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STRUCTURAL INTEGRITY ASSESSMENT USING VIBRATION DATA 

By 

Olusegun Sabeed Salawu 

ABSTRACT 

Engineering structures need to be assessed as part of activities to ensure their continued 
serviceability. Global methods of assessment which also give an indication of local 
conditions are most attractive since they are cost effective and flexible. A suitable method 
with these attributes is vibration monitoring which involves relating dynamic properties, or 
changes in them, to the integrity of the assessed structure. The present study investigates 
the application of vibration testing to structural integrity assessment of civil engineering 
structures. 

A survey of existing methods of damage detection, location and quantification in structures 
using vibration testing was conducted. Evaluation of the performance of some of the more 
promising methods was conducted using both simulated and experimental data. The results 
revealed that the damage identification process could be enhanced if appropriate modes are 
used. To this end, a new function, called Modal Sensitivity Values, has been proposed for 
identifying damage sensitive modes to be included in damage detection and location 
methods. It was also found that some success could be achieved if system identification 
and model updating procedures are applied to the problem of damage detection in 
structures. The literature survey revealed that most of the available methods are not 
applicable to general structural systems and are often limited by the damage model 
assumed. A new method, called Integrity Index Damage Location method, of assessing 
structural integrity using vibration data has also been proposed. The method is applicable 
to any structure and any damage type that affects the integrity/stiffuess of the structure. 
Performance evaluation of the method using both numerical and experimental data is 
presented. 

Full-scale forced vibration tests were conducted before and after repairs on two reinforced 
concrete highway bridges. The vibrator used during the tests was developed during the 
research project and details of its development and operation are given in the thesis. As 
a background to the tests, a review of full-scale dynamic testing of bridge structures was 
conducted. Results from the tests were used to investigate the effectiveness of forced 
vibration testing as an integrity monitoring tool. It was found that the repair works caused 
slight (less than 5%) changes in the natural frequencies while there was no definite trend 
in the changes to the modal damping ratios. Comparison of frequency response functions 
and mode shapes, using modal analysis procedures, was found to give an indication of the 
presence and location of the repairs. The integrity assessment method proposed was also 
able to identify some of the affected parts of the structures. 

Results from the full-scale tests were also compared with predictions from fmite element 
analysis. Good correlation was obtained between the measured and calculated natural 
frequencies and mode shapes, thus enabling validation of the analytical models within 
limits of the model assumptions and experimental errors. The results demonstrate the 
importance of accurate representation of boundary conditions. They (results) also showed 
that the vertical stiffness of new bearings installed on one of the bridges is not as high as 
was assumed in the design. 
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1.1 General Background 

CHAPTER ONE 

INTRODUCTION 

With increasing stock of constructed facilities, most of the work conducted by engineers 

of infrastructure owners will involve maintenance of existing structures. An important part 

of a maintenance programme is structural assessment to ensure that the integrity of the 

structures is preserved. W illiams ( l992b) has reported a situation where fatal structural 

failure was averted as a result of periodic structural assessment. Structural integrity 

assessment of engineering structures is necessary if they suffer damage or deterioration, 

when they have to carry loads higher than originally anticipated, when doubts about their 

capacity to sustain current or future loads exist and generally to ensure that the structures 

are fit for the intended purposes. Regular inspection and assessment enable early detection 

of damage/deterioration and therefore allow timely planning of remedial action to arrest 

further deterioration, thereby reducing or avoiding human, social and economic costs. 

Current structural assessment procedures usually rely on visual inspections and location 

dependent (nondestructive, pseudo-nondestructive and destructive) methods. 

A typical assessment programme, for any structure, would usually start with a visual 

inspection of the structure. H observed features (e.g. presence of cracks, delamination, 

corrosion) suggest structural distress, further investigations are conducted The exact nature 

and degree of complexity of these investigations depend on the aims of the investigations, 

the visually observed features and available resources. Collation and interpretation of 

inspection and test results and calculations to assess structural condition are tasks that 

always accompany an assessment programme irrespective of the specific methods used. 
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The visual inspection stage and test methods (Iffland and Bimstiel, 1993, have presented 

an extensive list I bibliography summarising most of the currently used test methods) 

adopted in subsequent investigations often lead to some problems with the use of these 

procedures. According to Cabrera ( 1988), many of the detailed investigations carried out 

for evaluation of bridge performance have shown that the intrinsic properties measured 

(using current methods) on site do not seem, on the whole, to correlate with performance. 

Other limitations of current assessment procedures include: I) concealed and inaccessible 

parts of the structure are difficult, if not impossible, to inspect; 2) the quality of the process 

is often dependent on the inspection personnel's experience and knowledge; 3) results from 

one (local) area of a structure does not necessarily represent the condition at another area; 

and 4) as a result of (3), it would be necessary to take measurements at a large number of 

points so as to have a good representation of the global structural condition. These 

constraints imply that the process is time consuming, labour intensive and expensive. 

In view of the above limitations, a better approach to structural assessment would be a 

procedure that is not location dependent and involves the participation of the complete 

structure under investigation. Any distress or loss of integrity can be detected by 

measuring global parameters at a few easily accessible points on the structure. Since the 

measured properties are global, the measurement points can be chosen to suit the test 

situation. Static load testing used to be the only full-scale global test method for assessing 

the condition of built structures. However, it requires extensive (and cumbersome) site 

preparation involving application of large loads (for example, see Bakht and Jaeger, 1992). 

Other disadvantages include high cost, potential for damaging the test structure (Tilly, 

1988) and the possibility of producing results that may be difficult to measure (Savage and 

Hewlett, 1978). 
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A more attractive global test method is dynamic (vibration) testing. Vibration testing does 

not require a large force input since dynamic amplification of the modest input loads would 

ensure generation of measurable response. The basic principle in using vibration 

monitoring to assess structural integrity relies on the fact that dynamic response is a 

sensitive indicator of the physical integrity of any structure. This is discussed in more 

detail in chapter three. Occurence of defects reduces structural rigidity which leads to 

changes in dynamic properties such as natural frequencies. Thus, results of tests conducted 

at different times offer the possibility of monitoring changes in structural condition with 

time. 

System and modal parameters, which characterize the behaviour and condition of the 

structure, can be obtained from the measured dynamic response. The most reliable 

experimental results in civil engineering are obtained by using large scale 

specimens/prototypes which give a true representation of actual site conditions (Kroggel, 

1993). Experimental data obtained from a full-scale structure still in service provide 

valuable information which aid understanding of structural behaviour and are useful in 

validating theoretical models before such models are utilized in predicting future behaviour. 

Such data also add to the database on structural performance of similar structures. Current 

analytical and design procedures can be refined using the performance database so that 

design of new structures is improved. 

1.2 Objectives and Oudine of This Work 

The main objective of the research is to investigate the suitability of using data obtained 

from vibration testing in integrity assessment of civil engineering structures. To achieve 

this, it was necessary to study the performance of some methods for detecting and locating 
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damage. This required evaluating the methods usmg numerical and experimental 

(laboratory and field) data. Highway bridges were used as the test structures for the full­

scale field tests. The choice of bridges was influenced by the current programme of 

structural assessment to ensure Britain's highway bridges on designated routes are capable 

of carrying loads from the 40 torme trucks to be introduced in 1999. It was also intended 

to gain a better understanding of the dynamic behaviour of large civil engineering structures 

from the test results and comparison of the results with predictions from theoretical models. 

Although bridges were used as the test structures, the procedures adopted are applicable to 

other types of structures. The layout of the thesis, with respect to the approach adopted in 

conducting the research, is described in the remaining paragraphs of this chapter. 

As a background to the full-scale tests conducted, a review of dynamic testing of bridge 

structures is presented in the next chapter. The review covers reasons for conducting full­

scale tests, the available types of dynamic testing and a discussion on the types of 

excitation systems used in forced vibration testing. 

The justification for using vibration data in structural assessment and various approaches 

proposed for detecting, locating and quantifying damage in structures are reviewed in 

chapter three. The discussions are meant to give an overview and unified perspective, 

while highlighting the potentials and limitations, of integrity assessment using vibration 

data. Chapter four presents a critical study of the performance of some damage detection 

and location methods using both simulated and laboratory data. Development and 

evaluation of a new method of damage detection/integrity assessment are discussed in 

chapter five. The performance evaluation was conducted using results from theoretical 

simulations and laboratory testing. 
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Details of equipment used, test and data analysis procedures adopted during full-scale tests 

conducted are discussed in chapter six. Also included in chapter six is a discussion on the 

configuration and performance characteristics of the system developed for generating 

vertical excitation during full-scale tests. In chapters seven and eight, results from 

experimental and theoretical vibration analyses of two full-scale highway bridges are 

presented. Integrity assessment of the bridges, based on results of tests conducted before 

and after repair works, using the approaches described in chapters three to five is also 

discussed in these chapters. Conclusions from the research and recommendations for future 

work are given in chapter nine. 
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CHAPTER TWO 

A REVIEW OF FULL-SCALE DYNAMIC TESTING OF BRIDGE 

STRUCTURES 

2.1 Introduction 

Dynamic field tests have been carried out on bridges since the late 19th century (Kato and 

Shimada, 1981 ). Many of the early tests were conducted as part of safety inspection of 

railway bridges and involved monitoring bridge vibrations. Modern test methods are 

sophisticated extensions of these early investigations. Most of the more recent tests have 

been concerned with improving analysis and design procedures, assessment of bridge design 

code provisions and monitoring the in-service behaviour of bridges. These test objectives 

tmderline the importance of vibration testing. 

A simplistic view of dynamic testing is to consider it as a procedure for determining the 

resonance (natural) frequencies of a structure. Each natural frequency has a vibration mode 

shape which corresponds to the deflected shape when the structure is vibrating at that 

frequency. Every vibration mode has an associated damping value which is a measure of 

energy dissipation. The natural frequency, vibration mode shape and damping value of a 

mode are sometimes referred to as the modal parameters of the particular mode. In the 

literature, dynamic tests involving identification of modal parameters are also termed modal 

tests or modal surveys. Other parameters such as modal mass, modal stiffness, system 

mass and system stiffness can also be identified from the measured vibration response. The 

basic stages involved in dynamic testing are illustrated in Figure 2.1. Although the stages 

have been shown as distinct phases, it should be noted that modern test configurations 
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ususally incorporate a number of procedures within a single device. 

1 Test control unit (micro-computer) 
2 Excitation signal generation 
3 Power amplification 
4 Excitation mechanism 
S Force transducer 
6 Motion/response transducers 
7 Signal conditioning 
8 Signal monitoring 
9 Signal recording 
10 Signal/data processing and analysis 

Figure 2.1 Stages involved in vibration testing 

The two main types of dynamic tests are ambient and forced vibration testing. The basis 

of the classification adopted here is the degree of control over the input excitation. 

Dynamic testing methods without any control on the input are classified as ambient 

vibration testing. Thus, stages 2 - 5 in Figure 2.1 will not be present in the test set-up. 

Forced vibration testing incorporates those methods where the vibration is artificially 

induced. Methods where the excitation is artificially induced but is not and/or cannot be 

measured are also categorized under forced vibration testing. Examples of these are 

excitation by explosions and vehicle impact. The review in this chapter starts with a 
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discussion of some of the reasons for conducting full-scale dynamic tests. Ambient 

vibration testing and forced vibration testing are respectively discussed in sections 2.3 and 

2.4. 

2.2 Reasons for Full-Scale Dynamic Testing 

There are various reasons for conducting full-scale dynamic testing. Some of these are : 

1. Dynamic measurements on a full-scale structure serve to increase the database on 

dynamic behaviour of similar structures. The database can be useful in predicting 

the response of new structures. Since full-scale tests can be expensive, this 

database becomes invaluable in procedures utilizing test data to evaluate and 

improve current analytical methods. 

2. To determine the integrity of a structure after the occurence of an overload. If the 

nature of loading causing the overload is unknown, results of the dynamic tests may 

be used to determine the type of loading (Tsang and Rider, 1988). The same 

approach can also be used to assess the effectiveness of remedial works (Williams, 

1990; l992a) and repair materials (Sla8tan and Pietrzko, l993a; 1993b ). 

3. To validate theoretical models of structures. Mathematical models of real structures 

usually involve significant assumptions especially with regard to boundary 

conditions, material and inertia properties. Moreover, as the structural system 

becomes more complex and soprusticated, it becomes more difficult to understand 

its mechanisms, and, therefore, to develop an appropriate model which will give a 

good prediction of its dynamic response (Nalitolela et al, 1990). Comparison and 

correlation of theoretical predictions with measured response will lead to a better 

understanding of the structure, better defmed safety margins, less conservative 
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assumptions and hence, more economical designs. 

4. To assess the integrity of a structure when higher loading levels are envisaged either 

due to a change of use, higher environmental loading or an increase in allowable 

loading. A possible application of this approach is in the current assessment of 

some highway bridges in the U.K. to check their ability to withstand 40 tonne 

trucks to be introduced in 1999. According to Proulx et al (1992), dynamic testing 

is more reliable than other methods to evaluate the dynamic amplification factor 

since it (dynamic testing) yields information, on the dynamic properties of the 

structure, that can be used in structural assessment and design of repair work. 

5. The overall condition of a structure can be monitored by regular measurement of 

its dynamic response. Changes, as a result of deterioration, in the system 

parameters - mass, stiffness and damping - lead to changes in the vibrational 

response and these can be measured using standard dynamic testing techniques. 

Results of tests have shown that the size of damage is proportional to the 

magnitudes of observed changes in identified system parameters (Tsai and Y ang, 

1988). 

6. As a trouble shooting tool to verify that behaviour of a given system conforms to 

that expected. This provides performance information on the completed structure 

and also yields useful data for future designs. Dynamic testing has historically been 

used by engineers to study structural vibration problems. 

2.3 Ambient Vibration Testing 

Most of the published work on full-scale dynamic testing have used the ambient vibration 

testing method. This is due, among other factors, to the ease of measuring the vibration 

response while the structure is still in service, increasing availability of robust data 
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acquisition and storage systems, elimination of the need for special excitation devices and 

the possibility of correlating structural vibration response with the normal service loading. 

The literature on ambient vibration testing of highway bridges is extensive. In this section, 

some of the reported tests are presented. The list is by no means exhaustive but the papers 

reviewed are meant to illustrate the different test approaches employed and the main results 

obtained. 

In ambient vibration testing, the input excitation is not under the control of the test 

engineer. The loading could be from either wind, waves, vehicular or pedestrian traffic or 

any other service loading. Since the magnitude of the input is wknown, certain 

assumptions have to be made about its nature. The basic assumption of the method is that 

the excitation forces are a stationary random process, having an acceptably flat frequency 

spectrum {Tas"kov, 1988). If this assumption holds, then the vibration response of any 

structure subjected to such effects will contain all the normal modes. Ambient vibration 

testing implicitly assumes response data alone could be used to estimate vibration 

parameters. 

In most cases, the nature of the input excitation can only be approximated by statistical 

descriptions or by assuming the excitation spectrum to be concentrated within a frequency 

range. If the loading spectrum is limited to a narrow band of frequencies, only a limited 

picture of the dynamics of the structure can be monitored (Williams, 1992a). Inadequate 

knowledge of the input force also implies generalised mass and stiffness cannot be derived. 

A theoretical justification of ambient vibration testing has been proposed by James et al 

{1992). 

During the 1970s, the Transport Research Laboratory conducted senes of full-scale 
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vibration tests on motorway bridges to re-assess bridge loading rules and to gain a better 

understanding of the dynamic behaviour of bridges. As part of the series, Eyre and Smith 

(1977) measured the dynamic response of Tinsley viaduct due to excitation from normal 

vehicular traffic and a 30 tonne control vehicle driven at speeds of 13, 18, 22 and 27 m/sec. 

The viaduct is a two-level, twenty span steel structure with a total length of 1032m. The 

measurements were made on the eighteenth span of the upper level using cantilever 

deflection guages. It was found that the superstructure deflected as a continuous beam and 

that the principal bending and torsional vibration frequencies were in the range 1.80Hz to 

3.60Hz and 1.31Hz to 1.84Hz respectively. 

Ambient vibration testing of the Tamar suspension bridge has been reported by Williams 

(1983). The dynamic response was monitored when the bridge was excited by a wind of 

between 7 and 12m/s speed and a fairly continuous flow of traffic. Seismometers were 

used at 17 locations for the measurements. Ten natural frequencies in the range 0.3Hz-

2.75Hz were identified. Although analytical mode shapes were given, experimentally 

determined mode shapes and damping values were not reported. Seismometers were also 

used by TaSkov (1988) to measure the wind induced oscillations of the Spilje lake bridge, 

Yugoslavia. 

The traffic induced vibration of some 18 bridges were studied by Ward (1984). Vertical 

vibrations were recorded on the ground approaches to the bridges and at locations close to 

the mid-span. The approach measurements were made to provide an estimate of the energy 

input to the bridges and to identify unambigously the natural frequencies of the bridges. 

Estimates of the damping values were obtained by treating the time histories as a series of 

transient vibration records associated with the passage of each vehicle across the bridges. 

It was found that most of the energy associated with the traffic loading were confined 
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within the frequency range 0 - 30Hz. 

The Golden Gate suspension bridge, California, has been the subject of a number of 

investigations to monitor the structural dynamic behaviour and give warning of any 

impending disaster (Vincent, 1958). Recently, extensive experimental investigations have 

been conducted (Abdel-Ghaffar and Scanlan, 1985a; 1985b) on the bridge to determine 

effective damping, three-dimensional mode shapes and resonant frequencies. Excitation 

was from wind, ocean waves and vehicular traffic. 20 vertical, 18 torsional, 33 lateral and 

20 longitudinal modes were identified (frequency range 0 - 1.5 Hz) from simultaneous 

measurement of vertical, lateral and longitudinal vibration of the suspended structure. The 

measured mode shapes and frequencies showed good agreement with the results of both 2-

and 3-dimensional fmite element analyses. McLamore et al (1971) also studied the 

dynamic characterisitcs of two suspension bridges using ambient vibration methods. 

Preliminary vibration tests of the 866m long Foyle bridge (Northern Ireland) have been 

reported by Leith et al (1987) and Sloan et al (1992). The monitoring system was 

automated and could be programmed to gather data either at a preset timetable or when 

certain environmental conditions were fulfilled. The results showed that the lower 

frequency end (< 0.2Hz) of the relative displacement spectrum was caused by traffic 

crossing the bridge. 

Dynamic response monitoring during normal bridge traffic was carried out by Creed ( 1987) 

on a six span concrete motorway bridge. Eight vertical accelerometers were used in pairs 

to assess mode shapes and check bearing motion at the supports. The measured natural 

frequencies for a given span were found to be repeatable to within 2.5% though the mode 

shape ratios were only repeatable to within 35 - 40%. The measured natural frequencies 
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also showed good agreement (within 3.5%) with fmite element analysis predictions. 

Ambient vibration testing was also used by Pardeon et al (1981) and Baumgartner and 

Waubke (1993) to study respectively the dynamic behaviour of a steel truss bridge and a 

steel-concrete arch bridge. 

Brownjohn et al ( 1987) conducted ambient vibration tests on the Humber suspension bridge 

to determine vertical, lateral and torsional vibrational characteristics of the deck and towers. 

It was found that while many vertical and lateral modes occured at close frequencies, they 

were not related. Though there were relatively few predominantly longitudinal modes, 

there was significant longitudinal participation in most main span vertical modes. This 

interaction between different vibration modes was also observed by Abdel-Gbaffar and 

Scanlan (1985a) and more recently by Owen and Blakeborough (1993) and Ventura et al 

{1994). From the correlation between wind speed and modal amplitude, Brownjohn et al 

(1987) suggested that low frequency excitation is mainly wind induced while response 

upwards of about 2Hz is mainly traffic induced. Although reliable frequency values were 

obtained, the modal damping values were believed to be over-estimated due to signal 

processing errors involved in ana).ysing response from ambient vibration. Similar 

conclusions about damping estimates were also expressed by Mazurek and DeWolf {1990). 

Using a different data acquisition method, Littler and Ellis (1987) also conducted vibration 

tests on the Humber bridge. The estimated natural frequencies and mode shapes were in 

agreement with the results of Brownjohn et al (1987). Detailed discussions of a number 

of modal surveys, using ambient excitation, that were conducted on suspension and cable 

stayed bridges can be found in Brownjohn {1988). 

During the modal testing of Kessock bridge, Owen and Blakeborough (1993) obtained 
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mode shapes from low frequency resolution measurements taken during the day while 

natural frequencies were identified from overnight recordings using a fmer frequency 

resolution. This approach was taken to achieve a reasonable compromise between 

frequency resolution, recording period and number of averages. However, modal 

parameters of closely spaced modes were still inadequately identified primarily due to the 

problems associated with ambient testing and the low sophistication of the modal 

identification algorithm used. 

Results from an extensive programme of testing to determine the dynamic characteristics 

of a slant-leg steel frame pedestrian overpass were reported by Rivas-Gomes (1993). 

Excitation of the bridge was by people jumping and running on the deck in such a way that 

maximum response was produced. The tests were conducted to validate analytical models 

developed for the bridge and assess design assumptions. It was found that the dynamic 

response of the structure was governed by the rocking oscillations of the foundations 

(massive concrete supports on top of vertical drilled piers). The results demonstrate the 

fact that boundary conditions are the main determinants of the behaviour of some statically 

indeterminate structures and that assumptions about rigidity of the supports are critical for 

supports at which fixed moments and horizontal thrusts are expected to be developed. 

Alvarez et al (1993) have produced a relationship (Figure 2.2) between the fundamental 

natural frequency and span length of concrete bridges. The relationship was deduced from 

results of dynamic tests on 174 rail and highway bridges of span length ranging from 7.4m 

to 150m. A quick initial estimate of the first natural frequency can be obtained from the 

curve. For multi-span bridges, response of the longest span would tend to dominate the 

fundamental frequency. 
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Figure 2.2 Relationship between fundamental frequency and span for concrete 
bridges (Alvarez et al, 1993) 

Although reliable frequency and mode shape data can be obtained (Srinivasan et al, 1984) 

from ambient testing, estimated damping values are prone to errors. The errors in the 

damping estimates are due to a combination of factors such as the (possible) nonstationarity 

of the excitation process, signal processing and data analysis procedures necessary to 

extract modal parameters and the insufficient excitation of some modes (Bendat and Piersol, 

1986~ Brownjohn et al, 1987 ~ Came et al, 1988~ Jeary, 1992; Littler, 1988). Brownjohn 

(1988, chapter 1 0) has discussed the problems of obtaining reliable damping estimates from 

ambient vibration testing. 

The frequency response function (sections 3.2, 6.4) changes depending on the amplitude 

of the input excitation. This leads to variation in damping estimates since damping 

depends on vibration amplitudes. Hence, results from low level excitation (as in ambient 

testing) might not be appropriate to predict the dynamic response to high level excitation 

(Abdel-Ghaffar and Scanlan, 1985a). Coupled with this is the considerable degree of non-

linearity exhibited by many real-life structures. 
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To achieve better results, it is necessary to use higher energy excitation techniques which 

can excite all the modes of interest. Thus, the only alternative to ambient vibration testing 

is to conduct forced vibration testing using properly designed excitation systems which can 

produce desired loading spectra. According to Kroggel (1993), artificial excitation is 

sometimes the only means of obtaining accurate and reproducible dynamic parameters. 

Tests on offshore structures (Gundy et al, 1980) using both ambient and forced vibration 

methods have shown that damping and frequencies can be measured more accurately with 

forced vibration and that the higher modes can only be excited to measurable levels by 

artificial excitation. Dynamic tests involving artificial excitation are discussed in the next 

section. 

2.4 Forced Vibration Testing 

This involves application of input excitation of known force levels at known frequencies. 

The input is thus I.Ulder the control of the experimentalist. Forced vibration tests have the 

advantage of supressing effects of extraneous noise in the measured structural response. 

The input loading can be altered to suit test requirements. Also included in this category 

are tests in which the input is controlled but not measured. The physical means through 

which the excitation is realised maybe termed a vibrator, vibrator exciter, exciter or shaker. 

It is a device used for transmitting a time varying force into the structure. Forced vibration 

testing is based on the classical fact that if the loads on a structure are known and the 

resulting motion can be measured, then it should be possible to estimate the structural 

properties. 

In full-scale testing of large structures, vibrators are generally of the contacting type i.e. the 

exciter stays in contact with the test structure throughout the testing period. In such 
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applications, they are physically mounted onto the structure. However, non-contacting 

devices such as impactors have also been successfully used on some large structures. 

Appropriate contacting vibrators are usually of the eccentric rotating mass or electro­

hydraulic type. Brief description of the general characteristics of eccentric rotating mass 

vibrators, electro-hydraulic vibrators and impactors are included in the review. Further 

details on the configuration and operating principles of these machines can be found in 

Clements et al (1988) and Unholtz (1988). Also discussed in this section are some other 

types of excitation mechanisms in which the input force is not measured. 

The number of reported forced vibration tests is less than that reported for ambient 

vibration testing. A factor contributing to this is the difficulty in constructing suitable 

excitation systems that can generate sufficient excitation forces at low frequencies, 

especially for long span slender bridges. The papers reviewed form a subset of the 

published literature and have been chosen to highlight types of excitation systems used, the 

main conclusions from the tests and the various test procedures adopted. 

2.4.1 Eccentric rotating mass vibrators 

An early form of contacting vibrator is the eccentric rotating mass vibrator which is a 

reaction type mechanical vibration machine. These vibrators have been used for some 

years to excite large civil engineering structures (Eilis et al, 1977; Jeary and Sparks, 1977). 

The eccentric mass vibrator generates vibratory force by using a rotating shaft carrying a 

mass whose centre-of-mass is displaced from the centre-of-rotation of the shaft. The 

motion generating the force can be circular or rectilinear (in which case, the term 'moving 

mass vibrator' is more appropriate). The magnitude of the applied force is constant for a 

particular setting of mass, rotational speed and the out of balance displacement. 
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The machine can be operated at different frequencies by changing the rotational speed of 

the shaft. Adequate shaft speed control is necessary in order to have satisfactory results. 

The simplest reaction type machine uses a single rotating mass. Machines with more than 

one rotating mass are also available (Ellis et al, 1977). An example is shown in Figure 2.3. 

These have the advantage of generating forces in more than one direction (when motion 

is rectilinear). These exciters are capable of delivering only sinusoidally varying forces that 

are proportional to the square of the rotational speed so that reliable excitation can only be 

achieved above 1Hz (Brownjohn, 1988). 
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Details of the design, construction and operation of some eccentric rotating mass exciters 

which have been built are given by Hudson (1962), Shepherd and Reay (1967) and Severn 

et al (1980). Examples of field application of such exciters to the full-scale testing of 

highway bridges are briefly described below. 

Rotating eccentric mass exciters were used to generate excitation forces during the tests on 

the Bosporus suspension bridge (Brownjohn, 1988). The tests had only partial success 

because the exciters were unable to supply adequate force at frequencies much below 1Hz, 

which is the range of interest for suspension bridges. During modal testing of the Poinja 

river bridge, Yugoslavia, Ta8kov (1988) used two electro-mechanical vibration generators 

to generate harmonic vibrations in the frequency range 0.5 - 9.0 Hz. 

Okauchi et al ( 1986) successfully conducted forced vibration tests on the Ohnaruto 

suspension bridge. Excitation of the bridge was by a pair of 200kN vertically acting 

reciprocating mass exciters operating at a constant amplitude of 140mm. This was 

sufficient to give reasonably accurate damping estimates. A damping value of 0.53% of 

critical damping was obtained for the first vertical mode. Ohlsson (1986) conducted swept 

sine testing on the 366m cable stayed Tjom bridge, Sweden, with a special type of 

reciprocrating mass exciter. Four vibrational modes were identified in the frequency range 

0.4Hz to 1.6Hz. 

2.4.2 Electro-bydraulic vibrators 

The electro-hydraulic vibrators can generate higher forces than the other types. The force 

is generated through the (reciprocating) motion induced by the high-pressure flow of a 
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liquid. The pressure is provided by one or more pump units. In operation, the system 

usually consists of a servo-controlled hydraulic actuator which drives an attached mass. 

The weight of the mass can be varied to obtain varying force magnitudes. The vibrators 

provide relatively high vibration strokes and allow accurate excitation at different 

frequencies in bending or torsion. They also have the advantage of being able to apply a 

static preload and complex waveforms to the test structure. However, the attainable stroke 

reduces with increasing frequency. 

Electro-hydraulic vibrators are less common than the eccentric rotating mass types. 

Leonard (1974) has described an inertial excitation system, called Energy Input Device, 

consisting of four masses, each driven by an e1ectro-hydraulic actuator, mounted on a 

mobile axle. Similar exciters were also used in the tests reported by Galambos and Mayes 

(1979), Kennedy and Grace (1990), Salane et al (1987), Tsang and Williams (1988) and 

Williams (1990). The Energy Input Device was used during tests conducted on bridges 

with individual spans of up to 50m. It was capable of generating sinusoidal forces over 

the frequency range I .5Hz to 30Hz at force levels of up to ±16kN. The actuator used 

during full-scale tests conducted as part of this research is of the electro-hydraulic type. 

Details of the design, construction and operation of the actuator are given in Salawu and 

Williams (1992, 1994b) and chapter six (section 6.2). 

Cantieni and Pietrzko (1993) conducted tests on a three span 108m long wooden footbridge 

to verify design assumptions and check if pedestrian induced vibration was excessive. 

Excitation of the bridge was by a servo-hydraulic vibrator which was capable of generating 

a maximum force amplitude of ±5kN at frequencies ~ 2.3Hz. The bridge response was 

measured in three orthogonal directions at 77 points using accelerometers. The 

accumulated spectrum over all 231 measured frequency response functions was used to 
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identify prominent modes. Burst random excitation signal was found to reduce the 

measurement time and eliminate leakage errors during spectral computations. However, 

utilization of specialised software and signal conditioning equipment was necessary. 

Results obtained from the tests showed that the bridge was not susceptible to excessive 

vibration by walking pedestrians. Similar equipment and procedures were also used by 

Deger et al (1994) during experimental modal analysis of a prestressed concrete arch 

bridge. 

Forced vibration tests, in addition to fatigue tests, were conducted by Salane et al (1987) 

on a full-scale in-situ composite three span highway bridge in order to evaluate the 

effectiveness of using changes in dynamic properties as a means of detecting structural 

deterioration. A closed-loop electro-hydraulic actuator system was used to generate the 

excitation forces. Stepped-sine, slow sine sweep and steady-state normal mode testing 

techniques were utilized. For the stepped-sine tests, the damping values obtained varied 

from span to span although the range was consistently between 1 and 3 %. 

Results of damping measurements on 23 steel and composite bridges (spans between 17m 

and 213m) were discussed by Eyre and Tilly (1977). The damping was measured from 

decays of response obtained for the first bending mode though it was acknowledged that 

higher bending and torsional modes could be significant for bridges having low natural 

frequencies which coincide with those for the suspension of heavy vehicles. It was found 

that damping increased with amplitude of vibration and stabilised at an upper level which 

was about four times higher than the level at small amplitudes. The lower level of 

damping was associated with the behaviour of the superstructure while the upper damping 

included contributions from joints and substructure and was more relevant to unduly 'lively' 

behaviour. A tendency for damping to increase with frequency was also noted. Damping 

21 



values for steel, composite and concrete bridges and the intrinsic material values for steel 

and concrete have been presented by Eyre and Tilly ( 1977) and Tilly ( 1977). 

Raimer and Pernici (1979) have reported sinusoidal forced vibration tests on a three span 

pre-stressed concrete bridge. Salane and Baldwin (1990) also conducted steady state 

sinusoidal tests on a three span highway bridge using an electro-hydraulic actuator. The 

bridge had a composite deck supported on four steel girders. Three resonant modes - two 

bending and one torsional - were identified. A modal damping ratio of 0.0134 was 

obtained for the first bending mode. Servo-hydraulic actuators were also used in the tests 

conducted by Kroggel (1993) on two road bridges. 

2.4.3 Impactors 

The simplest means of applying an impact to a structure is by using an instrumented 

hammer or a suspended mass to deliver blows to the structure. A simple impact device is 

shown in Figure 2.4. The impulse delivered to the structure can be varied by changing the 

mass of the impact device. The impact frequency range can also be varied by changing 

the hammer head type. The impulse function consists of a short duration broad band 

spectrum. The width of the function determines the frequency content while the height and 

shape control the energy level of the spectrum (Allemang and Brown, 1988). Impulse 

testing is susceptible to input noise since the input force is applied over a short period 

compared to the record length (of the measured response). 

Important factors to consider before conducting impact testing are (Raghavendrachar and 

Aktan, 1992):. 1) effect of the level of impact and change in ambient conditions on 

structural characteristics; and 2) reciprocity between impact and response at alternating 
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measurement points. These considerations would reveal the suitability, or otherwise, of 

linear models (for structural identification) on data obtained from impact testing. 

HAMMER HEAD LOAD 

CELL 

HAMMER 

TIP 

..--HANDLE 

Figure 2.4 A simple impact device 

Kohoutek and Marsh all ( 1994) used impact testing on three prestressed and reinforced 

concrete bridges with spans varying from 30m to I OOm. Excitation was achieved by 

dropping a mass ( 40kg to 70kg depending on size of bridge span) from about 0.5m onto 

an anvil placed on the bridge deck. A special damping pad was sandwiched between the 
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mass and the anvil so that the impact frequency content covered the test frequency range. 

Results from impact tests (66kg dropped from a height of 30cm) were used by 

Vanhonacker (1994) to validate a fmite element model of an 80 years old railway bridge. 

The validated model was subsequently used to design a strengthening scheme which 

allowed the bridge to remain in service and accommodate heavy axle load trains running 

at 80 km/h (compared with 20 kmlh previously). 

An instrumented hammer (total mass of 23kg) was used during the dynamic tests reported 

by Green and Cebon (1993). Repeatability of the testing procedure was demonstrated by 

comparing measurements obtained when the hammer was dropped several times at one 

position while linearity of the dynamic response was ascertained by comparing measured 

responses, at a point, due to impact at three different positions on the bridge. Gardner­

Morse and Huston ( 1993) verified linearity of data obtained from impact testing of a cable­

stayed footbridge by ascertaining the reciprocity of measured frequency response functions 

between two measurement points. However, a similar approach was used by 

Raghavendrachar and Aktan (1992) to indicate nonlinear response and by lmregun and 

Agiirdh ( 1994) to confirm repeatability of measurements. 

Linearity of the structural system could be assumed in impact testing if the impact level 

is limited to a certain range (Sun and Hardy, 1992a; 1992b) and the lowest possible level 

of excitation is used (Agiirdh and Palm, 1992). The estimated damping ratios, from the 

tests by Green and Cebon, varied from 1.4% to 8.8% of critical damping. Although the 

authors did not give any reason for the high damping values, they (high damping values) 

could have been due to high impact energy during excitation. This raises the question of 

uniformity of 'blows' when using instrumented hammers. During the tests reported by 

Biswas et a! (1990), a soft tipped head was used on the 53.4N hammer employed as the 
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exciter. This enabled elimination of local damage to the bridge and allowed sufficient 

bridge response at low frequencies. 

Forced vibration tests were conducted (Aktan et al, 1994; Zhang, 1994) on a three span 

steel-stinger bridge to determine the level of correlation between impact testing and swept­

sine testing with a linear mass-inertia exciter. Two modes which were reliably identified 

by the impact testing could not be identified by swept-sine testing. Although no apparent 

quality difference was noticed (Aktan et al, 1994) between the two sets of response 

functions measured, a detailed error analysis (Zhang, 1994) revealed that results from the 

impact tests were more erroneous. 

A 5.4kg instrumented sledge hammer was used by Maguire and Severn (1987) to test four 

40 tonne bridge beams. The hammer was reported to have a maximum impact force of 

22kN. A cylindrical steel hammer, having a mass of 840kg, was also used as the excitation 

device during the dynamic tests reported by Lee et al ( 1987). Despite these published tests, 

instrumented hammer is not often used on large structures because of the large mass of the 

latter and the risk of local damage, at the point of contact, to the structure when high force 

levels are applied. 

Other special impact devices have been developed to excite large structures. One of such 

devices was called a sand drop impactor (Morgan and Oesterle, 1985). It consisted of a 

weight dropped onto a sand bed that was, in turn, mounted on a load cell. The device has 

been reported to have successfully excited a number of both steel and concrete structures. 

More recently, Wood et al (1992) have reported the use of a 'bolt-glDl' to excite large 

structures while Agardh (1991; 1994), and Agardh and Palm (1992) have reported 

development and field usage of an impact equipment for exciting concrete bridges. The 
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main advantages of impact testing are that the test times are short and the instruments 

required are lightweight and relatively inexpensive. 

2.4.4 Other excitation mechanisms 

The other means of forced excitation can generally be classed under transient testing. For 

these other methods, the input force is not usually measured. They take one of two forms 

- impulse testing or step relaxation. Excitation by test vehicles driven along the bridge can 

also be considered as transient. In impulse testing, the impulsive force is applied to a 

structure, initially at rest, by vehicle impact, vehicle driven over an uneven surface, a 

dropped weight, rocket impact or controlled jumping of people. The same comments made 

in the previous sub-section apply to this type of excitation. 

In step relaxation testing, excitation is achieved by releasing the structure from a statically 

deformed position. The initial static deformation is achieved by either loading the structure 

with a wire or cable (Chasteau, 1973; Eyre, 1976), hydraulic rams (Douglas et al, 1990; 

Richardson and Douglas, 1987) or by continuous thrust from rocket motors (Selberg, 1966). 

An example of transient excitation is shown in Figure 2.5. The response of the structure 

to this form of excitation is strongly dominated by those modes whose deformed shapes 

best resemble the statically deformed configuration of the structure. Step relaxation is 

seldom used because it can be mechanically difficult to implement (Came et al, 1988). 

However, it is possibly the simplest and most effective method of determining damping 

(Brownjohn, 1988). 
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Figure 2.5 Transient excitation 

The pull-back and quick-release testing method (a form of step relaxation) was used by 

Douglas and Reid (1982) and Douglas and Richard (1984) to determine the modal 

parameters of some highway bridges. The dynamic excitations were produced by pulling 

(using cables) on the bridges with two crawler tractors and simultaneously quick-releasing 

the loading cables. Marecos et al (1969) had previously used a similar technique on the 

Tagus bridge. The same method was used in the full-scale tests reported by Richardson 

and Douglas (1987) to investigate the dynamic response of a 277m long reinforced concrete 

bridge. However, the initial deformation of the bridge was obtained by using steel rams 

and hydraulic jacks. Five of the possible six deck acceleration components were measured 

at each of the 47 bridge deck locations. This allowed the identification of three 

dimensional mode shapes. The authors used novel presentation methods - power spectral 

density surfaces and power spectral density contour plots - to display power spectral density 

curves from different stations on the same plot. Eyre (1976) obtained the dynamic response 

of the seven span Cleddau bridge by suddenly releasing a 32.7 tonne mass from the centre 

of the main span. 

Douglas et al ( 1990) have proposed a baseline correction procedure to improve the results 
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obtained from the normal quick release method. The modified procedure was tested on a 

series of data obtained during field tests on a two span reinforced concrete box girder 

bridge. The procedure enhanced the use of the quick release dynamic testing method and 

also produced detailed static response of the structure as a by-product of the dynamic 

investigation. 

Several full-scale dynamic tests have been conducted in Ontario, Canada, to investigate the 

effects of traffic and road characteristics on bridge dynamic behaviour. Results from a 

series of such tests conducted between 1956 and 1971 have been reported by Green (1977). 

Excitation was by vehicles driven on the bridge. The results indicated that the dynamic 

deflection can be in excess of values suggested by design specifications. It was found that 

for superstructures having a (fundamental) longitudinal flexural frequency between 2Hz and 

5Hz, the dynamic interaction between vehicle and bridge systems appeared to be present 

and gave rise to higher dynamic deflections. Values of damping were found to range from 

0.64% to 2.39% of critical damping for simple and continuous spans having lengths up to 

75m. For structures with a total length in excess of 125m, damping values of 0.64% to 

0.95% were found to be representative. 

More recently, Billing (1984) has reported dynamic tests on 27 bridges of various 

configurations, of steel, timber and concrete construction to obtain data to support the 

Ontario Highway Bridge Design Code (OHBDC) provisions. Excitation of the bridges was 

by passing trucks and scheduled runs, at known speeds, by test vehicles of various weights. 

Further details of instrumentation layout, test and data processing procedures adopted are 

given in Billing (1982). The number of modes found depended upon the particular 

characteristics of a bridge. Interaction between the vibration modes of the individual spans 

was also noticed. The damping ratios of the first flexural modes of steel and concrete 
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bridges were respectively found to be 0.4% - 0.7% and 0.8% - 3.8% of critical damping. 

These values are consistent with other damping measurements (Cantieni, 1983; Green, 

1977; Tilly, 1977). 

Williams (1990; 1992a) has reported dynamic tests on the three span Axmouth bridge, 

which is believed to be the oldest concrete bridge in the U.K. Excitation was by a 7.5 

tonne lorry crossing the bridge. A system of three Willmore seismometers were used to 

monitor vibration levels in three orthogonal directions at eight locations on the bridge. The 

vibration monitoring was used to assess the effects of piling work on one of the bridge's 

piers. Modal parameters of the bridge were not given. Proulx et al (1992) also used 

vehicular-crossing as the source of excitation during dynamic tests on a steel arch bridge. 

Pressure tubes were used to estimate the total excitation time of the structure and the speed 

of the test vehicles. Results of the tests were used to estimate the bridge's dynamic 

amplification factor and dynamic properties. However, accuracy of some of the computed 

power spectral density curves is doubtful since the frequency resolution was poor and the 

sampling period shorter than would be expected. 

Kohoutek (1993) used a 40kg mass and a 50 tonne truck to excite a five span bridge during 

full-scale dynamic and modal tests. The test results were correlated with theoretical 

predictions and used to assess the structural condition of the bridge 

2.5 Concluding Remarks 

Of the two main types of dynamic testing, ambient vibration testing is easier to conduct 

since the structural response can be measured while the structure is still in service. 

Artificial excitation systems, which could sometimes be complex and expensive, are not 
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required. A disadvantage of the method is that some of the estimated dynamic parameters, 

especially damping, could be in error since their values may depend on the (Wlcontrolled) 

m1known excitation level. Structural response measured Wlder a given operating condition 

would give a true picture of the behaviour of the structure for that particular service 

environment. However, use of the model derived from such data may not be reliable in 

predicting response Wlder a different operating environment. For tests involving normal 

vehicular traffic as the means of excitation, the natural frequencies of the bridge could be 

accompanied by some harmonics due to the motion of the vehicles. Despite these 

shortcomings, the ease and convenience of the method would continue to make it a popular 

option. 

Forced vibration testing produces data from which more accurate system and modal 

parameters can be obtained especially if the input load is measured. Of the forced vibration 

test methods, impact testing is the easiest to conduct but probably produces less reliable 

data compared with tests using rotating mass and electro-hydraulic vibrators. However, the 

latter types of excitation devices are more difficult to develop. Although the concept of 

transient testing is quite straightforward, devising and applying suitable transient excitation 

could be difficult. It is also possible that not all the vibration modes of interest will be 

sufficiently manifested by transient excitation. Both impact and transient testing have the 

disadvantage of potentially inducing localized damage on the test structure. 

Selection of an appropriate excitation mechanism is one of the main problems encom1tered 

in full-scale forced vibration testing of large structures. The system chosen should be 

robust and be able to generate sufficient force levels while not causing localised damage 

to the structure. The papers reviewed have illustrated the various types of devices that have 

been employed. Selection of a particular system will depend on, among other things, type 
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of structure to be tested, information required from the test and available resources. Factors 

considered during the development of the excitation system used in the tests reported in 

chapters seven and eight are discussed in chapter six. 

Results from the reported tests indicate that vibration testing is a useful tool for obtaining 

information on the condition of structural systems. The review has shown that forced 

vibration testing produces better parameter estimates as compared with ambient testing 

primarily due to the advantage of being able to relate response to a measurable input. 

Forced vibration testing was therefore adopted for the full-scale tests conducted in this 

research. However, ambient testing will continue to be more popular as it is relatively 

easier to conduct. Most of the reported work were concerned with validating analytical 

models, characterization of the dynamic behaviour of the test bridges and investigating 

relationships between vehicular/cyclist/pedestrian traffic (loading) and dynamic response 

of bridges. Only a few of the published tests dealt with integrity assessment I damage 

detection despite the potential of using vibration testing for these purposes. For relatively 

rigid structures, forced vibration testing techniques are more effective for integrity 

monitoring. Application of vibration testing to integrity assessment of structures is 

discussed in the next chapter. 
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CHAPTER THREE 

A REVIEW OF METHODS OF DAMAGE DETECTION AND INTEGRITY 

ASSESSMENT USING VIBRATION DATA 

3.1 Introduction 

Nondestructive vibration testing methods of assessing integrity and locating damage in 

general structural systems are reviewed in this chapter. The methods are grouped according 

to the parameter used to assess structural condition. Some methods utilizing mathematical 

error localization schemes are also discussed since these can potentially be applied to detect 

and locate damaged areas in real structures. Other methods which do not fall into distinct 

categories are also reviewed. In reviewing the methods, discussions on results from some 

vibration tests have been included to illustrate the relationships between dynamic 

parameters and existence of damage in a structure. It should be borne in mind when using 

dynamic monitoring for integrity assessment that it is stiffness and not strength that is being 

assessed. Thus, defects causing loss of strength without reduction in stiffness or changes 

in mass might not be detected. This introductory section discusses the rationale for using 

vibration monitoring to assess structural integrity. 

Vibration monitoring has historically been used to assess structural integrity. The basic 

principle relies on the fact that dynamic response is a sensitive indicator of the physical 

integrity of any structure. Early techniques involved use of 'echo methods' in which the 

object is tapped or sounded and the structural condition assessed from the sound produced. 

Modem vibration methods of assessment are based on sophisticated extensions of these 

basic ideas. 
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As a result of damage, local or global, there would be a reduction in stiffness and a 

decrease in the free energy stored in the body (DiPasquale et al, 1990). Since dynamic 

response is governed by the system parameters (stiffness, mass and damping), changes in 

these parameters would lead to changes in the vibrational response as characterized by the 

modal parameters (natural frequencies, mode shapes and modal damping values). Due to 

the fact that each vibration mode has a different energy distribution, any localized damage 

will affect each mode differently depending on the location and severity of the damage. 

Modal parameters are also sensitive to the boundary conditions (physical constraints) of the 

structure. 

Results of tests have shown that the size of damage is proportional to the magnitudes of 

observed changes in identified system parameters (Tsai and Y ang, 1988). Although the 

detection of such changes is relatively easy to achieve, interpretation of the data might 

require expert knowledge. Results of studies by Rizos et al (1990) have indicated that 

changes in modal parameters might not be sensitive enough to indicate small structural 

damage such as those caused by fatigue cracks (Uzgider et al, 1993). The most common 

types of faults will lead to the following conditions, with respect to frequency and damping, 

in the structure (Richard and Mannan, 1993): 

* 

* 

A decrease in natural frequency combined with an increase in damping of 

a mode implies that a loss of stiffness, an increase of damping and possibly 

a decrease in mass has occurred in the structure. 

A decrease in natural frequency and a decrease in damping of a mode means 

that a loss of stiffness and damping, and possibly an increase in mass, 

occurred in the structure. 

Early application of dynamic monitoring for integrity assessment of large structures has 
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been limited to the 'high tech' industries like nuclear, defence and offshore (Cole, 1992; 

Vandiver, 1977; Yang et al, 1980). This limitation is probably due to the high quality of 

data required which would necessitate expensive equipment ( Cole, 1992). Extension of the 

techniques for condition monitoring of general civil engineering structures is continuously 

receiving attention from researchers and is one of the main objectives of this thesis. First 

application of vibration monitoring to assess integrity of civil engineering structures was 

probably in the field of pile integrity testing. 

3.2 Theoretical Background 

A brief consideration of the mathematical representation of the dynamics of a structural 

system is appropriate before discussing damage detection/location methods. The equations 

of motion of a vibrating structure are usually derived by applying Newton's second law of 

motion. For a linear, time-invariant structure, the equations of motion are given by: 

[M] {X" (t)} + [ CJ {X' (t)} + [KJ {X (t)} = {F (t)} (3.1) 

where [M], [K] and [C) are respectively the structural mass, stiffness and (viscous) damping 

matrices; t is the time variable; {F(t)} is the vector of externally applied forces; {X(t)}, 

{X'(t)} and {X"(t)} are the displacement, velocity and acceleration vectors respectively. 

Viscous damping has been assumed in Equation (3.1) although other damping mechanisms 

can be present. [C) can be regarded as the equivalent viscous damping matrix for the 

system (Allemang and Brown, 1988; Raghavendrachar and Aktan, 1992). The dynamic 

model, as represented by Equation (3 .1 ), can be transformed into the frequency domain by 

applying Fourier transformations. If {X(jro)} represents the complex Fourier transform of 

{X(t)}, denoted by {X(jro)} = FT{X(t)}, the following relationships exist: 
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where ro = frequency in radians per seconds and j2 
= -1. Equation (3 .l) becomes 

(3.3) 

or 

(3.4) 

where 

1 (3.5) 

[H(jro )] is the (displacement) frequency response function (FRF) matrix. Each element 

Hil:(jro) of the matrix is an FRF measurement between two degrees of freedom (DOF) -

response measurement location i and excitation point k - of the structure. Hik(jro) can be 

expressed as: 

(3.6) 

where Aw = modal constant for the rth mode at point i 

m = total number of measured modes 

ro, = natural frequency (radians/seconds) for the rth mode 

~. = viscous damping ratio for the rth mode 

The first objective of modal testing and analysis is to measure the FRFs of the structure .. 

Curve-fitting Equation (3.6) to the measured values will yield the modal parameters. FRF 

computation and curve-fitting procedures adopted in this study are discussed in chapter six 
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(sections 6.4 and 6.5). The system matrices - [M], [C], [K] - can also be derived from the 

measured FRFs. There are two main approaches to obtaining the system matrices: 1) using 

the measured FRF directly by utilizing Equation (3.5); and 2) indirect methods which use 

the estimated modal parameters. Implementation of an indirect method is discussed in 

chapter four (sub-section 4.3.2). 

Existence of damage in the structure will cause a modification of the system matrices. If 

6. is taken to represent the change in a given parameter, the FRF matrix [H(jro)]0 of the 

modified structure is given by: 

[H (jw) ] D 
1 (3.7) 

- [M+6.M] w2 + [C+6.C] (jw) + [K+6.K] 

Curve-fitting response functions given by Equation (3.7) will yield new modal parameters 

which, depending on the level of damage, will be different from those of the original 

structure. Mere comparison of the modal parameters could indicate existence of damage. 

To locate and quantify damage, various methods exploiting the parameter changes exist. 

Overlay plots of the components of the FRFs of the original and modified structures can 

also be used to detect and locate damage. 

Other approaches, based on system identification and model updating procedures, derive 

system matrices for the original and modified structures from Equations (3.5) and (3.7). 

These matrices, with or without the modal parameters, are then used to compute an error 

identification matrix or index which indicates the damage areas. Some of the available 

methods for detecting, locating and quantifying structural degradation are reviewed in the 

next sections. 
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3.3 Methods Based on Measuring Natural Frequency Changes 

Before presenting some of the available methods for detecting damage using natural 

frequencies, the sensitivity of frequency changes to damage is briefly examined. 

3.3.1 Effects of structural damage on natural frequency 

The presence of damage or deterioration in a structure causes changes in the natural 

frequencies of the structure. The most useful damage location methods are probably those 

using changes in eigenfrequencies because frequency measurements can be quickly 

conducted and are often reliable. According to Morgan and Oesterle (1985), abnormal loss 

of stiffness could be inferred when measured natural frequencies are substantially lower 

than expected. Frequencies higher than expected are indicative of supports stiffer than 

expected. It would be necessary for a natural frequency to change by about 5% for damage 

to be detected with confidence (Creed, 1987). However, significant frequency changes 

alone do not automatically imply existence of damage since frequency shifts (exceeding 

5%) due to changes in ambient conditions have been measured (Aktan et al, 1994) for both 

concrete and steel bridges within a single day. 

At modal nodes, the stress is minimum for the particular mode of vibration. Hence, 

minimal change in a particular modal frequency could mean that the defect may be close 

to the modal node. The other modal frequency variations can still be used to determine the 

magnitude of damage. Results of dynamic tests on 117 scale models of simply supported 

one- and two- cell box girder bridges show a decrease in the fundamental natural frequency 

with progressive damage (Mirza et al, 1990). Near the ultimate load, the frequency 

decreased linearly by about 40% and 75% for the one-cell and two-cell bridges 
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respectively. Other results (Agiirdh, 1991; Haroun et al, 1993; Kawahito, 1974; Kroggel, 

1993; Mazurek and DeWolf, 1990, Salane and Baldwin, 1990; Salane et al, 1987; Savage 

and Hewlett, 1978; Sun and Hardy, 1992a) of dynamic tests on model and structures 

indicate that changes in resonant frequencies can occur due to support failure, crack 

propagation, shear failure and overload causing internal damage. 

From results of vibration tests on concrete portal frames, Moradalizadeh (1990) reported 

that the magnitude of frequency reduction is dependent on the position of the defect relative 

to the mode shape for a particular mode of vibration. Similar observations were reported 

by Rytter and Kirkegaard (1994) from tests conducted on a 20m high steel mast. Damage 

at regions of comparatively high stress in the frames (tests by Moradalizadeh) resulted in 

significant reduction (up to 15%) in the resonant frequencies. Gomes and Silva (1990), Ju 

and Mimovich (I 986) and Salane and Baldwin (1990) also reported increased accuracy of 

the diagnosis when cracks/damage occured at sections of high stresses. These findings 

suggest that detection of damage using frequency measurements might be unreliable when 

the damage is located at regions of low stresses. Thus, shift in natural frequencies alone 

might not provide sufficient information for integrity monitoring, unless the failure is in one 

of the most important load bearing members (Idichandy and Ganapathy, 1990). A 

theoretical explanation of the relationship between magnitude of frequency changes and 

extent of damage is given below. 

Existence of a crack at a section of a beam is equivalent to a reduction (proportional to the 

crack's severity) in the second moment of area. This leads to a reduction in the local 

bending stiffness at the cross-section where it is located. The modified beam can be. 

represented as two beams connected by a torsional spring (which models the crack) with 

a stiffness dependent on the depth of the crack (Gomes and Silva, 1990). This torsional 
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spring model was first proposed by Chondras and Dimarogonas (1980). A similar crack 

model based on the "fracture hinge" concept was proposed by Ju et al (1982) and 

experimentally verified by Ju and Mimovich (1987). The consequence of reduced local 

bending stiffness is a lowering of the values of the bending natural frequencies. The 

natural frequency changes vary proportionally with the square root of the stiffness change, 

thus underlining the need for relatively large stiffness changes before significant frequency 

changes can be detected. The reduction (in frequency) becomes more important when the 

crack is at regions of high curvature for the modes under consideration. 

Results from some experimental (Moradalizadeh, 1990; Sla8tan and Pietrzko, 1993a) and 

numerical (Brownjohn, 1988) studies have suggested that the lower vibration modes would 

probably be best suited for damage detection. However, Begg et al (1976) stated that 

modes higher than the first should be used in damage detection so as to improve the 

identification. Alampalli et al (1992), Biswas et al (1990), Cempel et al (1992), Flesch et 

al (1991), Lieven and Waters (1994) and Mannan and Richardson (1990) have also 

mentioned the increased sensitivity of the higher modes to local damage. Since these 

higher modes (those above the 6th mode) are usually unavailable from the results of a full­

scale modal survey, their use in damage detection can not be fully justified (Salawu and 

Williams, 1993a). 

3.3.1 Damage detection and location using natural frequency changes 

Ju and Mimovich (1986; 1987) used changes in modal frequencies to locate damage 

occuring at sections of a beam to within 3% of the length. It was found that the accuracy_ 

of the damage localization was improved to less than 1% of the length when the built-in 

end of the experimental beam was represented by a torsional spring. A fundamental 
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assumption, and limitation, of the method used is that the damage can be represented using 

the "fracture hinge" concept proposed by Ju et al ( 1982). Changes in modal frequencies 

were also used to locate damage in the investigations by Adams et al (1978), Al-Ansary 

and Azayem {1986), Chondras and Dimarogonas {1980), Gomes and Silva (1990), 

Gudmundson (1982; 1984) and Springer (1988). The methods used in the investigations 

are not likely to be applicable to structures other than the simple cases (typically, a simple 

beam with artificially induced cuts) considered. 

The method of Cawley and A dams ( 1979) uses the sensitivity concept to obtain frequency 

changes due to stiffness loss. The method is based on the premise that the ratio of 

frequency changes in two modes is a function of the location of the damage only, if 

changes in stiffness are independent of frequency. To locate the defect, theoretical 

frequency shifts, due to damage at selected positions on the structure, were calculated and 

compared with measured values. A normalized error, which also gave some weight to the 

crack direction, was calculated at selected sites and used to search for the defective area. 

The method assumes the damage to be in the form of a hole, which is not always the case, 

and is unable to locate defects at more than one site. Futhermore, erroneous results are 

obtained for defects involving creation or alteration of mode shapes and no indication is 

given as to the accuracy of the predicted damage site. Another drawback of the Cawley 

and Adams method, and indeed most sensitivity based methods, is the use of considerable 

computing time subsequent to physical measurement as a consequence of the need to model 

all possible damage mechanism at various possible sites. Application of the method to 

damage location in reinforced concrete and steel beams revealed that at least nine modes 

should be included in the computations if the damage is to be located with any reasonable· 

accuracy (Brownjohn, 1988). Other damage location methods using frequency changes and 

sensitivity analysis have been proposed (Eggers and Stubbs, 1994; Heam and Testa. 1991; 
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Menegetti and Maggiore, 1994; Penny et al, 1993). Accuracy of sensitivity based methods 

is dependent on the quality of the finite element model (or other theoretical model) used 

to compute the sensitivities. The methods are most useful for skeletal structures where the 

damage event affects one significant stiffness component in the structure. 

Law et al ( 1990) have suggested a technique for determining structural stiffness changes 

and positions of defects from measured changes in resonant frequencies. The technique 

uses a finite element model of the structure and assumes the structural mass matrix to be 

unsymmetrical so that a unique identification can be obtained. This assumption does not 

always hold. Solution of the identification problem involves utilization of a non-linear 

programming method which requires a weighting matrix and vectors defining upper and 

lower bounds for the identification factors. Selection of appropriate matrix and vectors 

would affect the results. It appears that the identification is improved if only certain parts 

of the structure are included in the formulation. Since prior knowledge of damaged areas 

is unavailable, determining which part to include might be difficult. 

Measurement of natural frequency can be used to estimate the tension in the stay cables 

of cable-stayed bridges (Gardner-Morse and Huston, 1993). Estimated values of the cable 

tension significantly lower than design I as-built values would indicate loss of cable 

tension. A similar approach (though using a different formulation) was adopted by 

Camomilla et al ( 1993) to determine the stress levels in the prestressing cables of 

reinforced concrete stays of the Polcevera viaduct, Genoa, Italy. One main problem with 

this technique is the fact that deterioration of a rope or cable by corrosion or by breaking 

of wires wiU change the rope's cross-section and reduce its strength but may not alter rope. 

tension (Heam and Testa, 1991). In such circumstances, existence of damage may not be 

detected by natural frequencies; especially if axial modes are used. 
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Uzgider et al (1993) have proposed a damage location method which uses measured natural 

frequencies to identify stiffness parameters. Stiffness parameters and vibration modes 

which the parameters significantly influence are first selected. The natural frequencies of 

the selected modes are then used to identify the stiffness parameters. The relative 

magnitudes of the differences between the identified parameters and prior estimates are 

used to indicate the presence of structural damage. Success of the method depends on 

identification of suitable stiffness parameters, accurate definition of base values (prior 

estimates) of the parameters and values selected for the lower and upper limits of frequency 

and parameter value variation. The need for a very sophisticated mathematical model of 

the structure is another limitation of the method. 

Zhang et al ( 1992) proposed a pattern recognition method for detecting structural faults in 

frame structures. The same approach was also applied to the diagnosis of defects in 

foundation piles (Zhang et al, 1993). The method is based on the fact that the ratio of the 

relative change in natural frequency between any two modes is equal to the ratio of the 

squares of the corresponding strain modal values at the fault. Due to experimental and 

analysis errors, the equality is only approximate. To account for this, two parameters were 

defined to control the fault identification. Thus, accuracy of the method is highly 

dependent on the choice of proper values for the control parameters. Futhermore, the 

method is only applicable to faults which can be represented as slots. 

Two approaches to the integrity assessment of bridges have been proposed by Ward ( 1984 ). 

The first involves monitoring a given bridge, say yearly, to check if there are changes in 

the dynamic properties with reference to the last/previous measurement(s). The second. 

approach involves comparing the dynamic characteristics of similar structures one of which 

is known to be in good condition. To account for different ground conditions at various 
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locations of the bridges, Ward put forward a dimensionless factor - velocity amplification 

factor - to assess the integrity of the bridges. The velocity amplification factor is defined 

as the response spectrum of the bridge divided by the spectrum of the ground vibration in 

the approach to the bridge. Further work would be necessary to assess the factor - or a 

similar variable - as an identification parameter. 

3.4 Damage Detection and Location using Mode Shape Data 

Results of studies by Biswas et al (1990), Rubin and Coppolino (1983), Salane and 

Baldwin (1990), Shahrivar and Bouwkamp (1986), Srinivasan and Kot (1992) and Tang and 

Leu ( 1988) have suggested that mode shapes are more sensitive to damage than are natural 

frequencies since the changes in the mode shape values are much more pronounced 

(Shepherd and Reay, 1967). In addition, natural frequency changes alone may not identify 

location of the structural damage (Salawu and Williams, 1994a). This is because cracks 

associated with similar crack lengths but at two different locations may cause the same 

amount of frequency change (Pandey et al, 1991). According to Mazurek and DeWolf 

( 1990), mode shapes can be heavily influenced by crack propagation and support failures. 

The greatest changes occur in the vicinity of the defect, thus offering the opportunity of 

locating damage. According to Richardson and Mannan (1992), the lower and higher 

modes can respectively be used to detect and locate structural faults. This is due to the fact 

that the lower modes are global while the higher modes are more localized to particular 

regions of the structure. A fault will be located in the vicinity of the anti-nodes of those 

modes whose poles (frequencies and damping) move the most (Richardson and Mannan, 

1993). The sensitivity of modal vectors perpendicular to the predominant modal direction 

is clearly established for predicting damage in load bearing and highly redundant members 

(Idichandy and Ganapathy, 1990). 
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When mode shapes are used for structural assessment, the vibrational modes should be 

selected such that they provide significant response of the particular members that are being 

monitored. In general, the changes in mode shapes seem to become more pronounced as 

the mode number increases (Fox, 1992; Sun and Hardy, 1992b ). A distortion of the third 

vibrational mode shape after damage to reinforced concrete beams was noted by Savage 

and Hewlett ( 1978). An important point observed was the development of asymmetry, as 

damage progressed, of the half wave length between the two nodes in the centre of a 

simply supported vibrating beam. This observation was useful in pinpointing the damaged 

area. 

Morgan and Oesterle ( 1985) have described some characteristics of measured mode shapes 

that can be exploited in evaluating the condition of a bridge. They stated that a condition 

of local deterioration may be detected if : i) there is a lack of symmetry in a mode shape 

when symmetry is expected and/or ii) occurence of two different mode shapes with 

comparatively close frequencies. A mode shape in which one point participates excessively 

in the motion could indicate local loss of stiffness. This could be a support or foundation 

problem if the point concerned is grounded. Jeary and Ellis (1984) have pointed out that 

mode shapes could indicate onset of increased soil-structure interaction. Mode shapes are 

more useful than natural frequencies and damping values in detecting damage that leads to 

creation of new modes. An example of such a case is the creation of new modes due to 

support failures (Mazurek and DeWolf, 1990). 

Chowdhury (1990), while investigating the effects of base support material on the dynamic 

properties of continuously supported structures, found that the magnitudes of the imaginary· 

parts of FRF increase as the stiffness of the base material reduces. The magnitudes of the 

imaginary part of the FRF are proportional to the deflection (mode shape) of the structure 
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at a given frequency of vibration. The mode shape patterns observed were also found to 

depend on the quality of the support material. These findings suggest that measurement 

of mode shapes, when properly modified to account for the type of structure, boundary 

conditions and support type, can be used to identify the support conditions. Crema et al 

( 1985) and Tracy et al ( 1984) also used mode shapes to detect damage in composite 

structures. 

In analysing results of dynamic tests on a three span highway bridge, Salane and Baldwin 

( 1990) plotted the mode shapes as contours on the bridge deck. Comparison of the 

contours obtained before and after several fatigue load cycles indicated impending fracture. 

The technique shows promise as a means of locating structural damage. Analysis of mode 

shapes measured on a bridge girder was found to be effective in detecting delamination 

along one side of the girder (Morgan and Oesterle, 1985). Biswas et al (1990), Salane et 

al (1987), Srinivasan and Kot (1992) also found mode shapes to be good indicators of 

structural deterioration. 

A number of studies have been conducted on the sensitivity of mode shapes, Modal 

Assurance Criterion (MAC), Coordinate Modal Assurance Criterion (COMAC) and Modal 

Scale Factor (MSF) to structural changes. The formal definition and mathematical 

formulation of these parameters are given in chapter four. Also discussed in chapter four 

is the performance of the methods proposed by Fox (1992), Pandey et al ( 1991) and Yuen 

(1985). Application of MAC and COMAC to damage detection and integrity assessment 

is discussed in chapters four, seven and eight. 

The approach adopted by Ko et al ( 1994) addressed the problem of defining suitable modes 

when using MAC/COMAC for damage location. The damage is assumed to be at a 

45 



particular node and sensitivity analyses are conducted to fmd the most sensitive modes for 

a range of damage events. The types of damage considered would obviously place a 

limitation on the approach. After selecting suitable modes, COMAC values are then 

computed. If the indicated damage location (with the lowest COMAC value) is the same 

as the assumed one, then the damage is actually at or close to the assumed position. A 

new method of determining suitable modes for damage detection and location is presented 

in chapter four (sub-section 4.2.1) while Salawu (1994?) has discussed the problem of 

identifying damage sensitive vibration modes. 

A modified version of the basic MAC definition was introduced by Fox (1992). The 

modification, called Node Line MAC, involves using only selected measurement points, 

which are close to nodes of particular modes, in the MAC computation. The concept is 

based on the idea that changes in mode shapes will be most noticeable in the vicinity of 

node points or nodal lines (Wolff and Richardson, 1989). Fox noticed a slight 

improvement in the identification procedures when the Node Line MAC values were used. 

It should however be noted that the changes observed are to four significant figures which 

would be insignificant in practical field tests on full-scale structures. 

Lieven and Waters (1994) have recently discussed application of Normalised Cross 

Orthogonality (NCO), Normalised Difference (NDIF) and Normalised Cross Orthogonality 

Location (NCOL) to the identification of spatial differences between a fmite element model 

and its corresponding measured modal data. These parameters are similar to MAC and 

COMAC and can also potentially be used to locate regions of error in a structure. 

Despite the foregoing discussions, some authors have suggested that use of mode shapes 

is not very effective in detecting damage. One of the reasons suggested is the inaccuracy 
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in estimating mode shapes from measured data. According to Friswell and Penny (1992), 

a 20% error in a particular element of the mode shape vector would be typical while 

Ragbavendrachar and Aktan (1992) have indicated that the error may be about 30%. Tests 

by Creed ( 1987) suggest that measured mode shape ratios are only repeatable to within 

35% to 40%. Furthermore, DiPasquale et al (1990) pointed out that, for a given mode, the 

damaged structure's mode shape is not usually very different from that of the original 

structure. This view was also reflected in the results of tests (Sla8tan and Pietrzko, 1993a) 

conducted on reinforced concrete T-beams before and after various levels of damage. 

According to Hearn and Testa (1991), vibration mode shapes are poor indicators for small 

damage that does not alter mass. This is a rather curious conclusion since most damage 

events (involving stiffness reduction) do not lead to significant mass alterations. From 

numerical evaluation of two structural dynamic identification schemes, Ojalvo (1986) 

discovered that use of only mode shape data in model error detection resulted in 

convergence to the wrong answer. If the structure is severely damaged, deciding which 

modes, from the damaged and Wldamaged structures, to be paired for damage detection 

may be difficult (Penny et al, 1993). 

3.5 Methods Based on Measuring Changes in Damping Values 

Occurence of damage in a structure would be expected to lead to an increase in damping. 

Unusually high damping would suggest more energy dissipation mechanism than expected, 

indicating possibility of cracks in the structure (Morgan and Oesterle, 1985). Similarly, an 

increase in damping values for similar excitation conditions can be taken to indicate a 

deterioration in the structure (Jeary and Ellis, 1984). Studies by Tsai and Yang (1988), 

Yang et al (1983) and Yang et al (1985b) concluded that, for a variety of structures and 
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loading conditions, damping is generally more sensitive to damage than stiffness. 

According to Jeary and Ellis ( 1984 ), change in damping is a potential indicator of structural 

cbanges since the relationship between damping and stiffness suggest that damping changes 

may indirectly indicate small localised areas of changing stiffness. Damping may be the 

only indicator of distress when frequencies, as well as mode shapes, are insensitive to 

damage as in the case of transverse motion of wire ropes (Heam and Testa, 1991 ). 

Considerable changes (up to 80%) in damping values were noticed (Agardh, 1991) after 

shear failure close to the support of a reinforced concrete bridge. 

Savage and Hewlett (1978) reported a significant difference (87%) in the damping ratio of 

two geometrically similar concrete beams but with one prestressed and the other unstressed. 

The unstressed beam exhibited high damping which was thought to be associated with the 

presence of micro-cracking along the beam's length. Microscopic movement and resulting 

friction between solid concrete in the cracked regions probably damped out the response 

motion to an applied transient. In the stressed beam, the microcracks were effectively 

closed up by the post-load and hence could not produce friction motion. A general increase 

in damping values after crack initiation in reinforced concrete beams was reported by 

Sla8tan and Pietrzko (1993a). Results of tests conducted by Kennedy and Grace (1990) on 

continuous (two spans) bridge models indicated that damping values would increase due 

to development of transverse cracks in the deck slab near the intermediate pier support. 

However, results (Baldwin et al, 1978) from vibration tests during fatigue testing of a full­

scale bridge showed that variation in damping ratios was not significant from the viewpoint 

of structural monitoring. Sun and Hardy (1992a) performed statistical tests of significance. 

on damping estimates, obtained before and after induced damage in a rock structure, with 

a view to check if there was any significant change in damping as a result of the 
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modifications. The results from the two statistical tests (F-test and t-test) were not in 

agreement. The large scatter usually observed in damping estimates would make any 

statistical test insignificant. 

Differences between damping ratios of an undamaged beam and the same beam after 

strengthening by carbon fibre reinforced plastic laminates were found (Sla8tan and Pietrzko, 

l993b) to be practically negligible. Some test results (Agardh, 1991; Baldwin et al, 1978; 

Hearn and Testa, 1991; Salane and Baldwin, 1990; Salane et al, 1987) indicate an initial 

increase in damping before subsequent reduction as damage progressed. Agardh and Palm 

(1992), Alvarez et al (1993), Askegaard and Langs0 (1986), Alampalli et al (1992) and 

Farrar et al (1994) reported a large scatter in the measured damping values from laboratory 

tests to investigate the effectiveness of damping and frequency measurements in damage 

detection. The scatter becomes more pronounced when the damping values are low. A 

change of a factor of two between damping measurements made on the same day was 

observed by Askegaard and Mossing (1988). According to Shepherd and Reay (1967), the 

damping mechanism in structures must be better understood before changes in modal 

damping ratios can be successfully used in damage detection/integrity assessment. Unlike 

frequency changes which can be associated with highly stressed areas of the structure, 

damping changes may more properly relate to local motions, or specifically to the potential 

for increased motion and increased friction as damage loosens connected members (Hearn 

and Testa, 1991). 

From the author's experience, a major factor against the use of measured damping values 

in integrity assessment is the error involved in estimating damping values especially if. 

ambient testing is used. During modal parameter extraction procedures, the damping values 

usually have the greatest degree of uncertainty. DiPasquale (1990) and Mazurek and 
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De Wolf ( 1990} also concluded that damping values alone can not provide very reliable 

means of damage detection since quantitave relations between deterioration and the level 

of damping in structures are not available. Furthermore, there are many methods (Jeary and 

Ellis, 1984) of estimating damping, each giving dissimilar results, in addition to the 

different defmitions of damping. If damping values are to be used in damage detection, 

more efforts would be needed to increase the accuracy of data acquisition system, increase 

the restrictions on the testing environment and improve the quality of parameter extraction 

routines (Sun and Hardy, 1992a}. 

3.6 Mathematical Model Error Localization Schemes 

As more emphasis is placed on predicting structural behaviour using analytical (usually 

finite element) models, it becomes more important to validate (update) these models, using 

test data, before they are used in response predictions. Many model updating methods have 

been proposed for refming theoretical models. Review papers providing an overview of 

model refinement techniques have been published (Heylen and Sas, 1987; Ibrahim and 

Saafan, 1987; Imregun and Visser, 1991). Only some of the methods which have been 

applied to damage detection and location are reviewed in this section. Theoretical 

background, implementation and performance evaluation of two model updating based 

methods are presented in the next chapter. 

As a first step, most updating schemes locate regions of errors in the finite element model 

before the updating proper. If it is assumed that the (analytical) system matrices to be 

updated (corrected) were obtained from a prior vibration measurement, then the error. 

localization stage can be utilised to detect, locate and quantify damage in a structure from 

any two measurements of the vibration response. The system matrices are obtained from 

50 



measured dynamic response usmg system identification procedures. Selection of an 

appropriate system identification algorithm is crucial to the accuracy of the methods. For 

this approach to be successful, the error introduced by data acquisition and processing 

should not be large enough to suppress the damage induced deviations in the system 

matrices. Other factors to be considered in the application of structural identification 

procedures to damage detection have been investigated by Beck (1991). Link (1990) has 

discussed the problem of defining bounds for error localization using model updating 

techniques. 

Most of the damage location methods based on model refmement techniques compute an 

error identification matrix which is used to indicate the damage location. In some cases, 

the values of the matrix elements can be used to determine the severity of the defect. The 

basic form of the identification matrix is the stiffness error matrix which represents the 

difference between the stiffness matrices of the damaged and undamaged structures. The 

stiffness matrix is used since most damage events will lead to changes in the structure's 

stiffness. This is probably due to the fact that while very localized defects in a structure 

produce small, but measurable, changes in the overall dynamic properties, the local stiffness 

of the structure is significantly reduced at the defect location (Cawley and Adams, 1979; 

Cawley and Nguyen, 1988). Despite this, Tsai and Yang (1988) proposed a technique 

which uses ratios between corresponding elements of identified mass matrices of the 

damaged and undamaged structures. If a location on the test structure is close to a defect, 

the ratios corresponding to the location will be substantially lower or higher than unit 

magnitude, thus offering a way of locating the defect. 

The locations in the error matrix which have the largest reduction in stiffness give the most 

likely damage sites. Many of the error matrix methods ( Gysin, 1986; He, 1992; Lieven and 
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Ewins, 1990; Park et al, 1988; Sidhu and Ewins, 1984) use either the basic formulation or 

modified versions. An evaluation of the performance of a few of the available methods has 

been presented by Salawu and Williams ( 1993) and is further discussed in the next chapter 

while the effect of (data) incompleteness and noise on error matrix calculations has been 

studied by Lieven and Ewins (1992). 

The method proposed by Yang et al (1985a) involves comparison of the diagonal elements 

of the mass and flexibility matrices before and after damage. It was found that (for 

cantilever beams), the flexibility does not change significantly for response stations before 

the damage location while for stations after the damage site, flexibility changes 

progressively according to the severity of damage and distance from the damage location. 

A disadvantage of the method is that the full modal matrix is needed to construct the 

system matrices. In addition, neither is the severity of damage quantified nor multiple 

damage locations identified. 

The approach adopted by Raghavendrachar and Aktan (1992) also uses experimentally 

determined flexibility matrices but without assuming a mass matrix. Successful application 

of the method depends on careful consideration of the factors (sub-section 2.4.3) affecting 

impact testing. The need for many reference points (use of reference points in full-scale 

tests is discussed in section 7.4), though likely to increase accuracy of the identification, 

might increase test costs. In addition, about twenty modes are needed to obtain a 

sufficiently accurate flexibility matrix (Aktan et al, 1994). 

Another approach to using error localization methods is to use measured data from the. 

undamaged structure to correct a ftnite element model of the structure. The system 

matrices of the corrected model will then represent the undamaged structure. Data from 
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subsequent tests on the structure are then used to update the correct initial model (model 

A) to obtain a new model (model B). The updating is achieved by changing the physical 

parameters (Young's modulus, member dimensions, density etc) so that the predicted mode 

shapes and frequencies agree with the measured values. Comparison of the physical 

parameters of each element of models A and B (or the system matrices of the two models) 

will indicate which areas have been affected by damage and to what extent. Application 

of the technique to damage detection in model trusses has been presented by Doebling et 

al (1993) and Kaouk and Zimmerman (1993) while Flesch et al (1991) have investigated 

suitability of the technique for safety evaluation of bridges. The method adopted by Kaouk 

and Zimmerman includes a minimum rank perturbation algorithm for estimating the extent 

of damage. 

The major limitations of the approach described in the previous paragraph are as follows 

(A vi table and Li, 1993; Link, 1990): I) Selection of an appropriate model updating method 

is crucial; 2) H the wrong parameters are selected for the updating process, incorrect system 

matrices will result; 3) The mass and stiffness sensitive regions of the structure, for the sets 

of modes included in the updating process, will always dominate the solution if they are 

allowed to participate in the process; 4) Accuracy of the error localization depends on the 

choice of the areas of the model to update and the modes to include; 5) Incompleteness of 

the measured data would necessitate use of model expansion or reduction techniques to 

ensure compatibility between the experimental and analytical models. These techniques 

will introduce further errors; 6) Mismatch of boundary conditions between analytical and 

experimental models; and 7) Measurement and modelling errors. Zhang ( 1994) has 

suggested that an error analysis of the modal data should be conducted before they are used 

in system identification/model updating. Since such an analysis would involve conducting 

more than one series of tests (and ideally with different excitation/testing techniques) on 
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the reference structure, resource constraints would limit any widespread practical 

application. 

3.7 Other Damage Location Methods 

There are other damage location and quantification methods which do not fall into the 

categories already described. Most of these methods use the FRFs directly to either 

compute a damage indication parameter or develop patterns to be used in damage diagnosis. 

The simplest methods are probably those that involve overlay plots of magnitudes and 

squares of the real and imaginary parts of the FRF (Biswas et al, 1990; Richardson and 

Mannan, 1993; Salawu and Williams, 1994?). Baumgartn.er and Waubke (1993) have also 

suggested use of banded spectra plots in which the FRFs obtained from long term dynamic 

monitoring are plotted as histograms and the relative shifts in amplitude used to assess 

stress levels in the structure. These plots could indicate existence of degradation and which 

modes are most affected. The sensitivity of the plots largely depends on the severity of the 

damage and the accuracy of FRF measurement. A similar approach but with the added 

advantage of damage location was proposed by Afolabi (1987). The approach is based on 

the premise that the minima in FRF plots for points on a structure do not change for points 

at which damage has occured, but that the further a point lies from a damage site, the 

greater the number of shifted minima. 

A signal subspace correlation (SSC) index for detecting structural changes was proposed 

by Chemg and Abdelhamid (1993). The method utilizes impulse response functions (IRF). 

For a single mode, the frequency domian equivalent of the index is the drop of the FRF. 

peak as frequency changes. For a multi-degree of freedom system, the SSC index indicates 

the change in the most sensitive mode. The method proposed by Stubbs and Osegueda 
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(1990a; 1990b) involves determining damage location and severity from express10ns 

relating variations in stiffnesses of structural elements to changes in modal stiffnesses. The 

approach is limited to structural elements (such as beams, plates and shells) and requires 

predefming the damage locations. 

Application of neural networks (Caudill and Butler, 1992) to damage detection has been 

investigated by some researchers (Kudva et al, 1992; Rytter and Kirkegaard, 1994; W orden 

et al, 1993; Wu et al, 1992). The rationale is based on the fact that fault location can be 

considered as a process of distinguishing between data from the original structure from that 

of the damaged structure. The neural network has to be trained by feeding it sets of modal 

parameter changes along with the mass, stiffness and damping changes that caused them 

(Richardson and Mannan, 1993). The network, in turn, computes a set of internal weights 

that allows it to predict mass, stiffness and damping changes that caused the modal 

parameter changes. After training the network, it can be used to predict the location and 

extent of defects that caused measured modal parameter changes. The major drawback is 

the significant amount of computation involved in training the network (at least 100 000 

changes are needed to train a network - Mannan et al, 1994). Furthermore, the accuracy 

is limited by the number and type of damage cases built into the network. If experimental 

data are used to train the network, the quality of the data must be very good. 

Perturbation analysis is sometimes conducted as an alternative to repeating the full dynamic 

analysis in order to compute changes in modal parameters due to localized damage. 

Although most sensitivity based methods utilize natural frequencies and mode shapes, it is 

sometimes more convenient to use the sensitivities of FRFs directly. Sensitivity based 

methods using changes in FRF. characteristics have been proposed (Bran don, 1987; He, 

1993; Law et al, 1991; 1992). However, methods utilizing response functions might be 
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inappropriate if the FRFs contain a substantial amount of noise (Imregun and Agardh, 

1994). 

Application of signature analysis to condition assessment of bridge structures has been 

studied by Samman and Biswas (1994a; 1994b). The measured FRFs are used as 

signatures. The signatures are first processed by applying a "smoother" (a form of low-pass 

digital filter) which reduces their peakedness without destroying their characteristic 

appearance. The "smoother" also reduces/removes noise in/from the signals. Different 

types of signal recognition tools are then applied to detect differences between any series 

of signatures. The techniques can be used to identify presence of damage before damage 

location schemes are used to indicate affected areas. They can therefore serve as condition 

monitoring tools. The procedures were used to detect the presence of simulated cracks in 

a model bridge. Limited success was obtained in detecting damage in a full-scale highway 

bridge. 

Armstrong et al (1993) have reported application of a dynamic stiffness technique to 

integrity assesment of masonry arches. The approach, which is based on earlier studies by 

Davis and Dunn (1974) and Sibbald (1988), involves utilization of the displacement FRF 

values at low (close to O.OHz) frequencies. However, use of FRF values at low frequencies 

is unreliable since measurements at the low frequency range are more susceptible to errors. 

In fact, the low frequency components are sometimes attenuated during field testing of 

large civil engineering structures. 

One approach that is also applicable to the problem of structural assessment (damage. 

detection/location) is 'reverse' structural modification. The usual structural modification 

techniques (Snyder, 1985; Jones and lberle, 1986) seek to find the optimum changes in a 
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structure necessary to achieve desired dynamic properties. A reversal of this procedure 

would be to fmd positions (and magnitudes) of structural modifications that would cause 

observed changes in the structure's dynamic properties. Application of this reverse 

approach to detect, locate and quantify damage is rare. It would involve creating a 

reference database of possible modification (damage) sites corresponding with known 

parameter changes. The accuracy of structural modification methods are affected by 

truncation errors - only an incomplete set of all the possible vibration modes are usually 

measured. Ulm (1986) has studied the accuracy of structural modification relative to errors 

and deficiencies of typical modal data while a procedure to predict error bounds for results 

from structural modification has been proposed by Braun and Ram (1990). 

3.8 Factors To Consider 

Some factors to consider when using vibration testing for integrity assessment are discussed 

in this section. For successful utilization of vibration data in assessing structural condition, 

measurements should be taken at points where all the modes (in the frequency range of 

interest) are well represented. The simplest way of achieving this is to conduct a 

theoretical vibration analysis of the structure prior to testing. The best positions would be 

those points where the sum of the magnitudes of the mode shape vectors are maximized. 

Models for selecting the best excitation (Kientzy et al, 1989} and measurement (Penny et 

al, 1992; Shah and Udwadia, 1978} locations have been proposed while Larson et al (1994) 

have presented a comparative study of several pre-modal test planning techniques. A few 

simple procedures that may also be applicable to test planning can be found in Bolton 

(1994). Schutze et al (1994) have described an expert system for vibration test planning._ 

For effective utilization of dynamic testing as a diagnostic tool, it 1s necessary to 
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understand the effects of deterioration and defects on the dynamic characteristics of 

structural systems. For example, long span bridges are not likely to show measurable 

changes in dynamic properties if local damage is sustained (Brownjohn, 1988). In addition, 

dynamic characteristics are sensitive to changes in support conditions that may have little 

structural consequence. Responses measured at boundaries (abutment, piers and other 

support types) could also yield erroneous results (Zhang, 1994). It is also important that 

the effects of environmental factors, such as temperature and humidity, on changes in 

dynamic characteristics be either small or predictable (Askegaard and Mossing, 1988). Al­

Ansary and Azayem (1986) have pointed out the need for 'sufficient' number of frequency 

variations before defects can be adequately located. According to Tang and Leu (1989), 

it would be necessary to detect changes in natural frequencies in the order of 0.01Hz for 

safety inspection of bridges. However, this is probably only applicable to long span 

suspension bridges. 

Quantitative relationships between changes in dynamic parameters and environmental 

factors are very rare. The many variables involved will make assigning numerical factors 

difficult An investigation into this issue has been reported by Askegaard and Mossing 

(1988) who showed that the relative change in the magnitude of a well defmed natural 

frequency of an undamaged structure is little influenced by changes in temperature, 

humidity etc if measurements to be compared are made at the same time of the year. Their 

results (Figures 3.1 and 3.2) showed that changes in natural frequencies during short term 

tests were insignificant while the fluctuation observed over a two year period were much 

less than those occuring in deteriorated structures (Askegaard and Langs0, 1986). Further 

discussions of the effects of temperature on the resonant frequencies of structures can be 

found in Adams and Coppendale (1976). The fluctuations in damping values (Figures 3.1 

and 3.2) are much larger and have been discussed in section 3.5. 
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Figure 3.1 Changes in frequency, damping and 
temperature in short term-tests (Askegaard and 
Mossing, 1988) 

Figure 3.2 Long-term changes in frequency, damping and temperature (Askegaard 
and Mossing, 1988) 
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From an analysis of the effect of ambient conditions on the dynamic response of four 

prestressed concrete bridge decks, Purkiss et al (199?a; 199?b) concluded that the most 

significant variable affecting measured responses is the soffit temperature of the bridge 

deck. The other variables investigated were the site's air temperature and hwnidity; mean 

upper deck temperature; local temperature variation; mean local hwnidity; mean air 

pressure; and mean rainfall on the day preceeding the test. The results show a gradual 

decrease in natural frequency with increasing soffit temperature. The authors used the 

normalized frequency-temperature gradient to analyze variation in dynamic response with 

soffit temperatures. A procedure for calculating the normalized frequency-temperature 

gradient was proposed. The variation in temperature was not related with time. The 

relationships observed would not undermine using vibration data for assessment as long as 

measurements are taken at similar periods and ambient conditions are similar. 

Other factors to consider are the consistency and reliability of the testing procedures. 

Alampalli et al (1992) have noted that previous investigations paid little attention to the 

random effect of environment and test equipment on test results. They also pointed out that 

the sensitivity of a dynamic monitoring system is limited, at least, by the observed random 

variation due to environmental influence and instrumentation accuracy. Other researchers 

(Aktan et al, 1994; Fox, 1992; Kroggel, 1993) have also mentioned these factors. To 

account for these limitations, Alampalli et al ( 1992) suggested development of criteria 

based on statistical concepts to establish windows for warning triggering. Use of trigger 

windows would be synonymous with the concept of mechanical signature analysis 

employed in the mechanical and nuclear industries for assessing integrity of machinery and 

products. Some researchers (Aktan et al, 1994) have questioned the reliability of modal. 

parameters as integrity indices and have suggested other indices, also derived from the 

measured dynamic response, for condition assessment. 

60 



One potential problem with the use of mode shapes in integrity assessment is the possibility 

of changes in the dynamic condition of the bridge during the course of a test programme. 

During a full-scale bridge test, Richardson and Douglas (1987) noticed changes in the 

dynamic response of the bridge as a day's testing progressed with the bridge returning to 

its original state overnight. This phenomenon could prevent the complete identification of 

some mode shapes. However, an approach similar to that adopted by Purkiss et al (199?b) 

- mentioned earlier - may be used to account for the variation in the dynamic response. 

A limitation of structural assessment using vibration testing is the need to conduct at least 

two series of tests - one on the pristine structure and another after a period of time. In 

most cases, the (measured) dynamic parameters of the as-built structure are unavailable and 

assessment engineers require information on the current state of the structure. To 

circumvent this limitation, Alocco et al (1993) have suggested two methods for assessing 

the integrity of prestressed bridges using results from one series of tests. In principle, the 

methods should be applicable to any type of bridge. At least two or three tests would be 

necessary to determine the frequency and damping ratio of the fust mode. The fust test 

will be on the structure without any load while the others will be after adding different 

levels of uniformly distributed imposed loads. The main disadvantage of the technique is 

the requirement to apply large imposed loads especially for large structures where the 

practicability and cost could be prohibitive. 

3.9 Conclusions 

A review of methods of damage detection using vibration data has shown that the approach 

is potentially useful for routine integrity assessment of structures. Of the dynamic 

parameters, damping values seem to be the least appropriate, despite the sensitivity of 
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damping values to damage, because of the large scatter in reported experimentally 

determined values. Methods using natural frequencies and mode shapes are more attractive 

since they can identify the occurence, and to some extent, locate and quantify damage. 

However, many of the proposed methods require either a theoretical model of damage or 

a set of sensitivity values to be computed before physical measurements. 

Perturbation/sensitivity analysis methods could be very slow if matrices are large especially 

if a complete eigensolution is required for each iteration. To be truly realistic, the methods 

would require consideration of all possible damage events at various locations on the 

structure. Consequently, the computations that would be required for large civil 

engineering structures could be prohibitive. These methods are thus limited in application 

to specific structural geometries and the type of damage model assumed. In addition, 

utilization of a theoretical damage model could introduce uncertainties into the results. 

Methods that rely only on measured data without any prior theoretical assumptions would 

be more appropriate to large civil engineering structures. 

Damage detection using system identification and model updating schemes is limited by 

the accuracy of the system identification algorithm used. Many system identification 

methods have been proposed but none is completely satisfactory since there is no unique 

solution to the problem of obtaining a set of system matrices, from a set of incomplete 

measured data, that would realistically model the structure. In addition, model updating 

tends to spread the effect of damage around the structure (as represented by the system 

matrices), making damage localization difficult. 

Integrity assessment of civil engineering structures using vibration data would require a 

method which uses only test data from the first few modes and is based on simple 

assumptions about the behaviour of the structure. In the next chapter, the effectiveness of 
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some of the more promising methods reviewed in this chapter are evaluated. This would 

enable development of a scheme, taking account of the limitations of the methods assessed, 

for integrity assessment. 
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CHAPTER FOUR 

EVALUATION OF SOME DAMAGE LOCATION MEmODS 

4.1 Introduction 

The review in the last chapter has revealed the existence of a significant number of 

methods for detecting, locating and quantifying damage. Each method has its advantages 

and limitations so that selection of a particular method would require some knowledge of 

its performance in locating damage in the type of structure Wlder consideration. Evaluation 

of existing methods is desirable so that important merits and drawbacks of these methods 

can be emphasised. This would aid in directing future research towards more productive 

areas. For these reasons, the relative effectiveness of some damage location methods is 

considered in this chapter. The more promising methods out of those reviewed in chapter 

three were selected. Both theoretical and experimental data were used in the studies. 

Simple configurations (a cantilever beam for the theoretical model and a simply supported 

steel beam for the experimental structure) whose behaviour could be easily understood were 

used. In addition to evaluating the methods, it was intended to investigate which factors 

are most influential in damage detection and location. The number of damage cases that 

can be considered is unlimited. Therefore, the cases selected were chosen to reflect the 

more common damage situations and facilitate reasonable comparison of the performance 

of the methods tested. Details of the methods evaluated, numerical simulations, 

experiments conducted and results obtained are given. 

Figure 4.1 shows a generalized section of a structure represented with beam elements. This 
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figure would be referred to while explaining how results from some of the methods are 

interpreted. The discussions in this chapter assume a background knowledge of matrix 

algebra. 

( . 
) ft-11 

elemeat j 
I t . ) 

P•ll ~·21 \ 
node numbers 

1 Figure 4.1 Section of a general structure 

4.2 Methods Utilizing Modal Data 

4.2.1 MAC, COMAC and MSV 

The two most commonly used methods to compare two sets of vibration mode shapes are 

the Modal Assurance Criterion (MAC) and the Coordinate Modal Assurance Criterion 

(COMA C). The criteria are applicable to any two sets of vibration data -

measured/measured, theoretical/theoretical and theoretical/measured. MAC indicates 

correlation between mode shapes while COMAC indicates the correlation between the 

mode shapes at a selected measurement point on the structure (Pandey et al, 1991 ). If the 

two sets of data are from the damaged and undamaged structures, MAC can be used to 

indicate the modes most sensitive to damage while COMAC could indicate possible 

damage locations. The MAC between the qth mode of the first data setA and the rth mode 

of the second data set B is defined as (Allemang and Brown, 1983): 
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(4.1) 

where mode shape vector for mode q of data set A 

mode shape vector for mode r of data set B 

A MAC value close to 1 indicates that the two modes are well correlated while a value 

close to 0 is indicative of uncorrelated modes. 

To compute the COMAC values, correlated modes from the two sets A and B are paired. 

If i = measurement location, L = total number of correlated mode pairs and (;cj)A)1 = element 

of mode shape vector for set A in correlated mode pair 1, then the COMAC for 

measurement location i is defined as (Lieven and Ewins, 1988): 

COMAC(i) [L (;CIJA) 1 (lcj)B) ,l 2 

E (,cl> A)/ E (,.(jiB)/ 
(4 .2) 

where the summation is from l = 1 to L. A COMAC value close to 1 indicates good 

correlation, at the selected location, between the two data sets. 

A new function, called Modal Sensitivity Value (MSV), for identifying damage sensitive 

modes is proposed here. If ( cj)A;,) = element of the rth mode shape vector at measurement 

point i for data set A and A. A, = eigenvalue of mode r for data set A, MSV for mode r is 

defmed as: 

{E ( cj)Bir) 2}0.S {E ( cj) .w) 2}0.S 

A.Br AAr (4 .3) 
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where the summation is from 1 ton (number of measurement points). {L{cjlAir)2}0"5 is the 

Euclidean norm of the rth mode shape vector of data set A and represents the distance of 

the vector from the origin in R". R" denotes the set of all n-dimensional column vectors 

with real number coefficients and {cjlA}., {cjl8}, e R". Assuming data set B to be from the 

damaged structure, existence of damage will cause {L{cjl8ir)2} o.s to be greater or less than 

{L{ cjlAir)2} o.s_ Only the magnitude of the change is considered since damage identification 

is the sole intention. Since {L{cjlAir)2} o.s is unchanged, occurence of damage can be inferred 

from the magnitudes of MSV. The MSV for all modes (for a particular damage case) are 

normalised such that the mode showing least correlation, thus most affected by damage, 

has a MSV value of 100. In Equations (4.1) to (4.3), the modes have been assumed to be 

real. 

4.2.2 Eigenparameter method 

The eigenparameter method uses the changes in the eigenvectors to locate damage in beam-

like structures. It is based on the existence of a systematic change in the fundamental 

mode shape with respect to the damage location. The eigenparameter {U}, for mode r is 

defined (Yuen, 1986) as the vector difference between the damaged and undamaged case 

of the mass orthonomalised eigenvector divided by the corresponding eigenvalue and is 

mathematically expressed as: 

{V}, (4 .4) 

Where 

An, rth eigenvalue of damaged structure 
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A0 , rth eigenvalue of undamaged structure 

{4>0 }, rth eigenvector of damaged structure 

{4>0 }, rth eigenvector of undamaged structure 

The 106 factor is merely to increase the values of the elements of the eigenparameter vector 

since normalization by the eigenvalues could lead to very small values. Only the 

fundamental mode (r = 1) is used since the higher modes require functions more complex 

than the eigenvalues for the eigenvector normalization (Yuen, 1985). 

Characteristics of the plot of {U}, against the measurement points are used to infer the 

damage position. For simply supported beams, change in slope of the plots will occur at 

the damage position while the magnitude of (U}, will increase with increasing degree of 

damage. For cantilever beams, the value of (U}, will be negligible for positions between 

the fixed end and the damage location. Beyond that, {U}, is expected to exhibit a linear 

characteristic against the distance from the damage location. The slope of the linear 

portion increases with the severity of the damage. Figure 4.2 illustrates the characteristics 

of the eigenparameter plots for the case of damage in element j of Figure 4.1. 

u simply supported beam 
u 

measurement points 

Figure 4.2 Eigenparameter plots 
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4.2.3 Cunature mode shape method 

Existence of a crack or damage at any section of a structure reduces the stiffness (as 

represented by El where E and I are respectively the modulus of elasticity and the second 

moment of the cross-sectional area) at the crack location. The reduction in El leads to an 

increase in the magnitude of the curvature v" at the section as given by the relation v" 

= M I (El) where M is the bending moment at the section. Since the changes in the 

curvatures are local and depend on the extent of reduction in (El), the curvature changes 

can be used to detect, locate and quantify damage. The absolute difference in the curvature 

mode shapes between the damaged and undamaged structure is expected to show a 

maximum at the damaged region. In addition, the maximum difference increases with 

increasing degree of reduction in the stiffness of the damaged zone (Pandey et al, 1991 ). 

The curvatures are computed from the displacement mode shapes using a central difference 

approximation (Pandey et al, 1991): 

= ( (4>(i+l)r) - 2 (cl>ir) + (4>(i-l)r)) 
h2 

(4 .5) 

where h is the length of each beam element, (v;,") and (cl>;,) are respectively elements of 

the curvature and displacement mode shapes for mode r at measurement point i. In 

implementing the method, h was taken as the average of the lengths of the elements on 

either side of i while an element length was regarded as being the distance between two 

consecutive measurement points. 
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4.2.4 Mode shape relative difference method 

In this method, graphical comparison of displacement mode shapes is used to indicate the 

damage position. The parameter used is the relative difference {RD} between the scaled 

mode shapes and is defmed as (Fox, 1992): 

{RD} = lcl>d, - lcJ>d, 
, {cJ>()f, (4 .6) 

The method relies on the fact that the largest differences in mode shapes occur within the 

vicinity of the nodes. A plot of {RD} against the measurement positions would show a 

defmite trend with distinct discontinuity at the defect position and significant peaks in the 

region of the nodes. The modes most affected by the damage are more likely to show the 

patterns sought for in the {RD} plots. 

4.3 Methods Based on Model Updating Procedures 

4.3.1 Matrix cursor method 

The matrix cursor method (Brown, 1988) is based on vector space theory and seeks to 

locate the error region by identifying all the degrees of freedom associated with the element 

in error. Much of the background vector space theory (Milne, 1980) has been ommitted 

from this discussion. The case of stiffness error only (unchanged mass) is first considered .. 

An approximation [o8] to the stiffness error matrix [M<] is defmed as: 
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[K 8 ] - [K0 ] (4. 7) 

where [Ko] is the stiffness matrix of the Wldamaged structure and [K"] is an 'hybrid' form 

of the stiffness matrix. [K"] is given by (Brown, 1987): 

[K 8 ] = [M0 1 C"lfnl [A.nl [11'nl T[Mol - [Kol [11'nl [11'nl T[Mol -
[Mol [11'nl [11'nl T[Kol + [Kol + 
[Mol [11'nl [11'nlT[Kol [11'nl [11'n]T[Mol 

where [Mo] mass matrix of Wldamaged structure 

mode shape matrix of Wldamaged structure 

eigenvalue matrix of damaged structure 

Another approximation [E8] to [.6K] can be defmed as 

[Esl [Mol [11'nl [A.nl [lfnl T[Mol -
[Mol [11'nl [11'vl T[Kol [lfnl [11'vl T[Mol 

(4.8) 

(4.9) 

The best approximation [« 8] to [.6K] will be an average of the two previous versions. 

Thus, 

[«81 =0.5{[68] + [e8]) 

= 0.5{2[M0 1 [11'0 1 [A.nl [lfnlT[M0]- [M0 ] [11'0 1 [11'0 1T[K01-
[Kol [ qr nl [ qr oF [Mol ) 

(4.10) 
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Using vector space representation, [« 8] can be defined as: 

[«8 ] = 0. 5 ( [P] T[AK] + [AK] [P]) (4.11) 

where [P] is a matrix projection operator expressed as: 

[P] (4 .12) 

and 

[P] T = [Mol [11' DJ ( [11' DJ T [Mol [11' DJ ) -l [11' DJ T (4.13) 

For any zero row of [AK], ([AK][P]) = 0 since [O)r[1f0 ][1f0 ]r[Mo] = [O)r and for any zero 

column of[AK], ([P]r[AK]) = 0 since [Mo][1f0 )[1f0 )r[O) = [0). This implies that only non-

zero values of [AK] will contain non-zero values in the error identification matrix [« 8]. 

For the case of mass error only, the same procedure is applied to obtain 

[«M] = 0 · 5 ( -2 [M0] [1fD] [AD] [1fD] T[M0 ] + [KD] [1fD] [1fD) T[M0 ] + 

[Mol ['I'D] [1fD] T[Ko] 

(4.14) 

where [a: M] is the mass error matrix. Comparison of Equations (4.10) and (4.14) shows that 

[«8] =-[a: M]. Therefore, a general expression for the error location matrix, which identifies 

either mass or stiffness (or both) errors, can be established. Equation (4.10) will be taken 

as this expression. In order to use this method, it is necessary to compute the system 
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matrices ([K0 ], [Mo] and [K0 ]) from the measured data. The system identification method 

adopted is described in sub-section 4.3.2. 

In practice, the rows and columns (of the identification matrix) associated with the error 

will contain elements whose values are much greater than other elements in the matrix. 

The process is illustrated by using the structure in Figure 4.1. Assuming damage in 

element j, the matrix cursors are shown in Figure 4.3. The damage location is identified 

by the coordinates corresponding to elements on the leading diagonal with comparatively 

large values. In general, there will be u error locations (u ::!: 2) leading to u2 intersections 

with (u2
- u) of them not on the leading diagonal. If the matrix in Figure 4.3 is represented 

by a three-dimensional histogram, the height of the bars corresponding to the damage 

positions will have the highest values. 

···•······· (1-11 I pill pt21 

P-11 
I 

-

ptl) ---+-tBI--------
P+2) 

-

Figure 4.3 Matrix cursor example 
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4.3.2 Identification of system matrices 

The equation of motion for a multi-degree of freedom system in the physical space is given 

by Equation (3 .1). A number of methods exists for estimating the system matrices {[M], 

[C] and [K]) from measured vibration data. These methods are either direct (using the 

measured FRF directly) or indirect (using modal parameters obtained from curve-fitting the 

FRF). The method implemented here is an indirect method and computes the system 

matrices using the orthogonality properties of vibrating systems. The technique (Luk, 

1987) is applicable to general systems - both complete (n = m) and truncated (n > m) 

where n and m are respectively the number of measured degrees of freedom (DOF) and 

modes. The experimental DOF of a physical structure can be defined by the direction and 

location at which the measurement transducers for acquiring data are attached. A truncated 

system is usually obtained from experimental testing since the structure will typically have 

an almost infinte number of DOF and vibration modes and only a few of these can be 

measured. 

By assuming proportional damping and using the transformation {X} = ['1']{4>}, Equation 

{3 .1) can be decoupled to yield 

[m] {<J>"} + [c) {<J>'} + [k] {<J>} ['I'] T{F (t)} (4 .15) 

where 

[c) ['P] T[CJ ['P] 
(k) ('P) T[K] ('P) 

[m) = ['P) T[M) ['P) 

(4.16) 
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[c], [k] and [m] are the diagonal modal viscous damping, mass and stiffness matrices, 

respectively, obtained during modal parameter extraction while { cjl}, { cjl'} and { cjl"} are, 

respectively, the normal displacement (mode shape), velocity and acceleration vectors. ['I'] 

is the mode shape matrix. 

For a complete system, the physical matrices can be obtained from Equation ( 4.16) by pre-

and post-multiplying by the appropriate inverses to get 

[C] = ( [1P] 1) -1 [c] [1P] -1 

[K] ( ['I'] 1) -1 [k] ['I'] -1 

[M] = (['I'] 1) -1 [m] ['I'] -1 

(4.17) 

All the matrices in Equation (4.17) are of order n x n. However, the data obtained from 

experimental testing usually describe a tnmcated system. A tnmcated system leads to a 

non-square modal matrix ['I'] thereby making the ordinary matrix inverse inapplicable. A 

special type of inverse, called pseudo-inverse, is necessary. The pseudo-inverse is a 

generalised inverse that can deal with a non-square or a square but singular matrix. By 

using the pseudo-in verses, Equation ( 4.18) can be written {for a general system) as: 

[Cl ( ['I'] T) • [cl ['I'] • 
[K] ( ['I'] T) + [k] ['I'] + 

[M) = ( ['I'] 1) • [m] ['I'] • 

(4.18) 

In Equation (4.18), [C], [K] and [M] are of order n x n, [c], [k] and [m] are of order m x 

m, ['I'] is of order n x m and + denotes a pseudo-inverse. 
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4.3.3 Stiffness error matrix metbod 

The basic formulation for the stiffness error matrix between the undamged [K0 ] and 

damaged (K0 ] structures is [M<.] = [K0 ] - (K0 ]. The error location can be identified as 

those degrees of freedom (DOF) corresponding to non-zero elements of [M<.] since all 

other DOF not affected by the damage will have zero stiffness changes. In reality, the 

elements of [M<.] corresponding to the damage location should have much larger values 

as compared to the others. The simplest way to evaluate [M<.] would be by obtaining the 

matrices [Ko] and [K0 ] using a method such as that described in the last sub-section. 

However, this direct approach leads to poor damage identification (Salawu and Williams, 

1993; Park et al, 1988). To improve the sensitivity of [L\K] to stiffness errors, many 

modified versions of the direct approach have been suggested. The version implemented 

here was proposed by Lieven and Ewins (1990} and uses the pseudo-flexibility matrix 

[K+]"' defined as follows: 

[K•] -1 = [lf] [A.] -1 [lf l T (4 .19} 

where [K1, ['P] and [A.] are respectively the pseudo-stiffness, mode shape and eigenvalue 

matrices. [K+] is then obtained by fmding the psuedo-inverse of [K+]"1 using Singular 

Value Decomposition (SVD). Thus, 

(4.20} 

Substituting Equations ( 4.19} and ( 4.20) in the expression for [M<.] yields: 
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where the subscripts D and 0 respectively refer to the damaged and undamaged structures. 

4.4 Cantilever Beam 

Figure 4.4 shows the cantilever beam model used to generate the theoretical data. The 

beam was modelled with six 0.5m uniform beam elements. Each node has two 

translational DOF in the X and Y directions. Values of the geometrical and material 

properties used are shown in the figure. An eigenvalue analysis was conducted to 

determine the natural frequencies and mode shapes of the first six bending modes. Since 

flexural modes were considered, only displacements in the Y direction were used in 

evaluating the methods. 

2 
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Figure 4.4 Cantilever beam model 
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4.4.1 Damage simulation 

Damage was simulated by reducing the modulus of elasticity E for selected elements. The 

degree of damage is proportional to the extent of reduction. As characteristics of each 

mode of vibration would be affected only by modifications to the stiffness of the relevant 

degrees of freedom, the introduction of a reduced modulus of elasticity as the damage 

representation could be interpreted as equivalent to a biased reduction in the values of the 

elements of the stiffness matrix for the relevant DOF (Yuen, 1985). This implies that only 

damage affecting the structural stiffness was considered. This is a convenient way of 

modelling damage since minor modifications to the analysis input ftle are necessary. The 

damage representation simulates practical vibration monitoring problems in which the 

location and size of the damage are both unknown, thereby making detailed theoretical 

modelling of damage unjustifiable. 

The damage cases considered were: 

Case 1 

Case 2 

Case 3 

Case 4 

Case 5 

No damage 

50% reduction in global E 

50% reduction in E of element 3 

50% reduction in E of elements 3 and 5 

80% and 50% reduction in E of elements 3 and 5 

respectively. 

Damage case 2 was meant to test the ability of the methods in detecting damage that 

affects the whole structure in more or less a uniform manner. Previous researchers have 

ignored this important case. Case 3 is the damage situation usually studied and represents 

damage at a single location. Cases 4 and 5 were designed to investigate possibility of 

detecting multiple damage locations. For each damage case, the eigenvalues and 

78 



eigenvectors of the beam were calculated for the first six modes. The calculated modal 

parameters were used to synthesize FRFs at each node. 

4.4.2 Results from the analysis 

Table 4.1 shows the natural frequencies for the six modes. It can been seen (from the 

table) that damage case 2 has the largest frequency reduction for all modes. The magnitude 

of the change (as a percentage of the undamaged frequencies) for case 2 is the same for 

all modes due to the nature of the damage. For each mode, the severity of the damage (as 

measured by the reduction in frequency) decreases according to the progression case 2 -+ 

case 5 -+ case 4 -+ case 3. This is as expected. The magnitudes of the frequency 

reduction show that the simulated damage cases are severe. 

4.5 Experimental Steel Beam 

4.5.1 Experimental arrangement 

The experimental set-up for the beam tests is shown in Figure 4.5. The test beam was an 

!-section (UB 203 x 102 x 23 kg/m) steel beam. The beam was excited by an electro­

magnetic vibrator while the dynamic response in the vertical direction was measured at 

eight locations using accelerometers. The instrumentation used and data processing 

techniques adopted are described in chapter six. A periodic random signal was used as the 

excitation signal. The tests were conducted within the frequency range 0 - 250 Hz which 

was sufficient to cover the first three bending modes. An HP9122 computer was used to 

control the test and acquire FRF data via an HP3582A dual channel spectrum analyzer. 

The FRFs were subsequently transferred to an OPUS PCSX 386SX computer for further 
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analysis. 

Table 4.1 Natural frequencies of the cantilever beam 

Mode Frequency (Hz) 

number 
Casei Case2 Case 3 Case4 Case5 

1 26.405 18.671 24.781 24.676 21.160 

(-29.3f (-6.2) (-6.5) (-19.9) 

2 151.668 107.246 137.876 132.062 114.226 

(-29.3} (-9.1) (-12.9) (-24.7} 

3 380.022 268.716 360.371 325.786 293 .862 

(-29.3) (-5.2) (-14.3) (-22.7) 

4 654.857 463 .054 614.795 566.314 493 .911 

(-29.3) ( -6.1) (-13.5) (-24.58) 

5 938.683 663.749 879.969 812.043 770.522 

(-29.3) (-6.3) (-13 .5) (-17.9) 

6 1165.42 824.079 1086.30 977.582 872.741 

(-29.3) (-6.8) (-16.1) ( -25.1) 

% change in frequency from case 1 
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Figure 4.5 Experimental arrangement for beam tests 

4.5.2 Damage cases 

1' 
386SX 
computer 

The damaged section is shown in Figure 4.5 while sketches of the damage cases are shown 

in Figure 4.6. Four damage cases were considered. These were: 

Case I Undamaged beam 

Caseii Removal of top flange at the damage location 

Case m Case IT plus removal of bottom flange at the damage location 

Case IV Case Ill plus removal of half web at the damage location 

The damage cases were selected so that the effects of relatively mild (case IT) and severe 

(cases ill and IV) damage could be investigated. One other factor was the need for the 

81 



damage site to have small participation (i .e. close to a node) in at Least one of the measured 

modes. l11is was meant to give an indication of the effects of damage location on the 

sensitivity (to damage) of the modes. Thus, the damage site was located close to a node 

of mode 3. 

Damage case li 

Damage case Ill 

=============:J:~ 7 
I 

Damage case lV 

Figure 4.6 Diagramatic representation of induced damage - steel beam 
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4.5.3 Test results 

The natural frequencies and viscous damping ratios obtained from the tests are shown in 

Tables 4.2 and 4.3. There is a reduction in frequency with increasing level of damage 

except for mode 3 (cases IT and ill). Using the natural frequency changes alone, it would 

appear that modes 1 and 2 are more affected by the damage. The pattern of the frequency 

changes suggests that the damage is close to positions of maximum displacement of modes 

1 and 2 but near a node of mode 3. This observation can be useful for preliminary damage 

site identification. 

Table 4.2 Natural frequencies obtained from beam tests 

Mode Frequency (Hz) for Damage Case .... 

number 
Casei Case IT Case m Case IV 

1 22.98 22.53 20.42 15.12 

(-2.0f (- 11.14) (-34.20) 

2 94.49 90.47 88.62 74.14 

(-4.3) ( -6.2) (-21.5) 

3 207.8 208.83 208.67 194.75 

(0.5) (0.4) ( -6.3) 

% change from case I 

The damping values increase with increasing degree of damage. The only exception is in 

mode 2 where the values decrease after an initial increase. Trends similar to those 

observed were reported by Baldwin et al (1978), Salane and Baldwin (1990) and Salane 

et al (1987). The mode shapes are shown in Figure 4.7. The differences in the mode 
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shape amplitudes indicate existence of damage. The damage location can be inferred from 

mode 2 where the nodal point has changed and the largest differences exist at measurement 

point 3 (closest to damage site). The modal amplitudes increase with increasing level of 

damage but, suprisingly, modal amplitude values from the undamaged structure are 

generally larger than those from the damaged structure. 

Table 4.3 Viscous dam ping ratios from beam tests 

Mode Viscous damping ratio 

number 
Damage Cases 

Casei Casell Case m Case IV 

1 0.00480 0.00696 0.00721 0.00923 

2 0.00417 0.00777 0.00702 0.00600 

3 0.00575 0.00625 0.00879 0.01040 

4.6 Performance of the Methods 

4.6.1 Methods based on modal data 

4.6.1.1 Cantilever beam 

Table 4.4 shows elements on the leading diagonal of the MAC matrix and MSV values for 

the different damage cases. A MAC value of 1.0 indicates good correlation (which implies 

no damage present) between the damaged and undamaged mode shapes for the modes 

concerned. For case 2 with the largest amount of damage, the MAC values for all modes 

are 1.0. MAC is unable to indicate the presence of damage in case 2 because, due to the 

nature of the simulated damage, the mode shapes are identical. However, MSV values of 

100 for all modes in case 2 correctly indicate that damage is present and all modes are 

equally sensitive to the damage type. For cases 3 to 5, only modes 5 and 6 (and mode 4 
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for cases 4 and 5) have MAC values significantly less than 1.0. 
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Table 4.4 MAC and MSV for the cantilever beam • 

Mode Case2 Case3 Case4 Case 5 

MAC MSV MAC MSV MAC MSV MAC MSV 

1 1.0 100 1.0 63.05 1.0 45.29 1.00 72.41 

2 1.0 100 1.0 72.60 1.0 87.10 0.99 79.35 

3 1.0 100 0.99 46.12 0.99 100.0 0.98 77.71 

4 1.0 100 0.99 72.01 0.96 92.98 0.90 98.09 

5 1.0 100 0.94 25 .12 0.94 85 .24 0.94 36.35 

6 1.0 100 0.95 100.0 0.96 94.79 0.95 100.0 

Case l as reference 

The MSV values show varying degrees of sensitivity to damage (cases 3 - 5) by the modes. 

The effectiveness of MSV in suggesting damage sensitive modes is compared against that 

of natural frequency changes in Figure 4.8. In the figure, the magnitudes of natural 

frequency reductions (see Table 4.1) have been normalised such that the largest reduction 

has a value of 100. This allows easy comparison with MSV values. Apart from case 2, 

Figure 4.8 shows that the two parameters indicate slightly different modes as being most 

sensitive to damage. This might be expected since MSV uses mode shape data in addition 

to frequency values and would therefore indicate modes that are sensitive to both global 

and local damage. The results have shown MSV to be a useful indicator of sensitive 

modes and performing better than MAC as regards damage detection. 
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MAC, MSV and frequency changes can only detect damage. The other methods described 

in section 4.2 will be used for damage location. Table 4.5 shows COMAC values for the 

cantilever beam. The larger the difference of a CO MAC value from unity, the more the 

possibility of the corresponding point being a damage site. COMAC values are unable to 

detect damage case 2 since the damage is not limited to a portion of the beam. For cases 

3 - 5, the COMAC values are much lower than 1 but it is difficult to identify the damaged 

area from the information. The damage cases have been described in sub-section 4.4. L 

Table 4.5 CO MAC values for the cantilever beam* 

Node number COMAC for Damage Case .... 

Case 2 Case 3 Case4 Case5 

1 LOO LOO LOO LOO 

2 LOO 0.05 0.96 0.49 

3 LOO 0.14 0.88 0.32 

4 LOO 0.62 0.73 0.14 

5 LOO 0.26 0.41 0.00 

6 LOO 0.01 0.10 0.05 

7 1.00 0.09 0.30 0.10 

Case 1 as reference 

The eigenparameter plots for the damage cases are shown in Figure 4.9. If no damage is 

present, the eigenparemeter plot should be flat as shown by the plot for case 1. Existence 

of damage in case 2 is detected while the damage in element 3 (between nodes 3 and 4) 
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is correctly identified for cases 3 - 5. However, element 5, also damaged in cases 4 and 

5, is not identified. The method has therefore been Wlable to identify multiple damage 

locations. The slope of the plot is expected to increase with the severity of damage. This 

is demonstrated in Figure 4.9 with the plot for case 5 having a steeper slope than those for 

cases 3 and 4. The difference in the degree of damage between cases 3 and 4 is not 

revealed while case 5 is shown to be, incorrectly, slightly more severe than case 2. 
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Figure 4.9 Eigenparameter plots for all damage cases - cantilever beam 
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Plots of absolute difference in curvature mode shapes is shown in Figure 4.10. The 

damage in element 3 is indicated by all modes though the location is not distinct for mode 

6. Only modes 3 and 5 clearly indicate existence of damage in element 5. As for the 

degree of damage, only modes 1, 5 and 6 show the difference in the severity of the damage 

cases. None of the modes show existence of damage case 2. 

Damage case 2 was also not identified by the relative difference in mode shape plots 

(Figure 4.11 ). The distinct discontinuity expected at the damage location is obvious 

(damage in element 3) for modes 1, 3, 4 and 5. Damage in element 5 (multiple damage 

locations) was not identified. The plots in Figure 4.10 and 4.11 further demonstrate the 

fact that sensitivity of a particular mode depends on the damage type and that identification 

of the appropriate modes could be crucial for successful damage location. 
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4.6.1.2 Steel beam 

Elements on the leading diagonal of the MAC matrix and MSV values for the steel beam 

are shown in Table 4.6. Both MAC and MSV indicate existence of damage in all cases 

(damage cases described in sub-section 4.5.2). The relative sensitivity of the modes to 

damage as suggested by both criteria is similar. It is interesting to note that although the 

frequency reductions (Table 4.2) for mode 3 are the least, the mode has been indicated by 

MAC and MSV as being the most sensitive for cases m and IV. This is due to the poor 

correlation of mode shapes (Figure 4.7) for this mode. COMAC values are shown in Table 

4.7 with those corresponding to the affected points underlined. Existence of damage in 

element 3 is indicated especially for cases II and IV. 

Figure 4.12 shows the displacement eigenparameter curves. The curves correctly show that 

the damage is located around point 3 and that case IV is the most severe. However, the 

difference between the extent of damage in cases II and m could not be indicated. The 

absolute difference in curvature mode shapes are shown in Figure 4.13. Only mode 1 

(damage cases II and IV) correctly indicates the damage location. Evidence of any 

difference in the severity of the damage cases can not be seen in the plots. Relative 

difference in displacement mode shapes are shown in Figure 4.14. The distinct 

discontinuity expected at the damage location is only evident in mode 2 - but at element 

5. The other modes do not show any discernible trend that can be used to locate the 

damage. 
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Table 4.6 MAC and MSV for steel beam· 

Mode Casell Case ill Case IV 

MAC MSV MAC MSV MAC MSV 

1 0.97 3.20 0.99 14.12 0.96 56.23 

2 0.85 100.0 0.93 55 .98 0.98 50.80 

3 0.83 44.20 0.74 100.0 0.79 100.0 

Case I as reference 

Table 4.7 CO MAC values for steel beam* 

Measurement CO MAC 

location Casell Case Ill Case IV 

1 1.00 1.00 1.00 

2 0.92 0.99 0.83 

3 0.89 0.97 0.90 

4 0.92 0.99 0.80 

5 1.00 1.00 1.00 

6 0.99 1.00 0.99 

7 0.98 0.99 0.98 

8 1.00 1.00 1.00 

Case I as reference 
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The geometrical symmetry of the beam (elements 3 and 5 are symmetrical) probably 

affected the results from both the curvature mode shape and relative difference in mode 

shapes method. This would explain why element 5 (for example, curvature mode shape 

method: damage case IV, modes 2 and 3; see Figure 4.13) was identified in some cases. 

On the whole, the performance of the two methods is unsatisfactory when compared to 

results obtained from the cantilever beam. 
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Figure 4.12 Displacement eigenparameter plot for steel beam 
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4.6.2 Model updating methods 

The system matrices identified using Equation ( 4.18) will depend on the particular FRF 

(hence measurement point) from which the diagonal modal matrices [c], [k] and [m] were 

obtained. Previous studies (Salawu and Williams, 1993) have shown that if the identified 

system matrices are merely to be used in obtaining the error matrix, it is only necessary to 

use the FRFs at the same point for different damage cases. Thus, points 2 and 4 were 

respectively used for the cantilever and steel beams. For the cantilever beam, a unit force 

was assumed to be applied at point 2. 

To demonstrate ability of the system identification method to reproduce measured 

parameters, the original FRF at point 5 (undamaged cantilever beam) was compared with 

that regenerated using the identified matrices. This comparison is shown in Figure 4.15. 

As mentioned earlier, the regenerated curve at point 5 in Figure 4.15 was obtained using 

modal parameters from point 2. The high degree of correlation of the curves shows the 

ability of the method to correctly reproduce measured (simulated in this case) data. 

In computing the damage identification matrices, the physical connectivity of the 

measurement points was enforced. For example, since point i in Figure 4.1 can only be 

physically connected to points (i-1) and (i+ 1 ), all entries in column i and row i for other 

points- 1 to (i-2) and (i+2) ton (n =total number of points)- were ascribed the minimum 

value in the matrices. 
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Figure 4.15 Comparison of FRFs from original and identified system matrices of 
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4.6.2.1 Cantilever beam 

Since the stiffness reduction in damage case 2 affects all elements equally, the elements 

of the stiffness error matrix would be expected to have the same values. Figure 4.16 shows 

3-dimensional plots of the error location matrix, using all six modes, for damage case 2. 

The expected shape (all bars of equal height) is not displayed. The axes annotation in 

Figures 4.16 and subsequent figures refers to the node (measurement point for the steel 

beam) numbers. For other damage cases, the height of the bars corresponding to nodes 

associated with the damaged elements should be larger than the rest. Furthermore, since 

the damage location for cases 4 and 5 are the same, the error plots for the two cases should 
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be similar. The plot for case 5 should show slightly larger values at nodes connected to 

element 3. This trend is shown in Figures 4.17 and 4.18. Existence of damage in elements 

3 and 5 (cases 4 and 5) is indicated by the matrix cursor (Figure 4.17) while the stiffness 

error matrix method (Figure 4.18) is only able to identify damage in element 3 for case 5. 

Figure 4.18 also incorrectly identifies node 2 has been affected by damage. 

Effects of number and type of modes used on the identification process was investigated 

using damage case 3. For each method, three situations were considered: 1) all six modes~ 

2) first three modes~ and 3) three most affected modes {2, 4 and 6) as indicated by MSV 

and frequency reductions {Figure 4.8). Figure 4.19 shows plots obtained from the matrix 

cursor method for the three situations. Only Figure 4.19a (6 modes) gives an indication 

of the damage location. Figures 4.19a and 4.17a-b are identical. Thus, damage in element 

3 controls the identification as regards the matrix cursor method. This observation 

highlights a potential problem with many model updating methods - the error identification 

is most likely to be governed by any defect located in a stiffness sensitive region of the 

modes included in the updating process. 

The stiffness error matrix method was able to identify the damage location for all three 

situations (Figure 4.20). The best identification was achieved in situations 1 (all six modes) 

and 2 (first three modes). Utilizing the most sensitive three modes did not substantially 

improve the identification. 
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MATRIX CURSOR. CASE 2. 6 MODES, CANT. 

(a ) Matrix cur sor meth od 

LIEVEN-EWINS. CASE 2. 6 MODES, CANT. 

(b ) Stif f ness error matrix method 

Figure 4.16 Damage location plots for cantilever beam using aD six modes: case 2 
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MATRIX CURSOR , CASE +. 6 MODES, CANT. 

(a) Case 4 

MATRIX CURSOR, CASE 5, 6 MODES, CANT. 

(b) Case 5 

Figure 4.17 Damage location plots for cantilever beam using the matrix cursor method 

with six modes 
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LIEVEN-EWINS. CASE 4, 6 MODES, CANT. 

(a) Case 4 

LIEVEN-EWINS. CASE 5, 6 MODES, CANT. 

(b) Case 5 

Figure 4.18 Damage location plots for cantilever beam using stiffness error matrix 

method with six modes 
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MATRI X CURSOR. CASE 3. 6 HODES. CANT. 

(a) All six modes 

HATRIX ClRSOR, CASE 3, HOOES 1.2.3• CANT 

(b) Modes 1, 2 and 3 

HATRIX ClRSOR, CASE 3, HOOES 2.4-,6• CANT 

(c ) Modes 2 , 4 and 6 

Figure 4.19 Damage location plots for cantilever beam using the matrix cursor 

method: case 3 
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LlEVEN-EVJNS. CASE 3. 6 HOOES. CANT. 

(a) All s1x modes 

LIEVEN-EVINS. CASE 3. HODES 1.2.3• CANT. 

(b) Modes 1, 2 and 3 

LIEVEN-E\IINS. CASE 3. HODES 2.4.6• CANT. 

(c ) Modes 2 , 4 and 6 

Figure 4.20 Damage location plots for cantilever beam using stiffness error matrix 

method: case 3 
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4.6.2.2 Steel beam 

The identification plots obtained using the matrix cursor method were identical for all 

damage cases. Although similarity between the plots will be expected since all the cases 

relate to the same location, effects of increasing degree of deterioration should be reflected. 

The typical plot, shown in Figure 4.21, does not unabigously reveal the damage location. 

The damage location was identified with the stiffness error matrix method (Figure 4.22). 

The figure indicates that the effects of the damage on points not directly connected to the 

damaged zone increased with increasing level of damage. This is a logical trend. 

Identification of element 5 as being damaged in Figure 4.22c is a result of the symmetrical 

nature of the beam. 

MRTRIX CURSOR METHOD. STEEL BERM 

Figure 4.21 Damage identification plot for steel beam using matrix cursor method 
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UEVEN-EVINS HETHOO. CASE I I. STEEL BEAM 

(a) Case II 

LIEVEN-EVINS. CASE [[[. STEEL BEAM 

(b) Case III 

LJEVEN-EVINS. CASE IV, STEEL BEAM 

(c) Case IV 

Figure 4.22 Damage location plots for steel beam using stiffness error matrix method 
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The results show that the verswn of the stiffness error matrix implemented is more 

effective than the matrix cursor method in damage location. All the three modes were used 

in obtaining the plots in Figures 4.21 and 4.22. 

4.7 Conclusions 

Results of the studies reported in this chapter have revealed the relationships between 

damage in a structure and the various parameters used to characterize the structure's 

dynamic response. As would be expected, existence of damage leads to a reduction in 

frequency and an increase in the viscous damping ratios. A reduction, after an initial 

increase, in the damping ratio of the second mode occured for the steel beam. The 

usefulness of a new function (MSV) proposed by the author for identifying damage 

sensitive modes was demonstrated. 

Although MAC and COMAC showed sensitivity to damage, they were unable to clearly 

indicate the damage location in the cantilever beam. However, damage in the experimental 

steel beam was correctly located by COMAC values while a better (as compared to the 

simulated data) indication of the damage was given by MAC. All the modal data based 

methods identified, to an extent, the damaged area in the case of single damage location. 

Performance of the curvature mode shape and mode shape relative difference methods on 

experimental data was poor. The most important factor in using these two methods is 

determining which modes to use since only some of the modes correctly identified and 

located the damage. The proposed function MSV should be useful for this task. Detection 

of multiple damage sites is generally difficult, if not impossible, for most damage location 

schemes. Only the curvature mode shape method was able to give an indication of 

simulated multiple damage locations. The modal data based methods, apart from COMAC, 
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CHAPTER FIVE 

THE INTEGRITY INDEX DAMAGE LOCATION METHOD 

5.1 Introduction 

Discussions in the last two chapters suggest that damage location/integrity assessment of 

civil engineering structures using vibration data requires a robust method based on only test 

data and simple assumptions about the behaviour of the structure. To improve the damage 

location process, it would be necessary to utilize only the damage sensitive modes. 

Another factor to consider is the applicability of the method to any structural form and 

damage case. Attainment of these properties would make the method suitable to all 

engineering structures. Most of the methods available do not possess these attributes 

mainly because they were developed for specific structural and damage types. 

Results of the studies in chapter four show that both natural frequencies and the appropriate 

mode shapes should be used in order to locate the damage site(s) with reasonable accuracy. 

Since each mode shows a different response to the presence of damage, use of weighting 

factors to magnify the response of the most affected modes would be expected to improve 

the damage location process. The development, implementation and evaluation of a new 

damage detection and location method, called Integrity Index Damage Location Method, 

are described in this chapter. The proposed method uses measured natural frequencies and 

mode shapes in conjuncton with weighting factors appropriate to the type of structure 

considered. The method is applicable to any structure and any damage type that affects the 

integrity/stiffness of the structure. Performance of the method is evaluated using both 
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simulated and experimental data. 

5.2 Development and Implementation 

5.2.1 Global Integrity Index 

The first case considered is that of determining whether there has been a change in the 

structural integrity. The change could be either a reduction (e.g. presence of damage) or 

an increase (e.g. due to strengthening and repair) in the global structural stiffness. A 

parameter GI (Global Integrity Index) is defined to represent the structural integrity. GI 

has the following properties: 

GI = f(ro) 

GI < 1 

GI = 1 

GI > 1 

ro = natural frequency in radians/seconds 

loss of integrity 

no loss of integrity (unmodified structure) 

gain in integrity 

A linear combination of the ratios of the damaged structure's frequencies to the undamaged 

structure's frequencies is used to represent the function f( ro ). Thus, 

(5.1) 

where the subscripts D and 0 respectively refer to the damaged and undamaged structures; 

and r refers to the mode number. a, is the weighting factor for mode r. 

Equation ( 5.1) is a general expression to assess the integrity of any engineering structure. 

Since only natural frequencies are used, only one measurement point is sufficient. Three 

questions need to be addressed before Equation ( 5.1) can be implemented. These are: 1) 
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how many modes to include; 2) which modes to include; and 3) what values of a,. should 

be used. Since the method is meant for general application, the answers to the questions 

might, in a few cases, be dependent on the structural system. 

The number of modes to include will generally be dependent on the number (m) of 

measured modes. It is suggested that at least three modes be included. In all the examples 

presented later, only three modes were used. If m > 3, the second question- which modes 

to include - arises . Some researchers have suggested that the Lower modes are most 

affected by damage while others (researchers) maintain that the higher modes are most 

sensitive to damage (chapter three). The approach adopted here is to use the three most 

(damage) sensitive modes as indicated by the function MSV defined in chapter four (sub­

section 4.2. 1 ). Alternatively, MAC (sub-section 4.2.1) can also be used to select the modes 

to be included. 

As stated earlier, the values of a,. could be structure dependent. Maguire (1992) suggested 

that the first three modes dominate the dynamic response of large civil engineering 

structures and that the effective participation can be assigned as : mode 1 - 70%; mode 2-

20%; other modes - 10%. As regards integrity assessment/damage detection (and 

location), it would be assumed that the three modes selected using MSV (or MAC) will 

dominate the response. Thus, the values of a,. are chosen such that the most sensitive 

mode has a,. = 0.7 while ar for the least sensitive mode is 0.1. The a,. values 0.7, 0.2 and 

0.1 were used in all the examples described in this chapter. 
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5.2.2 Local Integrity Indices 

GI (Equation 5.1) will only indicate loss or gain of integrity. It is however still necessary 

to locate the defective areas so that appropriate remedial actions can be taken. In addition, 

due to its global nature, GI might not be very sensitive to highly localized defects. New 

indices, called Local Integrity Indices (LI), will be used to detect localized defects and 

locate damage areas. The requirement to locate damage sites necessitates inclusion of 

mode shapes in the formulation for the local indices. Lli represents the local integrity at 

measurement point i. and has the following properties: 

Lii = f( ro,['l']); 

ILii -1 1= 0; 

I ui- 1 I > o; 

['I'] is the mode shape matrix 

no loss of integrity at point i 

loss of integrity at point i 

Changes in the local stiffness would cause the modal amplitudes to either increase or 

decrease at the point concerned. The direction of the change is immaterial because only 

the location is needed. Futhermore, GI would have indicated the nature of the change. 

Therefore, ratios of the squares of the modal amplitudes are used to compute Lii while the 

absolute difference of Lii from unity is used to infer the damage site. Lii is given by; 

(5.2) 

where ( tPoir) and ( $0 ir) are respectively elements of the rth mode shape vector at 

measurement point i for the damaged and undamaged structures. The values of '\ and the 

number and type of modes to include have been discussed in sub-section 5 .2.1. Existence 

of damage in a practical structure would invariably lead to I Lii- 1 I > 0 for all i. However, 

values of I Lii- 1 I for points most likely to be the damage locations would be much greater 

than those for other points. 
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To identify single damage locations, I Lli- l I values from alJ points are normalised such 

that the point with the largest value (hence, the most likely damage site) has a value of 

100. The values at other points will indicate to what extent the points have been affected 

by the damage. If multiple damage locations are suspected, the process is repeated without 

the previously identified point(s). 

Equations (5 .1) and (5 .2) are simple expressions that can be easily implemented. They do 

not require extensive computer time and memory. If the modes to be used and the 

weighting factors have been previously determined, GI and Lli can be evaluated using a 

desk calculator. A simplified flowchart of the Fortran program written to calculate GI and 

Lli is shown in Figure 5 .1. Figure 5.1 only illustrates the procedure for identifying single 

damage sites. 

5.3 Evaluation of the Method using Simulated Data 

Performance of the Integrity Index method on numerical data was studied using a cantilever 

beam and an eight degrees of freedom (8-DOF) mass-spring (no damping) system. The 

system represented any structure and was designed to test the general applicability of the 

method. The numerical data were error free thereby facilitating investigation of effects of 

simulated deterioration onJy. Influence of errors from testing and data analysis procedures 

was considered by using experimental data obtained from laboratory testing. This is 

discussed in section 5. 4. 
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Figure 5.1 Flowchart for identifying damage locations using the Integrity Index 
Method 
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5.3.1 Cantilever beam 

Details of the model used, damage simulations and results from the analysis have been 

presented in section 4.4. Results of damage detection and location using the Integrity Index 

method are shown in Tables 5.1 and 5.2. From Table 5.1, it can be seen that the Global 

Integrity Index (GI) reveals existence of damage and correctly indicates the relative severity 

(see sub-section 4.4 .1) of the simulated damage cases. While the methods evaluated in 

chapter four were unable to indicate existence or/and severity of damage case 2, GI values 

show that case 2 is the worst situation. Results of damage location using Local Integrity 

Indices (LI) are shown in Table 5.2. The damage site for case 2 is identified as being the 

whole beam while element 3 (nodes 3 and 4 have the largest LI in Table 5.2) is indicated 

as being damaged in damage case 3. 

Table 5.1 Global Integrity Indices for cantilever beam 

Damage Global 

case Integrity 

Index 

Case 2 0.71 

Case3 0.94 

Case 4 0.86 

Case5 0.77 
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T able 5.2 Local Integrity Indices for cantilever beam 

Node Case 2 Case 3 Case 4 Case 5 

1 100 3.3 5.6 2.7 

2 100 4.8 77.6 16.9 

3 100 26.4 100 100 

4 100 100 41.9 19.4 

5 100 2.9 81.3 19.6 

6 100 13.1 75 .5 17.5 

7 100 7.7 71.8 18.2 

Cases 4 and 5 represent multiple (two) damage locations. Element 3 is still identified as 

damaged while element 5 (which is also damaged) has the next largest LI for both cases. 

If the multiple damage location procedure described earlier is applied (by eliminating node 

3 during a second identification process), element 5 will be shown as being damaged. 

Even without utilizing the second stage identification, the relative values of the LI shown 

in Table 5.2 indicate to what extent each node has been affected by damage. This 

information shows that there is a wider spread of damage (double location) in case 4 than 

in cases 3 and 5. Although case 5 also has double damage locations, the higher severity 

of the defect in element 3 is more prominent. Nonetheless, the LI values for nodes 5 and 

6 (hence element 5) in case 5 are larger than for case 3 thereby showing effects of the 

double damage sites. 
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5.3.2 Eight degrees of freedom (8-DOF) mass-spring system 

The 8-DOF system, representing any general structure, is shown in Figure 5.2. For the case 

of no external forces (free vibration) and no damping, the equations of motion of the 

system are given by: 

where 

[M] {X" (t) }+ [K] {X (t)} = {O} 

[K] = 

[M] = 

{X(t)} = 

{X(t)"} = 

t = 

system stiffness matrix 

system mass matrix 

physical coordinate displacement vector 

physical coordinate acceleration vector 

time variable 

(5.3) 

The mass and stiffness matrices are given in Figure 5.2. The generalised eigenvalue problem in 

Equation (5.3) was solved to obtain the system's eigenvalues and eigenvectors. These are shown 

in Figures 5.3 and 5.4 where column r contains the rth eigenvalue and eigenvector respectively. 
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Figure 5.2 8-DOF system 
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Figure 5.3 Eigenvalues [(rad/sec.)2
) of 8-DOF system 

-.2178 -.2648 -.4998 -.1256 .2512 . 5305 -. 8723 .0080 

-.4064 - .4292 -.4358 -. 0874 . 0735 - . 0417 .3043 - .0116 

-.4306 -.2269 .2590 .0474 - .7331 .0883 - .1085 .2591 

-. 4071 -. 3073 .4083 .1588 .3258 -.4839 - .2506 -.1822 

-. 2750 -.0326 .4805 .1016 . 5245 .5134 .2297 .460 0 

-. 3625 .2280 . 2202 - .0531 -.0955 .4234 .1305 - .8122 

-. 37 86 .5665 -.0150 -.8005 .0588 -.1686 -. 0421 .1514 

- . 2929 . 4752 -.2163 .5432 .0123 -.0596 -.0169 . 0731 

Figure 5.4 Eigenvectors of 8-DOF system 

The 'damage' cases considered were: 

Case k 1 k1 = 2000 N/m 

Case k 7 k7 = 500 N/m 

Case m 3 m3 = 0.5 kg 

Cases k_ 1 and k_7 were expected to respectively increase and decrease the global stiffness 

while case m_3 represented a mass error. Using the magnitude of the changes made to the 

system as a damage indication parameter, cases m 3 and k 7 are respectively the most and 
- -

least severe. The natural frequencies for the damaged and undamaged cases are shown in 

Table 5.3. In case m_3, the total mass is reduced (constant stiffness) thereby leading to 

an increase in frequency since frequency is inversely proportional to mass. The frequency 

changes (given, as a percentage, in parentheses in Table 5.3) are small (except mode 8, 

120 



case m_3) when compared to those of the cantilever beam (Table 4.1). This situation was 

meant to test performance of the method on defects causing small changes in frequency. 

The natural frequency changes do not clearly indicate the relative severity of the damage 

cases. 

Table 5.3 Natural frequencies of 8-DOF system for different damage cases 

Mode Natural frequency (Hz) 

Undamaged Case k 1 Case k 7 Case m 3 

1 1.844 1.934 ( 4. 8)" 1.803 ( -2.2) 1.966 (6.6) 

2 3.100 3.176(2.5) 3.012 (-2.8) 3.152 (1.7) 

3 5.346 5.518 (3.2) 5.339 ( -0.1) 5.426 (1 .5) 

4 5.752 5.765 (0.2) 5.748 (-0.1) 5.754 (0.03) 

5 6.576 6.607 (0.5) 6.393 (-2.8) 7.239 (10.1) 

6 7.256 7.350 (1 .3) 6.667 ( -8.1) 7.658 (5 .5) 

7 7.713 8.956 (16.1) 7.651 ( -0.8) 8.675 (12.5) 

8 9.336 9.336 {0.0) 9.205 (-1.4) 12.98 (39.1) 

·Change in frequency, in percentage, from undamaged state 

The GI values are given in Table 5.4. The values in the table reflect the relative extent of 

the simulated damage cases. Case k _1 is shown to have increased the overall integrity as 

would be expected. The structural integrity is also shown to have been improved due to 

damage case m_3 since the mass was reduced while stiffness remained constant. In 

practical situations, defects involving significant mass reductions, as simulated here, would 

be visually obvious. In almost all cases, stiffness errors are the main concern and the 

performance of the method as regards this is satisfactory. Damage events involving both 

mass and stiffness reductions are further considered in section 5.4. 

Results of the damage location are shown in Table 5.5. The damage sites for cases k_ l 
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and k_7 are identified. For case m_3 , DOF 2 was incorrectly identified although DOF 3, 

which is the damage site, has the next largest value. Incorrect identification of the mass 

error location is not regarded as a limitation of the method since mass reductions would 

usually involve stiffness changes, to which the method is very sensitive. The identification 

for case m_ 3 is still reasonably satisfactory since one out of the two DOF strongly 

suggested is the actual damage site. 

Table 5.4 Global Integrity Indices for 8-DOF system 

Damage Global 

case Integrity 

Index 

Case k 1 1.13 

Case k 7 0.93 

Case m 3 1.31 

Table 5.5 Local Integrity Indices for 8_DOF system 

DOF Case k 1 Case k 7 Case m 3 

1 100 4.7 8. 1 

2 64.8 3.1 100 

3 54.0 23 .9 85.6 

4 49.6 82.9 2.9 

5 46.0 100 1.5 

6 34.0 10 36.2 

7 82.8 34.3 14.7 

8 33.3 71.5 25.9 
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5.4 Evaluation of the Method Using Experimental Data 

5.4.1 Simply supported steel beam 

Experimental data from tests conducted on the steel beam described in section 4.5 were 

used to evaluate the method. The experimental procedure, damage cases considered and 

test results have been presented in section 4.5. The damage cases involved both mass and 

stiffness loss and were induced in 'element' three (Figure 4.5) of the beam. The data 

include both experimental error and inaccuracies introduced during modal parameter 

extraction and thus represent a realistic test for the method. The last statement is also true 

for the data used in sub-section 5.4.2. 

The Global Integrity Indices are shown in Table 5.6 while Table 5.7 shows the Local 

Integrity Indices. The values in Table 5.6 indicate the correct progression of the severity 

of the damage (see also sub-section 4.5.2) while the damage location is correctly identified 

in Table 5.7. From the values in Table 5.6, it can be seen that removal of half the web and 

the two flanges is a more severe form of damage than removal of both flanges alone. In 

addition, losing one or both flanges seem to produce the same level of integrity loss. The 

correct identification of the relative extent and location of damage shows that the method 

is sensitive to both mass and stiffness errors when both occur simultaneously. 
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Table 5.6 Global Integrity Indices for steel beam 

Damage Global 

case Integrity 

Index 

Case II 0.95 

Case m 0.94 

Case IV 0.71 

Table 5.7 Local Integrity Indices for steel beam 

Location Case II Case m Case IV 

1 6.6 8.5 14.8 

2 89.8 89.9 27.4 

3 93.4 100 100 

4 100 94.4 94 

5 15.6 14.2 73.8 

6 8.9 5.3 3.3 

7 23.0 3.8 28.9 

8 6.6 8.5 14.0 

5.4.2 3-storey frame model structure 

Experimental data obtained by Beck (1991) from impact tests on a 3-storey frame structure 

(Figure 5.5) were also used to further evaluate performance of the method. The frame was 

made from aluminium with each member having a length, width and thickness of 254.0mm, 

25.4mm and 3.175m.m respectively. The beam and column elements were connected by 

aluminium elbows. The undamaged state referred to the frame just after assembly. 

Damage was simulated by replacing member M3 by a vinyl member thereby reducing the 
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stiffness of M3 by about 80%. Further details of the experimental setup, procedures and 

results are given on pages 91-93 and 100-102 of Beck (1991). 

The modal parameters for the first three modes of the structure are shown in Table 5.8 

while results from the identification are shown in Table 5.9. A value of 0.91 for the Global 

Integrity Index strongly suggests presence of damage. The results correctly indicate the 

damage location to be between coordinates Ul and U2 (coordinates with the largest indices 

in Table 5.9) i.e. member M3. The MSV for modes 1, 2 and 3 are respectively 59.4, 100.0 

and 9.71. 

M9 U3 

MS M6 

Excite. tion M8 
.,U2 

M3 M4 

M7 Ul 

Ml M2 

uo 

Figure 5.5 Elevation of the model structure (after Beck, 1991) 
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Table 5.8 Modal parameters of 3-storey model structure· 

Mode I Mode 2 Mode 3 

Undamaged Natural 8.986 28.63 48.00 

structure frequency (Hz) 

Damping ratio 0.0083 0.0046 0.0045 

Eigen vector 

uo 0.00 0.00 0.00 

Ul 0.308 -0.719 1.30 

U2 0.610 -0.291 -1.21 

U3 1.00 1.00 1.00 

Damaged Natural 7.601 27.04 38.06 

structure frequency (Hz) 

Damping ratio 0.0149 0.0083 0.0101 

Eigenvector 

uo 0.00 0.00 0.00 

U1 0.236 - 1.358 0.595 

U2 0.769 -0.242 - 1.023 

U3 1.00 1.00 1.00 

(After Table 5.9 in Beck, 1991) 
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Table 5.9 Global and Local Integrity Indices for 3-storey model structure 

Coordinate Local Integrity Index 

uo 6.1 

Ul 100.0 

U2 14.7 

U3 6.1 

Global Integrity Index = 0.91 

5.5 Conclusions 

The Integrity Index method has been shown to be satisfactory in predicting loss or gain in 

structural integrity and also indicating areas affected by damage/defects. The method 

performed satisfactorily on both simulated and measured data and, unlike most other 

methods, is applicable to any structure. An indication of the severity of the damage is also 

given. If only structural integrity is to be assessed, only one measurement point is needed 

to compute the Global Integrity Index. To locate damage sites, more measurement points 

would be required to reasonably define the mode shapes and localize the affected areas. 

The number of points to be used will depend on the degree of refinement desired. 

A practical approach using the method would be to first evaluate the Global Integrity Index. 

If loss of integrity is suggested, measurements can then be taken at a few widely spaced 

points. More measurements would then be taken close to those points suggested by the 

Local Integrity Indices as being affected by damage. This approach will zoom-in on the 

affected areas and optimize test resources. 
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CHAPTER SIX 

TEST EQUJPMENT AND ANALYSIS PROCEDURES 

6.1 Introduction 

The equipment used during full-scale (chapters seven and eight) and laboratory (chapter 

four) tests conducted, and the data analysis techniques adopted for the measured data, are 

described in this chapter. The basic stages involved in forced vibration testing have been 

shown in Figure 2.1. The particular instrumentation layout employed during the full-scale 

tests is shown in Figure 6.1 . The experimental approach utilized is briefly described in the 

next paragraph with reference to the figure. 

The test procedure involved feeding excitation signals (usually generated by a spectrum 

analyzer) to the vibrator control unit. The unit was adjusted until the vibrator generated 

optimum excitation energy to allow measurable response of the test structure. The 

structural response was measured by accelerometers while a load cell incorporated within 

the vibrator allowed measurement of the input load. Signals from the accelerometers and 

load cell were conditioned, to improve signal quality, using the signal conditioning unit. 

Oscilloscopes were used to monitor recorded signals. Selected portions of the signals were 

recorded on ultraviolet paper using the oscillograph. Limited real time analysis was 

conducted on the spectrum analyzer to monitor test progress, signal quality and obtain 

initial estimates of natural frequencies. An analogue tape recorder was used to record the 

signals for detailed analysis off-site. Details of the equipment shown in Figure 6.1 and data 

analysis procedures are given in the following sections. 
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Figure 6.1 Instrumentation layout for dynamic tests 
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6.2 An Excitation System for Full-Scale Testing 

As mentioned in chapter two, selection of an appropriate excitation mechanism is one of 

the main problems encountered in full-scale forced vibration testing of large structures. 

The system chosen should be able to generate sufficient force levels while not causing 

localised damage on the test structure. Portability and ease of operation on site are other 

factors to consider. 

An excitation system incorporating an existing hydraulic jack and pumps was developed 

to generate artificial excitation during full-scale tests. The system is optimised for testing 

structures which deflect most readily in the vertical direction , for example, highway bridges 

and long span floors. While the system might not be an ideal one, it is the best 

compromise after due consideration of existing equipment, available resources and service 

requirements. Development of the system has been reported in the literature (Salawu and 

Williams, 1992; 1994b ). Components and operating characteristics of the system are 

described below. 

6.2.1 Description of System 

A block diagram of the excitation system is shown in Figure 6.2. The excitation signal is 

either generated by an external source or the vibrator control unit. The unit controls the 

level of excitation signal and operation of the vibrator and pumps. Any form of excitation 

signal can be input to the system. Figure 6.3 shows part of the excitation system on 

location with the test frame, within which the jack, load cell and 'dead' masses are housed, 

on the left. The pump unit is in the middle of the figure while the electronic control unit 

is on the right. The output from the stroke and load transducers within the vibrator are 
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passed to the control unit. 

EXCITATION 
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(SIGNAL) 
AMPLIFIER 

PERSONAL COMPUTER 
(SYSTEM CONTROu.ER) 

1 
VIBRATOR 
CONTROL 
UNIT 

VIBRATOR 

PUMPS 

Figure 6.2 Block diagram of excitation system 

TEST 
smucTURE 

The vibrator (shown in Figure 6.4) consists of a test frame, hydraulic jack, weights ('dead' 

masses) and load and stroke transducers. The total mass of the vibrator (excluding weights) 

is about 500kg. A computer is included within the system to control signal generation and 

acquire outputs from the transducers via the control unit. The test controller in Figure 2.1 

can also act as the excitation system controller. An HP9122 computer and an HP3582A 

spectrum analyser were jointly used as the excitation system controller (see also Figure 

6.1). 
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Figure 6.3 Excitation system on location 
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Figure 6.4 The electro-hydraulic vibrator used in full-scale tests 
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6.2.2 Excitation signal generation 

6.2.2.1 Signal source 

An excitation signal generator enables generation of signals with known amplitudes and 

phase at desired frequencies for controlled excitation of the structure. The random noise 

source of the HP3582A spectrum analyzer and the signal generator on the vibrator 

electronic control unit were used for excitation signal generation. The spectrum analyzer 

noise source has variable signal levels. The maximum level (corresponding to about 6.2V 

peak-to-peak) was always used. The input attenuator on the vibrator control unit was used 

to control the level of signal generated by the unit or any external signal fed into it. 

6.2.2.2 Signal types 

The main requirement of the excitation is that it has frequency content at the frequencies 

of the vibration modes of the structure. An excitation signal or function is defined by a 

mathematical relation and used as the input to the excitation mechanism. Three types of 

signals were used - sinusoidal, pure random and periodic random. The sinusoidal signal 

was used in a slow sine sweep test conducted at the begining of each (field) test series so 

that predominant modes within the test frequency range could be identified. The signal was 

generated by the control unit of the vibrator. Sine testing is slow and also has the potential 

disadvantage of driving the structure into the non-linear range. In addition, the excitation 

energy at resonance could be excessive. For these reasons, sinusoidal tests were only 

conducted once, for each test series, to give an indication of the vibration modes. 

Random signals generated by the spectrum analyzer were used in detailed tests. The noise 
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source produces a broadband periodic pseudo random signal. A random signal attenuates 

nonlinear response of the structure and allows more even distribution of the input energy 

over the frequency range of interest. Random vibration tests take a relatively short time 

to conduct. The random signal could be either periodic or pure random. If the signal is 

periodic, the period is automatically adjusted so that one period covers one span setting 

(frequency band) and the spectral analysis is not affected by the periodicity. Leakage errors 

(sub-section 6.4.2) are also avoided by using a periodic random signal. However, the 

frequency resolution and analysis bandwidth are fixed and constrained by the analyzer 

settings. These limitations do not apply to data obtained from pure random excitation. 

Thus, response data from pure random testing can be analysed with other analysis systems 

in order to eliminate some of the constraints of the spectrum analyzer. However, since the 

signal is not periodic, a weighting function (window) has to be applied. 

6.2.3 Hydraulic jack and pumps 

The jack incorporated in the vibrator is a Dartec uni-axial servo-hydraulic jack supplied 

with two pumps and an electronic control unit. The jack can generate static or dynamic 

load in any given direction and has a frequency bandwidth of 0.001 to 100Hz. To generate 

the dynamic load in a specified direction, a suitable test frame (rig) incorporating a weight 

carrying system and its coupling to the jack has to be built. The frame and weight carrying 

system used are discussed in the next two sub-sections. The electronic control unit of the 

jack also controls the vibrator. The dynamic capacity of the jack is ±5kN while the total 

stroke is 300mm. A brief description of the characteristics of the jack is given below to 

serve as background knowledge before discussing performance characteristics (sub-section. 

6.2.6) of the system. 
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The jack is double-acting and driven by pressurised oil supplied from the two pumps. Flow 

of oil between the jack and pumps is controlled by an electronic servo-controlled valve (3. 8 

1/min capacity) mounted on the jack. The attainable stroke and frequency are limited by 

the piston (within the jack) velocity and oil flow rate. The jack will be unable to follow the 

input excitation signal if the velocities demanded are in excess of the capabilities of the 

jack or the flow demanded exceeds the output of the pumps. The maximum velocity is 

governed by the maximum flow rate of oil through the valve while the stroke amplitude 

attainable at any frequency is limited by the maximum piston velocity. The pressure 

supplied by the pumps is top-limited to 3000psi . Therefore, if the mass attached to the 

jack ram is too large, then oil pressure will be inadequate to provide a sufficient force 

magnitude to accelerate the mass as required. 

6.2.4 The test frame/rig 

A test frame was designed to enable the jack exert dynamic forces in a vertical direction. 

A number of factors had to be considered in the design of the frame. Full-scale testing of 

civil engineering structures requires that equipment be portable, robust and relatively quick 

to operate on site. These requirements often lead to conflicting requirements of portability 

and rigidity of the test frame. The main factors considered were: 

* Robustness - This translated to minimum height and maximum width to 

provide a rigid frame. However, the minimum/maximum stroke amplitude 

desired will often place a limitation on the minimum height that can be 

used. Although a height/width ratio of between 1 and 2 would be desirable, . 

the maximum width of the area (for example, kerbs/footpath on highway 

bridges) on which the frame would stand controls the frame's width. 
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* 

* 

Symmetry- As much as possible, there should be symmetry throughout the 

rig to prevent undesirable load components. It is equally important to 

ensure perfect alignment of the centre of the moving 'dead' masses with the 

jack's ram. Undue misalignment will cause damage to the leak proof seals 

between the cylinder of the ram and the jack's jacket. 

Portability - Ease of transporting to and assembling on site also plays a 

major role in selecting a suitable frame. This would require the frame to be 

in easy-to-handle components. However, rigidity must not be sacrificed. 

A schematic diagram of the configuration adopted for the test frame is shown in Figure 6.5. 

Based on symmetry considerations, it was decided to use four corner supports each 2.16m 

long. The supports were made from galvanised steel and are held at intervals by steel 

plates through which they pass. Each of the plates is 500mm square except the base plate 

FTl which is 640mm square. The base-frame is composed of 70mm X 70mm hollow 

square sections (to further reduce weight) and is 1 OOOmm square in plan. Four nylon plain 

bearing medium duty castors were attached to the underside of the base-frame to ease 

transportation of the test frame from one location, on a structure, to another. 

The jack (cylindrical shape) was bolted at each end to plates FT2 and FT3 which are 

screwed into the corner supports passing through them. Four tensioners, one on each side 

of the frame, attached between the mid-point of each side of FT3 and the base-frame serve 

to provide rigidity for the frame. The frame is very portable in that each part is separate 

and the whole unit can be assembled on site. On the average, it takes between 45 and 60 

minutes to assemble the vibrator unit. 
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Figure 6.5 Side view of the test frame 

6.2.5 Weight carrying system 

Different configurations were considered for the weight carrying system (segment 4 in 

Figure 6.5). One involved bolting (another option was welding) four guide shafts onto the 

corner supports. The weights would then rest on a flat square plate with four open ball 

bushings at each corner. The idea was for the plate and masses to slide up and down the 

guide shafts. This configuration was rejected because of the possibility of grit in the open 

bushings and fatigue stresses likely to be developed at the connections between the shafts 

and corner supports. 

Eventually, a weight carrying system consisting of two square backing plates, with the 
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(circular) 'dead' masses between them, rigidly clamped together with four studs- one on 

each side of the plates - was adopted. The plates have bored closed bearings (at each 

corner) through which the corner supports of the test frame pass. This configuration 

eliminates the need for any connection and also improves symmetry. The total weight is 

also reduced since the corner supports double as guide shafts. A sketch of this system is 

shown in Figure 6.6. 

Steel was chosen over lead as the material to be used in making the 'dead' masses. This 

was meant to give a fine finish, accurate dimensions and mass - thereby improving overall 

symmetry and alignment. However, steel is lighter than lead so that more units are 

required to achieve the same mass. This directly translated into an increase in the overall 

height. Each 'dead' mass is 20mm thick with a diameter of 350mm and weighs 

approximately 15kg. The mass of the backing plates are always included in the value of 

the total moving mass. 
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Figure 6.6 Weight carrying system 
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6.2.6 Performance characteristics 

In operation, the test frame is supported on adjustable feet (attached to the base-frame) so 

that the centre line of the frame remains truly vertical at all times irrespective of the terrain 

of the test structure's surface. The frame is placed on the structure and not bolted or glued 

-the self weight is sufficient to ensure that full contact is maintained with the test structure 

during testing. A series of tests was conducted to obtain characteristics of the vibrator with 

respect to input voltage (of the driving signal), stroke amplitude, load generated, operating 

frequencies and total moving mass. The experimental set-up for the investigations is shown 

in Figure 6.7. Two types of excitation signals were used during the exercise- sinusoidal 

and periodic random within the frequency range of 0 - 25 Hz. Full details of the tests and 

results obtained are presented in Salawu and Wilhams {1992). The main performance 

characteristics will be briefly described here. 

During the tests, the vibrator was under stroke command i.e. for a given frequency (or 

frequency span) and a fixed value of the total moving mass, the input stroke was varied. 

Variation of the stroke level was achieved by attenuating the excitation signal levels using 

a multi-turn potentiometer (command attenuator) on the vibrator control unit. The stroke 

amplitude for a given voltage level of the input signal and a known value of the command 

attenuator is given by AM = 0.3(IV)(CA) where AM is the peak to peak (or zero to peak) 

amplitude in mm, IV is the peak to peak (or zero to peak) input voltage in Volts and CA 

is the setting of the command attenuator in percentage. 
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Figure 6.7 Block diagram of experimental set-up to determine characteristics 
of vibrator 

The relatively high slenderness of the test frame makes it susceptible to swaying and 

shaking at high frequencies. Even though the vibrator might be producing desired load 

levels, its performance could be unsatisfactory if the test frame has significant vibratory 

motion within the frequency range of interest. For the values of ~otal moving mass 

investigated {113.05 to 258.05kg), vibration of the test frame occured between 2.5Hz and 

3.0Hz and at frequencies greater than 30Hz. The higher frequency vibration only occurs 

if the input signal voltage level is very high (within 20% of the ±IOV DC maximum input 

command signal level). A premise inferred from the lower frequency vibration was that 

a natural frequency of the whole system (for the configurations considered) is probably 

between 2.5 to 3.0Hz. 
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6.2.6.1 Correlation between input signal, load response and stroke response 

The periodic random signal was mainly used to investigate the correlation between the 

input signal and the vibrator response. The degree of association between the input signal 

and the load/stroke response was measured with the coherence f\IDction (sub-section 6.4.3). 

A value of 1.0 for the coherence function indicates good correlation at that frequency. 

There is good correlation between the excitation signal and the response signal from the 

load cell except at low frequencies(< 1.5Hz) and low input signal levels. The second case 

can be eliminated by reducing the degree of attenuation at the vibrator control unit. There 

is a slight phase difference between the two signals for frequencies below 5Hz. Typical 

curves illustrating the characteristics are shown in Figures 6.8 and 6.9. There is also good 

correlation between the stroke amplitude response and the input signal (Figure 6.1 0). 
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Figure 6.8 Coherence function between excitation signal and response from 
load ceU 
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6.2.6.2 Characteristics of the load generated 

Generally, there is an increase, up to a limiting value, in the load generated with increasing 

values of the input (signal) voltage and total moving mass. For a given input signal level, 

the magnitude of the load peaks (at a value depending on the total moving mass) at about 

4Hz and remains constant (Figure 6.11 ). This flat load spectrum is part of the 

characteristics required of the system. 

Determining the relationships between the load transferred into the structure and the load 

output from the built-in load cell would require comparing response from load cell(s) 

located between the rig and a test structure with the response from the built-in load cell. 

One possible problem with this approach is the need for the load cell(s) to support the 

weight of the rig while still being able to detect relatively small dynamic load variations. 

Suitable load cells were not available and an alternative scheme involving attachment of 

two motion transducers (accelerometers) to an isolated platform (test structure) supporting 

the vibrator was adopted. 

The relatively high correlation (Figure 6.12) between the responses from the motion 

transducers and the built-in load cell indicates that the structure's motion was caused by the 

vibrator. The actual load transferred into the test structure is directly proportional to the 

measured load (by the built-in load cell) as long as the test frame is stable and remains 

rigidly in contact with the structure while the dead masses, backing plates, and the jack's 

ram are the only moving parts. This is usually the situation except at high frequencies and 

high input signal levels (as previously mentioned) when the top part of the rig starts 

shaking as a result of its relatively high slenderness. The constant of proportionalty 

between the load experienced by the structure and the measured load does not affect 
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accuracy of identified dynamic parameters of the test structure. 
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Figure 6.11 Sample amplitude response of the load generated 

With the relationships between level of load generated, frequency, input signal level and 

total moving mass determined, the number of moving 'dead' masses that would give the 

highest load level was then investigated. The optimum number of 'dead' masses was found 

to be six, corresponding to a total moving mass of 200.05kg. 
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Figure 6.12 Coherence function between tranducer (accelero'meter) and input 
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6.2.6.3 Characteristics of the stroke response 

As would be expected from an electro-hydraulic vibrator. the stroke amplitude decreases 

with increasing frequency and increases with increasing excitation . signal level. The 

amplitude becomes very low at frequencies above 10Hz (Figure 6.13). This behaviour is 

repeated irrespective of the total moving mass. The increase in amplitude with increasing 

input signal level peaks at a value which depends on the input voltage range and settings 

on the signal attenuator of the control unit. The optimum attenuator setting depends on the 

structure under test. The stroke amplitude spectra (Salawu and Williams. 1992) show that 

the attainable amplitude decreases lmder load. This loss of amplitude increases with total 

moving mass and total available stroke. 
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6.3 Data Acquisition and Recording System 

6.3.1 Response transducers 

100 

Measurement devices are required to monitor the input to and response of a structure Wlder 

forced vibration testing. The input is usually the excitation force while the reponses of 

interest are the displacement, velocity and acceleration. Acceleration is currently the 

accepted method of measuring modal response and was the parameter measured The input 

load was measured by the load cell incorporated within the vibrator while four 

accelerometers were used to measure the structural response. 

The accelerometers are Schaevitz (LS Series) linear servo accelerometers capable of 
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measuring acceleration as low as 10-6 g. The LS series are solid state, de, closed-loop, 

force-balance accelerometers with accuracy, stability and reliability several orders of 

magnitude greater than open-loop types. The main sources of inaccuracy in the open-loop 

types, the mechanical spring and the displacement-to-voltage transducer, are eliminated. 

Each accelerometer has a seismic mass which is kept static by a small control system and 

the current necessary to maintain this position is monitored. This current is proportional 

to the acceleration experienced by the seismic mass. 

The accelerometers were connected to the signal conditioning units by screened cables 

which deliver electrical power to them as well as transmitting the output signal to the signal 

conditioning units. Before and after each series of tests, the accelerometers were statically 

calibrated to ascertain consistency in sensititvity. The calibration procedure is further 

discussed in sub-section 6.6.1. 

6.3.2 Signal conditioning equipment 

Signal conditioning refers to those processes that include a number of ancillary operations 

applied to the transducer output signals in order to obtain a useful electrical signal that can 

be transmitted or recorded. The signal conditioning equipment used consists of two units 

designed and built in-house. The first is an integrated unit consisting of six channels of 

offset units, amplifiers (with variable gains: x5, xl 0, x20, x50 xl 00) and low-pass analogue 

filters with cut-off frequencies at 15Hz and 60Hz. This unit also powers the 

accelerometers. The second unit is a ftlter 'box' containing six channels of low-pass 

analogue filters with cut-off frequencies at 1OHz, 20Hz, 30Hz, 40Hz, 50Hz and 60Hz. 

The amplifiers were used to boost weak signals from the accelerometers and to amplify any 
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external excitation signal before 'feeding' it into the vibrator control unit. The filters were 

used to attenuate extraneous high frequency signals. Those on the second unit were also 

used as anti-aliasing filters for the PC based data acquisition system. 

6.3.3 Signal monitoring and recording equipment 

Response of the structure, as test progressed, was monitored with oscilloscopes. A 

reference accelerometer was permanently connected to one oscilloscope channel. Signal 

outputs from the other accelerometers, load cell and excitation signal generator were also 

monitored in turn. This allowed detection of errors (such as loose cable connections) or 

any unexpected behaviour. The approach adopted was to monitor the signals being 

recorded on tape to ensure that the correct data is stored. An oscillograph was used to 

obtain hard copies, on ultra-violet paper, of selected portions of the measured signals. All 

the accelerometers and load cell were connected to the oscillograph. 

Since complete real-time analysis was not possible, the conditioned analogue signals were 

recorded for further processing off-site. The recording was done on magnetic tapes using 

a RACAL Store 7 tape recorder in the frequency modulation (FM) mode. An advantage 

of FM recording is that it can record down to de since a de signal is simply represented by 

a constant deviation of the carrier signal. The tape recorder has seven tracks for recording 

in addition to a voice channel which allowed documentation of tests. The recording speed 

can be chosen to match the test frequency bandwidth. Other facilities such as flutter 

compensation are also provided. 
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6.3.4 PC based data acquisition system 

This system consists of a 386 personal computer connected to a chassis housing one multi­

channel analogue input module and a 12-bit analogue-to-digital converter with a maximum 

throughput in excess of 5 0000 samples/second and a calibrated input range of ±1 OVolts. 

The analogue input module has sixteen input channels and twenty programmable input 

ranges. WINDSPEED data logging software was used to control the data acquisition. The 

analogue-to-digital converter preconditions and scales the input signals. Both hardware and 

software were supplied by Biodata Ltd. 

Using this system resulted in huge computer memory requirements to store the digitized 

time history data. Since a dedicated computer with sufficient hard disk size was not 

available, this system was laboratory based and only used on selected parts of the measured 

data. The signals recorded on tape were played back into the system after the tests. 

6.4 Analysis of Vibration Data 

Structural vibration response is usually measured as a time history record of amplitude 

versus time. The time history record is then subjected to data processing operations to 

extract 'refined' data for subsequent analysis. Early signal processing techniques were 

based on analogue methods. Introduction of the fast Fourier transform (FFT) and rapid 

development of efficient and affordable microprocessors resulted in a preference for digital 

processing methods. The signals are first converted to digital data using analogue-to-digital 

conversion (ADC) procedures. Mitchell (1985) has traced the development of the signal 

processing industry. In analysing random structural vibration data, the structure is usually 

assumed to be linear, time-invariant, stable, observable and physically realizable (Allemang 
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and Brown, 1988; Bendant and Piersol, 1 986). Assumption of linearity of the structure is 

a good practical approximation as long as the amp1itude of the force input remains smal1 

(Yar and Hammond, 1987). 

6.4.1 Discrete Fourier transform 

In digita1 processing of random data, the Fourier series is used as an accurate way to 

approximate the discretized data. The Fourier series is based on the theory that any 

periodic signal may be evaluated as a combination of a number of sinusoidal signa1s with 

harmonica11y related frequencies. The discrete Fourier transform (DFT) is used as an 

approximate means of evaluating the coefficients of a Fourier series representing a finite 

time segment of data. The FFT is a specialised and very fast means of conducting a DFT 

and is used to estimate the frequency response function (FRF) from experimental data. 

Details of digita1 processing and DFT can be found in Bendant and Pierso1, (1980), 

Bendant and Piersol, (1986), Bracewell (1978), Castro (1989), Curtis, (1988) and Newland 

(1975). Only basic and important stages of the process are highlighted in this and the next 

sub-section. 

The complex Fourier transform UGf) of u(t) is given by 

.. 
U (jf) = f u (t) e -jlnftdt (6.1) 

where u(t) is the time history of a process u. f and t are the frequency (in Hz) and time 

variables respectively . The FFT only operates on a function with a non-negative 

independent variable and exists within finite limits of a stationary process. Thus, only a 

finite range of Equation ( 6.1) is of interest. Equation ( 6.1) then becomes 
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U (jf) = f u (t) e -jlnfidt (6.2) 
0 

where T is the record length of u(t). 

In digital processing, the function u(t) to be transformed only exists as 11u (n=O, N-1) at N 

discrete values equally spaced in the time domain. The DFT then becomes 

(6.3) 

~t is the sampling interval and (1/~t) is the sampling rate (frequency). Equation (6.3) gives 

the spectrum values Uk = U(jfk) at N discrete frequencies (kM) where M = Iff is the 

frequency resolution. The Fourier coefficients obtained using DFT are only unique for the 

flrst N/2 values. Hence, the maximum frequency that can be sampled, called Nyquist 

frequency fNYQ• occurs when k = N/2 i.e. fNYQ = (NM)/2 = N/2T = l/(2~t) . 

To enhance the quality of the FRF (especially with random excitation) computed using 

FFT, ensemble averaging is used. The time history record of total length TT is divided into 

b data blocks each of record length T (= Tib) as shown in Figure 6.14. Each block is 

assumed periodic (with period T and base frequency lff) and digitized into N discrete 

values at equal intervals ~t. Before further data processing, statistical analyses to remove 

spurious trends and ascertain data quality are performed on each block. The discretized 

data is Fourier transformed into the frequency domian as described above. 

The process illustrated in Figure 6.14 is sequential averagmg 1.e. the spectrum of 

consecutive blocks are added and the average spectrum computed. In practice, it is often 

better to use overlap averaging (Ewins, 1984) as shown in Figure 6.15. In this case, the 
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transform is performed as soon as possible using the most recent 2N data values even 

though some of these may have been used in the previous transform. This approach leads 

to a better estimate of the average spectrum. The accuracy of a single spectral estimate 

increases with the square root of the number of averages (Brownjohn et al, 1987). 

However, excessive averaging could lead to a reduction in frequency resolution since TT 

is constant. 

T T T T T 

Figure 6.14 Partitioning of time history 
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Figure 6.15 Overlapp averaging 

6.4.2 Signal processing errors 

The limitation on maximum frequency content and the implied periodicity within the record 

length (or of each data block) introduce errors in the DFT process. Consequently, any 

quantity derived from the DFT will also be susceptible to these errors. An appreciation of 

these factors is necessary to avoid erroneous results. Brief details of the main errors 

introduced by digital signal processing are described below. 

(a) Quantization errors 

Quantization errors arise as a result of transforming the original analogue time history 

record into a digital signal having a number of distinct levels. Let an analogue signal u(t) 

be quantized with a step size Llllu and llu be the nearest quantising level to an instantaneous 

amplitude in u(t). Then, all amplitudes, in the original signal, within the range (llu - Llllu/2) 

to (un + Llllu/2) will be referred to the nearest level (u
11

) during analogue to digital. 

conversion (ADC). If the quantization is done properly i.e. choosing suitable Llllu, the true 

levels of the original signal will be well approximated. To reduce quantization errors and 
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improve resolution, it should be ensured that the time history occupies as much of the 

quantizing levels as possible. Th.is entails setting suitable sensitivity levels on the signal 

analysis equipment. 

(b) Aliasing 

Aliasing is an error introduced by the ADC procedure in digital processing and occurs if 

an inappropriate sampling rate is used in the digitization process preceeding digital Fourier 

analysis. Redundant data results if the sampling interval is too short while a large sampling 

interval leads to confusion between low and high frequency components in the original 

data. As a result of aliasing, all frequencies higher than fNYQ will appear folded ( aliased) 

below fNvQ in the Fourier spectrum . 

For any frequency f (0 ~ f ~ fNvQ), the higher frequencies aliased with f are given by 

(2nfNYQ ± f), where n is an integer. Th.is condition distorts the spectrum in the region of 

the Nyquist frequency and leads to a confusion between low and high frequency 

components of the original data. Aliasing is prevented by using analogue low-pass filters 

( anti-aliasing filters) before ADC to remove portions of the original signal with frequencies 

above fNvQ· To ensure that all frequencies above fNvQ are rejected, it is usually necessary 

to set the filter cut-off frequency to about 60% - 80% of fNYQ depending on the sharpness 

of the filter. 

(c) Leakage 

The DFT necessarily assumes the input signal to be periodic in the data window of length 

T seconds. However, this is not usually true for real data such as those obtained from pure. 

random excitation. This leads to the problem of leakage in which the power in a single 

frequency component leaks into adjacent frequency bands of the spectrum. The physical 
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limitation of taking measurements within a finite time period can also lead to leakage. 

Leakage error leads to distortion in the Fourier spectrum by broadening peaks and causing 

appearance of side lobes. The coherence at resonant frequencies is also reduced (Olsen, 

1986). For a signal truly periodic in the time window, leakage does not occur. 

Leakage is minimized by multiplying each data block, before FFT, by a weighting 

(window) function which forces the data to appear periodic within the time window by 

assigning low weights to the end values. The analysed signal is therefore a product of the 

original signal and the weighting fWlction. It is necessary to scale up the windowed data 

due to a reduction in energy content as a result of windowing. Various window functions 

are available ( deSilva, 1986) and choice of a suitable function depends on the signal type. 

(d) Poor freguency resolution 

Another problem encoWl.tered in digital processing via DFT is that of inadequate frequency 

resolution. This is particularly important for lightly damped structures and at regions of 

resonance. Inadequate frequency resolution implies that there are not sufficient spectral 

lines to accurately define the spectrum at areas of interest and can give rise to low 

coherence and bias errors. This is primarily due to a limited number of available discrete 

data points and the need to take measurements within a limited time length. The problem 

of inadequate frequency resolution is usually solved by zoom processing techniques in 

which the available spectral lines are concentrated within a narrow frequency range (Ewins, 

1984). 
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6.4.3 Frequency response function calculation 

Various parameters characterizing structural vibration signals are estimated using the FFT. 

In the frequency domain, the parameters of interest are the auto-spectrum, cross-spectrum 

and frequency response function (FRF). A simple single input-output system to illustrate 

FRF computation is shown in Figure 6.16. 

Measu~npUilnolse 
Input 

u(t) 
U(Jf) 

t - tlme variable 
f • frequency variable 

h(t) 

Structural system 

H(jf) 

u(t) • tlme history of Input 
UQf) - complex Fourter transform of u(t) 

v(t) - time history of output 
VQf) • complex Fourler transform of v(t) 

Figure 6.16 Single input-output system 

v(t) 
V Of) 

The one-sided auto-spectral density function of the input Guu(f) and output Gvv(f) are given 

by 

Guu (j) = u• (jf) U (jf) 
Gvv (j) = v• (jf) V (jf) 

(6.4) 

where u*(jf) is the complex conjugate of U(jf). The cross-spectrum between the input and 

output is a description of the common correlated frequency composition in each signal and 

is defined as 
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G uv (jf) = U • (jf) V (jf) (6.5) 

The FRF H 1(jf) is computed from complex ratios of the average cross-spectrum of the input 

(excitation) and response to the average auto-spectrum of the input and is expressed as 

(6.6) 

Equation (6.6) is the most common method of estimating the FRF. If sufficient averaging 

is used, all the uncorrelated noise disappears from G.v(jf) thereby enhancing H 1(jf). Input 

noise could lead to contamination of the input auto-spectrum G.u(f), leading to FRF 

estimation lower than normal. This is particularly crucial at resonances where the true 

input auto-spectrum is low so that effect of measurement noise on GuuCf) becomes 

significant. 

To alleviate this problem, an alternate method of estimating the FRF has been proposed 

(Mitchell, 1982). The method computes the FRF using the estimator ~(jf) defined as 

(6.7) 

~(jf) is contaminated by noise in the output. Since the system output is high around 

resonance (leading to insignificant output noise), Equation (6.7) gives a better estimate of 

the FRF in the resonance region (Mitchell, 1985). Some FFT systems use Equations (6.6) 

and (6.7) to respectively compute the FRF in regions of low magnitudes (anti-resonances) 

and high magnitudes (resonances). 

An indication of the quality of data is given by the coherence function 'Yuv2(f). The 

coherence function can be interpreted as the fractional part of the mean square value at the 

output that is contributed by the input at the frequency of interest (Bendant and Piersol, 
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1986). Yuv 2(t) is given by 

(6.8) 

The coherence function varies between 0 and 1. It is 1 when u(t) and v(t) are not 

contaminated with noise. Yu}(f) lower than 1 is indicative of, among other things, 

presence of measurement errors and possible system non-linearities. It should however be 

noted that coherence will not detect cross talk (within the analysis equipment) which arises 

when the input signal is much larger than the output signal (Mitchell, 1985). 

6.4.4 Signal analysis equipment 

The HP3582A spectrum analyzer (Hewlett-Packard, 1979) was mainly used to compute 

FRFs. The analyzer is a FFT based digital instrument with dual measurement channels. 

It uses the H 1 FRF estimator, has four (two in both frequency and time domain) averaging 

types and zooming facilities. The frequency domain averaging are similar to those 

described in sub-section 6.4.1. For the overlap averaging, the latest spectrum is weighted 

by 114 and added to the previous average (weighted by 3/4) such that the Nth spectrum 

before the current one is given the weight (1/4)(3/4)N. 

The analyzer has built-in signal input sensitivity selectors, analogue-to-digital converters, 

anti-aliasing ftlters and three window functions. It also has 256 and 128 spectral display 

points for single and dual channel, respectively, operation. This fixes the frequency 

resolution for a given frequency band (sub-section 6.4.1 ). Operation of the analyzer can 

be remotely controlled with a computer using an HP-IB interface. An HP9122 computer 

was used for this purpose and to also retrieve the FRF data from the analyzer's memory 
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buffer. The FRFs were subsequently transferred to an OPUS 386SX PC, using the utility 

program LIFUTIL (Hewlett-Packard, 1990), for further analysis to extract dynamic 

parameters. 

FRFs of selected parts of the data were also computed using two commercial data analysis 

software packages- ADEPT (Roberts, 1990) and FAMOS (IMC, 1989). ADEPT is a suite 

of programs for acquiring and analysing time series data while F AMOS is a general 

purpose signal analysis software that operates in MS-Windows. As a result of the general 

nature of FAMOS, a macro (called sequence) was written to implement the H1 FRF 

estimator using sequential averaging procedures. The softwares were used in conjunction 

with the PC based data acquisition system. Using these programs allows easy access (as 

compared to the spectrum analyzer) to the time history data (in digital form) and affords 

the opportunity to vary the frequency resolution. Preliminary analyses were conducted to 

ensure that the three methods (HP3528, ADEPT and FAMOS) produce similar results. 

6.5 Modal Parameter Extraction 

A variety of methods for analyzing vibration response data in order to extract modal 

parameters is in existence. The methods range from simple single mode techniques to 

complex and sophisticated multi-mode algorithms. Some of the algorithms only differ in 

the numerical implementation of a basic mathematical model. The best method to use 

depends on the particular application since there is no exact method - all methods being 

approximations. Modal extraction can be conducted in either the frequency domain or in 

the time domain. Hybrid methods also exist (Li, 1986). Methods that operate in the 

frequency domain (using FRF) are more common. Only frequency domain modal 

identification is considered. Detail review of modal parameter extraction methods can be 
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found in Budiwantoro and Jezequel (1990), Ewins (1984) and Rades (1985). 

Frequency domain modal identification is based on fitting a mathematical expression of the 

FRF to the measured data. Assuming real modes, the expression for the displacement FRF 

(receptance) is given by 

where Hil,(jw) = 

Aikz = 

m = 

(J)= 

(J) = z 

'~~-w-;--_w_2A--'~'-j-2~-z-w-w-J (6.9) 

FRF measured at point i for excitation at point k 

modal constant for the zth mode at point i 

total number of measured modes 

frequency (radians/seconds) variable 

natural frequency for the zth mode 

viscous damping ratio for the zth mode 

Multi-degree-of-freedom (MDOF) methods utilize Equation (6.9) by performing a 

simultaneous fit of all resonance peaks of interest in the measured FRF. Thus, modal 

parameters of several modes within the analysis frequency band are simultaneously 

obtained. MDOF techniques are useful for systems with high modal density or high 

damping. Most of the MDOF methods account for effect of out-of-band modes by using 

either additional residual terms in Equation (6.9) or extra modes in the identification model. 

Many of the MDOF algorithms are quite complex and there is a tendency to use softwares 

based on them as 'black boxes' with the user having no feel for what is happening. 

Single-degree-of-freedom (SDOF) methods require more user interaction. The user has 
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control over, among other things, the choice of points to be used in the fitting process. The 

procedure is slower and less automatic as compared with MDOF identification. However, 

of more importance is the fact that a better understanding of the structural dynamic 

behaviour and physical interpretation of the process is achieved. In SDOF identificaton, 

each resonance peak (mode) in the FRF is independently fitted. The basic assumption of 

the approach is that in the vicinity of resonance, the mode with the nearest natural 

frequency dominates the response. 

Equation (6.9) can be rewritten as 

(6.10) 

where r is the current mode number. SDOF methods assume that the second term in 

Equation (6.1 0) is negligible around each resonance r. Thus, the FRF (around each mode) 

is simply represented by 

(6.11) 

Data points within the resonance region in the FRF plot are then fitted to Equation ( 6.11) 

to obtain the modal parameters for the current mode. Equation ( 6.11) represents a circle 

in the Nyquist plane and this characteristic is exploited in the circle-fit analysis. The three 

SDOF methods implemented are described below. 
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6.5.1 Inverse Method 

This method is an alternative to the common circle-fit method and uses the fact that a 

function which generates a circle when plotted in the Nyquist (complex) plane will, when 

plotted as a reciprocal, trace out a straight line (Ewins, 1984 ). Development of the method 

has been described by Maia (1990). The inverse of the receptance around mode r is given 

by 

1 w; - w2 + j2~,w,w 

Hik (jw) Aw (6.12) 
(J) 2 - w2 . 2~,w,w r 

Aw 
+j 

Aw 

Writing Hik(jw) as Hik for simplicity, Equation (6.12) can be separated into real Re(11Ha) 

and imaginary lm(1/Hik) parts to yeild 

1 _ Rj 1 ) + jJ:m( 1 ) 
Hik - ..... ~ Hik •• , Hik 

(6.13) 

(6.14) 

(6.15) 

Equation (6.14) represents a straight line in ol while Equation (6.15) represents a straight 

line in ro . Plots of these expressions are shown in Figure 6.17. Considering Equation 

(6.14) and Figure 6.17a, the intercept of Re(11HaJ with the horizontal axis gives the value 

of ro, while A;n is given by the reciprocal of the slope. With ro, and A;n known,~. can be 

determined from the slope of lm( 1/Hik). The method is suitable for systems with relatively 
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well separated real (which has been implicity assumed in the analysis) modes. 

_. 
"'-./ 

E .._. 

(b) 

Figure 6.17 Real and imaginary parts of receptance 

6.5.2 Direct least squares (DLS) method 

(J)i 

This method was proposed by Tsang and Williams (1990) and belongs to the family of 

direct least squares methods. Development of the method starts with the frequency domain 

representation of the equation of motion as: 

[KJ _ w2 [M] + jw [Cl = ~ (j(j:~ )) } = 1 
.., [H (jw) ] 

(6.16) 

where [K], [M] and [C] are respectively the stiffness, mass and damping matrices~ and 

{X(jro)} and {F(jro)} are respectively the complex Fourier transforms ofthe displacement 

response and force vectors. [H(jro )] is the FRF matrix. Each element Hik(jro) of [H(jro )] 

represents the FRF measured at i for excitation at k. Considering these two (i and k) DOF. 

and using Equation (6.13), it follows that 
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(6.17) 

where 

m' m, 
c' 

c, (6.18) 

kr, m.. and er are respectively the modal stiffness, mass and damping for mode r, while ( cpir) 

is the element of the rth mode shape at point i. Equation (6.17) exists at each forcing 

frequency ro. For N such frequencies, a total of N sets of equations can be formulated. 

The N frequencies are chosen within the resonance region. Combining the N equations, 

the following expression is obtained 

N -fw~ 0 !~~~t 
n=l 

S} -fw~ fw~ 0 - fw2~ 1) 
n=l n=l n=l 

11 H~ 
11 

0 0 fw~ ~~~ w;m( ~~)~~ n=l 

(6.19) 

Equation (6.19) is solved fork' , m' and c' and the modal parameters obtained using the 

following expressions: 

k' w; ::; c' 1 
~r ::; i Aw ::; 

2 .jiii7i'" m' 

The DLS method is only applicable to systems with real modes. 

6.5.3 Improved amplitude fitting (IAF) method 

(6.20) 

The IAF method (Rinawi and Clough, 1992) is an improvement of the SDOF amplitude 

fitting algorithm proposed by Clough et al (1987) and Mau and Wang (1989). At a given 
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forcing frequency ro, the amplitude (magnitude) of the receptance, within the vicinity of mode 

r, is given by 

(6.21) 

where Q = la:ikl and Pr (called modal participation factor) represents the magnitude of the 

modal constant. Equation (6.21) can also be written, after scaling by Q, as: 

(6.22) 

Substituting D from Equation (6.21) into Equation (6.22) yields 

(6.23) 

where 

xl = (1) 4 r 

x2 = 4ew; 2 - 2w, (6.24) 

X3 = p 2 r 

For a set of N frequencies around the resonance region, Equation (6.23) becomes 

tQ: fQ;w; -fQ: -fQ:w! 
n=l n=l n=l 

f:} 
n•l 

fo6w2 fQ6w4 -fQ4w2 - fQ:w~ (6.25) 
n n n n n n 

=1 n=l n=l n=l 

-fQ: -fQ4w2 fQ; fQ4w4 n n n n 
n=l n=l n=l n=l 

The modal parameters can be obtained from the solution of Equation (6.25) using the 

following relations: 
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,_, _ xl/ 4 
v..~r - 1 

6.5.4 Implementation of the methods 

+ 1 
2 

(6.26) 

The three methods described above all use receptance whereas inertance (acceleration FRF) 

is usually measured. Thus, the first step was to convert the measured inertance to 

receptance. Mixed language (C and Fortran) computer programs were written to implement 

the methods. Program TXT_FRF was written for the IAF method while both the DLS and 

inverse methods were implemented in program SALMOD _D. A post-processor MODPLOT 

was written to process results from SALMOD _ D so that the results can be viewed in 

various display formats. TXT_FRF has its own results display modules which can also be 

used to graphically display FRFs. In the programs, options are available to remove the 

effects of other modes on the mode being analysed. 

The methods as originally proposed do not account for the effects of modes outside the 

analysis frequency band. To accomodate effects of out-of-band modes, a procedure was 

adopted for the IAF method. The procedure adopted was to select two frequency points 

(one at either end of the analysis frequency range) to act as pivots. The error between the 

measured and regenerated FRFs is then minimized, using the pivots as origins, in a least 

squares sense. The fitting process when using the IAF method was also made iterative (the 

IAF algorithm as proposed by Rinawi and Clough (1992) is a non-iterative method). Thus, 

the IAF method was mostly used to analyse the measured data. 

It should also be noted that the IAF method only gives the magnitude of the modal 
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constant. A simple approach was adopted to determine the phase. The phase of the modal 

constant was taken as the phase difference between the FRFs measured at the point in 

question and at a reference point on the structure. The modal constant was considered as 

positive or negative if the phase angle was between ±20° of 0° or 180° respectively. Any 

other value of the phase angle indicates a complex mode. The flowchart of the module 

used to implement the IAF method, as modified here, is shown in Figure 6.18. 

6.6 Repeatability and Accuracy of Results from Test System 

The degree of accuracy and repeatability of any measurement system has to be ascertained 

so that the level of reliability of the data obtained from the system can be determined. In 

this research, the systems of interest consist of the measurement transducers, signal 

conditioning, recording and processing equipment and the data analysis techniques adopted. 

The transducers, signal conditioning and recording equipment are the ones most likely to 

be affected by changes in environmental factors, especially temperature. To reduce this, 

all equipment (except of course the vibrator and pumps) were kept in a van during full­

scale tests. 

The load cell within the vibrator is stable within environmental fluctuations and has been 

pre-calibrated at 1 V to 0.5kN. This factor was constant throughout the research period. 

The consistency of the accelerometers, signal conditioning and recording equipment was 

checked by calibrating them before and after each test series. Effect of temperature on 

their performance was also investigated and is discussed in sub-section 6.6.1. 
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CAll. FROM MAIN ROUTINE IN TXT _FRF 

CONVERT INERTANCE TO RECEPTANCE 

SELECT NUMBER OF MODES TO BE FinED 

FIT EACH MODE IN TURN 

SELECT lHE MODES 
10 BE REFTTTED 

NO 

REMOVE 
>--.;,_:__-~ DESIRED MODES 

AND REFIT 
MODEr 

ADD 
RESIDUALS 

DETERMINE PHASE OF MODAL CONSTANTS 

RETURN TO MAIN MODULE IN TXT_FRF 

Figure 6.18 Flow chart of the module used to implement the modfied IAF method 
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It is difficult, if not impossible, to quantify effects of random environmental factors and 

other experimental errors on the dynamic response of a prototype structure. Therefore, it 

is important to ascertain that the test and analysis systems are not significantly affected by 

changes in these factors. This would enable true changes in the structural response to be 

differentiated from errors introduced by the test configuration. Specifically, observed 

changes must be greater than inherent uncertainty of the test system. To investigate the 

reliability and consistency of the combined measurement and analysis systems, tests were 

conducted on a simply supported beam between 1992 and 1993. Results from the tests are 

reported in sub-section 6.6.2. 

6.6.1 Effect of temperature on signal acquisition and recording equipment 

The effect of temperature on the accelerometers, signal conditioning units and tape recorder 

was investigated in a temperature controlled room. The approach adopted was to measure 

the calibration factor for the whole system at various temperatures. The temperatures 

investigated were 1 0°C, 20°C, 25°C and 30°C. These values were felt to reasonably 

represent the likely temperature variation to be met on site. During all tests, the relative 

humidity was maintained at 52%. Only static calibration was done. The results also 

provided the factors necessary to convert voltage outputs to physical units. 

The experimental set up is shown in Figure 6.19. The accelerometer was mounted on a 

Jones-Shipman universal vice type UX8238-41 which acted as the 'sine table'. The vice 

allowed inclination, with respect to the vertical, of the accelerometers at any desired angle. 

The angles were varied from 0° to 90° at 10° intervals in two opposing directions as shown 

in Figure 6.20. For an inclination angle of ±e0
, the input acceleration is ±gSin8 where g 

is the gravitational acceleration. 
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Figure 6.19 Experimental set-up for signal acquisition system 
calibration 
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Figure 6.20 Inclination of accelerometers 

171 

I 
dire:t~on of 
sensitive 
axis of 
accelerometer 



For each inclination angle, it was intended to measure the output signal level at three points 

using voltmeters V1, V2 and V3 (Figure 6.19}. This was meant to allow simultaneous 

calibration of the system and the component units. However, because of the two way flow 

of electrical power and signal between the accelerometers and signal conditioning unit, V 1 

was not used. Trial tests indicated that the readings from V 2 and V 3 were very similar (less 

than 1% difference). Thus, only values from V3 are reported here. In addition, it is only 

the calibration at V3 that is really required since the system's global sensitivity is desired. 

Readings were taken when the tape recorder was recording and when it was not. Both 

conditions gave the same readings. 

Each accelerometer was calibrated on a specific channel on the signal conditioning unit and 

tape recorder. The same accelerometer-channel match was maintained during all 

calibration, laboratory and field tests The calibration factors (Table 6.1) were obtained 

from the slopes of the least squares lines fitting plots of V 3 against acceleration. From 

Table 6.1, it can be seen that the system calibration does not significantly fluctuate with 

temperature. This fact, coupled with the consistency of the factors obtained before and 

after each test series, demonstrate the stability and accuracy of the signal acquisition 

system. The results in Table 6.1 were obtained from the first calibration exercise before 

any full-scale tests. Subsequent calibrations were conducted at 20°C. 
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Table 6.1 System calibration factors 

ASC cscu CTR Calibration factors (Volts/g) 

6230 1 1 

1653 2 2 

1652 3 4 

1658 4 5 

ASC - Accelerometer senal number 

CSCU - Channel on signal conditioning unit 

CTR - Channel on tape recorder 

10°C 20°C 

2.021 2.017 

1.670 1.662 

1.651 1.649 

1.679 1.682 

6.6.2 Effect of random environmental factors 

25°C 

2.026 

1.667 

1.641 

1.700 

30°C 

2.023 

1.656 

1.646 

1.680 

Twenty tests were conducted over a one year period on an !-section simply supported steel 

beam to determine consistency and reliability of the measurement and analysis procedures. 

The tests were intended to simulate realistic conditions. Thus, the data collected included 

effects of temperature and humidity fluctuations, noise as a result of vibrations in the 

surroundings, any signal processing errors, human errors and other experimental errors. 

This meant that accuracy of modal parameters obtained by curve-fitting would also be 

affected since the imperfect data will affect the curve-fitting process. 

The tests were conducted in an open space structures laboratory and the experimental 

arrangement is shown in Figure 6.21. Periodic random excitation in the range 0 - 250 Hz 

was used. The beam's response was measured at eight locations using the accelerometers 

and recorded on magnetic tape. The excitation was by an electromagnetic vibrator placed 
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on the beam. The output from an accelerometer mounted on a metal block placed on top 

of the vibrator served as the reference signal. The test procedure has been described in 

sub-section 4.5.1. The IAF method was used for curve-fitting. Similar test and analysis 

procedures were adopted for each test. 

easurement points 
8 @ 0.7m = 4.9m 

Vibrator 1880mm 

~ ~ 
1 2 3 5 

0 u 

Beam 

r 
Spectrum HP9122 386SX 
analyzer computer computer 

Signal conditioning unit 

Figure 6.21 Set-up of tests to investigate effect of random experimental errors 
on test and analysis techniques 
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Tables 6.2 and 6.3 show the natural frequencies and modal VIscous damping values 

obtained. The mean, standard deviation (STD) and covariance COY (standard deviation 

divided by mean) are also shown in the tables. STD indicates absolute dispersion while 

COY is a measure of relative dispersion. The values entered for LDF in the tables 

represent the percentage difference between the largest and lowest values for each mode. 

The Modal Assurance Criterion MAC (chapter four) was used to investigate the consistency 

of measured mode shapes. Values of the diagonal elements of the MAC matrix are shown 

in Table 6.4. In calculating the MAC values, results from a free vibration analysis of the 

beam was used as reference. 

Consistency of the extracted modal parameters is reasonably high (as indicated by low 

COY) with the natural frequency variations being the lowest. In addition, visual inspection 

of the mode shapes did not reveal any significant changes. The relatively high ( 4% -

19.3%) values of percentage differences (LDF) in damping ratios are not uncommon and 

further demonstrate the difficulty in using changes in damping values as an integrity 

assessment parameter. The low values of the damping ratios will magnify percentage 

differences between them even though the covariance is reasonably low (less than 6% ). 
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Table 6.2 Repeatability of results: comparison of natural frequencies (Hz) 

Date Mode 1 Mode 2 Mode 3 

20-5-92 23.0 94.42 207.93 

21-5-92 23.18 93.99 207.77 

22-5-92 23.43 93.96 208.00 

27-5-92 22.93 94.50 207.76 

29-3-93 22.80 94.70 207.67 

30-3-93 22.95 94.60 207.83 

31-3-93 22.92 94.50 207.67 

1-4-93 22.87 94.02 208.00 

2-4-93 22.92 94.60 207.33 

5-4-93 22.98 94.72 207.83 

6-4-93 22.97 94.67 207.67 

8-4-93 22.95 94.7 207.80 

15-4-93 22.96 94.67 207.84 

16-4-93 22.98 97.70 208.00 

19-4-93 22.97 94.70 207.91 

20-4-93 22.89 94.33 207.89 

21-4-93 23.0 94.21 208.00 

22-4-93 22.98 94.50 207.50 

23-4-93 23 .0 94.62 207.72 

26-4-93 22.97 94.72 207.93 

LDF(%) 2.8 0.8 0.2 

mean (Hz) 22.98 94.49 207.80 

STD (Hz) 0.13 0.255 0.176 

cov 0.0055 0.0027 0 0008 

LDF = % difference between largest and lowest values for each mode 

STD = Standard deviation 

COY = Covariance = STD + mean 
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Table 6.3 Repeatability of results: comparison of modal damping values(% of critical 

damping) 

Date Mode 1 Mode 2 Mode 3 

20-5-92 0.483 0.423 0.564 

21-5-92 0.474 0.426 0.662 

22-5-92 0.481 0.417 0.568 

27-5-92 0.485 0.425 0.555 

29-3-93 0.470 0.427 0.569 

30-3-93 0.479 0.413 0.559 

31-3-93 0.483 0.408 0.561 

1-4-93 0.477 0.415 0.556 

2-4-93 0.480 0.422 0.591 

5-4-93 0.489 0.413 0.570 

6-4-93 0.471 0.406 0.563 

8-4-93 0.485 0.416 0.569 

15-4-93 0.480 0.420 0.565 

16-4-93 0.479 0.404 0.560 

19-4-93 0.483 0.400 0.566 

20-4-93 0.478 0.431 0.570 

21-4-93 0.472 0.425 0.560 

22-4-93 0.481 0.405 0.556 

23-4-93 0.479 0.430 0.568 

26-4-93 0.483 0.422 0.662 

LDF(%) 4.0 7.5 19.3 

mean 0.480 0.417 0.575 

STD 0.005 0.009 0.031 

c.ov 0 010 0 022 0.053 

LDF = % difference between largest and lowest values for each mode 

SID = Standard deviation 

COV = Covariance = SID + mean 
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Table 6.4 Repeatability of results: comparison of MAC values 

Date Mode I Mode 2 Mode 3 

20-5-92 0.91 0.93 0.94 

21-5-92 0.97 0.92 0.99 

22-5-92 0.99 1.00 0.90 

27-5-92 1.00 0.94 0.98 

29-3-93 0.98 0.96 0.97 

30-3-93 0.99 0.99 0.99 

31-3-93 0.96 0.99 1.00 

1-4-93 0.95 0.98 0.95 

2-4-93 0.97 0.97 0.96 

5-4-93 1.00 0.96 1.00 

6-4-93 0.92 0.95 0.99 

8-4-93 0.93 0.94 0.97 

15-4-93 0.97 0.97 0.98 

16-4-93 0.96 0.93 0.99 

19-4-93 1.00 0.92 0.99 

20-4-93 0.99 0.99 0.90 

21-4-93 0.99 0.93 0.92 

22-4-93 0.91 1.00 0.91 

23-4-93 0.93 1.00 0.97 

26-4-93 0.96 0.97 1.00 

LDF(%) 9 8 10 

mean 0.96 0.96 0.97 

STD 0.03 0.03 0.03 

cov 0 03 1 0 029 0.035 

LDF = % difference between largest and lowest values for each mode 

STD = Standard deviation 

COV = Covariance = STD + mean 
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Consistency of 'stiffness' estimates 

To further increase confidence in the procedures, the modulus of elasticity E (taken here 

to represent stiffness since the sectional modulus is constant) obtained from each modal 

frequency should be very close. 

For a simply supported beam in bending vibration, the natural frequencies are given by: 

r 21t [!!! 
fr = 

212 
V M ; r = 1 , 2 , · .. . (6.27) 

where f. = natural frequency (Hz) for mode r 

I = second moment of area of section 

l = length of beam 

M = mass per unit length of the beam 

Since the geometrical and material properties of the beam were unchanged, Equation (6.27) 

can be rewritten as 

(6.28) 

where 

(6.29) 

The modulus of elasticity is therefore given by (from Equation 6.28): 

E = (6.30) 

Since W is a constant, an "effective modulus of elasticity" E' can be defmed as 
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E' (6.31) 

Using the mean frequency values from Table 6.2 in Equation ( 6.31 ), the values in Table 

6.5 are obtained. The E' values are close, as should be expected for repeatable results, 

with a maximum difference of 5.5%. 

Table 6.5 Identified values of effective modulus of elasticity 

Mode 1 Mode 2 Mode 3 

Frequency (Hz) 22.98 94.49 207.80 

E'(&l) 528.08 558.02 533.10 

6.7 Conclusions 

An excitation system, developed in the course of the research programme, suitable for 

inducing vertical excitation of horizontal structures has been described. Factors to be 

considered in designing such systems for full-scale dynamic testing were discussed. The 

observed behaviour (with respect to relationships between attainable stroke, load and 

operating frequencies) of the system is generally in accordance with expected characteristics 

of an hydraulic vibrator. The load output has a flat amplitude spectrum while the phase 

difference between excitation signal and load response is minimal except at frequencies 

below 5Hz. The best operating frequency bandwidth is 5 to 25Hz. Within this range, the 

vibrator produces stable output signals and does not generate unwanted motion. 
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Details of the equipment and procedures adopted for obtaining and analysing data during 

tests conducted as part of the research project were given in the chapter. The results 

presented indicate that the accuracy, reliability and consistency of the measurement and 

analysis equipment and procedures are satisfactory. In particular, the covariance, from 20 

tests conducted over a one year period, of measured natural frequencies and damping ratios 

of a steel beam were respectively in the range 0.1% to 0.6% and 1.0% to 5.3%. 
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CHAPTER SEVEN 

FULL-SCALE TESTING OF DEEP LANE BRIDGE 

7.1 Introduction 

Experimental results from condition monitoring of full-scale bridges using forced vibration 

testing are few. Some of the reasons for these have been discussed in chapter two. In this 

(and the next) chapter, results from dynamic tests conducted on two full-scale highway 

bridges are presented. The aims of the tests were to investigate the effectiveness of forced 

vibration testing as: 1) an integrity monitoring tool; and 2) a viable means of validating 

theoretical structural models of civil engineering structures. 

Results from experimental and theoretical modal analysis of Deep Lane bridge, Plymouth, 

are discussed in this chapter. The bridge was chosen because some structural repairs were 

to be carried out on it. Thus, an opportunity arose to investigate any correlation that may 

exist between the repair works and changes in the dynamic characteristics of the bridge. 

This was meant to study the performance of forced vibration testing as an integrity 

assessment method. The forced vibration tests were conducted before and after the repairs. 

Details of the bridge, repair works, test and analysis procedures and results obtained are 

presented in subsequent sections of the chapter. 

7.2 Description of Bridge 

Deep Lane bridge (Figure 7.1) is an insitu reinforced concrete structure located in 

Plympton, near Plymouth, South West England. The bridge was designed and built in the 
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late 1960s and early 1970s. It carries a single two lane carriageway a total distance of 

l 04m over the A38 trunk road and its slip roads. Figure 7.2 shows the basic dimensions 

of the structure. The bridge deck supports are noted (Figure 7.2) A to G consecutively 

from north to south. The deck's width is constant at 13.7m while the spans vary from 

approximately 12.4m to 20.5m. The total number of spans is six. 

--~-··~ .-:"\~ . 
------·"""-:- .... il 

Figure 7.1 Photograph showing Deep Lane bridge 
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The deck is continuous and of voided slab construction except at the supports where it is 

of solid section to improve shear capacity. Each circular void in the deck is 61 Om.m in 

diameter. The deck slab is supported by spill through type abutments at each end and at 

five intermediate points by groups of three circular columns. The height of the columns 

varies from approximately 5.3m to 7.1m. 

At abutment A, the deck is supported on a fixed bearing comprising a continuous rubber 

bearing strip I OOmm X 12mm thick and 20mm diameter dowel bars at 300mm centres 

providing longitudinal and lateral restraint. It is supported on sliding bearings at abutment 

G and at each inner support. One bearing is provided at each column and eleven at 

abutment G. Each bearing is of PSC Tetron type and consists of a stainless steel faced top 

plate sliding against a PTFE pad bonded to a similar bottom plate. An expansion joint is 

provided at abutment G. The foundations to the abutments and intermediate column 

supports are reinforced concrete spread footings. 

7.3 The Repair Scheme 

Strengthening measures were designed for spans DE and FG after a structural assessment 

of the bridge (Matt MacDonald, 1990; 1991). The measures were designed to make good 

the shortfall in longitudinal flexural capacity to resist hogging moments and mainly 

consisted of addition of top reinforcement to the deck in the areas of shortfall. Figure 7.3a 

shows a plan of the bridge indicating the repair locations. The repair involved extending 

the top (main) reinforcement bars within the hatched regions in spans DE and FG. Each 

repair zone has a width of 1.65m. 

The exact locations of the repairs are shown in Figure 7.3b. The concrete within the 
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batched areas in Figure 7.3b was removed by watetjetting. Within the exposed sections, 

new main reinforcement were then fixed to the existing ones with couplers. Where 

necessary, the transverse reinforcement and links were modified to permit fixing the new 

reinforcement. The old concrete surfaces were treated with proprietary grout before being 

reconcreted with proprietary concrete. The repair works were sequenced so that the bridge 

was neither closed to traffic nor subjected to Wldue stresses throughout the construction 

period. 

7.4 Full-Scale Testing 

Two series of full-scale tests were conducted on the bridge. The equipment, experimental 

and data analysis procedures adopted for each test series were the same. A frequency range 

of 0 - 25Hz was chosen for the tests so that the first few modes could be observed. The 

first series of tests was conducted on the 14th and 15th of October, 1992 while the second 

series was carried out on May 25th and 26th, 1993. Only brief details of the test and 

analysis methods are discussed in the following sub-sections. Full details of the procedures 

used have been presented in chapter six. 
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7.4.1 Equipment 

The instrumentation layout adopted during the tests is shown in Figure 6.1. The equipment 

used were an electro-hydraulic vibrator, four accelerometers, signal conditioning devices, 

signal transmission cables, an oscilloscope, an oscillograph, a spectrum analyzer and a FM 

tape recorder. Details of these equipment have been given in the previous chapter (sections 

6.2 and 6.3). 

7.4.2 Measurement locations 

The main criteria for selecting the measurement points were the need to adequately identify 

the first five to seven modes and monitor changes in the dynamic response of the spans 

arotmd the repair zones. Due to resource limitations, it was decided to monitor only three 

of the six spans. Of the two spans (DE and FG- Figure 7.3a) containing the repair zones, 

DE is Longer and would be more responsive to dynamic excitation. Thus, span DE and the 

two adjacent spans CD and EF were chosen in order to monitor the effects of the repairs. 

The dynamic response of the bridge was measured at 54 points (27 locations on either side 

of the bridge deck) on spans CD, DE and EF. Figure 7.4 shows the measurement locations. 

Of the 54 locations, only points 11 , 38 and 39 were within the repair zone on span DE. 

Although Figure 7.4 has been drawn 'square' to illustrate the measurement positions, it 

should be noted that the bridge is slightly curved in plan. The relative locations of the 

accelerometers with respect to the deck cross-section and pier locations are shown in Figure 

7.2. 

Throughout the testing period for each series of tests, one accelerometer was stationed 
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permanently at a reference point noted REF in Figure 7.4. The other three accelerometers 

were moved from point to point until all the measurement locations were covered. 

Measurement at four locations (three "new" points and the reference point) constituted a 

test. The vibrator was located on the eastside footway at a distance 8.5m from E in span 

DE. 

N 

c D E F 

EASTSIDE 

0 

~ . • • • )< • .. ,. • • xe X • • . ~ X X • • 
:~ \ v1 

REF VIBRATOR 

1 27 : :r ~i 
¥ X X • ¥ X • xox X • •O" X . X * • X • 

I 7e zBoo 13e1700 1e26:10 

c D WESTSIDE E F 

Figure 7.4 Measurement locations (dimensions in mm) 
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7.4.3 Test procedure 

For each test, the motion of the bridge deck resulting from forced excitation (by the electro­

hydraulic vibrator) was "picked-up" by the accelerometers. The signal outputs from the 

accelerometers were conditioned and recorded on magnetic tape for detailed analysis off­

site. The recorded signals were monitored using the oscilloscope and oscillograph. 

Limited real time analysis was conducted using a HP3582A dual channel spectrum 

analyzer. 

At the start of each test series, a sine sweep test was conducted so that predominant modes 

within the chosen frequency range could be identified. To achieve this, the frequency 

response functions (FRFs) between the input sinusoidal load and the bridge's response at 

selected points were computed with the spectrum analyzer. Sample FRFs obtained from 

points 37 and 43 (see Figure 7.4) are shown in Figure 7.5. The natural frequencies of the 

vibration modes occur at frequency values corresponding to the peaks in the FRF plots. 

Subsequently, a periodic-random signal was used as the excitation signal. Reasons for the 

choice of signals have been discussed in section 6.2. 
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7.4.4 Data analysis 

After the tests, the recorded signals were played back in the laboratory and, for each series, 

a total of 54 FRFs (one input and 54 outputs in the vertical direction) computed within the 

frequency range 0 - 25Hz using the spectrum analyzer. Details of FRF computation have 

been presented in the previous chapter (sub-section 6.4.3). 

The coherence function was used to assess the quality of measured data. Typical plots of 

the coherence function are shown in Figures 7.6 and 7.7. The FRF amplitude and 

coherence have been plotted on the same space to illustrate variation of coherence with 

location of the modes. The figures show good coherence around each resonance. 

The FRF data were transferred to computer disks and subsequent analysis conducted on a 

personal computer. The modal parameters were extracted using the enhanced version of 

the improved amplitude fitting method as implemented in the modal analysis program 

TXT_FRF described in sub-section 6.5.4. To assess accuracy of the parameter extraction 

process, each FRF was regenerated using the estimated parameters. Typical curve-fits are 

shown in Figures 7.8- 7.11 . 
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7.5 Theoretical Vibration Analysis 

A linear-elastic free vibration analysis of the structure was performed using the finite 

element (FE) program LUSAS (FEA, 1990). The analysis was performed on a model 

which represented the bridge's condition before the repairs. The deck slab was modelled 

as a series of 2-dimensional plate elements (Figure 7.12). All the six spans of the bridge 

were included in the model without making any symmetry assumptions. Each element has 

three degrees of freedom (DOF) - one translation (vertical) and two rotations (about the 

transverse and longitudinal axes)- at each node. 376 quadilateral and two triangular thin 

plate elements were used. The finite element nodes were chosen to either lie at the small 

solid section between two voided segments or at the mid-point (or third points for longer 

segments) of a voided segment. The total number of nodes was 434. The substructure was 

not included in the model. 

At each support node, the DOF in the vertical and rotation about the longitudinal axis 

directions were fully restrained while the third DOF was unrestrained. Although the 

bearings have a small rotational capacity (Mott MacDonald, 1990; 1991 ), the value of this 

capacity is unknown. When the supports were represented as sprung and support stiffness 

values estimated, the results obtained from the analysis were inconsistent. Futhermore, the 

bearing manufacturers were unable to supply stiffness values, in any DOF, for the bearings. 

Therefore, fixed or free conditions were used at the support nodes. Although the bearings 

at abutment G were supposed to allow longitudinal movement, satisfactory results were 

only obtained by fully restraining the longitudinal DOF at this support. Thus, only free 

rotation was allowed at each abutment. Accurate representation of the as-built boundary 

conditions is usually generally difficult when modelling these types of structures. 
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Figure 7.12 Finite element model of Deep Lane bridge 

To obtain reabstic predictions, the inertia and material properties used in the model should 

very closely mirror the values for the existing structure. The inertia of the plain concrete 

section is usually used for the reinforced section if it can be shown (as is usually assumed) 

that the effects of steel reinforcement and concrete cracking compensate each other and 

may therefore be ignored (Lee et al, 1987 and Wills, 1977). However, a statistical analysis 

of inertia data from 82 bridges have shown that steel reinforcement and the asphalt layer 

each has a relative participation of about 6% in the global inertia (Hassan et al, 1993). 

Thus, the concept of effective inertia can be used. The effective inertia of the deck was 

taken to be the inertia of the plain concrete section (primary inertia) modified to account 

for steel reinforcement and other "stiffening elements" _ 

The bridge is constructed of concrete class 4500¥.. which corresponds to a characteristic 

cube strength of 31 N/mm2 at 28 days. The corresponding (28 days) static modulus of 
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elasticity E.,2s varies from 20kN/mm2 to 32kN/mm2 (Mosley and Bungey, 1990). An 

average value of 26kN/mm2 was adopted. Accurately estimating the modulus of elasticity 

is difficult. Not only are code formulae for estimating E • .2s sometimes inaccurate (Baalbaki 

et al, 1992), the modulus of elasticity is time and strain dependent. The dynamic modulus 

of elasticity Ed ( Ed = (E.+ 19) I 1.25, where E. and Ed are respectively the static and 

dynamic moduli at a specified age) was used since previous results (Lee et al, 1987) 

suggest that better agreement between theoretical and experimental results is achieved if 

the dynamic modulus is adopted. Strength enhancement due to the age of the concrete was 

allowed for up to five years. The poisson ratio and density of reinforced concrete were 

respectively taken as 0.2 and 2446 kg/m3 respectively. 

The FE program used did not have a structural optimisation module. Therefore, a simple 

interactive routine was developed, external to the FE program, that improves the analytical 

model by updating given model input parameters until the differences between (analytical 

and experimental) targeted result parameters are minimised. The elasticity modulus and 

effective inertia were the input variables while the natural frequencies were the result 

parameters selected. Further details of the analytical modelling are given in Salawu et al 

(1994). 

7.6 Experimental Results and Comparison with Theoretical Results 

The number of vibration modes obtainable from a finite element analysis is only limited 

by the number of DOF of the model. The fust fifteen vertical modes were computed. 

Generally, the number of measured modes of such a structure will be less than that 

predicted. Seven experimental modes were identified from the measured data. Since tll.e 

analytical model represented the original structure, only data from tests before the repairs 
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are considered in this section. 

Pairing of modes from the analytical and experimental sets was done using mode shapes 

as described later. Since the response of only three out of the six spans was measured, 

analytical modes in which the unmeasured spans dominate were omitted during mode 

pamng. 

Table 7.1 shows a comparison of analytical and experimental natural frequencies. The 

chronological mode order of the experimental set has been adopted in Table 7.1 and will 

be used in subsequent discussions. The table shows reasonable agreement between the 

calculated and measured frequencies. The one major exception is mode 4. The average 

error in frequency (excluding mode 4) is 6.4%. The probable reasons for the relatively 

large difference between the predicted and measured frequency for mode 4 are the possible 

inadequate modelling of the support conditions and the low sophistication of the correlation 

procedure. Though realistic modelling of the boundary conditions is necessary to achieve 

good results, accurate representation of support conditions of built structures is often 

difficult (Baumgartner and W aubke, 1993; Doll, 1994; Hoff and N atke, 1989; Pabst and 

Hagedom, 1994; Ventura et al, 1994). 

Full structural details of the bridge were not available until after completion of the tests. 

This meant that the measurement locations and position of the vibrator were chosen without 

guidance from a pre-test analysis. The main implication of this was that the measured 

points were not fully coincidental with the analytical nodes. Therefore, modal comparison 

using Modal Assurance Criterion (MAC) and Coordinate Modal Assurance Criterion 

(COMAC) - described in sub-section 4.2.1 - could not be fully justified. Thus, mode 

pairing was by visual inspection and overlay plots of the two sets of mode shapes. Only 
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nodes (of the analytical model) on the same line as the measurement points and on the 

measured spans were used. Figure 7.13 shows overlay plots of corresponding experimental 

and (reduced) theoretical mode shapes. The degree of correlation is reasonably good. 

Table 7.1 Comparison of analytical and experimental frequencies of Deep Lane bridge 

Mode 

1 

2 

3 

4 

5 

6 

7 

a = Analytical mode 1 

b = Analytical mode 2 

c = Analytical mode 3 

d = Analytical mode 8 

e = Analytical mode 6 

f = Analytical mode 11 

g =Analytical mode 12 

Experimental 

7.0 

8.4 

9.5 

10.4 

11.4 

19.3 

22.7 

Natural Frequency (Hz) 

Analytical Error(%) 

6.r -4.3 

8.0b -4.8 

9.5c 0 

14.9d 43.3 

12.7" 11.4 

20.2f 4.7 

21.2& -6.6 

201 



(a) 

c D 

(b) 

' c 

(c) 

. . . 

Mode 1: oooo Experimental (7 .0 Hz) 
_ _ Analytical (6.7 Hz) 

0 

E F 

Mode 3: oooo Experimental (9.5 Hz) 
- Analytical (9.5 Hz) 

E 

Mode 4: oooo Experimental (I 0.4 Hz) 
-- Analytical (14.9 Hz) 

Figure 7.13 Comparison of experimental and analytical mode shapes 
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Figure 7.13 Comparison of experimental and analytical mode shapes (continued) 
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Modes 1 and 6 respectively represent the first and second pure bending modes while mode 

4 is the first torsional mode. The other modes involve both pure bending and torsion . In 

the third vibration mode, spans DE and EF are in bending while CD is in torsion . Spans 

CD and DE are in torsion while EF is in bending for mode 5. Mode 7 is similar to mode 

3 except that spans DE and EF are in second bending (EF in torsional bending). Modes 

I , 4 and 6 are symmetrical modes. 

It should be noted that the measurement points on the support lines (C, D, E and F) were 

not actually on the piers (Figure 7.2). This explains why elements of the mode shape 

matrix corresponding to these points are relatively large for some modes. The mode shape 

for mode 2 was not fully experimentally identified because the vibrator was inadvertently 

placed close to a node of this mode. Thus, mode 2 has been omitted from Figure 7.13 . 

7.7 Discussion of Experimental Results 

In this section, results obtained from the two series of tests are presented and discussed. 

The two result sets are compared using the non-parametric and parametric variables 

described in chapters four and five. The progression (in the evaluation of results) from 

sub-section 7.7.1 to 7.7.4 is akin to stages that could be adopted in an integrity assessment 

scheme using vibration testing. 

Before the test results are evaluated, it is necessary to check the level of consistency of 

measured data before differences in them can be exploited. The reliability and consistency 

of the test and analysis procedures adopted in this research were discussed in chapter six. 

As a check on the repeatability and consistency of the measured field data, the response 

at the reference point was measured for each test of each series. Figures 7.14 and 7.15 
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show typical FRFs measured at the reference point. As should be expected, the curves (for 

each series) are almost identical. The degree of sparsity, as measured by the covariance 

(sub-section 6.6.2), of identified natural frequencies and damping values is presented in 

sub-section 7.7.2 

Other factors to consider are the effects of changes in environmental conditions (such as 

temperature and humidity} on the dynamic response of the bridge. Comparison of the 

environmental variables during the test periods is presented in the appendix (Tables A.1 to 

A.4 and Figure A.1 ). The wind speeds were similar while the temperature and relative 

humidity were higher during the second series of tests. Quantitative information on the 

direct relationships between changes in environmental variables and changes in a structure's 

dynamic properties are rare. Experimental results (Askegaard and Langs0, 1986} indicate 

that variation in natural frequency due to ambient variables is negligible when compared 

to the frequency changes observed in deteriorated structures. The values of the changes 

in temperature and relative humidity (during the two tests periods) are not large enough to 

cause significant changes in dynamic parameters. As discussed in chapter three (sections 

3.3 and 3.9}, frequency changes not greater than 5% can be attributed to fluctuations in 

environmental conditions and other sources of error. 

As opposed to frequency, temperature variations could lead to modifications of the damping 

values since the variations may cause changes in length and curvature of the bridge which 

in turn could influence support conditions and thereby damping (Askegaard and Mossing, 

1988). In addition to temperature, windspeed and relative humidity also influence humidity 

transport in the bridge deck and may thereby also change damping (Swamy and Rigby, . 

1971 ). The possibility of damping changes due to envirollplental factors coupled with the 

scatter in reported measured values (chapter three) could make exploitation of damping 
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changes difficult. 

7.7.1 Frequency response function (FRF) 

For each test series, the FRF measured at the reference point, and from points on the 

eastern and western sides of the bridge were added and each resulting function normalized 

with respect to the largest value. Figure 7.16 shows a comparison of the magnitudes of the 

FRF before and after repairs. From the figure, it can be seen that changes in the 

cummulative response functions are detectable thus giving an indication that there has been 

a change in the bridge's condition. It should be noted that the reference point lies within 

the repair zone in span DE. 

Biswas et al (1990) and Richardson and Mannan (1993) suggested that the sum of the 

imaginary part of the FRF shows the differences best. Normalised cummulative curves of 

the squares of the imaginary part before and after repairs are shown in Figure 7.17. For 

completness and comparison, the normalised cummulative curves of the squares of the real 

part are shown in Figure 7.18. The plots also show detectable differences between the two 

states of the bridge. Plots of the squares of the real part appear to give the best indication 

of the differences. Although the curves in Figures 7.16 - 7.18 indicate existence of some 

modification, quantifying the differences is difficult. Further comparison of the modal 

parameters would be necessary to determine which state is "stiffer" and which locations 

were modified. 
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Figure 7.18 Comparison of the squares of the real part Deep Lane bridge 
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7.7.2 Natural frequencies and damping values 

Table 7.2 shows a companson of the natural frequencies and modal damping ratios 

obtained before and after the repairs. The maximum covariance of identified natural 

frequencies is 1.4% while that of the damping ratios is 14.2%. The frequencies reduced 

while there was no definite trend in the damping values. The large scatter usually observed 

in estimated damping values precludes their usage in integrity assessment. This point has 

been discussed in chapter three (section 3.5). 

However, the observation (Agardh, 1991) that marginal change in the modal damping ratio 

implies that the damaged area lies within a nodal line of the corresponding mode shape can 

be used to approximately deduce the repaired areas. Using this criterion, points around the 

nodal lines of modes 2, 6 and 7 (modes with 0% change) would be expected to lie within 

the repair zones. Excluding the mode shape of mode 2 (for reasons explained earlier in 

section 7.6 and later in sub-section 7.7.3), the following points (see Figures 7.4 and 7.19) 

are identified as being affected by the repairs: west side- 5 (span CD), 13 & 14 (span DE), 

23 & 24 (span EF)~ east side- 31 & 32 (span CD), 41 (span DE) and 50 & 51 (span EF). 

Only points 13 & 14 and 41 are close to the affected points ( 11 , 3 8 and 39). Though the 

identification is poor, the approach may be used for a rough initial indication of possible 

damage sites. 
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Table 7.2 Comparison of natural frequencies and damping ratios obtained before and 

after repairs to Deep Lane bridge 

Mode Natural Frequency Viscous Damping Ratio 

Number 
Before After Change Before After Change 

(Hz) (Hz) (%) (%) 

1 7.0 6.8 -2.9 0.016 0.024 50 

(0.004)" (0.003) (0.075) (0.107) 

2 8.4 8.3 -1.2 0.018 0.018 0 

(0.006) (0.014) (0.095) (0.103) 

3 9.5 9.4 -1.1 0.016 0.017 6 

(0.005) (0.004) (0.142) (0.1 05) 

4 10.4 10.3 -1.0 0.017 0.016 -6 

(0.005) (0.004) (0.084) (0.021) 

5 11.4 11.1 -2.6 0.021 0.019 - 10 

(0.003) (0.004) (0.068) (0.1 0) 

6 19.3 19.0 -1.6 0.017 0.017 0 

(0.004) (0.002) (0.108) (0.094) 

7 22.7 22.3 -1.8 0.018 0.018 0 

(0.002) (0.002) (0.083) (0.052) 

• Covariance = standard deviation + mean 
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The maximum frequency reduction is less than 3%. lb.is slight reduction in frequency is 

due to the nature of the repairs. As described earlier, the repairs were mainly concerned 

with increasing, by a short length, a few of the top reinforcement bars at two small sections 

of the deck. Since the concrete volume was also not altered, there were no large changes 

in the overall mass and stiffness of the bridge. Thus, significant changes in frequency are 

unlikely. For the approach adopted in this research, frequency changes less than 5% are 

regarded as insignificant. 

7.7.3 Mode shapes, MAC and MSV 

Since the modifications to the bridge were localized, mode shapes offer a better alternative 

for identifying the altered areas (Salawu and Williams, 1994a). This is due to the fact that 

the greatest changes in mode shapes are expected to occur in the vicinity of the 

modifications. The mode shapes before and after the repairs are compared in Figure 7.19. 

As mentioned earlier, the full mode shape for mode 2 was not identified because the 

vibrator was located close to a node of this mode. Thus, mode 2 has been omitted from 

Figure 7.19 and will not be referred to in subsequent discussions. Figure 7.19 shows 

differences in the mode shapes at the repaired span DE especially for modes 6 and 7. 

However, differences, though to a lesser extent, are also present in spans CD and EF. 
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Figure 7.19 Comparison of mode shapes before and after repairs: Deep Lane bridge 
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(f) Mode 7: ---Before {22.7 Hz ); ·-------· After (22.3 Hz). 

Figure 7.19 Comparison of mode shapes before and after repairs: Deep Lane bridge 

(continued) 
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After detecting changes in the structure's response functions and mode shapes, Modal 

Sensitivity Values (MSV) and Modal Assurance Criterion (MAC) values are useful 

parameters for determining to what extent the different modes have been affected. Details 

of MSV and MAC and their application to damage detection have been discussed in 

chapter four. 

The diagonal elements of the MAC matrix should be 1 if there were no changes in the 

structure since the modes would essentially be the same. All the off-diagonal elements 

should be very close to zero. Figure 7.20 shows the MAC values. The off-diagonal 

elements underlined in the figure merely show that the corresponding modes (1 and 5; 3 

and 4) have a degree of similarity. This can be seen to be the case by observing the mode 

shapes in Figure 7.19. The MAC values of 0.83, 0.83 and 0.73 for modes 3,6 and 7, 

respectively, indicate existence of changes in the bridge and the higher sensitivity of these 

modes (3 , 6 and 7) to the modifications. 

The MSV indicate the relative degree of influence of any alterations on the structure's 

vibration modes. The most affected mode has an index value of 100. Table 7.3 shows 

MSV of the bridge. The table suggests that modes 3,6 and 7 are most affected by the 

repairs. This is similar to the result from the MAC values. 
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BEFORE REPAIRS 

3 0.83 0.53 0.07 0.00 0.09 
(I) 

~ 
< 4 0.70 0.92 0.04 0.02 0.01 
p.. 

~ 5 0.17 0.10 0.89 0.00 0.02 

~ 6 0.01 0.00 0.00 0.83 0.01 

7 0.03 0.00 0.03 0.00 0.73 

Figure 7.20 Modal Assurance Criterion (MAC) values of Deep Lane bridge 

Table 7.3 Modal Sensitivity Values (MSV) of Deep Lane bridge 

Mode MSV 

1 44.9 

3 78.7 

4 48.6 

5 14.4 

6 100 

7 57.4 
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7.7.4 COMAC and Integrity Indices 

The Coordinate Modal Assurance Criterion (COMAC) values obtained at the measurement 

points are shown in Table 7.4. A COMAC value close to 1 indicates good correlation (thus 

no changes), at the measurement point, between the two data sets. Results of tests by 

Creed ( 1989) have suggested that measured mode shape ratios are only repeatable to within 

35% to 40% while Friswell and Penny (1992) and Luber and Lotze (1990) have stated that 

a 20% error in a particular element of the mode shape vector would be typical. In addition, 

obtaining very high quality data from full-scale tests is difficult. Taking these factors into 

account, it is necessary to define a threshold value (for COMAC) below which occurence 

of "defects" at the relevant measurement point can be inferred. A value of 0.8 is suggested 

here for large civil engineering structures. COMAC values less than 0.8 have been 

underlined in Table 7.4. 

From Table 7.4 (and using the criterion just described), points 38, 39, 41 and 50 are 

identified as being within the repair zone. These points can be compared with points 11, 

38 and 39 which actually lie in the repair zone (span DE). The identification of two out 

of three points is reasonably good. It is of interest to note that the two identified points 

lie on the same side as the vibrator (see Figure 7.4). This would suggest that better 

identification could be achieved if the response is measured on the same side as the 

vibrator position, thus requiring at least two (one on either side) vibrator locations. This 

observation also favours using multiple excitation techniques (Allemang and Brown, 1985; 

Zaveri, 1984) in which more than one vibrator is used to simultaneously excite the test 

structure. Multiple excitation provides a better energy distribution, excites all the modes . 

in the range of interest and allows for repeated roots to be detected. However, resource 

constraints usually preclude the use of more than one vibrator since multiple excitation 
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requires sophisticated equipment for excitation and analysis. 

Table 7.4 Coordinate Modal Assurance Criterion (COMAC) values of Deep Lane 

bridge 

Location COMAC Location CO MAC Location CO MAC 

I 0.85 19 0.94 37 0.84 

2 0.90 20 0.96 38 0.61 

3 0.90 21 0.94 39 0.75 

4 0.94 22 0.90 40 0.90 

5 0.96 23 0.90 41 0.68 

6 0.96 24 0.87 42 0.87 

7 0.88 25 0.83 43 0.85 

8 0.95 26 0.93 44 0.82 

9 0.93 27 0.91 45 0.91 

10 0.97 28 0.93 46 0.83 

11 0.94 29 0.95 47 0.84 

12 0.96 30 0.85 48 0.93 

l3 0.95 31 0.90 49 0.97 

14 0.95 32 0.86 50 0.53 

15 0.87 33 0.92 51 0.91 

16 0.96 34 0.92 52 0.85 

17 0.94 35 0.97 53 0.86 

18 0.95 36 0.88 54 0.87 
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A Global Integrity Index of 0.98 was obtained. The larger the difference between the 

Global Index and unity, the higher the degree of "deterioration" experienced by the 

structure. The value of 0.98 further shows that the effect of the remedial works on the 

overall stiffness of the bridge was very minimal. The Local Integrity Indices are shown 

in Table 7.5. The higher the Index, the higher the probability of the corresponding point 

being within the repair zone. Two zones were identified on each side of the bridge i.e. 

westside- points 10, 11 and 12~ points 25, 26 and 27: eastside- points 38 and 39~ points 

52, 53 and 54. Points 25, 26, 27 (westside) and 52, 53, 54 (eastside) are close to support 

line F (see Figure 7.4) and are not within the repair zone. During the second series of 

tests, the slip road to Plymouth (under span EF) was being upgraded and fitted with crash 

barriers. This involved some excavation and drilling close to the piers on support line F 

and could have affected the results. It should however be noted that the effects of this 

road upgrading was not apparent in the results obtained using COMAC. 

The points (10, 11 , 12, 38 and 39) in the other two identified zones contain points 11 , 38 

and 39 which lie within the repaired zones. If results from points close to support line F 

are excluded, based on the reason given in the previous paragraph, the identification is 

satisfactory. Even if all the zones are considered, a closer investigation of the points will 

reveal the correct areas. Detailed investigation of four zones (containing 11 points) is 

cheaper, faster and more efficient than an overall survey of the whole bridge involving 54 

points, assuming the measurement pattern used in the tests is adopted. 
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Table 7.5 Local Integrity Indices of Deep Lane bridge 

WEST SIDE EAST SIDE 

Location Index Location Index 

1 34.1 28 13.5 

2 1.2 29 11.1 

3 38.5 30 3.0 

4 31.5 31 16.9 

5 40.3 32 14.4 

6 5.9 33 5.2 

7 12.5 34 10.4 

8 23.4 35 8.7 

9 29.3 36 12.0 

10 100 37 38.8 

11 68.4 38 62.0 

12 64.1 39 74.2 

13 33 .9 40 17.4 

14 23 .3 41 13.4 

15 22.1 42 57.6 

16 22.3 43 22.8 

17 14.6 44 6.8 

18 20.9 45 25.6 

19 30.0 46 22.2 

20 41.3 47 11.7 

21 42.6 48 10.6 

22 35.1 49 9.0 

23 0.80 50 3.4 

24 25.6 51 3.0 

25 59.1 52 100.0 

26 52.2 53 68.6 

27 'i7_Q 'i4 'i'i.2 

(Global Integrity Index = 0.98) 
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7.8 Conclusions 

Results from the full-scale tests have shown that sufficient excitation forces can be 

generated by the excitation system developed. Dynamic response, as a result of the 

induced excitation, yielded data from which modal parameters were obtained. Good 

correlation, within limits of the available structural details of the bridge, was obtained 

between the measured and calculated natural frequencies and mode shapes. The average 

error between calculated and measured natural frequency (excluding mode 4) is 6.4%. 

More confidence can be placed in future usage, for various purposes, of a validated 

analytical model. 

The natural frequencies of the bridge did not change significantly while there was no 

definite trend in the changes in damping values after structural repairs to the bridge. The 

localised nature of the repairs was the reason for the modest changes in frequency . 

Comparison of the components of the normalised cummulative frequency response function 

was able to give an indication of the changes in the bridge's condition. MAC and MSV 

also indicated changes and suggested the modes that were most influenced by the repairs. 

The mode shapes before and after structural repairs, COMAC values and Integrity Indices 

were found to give good indications of the presence and location of the repairs. The 

incomplete experimental identification of the mode shape for mode 2 has emphasised the 

need for a pre-test analysis so that suitable excitation and measurement locations are 

selected in order that all modes of interest can be observed. 
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CHAPTER EIGHT 

FULL-SCALE TESTING OF HOLWAY ROAD BRIDGE 

8.1 Introduction 

In this chapter, results from forced vibration testing and finite element analysis of Holway 

Road bridge, Taunton, Somerset, are presented and discussed. The bridge was chosen 

because results of a recent structural inspection showed that the deck had inadequate 

bending capacity while the vertical rating of the support bearings (at the abutments) was 

less than full applied vertical loading. The studies reported in this chapter refer to the 

bridge's condition before and after installation of new bearings. It was originally intended 

to conduct another test after strengthening work to improve the deck's bending capacity but 

the date for this work was still undetermined as at the end of this research project. 

As far as the author is aware, results of vibration testing before and after installation of new 

bearings on a highway bridge has not been reported in the literature. It was therefore 

intended to investigate the effects of the new bearings on the bridge's modal parameters. 

Correlation of the experimental results with finite element analysis predictions was also 

conducted to further demonstrate the effects of bearing replacement on the bridge's dynamic 

response and to validate the analytical models. 

8.2 Description of Bridge 

Holway Road bridge is a four span structure that carries an unclassified road over the M5 

Birmingham to Exeter motorway between junctions 25 and 26 (Blackbrook to Chelston 
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section of the M5). The side elevation and deck cross-section of the bridge are shown in 

Figure 8.1. Built in 1971/72, it is of insitu concrete construction with the deck being 

continuous. The spans are skewed at 20° while the square span lengths are 11.8m, 18.2m, 

18.2m and 11. 8m. The carriageway width over the bridge is 6m. Like Deep Lane bridge (chapter 

seven), the deck has circular voids except in the vicinity of the piers and abutments where it 

is of solid section. There are six voids each of diameter 600mm. The overall depth ofthe deck 

is 1 OOOmm. The verges are supported by a cantilever section wbid:t has an average depth of 275mm 

and incorporates a service bay. 

The abutments are of a skeletal type founded on cast insitu concrete driven piles. The deck 

is supported by four bearings at each abutment. At each of the three intermediate support 

positions, there are two columns (piers) which are monolithic with the deck. The columns 

have rectangular cross-section and are founded on piles similar to those used for the 

abutments. Each column is 7.135m in height and has a cross-sectional dimension of lm 

x 0.5m. 

8.3 The Repair Work 

Results of structural inspections carried out in 1990 by Somerset Consultant Engineers, 

SCE (the consulting division of the Environment Department, Somerset County Council) 

revealed that the deck had inadequate assessment live load capacity due to insufficient 

reinforcement to resist the midspan bending moments in spans 1 and 4. It was also found 

that both abutments have rotated away from the motorway (see Figure 8.1) causing the 

bearings to exceed their maximum allowable movement. At the most heavily loaded 

bearing, the dead load was found to exceed the permissible bearing capacity by 14%. Lane 

and weight restrictions have been in force on the bridge since the inspection. 
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It was decided to replace the bearings and increase the bending capacity of the deck by 

bonding plates to the deck soffit in spans 1 and 4. Only the bearing replacement (which, 

in this chapter, will sometimes be referred to as the repairs) scheme is described in this 

section since no firm date has been fixed for the plate bonding contract (it was originally 

scheduled for autumn/winter 1993). In addition to the obvious requirement that the vertical 

rating of the new bearings exceed the applied vertical load, the bearings were also required 

to allow greater longitudinal movement, of up to say 50mm. 

The sequence of work started with jacking of the bridge deck up to a level that would 

allow removal of existing bearings and installation of new ones. The jacking was 

conducted such that differential lifts did not exceed I.Omm. The existing bearings were 

removed and the concrete in the existing plinths broken out. Existing plinth reinforcement 

was straightened, new reinforcement cages added and new plinths constructed. The new 

bearings were installed and the deck lowered. After the (new) plinth concrete grout and 

mortar had reached the specified strength, load was transferred from the jacks onto the new 

bearings. The replacement work was done in January/February 1994. 

8.4 Finite Element Modelling and Pre-Test Analyses 

Two-dimensional linear elastic models of the bridge were created with plate (element type 

QF4) and grillage (element type GRIL) elements using the finite element program LUSAS. 

The grillage elements were only used to model the parapet upstand beams. Free vibration 

analyses were conducted on models which represented the bridge's condition before and 

after bearing replacement. Only the deck slab was modelled and all the four spans were 

included (Figure 8.2). Each element has three degrees of freedom (DOF)- one translati~n 

(vertical) and two rotations (about the transverse and longitudinal axes)- at each node. 396 
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quadilateral plate elements, 72 grillage elements and 444 nodes were used for each model. 

The elements in the finite element mesh had varying thicknesses to represent the different 

stiffnesses of sections (solid parts, verges, u_pstand beam and voided parts) of the bridge 

deck. Similar considerations as for Deep Lane bridge (chapter seven - section 7.5) were 

adopted for the effective material and inertia values. The deck's longitudinal and transverse 

stiffnesses were assumed to be equal i.e. orthotropic. lhis assumption is acceptable since 

the depth of the voids does not exceed 60% of the overall depth of the deck (Hambly, 

1991 ). A similar orthotropic behaviour was assumed for Deep Lane bridge. 

BRISTOL SIDE 

ABUTMENT A 

EXETER SIDE 

TITLE • ANALYSIS OF HOLWAY BRIOOE · PLATE OF4 AND ORILLAOE ORIL ELEMENTS 

Figure 8.2 Finite element model of Holway Road bridge 
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At the abutments, free movement was allowed for the rotational DOFs while the vertical 

DOF was represented as either sprung or fully fixed. The built in piers were represented 

by a combination of vertical and rotational springs at the appropriate support nodes. The 

spring stiffness values were obtained from SCE. 

Pre-test analyses were conducted on two different models of the bridge so as to : 1) obtain 

suitable measurement locations; 2) have a 'feel' for the nature and magnitudes of the 

changes likely to result due to the repairs; 3) identify modes most likely to be influenced 

by the repairs; and 4) choose a position for the vibrator so that the modes of interest can 

be observed. The first model represented the bridge before the bearings were replaced. 

In this model, the vertical DOFs at the abutments were represented as sprung. The second 

model simulated conditions after the repairs and had the vertical DOFs at the abutments 

fully fixed . This boundary condition was adopted since, according to the manufacturers 

and SCE, the stiffness of the new bearings is such that full vertical restraint is 

recommended. 

Table 8.1 shows the modal frequencies and diagonal elements of the MAC matrix (MAC 

has been discussed in sub-section 4.2.1) from the two models. The frequencies increased, 

as would be expected, with the largest increases occuring within the frequency range 11Hz 

- 16Hz. Correlation between corresponding mode shapes, as represented by values in the 

last column of Table 8.1, decreases appreciably after the third mode. The full MAC matrix 

(Table 8.2) shows that cross-correlation of modes, represented by large values of off­

diagonal elements (italized in the table), has occured. This further demonstrates the 

significance of accurate representation of boundary conditions. 
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Table 8.1 Comparison of frequencies for partial and full vertical restraint at 

abutments 

Mode Frequency (Hz) Diagonal 

Number Elements of 

Sprung Stiffness Full Fixity Difference 
MAC Matrix 

(126 x 106 N/m) (%) 

I 5.90 6.06 5.7 1.0 

2 8.12 8.56 5.4 1.0 

3 11.05 12.58 13.8 1.0 

4 11 .98 13.99 16.8 0.18 

5 12.18 14.05 15.4 0.58 

6 12.48 14.94 19.7 0.26 

7 14.10 20.31 44.0 0.01 

8 15.71 21.42 36.4 0.0 

9 20.17 21.62 7.2 0.03 

10 21.34 22.43 5.1 0.01 

Table 8.2 MAC matrix for partial and full vertical restraint at abutments 

Partial Vertical Restraint 

1.0 0.1 0.65 0.02 0.05 0.58 0.0 0.02 0.01 0.22 

·~ 
0.1 1.0 0.44 0.1 0.07 0.05 0.05 0.0 0.16 0.03 

0.06 0.82 1.0 0.01 0.11 0.07 0.01 0.02 0.01 0.22 ~ . 
!I) 
11) 

0.01 0.0 0.15 0.18 0.80 0.06 0.0 0.0 0.38 0.04 ~ 

ta 
(.) 0.01 0.0 0.05 0.44 0.58 0.13 0.01 0.01 0.26 0.07 ...... 
t: 
11) 

> 
0.0 0.0 0.22 0.45 0.07 0.26 0.11 0.0 0.04 0.46 

~ 0.06 0.61 0.19 0.11 0.10 0.02 0.01 0.08 0.36 0.07 
""S 
~ 0.8 0.09 0.07 0.04 0.02 0.5 0.0 0.00 0.02 0.13 

0.0 0.02 0.0 0.0 0.02 0.05 0.89 0.08 0.03 0.10 

0.01 0.0 0.01 0.01 0.0 0.00 0.08 0.93 0.25 0.01 
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Results from the pre-test analyses suggested that measurable changes should occur in the 

bridge. From the experience of using the data acquisition and analysis systems (chapter 

six), it was realised that not more than six to seven modes within the frequency range 0 -

25 Hz are likely to be identified. The analyses results were therefore used to select 

measurement points and vibrator location that would allow reasonably accurate 

identification of six modes. It was also considered important to identify a mode within the 

14Hz- 17Hz frequency range (most affected range shown in Table 8.1}. Using pre-test 

analyses in this way to select measurement points also meant the points could be selected 

to coincide with some of the analytical nodes and thus facilitate easy comparison of 

experimental and theoretical modal models. 

8.5 Measurement Procedures 

Two series of full-scale tests were conducted on the bridge. The equipment, experimental 

and data analysis procedures adopted for each series were the same and have been 

described in chapters six and seven. A test frequency range of 0 - 25 Hz was adopted as 

mentioned in the last paragraph. The first series of tests was conducted on November 2nd 

and 3rd 1993 while the second series was carried out on March 21st and 22nd 1994. The 

first series was initially scheduled for October 26th and 27th 1993. After setting up the 

equipment and operating them for about 40 minutes on October 26th, the vibrator control 

unit stopped working and all efforts to get it working failed. The tests were thus called off 

on the 27th and redone the following week after repairing the control unit in the laboratory 

at Plymouth. This problem was one of many encountered and illustrates the difficulties of 

full-scale field testing. 

The measurement locations used are shown in Figure 8.3. The vibrator (see Figure 8.3b) 
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was placed on the roadway rather than the footpath to avoid the input force being damped 

as a result of the presence of granular fill underneath the footway (see Figure 8.1 ). For the 

same reasons, the accelerometers were placed just by the road edge (Figure 8.3b ). 58 

measurement points (29 on either side of the bridge deck) were used. The notation adopted 

was to prefix an N or S (for North and South respectively) before the point number 

depending on which side of the bridge it (point) lies. Since the bridge is symmetrical, the 

'density' of measurement points in spans 3 and 4 is half that of spans 1 and 2. The few 

points used in spans 3 and 4 were only taken to allow identification of unsymmetrical mode 

shapes. Use of such a pattern of measurement points was further influenced by results 

from the initial theoretical analyses which suggested that any changes in mode shapes 

would be pronounced in the outer spans, as should be expected. A reference point (shown 

as REF in Figure 8.3a) was also used in the same manner as described in the previous 

chapter. Typical plots of the response functions obtained from the tests are shown in 

Figure 8.4 while sample curve-fits are shown in Figure 8.5. 

8.6 Discussion of Experimental Results 

The experimental results obtained before and after the bearings were replaced are presented 

and discussed in this section. The procedure followed is similar to that used in section 7.7. 

Measurements (typical FRFs are shown in Figure 8.6) from the reference point were used 

to check on the repeatability and consistency of the procedures. As should be expected, 

the curves in Figure 8.6 are almost identical since they refer to the same location. 
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30 

The comments in the third and fourth paragraphs of section 7.7 as regards the effects of 

ambient conditions on dynamic parameters are equally appropriate here. The variation in 

environmental variables at the nearest weather station (Nettlecombe, a distance of about 

40km) to the bridge during the test periods is shown in the appendix {Table A.5). Only 

daily weather summaries are available for the station. The conditions were not disimilar 

and were not expected to have significant effects on the identified parameters. 
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8.6.1 Frequency response function (FRF) 

Figure 8.7 shows a comparison of the components of the normalised cummulative (for all 

measurement points) FRF before and after bearing replacement As was noticed in sub­

section 7. 7.1, plot of the squares of the real part appears to give the best indication of any 

changes in the bridge's condition. The differences seem to be more pronounced for modes 

occuring after ll.OHz, showing some similarities to results of the pre-test analyses (see 

section 8.4 ). 

Increasing the bearing stiffness might be expected to lead to some reduction in the vibration 

level. This would mean the ordinates of the curves corresponding to the second test series 

should be somewhat lower than those of the first series. This trend is displayed for the 

higher modes (greater than ll.OHz) in the amplitude and imaginary components plots. The 

real part plot does not show a consistent trend. Thus, the plots merely show changes in 

the two states without giving any firm indication of which state is stiffer. The changes 

could also have been due to variations in environmental factors and further analysis of the 

modal parameters is necessary . 

8.6.2 Natural frequencies and damping values 

The natural frequencies and modal damping ratios obtained are shown in Table 8.3. There 

was no significant changes in frequency, an average increase of 1. 7% being recorded. The 

main conjecture from this result is that the vertical stiffness of the new bearings is not 

likely to be high enough to provide full vertical restraint at the abutments. As previously 

shown in section 8.4, condition of full fixity should lead to increases higher than those 

observed. This will be further discussed in section 8.7. 
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Table 8.3 Comparison of natural frequencies and damping ratios obtained before and 

after bearing replacement on Holway Road bridge 

Mode Natural Frequency Viscous Damping Ratio 

Number 
Before After Change Before After Change 

(Hz) (Hz) (%) (%) 

1 6.3 6.3 0.0 0.026 0.028 8 

(0.003)" (0.005) (0.044) (0.047) 

2 8.2 8.1 -1.2 0.032 0.030 -8 

(0.002) (0.004) (0.024) (0.04 1) 

3 11.2 11.2 0.0 0.027 0.024 -11 

(0.004) (0.004) (0.038) (0.044) 

4 12.7 12.8 0.8 0.029 0.033 14 

(0.004) (0.004) (0.042) (0.058) 

5 17.0 17.7 4.1 0.027 0.027 0 

(0.018) (0.013) (0.065) (0.069) 

6 20.3 19.9 -2.0 0.030 0.038 21 

(0.006) (0.007) (0.060) (0.055) 

• Covariance = standard deviation + mean 

Increase in bearing stiffness would be expected to reduce the modal damping ratios (section 

3.5). Only modes 2 and 3 showed decreased damping ratio with a net (all modes) increase 

of 24% being observed. This further suggests that the stiffness values (of the new 

bearings) are not as high as was expected. 
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8.6.3 MAC, MSV and Mode Shapes 

Tables 8.4 and 8.5 respectively show the MAC matrix and MSV (sub-section 4.2.1) of the 

bridge for the two series of tests. The diagonal elements of the MAC matrix are all close 

to 1.0, suggesting that the conditions of the bridge during both test series are not 

significantly different. The MSV suggest that modes 3, 4, 5 and 6 are those most affected 

by the repairs. This is similar to the results from the MAC values and FRF plots shown 

in Figure 8.7 (sub-section 8.6.1 ). 

Table 8.4 Modal Assurance Criterion (MAC) values of Holway Road bridge 

Mode Before Bearing Replacement 

Nnmher 
1 2 3 4 5 6 

After I 0.98 0.11 0.13 0.43 0.27 0.04 

2 0.14 0.99 0.69 0.07 0.23 0.13 
Bearing 

3 0.11 0.62 0.97 0.23 0.18 0.06 

Rep lac- 4 0.47 0.06 0.20 0.97 0.38 0.02 

5 0.26 0.20 0.20 0.46 0.94 0.23 
ement 

6 0.04 0.12 0.07 0.03 0.16 0.95 

Table 8.5 Modal Sensitivity Values (MSV) of Holway Road bridge 

Mode Number MSV 

1 30.1 

2 33.9 

3 78.1 

4 79.1 

5 49.2 

6 100.0 
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The mode shapes before and after bearing replacement are compared in Figure 8.8. The 

two sets of mode shapes are similar with the significant changes occuring in the end spans, 

particularly for modes 5 and 6. Increased vertical stiffness (of the bearings) would be 

expected to reduce the mode shape amplitude close to the abutments. Tills behaviour is 

displayed in the mode shape (span AB) of mode 5. Since the mode shape amplitude, 

before the repairs, at the abutments for the other modes were not too large, the 

improvements due to new bearings (as displayed in mode 5) are not well manifested. 

8.6.4 COMAC values and Integrity Indices 

COMAC values and Local Integrity Indices are shown in Table 8.6. Only points S25, N28 

and N29 have COMAC values less than 0.8 (0.8 is the value below which changes can be 

inferred- see sub-section 7.7.4). Two (N28 and N29) of the three points are close to the 

east abutment (see Figure 8.3). However, the other points (Sl , S29 and NI) close to the 

abutments are not identified. 

Only three points (S25, N23 and N29) have Local Integrity Indices greater than 50 with 

just one (N29) of them close to the abutment. The other Indices are significantly lower as 

would be expected for all points except those at the abutments. Combining results from 

the two parameters, only the east abutment can be suspected of having been modified. A 

globaJ Integrity Index of 1.03 obtained indicates a marginal increase in the overall stiffness. 

These results further suggest that the stiffness of the new bearings is not as high as the 

designers thought. 
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Table 8.6 COMAC values and Local Integrity Indices 

SOUTH NORTH 

Point CO MAC Local Index Point CO MAC Local Index 

S1 0 88 24 2 N 1 100 3_9 

S2 0.93 14 3 N2 0.99 7.6 

S3 0.94 6.3 N3 0.98 0.4 

S4 0.95 23 3 N4 0 97 5.7 

S5 0 98 9.4 N5 0.99 5_2 

S6 0_95 17.4 N6 1.00 7_0 

S7 0 97 3_5 N7 1.00 5.1 

SR 0 98 29 N8 0_95 28 2 

S9 0 99 10 1 N9 0 84 11_3 

SIO 0.99 18.7 N10 0.98 20 1 

s 11 0.98 18.7 N ll 0.96 18 5 

S12 0.99 17 5 N 12 0 97 6.8 

Sl3 0 99 1.9 N13 0 98 1.8 

S14 100 0 2 N14 0 99 22 1 

S 15 0 99 1 5 N15 0.98 412 

S16 0 98 58 N 16 0.98 40 7 

S17 0 98 74 N 17 0_95 425 

S18 0.98 10.9 N18 090 42_7 

Sl9 0.90 4.2 N19 0 85 18 1 

S20 0.90 11.4 N20 0 98 67 

S21 0 94 17 1 N21 0 94 29 

S22 0 98 28 8 N22 0_98 37.8 

S23 0.98 27 1 N23 0_98 100.0 

S24 0.85 100.0 N24 0 99 12 

S?.'l 0.78 1 7 N25 0 98 L3 

S26 0_84 12.4 N26 0 90 36_6 

S27 0_92 22_0 N27_ 0 88 22 5 

S28 0 91 49 N28 0.79 64 

S29 0.84 29.5 N29 0.60 54.1 

(Global Integrity Index = 1.03) 
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8.7 Comparison of Analytical and Experimental Results 

The first ten analytical modes were computed using models corresponding to the two states 

of the bridge. The mode shapes were visually compared with those of the experimental 

modes and six matching pairs identified. Comparison of the frequencies (for the situation 

after the repairs) in Tables 8.1 and 8.3 shows that the experimental model does not 

correspond to a condition of full vertical fixity at the abutments. The simple updating 

routine mentioned in section 7.5 was used to obtain a more realistic value of the bearing 

stiffness. A value of 567 x 106 N/m (as compared with 126 x 106 NI m for the old bearings) 

was obtained and subsequently used in the analysis instead of full fixity . 

The analytical and experimental natural frequencies are shown in Table 8. 7. Average errors 

of -1.4% and 6% were respectively obtained for the situations before and after bearing 

replacement. The table shows a generally good agreement between the frequencies . The 

errors for the condition before the repairs are lower since the stiffness values were more 

accurately known. 

The amplitudes (vertical components only) of the analytical mode shapes at nodes 

corresponding to the measurement points were extracted to produce reduced models for 

comparison with the experimental models. The MAC matrices obtained are shown in 

Tables 8.8 and 8.9 while Table 8.10 shows the MSV. The values in the tables show the 

modes to be well correlated. The only (minor) exceptions are modes 5 and 6 (before 

repairs - Table 8.8) and 3 and 6 (after repairs - Table 8.9). The results from MSV 

computations are identical to the MAC results; further showing the usefulness of MSV as 

a means of detecting correlated mode pairs and thus its potential application in model 

updating procedures. 
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Table 8.7 Comparison of analytical and experimental frequencies of Holway Road 

bridge 

Mode Natural Frequency 

Number 
Before Bearing Replacement Mter Bearing Replacement 

Measured Analytical Change Measured Analytical Change 

(Hz) (Hz) (%) (Hz) (Hz) (%) 

1 63 5 9" -6 3 63 6 o• -4 8 

2 8_2 8 lb -12 8_1 8 5b 4.9 

3 11 2 12 2" 8_9 11.2 ~3_6" 2 1 4 

4 12 7 12 5d -L6 12.8 14 5d 133 

5 17.0 15.7° -7 6 17 7 17 6° -0 6 

6 20.3 20.2f -0.5 19.9 20.3f 2.0 

a - Analytical mode 1; b - Analytical mode 2; c - Analytical mode 5 

d - Analytical mode 6; e- Analytical mode 8; f - Analytical mode 9 

Table 8.8 MAC matrix for analytical and experimental models before bearing 

replacement 

Experimental 

Mode 

Analytical 

6 0.04 0.12 0 .06 0.02 0.18 0.76 
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Table 8.9 MAC matrix for analytical and experimental models after bearing 

replacement 

Experimental 

Analytical 

6 0.06 0.14 0.05 0.01 0.16 0.78 

Table 8.10 MSV for analytical and experimental models 

Mode Number MSV 

Before After 

1 45 45 9 

2 79 35.0 

1 393 100.0 

4 16.7 6.3 

5 44.4 14 2 

6 100.0 55.6 

The mode shapes are compared in Figures 8.9 and 8.10. The figures show a good degree 

of correlation except for modes mentioned in the previous paragraph. Modes 1 and 2 are 

the first and second symmetrical bending modes while modes 3 and 4 are the first and 

second symmetrical pure torsion modes. Modes 5 and 6 are torsional-bending modes. In 

mode 5, the end spans are in torsion while the middle spans are in first bending. The 

middle spans are in second bending in mode 6 with one outer span in pure torsion and the 

other in pure bending. 
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8.8 Conclusions 

Field results presented and discussed in the chapter have further shown the viability of 

using dynamic testing to validate theoretical models of civil engineering structures. The 

average errors in natural frequency from analytical and experimental studies of two 

different conditions of the test bridge were -1.4% and 6% while the mode shapes were well 

correlated. The new parameter MSV introduced in chapter four has also been shown to be 

potentially useful in model updating procedures. 

Replacing the bearings at the bridge's abutments did not significantly increase the natural 

frequencies (of the modes identified) although a marginal increase in global stiffness was 

obtained using the Global Integrity Index. Comparison of components of the normalised 

cummulative FRF suggested that the modes with natural frequencies greater than ll.OHz 

were more sensitive to the repairs. The same result was also obtained from MSV 

computations. 

COMAC and Local Integrity Indices were only able to indicate one of the abutments as 

having possibly been modified. All the results obtained firmly indicate that the stiffness 

of the new bearings are not as high as assumed by the designers. Specifically, the new 

bearings were found to be about 4Yl times stiffer, in the vertical direction, than the old 

ones. However, they allow more horizontal movement. 
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CHAPTER NINE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

In this chapter, brief summaries of, and some conclusions from, the work described in the 

thesis are presented. Some recommendations for future work on integrity assessment using 

vibration data are also given. 

9.1 Full-Scale Testing 

Results from full-scale testing of civil engmeenng structures add to the database on 

structural performance and provide information that can be used to monitor serv1ce 

behaviour of built structures. The information obtained from the field tests (chapters seven 

and eight) conducted during the project will increase the knowledge base on dynamic 

behaviour of similar structures. 

The review of full-scale dynamic testing of bridges presented in chapter two showed that 

forced vibration testing produces data from which more accurate (as compared with ambient 

testing) system and modal parameters can be obtained. Forced vibration testing was 

therefore adopted for the field tests conducted. A hydraulic excitation system was 

developed for inputing time-varying forces into the test structures. The system (described 

in chapter six) can be used to induce vertical excitation of highway bridges, long-span floor 

slabs and similar structures. The maximum force and stroke amplitude that can be 

generated are respectively ±5kN and 300mm. The vibrator is robust, can be easily. 

assembled and dismantled on site, and allows utilization of any type of waveform as the 

input signal. The best operating frequency bandwidth is 5 - 25 Hz. Within this range, the 
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vibrator produces stable output signals and does not generate unwanted motion. Response 

functions obtained from field application of the system are satisfactory. 

The vibration modes identified from the results of tests conducted were generally in the 

range 5 - 25 Hz while the damping values, as a percentage of critical damping, ranged from 

1.6% to 2.4% for Deep Lane bridge, and 2.4% to 3.8% for Holway Road bridge. The 

fundamental natural frequencies were respectively 7.0 Hz and 6.3 Hz for Deep Lane and 

Holway Road bridges. These values are in accordance with previous measurements 

reported in the literature. 

The mode shape for the second mode of Deep Lane bridge was not completely identified 

because the vibrator was inadvertently placed close to a node of this mode. For Holway 

Road bridge, full structural details of the bridge were available and initial exploratory 

analysis was conducted to identify modes likely to be affected by the repair works and 

appropriate measurement points. The initial analysis was very useful for the successful 

conduct of the tests. These observations emphasise the need for some form of pre-test 

analysis so that suitable measurement locations are selected in order that all modes and 

features of interest can be observed. 

9.2 Analytical Model Validation 

Validation of analytical models using test data helps to increase confidence in future usage 

of the models. With the prevalence use of various analysis and design software, many of 

which are not quality assured, it is now more important to check actual behaviour of built 

structures so that mathematical models are adequately verified. An analyst will have more 

confidence in using theoretical models that have been experimentally verified. 
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Finite element models of the bridges tested were correlated with and validated by the 

results from the field tests. The correlation and validation are valid within the test 

frequency range, limits of modelling assumptions and experimental errors. The average 

error between predicted and measured natural frequencies for both bridges was less than 

7%. For Deep Lane bridge, the error in the natural frequency (calculated against measured) 

for the 4th mode was quite large ( 43% ). This exceptional error was most likely due to the 

posssibly inadequate modelling of the support conditions since full structural details of the 

bridge were not available. Good agreement was obtained between the calculated and 

experimental mode shapes. The results also indicate that one of the abutments does not 

provide free longitudinal movement as was originally designed. 

Analytical results for Holway Road bridge show that the stiffness of the new bearings at 

the abutments are not as high as was assumed in the design. Overall, the results (from both 

bridges) demonstrate the usefulness of vibration testing as an analytical model verification 

tool. It is however very important that careful consideration be given to modelling of the 

boundary conditions and possible sources of experimental errors. An immediate application 

of the studies would be in the current assessment programme for highway bridges. If a 

verified model of a bridge is available, then, a more rational analytical investigation of the 

capacity of the bridge to carry increased loading can be conducted. 

9.3 Structural Assessment using Vibration Data 

Damage in a structure causes changes in the dynamic properties of the structure. A critical 

review of the literature (chapter three) revealed the existence of various techniques for 

relating structural condition and changes in dynamic parameters with the aims of detecting, 

locating and quantifying damage. Changes in natural frequencies, response fl.Ulctions and 
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damping (in some cases) can be used to indicate occurence of structural degradation. 

Location and quantification of damage is more difficult and may require additional 

information (typically mode shapes and system matrices). Most of the available methods 

of damage detection are either limited to specific structural types (or damage event) or 

require sophisticated models and extensive computations. 

Performance evaluation of some damage detection methods (presented in chapter four) 

suggested that the damage location process could be improved if appropriate modes are 

included in the computations. The appropriate modes would usually be the ones most 

affected by damage. A new function, Modal Sensitivity Value MSV, has been proposed 

(chapter four) for identifying damage sensitive modes. The function uses both frequency 

and mode shape information and its viablility was demonstrated using both simulated and 

experimental data. Application of the function to data obtained from field testing of 

Holway Road bridge showed its potential as a means of identifying correlated mode pairs 

from sets of analytical and experimental results. 

A damage detection and location method, Integrity Index Damage Location method, which 

is applicable to any structure was also proposed (chapter five). The method requires 

minimal computations and can be configured for specific structural forms, if desired. Any 

form of structural degradation can be detected and the number of measurement points 

required depends on how exact the fault location is to be identified. If only structural 

integrity is to be assessed, without the need to locate faults, only one measurement point 

is needed. The method was shown to be satisfactory (on both simulated and experimental 

data) in predicting loss or gain in structural integrity as a result of stiffness changes and 

also indicating areas affected by damage/defects. 
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If desired, the Integrity Index method can be used as a pattern recognition tool, especially 

for pre-cast products or similar structural forms. In such applications, the Global and Local 

Integrity Indices for various faults, usually associated with the type of structure, are 

computed and stored in a data base. A simple algorithm can be developed for this task. 

The Indices would have been correlated with strength properties of the structure so that 

measurements (and the Indices calculated from them) can be compared with the database 

in order to determine residual strength. The procedure will provide a simple and efficient 

diagnostic tool for assessment engineers. 

COMAC was found to be useful for identifying damage location although the damage 

position in the analytical cantilever beam (chapter four) was not well defined. The 

limitation with COMAC is that differences between the mode shapes at a measurement 

point become averaged over all the modes. For the Integrity Index method proposed, these 

differences were magnified by including natural frequencies and weighting factors in the 

identification algorithm. It was found that successful utilization of COMAC for damage 

location requires defining threshold values below which damage can be inferred. A value 

of 0.8 was suggested for large civil engineering structures. 

The studies pressented in chapter four also showed that model updating and system 

identification techniques can be used for damage detection and location. This approach is 

however limited by the fact that model updating methods tend to spread the effect of 

damage around the structure (as represented by the system matrices), making damage 

localization difficult. Futhermore, there is no unique solution to the problem of obtaining 

a set of system matrices from a set of incomplete measured data that would realistically 

represent the structure. 
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The natural frequencies of the bridges tested did not change significantly (less than 5%) as 

a result of repairs carried out on the bridges. The localised nature of the repairs was the 

reason for the modest changes. There was no definite trend to the changes in damping 

values. The results from Holway Road bridge was used to deduce that the vertical stiffness 

of the new bearings is about 4Y2 times that of the old ones. 

Comparison of the components of the normalised cum.mulative frequency response function 

was able to give an indication of the changes in the bridges' condition. The real component 

was found to manifest the changes most. The MAC matrix and MSV also indicated 

changes and suggested modes that were most influenced by the repairs. 

Mode shapes before and after structural repairs, COMAC values and Integrity Indices gave 

good indications of the presence and location of the repairs. For Deep Lane bridge, two 

of the affected three points were detected although two spurious locations were also 

identified. Considering that 54 measurement points were involved, the identification was 

reasonably good. One of the two abutments at which the bearings were replaced was 

identified on Holway Road bridge. 

In practical applications, the effects of changes in environmental conditions (such as 

temperature and humidity) on the dynamic response of the structure may have to be 

considered. For the bridges investigated, the environmental conditions during the test 

periods were not disimilar. Assigning specific values to some of these (environmental) 

events could be difficult as their effect would be dependent on equipment type, test 

procedures, type and location of structures. These points were discussed in chapter three. 

Thus, using threshold values for the damage identification parameters is possibly the best 

(until sufficient numerical information are available) way of accounting for environmental 

258 



factors, experimental errors and inaccuracies in data analysis. The values used should be 

chosen to reflect the importance of the different variables and the degree of accuracy 

required. 

9.4 Recommendations for Future Work 

The procedures exploited in this study can provide useful information as regards the 

presence, location and extent of damage in a structure. A qualitative assessment of the 

structure's condition can also be made depending on the quality of the measurements. 

However, they are not likely to provide quantitative results that can be used for strength 

evaluation. It would be necessary to relate dynamic parameters to strength and stiffness 

properties of the structure so that changes can be directly linked to load carrying capacity. 

Research (involving both experimental and analytical work) into this aspect of structural 

assessment using vibration testing is required. Another factor that needs to be addressed 

is the possibility of using results from one series of tests for assessment since current 

methods require at least two series of tests - one on the pristine structure and another after 

a period of time. This becomes important when information on the current state of the 

structure is required and dynamic parameters from prior measurements are unavailable. It 

is also desirable to conduct long term investigations into the relationships between changes 

in ambient conditions and dynamic properties. 
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APPENDIX 

METEOROLOGICAL DATA DURING FULL-SCALE TESTS 

Plymouth Weather Station (for Deep Lane bridge): Pages 280-282 

Nettlecombe Weather Station (for Holway Road bridge): Page 283 
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Ta ble A.l Environmen tal varia bles for Wednesday, 14th October 1992 

Time Wind Temp. ("C) Rainfall Relative 

(GMT) 
Direction ("; Speed <=> Humidity 

clockwise (knots) 
(%) 

from 

(l(liQ_ D~WjJ 0 "'~ nn R7 

01SO 14n 1 "'"' nn !IQ 

0150 10 0 4 7 0 0 on 

0350 100 0 ~7 00 RQ 

0450 140 0 61 00 R7 

os so 11n 0 f..7 nn on 

0650 270 0 7{, 00 Rr. 

07SO 110 1 !!1 nn S!'l 

0850 100 0 07 00 R~ 

09SO ?RO 5 1n 7 no 71'. 

IOSO 270 9 11 1 nn 74 

11.5{) 270 11 11 4 00 71 

1250 11n 12 11 1 on 71'. 

11SO ?QO 11 11 7 00 7"1 

14SO ?00 14 11 6 ''~"" 7~ 

1550 ?RO 1{, 11 1 ,,~,.,.. 70 

1650 no 1 ~ 111 IT~f'P 77 

1750 2Ro· 11 11 0 tT~I' .. RO 

1RSO 770 1 ~ 1 n ~ ,,~,.,. ~~~ 

1950 270 1 s 11 1 · tr~,.,. RO 

2050 770 1 ~ 1n 7 on on 

? I SO ?70 11'. 1n.! 0? Qd 

??SO 270 13 97 0? 01 

21SO 140 8 00 1 0 QS 

GMT - Greenwich Mean Time 
The data refer to measurements made during the hour ending at the times shown. 
trace c rainfall less than 0.2mm but greater than O.Omm 

Table A.2 Envir onmental variables for Thursday, 15th October 1992 

Time Wind Temp. ("C) Rainfall Relative 

(GMT) (mm) H umi dify 

Direction ("; Speed 
(%) 

clockwise (knots) 

from nonh) 

ooso . 340 8 R{, lr~f'P 87 
0150 140 10 76 00 7R 

0250 110 10 6 6 o n 76 

0350 320 s 60 on 78 

0450 320 5 {, 7 07 RO 

0550 'lSO 9 6 I 0 2 RO 

0650 320 6 S R 00 RI\ 

07SO 320 11 64 tr~f'P R1 

0850 110 11 7 8 no 7 ~ 

0950 330 14 94 00 1\1\ 

IOSO 340 19 97 trace 6R 

11 so 350 18 R9 trace 74 

1250 3_40 15 R6 I 0 73 

1350 120 12 9 8 lr>I'P 66 

1450 140 I? 9.0 ,~,. .. 1\S 

1550 330 10 R7 00 64 

1650 330 12 R I 00 65 

1750 140 5 6 8 no 71 

1850 330 7 1\1 00 77 

1950 140 5 55 on RO 

70SO 340 7 58 nn 81 
?ISO 340 4 4 R 0 0 86 

2250 360 1 1 s 00 91 

2350 60 1 23 00 93 

GMT - Greenwich Mean Time 
The data refer to measurements made during the hour ending at the times shown. 
trace • rainfall less than 0.2mm but greater than O.Omm 
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00 

Table A.3 Environmental variables for Tuesday, 15th M ay 1993 

Time Wind Temp. (0 C) Rainfall Relative 

(GMT) (mm) Humidity 

Direction ("; Speed 
(%) 

clockwise (knots) 

from north) 

oo~o 30 2 12.4 00 94 

01~0 ?0 0 1? ~ 00 94 

0250 10 0 12 5 00 91 

0350 150 0 12 1 00 94 

Od~O 220 0 12 2 00 95 

o~so ?10 0 1? R 00 93 
01';~0 80 4 15 1 00 81 

O?SO RO 1? 119 1? 95 

ORSO 70 1' 14 1 Ol'i 91 

no~n 80 11 14 0 16 95 

10~0 70 11 14 8 1 6 92 

11 sn RO 1d 1 ~ 7 trace 87 

1250 RO 111 17 1 00 RO 

11~0 90 18 17.2 00 80 

14SO 90 17 11'i 1 0 0 85 
~~~o 90 Id 17 2 00 82 

11\SO RO 17 162 trace 88 

1750 90 11'i 1 ~' Od 94 
1850 90 1 s 1 ~ 1 07 95 
1 9~0 QO 13 14 8 04 96 
?n~n RO 11 14 s 0? 9S 

21 so 110 1? 14 R tr~ ... ,. 92 
??~0 RO 11 15 1 04 94 
?1~0 70 1? 1 ~ 7 100 96 

GMT - Greenwich Mean Time 
The data refer to measurements made during the hour ending at the times shown 
trace • rainfall less than 0.2mm b ut greater than O.Omm 

Table A.4 Environmen tal variables for We dnesday, 16th M ay 1993 

Time Wind Temp. ("C) Rainfall Relative 

(GMT) (mm) Humtdtty 

Direction ("; Speed 
(% ) 

clockwise (knots) 

from north) 

ooso 90 IS 14 9 98 94 

01 so 90 ll'i Id d trace 9S 
0?~0 QO IS 141 00 93 
01 SO 90 11 14 I 00 91 
Od~o 90 11 11 R 00 91 
o~~o 90 14 117 00 91 
Ol'iSO 90 1 ~ 14 0 00 8R 

07~0 90 IS 11 4 Ol'i 93 
ORSO ()0 14 12 9 so 9S 

09SO RO 13 12 6 02 9S 
to~n 90 11 1' ~ 1? 97 
11 ~o 90 9 11 7 14 96 
I?SO 90 11 1111 00 9R 

11SO 100 10 Id? 00 97 
ld~O 110 R 1 s 1 00 92 
ISSO ton 10 15 7 00 R9 

1650 RO 10 1 ~' 0 0 89 
17~0 90 10 Id R no 92 
1 RSO RO 9 Id d d 6 96 

1950 I dO 9 111 I R 97 
?0~0 170 9 I? t; 00 100 
2150 ?00 10 12 0 00 100 
??~0 210 9 11 8 00 96 
71SO 

GMT - Greenwich Mean Time 
The data refer to measurements made during the hour ending at the times shown 
trace • rainfall less than 0.2mm but greater than O.Omm 
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Figure A.l- Variations in ambient conditions in Plymouth during tests on Deep Lane 
bridge 
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Table A.5 Meteorological data during tests on B olway Road bridge 

Temperature (deg. C) Rain- Sun- Wind 
fall shine Rei. 

Hum-
Daily Daily idity 

Max Min Mean Total Total Mean Speed Direc- at 
Date (mm) (hr) Speed at tion 0900 

for 0900 at GMT 

Day GMT 0900 (%) 

(kn) GMT 
(deg.) 

2/11/ 8.0 2.0 5.0 8.0 - - 2 90 92 
93 

3/111 10.6 3.0 6.8 1.8 - - 2 160 100 
93 

21/3/ 7.5 2.2 4.8 1.6 - - 19 360 93 
94 

22/3/ 11.8 2.1 6.9 2.2 - - 13 270 92 
94 

283 


