adaptive network 

(4.13) 

where S is the set of nodes whose outputs depend on a. Then the derivative of the 

overall error measure E with respect to a is 

Accordingly, the update formula for the generic parameter a is 

JE 
D.a = -17-

()a 

in which 17 is a learning rate, expressed as 

K 
77=--==== 

~~(:r 

(4.14) 

(4.15) 

(4.16) 

and K is the step size, the length of each gradient transition in the parameter space. 
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Writing the premise membership functions as generalized bells: 

(4.17) 

then Eqn.(4.17) represents the j 1h membership function on the irh input universe of 

discourse, where aii governs the width of the bell function, b;j governs the flatness of 

the bell function and cij is the centre of the bell function. Thus the change in the 

general parameter a can be re-written more specifically as 

~ ()Ep aJ,!,p aJ!.p 
=-7!·£J 2 p=l aJm.p . aJ!.p . Jaij . 

(4.18) 

If the function 0 1 = f(aii) is differentiable is a straightforward 

calculation. Hence the motivation for choosing the set functions described by 

Eqn.(4.17). Considering the AUV model as the final layer in the adaptive network 

yields 

~P = O~ [t (Tm,p - O!.p J] 
m,p m,p p-1 

(4.19) 

p 

= L- 2(Tm,p - O!.p) (4.20) 
p=l 
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There are no adaptable parameters in the AUV model layer. The next layer, layer 4, is 

{JEP 
the one that produces the defuzzified output. The computation of uses a 

JE 
backpropagation of --;- : 

aom,p 

dO!.p 
Now may be written as 

ao~.p 

ao~.p 

= ~ dEP dO!,p 
~ aos . 4 
m= I m,p {J() m,p 

(4.21) 

dO!.p ()y planz 
--=--'---
ao~.p ()/jCOniTOJ 

(4.22) 

where the function relating each plant output y planz to each control input b c0n1rot is non-

linear and the derivative function (Jacobian matrix) may be approximated by 

dO!.P _ 05 (n)-05 (n-1) 
ao~.p -04 (n)-0 4 (n-1)" 

(4.23) 

where n is a chosen level of discretization. The only layer to be adapted using the 

backpropagation method is the first layer. Hence, continuing the above process for each 

layer leads to the following learning rules for each individual parameter within layer 1: 

2 r (lbo -I) ( )2b. . ( )2b· . ( )2b;, 

1 
_ _ f (}£ P CXJ,P 2bii. a1i " . x- c1i . szgn a1i . szgn x - c1i 

/YJ.ij - 1J. LJ -,.,u · 1 • 2 (4.24) 
1 OV_ (X} { 2b • ( )2b;l ( )2bif • ( )2bq} r- m.p m.p a1i ij • szgn x - cii + x - c1i . szgn a1i 
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~. (Ep a:J;.p 
!:cij = -TJ. £.j ,xi . a1 . 

p=l m,p m,p 

2a/'; .(x-cS
1

'" .sign( aut' .sign(x-cvfb' .J :u ll .,l x C;j 

-------------=---::-2--= (4.25) 
J 24} . ( )2b' ( )2b' . ( )2b-; } laif .szgn x-cif + x-cif .szgn aif 

(4.26) 

In order to complete the derivation of the hybrid learning algorithm all that remains is 

to discuss the tuning paradigm for the consequents. Generalizing such that the adaptive 

network under consideration has multiple outputs in layer L, consider 

(4.27) 

..... 
where l is the set of input variables, S is the full set of adaptive network parameters 

and output is a column vector of network outputs. If there exists a function H such that 

the composite function H° F is linear in some of the elements of S , then these 

elements can be identified by the least squares method. More formally, if the parameter 

set can be decomposed into two sets 

(4.28) 

(where EB represents direct sum) such that H° F is linear in the elements of S2, then 

applying H to Eqn.(4.27) yields 
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which is linear in the elements of S2. Now given values for the parameters S1, P training 

data can be plugged into Eqn.(4.29) to obtain a matrix equation 

Ax=b (4.30) 

where J is an unknown vector whose elements are parameters in S2. Let IS 21 = M , then 

the dimensions of A, :! and 12. are PxM, Mxl and Pxl respectively. Since P is usually 

greater than M (number of linear parameters), this is an over-determined problem and 

generally there is no exact solution to Eqn.(4.30). Instead, a recursive least squares 

estimate (RLSE) of ,!, x· is sought to minimize the squared error IIA.!- bll2 
, (or 1~1 2 

where ~ = !?. - A.!). The most well known formula for x • is calculated as follows. To 

minimize 1~11 2 consider the following: 

(AT A)-1 AT b =(AT Af1 AT Ax. 
- -

(4.31) 
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where (AT At AT is the pseudo-inverse of A if AT A is non-singular. While Eqn.(4.31) 

is concise in notation it is expensive in computation when dealing with the matrix 

inverse and, moreover it becomes ill defined if AT A is singular. As a result the 

sequential least squares formulae are employed to compute the LSE of ;l. This method 

is more efficient, especially when the number of linear parameters M is small. 

Specifically, let the i,h row vector of matrix A defined in Eqn.(4.31) be at and the i,h 

row vector of matrix 12. defined in Eqn.(4.31) be ht, then~· can be calculated iteratively 

using the sequential least squares formulae, where S; is the covariance matrix: 

(4.32) 

The sequential least squares estimator for time-invariant systems of equations with 

multiple outputs can be obtained almost identically as: 

(4.33) 

Thus the hybrid learning rule is formulated. Training data for this approach were 

collected by simulating the dynamic model in the open loop. Essentially, a pseudo 

random binary sequence (PRBS) signal was presented to the open loop dynamics to 

ensure that training data were taken from a wide range of the AUV yaw dynamic 
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operational envelope. Yaw error, yaw rate and canard demands vector pairs were 

collected at every 0.1 seconds of the resulting trajectories, and pre-processed prior to 

tuning with each algorithm. 

An example of the suitability of this approach for the modelling of a non-linear function 

is provided by Jang (1992), for the interested reader. Also various other experiments 

with this method are discussed in Jang et al. (1997). 

4.2.2.2 The Chemotaxis Algorithm 

The main disadvantage of gradient descent methods, such as the backpropagation 

algorithm, is the tendency for the search to fall into a local minimum on the error 

hyper-surface. The more complex the network the more likely this is to happen as this 

hyper-surface is increasingly multi-dimensional and therefore irregular, with more local 

minima in which the partially trained network can become trapped. An alternative is to 

use less guided methods to search the parameter space. Such random methods are 

virtually guaranteed to find a global solution but training times are typically much 

longer than gradient methods as there is little direction in the search. 

The chemotaxis algorithm [Koshland (1980)] was inspired by observations of the 

movement of bacteria in a chemical environment, hence 'chemo' - chemical, and 

'taxis' -movement. In the presence of an irritant, bacteria would move randomly away 

in any direction in order to reduce the irritation, until this direction took them into an 

area where the irritation would again increase. A new random direction would then be 

chosen and if this again led to less irritation the bacteria would head in this new 

direction, otherwise another random direction would be tried. In time the bacteria 

would be located at the global minima, that is, furthest from the source of irritation. 

This behaviour may be transformed into a general search algorithm for an optimum set 

of neural network weights or parameters. The increase or decrease in irritation may be 

characterized by an increase or decrease in a suitable cost function during the 
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optimization. By converting this better/worse information into a reinforcement signal 

according to: 

r(t) = 1, better 
r(t) = 0, worse (4.34) 

the chemotaxis search algorithm is obtained, which may be classed as a reinforcement 

learning technique. The algorithm is summarized in Table 4.1. 

1. Simulate the system with an initial set of parameters. 
2. Generate some small random changes in the parameters 

and re-simulate the system. 
3. If the system's performance has improved with the new set 

of parameters, retain the changes and re-apply. This 
assumes that the local cost function gradient will continue 
to be negative in the local area. 

4. If the system performance has worsened, return to step 2. 
5. Continue until the system has reached an acceptable level. 

Table 4.1: The chemotaxis algorithm. 

Given sufficient training time, the algorithm should converge to a global minimum of 

the cost function, although given the random nature of the search an extended training 

period is often necessary. During the search process, input data are used to generate an 

error function. The chemotaxis algorithm is then applied to search for a set of optimal 

autopilot parameters. 

4.2.2.3 The Simulated Annealing Algorithm 

Another popular technique which is often used to overcome the shortcomings of 

gradient descent based approaches is that of simulated annealing which is based upon 

an analogy of a certain physical system and was first employed by Kirkpatrick et al. 
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(1983). Annealing is the process whereby a substance is initially melted at an extremely 

high temperature and then gradually cooled to a desired form, such as a crystal structure 

of a solid. 

Kirkpatrick et al. (1983) adapted an algorithm taken from the statistical mechanics field 

for converging to one of many possible cooled or low energy states. Energies of this 

algorithm are described by a Boltzman probability distribution as shown in Figure 4.2. 

Clearly, the probability of any given energy E, is an exponentially decreasing function 

of E. 

Thus if a new matrix of parameters 6, (which have been perturbed from an initially 

assumed solution by a randomly generated amount), leads to an improved performance 

of the system under consideration, then they are accepted. The process is then repeated. 

However, if this new matrix leads to a worsened performance of the system the new 

parameters may occasionally be accepted with probability P( 6) such that: 

(4.35) 

where E(6) is the energy associated with the state 6, k is a constant and T is a 

temperature parameter which decays training according to: 

T=~. 
l+an 

(4.36) 

To is the initial temperature, a is a constant which governs the rate of decay and n is the 

training epoch. By including this probability function (Eqn.(4.35)) the system is 

allowed to escape the local minima of the error hyper-surface. 
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The intermediary step consists of applying a local minimization routine to the sampled 

matrices in order to assess their suitability as system parameter sets matrices. 

Convergence towards the global minimum of the error hypersurface is possible given 

suitable training conditions. 

Finally, the stopping rule is used to stop the algorithm if there is sufficient evidence 

that the global minimum has been detected within the limits of a specified accuracy or 

when some pre-specified iteration number is reached. The simulated annealing 

algorithm is summarized in Table 4.2. 

1. Simulate the dynamic system with an initial set of parameters. 
2. Generate some small random changes in the parameters 

and re-simulate the system. 
3. If the system's performance has improved with the new 

set of parameters, retain the changes and re-apply. 
4. If the system performance has degraded, compute the 

probability of accepting the poorer parameters. 
5. Generate random number in the range 0-1 and compare 

to probability computed at 4. If random number is less 
than probability, then accept poorer parameters; 
otherwise reject. 

6. Re-simulate and return to 3 until convergence. 

Table 4.2: The simulated annealing algorithm. 
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4o3 Results and Discussion 

Prior to application of the tuning algorithms, each universe of discourse for the 9 rule 

TSK fuzzy autopilot was normalized to the range [-1, 1]. Clearly, these ranges needed 

to be re-scaled upon completion of autopilot tuning as appropriate. This method was 

considered effective in ensuring that the magnitude of parameter perturbations be 

equally effectual over each range. The initial input fuzzy sets are reproduced in Figure 

4.3. The output TSK functions were again chosen as fuzzy singletons (as in Chapter 3) 

equally distributed over the normalized output universe of discourse. Consequently, the 

initial fuzzy rulebase was taken as Eqn.(4.38): 

0 

If1p, is Nand If/ is N then 6 = + 1.00 
0 

lf1p, is Nand If! is Z then 8 = + 0.75 
0 

If 'I' , is N and If/ is P then 6 + 0.50 
0 

If 'I' , is Z and If/ is N then 0 = + 0.25 
0 

If 'I' , is Z and If/ is Z then 0 = 0.000 (4.38) 
0 

If 'I' , is Z and If/ is P then 6 = - 0.25 
0 

If 'I' , is P and If/ is N then 6 = - 0.50 
0 

If1p ,is P and If! is Z then6 =- 0.75 
0 

If 'I', is P and If/ is P then 6 = -1.00 

Clearly, no a' priori !mowledge is encompassed within the initial FIS. Thus direct 

comparisons between autopilots can be made within the ensuing sections. 

4o3ol Initial Tuning Experiments 

These initial experiments were designed to provide a measure of the effects of the 

learning rate on the input fuzzy set adaptation, prior to the addition of consequent 
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parameter tuning. Additionally, the approximation power of the resulting fuzzy model 

with respect to the non-linear premise parameters could be examined. 

The backpropagation, ch~motaxis and simulated annealing algorithms were applied to 

the task of tuning the parameters of the premise membership functions of the 9 rule 

TSK autopilot. The nominal surge velocity of the AUV during each learning regime 

was 7.5-knots and the period of tuning was initially designated as 300 epochs. Forward 

propagation of the autopilot parameters is required to formulate the first cost function 

value leading to an extra half an epoch of training. Backpropagation tuning of these 

parameters took place using a set of suitable training data, which was considered varied 

enough to provide good autopilot generalization results after tuning. Because the 

backpropagation algorithm employs the gradient in the local space, the search is a local 

one. Thus the aim of tuning is to capture the local or regional information inherent 

within the training data. Conversely, the random search techniques explore a wider area 

of the parameter space (unless the learning rate is sufficiently small) and thus elicit the 

global optimum parameter set to be found given sufficient training time. 

The backpropagation rule elicits use of a cross validation data set whilst adapting the 

fuzzy sets off-line. Thus, error training history curves for the backpropagation tuned 

autopilot include the cost function obtained by also applying the cross validation data 

set. This history curve gives a measure of the generalization of the tuned FIS. Figure 

4.4 shows the training and checking error histories during the initial backpropagation 

training of 300.5 epochs. The cost functions obtained when employing the chemotaxis 

and simulated annealing algorithms are shown in Figures 4.5 and 4.6. 

The input fuzzy sets resulting from the tuning regime (for each autopilot) were taken as 

shown in Figure 4.7 whilst the consequent functions remained as equally spaced fuzzy 

singletons. The non-symmetrical nature of the backpropagation tuned input fuzzy sets 

over the original fuzzy sets of Figure 4.3 was considered partly due to computer 

truncation errors arising during the training process. 
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Yaw Error universe of discourse: degrees 

Yaw Rate universe of discourse: degrees per second 

Figure 4.3: The input fuzzy sets defined on the interval [ -1,1] for the 
pre-tuned 9 rule TSK style autopilot. 
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Figure 4.4: Training and checking error histories for the backpropagation algorithm. 
Solid and dashed-dot lines represent training and checking error curves respectively. 
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Figure 4.5: The training error history for the chemotaxis search algorithm. 
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Figure 4.6: The cost function history during simulated annealing learning. 
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The AUV was applied to a 40° course-changing task at 5, 7.5 and 10-knots whilst 

employing each autopilot. This provided an assessment of the performance of the 

resulting autopilots in terms of course-changing ability and robustness to variation in 

forward speed. The resulting yaw and low canard rudder responses for the nominal 7.5-

k.not simulations are reproduced in Figure 4.8. The results pertaining to all three 

forward speeds are given in Table 4.3 below. 

AUVmodel Backpropagation Tuning Chemotaxis Tuning 

1/1 , Ci £ TR M,(t) sse 1/1 , Ci£ TR M,(t) sse 

(of (of sec % % (of (of sec % % 

5 knots 4727.8 4606.2 7.14 24.37 2.88 6908.3 1028.0 23.61 0.24 0.01 
7 .5 knots 4166.3 6182.1 5.21 39.19 2.88 5060.3 617.5 19.55 0.03 0.01 
10 knots 5383.6 1030.3 4.33 50.01 3.03 4170.3 426.8 17.72 0.01 0.01 

AUV model Simulated Annealing Tuning Untuned Sugeno fuzzy autopilot 

1/1, Ci £ TR M,(t) sse 1/1 , Ci £ TR M,(t ) sse 

(of (of sec % % (of (of sec % % 

5 knots 6852.0 1081.8 - - 3.91 6940.7 1020.6 23.75 0.23 0 
7.5 knots 5082.0 656.1 - - 3.91 5083.5 613.1 19.67 0.17 0 
10 knots 4212.2 45 1.4 - - 3.91 4191.6 424.3 17.91 0 0 

Table 4 .3: Autopilot robustness to forward speed variations - course-change of 40°. 

Clearly, the backpropagation and simulated annealing autopilots failed to significantly 

improve upon the original 9 rule fuzzy autopilot course-changing performance. The 

backpropagation tuned autopilot showed excessive overshoot values at all surge 

velocities. Additionally, this autopilot resulted in unsatisfactory values for steady-state 

error, as did the simulated annealing tuned autopilot. 

The most successful tuning regime was seen to be that of the chemotaxis approach 

which produced an AUV course-changing response improvement of 0.46% but at the 

expense of 0.72% increase in control effort per rudder (and hence a 1.44% total 

increase in canard rudder effort). As the cost function employed during each tuning 

procedure did not explicitly account for control effort minimization, these increases in 
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control effort can be expected. Moreover, the rise time of this autopilot was 0.86% 

smaller and the peak percentage overshoot 82.35% smaller than the pre-tuned 9 rule 

autopilot at the tuning velocity of 7.5-knots. 

-o.a -o.s -o.4 -Q2 0 02 0.4 0.6 0.8 
Yaw Rate uriverse of discourse: degrees per second 

Figure 4.7: The tuned input fuzzy sets. The solid, dashed-dot and dotted lines represent 
the sets for the backpropagation, chemotaxis, and simulated 

annealing autopilots respectively. 

Examination of the control surfaces for these autopilots (Figure 4.9) provides some 

insight into the results obtained during these simulations. These surfaces highlight that 

the tuning regimes have failed to significantly adjust the input-output relationship of 

the original fuzzy autopilot. 

A verification course was designed in order that each autopilot be verified over a wider 

range of course-changing manoeuvres. Figure 4.10 illustrates the yaw and low canard 

rudder responses of the AUV over this particular course when employing each autopilot 

at 7.5-knots. 
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Figure 4.8: AUV responses to a course-changing manoeuvre of 40° at 7.5-knots. 
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Figure 4.9: The control surfaces for the tuned 9 rule TSK fuzzy autopilots. 

From these simulations it is evident that the backpropagation and simulated annealing 

tuning regimes have resulted in completely unsuitable course-changing autopilots 

which exhibit oscillatory behaviour and steady state error respectively about the 

designated set-points. The chemotaxis tuned autopilot produces the superior course

changing behaviour of all the fuzzy autopilots, but does not provide a significant 

improvement over the pre-tuned autopilot to warrant the extensive tuning periods 

involved. The MATLAB FIS files pertaining to the premise tuning results can be 

viewed in Appendix C. 

Indeed, extended training periods were administered to attempt to improve the 

performance of these premise simulation results. However, the resulting autopilots still 

exhibited undesirable properties in light of this. Indeed, the backpropagation tuned 

autopilot illustrated even poorer performance with respect to the verification course. 
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Figure 4.10: AUV responses to a verification course at 7.5-knots using the tuned and 
untuned 9 rule fuzzy autopilots. 
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This behaviour was captured during the tuning phase within the cost function histories 

of training and checking errors, the checking error having surpassed the lowest point on 

the training error curve history as shown in Figure 4.11. 

The ability of the resulting fuzzy models to approximate the non-linear function 

representing the autopilots input-output behaviour is clearly restricted by not 

considering the adaptation of the consequent parameters. Preliminary tuning of the full 

autopilot parameter sets yielded results that were considered far superior to these initial 

results. This is the topic of the following section. 

4.3.2 Simultaneous Premise and Consequent Parameter Tuning 

The hybrid learning rule and random search algorithms were subsequently applied to 

the task of tuning both the premise and consequent parameters of the 9 rule TSK fuzzy 

autopilot. Tuning of the network parameters again took place at 7.5-knots over 300 

epochs. The input-output data set used for the backpropagation tuning of the previous 

section was employed during the hybrid rule tuning regime to elicit comparisons. 

The rulebase of the hybrid learning algorithm tuned autopilot was taken as Eqn.(4.39): 

. . 
If 1/1 , is N and 1/f is N then {J =-0.4871/1, -0.879 1/f -0.029 

• • 
If 1/1 , is N and 1/f is Z then {J =-0.4891/1 , -0.902 1/f +0.00 1 

• • 
If 1/1 , is N and 1/f is P then {J =-0.4861/1 , -0.896 1/f +0.003 

• 
If 1/1, is Z and 1/f is N then {J =-0.2991/1, -0.7031/f -0.123 . . 
Iflp ,isZandl/f isZthentJ =-0.4881/1 ,-0.8911jf+0.004 (4.39) . . 
If 1/1, is Z and 1/f is P then {J =-0.305 1/1, -0.3061/f -0.037 . . 
If 1/1 , is P and ljf is N then {J =-0.590 1/1 , -0.839 1/f -0.117 

• • 
If 1/1 , is P and 1/f is Z then t5 =-0.481 1/1 , -1.081 1/f -0.061 . . 
Iflp ,is P and 1Jf is P thentJ =-0.6591/1 ,-1.311 1/f +0.781 
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whereas the rulebase of the chemotaxis tuned autopilot was taken as Eqn.(4.40): 

. . 
If 1{1 e is Nand 1/f is N then 15 =0.1291{1 e -0.0581/f +0.143 . . 
Ifi{J ,isN andl/f isZthen 15 =-0.1011{1 .-0.0291/f+0.148 . . 
If 1{1 e is N and 1/f is P then 15 =-0.025 1{1 • -0.0611/f -0.044 

• 
Ifi{J .is Z and 1/f is N then 15 =-0.0281{1 .-0.1091/f +0.146 . . 
If 1{1 e is Z and 1/f is Z then 15 =-0.202 1{1 e +0.085 1/f -0.005 (4.40) . . 
lfi{J <is Z and 1/f is P thenO =0.1491{1 <+0.145 1/f -0.067 . . 
Ifi{J .isPand 1/f isNthenl5 =-0.1241{1 ,+0.0671/f-0.041 

• 
If 1{1 < is P and 1/f is Z then 0 =-0.0841{1 , +0.170 1/f +0.160 . . 
If 1{1 e is P and 1/f is P then 0 =0.0091{1 , +0.035 1/f +0.059 

and, the rulebase of the simulated annealing tuned autopilot was taken as Eqn.(4.41): 

. . 
lfi{J ,isN andllf isN thenO =0.1221{1 ,-0.2151/f+0.268 . . 
If 1{1 , is N and 1/f is Z then 0 =-0.042 1{1 , -0.011 1/f +0.314 . . 
If 1{1 • is N and 1/f is P then 15 =0.4041{1 , -0.3261/f +0.102 . . 
Ifi{J e is Z and 1/f is N then 0 =0.1151{1, -0.2151/f +0.351 

• • 
If 1{1, is Z and 1/f is Z then 15 =-0.4721{1, +0.4921/f -0.004 (4.41) . . 
If 1{1 , is Z and 1/f is P then 0 =0.4341{1 e +0.291 1/f -0.254 . . 
If 1{1 • is P and 1/f is N then 15 =-0.262 1{1 , +0.281 1/f -0.190 . . 
Ifi{J .is P and 1/f is Z then 15 =-0.0531{1 ,+0.1101/f +0.100 . . 
If 1{1 , is P and 1/f is P then 0 =-0.083 1{1 , +0.1631/f +0.059 
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Figure 4.11: The training (solid line) and checking error (dashed-dot line) curves 
for the extended training period. 

The resulting input fuzzy sets for the tuned autopilots were taken as shown in Figure 

4.12, the full parameter detail being provided in Appendix D. Again note the non

symmetrical nature of the tuned input fuzzy sets over the original fuzzy sets of Figure 

4.3. With regard to the hybrid rule tuned sets, these asymmetries are possibly 

accredited to the initial conditions required to bootstrap the recursive least-squares 

algorithm as well as computer truncation errors. 

Again, the resulting autopilots were employed within the AUV model for the 40° 

course-changing task at 5, 7.5 and 10-knots to examine their generalization and 

robustness to AUV speed variations. Figure 4.13 illustrates the AUV responses for the 

7 .5-knot simulation&. 
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Figure 4.12: The input fuzzy sets for the tuned autopilots. The solid, dashed-dot and 
dotted lines represent the sets for the hybrid rule, chemotaxis, and simulated 

annealing autopilots respectively. 

The results pertaining to all three surge velocities are reproduced in Table 4.4. The 

hybrid learning rule produced the most accurate course-changing autopilot for premise 

and consequent parameter tuning. The course-changing results being 15.00%, 12.00% 

and 39.86% more accurate than the chemotaxis tuned, simulated annealing tuned and 

pre-tuned autopilots respectively at 7.5-knots. The simulated annealing tuned autopilot 

is neglected in the discussions from this point forward due to the unacceptable levels of 

overshoot at all three surge velocities. 

The speed of response for the hybrid rule tuned autopilot was 10.21% and 61.11% 

faster than those of the chemotaxis tuned and pre-tuned fuzzy autopilots at 7.5-knots. 

However, the peak overshoot exhibited by this autopilot was 175 times greater and 
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100% greater than the chemotaxis and pre-tuned autopilots respectively. However, at 

all three speeds, the overshoot of the hybrid rule tuned autopilot was quite acceptable, 

never exceeding 1.12 degrees. Again the control effort demands for the hybrid tuned 

autopilot were greater than those of the pre-tuned autopilot as the cost function made no 

provision for control effort minimization. 

AUVmodel Hybrid AI orithm Tuning Chemotaxis Tuning 
1/1, o, TR M,(t) sse 1/1, o, TR M,(t) sse 

(of (of sec % % (of (of sec % % 

5-knots 4401.2 2450.9 9.85 2.79 0 5295.2 1647.1 12.58 3.33 1.25 
7.5-knots 3057.4 1451.7 7.65 1.75 0 3597.0 1154.5 8.52 0.01 0.16 
10-knots 2410.7 987.1 6.53 1.35 0 2785.6 913.7 6.74 5.86 0.16 

AUVmodel Simulated Annealin Tuning Untuned SuReno fuzz autopilot 
1/1, o, TR M,(t) sse 1/1, o, TR M,(t) sse 

(of (of sec % % (of (of sec % % 

5-knots 4420.9 3421.5 7.38 14.83 0.38 6940.7 1020.6 23.75 0.23 0 
7.5-knots 3474.4 3217.6 5.25 32.95 0.35 5083.5 613.1 19.67 0.17 0 
10-knots 3581.8 4125.6 4.34 21.96 0.35 4191.6 424.3 17.91 0 0 

Table 4.4: AUV responses to a course-change of 40° at 5, 7.5 and 10-knots. 

The hybrid rule tuned autopilot illustrated no evidence of steady-state error whereas the 

chemotaxis algorithm tuned autopilot showed a steady-state error in excess of 0.16% at 

all three tested surge velocities. Indeed, the chemotaxis algorithm tuned autopilot 

would seem more suitable than the hybrid rule tuned autopilot with respect to overshoot 

and control effort. However the response of the each autopilot when simulated at an 

AUV surge velocity of 5-knots illustrates the superior robustness of the hybrid rule 

tuned autopilot, as depicted in Figure 4.14. 

In summary, the robustness to forward speed of the hybrid rule tuned autopilot was 

superior to that of both the chemotaxis tuned and pre-tuned fuzzy autopilots, 

highlighting the effectiveness of this tuning regime in this instance. 
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Figure 4.13: AUV responses to a 40° course-change at 7.5-knots when 
employing the tuned fuzzy autopilots. 
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Figure 4.14: A comparison of the hybrid rule tuned and chemotaxis tuned 
autopilots robustness at 5-knots. 
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In order to assess the generalization capabilities of each tuned autopilot the verification 

course of Figure 4.10 was employed. Figure 4.15 illustrates the AUV yaw and low 

canard rudder responses when employing the 4 fuzzy autopilots over the verification 

course at 7 .5-knots. The hybrid rule and chemotaxis tuned fuzzy autopilots illustrate 

good performance when presented with course changes for which they have not been 

explicitly tuned. The simulated annealing tuned autopilot provides poor course

changing control of the AUV with highly oscillatory behaviour. Figure 4.16 depicts the 

control surface for each tuned autopilot. 

The control surface of the hybrid tuned autopilot exhibits a particularly flat profile, 

providing smooth interpolation between individual fuzzy rules. This is in contrast to the 

control surfaces of the random search techniques, which display sections with steep 

gradients. Clearly, such surfaces will lead to oscillatory actuator movement when the 

input vector pertains to a control output in these regions. 
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Figure 4.15: AUV responses to a verification course at 7.5-k:nots using the tuned and 
untuned 9 rule fuzzy autopilots. 
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Figure 4.16: The control swfaces for the tuned 9 rule TSK fuzzy autopilots. 

4.4 Autopilot Robustness 

The preceding sections have discussed the relative merits of various tuning regimes in 

both quantitative and qualitative form. Subsequently, the hybrid tuned fuzzy autopilot 

was proposed as the most suitable for course-changing. This section assesses the 

performance of this autopilot in the presence of coefficient uncertanties. Numerous 

coefficients were varied including the vehicle mass (to simulate deployment of 

payloads) and the hydrodynamic coefficients pertaining to the course-changing 

dynamics; these experiments are discussed in section 4.4.1. Additionally, a line of sight 

guidance algorithm, as detailed in Chapter 3 section 4, was employed to simulate the 

presence of sea current disturbances. These simulation results are given in section 4.4.2. 

4.4.1 Vehicle Coefficient Variations 

Figure 4.17 depicts the yaw and low canard rudder responses of the AUV when the 

mass of the vehicle is increased by 75%. The nominal mass of the vehicle is 
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approximately 3,600 kilograms but will clearly increase with payload. For example, if 

the vehicle is employed for covert mine disposal, the mass of the vehicle may increase 

by anything from 275 kilograms to 2,750 kilograms (approximately 7.5% to 75%). 

Evidently, the hybrid rule tuned autopilot performs well in light of the expected 

increased AUV payload. Evidence of increased overshoot is apparent as the overall 

system is now under-damped. This illustrates the sophistication of the AUV model, 

which compensates for reduced yaw damping in light of a mass increase. Additionally, 

the following perturbations in the hydrodynamic coefficients are considered: 

• ± 20% variation in Y uv, the sway damping coefficient 

• ± 20% variation in YuR, the yaw into sway coefficient 

• ± 20% variation in Nuv, the sway into yaw coefficient 

• ± 20% variation in NuR. the yaw damping coefficient 

50 ' 
Ul m40 
f3o 
' 
t20 

1

-100% I 
~ 10 -175% 

0 ' 
0 10 20 30 40 50 60 

Ul 

~ 10 
~ . "'{ ~ 
a; -10 

1-20~ 
1

-100% I 
-175% 

~ -30 
.SI 0 10 20 30 40 50 60 

time in seconds 

Figure 4.17: Mass variation during a 40" course-change when 
employing the hybrid tuned autopilot. 
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Figure 4.18: Hydrodynamic coefficient variations during a 40" course-changing 
manoeuvre when employing the hybrid tuned autopilot. 
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As the hydrodynamic coefficients are a function of the total velocity squared 

(Eqn.(4.42)), they will typically vary with velocity over a mission. It is therefore 

important that the autopilot is able to accommodate such variations effectively. 

(4.42) 

The responses of the AUV to a 40' course-changing manoeuvre when employing the 

hybrid rule tuned autopilot under these coefficient variations are illustrated in Figure 

4.18. These simulations highlight the robust performance of the hybrid rule tuned 

autopilot in the presence of these hydrodynamic coefficient variations. Clearly, the 

increase in sway, yaw and yaw into sway hydrodynamic damping coefficients produces 

a slightly over-damped course-changing response. Conversely, the increase in the sway 

into yaw coefficient leads to an under-damped response as one would intuitively 

expect, the vehicle having increased inertia in this axis. 

4.4.2 Line of Sight Guidance 

Autonomous guidance of the vehicle is achieved by employing the line of sight (LOS) 

guidance algorithm. The heading command to the vehicles canard rudders is provided 

by calculating the yaw angle between the vehicles current position and the target way

point with trigonometry (Eqn.(3.10)). Healey and Lienard (1993) employed this 

approach to assess the effectiveness of their multivariable sliding mode diving and 

steering autopilot. Certain observations concerning LOS guidance can be inferred from 

this study: 

• way-points in close proximity to one another produce overshoots in 
vehicle heading 

• a radius of acceptance /3 of approximately 2 vehicle lengths is 
adequate for accurate course-changing but can lead to overshoots in 
vehicle heading 
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• vehicle forward speed is controlled independently but can be 
incorporated into the LOS algorithm to schedule the acceptance 
region {3 

Based upon these comments, a verification track was devised to appraise the robustness 

properties of the hybrid rule tuned autopilot against a more PD autopilot (Eqn.(3.14)) 

and the untuned 9 fuzzy rule TSK autopilot. The radius of acceptance {3 was initially 

fixed at 15 metres (approximately 2 vehicle lengths) and the nominal vehicle speed at 

7.5-knots. 

x co-ordinate (metres) 500 750 1000 1000 1000 500 0 
v co-ordinate (metres) 500 500 500 450 200 0 0 

Table 4.5: Co-ordinates of the way-points within the mission management system. 

Initial simulations were conducted in the absence of sea currents. Figure 4.19 is a 

reproduction of the responses for the hybrid rule tuned, untuned and PD autopilots with 

respect to the aforementioned verification track. Table 4.5 provides the exact co

ordinates of each way-point. These points are shown in Figure 4.19 as circles. 

However, these circles do not represent the 15-metre radius of each individual way

point. 

The vehicle selects the next way-point co-ordinates in a clockwise manner beginning 

and ending at the origin. Note further the inclusion of the way-points positioned at 

[1000,500] and [1000,450] respectively. These way-points are deliberately located in 

close proximity to one another to assess the damping of each autopilot in terms of 

course overshoot. Each of the autopilots performs the course-changing demands 

successfully in the absence of sea current. 
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Figure 4.19: Line of sight responses over the verification track in the 
absence of current disturbances. 

Obviously the effect of a given current upon the AUV will vary from favourable to 

adverse depending on the vehicle orientation (when the current remains constant in 

direction and magnitude). Initially, a constant current of 2 ms·1 along the +ve x-axis 

(Northerly) was invoked. The results pertaining to this simulation are depicted in 

Figure 4.20. The ineffectiveness of the untuned fuzzy autopilot is apparent in this 

simulation; the AUV fails to complete the designated course. Alternatively, the linear 

PO autopilot performed particularly well, as did the hybrid rule tuned fuzzy autopilot. 

To further compare these two controllers, the current disturbance was increased to 2.5 

ms·1 along the +vex-axis. These results are shown in Figure 4.21. 
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It is now apparent that the hybrid rule tuned autopilot provides a superior course

changing response to that of the PD autopilot in the presence of such current 

conditions. Indeed, the PD autopilot fails to select the final way-point correctly and the 

AUV circles around the penultimate way-point before heading off to the origin. This 

behaviour can be explained more clearly by consideration of the vehicle yaw angle 

response (Figure 4.22). When entering the penultimate way-point's circle of 

acceptance, the autopilots current heading is -tso·. 
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Figure 4.20: Line of sight responses over the verification track in the 
presence of a current disturbance of 2 ms'1 along the Northerly axis. 



CHAPTER 4 A NEURAL NEIWORK APPROACH TO AUV FUZZ¥ AUTOPIWT DESIGN Ill 

The autopilot must then select a course angle of -180. to guide the AUV to the final 

way-point. However, a heading angle of +180. also produces the desired effect, guiding 

the AUV to the final way-point. Obviously, it is preferred that the autopilot selects the 

course angle of -180" as this involves a change in heading of approximately 30". If a 

heading angle of 180. is selected the heading demand changes through a full 330·. 

When this situation is encountered, the AUV circles the current way-point prior to 

selecting the target way-point. 
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Figure 4.21: Line of sight responses over the verification track in the 
presence of a current disturbance of 2.5 ms·1 along the Northerly axis. 

Further robustness experiments were carried out whilst employing a constant current of 

magnitude 2 ms·1 in the Westerly direction (in the +ve y axis). Figure 4.23 illustrates 
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the results of this test. Again, the hybrid rule tuned autopilot yields the superior result, 

visiting all 7 autopilots sequentially with no evidence of circling. Indeed, Figure 4.24 

indicates the ability of this autopilot to effect control over the AUV even in the 

presence of a 3 ms·1 Westerly current. 

- P+D autopilot 
- Hybrid Rule tuned autopilot 

-200L-------L-------L-------~------J--------L------~ 
0 1 00 200 300 400 500 600 

time in seconds 

Figure 4.22: Yaw responses over the verification track in the 
presence of a current disturbance of 2.5 ms·1 along the Northerly axis. 

As a final robustness experiment, a current of magnitude 2.83 ms·1 at an angle of 315• 

was applied. The effectiveness of the hybrid rule tuned fuzzy autopilot over the two 

other autopilots is further established by these results (Figure 4.25). 
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700 - P+D autopilot 
---)~North 

- Hybrid Rule tuned autopilot 

600 
· Untuned tuned autopilot 

.!: 

-100L------L----~~-----L----~-------L----~~----~ 
0 200 800 , 200 , 400 

x distance travelled In metres 

Figure 4.23: Line of sight responses over the verification track in the presence 
of a current disturbance of 2 ms-1 along the Westerly axis. 

500 

i 400 

.5 
Hybrid Rule tuned autopilot 

---)~North 

-100L-----~------~------~------~----~~----~------~ 
-200 0 200 400 600 800 , 000 , 200 

x distance travelled In metres 

Figure 4.24: Line of sight responses over the verification track in the 
presence of a current disturbance of 3 ms'1 along the Westerly axis. 
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- P+D autopilot 
- Hybrid Rule tuned autopilot 

· Untuned tuned autopilot 

---)~North 

400L-----~------~------L-----~------~----~~----~ 
0 200 400 600 800 1000 1200 1400 

x distance travelled in metres 

Figure 4.25: Line of sight responses over the verification track in the 
presence of a current disturbance of 2.83 ms·' in the North Westerly direction. 

4.5 Concluding Remarks 

Course-changing autopilots for the AUV have been developed based on variants of the 

TSK 9 rule fuzzy model. Premise parameter turling strategies resulted in unsatisfactory 

results and prompted the use of full parameter tuning regimes. 

Whilst the random search techniques of chemotaxis and simulated annealing should 

produce autopilots with globally optimal parameter sets, the extensive tuning periods 

required limit their applicability to AUV autopilot designs which must be flexible to 

accommodate new vehicle structures and payloads. However, use of the hybrid learning 

rule produced an excellent autopilot for course-changing control, which required a 

minimal tuning period as compared to the random search techniques. Robustness 

investigations further confirmed the superiority of the hybrid rule tuned fuzzy autopilot 
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for :coursecchangirig control of the A. DV and prompted the research of the following: 

chap~r. 

whilst the autopiiotituning:strategies· ~ neilro~filzzy in nattire,·it .should ,be IJO!edl th!lt 

the resulting tuned autopilots remain pwely tuzzy: 
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Chapter 5 

Multivariable ANFIS Autopilot 
Design Approach 

5.1 Introduction 

The results of the preceding chapter highlight the effectiveness of the adaptive network

based fuzzy inference system (ANFIS) approach for tuning the parameter set of a 

Takagi Sugeno Kang (TSK) (Takagi and Sugeno (1985)) fuzzy autopilot. However, the 

technique as described is only suitable for tuning autopilots to control one degree of 

freedom at any one time. Owing to the highly non-linear coupled autonomous 

underwater vehicle (AUV) equations of motion, stimulating a dynamic response in any 

particular channel will invariably lead to motion in other degrees of freedom. Thus, to 

ensure that the AUV acts as a steady platform and makes effective use of available 

sonar packages, for example, it is required that such cross-coupling effects be regulated 

or compensated for by the vehicle autopilot system. 
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Traditional control methodologies often fail to compensate for the inherent coupling 

between plant degrees of freedom and thus some interest in multi variable approaches to 

UlN autopilot design has been shown in recent years. This chapter discusses the 

development of a novel multivariable autopilot for simultaneous control of multiple 

degrees of freedom and highlights the requirement for the compensation of cross

coupling effects between AUV channels. To illustrate the effectiveness of the 

technique, the new structure is applied to the task of course-changing control whilst 

regulating the roll dynamic response simultaneously. 

5.2 A Brief Review of Multivariable UUV Autopilot 
Designs 

Single input-single output (SISO) approaches to UlN control system design do not 

generally take account of cross-coupling effects which occur between interacting 

vehicle degrees of freedom, as typically shown in Figure 5.1. This often leads to a 

degradation in control system performance and robustness, especially if these cross

coupling disturbances become more pronounced with varying UlN dynamics. 

In order that the behaviour of the vehicle matches the operational specifications for on

board sonar and sensor packages, it is often required that vehicle angular motion be 

decoupled from linear motion. This is the subject of the paper by Cowling and Corfield 

(1995) which discusses effective combinations of vehicle control surfaces for 

multivariable control strategies. Indeed this study was instrumental in the choices of 

actuator combinations used within this chapter, as the vehicle model employed herein is 

a direct descendent of the one used throughout their work. It is stated that for full 

decoupling of yaw, sway and roll motions an effective strategy is to employ locked 

canard rudders for yaw control, locked stern rudders for sway control and differential 

stern hydroplanes for roll control. For example, the use of differential port and 

starboard stem hydroplanes for roll decoupling ensures that a righting moment is 

produced to counter act roll disturbances, yet a pitching moment is not introduced. 
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Figure 5.1: SISO approach to control of multiple UUV degrees of freedom. 

Multivariable control system design techniques are well established in the control 

theory literature (see Maciejowski (1989)), and are employed when two or more 

degrees of freedom must be controlled simultaneously or when there is a need to 

compensate for the interaction between degrees of freedom in a plant. Indeed, some 

advanced multivariable control techniques have been developed and applied directly to 

the problem of UUV autopilot design. 

Goheen and Jeffreys (1990) applied two self-tuning multivariable techniques to the 

control of an remotely operated vehicle (ROV), the first being based upon an implicit 

adaptive linear quadratic Gaussian method and the second upon a robust multi input

multi output (MIMO) de-coupling control law with an on-line recursive identification 

method. These approaches proved to be effective in manipulating the vehicle movement 

in a desired manner, but required large amounts of computational power when 

employed for on-line identification of the estimator matrix in the hardware system. 

Healey and Lienard (1993) approached the problem in a different manner by applying a 

multi variable sliding mode method in which speed, steering and diving modes were de

coupled for slow speed manoeuvring. One problem associated with this study was the 
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limitation of available actuators on the six-degree of freedom model used. 

Consequently, this lead to a solution which considered a separate autopilot for each 

subsystem of the AUV modes of speed, steering, diving and roll, roll motion being 

considered passive. Subsequent results illustrate the performance of the three 

autopilots, but highlight their collective use as individual autopilots as opposed to a 

truly multivariable configuration. 

Trebi-Ollennu et al. (1995) proposed four robust multivariable control system designs 

including input-output linearization, with and without sliding mode control and using 

adaptive fuzzy control, and H_loop shaping control, all applied to the depth channel of 

an ROV. Although the input-output linearization technique was effective under the 

nominal design conditions, it was not particularly robust to perturbations in forward 

speed as it was designed on the basis of exact cancellation of the non-linearities in order 

to achieve the input-output relationship. By combining this technique with sliding mode 

control the resulting depth autopilot was extremely robust but the non-trivial task of 

raw estimates of the uncertainty bounds made this technique somewhat difficult to 

implement. The most effective method was seen to be the combination of input-output 

linearization with adaptive fuzzy control which produced a robust autopilot whereas the 

H_ technique was not considered the most effective as it was designed using a 

simplified model of the plant. 

Choi and Hwang (1997) presented a new hybrid learning algorithm based on radial 

basis function networks (RBFNs). Using a multivariable self-organizing and self

learning technique a fuzzy autopilot for a submersible vehicle, based on the work of Nie 

and Linkens (1993), was developed. The performance of the RBFN autopilot proved 

effective over a straightforward fuzzy logic autopilot, but the results presented were by 

no means comprehensive and greater consideration needs to be given to its 

generalisation and robustness to parameter variations. 
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5.3 CANFIS -A Multivariable Design Technique 

A novel approach for the tuning of multivariable fuzzy autopilots for AUV control, 

based upon an extension to the ANFIS technique of Jang (1992) is derived here. Similar 

structures have been employed by Mizutani and Jang (1995), and Jang et al. (1997), 

such as the multiple adaptive network based fuzzy inference system (MANFIS) and the 

eo-active adaptive network-based fuzzy inference system (CANFIS) architectures. 

However, to the best of the present author's knowledge, there are no applications of a 

similar nature to the multivariable control of an AUV. Additionally, no public domain 

software is available to implement the CANFIS approach at the present time, this 

software being written solely by the present author. 

The MANFIS structure is equivalent to the ANFIS in Jang et al. (1997) whereby 

Multiple-ANFIS models are considered side by side to produce a multi output 

configuration during the application of the hybrid learning algorithm. A significant 

drawback of this scheme is that the resulting independent fuzzy rule bases almost never 

examine all possible correlations amongst outputs, as each output is activated via a 

unique combination of premise parameters. 

The proposed approach is functionally equivalent to that of the CANFIS architecture of 

Mizutani and Jang (1995) in which the premise membership functions are shared by the 

outputs of the network architecture. Within the rulebase each linguistic statement 

considers multiple outputs for a given combination of input values leading to a eo
active ANFIS design approach. 

If it is assumed that the fuzzy inference system under consideration is of multivariable 

form, then the fuzzy rule-based algorithm may be represented in the first order TSK 

style: 
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Rule 1: If XJ is A1 and x2 is 81 and ... and Xn is G1 

then fu = au x1 + bu x2 + ... + hu 

and /12 =a12x1 + b12x2 + ... + h12 

and !1k=a1kXJ+hJtX2+ ... +hlk 

Rule 2: If XJ is A2 and X2 is 81 and ... and Xn is G1 

then fu = a21 XI + bu x2 + ... + h21 

and /22 = a22 XI + b22 x2 + ... + h22 

(5.1) 

Rule m : If XI is Ak and x2 is Bk and ... and Xn is Gk 
then fmi = am/ X] + bm/ X2 + ... + hml 

and /m2 = am2 XI+ bm2 X2 + ... + hm2 

where m = Jt is the number of fuzzy rules per output 

By encoding such a fuzzy rulebase as an adaptive network structure the proposed 

architecture (for two TSK rules with two outputs per rule) can be taken as that of Figure 

5.2. Obviously, the actual architecture employed within this study is far more complex 

than that shown. 
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Figure 5.2: A typical CANFIS tuning architecture for two outputs. 

Recalling the least squares estimator for systems with multiple outputs Eqn.(4.33) 

T P1 a a P1 -k+l -k+l 

pk+l = pk - ----::Tc--

l+a Pk a 
-k+l -k+l 

xk+1 =xk+Pk+1 a (bT -aT xk) 
-k+l -k+l -k+l 

123 

(5.2) 

the hybrid learning rule can be applied to the process of tuning the parameters of this 

encoded multi variable fuzzy inference system. 
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5.4 Results and Discussion 

This section discusses various autopilot design approaches for simultaneous control of 

the AUV yaw and roll dynamics. Initially, a classical non-interacting design approach 

is adopted to provide benchmark AUV responses. Subsequently, results pertaining to 

ANFIS style course-changing and roll-regulating autopilots illustrate the 

ineffectiveness of the ANFIS technique for combined yaw and roll control. 

Consequently, the proposed CANFIS structure is tuned to produce a course-changing 

and roll-regulating multivariable autopilot. Results illustrate the effectiveness of such 

an approach for the chosen application, due to the parallel tuning of the eo-acting 

parameter set, which enables cross-coupling to be considered internally. 

The open loop responses of Figure 3.4 and Figure 3.6 indicate the significant degree of 

cross-coupling between the yaw and roll channels. The design of a suitable autopilot or 

autopilot subsystem should therefore accommodate the cross coupled motions and 

effectively compensate for them. 

5.4.1 Non-Interacting Multivariable Control System Design 

One means of reducing cross-coupling between the AUV yaw and roll channels is to 

design decoupling elements (Doebelin (1985)). Given transfer functions for the 

interactions between controlled outputs, decoupling elements can be designed to cancel 

out the interaction terms. Subsequently, SISO controllers can be designed for each 

individual degree of freedom. However, this approach assumes that good 

approximations can be found to these interactions. Thus exact cancellation of the 

interactions cannot be expected or achieved in real systems. Additionally, 

implementation of the decoupling elements can lead to problems as these transfer 

function expressions are typically of high order and may be unrealizeable. 

Figure 5.3 illustrates the block diagram representation of the non-interacting design 

approach whereby a 2 input - 2 output system is shown. Each controller is specifically 

designed in order that the interactions within the process are exactly cancelled. 
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Figure 5.3: Non-Interacting control system design (after Doebelin (1985)). 
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Based upon this approach, decoupling elements were designed for the transfer 

functions relating yaw to roll and roll to yaw cross-coupling (elements G12 and G21 in 

Figure 5.3). This work is reproduced in Appendix E for brevity and assumed that Dn 

and D22 are zero. This required the approximation of the roll to canard and yaw to stern 

hydroplane transfer functions, as shown in Figures 5.4 and 5.5; these approximations 

are represented by the respective transfer functions: 

G _ t;(s) = 9 
21 - £)canard (s) s(s + 1) (5.3) 

G _ 1/f(s) = 0.229 
12

- ~ (s) O.ls 4 +s 3 +4s 2 +5s+l U st•m _hy 

(5.4) 
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where G21 is the roll to yaw coupling element and G 12 is the yaw to roll coupling 

element. These are considered with the transfer function approximations to the roll and 

yaw dynamics, recall Eqn.(3.12) andEqn.(3.13) 

20 
= ---;-~ 

s (s + 1) 
(S.S) 

G 
- 33.S18 

u-
s(1.4Ss + 1) 

(S.6) 

These approximations are depicted in Figures S.6 to S.7. Figure S.S clearly indicates the 

insignificant degree to which the stem hydroplanes perturb the open loop yaw 

dynamics. However, the cross-coupling motion exhibited in the roll channel as a 

product of canard actuator movement (Figure S.4) is of comparatively large magnitude. 

Based upon these transfer function approximations, the following decoupling elements 

were obtained: 

-9 D=-
21 20 (S.7) 

-0.0068 s(1.4Ss + 1 
Dll = ...,-.--:---:---'---:----'----.: 

0.1s 4 + s 3 + 4s 2 +Ss+ 1 
(S.8) 

leading to decoupled loop transfer functions as follows: 

C 1 33.S18 O.ls 4 + s 3 + 4s 2 +Ss+ 1 -0.1031 s(1.4Ss + 1) 

M;= s(1.4Ss+1 0.1s 4 +s 3 +4s 2 +Ss+1 
(S.9) 

cl 20 0.1s 4 + s 3 + 4s 2 +Ss+ 1 -0.061S s(1.4Ss + 1Xs+ 1) 

M;= s(s+1 0.1s 4 +s3 +4s 2 +Ss+1 
(5.10) 
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Figure 5.4: Roll cross-coupling with respect to a canard rudder step 
of 10°, and the approximation ofEqn.(5.3). 
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Figure 5.5: Yaw cross-coupling with respect to a stem hydroplane step 
of 10°, and the approximation ofEqn.(5.4). 
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Figure 5.6: Roll cross-coupling with respect to a stem hydroplane 
step of 10°, and the approximation of Eqn.(5.5). 
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Figure 5.7: Yaw cross-coupling with respect to a canard rudder step 
of 10°, and the approximation ofEqn.(5.6). 
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which both represent proper, type 1 transfer functions. 

Examination of the Nichols plots corresponding to the open loop approximations to the 

yaw and roll dynamics (Eqn.(5.6) and Eqn.(5.5)) suggested that the design of phase 

lead compensators for yaw and roll control would introduce appropriate phase advance 

yet retain moderate bandwidth to allow suppression of high frequency noise. Upon 

introduction of suitable phase lead, the course-changing PD autopilot of Eqn.(3.14) is 

thus implemented as the yaw controller (Eqn.(5.11)) 

G () 1+1.204s 
C.V' s = 1 + 0.708s 

and the roll autopilot was taken as the following phase lead network: 

G (s)= 1+0.735s. 
c.; 1 + 0.489s 

(5.11) 

(5.12) 

The course-changing and roll regulating responses of the AUV when employing these 

autopilots, in comparison to the interacting form of this strategy are given in Figure 5.8. 

Additionally, the low canard rudder and stem hydroplane responses are included in 

Figure 5.9 for completeness. 

The non-interacting design clearly eliminates a little cross-coupling between the yaw 

and roll channels. The yaw induced roll angle however, is not significantly improved 

through the use of this technique. The main benefit of this approach is the reduced 

degree of canard control effort involved in achieving the responses of Figure 5.8. 

Indeed, the cost of this minor reduction in roll cross-coupling is a slightly faster yaw 

response with reduced damping. Clearly, the implementation of the decoupling 

elements may prove difficult in reality, due to their high complexity. Notwithstanding, 

this approach can be very effective if more accurate transfer function representations of 

the yaw to roll and roll to yaw dynamics are available. 
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Figure 5.8: Yaw and roll responses for the AUV employing the 
decoupling elements G12 and G21· 
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Figure 5.9: Low canard and stem hydroplane responses for the AUV 
employing the decoupling elements Gn and G2J. 
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5.4.2 Applying ANFIS to Simultaneously Control the Yaw and Roll 
Channels 

The ANFIS architecture was employed to encode and tune a 9 rule TSK fuzzy autopilot 

for roll regulatory control (Eqn.(5.13)). This autopilot was subsequently used in concert 

with the ANFIS tuned course-changing autopilot of Eqn.(4.39). Clearly, the application 

of this tuning regime ignores interactions that may exist between control loops, as each 

autopilot is considered individually. Consequently, degradation in overall control 

system performance should be anticipated, when employing ANFIS models to control 

multiple, coupled AUV degrees of freedom. This is indeed seen to be the case. 

The roll-regulating autopilot was taken after 300.5 epochs of tuning as: 

If ~, is N and ,p is N then a 9 = -0.486 ~ , - 0.879 ,p" - 0.029 

If~, is Nand ,p" is Z then a 9= -0.489 ~, - 0.9CJ2,p' + 0.001 

If~. is Nand ,p" isPthena 9 =-0.486~, -0.896,p' +0.003 

If~. isZand ,p' isNthena 9 =-0.299~, +0.703,p' -0.123 

If 9, isZand ,p' isZthena 9 =-0.488~, -0.89I,p' +0.004 

If ~ ' is z and ,p' is p then a 9 = - 0.305 qj ' - 0.306 i -0.037 

If 9 , is P and ,p' is N then a 9 = - 0.590 q~ , - 0.839 ,p' - 0.117 

If ~ , is P and ,p' is Z then a 9 = - 0.481 ~ , - 1.081 ,p" - 0.061 

If ~, is P and ,p' is P then a 9 =- 0.659 q~, - 1.311 ,p' + 0.781 

(5.13) 

The evolution of the fuzzy sets during this learning phase was as depicted in Figure 

5.10. Full details pertaining to the parameter set of this autopilot are given in Appendix 

F. Figure 5.11 depicts the course-changing and roll-regulating responses of the AUV 

when employing the SISO ANFIS autopilots of Eqn.(4.39) and Eqn.(5.13) 

simultaneously. Additionally, Figure 5.12 shows the corresponding low canard rudder 

and stem hydroplane responses. The autopilots have been de-tuned herein to allow 

comparative assessment with the non-interacting controllers of section 5.4.1. Table 5.1 
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provides a comparison of the AUV autopilot strategies developed within sections 5.4.1 

and 5.4.2. 

This fuzzy SISO approach to multivariable yaw and roll control reduces the roll cross

coupling by o§ to 9.2" for a comparable course-changing response. Although the roll 

angle cross-coupling is actually reduced through employing this strategy, the overall 

roll motion ITSE value is excessive if side scan sonar packages are to be deployed 

effectively (Zehner and Thompson (1996}). 

As aforementioned, each autopilot has been tuned with no comprehension of the others 

behaviour, and thus neither autopilot makes provision for the interaction or conflicting 

interests of the other. The following section discusses the implementation of a novel 

structure for multivariable autopilot designs which yields improved roll cross-coupling 

whilst performing course-changing manoeuvres. 
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Figure 5.10: The evolution of the fuzzy sets for the roll regulating 
autopilot during learning. (Dashed lines show the tuned set positions.) 
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Figure 5.11: Yaw and roll responses of the AUV when employing the individual 
course-changing and roll-regulating 9 rule TSK autopilots at 7.5-knots for 

a 40• course-changing manoeuvre. 
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Figure 5.12: Low canard rudder and stem hydroplane responses of the AUV when 
employing the individual course-changing and roll-regulating 9 rule TSK 

autopilots at 7.5 knots for a 40• course-changing manoeuvre. 
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Performance Indices - Yaw and RoU MISO Auto l)ilots 
Autopilot "'' o, ~. o, TR M,(r) sse Max 

strategy (of (of (·f (of secs % % ~ 

PD Yaw/Roll 3606.20 1127.50 272.79 52.90 8.8 4.1 0.0 11.2 
strategy 

Non- 3886.40 1041.00 254.02 52.46 8.6 6.6 0.0 10.1 
Interacting 

strategy 
ANFIS Yawl 3045.50 1451.70 575.80 44.22 7.65 1.75 0.0 15.8 
Roll strategy 

De-tuned 3884.30 955.16 446.58 58.77 12.21 0.83 0.0 9.2 
ANFIS 

Strategy 

Table 5.1: Performance comparisons of yaw and roll control autopilot 
strategies developed within sections 5.4.1 and 5.4.2. 

5.4.3 CANFIS Control of the AUV Yaw and Roll Channels 

134 

In order to arrive at a fuzzy design solution that accommodates the interaction amongst 

plant degrees of freedom, it is necessary to tune the premise and consequent functions 

for each output variable collectively. By employing the architecture of Figure 5.2 to 

encode a multivariable TSK style fuzzy autopilot as an adaptive neural network, the 

interaction between AUV yaw and roll channels (or indeed any other channels) may be 

considered during the learning phase. In essence the cost function minimized during 

tuning exhibits components from each channel. Consequently gradient descent using 

this cost function leads to an autopilot parameter set which satisfies the simultaneous 

requirements of multiple degrees of freedom. 

Initially, to avoid problems associated with the curse of dimensionality, the number of 

membership functions considered within each input universe of discourse was taken to 

be 2, a negative and a positive fuzzy set. Thus, a 4 input- 2 output structure containing 

16 (24
) rules was developed. The number of parameters available for tuning within the 
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architecture were 184 (24 non-linear premise and 160 linear consequent parameters). 

Clearly, the selection of the optimal parameter set involves an extensive search if using 

a random search approach. However, by ensuring that the matrix containing the 

training data set is of suitable rank and is non-singular, it is possible to adapt the 

parameters with the hybrid learning algorithm to obtain a parameter solution set which 

is locally tuned. 

Training data were collected based on the AUV simulated at 7.5-knots, and the 16 rule 

autopilot structure was tuned for 300.5 epochs using the aforementioned hybrid 

learning rule. 

The fuzzy sets pertaining to the resulting multivariable autopilot (dashed-dot line) are 

plotted with the original sets (bold line) in Figure 5.13. Clearly some of the CANFIS 

fitting to the function relating the input to the output variables has been encompassed 

within the premise parameters of Figure 5.13. An abbreviated form of the tuned rule 

base (which is reproduced in Appendix G) is given below in Eqn.(5.14): 

If VI , is N and ,: and ,p , is N and ; · is N 

thenOw= -0.094VI, +0.012w'+0.092,p, +0.010,- -0.945 

and6 9 = 0.029VI, +0.0631"·-0.028,p, +0.031
9

• -1.121 

If VI , is N and ,: is N and ,p , is N and -· is P 

then 8 1'1 = - 0.098 VI , - 0.037 1'1 ·- 0.073 ,p, + 0.006 
9 

• + 0.025 

and89 = -0.033VI, +0.0621'1'+0.041~, +0.029
9

• -0.014 

(5.14) 
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If "' , is P and ., · is P and lP , is P and 9 • is N 

then b V'= 0.071 "' , - 0.075 V'·- 0.005 tP , + 0.039 9 • - 0.030 

andb~'= 0.043"', +0.069w"+0.074tP, +0.072 9• -0.074 

If "' , is P and "· is P and tP , is P and i is P 

then b V'= 0.074"' , + 0.029 V'·+ 0.078 lP, + 0.022,- + 1.075 

andb 9=- 0.055"', -0.045 V'·+ 0.024tP, -0.060 9• + 0.945 

Yaw Error universe of discourse: deg Yaw Rate universe of discourse: deg/sec 

Figure 5.13: The original and tuned fuzzy sets for the 16 rule 
multi variable autopilot. (Dashed lines show the new set positions.) 
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An assessment of autopilot responsiveness was provided by the AUV model's reaction 

to a course change of 40' during which roll motion of zero magnitude was demanded. 

The responses of the AUV when employing the tuned 16 rule multivariable autopilot 
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for a 40' course-changing manoeuvre with roll regulation are illustrated in Figure 5.14; 

the corresponding control effort responses being given in Figure 5.15. 

Clearly, the yaw induced.roll motion is greatly reduced by employing the multivariable 

autopilot over the SISO control strategies of sections 5.4.1 and 5.4.2. The maximum 

roll angle for the multi variable strategy is 6.8' as opposed to 10. I' when employing 

non-interacting SISO control loops. Figure 5.15 highlights that the stem hydroplane 

effort employed in attaining this reduced roll cross-coupled motion is less oscillatory 

when using the multi variable autopilot, the responses being crisper than those of the 

lime in seconds 

~ 
~ 

Figure 5.14: Yaw and roll responses of the AUV when employing 
the 16 rule multivariable fuzzy autopilot at 7.5-knots for 

a 40' course-changing manoeuvre. 
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- canard rudder 
- stem hydroplane 

time in seconds 

Figure 5.15: Low canard rudder and stem hydroplane responses of the AUV when 
employing the 16 rule multivariable autopilot at 7.5-knots. 
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Figure 5.16: Yaw and roll responses of the AUV when employing 
the 16 rule multivariable fuzzy autopilot at 5 andlO-knots. 
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Figure 5.17: Low canard rudder and stem hydroplane responses of the AUV when 
employing the 16 rule multi variable autopilot at 5 and 10-knots. 

non-interacting SISO control loops of Figure 5.9. Examination of the low canard rudder 

response provides an insight into the course-changing accuracy achieved when 

employing the CANFIS style autopilot. Whilst this canard response is more 

pronounced around the nominal o· of effort, the sharp transition through this point 

explains the crisp accurate course change of Figure 5.14. 

Table 5.2 presents the comparative performance of the non-interacting autopilot 

strategy of section 5.4.1 against the CANFIS 16 rule multivariable fuzzy autopilot of 

section 5.4.3. The multivariable autopilot strategy is clearly superior to the non

interacting strategy at the design speed of 7.5-knots. Course-changing response times 

for each method are comparable, yet the CANFIS technique displays a superior 

accuracy in terms of vastly reduced course overshoot. Additionally, the roll regulating 
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characteristics of the CANFIS strategy are superior to those of the classical approach. 

Notwithstanding, the classical non-interacting design produces lower demands in terms 

of stem hydroplane control effort. The stem hydroplane response of the CANFIS 

autopilot is not saturated, peaking at a maximum induced angle of 4.8·. Further 

verification of the CANFIS autopilot is clearly required in order to corroborate the 

conclusions drawn so far. 

To assess the robustness qualities of the resulting CANFIS autopilot to forward speed 

variations, the AUV model was simulated at both 5 and lO-knots. The AUV responses 

of Figures 5.16 and 5.17 illustrate the excellent robustness qualities of the multi variable 

autopilot at 10-knots. However, at 5-knots the stern hydroplane control effort is 

oscillatory. This is in contrast to the yaw and roll responses pertaining to this control 

effort, which are smooth. 

Performance Indices- Yaw and Roll Autopilots 
Autopilot 1/1, fJ, t;, fJ, T. M,(r) sse 

strategy <·Y <·Y <·Y (oY secs % % 

Non-Interacting 3886.40 1041.00 254.02 52.46 8.6 6.6 0.0 
stratel!;Y 

16 rule CANFIS 3637.50 1093.40 192.15 100.80 8.5 1.69 0.0 
autopilot 

Table 5.2: Performance comparisons for non-interacting and 16 rule 
CANFIS yaw and roll control autopilot strategies at 7 .5-knots. 

Max 
~ 

10.1 

6.8 

In order that the robustness of the developed CANFIS autopilot be more 

comprehensively examined, the following section details the performance of this 

autopilot strategy in light of parameter variations and sea current disturbances. 
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5.5 Robustness Testing for the Yaw and Roll Autopilot 

Comprehensive testing involving variations of the relevant hydrodynamic coefficients 

was performed for the CANFIS 16 rule multivariable fuzzy autopilot. Line of sight 

(LOS) guidance in the presence of sea current disturbances also proved useful in 

examining the robustness of the developed autopilot in comparison to the ANFIS 

design approach. It should be noted at this juncture that the CANFIS autopilot was 

compared to the ANFIS technique, and not the non-interacting control strategy, to 

illustrate clearly the effects of tuning the fuzzy parameters collectively. The following 

two sections document the results pertaining to these simulations, respectively. 

5.5.1 Vehicle Coefficient Variations 

Figures 5.18 and 5.19 depict the yaw and roll, and low canard and stem hydroplane 

responses of the AUV respectively, when employing the CANFIS autopilot for the 

nominal AUV mass and when the mass of the vehicle is increased to 175% of its 

nominal value. 

i 60 

5I' :s 40 

j ~-yaw100% I !: 20 - roll100% 

e 
01-

~ 
3: ' ' 

, 
' ' -'-le. -20 

0 5 10 15 20 25 30 35 40 45 50 
time in seconds 

i 60 

f 40 

j ~-yaw175% I ~ 20 - roll175% -
~ e 

~ 
0 -· 

~ -20 ' ' ' ' ' ' 
0 5 10 15 20 25 30 35 40 45 50 

time in seconds 

Figure 5.18: Mass variation during a 40° course-change when 
employing the CANFIS autopilot - yaw and roll responses. 
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Evidently, the CANFIS autopilot performs well in light of the increased AUV payload. 

Some evidence of increased overshoot is apparent as the overall system is now under

damped as compared to the nominal operating conditions. Additionally, the following 

perturbations in the hydrodynamic coefficients are to be considered: 

• ± 20% variation in Yuv, the sway damping coefficient 

• ± 20% variation in YuR, the yaw into sway coefficient 

• ± 20% variation in Kuv. the sway into roll coefficient 

• ± 20% variation in KuR, the yaw into sway coefficient 

• ± 20% variation in KuP. the roll damping coefficient 

• ± 20% variation in Nuv. the sway into yaw coefficient 

• ± 20% variation in NVR. the roll into yaw coefficient 

• ± 20% variation in NuR, the yaw damping coefficient 

As in Chapter 4, the hydrodynamic coefficients are considered as a function of the total 

velocity squared {Eqn.(4.42)) and are assumed to vary over a mission. 

The responses of the AUV to a 40" course-changing manoeuvre when employing the 

CANFIS autopilot under these coefficient variations are illustrated in Figures 5.20 to 

5.27. 
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Figure 5.19: Mass variation during a 40" course-change when 
employing the multi variable CANFIS autopilot - low canard and 

stem hydroplane responses. 
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Figure 5.20: Varying Yuv hydrodynamic coefficient during a 40. course
change when employing the multi variable CANFIS autopilot. 
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Figure 5.21: Varying Yur hydrodynamic coefficient during a 40• course
change when employing the multi variable CANFIS autopilot. 
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Figure 5.22: Varying Kuv hydrodynamic coefficient during a 40• course
change when employing the multi variable CANFIS autopilot. 
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Figure 5.23: Varying Kur hydrodynamic coefficient during a 40° course
change when employing the multivariable CANFIS autopilot. 
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Figure 5.24: Varying Kup hydrodynamic coefficient during a 40° course
change when employing the multi variable CANFIS autopilot. 
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Figure 5.25: Varying Nuv hydrodynamic coefficient during a 40" course
change when employing the multi variable CANFIS autopilot. 
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Figure 5.26: Varying Nvr hydrodynamic coefficient during a 40" course
change when employing the multi variable CANFIS autopilot. 
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Figure 5.27: Varying Nur hydrodynamic coefficient during a 40• course
change when employing the multivariable CANFIS autopilot. 

The CANFIS autopilot strategy accommodates the parameter variations in a robust 

manner, the responses proving similarly damped at all three tested values (nominal and 

± 20% variations). 

5.5.2 Line of Sight Guidance 

Autonomous guidance of the vehicle is again achieved by employing the LOS guidance 

algorithm. The verification track was employed to appraise the robustness properties of 

the CANFIS multi variable autopilot against the ANFIS autopilot strategy of Chapter 4. 

The radius of acceptance {Jwas again fixed at 15 metres and the nominal vehicle speed 

at 7.5-knots. For ease of comparison, the ANFIS and CANFIS responses are presented 

collectively. 
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Simulating the AUV at 7 .5-knots over the verification course in the presence of a 

Westerly current of 3 ms·1
, produced the course following responses of Figure 5.28. 

The AUV response when employing the CANFIS multivariable autopilot is more 

accurate and has better damping characteristics than that of the ANFIS autopilot 

response. Examination of the corresponding roll angular response (Figure 5.29) 

illustrates the reduced roll profile of the AUV over the course demand. 

Applying a current of 2.5 ms·1 in the Northerly direction produced the responses of 

Figure 5.30. The CANFIS autopilot is again superior, yielding a more damped and 

accurate course following response. 

Comparison of the corresponding roll responses (Figure 5.31) displays the reduced 

coupling achieved by employing this autopilot strategy. The yaw response of Figure 

5.32 re-iterates the improved stability of the CANFIS strategy. 

As a final experiment concerning autopilot robustness, a sea current disturbance of 2.83 

ms·1 in the North Westerly direction was simulated. The AUV responses pertaining to 

this simulation are reproduced in Figures 5.33, 5.34 and 5.35. The ANFIS autopilot 

strategy results in oscillatory yawing and rolling motion over the verification course. 

fudeed, at approximately 390 seconds into the simulation the excessive yaw demand 

placed upon the autopilot system leads to the vehicle rolling completely over through 

approximately 820" (over 2 full revolutions). This behaviour is obviously unsuitable, 

and causes the AUV to overshoot the penultimate way point. 
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Figure 5.28: Line of sight responses over the verification track in the 
presence of a current disturbance of 3 ms-1 along the Westerly axis. 
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Figure 5.29: Roll responses over the verification track in the 
presence of a current disturbance of 3 ms-1 along the Westerly axis. 
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Figure 5.30: Line of sight responses over the verification track in the 
presence of a current disturbance of 2.5 ms-1 along the Northerly axis. 
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Figure 5.31: Roll responses over the verification track in the 
presence of a current disturbance of 2.5 ms·1 along the Northerly axis. 
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Figure 5.32: Yaw responses over the verification track in the 
presence of a current disturbance of 2.5 ms·1 along the Northerly axis. 
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Figure 5.33: Line of sight responses over the verification track in the 
presence of a current disturbance of 2.83 ms·1 in the North Westerly direction. 
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Figure 5.34: Roll responses over the verification track in the 
presence of a current disturbance of 2.83 ms-1 in the North Westerly direction. 
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Figure 5.35: Yaw responses over the verification track in the presence of 
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5.6 Concluding Remarks 

This chapter has discussed the design and tuning of a novel multivariable TSK style 

fuzzy autopilot for an AUV. The presented results demonstrate the effectiveness of the 

new approach over a wide speed envelope and in light of hydrodynamic coefficient 

variations. However, whilst the multivariable autopilot solution yields superior 

performance to traditional SISO control approaches, dynamic variations in the vehicle 

environment cannot be incorporated into the control algorithm. Clearly, an autopilot 

system that provides a steady platform solution under dynamic changes is essential in 

order that the on-board sensor packages are used to their fullest. To this end, the 

following chapter documents the application of a novel on-line learning AUV control 

algorithm. 

It should be noted that the technique used within this chapter was also applied to 

control the yaw and sway dynamics simultaneously, as discussed in Craven et al. 

(1998). Although the proposed tuning method employs a neural network architecture to 

tune the parameters of the autopilot it should be noted that the resulting autopilot is 

purely fuzzy. 
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Chapter 6 

On-Line Neuro-Fuzzy Autopilot 
Design and Simulation 

6.1 Introduction 

During a typical mission scenario an autonomous underwater vehicle (AUV) will 

experience various disturbances. These disturbances can arise from numerous sources 

including sea currents or variations within the AUV payload. Additionally, the forward 

velocity of the vehicle may vary over a mission, even when regulated. Therefore, the 

ability of the autopilot system to adapt in the presence of dynamic changes is a very 

attractive property, and must be incorporated if a control system is to be considered as 

intelligent. 

This chapter discusses on-line control of the AUV model. Primarily, the adaptive 

network-based fuzzy inference system (ANFIS) of Jang (1992) is used for on-line 
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course-changing control. A novel multivariable autopilot structure, based on the eo

active network-based fuzzy inference system (CANFIS) architecture (Mizutani and 

Jang (1995)) of Chapter 5, is then used for simultaneous on-line course-changing and 

roll-regulating control. The hybrid learning algorithm is employed in both instances, yet 

in an on-line form, to tune the fuzzy sets in the premise and consequent portions of the 

rule base, which collectively constitute the fuzzy controller. 

Simulation results are presented which illustrate the effectiveness of the novel multi 

input-single output (MISO) application. Results are also presented for the proposed 

multi variable on-line approach. These results are compared to the control approaches of 

the previous two chapters, which are not capable of varying their parameters on-line to 

cope with disturbances. The adopted approach leads to a more flexible autopilot in that 

dynamic changes within the vehicle and environment can be compensated for more 

effectively. Additionally, the results provide a glimpse of the applicability of the tuning 

approach to real time control of an AUV. 

6.2 Existing On-Line Control Strategies 

The use of conventional control systems for AUVs is limited in that the hydrodynamic 

coefficients of a particular vehicle are not usually known until after the vehicle has been 

completely designed. Consequently, the repetitious design of autopilot systems can be 

an expensive process, which involves extensive testing and reconfiguration in line with 

changing vehicle sub-systems and architectures. Subsequently, an intelligent adaptive 

control strategy is highly desirable to reduce design overheads and provide 

compensation of the time varying disturbances and dynamics that such vehicles 

encounter. In recent years, neural network control schemes have been applied 

extensively to the problem of AUV control system design with varying degrees of 

success and credibility. Neural control schemes that incorporate on-line learning 

capability facilitate adaptation of controller parameters in light of such time varying 

disturbances and dynamics. 



CHAPTER 6 ON-LINE NEURO-FUZ:Z.Y AUTOPIWT DESIGN AND SIMULATION 158 

Yuh (1990) provides an excellent paper on the feasibility of such an approach by 

applying a neural network to the design of an on-line underwater robotic vehicle (URV) 

control system. The autopilot takes the form of a discrete control law, which is 

subsequently employed _within a continuous time dynamic model of the URV. The 

updating of the autopilot parameters is therefore performed at discrete sampling 

instances over the mission trajectory, producing a stage adaptive neural network 

(SANN) control system. The SANN control scheme is clearly described along with the 

design of specific robustness tests. The application of the backpropagation algorithm to 

on-line parameter adaptation is discussed and direct attention is given to the 

requirement for the Jacobian matrix of the plant to be known to elicit training. 

Venugopal et al. (1992) present an interesting review of direct and indirect neural 

network control schemes. Consequently, a direct neural network control strategy is 

discussed within the context of a simulation package based on the Ocean Voyager 

AUV. Included within this scheme are suggestions for approximating the Jacobian of 

the AUV dynamics by means of a simple gain matrix, which can be adapted along with . 

the updating of the controller parameters via the backpropagation algorithm. Results are 

presented for on-line control of the vehicle pitch, yaw and depth dynamics. However, 

overall vehicle control is performed using single input-single output (SISO) autopilots 

to manage each individual AUV degree of freedom. The results are shown to be highly 

dependent on the learning rates of the backpropagation algorithm for each individual 

autopilot. Cross-coupling effects between the vehicles pitching motion and the yaw, roll 

and sway channels are illustrated to highlight the validity of the decision to separate the 

control system into SISO autopilot sub-systems. The paper concludes by remarking that 

the presented control approach is effective in the presence of slow and fast varying 

disturbances, yet no results are reproduced for quickly varying disturbances. 

lshii et al. (1993) detail a self-organizing neural-network control system (SONCS) and 

apply it to real time adaptive on-line control of the Twin Burger AUV. The SONCS 
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consists of both an 'Imaginary World' (IW) element which computes imaginary training 

of the controller parameters, and a 'Real World' (RW) element which operates the 

AUV according to the control objective. Additionally, an identification network is 

employed as a feed-forward model of the AUV plant and is required to produce state 

estimates for the IWs update algorithm. Consequently, the synaptic weights within the 

RW controller are replaced with those found by the lW controller. Results are presented 

for yaw control of the AUV with and without adaptive SONCS capability to illustrate 

the effectiveness of the proposed approach. Indeed, the identification network is seen to 

learn the yaw dynamics of the AUV in spite of measurement noise and the overall 

control performance of the approach appears good. One obvious criticism of the 

method is that for on-line control the model of the AUV used within the identification 

network may become significantly more complex, especially when multiple degrees of 

freedom are considered within a multi input-multi output (MIMO) control structure. 

More recently hybrid neuro-fuzzy control techniques have become increasingly 

attractive as they can incorpomte fuzzy rule-based algorithms by which the autopilot 

system can be initialized. Juang and Lin (1998) have developed and applied a self

constructing neural fuzzy inference network (SONFIN) which possesses on-line 

learning capability. Based on a similar paradigm to the ANFIS of Jang (1992), the 

parameter set of the fuzzy inference system is tuned using a neural network 

architecture. However, the SONFIN has more sophisticated consequent functions. 

Initially the consequents are set as fuzzy singletons, but through learning can be self

constructed to add elements of the more typical Takagi-Sugeno-Kang (TSK) (Takagi 

and Sugeno (1985)) linear functions of ANFIS. This on-line construction of the 

architecture allows only those elements of these linear functions that are significant to 

be added to the overall consequent function, resulting in a more efficient use of 

parameters. The SONFIN is applied to various problems including temperature control 

of a water bath and prediction of a Mackey-Glass chaotic time series. The results 

provided illustrate the effectiveness of TSK linear consequent functions for control over 
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more typical fuzzy singleton consequent functions. However, due to the wide number 

of application examples considered within the paper, the results pertaining to control 

are somewhat limited in detail. Notwithstanding, the application of on-line neuro-fuzzy 

control is said to be very effective. 

Other on-line approaches to the problem of control system design have been employed 

within the literature. For example, Corradini and Orlando (1997) presented a MIMO 

adaptive discrete-time variable structure approach to the problem of position and 

orientation control of a remotely operated vehicle (ROV) model. The resulting autopilot 

performed well under a variety of current disturbances, but disappointingly the 

simulation results were of limited detail. 

6.3 The On-Line Learning Scheme 

By adopting the well-documented technique of 'temporal backpropagation', that is 

backpropagation over successive time intervals, the autopilot of the AUV can be 

encoded as a series of SANN, as discussed in the work of Jang (1992). Following the 

success of this approach, the AUV autopilot structure herein is initially implemented as 

a SANN, and the simulation is then interrupted at pre-specified discrete sampling points 

k over the mission time space. 

Specifically, given the state of the plant at time t = k x h, where h is the sampling 

interval width, the autopilot will generate an input to the plant based upon the modified 

parameter set. Implementing this procedure from t = 0 to t = t final yields the plant 

trajectory. This path is determined by the initial fuzzy autopilot and the output of each 

stage adaptive autopilot based on the ensuing parameter adaptations. This principle is 

shown conceptually in Figure 6.1. 
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Clearly, in Figure 6.1 it is necessary to make the assumptions that the delay through the 

controller is small, the plant is static where the next state is explicitly dependent on the 

last, and the required states are obtainable. Thus by initializing the system with either 

the knowledge of an expert operator or, as in this example, a previously designed 

autopilot that performs the required task, the hybrid learning rule can be employed to 

recursively adapt the parameters of the stage adaptive fuzzy autopilot. 

Initial ... System at 1+.-.t 
Conditions 1 = 10 

SANN0 SANN 1 

Desired trajectory 
Actual trajectory ~ 

X(~) 

System at 
t=t 0+2T 

SANN2 ---)7- SANNn-i 

Fuzzy 
Parameters 

Figure 6.1: Conceptual schematic of the state transition diagram 
(after Jang (1992)). 

The cost function to be minimized can be re-defined as 

E = iljx(t0 +kxh)-~d(to +kxh~~ 
k=l 

(6.1) 
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where ~(t0 + h x k) is the actual state and ~d (t0 + h x k) is the desired trajectory at the 

sampling interval t = h x k . This propagation of the error signals through time has been 

employed elsewhere, for example by Kwiesielewicz et al. (1997). 

6.3.1 The Hybrid Learning Rule - On-Line Control 

In the case of a time varying system a forgetting factor can be introduced into the 

sequential least squares estimator (LSE) which places heavier emphasis on more recent 

data pairs. This produces an algorithm which can be employed to estimate the autopilot 

consequent parameters on-line. The ability of such an algorithm to take account of more 

recent data pairs, when estimating the parameters of a controller, can aid in tracking a 

desired trajectory in the light of varying vehicle dynamics. 

Introducing a matrix W of forgetting factors 

Am-I 0. 0 

W= 
0 

(6.2) 
0 

0 0 1 

where (o < -t :51) and m is the dimension of matrix A in Eqn.( 4.30), the corresponding 

LSE solution that minimizes the weighted error measure is defined by 

(6.3) 

where the subscript k denotes the row dimension of 12. in Eqn.(4.30), and thus the 

number of data pairs used in the estimate x. Conveniently, xk+l can be written as 

(6.4) 
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To simplify the ensuing notation two n.xn matrices are introduced 

( 
T )-1 Pk = A WA (6.5) 

(6.6) 

which are related by the expression 

~ n -I P. -I T 
Ark = k+l -~~ (6.7) 

Substituting Eqn.(6.5) into equation Eqn.(6.3), and Eqn.(6.6) into Eqn.(6.4) yields 

(6.8) 

(6.9) 

To express xk+l in tenns of xk it is necessary to eliminate ATW £ from Eqn.(6.8) and 

Eqn.(6.9). Pre-multiplying Eqn.(6.8) by Pt -I 

(6.10) 

Substituting Eqn.(6.10) into equation Eqn.(6.9) gives 

xk+l = Pk+I(A.Pt-
1
Xk +~b) 

= pk+l[(pk+l-l -~~T)xk +~b J 
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(6.11) 

From Eqn.(6.7): 

1 n -1 P, -I T 
/ldk = k+l -~~ (6.12) 

Using the property of the matrix inversion formula: 

(A+ BCt = A-1
- A-18(1 + CA-1Br CA-1 

(6.13) 

which is the recursive least squares formula for a time varying system. Obviously if A. is 

chosen as 1, the sequential least squares formula for a time invariant system is re

formulated. The sequential least squares estimator for time variant systems with 

multiple outputs can be obtained almost identically as: 

(6.14) 
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The value of A determines the rate at which the effect of old data pairs decays. A high 

value of A (A~l) produces a high rate of decay and vice-versa. However, lower values 

of A can cause instability and thus the chosen value is typically taken above 0.95. 

With respect to the backpropagation element of the hybrid learning rule, Eqn.( 4.13) is 

employed as the update formula for the non-linear premise parameters, as opposed to 

Eqn.(4.14) which is used for off-line learning. 

Additionally, the sampling rate and step size of the gradient algorithms transition 

through parameter space will have a direct effect on the stability of the AUV response. 

The effect of these rates will be examined more closely in the following sections. 

6.4 Results and Discussion 

The feasibility of the proposed SANN control scheme is again assessed through the 

AUV simulation model. The direct learning control system was implemented as 

discussed in section 6.3 (Figure 6.1), whereby autopilot parameter adjustment is 

performed at every discrete time stage. With respect to the yaw dynamics of the AUV 

model, the open loop time constant was calculated as approximately 1.5 seconds 

(Eqn.(3.13), Chapter 3). Consequently, the sampling interval of the SANN could be set 

at 0.1 seconds to achieve smooth overall trajectory. 

6.4.1 Course Changing Results 

To avoid costly oscillation whilst the algorithm adjusted from its initial parameters to a 

modified parameter set, the system was initialized with the hybrid rule tuned fuzzy 

autopilot of Chapter 4. Figure 6.2 depicts the course-changing responses of the AUV at 

7 .5-knots for selected values of A.. The corresponding low canard rudder responses are 

reproduced in Figure 6.3. Clearly the rate at which old data pairs decay has a direct 

effect on the autopilot stability and thus on the course-changing response of the AUV. 
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Throughout these simulations it should be noted that the gradient descent step size 

transition rate of Eqn.(4.15) remained fixed at 5%. 

A well-known problem associated with the recursive least squares algorithm for on-line 

estimation of parameters is the unsuitability of the resulting estimates when the system 

dynamics are not continuously stimulated. That is, if the system is not sufficiently 

excited, the inverse of the covariance matrix of the recursive least squares algorithm 

can become ill defined or singular over time. This effect can be seen in Figure 6.4; this 

represents the transition of the first consequent coefficient over the course-changing 

manoeuvre of Figure 6.2. Attention should be given to the scale of each vertical axis in 

Figure 6.4 as this represents the magnitude of the parameter variation for each 

respective simulation. 
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Figure 6.2: Yaw responses of the AUV for a 40. course-changing 
manoeuvre for A-=0.99, A=0.97 and A-=0.95. 
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The results pertaining to ..1=0.97 and ..1=0.95 clearly show coefficient estimates of large 

magnitude in comparison to the parameter values for the ..1=0.99 simulation. The 

excessive variations in these (typical) parameters lead to oscillatory control commands 

as shown by the low canard rudder plots of Figure 6.3 and consequently to the unstable 

course-changing results of Figure 6.2. 
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Figure 6.3: Low canard rudder responses of the AUV for a 40' course 
changing manoeuvre for ..1=0.99, ..1=0.97 and ..1=0.95. 

To avoid this singularity problem various methods can be employed: 

(i) measurement noise can be added to the control signal to provide 

constant stimulation of the system dynamics, even in the steady state 

phase (however this may lead to a chattering effect in terms of control 

effort as the system effectively never reaches true steady state), 

-

200 

200 

-
-

200 
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(ii) the covariance matrix can be reset periodically, when singularity is 

detected, 

(iii) estimation of the parameters can be halted or 'switched off' when the 

system is in the steady state phase, and then 'switched on' again when 

transient motion is detected. 
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Figure 6.4: Transitions of the first consequent parameter for the 40' course 
changing manoeuvre for A.=0.99, A.=0.97 and A.=0.95. 

200 

The design of an autopilot for an AUV must consider the control effort employed 

within a particular manoeuvre due to the limited availability of power resources. 
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Consequently, a design solution which best utilises this control activity with respect to 

actuator efficiency is sought. Therefore, a combination of strategies (ii) and (iii) above 

was considered the most effective in minimizing control effort demand whilst 

maintaining the mathematical requirement that the inverse of the covariance matrix is 

well defined and non-singular. 

A novel on-line algorithm was developed to implement these strategies, and is 

reproduced in Table 6.1. This rule is dependent upon a pre-specified tolerance level, 

which dictates the value of course-changing error at which the parameter estimation 

algorithm should be switched off. Ideally, this should occur in the steady-state phase of 

the motion. The value of the tolerance level was set at a course error of 0.1 degrees for 

the following course-changing autopilot simulations; in light of expected sensor 

accuracy, levels of course error accurate to 2 decimal places may not be physically 

realizeable. Cetrek Ltd. of Poole boast the ability of their latest compass to measure 

course angles to within 0.1" tolerances. 

The results obtained when employing this refined adaptation algorithm in comparison 

to the original approach (for varying A values) are reproduced in Figures 6.5, 6.6 and 

6.7, and correspond to yaw response, low canard rudder response and first consequent 

parameter transition respectively. 

The new on-line algorithm produces AUV course changes of notably superior 

performance for all three selected values of A. The parameter estimates of Figure 6.7 

display stable behaviour when adaptation is restricted to transient periods of motion. 

This is because the covariance matrix within the recursive least squares estimate of the 

consequent parameters has been frozen and reset to the identity matrix multiplied by a 

large scalar value. 
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1. Set the tolerance level for transition of the system parameters. 
This value typically corresponds to If/,= 0.1. 

2. Simulate the AUV course-change. 
3. If the system exhibits If/,> 0.1, adapt the fuzzy parameter set 

using the hybrid on-line learning rule. 
4. Otherwise, retain the parameter set of the previous discretization 

level. 
5. Continue this routine throughout the mission time span. 

Table 6.1: The novel on-line tuning algorithm. 
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Figure 6.5: Yaw responses of the AUV for a 40" course-changing manoeuvre 
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Figure 6.6: Low canard rudder responses of the AUV for a 40' course-changing 
manoeuvre for A=0.991 11.=0.97 and 11.=0.95. 
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In addition to varying .A, the step size of each gradient transition through parameter 

space can be altered at the beginning of each on-line simulation. Essentially, this 

determines the learning rate of the non-linear parameters of the premise membership 

functions within the neur?-fuzzy architecture, and consequently the rate of convergence 

of the non-linear parameter set. Figures 6.8, 6.9 and 6.10 illustrate the effects of 

varying this rate, with values of step size taken as 5%, 10% and 20%. It should be 

noted that to examine the effects of the step size on the AUV's behaviour, the novel on

line adaptation algorithm is replaced with the original on-line algorithm, whereby 

parameter adjustment is performed continuously throughout the simulation period. 

From the responses it is not evident whether a learning rate of 5% or 10% produces the 

most superior result. However, the step size transition rate of 20% is clearly too large; 

the algorithm is attempting to converge too quickly. Figure 6.9 indicates that the 5% 

step size may produce the more superior results; the 10% plot appears to be 

approaching an unstable period at approximately 195 seconds into the simulation. This 

observation is not substantiated by the first consequent parameter transition plot of 

Figure 6.10, which does not display undue parameter variation during the final 5 to 10 

seconds of the simulation. Examination of the premise parameter transitions over this 

simulation illustrated the instability of the response using a 10% step size, concluding 

that the 5% step size was the most suitable of those tested. 

From these initial on-line simulations it is apparent that the forgetting factor and step 

size are important coefficients for ensuring the stability of the autopilot output, and thus 

the AUV. However, use of the modified adaptation algorithm (Table 6.1) alleviates the 

parameter instabilities caused through poor selection of these coefficients. To illustrate 

this statement, a forgetting factor of 0.95 and an unsuitably large step size of 20% were 

chosen for use with the novel adaptation algorithm. Figure 6.11 illustrates the course 

change, low canard rudder and first consequent parameter transition respectively. 

Although there is a slight steady state course error (1.63%), the problems of parameter 

instability associated with the original on-line algorithm are not present. 
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Figure 6.9: Low canard rudder responses of the AUV for a 40• course-changing 
manoeuvre with a step size of 5%, 10% and 20%. 
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As with the off-line tuning algorithm, the roll cross-coupling motion induced under 

such a course-change (Figure 6.8, step size 0.05) is pronounced, as shown in Figure 

6.12. The following section discusses a novel approach to AUV control, whereby the 

CANFIS autopilot of Chapter 5 is tuned on-line to provide compensation for this roll 

cross-coupling. 
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Figure 6.10: First parameter transitions for a 40. course-changing 
manoeuvre with a step size of 5%, 10% and 20%. 

6.4.2 CANFIS On-Line Autopilot Results 

This section discusses the implementation of an original approach to on-line 

multivariable control system operation. The CANFIS technique developed within 

Chapter 5 is extended beyond the current configuration to one that is suitable for on

line control. This extension manifests itself in the form of the novel on-line hybrid 

learning rule of Table 6.1, applied to the CANFIS architecture via Eqn.(6.14). 
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Figure 6.11: Yaw, low canard rudder and parameter transition responses 
for a 40. course-changing manoeuvre using a forgetting factor 

of 0.95 and a step size of 20%. 
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The 16 rule hybrid tuned multivariable fuzzy autopilot of Chapter 5 was used to 

initialize the SANN control system and thus provide a pre-tuned start point to the 

course-changing and roll-regulating simulation. The forgetting factor was initially set 

heuristically at A=0.975. 

Figure 6.13 displays the yaw and roll responses of the AUV during a 7.5-knot 

simulation whilst employing the proposed CANFIS on-line autopilot. Again, the 

corresponding low canard rudder and stem hydroplane responses are depicted in Figure 

6.14 for completeness. 

Although the autopilot steers the AUV smoothly towards the desired set-point with 

reduced roll cross-coupling, the yaw response indicates a steady state error of 

approximately 1.22% and the controlled roll response is oscillatory. 
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Figure 6.12: Roll response of the AUV for a 40• course-changing 
manoeuvre with a step size of 5%. 

The responses of Figure 6.14 explain the oscillatory course-changing and roll 

regulating responses of Figure 6.13. The parameter set transition over the simulation 

period (Figure 6.15) highlights the oscillatory nature of some of the fuzzy autopilot's 

coefficients. Closer examination of this parameter set highlights the stable nature of the 

premise parameters in comparison to the oscillatory mode of many of the consequent 

parameters during the transient period of the course change. The final rulebase of this 

autopilot is reproduced in Appendix H. 

This suggests that the premise parameter step size transition rate of 5% is suitable. 

Conversely, the estimates of the consequent coefficients, via the sequential least 

squares element of the hybrid algorithm, are varying excessively during the transient 

period of the motion. This variation is thus producing unstable AUV responses through 

oscillatory actuator demands. 
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Figure 6.13: Yaw and roll responses of the AUV for a 40• course-changing 
manoeuvre using a forgetting factor of 0.975 and a step size of 5%. 
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Figure 6.14: Low canard rudder and stem hydroplane responses of the AUV for a 40. 
course-changing manoeuvre using a forgetting factor of 0.975 and step size of 5%. 
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Figure 6.15: Parameter transition for a 40° course-changing manoeuvre 
using a forgetting factor of 0.975 and a step size of 5%. 
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Figure 6.16: Yaw and roll responses of the AUV for a 40° course-changing 
manoeuvre using a forgetting factor of 0.99 and a step size of 5%. 
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Figure 6.17: Low canard rudder and stem hydroplane responses of the AUV for 
a 40° course-changing manoeuvre using a forgetting factor of 0.99 

and a step size of 5%. 
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Figure 6.18: Parameter transition for a 40° course-changing manoeuvre using a 
forgetting factor of 0.99 and a step size of 5%. 
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Further simulations, examining the influence of the forgetting factor A. on the 

consequent parameter estimates, lead to a more suitable choice of A;:::0.99. The 

responses of the AUV when employing this value are depicted in Figure 6.16, 6.17 and 

6.18. Appendix I details the final rulebase of this autopilot. 

The course-changing response of the AUV is slower under the conditions of Figure 

6.16 than as previously documented in Figure 6.13. This is illustrated through the 

responses of Figure 6.17, the low canard rudder reaching a maximum value of 17.4 a as 

opposed to 23.4° when employing a forgetting factor of 0.975. Clearly, employing a 

larger forgetting factor reduces the effects of new data pairs on the control system 

parameter estimates, as expected. This property suggests that the introduction of 

disturbances may require a smaller forgetting factor in order that parameter estimates 

are updated more frequently. Nevertheless, the responses achieved when employing a 

forgetting factor of A;:::0.99 are superior to those attained with A;:::0.975, the roll cross 

coupled motion being suppressed effectively as compared to that of Figure 6.12 for the 

unregulated case. 

The following section discusses the robustness of the CANFIS on-line autopilot to 

parameter variations, sea current disturbances and measurement noise. 

6.5 Robustness Properties of On-Line Control 

This section examines the relative merits of employing the on-line control strategy 

presented in the preceding sections, in comparison to the most effective off-line tuned 

multivariable fuzzy autopilot. The robustness properties of the hybrid tuned CANFIS 

autopilot were discussed in section 5.5. However, these robustness simulations did not 

account for varying disturbances such as measurement noise. One would expect an on

line autopilot system to better accommodate the characteristics of a varying 

disturbance, in comparison to a pre-tuned or off-line system. This section is designated 

to examining this conjecture. 
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Primarily, the on-line CANFIS autopilot is assessed in light of various hydrodynamic 

coefficient variations. The autopilot is subsequently tested over the designated line of 

sight (LOS) verification track. Finally, autopilot robustness to measurement noise is 

appraised. 

6.5.1 Vehicle Coefficient Variations 

Figures 6.19 and 6.20 depict the yaw and roll, and low canard rudder and stem 

hydroplane responses of the AUV respectively, for the nominal AUV mass and when 

the mass of the vehicle is increased to 175% of its nominal value. During these 

simulations the CANFIS on-line autopilot was employed with a forgetting factor of 

A=0.99, and a gradient descent step size of 5%. The AUV was initialized at a forward 

speed of 7 .5-knots. 

~ 
g> 40 

"C 

.5 

.9! 

~20 

~ 
10 20 30 

10 20 30 40 50 
time in seconds 

Figure 6.19: Mass variation during a 40. course-change when 
employing the CANFIS autopilot - yaw and roll responses. 
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Figure 6.20: Mass variation during a 40' course-change when 
employing the on-line CANFIS autopilot -low canard rudder 

and stem hydroplane responses. 
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Evidently, the on-line CANFIS autopilot performs poorly in light of the increased AUV 

payload. The depleted damping of the yaw dynamics, arising from the increased AUV 

mass, leads to oscillatory responses in the yaw and roll channels under this control 

strategy. In an effort to remedy these poor responses, the step size of the parameter 

transitions was increased to 20%; this was the lowest integer value to effect significant 

improvements in AUV course-changing stability. The parameters were consequently 

allowed to vary more significantly at each transition. It was felt at this stage that this 

approach would enable the control system to compensate more quickly for the large 

overshoots involved in Figure 6.19. The results of this experiment are reproduced in 

Figures 6.21 and 6.22. 
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Figure 6.21: Mass variation during a 40" course-change when employing the CANFIS 
autopilot with a step size transition rate of 20o/o- yaw and roll responses. 
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Figure 6.22: Mass variation during a 40" course-change when employing the CANFIS 
autopilot with a step size transition rate of 20o/o-low canard and stem hydroplane 

responses. 
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The premise parameter step size transition rate of 20% clearly invokes an improvement 

in the course-changing effectiveness of the on-line autopilot system. However, these 

results should be treated with some scepticism; the introduction of such a high 

transition rate can lead to parameter oscillation as highlighted in the simulations 

pertaining to Figures 6.8- 6.10. 

Additionally, the following perturbations in the hydrodynamic coefficients are to be 

considered, based upon the dependence of the hydrodynamic coefficients on the total 

velocity squared (Eqn.( 4.42)): 

• ± 20% variation in Y uv, the sway damping coefficient 

• ± 20% variation in YuR. the yaw into sway coefficient 

• ± 20% variation in Kuv. the sway into roll coefficient 

• ± 20% variation in KuR. the yaw into sway coefficient 

• ± 20% variation in KuP, the roll damping coefficient 

• ± 20% variation in Nuv. the sway into yaw coefficient 

• ± 20% variation in NVR. the roll into yaw coefficient 

• ± 20% variation in NuR. the yaw damping coefficient 

The responses of the AUV to a 40" course-changing manoeuvre when employing the 

CANFIS autopilot under these coefficient variations are illustrated in Figures 6.23 to 

6.30. 
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Figure 6.23: Varying Y"" hydrodynamic coefficient during a 40" course
change when employing the on-line multi variable CANFIS autopilot. 

Yur+l-20% 
SOr-----~----~------. 

"' ~40 
i' 
"C3Q 
.5 

~20 
"' 
~ 10 

"' CD 6 
I!! 
Cl 

-8 4 
.5 

10 20 
time in seconds 

Yur+l-20% 

30 

-2 '------~----~----___J 
0 10 20 30 

time In seconds 

Yur +1-20% 

time in seconds 
Yur +1-20% 

time In seconds 

Figure 6.24: Varying Yur hydrodynamic coefficient during a 40" course
change when employing the on-line multi variable CANFIS autopilot. 
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Figure 6.25: Varying Kuv hydrodynamic coefficient during a 40° course
change when employing the on-line multi variable CANFIS autopilot. 
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Figure 6.26: Varying Kur hydrodynamic coefficient during a 40° course
change when employing the on-line multivariable CANFIS autopilot. 
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Figure 6.27: Varying Kup hydrodynamic coefficient during a 40° course
change when employing the on-line multi variable CANFIS autopilot. 
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Figure 6.28: Varying Nuv hydrodynamic coefficient during a 40° course
change when employing the on-line multi variable CANFIS autopilot. 
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Figure 6.29: Varying N., hydrodynamic coefficient during a40· course
change when employing the on-line multi variable CANFIS autopilot. 
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Figure 6.30: Varying N., hydrodynamic coefficient during a 40• course
change when employing the on-line multi variable CANFIS autopilot. 
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The on-line CANFIS autopilot strategy does not accommodate the parameter variations 

in such a robust manner as the off-line tuned CANFIS autopilot. Although none of the 

robustness tests resulted in unstable behaviour, oscillatory motion is evident in Figures 

6.23, 6.26, 6.28 and 6.30. The use of the on-line adaptation algorithm causes a conflict 

of interests within the parameter tuning regime; whilst on-line parameter adaptation is 

required to improve autopilot effectiveness, the parameters must be restricted to vary 

less sharply. 

Despite the ability of the presented on-line algorithm (Table 6.1) to control the AUV 

effectively, the robustness experiments pursued within this section have illustrated that 

the restriction of the parameter set to adaptation during transient motion limits the 

robustness of the resulting control algorithm. 
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6.5.2 Line of Sight Guidance 

Autonomous guidance of the vehicle is again achieved by employing the LOS 

algorithm. The verification track was employed to appraise the robustness properties of 

the novel on-line CANFIS multivariable autopilot against the off-line multivariable 

CANFIS autopilot of Chapter 5; the radius of acceptance f3 was again fixed at 15 

metres and the nominal vehicle speed at 7.5-knots. 
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Figure 6.31: Line of sight responses over the verification track in the 
absence of current disturbances. 
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Simulating the AUV at 7.5-knots over the verification course in the absence of sea 

current disturbances produced the course following responses of Figure 6.31. The 

response when employing the off-line multivariable autopilot is more accurate and less 

oscillatory than when employing the on-line autopilot; the on-line autopilot becomes 

unstable when the line of sight algorithm selects the final way-point. This is re-iterated 



CHAPTER 6 ON-UNE NEURO-FU'ZZY AUTOPILOT DESIGN AND SIMULATION 191 

by the yaw response of Figure 6.32 which shows how the on-line autopilot selects a 

heading of +180° when clearly a heading of -180• would achieve the desired course and 

would involve a smaller rudder demand. The low canard rudder and stern hydroplane 

responses of Figure 6.33 illustrate the saturation of the rudders and hydroplanes at this 

point in the simulation, respectively. 
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Figure 6.32: Yaw angle over the verification track in the 
absence of current disturbances. 
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Further experiments were undertaken to assess the relative performance of the on-line 

multivariable autopilot against the off-line multivariable autopilot strategy. The results 

of these simulations are detailed in Figures 6.34 to 6.39 and highlight the unsuitability 

of the on-line autopilot in the presence of sea currents. 
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Figure 6.33: Low canard and stem hydroplane angles over the verification 
track in the absence of current disturbances. 
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Clearly, the introduction of a Northerly current of 2.5 ms-1 (as shown in Figure 6.34) 

renders the on-line autopilot unstable. Also, the introduction of a of 2.5 ms·1 current 

along the Westerly axis (Figure 6.35) produces unstable results when employing the 

multivariable on-line autopilot. Closer examination of the autopilot parameter set for 

each simulation revealed the oscillatory transition of both the premise and consequent 

parameters. Indeed, a tolerance setting of less than 0.04' was required to stabilize the 

modified on-line algorithm of Table 6.1, which is unachievable with respect to current 

compass tolerance levels. 
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Figure 6.35: Line of sight response over the verification track in the 
presence of a current disturbance of 3 ms·1 along the Westerly axis. 

6.5.3 Measurement Noise 

To provide a final assessment of the effectiveness of the presented on-line neuro-fuzzy 

control scheme, comparisons were made with the off-line CANFIS autopilot of Chapter 

5 in the presence of measurement noise. It should be noted that the CANFIS off-line 
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autopilot system was appropriately de-tuned to allow ease of comparison between the 

two control systems. 

The following results illustrate the course-changing and roll-minimizing ability of the 

on-line and off-line CANFIS autopilots in the presence of 1%, 5% and 10% signal to 

noise ratio (SNR); these values represent a peak noise level of 0.25°, 1.25° and 2.5° 

with respect to the maximum canard rudder angle of 25°. Figure 6.36 illustrates these 

noise levels over a 100 second period. 
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Figure 6.36: Noise sequences at 1%, 5% and 10% SNR. 
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Figure 6.37: Yaw and Roll responses for the on-line and off-line 
autopilots in the presence of a 1% SNR. 
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Figure 6.38: Low canard and stem hydroplane responses for the on-line and 
off-line autopilots in the presence of a 1% SNR. 
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Figure 6.39: Yaw and Roll responses for the on-line and off-line 
autopilots in the presence of a 5% SNR. 
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Figure 6.40: Low canard and stem hydroplane responses for the on-line and 
off-line autopilots in the presence of a 5% SNR. 
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Figure 6.41: Yaw and Roll responses for the on-line and off-line 
autopilots in the presence of a 10% SNR. 
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Figure 6.42: Low canard and stem hydroplane responses for the on-line and 
off-line autopilots in the presence of a 10% SNR. 
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Figure 6.37 depicts the course-changing and roll-minimizing responses of the AUV for 

both the on-line and off-line autopilot systems in the presence of a 1% SNR. The 

corresponding low canard rudder and stem hydroplane responses are reproduced in 

Figure 6.38. Both autopilot systems guide the AUV successfully onto the desired 40. 

course-change. However, the low canard rudder response of the off-line autopilot 

displays some oscillation in comparison to the on-line autopilot response, which 

provides smooth transition. This suggests that the sensitivity of the on-line autopilot is 

appropriate to accommodate slight variations in the control signal. 

The responses of each autopilot system for a 5% SNR are detailed in Figures 6.39 and 

6.40. The increase in the level of measurement noise causes instability in the on-line 

control algorithm; the low canard rudder and stem hydroplane responses are highly 

pronounced in comparison to those of the off-line autopilot. Indeed, varying the 

forgetting factor and step size transition rate did not improve the performance of the 

autopilot significantly. This instability is caused by the rapid variation of the fuzzy 

parameter set; sharp changes in the noise signal cause the parameter set to vary over 

larger ranges than in previous experiments. Conversely, the off-line autopilot coped 

well with the 5% SNR, providing accurate course-changing and roll-minimization. 

In light of the failure of the on-line autopilot to control the AUV in the presence of a 

5% SNR, it was anticipated that a 10% SNR would be likely to cause similar if not 

exaggerated effects. Figures 6.41 and 6.42 illustrate that this hypothesis is borne out. 

The on-line multivariable autopilot yields disappointing responses, whilst the off-line 

multi variable autopilot again provides accurate control. 

It is evident from these simulations that the off-line tuned multivariable fuzzy autopilot 

can cope effectively with a SNR of 10%. It is also apparent that the equivalent on-line 

tuned autopilot cannot. Examination of the parameter sets pertaining to Figures 6.37 to 

6.42 highlight once again the propensity for the parameters of the on-line autopilot to 

vary significantly in the presence of such disturbances. 
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6.6 Concluding Remarks 

The previous chapters have discussed the design and implementation of a neural 

network architecture for tuning the parameter set of a fuzzy autopilot. Consequently, 

the resulting autopilots were purely fuzzy. The resulting autopilots in this chapter were 

considered to be of neuro-fuzzy type as the adaptation was performed at discrete 

sampling intervals during each simulation. 

The novel application of the on-line hybrid rule of ANFIS to AUV autopilot design 

produced effective results and prompted research into the use of CANFIS for on-line 

simulations to control the yaw and roll simultaneously. Despite the ability of the 

presented novel on-line algorithm (Table 6.1) to control the AUV effectively, 

robustness experiments illustrated that the variation of the parameter set to adaptation 

during transient motion limited the robustness of the resulting autopilot. Thus the 

following chapter discusses autopilot simulations which continue in the vein of 

multivariable off-line fuzzy autopilot tuning as this technique proved more effective 

than on-line adaptation. 

The work within this chapter represents a novel application of both the ANFIS and 

CANFIS structures, to the best of the present author's knowledge. 
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Chapter 7 

Non-Linear Consequent Models 
for Fuzzy Autopilot Design 

7.1 Introduction 

The autopilot designs of the preceeding three chapters have shown the attractiveness of 

fusing fuzzy logic with neural network architectures in the design process. The resulting 

controllers are linguistically interpretable in comparison to the black-box structure of a 

typical neural network. Additionally, these designs retain their learning and adaptation 

capabilities which allow the topographic fitting of the non-linear function representing 

the process input-output behaviour. Hardy (1971) described the process of fitting a 

topographic surface to a given set of data points as 

"given a set of discrete data on a topographic surface, reduce it to 
a satisfactory continuous function representing the topographic surface." 
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This empirical modelling is directly analogous to the process of tuning a fuzzy 

inference system (FIS) to reproduce a particular output, given specific inputs. When 

tuning the membership functions of a FIS, a set of representative training data is 

collected over a number of pre-chosen variables, and is subsequently presented to the 

encoded FIS architecture. The parameters of the fuzzy premise (input) and consequent 

(output) functions within this architecture then adapt in order that the future 

presentation of a particular set of input data pairs produces the required output. Clearly, 

this training data represents known points on the topographic surface that is to be 

modelled; the ability of the resulting network to interpolate between these training data 

points is then regarded as a measure of network generalization. 

In recent years, the theory of radial basis function (RBF) approximations to topographic 

surfaces has been established and shown to provide an excellent framework for 

modelling smooth non-linear functions. When considered as a network architecture, 

RBF approximations employ a linear combination of non-linear basis functions, each of 

which is defined within a particular operating region. Thus the overall network output is 

a linear combination of local network responses. Consequently, such RBF networks can 

be referred to as non-linear gain-schedulers when employed in a control context. 

The similarities between such an approach and the adaptive network-based fuzzy 

inference system (ANFIS) architecture of Chapter 4 are clear. Indeed, under certain 

conditions the two approaches become identical. 

This chapter introduces a novel extension to the ANFIS regime, which employs the 

fuzzy concepts developed within ANFIS in conjunction with a RBF model for the 

inference system's consequent functions. The aim of such a fusion is to retain the 

linguistic interpretability of ANFIS whilst exploiting the functional non-linearity of 

such RBF local modelling techniques. The resulting fuzzy RBF network wiii be 

transparent in structure and easy to examine. 
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More specifically the FISs employed until now have all been variants of the Takagi

Sugeno-Kang (TSK) (Takagi and Sugeno (1985)) model discussed in Chapter 4, where 

the irh fuzzy rule is of the form (for two inputs): 

(7.1) 

for: 

i = 1,2, ... ,m (the number of input membership functions on XJ), 

j = 1 ,2, .. . ,n (the number of input membership functions on x2). and 

k = 1,2, ... ,mn. 

The fk 's are typically taken as a linear function of the input variables for a TSK FIS. 

These rule outputs perform linear interpolation of the functionfu) describing the input

output behaviour of the underlying model and are written as 

mn n 

f = LLakixi +bk (7.2) 
k=l j=l 

where f is a vector of dependent variables, the Xj 's are the independent variables and n 

represents the number of independent variables. In terms of a FIS, each linear rule can 

be envisaged as a moving singleton spike, its position in n-dimensional space being 

determined by the values of the input variables xi. 

Figure 7.1 provides an illustration of a FIS of this form, where one input variable is 

mapped onto one output variable via four fuzzy rules. Each individual linear rule is 

effective within a certain region. However, certain functions can prove difficult to 

model, and some mismatch between the model and the underlying function is not 
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unusual, especially at the points where rules cross-over. Indeed, this input-output 

function could be particularly irregular with sharp gradients. 

When approximating a non-linear function, one method to diminish the modelling error 

between local models and the actual function may be to increase the number of fuzzy 

rules mapping the function from input to output domains. Consequently, the width of 

each interval is reduced, as is the error incurred at the interval cross-over points. 

However, this leads to an increase in the number of parameters and inevitably lengthens 

the training period when adjusting these parameters to make the fuzzy model fit the 

desired function more closely. 

y 

Rule 1 Rule2 Ru/e4 

Figure 7.1: Piecewise interpolation of a non-linear function using linear rule outputs. 
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Alternatively, the linear functions employed in a typical TSK FIS output space can be 

replaced with non-linear functions that can better approximate the required input-output 

behaviour. Piecewise polynomials are often chosen for this purpose. This again implies 

that 9( n has to be divided into suitable regions for which a particular polynomial 

applies. Each polynomial must then be pieced together to provide continuity over the 

approximation, yet even polynomial function approximations are not always effective at 

modelling the somewhat sharp variations in many real topographic surfaces. 

One particular type of function that has been extensively studied takes the form 

n 

fj = ~)7k~k (!) (7.3) 
k=l 

where ~i!) is a non-linear function of the independent variables Xk, and the 1Jk's are 

unknown parameters. This type of model defines a non-linear relationship between the 

dependent variable jj and the independent variables Xk, and defines a linear relationship 

between jj and the unknown parameters 1Jk· One clear advantage of employing this type 

of non-linear model is that the unknown parameters 1Jk can still be computed by a linear 

technique, as used in the hybrid learning rule of ANFIS. 

Jang et al. (1997) employed sigmoidal functions of the form 

(7.4) 

as their ANFIS consequents in contrast to the typically documented linear functions. 

This leads to a revised ANFIS structure that employs non-linear consequents of 

sigmoidal form and thus non-linear fuzzy rule outputs whose weights can still be found 

by linear algorithm approaches. The advantage of the chosen consequent functions is in 
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their similarity to the original consequents of a typical ANFIS model, producing a non

linear structure that requires only a simple modification of the original ANFIS 

modelling regime. 

Conversely, White and Sofge (1992) state how the non-local nature of the commonly 

employed sigmoidal function can lead to neural networks that experience learning 

problems. In essence, each sigmoid does not relate to a specific region of the input 

space and thus incremental learning of the network parameters can yield conflicts 

between minimizing the network cost function and retaining the knowledge already 

stored within the network structure. That is, the use of the sigmoid neuron does not 

usually represent an overall network that can exhibit spatially localized learning 

properties. Various approaches have been documented to attempt to overcome these 

problems, such as local batch learning, very slow learning rates and distributed 

(uncorrelated) input sequences. However, these learning improvements were not 

documented or employed by Jang et al. (1997). 

Clearly in control applications the local model should represent the actual system 

within the desired range of influence, and therefore be a good approximation to the 

system locally (Hunt and Johansen (1997)). Bossley (1997) highlights that B-spline 

membership functions, which have been used extensively in neurofuzzy modelling by 

Brown and Harris (1994), are not suited to locally modelling this relationship. A more 

suitable choice is often trapezoids, as in the work of Lin and Juang (1997) or Gaussian 

functions, which are constant for the majority of their response but represent the system 

over the desired operating region. This requires that these functions be positioned in the 

areas of the output space 91n which are most heavily populated by training data points. 

Moreover, Poggio and Girosi (1990a) report the superior approximation power of 

neural network architectures containing RBFs over those using layers of sigmoidal 

functions. Indeed they provide a technical note on the different types of basis functions 
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that can be employed; a review of RBF approximations to non-linear modelling of 

topographic surfaces is provided in the following section. 

These and other studies _(Poggio and Girosi (1989), Jang, et al. (1997), Heiss and 

Kampl (1996)) have lead to the consideration of composite Gaussian functions as the 

consequent equations herein for non-linear rule implementation within an ANFIS type 

architecture. Subsequent sections within this chapter therefore lend themselves to an in

depth discussion of this proposal. 

7.3 Topographic Approximations using Radial Basis 
Function Techniques 

Hardy (1971) employed multiquadric functions, typically in conical form, to 

successfully model topographic surfaces. This modelling approach was compared to 

more traditional Fourier and polynomial series approximations, which rely on large 

amounts of data and are thus inefficient to implement. The multiquadric 

approximations also highlighted the deficiencies in the more traditional approaches, 

which resulted in oscillatory and inaccurate modelling. Hence, the paper concluded that 

the RBF method could accurately approximate the given contours with limited data 

points, a definite advantage over traditional techniques. Since this pioneering work, 

various applications of RBF techniques to function approximation have appeared in the 

literature. The main ones of interest are presented hereafter. 

Powell (1992) more recently discussed the use of RBFs as an alternative means of 

achieving accurate approximations to topographic surfaces. By formally considering the 

extension to several variables of univariate spline functions, the paper highlights the 

intuitive nature of RBFs for such mappings and gives a list of functions that are often 

used. Needless to say, each function has inherent properties that are useful for specific 
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applications. A brief introduction to RBFs is now presented. The interpolation problem 

considered here can be written mathematically, as follows: 

Given a set of m distinct data points in vector form, {,!& ; k=l,2, ... ,m) in 9'1" 

and m real numbers {ft; k=l,2, ... ,m) in the form { (xt. fk)}, choose a function 

F: 9'1" -f 9'i which satisfies the interpolation conditions 

k=1,2, ... ,m 

where the function F must pass through all data points. 

(7.5) 

The RBF technique solves the interpolation problem by forming a set of linear 

equations consisting of basis functions that are specific to certain regions of 9i ". By 

employing an arbitrary distance measure (usually a Euclidean norm), the relative 

distances of known data points within the n-dimensional space 9'i " produced by the 

given set of independent variables can be computed. This dependence is due to the use 

of RBFs of the form: ~~g- fk 11). where.!. f!i. E 9i" and k=1,2, ... ,m. The vectors f!i. are 

the centres of the basis functions with dimension 9'i ". The RBF approach therefore 

suggests the interpolating functions to be of the form: 

.!. f!i. E 9i", k=l ,2, ... ,m. (7.6) 

Substituting Eqn.(7.5) into Eqn.(7.6), yields the following set of linear equations for the 

coefficients 1'/k: 
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where 

j,k=1,2, ... ,m 

which can be expressed more concisely as: 

f = ATJ 
- -
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(7.7) 

(7.8) 

(7.9) 

Consequently, the solution of the RBF approach is obtained by solving the set of linear 

equations given by Eqn.(7.9). Clearly, the solution is given by !1. =A -If, where K 1 is 

the inverse matrix of A, and is directly calculable if the matrix A is square. However, if 

A is not square, the pseudo-inverse matrix can be formed as follows: 

(7.10) 

where (AT At AT is the pseudo-inverse of A. Indeed, it has been proven that for all 

positive integers m, and for a large class of basis functions ~. the matrix A is guaranteed 

to be non-singular if the data points are all distinct (Powell (1992)). This property is 

clearly very useful when employing linear optimization techniques to calculate the 

vector JJ. 
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Gaussian functions are the most commonly used of the RBF family (Powell 

(1992)) and can be found extensively throughout the relevant literature. The general 

form of the Gaussian basis function is: 

(7.11) 

where a denotes the half-width of the basis function. Certain properties of this equation 

make it very appealing for use within an ANFIS type controller structure. Firstly, it is 

highly non-linear and provides good locality as a RBF indicating its suitability within a 

gain-scheduling type structure. Additionally, Gaussian basis functions are the only 

functions within the radial family that can be factorized (Poggio and Girosi (1990b), 

Jang et al. (1997)). Therefore a multi-dimensional Gaussian function can be represented 

as the products of lower dimensional Gaussian functions. Poggio and Girosi (1990b) 

argue that this composition property reflects similarities between this type of function 

and the neurons within the brain and is therefore probably the most realistic neuron 

function. 

The multiquadric function as proposed by Hardy (1971) was originally 

employed for topographical mappings and surface re-constructions. The general form of 

a multiquadric function is: 

(7.12) 

where yis a positive constant. Although Hardy (1971) discussed the appropriateness of 

this function for modelling and surface approximation there is a lack of theoretical 

support and rigorous analysis concerning the function as compared to Gaussian 

functions. 



CHAPTER 7 NON-LINEAR CONSEQUENT MODELS FOR FTJZZV 

AUTOPILOT DESIGN 

The inverse multiquadric function was also proposed by Hardy (1971): 

211 

(7.13) 

The shape of the inverse multiquadric function has some similarities to the shape of the 

Gaussian function but again does not possess the same amount of rigorous theoretical 

support. 

The thin plate spllne function is written as: 

(7.14) 

and was derived to produce a solution to minimize the amount of bending energy within 

a thin plate. An obvious advantage of this model is that the equation does not depend on 

any user specified constant as with the multiquadric equation. 

The cubic equation has the general form: 

(7.15) 

and is one of the least commonly used basis functions for RBF modelling. 

The Unear equation, which is employed in typical ANFIS approximations, takes 

the general form: 

~(r) = r. (7.16) 
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Clearly a wide choice of basis functions exist for use within modelling architectures to 

approximate topographic surfaces and functions. Poggio and Girosi (1990b) formulate 

this approximation/interpolation problem within the framework of regularization theory 

as detailed below. 

7.3.1 The Approximation Problem. Poggio and Gorosi (1990b) defined 

this problem as: 

Given a set of data S={(x;. fi)} ~1 which is obtained by sampling an 

unknown function F in the presence of noise, the approximation problem 

is to recover the function F (or an estimate of it) from the sampled data 

setS. 

This type of problem is referred to as 'ill-posed' since there exists an infinite number of 

possible solutions. In order to facilitate the approximation, some a' priori assumptions 

are made about the unknown function. The function may be constrained to take a 

specific form F(!J,x) which is dependent on an unknown parameter vector !J. 

Subsequently, the problem is transformed into one of regression. However, the 

resulting solution depends highly on the appropriateness of this a' priori assumption or 

assumed functional form. Consequently, it is more usual to make the assumption that 

the unknown function F(!J,!) is smooth such that similar inputs produce similar 

outputs. 

The regularization approach to the 'ill-posed' approximation problem determines the 

approximating function/that minimizes a cost function of the form: 

(7.17) 
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where i!. is a positive constant generally known as the regularization parameter. The cost 

function is clearly composed of two terms. The first term on the right hand side of 

Eqn.(7.17) minimizes the difference between the actual function being approximated 

and the approximation itself. The second term is included to encourage smoothness 

within the approximating function f, while the regularization parameter i!. controls the 

weighting between the two components. Function smoothness is incorporated by 

defining a smoothness functional ,;If] in such a way that the lower values of the 

functional correspond to smoother functions. The regularization parameter i!. can also 

be viewed as an indicator of the sufficiency of the given data set as examples that 

specify the solution .f(x). In particular, the limiting value i!. -t 0, implies that the 

problem is unconstrained, with the solution .f(x) being completely determined by the 

examples. The other limiting value i!. -t oo implies that the a' priori smoothness 

constraint is by itself sufficient to specify the solution function .f(x), which also means 

that the data is irrelevant to the solution chosen by the smoothness constraint. In 

practice, the regularization parameter i!. is assigned a value between these two extremes, 

so that both the sample data and the smoothness constraint contribute to the solution 

.f(x). Commonly the regularization parameter i!. is chosen according to cross-validation 

techniques. 

It has been shown in Poggio and Girosi (1990b) for a wide class of functional forms ~ 

that the minimization of Eqn.(7 .17) (and thus the solution of the regularization 

problem) yields a solution of the form: 

(7.18) 

where ~x, x;) is a basis function centred at pointx;. Eqn.(7.18) states that the solution to 

the regularization problem is a weighted sum of N basis functions centred at the 

sampled data points. Let 7'/; = [y;-j{x;)]li!., then the solution to the regularization problem 
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lies in an N-dimensional subs pace of the space of smooth functions, and the set of basis 

functions { ~x. x;)} centred at the data points constitutes a basis for this space. If the 

basis function ~ is chosen from a set of rotationally and translationally invariant 

functions, then ~becomes a radial symmetric function denoted by §=~l!x-x;l!). Using Tli 

instead of [y,-f(XI)]/1.., the regularization solution is given in the form: 

N 

!<!) = L17;~~l!-!;ll). (7.19) 
i=l 

Note that Eqn.(7.19) is almost identical to Eqn.(7.3), except that the basis functions are 

centred at data points x; . Thus the method of RBFs with basis function centred at data 

points can be derived from regularization theory. Alternatively, regularization theory 

provides a firm theoretical background to the method of RBFs. 

An approximating solution to the regularization solution can be formed by considering 

the basis functions to have moving centres. The regularization approach specifies the 

requirement for each training data example pair to be represented by a specific basis 

function. Obviously, this becomes computationally inefficient when the number of 

samples is large. Instead of using one function centre for each data point, a smaller 

number of function centres {1Ji , i=1,2, ... ,m, mSN) could be used to replace ~ in 

Eqn.(7.19). It has been shown (Poggio and Girosi (1990b)) theoretically that this 

approach constructs an approximation to the regularization solution. However, the 

number and location of the centres will strongly effect the outcome of the 

approximation. This leads to an approximating function of the form: 

m 

f(!) = L7Ja~C!;!a) (7.20) 
a=l 
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where a is the number of linearly independent functions (whlch are now fewer than the 

number of training data pairs), and the parameters xa are called the centres of the basis 

functions denoted by ~-

Each radial function is combined with a multiplicative weight Tla which determines the 

algebraic sign and gradient of the basis functions' slope, as shown in Figure 7.2 for a 

two input (dimensional) problem. Thus when the complete set of coefficients are 

substituted into the consequent functions and these functions are summed together, the 

overall output surface should fit the discrete data points exactly, providing logical 

interpolation for intermediary points. Such a surface is depicted in Figure 7.3. 

f1 

________ _j 

[ c1, c zl 

Figure 7.2: A two dimensional representation of a Gaussian radial basis function. 
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Additionally, the shape of the overall surface at any particular point is a function of the 

summation of all the individual surfaces at significant points. This means that sub

surfaces (as depicted above in Figure 7.2) with particularly sharp gradients, which are 

not in close proximity to the point of interest can still have a direct influence on regions 

containing slower sloped sub-surfaces. This behaviour is an important feature of this 

method because it suggests the ability of the resulting approximation to provide smooth 

transition over the output space. 

7 .3.2 A Review of Radial Basis Function Approaches to Control 
System Design 

The current literature provides examples of RBF approaches to control system designs; 

of the existing literature, few are dedicated to fusing the approximation power of RBF 

networks with fuzzy logic. Indeed those few do not address the problem of rulebase 

interpretability and all employ neural network architectures consisting of three layers. 

As one of the main strengths of fuzzy logic is the availability of a clear rulebase for 

verification, the present work is driven towards producing a linguistically interpretable 

tuning structure fusing fuzzy logic with the locality properties of Gaussian basis 

functions. 

McDowell et al. (1997) implemented a RBF network as a multi-input multi-output 

(MIMO) bank-to-turn autopilot for a surface-to-air missile. This application was based 

upon Gaussian basis functions, which were trained to adapt and compensate for roll 

induced cross-coupling. An excellent evaluation of the resulting neural autopilot was 

provided in 3-dimensions (6 degrees of freedom) using a command to line of sight 

algorithm. Results obtained are employed in conjunction with a gain-scheduling 

autopilot design, in the presence of time varying aerodynamic derivatives and control 

surface saturation constraints. The performance of the overall autopilot system is 

commended, however no verification tests appear to have been performed on the neural 

structure. Due to the lack of linguistic transparency of the resulting neural autopilot it is 

difficult to employ an expert to verify the resulting control rules. 
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Horikawa et al. (1992) highlight this requirement, stating that five layered network 

architectures are preferable in order that the transparency of the control rules be 

preserved during learning. However, their consequent functions do not possess the 

attractive properties of the multi-dimensional radially symmetric functions used by 

McDowell et al. (1997). 

Choi and Hwang (1997) present the application of a MJMO fuzzy RBF network for 

control of an autonomous submersible. The results of the fuzzy RBF network autopilot 

simulations appear promising, yet the network again only employs a three layered 

architecture and is thus difficult to verify, or document as a fuzzy rulebase. 

Due to the limited availability of formal design methods and robustness verification 

techniques concerning fuzzy controllers, it is considered important by the present 
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author to have access to the tuned rulebase as a means of control rule verification and 

analysis. Three layered representations of fuzzy RBF networks do not possess this 

transparency, and the applications within the literature typically ignore the important 

verification of the resulting structure. 

7.4 Non-Linear Consequent Functions of n-dimensional 
Form 

By employing composite Gaussian functions in place of the linear equations of the 

consequent layer of an ANFIS architecture, each fuzzy rule output becomes a non-linear 

function of the network inputs (Eqn.(7.20)). Rule outputs are then dependent on the 

width of the Gaussian basis function, its centre position in n-dimensional space and the 

multiplicative weight Tla· The overall effect of the architecture becomes that of a non

linear gain-scheduling controller, which is dependent on locally receptive fields. The irh 

fuzzy rule is thus of the form (for 2 inputs and 1 functional output): 

(7.21) 

for: 

i = 1,2, ... ,m (the number of input membership functions on x1), 

j = 1,2, ... ,n (the number of input membership functions on x2), and 

k = 1,2, ... ,mn. 

Re-writing Eqn.(7.21) as the sum of composite Gaussian basis functions, yields the 

following system of n simultaneous linear equations for the unknown coefficients T/k : 
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which when written in matrix notation yields once more 

f = ArJ - -
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(7.22) 

(7.23) 

where A is a matrix of Gaussian basis functions. Typically there will be fewer basis 

functions than available training samples, and consequently an initial estimate for the 

centre positions of each Gaussian is required. In this instance, the matrix A is not square 

and a sequential least squares estimate to the parameter vector !J is often sought. 

7 .4.1 The Flexibility of Gaussian Radial Basis Functions 

Gaussian functions are endowed with very attractive properties with respect to this 

application: 

• Firstly, they are invariant under multiplication and differentiation. 

Therefore the calculation of gradient information concerning the hybrid 

learning rule for parameter adjustment requires only the pre-scaling of 

the Gaussian functions which have already been calculated. 
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• An n-dimensional Gaussian consequent membership function can be 

constructed by considering components from each network input within 

the L2-norm calculation. Such a construction requires only one 

evaluation of the exponential term of the Gaussian function due to the 

property that Gaussians are invariant under multiplication by other 

Gaussian functions. 

• More generally, if the interpolation points {& k=1,2, ... ,n} are in general 

position and if the orders of the polynomials are at least quadratic, then 

it is often difficult to ensure that there are enough independent 

coefficients to satisfy the interpolation conditions. These problems 

become more severe when the dimension n is increased for piecewise 

polynomial approximations, but it is seen that the dimension has no 

effect on the convenience of the approximation suggested. 

• Guaranteed non-singularity of the symmetric covariance matrix AT A 

under very mild or no restrictions for Gaussian RBFs has been proved. 

Consequently, provided that 

(7.24) 

the determinant of AT A is defined and consequently the non-unique 

matrix inverse of AT A can be found. This provides a strong choice for 

the use of RBF approximations over many other types of approximating 

function. (NB: Even if the rank of AT A is equal to 1, the Moore

Penrose pseudo-inverse (Golub and Van Loan (1989)) could be formed). 

220 
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As a result of employing this new form of consequent function, the fuzzy inference 

procedure changes. Figures 7.4 and 7.5 illustrate respectively the more typical Marndani 

and TSK styles of fuzzy ·inference. In comparison, Figure 7.6 illustrates the proposed 

composite Gaussian fuzzy inference mechanism. To elicit diagrammatic representation 

of the new output space, FISs considering two inputs and one output (with only two 

rules) are considered. 

mini and 

X y z 
input I input 2 

Figure 7.4: Mamdani fuzzy inference diagram. 
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min or product 
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Z2 = P2X +Cf2Y +12 .J weighted anrage 

z \11Zl+~ 
wt+\42 

Figure 7.5: Takagi-Sugeno-Kang fuzzy inference diagram. 

X y 

inpu t 2 

minland 

I ,asuuegation · 

~ax) 

Figure 7.6: The proposed composite Gaussian fuzzy inference diagram. 
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7. 5 Results and Discussion - Course Changing 

Based upon the proposed method of composite Gaussian fuzzy inference a 9 rule fuzzy 

autopilot was developed (2 inputs and one functional output). This structure was chosen 

to elicit comparison with the previous MISO autopilot designs. The architecture of this 

autopilot is shown in the schematic of Figure 7.7 in which each function within layer 4 

is a composite Gaussian of dimension 2 (as illustrated for the first consequent 

function). The output domain of this new autopilot was represented graphically in 

Figure 7.3 and it is thus apparent that the two-dimensional consequent functions are hill 

shaped in nature. By varying the parameter set of the proposed consequent functions, 

any smooth function can be approximated, assuming that the centres are positioned 

correctly (Heiss and Kampl (1996)). 

r -llx - c 112 l f ~) = exp I - _, I 
' l 2a: J 

X 
1 

1------7 f 

Figure 7.7: The proposed Gaussian PIS for two inputs and one functional output. 
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The response of the AUV when employing this autopilot for a course-changing 

manoeuvre of 40• (prior to the application of tuning algorithms) is depicted in Figure 

7.8; the corresponding low canard rudder response is given in Figure 7.9. 

This autopilot produced a sluggish course-changing response from the AUV in 

comparison to the results achieved by employing the hybrid rule tuned autopilot of 

Chapter 4, but compares similarly to the pre-tuned 9 rule TSK autopilot. In order to 

improve upon these results, the autopilot parameter set required some modification in 

the form of tuning. The ensuing sections discuss the results obtained after the 

application of particular tuning algorithms. 

time in seconds 

Figure 7.8: The yaw response of the AUV when employing the pre-tuned 
Gaussian autopilot for a 40. course-changing manoeuvre. 

7 .5.1 Applying the Hybrid Learning Rule 

50 

The linear dependence of the proposed consequent functions on their multiplicative 

weight coefficients ('f/k's of Eqn.(7.6)), elicits direct application of the hybrid learning 
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Figure 7.9: Low canard rudder response of the AUV when employing 
the Gaussian autopilot for a 40. course-changing manoeuvre. 
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Figure 7.10: The input fuzzy sets before and after 300 epochs of tuning 
with the hybrid learning algorithm for the Gaussian 

FIS. (Dashed lined show tuned positions). 
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rule for backpropagation tuning of the premise parameters and least squares tuning of 

the consequent weight coefficients T/k· However, this assumes that the non-linear 

parameters (0, and .Qk) of the Gaussian consequent functions remain fixed. 

Upon completion of 300.5 epochs of tuning, the fuzzy sets of the hybrid rule tuned 

Gaussian autopilot were taken as depicted in Figure 7 .10. Clearly some adaptation of 

the autopilots input parameter set has taken place. 

The rule base of the hybrid rule tuned Gaussian autopilot was taken as Eqn.(7.25), 

where the coefficients T/k have been tuned using the least-squares algorithm: 

• 
If 1/1 , is N and 'If is N then b = 1. 499 . exp 

. 
Iflp ,is Nand 'If is Z then b = 0.368 .exp 

• 
If!p ,is Nand 'If is P then b = 2.091 .exp 

. 
lflp ,isZand'lf isNthen b = 0.390 .exp 

• 
If 1/1, is Z and 'If is Z then b = 0. 897 . exp 

-('If. -1) -(~-~r 
2(0.4) 

-('If. -0.15) -(~-0.15 r 
2(0.4) 

_('If._ 0.5) -( ~- 0.5 r 
2(0.4) 

-('If. -0.25) -(~-0.25 r 
2(0.4) 

-('If. -0) -(~-0 r 
2(0.4) 

(7.25) 
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Iflp £is Z and If! is P thenc:5 = 1.350 .exp 

. 
Iflp eisPand If/ isNthenc:5 = 1.012 .exp 

Iflp £is P and If! is Z thenc:5 = 0.576 .exp 

. 
Iflp eis P and If/ is P thenc:5 = -0.601 .exp 

_ (If!£ + 0. 25 ) _ r ~ + 0. 25 r 

2(0.4) 

_(If!£ +0.5) -[~+0.5 r 
2(0.4) 

-(lf!£+0.75)-[~+0.75 r 
2(0.4) 

-(lfl£+1)-[~+1r 
2(0.4) 
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The course-changing response of the AUV, when employing this autopilot in the 

forward path is depicted in Figure 7.11; the corresponding low canard rudder response 

is given in Figure 7.12. Application of the hybrid learning rule for selective tuning of 

the Gaussian autopilots parameter set has improved the course-changing responsiveness 

of the AUV by 12.3%, whilst the canard control effort has increased by 7.8%. 

However, the maximum canard angle incurred resides well below the saturation level 

of 25.2'. An evaluation of the current autopilots performance improvement with respect 

to the pre-tuned Gaussian autopilot is provided in Table 7.1. 

The initial positions of the non-linear consequent function centres (0.;) remained fixed 

throughout the tuning process; the widths of the consequents {Qk) remain fixed also. As 

detailed in section 7.3.1, the rule base considers a depleted number of basis functions 

compared to typical RBF control structures, and therefore the correct positioning of the 

function centres is of paramount importance in achieving suitable approximations to the 
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Figure 7.11: The yaw response of the A UV when employing the hybrid tuned 
Gaussian autopilot for a 40° course-changing manoeuvre. 
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Figure 7.12: Low canard rudder response of the A UV when employing the hybrid 
tuned Gaussian autopilot for a 40° course-changing manoeuvre. 
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under-lying models behaviour. Therefore to further improve the course-changing 

effectiveness of this autopilot it is important that the centres of the consequents be 

positioned correctly. 

AUV Pre-tuned Gaussian Hybrid tuned Gaussian 
model autopilot autopilot 

1/1, o, TR M,(r) sse 1/1, o, TR M,(r) sse 

(of (of sec % % (of (of sec % 

7.5 3908.8 847.1 15.86 0.02 0 3428.0 913.2 14.31 0 
knots 

Table 7.1: Performance comparisons between hybrid rule tuned and pre-tuned 
Gaussian autopilots for a course-change of 40° at 7.5-knots. 

% 

0 

Appendix J details the parameters of the hybrid rule tuned Gaussian autopilot. 

Although the proposed Gaussian FIS approach shows some promise as an autopilot 

structure, the computational cost of implementation is greater than a typical ANFIS 

type architecture. The following section discusses a more computationally efficient 

method for implementing the composite Gaussian functions to alleviate the 

computational burden involved in calculating the model output. 

7 .5.2 Towards Computationally Efficient Gaussian Implementation 

The use of Gaussian consequent functions within the network architecture is shown to 

be suitable for modelling highly non-linear functions in the form of autopilot solutions 

for AUV control. However, this requires the multiplication of each basis function with 

its corresponding coefficient 1J;. 

Heiss and Kampl (1996) discuss the implementation of a multiplication-free RBF 

network, whereby Gaussian basis functions are employed in a computationally efficient 

additive form. Because matrix additions require fewer floating point operations (flops) 
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as opposed to matrix multiplications, the Gaussians within a RBF type neural network 

can be encoded as a series of additions rather than multiplications. 

This methodology is adopted herein for the consequent layer of the proposed Gaussian 

FIS such that each composite Gaussian function is encoded as a more computationally 

efficient set of additions, equivalent to that of its original multiplicative form. 

In a first step to increase computational efficiency, the input space (9{') is scaled such 

that the width of each basis function is pre-defined as 11 .,j21n (2), which from 

Eqn.(7.3) yields: 

[
-JJx-cJJ2

] exp 
2(af u 1 

..[2lil\2j 

(7.26) 

Indeed, Hu (1997) clearly states that the width of Gaussian basis functions contributes 

to the fine tuning of such an approach, the modelling capability being more dependent 

upon the partitioning of the input-output product space. Eqn.(7.21) can be re-written as: 

(7.27) 

which can be further simplified as follows: 
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(7.28) 

(7.29) 

Eqn.(7.29) has no practical importance except that no multiplication is required to 

evaluate the Gaussian element of the consequent functions of layer 4 when employing 

this model. However, this model formulation is somewhat restrictive in that only 

positive functions/ and positive weights 7]; can be considered. Also it would be futile to 

save n multiplications and replace them by n logarithms, especially as the model is non-

linear in the parameters of log 2 (,). To alleviate these drawbacks, consider a model of 

the form suggested by Heiss and Kampl (1996): 

f(x) =log.[ z~•-l.i!-d'] (7.30) 

where no multiplication is necessary to evaluate Eqn.(7.30) and the logarithm need 

only be computed once for each model evaluation. The logarithm of Eqn.(7.30) is 

included to compensate for the non-linearity of the underlying model, and can be an 

approximation to the logarithm to the base e. Both the function and its parameters are 

under no restrictions, the model being linear with respect to these parameters. 

7.5.2.1 Implementing the Theory within an Autopilot 

To examine the improved efficiency of such an approach, comparisons were made with 

the autopilot design of section 7.5.1. As the fuzzy controllers are all implemented as 

MA TLAB Executable (MEX) files, to elicit direct comparison it was essential that the 
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structure and inference of each autopilot was identical. The consequent functions 

within each autopilot were written as MATLAB M-Files and called externally from the 

MEX routine. Thus the number of floating point operations could be compared directly. 

X 
1 

Figure 7.13: The computationally efficient Gaussian autopilot structure. 

7.5.2.2 Results and Discussion 

The hybrid rule tuned Gaussian MISO autopilot was simulated at 7.5 knots whilst 

employing the proposed computationally efficient Gaussian functions of Eqn.(7 .26), as 

shown in Figure 7.13. 
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As the responses obtained from employing each autopilot are identical, they are not 

reproduced here. Conversely, the number of flops involved in simulating the AUV over 

a 40" course change at 7.5-knots for 50 seconds are given in Table 7.2 

AUV model Orieinal Gaussian Model New Gaussian Model 
7.5-knots 758,559 flops 754,851 flops 

Table 7.2: Comparative assessment of the number of floating point 
operations arising from each autopilot strategy. 

The implementation of the computationally efficient Gaussian consequent functions 

diminishes the number of floating point operations used by 3708 (0.49%) in this 

instance, when employing the MISO Gaussian autopilot. Indeed, extended simulations 

did not sufficiently improve this poor computational saving. Clearly, this approach was 

almost fruitless here and was not considered further. 

The following section documents a novel algorithm, based upon an extension of the 

hybrid learning rule, to tune the Gaussian FIS non-linear consequent parameters. 

7.5.3 A Natural Extension to the Hybrid Learning Rule 

To elicit full adaptation of the consequent functions it is necessary to employ a non

linear tuning algorithm. The backpropagation training element of the hybrid learning 

rule is clearly a convenient way to facilitate this. By extending the hybrid rule to adapt 

the non-linear parameters of the Gaussian consequent functions in the backward pass of 

each epoch, the whole non-linear parameter set can be locally tuned. 

Applying this approach to the pre-tuned Gaussian autopilot, produced the premise 

fuzzy sets of Figure 7 .14. The amount by which these sets have adapted to approximate 

the underlying model's behaviour is clearly less than in the case of the autopilot tuned 



CHAPTER 7 NON-LINEAR CONSEQUENT MODELS FOR FUZZY" 
AUI'OPILOT DESIGN 

234 

using the original hybrid learning algorithm. This may be due to the fitting of the non

linear consequent functions parameters to the underlying model, which would alleviate 

the requirement for the non-linear parameter set of the input space to vary as 

significantly. 

Yaw Error universe of discourse: degrees 

Yaw Rate universe of discourse: degrees per second 

Figure 7.14: The input fuzzy sets before and after tuning with 
the extended hybrid learning algorithm. (Dashed lines show 

the tuned positions). 

The rule base of the Gaussian autopilot after completion of 300.5 epochs of tuning via 

the extended hybrid learning rule was taken as follows (Eqn.(7.31)): 

0 

If1p ,is Nand If is N thenb = 4.894 .exp 

_(If, _ 0.987 y _ ( ~- 0.998 r 
2(0.394 y 
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0 

Ifrp,isNandl/f isZthen Ci = 1.471.exp 

0 

- (11' E- 0.735 J -( ~- 0.746 J 
2(0.401) 

Iflp, is Nand 1/f is P then Ci = - 0.788 .exp 
- (11' E- 0.489 J -( ~- 0.504 J 

2(0.395) 

0 

If rp, is Z and 1/f is N then Ci = - 0.263 . exp 
_ ("'. _ 0.251) _ ( ~- 0.241 r 

2(0.401 )2 

0 

Ifrp ,is Z and 1/f is Z then Ci = 0.569 .exp 

Ifrp ,is Z and 1/f is P thenCi = 0.395 .exp 

0 

Ifrp ,isPand 1/f isNthenCi = 0.397 .exp 

0 

Ifrp ,is P and 1/f is Z thenCi = 0.399 .exp 

0 

If rp , is P and 1/f is P then Ci = 0.403 . exp 

_ ("'. + 0.004) _ ( ~- 0.003 r 
2(0.394) 

_ ("'. + 0.261) _ ( ~+ 0.239 r 
2(0.395) 

_ (11'. + 0.485) _ ( ~+ 0.496 r 
2(0.397) 

-(11'.+0.773)-(~+0.770 r 
2(0.399) 

- (11' E + 0.994 J- ( ~+ 1.003 J 
2(0.403) 
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(7.31) 
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Figure 7.15: The yaw response of the AUV when employing the extended hybrid 
tuned Gaussian autopilot for a 40. course-changing manoeuvre. 
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Figure 7.16: Low canard rudder response of the AUV when employing the extended 
hybrid tuned Gaussian autopilot for a 40• course-changing manoeuvre. 



CHAPTER 7 NON-LINEAR CONSEQUENT MODELS FOR FUZZY' 
AUTOPILOT DESIGN 

237 

The application of this new algorithm produces a course-changing autopilot that incurs 

a fast accurate response when employed within the AUV model (Figure 7.15 and 

Figure 7.16). Indeed, this autopilot is comparable if not superior to the ANFIS style 

autopilot developed within Chapter 4. Table 7.3 illustrates the comparative 

performances of these two autopilot strategies at 7.5-knots. 

The results of Appendix K illustrate that a Gaussian type FIS approach can provide 

superior modelling accuracy to the Al\lf'IS technique, when required to approximate a 

highly non-linear function. Simulating the AUV at 5 and ID-knots as a form of 

robustness test yielded the responses of Figures 7.17 and 7.18. It is evident that the 

speed variations provide a suitable measure of the Gaussian autopilots course-changing 

generalization ability. 

AUV 
model 

7.5 
knots 

Hybrid rule tuned Extended hybrid rule tuned 
ANFIS autopilot Gaussian autopilot 

1/1, o, r. M,(t) sse 1/1, o, r. M,(t) 
(·Y (oY sec % % (·Y (·Y sec % 

3057.4 1451.7 7.65 1.75 0 3033.2 1459.9 7.37 1.76 

Table 7.3: Performance comparisons between hybrid rule tuned ANFIS 
autopilot and extended hybrid rule tuned Gaussian autopilot for a 

course-change of 40° at 7.5-knots. 

sse 
% 

0 

The results for course-changing control of the AUV prove effective over the 

extremities of the speed envelope. Additionally, the resulting autopilot compared 

favourably with the ANFIS style autopilot of Chapter 4. Encouraged by the accuracy of 

these results, the technique was applied to the design of a multivariable course

changing and roll-minimizing autopilot. Results pertaining to this work are detailed in 

the following section. 
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Figure 7.17: The yaw response of the AUV when employing the extended hybrid 
tuned Gaussian autopilot for a 40. course-changing manoeuvre- 5 and 10-knots. 
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Figure 7.18: Low canard rudder response of the AUV when employing the extended 
hybrid tuned Gaussian autopilot for a 40" course-changing manoeuvre- 5 and 10-knots. 
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Obviously, the design approach of the previous sections is equally applicable to 

multivariable autopilot configurations. More specifically, if the function to be 

approximated F is multi-dimensional with respect to the output space, the interpolation 

conditions of Eqn.(7 .5) can be extended to include a subscript i, yielding: 

i=l, 2, ... , n, k=l, 2, ... , m (7.32) 

and the interpolation functions ofEqn.(7.6) are now given as: 

f<(x)= f,1]ik~~~x-ciii) .!. £; E 9{0
, k=1,2, ... ,m (7.33) 

j=l 

where the coefficients 1'Jjk of Eqn.(7 .33) are obtained using the inverse of matrix A 

defined in Eqn.(7.23). 

a. 
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Figure 7.19: The original(-) and tuned (-•• )fuzzy sets for the 16 rule 
Gaussian inference multivariable autopilot. 
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7 .6.1 Course Changing and Roll Minimizing Autopilot 

Applying the theory of section 7.4 to the design of a multivariable yaw and roll 

autopilot implies Gaussian consequent functions of four-dimensional form within each 

output space. The following results were achieved by employing the extended tuning 

paradigm of section 7.5.2 to a 4 input-2 output Gaussian inference architecture. This 

architecture was chosen to elicit comparisons with the 16 rule eo-active ANFIS 

(CANFIS) autopilot designed within Chapter 5. 

Upon completion of 300.5 epochs of tuning the fuzzy sets were as depicted in Figure 

7.19. The rule base of this 16 rule multivariable Gaussian autopilot was taken in 

abbreviated form as Eqn.(7.34): 

. 
If 1/f , is Nand If! is Nand ; )s Nand ;' is N 

- /, 2 • ,2 

-("'£ +0.59o4Y- "'+o.79o6 -(~£ +1.407Y- ~+2.106 
1.004.exp --------lo....---'------~----'--

2(0.3764Y 

-

and .:5 9 = 0.972.exp 
-('If,+ L9nY -( ~-o.2111 J- (~. -o.u13 y -( ~+ 2.331 J 

2(0.4065f 
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. 
If 1/f , is N and If! is N and q; , is N and ifJ' is P 

• 2 
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-('I' t -0.4207 y - 1/f+ 0.4184 -(if',+ 0.5837 y -
then !5 I"= 0.9937 .exp -----~-----:--L-----:--::-----~-----J-

2(0.3965 y 

. 2 

-('I' t + 0.0595 'f - If!+ 0.4885 -(if'.+ 0.3987 'f-
and !5 ~ = 0.999 .exp ---------"----:-'--:-:-------'----'-

2(0.414 'f 

(7.34) 

. 
If 1/f ,is P and If! is P and q;, is P and if'. is N 

. '2 '· }2 
-(l/f,+0.5992'f-[ "'+0.1073 -(ifJ,+0.361Y- ifJ-0.171 

then !51"= 0.9392 .exp 
2(o.4w9Y 

and !5 9= 1.016.exp 

, . 2 r2 
-(If!,- 0.0029 y- f/1- 0.6548 - (<6.- 0.0354 y -[ ~+ 0.4872 

2(0.3936) 

. 
If 1/f , is P and f/1 is P and qi , is P and (J' is P 

- (f/1, -0.628 'f -( ~-0.9703 y- (<6. -1.305 y -( ~-1.386 y 
2(0.3806 'f 

- [-(1/f, -2.058) -(~+0.1135 y -(if', -0.4532) -(~-0.9786 y 1 
and <59- 1.088 .exp -------'-"-------,:-'J'-----:-:;-------'----~JL 

2(0.3898) 
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Appendix L details the full rule base of the multivariable Gaussian autopilot. The yaw 

and roll responses of the AUV are depicted in Figure 7.20, when employing this 

autopilot over a 40° course-changing manoeuvre at 7.5-knots, during which 0° roll 

cross-coupling was dem~ded. Additionally, Figure 7.21 illustrates the associated low 

canard and stem hydroplane responses of the AUV. 

Clearly, the proposed autopilot structure performs well yielding a maximum roll angle 

of 5° with respect to the 40° course-changing demand. Additionally, the control effort 

employed during this manoeuvre is reduced as compared to the results achieved when 

employing the CANFIS yaw and roll autopilot of Chapter 5. To illustrate this, Table 7.4 

includes the results of each strategy at 7.5 knots. The response of the AUV when 

employing the Gaussian autopilot at both 5 and 10-knots is depicted in Figures 7.22 and 

7.23. 

Quantitatively, the multivariable Gaussian autopilot quite clearly yields a superior 

performance to that of the CANFIS autopilot. The yaw error induced during the course 

change is almost identical in terms of integral of time square error, but the roll error 

incurred is reduced by 37.28%. The canard rudder experiences a more sustained period 

at its maximum induced angle than under the CANFIS autopilot, yet induces a lower 

overall angle. Thus the yaw induced roll response is less pronounced. 

Performance Indices - Yaw and Roll Autopilots 
Autopilot "'' o, lP, o, TR M,(r) sse Max 

strategy <·Y <·Y (oY <·Y 
secs % % ~ 

CANFIS 3637.50 1093.40 192.15 100.80 8.5 1.69 0.0 6.8 
16 rules 

Gaussian 3651.61 996.21 120.52 108.58 8.7 1.55 0.0 5.1 
16 rules 

Table 7.4: Performance comparisons between the CANFIS and Gaussian 
yaw and roll autopilot strategies at 7.5-knots. 
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Figure 7-21: Low canard rudder and stem hydroplane responses when employing the 
extended hybrid rule tuned multi variable Gaussian autopilot 
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Figure 7.22: Yaw and roll responses when employing the extended hybrid 
rule tuned multi variable Gaussian autopilot- 5 and 10-knots. 
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Figure 7.23: Low canard rudder and stem hydroplane responses when employing the 
extended hybrid rule tuned multi variable Gaussian autopilot- 5 and 10-knots. 

---- -----
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The effectiveness of the Gaussian multivariable autopilot structure is highlighted in 

section 7.6. To fully establish this autopilots superiority over the CANFIS multivariable 

autopilot of Chapter 5, it is necessary to examine the comparative robustness of each 

strategy. These experiments will take the form of vehicle hydrodynamic coefficient 

variations, sea current disturbances and noise rejection testing. 

7.7.1 Vehicle Coefficient Variations 

As an initial measure of the Gaussian autopilots robustness to vehicle coefficient 

variations, the mass of the AUV was varied; the original mass of the AUV was 

increased by 75% to 6300 kilograms to simulate the effects of a varying payload. 

Figure 7.24 and 7.25 illustrate the responses of the AUV under these robustness 

experiments. 

time in seconds 

Figure 7.24: Yaw and roll responses when employing the extended hybrid 
rule tuned multi variable Gaussian autopilot- mass variation. 
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40 45 50 

Figure 7.25: Low canard rudder and stern hydroplane responses when employing the 
extended hybrid rule tuned multi variable Gaussian autopilot- mass variation. 

Evidently, the new Gaussian multivariable autopilot performs well in light of the 

increased AUV payload; comparison with Figures 5.18 and 5.19 highlights the 

improved roll damping achieved by using this autopilot over the CANFIS multi variable 

autopilot. Additionally, the following perturbations in the hydrodynamic coefficients 

are to be considered: 

• ± 20% variation in Y uv. the sway damping coefficient 

• ± 20% variation in YuR. the yaw into sway coefficient 

• ± 20% variation in Kuv. the sway into roll coefficient 
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• ± 20% variation in KuR, the yaw into sway coefficient 

• ± 20% variation in KuP, the roll damping coefficient 

• ± 20% variation in Nuv, the sway into yaw coefficient 

• ± 20% variation in NVR, the roll into yaw coefficient 

• ± 20% variation inN uR, the yaw damping coefficient 

247 

The hydrodynamic coefficients are again considered as a function of the total velocity 

squared (Eqn.(4.42)) and are assumed to vary over a mission scenario. The responses of 

the AUV to a 40. course-changing manoeuvre when employing the Gaussian 

multivariable autopilot under these coefficient variations are illustrated in Figures 7.26 

to 7.33. 

The autopilot clearly accommodates the hydrodynamic coefficient variations in a 

robust manner; the responses pertaining to these simulations compare favorably with 

those of section 5.5.1, illustrating the superiority of the Gaussian inference for 

modelling the underlying AUV dynamics. 
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Figure 7.26: Varying Y uv hydrodynamic coefficient during a 40' course
change when employing the multivariable Gaussian autopilot. 
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Figure 7.27: Varying Yur hydrodynamic coefficient during a 40' course
change when employing the multi variable Gaussian autopilot. 
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Figure 7.28: Varying Kuv hydrodynamic coefficient during a 40• course
change when employing the multivariable Gaussian autopilot. 
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Figure 7.29: Varying Kur hydrodynamic coefficient during a 40. course
change when employing the multivariable Gaussian autopilot. 
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Figure 7.30: Varying Kup hydrodynamic coefficient during a 40• course
change when employing the multi variable Gaussian autopilot. 
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Figure 7.31: Varying Nuv hydrodynamic coefficient during a 40• course
change when employing the multi variable Gaussian autopilot. 
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Figure 7.32: Varying Nvr hydrodynamic coefficient during a 40° course
change when employing the multivariable Gaussian autopilot. 
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Figure 7.33: Varying Nu, hydrodynamic coefficient during a 40° course
change when employing the multi variable Gaussian autopilot. 

251 

30 

30 

30 



CHAPTER 7 NON-LINEAR CONSEQUENT MODELS FOR FU7ZY 
AUfOPH..OT DESIGN 

7. 7.2 Measurement Noise 
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An assessment of the effectiveness of the proposed Gaussian inference control scheme 

in the presence of measurement noise is provided within this section; comparisons are 

made with the CANFIS autopilot of Chapter 5. 

The following results illustrate the course-changing and roll-minimizing ability of the 

Gaussian inference and CANFIS autopilots in the presence of 1%, 5% and 10% signal 

to noise ratios (SNR); these values represent a peak noise level of 0.25°, 1.25° and 2.5° 

with respect to the maximum canard rudder angle of 25.2°. These noise levels were 

shown previously in section 6.5.3, Figure 6.36. 
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Figure 7.34: Yaw and Roll responses for the Gaussian and CANFIS 
autopilots in the presence of a 1% SNR. 
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Figure 7.35: Low canard and stern hydroplane responses for the Gaussian 
and CANFIS autopilots in the presence of a 1% SNR. 
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Figure 7.36: Yaw and Roll responses for the Gaussian and CANFIS 
autopilots in the presence of a 5% SNR. 
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Figure 7.37: Low canard and stem hydroplane responses for the Gaussian 

.5 

50 

and CANFIS autopilots in the presence of a 5% SNR. 

20 25 30 

5 10 15 20 25 30 
time in seconds 

35 

35 

~-Gaussian 
-CANFIS 

40 45 

~-Gaussian 
-CANFIS 

40 45 

Figure 7.38: Yaw and Roll responses for the Gaussian and CANFIS 
autopilots in the presence of a 10% SNR. 
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time in seconds 

Figure 7.39: Low canard and stem hydroplane responses for the Gaussian 
and CANFIS autopilots in the presence of a 10% SNR. 
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Figure 7.34 depicts the course-changing and roll-minimizing responses of the AUV for 

both the Gaussian and CANFIS multi variable autopilot systems in the presence of a 1% 

SNR. The corresponding low canard rudder and stem hydroplane responses are 

reproduced in Figure 7.35. Whilst the course-changing responses are similar for each 

autopilot, the roll cross-coupling when employing the Gaussian autopilot is reduced. 

The non-linearity of the Gaussian autopilot consequent functions has been effective in 

accommodating the cross-coupling between the yaw and roll channels in this instance. 

The stem hydroplane response of Figure 7.35 highlights the control effort employed by 

the Gaussian autopilot to achieve this roll reduction. 

The responses of each autopilot system for a 5% SNR are detailed in Figures 7.36 and 

7.37. Again the Gaussian multivariable autopilot yields a superior roll response to that 

of the CANFIS autopilot, with a reduced peak roll of approximately s' as compared to 
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7' with the CANFIS autopilot. The corresponding control effort is less oscillatory for 

the Gaussian autopilot at this level of measurement noise, suggesting that the non

linearity of the underlying Gaussian multivariable autopilot structure is effective at 

reproducing the function relating the input to the output data used to train it. 

Introducing a measurement noise level of 10% leads to the AUV responses of Figures 

7.38 and 7.39. One would anticipate that the Gaussian autopilot could withstand a 

higher level of noise than the linear output representation of the CANFIS autopilot if 

trained effectively. This is indeed the case, the CANFIS autopilot leads to an oscillatory 

roll response with a smooth stem hydroplane response suggesting that the piecewise 

linear outputs are not capturing the full detail within the training data. Conversely, the 

roll response under the Gaussian autopilot is reduced by approximately 2' and is 

comparatively smooth. Examination of the stem hydroplane response indicates the 

increased control effort employed by the Gaussian autopilot in maintaining this smooth 

roll response. 

7. 7.3 Line of Sight Guidance 

Appraisal of the Gaussian multivariable autopilots robustness to sea current 

disturbances is performed in the manner discussed within Chapters 4, 5 and 6. The 

results presented (Figures 7.40 to 7.45) are shown in conjunction with the CANFIS 

multi variable autopilot results of section 5.5.2 for ease of comparison. 
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Figure 7.40: Line of sight responses over the verification track in the presence of a 
current disturbance of 3 ms-1 in the Westerly axis. 
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Figure 7.41: Yaw responses over the verification track in the presence of a current 
disturbance of 3 ms-1 in the Westerly axis. 
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Figure 7.42: Line of sight responses over the verification track in the presence of a 
current disturbance of 2.5 ms-1 in the Northerly axis. 
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Figure 7.43: Yaw responses over the verification track in the presence of a current 
disturbance of 2.5 ms-1 in the Northerly axis. 
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Figure 7.44: Line of sight responses over the verification track in the presence of a 
current disturbance of 2.83 ms-1 in the North Westerly direction. 
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Figure 7.45: Yaw responses over the verification track in the presence of a current 
disturbance of 2.83 ms-1 in the North Westerly direction. 
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The AUV response over the verification track in the presence of a sea current 

disturbance of 3 ms-1 is depicted in Figure 7.40 for the Gaussian and CANFIS 

autopilots. The CANFIS autopilot yields larger overshoots for all the way-points; 

variations in forward speed (surge) caused by the current disturbance illustrate the 

improved generalization of the Gaussian autopilot compared to the CANFIS autopilot. 

Indeed, the yaw responses over this verification track (Figure 7.41) indicate the 

additional activity of the Gaussian autopilot; the linear outputs of the CANFIS autopilot 

yield a more linear yaw response (with respect to the course demands of the line of 

sight algorithm) than the non-linear consequent functions of the Gaussian autopilot. 

Figures 7.42 and 7.43 illustrate the AUV responses in the presence of a Northerly 

current of 2.5 ms-1
. The CANFIS autopilot can be seen to produce larger overshoots at 

the way-points, yet there is little to choose between either autopilot in this instance. 

Finally, Figures 7.44 and 7.45 represent the AUV responses in the presence of a sea 

current disturbance of 2.83 ms-1 in the North-Westerly direction (2.5 ms-1 in both the 

Northerly and Westerly axes). The yaw response (Figure 7.45) indicates the 

comparatively superior performance of the Gaussian multivariable autopilot over the 

final two way-point course changes; smaller overshoots are evident leading to more 

accurate guidance as displayed in Figure 7 .44. When travelling between these way

points the effect of the current disturbance is to reduce the forward speed of the vehicle. 

Consequently, the Gaussian autopilot provides more robust control of the AUV at 

lower forward speeds. 

7.8 Concluding Remarks 

This chapter has demonstrated that a novel type of fuzzy inference, namely Gaussian 

fuzzy inference, can lead to an improved AUV autopilot design. Particularly, a higher 

control precision was gained through the use of Gaussian consequent functions, which 

represent non-linear fuzzy rules. This precision manifested itself in terms of reduced 
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roll cross-coupling with respect to a 40' course-changing manoeuvre, and improved 

overall control with respect to forward vehicle speed and hydrodynamic coefficient 

variations. Additionally, better generalization properties were highlighted, arising due 

to smoother interpolation between control rules. 

The use of composite Gaussian RBF networks can provide a non-linear modelling 

technique w~ch can be tuned with a linear algorithm such as least-squares. However, 

the work documented within this chapter highlighted the improvements to be gained by 

employing a more sophisticated algorithm which made full use of the extra non

linearity introduced within the fuzzy model. Additionally, these local output models 

retain past knowledge more successfully and thus improve the intelligence gathering 

process. 
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Chapter 8 

Concluding Remarks 

8.1 Discussion 

The publication of Jang's thesis in 1992 presented a clear method by which a fuzzy 

inference system (FIS) could be tuned using neural network learning algorithms. This 

fusion eased the inherent lack of interpretability within typical neural network models, 

whilst allowing the automatic tuning of poorly designed FISs. 

This thesis has exploited Jangs approach to FIS tuning in a novel manner and has lead 

to the development of multivariable co-active-ANFIS (CANFIS) type structures, as 

well as new Gaussian inference control algorithms and architectures. Consequently, a 

wider class of control architectures, and algorithms for tuning FISs is now available. 

Specifically, the combination of the CANFIS autopilot of Chapter 5 with a radial basis 

function network (RBFN) model within the consequent portion of the controller 

provided more accurate and robust AUV control through more accurate representations 
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of the underlying training data. This fusion generated the requirement for the 

development of the extended hybrid learning rule of Chapter 7, which proved effective 

for tuning the new local controller models of the Gaussian inference system 

architecture. 

Whilst this work has produced numerous technical developments in AUV control 

system design, there are clear avenues for exploration in the future. Section 8.3 outlines 

recommendations for follow up research, driven by the conclusions drawn from the 

thesis. 

8.2 Research Objectives 

The objectives of the programme of research were outlined in Chapter 1 and are 

reproduced here for ease of reference: 

(a) Critically review the current UUV control literature 

(b) Define non-linear models pertaining to the yaw and roll degrees of 

freedom 

(c) Develop traditional single-input single-output (SISO) control algorithms 

for the yaw and roll degrees of freedom 

(d) Investigate various neuro-fuzzy algorithms and structures for yaw and 

roll control 

(e) Produce candidate neuro-fuzzy control algorithms for each degree of 

freedom 
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(f) Employ suitable neuro-fuzzy algorithms within a multi-input multi

output (MIMO) configuration to control yaw and roll simultaneously

this configuration should be flexible to allow full six degree of freedom 

control 

(g) Critically assess the performance of the chosen multi variable controller 

configuration and provide flexible alternatives to the underlying 

algorithm 

Objectives (a) to (e) are discussed within Chapters 2 to 5; specifically, the work within 

Chapter 4 details the results pertaining to objectives (b) to (e), and Chapter 5 

documents work satisfying objective (f) and (g). Whilst (f) required the development of 

full six degree of freedom control architectures, Chapters 5, and 7 illustrated the 

technique with respect to two degrees of freedom. However, the technique is applicable 

to all six degrees of freedom if required. 

Satisfying these objectives lead to the following work being included within the thesis: 

(h) Examine the suitability of on-line control algorithms with respect to the 

chosen neuro-fuzzy architecture. Provide a comparative performance 

assessment between the off-line and on-line control algorithms and 

recommend a candidate algorithm, suitable for controlling multiple 

AUV degrees of freedom. 

(i) Test the robustness of each candidate control architecture to sea current 

disturbances and variations within the hydrodynamic coefficients of the 

AUV. 
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By incorporating these additional objectives (within Chapter 6 and Chapters 4, 5, 6 and 

7 respectively) a more complete description of the factors which influence AUV control 

architectures was provided. Additionally, this work raised questions on the suitability 

of various architectures and algorithms; these elements of the work may have escaped 

further attention had these objectives not been included and thus the work within the 

thesis has been enhanced beyond the original proposal. 

8.3 Recommendations for Future Research 

Several different directions for future research have been highlighted through the 

completion of the work within this thesis. The following points provide a summary of 

these areas and are not considered to be exhaustive: 

• Some form of network reduction and/or pruning when employing the 

multivariable autopilot to reduce the dimension of the parameter space 

and thus remove ineffective rules and parameters from the rulebase is 

envisaged. Various techniques for achieving this aim are discussed 

within the literature (Bossley (1997), Maeda and De Figueiredo (1997), 

Mascarilla (1997)). 

• The effectiveness of adaptive fuzzy control methods is discussed 

throughout this thesis. However, the methods considered herein 

represent parameter adaptive methods, as opposed to approaches that 

adapt the structure of the controller architecture. Some work is on-going 

in this area at present [Kuo et al. (1994), Lin and Lee (1994), Nie and 

Linkens (1993)] and to date is proving extremely effective in producing 

computationally inexpensive fuzzy and neuro-fuzzy architectures. 

Inherent problems concerning the curse of dimensionality are thus often 

circumvented. The autopilot structures developed within this thesis are 

all static in nature and as such cannot create or modify their architectures 
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to accommodate dynamic variations in the AUV system. Whilst the 

chosen autopilots are extensively tested, the ability to add and subtract 

relevant infonnation within such a paradigm could prove very useful if 

there is a requirement to have controller reconfiguration. 

• Testing the significance of rules after tuning off-line to reduce rule-base 

dimension could also lead to reduced storage requirements within 

parameter matrices. This suggests the fonnulation of suitable hypothesis 

testing techniques, measuring the contribution of each parameter within 

the holistic controller output. For example, Bossley (1997) examined the 

design of parsimonious neuro-fuzzy models. This approach considered 

model transparency and tackled the curse of dimensionality directly. 

However, the B-spline approach adopted therein is not considered the 

most effective for controller design. Furthering Bossley's efforts, in the 

context of the work considered within chapter 7 of this thesis, could 

provide parsimonious fuzzy structures for application to a wider range of 

control problems. 

• The calculation of Gaussian consequent functions within Chapter 7 

depends upon a 1 dimensional cross-over point as detailed in Lin and Lu 

(1995). The use of an a-level set approach to effect cross-over within 

the calculation of the Gaussian consequent functions could improve the 

accuracy of the control signal calculation. 

• Clearly, as mentioned in many recent fuzzy control articles, more 

research into the stability of fuzzy controllers is required. 

268 
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ADSTitACf 

This paper considers a rccuncnt dynamic neuml 
network for tho l<kntiftc:allon or a highly non-llncmr 
dynamic a,.s1cm. Tit: nc1work structute is dcsc:ribcd and 
numcricnl ~Its arc presented for dtc idcntiliCiltion or 
lhc ya\Y dynamics of an undc:nvatu vehicle. FinAlly. the 
paper concludes with comments com:crning further 
dcvc:lopmcms or the method prescnlcd. 

INTRODUCflON 

In many prncllcal situations the modc:1 or a 
continuous, non-linear, dynamic system eo be conU'OIIcd 
is unknown or ill--defined due to Its complexity, unccnniu 
chnracter or lhcro ls a lac:k of reprc.scllUltJve dala. In such 
o silWJ.tlon on idcntiflcallon approac::h Is often adopted to 
idenairy &he model. 

A n1cthod for lhe idenliliculion of n hishly non-linear, 
continuous, dynnmlc systcn1 is considered in ahis paper. h 
Is assumed lhotan ldentiRcd system con be described by 
o set of non-linear sunc dlffcrcmlol cqunthlns nud 
n rccurrenl dynnmic neural network (1,11 can bo 
c111ploycd ns the system n1odel. 

On one h:md o recurrent dyMmic ncurnl network cnn 
be viewed as o $Cl of uon-lincar :unte cquntions whilst on 
lite oahcr hand as o set of intercoupled dynamic neurons. 
Consequently such networks tun otore nccnrntely 

represent a non·llw:nr dynamic con1inuous sys1cms 
bc:huvlour in comparison with discrclC lcchniquCii and 
also a neural oricnled method eau bo applied for adjuslins 
sys1em parameters, e.g. a backpropagation procedure. 

DYNAMIC NEURAL NETWORK 

The dynamic neural network may be described by lhc 
follo\VIng system of coupled differential equations (1,2,11 

T,:;"' -:r, -t o{.s,)-t 111, ''" I,K ·". (I) 

s,=Lw,x1, I=I,K,II, ,., (1) 

where n Is the number or llymuuic neurons, 1:, is the 

llntc of the llh dynamic m:uron, s, is !he total input to 

the llh unit, 1; i~ the lime conslanl of unit I, 111
11 

ore 

weighls, u, ore inputs to lite system nnd a is nn nrbitml}' 

dillercntinble furu:lion, in this cnsc it is aaken lo be a 
liiigmoidnl runC'Iion 

TRAINING ALGORITHM 

Wilhoul :my loss of genemlily 11 is nssumctl lhat lhc 
sys1em eo be idcnliRcd is o SISO one. Consequently lhc 
energy ftmclion 10 be minimized is 

(l) 

wltcrc y is the aclual and. d is rhc desired lmjcc1ory of tile 
network over lht:l time lnlcrval (1,,1, J, and 1hc nclwork of 

cqunlions (1)·(2) can be developed bnscd on the 
approaches ofPineda (31 and Pcarhnuucr (1,2). 

Training of I he O:ccd points of the m:twork consthuttS 
a forward pass using cqunlions (I) and (2), follow·cd by 
lhc solviug or the dlll'c.renlinl cqu<~lion set (backward 
pHSS) 

wilh d1c boundary condition 

where 

•• (•,). 0. 

liC 
•.(•)·-(). /k, I 

Rud linal1y ndjusling lhc weights and lite time c:onslants 
na:ording to 

nnd 

iE I) dK -m--J11 __!..tlf, l,j=I,K,II. 
ill', T1 ,. Jt 

(6) 

The variables r,(r) should bo undcrslood as orden:d 

dcrivulivcs 

11'£ 
•.(•) • a,(•) · (7) 

TilE SVS1'EI\ol TO DE IDENTIFIED 

The system under eonsidcraliou is on undcnv:ucr 
vehicle (UV) which is shown in block dingrnm form In 
Fig. 1. To describe I he )'8\Y dynomles or 8 UV use is mnde 
of MATLAB/Simulink model supplied by the: Defence 
Research Ageucy (ORA). Sea Systems Sector, Winfrill1. 
The model having been validnted against stomJord ORA 
non·lincar hydrodynamic codo using tank tcsl data and on 
cxperinu:ntally derived set of hyd(Odya;mdc cocfficleTUS 
from the lnslitutc of Oceanographic Sc-lc:nce's AUTOSUD 
vehicle (oi,SI. 

tud~or yaw uv 
modo I 

FIO. I. TriE SYSTEM MODBL 1'0 BE IDENTIPIBD 

ALGORITDM IMPLEMENTA'flON 

The algoriU1m prescnlcd was implemented under lhc 
MATLAB environmcnl using lhc Shnullnk Toolbox. 
Training data were collected rrom lhc uudcrwater vehicle 
model. 

The tr.1ining procedure, developed wilhin MATI.AB, 
can be described as rollows 

1. Set lhc number of neurons o.nd epochs (Madllb M~ 
file). 

2. lnillalizc \veighlS aud time constants r.mdomly 
(Mallnb M·filc). 

l. Load lhe desired unjccuuy from lhc workspacc 
(Mallab M·filc). 

4. Pcrf'om1 a fonvnrd pm according to the equation 
SCIS (l)·(l) nnd calculoiC rbe energy 1\mtllon (J). 
Save rcsulls inlo 1he \VOrkspacc (Shnulink block). 

s. Pt:rfom1 o b:~clcwnrd pass uccordinslo Uac equation 
set (4) based on dala previously stored into tl1c 
\VOrkspacc. Save rc:sults into lha workspacc 
(Simullnk block). 

6. Colcul.atc the gmdienlmatrix nnd vcelor according 
lo the equation sets (S)-(6) b:lslng on dol:t 
previously stored into tbc worlr.spa.ec (Matlab M· 
Rles mnd Slmullnk blocks). 

1. Norrnall~ the gradicnl nuurix and vec1or (Matlab 
M-file). 

B. Adjust weights and 1imt c:onstants (Milllnb M·r•lt) 
9. lf end or the cnleulotions go 10 10 dsc go IO -1. 
IO.Stop. 



Some steps of the algorithm arc implcmcntell using 
M-Oles and same arc int'lullcd as Slmulink biCK:ks. Sutl~ 
un .approach must be adoprcd for 1wo reasons. Firslly, il is 
not possible to hnplcmenl a mnlrix. dilferenlial equation 
se1 in lhc Simulink environmcnl dirccdy. Secondly a 
rorward pass should be in1cgr.ucd fonvard willl some 
inilial candiUons wllilsl lhe backward pnss should be 
inlcgruled backwards with the bound:uy conditions as 
initial condilious. 

NUMEIUCAL RESULTS 

In ordc~ to ®tain lho 1raining data, a step change on 
heading angle was denmnded, and lhc n:.suhing da1a 
poinlS were colleclcd from lhc UV motlcl over o time 
interval of (0,1001 seconds. The training algorithm wns 
lhen applied lo adjust 1he nc1work \¥Ciglus nud lime 
conslaniS. TI1o nlnncrical resulls ror a dynamic neuml ncl 
(fig. 2) with 10 neurons arc shown in Fig. 1. TI1e final 
value or 1he energy funcdon was 0.02. 

Scaling faclors for lhc input and oulput or the 
dynamic neural net were used. 

FIG. 2 TilE NEURAL NET 

During llaining the algorithm often became trapped 
in local minlmo of the error hypersurfacc. 11 was noted 
IIIDI d1e success ot lho alsorilhm la converge upon lhe 
global minima depcnd.;d lara~:ly on the random inidnl 
condilions. The addidon of a momeniUm tenn did nol 
improve lhe situation. Consequently 11 was not possible to 
ob1aln an inverse model o!the UV. 

CONCLUSIONS 

h has been shown 111.,1 11 is possible 10 idcnlify a 
higllly non·line:tr cominuous dynamic syslem using a 
d)·namic rec:uncnt ucuralncnvork npprouch. 

llowcver, 1l1e numerical uninin& rcsuiiS are no I 
culirely so1isfnc1ory. Using 1he approach praented il is 
possible to oblain a neural model of lhe system, however 
it is very dUI"Icull la obmin ilS invcne model due to wish 
10 thank numerical inslnbilities during calculnlions nnd n 
large number or local minima on the error hypersurfacc. 

1.<,-------------, 

80 100 

FIG. l. NUMilRICAL RESULTS FOR UV MODEL 
desired uajcclory 

x acrualtrajectory 

The Implementation of lllc al~;orillun Wl'IS limited by 
ccnrlln feamres ofll1c MATLABJSimullnk soRw:ue used. 
In particular ll was not possible to pcrfonn simulalious 
for matrix slate equations in a direct way. For inslance. 
simulatloo of the eqtwtion set (') am be solved using an 
M-file wilh mullipla calls to a Simulink block which 
cc1lcula1es a weighl molrlx row or column. To overcome 
lhis problem lhc Implementation of all backward pass 
equation sets in one simulink block is suggested. 

As mentioned in lhe previous scclion, lhc solution ID 
l11c problem mainly depends on 1he Initial condilions. 
Thus Ins lead of lite backward pass a stochostlt method or 
senelie nlsorilhm based melhod should be applied lo 
adjust I he weights and time conslaniS or the network. 

Additionally, il sllould be noted lhat an inverse model 
may no1 exist ror lite &)'litem under consideration. 

11 is necessary 1o stress that d1e algorillun can be: 
implemented using any mathematical library and lhatlhc 
technique proposed is based on a non-linear dynamic 
network model which can replicate lhe dynamic bchavior 
or a given dynamic sy&tcm in comparison with curren1ly 
npplied discrete neu~al based techniques. 
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Streszczenie 

W pracy prJ.Cdstawiono pr6bc( wprowadzcnia modulu wspomagajqcego kreatywno~c 
w procesie projeklowania. Zostaly ronvatonc dwa podej~cia do problemu kreatywno~i 
w projektowanin. PierwsJ.C opmte jest na · zaaw:uisowanych tcchnotogiach b.1Zuj:jcych 
na ponownym utyciu wicdzy. Drugie podcjSc:ie polega na eliminacji rulynowych dLia
lan z procesu projektowego. Problem wspomagania kreatywno~ci w projcktowaniu 
zostal zilustrowuny przykJadcm ~rodowiska WSIXlmagnj;(ccgo projcktownnic instala,ji 
c;cntralncgo ogm:wnnia. 

TOWARDS CREATIVITY IN DESIGN PROCESS 

Summary 

The (Xlpc:r shows the idea of npplicntion of crcn\ivity supporting module in design process. 
1\vo approaches to crcnth•ity i1i design process are COIISidcrcd. "J1•c first one is based on 
some sophis1icnted tcclu•ologies, the second one on the cluninatiou of routine step~> from tl1c 
c.tcs.ign process. As an c.mmplc the problem of heating system design is mentioned · 
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DYNAMIC SYSTEM CONTROL USING 
ANFIS ARCHITECTURE BASED CONTROLLER 

c~1ntt'OI · :svs•tem nnaJysls and synthesis ore very important problems within the field of 
engineering. In particular, the required structure and parameters of a controller 
be specified during the design process. During recent yc.1rs many so.n 

cornp~Jtiilg techniques, such as fuzzy logic, a•tificial neural· networks and scncllc 
ftlnnnl,hn•• have been developed and applied to control system analysis nod synthesis 
Qu...._ ...... in the area of non-linear systems. Fuzzy logic and artificial neural network 

controllers can be used to contrnlnon-lincar dynamic systems but both methods 
some inherent disadvantages. The tuning of a fuzzy logic controller is usually 

pcrfom1ed heuristically whilst neural network controller beh;1viour cannot alw:~ys lx: 
forecast. Hence the use of a fuzzy-neural approach for fuzzy controller parameter 
tuning provides o method by which the linguistic benefits of fuzzy. controllers can be 

· fused with the nunrerical capabilities of neural networks. "lllc Adapllvc-Nctwork-Dnscd 
FuZ7.}' Inference System (ANFJS) of Jang (4) combines the ~dvantages of both 
techniques for !he neural tuning of fuzzy controllers. Within tlus p~pcr an ANFIS 

. controiter.has been implemented for use in the MATLAB environment. 

. .. · In this pa~r the parameter tuning process of ANriS is discussed in npplicution to 
. tbc control of a higWy non-linear dynamic system. 

· 2.. lqoH ••• et lotacoco 

For simplicity let us recall the fi~t ord~r Sugeno mode of inference (6,7) for a fuzzy 

controller and assume that the system has two mlcs (sec Fig. I): 

if .r is 111 ondy is IJ, , 

Uacn f.= p1.r+q,y +r, , 

if .r isA1 andy isB1 , 

!hen f 1 = p,x+q,y +r,, 
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DIM)n Unll1d Kingdom, E-moti:P..J.Cra.,..n@J'Iymoulh.ac.uk,ltSullon·l@l'lymo•th.ac.uk 
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Fig. / . The two rule Sugeno fuzzy motlel 

3. AliAS as :Ill ad;a,llvc ICIJII lllll 

r 

z =~ ''I +u~ 

In the general case ANFIS can be viewed as a adaptive network stmctmc with adaptive 
and fixed nodes (fig. 2) (4,5) and, in paniculur, can be based on n first order Sugeuo 
model (Fig. 3). 

inputs outputs 

x, x, 

X, x, 

t t t r 
lnputla~r layer 1 layor 2 loyer3 

(output l•yor) 

0 adaptive nodo 0 ruced node 

Fig 2. An adaptive IIC!work 
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layer 1 

Parameters a1 b1 c, 

X 

y 

layer 2 

0 adaptive no~e 

layer 3 

FT g. 3. ANFJS arch/leclure for the Sugeno model 

layer 4 

P, q, r, 

fixed node 

layer 5 

Assuming n fuzzy inference system 10 hnve two rules, each individual luycr of the 
ANFIS architecture for the first order Sugcno model can be described as follows: 

Layer 1 (adapclve nodes) 

0 1•1 ~ ""· (x), I = 1,2, or 

0 1•1 = JC,,., {y), I = 3,4 

where x or y is the input to the node, o, .. arc outputs and A, (or !J,.,) is the ful.:r.y set 

associated with this node with a membership function described by: 

''"· (x) = [ . 'J' (x-c) 
~ ~ ~~ 

where a,,b,,c, arc the p.1ramcters to be m!.1p1cd during the twining proccdmc. 

Layer 2 (fixed nodes) 

0 1., = w, = ""· (x) x ''•. {y), I= 1,2. 

Layer 3 (fixed nodes) 

o, I = w, = - '-"·- . I = 1,2. 
· w1 + w1 
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Layer 4 (ad~tptive node~) 

o •.• = -w,r. = w,(p,x +q,y+r.). 

where W, is the output of layer 3 and p,.q, ,r, arc the paromclers to be adjusted. 

l.aycr S (single fixed node) 

'LwJ 
o =L.w r. =-'--1.• ' ' ' L,w, 

·n1e ANFIS uctwor~ C<Jn be I ruined using n hybrid proa:dure (4 J which is a 
combination of the gradient descent and the recursive least S<JI!Urcs estimator, (4,SJ . 

4. AlAS as a ceetrellcr 
The control system stmcture with ANFIS implemented as a controller is shown on Fig. 
4 . In order lo tmin the ANFIS controller inpulloulpul data pairs are collected over the 
system trajectory, namely a set of pairs consisting of the error and the control. From n 
practical point of view there is a· problem when attempting lo find the desired control 
action as a function of the system output. In other words it is necessary to specify two 
sets of input/output data pairs: controller input, system output and controller input, 
contTOUer output. To overcome this problem severalt~h~ques have been apPlied [4). 
In 'particular the system can be identified using a neural ~ctwork and the training 
procedure performed using the control system model with the system replaced by its 
neural network model. Another method Is to obu:iin an inverse model of the system. In 
this approach a neural network tcclmique can also be useful. In general the system to 
be controlled Is non-linear and dynamic. In such circumstances the appllcatio1,1 of a 
dynamic neural network to the system identification seems quite natural. Alternatively, 
the ANFIS architecture can be used. In this paper we propose 11 recurrent dynamic 
neural network for the system identification problem. ' 

requited 
syoiAim output euor 

Fig. 4. 111t comroll:vstem structure with /he ANI'IS controller. 

72 
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5. Rccencet 101ral Htwerk 
· In order to identify the system to be controlled a dynamic ncurnl network is proposed 
which can be described by the following system of coupled differential equations 

: (8,9,10) 

. dx, a( ) 1,-. =-x,+ s1 +u1, 
dl 

i -1, ... ,11. 

. 
s, = Lwvr,, 

)•I 
i = 1, ... ,11 , 

(I) 

(2) 

where n Is the number of dynamic neurons, r, is the stale of 1 he ilh dynamic neuron, 

s, is the total input to the llh unit, 1; is the time constuut_ of unit i , w ~ nrc weights, 

u, are inputs to the system and q is 1111 a·rbitrary differenliuble functio11, e.g. a 

sigmoidal function 

(3) 

Such a network can easily be implemented in the MATLAn environment. Training 
of the network (1)-{2) leads to weig)ll and time constant adjustments. There osre three 
malo procedures to train this network: 
• -Forward/backward tcclmique [8] 
• Backpropagation through time I 11 I 
• . Forward propagation [11) 

Because only tbe forwardlb.1ckward technique C<Jn be implemented directly in the 
· . MATLAB environment this one has been chosen for the system identification. 
. Assuming the energy function 

I 'j . 
E = - (y(t) - rt(t))' dt, 

2 ,, 
(3) 

where y is tile actual and d is the desired trajectory of the network over the time 
·;· . interval [l0 ,t1 ) , the network or' equations (1)-{2) can be developed based on the 

P•llpprroac:hesof Pineda [10) and Pcarlmutter [8,9J. 
Training of the fixed points of the network coi!Stitutes n forward pass using 

· equations (1) 1111d (2), followed by the solving of the differcntiul equation set (backwnn.l 
pass) 

(4) 

7.1 



·'· 

where 

oE 
e,(t) = -(), &,t 

and finally adjusting the weights and the time constants according to 

and 

iE I J dx, .. ·,,. = --
1
. z, -

1
- dt, I ,J = I, ... ,n . 

'"• J .. tl 

{5) 

(6) 

The delllils of the a lgorithm implementation within the MATLAll environment c<~n 
be found in (3 J. 
6. AIIFIS c .. bellcr bal1l1g 

llae approach presented has been used to identify the Inverse Jnodcl of on undenvotcr 
vehicle (UV) [3(. To describe the ynw dynumics of a UV use is made of n 
MATLAB/Sioaulink model supplied by the Defence Research Agency (ORA), Sea 
Syste01s Sector, Winfrith. ( 1,2(. The UV model and ANFIS PO controller were 
implemented as Simulink blocks {sec Fig. 5) under the MATI..AB environment.. 

roquhed 
'f~WrOJponat 

yaw 

Fig. 5. 711~ UV conlrof with the PD ANFIS controller. 

The ANFIS controller had two inputs: yaw error and yaw rate, with 3 generalized 
bell mrs described on each universe of d iscourse, and one output with 9 li'lear mrs 
functions and hence 9 rules. Training data consisting of a yaw response with 11. fast rise 
time were collected. A time interval of [0,20) seconds was selected from this data for 
the purposes of training the network parameters. 

In order to tunc the ANFIS controller parameters 11 was nccessnry to specify three 
tmjectories over the assumed time interval: yaw error, ynw rule und mddcr. Since the 
yaw slg.nal in this case is a system dynamics response a reference rudder signal should 
be calculated, i.e. finding the UV inverse model . 
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·nac following training procedure was therefore applied 
J. System inverse model identification based on the presented recurrent neural net 

npproach. 
2. Calculation of the desired control based on the inverse model and desired system 

output. 
3. Training of the ANFIS controller based on the d:tta obtained in the step 2. 
A recurrent neural net for the inverse moclel identification consisted of between 10 and 
I 00 dyruunie neurons. 

7. Re~~ arks ••• Ce-tlts 
Initially it was thought possible to oblain a UV model using the proposed approach {a 
recurrent neurnl net with 10 neurons) (31 however it wus noted that the success of the 
algoritluu to converge upon the global minima depended lnrgcly on the random initial 
conditions. The addition of a momentum tcnn did not improve this situation. 
Consequently it was not possible to oblain an inverse model of the UV. 

To overcome the aforementioned difficulties the use of a random search technique 
is proposed in order to develop the dynamic neural network ( 1)-{2), e.g. genetic 
algorithms. Roccnt investig.11ions show that the application of a genetic algorithms to 
tunc the networlc parameters 51ightly improves the convergence and gives a possibility 
of obtaining a inverse UV model. However tlus procedure is time consuming and in 
consequence more time Is needed for calculations. 

As aforementioned in section 4, model idcntilicntion can be pcrfonned by 
employing the ANFIS architecture, however in Uae case under consideration it was not 
possible to obtain either the UV model nor the inverse UV model. 

An nltcmativc method for obtaining a UV inverse model may be to calculate 
desired controller output based on the UV neurnlmodcl and equation set (4). 
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A NEUROFUZZV AllfOrii.O'f 1'011 UNMANNED UNDERWATER VEIIICL~; CONTROl, 

Robcrt Sutton and Paul J Crucn 
JIUlllulc of M•rlnc Sludlu, Unlvcnlly ot rlymouU• 

Drake ClrclU, Plymouth, PU lA A, UK 
(E.-man: rlsutiOIIfiplymouU!.ac.uk) 

Abstract 

Thla paper describes lhc appllca1ion of 1 ncu•ofuuy 
approach In lhc de3iln of an autopilol for controlllna the 
yaw dynamics of an unmanncd undc:rwaccr vehicle 
(UUV). The autopilot is dc.si&ned usin& an adaptive 
ne&work-based fuuy inference 1yuem (ANFlS). To 
dextibc the YJ.W d)"'"amfC charactcrilliCS or I UUV I 

tc.aliltic shnulaUon model Is employed. Ruults arc 
presuucd which dcmonltrato lhc efleclivcneu or lho 
ANAS approach. It b concluded that the approach ofrcra 
a viablo alt.c:madve melhod for de.slgnJns y~w autopllou. 

I. lnlroducUon 

The dynamJc char.ctcrhtlc• or unmanncd undcrw•h:t 
vehicles (UUVI) prcunt a control de•ign problem which 
lincat dc.~lpt mc:thodolo&i~ can.noc accommOdalc cully. 
Pundamc:nWiy, UUV dynamics 110 non-linear 111 narute 
Md uc 1ubjcct to a variety of dlslutbances such as 
watytna dn& rorcu, voncx ctrccu and cuncnu. Studies 
Into the development of UUV control tttlleclc.s have ~n 
undetUke.n ullns adv&necd conttol enalnoertns conccpu 
such u 11 oo, tlldJn& modo and adaptive lhcortu. The&c 
lnvc.ltJpllona havo achieved llmJccd 1uccc.u owins ehhcr 
eo 1hc limpUOcallon of \he problem or the con1.10l ~eheme 
lac:kJn& robustnc..u. 

Artificial lntclllse.nce approaches an: now aho belna 
Introduced In rho dc:.~lcn procuo. Auloplloto fom.ulllod 
ualna ll>zzy loalc ond utlficlal neural nelworl: (ANN) 
methods hive been ~potlod and thown to be endowed 
wlrh coi1\IIICJ1dlble robusrnc:u propeclle.s. EneollfiJod by 
such raultJ, thb papct con.lldcn lhc devctopmcnc of a 
courK-koeplna autopllol bued on lJuo Innovative 
nw101Uuy """'odoiOIY of Jans ( 11 knowo u the 
odopdvo ne<wortc-buod ll!uy lnlen:ncc oyorem (ANI'IS), 

To dcacrlbc lhe yaw dynam•cs of 1. UUV use I• made 
of 1 MA'n.U/SI.,.Unlt model ouppUod by rho Defence 
RC>CUCI> Aaeney (l>RA), Sea Sy.renu Sector, WinfTith. 
The model h1vtn1 been valld1tod IJalnot o!Andanl ORA 
non-Unw h)'dtodynamle code uslnl tank le.U data and an 
capcrimc:ntaUy derived Id or hychodynamlc coemctcnu 
from the lruUrutc of Oceanos,r-phic Science'• AUTOSUD 
vchlcle. 

h thould be nolod \hat ror thh acudy Lhc upper &lld 
lower UI\I.I\J.J or lhc. UUV were \he IUrfKC:t Used IO 
eonuol lto Y>W d)'lllnllea. Olmcnolonally, rho model 
Rprc.s.ent.s an WKierwaccr vcl\lclc which IJ 1 nt long, I m 
In dlametu and lw 1 dlopl~~«mcnl of 3600 t1. 

:Z. Ncun>fua.y AulopUor Des! en 

AJ mc:nrJonod above, the fuu:y conltoller dcJipa used 
In lhJs arudy la bucd OD lhc ANPJS. PunctJonally, t.hciO 

arc almoJC oo corucraJaiS on thG rncmbenhJp tunctJ.oru or 
an adapdvo oe<worl: u«pl ploccwliG dlffercndlblllty. 

StNcturally, lho only limllation o n nctwotk 
configuration Is that 11 should be of rccd.forwa~d type. 
Due 10 lhe.se minimal rcstrlclions, the adaptive network's 
applicatioAS arc immediate and immense in various· areas. 

tr il is as1umcd chat the fuuy in(crcnce 1ystem under 
consideration hu multiple inputs and one functional 
outpul (0 then the fuu.y rulc·ba.scd al&orictun may be 
represented In lhe nrsc order Suseno (onn o11 shown below 

H.ule I; lfx itA, andyls B,lhen f1 c Pt x +-q, y+rt 
Rule 2: If x IJ A1 and y b 0 1 then 11 • p, x • q1 y .. r1 

Rule n: If x Is A., and y Is B.,lhen f., = p., ._ + q., y + r., 

l'he cone.spondinc ANT'IS uchhccture bclna shown In 
Fial . 

The node funcllons In the same layer ate of lhe same 
(unction family u de.scribed by lhe following: 

Layer 1: Every lth node In this layer Is In uhplive 
node with a node outpul defined by: 

Ou • PA,(-') (I) 

whetc-. is the input to the ccneral node and At is the luu.y 
Kt usoclatod wtlh \his node. In other words. outputs o( 

l.hls layer arc the mcmbcnhlp valuu or the premise p111. 
lfetc the mcm.bcnhlp functions for At can be any 
appropriate para.meteriud mcntbcnhlp funcllons. tlcre A1 

iS Chllaclerlud b)' the JCRtralltcd bell functJon: 

(2) 

JJ ., (a) • --:-_.!.'--:-:;;-

!+ [(~lT 
where {I.!, bt ~~ la the para~cr s.ct. Pararncteu In this 
layer ue rdcnod to u pr«mlll poranwrcr1. 

Layer 1 ~ Bvcry node In this layer b a fi•ed node 
l•bellod n. which mulllpllc:.l rhe lnc:omlns slcnah .~d 
outputs the product or T-nom\ operator fc.JU11, C.J . 

Ou•w1 •Jl ., (x)•Jl~()'), 1•1.2 (3) 

l!ach node output repre.senu Lhc flrinr llrt ntth of a 
Nlc. (In fact. any other T - nonn operators lhat perform 
lho tuuy AND Opet'lt.Jon un be uiCd u the node tuncllon 
lnlhlslayu). 

l.a)'er l 1 nv~ry node In lhiJ layer h a fixed nocte 
labcUcd N. The /rh node calc:uloJ.es rhc ndo of rho llh 
NI"• firinc IIR:ncth lo the aum of all rulc.a' thine 
strcnJ1.hs: 

(4) 
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Fur convenience, oulpul' of this layer arc c,aJIOO 
nut"'uliudfirinr lfftntlhs. 

Layc:r 4 1 l!vcf)' irh node in this layer is :;a.n atlap1ivc 
nude with a nocJc luncciun: 

Vthtrc Wi iJ the oulpul of layer l a.nd (p,, q11 r1) is the 
parameter set. Puametcu in this layer arc rcCcrred to iU 

conuqutnl pnramtl~r$, 

Layer S : The slnalc node in this layer is la~llcd 
L , which compUies the overall oucput u 1hc 

summation of Incoming sienah: 

Ou = overall output ..: l;w,l, 

~~····F, 
(6) 

Thu1 an adapLivc network that has euclly the nme 
(unction as I SUJCRO ruuy model may be COnltructc.d. 

J. The ll1brld Lurulng Rule 

Thia teaming Nh: wu buc:d upon t.he hybrid leamlnc 
rule of Jan&. The system is simulated usln& the dynanUc 
model and d11a it colfcctod ICCOSI I trajectory. ThiJ 
tnJnlns data IJ used to <lOmpue the system uajectory with 
the desired tnjcctory. and 10 form the ClTOf measure to be 
used for tralnlns or the adapdvc nctwofk parameters. n te 
cnot mea1ure choJCn was the lnte1nl squtJo or hudinc 
emu over time (rfSE) wit..h • nadder tquatc component 
added to ensuro crnclcnt conuol cffon t.nd Is • mo<.IIOcd 
version of chat employed by Jang : 

£•:L[(\I', -r.)' •p(6J'j r· (7) 

The paratneters to be altered arc the fuuy p111.mecen 
or both the premise and consequent layc.n. 1lte hybrid 
le&111in1 Nlo emp1o)'J the bad:propagaclon mcthocJ to 
update lhc fuuy p1cmllo panmcAers and the rcc:ursive 
lwt squates method to .update the tuuy c.onscqucnt 
par&metc:n. 

WrillnJ the ptembc mcmtxrsh.lp function of cquatJon 
(2)u: 

(8) 

l t CAll be shown J.bal by continuing the 
backpropagation process t.hrouah each layer lite followins 
lwnlns rule.~ for each Individual p~B~IICICJ wlrhln l11cr I 
arc dctcnnincd: 

' i!e iJO 
Ab. o; - 'l·t;~·~· 

r

7n."' (x-c.)"\~"' (x-c, )"' ~~~Ill] 
I .. .. I' I"• "'(x-c,) +(x-c,) n.,"' 

(10) 

(11) 

.C. Me.sull..s and Ol•cawlou 

Herein a nine 'nale Sugeno type ruuy autopilot has 
bocn developed In whleh the hybtid learnins alcorhhm or 
Jana wu applied to the task of 1u.nlna the antecedent illld 
consequent paramctera. In order to adapt the tuuy 
panmcters of the 1utopilot. lhc ANAS aulopllot was 
encoded a.s an adaptive network llchhccNrc. To account 
for some fonn of conttol effort reduction In lhc rcsultinc 
fuuy autopilot. • new cost fu11 ctlon (enor n\Uiure. 
cqu11lon 7) wu lnuoduccd. 

1\lnfn& or the nelwork pa .. amcters took place over a 
acric.s or posiLive and nccalivc course chanau of -40"' • at a 
surae velocity of 7 . .5 knou. 11mc lnternb of 60 aoconds 
were allowed between conscc:ucivo COUBC chancin& 
demands to ensure that lhe UUV lllnllllonal and 
rotational motions had scablliled, and thus each cour~e 
change wu applied at similar init ial conditions. l11is 
method was considered effective and neunary to ensute 
rule: baso tynvncuy. 

AJ menLioncd prcvloutly. tho con (unction employed 
durinc ANFIS tunlnJ of lhe: ruuy IUiopilotlncotpOntcd. 
wclaht.inJ paramc1cr p to allow a tor a corce~sion 

bctwocn cnor and conuol ctfott mJnlmlutlon to be 
achieved. This vaJue wu variod durins the runlnc 
proccdUJO tO obta.in vuyin1 dc&tCICl or C.OmptOmbc. 1bc 
value used lhroushout thc:.K rcJ,UhJ ane a conuol cf£o11 
wellhlin& of 0.151 wllhln rho eosr func~on. 
Rc.suttins from lhls 1unJng rcalme the 7 . .5 k.not. lhc ANAS 
autopilot was liken as: 

tryt,tsNandlf' lsNthenc5 • 

-1.~619 yr' .().8922 yr + 0.6559 

lfyt,toNandlf' loZihcnc5 • 

.0.4916 yr' .0.8833 yr . 0.0501 

lfyt, loNISid.; IJPO~en c5 A 

.0.5074 yr • .0.8987 yr . 0.6972 
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if V , i• Z~nd 'I' isNthcn6 • 

·0.4H2yt, ·0.1090tp •0.1819 

if V', il Zand 'I' is Z lhcn6 • 

0 0000 V'. •0.0000 V' • 0.0000 

·O.<H2 yt, ·0.1090 tp . 0.7879 

· lf'l',hPandiJI hNthcnO • 

·O.l074 tp, ·0.8981 yt • 0.6972 

·0.4916 tp, ·0.8833 tp • O.Ol02 

ifyt ,is P and yt Is P lhcn6 a 

·1.•619 tp • . 0.1922 tp - o.6ll9 

la)'tt t I•V•t2 
(pnmi.Jt parllltlcltn) 

•, 

'• 

•. 

The lnpur fuuy seu for lhc: autopilot can lH: ftcn in 
Pial. 

In order to lest the cf(cclivcncn of rhc dcslcn. the 
ANAS autopi lol was required to ruct to a series of 
random course ch:a.nacs as shown In f'i~ ) , l'hc fe111lls 
show the abilily or lhc autopilot to cope whh hi&h hcJdin& 
demands wt.ilu produc:ln& raJon•blc canard rc.s~n•c•. 

S. Conc/u.slnru 

The paper dcmonstntcs that a y~w tutopiloc fuf 1 

UUV ni3Y be deslcncd usincrhc ANAS approach. In lho 
dcslan of the auropllot a fusion of ncurol and fuuy 
technlquc.s were uacd. lfowcvcr. the autUjJilot iuclf h 
entirely fuuy and the network style: intplcmcm•tlo11 of the 
working conuollcr iJ merely a couvcnicm.:c. 
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A DESIGN STUDY OF A NEUROFUZZY AUTOPILOT FOR AN 
AUTONOMOUS UNDERWATER VEHICLE 
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antoouo@oonuoll.unlpv.i~ giovannl@bloing:l.unlpv.IL 

AbslratL This paper dcscribc.s Lhe application of a ncurofuzzy tcclutiquc In Lhe design of autopllots 
for oontrollinc Lhe yaw dynanolca of an autonontous undenvatcr vehicle (AUV). Titc autopllots arc 
designed using adaptive network stnlctwu which arc tuned with simulated arutcallng and 
chemotaxh atcoritltms. To desc:.ibe lite yaw dynan\lcs of an A IN, a realistic simulation model Is 
employed. Ruults arc presented which conllnn the approach offers a viable allemalivc method for 
dc.slgnlng such autopllots. 
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I. INTRODUCl'lON 2. MODELLING TUE AUV DYNAI'tUCS 

Serious consideration Is now being given to the 
design and development of autonomous underwater 
vchlclu (AlNs) In order Lhat Lhey may undertake 
such tasks as oocanlc wrvcylns. pipeline lnspcctlon, 
explosive ordnance dispo5al and covert surveillance. 
Such vehicles require lo have on board reliable and 
robust navigation, conllol and cuJdanc:e (NCG) 
systems. AA important component in any NCG 
system is the autopilot subsystem wlucb is 
responsible for mainiAinlng a vehicle oourse. 

figure I •hows Ute complete control authority of the 
AUV model. However, it 1hould be noted Lhat for 
this study the upper and lower canards arc Lhc only 
surfacu used to control Its yaw ·dynamics. 
Dimensionally, Lhc model represents an undcnvater 
vehicle which Is 1 m long, I m In diameter and has a 
displacement or 3600 kg. 

Several advanocd conuol engineering concepLS have 
been employed In Lhc design of undenvatcr vehicle 
autopilots and have met wiLh varying desrcu or 
suocess. Artlllclal lntclllgcnoc approaches arc now 
also belnc lnuoduccd Into Lhe dc.slgn procus. This 
paper considers Lhe development of course-keeping 
autoplloLS based on an adaptive network Slructurc. 
To optlmizc Lhe autopilot structure, simulated 
annealing and thcmota.,ls algorithms uc employed. 

The equation of motion describing Lhc dynamic 
behaviour of Lhc vehicle In the lateral plane Is as 
follows (I) : 

f! x • Fx + G u (I) 

where: 
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and the state variables are V, R, lfl, P, +· To 
implentent equation (I) use is made of an AlN 
MATLAD I Siotullnk shnulatloo model supplied by 
Uoc Defence Research Agency (DRA), Sea Systems 
Sector, Wlnfrlth. The n1odel having been valldaled 
agninst slandard ORA oon·llncar hydrodynantic 
code uslnc tank test data and an expcri01entally 
derived set or hydrodynamic coefficients from the 
lnslituto of Oceanographic Sclenoo'a AUTOSUB 
vehicle. In addition, the MA 1'1-AB I Shnullnk 
model structure also takes Into account Lhe dynamic 
behaviour or Lhc r:anard actuators by dc.scriblns them 
u llrst order lags with appmprlatellmlters. 

As can be seen in equation (I) the roll cross
coupling dynamics arc included. However, control 
of Lhc roll chaMcl is not considered here. 

3. ADAPTlVE NETWORK ARCIDTEC11JRE 

In order to adapt Lho parameters of the fuzzy 
aulopilot it is ncccssary to encode the autopilot in an 
adaptive nctwook architocturo. Functionally, Utero 
arc almost no conSirlinLS on tito node functions or an 
adaptive network except pir:ecwisc dlffcrcntlabllity. 
Structumily, Lhc only llnulation of network 
configuration i1 Lhat it should be of fccd-fonvard 
type. 

Suppose Utat Lhe rule base contains n fuzzy ir-thcn 
rulu ofTakagl and Sugeno fomt: 

Rul~ 1: If x Is A, and y Is 0 1 

lhon / 1 = p,x+q,y+r, 
Ru/e2: If X Is A1 and y Is 8 1 

thtn j, =p1x+q,y+r, 



Rule 1: If x Is A, ami y Is 8 1 

thw j, = p1x + q,y +r, 

Rule 11: If x Is A. o11d y Is B. 

/hen f. = p.x +q.y +r. 

Then the fuzzy adaptivc network aschltccture Is 
lllustrotc:d In Pig. 2. The node 1\tnctlons in the same 
layer a.rc of lhc same functJon family as described 
below. 

L:lycr 1: llvery node 1 in this laycr is an adaptive 
node wlth a nodc output definc:d by : 

Output,' = p.., (x) = . 1 

1 
~ (2) 

l+[(x:,c•) ] 
where A, is characterised by the generalised bell 

function. (a,,b,,c,} is the pann•eter set for each 

membc11hip functlo11 wllich Is to be tunc:d 
appropriately, xIs the input to the node and A, Is the 
fuzzy set associated wlth !his node. In othcr wordt, 
outputs of this layer arc the membc11hlp values of 
thc premise pan. 

Layer 2: llvery node in this layer is a fixc:d node 
~boiled n , which mullipllcs the Incoming signals 
and outpuu !.he product or T-norm operator rcrol~ 
e.s. 

Oulpu/1
1 = w1 = I'.., (x) x Jlo, {y) (l) 

l!ach node output rep1cscnts the firing slrtllglh of a 
tu! e. 

Layer 3: Every nodc in tills layer is a lixc:d node 
labelled N. n.e 1/h node calculot.. the nlliO of the 
lth rule's firing 51length to the sum of all rule's 
firins strenstlu: 

Output:=,;;, 
L w,j, 

=-'--I:w, (4) 

Layer 4: llvery node I in tills layer Is 1 sllltic node 
wlth a node function 

Output: = ,;, /, = ,;, (p,x + q,y i · r,) (S) 

where {p,, q, ,r,} is Lhc fixed parameter sec. 
Parameters In lhls htycr ore referred to ru consequent 
paramtlers. 

uyer S: The single node in U1is layer is labcllc:d ~ 
whicb computes the overall output as the summation 
or incondng slgnaJs: 

I:wJ 
Output,' = L ,;;, j, = ~ (6) 

I L...J \V1 

I 

The re.ruiUng adaptive nchvo•k has Cl<llclly tl1e same 
fw•clion as a Sugeno fuzzy model. 

4. TRAINING ALGOIUTIJMS 

Using Ute network aschiloclure shown in Pig 2, input 
data arc fed forward through U1e structure in order to 
genenue an enor function. The algorltiuns which 
ase described below were tl1en used lo optlmlze the 
premises by tuning the parameters <•• 1>, and c,) 
shown in equation (2). 

4.1 Simulated Anneallnc Algorithm 
The main problematic aspocl of sradlcnl descent 
based learning algoritiuns for optlnuzation 
problems, such u backpropagoUoo, Is the tendency 
for these mctl•ods to spend long periods of lime In 
the neighbowhood of poor or sub-optimal local 
minln~a on the eiTor hypemuface. A technique 
which can bo employed to overcome U1ls 
shoncoming Is slmulatc:d annealing which was first 
Introduced by XJrkpatrick et al (2). 

Slmulatc:d annealing Is a very efficient random 
scarth method for globol minlmlzatlon. Tills 
mcli1od Is based on an a11alogy bclwa:n U1c global 
minimization problem and !hot of determining the 
lowest energy Slllte of a physical system. 

XJrkpotrick et al (2) adopted an algorithm taken 
from tl1e statistical mochanics field for oonver"ng to 
one of many possible coolc:d or low cnersr Slates. 
l!nc•gics of this algorithn1 arc described by a 
Boltzman probability distribution such that the 
probability of any given energy Ills an exponcntialiy 
decreasing 1\tnctlon of B. Thus, If a new matrix of 
pa12111eteu e. which hove been perlwbcd from an 
lnltialiy assumed solution by a randomly generated 
unount, lead to an Improved performanco or the 
system under consideration, then they arc acceptc:d 
and tl1e process is repeated. However, If this new 
IMtrix leads to a wo11ened pcrfom~ance of tl1e 

system lt IMY bo occasionally accepted with 
probabillry P(O) such tl1at : 

P(O) - exp [ -~~)] (7) 

where E(O) is I he energy associated with the state 0, 
k is the BoiCzman's constant and T is a temper3ture 
par:um:lcr. 

For a thermodynamic system, it can be demonstrated 
both by theoretical argumenu and experimental 
verification that the most efTecdve strate&Y for 
obtainlng a global nlinimum energy Slllte requires 
the temperatwe to be c:ooled slowly. Indeed, 
providc:d the c:oollng process Is performed 
sufficiently slow, the system will by-pass locally 
stable states to reach one which is a global 
minimum. Thus, in analogous systems, the 
tcmpcr.uurc T lo allowed to deeay durin& trainins 
acallding to the following equation : 

T = -.:L 
I + an 

(8) 

where T. is the inltial ten1perature, a is a constant 
which governs the decay rate and n is the training 
epoch. 

llencc, simulated annealing may be considered to 
consist of three distinct phascs: 

(i) 
(11) 
(iii) 

A random search step; 
A minJnUzatJon stace. and 
A stopping rule. 

The random search step is basically the lterntive 
generation of n1ndom matrices in a dcn>ain S(OJ, 
co11stituted by neighbouring m111riccs IISSOCiated lo 
the cuncnt m.acrix 0., by : 

e, = 

O" • 

o;l e• 

(9) 

The nunimizalion stage consists of opplying 1 local 
minimization routine to some of the sampled 
matrices. Whilst, the slopping rule tenninatcs the 
algorilhm provided there Is sufficient evidence that 
the global minln1wn lw been detocted wltllln the 
limits of a spccilled accuracy or some explicit 
iternUon number is reachc:d. 

Table I. SiniUiated AnncalinR AIRorithm 

I. Gencnue sel of Initial p.1rameters and simulate system. 

l. Make 1andom cl~angcs to the parunetc11 and re-simulate the system. 

J. If pcrfonnance improved then relllln ehongcs and re-apply. 

4. If performance desradc:d U•en compute probability of accepting poorer 
poramctcrs according to equations (7) and (8). 

S. Generate random number In the range 0-1 and compasc wlth probability 
computc:d al 4. If randon1 number less then accept poorer pan1mcte11; 
ot11erwlse rejcct. 

6. Re-simulate and return to 3 until COli vergence. 

~.l Chcruotnh Ateorlthru 
Tile chemotaxis algorithm was inspired by 
observations of the movement of bacteria in a 
chemical environment, hence 'chcmo' · chcmlt::ll 
and 'taxis' • movement (3). In the pncscnce of an 
lnitan~ bacteria w~uid move randomly away in any 
dlroction which reduced Ute iiTitatlon, until tl1is 

direction took theon into an area where the Irritation 
began to increase •cain. A new, random dlrocUon 
would lllen be chosen and il this acaJn led to less 
Irritation the bacteria would head In the new 
dircction, otherwise another random difocUon would 
bo tried. In time U1e bacteria would be located at the 
global minlma, funhest from the source of irrilllion. 



This bcluiVlour may be tmnsformed Into a scncral 
SUt<h al&oritlun for an optimum sct of wc:l&ht< or 
pllaln<tcrs. The lncruse/dccr<aK In lrrltallon may 
be charactcriud by an Jncruse/doc:r<aJC In a suitable 
cost function for tile optlntJulion, and by convcrtJnc 
this bcuerfworse shuallon Into a reinforccnoenc 
•leow accordinato: 

Tnblc 2 : Chcmota.d• Alaorithm 

r(t) • I, bcucr 
r(t) • 0, worse (10) 

the chcmotaxls SCllrch algoritlun may be classed as a 
reinforcement le:unlng ccclutique. The algorichm is 
sununarizcd In Table 2. 

I. Simulate Ure sySI<m with an Initial sec ofparomccers. 

l. Oencrote some small random chanse~ In the paramcccrs and re-simulate 
the system. 

J. 11 the sy11em'1 perfonnancc has lnrproved with the new sct of paromctcrs, 
cctaln tile chances and re-apply. nus Is eucnllally assununs tltat lire local 
cost function sradienl will continue eo be negarlve In the local area. 

4. I! the syllem'a perfomrancc h:u wor~ened, retwn la slep 2. 

!. Conllnue until the syscern tw reached an acceptable level. 

Given sul!iclcnc llalnlnc Uuoc, the aJaoriUun should 
convcrcc to a &lobal nunlnoum of the cost functlon, 
ahhouah clven the llUidom nature of lhe aean:h an 
C>Clended ltllninc period may be nocasary. 

S. RESULTS AND DISCUSSION 

Tire prcvioua ICCiions have dlscusse<l the 
development of two nine nrlc Sugeno type fuzzy 
aucopllots. Plrscly, the simulated suuoeallna 
aJsorilhm wu applied to the cask of tuning the 
prentJse parameters of 1 fuzzy autopilot only, whlbt 
the consequent pan.rnelers remained furod as equally 
apaccd slnsJecons. Secondly, the chemotaxls 
algorithm was also 1pplfod In a simJia.r m.anner. 

1Uning of tile fUzzy aucopllot prenusc paramerers 
cook place over a aerie~ of poslllvo and ncgallvo 

course changes or 40' , at a surge vclocily or 7.) 
knou. Tin>e inrcrvals or 60 scconds were allowed 
bchvecn consecutive course changing demands to 
ensure rhat the UUV translatloow and rounlonal 
motions had rtablllsed, and thua each course ehange 
was applied at Jlmllar lnillal conditions. This 
method was considered cll'octlve and ncccss>ry eo 
enswc rule b~ symmetry. 

Again h should be noted chat the only paramercrs for 
adaptation willun tho autopllolS were lhe anlcccdenl 
paramctcu, lhe consequent pat'ltnetcrs thus bcins 
equally apaoed upon the ourpul urtiverse or 
discourse: 

If VI, Is Nand VI Is N then o • +2).00 

If VI ,Is Nand VI Is Z then 6 • +18.75 

If VI, Is Nand VI Is P tlocn 6 • + ll.SO 

it VI , Is Z and VI Is N then o • + 6.250 

it VI , Is Z ""'! V' Is Z tloen 6 • 0.00 

it V' , i• Z and V' Is P tlocn 6 • -<5.250 

If V', Is P and V' Is N lhen o • ·IUO 

If V', Is P and V' Is Z then 5 • ·18.75 

it VI, is P and V' is P then 5 - ·2l .OO 

By using simplified fuzzy lf·then nrles or lhls Corm 
the difficulty experienced in asslcning appropriate 
linaui.Uo Cerrns eo tloe nonfuzzy consequents Is 
avoided. Indeed 11 can be proven thnl under Ws form 
oC fuzzy it-then rule che n:sulllng fiiZ.Zy Inference 
system hal urllinllled approximation power to malch 
any non·llncar functions arbitrarily well. 

Given sufficient cralnlna tlme the re~ulting input sclS 
for the fuzzy autopllolS wen: as shown In Pig 3. 

A quallcollvc asseumcnl or Uoe autopilol responsea . 
was provfdod by tho UUV model's responses to a 
series oC random courae chances u shown la Pic 4. 
Such a track conllgursllon was deemed ncowary to 

.,...,... tile senersll .. clon copablllties of tile neurslly 
tuned fuzzy auooplloiJ. Indeed, lt would scc:n\ that 
the ohcmotaxls cuned aucopllot Is mac~ elroctlve at 
the course ohanginc cask than the slmuJored 
anncallnJ autopilot wllh bcuer senentJI .. tJon over 
this partJculas track conllgurstion. The course 

chanslng task of I oo· lllu.straiCI ' chc poor 
senenollsallon capability of the slmulaced aMeallng 
tuned fuzzy aucopilo~ tloc rc:.suhlns response bcins 
somewhat sluBCisb. 

At l knot< tire effccclvcness of the canard central 
surfaces Is slsninc:Dntly roduccd due to tho 
diminished hydrodyn~~nllc forces acting on tloern. 
lntu.itlvely one would expect Increased rlae lime~ u a 
consequence oC this. At 10 knots tho rcsporue limes 
of each autopilot were si&nlllcanlly reduced onen a\ 
the expcnsc of Increased overshoots and, ln ceneral, 
more osclllotory behaviour. Both Uoe nelltlllly tuned 
autoplloll !aired well wllh no evhlencc of steady 
stale cnon or unstable behaviour over the whole 
speed envelope of the UUV thus showing good 
aucopiiOI robwcncssco forward speed variallon. 

On the basis of the qualltalive perfomoanCitS the 
chemotaxla tuned autopilot wu deemed the boner at 
the required course chan&ing manoeuvres due eo liS 
superior aeneralisaclon capability. The response 
times or Uoe chcmotruds aucopllot were fascer with 
less Induced overshoot. 

l!arller the qualitative performance or each fuzzy 
autopilot wu dlscusse<l. This section addccsses tile 
perfoiTIWICU of each auropllol In a quantitative 
manner. lu a ~ or mca.surini the aocuracy and 

nrdder activity of a given autopllo~ the lntcarsl 
oquarc enor (IS!!) for the yaw error (VI,) and the 

canard dconand ( o,) arc employed: 

V'.= 1<'1'. -V'. )
1

t11 (11) 

6, " 1(5, -5,)'dt (12) 

where V', and 6 • rcprescnc desired yaw angle and 

carwd demand, and VI. and o, represent actual 
yaw angle and canard demand respectively. To 
USt.$S l11c spocd of tcsponse of the control system, 
IIlo rise tlnoe (TA ) was calculared Cor each fuzzy 

aulopilol, and lhe perccnllge pealc 
overshoot(M,{t)) was c:alculaced eo ..,... lire 
oscillatory ruture of each response. Here rise lime Is 
lllcen .. the lln>e 10 reach 99 per cent or tho desired 

40' course cloange, I.e. 39.6' , and tire pealc 
ovel$11ootls noeasured u 1 relative pera:nllse of tho 
40' coursc change demand. 

1u the tralnlog took place 11 7.5 knots, lhe 
robu.stncss of each fuzzy aucopilot was assessed by 
1es1lns 11 speeds or 5, 7.5 and 10 knou. Tious Table 
3 contalna lisuru perlaininsto lhcae three specdl. 

........ J o &•ft' •~11'1'1 .......... ._, ... -.111(11111: '"_"_ ..... .... 

UUVMoclel Slmulaled Anneallnrt aula 1101 Chemotaxls auco ilol 
\V,(")' 6,(•)' T,• 

5 Knou 117.)9 11.71 19.98 
7.5 Knou 85.46 11.33 U .l9 
IOKnots 68.58 7.79 100 

Tes1lng each aulopilol deslgnod al7.5 knot< over Urc 
UUV speed envelope provided su.itable insi&hl Into 
the robu.stness or each concrollcr. Table 3 Illustrates 
the yaw response limes of each autopilot eo a 

40' course changing manoeuvre 11 5, 1.5 and 10 
knots. Additionally figures aro suppllod Cor coursc 
chansJn~t error, canard act.lvicy enor and peak 
overshoot 

When operatlnc at 7.5 knots 11 appears tho autopllol 
deslsnod using the sln1ula1ed anneallns cocluuque 
wu 0.29% man: aocurate than that or the 
chemolaxls cuned autopilot. However the mlnlmun1 
nrdder demand wu exercised by lhe chemotaxls 
autopilot, the actlvicy being 10.94% less than l.he 

M,(t)% \V,(')' 5,(')' r •• M,(t)% 
0.61 117.74 18.81 16.07 0.01 
0.01 86.53 10.09 ll.71 0.00 
0.01 68.32 9.89 11.30 0.00 

slmulaled annealing luned aulopilol. This higblighu 
lhc fact that tile slmuJaced aMcallng algorichm tw 
reduced course changing enor at lhe expense of an 
lncrc:asc In canard activicy. 

Apln, at 5 knots tho aucopllot developed using 
simuJJied anncallnJ was 0.30% man: accuracc than 
the chcn>otaxls luned aulopllot 11 the e><pense of an 
lncn:ased canard activity. 

Piroally, tile lncr<aKd clfcctlveness or the c:Dnard 
control surfaces at the hlcher operating speed of 10 
knots leads eo reduced periods of canard sacurallon 
over the larcer course chancing manoeuvre~. The 
simulaled IMeallng aulopllor perfomood well althls 



opcratlns lpcCd showing a shnllllt aa:uracy to thnt 
or the chemotaxis autopiloc oorruponding with a 
reduction ofll.ll% In c:&Mrd activity. 

6. CONCLUSIONS 

This popcr lw discussed the turuns of fuzzy 
aulopilou for yaw conuol of an UVV. Tite resulllng 
auropllots rem.oln purely fuzzy u paramete.r tuning 
Is conducted ofT· IInc. from tlte ruulu presented ir 
~y be concluded Lhot tltc chcntolllXIs appr011ch 
provides the tlcller autopilot desisn solution. 
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Abstract 

T1Us paper considers a recum:nt dynamic neural network for !he idcnlilication of the non-linear yaw dynamics of an 
WIJDIUllled underwater vehicle. The ocrwortc structure Is described and results arc presented to show t11e validity or tl1c 
approach. 

1. Introduction 
where : 

The dynamic characteristics of =ed underwater 
vehicles (UUV•) present a coo!rol sy£tem design problem 
wblcb design methodologies c:aaaot aooommodate easily. 
Fundameo!ally, UUV dynamics arc aon-Uacar In nature and 
oiler a cb&Ueagias !a.sk In !be dcvclopmca.t or suitable 
algorithau for motion and po~ltlon control in tbc six ckgrocs 
of froedom In wblch rucb Ctaft operate. In order 10 develop a 
appropria!C coo!rol £tratcsr, 1t ts aeccss:ary to have avalbble 
a suitable model or !be veblcle. Herein a teeurrenl dynamic 
aeural network Is used to Identify the non-linear yaw 
dynamics or a UUV. 

2. Dynamics of the UUV 

Figure I shows the complete control authority of the UUV 
. •imutatlon model. However, lt abould bo noted tbat for tbls 
study tl1o upper aad lower c:uw-dt arc the only lutfaces used 
10 control Its yaw dynamics. DlmCilSionaUy, the model 
represents an uoderwa!Cr vehicle which Is 7 m long, I m in 
diameter and has a dlsplaocmcot of3600 kg. 

The equation of motion describing the ~c behaviour 
or the vcblcle In the lateral plane is as foUows (1): 

Rx•Px+Gu (I) 
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(m·Y) - Ya 

-N. (1, - N") 

0 0 
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0 0 

0 - (Y, + mZ0 ) 0 

0 -N, 0 

0 0 

0 (lx-K.) 0 

0 0 

P ~ 

YvvU. (Y"" - m) U 0 YVPU 0 

0 

0 0 0 0 

0 0 0 0 

G• 

Yuu,hU' Yuu4 1U' 0 0 

N w .... u• N uw• u' l, - l, l, -l, 

0 0 0 0 0 0 

0 0 

0 0 0 0 0 0 

u' - lllu. 8u,O 0 0 0) t 

and the state variables are V, R, '1', P, +· To Implement 
equation (I) use Is made or !be UUV MATLAB/Simullnk 
simulation model suppUed by tbe Defence Evaluation and 
Research Agency (DERA), Sea Systems Sector, Wi.nfri!h. 
The model having been validated against standard DE:RA 
oon-Uacar bydrodynamlo code using tnnlc test data and an 
cxpcrimco!aUy derived ICt ofbydrodyaamlc coclliclcnts from 
tbe Institute or Occanograpblc Science'• AUfOSUB vehicle. 
In addition, the MA ll.ABISimulink model struct~W also 
takes Into aooouot the dynamic behaviour of the eaaard 
IICIUators by describing them as first order lags witb 
appropriate Umltcrs. 

A3 CUI be -.a in equation (I) the roU crosH:oupUng 
dynamics arc Included. However, control or the roU chnn.nel 
is not considered bcrc . 

Figure I. Control authority of the UUV 

3. Dynamic Neural Network 

Dynamic or recurrent networks diD' er from static ones In !bat 
!heir structure Incorporate feedback. The mc!bed adopted to 
develop !he dynamic newnl ncrwortc Is basad on !be 
approaches ofPinoda (21 and Pearlmuuer (3), (4)1o train !be 
fiXed points or a rccurrent temporally continuous 
backpropagatlon network. 

Ills IISSWDed !be network model Is of U1e fonn : 

dx1 
T, dt=-x1 +CT(s1)+u1,i a I, . ... , n (2) 

. 
s, = L w11 xJI i .. 1, .... , n (3) 

j•l 

where n Is !be number of neurons, XI Is the state of tbe ltb 
dyaamic neuron, Sj Is !he total Input to !be lth unit, T1 Is !he 
tlmo mnstant of unit I. w1 are weights. a u an ubltrary 
diLfercntioble function and u, are Inputs to the system. For 
Ibis study, tioe sigmoidal fUDction is employed as follows: 

I 
u(x)"' --

(1 - e·•) 

3.1 The training algorithm and Its 
Implementation 

(4) 

Consideration is given to !he mi.nimlz:ltion ortbc function: 

E a .!. J.'' (y(t) • d(t))1 dt 
2 '• 

(S) 
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wbcrc y Is we actual trajectory of we network over the llme 
lntcrv:ol lt.. 1,) and d Is the dulrcd trajectory over the same 
time lnlerv:al. 

DcOnlng: 

oE 

produced lhc resulrs shown i.n Figure 2. 11te final value ol 
lhc energy function being 0.02. 

e,(t} • ,i • l, .... ,msil 
oy,(t) 

During lite training period the algoriUtm became prone 10 
being trapped i.a local minima Ill lbe error hypersurface. 11 
was found thal in order for lite algoriUun to converge la a 
slobal minima depended 10 a large cxtenl on the random 
initial conditions. Also, lhe addition of a momeolum Icon 

(6) did not Improve lhe slluallnn. 

where )'I Is tbe system oulput ( a chosen number of system 
state vuriables) and: 

D'E 
z, (t) - -- i = I, .. . . , n 

Dx,(t) 
(7) 

· ll should be noted that o • is the ordered derivative with 

variables ordered backpropagallng over lhc time. Thus lhe 
cWrcrentiaJ cqualloos used for backpropagalion may be 
described by: 

with boundary condlllons: 

"(tt)- 0 

Hence we calculallons can be made: 

DE I ('• '( ) d . . 
IJw 

= -T J, XI u s, z, t, I, J 
i I " 

and 

(8) 

(9) 

I, . ... , n 

(10) 

DE= - lf'z1 ~ dt, i ~ I, . .. . , n 
DI; T1 '• dt 

(11) 

Thus, lhc •tcorilhm Is Implemented lnllially by lhe 
forward calculalloa.s of equations (2) and (3). This Is 
followed by the backward calculallnll of cquallon (8) and the 
boundary ooodlllon of cqualloll (9). Fi.nally, We partial 
deriV211ve.s shown as equations (10) ond (11) are calculAted 
forward to ldjust lltc welghls and lime oonstaot.s of the 
dynamic time ooollouous octworlc. 

4. Results 

In order 10 oblaill lhe DCCC$$81)' training dara, a step chante 
In tho bcadlnt angle of the vtbiclc was demanded. The 
rcsulllnc data points wen: oollcelcd ovu 1 time lnlerval of 
[0,100) seconds. 'I1ul traloloc algorithm was then 1pplled 10 
adjust l.bo wclgbrs Ill l.bo lletwodc and Its time oonstants. 
Usi.ac a dynamlc neural networ\: wblcb conrained 10 ncwons 

1.4r--~--~-~--~-~ 

20 60 60 100 

----- desired trajectory 
X X X dynamic neural network response 

Ficurc 2. Typical yaw re.sponses obtained using the dynamic 
neural networ\: 

5. Conclusions 

11 has been shown that lt Is possible to ldenli{y a highly non
linear conUnunus dynandc system UJins a d)1LIIlllic rccum:ol 
neural nct1vor\: approach. Comparisons were made belwcen 
lllc responses obrained !Joot lhe DEltA UUV model wltl• 
those from lhe neural oetworlc. The results pr=ntcd 
Wustralc lhe viability of lhe tccludque to model ruch non
Unear vtWcular dywuolcs and gives enoouragemeot and 
colllidence !or its appUcatioo In ICIUAI hardware systems. 
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ABSTRACT 

This paper describes the application of neutofuuy techniques 
In the desicn of autopilots for controlling the yaw dynamics 
or an autonomou.s underw11er vehicle. Aucopilou arc 
designed 111ing an adaptlve-networlc-bued fuuy infercn"" 
system (ANFIS) and a chcmowls tuning mctltodology. To 
d..aibe the yaw dynamic choncteristies of an autonomow 
underwatu vehicle a rcali.stic 1imulation model u employed. 
ResiiiiS lfc prc.seoted which demonstrate the superiority of the 
ANFlS approociL lt is concluded that the approach afTers a 
viable alternative method for deslgninc such autopiloiS. 

1 INTRODUCTION 

llncounced by the prospect Of autOIIODlOIU underwater 
vehicle (AtN) mlsslon &ecnarios considerable loterest Is now 
being shown In tho development and construction of such 
cnfi to undcrtalcc taslcs such as ~ survcyinc, pipeline 
hupectioo, explosive ord....., dlspcscl and covert 
surveillance. lD order that such a cnof\ can possess a suitable 
level o! autonomy lt la occe.uary for lt to pouess a reUable 
and rob111t ooboanl naviaatioo. l"fdal•"" and control (NGC) 
system. A l:cy clement of tbc NOC ·system Is the control 
sulnystcm which Is responsible for malntalnloc Utc vehicle 
tnjcc:tocy. Seven.! advanced eootrol cacfnccrinl con..,piS 
lncludlag H_ (I) and adaptive theories (2.) arc being 

•tttPioyed In tbc deslcn of aucopiloiS and· have met with 
varying degrees of suc:ecu. 

More rD""nl control sysccm dcslcns have usually 
incorporated some ronn of aniliclal lntelligco..,, AutopiloiS 
formulated using furry loclc (3) aod artificial neural nctworlc 
(ANN) methods (4] have been n:ported and shown to be 
endowed with commendable robustness properties. 
Encouraged by such rcsu.IIS, this paper consldcn the 
development of a coune-lcccpiag autopilot based on the 
lwlovativc neurofurry methodology of Jang (S) known as Utc 
adapi!V'C>netwodc-ba.sod furry lnlen:oee system (ANFIS) 
which was successfully employed to prOduoo 1 coatrol 
IIRU:£Y roe the classical Inverted pendulum problcll\. 

With the ANFIS approach implcmenUotion of tl1c 
conu-oller dosicn difTers in form from U1o more traditional 
ANN in U1a1 it Is not fully connected, and not all U1c wcightJ 
or nodal parameters arc modifiable. Essentially, the fuuy rule 
base ls encoded In a parallel fashion so tl•al all the rules arc 
activated slmultaneo1111y so as lo allow network training 
algorithms to be applied. As In Jang's original worlc, here a 
b1cl: propagation al&orithm ls used to optimizc the tuuy sciS 
of Ute pn:mlscs ht the ANRS arehilceturc and a least squares 
pr()C(;durc is applied to the linear cocfflcioniS In U1e 
eonsc:qucnt fenns. However, (or this study a new cost (\!lletiOn 

is Introduced. For performonoc assessment purposes, 
comparisons arc nwle with a fuuy controller whose premlses 
arc tuned 111ing a chcutot.axis algorithm (6). 

2 MODELLING THE DYNAMICS 

Figure I show. the complete control authority of U1e A !IV 
model. However, lt should be noted that for this study U1e 
upper and lower canards arc Ute only surfaces used to control 
iiS yaw dynamics. Dimensionally, U1e model rcpre£eniS an 
undci'Wlttcr vehicle which is 1 m lone, I m In diameter and 
has a displ...,menl of 3600 ks. 

Figut'O I. Cootrol Autl1erity of Uta A !IV 

• IS9 • 

Tilt equntion Of OlOiiOn describing lhC d)'Ollni.; beh3YiOUf O( 

the vehicle in the lateral plane is as follows: 

EX a Fx •· G u (I) 

where : 

E-

(m · Y.) -Y, -(Y, +mZ0 ) 

-N. (1, - N,) 0 - N, 

0 (1, -K,) 

0 0 

"(.,U ~-n)U 0 x,u 0 

~u 1'\.U 0 1'\,U 0 

0 0 0 0 

I<;,U 0 

0 0 0 0 

G= 

Y,_li Ywu.li 0 0 

N......, tJ Mu.a.IJ ), -), ~ -~ 

0 0 0 0 0 0 

Kv....,li Ku..,.li 0 0 0 0 

0 0 0 0 0 0 

and the state variables are V, R, 1jl, P, +· To lmplem'enl 
equation (I) use is made of an AUV MA nAB I Slmullnlc 
simulation model supplied by the Defence Bvaluadon and 
Resean:h Acency (DERA), Sea Sys~ms Scccor, Wlnfrith, the 
model havlnc been validated agalast DERA non-linear 

hydrodynamic code using tank test data and expcriment>lly 
detivcd hydrodynamic coefficients frotn the lnstilule of 
Occonogrophic Science's AlfTOSUB vehicle. As can be seen 
in equal ion (I) 4hc roll cross-c::ouptine dynamics are included. 
llowever, conu-ol of the roll channel is not considered here. 

3 NEUROFUZZY AUTOPILOT 
DESIGN 

rr h is assumed chat lho fuu.y inference system under 
considcrotion ho.s multiple inputs and one functional output 
(I) Uten the fuuy rule-based alsorithm may be «presented in 
Utc foul order Suseno form as shown below: 

Rule I : If xIs A1 and y is 8 1 then f1 = p1 x + qt y + r1 
Rule 2: Ir x Is A, and y Is O, then f, ~ PI x + q, y u 1 

Rule 11 : l( X. is A. and y is D. lhcn r • • p. X+ q. y .. r. 

ll1c eotTcsponding ANFIS an:hltcctute Is shown in Figure 2. 

. 

Fi£ute 2. The adoptive nctwotk an:hilcelute 

The node functions In the same layer arc of the SIUIIC function 
ftunily as described by Utc following: 

Layer 1: Bvecy /rh node in U1is layer is an ad•ptive node 
wilh a node output def~ned by: 

Ou a Jl A, (x) (2) 

where " Is Utc Input to Ute aener&l node and At Is the fuu.y set 
assocllled with this node. In other words, oucputs of this layer 
arc lhc membcnhlp values of the premise part. Hero the 
membership functions for At can be any appropriate 
panunclcriud mcmbet'1hlp functions. Hero At Is chtu8Cteriud 
by the scncrallud bcU function: 
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(3) 
I' •. (X) -

where (<lj, b" c.J is the pazameter se1. Paramc1ers in this layer 
arc rc(crTed 10 u pumiJe parameters. 

layer 2: Every nodo in lhls layer is a lixed node labelled 
n. which muhiplies lhe incoming signals and outpuiS lhc 
product or T·nonn opcra1or result. e.g. 

OLI = w; a Jl A, (x) X Jl o, (y), i = I, 2 (4) 

Each node oulput repmcniS lhe firing srrcnglh of a rule. 

layer 3: Every node in thls layer is a lixed node labelled 
N. The ilh node calculoles lhe rotio of lhe ish rules' ruing 
suenglh 10 lhe sum of all rules' ruing Slrcngths: 

0 '·' = w, = __ w_, -, i = I, 2 (5) 
W 1 + W 1 

For convenience, outpuu of this layer arc called normalit<d 
firing srrcngr/u. 

layer 4: Every l rh node in lhis layer is an adaptive node 
wilh a node function: 

o,.,, = W,r, w,(p, x+q,y+r,) (6) 

where W1 is lhc output of layer 3 and (p1, q,, r11 is lhe 
parameter sel Parameters in this layer arc referred to u 
consequent paromders. 

layer 5: '11•• single node in this layer is labelled :L 
whlch compules the overall output u lhe summlltion or 
Incoming signals: 

o,J = overall output = 
L. w,r, 

L. .; 'r, • -+----
' Ll w, 

' 

(7) 

Thus an adaptive network that has exactly the same function 
as a Sugeno fuzzy model may be constructed. 

4 TRAINING ALGORITHMS 

4.1 TI1e Hybrid Learning Rule 

This teaming rule the hybrid learning rule or long. The 
1ysccm is simulated using the dynamic model and data is 
collected across a trajectory. This training daca is used eo 
compare I he sys1em trajectory with the desired trajectory, and 
so Corm rhe error measure to be used for training or the 
adaptive nelwork parameters. TI1e error measure chosen was 
lhe integral square of heading error over lime (fi'SE): 

£ a J ('I', - 'I', ) 1 
dr (8) 

TI1e paramercrs 10 be ahcred are the fuzzy parameters of 
both lhe prcmlsc and consequent layers. 111c hyblid le:ll'lling 
rule employs lhc backpropagation mctl1od to updalc U1c Cuzzy 
premise parameters and the recursive least squate's meU&od 10 
update the fuzzy consequent parameters. Consequently lhe 
gr.odicnt descent mclhod and the least-squares melhod have 
been combined to update the parameters in an adaptive 
network. Each epoch conslsu of 1 forward pus in which 
Inputs are presented and lhe mntrius A and 8 are calculated 
and the consequent parameters are updated via the rccusslvc 
!cut-squares method. Additionally each epoch consisu of a 
backward pass in which lhe derivative of lhe error measure 
wilh respect to each nodes output is propagaled from U>e 
output to the Input oC the network architecture. At lhe end of 
the backward pass the parameters or the premise layer arc 
updated by li>c gradient dcsunt metl1od. 

4.2 Chemotaxis Algorithms 

The main disadvantage of backpropagation is lhc lendcncy 
Cor the search to become lnpped in a local minimum on lhc 
error surface. The n1orc complex the network the more likely 
lhis is to happen as the cnor surface is increasingly multi~ 
dimensional and thcrcfon: irregular, with more local minima 
Into which the partially trained network enn fall : NI 
alternative Is to use less guided methods to search U1e 
paramclcr spau. Such random mcU1ods are virtually 
guaranteed to find a global solution but ttalnlng times may be 
oomowhat extended as there is little direction in tl1e s~h. 

The chemotaxl• algoritlun was Inspired by observations of tl1c 
movcmenc of bacteria in a chemical environment. hence 
'chcmo' - chcmie&l and 'taxls' - movement [6). In the 
prcsenC4 or an irritant. bacteria would move randomly away 
In any direction whlch reduced the Irritation, until !his 
direction took !hem into an area when> lho Irritation began to 
Increase again. A new, random di=tion would t11en be 
chosen and if lhis again led to less irritation U1e bacteria 
would head in lhe new direction, olherwisc anolhcr random 
direction would be tried. In tlmc tl1c bacteria would be 
located lt lhc global minima, 1\Jtthest from UIC source or 
irritation. This behaviour may be tntnsCormed into a gcncrol 
sciUCh algoritlun for an optimum sets or weights or 
parameters. The Increase/decrease in Irritation may be 
characterized by an incrcasc/dccrcasc> in a suitable cost 
function for U1c optimiz.alion, and by converting this 
better/worse situation Into • n:lnforccn1cnl signal according 
to: 
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r(t) A l,beuer 
r(l) = 0, worse (9) 

Lhe chemo1u.is search algorhhm may be classed as o 
reinforcement learning 1echniquc. The algorirhn1 is 
summarized in Table I. 

I. Simulate the system with an initial set of parameters. 
2. Gcncn.le some small random changes in the parametcu. 

and rc~simulatc the system. 
3. Ir the syslcm's performance has improved with lhc 'new 

set of parameters, retain the changes and re-apply. This is 
cssentiaJly assuming thac the locaJ con function gradient 
will continue to be negative in the local area. 

4. I( U1c system pcrforrnanu has worsened, relum 10 step 2. 
S. Continue untjltlle system has renched an acccotablc level. 

Table I. n1c ChemotaXis Algorilhm 

Given suCiicicnt 1rammg time, lhc algoritlun should 
converge to a global minimum of the cost (unction, although 
given lhc random nature or lhc search an ex1cnded uaining . 
period may be necessary. 

The structure of lhe chemotaxis tuned autopilot is similar 
to that described In section 3 and depicted In Figure 2 for the 
ANFJS architecture. However, lhcre arc some minor 
dissimilarities. In this case, lhe nodes in layer 4 arc static and 
lhcreforc osc not modifiable. Also during lhc tuning process, 
input data are used to generate an cnor funclion eo generate 
which is backpropagated lhrough U1e adaptive network 
oschitecture. The chemotaxis algoritlun is !hen applied to 
optlmize the pn:misc parameters. 

5 RESULTS AND DISCUSSION 

In lhc previous 5ections the development of cwo nine rule 
Sugeno type fuuy autopllots has been discussed. Firstly, the 
hybrid learning algoritlun of Jang was applied to tl>e task or 
tuning lhe pn:rnlse and consequent parameters of a fuzzy 
aulopllol Secondly, the chemotaxls algoritlun was applied to 
!he task o( tunin, lhc premise parameters Of I fuzzy autopilot 
only, whilst the consequent parameters remained lixed as 
equally spaced singletons. 

In oilier to adapt lhc fuzzy parameters or lhc autopilou, 
the ANFIS and chemotaxis autopilou were encoded as 
adaptive network archltecrures. Tuning of the network 
parameters !hen took place OVCr I series Of positive and 
negative course changes or 40', at a surge velocity of 1-S 
knots. This melhod was considered clfecUve and necessary to 
ensure rule base symmetry. 

Rcsulllng Crorn !his tuning regime the 7 .S knot, the ANFIS 
autopilot was taken &S: 

iC yr, is N and yr is ~ then 0 ~ .-1.46 yt, -0.89 yr + 0.66 

if yr, is Nand yr is Z !hen 0 = ·0.49 'I', ·0.88 'I' · O.OS 

if Yf, is N and 'I' is P !hen li = -0.51 yr, ·0.89 'I' -0.69 

if 'I', is Z and yt is N !hen li = ·0.45 'I', ·0. 11 Y' -Kl.79 

if yr, is Z and Yf is Z !hen li = 0.00 Yf, +0.00 ljl + 0.00 

if Yf, is Z and Yf is p U>cn 0 = ·0.45 Yf, -O.It Yf · 0.19 

iryt,isPand 'I' isN !hcn 0 =·O.S IYf, ·0.89ljl +0.70 

i( 'I', is P and yr is'Z U1cn li = -0.49ljl, ·0.88 Y' + 0.05 

iC 'I', is P and 'I' is P !hen li = -1.46 Yf·, - 0.89 yt - 0.66 

Again, 11 should be noted that lhc only paramclcrs for 
adaptation within the chemotaxi5 tuned autopilot were ll&c 
premise parameters and lhus !he consequent parameters or lhe 
chemotaxis autopilot arc lixed fuzzy singletons, equally 
spaced over the outpul universe of discourse. 

On completion oC 300 training epochs lhc resulting input 
fuzzy scu Cor the autopilou were as shown in Figure 3. Note 
lhc non-symmetriC&! nature of U1e tuned input fuzzy sets over 
the fixed rUzzy sets. This w&S due to computer truncation 
errors arising during the !raining process, and tho 
approximate na1urc of lhc initial conditions required to 
bootstrap U1c calcularion of the sequential least squares 
estimate for lhc ANFIS tuned input membership (unctions. 

Figure 3. The trained input fuu.y sets 

A qualitative a.ssessmenl of the autopilot responses was 
provided by the AIJV models responses to a series oC random 
course changes as shown In Figure 4. 
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Figure 4. Autopilot responses to random track configuration 

lt can be seen fr~m these resuhs 1ho1 each course changing 
manoeuVre corrc.sponds: 10 a rc:.duclion in AlJV surge velocity. 
Although Figure 4 doeo not provide concluoive evidence of 
the ANFIS autopilot's superior performance over lhe 
chemotaxis autopilot, it io apparent that the hybrid learning 
algorithm of the ANFIS technique lead• to faster, more 
accurotc responses. Indeed lt would seem that Ote ANAS 
tuned autopilot is somewhat more effective 11 the course 
changing task than the chemotaxis autopilot with improved 
response limes and only minor increases in overshoot as a 
consequence. 

Testing each autopilot designed at 7 .S knots over the 
AUV speed envelope provided suitable insight into the 
robustness of each conuoller. Figures pertaining to Ote three 
speeds are displayed In Table 2: 

AUV ANflS Chcmow..IJ 
mods:! tyloeilg! IU!Qpil9! 

'KDou 
1-' Knou 
IOkoou 

'I', o, T, M,(t) '1', o, T, M,(r) 
des• dcc 1 secs % 

ll.ll )).16 9.76 Z.l6 
,9.Z9 20.91 7.79 1.90 
:1602 ll90 7S! Ill 

dcc' de&' secs 90 

tl7.74 11.11 t6.07 o.oz 
16.,3 10.09 12.71 0.00 
61)2 ?19 1110 000 

Table 2. Yaw responses over a counc changing manoeuvfe of 
forty degrees 

At S knots the effectiveness of the canard conuol surfaces 
is significantly reduced due 10 Ote diminished hydrodynantic 
forces acting on lhem. Intuitively one would expect incfe&Sed 
rise times u a consequence of this. During the simulotions the 
chemotaxis tuned autopilot produced some oscillatory 
respons .. about the •cc points of the validation uack 11 the 
lower operatinr speed. At I 0 knots the response times of each 
1u1opilot were •icniticantJy reduced often at the expense or 
lnc:ruscd overshoots and In genenl more oscillatory 
behaviour. Tho ANFIS autopilot (aired cxceplionally well 
with no evidence or steady state cnon or unstable behaviour 

over the whole SJ>eed envelope of the AUV showint: good 
autopilot robustness to speed parameter variation. 

On the basis of the quolirativc performances the ANFIS 
tuned autopilot was deemed the best at the required course 
changing manoeuvres th:an chc chemoc;u.is tunctJ :aucopiloc. 

In I he previous section lhc qualitative perform.:ancc o( each 
fuzz.y autopilot was discussed. This secaion addresses the 
performances of each aulopilot in a quantitalive manner. As a 
means or mcasurin& the accuracy and rudder activity of a 
given autopilot, the integral squatc ertor (ITS!!) for the yaw 
ertor ('If , ) and the canard demand ( {j, ) :trc employed: 

'I'. ~ 1 ('I'' - 1/f. )
1 
dt (10) 

(11) 

where yt ~ and 0 ~ represenl desired yaw nnslc and canard 

demand, aud Y'. and 8. represent actual yow angle omd 
canard demand respectively. To assess the speed of response 
of the conuol system the riso time ( T, ) was calculated for 

each fuzzy autopilot, ond the peak overshoot( M , (t)) was 

calculated to assess Ote oscillatory nature of each response. 
Here rise time is taken as the lime to reach 99 per cent of tho 
desired 4 0' cow se change, i.e. 3 9 .6 ' , and the peok 
overshoot is measured as a relative percentage of lhe 40' 
course change demand. 

As tltc llaining took place at 7.S knots, the robustness of 
each fuzzy autopilot was assessed by testing at Ltoining speed 
+I· SO~. i.e. S, 7 .S and I 0 knots. Sununaril.cd in Table 2 arc 
the results for the two fuzzy autopilots at these three .speeds. 

When operating at 7.S knots it appears the autopilot 
designed using the ANFIS technique wu considerably mote 
a.ccurate than that or the chemotaxis tuned autopilot. However 
O>e minimum rudder demattd was exercised by U>e chemotaxis 
autopilot The canard demands of the ANFIS tuned autopilot 
increased over the training period but remained well within 
the limits of acceptability. Indeed the canard demands 
produced by ANFIS uaining were much sharper thon those of 
chomotuis tuning. ru expected, tho yaw responses of the 
aulopilots were noticeably more sluggish at tltc S knot 
training speed. this resulted in increased periods of conord 
effort over the validation uack configuration, but bout 
autopilots coped ade<Juately with the course-changing task. 
flinolly, the increased effectiveness of Ute canard conuol 
surfoccs at the higher operating speed of I 0 knots lead to 
reduced periods of canud saturation over the larger course 
changing manoeuvres. Again Otc AN!'IS autopilot was 
deemed lite best witlt the most impressive rise times and quite 
acceptable overshoots. · 
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6 CONCLUSIONS 

The work described in this p.:aper dcmonslt:Ues th:u cowse· 
changing autopilots for AUVs may be designed using Jang's 
ANFIS approach. 11 is imporUntlo note that in this study, the 
design of the autopilot is the result of a (u.sion of neural and 
fuzzy techniques. However, a dis1inc1ion exists in that the 
autopilot itself is entirely fuu.y and tltc network style 
implementation of tlte working contiollcr is merely a 
convenience. 
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I. INTRODUcrJON 

The dynamic characteristics of uiUIWlned 
underwater vehicles (IJUVs) pracnt 1 conuol "l'•tcnl 
dcslcn problem which classical linear dcsicn 
methodologies canno1 acconunodate easily. 
Pund1mcntally, UUV dyruunics are non·linear in 
nature and are subject to 1 variety of dillurbaiiCCI 
such u varylnc dnc roru.s and cunents. Therefore 
they otrer 1 challcnalnc wk in the development or 
suitable aJaorithms for motion and position coouol 
in the six degn:e~ of freedom in which they operate, 
and are rcqulrod to be robust In tenns of dlsturbana: 
rejection and varyins vehicle spooda and dynamics. 
The temt "unmanned underwater vehicle" u wed 
here is I Jencric expression to describe both 1ft 
autonomous unclcrw~ter vehicle (AUV) and 1 
remotely opcntod vehicle (ROV). An AUV is a 
marine crall wblch fullils 1 mission or IIUk without 
beina consl&ntly monitored and supervised by a 
hum&A ope11tor, wltilst an ROV is o marine vcs"l 
tlun rcquJrc.s lnatruc11oris (rorn an opc:rutor vin a 

tethered cable or an acoustic link. 

In this paper, an eiTectlve method for tuning fllzzy 
membc111hip functlon parameters is adopted to 
develop In autopilot for tile yaw control of 1 UUV 
usinc • simulated atwcalinc aJcoritlun. 

2. MODELLINO nil! AUV DYNAMICS 

DirncnsiONllly, the model rcprcsenas an underwater 
vehicle which is 7 m long, I m In diomcter 1nd bas a 

displacement of 3600 kc. It Is assumed lhat tile 
control autborily for the y1w tile dyn1ollcs is derived 
via the upper and lower canard surfaces 'or d1e 
vchlcle model. 

The equation of motlon describing the dynnmic 
behaviour of the vehicle In d1e lateral plane Is u 
follows: 

I! x • Px + G u (I) 

where: 

lm·Y. ) - Y, 

E a - N . (1, - N,) - N, 

0 

0 
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0 

0 

N ........ u I N ..... u I l., 1.., - 1. 

X,11,..,, u• K • ., •• u• o 

0 

and dtc state variables arc V, R, If, P, +· To 
Implement equation (I) use is maclc or an UUV 
MA TLAD I Slmulink sintulation ntodel supplied by 
the Defence Evalualion and Research Agency 
(DHRA), Sea Systems Sector. Winfrith. The model 
havinc bcco valldlted against srandard DERA non
linear hydrodynamic code usinc tank test data and 
an experimentally derived set or hydrodynamic 
coefficients from tbc Institute of Ocelnographlc 
Science's AUTOSUB vehicle. In addlllon, the 
MATI.AB I Simulink model SINCIUre also takes into 
account the dynamic behaviour ol rhe canard 
actuators by describing them as first order lass wilh 
appropriate lintitcrs. 

As can be seen in equntion (I) rhe roll cross
coupling dyn1mics arc included. However, control of 
the roll channel dynamics is not considered here. 

) . ADA.PTIVE NI!TWORK ARCHITEC'J'URE 

In order to ailapt lhe parameters or lhc fllzzy 
autopilot, the autopilot can be encoded u an 
adaptive newal network orchitc:cturc. Suppose that 
the Nlc base con rains n fuzzy if-then Nlcs of Takast 
and Sugcno rom1: 

Rule 1: If :c Is A, nnd y Is B, rlotll 

/, A p,z +q 1y +r, 

llulei: If x Is A, aud y is B, th<,. 

/ 1 = p,x + q,y+r, 

Rulrm:lj :c Is A. nnd y t. 8.·· lhtll 

f. = P.x + q .Y + '"• 

•• 
Then lhc (uzzy odaplive network Architecture is 
illustrated in l'ir;. I. The node funclions in rhe some 
layer arc of lhe s.•mc function r.unily as described 
bc:IO\¥, 

l.aJ"'r 1: Every node I in this layer is an ad.1ptivc 
node wld1 a node output defined by : 

Owlpwr,' • Jl,. (.r) • 1 

. ··[(7,.)' r 
(2) 

where ,,, is C:hOr&CICril.Cc.l by lhc CC11crn1Jsed bell 
runcfion. (• . . • • . ~. } is the par3mtlcr set for cac;h 
membership function which is to be tunod 
appropriotely, r is I he inputro the node and .·1, is rhc 
fuzzy set associotcd with this node. In other words. 
oulputs or this layer arc the membership values or 

• lhc premise pRrt. 

Lny<r 1: Every node in rhis layer is a fixed node 
labelled n ' which multiplies the incoming signals 
and ou1pu1s lhc product or T·nonn operator result, 
c. c. 

o.,,.,,. .... . ~< •• (•)•Jf,,{y) (3) 

Each node oulptll rcprcscnrs the firing slror~gllo of a 
Nle. 

Laytr J : Hvcry node in rhis l~ycr is a fixed node 
labelled N. Tloc llh node calcullles rhc r~lio or the 
ill\ Nit's firing >lrcngUt to doe >um of all Nlc'> 
fir ins •t.rcnglhs: 

L .... ,,, 
Output/ • w 1 .. 1 

~ 
' 

Lrry<r 4: I! very node I in this lllycr is n static node 
wilh a node function 

(4) 

Output,' • " ' • /, zz ~,(p,~ 1" 't,Y ... r,) (S) 

where (• , , a,.c,} Js the fixed parameter set. 
Parameters in this layer ore rcfcncd to as cousrqu•"' 
poramtlers and remain static durlna: the shnulatcd 
anncalinctuning process. 

Lrry<r J : The single node in this foyer is labelled .z:. 
which computes the overall output as the summation 
of incomin& sign~ Is: 

Ot~lput11 • L .;, f 1 
(6) 

I 
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'Jlae rcsuhing adoptive network has exae1ly che same 
fwaction as a Sugeno fuuy model. 

Fig. I. Tiae adaptive network arcllilccture. 

4. TRAINING ALGORfl1fMS 

Using chc network architecture shown in Fig. I, 
inpul data arc fed forwatd through the struclure in 
order to gencrace an error function. The algorithm 
dtsaibed below 1¥35 Uaen used to opllmlu: che 
premises by tuning the parameters ( ... , , . , , ) shown 

in "'lualion (2). 

J./ Simulated Amocolltrg A/gorillom 

The most problematic aspect of grndielll descent 
based leaming algorllhms such as lhe 
backpropagatioo algorithm, Is the tendency for these 
methods co become trapped In chc neiglabourhood of 
poor or su~pllmal local minima oo the error 
hypcrsurface. A technique wllich can be employed to 
overcome !his shortcoming is simulated annealing. 

Simulated aruacaling (Klrkpatrick, et nl., I 98l) Is a 
very efficient random search naechod for global 
minimization. Tials method is based on on anaiOI:,Y 
between lhe global minimization problem and Jlaat of 
determining the lowest energy stale of a physical 
system. 

Tiac simulated annealing algorithm is taken from the 
st.ltisclcaJ mechanics field ror converging to one: of 
many possible cooled or Jow energy Jlillc.s. l!ncrsies 
of Uais algorithm arc dcscriloed by a Dolt:unan 
Jlrobabillly dlstribullon such that the probobilily of 
any given enerll)' .E! Is :an exponcntially decreasing 
function of E. Tiaus, If a new rnntrix of par:imclerS 0, 
which have been perturbed from an Initially assumed 
solution by a randomly generated amount, lead to an 
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improved performoncc of the system under 
coruideration, then they are accepted and llae proc.:ss 
is rcpcatcd. However, if lhis new matrix lca\Js 10 a 
worsened pcrfonuance of Uac syscem it may be 
occasio•aally accepted with probability 1'(0) such that 

P(O) • cxp [ -~~)] (7) 

where ll(O) is the eucrc.y ossociated with the stare 0, 
k is the Bollzma.n's consla.nl and T is a temperature 
parameter. 

For a U1cnnodymunic: sysccrn, it eau be. demonstrated 
bo1h by rhcorcllc.al arguments nnd expcrimcnral 
verific.ulon Umt Uao most elleclivc strategy for 
obtaining a global minimum energy stale r"'luircs 
tho lcmperalurc ID be cooled infinitely slowly. 
Indeed, provided lhe c;ooling process is pcrfonued 
sullicienUy slowly, then the system will by-pass 
locaUy stable states to reach ouc which is a global 
minimum. Thus, in analogous systems, the 
temperature T Is allowed 10 decay during tmlnlng 
according 10 the follo1ving "'!Ualion : 

T • .....!.__ 
I + Ill 

(8) 

where ·r. is the inhiaJ temperature, a is a constaut 
which govenas the decay rate and n is the training 
epoch. 

Hence, simulated annealing nuay be considered eo 
consisl oC chrec disciucc phases : 

(i) A random surch step; 
(ii) A minlntiution siJige, and 
(lii) A slopping rule. 

Tile raudom search slcp is baslc.11iy lhe iterative 
gener.alion of mndom matrices In n domnin S(O,J, 
cons111u1ed by neighbouring matrices associated to 
lhe currcnJ malrix O, by : 

o, 

(J" • 

o·• • 

O'" . 

o·· • 

(9) 
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T~e. mini~aiuuJon uagc consists of applying a looal 
nummiUUJon rouunc to some of the snmplcd 
matrices. Finally. lhc stopping ruJe terminates tJ1c 
algorithm provided there is sul1icienl evidence rhoc 

the global muurnum has been detected w•llun the 
li111i1S of ::a specified accuracy or some c:'Cplicit 
iteration uumbcr is rcachctl. 

~1. SimnlnJcd Auncnluac Algopchm 

1. Generate set ofinitinl pnrnmctcrs anti sirnuJatc S)'Siem. 

l. Make random chnnges lo lhe parameters and rc-simulucc the >YSicna. 

J. I! perfornmuce improved I hen rcuain changes and re·awly . . 

4. If performance degraded then compute probability or o1Cceruint; poorer pnramelers 
according 10 equations (7) and (8). 

S. Generate random number in lhc rnngc 0·1 nnd compare with probability 
computed :11 4. If rtmdom number less then accept poorer par:.tiiiCh:rs· 
otbenvisc reject. ' 

6. Rc·simulate and return to l umil convergence. 

Given sufficlenc troinlug lime, lhe algorithm should 
converge lo I he global Ptinimum of the cost function, 
all hough lhc random nature of the search may incur 
an extended train ing period. The simulated 
annealing algoriUun is summari~d In Table I. 

5. RESULTS AND DISCUSSION 

The previous sections hove discussed the 
development of a ncurofuuy autopilot for an UUV. 
The simulated annealing algoriUam was applied to 
the task of tuning only the premise parameters of a 
fuuy aulopilol, wh.ilsl lhe consequent parameters 
remained fixed as equally spaced slnglecons: 

if I". is Nand ... • is N lheno • + 25.00 

if I" ,Is Nand ... · is Z thcno • + 18.75 

If I", Is Nand ... • is P rheno a + 12.50 

if I" • is Z and ... • is N Lhen o • + 6.2S 

if I" , is Z and .,· Is Z Uaen o a 0 .00 

if I" • is Z and 1". is P then o • . 6.2S 

if.,... isPand .,..· lsNiheno •-ll.SO 

if I", isPand ,; lsZtheno a -18.75 

if .... is rand '1'. is p lheuJ Q - 25.01) 

By using simplified fuzzy if·llaen ru les of litis form 
lhe diJJiculty e•pericnccd in assigning appropriale 
linguistic terms lo the non .. fuz.T.y con.sequents is 
avoided. 

Tuning of the fuzzy pren1isc parameters cook place 
over R series of positive and negative course changes 
of 4 0', al a surge velocity of 7.5 knots. Time 
Intervals o! 60 seconds were allowed between 
consecutive course chnngint: demands to ensure tlml 
!"• UUV translational and rotational mocions hud 
stabilised, and thus e.1ch course change was applied 
at similar initial conditions. This method was 
considered ctfcctivc and neccss;uy to cusurc rule 
base symmetry. 

A qualitative assessment of U1c autopilot responses 
was ptovidcd by Ulc UlN model's tCSJ)Qnses 1o a 
series o( random coutse chnnee, as $hown in Fig 2. 
Such a trnck conligurnt_ion wns deemed uece~ary to 
assess the generaliznlion capabilities of !lac neurally 
tuned ruuy autopilot Indeed, h is shown thnt the 
developed neurally twaed aulopilol is more eiTectlve 
at lhe course changing !ask lhan a classic:~l PI> 
autopilot willa a tran.<fer function: 
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0 .007(1 + 0 .64)1) 

I + 0 . .111• 
(I I) 

ip=:;flg 
• • - - * ~ * * 

~~ . . - - - - - -
Fig. 2. Autopilot responses to a random track 

configuration. 

The >lmulated annealing autopilot displays a more 
accurate response over this particular track 
conlipratlon, the course changing task or lOO ' 
illustrating the sluggish nature or the tmdillonal PD 
autopilot. 

AI S knots the eiTcctlven= of the canard control 
surl'aces is slgniJicanUy reduced due to U1c 
diminished hydrodynamic forces acting on them. 
Intuitively one would eKpcct increased rise times as a 
consequence> of this. AI 10 knots the respoosc times 
or each autopilot were signillcantly reduced onen at 
the eKpense of lncn:ascd overshoots and, In general, 
man: oscillatory behaviour. The neurally tuned 
autopilot !aired well wiU1 no evidence of steady stale 
errors or unslable behaviour over U1e whole speed 
envelope of the UUV thus showing good autopilot 
robustness to forward speed variation, however the 
PO autopilot was seen to be somewhat oscillatory at 
s knots sho\vloog • lock or autopilot robuslnCl.S. 
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On the basis of tile qualitative performances the 
simulaled annealing tuned autopilot wus deemed the 
bctlcr at lhe required course changing manoeuvres 
due to its robust perfonnance at varying forward 
speeds. 

This section addresses rbe performnnces of e.1ch 
a_utopilot in a quantitative manner. As a means of 
measuring the accuracy and rudder activity of a 
given autopilot, lhe integral square error (lSE) for 
the yaw error (I" , ) and the canard demand ( 6 , ) 
are employed: 

I" O A 1 (¥'. - 'I'.)' c/1 (12) 

6,-1(6 , - 6 .)1 dl (IJ) 

'· 

where 11' , and 6 , represent desired yaw angle and 

cuwd demand, and 11' • and 6. represent actual 

yaw angle and canard demand respectively. To 
assc.ss the speed or response of U1e conuol system, 
the rise time ( r. ) was calculated for each autopilot, 

and the percentage peak overshoot( M, (1)) was 

calculAted to assess the oscillatory nnturc of each 
response. Here rise lime is taken as tltc time to reach 
99 per cent of the desired 40' course change, 
i.c.l9.6', and the peak overshoot is measured as a 
relative percentage of U1c 40 • course clmngc 
demand. 

As the training took place at 7.S knots, the 
robustness of each autopilot \V3S assessed by testing 
at speeds of 5, 7,S and 10 knots. Thus Table 2 
contains figures pertaining to these three speeds. 

Table 2 Yaw rcsoonses oyer a course changing mnnocuvre of fony degrees 

l.!\.!Y:M21.!'1 ~UlP2£1i211i.\l + J2~dVi!liY2 Dill2nilgl ~i•m•JoiGSJ 61111S:illillC DYiiUill21 

V',(•)' o,(•)' 1~s 

S Knots 124.75 17.28 20.77 
7.S Knots 87.64 11.38 IS.I6 

10 KnQI~ 7Q~I 8.§6 I~ 2!1 

Testing C3Ch autopilot designed at 7.5 knots over the 
UUV speed envelope provided insight Into lhe 
robus1J1Cl.S of each controller. Table 2 illuslrales U1e 

M,(t} ;i V' ,(•)' 5,(•)' 1~s M ,(t}i< 

1.14 ll7.39 18.71 19.98 0.61 
0.73 85.46 11.33 15.29 0.01 
Q 41 §B ~~ 112 li JQ Q !!I 

yaw response limes oft3ch autopilot to a 40' course 
changing manoeuvre al 5, 1.5 and 10 knots. 
Additionally figures arc supplied for course 

MCMC '97 Brijunl , Croatia 1 0 ·12 September, 1997 

cilangin~ cuor, canard activity cnur aud peak 
overshoot. 

When operating at 7.5 knots it appears the autopilot 
designed using the simulated annealing technique 
was 2.49% more accurate than the uadilionaJ PO 
11utopilot. This higl~ights the fact U1at the simulated 
annealing autopilot ha.s a reduced course chnnging 
(;tror over rhc given course changing cortfiguuuion. 

/.gain, at S knots lhe autopilot developed ' using 
simulated Mnenling was S.89% more accutatc ll1an 
the PO autopilot. 

Fi:Jnlly, U1c increased c!Tcctivcness of the cnnord 
r.nntrol surfaces at the higher operating speed or 10 
lwots h:a<U to reduced periods of canard saturation 
1'\Ver the lnrgcr course changing ma.nocuvrcs. ·rite 
:;irnuhned anneaJing nutopilot also performed well ol 
this opemting speed showing a superior accuracy of 
2.74% and boner robustness thnn that or U1e PO 
r.utopilot. 

30 

6. CONCLUSIONS 

This paper has discussed the tuning of o fuzzy 
outopilor for yaw control of nn UUV The resulting 
autopilot remnins purely fuzzy ns par::unetcr tuning 
is conducted oO'-Iine. Fcom the results presented it 
m+1y be concluded thAt lhc simulated nnncotling 
npproacl' provides n vinblc autopilol design solution. 
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Abtlra<l: This paper deals will• lite applicalion of idemlllcallon mclhods to lhc 
dctcnuinalion of lloc dynamical behaviour of an UUV (Urm.,nned Undenvater 
Vehicle). After a concise lnu-oduclion to lhc longitudinal equalions of tilt motion, 
which describe the heave and pllch responses to t11e action of the conu-ol surface 
deflections and or tloe lhruSitrs, identlllcation Is fonnutated for a lincari>.ed uuv 
model. The related mininlizalion problem is approached and solved by means of two 
different r.llldom-scarch methods, respecllvely based on simulated annc:aUng and on 
genetic algorithms. Tioc numerical ~":'lures of such ldenlificatio_n methods, arc 
discussed and some preliminary pronusmg results arc prc.scnted, wh1ch arc ol>tamed 

by simulation experiments. 

Keywords: ldcntinc."ion algorilhms, global optimization, genetic algorilluns. 

J. )!nltOOUr.TION 

An increasing in1eres1 has been devoled In 1he recent 
years to Ooc cxperimenllll dctenniowlion of Ooc 
dynamical behaviour the of naval vehicles by means 
of system Identification methods. Such mcli•ods, 
unlike tmdllional rwval archilcx:lwe methods, uc 
potcntlaUy capable to draslically reduce experiment 
time and expenses of bolh towing tank and at sea 
lrials, because a multitude of parameters can be 
delemlioed from a few dedicalcd lesls. 

Tite n•11hematlcal models obtained by means of 
sysleno identilicalion melhods c.111 be, furtloermore, 
dircx:tly used for conu-ot system design purposes. 
n •• application of system identification tcx:hnlques to 
naval vehicles is generally co11tcmed wilh the 
estlmalion of a high number of parameters or 
hydrodynamic derivatives which ate to be esthnalcd 
(Abkowitz, 1980). In the presence of high 
dimensional ldcntilicallon problems, however, 
commonly used idenlificalion ·methods (Ljung, 
1981), sulfcr from a number of serious numerical 
drawbacks, which may prevent from obtaining an 
optimal solution to Ooe identification problem. Most 
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of such inconveniences are related to the increasing 
impossibility of Gauss-Newton ilcrativc 
minimiz.1tion algorithms to converge to the global 
rn ininuun as u,c unknown parnmetcr vector 
dimension increases. 
fl scents, thcrcrorc, that minlmiz.ation methods which 
do not require derivatives should generally be 
prerernble for mulllvariable idenlification problems 
which arc chataclerizcd by a high nwnber of 
para~uctcrs to be estimated. Global minJnU~tion 

mclioods, which are based on a direct cost funclion 
evaluntion seem 10 be prornising enough, as applied 
to lloc idcntilicalion of lhe coupled surge-sway·yaw 
roll dynamics of a surface ship (fiano and Blanke, 
1997) or to lhc yaw dynamics of an open frame ROV 
(Caccia cl Al., 1997). 
TI1is paper Is concerned will• lloe appUcalion of two 
global minimiz:llion based idcntilicalion melioods 10 
Uoe delenninalion of an UUV (Unnwrncd 
Undcnvaler Vehicle) longiludlnal dynamics. Since il 
is foreseen to use Ooc identified model for conlrol 
system design, a lincarized model is . hcrcwiUo 
idenllfied, according to which it is expcx:ted liwl a 
divi11g autopilot should be at a subsequenl stage 
designed .. 
After presenling in section 2 a concise dcscriplion of 
the mathematical model of Ooe vehicle, Utc 
identi fication problem is formulalcd in seclion 3. 
Two parameter eslimation meU1ods, based on global 
optimization approach ate discussed: one implements 
a Simulated Annealing (SA) algorithm, (Hajek, 
1985), (Collins et al., 1988), tloe o~1er one a Genetic 
Algorithm (OA), (Goldberg, 1989). The basic 
numerical fcalwes of such algoriliuns arc oulllned 
and some preliminary identification resulcs, which 
have been oblnined from $1mulnlcd dal:l ate prescnled 
in section 4. 

l. UUV MATIIP.MATICALMODEI. 

Tioc considered UUV (Unmanned Underwater 
Vehicle), which is more extensively described 
elsewhere (Witilc et Al., 1994), Is torpedo shaped and 
is connected to the surface vCMel via an umbilical 
cable, Ouough which power Is supplied, commands 
imocd and dala from on board sensors arc fed back. 
The vehicle, a sche1r.11ic dmwing of which Is shown 
In Fig. I, is filled with siK lhrusters and four rear 
conlrol surfaces, I he relative locations of ·which are 
indicated in the same figure. More spccific.11ly, 
conlrol in the lalcml plane can be achieved by 
independenl use of two slem Uuusters tocaled on 
eilller side of the vehicle longitudinal ccnlre line, 1wo 
side thrusters, one 01 the bow and one al Ooe slcm, 
and an upper and lower rudder mounled an. For 
conu-ol In Ooe longiludinal plane, two vertical 
lhrusters arc provided : one al the bow and one al Uoe 
stem, and two stem hydroplarocs, one to port alld the 
other to starboard. Vertical Uuustcrs can be used for 
deplh positioning and pileh control. All of these 

37 

devices arc capable of bi-directional and indcpcndcnl 
movemcttts. 
Tioc UW motion in 6 degrees of freedom can be 
conveniently c,;prcsscd wilh rc.spect to a. reference 
system fixed 10 tloc vehicle ccnu-e of grnvily. 

Fig. I : UUV reference system 

Tioe corresponding matloemnlicat model can !hen be 
expressed, (Fossen,l994), (White cl Al., 1994), 
(Y ocrgcr et Al., 1987). by a se! of non-linear coupled 
Newtonian equa~ons of !loo fonn : 

Mx;F(x}+H(x)+G+T+D+K (I) 

where x ~ (11 v w p q rl T is the vcclor of UUV 

linear and angular velocities, M is tloc body inortlal 
mnlri><, including hydrodynamic added onas., F(x) is 
~ •• vcclor of kinematic forces and moments, H(x) is 
the vcclor of hydrodynamic forces and moments, 
while G, 1' ,D and K arc vcclors de11oling forces a11d 
rnornenls, respcctively due to hydroslalics, Uuusters, 
hydroplanc.s and umbiUcal cable. 
Identification of the complcle set of coefficients and 
hydrodynamic derivatives which appear In Uoc above 
equation b a very complex !ask, owi11g to non
linearities and to the extremely higlo number of 
parnmelers. Tioe idenlillcaUon problem can be more 
easily approached if it is assumed lhnl : 

longitudlnal mo1io11s are dccoupled from U1e 
lalcrnl ones; 
the cable has a negligible eiTccl on UUV 
dynamics; 
surge speed is constanl and lincariullon can be 

carried out around a unifomo molion. 

Under such assumptions, Uoe following linear model 
can be deduced for the pileh·hcavc response 10 
command input.s in tloc longiludinaJ plane : 

Mi. ~ Fx + Gli (2) 

MCMC '97 Brljuni, Croalia 10·12 September, 1997 



wheu: ahe suue vccaor x • I"' 'Jl 0 1' Is consaiuucd 
by heovc rote, pitch rate, depth and pitch anti• and 
Ule conuol vector 6- 16, 5, r. 1',) ' is given by the 
port and Slooi:9'J•d hydropiMc angles and b~ lhc Slcm 
A.nd b!w propeller vcnic:Ll lhrustcrs. Matnces ~1. F 
:'llld G arc ~iven by : 

[ I ' 

I •z "] m-lpl z. - lp/ I 

I • I ' M 0 0 M a -Zp/ M . 1, -zp/ 1 

0 0 0 

. 0 0 0 I 

[ i P''-" ( i P''• • m )u 11111 

.. :.G] F a !.pt'M_U lp~•M., 0 
2· 2 

0 - U l 0 

0 0 0 

('-"'' u' ""'' u' 
g., 

'"] 
2 ... , 2 _.. 

I ' I I l I Ku g,. G = Zpl M_.,u lpl M_s.U 

0 0 0 0 

0 0 0 0 

where Is p the wo1er densily, DG Is tltc discancc 
belwccn tlte ccnuc of gravity and Utc ccnue of 
buoyancy, 1 , no U and u arc U1c UUV lengll~ 
mass, total speed and surge speed, codftclenls g~ arc 
convellion facton related to the hydroplAnes and 
vertical lhrus1c11, wl\lch arc gene111lly a-prio.ri 
known. All the other coefficleniS arc hydrodynanuc 
derivatives associaled to he:avc and pilch n&ollons. 
If an appro~imatcly uniform mo1lon a1 a constanl 
speed U Is asnnned, o llnenr 1une lnvari~nl Slate 
space model in tl&e stand:ud form can be denv~d, ~y 
multiplying in equation (2) for the Inverse of tnert&o 
malrixM: 

x = Ax+D6 (l) 

Molriccs A and D can be e' l"essed in leiUIS or the 
unknown pllr.ln&eter vec1or 0 e R " 

[: A= ' 
I 

0 

O, 0, 0,] [B, 
0, B1 9, B = B,. 
o o - U 0 

0 0 0 

- B, 911 

-o,. o., 
0 0 

0 0 

o .. l o .. 
0 

0 
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whc'c it hns bl.!eo assumed that lhe dfccls or 
hydroplanes and of IIU"Uslers nre perfectly 
synuuclrical. 

J. IOI!.NTit'ICATION Mt:TIIOOS 

The idcnlificatlon problem cousiscs of eslinlitling lhe 
unknown p:u~meters which chor:tcu:risc-. the vehicle 
dynnmics on tJ•e basis of a llnitc number or discrete 
time mcaswcmcnts. of iupul vector ( ~'•)} a.nd slacc 
vector (x(lo)} . According 10 Uoc conunonly used 
Prediction Er<or method (Ljnng.l ?87), idcnlifica&ion 
of 1hc w\known parameter vector 0 is equivalent to 
minhul1.ing a case function or lhc romt : 

J(O) . -J, I:C'(r, )IV ' '(r, )<(r, ) <4> ... 
which Is conSIII\IIed by n sum or squnrcs or 
prediction errors. weighted through the positive 
definite matrix JY{Ja). Such· minimi1.atlon Is 
contmonly canicd out vi3 Gauss-Newton iterative 
ntetllod which is based on an cscimatc or the Hessian 
matrix ~ssoci31td to prediction erTor cost function. 
As il has already been noticed in lhe lnuoduc&ion, In 
the presence or en Wlknown vccto~ 0 with a rc~tivcly 
high dimension. il may be d1fficuH .. owu&g ~o 
numerical reasons related to llesstan malnx 
computation. to achieve the globnl mi'''uuun of the 
assumed cost function.· 
Minimiz.adon methods which do not require 

derivatives. but a.rc based on direct cost runction 
evaluation seem to be prercrablc in such sih.1o1tions. 
1l1c dctcrminntion of the solution of a global 
ntinimiution problem ,VIthout the use o( derivatives 
Is generally cnrried out by a direct search procedure. 
which auempcs to reduce tltc value of the cost 
function by means of proper tesiS near a preset point 
asnomed as inilial solulioll Such lests, which are 
based on funcclon evaluntions in neighbouring polnL<, 
dtlcnnine a direction of search in which the 
minimum is expected 10 be located. lltc procedure Is 
lle111ted until convergence has been achieved. 
Two random search mctitods that arc polcnlially 
capable to solve global minimb..alion problcn~s in l.he 
cn.sc: of high dimcn.sional parameter vector are 
Simulated AJuoealing (SA) and Genetic Altooillun 
(GA}. !loth methods are based on parndigms derived 
from naturnl sciences, respectively from physics and 
biolot:Y, and allcmpt 10 emulate tlte way in which the 
cor<esponding natural processes carry out 
op&imiution procedures. SA esploics an analog~ wiU1 
U1e way in which a melal cools and freezes onto a 
min.imwn energy ordcted crys1nt1ine structure, while 
UIC mcbphor underlying GA is Uoal or .nnlw-al 
evolution or biologic:~l species. 

Simulated Annealing 
One or u,e most efficient rnndom search mdhods roe 
globnl minimization is Simulated luuu:aling, {Collins 
et al., l988), (Aaots and Kurs~l989). 11\is meO•od Is 
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based on an analogy behvcen the global nunimiz.ation 
problem and 01e problem of determining the lowesl 
cncr&Y sllltc of a physical system. Havin~ a. large 
number of inlerncting atoms in !hernial cqnlhbnum at 
a spcclncd tcmperalure. If the system states arc 
chamcceriud by 1 parameter vector 0 .and E(O) Is the 
energy associaled with this SI ale, • is the tempe~turc 
and k• is tl1e Bollz.nwu&'s conscant, then according to 
stotlsllcal mechanics, the probability P(O) that the 
sysccrn Is in the scale 0 is given by 

P(O) • cxp(- E(O)) · 
k,r 

Under cq.;ilibrium, lhe most probable SIBtes Bl MY 
&ivcn remperacure arc those associated with U1e 
loiYCSI energy. ~ it can be dcmonstralcd by 
ti&eorccical arguments :os well as by experimental 
c.vidcncc, chc mos1 ctrcclivc str.ltcgy for ob~ining 
u1e stala with globally minlmunt energy consiSts of 
slowly cooling a !hcnnodynnmlc sySicm. ~•Is 
cnnbles it to 3Chicvc equilibrium dwing the tranSitiOn 

from a siven Initial stale to the lowest energy sta.'e. In 
fact. If tl1c cooling process Is carried oul suffic•enlly 
slowly, U&c system Is allowed to skip. over locally 
stoble stales and reach the global mlnon&um energy 
one. Simulated Annealing consists ot duce dislinct 
steps:a random search step, a minimizacion 5tep aa\d a 
slopping rule, as shown In Fig.l . 
AJlcr 01c asslgnmenl of an initial value Oo lo tlte 
unknown pnromctcr vcC1or, an hUliaJ tcm~ralure To 
is chosen high enough lo ensure lhal Ylnually all 
transillons in the paranieter space rnay be possible. 
TI&a rondom se:arch Is tlten carried out iteratively. A 
new vcclor ~ Is noudon~y chosen belonging 10 cite 
neighbouring set S(O) associated to the current 
pnrRmeler vector. Before caJc.ing a new vector I; inlo 
accou.nl, however, a stalistlcat test is pcrCormed to 
decide if equilibrium has been reached. Such test 
csscnually consists in tl&c verification U13t a 3!vcn 
finite sequence of vectors gcnernted by the alg~n~IJl' 
inside tl•e inner loop can be regarded as a reahz.anon 
of a llntc-homogcncous Mnrkov chain. 
Following a previous application of SA to Utc 
idenUilcaUou of a contalnershlp (Tiano and 
81ankc,l997), the ncicJ&bouring set S(O) has been 
3Ssumed to be eonscl1u1ed by 1hc surface of a l&yper· 
sphere a:nued In U•• curtent p:1111rnc1er vector 
cs1Jmate and having a suitable radius, the value ot 
which can be taken dependent on some a-priori 
knowledge of par.uneler veclor scnsitivily function. 
AI each Iteration a decision has to be lakcn whether 
or nol to accept the new vcclor I; in place of the 
current one o,. Acccp&oncc of the new vector is mode 
with probability 

{ 
J ({) - J(O,}} 

min l,cxp(- k,r, ) 

where r, is tl1e current value of temperature. Eve!)' 
descent Is cl1us acccpled, bul it is also possible, even 
if al a limited extent, to perfom& also up-hill 
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tr.>nsilions, which moy allow the algoriOun 10 cscope 
ouc or local minima. 
llte 1cmpe1111urc Is grdd113lly, 81 each Iteration, 
reduced according 10 a proper cooling schedule. Such 
cooling should be carried out qui le slowly: in order lo 
enable the algoritlml 10 achieve cquilibrium.lt has 
been verified (Tiano and Blartkc, 1997) tlwt 
piece wise linear schedule is a sirnple and ycl emcienl 
law. 
The algoritlun stops when evidence has bcc:n reached 
that converscnce has been achieved wilhln tl&c limits 
'or a specified tolerance or when computing resources 
h.wc been exhausted. 

buKln 

omt 

I :• iooll t.l aoMion 1,; 
T :- la.iUaJ ktupon\Wll re; 
while (e\Opplnc critcrio• i& ~MA ..,tiJ\N) do 

b011ln 
whUo (no\ ,.t. ia eq~tl llbrium) do 
b~tK1n 

( : a randono '""L« oolocl.cd lD S(f); 
OJ :• J (() - J(f~ 
P: ... Dllo[l .•~¥} ; ~ 
c :• rucfon1 paal lon Yntlocrn ln IO, I)i 

lf c S P thua 1,. :• ( ; 
end 

... :M •pd•<od ... "1'0"'"'" f(JIO)l; 
e 1ut 

ou, puL o( optimal toluUoo 

Fig.l : Outline of SA algoritluu 

Genetic Algorithms 
Ocnclic algoritluns (Ooldbcrg, 1989) exploit an 
analogy with na1ural evolulion of biological species. 
In na11u111 cvolulion e:ach species searches for 
beneficial adaptations in an ever changing 
environment. As species evolves, ils new atlribules 
are encoded in chron•osorncs of Individual members. 
ll•is inform:~tlon changes owing to lho combination 
and exchange of chromosomic nwtcrial during 
breeding as well as under tl&e influence of random 
mutation. Accordlns to this innovacivc approach, 
oplhnizalion problems can be described by simple bit 
slrings, whlch correspond 10 chromosomes, and by 
lll\nsfonnntion laws operaling on tl•e strings. lltc 
basic structure of a GA is carried out along the 
following Sleps : 

I) Oencralion of an initio I populacion 
l) Assessment of lnillal population 

3) Selection of population 
4) Recombination for new population 

5) Mutntlon of new population 
6) Assessment of new population 

7) Slopping criteria 

In tlus case a set of possible solutions of the 
opllmiution problem Is represented by 1 population, 
the basic clwacleriSiics of which arc encoded by 
means of binal)' slrings, tl&e lenglh of which 
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dclermines lhe occuracy of lhc final solution. The 
rcprc.scntation O( CCnliUUOUS p:vamctc:r VC:CIOrS is 
oblllined by npp<o.<imaling !hen~ al\er a sullablc 
rcscaling, by cquivolcnl inlcgcr vatiablcs. 1loc 
gcncmlion or. new 501nlion, IS in SA alcorllhn~ is 
carried ou1 In a mndom way by means of lhc 1luu 
scpomlc aclivilics or populallon sclccllon, 
recombination and mutalion.. Solutions which 'urvive 
do so in order to serve as proacnJtors for a new 
generation. ll is in Otc recomtMna•ion phase that tile 
alaorithm auempls ro crca1c new solution with 
improved chamclcrisliC$. The purpose or mulalion is 
(\I prevent from In irTCVCtSibiC loSS Of JCRcliC 
information artd hence 10 malncain diversily 1\iUtin 
lhc populolion. LlkG doe SA melloGd, 1 GA does nol 
,,se derivative infonnalion. U Is jus1 necessary to be 
'upplicd wilh I filncss value for each ntentber of 
each population. 
·noc efficiency or a GA is hiJhly dependent on a 
number of parameters , essentially rcp<escnted by 
the population size, the crossover probabillly a11d lhG 
mul:ltion prcbabilily, (Grefcnslcllc, 1986). 
Uulikc SA, 1Vhicl1 is essentially • sequcnlial 
alcoridm~ OA scurhes from one population of 
50iulions to anolher one, and is lloerefore particularly 
indicated for lmplementolion on parallel compulcrs. 

4 . h>ENTIPICATION kt:SULTS 

The above described identificacion have been lcslcd 
oul by usins simulaled UUV d:ola. Such dato have 
been Obtained by a complcle SiX degrees Of frcedonl 
non lhiCIIt model. A divine manoeuvre has been 
simulalcd, IVhere a step inpul h3s been ICiuated by 
1he po11 and llalboard hydroplanes &. and lis, In such 
a way 11101 6, • - 6s and the venlcal bow aud 51cm 
lhruslcrs T. • T, • 0. 

r 10• 
t.~ ,.--~--....----,.----, 

u ............ . L ........... ............................. . 
........ -j-- ...... , . .. ... .. , ... _ .. 

o.. . ..... .... ........ , ....... 1 ..... . 

:: J _-I __ J -----
0.2 ·· I .... . r .. ....... . 

00 1000 I SOil 2000 

Flg.l : ldenlillcallon cost funtlion versus ileraUons 
for SA 

In Ulls case the nwnber or paraniCiers to be utimalcd 
Is equal IO 10, since o., n 9, - o., • o, •• 0. 
Furtloei11\0ie, il was assuniCd lhat oil the four 
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components oi UUV slale vcc1or, i.e. heave vclocily, 
pilch miC, depth nnd pilch were observed wilh a 
small amount of measurement cnors. 
SA mclhod has been lir51 leslcd, which ha.s .<upvlitol 
quhe &oocl rcsulls. As il can be nolieed in Fiji.) , lho 
identifiCAtion cost function tcduclion is almost 
mono1onlc and, as shown In Pig. ~. lhc p:uunocoer 
vector convergence is quite reculM. Oiffctcut r;~tc:s er 
convergence exhibited by diffcrc:•H p:uamc:1crs arc 
rclntcd to diOC:rent values for the scnsitivit)' 
runctions. ·n,c agreement bclwccn the predicted and 
measured stale variables can be appreciated in Fig.S, 
IVhere, from lop 10 bollom, heave vclocily, pi1<h mic, 
depllo and pilch ongle are shown. 

Fis.4 : Parameter vcclor cslimale for SA nlgorithm 

:r=+l o:r;.-~ 
~~~·:[_tj 

0 2004000 200400 

IOOlrni 4.:§d_r _ 
a 500 .......... j.. ..... ... ~ ·I .... ..!... ...... . 

0 ·1.5 i 
0 2004000 200400 

sec sec 
Fig.S : Fining results for SA ldcnliflcalion 

A OA identllicallon algorill11n has also been 
implcmcnled, wilh a choice for the lnlllal population 
of 80 mcnobeos, a cluomosome bit lengtlo of 20, a 
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crouover p<obability of 0.7 and • no111a1ion 
probablli1y or .001. 
1loo results oblained lndicale a comparable 
pcrfonnancc in lcnns of convergence n11e, Rs sho\m 
in Fla. 6, where lho cost funCiion of lhc optional 
solution is plotted toaethcr with the mean cos1 value 
achieved by the firS! 4 best populallon members. 

0.025..------~-~---. 

0.02 

0.015 

0.01 

0.005 

Flg.6 :J!volullon or OA alsorltlun 

lt should bo 1101iced, ho~ver, thal compulalion time 
for OA identlflcalion is much longer IIWI wllh SA 
ldentlncallon. More extensive almulallons, lo be 
conducled also on parallel computers, ue necessary 
in order tci achieve a better cvaluallon of lhe 
pcrformlltiOCS of the tiVo alcoritluns. 

$, CONCLUSIONS 

A novel ldentllicallon approach which Is based .on 
two ra~odom search Jlobal minimizatJon aJsorilhnos, 
i.e. Simulated Anncalins 1r1d Ocnellc Algorithm, has 
been applied to lhc Unearizcd dynamica In lhe diving 
plane or an utN. The dala Used for testiRI AICh 
i~ntillcatJon alcorltloms were obtained by complele 
six desr= of llcedom non Uncar slmul•tlon model. 
Bolh ldentltlcatlon 1lgoritluns have proved to be 
quite efficient in lemuo of capabilily of reaching the 
&lobal minimum, with a beller pcrfonnance in lenns 
of compuuulon tlrno of SA alaorillun. 
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Fuzzy Y a w Autopilots for Unmanned 
Underwater Vehicles Tuned Using Artificial 
Neural Networks 

R. SUlTON ' and 1'. J . C RAVEN ' 

Abstract 

This p.apu r doscrlbos tho application ol neuro· 
fuzzy tocnnlques In the design of autopilols for 
controlling the yaw dynanllcs of an unmanned 
underwater vehicle. Autopllots are designed 
using an adaptive-network-based fuuy lnfer

•nce system (ANFIS), a slmulatod annoalinQ 
tuning mothqdology, ;and a fixed futz.y n..tlo
bisod approach. To describe tno yew dynamic 
chiracterlsllcs of an unmanned underwater 
vohlcto a realistic simulation model Is 
employed. Rosulla aro presented whlcn 
demonstrate tho supotlorlly o f tho ANFIS 
approach. lt Is concluded that the approach 
oilers a vloblo allarna,ivo mothod for doslgnlno 
such autopllots. 

l. lntroducllon 

Some o( the earliest developments in unmanned 
undcrwarcr ••hiclc (UUV) r<ehnoloay con be 
attributed to the nblc·conuotled underwater 
recovery vehicle dcsian · a nd construction pr~ 
gnmmc instigated by the US Navy in 19S8. In 
196) one or t hese crart was used in the search 
for rhc ill·fatcd USS 1n r<Jhrr which 1ragically 
sank ofT the N ew Enc land coasr in 1400 fathoms 
or water. La ter, another was used to help recover 
the US Nny hyd rogen bomb lost ofT the coast of 

P>lomarcs, Spain, in 1966. 
Notwithstandin& those succes.ses and lhc 

accompanyin& publici1y, the commucial potcn· 
tial or UUV! was no& rccosniscd until the dis· 
co•ery or offshore oil and I"' in the Norrh Sea. 
More spccifi~;ally, remotely operated vehicles 
(ROVs) began and continue to be u.scd uten· 
sivcly rhroughout rhc offshore indusrry. 
Whereas, both in the naval and commercial sec· 
rors, auronomous underwarer vehicle (AUV) 
usage was limited. · 

Even so , more recently, interc.st in the possible 
use o r both rypcs of •ehicle has been hcighrc ned. 
This has been promprcd by rhe needs of rhc ofT· 
shore industry to ope1a1c and explore in cxtccmc 
depths in a continuously hostile ~nvironmcnl and 
the requirements or riavieS to have IOW·COll VC· 
hiclcs capnblc o( undertakin" covert surveillance 

missions and ~cCorming mine Jayins and dh· 
pos:~l opcr1110r1S. This revival is also coupled 
with the current ond ongoins advance:s being 
made in control cnsineering and ar1ifici1l in tclli· 
acncc technique-s. . 

The dynamic charactcriuics or UUVs present a 
control design problem which classical linear 
design methodologies c:snnor accommodate 
c>sily. Fundamcnrally, UUV dynamics are non
linear in nature and arc subject 10 1 variety or 
disturbances such IS verying drag rorccs, vortex 
cffcc1s and currents. Therefore they offer a chal· 
lengin&task in lhe development or suitable al&o· 
rilhms roe mo1ion and position control in the: six 
dcsrceJ or rrccdom in which such cran operate, 
and arc required to be robust iu tenns or distur· 
banccs rcjeccion and varyioa vehicle speeds and 
dynen1ics. 

11 should be noted tha t the tern\ 'unmanncd 
undcrwl\lcr vehicle ' as used here is a seneric 
expression to describe both an AUV and an 
ROV. An AUV being a ma rine crafr which fulnts 
a mission or fask without being constantly mon· 
itorcd a nd superviSed by a human opeuuor, 
whilst a n R.OV is a marine vessel that requires 
instructions rrom an operator via a tethered 
coble or an acoustic link. 

Previous studies into the development or UUV 
con trol strategies have been unde rtaken usins 
advanced control engineering concepts such IS 
Hoo (ll,slidina mode (2Jand adapri•e ()!theories. 
T hese investigations have achieved limited 
success owing either to the simplincation or the 
problem or to the control scheme lacking robusl· 

ncu. 
Artificial intclliacnce approaches arc now also 

being introduced in10 lhc dcsi&n proccu. 
Auropilors fonnulatcd usin& fuzzy logic (4. ~I 
and orrificiol neural network (ANN) methods (6, 
71 have been reponed a nd shown to be endowed 
with commendable robustness properties. 
Encouraged by such results, this paper considers 
1hc: developmen t or a coune·kecping au topilot 
based on the innovative neuroruuy methodology 
or hng (81 known as rhe adapri•e· network·b•sed 
fuuy infere nce sysrem (ANFIS), which was sue· 
ccssrully employed to produce a control stratcsy 
ror the cl;nsical inverted pendulum problem. 
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With 1hc ANFIS approac h, implementation or 
the con~rollcr dcsisn differs in form from the 
more uadition3.1 ANN in th~t it is not fully con· 
nccted, a nd not all the wti!hiS or nod:~ l para · 
meters arc modifiable. Essenrially, rhc ruuy rule 
base is encoded in a parallel fashion so thM all rhe 
rules arc activated simultaneously so as to a llow 
netwo'k uainina alsorithms to be applied. As in 
l ong's original work, here a back propagotion 
algorithm is used to oplimiu the ruuy sets of 
the premises in the ANFIS architecture a~d I 

least squares procedure i! applied 10 the hnear 
coellicicniS in the consequent tcnns. llowe ver, 
ror this study a new cost runction is introduced. 
For pcrfomtancc assessment purposes, contpari· 
sons arc made with a fuuy eonlroller whose prc· 
miscs arc tuned using a sintula.tcd anocalina 
Dlgorhhm (9) 3nd a fixed rutty rule biUCd autO· 

pilor. 

2. Modelling the UUV Oyn amlcs 

Figure 1 shows the complete control authority or 
rhe UUV mode[ Howc•er, it should be noted rhar 
for rh is srudy rhe upper and lower canards are rhc 
only surfaces used to conrrol its yaw dynomics. 
Dimensionally, the model represenls an under· 
water vehicle which is 7 m long, l m in diameter 
and hos • displacemenr or 1600 ka. 

The equation o r moaion dc.scribing the dynamic 
behaviour or the vehicle in I he literal p lane is 3S 

follows (101: 
E.<= F.t +Gu ( I) 

where: 

['-"' Yt-u•u U 1 0 

,Vuu• .. u1 ,v~.~11,,,u 1 f, -f, (. - f, 

a- o 0 

Kuu~ll~ Kuv~,ur 

0 

11 
1 nd the stote variables arc V, R. 'IJ, P, and • · for 
lhC intercSICd ruder, a nomcnCiiHUIC roe the 
uuv puamctcrs can be round in A.ppcmli~ A.. 
TO implcmenl equation (I ) use is ml\dc: or In 
uuv MATLAD/Sirnulink simulorion model sup· 
plied by rhc Defence Resurch Aaency (ORA), 
Sea Sys1cms Sector, Winfrith. The mollel havwg 
been validotcd against standard ORA non-linear 
hydrodynamic: code usina tank test data ~nd an 
C'-'pcrimcntally derived set ofhydrodynanuc cod· 
ficicn ts (roan che Southa mpton Occanoaraphy 
Ccnrrc's A UTOSUB vehicle. In addirion, rhe 
MATLAB/Simulink model suucrurc also t•kes 
intO 3CCOUnl the dynamic behniOUC or the 
canard actuators by ducribins chcm as first 
order lass with appropriate limiteu . 

As can be se<n in equation (I) rhc roll cross· 
coupling dyn3mics ICe included. However. con· 
lrol or the roll channel is not considered here. 

\ 
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:J. Neurofuzzy Autopilot Oosign 

As mentioned above, the ruuy conuollcr dnisn 
used in rhis srudy iJ bftled on rh< ANFIS. 
Functionally, 1hete arc almost no constraints on 
the membership runCUOOS or In ad1ptive network 
cx.ccpl piecewisc dift'crcnliability. Structurally, the 
only limitation on nctwotk confisuration is 1ha.t it 
should be of fced·forward rypc. Due ro rhcse 
minimal rcSlrictions, lhc adaptive nc\work's 
applications arc immcdia le and immense in var· 
ious arcu . \
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I( il is auurned chat the (uuy inference syslem 
under consideration has multiple inpuU and one 
fu ncrional ourpur (!) rhen lhe fuzzy rule-based 
algorilhm may be represented in the first order 
Suaeno form as shown below (Ill: 

Rule 1: tr x it A, and 1 is 8 1 lhcn/1 • p1x + q,y + '• 
Rule: 2: If x h A1 and y Is 81 lhcn/2 • p1 .T. + q,y t '' 

Rule n: If .c is A,. and 1' i• a .. &hen/.. "" p,..t + q,.y + '" 
The corresponding ANFIS architecture being 
shown in figure 2. 

The node (unclions in the same layer arc of the 
same funcrion family as described by lhe fol
lowing: 

L:1yer 1: Every lth node in this layer is an adaptive 
node with :l node output defined by: 

o,) = ,.,,,(x) (2) 

where .T is chc input to the general node and ~, is 
rhc fuzzy sel associared wilh rhis node. In other 
words, outpucs o( this layer arc chc membcnhip 
va lues or the premise part. Here lhC membership 
(unctions for ~, can be any appropriate parame· 
tcrised membership functions. Here A1 is charac
terised by the generalised bell function: 

"" (.<) = I ' (l) 

' 1 + [C'~<')l 
where (a1, b1, c1 ) is a he parometcr set . Paca.metcu 
in this layer ace referred to as p,..rmis< pnrnmtttrs. 

L:ayu 2: Every node in this h1ycr is a fi~cd node 
labelled n. which mu ltiplies lheincomingsignllls 
:and ou tputs the product or T-norm operator 
result, e.g. 

0 1,1 = w1 = ,..,(x) x , •• ,( 1), I = I, 2 (4) 

Each node output represent! the firing srr~ngth of 
a rule. (In face, any other 1'-nom\ operators that 
pcrfonn the fuuy AND operation can be used as 
I he node function in this layer). 

Layer 3: Every node in this layer is a fixed node 
labelled N. T he ilh node calculares rhe rario ofrhe 
tth rules' firing strengch to the sum of all rules' 
firing strengths: 

o~,~ .. ,v, =-w-·- . i:;:;-1,2 (>) 
llo'1 + IV.J: 

For convenience, outputs of this layer arc called 
1100110/istd firing Sl,..~llgthS. 

t.ayer 4: Every il h node in this lnyer is a n adaptive 
node with a node functton: 

o.,~ ~ .• ,J, = •• ,(p,x + q;f ·~ r,) (6) 

where .... is the oucput or layer 'land (p,,q,,r,} is 
che parameter set. Paramelers in this layer are 
1eferred to as couuqrltlft paramtltrs. 

Layer S: The single node in rhis layer is labelled 
E. which computes the overoll output as the; 
sumrn<&tion or incoming sisn.als: 

I: IV"' 01,~ = overall oulpul = L •v1f, = ~ (7) 
I L'"l 

I 

Th us an adaptive network that has exaclly the 
same runction as a Sugeno fuzzy model may be 
constructed. 

4. Simulated Anneal ing Tuned Autopilot 
Srrucruro 

The Slrucwrc of the Simulated nonca ling tuned 
autopilot is similar to tha t described in Secrion 
) and depicred in Figure 2 for lhe ANFIS archi-
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Flgura 3 Simvlaled aMealing tunad otuiOptlol Sllucluut. 

lecture. However. there tue dissimilarities. In lhis 
cnse, the nodes in layer ll arc static and lhcrefoce 
are not modiliablc as shown in Figure 'l. Also 
during the tuning process, input data arc only 
fed forward through the network in order 10 gcn· 
crate an enor function . The ~imulaled annealing 
a lgorithm is then applied to opcimise the pre· 
mises. 

5. Training Algorithms 

5. I The hybrid learning rule 

This learning rule was based upon rhe hybrid 
learning rule p( Jang. The system is simulated 
using the dynamic model and data is collected 
across ll trajc.ctory. This training data is used to 
compare the system Hiljectory with the desired 
trajectory, and so fonn the error measure to be 
used ror traillina of the adaptive network pa ra4 

meters. The error measure chosen was the integral 
square of heading error over rime (ITS E) wirh a 
rudde r squ:1rc component added to ensure efli· 
cient conuol effort: 

£ = [ (("'" - "'·>' + p(61'1'· (S) 

The parameters to be nhered are the fuzzy 
p3rameteu of both the premise and consequent 
layers. The hybrid learning rule employs rhe 
baclcpropagation method to update the fuzzy prc· 
mise parameters and rhc rccuuivc least squo.rcs 
method to update the fuzzy consequent para· 
melees. 

Writing the premise mernbcrshlp function of 
equarion (J) as: 

.. .,.,4 
(Collkqutal p•r•.n .. tu'l) ., 

w,f, 

.. , ... s 

then equation (9) now rcpresencs thcjth member· 
ship function on the ith input universe or dis
course, where al) governs the width or set, bll 
governs chc ft atncss of the btll function and c11 
is thc centre of 1he set on the ieh inpu1 universe 
of discourse. Therefore the le:unina rule for a 
general pararnctcr may be described as follows: 

.f, 0£, oo,, 
a, .. v :;J _, .1::1 Do ... · Daij 

= - q -t /JE, . OO,. . 00 1, . (IO) 
,_,oo, oo,, & u 

where 11 is the learning rate, £,. is lhc error meas· 
urc, pis the number or samples in the (fajectory, 
and 0 1 is the output of layer I. If 1he function 
0 1 = f(otl) is diiTcrenriablc rh en /)01/0oti is a 
straightforward calculation. lltis was the moliva
tion for choosing the set functions described by 
equarion (9). 

The main difficuhy is in rhe talcularion of 
OF../00,., . Considering lhe UUV 1110del as che 
final layer in 1he ndap1ive nelwork I his co lcu huion 
becomes simple ror this layer: 

8£. 0 [~ • ·] Oo = O L..!T.- 0,)·1 + p(O,.,)' 
s.. ).o .... , 

(I I) 

, 
= L -2( T, - 0,)1 (I~) 

--· 
There arc no adaptable parameters in the vehicle 
model lnyer. The nexc layer, layer 4, is rhe one 
thac producc5 the dcfuuified ou1put. The compu· 
cation of DE,./IJO...., uses :1 backpropagouion of 

(
9

) /JE./001. : 

O£ •m /JF. oo~ -· =z::-·.--.1! oo.. --· llOj, 1)0,. 
(I ll 



where #(S) is lhc nu111bcr or nod\!s in l"ycr ). 
licm:c 

(I~) 

3S #(S) z;:: I. Now {)01,./00"' mny be wriucn as: 

{!01• rhlt 
DO,.,. a d6

11 

(I>) 

whucby lhe func:cion relating 1/ILO 6., is non·tinc:~r 
and the dcriv1.uivc (or Jacobi:~n) is ilppro.,im::ucd 
by: . 

DO.. 0 1(•) - 0 1(n - I) 
/)0._ c O,(n) - O,(n- I ). 

(16) 

The only !oyer 10 be adnpced using che bock· 
propag•cion muhod is che flrsl layer. Hence con· 
tinuins ahc above proccu for cac:h layer &he 
followinalcarning rules for uc:h Individual para· 
meter within layer I are dctem1incd: 

b f. 8£. 80, 
A vu- q · L., - - ·- 

•·l 801• 80,. 

{17) 

(I&) 

(19) 

h is given that if an ad:tpcivc network'1 out
put is lincnr in some of the networks p:ar:smetcrs, 
then these linear parameter-s C.J.n be: idcnlified by 
lhe well doc:umented leasc-squarcs method. 
Consldering the cue of one network Ol.Upul 

ou1pu1 = F(f. S) (20) 

where l is the vector of input variables and S is 
chc set of pou;~mcaen. If there cxisu a function 11 
such thtu I he composite function H . F is linc:u in 
SOn\e o( the elementS Of S then theSe elementS C:lR 
be identified by the leaSI-squarcs method. More 
formally. if lhe parameter set S can be decom
posed into two sets 

s = s, Cl s, (21) 

(where e represcnrs dirccc sum) such lhat /1 . F is 
linc~u in the elements or S1 then opon applying U 
to equntion (20) ytclds 

H(outplll) = H · F{f, S) (22) 

which is line3r in the elements o r sl. Now gi'IICII 
values or clcmeniS or S1, P craming cJuta can be 
collected (or input into equation (2:!) which y1clds: 
the mlllri~ equation: 

(23) 

where I is an unknown vector whose elements arc 
par:amecers in Sl· This equation rcpresenu the 
standard line>r least-squares problem and the 
best solulion for ~- which minimises 11"" -su'. 
i• the leaSI·squares eSiimooor (LSE) 11': 

,. a (Ar A) - I tlr 8 (24) 

where A r is the uanspose or A and (A r A:)- 1 A r is 
the pseudo-inverse of A if A 1 A is non-singular. 
The tecunive LSE formula can be employed by 
lcUin& the lth row veCIOC of tn3trix A defined in 
e~uation (23) be aT and the llh clement of 8 be 
b1 ; I hen" can be calculated iteralively as follows: 

Qlt t • -4, -t· s, .. ,at+t(bf.,, - af:,<J,), (2S) 

1= 0,1 , ... ,1'-1. 

whcte the !eau-squares estimator {r is c4ual to 
tJ,.. The initial condi1ions needed to boots1r1p 
equo1ions (25) ond (26) are "• = 0 ,,... So a 7f 
where 1 is a positi'IIC. large number and I is an 
identily macri:c of dirTacnsion M x ,\;(. 

Consequenlly the arodlcnt descent mc1hod oand 
the leo~st-squarcs method have been combined eo 
update the parometcrs in an adapti'llc network. 
Each epoch consiscs of a forward pass in which 
inpuu arc presented and the maariccs A and 8 are 
calcuhued and the consequent parameters arc 
updated via the tccursive least-squares method. 
Additionally each epoch consists of a backward 
pass in which the derivative of the error measure 
with rcspecc to each nodes output is propngo1cd 
from the output to the input of the network archi· 
lecture. Al the end of the backward pass 1hc par:.· 
meters of the premise layer arc updated by the 
aradicnl descent method . 

5.2 Simulated anneal ing 

The main problcmaric aspect of gradient descent 
bJSed learning algorithms (or Oplimisation ptOb· 
lems, such as backpropagation, is the tendency 
for lhcse muhods lo spend long periods of lime 
in lhe nei&hbourhood of poor or sub-optional 
local minima on the error hypcuurracc. A tcch· 
nique which can be employed to overcome chis 
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shortcomin~ is simuluted ann~:tling which wus 
first introduced by Kirkp>trick t1 <!I. 191. 

Simulated annc3linz is 3 very cftid enl random 
search method for global minimisa11on t l 2, l l l. 
This method is based on on analogy between the 
glob3l minimisation problem and thut of deter
mining tho lowest energy stale or " physlt31 
syslem. 

Kirkpatiick " al. (9) •dopled •n algorilhm 
aaken from the statisaicol mechanics field for con
'lltrging 10 one of many possible cooled or low 

The nuniuusation st;,g:c constsn o( Jpplyins a 
loc:Jl mininusa tion routine 10 -some or the sampled 
m:Jtricc.s. Whilsl the stoppms rule tcrminot.e.s the 
al~orithm pro'llidcd there is sufficient evidence 
that the s lobul minimum has been detected 
Wtlf\i n the lintilS of 3 specified llC:CUCUCf Or SOme 
uplidt he ration number is ruched. 

In summary, the simuluted anncalin~ :alsorithm 
cnn be t~.pressed os follows 

energy scares. Encrgie.s or thi! algorithm arc 1. Gcncr~ae set or initial parameterS and simul:ue 
described by a Boh1man probability distribution system. 
such thotlhe probability of any given energy E is 2. Make random ch'nnges 10 1he pn<>meters and 
on c:\poncntiolly decreasing function of£. Thus. tc·simulace chc system. 
if" new matrix or paronlttcrs 8, which have been 3. If performance improved thc.n re cain chllngc.s 
perturbed from an initially assumed solution by a and re-npply. 
randomly generated amount, lead to an improved 
pcrfonnllncc of the sy.stcm under consideration, 
then they ace accepted and I he procc" is rcpefued. 
However, if this new matrix leads to a worsened 
perfonnancc of the system it may be occasionally 
occepled with probabilily P(8) such thot: 

P(O) a exp[-:~)l (27) 

where £(8) is the encray associated with the stale 

8, k is the Doltzman's constant and T is a ccm· 
per:uurc parameter. 

for a lhennodynamic system, it can be demon
sauucd both by theoretical artuments and exltcrl 
mental verification that rhc most tlfcctive su ategy 
for obtcaining a global minimum eneray slate 
requires the temperature lo be cooled slowly. 
Indeed, provided the coolin& process is performed 
sufficiently slowly, lhe sy11em will by-pass locally 
stable sta les tO reach one which is a globul 
minimum. ThuS, in analo&ous syucms, the tern· 
pcraturc T is allowed to decay during trttining 
accordin& to the followint. equacion: 

r -....!L (28) 
I +art 

where T0 is I he initial tempc:rature, o is a constant 
which 10vcrns the decay r;uc and 11 is the trainin¥ 
epoch. 

Hence, simulated annealing rnay be considered 
to consist of three disainct ph:tscs: 

(i) a random search step, 

(ii) a. minimisacion s:tasc, and 

(iii) a stopping rule. 

The r~ndom search seep is busic01Uy che itcra· 
tive acncralion or r3ndom maariecs in a dum:tin 
5(91), constituted by ncighbourina matrices asso
ciated to the current matri:c. 9* by: 

4. tr performance degraded then compute prob· 
abilhy of accepting pootcr parameters acCOJd· 
ins to equations (27) and (28). 

S. Generate r3ndom number h\ ahe range 0--1 
and compare with ptobability computed at 
4. If rllndom number less then accept poorer 
parameters, otherwise reject. 

6. Re-simulate and return to 3 until convergence. 

6. Fixed Fuzzy Rule Based Aulopllol 
Design 

When in openuion such 11\ llutopilot ustJ fuzzy 
rules eo incerprec its input data and eo &enenuc an 
approprin1c: control output. Within the conte:c.t of 
an UUV autopilot and iu internal structure the 
rules may 1nke the forrn: 

If y:Hv error (tii,J is ncgru ivc • nd yaw rnle (J,) is 
positive then canard demand is/(t/1,, ~) . 

Where, the terms ' negative' and positive' arc 
ruuy secs and canard demtsnd is some funclion 
of 1/t, and J,. 

By dcf\nins univefse.s or discourse for yaw error 
(I!<,) ond ynw role (J,) os E ond CE •nd describing 
the output in the Sugeno Rut order fonn, such 
rules may be e~prcs.scd as: 

If £1 ond C£1 then z, a /(£., C£1) 

Where che ruuy subsets £1 and C£1 arc: 

£, ~ (1/o.,l<fl,(l/o,))C £ 

C£1 = (1/o,,pcc<(J,)) CC£ 

and 1/o, and J, ore elements of the appropriote 
universes or discourse with menlbctship runccions 
of ,,.,(1/t,) ond l'cc1(J,) respectively. 

Thus, in general , the N rules containM wi1hin 
the algorithm of the fixed fuzzy rule based auto
pilot may be uprcssed u : 



Rule N: If £,. and C£.• then z .• ~f(E .•. c£.) 

In order to dic1t the can3rll J~mund output (6N) 

I hen: 

ov, a £,(1/>,)1\ CI:',(~ ) (JO) 

(JI) 

7. Results and Discussion 

The preview: sec1lons have d itcusscd the develop· 
meat of thtcc nine rule Suacno type (u~y auto
pilo ts. Firstly, the hybrid lcurninl olaonthm of 
lang was applied to the task or tuninl the antc
ccdcol and couscqucnt paron1etcts or a (uzzy 
autopilo t, To acc:ounc for some (onn of c~nlrol 
effo rt reduction in the resuhinM fuuy autoptlot, 11 

revised cou function (cquau ion (8)) ~IS 
employed. Secondly, the •imulnted •n~eahnl 
aleorithm was applied to the tusk of tunm& the 
IOICCCdcnt paramctcf$ of a fuzzy IIUCOpilot only, 
whil.st the consequent paramcccrs remained lixcd 
u equolly •paced sincletons. F lnully, • ~.«d rule 
base fuuy autopilo t wu dccribed. Thos desagn 
was included as 1 means of compuring and assess
inK the pcrfonnance of the tWO ncuroruuy tuning 
rnechods. · 

In order to ad•pt the fuuy purometcrs or ~he 
autopilots, the ANFIS and slonul•ted annealing 
autopilolS wue encoded u udupcive network 
:uchitccwrcs. Tunina or the network paramet~rs 
cook place over a series or po:dtive und ncaauve 
course chanacs or 40•, at n surMe velocity o r 
1.S k:nOIS. Time intern Is or 60 seconds were 
allowed berween consecutive: course chaneina 
demands to enSure I hat the U UV transl:uional 
and rouuaonal motions had stabilised, :tnd thus 
each cou rse c hange was applic.J uc similar init.i::.l 
conditions. This method was ~onsicJercd dfecuvc 
and nccessaty to ensure rule uusc symmetry .. 

As mentioned previously, the cost funcuon 
employed durin& ANFI.S tunins of the fuzzy 
autopilot incorporated a wcightina parumetcr P 
to allow a compromise between error a.n\t conrrol 
errore minimisation to be achieved. This vulue wos 
varied durins the t unina prnccdurc to obtuin 
varyina dcarees or comproml:tc. The value used 
throughout lhese results 1uvc u con1rol cft"on 
weighting ofO. IS8 within the CO" runctlon. 

Resuhina from this tunina rcyime the 7,)knot, 
the ANFIS autopilot wu token ns: . . 

if ot-, os IV and J,is .V then 6 • - I 4619ot-,- O.S922.i. 

~- 0.6SS9 

if ot-, is Nand J,is Z t hen 6 • - 0.4916ot-, - o.ssn,J, 
- 0 0502 

if 1/>, is ,v and J,is f' then~ • - O.S074oj>, -0.3987tb 

- 0 .6972 

•f t/1, is Z and litis.V then 6 • +0.4S42ol-, -0.1090.,i 

- 0.7379 

if t/1, is Z and ,j. is Z then 6 " 0.00001/>, -~ o.ooooJ, 

+0.0000 

if ot-, is Z and tPis f' then 6 • - 0.45421/>, - 0.1090,j. 

- 0 .7879 

ift{>, is f'and ob is N thcn6 m - O.S014ot-, -0.8987.j. 

+0.6912 

if.p, is f'and .J,is Z then6 a -0.49161/>, -o.ssn,j. 

+ 0.0502 

if 1/>, is f' and ,j. is P then 6 a -1.46191/>,- 0.8922,j. 

- 0.6SS9 

Again it should be noted that the only para
meters for adaplion within the simulaled 
annealing luncd autopilot were the antecedent 
parameters a nd tt\us che syncax (or the final 
ruuy autopilot was the same as the fb.cd rule 
based ruuy autopilot: 

irt/1, is IV and J,is N then6 " +25.00 

ift/1, isN and,J,is Z then6 ; + 18.75 

ift{>, isN and ,/.is Pthcn 6 = + 12.5 

if t{>, is Z and tPis IV then 6 • +6.25 

ir 1/>, is Z and J,is Z then 6 = 0.00 

if 1/>, is Z and J,is f' then 6 a -6.2.10 

iro~>,ls Pond J,is .V then 6 = -12.50 

iftJ.,isf'and obisZthen6 a -18.7S 

if ol>, i• f'and ob is f'the n 6 ~ - 2S.OO 

Dy using simplified fuzzy if- 1hcn rules of this 
form 1hc difficulty experienced in auicnin& 
a ppropriate linsuiuic tcnns 10 the non(uny con· 
sequeniS is ao;ooidcd. Indeed it can be proven that 
under lhis rom\ or fuuy if-then rule chc ruuhina 
fuuy inference system has unlimiced &pproxima · 
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tion power 10 match any non·lincar functions 
arbitrorily well. 

Given suftkient trainina time the resulting 
inpl4l fuuy sets for all lhrce auco pilo1s were as 
shown in figure 4. Note the non·symmecriectl 
nature of the hlned input (uu.y SelS over lh~ 
fixed funy sets. This was probably due to com· 
puter truncation errors arising during the training 
process, and the approximate nature of the initial 
condicions required to boocsuap the calculalion 
or the sequential least tqu;ues eslimatC (or the 
ANFIS tuned Input membership runctions. 

A qualitfttive USeJSment or the autopilot 
rc<ponscs was provided by the U UV models 
responses to a $Cdcs of random course changes 
as shown in Figure S. Althoush Figure S does 
not provide conclusive evidence or the ANF IS 
autopilot's superior performance over the simu· 
la ted annealing and fixed rule ba.sc autopilols. ir is 
l.lpparcnl thac the hybrid learning algorlchm or th~ 
ANFIS technique le•ds to raster, more accura te 
responses. Indeed it would seem that the ANFIS 
tuned :uuopilot is somcwluu more effective at the 
course changing raslc 1han the rcmainin& two 
~utopilots with improved response times and 
only minor incre:a.scs in overshoot as a consc· 
quence. Further upc:riments inco the selection 
or lhe conuol eiTou wcichcina pluameter ror the 
ANFIS cost" function ihow thut • suitable com· 
promise cotn. be ochiev~d between course chungins 
response tim~ 3nd cunurt) uctivity. 

Tesling e:.ach autopilot dc:1i~ncd ut 1 Sknots 
ovu the UUV speed envelope pro~tdt:d suil:Jblc 
tnii~ht intO the rObUiiOeSS o( uch ContrOller 
Fisure 6 depicts 1he yaw responses of (lCh auto · 
pilot to :1 110 ... course chausing nuanoeu~rc: Jl S, 7.S 
•nd 10 knots. 

At S knots the dfecuvcnc.u of the c:an;srd con· 
trol surf:lces is signific:~ntly reduced due to the 
dimimshcd hydrodynanuc forces :.cung on 
ch(m. ltlluitively o ne would (~pect iucre:.a~cd rise 
umcs os a consequence or thi). Ourin& the sirnu· 
lacions both the ANFIS :lnd simul~wJ annealins 
tunctl :s.utopilou produced good responses tO the 
set poin rs or lite validarion crack at all opcrauns 
speeds. Ac 10 knots the response times or each 
autopilot were significantly reduced, often at 1hc 
e:~pcnse or incrc.:r.scd overshoots and in sencral 
more oscillatory behaviour. The ANFIS tuned 
autopilot responded futer at all three opcrudnc 
speeds. Both the neurally tuned autopilots raired 
exceptionally well with no evidence o(stcady SlilllC 
errors or unstable behaviour over the whole speed 
envelope o( the UUV, lhus showin& J OOd auto· 
pilot tobuune.ts eo rorwud speed variation. 

O n che basis or the qualitative pcrfonnanccs 
the ANFIS tuned autopilot was deemed the best 
at the required course c:hanainc manoeuvres due 
eo its (aster response. Allhouch 1he overshoots of 
the ANFIS autopilot were srcaacr lhan those or 
1hc simulalcd annulina autopilot, they were con
•idered well within occeptoblc limits. The ANFIS 
autopilol also demonstrated m3rginally less oscil· 
lnrory behavio ur. 

Earlier rhc qualitative performance or each 
(uny outopilot was discussed. Titis section 
addresses the perronnanccs or cac;h autopilot in 
a quanlhacivc manner. As a means or meBsurina 
the 3CCUracy amJ rudder activity Of I aivcn llUIO• 

pilot, the integro! square cnor (lSE) for the yaw 
error (tl-,) and the cona<d demond (6,) ••• 
employed: 

1
., 

</J, • (ol>.-ol>.)1 dr ., 
(l2) 

J
'• 6, ~ (6,- 6.) 1 dr .. (ll) 

where 1/Jtt anti 6~ represent desired yaw angle and 
canard demand. ~nd ~. and 6, rcp,cscnt actual 
yaw angle and canard demand cespcctively. To 
assess lhe speed or re1ponu o( the control 
system the rise lime (T~) was calcul;atcd for 
each funy autopilot, and the pcrccnt<:~Je peak 
ovenhoot (M, (t)) was calc ulotcd to auess the 
oscillatory n;uurc or each ccsponst. Hc:.rc rise 
lime is taken ·as the time 10 reach 99•/. or the 
desired 4cr' course chanac. i c. 19.6•, and the 
pe:tk overshoot is measured as a tehuive pcrcen· 
toge of the 40" course chance demond. 

As 1hc training 1ook place at 7.S knots. the 
robustness of en eh fuuy auto pilot was assess( d 
by testing at tra ining speed :1:50%. Thus Tuble 
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contains ficuru pcr1ainins to S, 7 ,S ftnd 
lOknOIS. 

Summarised in Table l ar-c the rcsuhs for the 
three funy 1utopilou. When opcr~ting ac 
7 .~ knots it appears the auaopilot d csiaocd u.sing 
lhc ANFIS technique was considerably more 
accu rate than those of the simuhucd anncalina 
tuned and I'UI;cd rule base aulopilots. However, 
the minimum rudder demand was ucrciscd by 
the fbcd rule b;~.sc autOpilot, 1hc activity beins 
2.38% less than chc simulalcd anncalins tuned 
au1opilo1. This hi&hlighu 1he roct that the simu
IMcd anncalina alsorithm has reduced course 
changins crror by 1.96% at the upcnsc or a 
2.l8.,. increase in canard actiYity. As susacstcd 
in the previous seed on rhc can:ud demands or the 
ANFIS tuned au1opilot increased over the 
uainina period but remained well wilhin lhc 
limils or acceprability. Indeed the c:anard 
demo.nds produced by ANFIS uaining were 
much sh:uper than those of simuhalcd annealing 
tuning. 

Ag11in. 111 S knots the :~ulopilo t developed using 
simulated anncalina was 2.17'/• more accurucc 
thon the fixed rule base fuuy autopilot 11 lhc 
expense of an increased c~nard accivity of 
l .Sl% . Additionally, 1hc ANFIS tuned autopilot 
wos appro.cima~cly )1.1'/• more accunue but 
ag~in demmnded increased canard activiay, or 
3ppro.aimo.tdy 87.6'/,. The c:anard responses of 
the ANFIS autopilot were deemed ocecp1oble 11 

this opcr;uina speed u the ~riods of C"Jnard 
sa1unuion did no1 lead to unn~blc UUV bchoa· 
VIOU(, 

l]z·· 
l 0 10 .. ,. 

*"·~....cono. 
.. "' 

Flgut• I Robus&neu aescmo ol autop.tots lOt yAw coouot 
0\let a speed tanQe Key:··· Sknoll, - 7 Sknots.--
IOknols .. 

finally, the incrcastd effectiveness of the 
canard concrol surf:.ces ac the hisher oper:uing 
speed of 10 knOIS led 10 reduced periods of 
canard sacuration over the larger course changins 
manoeuvres. The simulated annealing au1opiloc 
performed well at this opcratina speed showing 
an improvement in accuracy of 7.39Y. 
corresponding to a reduction in canlfd ICtivity 
or 1.89%. As•in the ANFIS OUIOpilot was 
deemed the best with the most impressive rise 
times and quite acceptable overshoots. 
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Table 1 Performance auusmenl of the autopllols 

UUY Mod•l ANFIS autopilot Slmul•l• d •nne•llng 11utopllot Fl .. d tule autopilot 

:~9' 
6, r. M,(r) 

:~9' 
6, 
de91 

r. M,(r) o~o, 

oev' 
6, 
o.v' 

r. M,(IJ 

o eo1 secs % 

5 knots 83.11 33.86 9.18 2.88 IH.l9 
7.5 knots 59.29 20.98 779 1.90 8s.•a 
10 knots •&.02 13.90 7.51 I J2 88.58 

6 . Conclusions 

This paper hu discuued the 1\ming of funy 
uutopilocs for yaw conuol of an UUV. By 
~ncodin! chc funy autopilots as adaptive nel· 
work architec turcs, fuu.y parameters co.n be 
tuned usina ncuc:al network cechniqucs. The 
ruuhina autopilocs thus rcma.in purely (uuy as 
paramc1er cunina is conduc1ed off-line. From th~ 
rcsuhs presented il may be concl uded that the 
ANFIS approach provides lhe bcSI au1opilo1 
dcsisn solution. 
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Appendix A : Nomenclalure ollhe UUV 
Equallon Paramclors 

E,F,G 

P,/1. 

U,V 

State equa1ion matrice-s 
Mass ofUUV 
Angular velocity componen11 of 
rolling and yawins 
Velocity components or surge mnd 
sway 
Angles or roll and hndin¥ 
Moment or inenia 
Moment compon<nU 
Force component' 
Centre or buoyancy 
Centre of mus 
Dimensional hydrodynamic cocfti· 
cicnls 

N uuf,., c tc Non-dimensional hydrodynamic 
coefficients 
Roll moment ann length 
Yaw moment ann length 
Upper and lower can;ud inpucs 



Control Strategies for Unmanned 
Underwater Vehicles 

Paul j . Craven, Robe1·t Sutton and Roland S. l3urns 

(University tif l'lymouch) 

In recent years, both the offshore industry and the navies or the world have l>ecome 
increasingly interested in the potential operational usage or .inmanned underwater vehicles . 
This paper provides a comprehensive review or a nmnLcr or modern control approaches ami 
artificial Intelligence technique> which have been applied to the autopilot design problem ror 
such crart. 

1. 1 N Tit o o u CTJ oN . Although 13ourne ca.n bt>. ct·editcd with producing the first 
conceptual design for a submarine in 1 .0 8, the first one built was constructed in 
t62o by Van Drebbcl. Nevertheless, it was not until 1776 that a submarine was 
specifically launched to take part in naval operations. Bushnell 's submarine the 
Turtle was designed to destroy the Royal Navy men-of-war which were 
participating in naval blockades during the American War of Independence. 
Fortunately for the British fleet the attacks by the human-powered Turtle were 
unsuccessful. The Turtle 's single crew member blamed the ineffectiveness of the 
assaults on the inability to lay 1 ~o-pound charges against the hulls of the ships 
owing to their reputed copper sheathing. In actual fact, the British warships were 
not sheathed. A more pt·obahle explanation has been postulated by Covet·dale and 
Cassidy ,1 who propose it was due to the crew member being physically exhausted 
and affected by the build-up of unacceptable carbon dioxide levels in the vessel 
by the time it t·eachcd an intended target. Reader et ct/. 2 light-hcartcdly suggest 
that this may have been the initial impetus for the search for wunanned 
underwater vehicles (uuvs) I Clearly, since those pioneering days, manned 
submarine technology has advanced dramatically. However, the COf!1mon 
potential weakness throughout their evolution has been the reliance on humans 
to perform operational tasks. 

Some of tht: eadiest developments in uuv technology can be attributed to the 
cable-controlled undct·water recovery vehicle design and construction· pro
gramme instigated by the US Navy in 19~8. In 1963, one of these craft was used 
in the search for the ill-fated USS Thresher which tragically sank olf the New . 
England coast in 1400 fathoms of water. Later, anolhct· was used to help recover 
the US Navy hydrogen bomb lost off the coast of Palomares, Spain, in 1966 . 
Notwithstanding those successes and the accompanying publicity, the commercial 
potential of uuvs was not recognised until the discovery of offshore oil and gas 
in the North Sea . More specifically, remotely operated vehicles (novs) began and 
continue to be used extensively throughout the offshore industry. However, both 
in the naval and commercial. sectors, autonomous underwater vehicle (Auv) usage 
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w~s limitetl . E\•eu so, more recently, interest in the possible use of bot h t ypes 
of vehicle has been heightcnctl . T his has been prompted hy the needs of the 
offshore intlustry to operate aud explore in extreme depths in a continuously 
hostile cnviroument anti the requirements of navies to have low-cost vehicles 
capable of undcrtak iug covert surve illance missions anti pc1-fonning mine laying 
ami disposal operati01\s. This revival is also coupled wi th the current and ongoiug 
advances being made iu cont rol engineering and ar tificial iutc ll igcncc techniques. 

The dynamic characte ristics of vu vs p resent a control system design problem 
whic:h classical lincu design mc thotlologics cannot accommodate easily. 
hindamcutally, uuv dynamics arc non-linear in natu1·c and arc subject to a 
varie ty of disturbances such as varying drag forces, vorticity e ffects and currents . 
Therefore they on'cr a challenging task in the development of suitable algol'itluns 
fo r motion and position control in the six dcg•·ccs of freedom in which such c raft 
operate, and arc required to be robust in terms of disturbance re jection and 
varying vehicle speeds and dynamics . lt should be noted that the lcn n 'unmanncd 
underwater vehicle' as used here is a generic express ion to describe both an AUV 

and an no v, an AUV being a marine c raft which fulfils a mission or task without 
being constantly monitored and supervised hy a human operator·, whilst an II.OV 

is a marine vessel that rec)uir·cs instructions from an operator via a tethered cable 
or an acoustic link. 

The purpose of this paper is to review a number of moc.lcrn approaches which 
have been ac.loptcc.l to control the dynamic behaviour of uuvs with an emphasis 
being made on art ificial intelligence techniqu es. In the fo rthcoming text seve1·al 
references will be made to the '1·obustncss qualities' of certain controllers . 
Therefore it is felt an explanat ion of this phrase is in o rder. During the design 
stage of an algorithm, some form of optimiscd mathematical model which 
describes the dynamics of the vehicle to be controlled will be employed . When 
in ac tual operation, ;md over a period of time , the characteristics of the plant will 
change fl'Om those for· which the control system was originally designed. Also 
within a class of vehicles, dilfc r·cnccs in the ir pcr·fonnanccs wi ll exist. Hence, a 
control system is said to have good robustness 'iuali t ics provided it can cope with 
plant uncertainties whilst possessing no ise ami disturbance rejection p•·opcr·ties. 

1. CL ASSICAL AN O MOOI: RN TECIINIQUI!S 

1. 1 . l'roportional- ifllcgral-tlcrivatlve control. The first autopilots to he called 
proportional (•·) controllcn were employed in the period I!)Jo- so and employed 
a heading error signal w hich was then used to adjust the steering mechanism of 
a ship . T hese controllers had no method of reducing overshoot and thus caused 
transient oscillations in the ac tual heading of the ship. The I!)}OS saw the 
introduction of the dedntivc (o) term which improved tl1c stability of the 
controlled vessel. Around the same period the integral (•) tcr·m was also 
implemented to produce counter thrust to external disturbances, this controller 
being based on classical I'll> control thcor·y. T he control action uc produced by 
the 1'10 controller is given by : 

u,= KJr(rH- ~ l e(rH-'/.',cl e~t)l ( 1) 

NO , I U N M A N N li I) U N 11 E I\ W A 'I' E 1\ V 1i 11 I C L E S Hr 
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Fig. o. !.lnc•rl•ollun of • non-llncor function 

where K1, is the proport ional gain of the controller, ·1; is the integral t ime 
constant, 7~ is the derivative time constant and c(t) is the error signal. 

The transfer funct ion of the controller, in the L.aplacc domain, then becomes: 

U c(s) K [ 1' r ] 
E,(s) = ' ' r -1- or s+ '1; s . (2) 

When controll ing underwater vehicles , the ideal •·e<JUircment is to have high 
pr·oportional gain in order· to cnsm·c rapid response to error and effec tive removal 
of steady stale errors ; however, these requirements tend to reduce the stahilit y 
of the system and so a high derivative gain is also demanded. ·This allows these 
requirements to be met. The I'll> control strat egy depends upon the availability 
of an accurate linen representation of the relevant non-linear vehicle dynamics. 
Such models take the form of transfer func tions in the Laplacc or z-domains (E<Jn 
(3)), representing the input /output re lationship to be contro lled . 

11 

L; a,z- 1 

G(z) =~. 
L; 1>1 z- r 

1- 0 

(J) 

In Fig. r a non-linear relationship is represented . At specific positions on th is 
•·elationship , known as opcr·ating points (ops), the dominant non-linear· dynamics 
can be lincariscd to give a t ransfer function ('1'1') at that point. l'rovitlcd the 
operating points arc chosen judiciously, it is possible to approximate the non
linear function as a series o f linear transfer func tions ac•·oss ti re whole operating 
nmgc. 

Fo1· each of these operating regions where the linear relationship generally 
holds true , a I' ID controller, a I' I controller o r a 1'0 contr·oller can be designed 
to meet the requi red specifications. Methods to pcrfonn this arc well 
cstablishcd .3-s Howcvc1·, the further the system divcr·gcs from the operating 
point, the more likely it is that the non-lincarit ics of thC'. systr.m will dominate 
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Addition~lly, controllers based on this format arc not able to prevent the high
frequency_ rudder movements that oft en ~rise . In 1 9 s 3 Motora6 applied a 
low ·p~ss filter· to the output sign~! to prevent rudder osci llation but this, it was 
suggested, would represent a loss in stability . Taylor7 reports t hatr•m controllers 
h~ve historic~lly heeu employed in ship course-keepiug mocles clue to the manual 
complexity of the aforementioned tuning process when on full-scale sea trials. Da 
Cunha et n/.8 employ this technique ~s ~ r·r contr·oller where the derivative term 
'is neglected. This is in fact ~ popular approach and has been utilised in many 
marine control applications, for example hy Hsu et n/ .9 

UlJV dynamics arc such that it is usually vea·y difficult to define cleady the 
dominant daaractcrislics in ordea· to derive a transfer function . which is 
repr·escntative of the system under consideration. 

_1. 1 .. Goiu -sch<d~ollulJ coutrol . O ne method often used as a means of adjusting the 
_gaan tc1:ms of a l1n_ear controller to suit the current operating nnge is gain 
schedulmg. Depcntlmg on the current operating conditions, the gain terms of the 
controller will be adjusted to provide the best controller performance. To aid 
ll_·ansition bctwc_cn operating regions , an interpolating function is often used. 
lire structure ol a typical gain-scheduled controller is shown in Fig. 1 where a 

PLANT 
(G) 

Fig. 1 . 11 goin-schcclulccl contmllcr 

c 

scheduling algorithm monitors the operating condition of the system anti selects 
the controller paramctcr·s (C1 ... C,.) best able to produce satisfactory 
pca·fo rrna11cc. If designed concctly the algorithm will also ensure a humpl css 
tr·ansfca· bet we en the operating points . 

The MAitiUS (niarinc utility vehicle system) is an example of a successful 
implementation of a gain-scheduled controller in an uuv. 10 This work documents 
four fundamental steps to the implementation of such a control strategy: 

(i) Linearise the plant about a finite number of points . 
(ii) Design linea r controllers around each opcratiug point. 

(iii) Interpolate the parameters of the linear controllers of step (ii) to achieve 
adequate performance of the lineariscd closed-loop systems at all points 
where the plant is cxpcct e<l to operate . The interpolation is pcrfonncd 
accortling to :111 external scheduling vector and the resulting family of 
li11ear controllers is referred to as a gnln sclaedulfr•g controller. 
t \ • . 1 • 1 1 t I 11 I t 

The linear· conta·ollcrs outlined in step (ii) often take the form of I'll> controllers 
which arc therefore time-consuming to tlcvelop. This technique requires 
thorough research into suitable controllers for each operating point and is not 
well documented among uuv control techniques, although a velocity alogorithm 
for the subsequent implcment:ttion of a non-linear gain-scheduling controller has 
been rcportetl . 11 

2 . 3 . Adaptive coJIIrol. The past twenty-five years have seen a consiclcrablc 
amount of research in the application of control techniques to the problem of 
course-keeping and manoeuvring of marine vehicles, particularly in the field o( 
autopilots whic h adapt ~o dynamic and environmental changes, and consequently 
update the contmllcr s parameters to cope with these distmbanccs. The 
popu.h,~·ity of adaptive techniques conccms the poorly known hydro•lynamic 
coelhc1cnts of the vehicle as well as the inhe rent non -lincal'itics usually involved. 
Indeed, the majority of successful uuv control studies can he seen to include 
some form of :tdaptivc control strategy. A comprehensive outline of adaptive 
control techniques and a brief review of the historical developments is given in 
rcfcr·e11cc r 1. Additionally , Astrom and Wittcnmark13 a·cportthc implerncntatio1\ 
of an adaptive autopilot for the ship course-keeping task, based on a r•m 
algorithm, the Stccrmaster 2000. 

l.J . 1. Moclel rifcrcncc ndnptlve conrrol. The model reference adaptive co11trol 
(MllA<.:) technique is one of the main approaches to adaptive control. The desired 
pca-form:mce of the system is given by a reference model. A feedback loop allows 
an error measure to be computed between the output of the system and the 
reference model. Thus, basccl upon the error measure, the parameters of the 
controller nrc adjustctl to a1educc this crTor measure. ~lilAC techniques were first 
designed to control the scrvo problem in deterministic continuous-time systems. 
f-igure 3 shows a typical MI\AC scheme. 

Oalrod 

Outrut 

X 

Model or 
Desired 
Response 

,., 
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The key problem with this ~pproach is in the determination of the adjustment 
mechanism in order that a st~ble system is achi eved. The MIT rule (Erp1 (1)) was 
developed for the original adjustment of parameters in the MI\AC system. 

dtJ dr. 
'Jt = - yc Jo· (4) 

Van i\me.-ongrn 1 ~ applied the MI\A C <~pproach to the pr·ohlem nf ship COIII'SC

kccping and manoeuvring. This process employed a cost func tion (Eqn (S)) which 
was chosen to enable the derivatiou of optimal cont1·o llcr gains, via the use of a 
reference model (for comparison purposes). 

J
'J' 

j = 
0 

(c? ·I· A1 V' ·I· A~ 62
) de. (s) 

This m ethod was based on the assumptions that the modelled process was linear 
ami external disturbances could he disregarded . T hus , obvious criticisms of this 
approach arc the lineari ty assumptions concerning the vehicle's dynamics , and 
the tcchnic1uc is only really viable when extcm al conditions can be considered 
unimportant, which is almost neve r for a marine application . In the surveyed 
litcr:llure this tcd llli<lue is scarcely m entioned with respect to uuv contml 
strategies. Shimmin and Lucas1s document the technique and note the instability 
of such systems when the adaptation method rcl~tes controller r~rametcr· 

adjustments to system errors. 
Da Cunha et a/.0 designed ~n adaptive position controller for an llOV, based 

ou a 1·eeently developed output feedback variable struc ture control algo rithm, 
which was given the acronym VS ·MI\AC. The perfor·manee of the technique is 
eva luated by initially using simulation models and then full -scal e sea trials 
utilising an actual 1\0V . Results show that this technique of position control 
consist ently outperforms the conventional 1'1 contml technique, by providing 
more accurate position tracking and Jisturbance rejection. 

l.J.l . luclirect o<lal'ti•• cauuol . farrell and Clauherg16 report the implemen
tation of an indirect adaptive control system on-board the AUV Sea Squirt. This 
system is Jesigned in two layers, a standard adaptive layer and a 'supervisory 
logic' l:rycr (to control the behaviour of the adaptive layer), as shown in fig. 4-· 
Although this teclmique provides convergence of the modelling parameters 
towards their optimum tracking performance values, it takes no account of the 
varying mission-to-mission modularity and dynamics that such vehicles often 
encounter, thus suggesting the incorporation of some fonn of learning control 
strategy to moJel/estimate these vadatlons . It is felt that this addition may also 
proviJe a means by which the vehicl e can compensate for variations in 
hydrodynamics, effected by velocity variations . · . 

1.4-. Se!J-tuuluo control. Self-tuning cont rollers can be used for processes w1th 
time-varying dynamics, by using a derived model of the process and environment 
to adjust the coeffic ients of the controller in o rder to satisfy a desired closed-loop 
system performance . A key publication by Astrom and Wittcnmark" stales that 
self-tuning can he applied to a controller if, initially, contml of the system _is 

NO. I UNMANNEI) UNI>EI\WATEil VliiiiCLES ss 
input 

fig. 4 · The inclirccl a<laplivc cunlrol schcn•c 

f ig . s. Exj>licil self-Inning conlrol system 

by adjusting the coefficients of the controlle1· by means of a second, slower · 
1·ecm·sive loop to achieve better control. Typically, algorithms· have been 
implemented fo1· adaptive ship steering and the dynamic positioning of drill . 
ships . 11 

Triantafyllou and Grosenbaugh10 a.pplicd a. multi input- multi output (MIMO) 
self-tuning controller to the difficul t problem of automatic guidance of an AUV by 
manipulating thruster outputs to proJuce the desired translational and yaw 
velocities. The self-tuning contro ller was used due to the lack of an accurate : 
mathematical model of the Auv 's open loop dynamics. 

2.4 .. 1 . Explicit sc!rrunlno control. i\n explicit self- tuning control scheme is · 
shown in Fig. s. In this control law all unknown dynamics a•·e characterised by : 
a lime constant and steady-state gain betwcrn each veloc ity output and thruster i 
input. The open-loop system can therefore be approximated l>y n square m by m 

matrix with a first order Jag if, and only if 

G~ 1 (z)=(z - r)D0 +D1 (6) 

fo1· some m x m matrices 80 and D1 where ID0 1 ~ o. In the case of m = 1, this 
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lt was cstahli.~hccl by Owens and Cho tai, 19 us ing a 1'1 cont ro ller for this type 
of system, that fm· m inimum phase systems with fast enough sampling rates, the 
dosed-loop system becomes decoupled into 111 separate single input-single output 
(s1so) loops. 1t can also he sho wn that rcfc1·cnce signals will be tracked with ·~ero 

steady -state errors. 
T he self-tuning mechanism works by using the tlu·uster input /velocity output 

data to update the model at each sampling instant. T he model is of the form : 
,, 
y(t + 1) == Ay(t) + Bu(r) (7) 

,, . 
whcr(, y( t + 1) is the vector of predi cted velocity ~:ntlputs . The matrices A awl B 
of E<tn (7 ) arc used along wi th the closed-loop poles to calculate the 1'1 control 
law , wh ich takes the form : 

8
0 

== n-1 (8) 

D
1 

= D- 1( / - A). (9) 

Finally the thntste1· inputs are dctcnnined and applied and the entire cyde is 
repeated . The a

1 
factors in the cost function (Eqn (•o)) can be used to discount 

measurements that arc known to be spurious or to give less weight to values of 
the model output when the algori thm is ' tun ing-in' after a large change in the 

real system. 
The versat ility of this control scheme is demonst rated in Katebi aml 13ym e,20 

where it was employed to provide adaptation capabili ty to a ship autopilot in 
adverse weather conditions ami was customised to produce minimum variance to 
low-frequency heading variations and resistance to steering, again using the cost 
func t ion of Eqn ( 1 o): 1 n 1' 

j =- :E a 11[r(i)-y(i)ll2 

n 1-1 
( 1 o) 

that is, the w eighted sum of the squared errors between the real system and 
model responses . For time-varying dynamics , Yuh er o/ .21 employed an adaptive 
alogl'ithm to cont rol the pitch of an underwate1· J'Obotic vehicle. From the results 
obtained , it wns found that, as the parameters of the adaptive controller had been 
originally derived from rough estimates of the system model, its initial 
performance was poor hut improved significantly after a few iterations. 
Howeve•·, it was also ~ound that the stability of the system cannot be guaranteed 
foa· unmodclled system dynamics. 

Gohcen and JeO'reys22 implemented explicit 'one-shot self-t uning ' in the 
Seapuf' and PAP104 underwater vehicles, whereby first-order lags fo1· the sway, 
yaw an<l surge velocities arc used together with a 1'1 conti'OIIer. The resulting 
cont i'OIIet· displays the expected robustness of 1'1 control but does not adequately 
account for the inherent non-linearity of the uuvs , due to the unde..lying 
linearity of such self-tuning controllers. The one-shot cont1·ollcr is not an 
adaptive strategy either an(l , as such , cannot account for the time-vuying 
dynamics of the uuv . 

1.4 .. 2. lmf'llcJI sc!f-wninB control. An impli cit self-tuning controll er identifies 
the parametc1·s of the system di rectly and then uses these data in the control law 

1 t I ,.,. ' I • • • 
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Conttoller 

Fig. 6 . Implicit sclf. tuning control •ystcon 

Fig. 7. A schematic of a •li<ling ono<lc cout rollcr 

of the system characteristics. Figure (j shows the schematic diagram of an implicit 
self-tuning control system. The implicit self-tuning con!J·olle•· alorithms of 
C larke and Gawthorp2~ incorporated the contro lle r output into a cost function 
fo1· val'iance m inimisation of pe1·fo rmance objectives . T his approach was also 
employed by Lim and PorsytheH in their design of an autopilot applied to ship 
control. The expression for the cost func tion output in orde1· to ,minimise the 
expected variance is Eqn ( 1 1) : 

j = f( I!J'(t+ o) - r(t)ll2 +Au(t)2J ( 1 1) 

where y is the actual output; r is the desired output; u is the control input; c{*} 
is the form of the variance to be minimised; and A is a constant factor which is 
a compromise between the control action and reference tracking against 
adaptat ion speed and is dete rmined empirically . 

Therefore, the generalised output f): 

lllf liT tiU 

B(t + 1) == :E /)'(t-i)+ L; 111r(1 - j)+ L; G,.u(t - k) ( I 1) 
1-0 1- 0 A:- 0 

is identified ami t he control law follows directly, hence the implicit nature is that 

of : 

r nu ur nu l 
uft) = G;:-1 J. Fvfr - 1)+ J. H,r(t - 1)+ J. r.,.(r - 1:) 
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~s dc£cribed in the p~pcr by Goheen ~nd JeO"reys,2 ~ who showed that second
order moclds (•!)' = nr = nu = 1) p1·oduced the best closed-loop response with the 
Scnpup simul~tiun d~ta, the rc~son heing that the second-order pit ch ami roll 
dynnmics coupl e in othe r modes, unle.~s the centre of 1·otation is c hosen as the 
origin . This sillmtion very r~rcly occurs in n uuv due to lo~ding and weight 
distribution along the vehicles axes. This application somew hat omi tted the fine•· 
points of the controllc1· implementation. 

12xplicit self-tuning hns the advantage of being computation~lly c~sicr to 
implement ~s conccm s the process algorithms than the implicit method; 
howel(cr , · the implici t method does not •·cquirc the same degree of control 
knowledge by the opc1·ato1· to determine the correct dosed -loop pole positions 
to meet the performance c ritc1·ia . 

1. s. Sl!<lino moJc control . A non -linear strntegy th~t has l>ecn extensive ly 
applied to the uuv control problem is that of the sliding mode controller. A 
switching control law transforms the stale t rajectory of the plant onto a user 
chosen sliding surface in t he state space, thus providing a technique that is robust 
to parametric uncertainty . Figure 7 shows a schem~tic of a sliding mode 
controller. 

The reader is 1·efcn·cd to Cristi et al./~ who state that any uuv description 
based on a set of differential equations can only be approximate in its nature and 
t h<~ •·cfure thcr·c arc unce•·tainties in the model. This calls fo1· a •·obusl input u, of 
the form: 

11 = 11 -l-ii 

where 11 is determined on the oasis of the nominal model ami il compensates for 
deviations from ideal pe1-fonmmcc due to unce rtainties. 

Slidi n~ control theory h~s been developed to apply to a l~1·ge c l~ss of non-linear 
systems. 7 

• 
20 The only restriction on the choice of sliding st~~-facc is that it has 

to be associated with st~blc dynam ics; that is, the foll owing applies: 

s(x(t)) = o, for all I> t => lirnt.o x(t) = 0 (IS) 

fur any initial conditious x(t0 ). The choice of a liucar sliding surface l>ciug: 

s(x) = s1'x ( 16) 

for some vectors , s1'x allows the use of pole placement techniques in the design 
of the non-linear cont i·ollcr. Using the defined Lyapunov function,26 the sliding 
sud:"lcc s(x) = o is reached in a fi ni te time by the condition: 

uu = - ?}~(x)l u(x)l or (17) 

IT = - 1J~(x) sign (s). ( 1 8) 

The dyna mic matrix of the model and Eqn ( 16) a1·e combined to obtain: 

s1'(Ax ·l· b11+j) = - /•~(x)sign(s) . (19) 

By knowing a bound }, on the non-linearity for all conditions of x, the slate 
described in Ecp1 ( 16) is satisfied l>y choosing the cont rol input : 

u = -(s7'b)- 1 s1'Ax-1,'(sTb)- 1 sign (s) (lo) 

N O . I U NMI\NN iiD UNIH: IlWATHil Vtiti iCI.HS 

As mentioned previously, due to the uncertaint ies in modelling a uuv, it is 
important to recognise that the feedback law u is composed of two parts. The 
first: 

.r = - (s'''b)- 1 s'~'Ax (1 1) 

is a linear feedback law based on the nominal model, whereas the second , 

iT = -h~(s1'b)- 1 sign (s) (n) 

is a non-linear feedback law, with its sign alte rnating between plus and minus 
according to which side of the sliding plane the system is curren tly located . Sinn: 
11 has to change its sign as the system crosses u(x) = o, the sliding surface has to 
be ~ hypc rplanc; that is, the slid ing surface dimension has to be one less than the 
slate space. u is also largely responsible for driving the system onto , and keeping 
it on, the sliding plane u(x) = o (whe•·c u = o ~swell) . Provided that the gain has 
been chosen sufficiently large, u can provide the robustness rcquil·cd to hand le 
random disturbances and unmodcll ed dynamics without compmmisc . This is 
achieved l.Jy designing the linear feedba ck law to ensure th~t the system has the 
desired dynamics on the sliding plane . 

Yoc rger and Slotine29 develop and apply a sl iding mode controlle r to an nov 
and document their simulation 1·csults on the experimental autonomous vehicle 
(t:AvE) . Although the authors repo rted successful implementation am.l control of 
EAVIi they neglected the cO'ecls of pitch in their si mul:ttions, even though the 
heave and pitch channels uc known to have quite innue nlial cmss-coupling 
en·ccts . 

Also l'ossen,30 and Fossen and Satagun31 report the implementation of 
mult i variable s liding mode contro llers to the positioning of an nov. Simulation 
results demonstrat e the controller' s ahility to achi<:ve robustness to parameter 
uncertainty . Hcaley and Licnard32 have used this approach to control tht~ speed, 
yaw and dive channels of an AUV individually . This wm·k was then ex te nde d to 
develop a combined c hannel autopilot for the AUV . Results show robust 
performance fo r· each of the individually controlled channels at low speed, ~nd 
1·obust conlJ·ol in the coml>incd autopilot for accele1·ation up to the chosen 
operational speed . 

Trcbi-Ollcnnu et o / .53 provide a review of four robust multivariablc control 
designs, including input- output lincarisation control with sliding mode depth 
control for an llOV. This technique is reported to result in a very mbust 
controller Lut rcquir·es nlw estimation of the bounds on the parametric 
uncertainties, which in Itself is a non-tri vial task. 

2 .6 . H-i'!frnity (H .. ) robust comrol. The uuv operating environment is varied ; 
the speed of such a veh icle may vm-y, pay loads may be increased or clccrcasccl ami 
the underlying mathematical models arc inherently uncertain . C lassica l and 
optimal types of controllers arc designed around a specific set of environmental 
conditions; the performance consequently degrades as these factors va ry . 

Rol.Just control addresses these problems. lt guarantees, given ac tuator 
limitations , a minimum level of performance and stability for a specified 
operati?n eJ~vclopc, not only in terms of disturl>anccs which impinge on the 
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Fig. 8. 11-lnfinisy ml,..,t c·onlrol <chcmc 

n1~1hematic~ l representations of the uuv system. This method is embodied by I he 
Jl ·synthcsis proct~dure, essentially, ~n iterative process liu· the design of H., 
controllers such that the dosed loop adheres to the specified pe1·formance ami 
stability cri te ria . 

Givt·n that G is a matrix representation of the plant ami K is the matrix 
drscrihi ng the controller, let the matrices T (the complementary sensitivity), S 
(sensitivity) and C (control sensitivity), he defined as in reference H: 

T = G/\(J.I·GK)- 1 

S = (/+GK)- 1 

C = 1\(1-t· GI\)" 1
• 

(1 J) 

(11) 

Figure 8 depicts the schematic control scheme, when~ u is the control signal, and 
v n:presenls disturbance and noise inputs, y physical quantities, c error signals, 
and x and z tl11~ usu.:ertainty inputs/outputs. P is the nominal plant and Ll the 
!.lcn;k-diagonal rcprescntMions of uncertainty, environmental ami mathematical. 

If I' is partitioned as shown in Eqn (26) 

[
P,I P= 
/~I 

(16) 

then let AI tlenc1tc the closed-loop function mapping I ' to c i this is known as the 
lower frac t iun~l t ransformation (Eqn (27)): 

. AI = P, 1 -l: f\ 7 1\(1- 1'72 K)- 1 ~ 1 = F(l', K) (27) 

The//~ optimisation p1·ol>lcm is then to m inimise Ecp1 (27) ove r all stabilising and 
re~lis~hlc cont rollers, the constr~ints being defined, dependent upon engineering 
constraints, by weighting functions. 35 Provided that the following H~ norm 
incc1ual ities a•·e salisliecl, then robust stabi lity and performance arc assured. Here 
-y is a search variable ami the weight ings arc tlescribetl below: 

11-yi·V,,SII~ < I 

il-yW11 ru~ < 1 

11-yl-l~ Cll., < I 

(18) 

(2 9) 

(Jo) 

~~here 11~, is a weight matrix rell<'cting the frequency local ions whct·e the desired 

. • 
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within the mathematical models and, 11~ ckpicts the rcstric.:tions on n~giom of 
operation of the servomechanisms . 

Using the structured singular value, I'· aplli'Oach:"' a less conse•·ntivc m!'asurc 
o f robustness may he calculated. If the controller, 1\, i.~ absorbed into the plant, 
1', ami provided that .d has a block -diagonal structure ami is normalised, lh!'n 
partitioning 

(:) = Q(:) = [~t: : ~.::](:). (p) 

Then li11· robustness, the tt is defined as Ecp1 (31), anclmust n~main less lhan unity, 
that is, 

I 
Jt(Q ()tu))= · --.. . (p) 11 m in (cr(l.l(j~o~)), clt~t (I -· Q.11 ~ jtu) l.l(jc•l)) = o) 

White et e~ / .'17 successfully applied the loop shaping 1-1_, lcchnitpse lo the nov 
depth control problem. Unlike other 11,. contml methods this tcchnicp1e 
concerns shaping the open loop dynamics of the llOI' as opposed to the closed 
loop transfer funel ion . Loop shaping was performetl 1'/(1 l wo weighting fun et ions, 
1-1; ami 11; which modified the open loop systems inputs and outputs n~spectivcly, 
thus achieving the desired loop shape for thl~ system, namely i high gain at low 
frc:quencies, low gain at high frcc1uencies, ancl some hanclwiclth ancl crossover 
frequency which yields desired gain and phase margim. Suhsec1uent loop shaping 
designs t•mphasise the effects of difl'e1·ent choices of 11~ and 1-1~ on the requir!'d 
dosed loop dcsigu specifications . The resu lting 1\0V cont roller ' s perfunnancc: 
wots assessed 10 variations in lonvanl speed of ± ~o percent () 1 f knots) and 
pcrturbations in the pitch and heave coellicicnts of ± 2o percent. 

The main difficulty with this applica tion lies with rindiug a combination of 
weighting mat rices that yields a controller which demanded inputs within lh C' 
saturation limits of hydroplane and thrustc1· actuators. 

3· I' UZ7. Y I.OG I C 1\1'1' 1~0/ICIIES . Classical linear coulrol system design 
methods arc adecruate to control linea r systems but arc oft en notably lackiug in 
robustuess when the system to he contmllcd exhibits charac teristics of non
linea rity, lime dependence and extrem e complexity . However, humau operators 
sti ll manage to co1it.-ol dynamical systems which display such ch~ractcrislics. 
The emergence of fuzzy logic enabled the vagueness of human language to he 
mathematically quantilietl. Cm1sec1uently, the con trol decisions of an experkncecl 
plant operator could be formulated into an algol'itlun to control the desired 
plant. Such an approach may therefore be capable of coni rolling an IJ liV very 
successfully. 

3.1. Gcucric strucrur< . When operating as a con11·oller it uses fuzzy rules to 
intcrpn: t its input data ancl to generate an appropriate conti'Ol output. \o\'ithin the 
context of an uuv autopilot ancl its internal structure, the rules take the typical 
form : 

![ yaw error is positive small cwcl yaw rate is positive big tl1c11 rudder d<'mancl 
is zero . 
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\·Vhilst f'uz~.y sets ~l'l' usu~lly il lustrated as continuou~ fum;tions, for im 
plement~tion purpns<!s th<·y arc often in ~ <JII~ntiz<:d fonu . By tlcliniug disc re te 
unh·<:rs<'S of' discours<: for <JII~ nt ized e rror (c), CJU~ntizcd y~w rate (•·c) ~nd output 
(u) as 1:, C/i a111l U n:spe<·tivcly, such n1l<:s may be expressed as: 

If' 1:1 ~nd Cf:1 then 111 

Vv'hc rc tin: fuzzy subse ts 1:1, Cli1 ~nd 111 arc: 

1:1 = (c, l'·m(c)) c 1: 

C/:1 = (t·c, l' ct;l(cc)) c er 
ut= (u, l'u;(u)) c u 

and c, ,.,. ~1ul u ~1·c cl<·uH:uts of tlu: ~ppropri~tc dise1·c tc univ<:rses of disco urse 

with lll<!lllh<;rship functions of' 1'1a(c), l'·c: 11tCce) ~ml/tu1( u) respectively . 
Thus, in general, the N rules contained within the algorithm of the fuzzy 

autopilot m~y he r.xprcssed as: 

1\
1 

: If E1 and C/i1 then U1 e lse 

1\
1

: If E1 and CE1 the n U1 e lse 

/IN : If' EN and CJ:N the n UN 

which c~n hr. sumn1~rised in the funy r<'l~tion: 

N 

1\ = /11 u /11 u ... u 1\N = u (E, X CEI X Ut) · 
i-1 

( 3 3) 

As shown hy l'cdryc~.,30 Eqn ( 13) m~y be CXJli'Csscd in the fol lowing form: 

I ~ j ~ N. (34) 

To <'nahle the fuzzy autopilo t to oper~te for any given input use is made of the 

computational rule of infe r em:e: 

U=(l: xCii)oll . 

Thus, E<J il (3 5) 1nay he wrilll'n ~s: 

U(,;~;) = V (li(c1) 1\ Cl.:(cc1) 1\ R(c1 , cc! , U~;)l . 

cl:l~l( 

(H) 

(36) 

In ord,:a· to elicit ~ dclenninist i<: value from the resultant fuzzy control output 

S<!t, the. c r.ntn: of area m ethod conld be employed: 

Contml systems which 
• I :~ . f : , , 

M 

L 111 U(u1) 

1-1 "n = --;;:-, --- . 

:E U(u1) 

1-1 

(J/) 

~n: based on fuzzy logic ~1·c cxtrr.mdy robust to 
~ .. 1 ... ... . 1 .. , t .. : ••. • 1. . . : .. 1. .. ..... .. • . .... 1: . . .. ..... : , : .... ,.r , '" '' 

N (l , I UNMIINNEIJ UNIJE il\V il'l'J: I\ VEIIICl.ES ~I 

plant under consideration . Th~.y, tiH:n:l'o•·c, o ll'.: r t he pott·nl ial to control u uvs 
in an clfect ivr. mmmer. 

J. l. l'•xccl t~dc - l•asct!.fuu;)' coutrol . O n<: partic ular impiC'nH' ntati on of fu7.'l.)' 
logic of intl' I'CSt he1·c is the study conduc t r.d hy Dcllit ello,39 who applied fuzzy 
logic to th e depth and pitch c:ontml of an uuv. A lixr.d-rule hasr. is used 
containing 14. r ules for dr.pth , pil<:h a nil ballast ccmtrol . C.ood overall performance 
is ac hieved, a lthough simulat io n results al'(! ohtaim:<l at a fo r ward speed that is 
considered too slow for cross-coupling dfcc ts hctwer.n the yaw and pitch 

chan11~ls to IH: .inlluc ntia l. This approach does l~oss<:ss th r. advantagr. that rulr.s can 
he casaly 1110d1ficd as thr.y take a linguistic lonn allowing an insight into the 
control stra t.:gy. 

Smi th cl n/.10 applied fixed rul r. -hasetl fuzzy controll.,rs simult~n.:ous ly to tin: 
cha1111cls yaw, heave a11d pitc h of the Ot·ctm l'oynocr 11uv. Two prohlems w ere 
addressed: (i) the low level conlml problem of d e,·cloping a co11tml systr.m 

whic h could reliably and e/Ticie11tly manoeuvre the IIUV, ami (ii) the high lr.vcl 
proLicm of docking the IIUV in a confined space. Promising results were achieved 
using this approach although a m ore detailed analysis and comp~rison o f the fuz7.y 
cunlroller to mo re conventional methoJs was not fo rthcoming. 

3. 3 . 1:uuy sc!f-oronnisluo co11rrol. l11 som r. circumst<mc<:s it m~y b<~ <liffic ult to 
oLtaiu a dear set of fuzzy rules which d<~sc rihc the conlmllcr ac t ion required, 
partic ularly i11 thr. case of nou- lincar, time-varying processes. To ovcrcom<' this 
problem, fu7.7.y sdf-organising controllers (l'SO<.:) have hcr.n tlcvcloper1,11 ·•G 
which generate their own fuzzy rule -base by continual performan ce fr.<"dhack, 
thus assessing the rule bases cll'cc tiveness. A schematic o f a sclf-org~ni s ing fuzzy 
controller is shown in Fig. 9 . 

c 

Self-Organising Controller 

Fig. ?· The sclf·orgonising f111.1.y ~ontaollcr 

Essr.nli~lly tlae archil·ecture of a I'SOC is similar to that of a fixed rulr. - b~scd 
fuzzy c ontrollr.r but has the added rdincmcut of ~ higlacr hi cr~rchical l!'vcl 
supcrimpose.I upon it. Tlae l1ierarchic~l struc ture consists o f tl1rc.c clcmruls, 
namely, an appropriate performance iudex (t•t), a s implified mode l of the plant 
and a rule modification ~lgorilhm. 

The learning m echanism in this control system us•·s tlae values o f e1Tor ~nd 
('"h "\flt'U "' in ,..I ' J'nl' f ,. ;p; ,; .., fn .,ll\' j,, .. .,,.~,, , ... ,.,.,U f t• ' " ' '''' l 'll' " r ' l t•i\' ' '" 1. , , tl. ,, 1" 
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Assuming llw pbnt is in ~n nmlesired st~te, the 1'1 r e lates the measured v~lues to 
an implit:<l o·ul<: COITC <.: tion (dr) to the o·ulc mmlific-ation algoritlnn o•ia the 

simplified plant nwdt·l. In doe case of a single · input, s ingle-output system, the 

simplified model c~n he a s ign change o f unity, whereas for a multi · input, multi · 
o utput syst em, a matri x of its s tcady· statc g~ins will sulli..:e. 

Clearly the ~bove is a simplified d esc ription of a I'SOC. i\ dt: t a il ed expos itio n 
of~ l'sOI: , adaptc<l to fo rm the hasis of a .~hip :uat o p ilot, can b e found in Suttcm 

and Jess .11 The ~ <.: tla.\1 fu~.zy algorithm in the auto pil o t ope ra tes as dcsc a·ihed in 
the: pre vious sectio n with the ex<.:eptio n that the composi tio na l rul e of inference 

is interpri: tcd dill't:n:ntly . 1\ecalling Et1n (H) th~t is : 

fJ = (l:x Cl:) ol\. (3 H) 

i\s pn·viously shown, lllll 'lll~lly 'o' d e not es the m~x-.. min produt:L ; however, 

Yam~z.,ki'~'~1 la~s found tla~t be tte r contro l r espo nses n :sult fro m using the 
ma x max product. Thus, foa· this autopilot Ec1n ( 36) is n:writt .~n as: 

IJ(u~;) = V (1:(c1) 1\ Cl:(cc1) V ll(c1 , cc1, uk)l . (] 9) 

cl:l!ii 
l'~rhrothc r ~ml Staccy'19 clc ve lope cl ancl applied a fuz1.y logi c fix ecl -nale base 
controller to the y~w channel of an no v . This s tudy provicl<~ encouraging results, 
hut a<.:hicved limited success. This was due to the changing clynamics ancl cxtem~l 

cli s tua·b~m:c:s (such ~s noise) when ~pplied to mine -counte r measu res. Encouraged 
loy th rse simula tions, ~ncl those of Sutton ~nd Jess , f'ah ruthe r er 11l .so have 

tkvdoped ancl ~ppliccl ~ sdf-organising fuzzy logi<.: controll e r to the s~mc 
prol>l<·m . Consec1ue.ntly, the c ontroller achievc c..l a much m o re robust 
pc:rfonnancc in the presence of e xte rnal di sturbances. 

•I · AllTII' I CIAI. NEUilAI. NETWORK Mf:TllOJ>S. The artifi<.:ial neura l 
net w o rk (ANN) is a biologically inspired computing tccluaicru c th~t, iai its .~i mplcst 
form, is a fully connected stnac..: turc of basic units whic h arc the mselves based on 

the M1:Culloc h ancll'itts~ 1 ucua·on moclcl shown in Pig. 1 o . This model fo rms the 

Weight w 

Input Vector 
X 

'1-----·0~';··· 
Threshold Function 

l'ig. 1 o. The McCuiiC>clo .oul I' ill< nr.urnu mnclcl (aflcr McCulloclo oml l'ill s)" 

basis for the early p c rceptro n learning algorithm~1 ~mlthe later, and now widely 
kno wn, hackpmpag~tion fecclfo rwanl algodthm of 1\umellaarl ancl McCie llands3 

for trainint! the multilaycr p c rceptron (MI.I') . With an ability to approximat e n o n -

N 0 . I UNMANNI! J> UNJ>IillWATEll VEIII CI. I!S 

Input Outpul 

Input LRycr Output LRyer 

Hidden LRycr 

Fil; · 1 1 . Thr. fc,·.clfnnv~nl muhil.,ycr pc~ l't:<-ptrun 

nclworkcrroo= ~E(t,- y,)' 

lnr••l c, = F,'(nct,)-(1, - o,) 
is backprOJ13&aled from .lac previous layer 

l'ig. 1 1 . Ermr hot·kpmpag•lion 

cl~ssilication and rcc..:ognilion prob lcm s ,H , H for· which mnn: conv<•ntional 

l ec:hni•rues would have been less tractable . Figure 1 1 illustr~tcs thr fnnn of the 
fcedforwarc..l, fully conncctcc..l multilayer p<: rc..:eplron . 

l·kn: the input vc<.:to r x is mapped to the output vec to r y ,.;., tlw nodC's in the 
hidden laye r j and the weighted connections n·11 and u·4.1 : 

y =.f(x, u·11 , '"tJ) X E /1 11
, J E /1111

• (4.0) 

There an: three m e thods ,ge nec·ally u scol in orde r to tr~in nc:ural networks, they 
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Supc r viscd l e~rning dt'IH.'Illb upon ~ t ~rge t being ~v~il~b l c fm· eac h input 
p~ll ern to <:omp~rc to the ~clu~l output of the nc· lwork . l~cinforcemcnl learning 
doc·s not n :rpoin· a target output to be: ~v~il~ble hut only~ cost function signal to 
indical<: whcth~~ r changes in weight connec tions provide bet ter or worse 
pr:rform:u ot·t: . Ullsupt•r\'isr:d learning is ust:d when no l ~ rgc t pall ern and no cost 
hmc tiem ~re e~sily ~va il alole lo pc1-fo ron lnlining and J'C'C iuir('s that the nctwo1·k 
itse·lf has th e ahi lity to recognise cc>nomo11 featu res acros~ the range of input 
patt e rns ~oul11oodilies its int c mal stal e lo model the features fo und in the trai11ing 
da ta . 

· 011<: c:onmoonly used met hod of supervised lcaroling is the afore mentioned 
hackpropaga t ion (nP) rule. l'or each st:t of input data there is a corr<'sponding 
output set, thus en~l>ling the comput~tion of ~n e rror mc~sure between ~ctual and 
d1~s iretl out put data sets on prcsculatiou of au input d~ta set. T he alte ratio11 of 
weights ami biases within the ANN is d tercfoo·e possibl e. The Ul' algo rithm aims 
to alter the ANN weights and l>iascs so tloat p•·og1·cssion is made in the direction 
of the greatest rate of change of error reduction. To allow this behaviour, a 
func t ion based upon the derivativ e of the error at the output of the previous laye r 
is h:H:kpropagatcd through the ANN on complet ion of each trai ning e poch or 
itcratiou . This principle is highl ighted in Fig. 1 2 . l'mthe r de tai ls can he found 
in reference ss. 

4 . 1. llpJ•I/c(l( /ous. Owi ng to the ability of ANNs to represent non- linear 
mappings of system s for which the underlying rules arc unknown, they have been 
applkcl extensively to the cont rol of marine vehicles. In the majo rity of 
applica tions to elate , ANNs have been c:mployed as a robust controller, whe re the 
nc:two1·k is generated through a period of learning and re inforcement. Usually the 
nc~ t wo1·k is then frozen at this point bec ause to perfo rm on-line c alculations 
gt~lwrally re<Juircs a large amount o f compute r power . This problem has limited 
most colltrollcrs to dale lo he non-adaptable once a suitable level of contml has 
been ach ieved. 

Yuh,5
G in his paper on the application of an ANN t:ontrollc r for an AUV, 

dcst:ril>cs the applicalio11 of two ami three laye r architccturcs to the problem of 
trajectory control. T he two-laye red archi tect ure is seen to provide a limited 
clrgrec of success , p1·oving unreliahlc in the advent o f unknow11 vehicle clynamic 
situatiems and envi ronmental uncc1·taintics . A three-layered netwo rk, con versely , 
ga\'C much more n)l>ust pt!r l<mnances hut was insufficiently clocumcntcd as 
concc~nos sim ulation result s to make satisfactory conclusions on its overall 
p<:rfonnancc. 

Waldo<" k et "1 .51 usccl a Ill' algoritlun to train archit ectun:s of clill'cring 
st rut"tun: lo contro l a uuv to follow the te rrain of the sea bed . The c hosen 
architc~ctun: , ha se~J on tloe smallest sum scruarcd eiTOI' after test ing, was the sing le 
hidden layer three -neuron fecdfonvard nel\vo1·k . Initial t ra ining was then 
impmved upon by using an alopcx algorithm to find a minimum glo bal erro r 
solut ion. 

Jo lmson5
" performed a similar study agai11 using differing architectut·cs, but 

u., ing a che motaxis algorithm over the commonly employed Ill' algorithm . The 
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hcller ovt:ra ll contro l than a classical I'll) •·ontrnlll'l' with whido it was c·ompan·d 
in le:nus of reduce,.( thruster revo lu tions. 

An example of a neural ne t work cont rnllt· r for an lllJV whie·h USl'S an o n-line· 
leaming tcchuic1uc to update nodal 1\'t'ights has hct:n eksigned and impl<'nH·ntt·d 
by Vc:nugopal et n/.59 A four-laye red neural tll'twork is ust•cl which is l raine·cl hy 
the• Ill' algorit hm. This inopl!'mcntation rlill'<~ rs from many on -line st ra tegi••s in 
tloat il t•mploys a gain fat.:tor (proport ional to tlw invt:rse· o f tht· )at'ohian of tl tc~ 
dynamics) which adapts to c hanges in the vchic:le· 's dynatu ics i11 orclc r that thC' 
cnntrollt-r acc.:ounts for dynamical c hange in its cont rol at: tion . Simulation rrsult s 
arc cli vidc:d into three distinct catt~gorit•s: ( i) maiutaining a de:s in·d pitch, (ii) 
maint~ining a desired lteading and (iii) maint~ining a de.~in·d de pth . 

In case (i) , the contro lle1· (bt~ginning from a random start) soon adoievt•s a good 
coutrol action. Pcrturbatiuus an' introclun :d into tl1e v!'ltidc's J(,rw:•nl ' I" ' ''" 
dynamics to assess the pcdonnanct~ of the atlapti\'c gain network . l kt l t~ r 

simulation n :sults were achie ved when the le:ar11ing rat e o f the nct wm·k was 
increased , suggesting t hat tiH: ANN was be tter ec1uipped to g<·nera)ise· to 
disturbances in vehicle dynamics al a higher learning ratt• . 

In cast: (ii) , an in<.: rcased learning rak provided faste1· converge111:e to tll(' 
des ired heading but also inc reased oscilla tory behaviour ahoul the: desire·.! 
heading. However, good simulation results were adlie:,·ed and , as lime innc:ast·cl, 
the on-line learning capabilities of the: ANN controlle r r educed the oscillatory 
be haviour . The vehicle's paramete rs were again clisturhed ancl il was noto:clt hal 
the higher learning rate again improved the c.:ontrolkr's ability to ad.1pt to 
varying dynamics. 

Finally in case (iii), the conlroll<:r achit~ V<~cl ade~<paale control ac: t ion t' l't'n at a 
small lc:Hning rate . 

lt is obvious from this study that till'. le-arning rate is a c ritica l k at urc· of the 
ANN contro lle1·'s per formance in the e vent of va rying vehicle dynamics. A 
nitic ism o f this st udy is the lack of allention clevotcello this important feature. 
For example , could the lcaming rate he incrcasecl inc remen tally, perhaps less 
initially lo avoid oscillatory behaviou1· ancl then in larger increm('nls as on-line 
learning improves controller performance in latte r stages ? Also the papt• r 
m entions the applicability of the t'hoscn al·chitt~ctun~ and tcdmiquc: to MIMO 
cont ro ller design, hut no simulations w('J'e e ven mcntin11ed. Obviously it is a 
dillicul t task to choose an appropriate ANN le·aming rate for a MIMO eontrollt·r· 
wh ich will optimisc the learning l'alc of all three clcgrccs of fr<'cde un 
simultaou:ously . llowever, this pape r pn:se:nts an alte rnati ve: approadtlothe: usual 
ANN AUV impl <" mcnlalions aJHI providt:s c 11couraging rc·sult s feu· SISO <'onlrol of 
the vehicle in t he presence of varying vehi cle dynamics . 

Another inte resting applic ation of an ANN control st ra tegy lor a u u v is that 
given hy lshii et o/.60 Again this is a11 acbpti vc on -lin<' cont rol schem e calle·d 
' imaginary t raining' applied to a 'self-o rganising neural -net controller' (S<>N<:S) 
whic h all cmpls lo improve or short('n the training times invo lvecl in the l<'arning 
phase of the contJ·ol scheme. The SONCS consists of real world ANN and imaginary 
world ANN s<:<:tions which arc conncct r cl to form an ad.1ptivc link . In the~ real 
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iu1.1giua1·y wodd 1\NN st•t·tion liH: imaginary tra ining takes place based upon 
simul.1t C'd stall· \'ariahlrs whid1 an: calculatC'd without knowledge of adual 
si undation data . The imaginary lrainiug is t:xenlletl independently of the aclual 
opl'l'alions of the 11uv ria an idcnlilica lion IINN . The controll ,~r of the real world 
part adjnsls its net work Wl'ights hasl'd on the adjusted values obtained in the 
i111a!!inary world part . This t\ NN is c hosen liu· ils sped lie st ruc t1u·e and consec1uent 
ahilit y lu icknt ify dynamical systl'ms I' Ill a forward model net work . 

To .1ssess thl: dl'ectivl'ncs.~ of the imaginary training, the pmposed schem e was 
impleuwutt~d on the Twiu· lluru•·• IIUV for !111: yaw channd only. The resultiug 
simubtions show that thl' S<>NC:S can t:ontrol IIH· heading of the IIIJV suffidently 
wc·ll, <'''~'" in the !'vcul of noise corruption in the teaching period. Also llu: 
coulrolln shows good pnfonnall(:e in the C'venl of dynamical changes to the 
vt·hiclc: and i ts c nvi nmmcnl. One critidsm proposed is the relatively infrec1uent 
s.1nipling of tiH: teaching data fmm thC' state variables fo r the adaptation of the 
Wl' ights in th<' imaginary training cont rolle r network. lt is thought that a vehicle 
wi th a n dati vdy small ti lll <' consla11t such as an 11uv will be very susceptihl c to 

cnviron•nc••tal ancl dynamical petnrhalions and thns 2o s per sample of data is seen 
as a rat her long time period in whid1 to let the leaching of the real world 
controll e r weights rema in 'nnlaught ', especiall y in the initial stages of learning 
hy the controll e r . 

Yuh ami l.aksluniG1 document a muhibye1·ed IINN controller which estimates 
the control l'JTor using a' cdtic' m· punish/reward system. The most appropriate 
arcilit<:clur!' is again investigated in the initial stages of the paper . A tlu·ec· layercd 
IINN conl rol lt~ r is chosen anJ compared using tlu·ee learning algorithms : the ut• 

algorithm , the. paralle l recursive prediction error algorithm (1'1\I'E) ami the 
mudilit·d paralle l recu1·sivc predic tion error algorithm (~u•tu•E). 

Tlw cril ic <'<JIIat ion upon which controlle r net work weights an~ adapted is a 
f'unl'liun of t he actllal velocity vector and tile desired velocity vector, whe1·e the 
dC's ired velocity ''el'lor is computed l'ia the desired position vector, ac tual 
pusition vec:tm· and sampling period . T ile ec1uation is then based upon a one -step 
pcrformanc;t> measu re of the vehicle position ami velocity . 

Case st tulit:s pcdornted on tl•c IINN controll er were considered in tile lateral 
pla1tc; that is, in tile yaw, surgc: and sway dcg•·ees of freedom . Initial tests 
invrst igatc:d tile ,pc1·fonnancc: of ench lcaming algorithm whilst keeping the 
vehicle parameters constant. Resulting graphs indi cate that the ut• and Ml'tU'E 
algorithms have good lcaming ahility whilst the l'll l'li algol'it ilm produces 
consiste ntly high values of mean Sllua rcd e1T01· in ilol'izontal plane control. Results 
obtained using the: MI'HI'E lcaming algol'itlun to t rain the AN N controller show 
that <Ut · linc t raining is cO'ective and can adccluately cope with tile addi tion of 
random no ise and also the e lfec ls of varying vehidc dynamics anti parameters. 

This study , although som e what tak ing into account some of tile cross-coupling 
cll'ccts of such a vt·hidc , does no t provide any dccoupletl results in this plane 
against which to compare these: s imulations. Thus no cpmparisons can be made 
in lnms of controller perfo rmance as conccm s reduced clTect ivencss in any 
parlicub1· channe l arising due to any ct·oss-co~lpling effects . 

NU . I UNMIINNhlJ lJN III: I\\\'tl 1 1: 11 'I III LI.I:> ') ') 

resean:lt conccmed with the unilit·at iou of tlw l wo inlell igl'nl apprnadws of 
neural networks a11<l fuzzy logic to produn· intc ll igt·nt ncuro· fu'l.zy controllers. 
T he aim of this union is le> retain the gcnc:ralis;t l ion, rohustm·ss and non · lill<:ar 
mappi ng ability ()f IINNs whilst all owing the ut ilisat ion of hoth linguislit.: anti 
numerical data l'i" the int rocltll:l icm of li1zzy logic . Thus a l"Onl rolle1· d!'s ignt:d 
using a ue u1·o-fuzzy approach has an immedia te advantage over t•itlwr an IINN or 
fuzzy logic controlle r . 

T he s tructure of 1H~ u1·o· fuzzy t·onlrollers is iJI\•ariahly such tha t no prl'vious 
knowledge of the modcllc:d pro~:c:ss is r<' 'llli rcd for ti·H: 1\NN to idt·ntil)• tlu: 
ex isting input/out put 111apping . ( I! should l>r JIOl<:d howC\'el· that prior 
knowledge of t he modelled process should improvt: the t raining timt~ col' .~u .. h 
con! roller~.) lt is thus pos~ihlc that a controller can hc: desigm:d whidt is 
appli cable to o thct· non-linear dynamic si tuations , evt:n if knowledge of pron·ss 
dynamics is unknown . 

Training of a neuro· fuzzy controlle r is usually based on one of two met hods, 
either gradient descent as wi th the Ill' algorithm or reinforcement learning, 
a lthough some applications have employed combinations of hoth methods . The: 
hierarchical st ructure of the controllers means that the learning pmccss usually 
consists of the IINN com•erging on an optimal se! of fuzzy paramctc1·s, these• 
paramete rs often taking a Sugeno form as in the wo1 k ofTaylur. 7 Taylor7 suggt·sls 
that using an IINN to imi tate a fuzzy controller and thus pn>ducing a 'black box' 
form o f controller is inferior to the aforemcnt ionC'd nwthnd whcn:hy knowlcdgl' 
is re tained of pmeess dynamics . 

The adapt ive nclwork ·hased fuzzy inference system (11Nt1ts) was clt·sign<:d and 
implemented by Jang.61 T his approach uses an IINN which clill'ers from most in 
that not all nodes arc connected through weighted links . This has tfn, 
conse'lucncc that not all lite nodes arc modifiable with respect to their wC'igltts . 
Jang has ilnplcmcnted the IINI•ts in dynamic control of an inve rt ed pendulum 
p rohlem, whe reby an appmxi ma t ion lo the Jacohian matl'i x i.~ usc:d for 
l>ackpropagation of the overall system CITOr as opposed to the m:twork· crrur, 
thus c reating a srecialised )!'aruing appm:~ch 10 neu1·o-fuzzy controf. 

Jang and Sun6 give a review of fumla mcntal ami advanced del'clopmcnts in 
ncuro.fu7.7.y synergisms for modelling and control. In this n~view l ite basic 
concepts of fuzzy logic and adaplivl~ ne tworks are discussed as a prelude to 
discussions on tlte ANI'IS architectu re aud it.~ superiol'ity over the n1• algorithm. 
To conclude the review, a numbc1· of design tcdmiqul'.~ arc given for neural and 
fuzzy controllers, and the common pmhlcms cncounlcrcd in their implenu:n · 
la lion . 

One such technique is 'Ill' through time ancl real lime recur rem learning ', a 
schenu: whe1·eby the cont ro ll e1· and plant simulation blocks arc 1·eplaced by two 
adaptive IINNS which cascade to form a la1·gc single nclwo1·k. The paramch:rs to 
he adjusted in this process arc the fuu.y controller parame ters in the IINJ'IS. This 
Ill' through time approach has been employed hy Nguycn and Witlrow6~ to 
cont rol a t ractor -trailer vehicle in a conlinc<l wnc operating t:nvironmcnt . 

Ano the r implementation of ncuro-fuzzy control by jallJ! an ti GullcyG' is that 
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condit ions so that a lirsl ·ordcr Sugeno fuzzy modd become.~ a gain ~chcdulcr that 
switcht!s bt!l ween .~<!l'<'l·a l sds of feedback gains. The MATtAII fuzzy logic loolllllx 
contains Jang's implrmcnlation of this technique applied to the inv;•rtt:d 
pcndultuu systc!m, whnc tht: scheduling nriahle is lht! pol l! ll!ngth and the 
nllltrol at:lion is th<! Slll<>ot h switching hclwl!en tlu·c<: sets of feedback gains . 

A •·•·ct!lll applicatio11 of 11euro-fuu.y cont rol is given by Tao aud llurklmrdt,';1; 
who cn1 ploy ~ul·h a scht·mc to coutrol a flame process. In order 10 coutrul the 
s1ipply of the input nriabks gas aud oxygen a neural netwo1·k -hased li1zzy logic 
coutrolkr is implt'lll("lllc:d through a personal computer. Tht! optimal burning 
Slate is hoped lO J.e ac hit!Vcd hy the fine -tuning of the fuzzy paramCll'rS . J'dor 
"·' lwrt knowlt·dgc: is im:orporatl!d into thl! coulrol ac tion through the fu~zy lqgic. 
Two na!thods of network training wen: adopted; supervised learuing a11d 
n·iuforcemcnt l<·arning. Supervised lt:arning was employed in one inslam:c when 
i~ was asstuncd that training d:1ta were ava ilal>le; rei11fo1·cemcnt learning was 
othcrwist: used. This paper provides the reader with an altemativc example of :111 

applit·ation of ncuro- f111.~.y control. Although no results arc prese nted the system 
is said to lu: able lo control the flam e to find its optimum stale. 

Taylor' prm•icks a revie w of neural fm:zy algorithms for control applications . 
This work highlights the clear dist inct ion between two classes of learning 
algoritlun, those of supervised learning ami those of unsupervised or 
rdnforn:mcnl lc•arning. 

ja11g"7 has succrssfully applied the more computationally inexpensive temporal 
dilrcn~ncc methods of Sutton1

;
11 in conjunction with his own ANI'IS architcclun: to 

control a specified poh: balancing on a moving earl problem. This approach falls 
into the supervised learning category due to the use of te mporal backprop<•gation . 
Thus, as such, the mCI'horl rdi!'s un "priori knowledge of the nndcrlying model 
of the pole prohlt~m. This approach is seen to be capable of balancing the pole 
on a cart which moves unrcstrictcdly after only one controller parameter set 
adjustment , the paranH~lc1· antecedents and conscquents being initially setlo zero 
and to covc1· the input space respectively . The coni roller was also seen tu be 
rolmsl to variations in pole lengths ami initial conditions. 

llarto and Andt:rson11
!' have applied a reinforcement algorithm to the balancing 

pole: prohlc:m, whereby the 1·einforct:ments arc used to update the weights of :m 
ANN, the ac:tion selection network (11sN) which has a partly connected 
an·hitcc:ture and is derived from a set of fuzzy conditional sta tem ents. An action 
,.,.aluation m:two1·k (AEN) is also used to generate a reiuforcement signal based on 
the en·ccliveness of the previous control action . The learning aim of the ASN is 
to increase the output from the AEN, thus p1·ovirling more improvements in 
control action . This controller required 13 rules in its funy rule base to balance 
the pole . Results showed good robustness to rule omission or degradation. This 
method also rec1uircs a model for olf.line training o r that a failure signal is 
generated, in on- line training, by the plant. 

Albus70 designed and implemented the cerebellar model articulation controller 
(CMAC.:) architecture, an associative ANN which employs piccewisc 'constant' 
basis fun ctions , the nlnllhr.r of which is ch~tr.nn ined by the designer do a 
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fus<: together these hasis functions to cover tlw input space. The~ uctwork output 
can cuusc<luently he written as a function of tht· sur11 of tlu: individual \\Tights 
of the nd work which arc determined from a sup<Tvised training scht'lllC such as 

a least mean squares law . 
If the C.:MM: 11ctwork is used to interp ret a fuzzy conlrollt·r, as in l't·dryc-z,:"' 

the uetwork consists of the following layt·rs : 

(i) 1\ sensory layn - provich·d with inputs of fuz~.y S<~ l s 'c:rror' ami ' changt· 

(i i) 

(ii i) 

(i v) 

iu C I' I'OI' . 

An association layer ·· this consists of logical ANI> I.'Od!'s and is usl·d to 
aggregate thc. individual signals of tlu: Sensory l.ayc-r . 
A post association layer -· this consists of logit·a l Ol\ IH~un111s used to 
stnnma rise the AND aggrrgatc:s aJm,•c. 
(\ dcfu1.~.ification layer - translimning the results of all thre-e above layns 
into cmc single valued output. 

The learning scheme is by rcinfo1·cemcnt and a single scalar value is used tu 
determine a group of connections in the nclw<ll"k. Also the amo1111t of" J>rinrl 

knowledge necessary to construct or design the controll e r is 1·edun:d. 
An alternative neural fuzzy control strategy, the dilrcn~ntial compcliliv<' 

learning (nc.:1.) algorithm, was proposed by Kosko71 and co-workcrs/'1 · 7:1 

whereby individual neurons in the network an:hitt:cture ar!' in competition with 
t~ach other. Fuzzy rules containing multiple antecedents arc dccompost~d ami then 
reformulated to procluce more fuu.y rules which can he conside red as the unions 
of individual decomposed rules, where fuzzy sets arc defined as quanlisalion 
vectors of membership func tion values. These arc te rmed fuzzy associative 
memories (PAM) and combine to prodm:c the fuay inferenct! system, each I'IIM 
•·eprcscntiug a particular area of the input/output space. The aim of llC.: I. is to 
cluster the c1uanl isation vectors and consc<Jucntly generate fuzzy rules . The NN 
an:hit ccture has an input layer and a 'competition layer' connected together hy 
a weight matrix and an intra-weight matrix in the competition layer which has 
positive diagonal elements and negative non-diagonal e lements to excite the 
neurons. If a neuron hccomes unexcitcd then learning will oc:ctn·, caused hy the 
weight changes' dependence on the change in competing neurons output. Thus , 
many fuzzy rules may he defined but only those having a IHnuht:r of quantisation 
vectors assignell to them arc used. Kosko71 demons I rates successful coni roller 
performance using the I>CI. m ethod which is nut reliant on n J>riori knowledge of 
the plant model. 

Future applications of neuro-fii7.7.Y tedmic(ues to the cont ml of marine vehicles 
arc expected, mainly due to the fact that such tr.c:lmi<JUCS <lo not rccplirc a model 
of the process t~namics to produce a control ac tion. 

Sullon cL al. 1 have investigated the use of ANNs in the design of li1z1.y 
autopilots for controlling the yaw dynamics of a modern Royal Navy Warship 
model. A network is chosen based on the ANI'IS network and is trained using the 
Ill', alopex,7S chcmotaxis76 ami simulated annealing7' algorithms. The input fuzzy 
sets for the autopilot arc chosen as yaw error and yaw rate:. Simulation results arc 

' ' ·, 1 .. l:t: ..... lt•••l;" ,.....,'."'" '"'';l"' ('),.,.,. ,)1 itn•:1 •· 
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linuul that tlu: au topi lot tr~i!H·d using the simulated annealing algol'itlnn 
p<'rfornwd the hest with n:spcc t to overshoot, rise time ilnd the integral S<]tlilre 
l' tror ul' rudde r angle ilnd yaw crro1· . 

6 . CONC I.\Jt>t Ne; u EM/\ 1\ KS. lt h~s hecn shown that when attempting lo 
de-sign a controller for a uuv, the coni rol cngint:cr is faced wit h sevet·al difficult 
pmbi.,IIIS. T hus, whilst lllany or the present generation of control systCIIIS 
ins talled within liUVs pnli>nn sa l isfilctm·ily within given specificati ons, their 
"''cra ll ,.n·cctivenc·ss is li ntill·d . 

Traclit irma lly . l'Ont rol system d<:s igns have heen val'iants or tla: analogue I'l l) 

l'ont ro ll e r .. T IH: mai n slwrt coming o f such designs hils been the r<'cplircmenl for 
n taoual· adj nsl ll ll'llt u l' d u: coo trolle1· 's pilrameteJ'S to compcusil lC for cltilnges io 
the craft · .~ <:nl'in tiiiiH'nt, but these settings arc rardy optimal for the uuv. The 
adj ustments m·ccssary fo r current ilnd payload variati ons at·c time consuming. 
Cc>nscrruc tllly. th t•re has !.ecn a g rowth of intc1·est in autopil()ts which can 
aut oma t ica lly adapt thclllsclvt:s. 

Adaptive cnntml teclmi<] ttl:s for autopilot des igns lt;t vc, via the use of suitabl e 
cost functions in the opti misation algorithms, enabled more ciTic.:icnl use of 
vehicle ilc tuators in the event of cnvirollmcntal cha nges ~ntl nryi ng vehicle 
dynamir.:s . Due l u the use of a cost function, usually minimising the rutlclcr 
ac t ivity aml hcnding e rror when pc..forming yaw c hanging manoeuvt:cs, adaptive 
st rategies do not always reduce the fuel consumplicm of the vehicle in all sea 
states. This inherent inabil ity to measure the sea stales clfect upon the vehicle 
suggests that more advanced tcchni<lues must be developed for uuv ilutopilots. 
11, .. has cnahleu the design of optimal controllers in the prese nce of significant 
trncertain ti<'s within the uuv model without the need for o n-f ine identification 
of the vehicle's dynamics, and these controllers hilve hecn slwwn to he robust in 
operation . 

Fuz:t.y logic cont rol systems arc inherently robust to non-linear t ime varying 
plant but remain re liant upon a rule bilsc. Indeed, the self-organising fuzzy logic 
controller develops its own rule base but requi res som e initial pcrformam;e 
criterion . Such approaches have pro \'cd to be very successful at cont rolling uuvs . 

The fusion o f fuzzy logic and ncu rill netwo rk control met hodologies olfcrs a 
means by which Lh<: inherently I'Oimst and non-linear nature of the fuzzy 
cont roller can be combined with the powerful lcaming abi li t ies of the neural 
11ctwurk . Although the1·c arc examples of such fusions as applied to ship autopilot 
designs, lilllc atlcntiou has been g iven lo the design of uuv ilutopilot·s using these 
techniques. Conscclucntly, the use of ncu ro-fu1.zy appi'Oaches to cont rol the 
dynami c hehaviottr of uuvs could offer significant technological iltlvances in the 
field of uuv aut opilot des ign and thus pmvicle an excel lent research area. 
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IDENTIFICATION OF UNDERWATER VEHICLE INVERSE 
MODEL USING RECURRENT NEURAL NETWORI< 

AND GENETIC ALGORITHMS ... 

1. Introduction 

This pnper concerus a control of uutonomous underwater vehicle yawing with 
n controller of a neural network structure. In general in order to ndjust neural controller 
parameters two sets of training data are necessary: controller input trajectories set and 
conlroller output trajectories set over a given time interval. Whilst the set of input 
ttajeetories can be obtained rnthcr easy, the set of output lrnjcctnrics should be often 
evaluated basing on a set of a control system output lrajcctories, in our case n set of yaw 
responses over a given time interval ( t1 ] . To evaluate the ~:ontroller onlpnt trajectories 
sel we propose the inverse model approach bused on the continues recurrent 11C11111I 
network which can be viewed ns n set of non-ljnear slate equu lions . 

Recent investigations eonceming underwater vehicle inverse model idcntilication 
using the recurrent neuralnctwork show [3,11) thut the backward propagation approach 
applied to adjust the uelwork parameters does not give satisfactory results due to 
trapping into local minima and the algorithm instabilities . To overcome these problems 
n genetic algorithm is used. 

All calculntion c_oncerning this slncly were mode usin~; the MATI.AD/Simnlinl.: 
environment. 

2. Underwater vohlcle yaw control structuro 

In the s tudy the yawing of lht autonomous undcrwnlcr vchide (AUV) with a ncur;ol 
network controller is considered (fig . I). 

Pig. I. The colllrol system structure with th~ m:urolm:tworlt controller 
Rys. / . Strukturo ukltlllu sterowanitll n:gulotoremncuronowym 

Ut~i\it.•rslly vf Plymuulh, l11slilulu uf Alminr l 'w,fh•J, J.l,,J..&.• CitCIIJ', l'llwwuth 1'/. J IUA. 01'' '" " 
1/ •. l• . , · ·:. 

. . . n set of non-linear stale equations and implemented 
1lte yaw dynamtcs IS descr_lbed by l"ed by the Defence Research Agency (ORA), 
in MA TLAD/Simulin.k envtrotunent, supp I 

Scn Sector, Win frith [I ,2]. 

3 Inverse model of the auv yaw dynamics . ·d which 
. . . V inverse model a dynamic nctnal network IS pwposc 

In order to tdenllfy the Afi Uti . stem of con pled diffcrcntiul equations [5,6,7): 
can be described by !h~ 0 owmt; sy · 

.; ; · T~ =-.x;+.o(s,) +llp i = l, ... ,,_,, 
I dt 

(I) 

; = 1, ... , 11, 
(2) 

/ 

. . ·s th~ sta"ie of the ith dynamic neuron, 
I ·s tlte number of dynamic neurons, .xt I . 

W terc /1 I f · • t: wcaghts 11 
. l "tl til 1' is the time constant o uull '· "'" na ' ' 

S is the total mput to lie I I Ul ' I . . "d I 
I d 's no arbitrary diffc:n:ntiablc func!lon, e.g. n sagmol a 

are inputs to the system an a I 

( -<)'' ,.,.. 
function: a{~)= l - e · . 

1
. 1 MAT! AB environment. Traininl', 

Such a network can easily be tmplementec m I IC -

of the network. ( 1 )-(2) leads to weight . yaw angle AUV yow _•udder_ unoto 

and time constant odjustments. r= dynaontcs c 
. d 1 tuning procedure ··. · -- · training 

1l1e m verse mo e : ·• . olootllhm 
is shown i.n Fig. 2. ,rocutrcnt 

There are three main procedures to . - .-(D- .. ~::;~:k 
train the network ( 1 )-(2): forward/ 1--'·.,...--~ rofcronco 
backward technique [5], bockprop- ruuaor, · 
agation lhrougb time [81 nnd forward •• 

ro a at ion [8}. Only the forward/ . . . . . , 
~ ~ g d teclmique can be imple- Fig . 2. The inverse modtt/tllnmg prucedlllc 

ac war . I . . 11 c MATLAO 1/ys 2 Al<>Oiytm strojenitlmodelu odwrotlll:go 
mented dtrect Y m 1 . . · " 
environment, however recent mvesll- . at"tsl"actory results clue to trnpping inlt 

1 · 1 1 'que does uot gtve s . · Ill 
gation show that IllS e~ 1111 

• bT . [) tl) '!1terdore a genetic 'algorithm nppro 
local minima and ttlgonthm msta I Hies ' .. 

is assumed . 

4 . Numerical results . f I AUV yuw dynamics the recurrent nell.l 
·. del identilicallon o t IC • For the mverse mo . med A ocnctic ulgonllnn was u&~ 

network (I )-(2) with I 0 dyn~nucs neurons wns nssn . .. 
to minimise the energy funcllon: 

1 'j ' £=- (y(r)-d(t)} dt, 
2,, 



when: y is the actual and cl is the: d~sioed irujcetory of the network over the.: time 

interval [t0 ,t,]. 
Input and output trajectories were collected ova the time interval [0,1 00] seconds 

basing on the AUV yaw dynamics u1tplcmcntcd in MATLAO/Simulink environment, 
however for the inverse model identification only the trajectories over the time interval 
(0,20] seconds were used. lloe numerical resu lts for nnc input-output data set Me shown 

in Fig. 3. 
idler 160 genetic generations n vnluc of the cncq;y function was decrcuscd to 0.025. 

1 .2r----~---~---~---, 

, X x x xxxx.x 
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Fig. J . Numerical n:sultsfor the inl•t:rsc mode:/ 
- nu/tier reference trajectory 
x rudder actual trajectory 

Ryl·. J. Wy11iki oblicze1i d/a modtdu odwrotncgo 
- lmjektoritl otlniesic:11itl tlln stel'll 
x alclrwlna lmjelc/orin t!la stem 

5. Romarks and Commonts 
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In ncurul network based control systems n main difficulty arises in providin~ ;t trainiug 
data set for a desired controller output. ln practice sometimes it is easier to give desired 
trajectoric~ for the control system output. In this paper the inverse model nppronch was 
recalled in order to evaluate a controller output trnjcctory referred to a control system 
output trajectory, basing on the warship ynw dynamics inverse model i~ fon.n of ;1 
continuous recurrent neural network. Recent nppronchcs to the problem ol the mvcrse 
model identification (3,4] using such kind of the network hnve shown that the 
application of the gradient method [8,9}led to. trappi~1g in local m~nima nnd causmg the: 
algorithm instabilities. To overcome these d•fficnllles the 1~ene11c bas~d. mctho.d was 
used for the network parameters tuning. Numerical results show that 1t IS possthlc to 
obtain the inverse model of the wurship dynamics using this approach. The method 
proposed can be applied !'or any plant with a ncuralnctwork controller. 

I • 
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Summary 

1l1e pnper concerns nn autonomous underwater vehicle yawing control with '' neural 
network controller. In order to evaluate a reference controller output an iuverse model 
approach bused on n continuous recurrent neural network is used. A genet ic algorithm is 
applied to tune the network parameters. Numerical results nrc includcd. 

IDENTYFIKACJA MODELU ODWROTNEGO POJAZDU PODWODNEGO 
Z WYKORZYSTANIEM RECURENCYJNEJ SIECI NEURONOWEJ 

I ALGORYTM6W GENETYCZNYCil . 

Stroszczenle 

Rozwa:ta sil( zngadnicnie sterownnin zmian~t kursu din nutonomiczncgo pojazdu pod
wodnego z wykorLystaniem rcgulatoru neuronowcgo. W celu obliczcnia w:LOrcowego 
sygnulu steruj~cego stosujc sil( podej~cie opurte o model odwrotny obicktu, w postaci 
ciqglcj rekureucyjnej sieci ueuronowcj. Do strojenin parametr6w tej sicci stosnje sil( 
algorytm genetyczny. Zahtcza sict wyniki oblicze1i. 

H.cferat reccnzowany 



A NEURAL NET\VOitK DASED FUZZY AUTOPILOT llESICN FOR AN 
AUTONOMOUS UNDER IV A TEn VEIIICLI,; 

l'oul J Crovtn oud Rohcrt Sutlon 

/uniwle of Mnritt~ Stmlirs. Umvusiry of Plyntollth, 
Drnkt Circus, Plymomlr, PL4 81111, UK 

(£-mnr'l : pcrtrY~II (/J/'/)'ItiOIItii.OC. rtk) 

Abs1r.1cc: This paper describes lhc lpplication of n neural network •rpro:~ch eo che cunmg 
o( a rutty aucopilol for course<hanaing conuol of an aulonornous underw1uer vehicle 
(AUV). 11oc autopilol is encoded as an adapllve notwock·based archileclurc. To describe 
lhe yaw dynamiC> of lhc AUV a sophiSiicatcd sinoulalion model is employed. Results are 
pruenlcd which highllaht lloe cour .. ·changin& abilily an~ robuSiness of the tuned autopilol 
over lhe same autopilol prior 10 ncuro(uuy tunina. lt is concluded Uool the chosen tuning 
mclhod offers. viable npproach IO lho dovclopmcnl or crrcclivc AUV ynw nootopilols. 

Keywords: neural. tuninc. fun.y, autopilot, autonomous underwater vehicle. 

I. lNTRODUCI'ION 

The running costs or manned submcrslblcs and 
suppon ship plo1forms (or rcmo1oly operated vehicles 
oro. becomlng lncreoslngly hi a h. As a consequence in 
order to reduce financial overheads, considerable 
inleoeSI is being shown in lho development and 
consiNclion o( aulonornous underwater vehicles 
(AUVs) to undenakc such lasks as ocean surveyina 
for scoloaical and bioloaieal purposes, pipeline 
inspection, explosive ordna.nca dispo.sal and covce1 
surveillance. In order Cor this type of vehicle to be 
truly autonomous, h iJ ncceuary for it to possess a 
reliable and robust onbo:ord navlaadon, auidanco ond 
control (NOC) system. A koy c lement of Ooo NOC 
syslem Is the control subsystem which is responsible 
Cor maintaining tha vehicle on couno. Sevcrol 
advanced control engineering concepu Including 

H_ ,sliding mode, odaplivo and acncralitcd 

prcdlctlvo control theories are bein& employed In lhe 
d .. ian of course·chancln& au1opllou and have met 
whh vary in& dearecs or success, 

Alllriclal huelllacnco (AI) opproaches arc now also 
bclna introduced ln1o 1ho dcslcn process. AuloplloLS 
fonnulatcd uslna (uuy locic and artificial neural 
network (ANN) methods hove been reponed and 
shown to bo endowed with conuncndable robustness 
propenics. E!neouraactl by such resulu, this paper 
consldcn the development or a course·chancin& 
autopilOt bued on the innovative neurofuu;y 
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methodology known os the adnpdve nctwork·bose~ 

(uuy Inference system (ANI'IS). (Jonc. 1993). 

Wioh ohc ANFIS appronch im1olementn1ion of 1hc 
conuollcr dcslsn differs In fonn from tloe moro 
typical ANN in th11 it Is not 'rully conncclcd, and nol 
all the wcighlS or nodal parameters arc modifi:1blc. 
Essenlialiy the fuuy rule bose Is encoded in • paraliol 
fashion so lhal all thc rules are aeliva~ed 
simuhencously so as to allow network tnllnina 
alsorithnu to be epplicd. As in Jana's ori&inal work, 
a bxkpropagation algoriltun is used to 1une the (uu.y 
sets of tha antecedent# in lhc (ut.ty rulo bnsc and " 
recursive .lcasl squares alsorilhm tunes the 
consequent cocJricienu with respect to $lipulated 
inpui·OUtpUI Ulinin& doto. for per(onnance 
assessmenl purposes, tloo ovolved A.NFIS ouiOjoilol is 
comp:ll'ed 10 lhe inhlnl umuned (uuy autopilol, 

To describe 1he yaw dynamics or a UUV use Is made 
of a MATLAB/Sirnullnk model tupplled by the 
Defence £!valuation and . Research A&cncy (DEilA), 
Sea Sy11ems Seclor, Win(rilh. The model having 
been validaled against standard DI!RA non·llncar 
hydrodynamic code usins oonk test data and en 
cxperimenlllly derived set or hydrodynamic 
coe(ficlcniS from the Southemplon Occanosraphy 
Centre's AUTOSUB vehicle. Dclails of 1he AUV 
simulation packago can bo found in Craven tl al. 
(1997). 

l . NI!UROI'UZZY AUTOPILOT DI!SION 

As mcn1ioned above. 1he (uzz.y con1rollcr tuning 
performed wichin 1his work Is based on the ANfiS. 
Functionolly. there :uc almost no constraiuts on rhc 
mc111bcrship func1ions of an adaptive network cxccp1 
piccewise di((erenliobilily. 

Srruclurotly, the only limhation on network 
Con0tUUUion IS thll il ShOUld be O( (ccd·(OJW3Id 
typo. Due to dtcsc minimal rcstriclions, the adoptive 
network's applications :uc immcdlrut: nnd immense in 
vnrlous areas. 

If it is a.ssurncd ahnt the (uny inference system under 
consideration h:as ntuhiplc inpuas and one func1ionol 
0111pu1 (I) lhcn lhe ruuy rule·bascd a lgorlohm may be 
represcncc:d In che first order Suacno forrn as shown 
below: 

Roolo I :f(. is A, nnd y is n, I hen r, = PI ... qt y • r, 
Rule 2:((. is At and y is Dtlhen r, = PI • + q, y + r, 

Rule n;J( X Is A. and y is 0~ lhen f. ~ p. X + q. '1 + r. 

Dy encoding such a ruuy rulcbase as an odoplive 
nelwork struclure lhc resuhlns ANFIS archilcclurc · 
can ~ taken as 1h11 of Fiaure I. Consequenlly, node 
(uncuons In the same layer ltO or the some runclion 
family as described by the following: 

Layer 1: Every ith node in lhis layer is an odaplivc 
node wiUo a node outpul defined by: 

Ou .c. IJ.,.,(.c) (I) 

where X is tho inpu1 IU !loo seneral node and Ao Is tloe 
fuu.y sc1 associaled wilh this node. In other words, 
OUipULS O( I his layer ace lhc membership vaJuoJ O( I he 
premlse pan. Here lho membership functions for A1 
can be any appropriate para.metcrited membership 
fllncllo~s. Here A1 is characlcrited by the 
&enerahted bell (unclion of "'!UIIiOn (2), where ( a1, 

bo. c,) Is the pacarnetcr sel. Panme1crs In Uols layer 
are referred to u pr~mlst ptJramtters. 

.. ,.... ..,.,, .. ,.,, .. ,... . .. .,, 
ttf'"nht ''''""'tn) ltef'IH,,..,., ''' ' '".""' •. 

.. 

•. 

Frg. I. The adop1ive network archhcclure 

(2) 

Loycr 1: Every node in this layer is a fixed node 
labelled n. which mulliplics lhc incomin, socnals and 
outputs the product orT·norm operator result, e.g. 

Ou g w, = lt • , (.r) X I' ' • (y), i a l ..... n (J) 

Each node OUipU1 rcprcstnll lho firilll Slrtlltlh or • 
rule. (In fac1, any olloer T ·norrn opera1oos lhll 
per(onn oho fuuy AND operallon c.on be u1ed as lhe 
node runclion in chis layer). 

layer 3 : Every node in thia layer is a fixed node 
laholled N. Tho ltlt node cnlculntcs 1hc ra1io of the ltlt 
rules' firinc strcnsth to Lhe sum of all rules' firing 
suenaths; 

0 w 
Ou g w,=~. 

L "'• 
c l, ... ,n (4) 

For convenience, oulpulS of this layer are called 
normafizttljir{~tg strengths, 

Layer 4 : Every ith node in lhis layer is an adap1ive 
node Wilh I notJc rune-lion: 



where W1 is the output of IByer J 3nd (p1, q" r,) is the 
parameter set. Para.~nctcrs in this lnycr are tcfcrrcd to 
as cotutqrttnl pnrnuuttrs. 

Layer 5 : The single node in this lnyer is labelled 
L , which computes che ovctall outpul as the 

summation of Incoming signals: 

Ou = overall output a (6) 

Thus an adaptive network that has exactly the san1e 
function •s a Sueeno funy model may be 
c;onsll\lcted. 

3. lliS HYBRID LBARNINO RULB 

This learning rule was bRSed upon lhe hybrid learning 
rule or Jang. The system is sintulutcd using the 
dynamic modo! and dola is collccled across a 
spe<:itled lrajeclory. The required dala being or the 

fonn 'I', , 'I' and l3 d (desired rudder), which iiSclf 

is colculaled via a simple Jacobian approximation or 
lhe form: 

li ' u 'I' (r)- 'I' {r - I) 
li ,(r) - li,(r - 1) 

(7) 

where 0 ~ is •ctual c1nard demand. This training 

dolo is used 10 compare lhe system ll'ajectory wilh the 
desired trajeclory, and so form the CITOr measure 10 

be used for ll'ainlng or lhe adaptive network 
p11tamcrcrs. Tho discrete error mciUuro chosen wo.s 
the integral square of hcadins cnor over time (lTSB): 

E = f. [(V' I - V'.)' I 
··• N 

(8) 

The parameters to be ahercd arc the funy pMcuncters 
of bot h Ute prenuso and consequent foyers. The 
hybrid learning rulo employs the bockpropngnlion 
melhod 10 updale lhe funy promise parameters and 
lhe reeuuivc loasr squores melhod 10 update rhe fuzzy 
consequent parameters. 

\Vritlns the premise membership funclion of equation 
(2) more generally as: 

41\) 

l•. (x) = [ ']'• 

(
x - c11 ) I+ - -

~~~ 

(9) 

lt can be shown that l>y comi nuing lhc 
bockpropog:ttion process through each layer the 
following learning rules for each individual pDrftmctcr 
within lnycr I ore dclcrmincd: 

b fiJE, ~ 
A • = -IJ·.£.--· iJO . 

.. .. ,ilO,.. 1• 

' iJE. iJO. 
llc• =-•,·:Eao-·F· 

••. h h 

(10) 

( 11 ) 

(12) 

4. AXED RULE BASED fUZZY AUTOPILOT 
DI!SIGN 

When oper:uing as All autopilot, 1 fuzzy controller 
uses runy nrles ro inlcrprcl inpul dnla and 10 
generate an appropriate control output. Within the 
coni« I of an AUV auropilor lhe rules roko the ryplcnl 
form: 

U yaw error ( 'I' , ) Is negnlive nnd yaw rare ( ~ ) is 

positive Uotn canllld deonond is f ( 'I' , , ~ ), where 

lhc tenns "negative" and ''positive" are (uz.z.y sets and 

canard demand is lOruc (unction of 'I' , and yt . 

Dy tJefining universes of c.liscoursc for yt, :tnd ~ :u 

I! and CE respectively, and describinc lhe ourpur in 
the first order Sug~uu form, such tulcs mAy be 
expressed os: 

If Eo ond CE, then Z; = I(E, . CEd 

where the fuu.y subsets E1 and CE1 nre: 

E, ; ( 11' •• I' El ('I' .)) c E 

Cc, = ( ~ • l'ced ~ )) c Cl3 

and Y' c and Y' N'O elements of che opproprio.cc 

universes of discourse wilh membership functions of 

11•• (If',) and Ilea ( ~ ,) respec1ivcly. 

1lms, in general, the N rules contained witJ1in the 
algorithm or 1he fuzzy ouropilol may be expressed as: 

R, : If 1!1 ond CE1 lhen z, = 'r(E1 • CS1) elso 
R1 : J( 1!1 and Cl!1 1hen Z, = f(B1 • CE1 ) else 

Rn : If En and CEN Uoen Zw= f(Bw' . CEw ) 

In order ro e licil a cnnord demnnd ourpul ( l3,) lhcn: 

H 

2: w, z. 
6 c = _, --~---

:Ew, 
1 • 1 

(13) 

Conttol systems which arc bused on fuzzy logic arc 
inherently nonllnear and thus often extremely robust 
to pa.ramclric unccnaincies. They lhcrcforc orfer the 
porenllallo control AUVs in an effeclive manner. 

5. IUlSIJL TS AND DISCUSSION 

T he ANAS regime has been developed and npplied 
IO lhe USk O( tuning a COUISe·changing fuzty 
nu1opllo1 for an AUV simulnlion model. This section 
discusses lhe performance of lhc ANFJS tuned 
1utopilot in a qualitative and quantitative manner. 
Comparisons aro made wllh lhe Sugeno srylo fuuy 
aulopllor prior lo luning wllh lhe ANPIS technique. 

Tuni11g of the autopilot p;unmctcrs took plncc over n 
scrie~ uf posirive and ncgocive course changes o( 40° , 
ot a $urcc velocity of 1.5 knots. Sulticlenc lime 
intervals were allowed between consecutive course
changing d..:mnnds eo cnai.Jie the AUV cranshuionnl 
''"d rot~tionnl motions to stnbilisc, nm.l thus ensure 
th:u each course-change w01s applied at similar initial 
conditions. This method wa.s considered effective and 
ncccsswy eo ensure rule base symmetry. 

Rcsulling from lhis IUninc 1egime. rhe 7.5 knor 
ANFIS ouropilor was roken ns: 

If y1 _ is Nand ¥'. is N then 

6 ; ·1.46¥'. ·0.89.,· +0.66 

If V' , is N ond V'. is Z lh~n 

6 = -0.49 Y' , -0.88 .,· ·O.OS 

If¥', is Nand V'. is Pthen 

/i a ·0.51 Y' , •0,89 If'• ·0.69 

If Y', is Zand ¥'• is N rhen 

li; -0.45 If' • ·0. 11 Y'. t0.79 

I( If' , is Z and 'I'• is Z rhen 

li = 0.00., • 0.00 ¥'. +0.00 

If Y' . is Zand ,; is P then 

6 = · 0.45 ljl , ·0.11 ¥'. ·0.79 

I( Y' , is P. ond ¥'' is N lhen 

6 = ·0.5t ., • ·0.89 .,· +0.69 

If 'I' , is Pond 'I'• is Z rhen 

6 = ·0.49 If' • ·0.88 '1'. +0.05 

If 'I' , Is P and Y'. is P rhen 

6 Q · 1.46 If' • ·0.89 ,,; ·0.66 

1110 untuncd Sugcno autopilot was flkcn as: 

If If', is Nand '1'. is N lhcn6 = + 25.00 

J( If', is N nnd Y'. Is Z lhenli = + 18.15 

I( 'I', is Nand '1'. is P 1hen6 c + 12.50 



If 'I' , i• 2. and '1'. i• NI hen 6 a + 6.25 

If 'I', is Zand '1'. is Z1hcn6: 0 .00 

If 'I' • is 2. and '1'. ;, r then {j D • 6 .25 

If 'I', is P 1nd '1'. is N then& = · 12.50 

If Y(, is P and '1'. is Zlhenli a ·18.75 

If 'I', is P nnd '1'. Is r thcnli = • 25.00 

and ahus lhe Sugcno linear ourput funclions were 
<imply taken as a fuuy <inglelon spikes. equally 
spaced on lhe outpul universe of discourse. The inpul 
rutty sets for both the ANFIS tuned autopilot lnd the 
original unluned Sugcno fuuy autopilot can be seen 
in Figure 2. 

Fig. 2. The ANFIS and Untuned Input Fuuy Sets . 

A qualilalivc asscssrncnl of aulopilot responsiveness 
wa.s provided by the AUV simul•llon mudcl's 
respon<es 10 • series or nndom course-changes of 
various magnitude, as shown In Figure 3. Such a 
track configur11ion was deemed necessary to assess 
the ability of lht ncurally·luned autopilot 10 
gcneraliu: lo course-changes for which il hod nol 
been tuned. Fl&uro 4 Illustrates the corrcspondins 
canord demands lo lhis p1111icular lnck configuration. 

Fig.). Autopi1ot &cnculiz.ation Hack. 

i~ 
o !D m m a 2D :m :m 

*'••uund; 

Fig. 4. C1nord response> over autopilot 
gcneraliz.ation tr~ck. 

The ANFIS tuned au1opilo1 shows 1 su1><rior cou" c· 
ch1nging response lo lhal of lhe un1uncd nu1opilo1, 
with rastcr rise times and no steady·stote course error. 
Collectively. these results show lhe ability of the 
ANAS tuned autopilot to generalize to larse course· 
changing demands whilst applying a reasonable 
ornoun1 of con11ol effort. 

As o means of quanlifying off-course cnor and 
coursc-ch1nging control effort the following 
~rrormancc measures were adopted: 

'1', • 1('1', - '!'.)'dr ( 14) 

which represent lhe inaccral of squared error (ISC), 
where Y' , end 6 1 represent desired yaw angle and 
canard demand respectively, and .., • aud 6 . 
represent actual yaw angle and canard t.lcmnnd 
respecaively. Addilionally, eo uscu the response 
speed of the AUV model and lhe oscillatory noture of 
each AUV response IO a particular autopilot, liaures 
penoinlng 10 I he rise lime ( r,) ond I he pcrcemogc 

peak overshoot ( M,(r)) were collected. Rise time is 

considered here as lhe lime 10 reach 99 per cent of lhc 
courst·changc demand and lhe percentage peak 
ovcrshool is calculated as a relative percentAge of the 
course-change demand. 

As I he design process look pl1ce al 7.5 knol<, the 
robustness of each autopilot was assessed by 
simulating AUV responses 10 a course-change of 
40' al surge velocities of 5, 7.5and 10 knots. Thus 
Table I contains lhe resuhs pertaining 10 these Uvee 
AUV sbrgc velocities. Additionally data ore supplied 
for otr-course error, canard ef(on, rise time and 
percentage peak ovenhool. 

When operating al 7.5 knoiS lhe autopilot tuned using 
the ANFIS ltchnlquc was 33.37% more 1ccuralt than 
the bcnchmuk Sugeno fuzzy autopilot. This 
lllustntc.s that ll1c ANPIS luncd autopilot produces o 
reduced ofr·courso enor ror I he -4 0 · cour&c·chlln&inc 
demand, as shown in Fisw-e 5. 

AI 5 knoiS lhe effectiveness of the canard control 
surfaces is signllicanlly dionlnishtd due 10 the 
rtductd hydrodynamic forces acting on them. 
Intuitively one would anllclpale more sluggish AUV 
rcspon5c times u a consequence of lhis si1ua1ion. 
Indeed' this Is borne out in the resuiiS of Table I. Tioe 
ANFIS tuned fuzzy autopilot proved 10 be 31.10% 
more accurate lhan lhe Sugeno fuzzy autopilots. 

Conversely. U1c increased cf(ectivoness of the canards 
01 10 knoiS lead 10 much sharper AUV responses. 
Fiaure S clearly illusua1es the superior pcrfom.ancc 
of lhe ANFIS tuned 1u1opilo1 a1 10 knoiS, with 1 

reduction In off-couuc cnor of 38. I 9'1o over the 
Sugeno fuuy autopilot. 

C) 

C) !I) 

Fig. 5. Robustness of each au1opilo1 1o AUV surge 
p~~tometcr vuiations. 

6. CONCLUSIONS 

This paper has discussed the tuning of a fuuy 
autopilot for couue-changing control of an A UV 
using a neural network uchitec1ure and 1 hybrid 
learning algorithm. The resulting autopilots rentoin 
purely fuuy as parameter tuning b conducttd off· 
line and lhe network style lmplcmen111ion of ll1c 
working controller i5 merely 1 convenience. F1om the 
results presen1td h may be concluded lhal the ANFIS 
approach provides 1 viable autopilot design solution. 
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Intelligent roll control of an autonomous underwater 
vehicle 

R SUTTON, P J CRAVEN, and CM SOLOMON 
Institute ol Marine Studies. Unlvorslly ol Plymoulh, UK 

SYNOPSIS 

This paper describes the development of two roll control autopilots for use in an autonomous 
underwater vehicle. 'J'he autopilot designs are based on a fuzzy controller optimised using a 
genetic algorithm and on the neurofuuy methodology known as the adaptive network-based 
fuzzy inference system. To describe the dynamics of the underwater vehicle use is mode of a 
sophisticated mathematical model which is hosted in the MA TLAB I Simulink environment. 
Owing to the control surface configuration of the model, severe cross·coupling occurs 
between the yaw and roll channels which results in unwanted roll motions occurring as a 
corisequence of heading demands. Simulation results are presented and comparisons between 
the autopilot designs are made. lt is concluded that both approaches o!fer viable alternative 
melhods for designing such marine control systems. 

I. INTRODUCfiON 

llrevuy, a <Jcscnpllon of the AUV dynamics will no t '·e u 1've11 l•cre 
d I I u o lnslead, the interested rea er s 1011 d refer to reference [2 J for full derails. · 

1. FUZZY RULE BASED AIJTOI'ILOT DESIGN 

2.1 . Gc!lcri~ structure or the (uny auloujlol 

When '" op.cratiOn a fuzzy controller uses fuzzy mlcs to inrerprel iiS input data and 10 eneratc 
an appropnate control oulplll . ·Within the conlcxt of an AUV aulopilot a ll · g. 

1 stnrclure, lhc rules may lake lhe typical form: n us lntcrna 

If 'roll is posi1ive small and roll ralc is posilive big lhcn hydroplane demand is 
zero. 

Where •. the terms ;positive small' , 'posilive big' and 'zero' are fuzzy sets 
Wh1lst fuzzy scls arc usually illustralcd as conlinuous fimctions. ~or 1·m 1 · 

purposes 11 ft · . • " P cmcnrauon 
. 10Y are 0 en .'" a quan11sed form. Dy defining discrele universes of discourse for 

qu1anlls~d broil (c),, quanllsed roll ralc (cc) and oulptll (u) as E, CE and u respeclivcly such 
m cs may_ e expressed as: ' 

If E, and CE1 then U1 

Where the fuzzy subsciS E1, CE1 and U1 are: 

E1 "" (c, IIEI (e)) C E 
CE, • (ce, 11cr~ (cc)) c CE 
U, • (u, 1•~ (u)) c U 

~~ct!m~~,~~ip~d ~ arc felem(cl)lts of the appropriare discrelc universes of discourse wilh 
. ne tons o Iter e , ltCI!I (ce) and 11~ (u) respectively. 

Thusd, m general, the N rules contained wilhin lhe algorithm of I he fuzzy 811101,ilot may '·c 
expresse as: u 

R, If E, and CE1 then U, else 
Rl If El and CEl then Ul else 

In the work reported herein, a reAlistic autonomous underwater vehicle (AUV) model is 
employed in a sim!llation study. Owing to the control surface configuration of the AUV 
model, severe cross-coupling occurs belween the yaw and roll channels which causes an 
unwanted roll motion as a result of applied canard demands. This paper describes the 
development of two roll control autopilots based on a fuzzy controller which has been 
optimised using a genetic algorithm (GA) and on the innovative neurofuzzy melhodology of 
Jang known as the adaptive network-based fuzzy inference system (ANFIS) [I). 

which can be summarised in I he fuzzy relation: 

To describe the dynamic behaviour of an AUV use is made of a MA TLAD I Simulink 
model supplied by the Defence Evaluation and Research Agency (DERA), Sea Systems 
Sector, Winfiith. The AUV model having been validated against standard DERA non-linear 
hydrodynamic code using tank lesl data and an experimentally derived set of hydrodynamic 
cbcfficients from the Southampton Oceanography Centre's Autosub vehicle. In the interest of 
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R~R,vRl v ...... vR., ~U(E1 x CE, xU;) ,_, (1) 



ll ( c, cc,, u0) ~ 

max (E; ( c,) v CE; (ce;) v U; (uo)] 

!Si sN (2) 

To enable the fuzzy autopilot to operate for any given input use is made of the computntional 
rule of inference: 

U - (Ex CE) oR (3) 

Thus, equation (3) may be wrillcn as: 

(4) 

In order to elicit a deterministic value from the resultant fuuy control output set, the centre of 
area rncthotl is. ~mployed : 

•• 
.L;u1 U (u,) 

u. = !..:":...!~-. --- (5) 

L U (u1) 
1·1 

l.l lnilh!l fuzzy l!u!onllo! design 
Given the general shape and configuration of the control surfaces of the AUV, it was deemed 
appropriate to initiate the design study by using the fuzzy roll autopilot which was hcuristically 
developed for a !orpedo model by Sutton cl al ( 4 ). Thus, the fuzzy rule was taken as shown in 
Table I. 

Table I Initial fuzzy rule base 

;· ND NM NS AZ PS PM PB 

~ Yscc 
ND PD PD PM PM NS NM NM 
NS PB I'll PM AZ NS NM NB 
AZ I'D PM I'S AZ NS NM NB 
l'S PD PM I'S AZ NM NB NB 
I'D PM PM l'S NM NM Nll NB 

The fuzzy sets being defined on the universes of discourse of roll (; ), roll rate ( ~) and 
hydroplane (rudder) demand. Initially, triangular shaped fuzzy sets were chosen which were 
synunetrically and evenly spaced on the respective universes of discourse. The linguistic labels 
used to describe the fi•zzy sets being: negative big (NB), negative medium (NM), negative 
small (NS), zero (AZ), positive small (PS), positive medium (PM) and positive big (PB). 
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i..l"/~ec aml J:JU" r~spect;vcly. 

1.3 ycnc!lc 11lgorl!hm concepU . 
In the past, fuzzy controllers have been designed using purely trial anti error methods to ob1a1n 
an optianised solution. llcre a GA is used to optimisc the consequ~nt terms ?f the ~a:ay rule 
base and then the shapes and positions of the fuzzy. sets on .rhet! rcs~ectlve umverscs of 
discourse. Based on the Darwinian theory of genetic evolution m winch nature tends to 
favour the survival of the stronger and fauer men1bers of the population rather tha.n the ~e~ker 
ones, the GA is a global optimisation technique founde~ upon ll~is natur~l selection puncapl~. 
The GA employed in the study used standard operahng limcttons whtch may be found In 

reference ( 5 ). 

3. NEUJtOFUZZY AUTOPILOT DESIGN 

As mentioned above, one of the controller designs used in this st~tdy is b~sed on the ANf!S· 
functionally, there arc almost no constraints on the mcmbcrslnp fun.cll.on~ of an adaptive 
network except picccwisc dilfcrentiability. Stnacturally, the o~ly l~n~llallon 0~1 .network 
configuration is that it should be of feed-forward !~pc: Due. to th.ese mammal rcstnctlons, the 
adaptive network 's applications arc immediate and munense ·~ van~us areas. . . 

If it is assumed that the fuzzy inference system under consaderataon has mulhplc m puts anti 
one functional output (I) then the fu:ay nalc-bnsed algorithm may be represented in the first 

order Sugcno form as shown below: 

Rule l : lfx is A, and y is n, then f, = P• X+ '1• y + r, 

Rule 2 lfx is A1 and y is D1then f1 g p1 x t· 111 y ·t· r1 

Rulen: lfx is A. and y is B. then f.~ p. X+ q. y + r. 

The corresponding ANFIS architecture is shown in Figure I. 
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FiQ I The adapt ive network architecture 

The node functions in the same layer arc of the same function family as described by the 
following: 

Layer I : Every /1/t node in this layer is an adaptive notle with a node output defined by: 

0,,1 c I' A, (x) (6) 

where x is the input to the general node and A; is the fi1zzy set associated with this node. In 
other words, out puiS of this layer arc the membership vHiues of the premise part. llere the 
membership f\mctions for A1 can be any appropriate parameteriscd membership functions. 
Here A, is characterised by the generalised belllilnction: 

[ ']'' I+ (X~~ C1) 
(7) 

where (a;, b, e;) is the parameter set. Parameters in this layer are referred to as pr~mise 
paramtters. 

Layer l : Every node in this layer is a fixed node labelled n. which multiplies the incoming 
signals and outputs the product or T -norm operator result, eg, 

o,_, - w, ~ , ••. (•)• 11 •. (y), i g 1. 2 (8) 
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iach node output represents the firing l'lrengtlt of a ru le. (In ll1ct, any other T-norm 
1perators that perform the fuu.y AND operation can be used as the node function in this 
ayer.) 

,aycr J: Every node in this layer is a fixed node labelled N. The itlt node calculates the ratio 
of the ith mles' fi ring strength to the sum of all ntles' firing strength~ 

o,,=w,=--w-·- . igl,2 
· w 1 +w1 

(9) 

:or convenience, outputs of this layer are cnllednonnalisetlfiring strengths. 

Layer 4: Every itb node in this layer is an adaptive node with a node'ftmction: 

(10) 

Nhere Wl is the output of Layer J and (p;, q;, r;) is the parameter set. Parameters in this layer 
1re referred to as consequent parameter:;. 

Layer 5: The single node in this layer is labelled L , which computes the overall output as 

the summation of incoming signals: 

L:wJ, 
Ot.i a overall output = w f =---L

. I 

'' 
(I I) 

I LW; 
I 

fhus an adaptive network that has exnctly the same functionns 11 Sugeno fuzzy model may be 
:onstmcted. 

J.l J.enrn!ng rules 
Rewriting &he premise membership function of equation (7) as: 

(12) 

then equation ( 12) now represents the jtlr membership function on the illr input universe of 
discourse. 

.,~ 



Thorcfuo c lhc fcauung oulc for a gcnco •I parumclcr may l>c dcsco il>ed as follows: 

a::>'' - ·-· 
iJa.; 

(I l) 

llence the lcnming noles for each individual parameler arc: 

( 14) 

, . [2n11
1
"•(x - c.)"'t•,/"'(x-c,,)"'ln[l___5j_IJj 

' P 01.!" aJ:,. X - C,; 
lll>,, = .. , . L:-.. . - .. . . 

••I m:. m,~ {a lb, (x - C · )"• + (x - C )"' () lb,} I 
tJ IJ lj IJ 

( 15) 

[ 

,. ( ) (llo,- 11 ,. ( ( ))"•] - - ~ if!. aJ:,. - 2bi,aij " C,j - X lljj • - X - Cij 

!.le,- 'I·L 'J • , • 1 

··• m;. a:>,~ {a ,., (-( - ))"• + ( - )~•. .'"•} IJ X c,, c,, X o,, 
(16) 

The 1\oz.zy consequenl paramclcrs beingupdaled using a recursive least squares mclhod. 

4. RESULTS AND DISCUSSION 

Using I he rule base shown in Table I rcsulled in an autopilot design which, when in operation, 
produced a reasonable reduc1ion In the roll response, however, to achieve lhis lhe conlrol 
acluators were almoSI pem1anen1ly saturaled. Clearly such conlrol aclion cannol be lolcralcd. 
Whilsl in operation the role of an autopilol is lo minimise lhe induced roll as quickly as 
possible wilh 1hc minimum of conlrol effort. Thus, 10 encompass lhis perfonnance crileria, I he 
objective funclion (OF) for the GA was sclecled lo lake into accounl a measure of the roll and 
the hydroplane demand as follows: 

I r.•·T oF a :- <!6! 1· o. t o!> dt r , ... (17) 

whtre ;. is I he roll error and DJ is I he hydroplane demand. 
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As slaltd earlier, lhe lir~l stage in I he development of lhc li1u.y aulo11ilol was 10 use lhe 
GA 1o oplimise the consequcnl terms of 1he rule base. Em11loyins a sinslt poinl crossover 
funclion resulled in I he rule base shown in Table 2. 

Table 2 Final f\1z.zy rule base 

/! ' ND NM NS AZ I'S PM I'll 

~ Ysec 
ND PS NS I'M NM I'S NS I'Ll 
NS NS 1'0 PM I'll Nil PD PS 
AZ NS I'M I'M AZ NO NM PM 
PS AZ NM I'M NS NM PM AZ 
PB NM NM ND PM NM AZ NM 

The next stage in the ~cvelopment process involved using I he GA lo optimise I he fuzzy s~t 
positions on their respective universes of discourse and produced lhe results shown m 
Figure 2. 

Fig 2 Fuzzy sets for the final fuzzy autopilot design 

At first the lack of symmetry in the sets was a point for concern. Therefore adjustmenls 
were made 10 I he sel posilions to discover whelhcr symmelrical placings woul<l pro<lucc bellcr 
results. However, il was discovered thRI any alterations only degraded I he performance of lhe 
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fuuy roll autopilot . . 11 was decided the lack of synunetry was linked to the non-linear nature 
of the sySlem dynamrcs and therefore a necessary characteristic. 

For the AUV travelling .. ! 7.5 knots without any roll controller, the maximum roll induced 
as a _c_onsequence of a ?O yaw demand was 9. 11 ". However, under the same operating 
condrllons, the AUV wuh lhe GA optimised fuuy roll autopilot, the maximum roll was 
reduced to 1.04° as seen in Figure 3. 

Fig 3 

10 

!:=±=] ········ /_= 
r : 1 1 

:·• '"'''"'"'/'""""'"!-''""'''' '!"··----· ... 
' 10o~-~~o:----10L. __ J_l.o __ _J•o 

Time (Sccondt) 

AUV . roll response lo a 40" yaw demand wilh the GA optimiscd fuzzy roll 
autopilot 

. With reference to the ANFJS roll autopilot, an er experiencing an appropriate I raining 
regune, the rule base converged to the following: 

If V', is Nand ~ is N then 5 .. 0. 1671 ljl, -0.0575 ~ -0.01045 

If V', is N and ~ is Z then 5 = 0.05253 ljl, +0.3766 ~ i·0.0282J 

If V', is N and ~ is I' then 5 - 0.1781 'I', -0.02979 ~ -0.00695 

If V', is Nand ~ is I' then 5 .. 0.0227 ljl, +0.2005 ~ +0.2688 

If V', is Z ami V' is Z then 5 .. 0 .002441 ljl, +0.01659 ~ -0.03516 

If V', is Z and ~ is P then 5 ., -0.01542 ljl, -0.0382 ~ ~ 0. 1082 

If V', is P and -~ is N then 5 = -0.7792 'I' , ~ 0. 1229 ~ -0.05202 

If V', is P and ~ is Z then 5 g 0.1 285 'I'• +0.04216 ~ +0.04 187 

If V'o is P and~ is P then 5 .. 0.251\jl, +0.02147 ~ +0.02312 

In this case for the corresponding circumstances as above the ANFIS roll autopilot 
produced 1 maximum roll angle of 1.14" as depicted in Figure 4. ' 

10,---,-----,.---!--

i : ~=:-1=~1--: - ~ .... .... .. T .... .... .. r .......... 1" ......... 

·10 
0 10 lO JO 40 

Timt:(SccOtuh) 

Fig 4 AUV roll response to a 40" yaw demand with the ANI'IS roll autopilot. 

S. CONCLUDING REMARKS 

In conclusion, it can be stated that from the stu~y described herein the viability of using a 
fuzzy roll autopilot which has been oplimised by a GA has been demonstrated. Also the 
analytical approach adopted gives more confidence in the design to that developed exclusively 
by heuristic means. Equally so, the same comments can be made for the neurofuzzy approach 
used for the ANFIS roll autopilot. Doth methodologies arc shown to oOcr feasible means of 

. designing roll autopilots for AUVs. 
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MULTI- INPUT SINGLE- OUTPUT AUTOPJLOTS FOR AUTONOMOUS 
UNDEUWATER VEHICLE CONTROL 
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K£Y\VORDS ncurofuzzy. uutopilol, tuning, course-changing, autonomous unt.lerwolcr vehicle 

This paper describes 1he application of two ncurofuuy 
techniques to the tuning of fuzzy autopilots for couue
ch;angin~ control of an autono111ous umJcrwatcr vehicle. 
Autopilotj are desianed usins an adaptive network-based 

· fulzy infere nce system (ANFIS) which performs p::.rameler 
tuning via a gradient descent and a sequential lcost .squo.rcs 
bo.sed hybrid algorithm, and a chemotaxis tunin& 
methodology wluch relies upon a random search technique. 
To describe the yaw dynamic characterislics of an 
aUJonomous undcrwaler vehicle a rcaliscic slrnuln1ion model 
is employed. Results are presented which demonstrate rhe 
!tllf)eriority of the ANFIS approach. h is concluded lhat the 
1ppcoach orrers a viable alternative melhod for designing 
such autopilots. 

INTRODUCTION 

Encouraged by the prospecl of increasingly more ambitious 
autonomous underwater vehicle (AUV) mission sccnnrios 
considerable intcresl is now being shown in the development 
and cons~uction or U1ese craft to undcrtoke tasks such as 
occnn surveyins. pipeline inspection, explosive ordnrmce 
disposal and coverl surveillance. In order chat they can 
possess a sui1able level or autonomy it is necessnry for AUVs 
lo possen reliable and robust onboa.rd naviso1ion, guidance 
and control (NGC) systems. A key clement or the NGC 
system is the control subsys1em which is responsible for 
maintaining the vehicle uajectory. 

Due to the inherently nonlincnr and coupled dynamics of 
AUVs, they present a formidable control problem. Generally, 
chc amount of coupling is reduced by seporating the system 
into non-coupled sub-systems. This method has been 
employed by various rcscruchcrs amJ h;~s met with varying 
t.lc.:recs or success. 

More recent control system designs have usually incorporated 
some form o( artificial intelligence. Aulopilots (om\ulated 
using ruuy logic (Smilh Cl al., (199))) ond arlificiol ncurol 
nerwork (ANN) onelhods (Yuh, (1990)) have been shown 10 
be endowed with commendable robustness propcflics. 
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This paper concerns invcstigntive work into (uzzy muhi-input 
single-output (M ISO) autopilots for eourse·chnnging control. 
More specifically, the use of an atlarnivc neurnl network 
luning architecture for the encoding of Sugeno style ruuy 
outopilots is discussed. 

MODELING THE VEIIICLE DYNAMICS 

1t should be noted thnt for this study the upper nnd lower 
canards arc used 10 control the AUV's yaw dynamics. 
Dimensionnlly the modd rcprcsems an AUV which is 7 m 
long, I m in t.liameter and hns a displncemcnt of 
approximately 3600 kg. The equation of motion describing 
the dyn;~rnic beh:lviour of 1hc vehicle in the hllcrnl plane is as 
rollows: 

!! X = Fx + G u (I) 

where : 

E= 

(m . y.) y i 0 -(Y + mZ 0 ) 0 

0 - N 0 

0 0 0 

-(K t- rn Z 0 ) -K. . 0 (I , - K , ) 0 , 

0 0 0 0 

u = ( 5 • ••.• , .. 5 • • . _ •• ... 0 0 0 0 J r 

v..,u (Y"' -n~ U 0 '1\,.u 0 

NwU Nu,U 0 N ... u 0 

0 0 0 0 

I<, V <Ku. +ne,,>u 0 ~.u -·~ 

0 0 0 0 

0 = 

ylll!vu' Ywuu' 0 0 

NWI.u' Nwuu' 

0 0 0 0 0 0 

Kw,.u' ~LOlu' 0 0 0 0 

0 0 0 0 0 0 

and the stale variables are V, R. ljl, P, f. To implement 
equation (f) use is mnde of an AUV MATLAO I Simulink 
simulation model supplied by the Defence Evaluation and 
Research Agency (DI!RA), Sea Systems Sector. Winfrith, lhe 
mudel having been ~alidoted against DERA non-linear 
hyc.lrodynamic code using tank test data and tliliperimcnlnlly 

derived hydrodynamic coefficients fto111 the SouthamptOn 
Oceanography Cenlte's AUTOSUD vehicle. As con be seen 
in equation (I) the roll cross-coupling dynamics are included. 
ffowever, con11ol of lhe roll dynamics is nol considered here. 

NEUitOFUZZY AUTOPILOT l>lcSIGN 

H it is assumed that rile fut.zy inference system uuckr 
consideration has mulliplc inpu1s (lilit) and 'one funccionnl 
ou1pu1 (f) then the funy rule-based algorithm mny be 
represented in the firs1 order Sugcno fonu as shown below: 

Rule I : I( x1 is A, nnd x1 is n, and ... and~~~ is P, 
then r, : Pt X1 .. q, XJ + ... + Yt 

Rule 2 : If .11.1 is A1 and x1 is 0 1 :wd ... and lili., is P, 
then r l = PJ x, ... q, ... l ... ... ... YJ 

ltulu n : If x1 is A" and~~ is B"' and ... :.nd A,., is P* 
then f., :o: t•• X1 + Q11 XJ t ... t- v., 

The COrTCSJlORlJing ncurofuny architecture is dctlicted 
Figure I. 

.... .,, •• .,.,1 
jpr tntht paunuuul 

••y•r :l I•Y.,. 
(c•nuq"'"' p• t• .nclctll 

,.,.,s 

. 

.. 

•. 

rigurc l. "lltc. adaptive ncuroruuy architecture 

The node functions in each individual layer are of the sam 
runclion family as described by lhe following: 

Layer 1: Every illr node in this layer is an adaptive node \¥itl 
a node ou1pu1 defined by: 

0 1.1 = J.IA,(x,) (2) 

where x1 is 1he input to the node and Ao is the funy st 
ossocialed wilh lhe nodes pertaining 10 input x,. In oth •. 
words, outputs of 1his loycr arc the membership values of 1tM 
pn:mise pnn. The membership funclions can be on) 
3(lproprio.tc: pru:uuctcliud sh3(lCS. llt:rc A,,D, .... ,l,, 11r' 
characterized by the generali>cd bell fu nction: 

(3) 

where ( o
1

, b1. c 1 J is the par'ameter set. Parameters in lhis lay~• 
:arc referred to as pr~m;st pnram~lus. 
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YwU (Y"' -n~ U 0 Y11.U 0 

N""U N"'U 0 N,,U 0 

0 0 0 0 

~<,.vU (l<u<•ue.,lU 0 K,,U - 11~ 

0 0 0 0 

0 = 

v....,.u' YWI,Ii 0 0 

Nu..•~>. U' NUJ6lli - \ 

0 0 0 0 0 0 

~<u..Nu' ~<u..u.u' 0 0 0 0 

0 0 0 0 0 0 

and the stole voriobles orc V, R, 'If, P, +- To implement 
equation (I) use is made of an AUV MATI.AD I Simulink 
simul;uion model supplied by 1hc Defence Evaluation ond 
Research Agency (DERA). Sea SySicms Sector, Winfrillt, the 
mo<lcl hoving been validoted agoinst DERA non-lineor 
hydrodynamic code usinc tank test dolo and experimentally 
derived hydro<lynomic coerfieients from the Southampton 
Occonoaraphy Cenuc's AUTOSUD vehicle. As con be seen 
in e«1u:uion (I) the roll cross-coupling dynamics arc included. 
llowevcr, control or the roll dynnmics Is not considered here. 

NEURm·uzzy AUTOPILOT DESIGN 

(( it is QSSUIUCd lhnt lhC futz.y inference sysiCIIl under 
considcnlion has multiple inputs (ltl) and one functional 
output m then the runy rule-based algorithm moy be 
rcprcscnu:d in the lint order Sugeno for m as .shown below: 

Rule I : 1r x1 is A, umJ x1 is 0 1 nnt.J ... omJ ""' is 1', 
then f 1 u p1 x1 + q1 a; 1 + ... + v, 

Rule 2 : ar "' is /\1 "mJ XJ is o, and ... ond "'"'is p, 
then f1 ~ fiJ At + ql At t ... .. YJ 

Rule n : U ~t 1 as A" nnd x1 is U" ami ... unt.l x" is P" 
lhen f. = p11 x1 -t ""' xr + ... t- v,. 

1'he concsponding neuro ful.l.Y nrchuccturc. is depicc&:d "' 
l'isure I. 

.. .,.,, .. , .. , ,,, .. , ••w•r4 lty&fJ 

Cpnmht pu•m•lfnl lconuq"''" ptumclcu) 

' • 

Pigure I. ·n.e odal'ltivc ncurofuzzy architecture 

Titc node func1ions in cnch individual htycr arc or the stunc 
(unction fami ly o.s described by the following: 

Loyer 1: every ilh node in this layer is Rn nllaptivc node with 
o no<le output defined by: 

(2) 

where x
1 

is ~te input to the no<le ond A1 is the (uu.y set 
associated with the nodes pertaining 10 input x1• lo o1hcr 
words, outputs or this layer arc lhc membership values or the 
premise pan. The mcnlbecship (unctions can be Q.ny 
appropriate panunelerizcd shapes. Hen: A.,01 .... ,P, tuc: 
ch:uactcrizcd by the gcncrtlliZ.cd bell runction: 

(3) 

where 1 a1o b,, c1) Is the p:uametcr set. l':uamcters in this layer 
ere rcfcrTcd to as pnmiu pflrtwt~ttrs. 
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l .uycr 2: Every nmJc in this loaycr is ;a fixetl uoJc lt~bt!llct.l n, 
which muhiplics the incomin¥ signals am.l outputs the product 
or T·norm operator resull. e.g. 

Ou" w, = l• .. .(.r,) X!J •. (x1)>< .•.•. • XJr,,(.<.). 
i = 1.2 ..... n. 

Each node uutput ccpcucnts the firing strt.ltl(lla of a rule. 

(4 ) 

t.oycr ) : Every nod-: in this layer is 3 fixed noc.h: lahelktl N. 
The ilil node colculates the ratio or the irh rules ' firing 
strength tO the sum or all rulu' firing strengths: 

- w 
o),l= w l =~. 

L..w • 
I 

i = l.l ..... n. (S) 

For convenience. outpu1s of chis layer arc called uormulittd 

firi''l stre11g1hs. 

Luyc:r 4: Evc1y ilh node in this layer is on ul.lopcive node with 
a node funclion: 

wt (p1 ll. t +tj 1 ll 1 + . .. .+ v,) (6) 

where Wt is the output or loyer ) ond I PI• q ...... vtl is the 
parameter set. Parameters in this layer arc rdencd to as 

CDIIItqutnt parnmeters. 

Loyer S: The single node in this lnyer is labelled I, which 

computes tha overall output as the stnnrn:uion of incoming 
signals: 

Ou ::: overall output = }: \Y. f . 
' 

2. w, r, 
~ --Lr. w' 

' 

(1) 

1l1us an odaptivc network that has exactly the some function 
as a Sugeno fuu.y model may be constructed. 11ti$ work 
consic.Jcrs fuu.y :tutopilots of 1wo inpul • stnglc output form, 
lhc input varimUics being yaw error (degrees) And ynw rate 
(degrees per secon~) on~ the output vofioble being connrd 
demand (degrees). 

Tlti\ININC Al.CORITIIMS 

The Uybrld Lenrnlng Rule 

·n,is sec1i011 discusseS the hybri~ leorning <UIC Of Jnng (199)). 
The sy$tem is simulated using the dynnrnic model nnd t.lata is 
collected ~cross a trajec tory. This trninins data is used to 
compD.tc she syslem trajectory with 1hc Uesiretl trajectory. and 

so rurm the cnur measure to be: ust!d for arninint: of the 
JdJIHive network parameters. '11u~ error uu:asurc chost:n was 
the intcgrnl squnr.: o( heading error over linl~ (ITS E): 

£ -1 (Y'' - Y'. )
1 
tlr 

(8) 

The I)Un\nlt:h:rs IU be >therctl are the ruay par:uutters ur bolh 
the premise nnd consequent layers. The leru-ning rule 
combine$ ll b3C~pt0p3gation mclhcnl to upcJ;ue the (uzzy 
premise parometcrs ancJ a recursive lc:~st squares method to 
u1xJ:ue the fuzzy conscqucm pRnunctcrs in an ac.J~ptivc 
network. l!ach croch consists Of D forw:ud p:US in whic;:h 
inputs arc prcs..,ntcd OmJ tho consequent panunc:tcrs l'rc 
upd:ucli viB the rccursi'ic 1cast·squares method, and o 
bnc'Kwnrd p3ss in which 1hc: dcrivllivc of 1he error n1tnS\liC 

with respect to each nodes' output is propag:ncd frum the 
O\ttput to the input or 1he network architc~:ture. AI the cntJ of 
the backward pass the par;uuclctS or the p1crnise layer DIC 

UfKlotcd by a Kr•dicnl descent motho<l. 

Chcmotnxls i\lgorlthm 

The moin disadvantage of baekpropagation is the tendency 
(or the •eorch 10 become trapped in • locol minimum or the 
error hypcrsurfacc. The more complex the network dte more 
likely this is 10 hnppen os the enor surface is lncre~singly 
multi·dimcnsionol and therefore lncaular. with more loc::al 
minima into which the pDStially trained network can ran. An 
aherntuivc is 10 use less guided mc1hods 10 search lhe 
pasarnetcr sp01ce. Such ranrJorn methods o.re virtually 
gunrantccd 10 fond a global solution but training times moy be 
somewhat cxtcnd..:cJ as the search pallcrn is completely · 
umdom in n-a\u1c. 

The claemot:.xis algorithm was inspired by oUservo1ions of the 
movement of bacteria in a chemic<ll ..:nvironmcnl, hence 
'chemo' • chemical, and 'taxis' • movement (Koshlanr.J, 
(1980)) . ln the presence or on lnitont, bocterio would move 
randomly away in any direction in 01der 10 reduce the 
irrit3tion, until this direction took them into an a.tca where the 
init:uion beg•m 10 increi\SC ag:lin. A new, ranc.lom direction 
woultJ then be chosen ancJ i ( thi$ a,ain lecJ 10 less initation the 
b:Ktcria would hc;\d in the new direction, otherwiiC another 
uaudom direction would be triccJ. In time tlu: bacteria woultl 
be loco1ct.l ol the global minima, 1hat is. furthcsl from the: 
source of irritation. 1'l1is bt.:haviour moy be tronsfocmed into a 
general search alxurithm for an optimum scls uf weights or 
paramc1crs. The incrcasc:/dccrco.sc in · initotion may be 
chnrncteriud by an incrc:ue/dccrcasc in a 1uit;,hlc eos1 
func tion for the optimization. Oy converting this l.lcuer/worse 
infun\\0\\\on in\o urdnfou:cment sisnu\ acconlint to: 
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r(t) = I, beuer 
r(l) = 0, worse (9) 



'he ehemotuis senrch o.~oriduu is oiJto.incd, which may be 
classed as a reiufou:cmcnt learning technique. The algorithm 
is sunu1uuizcd in Table I. 

1. Simublc the \)'stem wilh an ini1ial 'tt of paramcccu. 

1. Gcnculc some sm.:all r.1ndom ch::angu in 1hc p:u:unclcU 
and fC •timulalc the syucn\. 

J. ll lhc sy.slcm's pcrfo•nunce h:n improvcLI wi1h 1hc new 
sec of pu amclcrs, rct.:ain ttlc. ch•nccs and rc ·:ap~ly. This i• 
cucn1ially assucnint~lh:.t the loc.1l custfunction lf3tHcnt 
will continue to be nca:atl vc in 1hc lc)Cll MC3 

"· If the system pcrlormmcc hon woucncd. return to s1cp 2. 

) . Continue unlillhc syslc m has rc:achcLI .:an 'Ktcpt:ablc level. 

Table I. 'll1e Chc:moHu.is Algorithm 

Given sufflcic::nt tr:'lining time. the algorithm shoulcJ converge 
to a gJob::&l minimum of che cost function, although gi ven the 
random nature of the scorch a lengthy training period is often 
necess::&ry. 

The structure or lhe chcmouaxis tuned autopilot is similar to 
1h111 described in sccaion ) nnd depicted in figure I. During 
the tuning process. input d::&t3 are p:~.ned forward through the 
network architcclute to senerate an enor function. The 
chemoLu.is 3\goritlnn is lhen applied 10 simuhaneously se:uch 
for a set or premise and consequent parameters which 
minimi1.e 1hc cost fune1ion of ec1uation (8). 

RESULTS AND DISCUSSION 

In the previous sections the development of two Sugeno ty~e 
fuuy MISO aulopilols has been discussed. The hybrtd 
lcarnina als,orilhm nnd the chemota~tis algorithm were applied 
to the task or lunin& the premise and consequent parameters 
of I fuu.y I UIOpilol by encoding lhe aulopilol U In ldftplive 

network archllecture. 

Tuning of the network parameters took ploce over a series of 
posilive and negative cours~ changes, determined a priori to 
stimul:lte a wide range of the vehicles yaw dynamics. 

On completion of the 300 epoch tuning regime the resulting 
input fuu.y sets for the two autopilots wefe as shown in 
Figure 2. The original fll7.Zy se1s arc included IO highllghl lhe 
evolution or the SCIS during che tuning procedures. The non· 
symmetrical nature of the tuned fuu.y rulehases was 
consit.lcrec.J mainly due to computer truncation enors arising 
during the !raining f)roccsses. and in the case of the ANI;']S 
tuning rcsimc due tn the approxintate nature of the initial 
cumJiti11ns rcquirctJ to bflOtstrap the calcuhuion or the 
scqucntiallc:3SI squnrcs cMimuac. 

1:: 
i::~~:_~~~~~~~~=D 

Figure 2. The tuned input fuuy sets 

The rulebase of lhc ANf'IS 1u11cd Sugcno s<yle fuzzy 

3Utopilut was 1akcn as: 

lfyt, is N ami yt is NI hen 0 ~-0.487 yt, ·0 .879 yt ·0.029 

lfyt,is Nondyt lsZ 1henO ~-0.489!p, -0.901yt +0.001 

If 11' ,is N ond 11' is P 1he11 0 =·0.4861!', ·0.896 yt • 0.003 

If 11', is z •1ul!p is N 1hcn 0 =·0 .299 1!' 1 -0:103 yt -0. 123 

If !p , is z ond yt is Z 1hen 0 =-0.488 V' , ·0.891 yt 10.004 

If yt , is z and yt is P 1hcn 8 =·0.305 1!', ·0.306 yt -0.037 

l fyt , is p and yt is N 1he11 0 =·0.590 ¥', ·0.839!p -0. 117 

If¥', is r nndyt is Z lhenO =·0.48 1 ¥', -1.08 1 yt -0.061 

If¥', is P and¥' is P <hen 0 =-0.659 V', - 1.3 11 yt +0.781 

whcrcl\s the rulebnse of the chemoHuis tuned Sugeno style 
fuu.y autopil01 was l3ken as: 

If¥', is N ond yt is N 1hcn 0 =0. 119 !p , -0.058 ¥' +0. 143 

lfyt, is N • nd ljf is Z 1hen 8 =·0. 101 ljf, ·0.019 yt +0.148 

If¥', is N and¥' is PI hen 0 =·0.02S ¥', ·0.061 ¥' ·0.044 

If yt , is z ami¥' is N 1hen 6 =·0.028 yt, -0. 109 ¥' +0.146 
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If yt, is Z a11d yt is Z 1he11 0 =· 0.201 ¥' , +0.085 ¥' ·0.005 

lf!p ,isZ ond !p isPihenO =0.149yt,+0. 1451jf -0.067 

If 11' , is P and yr is NI hell 0 =·0. 12•1 yr , t0.067 yt ·0.04 1 

If yt, is P and !p is Z I hen 0 =-0.084 !p , • 0. 170 1Jf • 0 . 160 

If 11', i• P anti 1Jf is P <hen o ~0.0091Jf, +0.035 yt +0.059 

A qunlitotive assessment of the :nnopilot responses was 
provided Uy the AUV modds responses to a series or random 
course ch::&ngcs :u shown in Figute 3. 

!C~E 
o ~ • ~ ~ - m ~ ..... .,HI(~ 

f-igure J . Autopilot responses to random track configuration 

Figure 3 does not provide conclusive e vidence o ( I he ANFIS 
autopilot's superior perform:ance over chc chemotnxis 
aulopilol, ohhough il is apparcnl 1ha1 lhc hybrid learning 
algorithm or the ANFJS technique lcacb to faster course· 

changina responses with less peak overshoot. Both nutopilots 
perfonn well over the validation course and thus further 
perrom111nce indices were sought to ascertain the superior 
autopilot for A lN course·changing conttol. 

\Vi1h respect to quantitati ve peffonnancc meo..,urcs for each 
autopilot, 11 a means or measuring the course-changing 
nccurncy and n1dder oclivily lhe inlegral square error (ITS E) 
for lhc yaw error ( 11' , ) and I he canard demnnd ( {j , ) nre 

employed: 

11'. = 1 ('I'' - 'I'.)'"' 110) 

(11) 

where ty J :.nd 0 J represent lfcsiret.J yaw angle and canard 

dcnmnt.l (and 6 J ;:Q), and Y'. 3nd 6. represent :.ctuol ynw 

:lnglc anU can::mJ dcm;amJ respectively. To assess the speed of 
response of tlu.: conuol system the rise time ( Tlf ) was 

calculau:d for c3ch fuzzy autopilot, and the: penk 
ovenhoot( M , (r)) W3S cnlculatell tu assess the oscillatory 

nnlure of each response. llcre rise timC is loken as the time to 

rcnch 99 fJCf cem of a tl..:sirccJ 4 0' eouuc ch:t.nge, i.e . ) ? .6' , 
3nd the peak overshoOt is 111ensurcd as :'1 relative percentage 
or this 4 0. course change dcm;uu.J. 

Testing each autopilot over a wider AUV speed envc.: lopc 
provided some insisht in1o the robustness of each autopilot to 
speed parameter variations. Results pennining to three 
speeds, 5 1.5 and 10 knou, ore displayed in Table '2, where 
7.5 knots conesponds 10 the tuning speed. 

AUV 
DH!~d 

ANFIS 
llnc;tRI_lot 

Chcmocuh 
I U!OpiiOt 

'!' , o, T, M,{t) '1'. o, '/~ M,{t) 
de& 1 dC"C I ... de a' dcc 1 ·~ 

S Knots 4}90 l 470.S S.7S l .9S SJOO.I 16•9.1 11.62 J.JS 
7.48 4,96 
l ll '§~ 

1.S Knots JOSO. I 1<69.7 6.47 1.9} lS99.6 IISl.O 
J.0.!J!9.1L-.!l!l. l 10029 •2LJ.1LJ!JJ.L.W"'1'--LL..._.WI 

Table 2. Yaw responses over n course chl\nging 
m;111oeuvre of 40 degrees 

When operating at 7.5 knots the autopilot dcsisned using the 
ANFIS technique was 15.27% more accurate than that of the 
chemota~tis 1uned autopilot Additionally, the rise time and 
peak overshoot figures for lhe ANfiS tuned autopilot were 
lower thnn those or the chcrnotnxis tunc:d autopilot suggesting 
n faster and less oscillatmy coutst·chonging response. 

Intuitively one would expect muJe sluggish AUV r~sponses 1U 

S kuots due to the diminisheJ hydrot.lynnmic forces u cned 
upon 1he cnnard control surfaces. Indeed this was borne out in 
the S knot simul3tions. Course-changing accuracy was og3in 
more evidenl wilh lhe ANHS •ulopilol 01 1his speed ahhough 
an increase in coward control effoJt was noted. The ANFIS 
nu1opilo1 proved 17.09% more accurnte .than the chemotaxis 
nutopilot nt S knots. 

Fi•mlly, the increased effee tivenen of the c:~nnrd con1rol 
surfaces at the higher operating speed of 10 knots le:~d 10 

more responsive AUV course-ch:.nging manoeuvres, lht 
ANFIS au1opilo1 being 14. 1S% more accuralc lh•n 1he 
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chemo1nxis tuned autopilot with resp.:ct to course-dmnging 
error. 

The results pcttalning 10 the rise lime And pcnk percc1Ungc 
overshoors for rhc rwo auropllors suuesr rhor lhe ANffS 
aulopifol produced faslcr, less oscillarory courrof of rhe AUV 
yaw dynamics over rhe rested AUV speed envelope. 

CONCLUSIONS 

The work described In rhls popcr dcrnonSiralcs thal course· 
changing aulopifots for AUVs may be designed using Jang's 
ANflS approach. 11 Is impor1on1 to nooe lhal in lhis Sludy, 
I he design. of tile auropifoo is rho resull of a fusion of neural 
and fuzzy techniques. However, a dlsllnction c•lsrs in thal 
rhe aulopilol hself is enlirely l"uuy and the nel\vork style 
Implementation of the workjng conlrollcr is merely a 
convenience. 

· The use or a 300 epoch runing period in this work is meant 
to provide a direct comparison between runing algorilluns. 
However, due to Uoc random search nalure of the chemolaxis 
algorilhm, extended tuning periods may be n<eessary to 
~nsure that the resulting set of autopllol paramcrcrs arc lhe 
globally optimal set. 
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NEUROFUZZY COf:'ITROL OJI A NON-L.INEAR I\IULTIVARIABLE SYSTEM 

P J Craven", R SuUon · and M Kwlcslclcwlcz.' 

• - Uolvenlty or Plymoulb, Unite~ Kln&dorn 
11- Ttcbnlul Unlvcnlty or Gdansk, Poland 

INTRODUCTION 

In order that the potentially di$3.Sirou.s effecls or 
climatic clt.1nge be accura1cly monitored, the ocean 
depths must first be explored. The corresponding 
requirement for improvements in data collection 
l.echnlques, 1.1 de.scribed in (I]. highlights the need for 
robust and reliable naviaation, cuidance and conlrol 
(N'GC) systems ror AUVs which ue becoming 
Increasingly lmporlaJlt In order to fully exploit lhe 
v:r.stness of tlte oce:uts. 

Traditional control methodologies onen rail to 
compensate for the Inherent coupling between AUV 
degrees of freedom and thus some lnlerest in 
multlvariable approaches to AUV aulopilot design has 
grown in rccc:nt years. This work discusses tlte 
development of a new multlvariable autopilol for 
simultaneous control of the sway and yaw modes of an 
AUV and highlights the requirement for tlte 
ntlnlmlz.ation of cross-coupling effects between these 
modes. 

Muhlvariable control system design te<:ltniques arc well 
established In the control theory literalure (see (21), and 
ue usually employed when lwo or more degrees of 
freedom must be controUed simultaneously or when 
tltere is a need to compensale for the interaction 
between dcarees of freedom In a plant Various 
advanced multivariable control techniques have been 
applied directly to the problem of unmanned 
underwater vehicle autopilot design with varying 
amounts of success ()],(4),(S],(6), and (7]. 

The remainder of tltls paper begins In section 2 wltlch 
provides an Introduction to tlte sopltislicated AUV 
model used within this study. Section 3 discusses the 
development of • novel architecture for !he tunlng or 
multivariable AUV aulopilots lo control mt~tiple 
degrees of freedom slmullaneously. The AUV model Is 
used In section 4 lo show the effectiveness of the 
developed multlvariablc autopilot over SISO AUV 
conlrol strategies. finally, conolu~ing remarks are 
given In sectionS. 

MODELLING TilE AUV DYNAMICS 

Figure I shows lhc complele control authorily or 1he 
AUV model. However. it should be noted lltill for lhis 
study the upper and lower caMrd rudders, silualed al 
the bow of the AUV arc used 10 control the yaw 
dynamics and sway control Is achieved via the upper 
and lower stem rudders (both limiled to +/- 25.1 
degrc:e.s). Dimensionally, the model represents on 
underwaler vehicle which ·is 1 m long, opprox.irnntely I 
m In diameter and has a nominal displacement of 1600 
kgs. 

Figure I. ·The complele control authority of the AUV 

U required, the equations of molion de.scriblng the 
dynamic behaviour of the vehicle In the yaw and "vay 
modes can be wrillen In slate-space fomt (81 : 

E X • Fx + 0 u (I) , 

where : 

-(Y • m Z 0 ) 0 

- N; 
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YvvU (Y .. - rn)U 0 Y.,U 0 

NvvU N""U 0 N.,U 0 
F • 

0 0 0 0 

KuvU (K110 +mZ0 )U 0 K.,U-mgl)G 

0 0 0 0 

Yuu~..u• y UUitiU 
1 0 0 

Nuu.t,.U, Nuu.-.,U' /I -I~ '· -t. 
G• 

0 0 0 0 0 0 

0 0 0 0 0 0 

and lhe stale variables are V, R, ljl, P, +· To implement 
lhe non-linear AUV equations of motion, use is made 
of an AlN MATLAB I Simulink simulation model 
supplied by the Defence Evaluation and Research 
Agency (DERA), Sea Syslerns Scclor, Winfritlt, the 
model having been validated against sllutdard DERA 
non-linear hydrodynamic code using tank tesl data and 
an cxperimenlally derived set of hydrodynamic 
coefficients from the Southampton Oce.1nogrnphy 
Centre's Atn'OSUB vehicle. 

MULTfVARIABLE AUTOPILOT DESIGN 

By exlcnding the ANI'IS stntcture of Jang (91 lo 
accommodate multiple oulpuls, a novel approach for 
the tuning of muJtivariablc fuzzy autopilots using a 
neural nclwork arcloltcclure and a hybrid learning rule 
is derived. U it is assumed tltal the fuzzy inference 
system (FIS) under consideration is of rnultivarinble 
fomt lhen lhe fuzzy rule-based aJgorilhm may be 
represented In the lirsl order Sugeno form as shown 
below (for lwo funcllonal oulputs): 

Rule I :If xis A, and y Is B·, 
Uten fot = Pot X+ qll y + rll and f., - Pit X + q ,, y t r, 

Rule n :If x Is A. and y Is B. 
Utcn r,., • p,.., X+ q,., y + r .. , end rnl - Pnl X + qnl y + fN 

532 

By encoding such a fuzzy rolebase as an . adaplive 
network sl/uclure lhe proposed aschitccture for two 
Sugeno rules with two oulpuls per rule can be laken as 
that of Figure l. Obviously, the actual archilcclurc 
employed in this study Is for more complex. 

Figure 2. The multivariable autopilot structure. 

In general, node functions in the same layer ore of the 
same funclion family as dClcribed by I he following: 

Layer 1: Hvery llh node in this layer is an adaptive 
node with a node output defined by: 

(2) 

where x Is the input to the general node nttd 11; Is the 
f111.zy sel tissoclaled with tltls nodes penninlng to Input 
x,, In other words. outputs of this layer a.rc the 
membership values of the premise pari. Here the 
membership functions for A; can be any appropriate 
paramctcrizcd n1c111bcrship functions. Here Ai,B; .... ,P1 
an: characterized by lhe bell function of equnlion (]). 
where (a;, bi. q } is the pMamclcr set Parameters in lhis 
layer arc rcrcncd to as prtmlsr parameters. 

(l) 

Layer 2: Every node in litis layer is a fixed node 
labelled n, which multiplies the incoming signals and 
oulpttls I he proditcl or T·nonn operator ~csull, e.g. 

OJ.I a \Vj • J.IA, (x,) )( )I~ (x1)x ...... X JI I, (x,.), 
i .. l,l, ... ,n 

Each node oulput e<jttals I he firing .rr.ngrh of a rule. 

(4) 



AUVs destined for long duration mission scenarios for three mnin reason!!. One is a non 

technical mauer which needs to be resolved as soon as possible and revolves around the legal 

responsibili1ies and liabilities for AUVs deployed at sea. Without doubt, lhcse arc issues thal 

need to be clarified, howover, they are clearly outside the scope of this paper. The second 

reason relntes to the limited endurance capacity of the power systems. Most AUVs depend on 

banery power which, inevilably, gives them limited range. To overcome lhis problem there 

needs to be a major breakthrough in banery lechnology or a shift to other power sources such 

as non air-breathing diesel plant. The third and linal restricling faclor is associated willi the 

capabilities of the current generation of onboard navigation, guidance and control (NGC) 

~ystCniS. 

In order for this type of vehicle to be lndy aulonomous, il is necessary for it to possess a 

reliable and robust NGC system. A key elcmenl of the NGC system is the control subsystem 

which is responsible for maintaining lhe vehicle on course. Several advanced control 

engineering concepiS including llco f4J, sliding mode (5), und predictive conlrol (6] theories 

arc being employed in the design of course-changing aulopilols and have met with varying 

degrees of success. 

AI 1:1pproaches are now also being introduced into the design process. Autopilots formulated 

using fuzzy logic and artificial neural network (ANN) methods have been reported and shown 

to be endowed with commendable robustness properties. Encouraged by such resulls, this 

paper considers the development of a course-changing autopilot based on the innovative 

neuro-fuzzy metliodology of Jang (7] known as the adaptive nelwork-based fuzzy inference 

system (ANFIS) which was successfully employed to produce a control stralegy for the 

classical inverted pendulum problem. 

With the ANFIS approach implemen1a1ion of the controller design differs in form from the 

more usual ANN in that it is not fully connected, and not all the weighls or nodal parameters 

are modifiable. Enentially the fuzzy rule base is encoded in n parnllel fashion so lhat all the 

rules arc aclivated simullaneously so as lo allo\V network training algorithms lo be applied. As 

in Jang's original \YOrk, a back propagation algorithm is used lo optimise the fuuy sets of the 

antcccdenls in the ANFIS architeclure and a leBst squnres procedure is applied to the linear 

coefficients in the consequent lerms. 

For performance assessment purposes, lhe ANFIS design is compared 10 that of a simulated 

anne3ling (SA) tuned autOpilot and a proportional-derivative controller. In the design of the 

SA tuned autopilot, an adaptive struclure similar to the ANFIS ~rchitecture is employed. 

During its tuning process, however, the input data are only fed forward through the network 

in order to generate an error function. The SA algorithm is then applied to oplimise the 

premise parameters. 

The paper also considers the performance of a guidance subsystem based on a line of sight 

(LOS) algorithm. 

Throughout this simulation study, the test bed platform for evaluating lhe control algorilhms is 

a generic AUV dynamic model which is currently being employed by the Defence Evaluation 

and Research Agency (DERA), Sea Syslems Sector, Winfrith, in a number of their integrated 

control syslems design studies. 

2. Modelling the nutonomous undenvnler vehicle dynamics 

Figure 1 shows the complete control authority of the AUV model. However, it should be 

noted that for lhis study the upper and lower canards are lhe only surfaces used to control its 

ynw dynamics. Dimensionally, the model represents an underwater vehicle which is 7 m long, 

I m in diameter and has a displacement ofJ600 kg. 

The equation of motion describing the dynamic behaviour of the vehicle in the hnera1 plane is 

as rollows [8) : 

Ex= Fx + Gu (I) 



where: 

(m-Y.) -Yl 0 

-N. (1,- N;) 0 

Em 0 0 

-(K., + mZ0 ) -Ka 0 
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YuvU 0 

NuvU 0 

F• 0 0 

KuvU 0 

0 0 0 

Yuu~U1 Yw.t.rUJ 0 

Nuu ... U1 Nw.uUJ t, 

G• 0 0 0 

Kw ...... U
2 Kuu.,,U 1 0 
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and a he slale variables are V, R, 'V. P and f. A nomenclalurc for the AUV parameters can be 

round in Appendix A. As mentioned earlier, to implcmenl equation (I) use is made or an 

AUV MATLAD I Slmulink slmulalion model supplied by DEilA, Winrrillr. The model having 

been validated against standard DERA non-linear hydrodynamic code using tank test data and 

an cx.perimentally derived set or hydrodynamic coefficients from the Southampton 

Oceanography Centre's AUTOSUB vehicle. In addition, the MATlAD I Simulink model 

structure also takes into account lhe dynamic behaviour or I he canard ac1ua1ors by describing 

them as first order IHgs with approprialc limitcrs. 

As can be seen in equation (I) the roll cross-coupling dynamics are included. However, 

control of the roll channel is not considered here. 

J. NeuJ"O-fuuy nulopilol duigu 

As discussed above, the fuzzy conlroller design used in this study is based on 1hc ANFIS. 

Functionally. chere are elmos1 no conscrainls on lhe membership fUnctions or an adaptive 

network cKcepl piccewisc dirferentiobilily. Structurally, the only limilolion on network 

configuralion is lhi\1 it should be of the feed-forward type. Due lo lhesc minimal resuictions, 

1he adnplive network's npplications are immediate ond immense in various areas. 



If it is assumed that the fuzzy inference system under consideration has multiple inputs and one 

functional output (f) then the fuu.y nde-bnsed algorithm may be represented in the firsl order 

Sugcno form as shown below (9] : 

Rule I : lfx is A, and y is n, then r, = P• X ·t q, y + r, 

Rule2: lfxisA1andyisl11thenf1"" PIX + q1y + r1 

Rulen lfxisA,.andyisB,.thenf,..,. p,.x + q,.y + r. 

The corresponding ANFIS architecture being shown in Fisure 2. 

The node functions in lhe same layer ore of the same function family os described by the following : 

Lnyer 1 : Every irh node in I his layer is an adaptive node with a node output de lined by : 

Ou "" Jl "• (.r) (2) 

where x is the input to the general node and Ai is the fuzzy ~cl associated with this node. In 

other \VOrds. oulputs of this layer are the membership values of the premise part. Here 1he 

membership functions for Aa can be any approprio.tc parametcrised membership functions. 

Here A1 is characterised by the generalised bell function : 

J• .... (x) (3) 

where ( a1, b1. c1) is the parameter set. Parameters in this layer Are referred lo as premise 

pnrnmelers. 

Lnyer 1 : Every node in lhis layer is a fixed node labelled n. which multiplies 1hc incoming 

signals and outpuls the product or T-norm operator result, for example: 

Oz.; Wj .,. Jl ""• (.r) X Jl D, (y), I, 2 (4) 

Eo.ch node output represents lho firing s/renglh of o rule. (In fact, any other T- norm 

operators that perfonn the fuzzy AND opero1ion can be used ns the node func1ion in this 

layer). 

Lnyer 3 : Every node in this lnyer is a fixed node labelled N. The ill' node calculates lhe ratio 

of the Jtlr rules' firing strength 10 I he sum of all rules' firing strenglhs: 

01.1::: wl = __ w_,_. 
wt + \V• 

• I, 2 

For convenience, outpuls of this lAyer nrc cnlled tJormnllsedfirillg strenglhs. 

Lnycr 4 : Every ilh node in 1his layer is an adaptive node wilh a node func1ion : 

(5) 

(6) 

where Wds the output ofLByer) and {p;. q;, r;) is the pnmmeter set. Paramelers in this layer 

are referred to as conseq~telll pnrame1r.:1·s. 

l .. nyer 5 : The single node in this layer is labelled L , which computes I he overall outpul as 

the summation ofincomins signals: 

Lwlfl 
o~.i ""' overall output .. L \VI f, = ~ 

i L.,W; 
(7) 



Thus an adaptive network that has exactly the same runction as a Sugeno fuz.zy model may be 

constructed. 

4. Simulated auncnling tnucd nu1o11ilot st•·ucture 

The .struclurc of the SA tuned autopilot is similar to that described in section 3 and depicted in 

Figure l. llowcver, there arc dissimilarities. In this case, the nodes in Loyer 4 are static' and 

therefore are not modifiable. Also during the tuning process, inpul data are only fed foiWard 

through the network in order 10 gcnernte an error fimction. The SA algorithm is then applied 

to optimise the premises. 

5. The lrnlnlng algorithms 

5.1 The Hybrid Learning Rules 

Rewriting the premise membership function equation (3) as : 

l•.,(x) (8) 

I hen equation (8) now represents lhe jth membership function on the ilh input universe 

of discourse. 

Therefore the learning rule for a general parameter may be described os follows : 

(9) 

Hence, as shown in Appendix B the learning rules for each individual parameter arc : 

(10) 

2n, ·~ (.<- c, t n, '" (x- c0 )'" ln[l~l] 
(n/''(x-c,)'" +(x_-c,)'"n.'"}' 

(11) 

(12) 

The ruzzy consequent pnrometers being updated using a recursive least squares method 

and is also described in Appendix B. 

S.2 Simulated annealing 

The main problematic aspecl of gradient descent based learning algorithms for 

optimisation problems, such RS backpropagation, is the tendency for these methods to 

spend long periods of time in the neighbourhood of poor or sub-optimill local minin1a 

on the error hypcrsurface. A technique which can be employed to overcome this 

shortcoming is SA which was firsl introducccJ by Ki1kpatrick, et al [ID). 



SA is a very eOicienl random search method for global minimisation [11]. (12). 1'his 

method is based on an analogy between the global minimisation problem and thnt or 

determining the lowest energy state or a physical system. 

Kirkpntrick. cl ol [I 0) adapted nn algorithm taken from the statistical mechanics field 

for converging to one or many possible cooled or low energy states. Uncrgies of this 

nlgorillun are described by a Boltzmnn probability disuibution such that the probability 

of any given energy E is an exponenlially decreasing function of E. Thus, If a new 

matrix of parameters 9, which have been penurbed from on initially assumed solution 

by a randomly generated amounl, lead to an improved performance of the system 

under consideration, then lhey are accepted and the process is repeated. However, if 

this new matrix leads to a worsened performance of lhe system it may be occasionally 

accepted Mth probability P(9) such lhat : 

(13) 

where E(9) is lhe energy associated wilh lhe state 9, k is lhc Dohzman's conslanl and 

T is a ICIHJJcrature parameter. 

For a thermodynamic system, it can be_ demonstrated bolh by theoretical argnmenls 

and cxperimenlal verification thal the most effecaive strntcgy for obtaining o global 

minimum energy stnte requires the temperature lobe cooled slowly. Indeed, provided 

lhc coolir'U process is performed sufficiently slow, the system will by-pass locally 

stable states to reach one which is a global minimum. Thus, in analogous systems, the 

temperature T is aHowcd to decay during training according to the rollowing equation : 

T a _I._ 
1 + an 

(14) 

where T. is the initial temperature, o. is a constant which governs the decay rate and n 

is the trnining epoch. 

Hence, SA may be considered to consisl ofthrcc distinct phases: 

(i) a random search step; 

(ii) a minimisation stage, and 

(iii) a slopping rule. 

The random scorch step is basically the iterative generation of random matrices in a 

domain S(9J, con91ituted by neighbouring matrices associntcd to lhe current matrix o .. 

by: 

O" • o•· • 

s. = (IS) 

o~' 0~" 

o, e 91" 



The minimisation stage consists of applying a local minimisation routine to some of the 

sampled matrices. Whilst, the stopping nalc terminates the algorithm provided there is 

sufficient evidence that 1he global minimum has been detected within the limils of a 

specified accuracy or some cKplicit iteration number is reached. 

In summary, the SA algorithm can be expre.ssed as in Table I. 

6. Proporllonnl-del'ivnllve nutopilot design 

Whilsl a number of advanced npproaches are now being applied to the control of AUVs, there 

arc still a number of crafi employing nulopilot designs based on variants of the classical 

proportional-in1egrn1e derivaaive (PI D) conlroller. 

Such a con1roller can be represen1ed by a non-interacting structure in tl1e lime domain as : 

u (I) c K [ e (I) + 
1

1

0 

f e (I) dl + T, d :.") ] 

or, alternatively. in the Laplace transronn domain by : 

~. (s) c K [1 + ...!._ + T, s] 
T1s 

(16) 

(17) 

For this study, it was expedient to use a PD controller as a benchmark and, thererore, results 

in equnlion ( 17) being reduced 10 : 

; (s) ~ K (I + T, s) (18) 

Using a Zicglcr and Nichols melhod (13), lhe paramc1ers K and T, were obtained. From a 

practical viewpoint, it is custonmry 10 limit the bandwidth of the derivalivc action to 

approximately_ half a decade. By restricting I he derivative bnndwidlh, the benefits of derivnlive 

action arc maintained without too much amplificalion of high frequency noise. Thus, the PD 

autopilot design is taken as : 

~ (s) • 0.007 {I + 0.643 s) 
c (1+0.117s) 

(19) 

7. Wny polnl KUidnnce by line ofsiKhl 

LOS guidance Rlgorilhms arc more usually associated with airborne missile syslcms. 

Nevertheless, here based on lhe work ofHealey Rnd Lienard (14), guidance oflhc AUV n1odel 

is realised by a heading command to the Sleering mechanism of lhe vehicle lo approach lhe 

LOS belween ils present position and che next way point. Ideally the design of I he guidance 

and control systems should be fully inlegraled. Although this is not the case in this study. il is 

assumed the autopilot has a suffteienlly large bandwidlh 10 track the commands from lhe 

guidance subsystem. 

As consideralion is only being given to lhe vehicle operating in the lateral plane, then lhe LOS 

is defined as I he horizontal Rngle given by : 

\V = lan-• [(y,- y (I))] 
' (x,-x(l)) 

(20) 

where { x._, y._) arc I he way poin1s slorcd in lhe mission piDnncr oft he AUV and ( K (t), y(l)} 

are lhe currenl co-ordimllcs os shown in Figure 4. h is pointed out in Reference [ 14] care 

must be exercised to ensure the proper quadrant is sclecled when programming the guidance 

law. 



In ofder to inform the AUV thal it hns reached 11 given way point, a "circle of acceptance" 

which h:ts o radius PeA is defined : 

PI (1) a [x, -X (t)j' + [Yo- Y (t)j' <Pc. I (21) 

For this study, the radius was 1aken as being three times the length oflhe AUV. 

8. Rcsulu nnd distusslon 

Tuning algorithms based upon the ANFIS and SA techniques have been developed and applied 

to the task of luning course-changing fuzzy autopilots for on AUV. This section discusses 1he 

perfornmnce of each aulopilot in a quolitalivc and quontilntive manner and makes comparisons 

to a tradilional PD aulopilot. For completeness, results arc presented which detail autopilot 

robustness to parameter variations and sea current dislurbances, and gencrolisotion capability 

to course-changing demands which were not used as training data in the tuning process. 

Tuning of the fi•zzy autopilot parameters look place over a series of positive and negiltive 

couuc·changing demnnds of .. o· 01 o surge velocity of7.5 knots. Sufficient time intervals were 

given between consecutive course-changing demands to enable the AUV lmnslotional and 

rotational motions to stabilise, and thus ensure that each course-change was applied at similar 

initial conditions. This method was employed lo errect symmetry within lhc fmnl membership 

functions nnd ruics of the neurally tuned fuzzy aulopilols. 

The ANFIS technique \YDS opJllicd to the lask of tuniug both the premise and consequent 

paramclers of a nine rule fuzzy autopilol of Sugeno form, using the hybrid learning rule 

outlined in section 5.1. 

The resuhing linear fuzzy rules arc of 1he form : 

Ir 11'. is N and w is N then 6 ~ -1.46 '~'• -0.89 w +0.66 

rr 11'. is N and W is Z then 6 ~ -0.49 '~'• -0.88 w -0.05 

lr 11' • is N and W is P then 6 - -O.S I '11• -0.89 W -0.69 

rr I<'• is Z and w is N then 6 ~ -0.45 '~'• -O.tl w +0.79 

rr 'I'• is z and ~ is z lhen 6.,. 0.00 "'s 0.00 ~ +0.00 

lfw.isZond;, isPthen6 =-0.45\Vc·O.Il V, -0.79 

lftp.isPand ~ isNthenJ '""·0.51 \V.-0.89 ~ -t-0.69 

l[ I<'• is P and W is Z then 6--0.49 '11• -0.88 W +0.05 

rr "'.is p and ;, is r then 6 ~ -1.46 '11· -0.89 ;, ·0.66 (22) 

In addition, the SA algorithm outlined in section 5.2 was applied to the 1ask of tuning only the 

premise parameters of the same nine rule Sugeno fuzzy autopilot, whilst the consequent 

pnrnmelers remained fixed as equally spaced singletons upon the output universe of discourse. 

The tuning regime resulted in 1he following fuzzy rule base : 

rr 11'. is N and 11' is N lhen 6 ~ +25.00 

If 'I'• is Nand rp is Z then 6 = +18.75 

rr 11'. is N and 11' is P then 6 • + 12.50 

rrw.isZand ~ isN1hen6 ~+6.25 

If 'Pc is Z and ,;, is Z then 0 ""0.00 

rr !If, is z and "' is p then 6 g -6.25 

rr I<'• is P and 11' is N then 6 ~ -12.50 



Ifr.v. is P and 'I' is Z lhen D ""-18.75 

If 'I'• is P and VI is P then D = -25.00 (23) 

A qualitalive assessment of autopilot responsiveness was provided by the AUV model's 

responses to o series of positive and negative course-chnngins demands of varying magnitude, 

as illuslnited in Figure S. Such a uack configuration was deemed necessary to assess the 

ability of each aulopilot lo generalise to course-changes for which I hey hnd nol been lu'ncd. 

Figure 6 shows chc corresponding canard demands lo lhe track configuration of FigureS. 

The ANFIS tuned fuzzy aulopilot displayed lhe mosl accurate response over this paniculor 

lrack configuralion, wilh smaller rise limes and no steody-sune course enor. Collectively 

these responses SUBSCSt lhat lhe hybrid learning rule employed by the ANFIS lunins regime 

was the most effective at producing a tuned autopilot with reduced ofT-course error with good 

generalisation qualities. 

As a means of quantifying on:course error and course-changing con1rol effort the following 

performance measures were adopted : 

(24) 

"'· = l(6, -6.)' dl (25) 

which rcprc:selll 1he integral of square error (lSE), where \V4 and 84 rcpresenl desired ynw 

angle and canard demand respectively, and 'V a and 8 a represent actual yaw angle and canard 

demand respectively. Addilionnlly, to assess the response speed of lhe AUV model and I he 

oscillatory nature of each AUV response to o particular autopilol, figures penaining lo the rise 

lime (T M) and 1ha percentage peak overshoot (M, (I)) were collec1cd. Rise lime is considered 

here as the lime 10 rench 99% of the course-change demand and lhe percentage peak 

overshoot Is calculated as a relative pcrcen1age of th~ course-change demand. 

As parameler luning took place al 7.S knols, I he robuslness of each aulopilol wns assessed by 

simulaling AUV responses to a course-change of40. at surge velocilics of S, 1.S and 10 knols. 

Thus Table 2 ~onloins lhe resulls pcnaining lo lhese 1hrce surge velocities. Addiaionally, data 

are supplied for off-course error, canard e(fort, rise lime and perccn1agc peak overshoot 

When operating at 7 .S knols the autopilol luned using I he SA lcc;hniquc WDS 2.49% more 

occurale 1h:m the lraditional PO aulopilot. This illustrates tha1 the SA tuned autopilot 

produces a reduced off-course error for the 40' course-changing demand, .as shown in 

Figure 7. Moreover, the oulopilot designed using lhc ANFIS technique is 32.35% more 

accura1e than lhe PO autopilot and 30.62% more accurate than 1he SA tuned fuzzy oulopilot. 

At S knols the effectiveness of the canard conlrol surfaces is significantly diminished due lo 

the reduced hydrodynamic forces acting on lhem. lntuilivcly, one would anliclpate more 

sluggish AUV response times as a consequence of lhis situation. Indeed this is borne out in 

lhc results of Table 2. The SA tuned autopilol again produced course-changing responses 

which were 5.890/o more accurate than lhe PO autopilol. However, 1he ANFIS tuned fuzzy 

autopilot proved to be 29.14% and 33.32% more accurate than the SA and PD autopilols 

respectively. 

Conversely, the increased elfectiveness of the canard control surfaces at 10 knots lead to much 

sharper AUV responses. Figure 7 clearly illuslmles 1hc superior perfommnce of the ANFIS 

luned aulopilol al 10 knots, wi1h o reduction in off-course error ofl2.89% and 34.7l% over 

lhc SA and PO autopilo1s respectively. 

Use wt1s made of o LOS guidnnce algorithm (os detailed in Seclion 7) in order lhat each 

autopilol's errectiveness could be examined in the presence of sea current disturbances. Each 

autopilot was applied to the course-changing track configuration of Figure 8. To highlighllhe 

elTecl of sea current dislurb:mces, results Rra presented in Figure 8 for no added dismrbam:cs 

and for a sea current dismrbancc of one me1re per second (in 1he direction of the positive r· 
North uis) in Figure 9. Additionally, lhe canard demand responses of Figure 10 are given to 

provide some illustration of lhe control effon demands of each autopilol over the course

changing track. 



The circles depic1ed in Figure 8 represcnl lhe targel way poinls which arc slored within the 

mission planner prior to mission embark.a1ion. Therefore, the autopilot which lraces the 

&hortcst distance bclween these way points (whilsl visiling all way points) is considered the 

most effcclive at the course-changing 1ask. At present there is a great deal or research interest 

concerning AUV guidance in 1he NGC communily. Typical methods of AUV guidance 

include dead-reckoning position fixing u:~~ing speed c.alculations based upon motor revolutions 

and .torqUe data token from the on-board data logger, and also intennittent surfacing of the 

vehicle to obtain GPS position lixes al pre-specified way points. 

_From FiSure 8 it is clearly evident thal lhe ANFJS luned fuzzy autopilot is the most erfective 

at following the specified set of target way points. l'he course-following error incurred by 

employing the ANFIS tuned aUiopilot wilh no current disturbance is considerftbly less 1han 

thal of the SA and PO autopilots. Indeed, 1he inclusion of the current disturbance, as shown 

in Figure 9, serves to reinforce the superiori1y of the ANFIS luned autopilot, even though the 

course-following capability of lhe PD autopilot con be seen to be improved by the addition of 

lhe dislurbance. 

From the canard demands (illustrated in Figure 10) for these LOS experimenls it is clear lhu.t 

1he ANFlS tuned fuzzy autopilot performs more effectively with and without the addition of 

sea current disturbances. A crisp canard angle is maintained lhrOllghout the mission when 

employing 1he ANFJS autopilot, as opposed to 1he demands of the SA tuned autopilot and the 

PO autopilot which appear highly oscillatory and show sustained periods of saturation. 

Finally, comparison of the figures for conned demands in Table 2 highlight that the ANFIS 

tuned autopilot consistently greater amounts of cAnard elfort for the course-changing task of 

o~10'. However, il is clear from the LOS guidance simulations that the canard demands of the 

ANFIS tuned autopilot are significantly more effective than 1hose of the SA and PD autopilots 

in achieving the desired course. This highlighls tha1 the con1rol surface contour is more 

op1imnlly shaped than for 1he SA and PO Rutopilots, and thus a more judicious amount of 

controi effort is appliecl. 

9, Conclusions 

This paper ha~ discussed tho 1uning or a fUzzy autopilot for course-changing control of an 

AUV using a neural network archilecture and two neural algorithrns. The resulting autopilots 

remain purely fuzzy as piuameter luning is conducled off-line. From the result presented it 

may be concluded thttr the ANIFIS approach provides a viable autop!lot design solulion in the 

presence of enviromnental disturbances and changing vehicle surge velocities. 

The LOS algorilhm presented herein is used as a means of clfecting AUV guidance. For the 

purposes of these simulations it is nssumed thRI knowledge of 1ho AUV globlll co-ordinates is 

constantly avoilttble underwater. 
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APJ•ENDIX A: Nom~udntur·e oflhc ,\UVequntlonlmrnmcters 
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Angular vefocity components of rolling and yawing 

Vdoci1y components of surge and sway 

Angles of roll and heading 
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Moment components 

Force components 

Centre of buoyancy 

Ccnlre of mass 

Dimensional hydrodynamic coefficien1s 

Non-dimensional hydrodynamic cocnicients 

Roll moment nrm lenglh 

Vow moment ann length 

Upper and lower canard inputs 

APPENDIX 0 :The llybrid Lenmlng Rule 

The learning rule was based upon I he hybrid learning rule of Jang (7]. Tl1e system is simulated 

using the dynan1ie model and data is collected across lhe trajectory. This 1rnining data is used 

to compare the system lrajectory with the desired trnjectory, nnd so form the error measure to 

be used for training of the adaptive network parameters. The error 'measure chosen was the 

integral square of heading error over lime (ITS E): 

(Ill) 

The parameters 10 be altered are lhe fuzzy parameters of bolh the premise and consequent 

layers. The hybrid lenming rule employs lhe backpropagntion method to updale lhe fuzzy 

premise parameters and lhc recursive leasl squares melhod la update lhe fuzzy consequent 

parameters. 

Wriling I he premise membership function as : 

(ll2) 

then equation (82) now represents the jlh membership runction on 1hc ith input universe of 

discourse, where a~,~ governs the width of set, hv governs the Oa1ness of the bell funclion and 

c" is I he centre of the set on the ith input universe of discourse. 



Therefore lhe learning rule for a general pararneler mny be desc:ribed as follows : 

' tJE m 
ll.a, = -'I·L-·-.-'-• 

.... dJ,. a:zq 

(DJ) 

where 'I is the learning rate, £ .. is the error measure, P is the number or samples in lhc 

lrajectory: and 0, is the oulput of Layer I. Iflhe fi.mction 0 1 = f(a 11 ) is dirferenliable then 

CO, is a straightforward colculnlion. This was lhe motivation for choosing 1he set fi.mclions 
Oa, 

described by (02). The main difficulty is in the colculntion of i£ • . Considering 1he AUV m,. 
model os the final layer in I he adaptive nelwork this calculation becomes simple for this loyer: 

(84) 

= ± -2(1; - o,.)t (BS) ... 

There are no adaptable parameters in the ship modelloyer. The nexlluyer, Layer 4, is lhe one 

lhat produces 1he defuzzifh:::d output The compulolion of i.E.,. uses a bnckpropngntion of 
cV,.,. 

~ ~·~~ ~· 
-·-~._ = :L-""-· .~ 
i04 ., .... m;;. ,u~ .. 

where II(S) is 1he number of nodes in Layer 5. llence: 

(116) 

as IJ(S),.I. Now iO,.. may be wriuen ns : 
m •. 

(07) 

(08) 

whereby the function relaling rp to 6. is non-linear and the derivative (or Jncobian) is 

npproximated by : 

~ - o,(n)- o,(n- 1) 
m,.- O,(n)-O,(n-1) 

(09) 

The only layer lo be adapted using lhe backpropagation method is the first loycr. Hence 

continuing the above process for each layer we arrive at the following learning rules for eRch 

individunl parameter within Lnyer I : 

- ' m. t''O,. [ 2b,a,''"'"'1(r-c,)a,'"'(r-c,)"" ] 
IJ.a, - -1,. :L--.--. I 

•• ,a:J, a:J,. (au'"(r-cu)'~ +(r-e,)'" a,'"') 
(BIO) 

l\c"' =-q.L--· -~· " 11 11 9 
tJ 1 • 

Pi£ ;v [-2ba 11'(c -x)""''"a'"'(-(x-c))"'] 
.. ,m,. e"',. la,'"(-(x-c.))'" +(c.-x)'"'a,"•l 

(012) 



11 is given thRI if an adaplive networks ou1pu1 is linear in some of the nCiworks parameters. 

lhen these linear parameters can be identified by lhe well documented least-squares method. 

Considerins the caso of one network outpul : 

oulpui=F(i.s) (OIJ) 

where is the vector of input variables and S is the set of parameters. If there exisu a 

fi.mction JJ such that the composite function 11• F is linear in some of the elcmenls of S then 

these elements can be identified by the least-squares method. More formally, if the parameter 

set Scan be decon1poscd into lwo sets 

S=S,<DS, (014) 

(where ED represcnls direct sum) such lhat J/• F is linear in the elements of S1 then upon 

applying IIIo (BIJ) yields 

ll(ourpur) = If• F(i.s) (815) 

which is linear in the elemenls or SJ. Now given values of elements or SI. p training data can 

be collected for inpul into (D IS) which yields the matri" equnlion : 

AO = IJ (816) 

where 9 is an unknown vcclor whose elements arc parameters in S1 • This equation 

represenls the standard linear least-squares problem and the best solution for 9. which 

minimises JAS- ntl!. is the leasl-squares estimator (LSE) 8' : 

(817) 

where A,. is the lranspose of A and (Ar Ar1 
A,. is the pseudo-inverse of A if A,. A is non-

singular. The recursive LSE formula can be employed by feuing the ith row vector of matrix A 

defined in (8 t6) be a,r and I he ith clement of 8 be ht; then a can be calcuiDled iteratively as 

follows: 

(018) 

(019) 

I =O,l, ... ,P-1. 

where the least-squares estimalor tr is equal 10 8 P • The initial condi1ions needed to 

boolstrap (018) and (0 19) are 9 0 = 0 and S0 ;:;; yl where r is a positive large number and I 

is identity matrix of dimension M x M. 

Consequently lhc gradient descent method and the least-squares method have been combined 

to update the paramelers in an adaptive network. Each epoch consists of a forward pn" in 

which inputs are presenled and the mnlrices A and 8 arc calcuhncd and the consequent 

parameters are updated via lhe recursive least-squares method. Addi1ionally each epoch 

consists of a backward pass in which lhe derivnrive of the error measure with respect to each 

nodes output is propngnu:d from the output 10 lhc inpul or the network architecture. At ll1e 

end of the backward pnss 1hc pnrnmeters of the premise luycr ore updRied by the gradient 

descent method. 



TADLE I : Sln,ulnlcd Anuenling Algorillun 

1. Generalc sel or inilial paramelers and simulate S)'SICm. 

2. Make random changes lo the paramelers and re-sinudale I he system. 

J. If performance improved lhen relain changes and re-apply. 

· 4. tr performance degraded I hen compute probabilily of accepting poorer 

paramelers according lo equations (13) and (14). 

s. Generate random number in the range 0 - I and compare wilh probability computed 

al 4. If random number less I hen aecepl poorer parameters; otherwise reject. 

6. Re-simulate and return to J until convergence. 

TABLE Z: Yaw responsrs ovt:r n course-chonging mnnoeuvre of 40 degrees 

><: 

"' :!l 0 ::; "" "' i .... -
0 ~ .., 

"' ;;:; "' ~ " ~ ... .... "' 
,.: ~ 

0 
;; . 
"' 't .., ~ r;: 

~ 

~ ~ ~ ...! 
..; ::: '" N 

't ~ "' ... ... 0 
,.; "' .,; 

~ ~ ~ ~ 

><: 
3 ~ c; ~ 

0 i 0 0 

"' ... 
0 

~ ,! 
~ "' ~ "' N .. 2i ~ ~ " a 

~ '"~ '" "' ll... " ::! :::: ~ .:; ~ -
!I 
" .§ 

't "' 
.., ~ 

"' '" "' ~ 

~ ~ ::i .,;. - ~ 

~ ~ '" N 
0 "" ~ ~ 

=a. i - 0 0 
0 .. • 
:i 

~ 
~ .., 8 

~ 
~ .... 0 .,; ~ N 

c 
+ 't ~ ~ : l 

N .., 
...! 

,.: -.2 
t: 
8. .,.., ~ :1> e ll... : ~ .. ,.: 0 

~ ... ~ ~ 

'11 .., 
j j 5 0 

li: ~ 
> ~ ~ ~ ::> ,.: 
< 



I.IST OF FIGUIIES 

Figure 

Figure 2 

Figure 

Figure 4 

Figure 

Figure 6 

Figure 7 

Figure 8 

Figure 9 

Figure 10 

Complete control authority of the AUV model 

The adaptive nclwork-bascd fUu.y inference system architecture 

The stmcture of 1hc simulated annealing tuned autopilot 

line of sight guidance syslem for the AUV 

Yaw responses oflhc AUV over the volido.tion I rack 

Canard demands oflhe AUV over the valida1ion track 

Robustness test of the AtN autopilots 

Erfcctiveness of the line of sight guidance systems for way point following 

Effectiveness of I he line of sight guidance systems for way point following in 

the presence of o sea currcnl disturbance 

Canard demands of the AUV for the scenarios shown in Figure 8 and Figure 9 

.:.J 
0 
a: 
1-z 
0 
(.) 

w 
> 
c( 
w 
::r: 

_J _J 

0 0 
~ ~ z z 
0 0 
(.) (.) 

::r: >-
~ ~ a: en 



. a.r•r' a.ror'll 
(pfm1!U.,.11rMicrl) 

•, 

.. 

•. 

Ltr••, '-W'Ill4 
(conte1(ucnl pawnclcn) 

IIIJDI 5 

llyat 1 layor 2 
(prcmbe r•nmtlcn) 

•, 

.. 

•. 

r.r•r :1 1•)'1114 
(CGnU!it.lcnl JI•UnlcltrS) 

l•ror 15 



x, 
MISSION 

y, 
PLANNER 

0> ., 
"0 

El 
01 
c , ,. ,,. "' 3: 
"' >-

LINE of SIGHT ..... X(I),Y(I) 
Coordinate .__ 

Guidance "11 Transformation 
System 01 ., 

'I'J 
"0 ., 
m ,, c 
"' 

~ 
M ISO o, ... AUV '1'. '1' • ... 
ANFIS ,. Dynamics ,. 

Controller 

3: 
"' >-

01 ., 
"0 ., 
m 
~ 
3: 
"' >-

50 

i/ 1\ ' 0 
I 

-50 ~ I 

11- Proportional + derivative autopilot I 
-100 

0 

50 

0 v· 
-50 

50 

I\, 
100 150 200 

I 

~-, ' 11- Simulated annealing trained autopilot 
-100 

0 

50 

0 

-50 

- 100 
0 

50 100 

I\ 
1- ANFIS trained autopilot 

50 100 

150 200 

I 

I 

~~ 
I 

150 200 
lime in seconds 

I 

J 

l\ 
250 300 350 

\\ 
250 300 350 

\\ 

250 300 350 



0> 
ANFIS trained autopilot 

g' 50 ~501 
' 

"0 
"0 

l s 5 knots 
c 
nl ! z· E 0 "' "0 ., 0 

>- 0 10 20 30 40 50 'E ., 11 - Proportional + derivallvo autopilot I ~ ·50 
0 50 100 150 200 250 300 350 

g' 50 
"0 0> 

Simulated Annealing trained autopilot 
"0 nz· : c 
nl 

~~ 
1- 7.5 knots E ov ,.. 

~ 
'E ., 11 - Simulated annealing trained autopilot I "' 0 c >- 0 10 20 30 40 50 
~·50 

0 50 100 150 200 250 300 350 

g> so 
"0 
"0 Proportional + Derivative autopilot c 0> 

"' nz· E 

: 
"' 1-" "0 10 knots 
'E ., 1- ANFIS trained autopilot c 
~ ·50 "' 0 0 50 100 150 200 250 300 350 >- 0 10 20 30 40 50 

time in seconds 



Line of Sighl Guidance • no dislurbancos 
600,-------.-------.-----~.-------.-------.-~----, 

500 

~ 
400 

E 
, 300 
,11 

~ 
" 200 

M ,a 
... 100 

- ANFiS aulopllol 
SA aulopilol 

- · · PO aulopilol 

·100L-------L-------L-------L-------L-------L-----~ 
0 200 400 600 BOO 1 000 1200 

x distance travelled - metres 

500 

., 400 

~ 
E 

~ 300 

I 
!'l 200 
iii 

.111 , 
... 100 

0 

Line of Sighl Guidance • currenl of 1 mls in +Ve y direcllon 

- ANFiS aulopllol 
SA aulopllol 

- · · PO aulopllol 

-100=------~----~~----,....,...----~:-----''-:-----....,..,-----' 
-200 o 200 ~oo 600 eoo 1000 1200 

x dislanco lravollod • melros 



ANFIS Line of Sighl Guidance wilhoul dislurbance 
30r-----.------.-----~------.-----.------.-----, 

~ 
~ 20 

i 10 

11: 
1-20 

-30oL-----~1~oo~--~2~o7o----~3~o=o-----4~o~o~--~5o~o~--~6~oo~--~7oo 

30 
~ 
~ 20 

~ 10 , 
~ 0 
~ ~10 

~ -20 
B 

f-

-30 
0 

ANFIS Una of Slghl Guidance wilh dlsiUrbance of 1m/s in +ve y direcllon 

~-"' r----'1 y 1 

. 100 200 300 400 500 600 700 
time in seconds 

SA Line of Sighl Guidance wilhoul dislurbance 

100 200 300 400 500 600 

SA Line of Slghl Guidance with disturbance of 1 m/s in +ve y direclion 

300 400 
Iima in seconds 



PO line of Sight Guidance without disturbance 

.... 

. ; . . .... .., ···· . 

PO Line of Sight Guidance with disturbance of 1 m/s in +ve y d irection 

: .: •• • ·- • • • 0 : • •• t -~ · ···'::· time in seconds 



Appendix B: Classical and Modem Control Strategies 
for Unmanned Underwater Vehicles 

This work details classical and modern control strategies for unmanned underwater 

vehicles and is intended as a supplement to chapter 2. 

B 1 Introduction 

In the forthcoming text several references will be made to the "robustness qualities" of 

certain controllers. Therefore it is felt an explanation of this phrase is in order. During 

the design stage of a control algorithm some form of mathematical model which 

describes the dynamics of the vehicle to be controlled will be employed. When in 

actual operation and over a period of time, the characteristics of the plant will change 

from those for which the control system was originally designed. Also within a class of 

vehicles, differences in their performances will exist. Hence, a control system is said to 

have good robustness qualities provided it can cope with plant uncertainties whilst 

possessing noise and disturbance rejection properties. 

B 2 Classical Techniques 

B 2.2.1 Proportional-Integral-Derivative Control 

The first autopilots to be called proportional (P) controllers were employed in the 

period 1930 to 1950 and used a heading error signal (e(t)) which was then used to 

adjust the steering mechanism of a ship. These controllers had no method of reducing 

overshoot and thus caused transient oscillations in the actual heading of the ship. The 

1950s saw the introduction of the derivative (D) term, which improved the stability of 

the controlled vessel. Around the same period the integral (I) term was also 

implemented to produce counter thrust to external di'sturbances. The control action uc 

produced by the complete PID controller is thus given by: 
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u, = KP[e(t)+__!_J e(t)+Td de(t)] 
I; dt 

(Bl) 

where KP is the proportional gain of the controller, I; is the integral time constant, Td is 

the derivative time constant and e(t) is the error signal. 

The transfer function of the controller, in the Lap lace domain, then becomes: 

(B2) 

When controlling underwater vehicles the ideal requirement is to have high 

proportional gain in order to ensure rapid response to error and effective removal of 

steady state errors, however, these requirements tend to reduce the stability of the 

system and so a high derivative gain is also demanded. This allows these requirements 

to be met. The PID control strategy depends upon the availability of an accurate linear 

representation of the relevant non-linear vehicle dynamics. Such models take the form 

of transfer functions in the Laplace or z-domains (Eqn.(B3)), representing the 

input/output relationship to be controlled. 

L
n . a.z-• 

G(z) = i=o , . 

""" b -· LJ;=O ;Z 

(B3) 

In Figure Bl a non-linear relationship is represented. At specific positions on this 

relationship, known as operating points (ops), the dominant non-linear dynamics can be 

linearized to give a transfer function (TF) at that point. Provided the operating points 

are chosen judiciously, it is possible to approximate the non-linear function as a series 

of linear transfer functions across the whole operating range. 



APPENDIXB 

y 

op4 

' 
TFI : TF2 TF3 TF4 TFS TF6 : TF7 

Figure B1: Linearization of a non-linear function. 

For each of these operating regions where the linear relationship generally holds true, a 

PID controller, a PI controller or a PD controller can be designed to meet the required 

specifications. Methods to perform this are well-established [Shao (1988), [Daley and 

Gill (1986), Mandic et al. (1985)]. However, the further the system diverges from the 

operating point, the more likely it is that the non-Iinearities of the system will dominate 

and the controller will become ineffective. 

Additionally, controllers based on the PD format are not able to prevent the high 

frequency rudder movements that often arise. Motora (1953) applied a low-pass filter to 

the output signal to prevent rudder oscillation, but this it was suggested would represent 

a loss in stability. Taylor (1995) repons that PID controllers have historically been 

employed in ship course keeping modes due to the manual complexity of the 

aforementioned tuning process when on full-scale sea trials. Da Chuna et al. (1995) 

employ this technique as a PI controller where the derivative term is neglected. This is 
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in fact a popular approach and has been utilized in many marine control applications, 

for example by Hsu et al. (1994). 

UUV dynamics are such that it is usually very difficult to clearly define the dominant 

characteristics in order to derive a transfer function which is representative of the 

system under consideration. 

82.2.2 Gain-Scheduling Control 

Gain scheduling is often employed as a means of adjusting the gain terms of a linear 

controller to suit the current operating range. Depending on the current operating 

conditions, the gain terms of the controller will be adjusted to provide the best 

controller performance. To aid transition between operating regions, an interpolating 

function is often used. The structure of a typical gain-scheduled controller is shown in 

Figure B2 where a scheduling algorithm monitors the operating condition of the system 

and selects the controller parameters ( C1 ••• c.) best able to produce satisfactory 

PLANT 
(G) 

Figure B2: A gain-scheduled controller. 

performance. If designed correctly the algorithm will also ensure a 'bumpless' transfer 

between the operating points. 
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The MARIUS (marine utility vehicle system) is an example of a successful 

implementation of a gain-scheduled controller in an UUV [Egeskov et al. (1994)]. This 

work documents four fundamental steps to the implementation of such a control 

strategy: 

(i) Linearize the plant about a finite number of points, 

(ii) Design linear controllers around each operating point, 

(iii) Interpolate the parameters of the linear controllers of step (ii) to achieve 

adequate performance of the linearized closed-loop systems at all points 

where the plant is expected to operate. The interpolation is performed 

according to an external scheduling vector and the resulting family of 

linear controllers is referred to as a gain-scheduling controller, 

(iv) Implement the gain-scheduled controller on the original non-linear 

plant. 

The linear controllers outlined in step (ii) often take the classical PID form and are time 

consuming to develop. This technique requires thorough research into suitable 

controllers for each operating point and is not well documented among UUV control 

techniques, although a velocity algorithm for the subsequent implementation of a non

linear gain-scheduling controller has been reported [Kaminer et al. (1993)]. 

B 2.3 

B2.3.1 

Modem Control Approaches 

Adaptive Control 

The past twenty-five years has seen a considerable amount of research in the 

application of control techniques to the problem of course keeping and manoeuvring of 

marine vehicles. Particular interest has been shown in the field of autopilots that adapt 

to dynamic and environmental changes, and consequently update the controller's 
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parameters to cope with these disturbances. The popularity of adaptive techniques 

concerns the poorly known hydrodynamic coefficients of the vehicle as well as the 

inherent non-linearities usually involved. Indeed, the majority of successful UUV 

control studies can be seen to include some form of adaptive control strategy. A 

comprehensive outline of adaptive control techniques and a brief review of the 

historical developments are given in Harris and Billings (1981). Additionally, Astrom 

and Wittenmark (1989) report the implementation of an adaptive autopilot for the ship 

course keeping task, based on a PID algorithm, the Steermaster 2000. 

B 2.3.1.1 Model Reference Adaptive Control 

The model reference adaptive control (MRAC) technique is one of the main approaches 

to adaptive control. A reference model gives the desired performance of the system. A 

feedback loop allows an error measure to be computed between the output of the 

system and the reference model. Thus based upon the error measure the parameters of 

the controller are adjusted to reduce this error measure. MRAC techniques were first 

designed to control the servo problem in deterministic continuous-time systems. Figure 

B3 shows a typical MRAC scheme. 

The key problem with this approach is in the determination of the adjustment 

mechanism in order that a stable system is achieved. The MIT rule (Eqn.(B4)) was 

developed for the original adjustment of parameters in the MRAC system. 

de de 
-=-ye
dt d8 

(B4) 



APPENDIX B 

Desired 

Output 

u ... Controlled 
.._y ... Process -. 

Classical .... 
Feedback """f 

X .. Controller ... 
~ ~Adjustable 

Coefficients 

...... -
Adaptation 

~1ut r ~~+ 

Model of ... Desired Ym ... Response 

Figure B3: The model reference adaptive control scheme. 

Van Amerongen (1982) applied the MRAC approach to the problem of ship course 

keeping and manoeuvring. This process employed a cost function {Eqn.(B5)) which 

was chosen to enable the derivation of optimal controller gains, via the use of a 

reference model (for comparison purposes). 

(BS) 

This method was based on the assumptions that the modelled process was linear and 

external disturbances could be disregarded. Thus obvious criticisms of this approach 

are the linearity assumption concerning the vehicles dynamics, and the technique is 

only really viable when external conditions can be considered unimportant, which is 

almost never for a marine application. In the surveyed literature this technique is 

scarcely mentioned with respect to UUV control strategies. Shimmin and Lucas (1993) 
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document the technique and note the instability of such systems when the adaptation 

method relates controller parameter adjustments to system errors. 

Da Cunha et al. (1995) designed an adaptive position controller for an ROV based on a 

recently developed output feedback variable structure control algorithm and was given 

the acronym VS-:MRAC. The performance of the technique is evaluated by initially 

using simulation models and then full-scale sea trials utilizing an actual ROV. Results 

show that this technique consistently outperforms the conventional PI control 

technique, by providing more accurate position tracking and disturbance rejection. 

B 2.3.1.2 Indirect Adaptive Control 

Farrell and Clauberg (1993) report the implementation of an indirect adaptive control 

system on-board the AUV Sea Squirt. This system is designed in two layers, a standard 

adaptive layer and a 'supervisory logic' layer (to control the behaviour of the adaptive 

layer), as shown in Figure B4. Although this technique provides convergence of the 

modelling parameters towards their optimum tracking performance values, it takes no 

account of the varying mission to mission modularity and dynamics that such vehicles 

often encounter, thus suggesting the incorporation of some form of learning control 

strategy to model/estimate these variations. It is felt that this addition may also provide 

a means by which the vehicle can compensate for variations in hydrodynamics, effected 

by velocity variations. 
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Figure B4: The indirect adaptive control scheme. 

Self-Tuning Control 

Self-tuning controllers can be used for processes with time-varying dynamics, by using 

a derived model of the process and environment to adjust the coefficients of the 

controller in order to satisfy a desired closed-loop system performance. A key 

publication by Astrom and Wittenmark (1989) states that self-tuning can be applied to a 

controller if, initially, control of the system is achieved by means of a conventional 

state or output feedback. Subsequently by adjusting the coefficients of the controller by 

means of a second, slower recursive loop better control can be achieved. Typically, 

algorithms have been implemented for adaptive ship steering and the dynamic 

positioning of drill ships [Boulton (1985)]. 

Triantafyllou and Grosenbaugh (1991) applied a multi input-multi output (MIMO) self

tuning controller to the difficult problem of automatic guidance of an AUV by 

manipulating thruster outputs to produce the desired translational and yaw velocities. 
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The self-tuning controller was used due to the lack of an accurate mathematical model 

of the AlN' s open loop dynamics. 

B 2.4.1 Explicit Self-Tuning Control 

An explicit self-tuning control scheme is shown in Figure B5. In this control law all 

unknown dynamics are characterized by a time constant and steady-state gain between 

each velocity output and thruster input. The open-loop system can therefore be 

approximated by a square m by m matrix with a first order Jag if, and only if 

(B6) 

for some m x m matrices B0 and B1 where IBol "# 0. In the case of m= 1, this 

definition reduces to a scalar first order Jag. 

uuv 1--,-----r+c 

Parameu:rs 

Figure B5: Explicit self-tuning control system. 

It was established by Owens and Chotai (1983), using a PI controller for this type of 

system, that for minimum phase systems with fast enough sampling rates, the closed

loop system becomes decoupled into m separate single input-single output (SISO) 
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loops. It can also be shown that reference signals will be tracked with zero steady-state 

errors. 

The self-tuning mechanism works by using the thruster input/velocity output data to 

update the model at each sampling instant. The model is of the form: 

yP(t+l)= Ay(t)+Bu{t) (B7) 

where y P (t + 1) is the vector of predicted velocity outputs. The matrices A and B of 

Eqn.(B7) are used along with the closed-loop poles to calculate the PI control law, 

which takes the form: 

(B8) 

(B9) 

Finally the thruster inputs are detennined and applied and the entire cycle is repeated. 

The a; factors in the cost function (Eqn.(BlO)) can be used to discount measurements 

that are known to be spurious or to give less weight to values of the model output when 

the algorithm is 'tuning-in' after a large change in the real system. 

The versatility of this control scheme is demonstrated in Katebi and Byrne (1988), 

where it was employed to provide adaptation capability to a ship autopilot in adverse 

weather conditions and was customised to produce minimum variance to low-frequency 

heading variations and resistance to steering, again using the cost function of 

Eqn.(BlO): 

(BlO) 
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i.e. the weighted sum of the squared errors between the real system and model 

responses. 

Yuh et al. (1990) used an adaptive control algorithm to control the pitch of an 

underwater robotic vehicle. It was concluded that because the initial controller 

parameters were derived from rough estimates of the system model, the adaptive 

controller showed large errors over the first few time steps, yet afterwards performed 

well. However, it was also found that the stability of the system could not be 

guaranteed for unmodelled system dynamics. 

Goheen and Jeffreys (1989) implemented explicit 'one-shot self-tuning' in the Seapup 

and PAP104 underwater vehicles, whereby first-order lags for the sway, yaw and surge 

velocities are used together with a PI controller. The resulting controller displays the 

expected robustness of PI control but does not adequately account for the inherent non

linearity of the UlNs, due to the underlying linearity of such self-tuning controllers. 

The one-shot controller is not an adaptive strategy either and as such cannot account for 

the time-varying dynamics of the UlN. 

B 2.4.2 Implicit Self-Tuning Control 

An implicit self-tuning controller identifies the parameters of the system directly and 

then uses this data in the control law to update the regulator. Consequently this method 

requires a priori knowledge of the system characteristics. Figure B6 shows the 

schematic diagram of an implicit self-tuning control system. The implicit self-tuning 

controller algorithms of Clarke and Gawthorp (1975) incorporated the controller output 

into a cost function for variance minimization of performance objectives. This approach 

was also employed by Lim and Forsythe (1983) for the design of an autopilot applied to 

ship control. The expression for the cost function output in order to minimize the 

expected variance is Eqn.(B 11 ): 
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where: y is the actual output 

r is the desired output 

u is the control input 

E{*} is the form of the variance to be minimized, and 

(Bll) 

).. is a constant factor (a compromise between the control action and reference 

tracking against adaptation speed and is determined empirically). 

Therefore, the generalized output e : 

is identified and the control law follows directly, hence the implicit nature is that of: 

as described in the paper by Goheen and Jeffreys (1990) who showed that second order 

models (ny = nr = nu = 2) produced the best closed-loop response with the Seapup 

simulation data, the reason being that the second order pitch and roll dynamics couple 

in other modes, unless the centre of rotation is chosen as the origin. This situation very 

rarely occurs in an UUV due to loading and weight distribution along the vehicle axes. 

This application somewhat omitted the finer points of the controller implementation. 
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Figure B6: Implicit self-tuning control system. 

Explicit self-tuning has the advantage of being computationally easier to implement as 

concerns the process algorithms than the implicit method, however the implicit method 

does not require the same degree of control knowledge by the operator to determine the 

correct closed-loop pole positions to meet the performance criteria. 

B 2.5 Sliding Mode Control 

A non-linear strategy that has been extensively applied to the UUV control problem is 

that of the sliding mode controller. A switching control law transforms the state 

trajectory of the plant onto a user chosen sliding surface in the state space, thus 

providing a technique that is robust to parametric uncertainty. Figure B7 shows a 

schematic of a sliding mode controller. 
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Figure B7: A schematic of a sliding mode controller. 

The reader is referred to Cristi et al. (1990), who states that any UUV description based 

on a set of differential equations can only be approximate in its nature and therefore 

there are uncertainties in the model. This calls for a robust input u, of the form: 

u=u+u (Bl4) 

where u is determined on the basis of the nominal model and u compensates for 

deviations from ideal performance due to uncertainties. 

Sliding control theory has been developed to apply to a large class of non-linear 

systems [Siotine (1983), Slotine(l985)]. The only restriction on the choice of sliding 

surface is that it has to be associated with stable dynamics, i.e. the following applies: 

~ x(t)) = 0 , for all t> t :::=} lim,_.0 x(t) = 0 (B15) 

for any initial conditions x(t0 ). The choice of a linear sliding surface being: 
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(B16) 

for some vectors, sT x allows the use of pole placement techniques in the design of the 

non-linear controller. Using the defined Lyapunov function [Cristi et al. (1990)], the 

sliding surface s(x) = 0 is reached in a finite time by the condition: 

(Bl7) 

a= -11~ (x )sign( 0') 0 (B18) 

The dynamic matrix of the model and Eqn.(B 16) are combined to obtain: 

sT(Ax+bu+ f)= -lt;(x)sign(s) (Bl9) 

By knowing a bound h on the non-linearity for all conditions of x, the state described in 

Eqn.(B16) is satisfied by choosing the control input: 

(B20) 

u= u+u 

As mentioned previously, due to the uncertainties in modelling an UUV, it is important 

to recognize that the feedback law u is composed of two parts. The first: 

(B21) 

is a linear feedback law based on the nominal model, whereas the second, 
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(B22) 

is a non-linear feedback law, with its sign alternating between plus and minus 

according to which side of the sliding plane the system is currently located. Since u has 

to change its sign as the system crosses o(x) = 0, the sliding surface has to be a 

hyperplane, i.e. the sliding surface dimension has to be one less than the state space. u 

is also largely responsible for driving the system onto, and keeping it on, the sliding 

plane o(x) = 0 (where u = 0 as well). Provided that the gain has been chosen 

sufficiently large, u can provide the robustness required to handle random disturbances 

and unmodelled dynamics without compromise. This is achieved by designing the 

linear feedback law to ensure that the system has the desired dynamics on the sliding 

plane. 

Yoerger and Slotine (1985) develop and apply a sliding mode controller to an ROV and 

document their simulation results on the experimental autonomous vehicle (EA VE). 

Although the authors reported successful implementation and control of EA VE they 

neglected the effects of pitch in their simulations, even though the heave and pitch 

channels are known to have quite influential cross-coupling effects. 

Also Fossen (1991) and Fossen and Satagun (1991) report the implementation of 

multivariable sliding mode controllers to the positioning of an ROV. Simulation results 

demonstrate the controllers ability to achieve robustness to parameter uncertainty. 

Healey and Lienard (1993) have used this approach to control the speed, yaw and dive 

channels of an AUV individually. This work was then extended to develop a combined 

channel autopilot for the AUV. Results show robust performance for each of the 

individually controlled channels at low speed, and robust control in the combined 

autopilot for acceleration up to the chosen operational speed. 
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Trebi-Ollennu et al. (1995) provide a review of four robust multivariable control 

designs, including input-output linearization control with sliding mode depth control 

for an ROV. This technique is reported to result in a very robust controller but requires 

raw estimation of the bounds on the parametric uncertainties, which in itself is a non

trivial task. 

B 2.6 H-Infinity (Hoo) Robust Control 

The UUV operating environment is varied; the speed of such a vehicle may vary, 

payloads may be increased or decreased and the underlying mathematical models are 

inherently uncertain. Classical and optimal types of controllers are designed around a 

specific set of environmental conditions; the performance consequently degrades as 

these factors vary. 

Robust control addresses these problems. It guarantees, given actuator limitations, a 

minimum level of performance and stability for a specified operation envelope, not 

only in terms of disturbances which impinge on the system but also for those due to 

uncertainties produced by the inadequacies of the mathematical representations of the 

UUV system. This method is embodied by the Jl-synthesis procedure, essentially, an 

iterative process for the design of H_ controllers such that the closed loop adheres to 

the specified performance and stability criteria. 

Given that G is a matrix representation of the plant and K is the matrix describing the 

controller, let the matrices T (the complementary sensitivity), S (sensitivity) and C 

(control sensitivity), be defined as in [Sharif et al. (1996)]: 

T=GK(I+GKt (B23) 

S=(l+GKt (B24) 
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C= K(I +GKf' (B25) 

Figure B8 depicts the schematic control scheme, where u is the control signal, and v 

represents disturbance and noise inputs, y physical quantities, e error signals, and x and 

z the uncertainty inputs/outputs. P is the nominal plant and !l the block-diagonal 

representations of uncertainty, environmental and mathematical . 

Ll 
..... 
~ 

z X .. 
V 

... p .... ... ... - .. e 

... ... 
u y 

K ..... 
...... 

Figure B8: H-infinity robust control scheme. 

If P is partitioned as shown in Eqn.(B26) 

(B26) 

then let M denote the closed-loop function mapping v to e; this is known as the lower 

fractional transformation (Eqn.(B27)): 

(B27) 
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The H~ optimization problem is then to minimize Eqn.(B27) over all stabilizing and 

realizable controllers, the constraints being defined, dependent upon engineering 

constraints, by weighting functions [Maciejowski (1989)]. Provided that the following 

H~ norm inequalities are satisfied, then robust stability and performance are assured. 

Here y is a search variable and the weightings are described below: 

(B28) 

(B29) 

(B30) 

where WP is a weight matrix reflecting the frequency locations where the desired 

disturbance attenuation is to occur, w.~~ encapsulates the uncertainty contained within 

the mathematical models and, W, depicts the restrictions on regions of operation of the 

servomechanisms. 

Using the structured singular value, J.l approach [Doyle (1982)] a less conservative 

measure of robustness may be calculated. If the controller, K, is absorbed into the plant, 

P, and provided that !:!. has a block-diagonal structure and is normalized, then 

partitioning 

(e) = j v) = [Q11 Q12 Iv) 
x ~o~:lz Q2t Q22 z 

(B31) 

Then for robustness, the J.l is defined as Eqn.(B32), and must remain less than unity, 

i.e., 
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.u(Qu(jw)) = min(u(L1(jw)),det(l ~ Q1l(jw)L1(jw)) = o) (B
32

) 

White et al. (1994) successfully applied the loop shaping H_ technique to the ROV 

depth control problem. Unlike other H_ control methods this technique concerns 

shaping the open loop dynamics of the ROV as opposed to the closed loop transfer 

function. Loop shaping was performed via two weighting functions, w/ and w2 which 

modified the open loop systems inputs and outputs respectively, thus achieving the 

desired loop shape for the system, namely; high gain at low frequencies, low gain at 

high frequencies, and some bandwidth and crossover frequency which yields desired 

gain and phase margins. Subsequent loop shaping designs emphasize the effects of 

different choices of W1 and W2 on the required closed loop design specifications. The 

resulting ROV controller's performance was assessed to variations in forward speed of 

±50 percent (5 to 15-knots) and perturbations in the pitch and heave coefficients of 

± 20 percent. 

The main difficulty with this application lies with finding a combination of weighting 

matrices that yields a controller which demanded inputs within the saturation limits of 

hydroplane and thruster actuators. 

B 2.7 Concluding Remarks 

It has been shown that when attempting to design a controller for an UlN, the control 

engineer is faced with several difficult problems. Thus, whilst many of the present 

generation of control systems installed within UlNs perform satisfactorily within 

given specifications, their overall effectiveness is limited. 

Traditionally control system designs have been variants of the analogue PID controller. 

The main shortcoming of such designs has been the requirement for manual adjustment 

of the controller's parameters to compensate for changes in the craft's environment, but 
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these settings are rarely optimal for the UUV. The adjustments necessary for current 

and payload variations are time consuming. Consequently, there has been a growth of 

interest in autopilots that can automatically adapt themselves. 

Adaptive control techniques for autopilot designs have, via the use of suitable cost 

functions in the optimization algorithms, enabled more efficient use of vehicle actuators 

in the event of environmental changes and varying vehicle dynamics. Due to the use of 

a cost function, usually minimizing the rudder activity and heading error when 

performing yaw changing manoeuvres, adaptive strategies do not always reduce the 

fuel consumption of the vehicle in all sea states. This inherent inability to measure the 

sea states effect upon the vehicle suggests that more advanced techniques must be 

developed for UUV autopilots. H~ approaches have enabled the design of optimal 

controllers in the presence of significant uncertainties within the UUV model without 

the need for on-line identification of the vehicles dynamics, and these controllers have 

been shown to be robust in operation. 

Chapter 2 provides the reader with an overview of artificially intelligent approaches to 

UUV control system design. In summary, fuzzy logic control systems are inherently 

robust to non-linear time varying plant but remain reliant upon a rule base. Indeed, the 

self-organizing fuzzy logic controller develops its own rule base but requires some 

initial performance criterion. Such approaches have proved to be very successful at 

controlling UUVs. The fusion of fuzzy logic and neural network control methodologies 

offers a means by which the inherently robust and non-linear nature of the fuzzy 

controller can be combined with the powerful learning abilities of the neural network. 

Although there are examples of such fusions as applied to ship autopilot designs, little 

attention has been given to the design of UUV autopilots using these techniques. 

Consequently, the use of neuro-fuzzy approaches to control the dynamic behaviour of 

UUVs could offer significant technological advances in the field of UUV autopilot 

design and thus provide an excellent research area. 
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Whilst Chapter 3 discusses the implementation of the dynamic UUV model used 

throughout the thesis, Chapter 4 details the use of a neural autopilot structure for the 

tuning of fuzzy autopilots for course-changing control of an AUV. 
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Appendix C: The Premise Tuned Autopilot Information 

The contents of the autopilots produced via the premise tuning regimes are reproduced 
herein for'completeness: 

1. Name 9Tsnorm bp_prem chem_prem sa_prem 
2. Type sugeno sugeno sugeno sugeno 
3. No. lnQuts/Oumuts [2 1] [2 1] [2 1] [2 1] 
4. No. lnQUt MFs [3 3] [3 3] [3 3] [3 3] 
5. No. Outnut MFs 9 9 9 9 
6. No. Rules 9 9 9 9 
7. And Method prod prod prod prod 
8. OrMethod probor probor probor probor 
9. Imnlication Method min min min min 
10. Agwgation Method max max max max 
11. DefuzzMethod wtaver wtaver wtaver wtaver 
12. Innut Labels err err err err 
13. der der der der 
14. Outnut Labels rud rud rud rud 
15. Innut Range [ -1 1] [ -1 1] [ -1 1] [ -1 1] 
16. [ -1 1] [ -1 1] [ -1 1] [-1 1] 
17. Oumut Range [-1 1] [ -1 1] [ -1 1] [-1 1] 
18. Innut MembershiQ neg neg neg neg 
19. Function Labels zero zero zero zero 
20. pos pos pos pos 
21. neg neg neg neg 
22. zero zero zero zero 
23. pos pos pos pos 
24. Oumut MembershiQ posbig posbig posbig posbig 
25. Function Labels posmed posmed posmed posmed 
26. possmall possmall possmall possmall 
27. zeropos zeropos zeropos zeropos 
28. zero zero zero zero 
29. zeroneg zeroneg zeroneg zeroneg 
30. negsmall negsmall negsmall negsmall 
31. negmed negmed negmed negmed 
32. negbig negbig negbig negbig 
33. Innut MembershiQ gbellmf gbellmf gbellmf gbellrnf 
34. Function Types gbellmf gbellmf gbellrnf gbellrnf 
35. gbellmf gbellrnf gbellrnf gbellrnf 
36. gbellmf gbellrnf gbellrnf gbellrnf 
37. gbellrnf gbellmf gbellrnf gbellrnf 
38. gbellmf gbellrnf gbellrnf gbellrnf 
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39. Out!!ut Membershil! linear linear linear linear 
40. Function Tmes linear linear linear linear 
41. linear linear linear linear 
42. linear linear linear linear 
43. linear linear linear linear 
44. linear linear linear linear 
45. linear linear linear linear 
46. linear linear linear linear 
47. linear linear linear linear 

hll!ut Membership Function Parameters 
48. [0.500 2.500 -1.000] [0.560 2.618 -1.046] [0.500 2.495 -1.000] [0.502 2.406 -0.995] 
49. [0.500 2.500 0.000] [0.464 2.623 0.034] [0.499 2.511 -0.001] [0.502 2.666 0.002] 
50. [0.500 2.500 1.000] [0.510 2.272 1.045] [0.499 2.490 0.999] [0.498 2.372 0.999] 
51. [0.500 2.500 -1.000] [0.353 2.326 -0.748] [0.501 2.501 -0.999] [0.499 2.496 -1.003] 
52. [0.500 2.500 0.000] [0.649 2.683 -0.001] [0.499 2.497 0.000] [0.504 2.505 0.008] 
53. [0.500 2.500 1.000] [0.309 2.408 0.808] [0.499 2.499 1.000] [0.494 2.504 1.002] 

Out!!ut Membership Function Parameters 
54. [0 0 1] [0 0 1] 
55. [0 0 0.75] [0 0 0.75] 
56. [0 0 0.5] [0 0 0.5] 
57. [0 0 0.25] [0 0 0.25] 
58. [0 0 0] [0 0 0] 
59. [0 0 -0.25] [0 0 -0.25] 
60. [0 0 -0.5] [0 0 -0.5] 
61. [0 0 -0.75] [0 0 -0.75] 
62. [0 0 -1] [0 0 -1] 

63. Rule List 
64. 
65. 
66. 
67. 
68. 
69. 
70. 
71. 

[1 1 1 1 1] 
[1 2 2 1 1] 
[1 3 3 1 1] 
[2 1 4 1 1] 
[2 2 5 1 1] 
[2 3 6 1 1] 
[3 1 7 1 1] 
[3 2 8 1 1] 
[3 3 9 1 1] 

[00 1] 
[0 0 0.75] 
[000.5] 
[0 0 0.25] 
[000] 
[0 0 -0.25] 
[0 0 -0.5] 
[0 0 -0.75] 
[0 0 -1] 

[1 1 1 1 1] 
[1 2 2 1 1] 
[1 3 3 1 1] 
[2 1 4 1 1] 
[2 2 5 1 1] 
[2 3 6 1 1] 
[3 1 7 1 1] 
[3 2 8 1 1] 
[3 3 9 1 1] 

[1 1 1 1 1] 
[1 2 2 1 1] 
[1 3 3 1 1] 
[2 1 4 1 1] 
[22 51 1] 
[2 3 6 1 1] 
[3 1 7 1 1] 
[3 2 8 1 1] 
[3 3 9 1 1] 

[00 1] 
[0 0 0.75] 
[000.5] 
[0 0 0.25] 
[0 0 0] 
[0 0 -0.25] 
[0 0 -0.5] 
[0 0 -0.75] 
[0 0 -1] 

[11 1 1 1] 
[1 2 2 1 1] 
[1 3 3 1 1] 
[2 1 4 1 1] 
[2 2 5 1 1] 
[2 3 6 1 1] 
[3 1 7 1 1] 
[3 2 8 1 1] 
[3 3 9 1 1] 



Appendix D: The Premise and Consequent Tuned 
Autopilot Information 

The details of the autopilots produced via the full parameter tuning regimes are 
reproduced herein for completeness: 

1. Name 9Tsnorm hyb_all chem_all sa_all 
2.~ sugeno sugeno sugeno sugeno 
3. No. In2uts/Out2uts [2 1] [2 1] [2 1] [2 1] 
4. No. In2ut MFs [3 3] [3 3] [3 3] [3 3] 
5. No. Out2ut MFs 9 9 9 9 
6. No. Rules 9 9 9 9 
7. And Method prod prod prod prod 
8. OrMethod probor probor probor probor 
9. Im2lication Method min min min min 
10. Aggregation Method max max max max 
11.I>efuzzMethod wtaver wtaver wtaver wtaver 
12. Input Labels err err err err 
13. der der der der 
14. Outt1ut Labels rud rud rud rud 
15. Input Range [ -1 1] [ -1 1] [ -1 1] [ -1 1] 
16. [ -1 1] [ -1 1] [ -1 1] [ -1 1] 
17. Outt1ut Range [ -1 1] [ -1 1] [ -1 1] [ -1 1] 
18. Input Membership neg neg neg neg 
19. Function Labels zero zero zero zero 
20. pos pos pos pos 
21. neg neg neg neg 
22. zero zero zero zero 
23. pos pos pos pos 
24. Output Membership posbig posbig posbig posbig 
25. Function Labels posmed posmed posmed posmed 
26. possmall possmall possmall possmall 
27. zeropos zeropos zeropos zeropos 
28. zero zero zero zero 
29. zeroneg zeroneg zeroneg zeroneg 
30. negsmall negsmall negsmall negsmall 
31. negmed negmed negmed negmed 
32. negbig negbig negbig negbig 
33. Input Membership gbellmf gbellmf gbellmf gbellmf 
34. Function Types gbellmf gbellmf gbellmf gbellmf 
35. gbellmf gbellmf gbellmf gbellmf 
36. gbellmf gbellmf gbellmf gbellmf 
37. gbellmf gbellmf gbellmf gbellmf 
38. gbellmf gbellmf gbellmf gbellmf 
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39. Output Membership 
40. Function Types 
41. 
42. 
43. 
44. 
45. 
46. 

linear linear 
linear linear 
linear linear 
linear linear 
linear linear 
linear linear 
linear linear 
linear linear 

linear linear 
linear linear 
linear linear 
linear linear 
linear linear 
linear linear 
linear linear 
linear linear 

47. linear linear linear linear 
Input Membership Function Parameters 
48. [0.500 2.500 -1.000] [0.918 2.959 -1.082] [0.504 3.553 -1.080] [0.412 6.371 -1.211] 
49. [0.500 2.500 0.000] [0.450 2.791 0.003] [0.561 1.756 -0.007] [0.683 2.763 -0.158] 
50. [0.500 2.500 1.000] [0.059 1.877 1.013] [0.464 2.868 1.074] [0.424 1.709 1.168] 
51. [0.500 2.500 -1.000] [0.579 2.710 -1.233] [0.493 2.506 -1.002] [0.489 2.591 -1.061] 
52. [0.500 2.500 0.000] [0.505 2.685 -0.081] [0.519 2.406 0.012] [0.485 2.237 0.004] 
53. [0.500 2.500 1.000] [0.611 2.243 1.161] [0.459 2.534 0.981] [0.401 2.690 0.992] 
Output Membership Function Parameters 
54. [0 0 1] [-0.486 -0.879 -0.029] [0.129 -0.058 0.143] [0.122 -0.215 0.268] 
55. [0 0 0.75] [-0.489 -0.902 0.001] [-0.101 -0.029 0.148] [-0.042 -0.011 0.314] 
56. [0 0 0.5] [-0.415 -0.816 0.003] [-0.025 -0.061 -0.044] [0.404 -0.326 0.102] 
57. [0 0 0.25] [-0.299 -0.703 -0.123] [-0.028 -0.109 0.146] [0.115 -0.215 0.351] 
58. [0 0 0] [-0.149 -0.891 0.004] [-0.202 0.085 -0.005] [-0.472 0.492 -0.004] 
59. [0 0 -0.25] [-0.305 -0.306 -0.037] [0.149 0.145 -0.067] [0.434 0.291 -0.254] 
60. [0 0 -0.5] [-0.590 -0.839 -0.117] [-0.124 0.067 -0.004] [-0.262 0.281 -0.190] 
61. [0 0 -0.75] [-0.481 -1.081-0.061] [-0.084 0.170 0.160] [-0.053 0.110 0.100] 
62. [0 0 -1] [-0.659 -1.311 0.781] [0.009 0.035 0.059] [-0.083 0.163 0.059] 
63. Rule List [1 1 1 1 1] [1 1 1 1 1] [1 1 1 1 1] [1 1 1 1 1] 
64. [1 2 2 1 1] [1 2 2 1 1] [1 2 2 1 1] [1 2 2 1 1] 
65. [1 3 3 1 1] [1 3 3 1 1] [1 3 3 1 1] [1 3 3 1 1] 
66. [2 1 4 1 1] [2 1 4 1 1] [2 1 4 1 1] [2 1 4 1 1] 
67. [2 2 5 1 1] [2 2 5 1 1] [2 2 5 1 1] [2 2 5 1 1] 
68. [2 3 6 1 1] [2 3 6 1 1] [2 3 6 1 1] [2 3 6 1 1] 
69. [3 1 7 1 1] [3 1 7 1 1] [3 1 7 1 1] [3 1 7 1 1] 
70. [3 2 8 1 1] [3 2 8 1 1] [3 2 8 1 1] [3 2 8 1 1] 
71. [3 3 9 1 1] [3 3 9 1 1] [3 3 9 1 1] [3 3 9 1 1] 



Appendix E: Non-Interacting Control System Design 

This work herein describes the design method used to produce the decoupling elements 

ofEqn.(5.7) and Eqn.(5.8). 

Figure El illustrates the block diagram representation of the non-interacting design 

approach whereby a 2 input - 2 output system is shown. Each controller is specifically 

designed in order that the interactions within the process are exactly cancelled. More 

specifically, the system is assumed to be at an equilibrium operating point such that 

small changes in the input variables will lead to small changes in the outputs (Doebelin 

(1985)): 

(El) 

(E2) 

Rewriting these equations in more general form yields: 

L\c1 (s) = Gu (s }w 1 (s )+ G12 (s )L\M 2 (s) (E3) 

L\c2 (s) = G21 (s }1M 1 (s )+ G22 (s }1M 2 (s) (E4) 

assuming that Dtt = D22 = I for simplicity. In order that the loops be successfully 

decoupled, the signal passing from M1• to C2 via the path Dz1Gzz should cancel that 

going by the path Dtt Gzt such that 

(ES) 
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Figure El: Non-Interacting Control System Design. 

and the signal passing from M2• to C1 via the path D 12G 11 should cancel that going by 

the path D22G12: 

• • Mz D12G11 = - Mz G12 (E6) 

Hence the decoupling elements for this system are defined as: 

D2t =- G21 and DI2 =- G12 

G22 Gll 
(E7) 

where M1• affects only C1 and Mz • affects only C2. However the transfer functions are 

not simply Gn and Gzz but are replaced by 

(E8) 

and 
• • Mz G22 + Mz D12 G21 = C2 (E9) 



APPENDIX£ 

thus 

(ElO) 

(Ell) 

Thus controllers can now be designed for each loop of the plant independently, using 

traditional SISO techniques. This approach can naturally be extended to accommodate 

a general class of multivariable systems. In real systems there is inevitably some 

mismatch between the mathematical model of the interaction terms and the actual 

interaction terms themselves. However, vast improvements can still be obtained by 

approaching a multi variable problem in this way. 
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Appendix F: The Hybrid Rule Tuned Roll Autopilot 
Information - 9 Rules 

The details of the hybrid tuned MISO roll regulating autopilot are reproduced herein for 
completeness: 

1. Name roll_hy 
20 Type sugeno 
3 0 lnQuts/Outguts [2 1] 
40 NumlnJ:2utMFs [3 3] 
50 NumOutRutMFs 9 
60 NumRules 9 
7 0 And.Method prod 
80 OrMethod probor 
90 lmRMethod min 
lOo AggMethod max 
110 DefuzzMethod wtaver 
120 InLabels rerr 
130 rder 
140 OutLabels rrud 
150 InRange [ -1 1] 
160 [ -1 1] 
17 0 OutRange [ -1 1] 
180 InMFLabels neg 
190 zero 
200 pos 
21. neg 
220 zero 
230 pos 
240 OutMFLabels posbig 
250 posmed 
260 possmall 
270 zeropos 
280 zero 
290 zeroneg 
300 negsmall 
31. negmed 
320 negbig 
33olnMFTypes gbellmf 
340 gbellmf 
350 gbellmf 
360 gbellmf 
370 gbellmf 
380 gbellmf 
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39. OutMFTYPes 
40. 
41. 
42. 
43. 
44. 
45. 
46. 
47. 
48. InMFParams 
49. 
50. 
51. 
52. 
53. 
54. OutMFParams 
55. 
56. 
57. 
58. 
59. 
60. 
61. 
62. 
63. RuleList 
64. 
65. 
66. 
67. 
68. 
69. 
70. 
71. 

linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
[0.9184 2.959 -1.082] 
[0.4503 2.791 0.003105] 
[0.3566 1.877 0.7513] 
[0.5796 2.71 -1.233] 
[0.5048 2.685 -0.08115] 
[0.6114 2.243 1.161] 
[-0.4861 -0.8793 -0.0289] 
[-0.4887 -0.9022 0.0014] 
[ -0.4864 -0.8960 0.0030] 
[-0.2992 0.7034 -0.1231] 
[-0.4876 -0.8912 0.0044] 
[ -0.3045 -0.3063 -0.0370] 
[-0.5901 -0.8388 -0.1174] 
[-0.4805 -1.0810 -0.0611] 
[ -0.6590 -1.311 0. 7808] 
[11111] 
[1 2 2 1 1] 
[1 3 3 1 1] 
[2 1 4 1 1] 
[2 2 5 1 1] 
[2 3 6 1 1] 
[3 1 7 1 1] 
[3 2 8 1 1] 
[3 3 9 1 1] 



Appendix G: The CANFIS AutopUot Information - 16 
Rules 

This work details the full matrix of parameters pertaining to the 16 fuzzy rule CANFIS 
hybrid rule tuned multi variable autopilot for yaw and roll control. 

1. Name CANFIS16 
2. Type sugeno 
3. lnRuts/Oumuts [42] 
4. NumlnRutMFs [2 2 2 2] 
5. NumOutgutMFs [16 16] 
6. NumRules 32 
7. AndMethod prod 
8. OrMethod probor 
9. ImpMethod min 
10. AggMethod max 
11. DefuzzMethod wtaver 
12. InLabels yerr 
13. yder 
14. serr 
15. sder 
16. OutLabels canards 
17. stemrd 
18. InRange [ -1 1] 
19. [ -1 1] 
20. [ -1 1] 
21. [ -1 1] 
22. OutRange [ -1 1] 
23. [ -1 1] 
24. InMFLabels neg 
25. pos 
26. neg 
27. pos 
28. neg 
29. pos 
30. neg 
31. pos 
32. OutMFLabels mf1 
33. mf2 
34. mf3 
35. mf4 
36. rnf5 
37. mf6 
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38. mf7 
39. mf8 
40. mf9 
41. mflO 
42. mfll 
43. mf12 
44. mf13 
45. mf14 
46. mf15 
47. mf16 
48. mfl 
49. mf2 
50. mf3 
51. mf4 
52. mf5 
53. mf6 
54. mf7 
55. mf8 
56. mf9 
57. mflO 
58. mfll 
59. mf12 
60. mf13 
61. mf14 
62. mfl5 
63. mfl6 
64. lnMFTY!les gbellmf 
65. gbellmf 
66. gbellmf 
67. gbellmf 
68. gbellmf 
69. gbellmf 
70. gbellmf 
71. gbellmf 
72. OutMFfYiles linear 
73. linear 
74. linear 
75. linear 
76. linear 
77. linear 
78. linear 
79. linear 
80. linear 
81. linear 
82. linear 
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83. 
84. 
85. 
86. 
87. 
88. 
89. 
90. 
91. 
92. 
93. 
94. 
95. 
96. 
97. 
98. 
99. 
100. 
101. 
102. 
103. 
104. InMFParams 
105. 
106. 
107. 
108. 
109. 
110. 
111. 
112. OutMFParams 
113. 
114. 
115. 
116. 
117. 
118. 
119. 
120. 
121. 
122. 
123. 
124. 
125. 
126. 
127. 

linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
[0.9437 2.572 -0.944 0] 
[1.042 2.428 0.9818 0] 
[0.9715 2.531 -1.061 0] 
[0.9747 2.494 1.018 0] 
[0.8696 2.541 -0.954 0] 
[1.02 2.564 1.005 0] 
[0.9203 2.537 -0.925 0] 
[0.8584 2.509 1.083 0] 
[-0.0938 0.01186 0.09168 0.01037 -0.9447] 
[ -0.09849 -0.03734 -0.07325 0.006042 0.02454] 
[-0.1259 0.07393 -0.0766 0.004301 -0.04256] 
[0.09554 0.02822 -0.01118 0.03402 0.0007768] 
[-0.01518 -0.02504-0.02283-0.01215 0.02896] 
[-0.01228 -0.0181-0.07017 0.01761 -0.1178] 
[-0.06512 -0.0007333 0.0549-0.1503 0.09814] 
[-0.07991 -0.06053 0.06759 -0.04874 -0.005731] 
[-0.2677 0.09207-0.04177 0.003466 -0.03107] 
[-0.05288 -0.08954 0.1008 -0.07809 -0.1019] 
[-0.08666 -0.07202-0.06384-0.01019 -0.1286] 
[0.04118 0.02067 -0.03468 -0.1345 0.03141] 
[0.01379 -0.08343 -0.01257 -0.06115 -0.05321] 
[ -0.08494 -0.06348 0.06887 -0.04667 0.04643] 
[0.07067 -0.07485 -0.005343 0.03873 -0.03032] 
[0.07396 0.02911 0.07811 0.02216 1.075] 
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128. 
129. 
130. 
131. 
132. 
133. 
134. 
135. 
136. 
137. 
138. 
139. 
140. 
141. 
142. 
143. 
144. RuleList 
145. 
146. 
147. 
148. 
149. 
150. 
151. 
152. 
153. 
154. 
155. 
156. 
157. 
158. 
159. 
160. 
161. 
162. 
163. 
164. 
165. 
166. 
167. 
168. 
169. 
170. 
171. 
172. 

[0.02972 0.06331 -0.02828 0.03148 -1.121] 
[-0.03309 0.06209 0.04053 0.02942 -0.01404] 
[0.03773 -0.048-0.04138-0.07171 -0.08232] 
[-0.00851 0.05143 0.1392 0.0769 0.06729] 
[-0.0887 -0.0311 0.08146 -0.007866 0.005566] 
[-0.1456 -0.009546 0.0301 0.05896 0.09615] 
[0.01561 -0.02747 0.05218 0.01402 0.01732] 
[-0.026 -0.02265 0.01581 0.04728 0.0689] 
[0.008604 -0.00645 -0.1481 0.1034 0.02088] 
[ -0.111 0.03482 0.02266 -0.03373 -0.0 156] 
[-0.04401 0.02489 0.03059 -0.008537 0.03702] 
[0.07623 0.02189 -0.1335 0.01453 0.07764] 
[ -0.04596 -0.03258 -0.09966 -0.07056 0.06046] 
[-0.1276 -0.06471 -0.00153 0.0388 -0.02721] 
[0.04345 0.06957 0.07364 0.07236 -0.07393] 
[-0.05549 -0.04549 0.02437 -0.06023 0.9446] 
[1 1 1 1 16 0 1 1] 
[1 1 1 2 15 0 1 1] 
[1 1 2 1 14 0 1 1] 
[1 1 2 2 13 0 1 1] 
[1 2 1 1 12 0 1 1] 
[1 2 1 2 11 0 1 1] 
[122110011] 
[1 2 2 2 9 0 1 1] 
[2 1 1 1 8 0 1 1] 
[2 1 1 2 7 0 1 1] 
[2 1 2 1 6 0 1 1] 
[2 1 2 2 50 1 1] 
[2 21 1401 1] 
[2 2 1 2 3 0 1 1] 
[2 2 2 1 2 0 1 1] 
[2 2 2 2 1 0 1 1] 
[1 1 1 1 0 16 1 1] 
[1 2 1 1 0 15 1 1] 
[2 1 1 1 0 14 1 1] 
[2 2 1 1 0 13 1 1] 
[1 1 1 2 0 12 1 1] 
[I 2 1 2 0 11 1 1] 
[2 1 1 2 0 10 1 1] 
[22 12091 1] 
[1 1 2 1 0 8 1 1] 
[1 2 21071 1] 
[2 121061 1] 
[2 2 2 1 0 5 1 1] 
[1 12 2041 1] 
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Appendix H: The On-Line Tuned Gaussian 
Autopilot Information - 16 Rules 

Details of the on-line tuned autopilot produced via the hybrid rule tuning regime (with a 
forgetting factor of 0.975 and a step size of 5%) are reproduced herein for 
completeness: 

1. Name OL_975_5 
2.~ Sugeno 
3. lnQuts/Oumuts [42] 
4. NumlnQutMFs [2 2 2 2] 
5. NumoumutMFs [16 16] 
6. NumRules 32 
7. AndMethod prod 
8. OrMethod probor 
9. lmi!Method min 
10. AggMethod max 
11. DefuzzMethod wtaver 
12. lnLabels yerr 
13. yder 
14. rerr 
15. rder 
16. OutLabels can 
17. ste 
18.1nRange [ -1 1] 
19. [ -1 1] 
20. [ -1 1] 
21. [ -1 1] 
22. OutRange [ -1 1] 
23. [ -1 1) 
24. InMFLabels neg 
25. pos 
26. neg 
27. pos 
28. neg 
29. pos 
30. neg 
31. pos 
32. OutMFLabels mf1 
33. mf2 
34. mf3 
35. mf4 
36. mf5 
37. mf6 
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38. mf7 
39. mf8 
40. mf9 
41. mflO 
42. mfll 
43. mf12 
44. mf13 
45. mf14 
46. mf15 
47. mf16 
48. mfl 
49. mf2 
50. mf3 
51. mf4 
52. mf5 
53. mf6 
54. mf7 
55. mf8 
56. mf9 
57. mflO 
58. mfll 
59. mf12 
60. mf13 
61. mf14 
62. mf15 
63. mf16 
64.InMFTmes gbellmf 
65. gbellmf 
66. gbellmf 
67. gbellmf 
68. gbellmf 
69. gbellmf 
70. gbellmf 
71. gbellmf 
72. OutMFfmes linear 
73. linear 
74. linear 
75. linear 
76. linear 
77. linear 
78. linear 
79. linear 
80. linear 
81. linear 
82. linear 
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83. 
84. 
85. 
86. 
87. 
88. 
89. 
90. 
91. 
92. 
93. 
94. 
95. 
96. 
97. 
98. 
99. 
100. 
101. 
102. 
103. 
104 InMFParams 
105. 
106. 
107. 
108. 
109. 
110. 
111. 
112. OutMFParams 
113. 
114. 
115. 
116. 
117. 
118. 
119. 
120. 
121. 
122. 
123. 
124. 
125. 
126. 
127. 

linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
[0.2654 3.127 -1.0 0] 
[3.121 2.609 0.5289 0] 
[1.396 2.501 -0.381 0] 
[1.755 2.398 0.444 0] 
[1.498 2.663 -0.548 0] 
[1.987 2.462 0.3001 0] 
[1.450 2.529 -0.3801 0] 
[1.400 2.551 0.4111 0] 
[0.877 -0.05152 -0.1083 -0.01407 0.02972] 
[0.1268 -0.009987 -0.01959 -0.001706 0.004428] 
[0.07797 -0.006236 -0.01219 -0.001044 0.002715] 
[0.01438 -0.00134 -0.002538 -0.0001498 0.0005347] 
[0.2909 -0.0003214 -0.009953 -0.006734 0.009106] 
[0.01692 -0.0001089 -0.0007172 -0.0003743 0.0005443] 
[0.009086 -0.0000475 -0.000369 -0.0002045 0.000288] 
[0.0008702 -0.0000718 -0.0001374 -2.8e-6 0.00004443] 
[0.5015 -0.1883 -1.561 0.3624 0.05529] 
[0.2602 -0.3148 -1.767 0.2863 -0.1314] 
[-0.2411-0.1457 -1.541 0.4015 0.04173] 
[1.917 -0.6347-2.345 0.4627 0.1039] 
[-0.6036 0.08536 0.1311 -0.04445 -0.59] 
[-0.264 -0.07701 -0.125 -0.01428 -0.571] 
[-0.9672 0.07787 0.1239 -0.0334 -0.6004] 
[0.03124 -0.1411 -0.2406-0.002756 -0.543] 
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128. 
129. 
130. 
131. 
132. 
133. 
134. 
135. 
136. 
137. 
138. 
139. 
140. 
141. 
142. 
143. 
144. RuleList 
145. 
146. 
147. 
148. 
149. 
150. 
151. 
152. 
153. 
154. 
155. 
156. 
157. 
158. 
159. 
160. 
161. 
162. 
163. 
164. 
165. 
166. 
167. 
168. 
169. 
170. 
171. 
172. 

[0.877 -0.05152-0.1083 -0.01407 0.02972] 
[0.2909 -0.0003214 -0.009953 -0.006734 0.009106] 
[0.5015 -0.1883 -1.561 0.3624 0.05529] 
[-0.6036 0.08536 0.1311 -0.04445 -0.59] 
[0.1268 -0.009987-0.01959-0.001706 0.004428] 
[0.01692 -0.0001089 -0.0007172 -0.0003743 0.0005443] 
[0.2602 -0.3148 -1.767 0.2863 -0.1314] 
[-0.264 -0.07701 -0.125 -0.01428 -0.571] 
[0.07797 -0.006236 -0.01219 -0.001044 0.002715] 
[0.009086 -0.00004748 -0.0003686 -0.000205 0.000288] 
[-0.2411-0.1457 -1.5410.4015 0.04173] 
[-0.9672 0.07787 0.1239-0.0334 -0.6004] 
[0.01438 -0.00134 -0.002538 -0.0001498 0.0005347] 
[0.0008702 -0.0000718 -0.0001374 -2.8e-6 0.00004443] 
[1.917 -0.6347 -2.345 0.4627 0.1039] 
[0.03124 -0.1411 -0.2406 -0.002756 -0.543] 
[1 1 1 1 16 0 1 1] 
[1 1 1 2 15 0 1 1] 
[11 2 1 14 0 1 1] 
[1 1 2 2 13 0 1 1] 
[1 2 1 1 12 0 1 1] 
[1 2 I 2 11 0 I 1] 
[1 2 2 1 10 0 I 1] 
[1 2 2 2 90 I 1] 
[2 I 1 1 8 0 I 1] 
[2 I 12 70 I I] 
[2 I 2160 I 1] 
[2 I 2 2 5 0 I 1] 
[2 2 I 1 4 0 I I] 
[2 2 1 2 3 0 1 1] 
[2 22 I 201 I] 
[2 2 2 2 I 0 I 1] 
[1 I I I 0 I6 I I] 
[1 2 I I 0 I5 I I] 
[2 I I 1 0 14 1 1] 
[2 2 1 1 0 13 1 1] 
[11 1 2 0 12 1 1] 
[1 2 I 2 0 11 1 1] 
[2 1 I 2 0 10 1 I] 
[2 2 I 2091 1] 
[1 I 2 1 0 8 I I] 
[1 22 I 07 I 1] 
[2 I 2 I 0 6 I I] 
[2 22 I 0 51 1] 
[11 2 2 0 4 I 1] 
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Appendix I: The On-Line Tuned Gaussian 
Autopilot Information - 16 Rules 

Details of the on-line tuned autopilot produced via the hybrid rule tuning regime (with a 
forgetting factor of 0.99 and a step size of 5%) are reproduced herein for completeness: 

1. Name OL_99_5 
2. Type Sugeno 
3. Inuuts/Oumuts [4 2] 
4. NuminuutMFs [2 2 2 2] 
5. NumoumutMFs [16 16] 
6. NumRules 32 
7. And.Method min 
8. OrMethod max 
9. ImuMethod min 
10. AggMethod max 
11. DefuzzMethod centroid 
12. InLabels yerr 
13. yder 
14. rerr 
15. rder 
16. OutLabels can 
17. ste 
18.1nRange [ -1 1] 
19. [ -1 1] 
20. [ -1 1] 
21. [ -1 1] 
22. OutRange [ -1 1] 
23. [ -1 1] 
24. lnMFLabels neg 
25. pos 
26. neg 
27. pos 
28. neg 
29. pos 
30. neg 
31. pos 
32. OutMFLabels mf1 
33. mf2 
34. mf3 
35. mf4 
36. mf5 
37. mf6 
38. mf7 
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39. mf8 
40. mf9 
41. mflO 
42. mfll 
43. mf12 
44. mf13 
45. mf14 
46. mf15 
47. mf16 
48. mfl 
49. mf2 
50. mf3 
51. mf4 
52. mf5 
53. mf6 
54. mf7 
55. mf8 
56. mf9 
57. mflO 
58. mfll 
59. mf12 
60. mf13 
61. mf14 
62. mf15 
63. mf16 
64. InMFTmes gbellmf 
65. gbellmf 
66. gbellmf 
67. gbellmf 
68. gbellmf 
69. gbellmf 
70. gbellmf 
71. gbellmf 
72. OutMFTmes linear 
73. linear 
74. linear 
75. linear 
76. linear 
77. linear 
78. linear 
79. linear 
80. linear 
81. linear 
82. linear 
83. linear 
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84. 
85. 
86. 
87. 
88. 
89. 
90. 
91. 
92. 
93. 
94. 
95. 
96. 
97. 
98. 
99. 
100. 
101. 
102. 
103. 
104 InMFParams 
105. 
106. 
107. 
108. 
109. 
110. 
111. 
112. OutMFParams 
113. 
114. 
115. 
116. 
117. 
118. 
119. 
120. 
121. 
122. 
123. 
124. 
125. 
126. 
127. 
128. 

linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
linear 
[0.2291 3.375 -1.002 0] 
[3.036 2.672 0.6747 0] 
[1.376 2.536 -0.3799 0] 
[1.743 2.411 0.4235 0] 
[1.573 2.766 -0.5118 0] 
[1.877 2.357 0.2987 0] 
[1.489 2.546 -0.3811 0] 
[1.399 2.551 0.4129 0] 
[4.584e-6 2.716e-7 -1.414e-6 -3.896e-7 -0.00002737] 
[4.578e-6 2.713e-7 -1.413e-6 -3.891e-7 -0.00002734] 
[4.626e-6 2.74le-7 -1.428e-6 -3.932e-7 -0.00002763] 
[4.621e-6 2.738e-7 -1.426e-6 -3.927e-7 -0.00002759] 
[4.586e-6 2.717e-7 -1.415e-6 -3.897e-7 -0.00002738] 
[4.58e-6 2.714e-7 -1.413e-6 -3.892e-7 -0.00002735] 
[4.628e-6 2.743e-7 -1.428e-6 -3.934e-7 -0.00002764] 
[4.623e-6 2.739e-7 -1.427e-6 -3.929e-7 -0.0000276] 
[0.03682 0.002182 -0.01136 -0.003129 -0.2199] 
[0.03678 0.002179 -0.01135 -0.003126 -0.2196] 
[0.03717 0.002202 -0.01147 -0.003159 -0.2219] 
[0.03712 0.0022 -0.01146 -0.003155 -0.2217] 
[0.03684 0.002183 -0.01137 -0.003131 -0.22] 
[0.03679 0.00218 -0.01135 -0.003127 -0.2197] 
[0.03718 0.002203 -0.01147 -0.00316 -0.222] 
[0.03714 0.002201 -0.01146 -0.003156 -0.2218] 
[4.584e-6 2.716e-7 -1.414e-6 -3.896e-7 -0.00002737] 
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129. 
130. 
131. 
132. 
133. 
134. 
135. 
136. 
137. 
138. 
139. 
140. 
141. 
142. 
143. 
144. RuleList 
145. 
146. 
147. 
148. 
149. 
150. 
151. 
152. 
153. 
154. 
155. 
156. 
157. 
158. 
159. 
160. 
161. 
162. 
163. 
164. 
165. 
166. 
167. 
168. 
169. 
170. 
171. 
172. 
173. 

[4.586e-6 2.717e-7 -1.415e-6 -3.897e-7 -0.00002738] 
[0.03682 0.002182 -0.01136 -0.003129 -0.2199] 
[0.03684 0.002183 -0.01137 -0.003131 -0.22] 
[4.578e-6 2.713e-7 -1.413e-6 -3.891e-7 -0.00002734] 
[4.58e-6 2.714e-7 -1.413e-6 -3.892e-7 -0.00002735] 
[0.03678 0.002179-0.01135 -0.003126 -0.2196] 
[0.03679 0.00218 -0.01135 -0.003127 -0.2197] 
[4.626e-6 2.741e-7 -1.428e-6 -3.932e-7 -0.00002763] 
[4.628e-6 2.743e-7 -1.428e-6 -3.934e-7 -0.00002764] 
[0.03717 0.002202-0.01147-0.003159 -0.2219] 
[0.03718 0.002203 -0.01147 -0.00316 -0.222] 
[4.621e-6 2.738e-7 -1.426e-6 -3.927e-7 -0.00002759] 
[4.623e-6 2.739e-7 -1.427e-6 -3.929e-7 -0.0000276] 
[0.03712 0.0022-0.01146 -0.003155 -0.2217] 
[0.03714 0.002201 -0.01146-0.003156 -0.2218] 
[1 1 1 1 16 0 1 1] 
[1 1 1 2 15 0 1 1] 
[1 1 2 1 14 0 1 1] 
[1 1 2 2 13 0 1 1] 
[1 2 1 1 12 0 1 1] 
[1 2 1 2 11 0 1 1] 
[1 2 2 1 10 0 1 1] 
[1 2 2 2 9 0 1 1] 
[2 1 1 1 8 0 1 1] 
[2 1 1 2 7 0 1 1] 
[2 1 2 1 6 0 1 1] 
[2 1 2 2 5 0 1 1] 
[2 21 1401 1] 
[22 12 3 01 1] 
[2 2 21201 1] 
[2 2 2 2 1 0 1 1] 
[1 1 1 1 0 16 1 1] 
[1 2 1 1 0 15 1 1] 
[2 1 1 1 0 14 1 1] 
[2 2 1 1 0 13 1 1] 
[1 1 1 2 0 12 11] 
[1 2 1 2 0 11 1 1] 
[2 1 1 2 0 10 1 1] 
[2 2 1 2 0 9 1 1] 
[1 1 2 1 0 8 11] 
[1 2 2107 1 1] 
[2 121061 1] 
[2 2 2105 1 1] 
[1 1 2 2 04 1 1] 
[1 2 2 2 0 3 1 1] 
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Appendix J: The Hybrid Rule Tuned Gaussian Inference 
Autopilot Information - 9 Rules 

The details of the Gaussian MISO autopilot produced via the hybrid rule parameter 
tuning regime are reproduced herein for completeness: 

1. Name G_SISO 
2.~ Gaussian 
3. No. lnQuts/Ou!I!uts [2 1] 
4. No. ln);!ut MFs [3 3] 
5. No. OutQUt MFs 9 
6. No. Rules 9 
7. And Method min 
8. OrMethod max 
9. lm:glication Method min 
10. Aggregation Method max 
11. DefuzzMethod centroid 
12. lnQut Labels err 
13. der 
14. Ou!I!ut Labels can 
15. ln);!ut Range [ -1 1] 
16. [ -1 1] 
17. Out:gut Range [ -1 1] 
18. lnQut MembershiQ neg 
19. Function Labels zero 
20. pos 
21. neg 
22. zero 
23. pos 
24. Out:gut MembershiQ posbig 
25. Function Labels posmed 
26. possmall 
27. zeropos 
28. zero 
29. zeroneg 
30. negsmall 
31. negmed 
32. negbig 
33. lnQut MembershiQ gbellmf 
34. Function Tn1es gbellmf 
35. gbellmf 
36. gbellmf 
37. gbellmf 
38. gbellmf 
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39. Output Membership c2_gauss 
40. Function Types c2_gauss 
41. c2_gauss 
42. c2_gauss 
43. c2_gauss 
44. c2_gauss 
45. c2_gauss 
46. c2_gauss 
47. c2_gauss 
Input Membership Function Parameters 
48. [0.485 2.113 -1.020] 
49. [0.503 1.399 0.041] 
50. [0.476 2.790 0.953] 
51. [0.477 2.774 -1.076] 
52. [0.557 2.388 -0.047] 
53. [0.527 2.289 0.984] 
Output Membership Function Parameters 
54. [0.4 1 1 1.499] 
55. [0.4 0.75 0.75 0.368] 
56. [0.4 0.5 0.5 2.091] 
57. [0.4 0.25 0.25 0.390] 
58. [0.4 0 0 0.897] 
59. [0.4 -0.25 -0.25 1.350] 
60. [0.4 -0.5 -0.5 1.012] 
61. [0.4 -0.75 -0.75 0.576] 
62. [0.4 -1 -1 -0.601] 
63. Rule List [1 1 1 1 1] [1 1 1 1 1] 
64. [1 2 2 1 1] [1 2 2 1 1] 
65. [1 3 3 1 1] [1 3 3 1 1] 
66. [2 1 4 1 1] [2 1 4 1 1] 
67. [22511] [22511] 
68. [2 3 6 I I] [2 3 6 I I] 
69. [3 I 7 I I] [3 I 7 1 1] 
70. [3 2 8 1 I] [3 2 8 I 1] 
71. [3 3 9 I I] [3 3 9 I 1] 

[1 1 1 1 1] 
[1 2 2 1 1] 
[1 3 3 1 1] 
[2 1 4 1 1] 
[2 2 5 1 1] 
[2 3 6 1 1] 
[3 1 7 1 1] 
[3 2 8 1 1] 
[3 3 9 1 1] 

[1 1 1 1 1] 
[1 2 2 1 1] 
[1 3 3 1 1] 
[2 1 4 I 1] 
[2 2 5 1 1] 
[2 3 6 1 1] 
[3 1 7 1 1] 
[3 2 8 I 1] 
[3 3 9 11] 



Appendix K: Modelling a Non-Linear Function: 
Gaussian Inference 'v' ANFIS 

Kl Recovering in,formation using ANFIS 

Within the MATLAB Fuzzy Logic Toolbox exists an M-File which demonstrates 

adaptive non-linear noise cancellation using the adaptive network-based fuzzy 

inference system (ANFIS) command. This demonstration is summarized here to 

provide a comparative performance assessment between ANFIS modelling and the 

proposed Gaussian inference of Chapter 7. 

Essentially, an information signal x (Eqn. (K1)) is sampled at 100Hz over 6 seconds. 

The information signal cannot be measured (recovered) without knowing the form of an 

interference signal {3, which is generated from another random noise source y via an 

unknown non-linear process. The interference signal y that appears in the measured 

signal is assumed to be a function of an unknown non-linear equation which is actually 

given by Eqn. (K2). 

. ( 40 ) x=sm 
t +0.01 

y(k)= 4sin(,B(k)),8(k-1) 

1 + fJ(k -1Y 

This function is illustrated in Figure K1. 

(K1) 

(K2) 
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Figure Kl : The non-linear channel characteristics (]1 defining the interference. 

The noise source f3 and interference y are shown together in Figure K2. Note that y is 

related to f3 via the highly non-linear process of Figure Kl; it is virtually impossible to 

ascertain if these two signals are correlated from the diagram. 

The measured signal m is the sum of the original information signal x and the 

interference y. However, the function y is unknown. Consequently, it is required by 

ANFIS to recover the original information signal x given the interference. To train the 

ANFIS model the measured signal m is employed as a noisy version of the interference 

characteristics yduring training. It is assumed that the order of the non-linear channel is 

known to be 2; a 2-input ANFIS model is used for training. Two membership functions 

are subsequently assigned to each input, yielding 4 fuzzy rules. The step size is set 

equal to 0.2. 
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Figure K2: The noise source (/3) and the interference (/'1. 

5 6 

The estimated information signal x is equal to the difference between the measured 

signal m and the ANFIS output. 

The original information signal x and the estimated x by ANFIS are plotted in Figure 

K3. With minimal training (10 epochs of the hybrid learning rule), the ANFIS model 

has produced an accurate representation of the under-lying interference signal r, and 

has thus recovered x. 
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Figure K3: The original information signal x and the output of 
the ANFIS model (estimated x). 

K2 Recovering information using Gaussian Inference 

6 

By applying the Gaussian inference of Chapter 7 to the same problem a comparison can 

be made between the two approaches. This comparison is arguably quite subjective, but 

will serve to illustrate the modelling capabilities of the proposed scheme. 

Identical information (x), interference (/3) and noise source (71 signals were employed 

throughout this experiment to provide a direct comparison. Figure K4 illustrates the 

results when employing the Gaussian inference technique. 
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Figure K4: The original information signal x and the output of 
the Gaussian Inference model (estimated x). 

Whilst the scale for the estimated information signal is [ -2, 2] for the Gaussian 

Inference model compared to [ -1, 1] for the ANFIS model, the difference between the 

information signal and the estimated information signals highlights the greater accuracy 

of the Gaussian Inference method. This is depicted in Figure KS. Table Kl documents 

summary statistics for each of the fuzzy models and further highlights the superior 

accuracy of this model when considering the difference between the required signal and 

the recovered signal. 
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Figure K5: The information signal minus the estimated information 
signal - ANFIS and Gaussian inference fuzzy models. 

Model Max Min Variance Standard 
Deviation 

ANFIS 1.2680 -0.7021 0.0255 0.1597 

Gaussian 0.5790 -0.4705 0.0237 0.1539 
inference 

Table K1: Summary statistics for each modelling technique. 

6 



Appendix L: The Extended Hybrid Rule Tuned 
Gaussian Inference Autopilot 
Information- 16 Rules 

The details of the Gaussian MIMO autopilot produced via the extended hybrid rule 
parameter tuning regime are reproduced herein for completeness: 

1. Name G_MIMOex 
2.~ Gaussian 
3. ln11uts/Out!!uts [4 2] 
4. Numln11utMFs [2 2 2 2] 
5. NumOut!!utMFs [16 16] 
6. NumRules 32 
7. AndMethod min 
8. OrMethod max 
9. Im11Method min 
10. AggMethod max 
11. DefuzzMethod centroid 
12. InLabels yerr 
13. yder 
14. rerr 
15. rder 
16. OutLabels can 
17. stem_hyd 
18.InRange [ -1 1] 
19. [ -1 1] 
20. [ -1 1] 
21. [ -1 1] 
22. OutRange [ -1 1] 
23. [ -1 1] 
24. lnMFLabels neg 
25. pos 
26. neg 
27. pos 
28. neg 
29. pos 
30. neg 
31. pos 
32. OutMFLabels mfl 
33. mf2 
34. mf3 
35. mf4 
36. mf5 
37. mf6 
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38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 
46. 
47. 
48. 
49. 
50. 
51. 
52. 
53. 
54. 
55. 
56. 
57. 
58. 
59. 
60. 
61. 
62. 
63. 
64. InMFTxves 
65. 
66. 
67. 
68. 
69. 
70. 
71. 
72. OutMFT)lleS 
73. 
74. 
75. 
76. 
77. 
78. 
79. 
80. 
81. 
82. 

mf7 
mf8 
mf9 
mflO 
mfll 
mf12 
mf13 
mf14 
mf15 
mf16 
mfl 
mf2 
mf3 
mf4 
mf5 
mf6 
mf7 
mf8 
mf9 
mflO 
mfll 
mf12 
mf13 
mf14 
mf15 
mf16 
gbellmf 
gbellmf 
gbellmf 
gbellmf 
gbellmf 
gbellmf 
gbellmf 
gbellmf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
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83. 
84. 
85. 
86. 
87. 
88. 
89. 
90. 
91. 
92. 
93. 
94. 
95. 
96. 
97. 
98. 
99. 
100. 
101. 
102. 
103. 
104. InMFParams 
105. 
106. 
107. 
108. 
109. 
llO. 
lll. 
112. OutMFParams 
l13. 
l14. 
l15. 
l16. 
l17. 
l18. 
119. 
120. 
121. 
122. 
123. 
124. 
125. 
126. 
127. 

gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
gauss4mf 
[29.25 3.034 -31.62 0] 
[31.74 4.686 30.71 0] 
[3.044 2.714 -3.042 0] 
[2.929 2.359 3.14 0] 
[9.603 3.353-11.07 0] 
[10.33 2.896 10.7 0] 
[1.049 2.452 -0.9862 0] 
[1.04 2.432 0.9996 0] 

[0.3764 -0.5904-0.7906 -1.407 -2.106 1.004] 
[0.3965 0.4207 -0.4184 -0.5837 1.472 0.9937] 
[0.3887 -0.3199 -0.4467 1.636 -0.2943 0.8256] 
[0.3749 -2.039 -0.803 0.6605 0.4274 1.103] 
[0.4049 -1.362 0.0219 -0.7394 -0.5888 1.011] 
[0.3912 -0.3693 -1.352 -0.2986 0.08724 1.095] 
[0.3961 0.0875 1.026 0.174 -0.78741.181] 
[0.3876 0.4565 -0.7375 0.0341 0.1629 1.008] 
[0.4081 0.1448 -0.407 -2.267 -1.807 1.141] 
[0.3911 0.3836-0.9694-1.176 0.8542 1.247] 
[0.4049 1.326 -0.3293 0.3779 -1.233 1.382] 
[0.3937 0.5677 -0.9117 0.001 0.5197 0.8325] 
[0.391 0.868 -1.356 0.563 -1.301 1.156] 
[0.3865 0.596 0.4802-1.17 0.5248 1.033] 
[0.4109 -0.5992-0.1073-0.361 0.171 0.9392] 
[0.3806 0.628 0.9703 1.305 1.386 1.353] 
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128. 
129. 
130. 
131. 
132. 
133. 
134. 
135. 
136. 
137. 
138. 
139. 
140. 
141. 
142. 
143. 
144. RuleList 
145. 
146. 
147. 
148. 
149. 
150. 
151. 
152. 
153. 
154. 
155. 
156. 
157. 
158. 
159. 
160. 
161. 
162. 
163. 
164. 
165. 
166. 
167. 
168. 
169. 
170. 
171. 
172. 

[0.4065 -1.917 0.2177 0.1113-2.331 0.972] 
[0.414 -0.0595 -0.4885 -0.3987 0.7263 0.999] 
[0.4084 -0.9997 -0.6363 -0.633 -0.1174 1.225] 
[0.4073 -0.1403 -0.7054 1.733 0.32 1.041] 
[0.393 -0.1757-0.37810.0961-0.3417 1.163] 
[0.3793 -0.175 -1.662 -1.321 0.4903 0.7439] 
[0.4057 -0.6313 0.11110.3947 0.1652 1.163] 
[0.3815 0.3245 0.0814 0.4327 1.617 1.006] 
[0.4015 1.101 -1.06 -1.882 -0.0844 1.093] 
[0.3955 0.3912 -0.4049 -1.292 -1.24 1.301] 
[0.4074 -0.6408 -1.741 1.246 0.05701 0.6443] 
[0.3984 -0.3339 -0.5742-0.3913 1.126 1.141] 
[0.3859 0.7413 0.9353 0.1486 -0.85 0.892] 
[0.3945 0.3893 0.7527 -1.046 1.221 1.141] 
[0.3936 0.00297 0.6548 0.0354 -0.4872 1.016] 
[0.3898 2.058 -0.1135 0.4532 0.9786 1.088] 

[1 1 1 1 16 0 1 1] 
[1 1 1 2 15 0 1 1] 
[11 2 1 14 0 1 1] 
[1 1 2 2 13 0 1 1] 
[1 2 1 1 12 0 1 1] 
[1 2 1 2 11 0 1 1] 
[1 2 2 1 10 0 1 1] 
[12 2 2 9 0 1 1] 
[2 l l 1 8 0 1 1] 
[2 l 1 2 7 0 1 1] 
[2 121601 1] 
[2 1 2 2 50 1 1] 
[2 2 1 1 4 0 1 1] 
[2 2 1 2 3 0 1 1] 
[2 2 2 1 2 0 1 1] 
[2 2 2 2 1 0 1 1] 
[1 1 1 1 0 16 1 1] 
[1 2 1 1 0 15 1 1] 
[2 1 1 1 0 14 1 l] 
[2 2 l 1 0 13 l 1] 
[1 1 1 2 0 12 1 1] 
[121201111] 
[2 l 1 2 0 10 1 1] 
[2 212091 1] 
[1 1 2 1 0 8 1 1] 
[1 2 21071 1] 
[2 1 2 1 0 6 1 1] 
[2 2 2 1 0 5 1 1] 
[1 12 2 041 1] 
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