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Diel vertical migration and feeding by krill 
Meganyctiphanes norvegica 

Nicola Elizabeth Dawdry 

ABSTRACT 

The diel vertical migration (DVM) of zooplankton has been extensively studied and 

reviewed. Yet the controlling mechanisms for DVM are still uncertain, although 

several hypotheses, e.g. predator evasion, hunger - satiation, light avoidance, 

have been proposed. This is particularly so for krill. An important part of 

understanding krill DVM depends on explaining the factors which drive krill to the 

surface waters at night. lt is frequently speculated that krill migrate to the surface 

layers to feed. Although there is a vast literature on krill feeding (and the pattern 

of krill DVM) there has been little attempt to establish the role of feeding in DVM. 

Consequently, the main aims of this thesis were to further explore the mechanisms 

for krill DVM and also to explain the feeding strategy of krill in order to understand 

the role of feeding in DVM, using Northern krill Meganyctiphanes norvegica as a 

model system. These aims were achieved by examining the following: whether 

krill are selective feeders and also whether the morphology of the feeding basket 

constrains the food types that can be handled by krill; whether krill feed throughout 

DVM; the relationship between krill metabolism and feeding during DVM. Krill 

showed significantly greater feeding rates with larger food types compared with 

smaller food types and this size selection appeared to be at least in part related to 

the morphology of the feeding basket. Above all it seemed that krill were 

opportunistic omnivores and the food types handled by krill were affected by the 

morphology of the feeding basket. Krill also showed significantly greater feeding 

rates when offered food types available during the night compared with during the 

day. Gut contents from field caught individuals supported that krill did not feed 

extensively during the day as day caught individuals had significantly less stomach 

pigment content compared with night caught individuals. As krill appeared to not 

feed extensively on day time available food types it raised the question 'is there a 

cost to not feeding extensively during the day'. There did appear to be a cost to 

the lower daytime feeding than compared with the greater feeding shown both with 

night time available food types and from night captured individuals. lt was 

hypothesized that krill may break down their respiratory pigment, haemocyanin 

(He) possibly for nutrition during these periods of low feeding during the day. In a 
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field experiment, day captured krill had significantly lower He concentrations ([He]) 

than individuals captured at night. There was a clear cost to the lower [He] of day 

caught krill as concentrations of lactic acid in the haemolymph (indicating an 02 

debt) were significantly greater in these day captured krill than compared with 

night captured krill. Consequently it seems that krill break down He during the day 

probably for nutrition because, for whatever reason, they do not feed extensively 

on the food types available to them in the deeper depths they reside within during 

the day. As they ascend to the surface layers at night, where they feed to 

significantly greater levels on the available food types, they appeared to rebuild 

their [He] and recover from the 02 debt they incurred during the day. Feeding 

experiments examining the recovery of [He] with food types available during either 

the day or night showed that after starvation krill recovered their [He] significantly 

quicker (and possibly to higher levels) with night available food types compared 

with day available food types. As they appear to be opportunistic omnivores it is 

proposed that this feeding strategy would facilitate the recovery of their daytime 

incurred debts. Krill appeared to show an asynchronously DVM and in particular 

female krill appeared to ascend to the surface layers of the water column earlier 

than males. In fact female krill showed a more extreme pattern of metabolism 

during DVM, with significantly greater [He] (ea. twice that of males) but also 

greater lactate debts with the breakdown of their He during the day. The earlier 

ascent to the surface layers and also the much greater [He] of females may 

indicate that they have greater metabolic demands than males. The asynchronous 

pattern of krill DVM supports the hunger - satiation hypothesis for DVM. If 

satiation is modified to also include the recovery of daytime incurred debts the 

findings of this thesis do indeed fit this hypothesis. A tentative model is proposed 

for krill DVM where krill break down their He during the day and then recover at 

night with feeding in the surface layers of the water column. 
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Chapter 1 

General Introduction: 

Krill and diel vertical migration 



1.1 Mechanism for krill diel vertical migration 

Diel vertical migration (DVM) by zooplankton has been widely studied since the 

early part of the 191
h century and has been reviewed extensively (Wyville 

Thompson and Murray, 1878; Michael, 1911; Esterly, 1919; Russell, 1925, 1927, 

1930; Worthington, 1931; Cushing, 1951; Hardy and Bainbridge, 1954; Banse, 

1964; lwasa, 1982; Gabriel and Thomas, 1988; Lampert, 1989, 1993; Ohman, 

1990; Andersen and Nival, 1991; Alonzo and Mangel, 2001; De Robertis, 2002; 

Hays, 2003; and in particular, the excellent recent review by Pearre, 2003). 

Nocturnal DVM (NDVM) where zooplankton ascend to the surface at night and 

then descend to deeper depths during the day is the most usual form of movement 

(Pearre, 2003). Hays (2003) recently reviewed the adaptive significance and 

ecosystem consequences of these migrations, considering various hypotheses for 

the ultimate reasons for NDVM. Hays (2003) suggested there is little empirical 

evidence and often opposing evidence for the hypothesis that migrating into 

warmer surface waters at night, compared with residing in colder water during the 

day, gives the migrant any metabolic advantage. He goes on to say that he 

believes that there is, in contrast, considerable evidence for the predator evasion 

hypothesis where migrants avoid shallow depths during the day because they 

would have a high chance of being seen by visual predators (Zaret and Suffern, 

1976). The phrase 'better hungry than dead' has been used to explain the 

advantages of reduced predation risk balanced against the cost of lower feeding 

during the day (Kremner and Kremner, 1988). For example, Tarling (2002) 

suggested that copepods descended to deeper depths of the water column on the 

arrival of krill, Meganyctiphanes norvegica. This said, as Pearre (2003) 

suggested, it actually appeared that copepods descended earlier than the onset of 

krill migration. Thus he suggested that this was due to the satiation of individuals 
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after feeding. Even if krill do migrate to deeper depths during the day to avoid 

predators, the predator evasion hypothesis only partially explains DVM as the 

question remains as to why krill migrate to shallower depths at night. The 

movement of plankton to the surface layers to feed is often referred to in these 

hypotheses but not as part of the mechanism for DVM. One potential mechanism 

for feeding during DVM, the hunger - satiation hypothesis has, however, been 

extensively reviewed and commented on by Pearre (2003). The hunger -

satiation hypothesis proposed by Pearre (1979) suggests that migrants ascend to 

feed and then when satiated they return to deeper depths of the water column. 

Although not an ultimate reason for DVM the effect of light is one of the most 

documented proximal cues for NDVM (e.g. Michael, 1911; Russell, 1926; 

Mclaren, 1963; Backus et al., 1965; Kampa, 1975; Haney, 1988; Ringelberg 

1995, 1999; Tarling et al., 1999). For example, Stromberg et al. (2002) 

investigated the DVM of krill, Meganyctiphanes norvegica in relation with the last 

eclipse of the millennium finding that the upward and downward movement of 

Meganyctiphanes norvegica was related to changes in light intensity. They 

suggested that the observation of a midday ascent of krill with reduced light 

intensity from the eclipse confirms light as an important trigger for DVM. Anderson 

and Nival (1991) modelled the DVM of euphausiids and suggested that both light 

and food influenced migration. Pearre (2003) claimed that if the ultimate purpose 

of upward migration is feeding then a feeding-related signal should also affect 

migratory behaviour. 

Although it is important to investigate proximate cues for DVM such as light there 

is a great lack of empirical data for the ultimate reasons for DVM particularly with 

regards feeding (see Tarling et al., 2003 in agreement with Pearre 2003; Anderson 

and Nival 1991 ). This lack of consideration of feeding as part of the mechanism for 

DVM seems surprising considering that Manteyfel (1958 as cited in Pearre, 2003) 

3 



commented that 'research on plankton vertical migration ... shows that biotic factors 

are often the most important ones which occur against the background of 

changing abiotic factors that many researchers consider the leading ones' and 

also the suggestions by Kozhov (1963) that basing theories of migration only on 

light or temperature effects were one sided and could produce only a rather 

primitive concept of a complex biological phenomenon. (The most extreme version 

of Kozhov's view was taken by Haney (1988) who suggested that each system 

was so different that there was no common mechanisms, and even within a 

system there were so many different mechanisms operating that it was impossible 

to disentangle them!) 

Despite the importance of the phenomenon, and the fact that the pattern(s) seem 

well documented and established, literature on mechanisms for krill DVM is scarce 

and indeed highlights the need for more studies considering the influence of biotic 

factors such as feeding on DVM. The lack of empirical evidence for krill DVM 

seems surprisingly considering that, as highlighted by the comments of Pearre 

(2003), 'next to copepods, the euphausiids are probably the best- studied group 

of marine zooplankton and undoubtedly the best - studied of the marine 

macroplankton.' Even those krill studies that appear to investigate DVM (or claim 

to) (Sameoto, 1980; Simard, et al., 1986; Onsrud and Kaartvedt, 1998; see also 

T arling et al., 2002 on the copepod Calanus finmarchicus) either do not examine 

the ultimate reasons for DVM or they are descriptive and therefore speculative 

about the reasons for DVM or they make predictions based upon models. 

Although, models may make useful predictions about DVM (e.g. Alonzo and 

M angel, 2001; Burrows and Tarling, 2004) there is still a great need for empirical 

evidence to support these models and also to investigate the mechanisms for 

DVM and therefore provide information to formulate models. 
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1.2 The role of feeding in DVM 

The pattern of ascending at night, feeding and then returning to deeper depths has 

been recorded in krill; for example, Meganyctiphanes norvegica (Simard et al., 

1986; Onsrud and Kaartvedt, 1998) Euphausia pacifica (Nakagawa et al., 2003) 

and E. lucens (Gibbons, 1993). All these studies have suggested nocturnal 

feeding deduced from an increase in stomach pigment content at night. Given that 

feeding appears to increase at night with ascent to the surface layers of the water 

column, it suggests that feeding must form, or affect, part of the strategy for DVM. 

There are, on the face of it, a great number of studies investigating, to a greater or 

lesser extent, aspects of krill feeding in the field, and for a variety of krill species: 

M. norvegica (Sameoto, 1980; Simard et al., 1986; Onsrud and Kaartvedt, 1998; 

Lass et al., 2001; Kaartvedt et al., 2002); Euphausia superba (Morris· and Ricketts, 

1984; Pakhomov et al., 1997; Perissinotto et al., 1997; Atkinson and Snyder, 1997; 

Atkinson et al., 1999; Ligowski, 2000; Perissinotto et al., 2000; Hernandez- Leon 

et al., 2001); Euphausia spinifera (Perissinotto et al., 2001); Euphausia pacifica 

(Nakagawa et al., 2001, 2002, 2003, 2004); Euphausia lucens (Stuart and Pillar, 

1990; Gibbons et al., 1991; Gibbons, 1993); Nyctiphanes australis (Ritz et al., 

1990); Thysanopoda aequalis (Schnetzer and Steinberg, 2002) and others. There 

have also been studies examining krill feeding in relation to their DVM: M. 

norvegica (Sameoto, 1980; Simard et al., 1986; Onsrud and Kaartvedt, 1998; Lass 

et al., 2001); Euphausia pacifica (Nakagawa et al., 2003); Euphausia species 

(Hirota and Nemoto, 1990). Yet despite this comparatively large literature on krill 

feeding, even in relation to DVM, it is still difficult to interpret the data presented, 

and thus assess or understand the role of feeding in DVM, as many of these 

studies are descriptive and not experimental. 

Northern krill, Meganyctiphanes norvegica have been frequently used as a 

'temperate waters model organism' to investigate or model the DVM of krill (e.g. 
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Sameoto, 1980; Simard et a/,, 1986; Onsrud and Kaartvedt, 1998; Spicer et al., 

1999; Stromberg and Spicer, 2000; Tarling et al., 2000 Lass et al., 2001; Spicer 

and Stromberg, 2002; Tarling, 2003; Burrows and Tarling, 2004) as they exhibit a 

strong DVM pattern (Liljebladh and Thomasson, 2001 ). Some of these studies 

have made suggestions about the mechanism for DVM. 

Onsrud and Kaartvedt (1998) suggest that nocturnal avoidance of surface waters 

may have been due to predator avoidance as fish schools invaded the surface 

layer at night. Lass et al. (2001) go further and suggest that the diel rhythm in 

feeding activity of M. norvegica in the Clyde Sea and Kattegat is an adaptive 

response to minimize predation risk. They even suggest predation pressure may 

be an explanation for when and where food is consumed. Another suggestion for 

krill DVM has been related to energy gain. Tarling (2003) suggested that female 

M. norvegica undertook a riskier DVM than males and attributed this difference to 

the demand for energy for reproduction. Yet the role of feeding in even the DVM of 

a relatively well studied species such as, M. norvegica, remains uncertain because 

either feeding has not been the focus of the above investigations or they are 

descriptive field studies and therefore it is difficult to establish whether there is a 

relationship between feeding and DVM. Essential to understanding the role of 

feeding in DVM is gaining an understanding of the feeding strategy of krill. 

Of primary importance is whether krill are selective feeders as it determines the 

basis for the relationships between krill and their food types during DVM. In 

surface waters phytoplankton and zooplankton may be more abundant than in the 

deeper depths of the water column (e.g. Onsrud and Kaartvedt, 1998). 

Phytoplankton is also mainly concentrated in the surface layer of the water column 

at night. Consequently, when ascending to the surface layers of the water column 

both phytoplankton and zooplankton would be available to krill. The extent to 

which krill feed upon phytoplankton and zooplankton may be a key part of 
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understanding the feeding strategy of krill and consequently perhaps their DVM 

strategy as it may explain why krill migrate to the surface waters. Determining 

whether krill are selective feeders is fundamental to determining the feeding 

strategy of krill as it forms the basis for the relationships between krill and their 

food types. 

Furthermore, it is also important to understand the basis for selecting or not 

selecting food types. Experimental evidence suggests that the size and shape of 

food types may affect feeding rates by krill (e.g. Quentin and Ross, 1985). Both 

lkeda and Dixon (1984) and Quentin and Ross (1985) have suggested that E. 

superba feeds more efficiently on larger food types. There have also been studies 

investigating the functional morphology of the feeding basket (e.g. Artiges et al., 

1978; McCiatchie and Boyd, 1983; Boyd et al., 1984; Suh and Nemoto, 1987; 

Hamner, 1988; Suh and and Choi, 1998), although most of these studies focus on 

Euphausia species. While many of the key features of the feeding basket of M. 

norvegica have been well described by Artiges et al. (1978) it would be beneficial 

to examine the finer structure of the feeding basket using scanning electron 

microscopy to investigate the possibility that the morphology of the feeding basket 

relates to the food types eaten by krill. 

Also it is of key importance (irrespective of the basis) to establish whether krill feed 

throughout DVM or only nocturnally during DVM as if krill only feed in the night it 

may explain why krill ascend to the surface layers of the water column. Although it 

is difficult to ascertain whether krill feed throughout DVM or only at night because 

field studies investigating krill feeding during DVM are based upon gut contents 

often with conflicting conclusions about whether krill feed throughout DVM or only 

nocturnally. For example, Sameoto (1980) suggested that one reason for the 

upward migration at night of krill may be to locate high densities of food and then 

goes on to pose the question of why Meganytiphanes norvegica migrates when it 
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feed on copepods at the deeper daytime depth is uncertain. Sameoto (1980), 

however, did not consider that the copepods may have been remnants of the 

previous night feeding. Also the lack of accurate identification of the copepod 

species available to krill at different depths, or copepod species in the krill guts in, 

means it is impossible to determine whether krill were feeding during the day. This 

use of gut contents can lead to misinterpretations of the timescale for krill feeding 

when gut residence times are not taken into account. Sameoto (1980) and Onsrud 

and Kaartvedt (1998) have both suggested that M. norvegica feeds during the day 

and night whereas Lass et al. (2001) suggested feeding ceased during the day. 

Simard et al. (1986) even suggested that M. norvegica shifted to a herbivorous 

diet at night. Sameoto (1980) suggested that the percentage of copepod remains 

in the stomachs of M. norvegica were greater during the day than at night. As both 

the studies by Sameoto (1980) and Onsrud and Kaartvedt (1998) are primarily 

based upon gut contents and therefore cannot suggest when food types have 

been eaten as they may have remained in gut content. As neither Sameoto 

(1980) or Onsrud and Kaartvedt (1998) identify the copepod species available to 

krill with depth during the day and night it is difficult to conclude from their studies 

whether krill feed throughout DVM. Onsrud and Kaarvedt (1998) found higher 

numbers of copepod mandibles during the day compared with the night but that 

does not, however, confirm that krill are feeding throughout DVM. Higher numbers 

of copepod mandibles in the gut may have occurred after the sampling time during 

the night and then remained in the gut the next day. Lass et al. (2001) explained 

the copepod mandible content of day - caught krill retention of mandibles in gut 

from feeding during the previous night. Kaartvedt et al. (2002) suggested that M. 

norvegica fed selectively on the copepod Temora longicomis during their nocturnal 

migration to surface layers. Therefore the conclusions from these studies are 

conflicting regarding whether krill feed throughout their DVM or only nocturnally 

8 



(and is a key question I will address in this thesis). Indeed, Pearre (2003) has 

also highlighted that 'if it can be shown from even a single sample from deep water 

at any time of day, that some organism contains remains of prey which is not 

known to occur in that depth stratum, it is often taken as evidence for migration of 

either predator or prey.' Determining whether krill can and/or do feed on various 

food types is extremely important to both understanding the feeding strategy of krill 

and also the relationship between krill feeding and their DVM. 

1.3 'Metabolic' status and feeding during DVM 

Determining whether krill feed throughout DVM is key not only to understanding 

their feeding strategy but also to understanding their DVM strategy. Spicer and 

Stromberg (2002) found that starved M. norvegica had lower haemocyanin 

concentrations ([He]) than compared with fed individuals. Although, the effect of 

food availability on (He] has been investigated in other crustaceans (Uglow, 1969; 

Djangmah, 1970; Dall, 1974; Hagerman, 1983) Spicer and Stromberg (2002) 

noted a change in [He] in an unprecedented short timescale. Therefore, if krill 

cannot, or do not, feed for part of their DVM it could have an effect on their [He]. 

Spicer and Stromberg (2002) suggested that the breakdown of He by krill could be 

for nutrition. Consequently, [He] in krill may not only be affected by whether krill 

feed throughout their DVM but they may also break down their He if they are not 

feeding. The role of He in nutrition together with feeding during DVM therefore 

requires further investigation. 
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1.4 Thesis aims 

Northern krill, Meganyctiphanes norvegica, provide a useful model system for 

examining mechanisms for krill diel vertical migration as they exhibit a strong DVM 

behaviour. They have an extremely wide distribution in the northern hemisphere, 

ranging from the Arctic down to the Mediterranean and across the Atlantic from 

Western Europe to Canada (Mauchline and Fisher, 1969). They are. found (and 

have been investigated) within a range of habitats, for example: fjords (e.g. 

Liljebladh and Thomasson, 2001); estuaries (e.g. Sameoto, 1980) and the open 

ocean (e.g. Lindley, 1977). The main breeding areas are equally diverse and are 

thought to be: the Gulf of Maine, Gulf of St. Lawrence, south-western and southern 

Iceland; and the Norwegian sea up to ea. 70° North (Everson, 2000). The 

development of krill occurs in stages. Heegaard (1948) examined the progressive 

stages of M. norvegica larvae development and suggested two Nauplius stages 

followed by, one Metanauplius stage, three Calytopis stages and 4 Furcilia stages. 

Like all crustaceans M. norvegica have an exoskeleton, therefore to grow they 

must moult to achieve a larger body size. Their body size is the largest amid 

euphausiid species found in the northern hemisphere (Buchholz and Saborowski, 

2000), reaching up to approximately 40 mm in body length. 

The role of feeding in krill DVM was investigated using M. norvegica as a model. 

As feeding has been shown to increase at night it may be expected that feeding 

plays an important role in DVM. Many of the hypotheses proposed for DVM do 

not, however, really consider the role of feeding in DVM and although feeding may 

be mentioned it is not investigated and considered as part of the mechanism for 

DVM. One hypothesis in particular, the hunger - satiation hypothesis, does 

consider the direct role of feeding in DVM. The main aims of this thesis were to 

explain the role of feeding in the DVM of krill and ultimately the DVM of krill as a 
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whole. Consequently I am interested in investigating the role of feeding in the DVM 

of krill within a context, which allows me to test the hunger - satiation hypothesis. 

In order to address these main aims it was necessary to both examine the feeding 

strategy of krill, the pattern of krill feeding during DVM and the consequences of 

the pattern of feeding in relation to krill metabolism during DVM. Therefore the 

main aim of the thesis was investigated by pursuing a number of subsidiary aims, 

outlined below, and presented in each of the following chapters. 

Chapter 2 

Aims 

To: 

(1) further explain the extent to which M. norvegica feeds upon both 

phytoplankton and zooplankton food types and thus 

(2) whether they are selective feeders and also 

(3) whether they are primarily carnivorous or herbivorous. 

These aims were achieved by; 

• quantifying feeding by measuring ingestion and clearance rates of M. 

norvegica with various different food types chosen to represent a range, 

morphologically different food types to examine size and morphological 

selectivity which also included both phytoplankton and copepods to 

compare herbivorous and carnivorous feeding food types 
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Chapter 3 

Aim 

To describe aspects of the morphology of the feeding basket in order to 

investigate how structure may determine/constrain feeding 

This aim was achieved by; 

• investigating the intersetal distances for both primary and secondary setae. 

• measuring the lengths of both primary and secondary setae on the first and 

second thoracic appendage for a range of krill body lengths. 

• quantifying feeding basket length and width in relation to krill body length 

and krill sex. 

Chapter4 

Aim 

To determine whether male and female krill feed throughout their DVM in order to 

explain and compare the feeding and DVM strategy of krill sexes during DVM. 

Using a combination of field investigations together with laboratory studies the 

aims of this chapter were achieved by investigating; 

• the effect of food types available during the day or night on feeding 

quantified by measuring clearance and ingestion rates by krill. 

• the effect of food types available during the day or night on the functional 

response of feeding. 

• the pattern of krill feeding during DVM (in situ) by examination of krill gut 

content. 

• the pattern of male and female migration and feeding during DVM. 
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Chapter 5 

Aim 

To determine whether male and female krill metabolism is related to feeding 

during DVM in order to explain and compare the feeding and DVM strategy of krill. 

Using a combination of field investigation/experiment together with a laboratory 

experiment the aims of this chapter were achieved by investigating; 

• feeding in situ during the day and night of krill performing DVM and krill 

prevented from performing DVM (i.e. placed in cages) was measured. 

• haemocyanin, glucose and lactate concentrations of krill during the day and 

night of krill performing DVM and krill prevented from performing DVM (i.e. 

placed in cages) was measured. 

• recovery of haemocyanin concentrations of starved krill then subsequently 

fed on diets either available during the day or night was investigated in the 

laboratory. 

Appendix A 

Aims 

To determine a pattern for krill feeding during DVM in order to provide vital 

background information, informing the design the studies presented in this thesis. 

And to explore potential experiments that could be useful in determining the 

feeding strategy of krill. 

Experiments recorded in the Appendix were valuable in forming the ideas, 

direction and methods for the experiments in the chapters of this thesis. 
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Consequently, it may help to refer to Appendix A prior to reading the chapters of 

this thesis. 

1.5 Rationale in addressing the thesis aim 

My overriding approach to addressing the aim of the thesis has been question 

driven. Therefore, I have not been primarily interested in exploring and detailing 

material that fits neatly into particular disciplines (e.g. ecology, physiology, 

behaviour). Rather the thesis has the form of answering a stream of questions, 

each emerging from the answer to the one posited before it, and all geared to 

addressing my overall question. Consequently, the chapters of this thesis are 

sequential and hopefully flow into one another, pushing towards the overall aim. 

This has the effect of reducing the sort of (discipline-based?) discussion of 

'peripheral' detail and comparison one might expect to find if each chapter was a 

separate entity and, as such, similar in its form to a stand-alone, scientific paper. lt 

does mean that, if I have succeeded, the thesis is one story, as opposed to a 

number of related-short stories. lt also mirrors my own 'voyage of discovery' while 

investigating just a little bit of a very big and fascinating question -why do aquatic 

animals migrate vertically? 
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Chapter 2 

Is the northern krill, Meganyctiphanes 

norvegica, a selective feeder? 
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ABSTRACT 

Krill are of central importance in pe/agic marine food webs, consequently a 

knowledge of their feeding biology is essential to understand how these food webs 

function. Whether feeding is a selective or non-selective process is fundamental to 

understanding the feeding strategy of krill as it forms the basis for any trophic 

relationships between krill and their food types. Therefore, phytoplankton and 

zooplankton food types were used to assess whether feeding was a selective 

process in northern krill, Meganyctiphanes norvegica. Krill were offered one of a 

range of morphologically different food types including three diatom species and a 

high and ambient density of a natural copepod assemblage. Clearance and 

ingestion rates were estimated from laboratory feeding experiments. Herbivorous 

mean clearance rates were variable with small diatom food types and less 

variable, with the mean highest herbivorous ingestion rates shown with the largest 

diatom food type. Carnivorous clearance rates were not significantly different 

(94.8 ± 36.3 and 92.4 ± 45.5 copepods m/ - 1 h - 1
) with respect to prey density but 

were significantly greater than herbivorous rates (40.94 ± 10.14 cells m/ - 1 h - 1
). 

Carnivorous and herbivorous ingestion rates were comparable when krill were 

offered either an ambient density of copepods (5.3 ± 2.2 copepods ind. - 1 h - 1
) or a 

large diatom food type (7.36 ± 1.63 cells ind. - 1 h - 1
). Therefore clearance and 

ingestion rates were greater with food types which had a longer length or diameter 

and were cylindrical shaped. Therefore, it seems more likely that more likely that 

M. norvegica do not actively seek certain food types for which they have a 

preference but that they can only effectively handle food types of a certain length 

and morphology. 
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2.1 INTRODUCTION 

2.1.1 The importance of krill in food webs 

Zooplankton, including krill, have been suggested to carry out extensive diel 

vertical migrations into food rich surface layers in search of food at night 

(Sameoto, 1980; Lass et al., 2001). During this nocturnal migration both 

phytoplankton and zooplankton are available food types to krill in the surface 

layers of the water column. Most krill species are thought to be omnivorous 

(Mauchline, 1980). Therefore both phytoplankton and zooplankton are important 

food types to krill. The relative importance of carnivorous and herbivorous feeding 

in the diet of tropical euphausiids has been shown to vary with species from 

herbivorous to strictly carnivorous (Roger, 1973). The relative importance of food 

types with various species has also been shown by Bamstead and Karlson (1998), 

when they assessed the importance of carnivory in the diet of euphausiids in the 

Northeast Atlantic. They found that copepods were an important food item and 

ranked the degree of carnivory for each species as follows; Meganyctiphanes 

norvegica ~ Thysanoessa inermis = Thysanoessa longicaudata > Thysanoessa 

raschii. They also suggested that carnivory was less important in the Skagerrak 

than in the northern area for species occurring in both areas. Lass et al. (2001) 

also found that the importance of carnivory in Meganyctiphanes norvegica varied 

regionally. They suggested that a higher degree of carnivory in the Kattegat than 

in the Clyde Sea correlated with a higher ratio of copepod to phytoplankton 

biomass in the Kattegat compared with the Clyde Sea. lt has also been 

suggested that the Antarctic krill Euphausia superba feed omnivorously around 

South Georgia during non - phytoplankton bloom periods (Atkinson and Snyder, 

1997). Therefore it seems that krill generally are flexible feeders able to ultilize 
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both phytoplankton and zooplankton to varying extents depending on the relative 

abundance of these food types. Fevolden (1982) suggested that M. norvegica had 

a highly varied diet and in support, suggested that they had a higher 

heterozygosity of enzymes to deal with a more varied diet. Saborowski and 

Buchholz (2002) investigating the metabolic properties of M. norvegica from 

different climatic zones suggested that the enzyme characteristics of M. norvegica 

were more influenced by trophic conditions and nutritive state than temperature. 

Although, these studies have indicated that krill do feed upon both phytoplankton 

and zooplankton to various degrees depending on species and region, why krill 

feed on certain food types at given times, and thus why given trophic relationships 

exist remains largely unresolved. Consequently, one of the most important 

questions that may be posed is what factors determine the feeding behaviour of 

krill? More specifically I would like to know are krill selective or non - selective 

feeders? Whether krill are selective or non - selective feeders is fundamental to 

understanding food web function, as it forms the basis for any trophic relationships 

between krill, zooplankton and phytoplankton and thus is a pre - requisite to 

questions concerning what factors determine the feeding behaviour of krill. 

2.1.2 The 'model' species; a selective feeder? 

Northern krill, Meganyctiphanes norvegica (M. Sars) is thought to be omnivorous, 

feeding upon both phytoplankton and zooplankton (e.g. Lass et al., 2001; 

Kaartvedt et al., 2002). However, the extent to which M. norvegica utilizes either 

(or both) of these food types during diel vertical migration (DVM) is unclear. This 

uncertainty is partly because many of the studies that can potentially explain 

feeding selectivity are descriptive (e.g. Kaartvedt et al., 2002; Lass et al., 2001; 

Onsrud and Kaartvedt, 1998) and not manipulative. Although descriptive field 
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studies provide useful information about what krill may feed upon, they cannot 

ascertain why krill feed on certain food types. For example, techniques used such 

as gut content analysis describe food items eaten by krill but do not provide 

information about why those food items were eaten. Gut content analysis in 

particular may lead to an over/under estimation of the importance of given food 

types for example, some food types may remain resident in the gut for longer 

periods than others, thus those food types with longer gut residence times would 

accumulate and be interpreted as being more abundant in the gut and therefore 

eaten more frequently. As a result, whether krill are selective feeders or not is 

difficult to establish from gut content studies alone. Therefore, there is a need for 

more experimental studies to provide evidence on whether krill are selective or 

non - selective feeders. 

2.1.3 Potential factors influencing selective feeding 

One of the most important potential factors affecting feeding is the feeding 

apparatus used for handling food. The feeding basket of krill comprises of the 

thoracic appendages (or pereopods), all of which have setae. These setae overlap 

creating a mesh or sieve. Hamner (1988) reviewed the biomechanics of filter 

feeding in Euphausia superba and supported the suggestions of Quentin and Ross 

(1985) that the feeding basket acts like a sieve. That is, the feeding basket 

expands laterally, drawing water and particles in through the anterior entrance. 

Water inside the basket is then compressed out laterally leaving the food particles 

trapped on the setae. Thus, this process of feeding was distinguished from the 

passive process of filter feeding and called compression filtration by Quentin and 

Ross (1985). As well as in E. superba compression filtration has also been 
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observed in other euphausiid species for example Meganyctiphanes norvegica 

(see McCiatchie, 1985). In fact Hamner (1988) suggests that based on the 

observations of similarity in morphology of the feeding basket in several species 

(Euphausia, Thysanoessa, Meganyctiphanes [see Berkes, 1975] and 

Meganyctiphanes norvegica, Euphausia superba [see Artiges et al., 1978 and 

McCiatchie, 1985]) and particularly the compression filtration behaviour shown by 

M. norvegica (McCiatchie, 1985) it is possible that all the euphausiid species 

mentioned above all filter feed in essentially the same way. 

Given that the feeding basket acts like a sieve and functions by compression 

filtration it may be expected that certain food types will be retained in the feeding 

basket more efficiently than others because of their size (cross sectional area, 

length) and shape and thus give rise to a degree of size selective feeding by krill. 

For example food types with a longer length and larger cross sectional area than 

the spaces of the sieve I feeding basket would be expected to be retained as the 

water is squeezed out of the basket, whereas food types with a smaller length and 

volume than the spaces of the sieve would be expected to be pass through the 

sieve as the water is pressed out. 

Selection of food types may not only be based on size and morphology but also by 

the forager making 'decisions.' Optimality models predict that foragers make 

optimal behavioural decisions (MacArthur and Pianka, 1966; Sibly and Calow, 

1986; Cuthill and Huston, 1997). Optimal foraging theory predicts that foragers 

should select the most profitable food types. 

Therefore, it would be expected that krill may exhibit selective feeding in two ways; 

(a) based on size of food types because of sieving effect of feeding basket (b) 

based on a 'preference', i.e. actively chooses certain food types for example those 

food types with greater nutritional value. 

20 



The effect of size and shape of food types on feeding by Euphausia superba was 

investigated by Quentin and Ross (1985). Krill were offered uni- algal cultures of 

4 phytoplankton species; a flagellate, a pinnate diatom and 2 centric diatoms. 

They found the maximum clearance rates by krill were directly proportional to 

spherical radius squared of the phytoplankton cells offered. Consequently Quentin 

and Ross (1985) suggested that the maximum clearance rates shown by krill were 

closely related to size, not species and physical dimensions not chemical 

composition of the food types offered. Meyer and El - Sayad (1983) also 

investigating feeding in Euphausia superba suggested that feeding was probably 

size dependent. 

Haberman et al. (2003b) also investigated selectivity for different phytoplankton by 

Antarctic krill Euphausia superba (Dana) but when grazing on mixed 

phytoplankton assemblages of diatoms, prymnesiophytes and cryptophytes from 

both the wild and laboratory cultures in contrast to the uni - algal cultures offered 

to krill by Quentin and Ross (1985). They suggested that E. superba actively 

selected diatoms in phytoplankton mixtures and that selectivity could not be 

ascribed to particle size alone. Therefore, both these studies suggest that krill are 

selective feeders, although the basis for selective feeding differs with each study. 

Quentin and Ross (1985) suggested that feeding was closely related to size and 

not species whereas Haberman et al. (2003b) suggested that the selectivity shown 

could not be attributed to particle sizes alone and appeared to involve more active 

mechanisms. Although Haberman et al. (2003a) suggest that that there is an 

optimal size of particle which is grazed better by E. superba compared with other 

sized particles. Therefore, although it seems krill are selective feeders it is unclear 

whether this selectivity is a 'preference' as Haberman et al. (2003b) suggested or 

due to a handling capability as Quentin and Ross (1985) suggested or most likely 
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a combination of both preference and handling capability. Most authors (including 

the studies above) examining selective feeding have only offered krill 

phytoplankton food types. lt is known, however, that many krill species are 

omnivorous including E. superba. Thus, in addition to whether krill select 

phytoplankton species on a larger scale as a means to understanding how pelagic 

food webs function, it is important to determine whether krill 'prefer' zooplankton or 

phytoplankton. 

2.1.4 Study design rationale and aims 

The main aim of this study was to further elucidate the extent to which M. 

norvegica feeds upon both phytoplankton and zooplankton food types and thus 

whether they are selective feeders and also whether they are primarily carnivorous 

or herbivorous. Feeding was quantified by measuring ingestion and clearance 

rates of M. norvegica with various different food types. Clearance and ingestion 

rates were estimated from end point measurements. End point measurements are 

taken at the end of an experiment in contrast to time series measurements, which 

are taken at intervals over the experimental period. The use of end - point 

measurements to calculate feeding rates has been criticised by McCiatchie and 

Lewis (1986) because it may result in error if feeding ceases or changes during 

the experiment. Using a time series approach to measurements would, however, 

make the experiments of this chapter impossible because of the large number of 

replicates which would be required at each time interval. Therefore even though 

the use of end point measurements may have limitations but as the main purpose 

of this study was to determine whether krill are selective feeders the limitations are 

consistent in each 'feeding treatment.' Also the feeding rates calculated are used 

as a measure to compare the effect of different food types on feeding by krill and 
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not to calculate feeding rates per se. 

In more productive environments, optimal foraging theory predicts that diet should 

be more specialized whereas a more general diet would be predicted in 

environments which are less productive. During nocturnal migration to the surface 

layers of the water column especially during spring bloom periods food is at its 

most abundant, therefore it may be expected that if krill do select food types they 

would exhibit most selective feeding in these periods when food is most abundant 

and thus the environment is at its most productive. Therefore, the choice of food 

types used in this study was based on food items found in abundance during a 

nocturnal migration in a spring bloom period (Dawdry and Tiselius, Unpub. Obs). 

Food items were also chosen to represent a range of different food types, for 

example, morphologically different food types to examine size and morphological 

selectivity including both phytoplankton and copepods to compare herbivorous and 

carnivorous feeding. Therefore, three phytoplankton species were chosen as 

follows; a large diatom Coscinodiscus sp. diameter 100 - 300 IJm); a chain forming 

diatom Chaetoceros diadema (diameter 10 - 50 IJm) and a small diatom 

Thalassiosira weissflogii (diameter 10 - 30 IJm). A natural surface water copepod 

(length 100- 500 IJm) assemblage was used for carnivorous feeding studies. 
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2.2 MATERIALS AND METHODS 

2.2.1 Collection and maintenance of krill and food types 

Meganyctiphanes norvegica were collected from Gullmarsfjord, Southwest 

Sweden (58°18' N, 11 °32' E), using an lsaacs-Kidd midwater trawl (mouth area 0.6 

m2
; haul duration = 10 m in) on several occasions during Feb and Mar 2002 on the 

RV Ame Tiselius. Krill were transferred (within 10 m in of harvest) into sealed 

thermos containers (Rubbermaid drinking water thermosflask vol. = 80 I) 

containing ice - cooled (T = 6 oc) filtered sea water (salinity = 34 PSU) and 

transported to the laboratory at KMRS within 2 h of capture. In the laboratory krill 

were maintained in fibre - glass aquaria (vol. = 350 I) covered with dark plastic to 

keep krill in darkness. Aquaria were supplied with flowing natural 'deep' sea water 

pumped into the station from a depth of 35 m (S = 34 PSU, T = 6 °C). All 

experiments were carried out within 5 d of capture. 

Copepods were collected from surface waters of Gullmarsfjord using a plankton 

net (200 !Jm WP-2) and returned to the laboratory < 60 min of capture in sealed 

thermos containers (Rubbermaid drinking water thermosflask vol. = 16 I) 

containing filtered sea water. At KMRS copepods were maintained in a single 

glass aquaria (vol. = 10 I) supplied with natural 'surface' sea water pumped into 

the station from a depth of 6 m (S = 34 PSU, T = 6 oc). All experiments described 

below were carried out within 1 - 2 d after copepod collection. 

An isolated culture of Thalassiosira weissflogii was kindly supplied by Peter Thor 

at KMRS and Chaetoceros diadema by Melissa McQuoid at the University of 

Gothenburg (Sweden). Batch uni - algal cultures of Thalassiosira weissflogii and 

Chaetoceros diadema were maintained in sea water under constant light and 

temperature (T = 23 - 25 °C} conditions. 
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Coscinodiscus sp. was, however, not cultured in laboratory due to the time 

constraints of establishing a culture. Coscinodiscus sp. was collected from nearby 

surface water using a plankton net (90 IJm WP-2). A net was used as opposed to 

collecting a volume of natural sea water in order to concentrate Coscinodiscus sp. 

and also to avoid collecting smaller phytoplankton species. This collected sea 

water was then filtered through a 200 !Jm sieve 15 to 20 times in order to separate 

Coscinodiscus sp. from any smaller phytoplankton that may have also been 

collected. 

2.2.2 Feeding experiments 

For all feeding experiments a group of similar size krill (body length = 30- 36 mm) 

were selected from the stock aquaria and were then transferred to a plastic 

container with filtered sea water (vol. = 50 I) 24 h previous to any feeding study in 

order to starve krill. Clearance rates (F, volume of water cleared of food by 

consumer per unit time, equation 2.1) and Ingestion rates (/, amount of food 

consumed per unit time, equation 2.2) were calculated using Frost's (1972) 

equations modified as suggested by Bamstedt et al. (2000) as follows: 

F = V/(t x n) x ln(Ct' /Ct) (2.1) 

I= F x [C) (2.2) 

Where V is the volume of the incubation vessel (ml), t is the time (h) and n is the 

number of consumers. C1' is the final food concentration in the control vessels and 

Ct is the final food concentration in the experimental bottles. The mean food 

concentration is shown as [C]. 
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A. Herbivorous feeding 

The effect of phytoplankton food types on ingestion rate and clearance rate of M. 

norvegica was investigated using the following diatom species: C. diadema, 

Coscinodiscus sp. and T. weissflogii. 

Each of the three phytoplankton food types was offered separately at a 

concentration similar to that observed in the field during a spring bloom 

(Coscinodiscus c. 200 celis I· 1 Tha/assiosira c. 700 cells ml " 1 Chaetoceros c. 350 

cells ml - 1 
: Dawdry and Tiselius, Unpubl. Obs). The phytoplankton required was 

added to filtered 'deep' sea water and mixed thoroughly, in a sufficient volume to 

achieve the desired final concentration. Control bottles contained the food type 

only whereas experimental bottles contained an individual krill. Control (n = 6) and 

experimental (n = 6 - 8) glass bottles (vol. = 2.3 I) were filled with sea water 

containing the phytoplankton f<?od source in a haphazard order, to account for 

variation between bottles in food type concentration throughout the 'filling' process. 

Thorough mixing continued throughout this filling process, to ensure that the food 

type remained in a homogenous suspension. At the start and end of the filling 

process two control bottles were taken for quantification of phytoplankton 

concentration at the start of the experiment. The remaining control bottles at the 

end (n = 4) compared with control bottles taken at the start of the experiment (n = 

2) for phytoplankton quantification, allowed changes in algal concentration not due 

to grazing to be quantified. An individual krill was placed in each experimental 

bottle, after which the bottle was then filled until the water overflowed. Plastic film 

was placed over the mouth of each bottle to exclude air and then the lid gently 

tightened. In order to maintain phytoplankton in suspension, all bottles were 

placed on a rotating plankton wheel (2 rev. min - 1
) and left overnight in a 

temperature controlled room (T = 6 oC) for 12 - 13 h. At the end of this period, 
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bottles were removed from the wheel, and the contents analysed for phytoplankton 

concentration. Different methods were used for quantification of the various food 

types as the same method could not be used for all food types, the reasons for 

these different methods are discussed for each food type. Each bottle was rinsed 

three times to ensure all phytoplankton were removed for quantification. Krill 

removed from the experimental bottles were also rinsed to remove any 

phytoplankton adhering to the exoskeleton. 

Thalassiosira weissf/ogii were counted using a particle counter (CIAB chemical 

instruments AB, Vasavagen 78, S-18141 Lidingo, Elzone 5380 micrometrics) in 

three 10 ml sub - samples of the bottle content. Coscinodiscus sp. were too 

large to be counted using a particle counter, therefore bottles were emptied and 

the contents filtered through a 90 1-1m sieve into a Petri dish with 3 drops of Lugol's 

solution. Coscinodiscus sp. cell counts were then made under low power (x 1 0) 

magnification. Chaetoceros diadema are chain-forming diatoms, and so like 

Coscinodiscus, could not be counted reliably using a particle counter. Also, as C. 

diadema forms chains of variable lengths, every cell would have to be counted. 

Consequently, changes in concentration of C. diadema were quantified by 

fluorometric determination of chlorophylls and phaeopigments. Duplicate 100 ml 

samples from each bottle in C. diadema studies were filtered onto Whatman glass 

micro-fibre filters (GF/F) and extracted in ethanol (90 %) for 12- 14 h. Chlorophylls 

and phaeopigments were determined using a fluorometer (10 - AU Turner® 

designs, Sunnyvale, California) following the procedure suggested by Parsons et 

al. (1984). 

B. Carnivorous feeding 

Carnivorous feeding experiments used the same apparatus and experimental 

method as herbivorous feeding experiments with the following modifications: 

27 



• Krill were offered a natural copepod assemblage as a food type at a density 

similar to ambient levels in the field (ea. 80 individuals I -1) and also at a 'high' 

density (ea. 340 individuals 1.-1
) to represent 'patches' of copepods, (Dawdry and 

Tiselius, Unpubl. Obs.). 

• Copepods collected were transferred to a plastic container (vol. = 30 I) and left 

for 24 h to separate copepods from large phytoplankton species by allowing the 

phytoplankton to settle out thus leaving only the copepods suspended in the water. 

Surface water from this container was siphoned into another plastic container (vol. 

= 30 1), where sea water was then added to produce the desired prey density. 

• At the end of the experimental period the content of each bottle was emptied 

and placed in a Petri dish with ethanol (70 %) to fix the remaining copepods. All of 

the copepods present were counted under low power (x 1 0) magnification. 

Copepods were not differentiated with respect to either their species or stage as 

the main aim of the investigation was to determine whether M. norvegiea had a 

preference for food types or to see if food types were limited by a handling 

capability. 
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2.3 RESULTS 

2.3.1 Herbivorous feeding 

Presented in Table 2.1 are data for herbivorous clearance and ingestion rates. 

Although, the highest mean clearance rate value, 1278 ± 1995 ml individual I - 1 h -

1 was shown when krill were offered the chain forming diatom Chaetoceros 

diadema as a food type, the 95 % confidence limits of the mean indicated that the 

clearance rate was extremely variable leading to a very low, -0.03 ± 0.088 (total 

pigment individual - 1 h - 1
) estimated mean ingestion rate with the food type C. 

diadema. 

Table 2.1 Mean clearance and ingestion rates (n = 6 - 8) showing 95 % 

confidence intervals for M. norvegica when offered 3 diatom food types. Ingestion 

rates refer to number of cells for Coscinodiscus sp. and T. weissflogii food types 

and to total pigment for C. diadema. 

Food type 

Coscinodiscus sp. 

T. weissflogii 

C. diadema 

Mean clearance rate 
(ml individ. - 1 h- 1

) 

40.94 ± 10.14 

11.05 ± 25.0 

1278.0 ± 1995.0 

Mean ingestion rate 
(cells or total pioment 

ind.- 1 h- 1 

7.36±1.63 

0.07 ± 0.09 

-0.03 ± 0.09 

Mean clearance rate when krill were offered the small diatom food type 

Thalassiosira weissflogii was 11.05 ± 25.01 ml individual - 1 h - 1 and was thus also 

variable but particularly low. Again, an extremely low estimated mean ingestion 

rate was calculated of 0.07 ± 0.088 cells individual - 1 h - 1
. 

Mean clearance rate with the relatively large, cylindrical diatom Coscinodiscus sp, 

was 40.94 ± 10.14 ml individual - 1 h - 1 and therefore less variable than mean 
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clearance rates calculated for the other phytoplankton food types above. Mean 

ingestion rate for the food type Coscinodiscus sp. was estimated as 7.36 ± 1.63 

cells individual - 1 h - 1 and thus was the highest herbivorous ingestion rate 

observed. 

2.3.2 Carnivorous feeding 

Figure 2.1 shows mean clearance rates were comparable and not significantly 

different (one- way ANOVA, F 1, 12 = 0.54, P > 0.1) when krill were offered either a 

high density of copepods or an ambient density of copepods (94.8 ± 36.3 and 92.4 

± 45.5 ml individual - 1 h - 1 respectively) . Estimated mean ingestion rate increased 

directly proportionally with an increase in prey density that is 23.6 ± 7.0 copepods 

individual - 1 h - 1 were consumed when krill were offered a high prey density which 

was four times the ambient density and 5.3 ± 2.2 copepods individual - 1 h - 1 with 

an ambient prey density (see Fig. 2.2). 
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Figure 2.1 Mean clearance rate (n = 6 to 8), showing 95 % confidence intervals for 

M. norvegica when offered an ambient or high density of copepods. 
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Figure 2.2 Mean ingestion rate (n = 6 to 8), showing 95 % confidence intervals for 

M. norvegica when offered an ambient or high density of copepods. 

Therefore, estimated mean ingestion rate was four times higher and significantly 

greater when krill were offered a high density of copepods than compared with an 

ambient density of copepods (one- way ANOVA, F 1. 12 = 53.55, P < 0.0001). 

2.3.3 Carnivorous versus herbivorous feeding 

Presented in Figures 2.3 and 2.4 are clearance and ingestion rates for 

Meganyctiphanes norvegica when offered a Coscinodiscus sp. or copepod food 

type. 
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Figure 2.3 Mean clearance rate (n = 6 to 8) showing 95 % confidence intervals for 

M. norvegica when offered phytoplankton or zooplankton food types (* denotes a 

significant difference, P < 0.05). 

Mean carnivorous clearance rates for both prey densities were more than twice 

the amount and significantly greater (one- way ANOVA, F 2, 1a = 4.23, P < 0.05) 

than compared with herbivorous clearance rates with the food type Coscinodiscus 

sp. (see Fig . 2.3). 
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Figure 2.4 Mean ingestion rate (n = 6 to 8), showing 95 % confidence intervals for 

M. norvegica when offered phytoplankton or zooplankton food types (* denotes a 

significance difference, P < 0.01 ). 

Figure 2.4 shows that estimated carnivorous and herbivorous ingestion rates were 

not significantly different and thus comparable when krill were offered an ambient 

density of copepods or Coscinodiscus sp. as a food type. Krill offered a high 

density of copepods showed significantly greater estimated ingestion rates were 

than compared with either an ambient density of copepods or Coscinodiscus sp. 

(one- way ANOVA, F 2, 1s = 6.52, P < 0.01). 
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2.4 DISCUSSION 

2.4.1 Herbivorous feeding 

Meganyctiphanes norvegica showed extremely variable mean clearance rates with 

both the smaller diatom food types Thalassiosira weisflogii and Chaetoceros 

diadema. Variability in concentration of food between experimental bottles and 

control bottles will invariably give rise to some variation in calculated clearance 

rates. The variation is, however, particularly large. As the same method of mixing 

food types was used for every food type and with Coscinodiscus sp. and copepod 

food types variation was much lower, the large variations in the clearance rate 

suggests that M. norvegica did not feed extensively on these smaller 

phytoplankton food types. The estimated mean ingestion rates for both T. 

weissflogii and C. diadema were extremely low or zero, and thus also indicate that 

M. norvegica did not feed on either of these food types. Although mean clearance 

rates were lower with the large cylindrical diatom Coscinodiscus sp. than with the 

chain forming diatom C. diadema variability of the mean was much lower and 

therefore suggests that generally M. norvegica preferred or could handle 

Coscinodiscus sp. more effectively than the other phytoplankton food types. 

2.4.2 Carnivorous feeding 

Carnivorous mean clearance rates were comparable at both an ambient prey 

density and a high prey density, suggesting that M. norvegica increased ingestion 

rate proportionally with an increase in food density, therefore maintaining a similar 

clearance rate to that observed at lower food densities. An increase in ingestion 

rate with an increase with food density would be predicted by a functional 

response, whereas food density increases ingestion rate increases due to a 

greater encounter with food items. Thus it seems that M. norvegica shows a 
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functional feeding response. In order to determine the type of functional response 

exhibited by M. norvegica, however, further investigation of krill feeding with a 

range of prey/food densities is needed. 

2.4.3 Herbivorous versus carnivorous feeding 

Carnivorous mean clearance rates at both prey densities were more than twice 

those with Coscinodiscus sp. Therefore, M. norvegica cleared more water of food 

when offered a carnivorous diet compared with when offered a herbivorous diet. 

This higher carnivorous clearance rate may suggest a preference for copepod 

food types compared with phytoplankton food types such as Coscinodiscus sp .. 

The higher clearance rates, however, on these larger food types compared with on 

the smaller phytoplankton food types suggest that krill prefer or can handle larger 

food types. Consequently, higher carnivorous clearance rates compared with 

herbivorous rates with the food type. Coscinodiscus sp. may have been due to the 

slightly longer length of the copepods compared with the diameter of 

Coscinodiscus. 

2.4.4 Feeding preference or handling capability? 

As Meganyctiphanes norvegica showed less variable clearance rates and higher 

ingestion rates of Coscinodiscus sp. than either Chaetoceros diadema or 

Thalassiosira weissf/ogii it may be that M. norvegica prefer Coscinodiscus sp. as a 

food type compared with the smaller phytoplankton food types. Although, C. 

diadema is chain forming, the diameter of individual cells (10 - 50 IJm) are 

comparable to that of T. weissf/ogii cells (10 - 30 IJm). Therefore, while C. 

diadema may form chains that are similar in length to the diameter of 

Coscinodiscus sp. (1 00- 300 IJm) when the phytoplankton are filtered through krill 
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feeding baskets these chains may be broken which would therefore lead to a 

smaller overall length (i.e. single cell) of C. diadema. Therefore, it seems more 

likely that higher clearance rates are, at least in part, due to a handling capability 

and not a feeding preference. That is, M. norvegica are limited in the food types 

they can utilize by the constraints of what they can effectively handle. 

Consequently, it may be that the feeding basket of krill is more effective at 

retaining food types of a given length/morphology. Hence it seems that krill are 

more effective at handling larger food types, which are cylindrical in shape. Higher 

clearance and ingestion rates with copepods would also support that M. norvegica 

are more effective at handling larger food types with a cylindrical shape. 

Copepods used in the study were around 100 - 500 IJm in length compared with 

the 1 00 - 300 !Jm diameter of Coscinodiscus sp., therefore higher mean 

carnivorous clearance rates could also have been due to more effective handling 

of a longer length food type and not a feeding preference for copepods. These 

clearance rates suggest that, like E. superba, M. norvegica cannot effectively 

handle small food types, therefore supporting the conclusions of Quentin and Ross 

(1985) that clearance rates are related to the size and shape of food types offered 

to krill. Therefore, it seems that feeding by M. norvegica is a selective process. 

The basis for this selective feeding seems largely due to more efficient retention of 

larger food types by the feeding basket. Higher carnivorous clearance rates, 

however, suggest that some active selection of food types does occur, that is, it 

appears krill prefer copepods compared with phytoplankton food types supporting 

the conclusions of Haberman et al. (2003b) that some active selection of food 

types does occur. Haywood and Burns (2003b) suggested that krill Nyctiphanes 

australis can detect and avoid unpalatable food types. Similarly lkeda and Dixon 

( 1984) found that E. superba were reluctant to feed on non - nutritious latex 

36 



beads. However, Bargu and Silver (2003) suggested that Pseudo- nitzschia was 

the dominant food in krill when it was the most abundant diatom in field. Also 

Bargu et al. (2003) found that krill species consumed low toxicity and non - toxic 

Pseudo - nitzschia diatoms at similar rates, but that this species E. pacifica 

showed a different pattern of feeding with the low toxicity diatoms compared with 

the non -toxic diatoms. Therefore it seems that krill can to some extent detect and 

respond to certain food types. Higher carnivorous clearance rates have also been 

shown with E. superba (Price et al., 1988). Price et al. (1988) found clearance 

rates on copepod food types were on average 3.1 times greater than those on 

phytoplankton food types. Atkinson et al. (1999) recorded crustacean remains in 

the guts of E. superoa both during the summer and winter at South Georgia. Yet 

E. superba is widely regarded as an herbivorous feeder whereas 

Meganyctiphanes norvegica is considered another extreme as a carnivore. This 

categorizing of these species into feeding modes has probably resulted from 

records of E. superba with stomach contents dominated by phytoplankton (e.g. 

0.01 - 10 llg chlorophyll a. individ-1
, see Perissinotto et al., 1997) and 

Meganyctiphanes norvegica with stomach containing copepod remains (e.g. 

Bamstedt and Karlson, 1998). Although regarded as mainly carnivorous M. 

norvegica stomach contents have also been frequently recorded with high 

chlorophyll levels (e.g. up to approx. 1250 ng Tot. pigment stomach -1 see Onsrud 

and Kaartvedt, 1998; up to approx. 1750 ng pigment gut - 1 see Kaartvedt et al., 

2002). lt has been proposed that Euphausia superba will also take zooplankton 

prey (Dalley and McCiatchie, 1989), and also can resort to carnivory (Cripps and 

Atkinson, 2000) leading to the interpretation that it prefers phytoplankton 

compared with zooplankton food types. Consequently, such statements suggest 

that feeding by Euphausia superba is due to a feeding preference and not the 
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availability of given food types. lt has also been suggested that based on the ratio 

of Pars mo/aris to Pars incisiva length in the mandibles of E. superba and M. 

norvegica that they have mandibles mainly 'adapted' for filter feeding (herbivorous) 

and carnivorous feeding respectively (Mauchline, 1980). Although, E. superba 

have been suggested to feed on copepods during non - bloom periods around the 

island of South Georgia (Atkinson and Snyder, 1997). Also M. norvegica is known 

to feed extensively on phytoplankton during bloom periods (Pers. Obs.). Whether 

krill switch diets to alternative food sources is debatable (Quentin and Ross, 1991) 

and it has been suggested that krill seem able to utilise whatever food is available 

(Schnack, 1985). Felvoden (1982) suggested that high enzyme heterozygosity in 

M. norvegica correlated with a varied diet. Buchholz and Saborowski (2000) that 

specific induction of chitinases indicated omnivory by both M. norvegica and E. 

superba and a capacity to adjust to highly variable trophic environments. 

Haywood and Burns (2003a) found no significant effects of food type on the body 

length of sibling N. australis reared on different diets. Therefore also suggesting 

that krill are flexible feeders and able to utilize a variety of food types. Kinsey and 

Hopkins (1994) suggested that morphological characters partly determined diet, 

but that behaviour was also important in the euphausiid species they examined in 

the Gulf of Mexico. According to optimal foraging theory a generalist feeding 

strategy may be expected in areas like the Gullmarsfjorden, where food 

abundi:mce may vary greatly during the year and have long periods of low 

productivity like the Antarctic. Therefore the 'carnivorous' northern krill M. 

norvegica may be more like the 'herbivorous' southern Antarctic krill E. superba 

than has previously suggested by the literature. Similarity of these species may be 

expected particularly because the design of the feeding basket of both species is 

functionally similar (McCiatchie, 1985). Also both these krill species live in 
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environments notorious for being low in productivity compared with the rest of the 

world's oceans. Therefore it may be expected that a generalist opportunistic 

feeding strategy would be favoured by both these species. Thus it seems that 

caution should be taken when placing krill into feeding mode groups especially 

based on gut contents alone because present diet does not indicate the potential 

ability to feed on food types and therefore feeding mode. Hence it seems that M. 

norvegica mainly show selection by the constraints of what their feeding basket 

can handle (that is the shape and size of the food types that can be retained) and 

although they may show feeding preferences for copepods it is more likely that 

they are generalist opportunistic feeders, feeding on whatever food types are 

available which can be retained by their feeding basket rather than specialist 

feeders seeking particular food types. 
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Chapter 3 

Aspects of the functional morphology of the feeding 

basket of Meganyctiphanes norvegica 
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ABSTRACT 

The functional morphology of the feeding basket is a key factor affecting the food 

types, which can effectively handled by kri/1. Therefore I examined and described 

feeding basket morphology in Meganyctiphanes norvegica in order to understand 

their feeding behaviour. Feeding basket length and width was examined in relation 

to kri/1 sex and body length. Setae length and intersetal widths for a range of kri/1 

body lengths were detennined using light microscopy and image analysis to 

examine the finer structure of the basket. The finer structure of the feeding basket 

was also described using light microscopy and scanning electron microscopy. 

Feeding basket morphology is discussed in relation to kri/1 feeding rates with 

various food type sizes offered in experimental feeding studies (see Chapter 2). 

Primary setae length appeared to be more of a potential factor affecting handling 

capabilities of the basket than intersetal distance or secondary setae length. 
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3.1 INTRODUCTION 

3.1.1 The structure of the feeding basket 

Krill are well known 'filter' feeders, sweeping and filtering the water to collect food. 

The thoracic appendages and their projecting setae form a mesh - like feeding 

basket, which has been suggested to be the main apparatus used for capturing 

prey and collecting food (Mauchline, 1980). Euphausiids are thought to filter feed 

by a process of compression filtration (Hamner, 1988). Hamner (1988) suggested 

that water and food are drawn into the basket from the front and once inside the 

particles (or food) are retained in the basket as the water is squeezed out laterally 

between the setae. Therefore the setae on the thoracic appendages act like a 

sieve, retaining the particles within the basket. '• 
' 

Experimental evidence from feeding studies suggests that the size and shape of 

food types is an important factor affecting feeding rates by krill (see Chapter 2 and 

Quentin and Ross, 1985). Both Euphausia superba (see Quentin and Ross, 1985) 

and Meganyctiphanes norvegica (Chapter 2) appear to handle larger cylindrical 

phytoplankton food types more efficiently than relatively smaller foood types when 

offered in feeding studies. Euphausia superba when offered a large food type (10 

times the estimated spherical diameter of a smaller food type) exhibited 3.5 times 

higher clearance rates than with the smaller food type (Quentin and Ross, 1985). 

Meganyctiphanes norvegica has also shown much higher clearance rates with 

larger food types. In Chapter 2 feeding studies M. norvegica showed greater 

clearance rates with a large cylindrical diatom (diameter ea. 200 !Jm) compared 

with extremely low clearance rates when offered small diatoms (diameter ea. 15 -

50 !Jm). Given the difference in feeding rates with relatively larger food types 

compared with smaller food types, it seems likely that the morphology of the 
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thoracic appendages and their setae is a key factor affecting the food types that 

can be retained and handled by the feeding basket. Therefore I investigated 

aspects of the functional morphology of the thoracic appendages and their setae in 

order to ascertain whether feeding basket morphology was related to the food 

types handled by krill. 

3.1.2 Feeding basket morphology and krill body length and sex 

There are many studies investigating various aspects of krill feeding (see Chapter 

1 references), however, there are few studies concerning the functional 

morphology of the feeding basket of species other than Southern Ocean 

Euphausia species. Studies investigating the feeding basket have mostly used 

intersetal distance in order to calculate filtering efficiency of the basket (e.g. Boyd 

et al., 1984; Suh and Nemoto, 1987; Suh and Choi, 1998). Therefore, I measured 

intersetal distance for both primary and secondary setae. I also, however, 

measured the lengths of both primary and secondary setae in order to further 

explain the functioning of the basket both throughout the whole feeding basket of a 

'typical' length krill and on the first and second thoracic appendage for a range of 

krill body lengths. In addition to the finer structural measurements (i.e. setae) I 

also examined feeding basket length and width (large scale measurements) in 

relation to krill body length. Thus I examined a range of different body length krill 

in order to investigate the relationship between feeding basket (fine and large 

scale) morphology and body length. 

In addition to investigating the relationship between krill body length and feeding 

basket morphology I examined the krill sexes separately. Male and female krill 

have different energetic demands for reproduction and this demand for energy has 

being suggested as a reason for why female krill may undertake a riskier DVM 
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than males (Tarling, 2003). Therefore it may be expected that feeding activity 

differs between male and female krill throughout their DVM. I have recorded such 

a difference between the feeding activity of male and female krill during their DVM 

(see Chapter 4). Therefore, I was also interested in whether feeding basket 

morphology differed with krill sex. I concentrated on comparing the larger scale 

measurements of male and female feeding baskets to investigate whether the 

relationship between feeding basket size and body length differed with the sexes. 

3.1.3 Describing the feeding basket 

In addition to investigating the relationship between krill body length, sex and 

feeding basket functional morphology I also aimed to describe the feeding basket. 

Mandible ontogeny in Euphausiacea has been examined by Casanova et al. 

(2002) and the structure and function of feeding appendages in krill larvae has 

been analysed by Marshal! (1985). Although it is important to understand the 

development of the feeding basket of M. norvegica it is beyond the scope of this 

the investigation as this thesis is focussed on the feeding of adult krill. Most 

descriptive work on adult krill feeding baskets has been performed on Euphausia 

species (e.g. Hamner, 1988; McCiatchie and Boyd, 1983; Suh and Choi, 1998). 

The morphology of Euphausia superba has been particularly well described and 

reviewed by Hamner (1988). Although the feeding basket of Meganyctiphanes 

norvegica has been also well described by Artiges et al. (1978), particularly in their 

excellent line drawings, I wanted more information on the finer structure of the 

basket using scanning electron microscopy (SEM). The functional feeding 

morphology of the euphausiid Nyctiphanes australis has also been investigated by 

Dalley and McCiatchie (1989). Using this descriptive information on the finer 

structure of the basket together with feeding basket and setal measurements I 

planned to further eludicate the functioning of basket. Moreover, the information 
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in this chapter aims to compliment the experimental feeding studies of this thesis 

by investigating whether there is a relationship between krill feeding behaviour and 

feeding basket morphology. 

3.2 MATERIALS AND METHODS 

3.2.1 Krill collection 

Meganyctiphanes norvegica were collected from Gullmarsfjord, Southwest 

Sweden (58°18' N, 11°32' E), using an lsaacs - Kidd midwater trawl (mouth area 

0.6m2
; haul duration = 20 min) during the day (41

h March 2003). Krill were fixed 

and preserved in a 4 - 5% formaldehyde solution and examined < 6 months after 

collection. 

3.2.2 Whole feeding basket description 

The length of the feeding basket was measured from the anterior edge of the first 

thoracic appendage to the posterior edge of the last thoracic appendage under a 

low power microscope using callipers (precision 0.02mm) for a range (body length 

23- 40 mm) of female and male krill (total krill examined = 168 individuals). Krill 

body lengths were measured from the tip of the rostrum to the end of the telson 

using callipers (precision 0.02mm). 

In order to provide detailed images of the feeding basket krill were examined using 

a scanning electron microscopy (SEM). A number of individuals were examined 

although printed images presented here in this chapter were taken from the same 

individual. All of the individuals examined using SEM were a similar body length to 

those used in other feeding experiments throughout this thesis (i.e. body length 37 

mm). The left side of the feeding basket of krill was removed in order to provide 
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an internal view of the arrangement of setae on the thoracic limbs of the feeding 

basket. The thoracic appendages of the feeding basket and the mandibles were 

also removed. All these samples were air dried for 24h after which they were 

mounted onto stubs and sputter coated with gold (EMITEVH K550 sputter coater). 

The samples were then examined using a JEOL 56 00 LV Scanning Electron 

Microscope. . 

3.2.3 Detailed examination of the feeding basket 

For descriptive purposes the lengths of all setae and the distance between primary 

setae and also between secondary setae was measured on every segment of 

every thoracic appendage in one krill. The length of each appendage was 

measured and also the lengths of every segment for each appendage were also 

measured. The krill used for these measurements was a similar body length (37 

mm) to krill used in feeding experiments in other chapters (see Chapters 2, 4 and 

Appendix A). Although it would, of course, have been good to have examined 

many more individuals the time involved in measuring each and every setae length 

throughout the feeding basket was too great in the time scale available to examine 

more individuals. Therefore, in order to determine whether these lengths and 

distances were comparable with those in other krill individuals the lengths of setae 

and secondary setae and intersetule spaces on the carpus of the first (most 

anterior positioned) and second thoracic appendage in similar length krill were 

examined. Additionally the lengths and distances between setae on these two 

appendages were recorded for a range adult krill body lengths (n = 22) from 22 to 

40 mm. The carpus was chosen only because it was easy to count and measure 

setae on this segment of the appendage than any other segment. 
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The first and second thoracic appendages were dissected from krill under a low 

power (x 10 magnification) microscope. These appendages were placed on to a 

microscope slide and using a high power inverted microscope coupled with a 

digital camera (Nikon E990) attached the carpus of each was photographed at x 

40 magnification. The first and second appendages were chosen for no other 

reason than that they were easier to remove than appendages from the centre of 

the feeding basket. The carpus was measured primarily because it was easier to 

photograph than other segments and although it had both primary and secondary 

setae they were present in fewer numbers than on the first and second segments 

and therefore was much easier to measure and analyse. For the purposes of this 

chapter it is assumed that any relationship between krill body length and setae 

length and/or intersetule spaces on the carpus of the first and second appendage 

of the feeding basket is allometric and therefore is representative of a relationship 

throughout the feeding basket. 

The images were analysed using an image analysis computer package (Pixera 

Studio). An image of a 1 mm graticule was also taken at the same magnification 

as used for each thoracic appendage image in order to calibrate the software. 

Primary and secondary setae lengths were measured in the centre from their base 

to tip. lntersetule spaces were measured at the base of setae from the inner 

margin of adjacent setae. 
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3.3 RESULTS 

3.3.1 Feeding basket description 

The feeding basket comprises of seven thoracic appendages. Each of these 

thoracic appendages consists of an endopodite and an exopodite (see Plate 3.1. 

A) From each segment of the endopodites setae project, overlapping to create a 

mesh like basket (see Plate 3.1 ). 

Plate 3.1 A. Thoracic appendages showing endopodites (En) and exopodites (Ex) 

of the feeding basket of Meganyctiphanes norvegica. B. Projecting setae on 

thoracic limbs overlap creating a mesh like basket. Scale bar = 1 mm in each 

case. 

The primary setae were between 1.43 and 1.86 mm long for krill ea. 37 mm body 

length krill (using first and second thoracic appendages for measurements). The 

primary setae appeared to extend from one appendage and overlap with the next 

thoracic appendage when the feeding basket was laid flat (see Plate 3. 2). The 

secondary setae were between 0.01 and 0.04 mm long for krill ea. 37 mm body 

length krill (using first and second thoracic appendages for measurements). The 

secondary setae protruded from the primary setae creating a more complex mesh 

structure to the feeding basket. 
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Plate 3.2 A. Structure of feeding basket showing overlapping setae. B. Larger 

primary setae (P) from which the secondary setae (S) project create the mesh 

structure of the feeding basket. 
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Each thoracic appendage from 1 to 6 (anterior to posterior) has 5 segments (see 

Plates 3.3 A and B) an ischium, merus, carpus, propodus and dactyl. The 

ischium, merus and carpus had primary and secondary setae. The propodus and 

dactyl, however, appeared to have primary setae but lack secondary setae. 

Examples of segments with and without secondary setae are shown by Plate 3.4. 

The last thoracic appendage differs from the other 6 by being composed of only 2 

segments, which has both setae and secondary setae (see Plate 3.3 C). 
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Plate 3.3 A. Thoracic appendages 1 - 3 showing endopodite and exopodite. 
Ischium, merus, carpus, propodus and dactyl segments labelled on exopodite of 
appendage 1. Scale bars = 1 mm. 
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Plate 3.3 B. Thoracic appendages 4 - 6 showing endopodite and exopodite. 

Scale bars = 1 mm. 

52 



Plate 3.3. C. Thoracic appendages 7 showing endopodite and exopodite. Scale 

bar= 1 mm. 

Plate 3.4 Primary setae on segments of thoracic appendages of the feeding 

basket. A. Primary setae from the propodus with no visible secondary setae. B. 

Primary setae on the ischium with secondary setae clearly present. Scale bars = 

0.5 mm in each case. 
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Although the first 6 appendages are similar in having the same number of 

segments they all appear to be different from one another quantitatively and 

qualitatively in their morphology. For example, the length of the primary setae 

varied with each appendage of the feeding basket and also with each segments of 

the same appendage (see Fig. 3.1). Secondary setae were between 0.02 and 0.04 

mm in length on all appendages of the feeding basket. 
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Figure 3.1 Mean length of primary setae (n = 4 - 18) on ischium (open bars) and 

merus (hatched bars) segments of appendages (A 1 - 7) of feeding basket. Values 

are expressed as means plus or minus 95 % confidence intervals. 

Two lengths, or perhaps layers, of primary setae were evident particularly on the 

first segments of appendages one and two. These shorter setae were 

approximately one quarter of the length of the longer primary setae on the 1 st 

appendage whereas they were half the length on the longer primary setae on the 

2"d appendage. 
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One of the most striking differences between each of the thoracic appendages is 

the morphology of the dactyl segment of the appendage (Plate 3.5). The dactyl of 

the first appendage appears to taper into one or possible two primary setae. This 

tapering of the dactyl is evident in all but one thoracic appendage. Examination of 

the primary setae using light microscopy (see Plate 3.4) showed they appear to 

lack secondary setae. SEM images (see Plate 3.5 A), however, showed that there 

are very short closely spaced setae, upon the primary setae. The second thoracic 

appendage dactyl shows the greatest contrast in morphology compared with all 

other appendages of the feeding basket. The dactyl of the second thoracic 

appendage does not taper to a point as in all other thoracic appendages. Instead 

it is shorter in length than the dactyl segments of other appendages and in 

particular is broad and flattened forming a plate- like shape. In particular, primary 

setae appear to be present not only on the edge of the segment like in other 

thoracic appendages but also on the ventral flattened surface of the plate. Short 

closely spaced setae are again present on all primary setae. The dactyl of 

appendage 3 has a row of shorter spines like setae bearing short comb like 

secondary setae. The end of segment terminated in a several primary setae. 

The dactyls of thoracic appendages 4 - 6 all appears to taper to a point ending 

with two or three primary setae similarly to appendage 1. Again the primary setae 

had shorter closely spaced setae forming a fine comb on the edge of the primary 

setae. 
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Plate 3.5 A Dactyl segments of thoracic appendages 1 -4 (as numbered on each 

image, a and b images show same appendage but at different magnification each 

given on the micrograph) of the feeding basket 
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Plate 3.5 B. Dactyls of thoracic appendages 5 and 6 of the feeding basket (as 

numbered on each image, a and b images show same appendage but at different 

magnification each given on the micrograph) of the feeding basket. 

Plate 3.6. Ventral view of the basket of M. norvegica with all thoracic appendages 

removed. C =coxa, S =setae and T =thoracic groove. 
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Seven coxa were present from which setae projected into the thoracic groove (see 

Plate 3.6). The mandibular palps are shown overhanging the mandibles (Plate 

3.7.A). Towards the end of the mandibular palps secondary setae on the ends of 

the primary setae formed a comb like structure. The mandibles are shown 

clasped together underneath the mandibular palps by Plate 3.7.A. Rows of teeth 

were present on the surface of the mandibles (see Plates 3.7. Band C). 
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Plate 3.7. Mouthparts of krill. A. Mandibular palps overhanging cutting region. B. 

Area a. magnified as indicated on micrograph to show rows of spines or 'teeth .' C. 

Row of spines magnified as indicated on micrograph. 
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3.3.2 Relationship between individual body length and feeding 

basket morphology 

The feeding basket increased in length and width directly proportionally with an 

increase in krill body length (see Fig. 3.2). 
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Figure 3.2 Relationship between male (D) and female (~) body lengths and feeding 

basket length (a) and width (b). Each data point represents an individual (male n = 
104, female n = 65). 

ANCOVA (calculated using a spreadsheet provided by A.J. Underwood Pers. 

Comm.) detected no significant difference between the slopes of male and female 
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body length and feeding basket length (F1. 164 = 2.72, P > 0.05). There was, 

however a significant difference between the estimated Y intercepts for male (Y = 

0.45) and females (Y = 0.09) feeding basket length versus body length (F1, 164 = 

9.44, P < 0.01 ). There was no significant difference between either the slopes (F1, 

164 = 2.17, P > 0.05) or intercepts (F1, 165= 0.10, P > 0.05) of male and female krill 

feeding basket width and body length. 

This proportional increase of length with body length was also shown with 

segment length. The length of third segment of appendages 1 and 2 showed a 

relatively strong relationship with krill body length (see Fig. 3.3). The correlation 

coefficient for appendage 1 was 0.8804 and for appendage 2 was 0.9178. 
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Figure 3.3 Relationship between carpus length of appendages 1 (a) and 2 (b) with 

krill body length (n = 20). Prediction limits are shown by broken line and 95 % 

confidence limit by dark grey line. 
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Again, as shown by Figure 3.4, there was a moderately strong relationship 

between primary setae length and krill body length with primary setae length 

increasing with an increase in krill body length in both appendages 1 (correlation 

coefficient= 0.7012) and 2 (correlation coefficient= 0.6896). 
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Figure 3.4 Relationship between primary setae length on the carpus of 

appendages 1 (a) and 2 (b) with krill body length. Prediction limits are shown by 

broken line and 95 % confidence limit by dark grey line. Values are individuals (a) 

n=97,{b)n=99. 
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A relatively weak relationship was evident between distance between the bases of 

the primary setae and krill body length as shown by Figure 3.5. The correlation 

coefficient for appendage 1 was 0.3978 and for appendage 2 was 0.2072, 

indicating a weak relationship between the variables. 
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Figure 3.5 Relationship between length of space between primary setae and on 

the carpus of appendages 1 (a) n = 36 and 2 (b) n = 39 with krill body length. 

Prediction limits are shown by broken line and 95 % confidence limit by dark grey 

line. 

63 



In contrast to the relationship between primary setae length and krill body length a 

relatively weak relationship was shown between secondary setae length and krill 

body length (see Fig. 3.6). A correlation coefficient of 0.1990 for appendage 1 and 

0.4527 for appendage 2 indicated this weak relationship. 
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Figure 3.6 Relationship between secondary setae length on the carpus of 

appendages 1 (a) n = 39 and 2 (b) n = 41 with krill body length. Prediction limits 

are shown by broken line and 95 % confidence limit by dark grey line. 
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Again like the spacing between primary setae the length of the spaces between 

the bases of the secondary setae appeared to show a relatively weak relationship 

with krill body length. A correlation coefficient of 0.4351 for appendage 2 indicated 

a weak relationship between the variables. A moderately strong relationship was 

indicated, however, by correlation coefficient of 0.6049 for appendage 1. 
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Figure 3.7 Relationship between length of space between secondary setae on the 

carpus of appendages 1 (a) n = 60 and 2 (b) n = 55 with krill body length. 

Prediction limits are shown by broken line and 95 % confidence limit by dark grey 

line. 
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The relationship between krill body length and various morphological features of 

the feeding basket is summarized by Table 3.1. The relationship with body length 

was stronger with the larger scale features of the basket that is feeding basket, 

length and width and also carpus length. There was also a moderately strong 

relationship between primary setae length and body length. The relationships 

between smaller scale features of the basket with body length were, however, 

weak. 
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Table 3.1 Summary of relationship between various measures of the feeding basket (variables) with krill body length. 

Fig. Variable r f2 (%) P value Intercept Slope Relationship of 
ref. 

3.1 a Feeding basket length (female) 0.789 62 <0.001 0.455 0.230 Moderately strong 
3.1 b Feeding basket length (male) 0.896 80 <0.001 0.095 0.235 Moderately strong 
3.2 a Feeding basket width (female) 0.740 55 <0.001 0.146 0.095 Moderately strong 
3.2 b Feeding basket width (male) 0.637 41 <0.001 0.185 0.094 Moderately strong 
3.3 a Carpus length (appendage 1) 0.880 77 <0.001 0.033 0.027 Moderately strong 
3.3 b Carpus length (appendage 2) 0.918 84 <0.001 0.081 0.031 Strong 
3.4 a Primary setae length (appendage 1) 0.701 49 <0.001 -0.708 0.060 Moderately strong 
3.4 b Primary setae length (appendage 2) 0.690 48 <0.001 0.088 0.039 Moderately strong 
3.5 a Primary setae spacing (appendage 1) 0.207 4 <0.001 0.058 0.001 Weak 
3.5 b Primary setae spacing (appendage 2) 0.398 16 >0.05 0.043 0.001 Weak 

0> 3.6 a Secondary setae length (appendage 1) 0.199 4 <0.001 0.008 0.001 Weak -...j 

3.6 b Secondary setae length (appendage 2) 0.305 9 <0.001 0.014 0.000 Weak 
5 

3.7 a Secondary setae spacing (appendage 1) 0.489 24 <0.001 -0.001 0.002 Weak 
3.7 b Secondary setae spacing (appendage 2) 0.453 20 <0.001 0.017 0.001 Weak 



3.4 DISCUSSION 

3.4.1 Description of the thoracic appendages 

All the thoracic appendages of the basket were different in their morphology. The 

primary setae were different lengths on both segments of the same appendage 

and between appendages therefore suggesting that each thoracic appendage has 

a different function in the basket. The most noticeable differences were between 

the dactyl segments of each appendage. The dactyl segments of appendages 1 

and 4 - 6 seemed similar and therefore perhaps functionally similar. The dactyl 

segments of appendages 2 and 3 were extremely different both from the other 

appendages and from each other. The flattened, dactyl of appendage 2 and the 

shorter setae with a dense fringe of secondary setae may suggest that these 

appendages are modified perhaps for grasping or holding onto objects. Although 

not clear in the images obtained in this study the dactyl of appendage 1 may also 

be modified in a similar way as the drawings of Artiges et al. (1978) show the 

dactyl with a comb like edge. Determining whether these dactyl segments are 

modified for grasping would need further investigation. The presence of primary 

setae with secondary setae on the ischium, merus and carpus may suggest that 

most filtration occurs in the upper part of the basket. Filtration in the upper part of 

the basket would seem likely as Hamner (1988) described how the dactyls fold 

back and overlap with the long setae of the endopodites meaning that it is likely 

that most of the filtration process occurs through the upper segments of the 

appendages. 
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3.4.2 Functional morphology of the basket 

The functional morphology of the feeding basket seems to be superficially similar 

to other krill species with primary and secondary setae on each thoracic 

appendage creating a mesh like structure to the basket. Dalley and McCiatchie 

(1985) compared filter area with body length and suggested that the design of the 

feeding baskets of Nyctiphanes austra/is, Euphausia superba and 

Meganyctiphanes norvegica were all functionally similar. Hamner (1988) also 

suggested that species in the genera Euphausia, Thysanoessa, and 

Meganyctiphanes filter feed in essentially the same way especially because of the 

observation by McCiatchie (1985) which described similarity in anatomy and 

pumping behaviour of M. norvegica and E. superba. Although it is likely as 

Hamner (1988) also suggested that subtle differences in the appendage structure 

between species may lead to subtle differences in the filtering behaviour of various 

krill species. 

In 4 out of 5 Euphausia species examined by Suh and Choi (1998) primary and 

secondary setae distances increased with growth. By contrast, in this study 

relationships between intersetal widths and body length were weak suggesting 

that these features of the basket do not change greatly with growth in 

Meganyctiphanes norvegica. This weak relationship between body length and 

smaller scale morphological features may suggest, that the food types handled by 

krill are similar throughout their growth as suggested by Suh and Choi (1998) for 

Euphausia pacifica which had mesh size nearly consistent from juvenile to adult. 

Marshal! (1985) commented when describing the feeding appendages of krill 

larvae on that it seemed as if there were no apparent differences between the food 

of larval and adult krill. Therefore if handling capability is based on intersetal 

distance it is likely, that krill do handle similar sized food types throughout their 
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growth. Establishing whether different body length krill handle different sized food 

types more efficiently would, however, require experimental investigation 

comparing feeding rates with different sized food types against different krill body 

lengths. Although weak relationships were shown between body length and 

intersetal distances stronger relationships were evident with larger scale features 

such as feeding basket length and width and also primary setae length. These 

increases in feeding basket length, width and primary setae length with increasing 

body length suggest therefore that some morphological characters of the basket 

do change with growth. Studies investigating the size of food types retained by 

the feeding basket tend to have related particle retention efficiency to the finer 

structure of the basket (e.g. Dalley and McCiatchie, 1989; Suh and Choi 1998) i.e. 

they use the smallest distance between the setae as a means of determining 

particle retention efficiencies of the basket. Suh and Choi (1998) in particular have 

examined the finer mesh structure of Euphausia species. They measured 

proportion of projection of secondary setae (PPS) to show whether the secondary 

setae are longer or shorter than the distance between primary setae and therefore 

whether the secondary setae complete the filter mesh. They calculated PPS for 5 

species and suggested that a higher PPS implies more effective filtration. 

Calculating PPS for a 37 mm Meganyctiphanes norvegica would give a PPS of 

53% suggesting that M. norvegica is not able to filter as effectively as any of the 

Euphausia species investigated by Suh and Choi (1998). Suh and Choi (1998) 

did, however find that primary and secondary setae distances increased with 

growth in 4 Euphausia species examined. This increase in primary and secondary 

setae distances with increasing body length was not evident in M. norvegica as the 

relationship between body length and intersetal width was weak. The results of 

feeding studies (Chapter 2) suggest that there is minimum size of food type that 

can be handled by M. norvegica. Therefore it may be that particles retained by the 
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basket of M. norvegica are not related to intersetal width but another 

morphological feature of the basket. These low particle size limits calculated from 

the finer structure of the basket may not reflect the actual lower size limit that the 

basket can handle. Suh and Nemoto (1987) suggested the lower limits if filterable 

particle size were 2-7 1-1m for E. superba. Quentin and Ross (1985) reported that 

E. superba retained Thalassiosira eccentrica with a calculated spherical diameter 

(COS) of 49.7 1-1m more efficiently (ea. 45% cells retained) than /sochrysis ga/bana 

with a COS of 5.3 1-1m (ea. 14% cells retained or Phaedactylum tricomutum with a 

COS of 7.5 IJm (ea. 14% cells retained). In particular Quetin and Ross (1985) did 

not find a plateau in retention efficiency for particles at least as large as 50 1-1m 

suggesting that retention efficiency may be even higher with larger particle sizes. 

Suh and Choi (1998) calculated lower filterable particle sizes of 2.3 IJm for 

Euphausia pacifica, although admittedly suggest that E. pacifica that this species 

has been found to preferentially feed upon large diatoms (ea. 32 1-1m) (Parsons et 

al., 1967). Given that it seems that the food types efficiently retained by krill 

baskets are much larger than the calculated lower limit of filterable particle sizes 

estimated using the finer structure of the basket perhaps particles are not directly 

retained by the finer structural parts of the basket. If the lower limit of filterable 

particle size were calculated in a similar manner as calculated by Suh and Choi 

(1998), that is primary setal distance minus secondary setae length for a 37 mm 

Meganyctiphanes in this study it would give an estimated lower particle size limit of 

50 1-Jm. In feeding studies (Chapter 2) when food types with a diameter of 50 1-1m 

where offered feeding rates were extremely low or zero. Feeding rates were much 

higher when food types with a larger diameter of 200 - 300 1-1m upwards were 

offered. Additionally gut studies of copepod mandible content indicated that the 

copepods eaten were approximately 1 mm (10001-Jm) in length (see Chapter 4). 

Given the low feeding rates with food types of the presumed lower filterable size it 
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is unlikely that M. norvegica effectively feed upon food types at this lower limit of 

filterable particle size or therefore supporting that the particles retained by the 

feeding basket are not related to these finer scale structural measurements. Even 

if only the primary intersetal distance is taken into account (without secondary 

setae) the intersetal distances were between 601Jm and 1701-'m throughout the 

whole feeding basket with a median of 901Jm, therefore being much smaller than 

the food types with which M. norvegica show highest feeding rates. Given that 

primary setae lengths were between ea. 0.3 - 1 mm (300 - 1000 1-1m) on the 

ischium, ea. 0.4 - 2.7 mm (400 - 2700 1-1m) on the merus and ea. 1 - 1.6 mm 

(1000 - 1600 1-1m) on the carpus segments of the appendages comprising the 

feeding basket it seems that the food types handled by the basket are more 

related to primary setae length than intersetal distance. The stronger positive 

relationship between these larger scale features and body length compared with 

the weaker relationship between smaller scale features may also indicate that the 

smallest 'mesh' sizes of the basket do not relate to the food types handled by M. 

norvegica. lt may also be that M. norvegica could take smaller food types if they 

preferred but that they only take larger food types for whatever reason, perhaps 

because they are more energetically favourable. Therefore, the stronger 

relationship with primary setae length and krill body length compared with 

intersetal distances and that the food type eaten by krill appear to be related to 

primary setae length suggest that the primary setae length in the case of M. 

norvegica are an important factor in the retention of particles by the basket. lt may 

be that because of the fairly low PPS that the secondary setae in basket of M. 

norvegica do not create the sieve structure like in the baskets of other krill species. 

Therefore particles may be retained predominantly by the primary setae, with the 

secondary setae not acting as part of the sieve as such but more as an additional 

restriction on the longer primary setae helping to retain particles. Determining 
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whether the primary setae are more related to the food types handles requires 

more investigation of particle retention by different krill species, which have 

different mesh sizes. 

3.4.3 Female and male krill feeding baskets 

The intercept value for basket length versus body length was higher for females 

than males suggesting that females have a relatively longer feeding basket than 

males. This is the first time this difference has been recorded for any species of 

krill. A relatively longer length feeding basket may suggest that females have a 

larger filter area than males, although this would need further investigation. If the 

size of the feeding basket and is related to krill sex it may in part explain 

differences in feeding behaviour between males and females during DVM (see 

Chapter4). 
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Chapter 4 

Is nocturnal feeding by krill, Meganyctiphanes 

norvegica, driven by availability of food types during 

diel vertical migration? 
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ABSTRACT 

Knowing whether krill feed continuously throughout their die/ vertical migration or 

only during certain periods is an essential part of understanding krill feeding 

biology and therefore understanding pe/agic food web function. I investigated 

feeding by krill during DVM both in situ and also under laboratory conditions by 

offering krill food types which would be 'available' during either their nocturnal 

migration or daytime residence in deeper waters. Krill were offered copepods from 

depths which they would encounter during either the day or evening/night periods 

of their DVM in order to measure clearance and ingestion rates. These food types 

were also offered at several densities (surface water food type densities = 22, 39, 

85, 103 and 175 individ. - 1
; deep water food type densities = 26, 43 and 63 individ. 

-
1
) in order to investigate functional response of feeding. Gut contents of krill, 

were examined for both chlorophyll and copepod mandibles from individuals 

collected during the day, evening and night from 25 m intervals between 0 and 100 

m depths. Laboratory feeding experiments suggested that krill did not feed 

extensively on copepod food types available to them during the day but did show 

significantly higher ingestion and clearance rates with food types available to them 

during the evening/night. With evening/night food types offered at several 

densities krill showed a type Ill functional feeding response. In situ feeding studies 

confirmed my laboratory findings as krill appeared to show significantly higher 

stomach chlorophyll levels during the evening/night compared with during the day. 

Male and female krill seemed to show both asynchronous DVM and also feeding 

during their DVM. Therefore it seems that krill feed extensively at night but not 

during the day and there is a difference in the feeding behaviour together with 

migratory behaviour of krill sexes during DVM. 
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4.1 INTRODUCTION 

Given also that most krill are omnivorous feeding upon both phytoplankton and 

zooplankton and that these food types are abundant at varying depths of the water 

column, one of the most important potential influential factors affecting krill feeding 

is their own diet vertical migration (DVM). I am interested in the relationship 

between krill feeding and DVM for two main reasons (a) krill DVM affects potential 

food types available for krill utilization (b) what food types are available during 

DVM in turn also has the potential to influence krill migration to the surface layers 

of the water column and thus at least be in part a mechanism for DVM. 

4.1.1 Krill feeding and diel vertical migration 

As noted previously most of the studies that have investigated krill feeding during 

DVM are descriptive field studies (see Chapter 1 for references). That is, they 

describe what krill have eaten but cannot explain why or even estimate a time 

scale for when krill feed on given food types. The absence of a time scale for 

feeding makes it difficult to establish whether there is a relationship between DVM 

and krill feeding. Establishing a time scale for feeding is, however, inherently 

difficult due to the many variables in situ potentially affecting gut contents. One 

method for producing a time scale for feeding could be to estimate gut residence 

times for food types in controlled conditions in order to give an estimate of the 

length of time that items remain in the guts of field caught krill. However, this 

determination under controlled laboratory conditions would in turn give rise to 

problems when attempting to extrapolate the residence times to field caught krill. 

These problems would arise because krill can feed upon a variety of food types in 

the field at differing densities and presumably either singularly and/or in mixtures. 

76 



Heyraud (1979) estimated gut transit times in krill, M. norvegica to be around 30 

min ('large' krill) and 15 min ('small' krill) when given an abundant food supply. He 

(1979) suggested that this 30 min transit time occurs only when krill are feeding 

continuously and in the absence of food it is much longer (up to 8 h) before krill 

empty their guts (La Rosa, 1976 as cited by Heyraud, 1979). This concurs with 

Perissinotto and Pakhomov (1996) who suggested that feeding activity of krill, E. 

superba strongly correlates with the gut passage time. They suggested that gut 

evacuation rates can only be estimated when krill are able to continuously ingest 

particles. In support of the view that transit times are greater in the absence of 

food, it has been suggested that Euphausia superba can retain their gut contents 

for up to 7 d when starved (Antezana et al., 1982), therefore feeding or starvation 

status of krill should be an important consideration when estimating gut residence 

for food types. In particular, factors such as nutritional value of food (Pond et al., 

1995) and food type may also affect gut residence times as for example in 

mackerel prey type has been shown to affect gastric evacuation rate (Temming et 

al., 2002). Consequently accounting just these factors mentioned above when 

determining gut residence times would be extremely time consuming. Moreover, 

fitting various residence times to food items without prerequisite information of all 

the factors mentioned above would be impossible. Therefore determining when 

krill feed during DVM relies on understanding the reasons why krill feed on given 

food types. 

Primarily establishing whether krill are selective feeders or more particularly 

whether they are carnivorous, herbivorous or opportunistic omnivores is 

fundamentally important for ascertaining whether krill feed throughout DVM 

because it forms the basis for relationships between krill and their food types. 

Schnack (1985) suggested that krill utilize whatever food types are available. 

There is, however, a view implicit in the literature that krill species fit into 'feeding 
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types'. Part of this suggestion originates from the placing of krill into feeding 

types based on their mandible type e.g. Mauchline (1980). Using these physical 

characteristics to predict behaviour may lead to underestimating the flexibility of 

krill and thus false placing of krill into feeding types. Spicer et al. (1999) found that 

a poor anaerobic capacity of krill M. norvegica does not prevent their DVM into 

hypoxic waters. Therefore krill physiology or anatomy may not always be an 

accurate predictor of krill behaviour. Again, gut content studies only provide 

information concerning the food items which have been eaten but not the 

capability of krill to feed on given food types. Additionally, the suggestion that krill 

fit into feeding types is intensified by even those authors, which seem to suggest 

that these feeding types are only tendency. For example, Dalley and McCiatchie 

(1989) used statements such as 'Euphausia superba was considered an 

archetypal herbivore but will also take animal food ... Another extreme, 

Meganyctiphanes norvegica is predominately carnivorous, but will also feed on 

small diatoms.' The phrase 'but will also' suggest that they are either herbivorous 

or carnivorous and other food types not within these categories are taken 

secondary to their main food types. Although E. superba is described as a 

herbivore and M. norvegica a carnivore based on their mouthparts and by gut 

content studies both species have shown higher clearance rates with copepod 

food types compared with phytoplankton under controlled conditions (see Price et 

al., 1988 and Chapter 2 respectively). Cripps and Atkinson (2000) suggested that 

E. superba fed on copepods during non - bloom periods around the island of 

South Georgia. Kaartvedt et al. (2002) suggested that M. norvegica shifted 

between phytoplankton and zooplankton during the day and night and also 

seasonally. In Chapter 2 it was discussed how both species may be more alike 

than previously suggested and that are most likely flexible feeders, feeding on 

whatever food types are available. Thus it seems that krill are flexible and do have 
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the ability to feed carnivorously and herbivorously depending on availability of 

food types. Also it seems that on a large spatial (i.e. different seas) and temporal 

scale (i.e. different seasons) that krill are able to utilize both phytoplankton and 

zooplankton food types. On a smaller time scale, that is during DVM different food 

types are available to krill in time and space thus an important part of 

understanding why krill feed on given food types and thus the basis of trophic 

relationships in these pelagic food webs depends on when krill feed as this is the 

primary factor determining the food types are available for krill to utilize. However, 

exactly when krill feed may also rely on whether krill can feed upon all of the 

'available' food types during their DVM. As a result determining if krill can utilize all 

the food types available during their DVM is key to understanding when krill feed 

during DVM. Some studies have tried to ascertain why krill feed on given food 

types by examining whether krill show size selective feeding and/or a preference 

for given food types (see Haberman et al., 2003b; Quentin and Ross, 1985). Krill 

appear to seek particular food types (Haberman et al., 2003b) or only handle those 

of a certain size (diameter, length) and morphology (see Chapter 2; Quentin and 

Ross, 1985). Therefore krill may only be able to feed during certain periods of 

DVM because although other food types are available at other times they do not 

have the capability to handle them or they do not prefer those food types. 

Consequently why krill feed on given food types may also in part explain why krill 

migrate to the surface layers of the water column. 

4.1.2 Feeding; a basis for DVM? 

Diel vertical migration by zooplankton is a well - known phenomenon. The 

adaptive significance and ecosystem consequences of these migrations by 

zooplankton have been recently reviewed by Hays (2003). Hays (2003) suggested 

that there are most likely several ultimate reasons for DVM and also that given 
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DVM is widespread throughout most taxonomic groups there must be a common 

underlying cause (see Chapter 1 for discussion). The most common proposed 

explanations for DVM include predator avoidance, that is descending into deeper 

depths during the day allows migrants to avoid waters with visual predators where 

they would be visibly seen and eaten; metabolic advantage, whereby migrants 

gain an advantage by ascending into warmer surface waters at night; light 

avoidance, in order to reduce damage from ultraviolet radiation and last but not 

least feeding, where migrants ascend to the surface waters at night to feed (for 

review of these explanations see Hays, 2003). Most work has concentrated on 

predator avoidance as a driving force for DVM. Although krill play a central role in 

pelagic marine food webs and also the fact that most krill are diel vertical migrators 

(Mauchline, 1980), the reasons for krill migration and particularly whether they 

feed throughout DVM or only at night still remains unclear. lt has been suggested 

that krill ascend to the surface waters at night in search of food (Sameoto, 1980) 

and also that krill distribution and may be linked to predation risk (Aionzo and 

Mangel, 2001; Tarling, 2000). In particular it has been suggested that 

Meganyctiphanes norvegica only feed at night and that feeding ceases during the 

day (Lass et al., 2001). Lass et al. (2001) suggested that the diel feeding activity 

rhythms shown by M. norvegica in the Kattegat and Clyde Sea is adaptive, 

minimizing risk from predators and that the species did not seem to feed during 

the day. Onsrud and Kaartvedt (1998), suggested that M. norvegica fed both 

during the day and night and also carried out DVM regardless of fluctuations in the 

distribution and abundance of food. Therefore, it is unclear whether krill do feed 

throughout DVM or only during their nocturnal migration to the upper layers of the 

water column. Whether krill feed throughout their DVM is essential to 

understanding food webs in two ways, (a) in order to understand the trophic 

relationships between krill and their food types as a means to understanding food 
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web function and (b) as a means to explaining krill DVM behaviour. Whether krill 

feed throughout DVM is thus an important unresolved question. Consequently I 

would like to know whether or not krill feed during both the day and night? More 

specifically I would like to know can krill utilize the food types potentially available 

to them to both during the day and night? 

4.1.3 The model system, study design rationale and aims 

Northern krill, Meganyctiphanes norvegica provide a useful model system for 

examining the feeding biology of all krill, i.e. the relationship between DVM and 

feeding, as they are omnivorous feeding upon both phytoplankton and 

zooplankton (Lass et al., 2001 Kaartvedt et al., 2002), and also they show a strong 

DVM behaviour (Liljebladh and Thommason, 2001). 

In Gullmarsfjord (Sweden) different food types are concentrated at various depths 

with phytoplankton and smaller copepod species (e.g. Acartia sp., Oithona sp., 

Psuedocalanus sp. pers obs, see Appendix A) being found in the surface layers 

and larger copepod species (such as Calanus spp., Metridia spp. Pers Obs, see 

Appendix A) found in the deeper layers with phytoplankton absent (unless 

sedimentation of phytoplankton has occurred after a bloom period). Therefore 

smaller copepod food types and phytoplankton are available during the nocturnal 

ascent by krill to the upper layers of the water column whereas only larger 

copepod species are available during the day to krill in the deepest 50 m of the 

water column. As mentioned above it seems that krill are flexible feeders able to 

utilize both phytoplankton and zooplankton food types providing that these food 

types can be retained by the feeding basket. Therefore, it may be expected that 

krill will feed throughout their DVM, providing they can utilize the food types 

available. 
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I aimed to combine field investigations with laboratory studies in order to see 

whether male and female krill feed throughout DVM. That is, field studies provided 

(a) patterns of krill distribution in relation to the food types available and (b) field 

information about feeding from gut contents studies. By using this descriptive 

information together with laboratory studies, which compared feeding rates on 

food types available either during the day or night I sought to clarify when krill feed 

during their DVM. The aims of this chapter were achieved by investigating; 

• the effect of food types available during the day or night on clearance and 

ingestion rates by krill and also their effect on the functional response of 

feeding (how feeding rate changes with food density). 

• the pattern of krill feeding during DVM by examination of krill gut content. 

• the pattern of male and female migration and feeding during DVM. 
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4.2 MATERIALS AND METHODS 

4.2.1 Laboratory feeding experiments 

A. Collection and maintenance of kri/1 and zoop/ankton 

Meganyctiphanes norvegica were collected, transported back to KMRS and 

maintained as described in chapter 2 methods on several occasions during Jan 

and Feb 2003. Copepods were collected, from the same location as krill and from 

depths likely to be encountered by krill during their DVM. Depths likely to be 

encountered during the day were indicated as 100 - 50 m by previous studies in 

2002 (see Appendix A), and also by the back scattering layer at the time of this 

study shown by the echo - sounder on board the RV whereas at night the back 

scattering layer indicated krill migrated into the upper 50 m of the water column. 

Therefore copepods were collected from depths of 1 00 - 50 m and 50 - 0 m by 

vertical tows using a plankton net (200 1Jm, WP2). Copepods from these collection 

depths will be referred to as 'deep water' and 'surface water' copepods 

respectively. Copepods were returned to the laboratory< 2 h of capture in sealed 

thermos containers (Rubbermaid drinking water thermosflask vol. = 20 I) 

containing filtered sea water. At KMRS copepods were maintained in aerated 

plastic containers (vol. = 80 I) supplied with natural surface (pumped into station 

from depth of 6 m, S = 34 PSU, T = 4°C) water or deep water. All experiments 

were carried out within 5 d of capture. 

B. Feeding experiments 

The effect of the available food types during DVM on clearance rate and ingestion 

rate of M. norvegica was investigated using deep and surface water copepods. For 

all feeding experiments a group of similar size krill (body length, i.e. rostrum tip to 

end of telson = 30 - 36 mm) were selected from the stock aquaria and then 
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transferred to experimental containers. The distribution of clearance and 

ingestion rate data was tested for normality (Shapiro - Wilks W statistic test) using 

STATGRAPHICS Plus 5.0 (1994- 2000, Statistical Graphics Carp). 

Either deep or surface water copepods were offered to krill at several densities to 

compare both the effect of the food types on clearance/ingestion rates of krill and 

also the effect of food type density on clearance/ ingestion rate to investigate the 

functional response of krill feeding. Therefore, deep water copepods were offered 

at three densities (26, 43 and 63 individual I -1
) and surface water copepods at 5 

densities (22, 39, 85, 103, 175 individual I - 1
). Deep water copepods were not 

offered at the two higher densities (ea. 100 and 175 individual I -1
) because 

copepods could not be collected in sufficient numbers. Although lower food 

densities for both surface and deep water food types would have represented 

more realistic environmental food densities, the problems associated with offering 

a low food density to krill would have confounded the outcomes of the experiment. 

As the aim of the study was to investigate the functional response of feeding, a 

range of food types densities were offered to krill. Consequently this meant that 

experiments had to be run over a long enough period to obtain statistically 

significant reductions in food by krill at the higher food densities offered. Therefore 

lower food densities had to be greater than 'realistic' low environmental food 

densities (estimated from net samples) to ensure that food was not completely 

consumed by krill during the timescale of the experiment as this would lead to 

incorrect calculated estimates for clearance and ingestions rates. A volume of 

stock water/food type was added to filtered, deep sea water and mixed thoroughly 

to give the desired food type density. Control bottles contained only the food type 

whereas experimental bottles also contained an individual krill. Control (n = 1 0) 

and experimental (n = 10- 12) glass bottles (vol.= 2.3 I) were filled with sea water 

containing the copepod food type in a haphazard order, to account for variation 
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between bottles in food type concentration throughout the 'filling' process. 

Thorough mixing continued throughout this filling process, to ensure that the food 

type remained in a homogenous suspension. At the start and end of the filling 

process two control bottles were taken for verification of copepod concentration at 

the start of the experiment. An individual krill was placed in each experimental 

bottle, after which the bottle was then filled until the water overflowed. Plastic film 

was placed over the mouth of each bottle to exclude air and then the lid gently 

tightened. In order to maintain zooplankton in suspension, all bottles were placed 

on a rotating plankton wheel (2 rev. min - 1
) and left overnight in a temperature­

controlled room (T = 6 •q for 12 - 13 h. Both deep and surface water food type 

experiments were run over night to ensure that the response shown by krill to each 

food types was not affecting by a feeding rhythm. At the end of this period, bottles 

were removed from the wheel, and the contents analysed for copepod density. 

Each bottle was rinsed three times to ensure all copepods were removed for 

quantification. Krill removed from the experimental bottles were also rinsed to 

remove any copepods adhering to the exoskeleton. The contents of each bottle 

was emptied and placed in a Petri dish with ethanol (70 %) to fix the remaining 

copepods. All of the copepods present were counted under low power (x 1 0) 

magnification. In preliminary experiments separation of copepod species to run 

single species experiments were attempted. When trying to separate the largest 

copepod species from the deep water (i.e. Metridia spp. and Calanus spp.) which 

was much easier than separating the smaller species of the surface water tows, 

many of the 'picked' copepods died presumably because of the stress from 

handling under the microscope. Therefore, as the aim of the investigation was to 

determine whether krill M. norvegica had a preference for deep or surface water 

food types copepods were not differentiated with respect to either their species or 

stage. Deep water food types were made up of mainly adult Calanus and Metridia 
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and surface water food types comprised of smaller copepod species including 

Acartia, Oithona, Temora, copepodite Calanus, and Pseudocalanus. Although, 

problems of sorting copepod species could have been overcome by culturing 

copepods, copepod culture was not feasible during the time scale of this study. 

4.2.2 Field feeding 

Meganyctiphanes norvegica was collected from Gullmarsfjord, southwest Sweden 

(58°18' N, 11 °32' E), using an lsaacs-Kidd midwater trawl (mouth area 0.6m2
; haul 

duration = 20 min) during the day (4th Mar 2003, sunset= 17.49) proceeding into 

the night (5th Mar 2003, sunrise = 06.57). Krill were collected from depth ranges of 

100 - 75 m, 75 - 50 m and 50 - 0 m during the day (11.00 - 15.00 local time), 

evening (19.00 - 21.00 local time) and night (03.00 - 06.00 local time) by 

horizontal oblique tows, except in the evening and night the upper 50 m were split 

into 2 sampling intervals of 50 - 25 m and 25 - 0 m as the back scattering layer 

indicated krill were dispersed throughout the water column. A flow meter (General 

Oceanics, Sweden) was attached to the aperture of the trawl in order to estimate 

the volume of water filtered and thus in turn krill density per m 3 with depth. During 

'day' time the back scattering layer on the echo sounder indicated that krill were 

mainly concentrated at depths between 100 - 50 m therefore one tow was made 

for krill at both 100- 75 m and 75- 50 m. One trawl was made for the range of 

50 - 0 m in order to confirm that no krill were indeed present. During the evening 

and night the backscattering layer indicated that krill were distributed throughout 

the water column, therefore two tows were made for the following depth ranges 

100 - 75 m, 75 - 50 m and 50 - 0 m. Repeated tows for each depth range cannot 

be regarded as 'true' replicate tows because tows are inevitably temporally 

different due to the continuous nature of DVM therefore it is impossible to replicate 

a tow. For this reason that repeated tows are not true replicates and in particular 

86 



that the tows from the different depths of the water column needed to be taken as 

close together as sampling would possibly allow, no tows were replicated in this 

study. 

Zooplankton was collected by a vertical tow using a WP-2 (200 IJm) net, from a 

range of depths encountered by krill during DVM including 100-75 m, 75-50 m, 

50 - 25 m and 25 - 0 m, during the day and night. A flow meter was attached to 

the aperture of the net in order to estimate the volume of water filtered and thus 

density of copepods per m -3
. Zooplankton were immediately preserved in 4-5% 

formaldehyde solution. Zooplankton tows were not replicated for the same reason 

as mentioned above for krill tows. 

Temperature and salinity were measured throughout the water column using a 

conductivity temperature depth recorder. Water was collected in Niskin tubes from 

twelve depths as follows, 100 m, 80 m, 60 m, 50 m, 40 m, 30 m, 20 m, 15 m, 12 

m, 7 m, 5 m, and 2 m. A sample of water was also taken to estimate chlorophyll a 

and thus give a measure of the total phytoplankton at each depth. 

Krill were sorted within 10 m in of recovering the trawl. For estimation of 

herbivorous feeding approx. 15 krill were chosen randomly, wrapped in aluminium 

foil, and frozen C 20°C) in order to prevent the photo - degradation of chlorophyll 

pigments present in the gut. Remaining krill were preserved in formaldehyde 

solution 4 - 5% for enumeration of krill to estimate densities for each depth during 

day, evening and night periods. 

4.2.3 Herbivorous feeding 

Herbivorous feeding was estimated by measuring gut content of chlorophyll 

pigments. Chlorophyll pigments were measured using a fluorescence method 

(Parsons et al. , 1984). Krill were thawed and the stomach/gut dissected out (n = 
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5 - B) taking care to avoid damaging the gut and thus causing loss of content. 

Although, this n value may seem low the time involved in dissecting krill guts and 

extracting pigment for each individual was high and thus to ensure coverage of all 

sampling depths/periods in the time available replicates for each respective depth 

and period of DVM were reduced. Each gut was placed in 90 %ethanol (10 ml) 

for 12 - 1 8 h to extract pigments. Chlorophyll a was quantified by fluorometric 

determination of chlorophylls and phaeopigments using a Turner Systems® 

fluorometer. Kruskal - Wallis tests were performed followed by a box plot using 

STATGRAPHICS Plus 5.0 (1994- 2000, Statistical Graphics Corp) to determine 

whether there was any significant differences between gut contents at various 

depths of the water column. 

4.2.4 Carnivorous feeding 

The guts from krill analyzed for chlorophyll pigments were also used for estimation 

of carnivorous feeding (n = 5). Although again this n value appears to be small in 

order to cover the large number of sampling depths and times replicates had to be 

reduced to achieve this coverage in the time available as examining one krill gut 

could take up to 3 h. This examination time was prolonged as guts were inspected 

three times for mandibles to ensure the reliability of results. Stomach/guts were 

mounted on a glass slide and stained with methylene blue and examined for 

copepod mandibles using phase contrast microscopy. 

4.2.5 Food type availability/abundance 

A. Zooplankton 

Zooplankton were filtered through a 60 1-1m sieve, rinsed with fresh water, and 

replaced in a solution of 70 % alcohol with 3 % glycerol, for ease of working with 
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sample. Zooplankton samples were sub-sampled using a Flosom plankton 

splitter and divided into eight equal parts. Three 1/8 subsamples were used for 

identification and enumeration of zooplankton. All copepods were identified to 

genus and not to species as the aim of the investigation was to examine feeding 

on surface and deep water food types not species specific feeding. Small juvenile 

copepods in surface waters were not differentiated for example Copepodite stages 

of Calanus, therefore all these copepods were placed in category named 

'Copepoda J.' 

B. Phytoplankton 

Immediately upon collection duplicate water samples (vol. = 100 ml) from each 

depth were filtered onto Whatman glass micro-fibre filters (GF/F) and extracted in 

90 % ethanol for 12 - 14 h. Chlorophylls and phaeopigments were determined 

using the fluorescence method described previously for gut content analysis. 
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4.3 RESULTS 

4.3.1 Krill diel vertical migration 

The upward movement of krill to surface layers of the water column during the 

evening and night from deeper depths is shown by krill abundance at various 

depths during the course of one day and night by Figure 4.1. 

Krill were concentrated in the lower 50 m of the water column and absent from the 

upper 50 m of the water column during the daytime. In particular krill a higher 

density of krill were found in the deepest part of their daytime range or distribution, 

between 100 and 75 m than in the upper part of their range between 75 and 50 m. 

During the evening krill became diffusely spread throughout all sampling depths (0 

- 100 m) of the water column indicating that they had migrated up into the surface 

layers of the water column with the highest density of krill between 50 and 25 m. 

In particular krill were most abundant between depths of 50 and 25 m in the 

evening signifying that the majority of krill had migrated up to the upper layers of 

the water column. At night, krill were also found throughout the water column, 

except unlike during the evening most krill were spread over a larger depth range 

between 75 and 25 m. Also, krill density appeared to be similar over this 50 m 

mid - water column depth range, compared with the large difference in density 

observed in the evening between 75-50 m with 50-25 m. 

90 



0 

' .., 
"' 
., 
"' 

I 0 ., 
~ 
Q> 0 0 ., 

"' ..... 

., 

..... 
' 

0 
0 ... 

0 0~ 1~ 1~ 

Krill abundance (Number krill m -J) 
2.0 (a) 

0 

., 
"' 
., 
"' 

I 0 

"' .c 
Q. 
Q> 0 
0 "' ., 

..... 

., 

..... 
0 
0 ... 

0 0.5 1.0 1.5 2.0 
(b) 

Krill abundance (Number Individuals m -J) 

0 

., 
"' 
., 
"' .s 0 ., 

s 
Q. .. 0 
0 ., 

., 

..... 

., 

..... 
0 
0 ..... 

0.0 0.5 1.0 1.5 

Krill abundance (Number Individuals m -3) 
2.0 (c) 

Figure 4.1 Diel vertical migration by krill. Abundance of krill in shallow to deep 

depths during the day (a), evening (b) and night (c). 
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Male and female krill showed differing distributions in the water column and 

asynchronous migration patterns (see Fig. 4.2) during the course of their DVM. 

Female krill were recorded at shallower depths in the water column than males 

both during the day and evening. In fact females were recorded at depths where 

males were completely absent. For example both during the day and evening 

female krill were found in the shallowest 25 m of the distribution range of krill at the 

that time, that is during the day females were found between 75 - 50 where males 

were not found and at night females were found between 25 - 0 m depths where 

again males were not observed. During the evening krill dispersed throughout the 

water column but similarly with during the day it seemed that only female krill 

entered the shallowest depths as again only females were caught from depths 

between 25 and 0 m. Although some males were caught between 50 - 25 m 

depths, the ratio of females to males was still much higher in these depths. Again 

like during the day in deeper depths more males were caught in the deeper range 

of the krill distribution than females. At night this difference in presence of male 

and females in deeper and shallower depth ranges seemed to change with males 

being caught throughout the water column even in the shallower depths, although 

in the shallower depths of 25 - 0 m mostly females were still caught. More males 

than females were caught between depths of 50 - 25 m and although males and 

females were approximately equal between 75 - 50 m mostly female krill were 

caught in the deepest depths between 100 - 75 m. 
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Figure 4.2 Distribution of krill sexes during day (a), evening (b) and night (c) shown 

by percentage offemale (•) and male (D ) krill (n = 6 - 16). 
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4.3.2 Food types in relation to DVM 

During the DVM of krill different food types are present and abundant at various 

depths of the water column. The figures that follow show the abundance of 

phytoplankton and copepod food types at the depths encountered by krill during 

their nocturnal migration to the surface layers and sunrise descent to the deeper 

layers of the water column. 
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Figure 4.3 Phytoplankton abundance (shown as total pigment) in shallow to deep 

depths of the water column. 

Phytoplankton abundance is shown by Figure 4.3 as total pigment. Phytoplankton 

was mainly concentrated in the upper layers of the water column between depths 

of 10 and 30 m (up to 1.48 IJg total pigment I -1
) . Total pigment levels were low 

throughout the rest of the water column (< 0.03 IJg total pigment I -1
) until a depth 

of 100 m where they increased slightly to 0.13 IJg total pigment I -1
. Therefore the 

most abundant source of phytoplankton food types would only be available for krill 

to exploit during their evening and night ascent to the surface layers of the water 

column. 
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Copepods were found throughout the water column during all sampling periods 

through DVM (Fig. 4.4). The species composition at various depths did, however, 

differ between the day, the evening and the night. During the day larger copepod 

species of Ca/anus, Metridia and Euchaeta were concentrated in the deep water at 

a depth of between 100- 50 m (ea. 1, 3 and 12 individual I_, respectively). 

Whereas although present at depths from 75 m upwards smaller copepod species 

such as Acartia and Copepoda J were most abundant in the upper 25 m of the 

water column (ea. 4 and 27 individual m - 3 respectively). Other small copepods 

of species such as Psuedoca/anus, Oithona and Temora were also found at a 

density of around 1 individual m -3 in this upper 25 m of the water column. 

Consequently the total density of copepods was much greater in the upper 25 m of 

the water column (34 individual m - 3
) and consisted of smaller copepod species 

compared with the lower total density of larger copepod species found between 

depths of 100- 75 m (16 individual m- 3
) species. Between depths of 25 and 50 

m there was a total copepod density of around 8 individuals m - 3
, which comprised 

of Copepoda J, Oithona sp. and Acartia sp. (5, 2 and 1 individual m - 3 

respectively). Between 50 and 75 m the total density of copepods was similar but 

contained more species at around 1 0 copepods m -3 comprising of Ca/anus, 

Metrida, copepoda J, Acartia, Pseudocalanus and Oithona (1, 3, 2, 1, 1, 1 

individual m- 3 respectively). Therefore in the depths that krill reside in during the 

day the copepod food types present are in much lower densities than those in the 

surface waters which the krill swim up to at night. Even when taking into account 

that krill may swim up to depths up to 50 m (see Appendix A and Fig. 4.1), 

although small copepod species are present, they are not as abundant as in 

surface waters. 

During the evening, copepods seemed to be distributed throughout the water 

column with total copepod densities of 17, 3, 20 and 46 individuals m -3 for 
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respective 25 m sampling depth ranges from surface to deep waters. In surface 

waters the copepod species composition was similar to that observed during the 

day with small copepod species such as Copepoda J, Acartia sp., Pseudoca/anus 

sp., Oithona sp., and Temora sp. present. Densities for the most dense day time 

surface water species Copepoda J and Acartia sp. were about half of those 

observed (12 and 2 individual m - 3 respectively). Other small surface water 

copepod species mentioned above were found in a similar density to that found 

during the day of about 1 individual m - 3
. The total copepod density found 

between 25 and 50 m was, however, much lower than that observed in the day 

with 3 individual m - 3 comprising of approximately 66% Acartia sp., and 33% 

Copepoda J. In the deepest 50 m of the water column the total copepod density 

was much higher than both the upper 50 m of the water column and daytime 

copepod densities in deeper depths. Densities of 20 and 46 individuals m - 3 were 

observed between 50- 75 m and 75- 100 m depths respectively. Not only were 

these densities much higher than those from daytime sampling but they also 

contained both large and small copepod species. Large copepod species were 

found at similar densities to daytime densities with between 1 and 2 Ca/anus spp. 

Individuals m - 3 and 2 and 3 Metridia spp. individuals m - 3
. Although Euchaeta 

sp. was at much lower densities in these zooplankton samples tows during the 

evening (< 1 individual m - 3
) they were observed in high numbers in krill sample 

tows. Of the small copepod species Copepoda J and Acartia sp. were the most 

abundant with densities of 8 and 26 individuals m - 3 for Copepoda J and 4 and 9 

individuals m - 3 for Acartia sp., for 50-75 m and 75-100 m depths respectively. 

Pseudoca/anus sp. were the next most abundant species with 3 and 2 individuals 

m - 3 for 50 - 75 m and 75- 100 m depths respectively. The Oithona sp. and 

Temora sp. were found at similar densities of ea. 1 and 2 individuals m- 3 for 

depths of 50 - 75 m and 75 - 100 m. 
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During the night copepods were again distributed throughout the water column. 

Total copepod densities at various depths were comparatively much higher than 

those observed during the day and evening. Around 40, 20, 70 and 9 individuals 

m - 3 were observed in each 25 m sampling depth range from shallow to deep. In 

these surface waters the copepod species composition was similar to that found 

during the day and evening but density differed with Copepoda J being the most 

abundant (ea. 36 individuals m - 3
) then Pseudoca/anus sp. (ea. 3 individuals m -3

) 

and Acartia sp., Oithona sp. and Temora sp. all the least abundant with a density 

of around 1 individual m - 3
. In contrast to during the day and evening larger 

copepod species Ca/anus spp. and Metrida spp. were found higher in water 

column between 25 and 50 m depth with densities of 1 and 2 individuals m - 3
. In 

similarity with day and evening these larger species were found in both 50 - 75 m 

and 75 - 100 m depths. Densities of Ca/anus spp. and Metridia spp. were similar 

to day and evening densities within 75 - 100 m depths (ea. 1 individual m- 3
) 

whereas between 50 - 75 m depths densities were about tenfold higher, than 

densities observed at any other time (Ca/anus spp. = 10 individuals m- 3
, Metridia 

spp. = 20 individuals m - \ Small copepod species were low in density or absent 

from 75 - 100 m depth with Copepoda J and Pseudocalanus sp. present at 5 and 

2 individuals m - 3 respectively. At a depth between 50 and 75 m Copepoda J 

densities were much higher than at any other time (36 individuals m - 3
) other 

species were found at densities similar to those observed during the day with 

Acartia sp. at a density of 2 individuals m - 3
, and Pseudocalanus sp. 1 individual 

m - 3
. Although Oithona sp. were absent from this depth of 50 - 75 m unlike 

during the day and evening, like during the evening Temora sp. were present at a 

density of 1 individual m - 3
. Densities of small copepod species like large 

copepod species were much higher between 25 and 50 m depth than those 
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observed during the day and evening, and also more species were present 

compared with day and evening. Acartia sp. were present at a density of 2 

individuals m - 3 and both Pseudocalanus sp. and Temora sp. were present at 

densities of 1 individual m - 3
. 

4.3.3 Functional feeding response 

The figures presented (Figs 4.5, 4.6 and 4.7) show the clearance and ingestion 

rates of krill when offered various densities of deep and surface water food types. 
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Figure 4.5 Mean clearance rate of krill (n = 10 - 12 for each point) showing 95 % 

confidence intervals when offered deep (o) and surface (il) water copepod food 

types at several densities. 

Krill maintained a reasonably constant clearance rate when offered either surface 

or deep water food types over a range of densities. Mean clearance rate 

decreased slightly to 52.3 ml individual ·1 h -1 when krill were offered a high density 
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(175 copepods I - 1
) of a surface water food type. Clearance rates with deep 

water food types were consistently low. ANCOVA indicated that there was a 

significant difference between the intercepts for clearance rates when krill were 

offered either deep or surface water (F1, 67 = 30.97, P < 0.001 ). Additionally, 

clearance rates were analysed using both comparisons of mean with 95 % 

confidence intervals and also median clearance rates (using box and whisker plots 

with median notches). Both these analyses also suggested a significant difference 

between clearance rates with surface and deep water food types. Significantly 

greater clearance rates were shown when krill were offered surface water types 

compared with deep water food types. 
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Figure 4.6 Mean ingestion rate of krill (n = 10 - 12 for each point) showing 95 % 

confidence intervals when offered deep (o) and surface (~) water copepod food 

types at several densities. 
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As shown in Figure 4.6 ingestion rate increased almost directly proportionally with 

copepod density when krill were offered a surface water copepod food type. 

Although mean values are shown in Figure 4.6 for the purpose of illustrating the 

difference between ingestion rate when krill were offered surface and deep water 

food types, it should highlighted that the use of means when analysing feeding 

responses may lead to misinterpreting functional response types for reasons 

which will be later discussed. Ingestion rates when krill were offered surface 

water food types approximately doubled with a doubling in food density. In 

contrast, this proportional increase in ingestion rate with food density was not 

shown when krill were offered a deep- water food type. When krill were offered a 

deep - water food type ingestion rate increased slowly with increasing copepod 

density (ea. :o; 1 individual krill - 1 h - 1
). Ingestion rates when krill were offered 

either surface or deep water food types were found to be significantly different 

(ANCOVA F1, 66 = 6.397, P = 0.014). 

Regression curves were fitted to determine the type of functional response when 

krill were offered surface water food types in a range of densities (see Fig. 4.7). 
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Figure 4.7 Ingestion rates of krill showing confidence limits (dark grey line) and 

prediction limits (broken line) at the 95 % confidence level for fitted polynomial 

regression curve (black line) when offered surface water food types at several 

densities. Data for 2003 only is shown in (a) and data for 2003 plus data from 

2002 is shown in (b). 
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Increasing surface water food density led to an increase in krill ingestion rates 

which is expected in a functional feeding response (see Fig. 4. 7 a). This 

relationship between density and ingestion rate was significant at the 99 % 

confidence level (ANOVA, F1. 58 = 104. 68, P < 0.0001). A first order polynomial 

was fitted to data (R2 = 64.34 %). A lack of fit test (ANOVA, F1. 58 = 1.46, P = 0.24) 

suggested that the model fitted appeared to be adequate for the observed data. 

This type of polynomial curve suggests a type 11 response. That is ingestion rate 

increases with prey density and then slows forming a plateau. This type 11 

response was observed in particular when using mean values for each data point 

rather than generating a model fitted with all replicates. 
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Figure 4.8 Mean ingestion rate of krill (n = 10- 12 for each point) showing 95 % 

confidence intervals when surface water copepod food types at several densities. 

By using mean values the plotted data appeared to strongly suggest a type 11 

response (see Fig. 4.8). Not all ingestion rate data at various copepod densities 

showed a normal distribution, therefore as it could not be determined whether this 

lack of a normal distribution was due to inadequate replication or on the other 
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hand that the normal distribution shown by some data points was indeed a 

normal distribution also because of a lack of replicates, it was decided that using 

all replicates rather than manipulating the data was a better way to determine the 

functional response. In particular given that using means changed the pattern of 

the response or type of functional response shown when all replicates are used, 

using all replicates seems a better approach to determining the type functional 

response shown by a krill population. The addition of ingestion rates with the 

higher food density from 2002 studies (see Chapter 2) to the functional response 

data showed that the response was not the same as that predicted from 2003 data 

alone (see Fig. 4.7 b). When data from 2002 (see Chapter 2) was added to the 

2002 feeding data set, however, a different type of polynomial curve was found to 

best frt the data. Interestingly ingestion rates from 2002 when krill were offered a 

similar density of food were found to be remarkably similar. For example when 

krill were offered a density of ea. 85 or 80 copepods 1- 1 ingestion rates were ea. 5 

(2003) and ea. 5.3 (2002) copepods individual - 1 h -1 respectively. The order of 

the polynomial fitted was changed to third order giving an R2 value of 84.85 %. 

Again the relationship between ingestion rate and density was significant at the 99 

% confidence level (ANOVA, F3, 10 = 130.69, P < 0.0001). The order of the 

polynomial was appropriate as the P- value for the order was 0.0059. Therefore, 

the order was statistically significant at the 99 % confidence level and a lower 

order was inappropriate. An ANOVA with lack of fit test suggested that a higher 

order polynomial was also not appropriate and that a third order polynomial was 

adequate to describe the observed data as the P- value was greater than 0.10 

(F3, 67 = 0.50, P = 0.68). 
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4.3.4 Herbivorous feeding in situ 

As krill ascended to the shallow depths of the water column during the evening 

and night a high density of phytoplankton food types became available to utilize 

compared with the lower phytoplankton density available during the day to krill . 

The figures that follow in this section (Fig. 4.9, 4.1 0, 4.11) show how the stomach 

total pigment levels of krill changed throughout their DVM. 
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Figure 4.9 Box and whisker plot of krill feeding during day (D), evening (E) and 

night (N) at shallow to deep depths (1 = 0- 25 m, 2 = 25- 50 m, 3 = 50- 75 m 

and 4 = 100- 75 m). Median total pigment (n = 4- 8) is shown for each depth 

with confidence intervals. Non - overlapping v - shaped notches indicate 

significantly different values at the 95 % confidence level. 

Krill stomach total pigment was highest in the evening and night periods of DVM 

compared with during the day as shown by Figure 4.9. There was a statistically 

significant difference amongst the medians at the 95% confidence level (T statistic 

= 30.8605, p = 0.0003). 

During the day - time krill had low densities of phytoplankton available to them to 

feed upon. Total chlorophyll levels in krill stomachs were correspondingly low 

during the day with mean total pigment (n = 4 - 8) values not exceeding 0 or 0.42 
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l!g chlorophyll individual - 1 for depths of 100- 75 m and 75- 50 m. Interestingly 

only female krill were caught from depths between 75 - 50 m, therefore 

comprising 100 % of the mean stomach total chlorophyll value for that depth. 

Although lower than any mean total chlorophyll values from either the evening or 

night, stomach chlorophyll content from females caught during the day from 75 -

50 m were higher than in krill caught from 100 - 75 m. In contrast, from depths 

between 100 - 75 m, mostly male individuals were caught, and the stomach total 

chlorophyll content from the females caught at this depth was extremely low and 

similar to that observed in males caught. Stomach chlorophyll levels were much 

higher during the evening and night than during the day. In fact both daytime 

mean stomach total chlorophyll values for 25 m intervals between 1 00 and 50 m 

were significantly lower than any evening or night- time values. Total chlorophyll 

levels for krill caught in the evening were up to 5.46 l!g pigment individual - 1 but 

extremely variable with lower limit values of 0.01 l!g chlorophyll individual - 1
. 

Again at night stomach chlorophyll values were high at 4.10 l!g chlorophyll 

individual -1 but displayed huge inter - individual variation being as low as 0.11 l!g 

chlorophyll individual -1
. Again like during the day the upper distribution limits of 

krill in the water column were comprised of only female individuals as both during 

the evening and night only female individuals entered the upper 25 m of the water 

column. There was no significant difference between the stomach chlorophyll 

content of krill caught from various depths. Sex was thought to be a possible 

important factor in feeding as female and male krill were migrating at what seemed 

like different times and to different depths of the water column. In order to achieve 

enough replicates to examine whether sex influenced stomach chlorophyll content 

during the day, evening or night and also the lack of any significant difference 

between krill caught from various sampling depths, all sampling depths for each 

time of sampling (i.e. day, evening or night) were analysed collectively. 
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Figure 4 .10 Box and whisker plot of herbivorous feeding by krill sexes during day 

(D), evening (E) and night (N). Median stomach chlorophyll content (n = 7- 21) for 

male (shown as M) and female (shown as F) krill during DVM. Non- overlapping 

V - shaped notches indicate values which are different at the 95 % significance 

level. 

After separation of krill sexes for feeding analysis during DVM, as shown by figure 

5.10 it was apparent that there were differences between male and female feeding 

activity during particularly the evening and night periods of DVM. A Kruskal -

Wallis test performed followed by a box plot using STATGRAPHICS Plus 5.0 

(1994 - 2000, Statistical Graphics Carp) indicated that there was a statistically 

significant difference amongst the medians at the 95 % confidence level (T statistic 

= 54.7307, p < 0.001). Median female stomach chlorophyll content was 

significantly greater in the evening than in the night or during the day. Unlike 

female krill in male krill there was, however, no significant difference between 

stomach pigment content during the evening and night, although both these values 

were significantly greater than day - time values. When comparing sexes directly 
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at the same sampling times, during the day there was no significant difference 

between male and female median stomach chlorophyll content. In contrast, 

female krill showed higher mean stomach chlorophyll content than males during 

the evening although there was no significant difference but females showed 

significantly lower stomach chlorophyll during the night than males. At night, 

feeding by female krill decreased but male feeding increased, although not 

significantly, compared with evening feeding by males. The highest stomach 

chlorophyll values for females during the evening and males during the night were 

not significantly different. Additionally the lower nocturnal feeding values for 

females during the night and males during the evening were also similar and not 

significantly different. Therefore asynchronous feeding was shown by krill sexes 

with the highest feeding activity shown by females during the evening and males 

during the night. 
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Figure 4.11 Box and whisker plot of herbivorous feeding by krill during the day (D), 

evening (E) and night (N) shown by median stomach total pigment content (n = 20 

- 34) with 95 % confidence intervals. Non - overlapping v - shaped notches 

indicate at the 95 % significance level that the medians differ. 

When both sexes were pooled from all depths at each sampling time in order to 

achieve enough replicates it was clear that there were differences in feeding 

activity throughout DVM. Figure 4.11 shows that with more replicates the 95 % 

confidence intervals were reduced compared with previous analysis with fewer 

replicates (shown by Figs 4.9 and 4.1 0). 

There feeding was significantly different between the sampling intervals of day, 

evening and night periods of DVM (Test statistic = 50.3498, P < 0.001 ). During 

the day feeding was extremely low compared with significantly greater mean 

stomach chlorophyll contents from evening and night caught krill. With respect to 

evening and night periods of DVM feeding seemed to be greatest during the 

evening compared with night as stomach pigment levels were significantly greater 

during the evening than the night. 
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4.3.5 Carnivorous feeding in situ 

Copepod mandibles in krill guts were found haphazardly with respect to sampling 

depth and sampling time. Furthermore copepod mandibles in krill guts appeared to 

be either present in large numbers or absent completely. In approximately 200 

individual krill examined only 7 guts contained copepod mandibles. One of these 

guts was from a day caught krill and the other 6 guts were from evening or night 

caught krill. In three of these guts, only 1 mandible was found, in the other 4 guts 

8, 9, 18 and 27 mandibles were counted. In the guts which contained only 1 

mandible the mandible widths were 105, 110, 120 and 150 IJm. The width of the 

mandibles found in guts containing more than one mandible in total is shown in 

Figure 4.12. 
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Figure 4.12 Box and whisker plot showing range of widths of mandibles in krill guts 

(A, 8 , C and D) which contained more than one mandible. Number of mandibles in 

gut A= 18, 8 = 27, C = 8 and D = 9. 

The mean values for mandibles widths in Figure 4.12 were similar for example A = 

82 ± 18, 8 = 98 ± 21, C = 100 ± 24, D = 93 ± 22. The shape of the mandibles 

found in these guts seemed to be that of copepodite stages of Calanus spp. and 
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small copepod species such as Acartia and Pseudocalanus although it should be 

highlighted that these mandibles were not identified and quantified because of the 

difficulty in identifying and separating species using light microscopy. Using the 

relationship between average carapace length and mandible width from Karlson 

and Bamstedt (1994) it would seem with mandible widths shown in Figure 4.12 

that krill were mostly feeding on copepods of a particular size (0.8 - 1.4 mm in 

carapace length). 

In most of the krill guts examined some copepod remains were found for example 

copepod furca, antennae together with plant material. In fact, in one krill gut, what 

appeared to be a krill (species undetermined) mandible was found. These 

remains were not, however, quantified due to the unreliability of accurately 

identifying these remains and also because these items in the gut may have been 

swept into the feeding basket and not actually eaten by krill. 
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4.4 DISCUSSION 

4.4.1 Food type availability during krill DVM 

According to the distribution of krill throughout DVM, during the daytime krill would 

only be able to exploit food types in the deeper 50 m of the water column whereas 

at night as they migrate and disperse throughout the water column those food 

types present in the upper 50 m of the water column become 'available' for krill to 

utilize. The largest difference in distribution and abundance of copepod species 

between surface and deeper water occurred during the day when krill were 

concentrated in deeper depths. In 2002 this copepod species difference between 

surface and deep water was also found (see Appendix A). Although sampling 

suggests that krill were between 1 00 and 50 m depths of the water column the 

lower daytime total abundance may have been due to krill residing even deeper 

than 100 m. The fjord was around 115 m in depth therefore krill could have been 

concentrated even deeper in the bottom 15 m than suggested by the net samples 

because this depth was not sampled as the trawl may have collided with the 

bottom sediment. In the lowest depths of the water column copepod assemblages 

mainly consisted of large species such as Euchaeta sp.. Calanus spp. and 

Metridia spp. and although smaller species such as Copepoda J, Acartia sp., 

Pseudocalanus sp. and Oithona sp. were present between 50 and 75 m depth, krill 

were less abundant at this depth compared with their abundance between 75 -

100 m where small copepod species were absent. Consequently, during the day 

mainly large copepod species were available for krill to feed upon. Although small 

copepod species were present in the upper 50 m of the water column and 

particularly abundant between 0 - 25 m depth krill would have been unable to 

exploit this abundant food source as they were concentrated at deep depths. This 

large contrasting availability of food types between suiface and deep waters 
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diminished during the evening and night. For instance during particularly the 

evening, but also at night, small copepods became distributed throughout the 

water column as did krill. Therefore small copepods would be available for krill to 

feed upon throughout all the depths of the water column. In surface waters the 

species composition was similar to during the day with small copepods species 

present except in lower densities than observed during the day. These lower 

densities could have been due to two factors, (a) these smaller species were 

present in higher densities at deeper depths than during the day meaning that 

these copepods had also like krill become diffusely spread throughout the water 

column and (b) although sampling was carried out in as near a location as day 

time sampling as possible patchiness in distribution of zooplankton could lead to 

sampling of varying densities of copepods associated with patches and not with 

respective depths. Given that observations of DVM in copepods has been well 

documented, and that there is a difference in species composition with depth in 

the water column, it is likely that copepods also dispersed throughout the water 

column during the evening. Therefore during the evening smaller copepod food 

types were available for krill to utilize as the small copepods were dispersed 

throughout the water column and also krill migrate into waters where smaller 

copepod species were present. In addition to copepod availability as krill migrated 

up to surface waters abundant phytoplankton food types would have also become 

available for krill to feed upon as they entered the upper 30 m of the water column. 

Although some chlorophyll was found in the deep parts of the water column this 

could be due to sinking of phytoplankton from the surface waters. Therefore during 

the evening more food types were available to krill for two reasons (a) as krill 

migrated they entered water with different food types available compared with the 

deep depths they reside in during the day (b) small copepod species had also 
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become dispersed throughout the water column meaning that these species 

became available to krill even in the deeper depths. 

4.4.2 Krill sex distribution during DVM 

As males were completely absent at the upper limit of krill distribution, despite the 

low number of replicates examined to estimate relative proportions of krill sexes 

with depth it is likely that there was a difference in the migratory behaviour of 

males and females. Female krill appeared to migrate to the surface layers earlier 

than males as mostly female krill found in the upper 50 m of the water column 

whereas mostly males were found in the deepest 50 m of the water column. 

Female krill also seemed to stay higher in the water column during the day. 

Therefore female krill were positioned higher in the water column than males 

during most of their DVM. The change in distribution of krill sexes throughout the 

water column between evening and night suggests that females were descending 

into deeper depths of the water column whereas the males were ascending at 

night. Consequently male and female krill appeared to exhibit asynchronous 

DVM, as females stayed higher in the water column during day and evening and 

also migrated to the surface earlier than males. Differences in male and female 

DVM where females migrated closer to the surface than males have been shown 

by M. norvegica in the Clyde Sea (Tarling, 2003). Tarling et al., (1999) also found 

spawning females in shallow waters between 5 and 30 m depths in the Kattegat. 

Asynchronous migration by krill sexes and particularly the shallower position of 

females in the water column compared with males suggests that there is some 

other factor affecting DVM other than predation risk. 

Tarling (2003) suggested that females undertook a riskier DVM because of a 

greater demand for energy in order to fuel reproduction. Energetic demands are a 

likely explanation for this difference between male and female DVM as migration 
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by marine copepods has been linked to lipid reserves. Hays et al. (2001) found 

that non - migrating copepods had relatively larger energy reserves than migrants. 

Hays et al. (2001) suggested that copepods with larger energy reserves do not risk 

imminent starvation and therefore do not need to increase their risk of predation by 

migrating to surface waters and so stay at deeper depths. 

4.4.3 Feeding on surface and deep water food types 

Feeding by krill on surface water food types was significantly greater than on deep 

water food types. Meganyctiphanes norvegica exhibited low clearance rates on 

deep water food types suggesting that they either could not handle (or capture) or 

did not prefer these larger copepod species. Adult Metridia were observed 

'jumping' out of the feeding basket of M. norvegica in laboratory studies (pers. 

obs.). These observations of M. norvegica with larger copepod food types, such as 

Metridia, suggested that they could not capture or handle these larger copepods 

efficiently. Even when krill were offered higher densities of deep water copepods 

which would be available to them during the day part of their DVM they showed 

consistently low clearance rates. Even these low clearance rates are perhaps 

artificially high because part of the value could be attributed to the presence of 

some smaller copepods in the deep water food type therefore meaning that in fact 

the clearance rates on larger species is lower than suggested. 

Clearance rates with surface water food types were similarly consistent but 

significantly higher than with deepwater food types. These higher clearance rates 

suggest that krill prefer of can handle smaller copepods present in the surface 

waters and also available throughout the water column throughout the evening 

and night more effectively than deep water food types available during the day. 

Therefore krill show much higher clearance rates with food types available to them 

during the evening/night part of their DVM than with the deep water food types 
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available during the day suggesting that they do not feed extensively during the 

day. Higher clearance rates with evening/night available food types on the other 

hand suggests that they feed more extensively during their nocturnal migration. 

Field studies have also suggested that M. norvegica feeds extensively at night 

(Lass et al., 2001). 

Lass et al. (2001) highlighted the fact that it has been difficult to establish whether 

the lower ingestion rates observed during the day are due to lower food 

abundance in the deeper depths which krill reside in during the day. In this study, 

however, food types available during either the day or night were offered at similar 

densities therefore the differences in ingestion rates provide evidence that krill do 

feed more extensively on food types available during the night. 

Lower clearance rates of large copepod species compared to smaller copepod 

species may be explained by an upper size (length/volume) limit of the handling 

capability of krill. This lower clearance rate on larger copepod species could also 

be a result of (a) larger copepod species having more efficient escape 

mechanisms for escaping krill, e.g. they can swim faster than smaller copepod 

species (b) krill are unable to handle larger copepod species because of the 

dimension of their feeding basket (c) krill not preferring larger copepod species. lt 

is most likely that it is a combination of all of these factors. In Chapter 2, it was 

suggested that krill feeding could be limited by the morphology of their feeding 

basket in what food types they can handle effectively and that they show higher 

clearance rates with larger, cylindrical food types. Therefore from Chapter 2 it 

seemed that there was a minimum size of food type that krill could handle. Food 

types were not, however, as large as those offered in the deep water food type of 

this study. lt would therefore in turn seem likely that there is also an upper limit on 

the length of copepods that can be handled effectively by the feeding basket of 

krill. Adults of larger copepod species such as Metridia spp. and Calanus spp. are 
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around 5 mm in length. Krill feeding baskets as described in chapter 3 are 

approximately between 7 and 8 mm in length for krill 33 - 36 mm in length. 

Therefore it would seem probable that food types nearly the same length as krill 

feeding baskets would be difficult to retain. The observations of larger species 

jumping out of krill feeding baskets would suggest that the krill cannot retain these 

copepods effectively. In addition to the ability of krill being able to retain these 

larger copepod species in their feeding baskets the escape responses and faster 

swimming capabilities of larger copepods may make it much more difficult for krill 

to actually capture a large copepod species. lt may also be possible that 

especially this latter factor of the difficultly to capture larger copepod species that 

the energy required by krill the capture larger copepods and handle them does not 

make energetically favourable food types. According to optimal foraging theory 

krill should select food types, which give them highest net energy gain. Further 

investigation of energy gain from given food types and the potential energy 

cost/gain to krill by feeding on these food types would be necessary to determine 

whether the benefit or cost to feeding on larger copepods. Irrespective of the 

possible mechanism for why krill do not feed on deep water food types the fact 

that they show much lower clearance rates on deep water food types than smaller 

surface water food types suggests that feeding in surface waters may be an part of 

the mechanisms for why krill migrate to surface waters at night. 
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4.4.4 Functional response of krill feeding 

The functional responses for zooplankton feeding on multiple resources have been 

reviewed by Gentleman et al. (2003). Based on Hailing's (1959) explanations for 

functional response types in Meganyctiphanes norvegica showed what seemed to 

be a Type 11 response where ingestion rate increased with food density. This was 

shown in particular when using mean values for ingestion rates at each density. 

Mean values strongly suggested a Type 11 response as ingestion rate appeared to 

plateaux at high food densities. This plateaux was not shown when all replicate 

values were plotted, therefore suggesting that using means could lead to a 

misinterpretation of the type of functional response exhibited by krill. Additionally 

data was added from 2002 (Chapter 3) to the 2003 dataset because in 2002 a 

much higher food density was used. Interestingly ingestion rates from both 2002 

and 2003 with a similar density of copepods were extremely similar, thereby 

supporting the use of the 2002 data to determine the functional response type. By 

adding 2002 data which included this higher food density it was clear that the data 

did not show a typical Type 11 response by krill. The shape of the curve seemed to 

suggest a Type Ill functional response according to Hailing's (1959) explanations 

for the functional response types. A Type Ill response would suggest that krill can 

adjust their response with prey density, therefore meaning that at higher food 

densities their ingestion rate increases meaning they can utilize patches with high 

food density. lt would be expected that eventually krill would be unable to handle 

any more food and therefore ingestion rate would plateau. McCiatchie (1986), 

however, suggested when investigating the herbivorous feeding of the euphausiid 

Thysanoessa raschii that as clearance rates remained relatively constant that 

changes in ingestion rate were due to a change in food concentration and not 

because of an active response of the krill to change their feeding rate according to 

food density. Although given that krill show significantly greater clearance rates 
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with copepods compared with phytoplankton (see Chapter 2) it seems likely that 

krill to a certain extent do actively respond to food types. Price et al. (1988) 

suggested that E. superba uses a different feeding mechanism to capture 

copepods compared with phytoplankton as they showed greater carnivorous 

clearance rates which were not correlated with herbivorous rates when offered a 

mixture copepod and phytoplankton. Therefore as krill appear to have a different 

feeding mechanism for certain food types, it seems likely. that if they can actively 

seek copepods and that they can actively respond to changes in food density or at 

least prey density. 

The change in the type of functional response in particular suggests that data 

could be could be misinterpreted if only lower or 'realistic' food densities are used 

to fit the curve and therefore predict the response. Although using high food 

densities may seem unrealistic, food densities in the pelagic environment are 

normally estimated by using net samples. By using nets and calculating densities 

per litre it suggests that organism distribution is uniform in the environment and 

does not occur in patches. From using high food densities with M. norvegica it 

would suggest that the type of functional response shown is not that which would 

be predicted by using 'realistic' food densities. If food does occur in high density 

patches in the pelagic environment then using higher food densities in functional 

feeding experiments could have great implications about understanding the way 

pelagic food webs function. 

4.4.5 In situ feeding of krill during DVM 

Krill appeared to feed only during evening and night periods of DVM. Krill showed 

significantly higher stomach chlorophyll levels during the evening and night 

compared with extremely low levels in day - caught krill. Therefore it seems that 

krill feed only in nocturnal migration to surface waters. In fact evening stomach 
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chlorophyll levels were also significantly greater than night levels suggesting that 

krill feed most extensively during the evening part of their DVM. 

Laboratory investigations in this study and field evidence from several authors 

(e.g. Sameoto, 1980; Bamstedt and Karlson, 1998; Lass et al., 2001; and 

Kaartvedt et al., 2002) suggest that copepods are an important food type for 

Meganytiphanes norvegica. However, copepod mandibles where infrequently 

recorded in krill guts in this study. When mandibles were found, however, they 

were present in high numbers. This 'all or nothing' presence seems to suggests 

that either (a) only a few krill in the population feed on copepods or (b) gut transit 

times are fast and therefore copepod mandibles pass through the guts of krill 

quickly and are therefore not recorded or (c) copepods have a patchy distribution 

and therefore the krill that have eaten copepods are also patchy in distribution or 

(d) the mandibles of copepods are not ingested, although the tissue has been 

eaten. Given that there is field evidence where most M. norvegica sampled in a 

particular area feed upon copepods, it is unlikely that only a few individuals do 

feed on copepods. For example Bamstedt and Karlson (1998) found that most M. 

norvegica in the had prey in their stomach content and also that Lass et al. (2001) 

sampled krill from the Clyde Sea and Kattegat and found high levels of fatty 

alcohols and other lipid markers indicative of a carnivorous diet suggesting that 

most M. norvegica do feed extensively on copepods. Additionally, since both 

these authors recorded mandibles in stomach contents it suggests that more than 

just tissue is ingested by krill. The short transit times estimated for M. norvegica in 

abundant food conditions of 15 and 30 min by Heyraud (1979) may mean that 

mandibles have already passed through the guts of krill when they are captured, 

this together with a patchy copepod distribution would possibly explain why only 

some krill were caught with mandibles in their stomach content. Both Bamstedt 

and Karlson (1998) and Lass et al. (2001) suggested that krill showed more 
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camivory in some areas than others. Bamstedt and Karlson (1998) suggested 

that carnivory was less important in the Skagerrak than in North East Atlantic 

waters. Lass et al. (2001) also suggested a difference between sites finding more 

carnivory associated with a higher ratio of copepod to phytoplankton biomass in 

the Kattegat compared with the Clyde Sea. Kaartvedt et al. (2002) found that algal 

food was neglected by M. norvegica during the late summer when the copepod 

Temora longicomis was eaten during the spring, however food intake from 

phytoplankton and copepods was comparable. Therefore perhaps less carnivory 

was shown by krill in this study because it was during a spring bloom and 

consequently phytoplankton was an abundant food type. 

4.4.6 Asynchronous feeding of male and female krill 

Similarly to the differences observed between female and male krill migration there 

was a difference in the herbivorous feeding activity of the sexes during DVM. 

Females showed greatest consumption of phytoplankton during the evening period 

of DVM. This together with an earlier ascent to the surface layers of the water 

column would seem to suggest that females come up to the surface to feed earlier 

than males. In addition during the day only female krill were found at the upper 

distribution limit of the krill population. Females in this upper part of the krill 

distribution showed significantly higher stomach chlorophyll content than krill 

caught from deeper depths. This also suggests that female krill remain higher in 

the water column during DVM than males and also show greater consumption of 

phytoplankton in the day period of DVM. Males appeared to ascend to the surface 

layers of the water column later than females with males being found in the 

surface layers at night. Males during the night showed significantly greater 

phytoplankton consumption than females. However, male stomach pigment did 
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not reach the high levels shown by females during the evening. Female stomach 

pigment was significantly lower at night than during the evening. This lower 

phytoplankton consumption at night together with distribution in deeper water at 

night suggests that females are descending during the night part of DVM and 

decreasing their feeding activity. In contrast, males continued to feed at similar 

levels at night to those during the evening which at night were significantly greater 

than females. This could be taken as suggesting that males feed over a longer 

period during DVM than females and particularly with their distribution in shallower 

waters at night that they also descend later than females to the deeper depths of 

the water column where they reside during the day. Therefore, it seems that 

females ascend to the surface layers of the water column earlier than males and 

show greatest feeding activity in the evening whereas males seemed to feed over 

a longer period and not to such high levels as female krill. This earlier ascent and 

greater feeding activity earlier during DVM supports the suggestion that females 

have a higher energy demand than males. The mechanism for this difference in 

female and male feeding activity could lead to a possible explanation of DVM by 

M. norvegica as there seems to be a relationship between migration by krill sexes 

and feeding activity. In particular it raises the question of why do females migrate 

earlier than males to surface waters and show higher feeding activity in the 

evening part of DVM than males during any other part of DVM. 

4.4.7 Krill DVM and omnivory 

Krill appeared to feed only during the nocturnal part of their DVM supporting the 

conclusions of Lass et al. (2001) that M. norvegica do not feed extensively during 

the day. In particular krill showed lower feeding rates with food types which are 

available during the deep depths they reside in during the day, again supporting 

the conclusion that krill do not feed during the day. 
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The fact that krill seem to feed only during the nocturnal part of their DVM is 

potentially a key factor influencing their feeding strategy. For example if krill fed 

throughout DVM it may be that they can afford to be more selective of food types 

as they have more foraging time available. However, given that M. norvegica only 

appear to feed nocturnally it may be that they cannot afford to be a selective 

feeder as they have less time available for foraging. Being an opportunistic 

omnivore may therefore enable krill to exploit the food rich surface waters in a 

short time scale. Additionally, given that female krill show greater feeding activity 

earlier during their DVM than males, this suggests that some other factor is 

influencing krill DVM other than just a predation risk. This raises the questions of 

why do krill not feed during the day and also why do females seem to show an 

earlier ascent to the surface and greater feeding activity earlier in this ascent than 

males? Most importantly to understand DVM behaviour it raises the question do 

krill incur a cost from not being able to feed during the day? Further investigation is 

therefore necessary to determine whether krill do incur a cost whilst not being able 

to feed during the day and in turn if there is a cost how do they repay this daytime 

debt?. 
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Chapter 5 

Feeding and metabolic status of krill: 

a strategy for diel vertical migration? 
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ABSTRACT 

The strong pattern of kri/1 migrating to the surface to feed and then returning to 

deeper depths during the day suggests that feeding must form or affect the 

strategy for DVM. Yet the role of feeding (particularly in relation to metabolism) in 

the strategy for DVM has largely been neglected. I investigated feeding and 

metabolism of kri/1 during die/ vertical migration in order to further explain their 

DVM strategy. Kri/1 have been suggested to breakdown haemocyanin for nutrition 

when starved. Consequently the breakdown of haemocyanin during DVM and the 

costs of lower haemocyanin levels were investigated in a field experiment by 

preventing feeding and DVM by kri/1. The recovery of haemocyanin levels with 

food types available, either during the day or night periods of DVM, were also 

investigated under laboratory conditions. Haemocyanin concentrations of day 

(non - feeding) and caged (prevented from migrating and feeding) were 

significantly lower than kri/1 that were able to feed during the evening and night, 

therefore supporting that kri/1 break down their haemocyanin for nutrition. Lactate 

concentrations were correspondingly high with low Haemocyanin levels 

suggesting that kri/1 had switched to anaerobic metabolism and therefore incurred 

an 02 debt. Kri/1 able to feed during the evening and night recovered their 

haemocyanin concentrations and consequently reduced their lactate 

concentrations and therefore their 0 2 debt. Glucose concentrations were greater 

in kri/1 able to feed during the night compared with day - captured kri/1 and kri/1 

unable to feed (caged). Laboratory experiments supported field results as kri/1 

Haemocyanin concentrations recovered more quickly (and possibly to a higher 

level) when kri/1 were offered night- time compared with day- time available food 

types. Male and female showed the same but asynchronous pattern of recovery 

of haemocyanin content and reduced lactate concentrations with DVM which was 

identical to their asynchronous feeding pattern. Interestingly female kri/1 showed 

significantly greater haemocyanin concentrations and also appeared to show a 

greater magnitude of breakdown and recovery of their haemocyanin and lactate 

concentrations. Feeding and metabolism seem to be a key part of the strategy for 

DVM as it appears that kri/1 breakdown their haemocyanin during the day for 

nutrition whilst not feeding thus incurring an 0 2 debt which they then recover from 

whilst feeding during the night in the surface layers of the water column. 
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5.1 INTRODUCTION 

5.1.1 Krill metabolism and DVM 

The primary sources of energy normally considered for metabolism are glucose 

(stored as glycogen) and lipids. Glucose provides an immediate source of energy. 

Lipids are extremely concentrated energy reserves, providing relatively more 

caloric energy than glucose or protein. Utilisation of stored lipids has been 

suggested as one over wintering strategy in Euphausia superba (Hagen et al., 

2001 ). Proteins can also be used as energy sources, although they must first be 

broken down into amino acids. Consequently, using proteins as an energy source 

has certain costs to an organism. For instance: proteins are not an immediate 

source of energy (so they need to be converted into amino acids) and they do not 

yield as much caloric energy as lipids. Gaining an understanding of how energy 

reserves in krill are linked with feeding during their DVM is essential to explain the 

role of feeding in DVM. 

As well as understanding energy reserves and feeding it is important to consider 

the energy costs of DVM. The actual energy costs of DVM are, however, largely 

unknown. One major cost of DVM may be swimming up to the surface. 

Swimming speeds have been calculated for krill from acoustic Doppler current 

profilers between ea. 1 - 3 cm s-1 (Liljebladh and Thomasson, 2001; Buchholz et 

al., 1995). Swimming capacity has also been measured in laboratory conditions 

by propulsive force in M. norvegica by Thomasson et al., (2003). To understand 

the costs associated with swimming during DVM more empirical evidence is 

needed on how swimming capacity relates to energetic costs. Although respiration 

rates have been calculated for M. norvegica (e.g. Saborowski et al., 2002) more 

information is needed on how these rates relate to swimming or krill 'activity' in 

order to understand the costs of DVM. Examining all the costs associated with 
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DVM is, however, beyond the scope of this chapter. This chapter focuses on the 

potential role of He together with feeding as a DVM, discussing the potential costs 

ofDVM. 

To the best of my knowledge the role of krill metabolism, together with feeding as 

a mechanism, for DVM has not been considered until recently by Spicer and 

Stromberg (2002). They investigated krill haemocyanin (He) concentrations in 

relation to environmental factors and found that starved krill showed significant 

decreases in He concentration ([He]) compared with fed individuals and suggested 

that when krill migrate into deeper water during the day they cannot obtain enough 

energy required for normal metabolic demands and therefore use He as energy 

source. Although, using He for nutrition appears an unusual strategy because of 

the above - mentioned costs of using protein as an energy source. The 

significantly lower feeding rates on deep - water food types in chapter 4 

suggested that krill cannot utilize the food types available during the day in the 

deeper waters in which they reside to the same extent that they can utilize night 

time available food types. Therefore, it does seems likely that He is broken down 

during the day for nutrition although there is a need to gain further empirical 

evidence to support this hypothesis. Although the effect of food availability on 

crustacean [He] has been investigated (Uglow, 1969; Djangmah, 1970; Dall, 1974; 

Hagerman, 1983) the extremely short timescale for changes in [He] found by 

Spicer and Stromberg (2002) (and not encountered by previous investigators) 

suggest in the case of krill that the breaking down of He may not just be a 

consequence of starvation but perhaps a purpose such as a strategy for DVM. 

Again, more investigations are required to examine whether krill [He] is related to a 

strategy for DVM. As a respiratory pigment there must clearly be a cost or debt to 

oxygen uptake and/or transport (and indeed for re- synthesis) by breaking down 

He for nutrition. lt may be expected that as [He] decreases krill switch from 
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aerobic to anaerobic metabolism because of the reduced capacity for transport of 

oxygen to maintain aerobic metabolism. In common with nearly all other 

crustaceans (EIIington, 1983; Livingstone, 1983; Greishaber et al., 1994) lactic 

acid (or L-lactate) has been found to be the main end product of anaerobic 

metabolism in M. norvegica (Spicer et al., 1999). Therefore, investigating [He] (not 

only in relation to feeding) but also lactate concentrations is necessary to examine 

the benefits and costs of breaking down He for nutrition and therefore to explain 

DVM. Glucose may also provide valuable information on the energy gain made by 

krill during DVM and therefore metabolic state of krill during their DVM. Both not 

being able to feed on food types and the potential build up of debts and loss of He 

during the day strongly suggests that krill must migrate to the surface to feed and 

recover their debts. 

5.1.2 Study design rationale and aim 

The majority of studies investigating feeding in krill are descriptive field studies 

which do not attempt to examine why and when krill feed upon certain food types 

(see Chapter 1 for references). More importantly, why krill even migrate to surface 

waters at night and then return to deeper depths during the day is still largely 

unknown. Mechanisms for DVM behaviour are mainly speculative and are not 

based upon empirical evidence. Suggestions for krill DVM have included predator 

avoidance during day time and then migration to surface layers is in search of food 

during the night but these suggestions are based on descriptive data and are 

speculative. 

Spicer and Stromberg (2002) found that starved krill had lower [He] and suggested 

that krill may break down [He] for nutrition. Field investigations (see Appendix A 

and Chapter 4) of the feeding of Meganyctiphanes norvegica indicated that krill 

mainly fed during the nocturnal period of DVM. lt was also found that clearance 
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rates were significantly higher with surface water food types than with deep water 

food types. Therefore work presented in chapter 4 suggested that krill may not 

feed extensively during the day. If krill do not feed extensively during the day then 

the question may be posed do krill break down their He for nutrition during these 

non - feeding periods? Furthermore, if krill do break down their He for energy 

then how do they recover their [He]? lt may be that if metabolic debts are incurred 

during the day then they are recovered during the nocturnal period of DVM when 

krill migrate to the food rich surface layers of the water column. This may also help 

to explain why krill appear to be opportunistic omnivorous feeders, for example, 

limited time to recover metabolic debts may mean that krill cannot afford the time 

to be selective feeders. 

All of the above assume that feeding is the only factor affecting the metabolic 

status of krill, however, there may be abiotic factors that also affect krill physiology 

and thus there metabolic status. Salinity and temperature remain reasonably 

uniform throughout the depths of the water column which krill are likely to 

encounter during early spring (i.e. Jan. Feb). Oxygen tension may, however, be 

low in deeper layers compared with upper layers of the water column. Given that 

very small variations in oxygen tension have been found to have dramatic effects 

on the krill physiology (e.g. Childress and Seibel, 1998; van den Thillart et al., 

1999; Spicer et al., 1999, Stromberg and Spicer, 2000) even a small differential 

between surface layers and deep water may be critical. Therefore, oxygen tension 

may be a major environmental factor influencing both krill physiology and feeding 

during early spring periods. If oxygen is too low to maintain aerobic respiration 

and krill have to switch to anaerobic respiration they may incur an oxygen debt 

and thus high lactate concentrations. Thus, variations in abiotic factors such as 

temperature, salinity and oxygen throughout the water column (e.g. across a 
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pycnocline) may affect krill physiology and further intensify any metabolic debts 

they may have. 

Therefore the aim of this chapter was to determine 

- is there a metabolic cost of not being able to feed and thus do krill have 

metabolic debts incurred during the day which they have to recover at night when 

feeding in surface layers? Thus, what happens to the metabolic status of krill 

when they are prevented from migrating to surface layers and or feeding at night? 

- is the metabolic status of krill affected by the food types upon which they feed 

and do krill have to be opportunistic feeders in order to maintain energy levels i.e. 

they feed on whatever food types are available in order to meet their energy 

demand. And thus, even if some food types are more energetically favourable 

than others do krill continue to not discriminate between food types because their 

strategy is feed as much as possible and be a generalist, non - selective 

opportunistic feeder? 

These objectives were investigated by determining the following; 

o Feeding in situ during the day and night of krill performing DVM and krill 

prevented from performing DVM (i.e. placed in cages). 

o Haemocyanin, glucose and lactate concentrations of krill during the day and 

night of krill performing DVM and krill prevented from performing DVM (i.e. 

placed in cages). 

o Haemocyanin concentrations of krill fed on diets of phytoplankton only, 

copepods from either surface of deep waters and a mixture of surface water 

copepods and phytoplankton. 
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5.2 MATERIALS AND METHODS 

5.2.1 Collection of krill and food types 

Meganyctiphanes norvegica were collected from Gullmarsfjord, Southwest 

Sweden (58°18' N, 11 °32' E), using an lsaacs-Kidd midwater trawl (mouth area 

0.6m2
; haul duration = 20 min) during the day (4th Mar 2003, sunset = 17.49) 

proceeding into the night (5th Mar 2003, sunrise = 06.57). Krill were collected from 

depths between 100 - 75 m during the day and evening to stock cages. Cages 

deployed during the day were then retrieved during the evening; those cages 

deployed in the evening were retrieved during night sampling. Free swimming krill 

were collected from depth ranges of 100- 75 m, 75- 50 m and 50- 0 m during 

the day (11.00- 15.00 local time), evening (19.00- 21.00 local time) and night 

(03.00- 06.00 local time) by horizontal oblique tows, except in the evening and 

night the upper 50 m were split into 2 sampling intervals of 50 - 25 m and 25 - 0 

m as the back scattering layer indicated krill were dispersed throughout the water 

column. A flow meter (General Oceanics, Sweden) was attached to the aperture 

of the trawl in order to estimate the volume of water filtered and thus in turn krill 

density per m 3 with depth. During 'day' time the back scattering layer on the echo 

sounder indicated that krill were mainly concentrated at depths between 100 - 50 

m therefore one tow was made for krill at both 100- 75 m and 75- 50 m. One 

trawl was made for the range of 50 - 0 m in order to confirm that no krill were 

indeed present. During the evening and night the backscattering layer indicated 

that krill were distributed throughout the water column, therefore two tows were 

made for the following depth ranges 100 - 75 m, 75 - 50 m and 50 - 0 m. 

Repeated tows for each depth range cannot be regarded as 'true' replicate tows 

because tows are inevitably temporally different due to the continuous nature of 

DVM therefore it is impossible to replicate a tow. For this reason that repeated 
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tows are not true replicates and in particular that the tows from the different depths 

of the water column needed to be taken as close together as sampling would 

possibly allow, no tows were replicated in this study. 

Zooplankton was collected by a vertical tow using a WP-2 (200 IJm) net, from a 

range of depths encountered by krill during DVM including 100 - 75 m, 75- 50 m, 

50 - 25 m and 25 - 0 m, during the day and night. A flow meter was attached to 

the aperture of the net in order to estimate the volume of water filtered and thus 

density of copepods per m -3
. Zooplankton were immediately preserved in 4- 5% 

formaldehyde solution. Zooplankton tows were not replicated for the same reason 

as mentioned above for krill tows. 

Temperature and salinity were measured throughout the water column using a 

conductivity temperature depth recorder (CTD). Water was collected in Niskin 

tubes from twelve depths as follows, 100 m, 80 m, 60 m, 50 m, 40 m, 30 m, 20 m, 

15 m, 12 m, 7 m, 5 m, and 2 m. A sample of water was also taken to estimate 

chlorophyll a and thus give a measure of the total phytoplankton at each depth. 

5.2.2 Summary of field experiment design 

As the course of sampling during the experiment was fairly involved the course of 

sampling and methods employed are described in some detail below but also in 

simplified form in Figure 5.0. Field sampling consisted of sampling caged and 

'free swimming' krill. Therefore 'caged krill' refers to any krill sampled (i.e. for gut 

content or haemolymph) from cages (vol. = 30 I, mesh size = 1 mm) and 'free 

swimming' krill refers to krill sampled from the water column by means of nets. 

Two cages were placed on a line at 80 - 90 m (deep water) and another two 

cages placed on the same line at 20-30 m (surface water). A total of three lines 

were used in the study, with all lines placed at the same location (58°18' N, 11 °32' 
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E), as sampling more than one location in the fjord was impossible because of the 

time involved in placing and retrieving lines with cages and also sampling of free 

swimming krill and zooplankton. Therefore, three lines with two cages in deep and 

two in surface waters gave a total of six replicate surface cages and six replicate 

deep cages. Cages were stocked with ea. 30 krill per cage allowing between 12 

and 20 individuals to be sampled at any one sampling time. Cages were stocked 

with krill from tows taken between 100 and 75 m depths. Free swimming krill were 

also collected at the same location as the cages from four 25 m depth intervals 

and sampled, like krill from cages, for gut content (n = 5-8) and metabolic status 

i.e. haemocyanin, lactate and glucose (n = 6 - 1 0). These krill were then 

immediately frozen at - 20 °C until their sex and moult stage could be determined 

back at the laboratory. Although these n values seem low the time involved in 

dissecting krill guts, extracting pigments, performing biochemical analysis and 

sexing and moult staging individuals was extremely high thus to ensure coverage 

of the large number of depth intervals, caged and non caged 'treatments' and 

sampling times during DVM in the time available replicates were reduced. 
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DAY 

04103/03 

Start of sampling 

(Time = 09.00) 

EVENING 

04103/03 

(Time= 17.00) 

NIGHT 

05/03/03 

(Time = 01.00) 

Sampling 

CTD measurements and collection of water from 10 depths 

Caged krill - Krill collected from main back scattering layer of 100 

-75 m to place in cages (deep and surface waters). Some of these 

krill also sampled for gut content and He, lactate and glucose. 

'Free swimming'- krill collected from 100- 75 m, 75- 50 m, 50-

0 m for gut content and He, lactate and glucose. 

Zooplankton- vertical hauls made from 100- 75 m, 75- 50 m, 50 

- 25 m and 25- 0 m to collect zooplankton. 

Sampling 

Cage sampling - cages placed in water during the day brought to 

surface and sampled for gut content and He, lactate and glucose. 

Caged krill - Krill collected from main back scattering layer of 50 -

75 m to place in cages (deep and surface waters). Some of these 

krill also sampled for gut content and He, lactate and glucose. 

'Free swimming' - krill collected from 100 - 75 m, 75 - 50 m, 50 -

25 m and 25 - 0 m for gut content and He, lactate and glucose. 

Zooplankton- vertical hauls made from 100- 75 m, 75- 50 m, 50 

- 25 m and 25- 0 m to collect zooplankton. 

Sampling 

Cage sampling - cages placed in water during the day brought to 

surface and sampled for gut content and He, lactate and glucose. 

'Free swimming'- krill collected from 100-75 m, 75-50 m, 50-

25 m and 25- 0 m for gut content and He, lactate and glucose. 

Zooplankton- vertical hauls made from 100-75 m, 75-50 m, 50 

- 25 m and 25 - 0 m to collect zooplankton. 

Figure 5.0 Schedule of field sampling. All times shown were local times. Arrow 

indicates order of sampling. 

134 



5.2.3 Sampling of caged and free swimming krill 

Krill were sorted within 10 m in of landing on deck. During the day only free 

swimming krill were sampled (as no cages were in place). During the evening and 

night both free swimming and caged krill were sampled. For all sampling of free 

swimming krill and caged krill for estimation of herbivorous feeding approx. 15 krill 

were chosen randomly, wrapped in aluminium foil, and frozen C 20°C} in order to 

prevent the photo - degradation of chlorophyll pigments present in the gut from 

light. From another approximately 10 - 15 krill haemolymph was removed for 

haemocyanin analysis and biochemical analysis (see haemolymph removal 

methods below, Section 5.2.6). Remaining free- swimming krill were preserved in 

4 - 5% formaldehyde solution for enumeration of krill to estimate densities for 

each depth during day, evening and night periods. 

5.2.4 Herbivorous feeding 

Herbivorous feeding was estimated by measuring gut content of chlorophyll 

pigments. Chlorophyll pigments were measured using a fluorescence method 

suggested of Parsons et al. (1984). Krill were thawed and the stomach/gut 

dissected out (n = 5 - 8) taking care to avoid damaging the gut and thus causing 

loss of content. Each gut was placed in 90 % ethanol (10 ml) for 12 - 18 h to 

extract pigments. Chlorophyll a was quantified by fluorometric determination of 

chlorophylls and phaeopigments using a Turner Systems® fluorometer. 

5.2.5 Carnivorous feeding 

The guts from krill analyzed for chlorophyll pigments were also used for estimation 

of carnivorous feeding (n = 5). Although again this n value appears to be small in 

order to cover the large number of sampling depths and times replicates had to be 
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reduced to achieve this coverage in the time available as examining one krill gut 

could take up to 3 h. This examination time was prolonged as guts were inspected 

three times for mandibles to ensure the reliability of results. Stomach/guts were 

mounted on a glass slide and stained with methylene blue and examined for 

copepod mandibles using phase contrast microscopy. 

5.2.6 Haemolymph removal and moult stage determination 

Haemolymph was collected immediately (within 5 to 20 min after capture) from 

individual krill sampled either from caged or 'free swimming' conditions. Krill were 

gently blotted dry using tissue paper in order to avoid diluting the haemolymph 

sample. Haemolymph was removed from individuals using a microsyringe 

(Hamilton, 50 IJI capacity). The needle of the microsyringe was inserted dorsally 

under the carapace by puncturing the arthrodial membrane linking the carapace 

with the abdomen. Haemolymph was collected mainly from the heart but also the 

internal spaces within the thorax. Haemolymph was then directly transferred to a 

microcentrifuge tube kept on ice. Haemolymph samples were then kept at 0 - 4 

oc until they were analysed. Krill were kept on ice after haemolymph sampling and 

then stored at- 20 oc for moult stage and sex determination. 

Moult stage of krill was determined using the methods of Buchholz (1982) and 

Cuzin- Roudy and Buchholz, (1999) by examination of the antenna! scale under a 

microscope (x 10-40 magnification). 

5.2.7 Haemocyanin, glucose and lactate determinations 

The concentration of L-lactate in haemolymph samples (vol. = 10 IJI) was 

estimated using an enzymatic method described by Gutmann and Wahlefeld 

(1974) but modified according to Engel and Jones (1978), in which pyruvate is 

converted to lactic acid in the presence of lactate dehydrogenase and the 
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proportional conversion of NAD to NADH at this time is followed 

spectrophotometrically at 340 nm. Haemolymph samples were deproteinised by 

the addition of cold perchloric acid (10 IJI, 600 mmol.r\ After centrifugation (15 

min, 2°C, 9000 x g) the resultant solution was neutralised by the addition of K2C03 

(2.5 M) and centrifuged once more. The resultant supernatant was analyzed for its 

[lactate]. 

The glucose concentration of untreated haemolymph was assayed using an 

enzymatic method (Siein, 1965). Here hexokinase catalyses the phosphorylation 

of glucose by ATP. The resultant glucose-6-phosphate is oxidized in the presence 

of NADP by glucose-6-phosphate dehydrogenase. The amount of NADPH formed 

in this last step is proportional to the glucose-6 phosphate formed from the glucose 

and is determined spectrophotometrically at 340 nm. 

The [He] in the haemolymph of individual krill was estimated using an established 

spectrophotometric method (Nickerson and van Holde 1971, Hagerman and 

Weber, 1981; Hagerman 1983, Spicer and Baden, 2000). Twenty microlitres of 

haemolymph were made up to a final volume of 600 !JI with an appropriate saline 

solution (Schlieper 1972, p.335). The absorbance of the resultant mixture (A. = 335 

nm) was measured using a spectrophotometer (Hitachi U2000). Matched quartz 

cuvettes (Hel, pathlength 1 cm, max. capacity = 1.5 ml) were used throughout the 

study. Haemocyanin concentration was calculated using the extinction coefficient 

given by Nickerson and van Holde (1971) (Emmot = 17.26), assuming M,= 75 kDa 

for krill subunits (Bridges et al. 1983). 

5.2.8 Food type availability/abundance 

Zooplankton were filtered through a 60 IJm sieve, rinsed with fresh water, and 

replaced in a solution of 70 % ethanol with 3 % glycerol, for ease of working with 

sample. Zooplankton samples were sub-sampled using a Flosom plankton splitter 
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and divided into eight equal parts. Three 1/8 subsamples were used for 

identification and enumeration of zooplankton. All copepods were identified to 

genus and not to species as the aim of the investigation was to examine feeding 

on surface and deep water food types not species specific feeding. Small juvenile 

copepods in surface waters were not differentiated for example copepodite stages 

of Calanus, therefore all these copepods were placed in category named 

'Copepoda J.' 

Immediately upon collection duplicate water samples (volume = 100 ml) from each 

depth were filtered onto Whatman glass micro-fibre filters (GF/F) and extracted in 

90% ethanol for 12 - 14 h. Chlorophylls and phaeopigments were determined 

using the fluorescence method described previously for gut content analysis. 

5.2.9 Haemocyanin recovery (laboratory) experiment 

Meganyctiphanes norvegica were collected from Gullmarsfjord, southwest Sweden 

(58°18' N, 11°32' E), using an lssacs- Kidd midwater trawl (Mouth area 0.6 m2
; 

haul duration = 10 m in) on several occasions during Jan and Feb 2003 using the 

RV 'Ame Tiselius.' Krill were transferred (within 5 min of harvest) into sealed 

thermos containers (Rubbermaid drinking water thermosflask, vol. = 80 I) 

containing filtered sea water (salinity = 34 PSU) and transported to KMRS within 2 

h of capture. In the laboratory krill were maintained in fibre - glass aquaria (vol. = 

350 I) covered with dark plastic to keep krill in darkness. Aquaria were supplied 

with natural 'deep' sea water pumped into the station from a depth of 35 m (salinity 

= 34 PSU, T = 6 °C}. All experiments were carried out within 5 d of capture. 

Copepods were collected, from the same location as krill and from depths likely to 

be encountered by krill during their DVM. Depths likely to be encountered during 

the day were indicated as 1 00 - 50 m by previous studies in 2002 (see Appendix 

A and Chapter 4), and also by the back scattering layer at the time of this study 
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shown by the echo - sounder on board the RV Arne Tiselius, whereas at night the 

back scattering layer indicated krill migrated into the upper 50 m of the water 

column. Therefore food types copepods and phytoplankton were collected from 

depths of 1 00 - 50 m and 50 - 0 m by vertical tows using a plankton net (200 IJm 

WP - 2). Copepods from these collection depths will be referred to as 'deep water' 

and 'surface water' copepods respectively. Copepods were returned to the 

laboratory within 2 h of capture in sealed thermos containers (Rubbermaid drinking 

water thermosflask vol. = 20 I) containing filtered sea water. At KMRS copepods 

were maintained in aerated plastic containers (vol. = 80 I) supplied with natural 

surface (pumped into station from depth of 6 m S = 34 PSU, T = 4°C} water or 

deep water. All experiments were carried out within 5 d of capture. 

For all experiments a group of similar size krill (body length, i.e. rostrum tip to end 

of telson = 30 - 36 mm) were selected from the stock aquaria and then transferred 

to experimental containers. Krill (n = 1 0) were placed in glass aquaria containing 

18 litres of filtered sea water (total of 12 aquaria). Krill were starved for a 12 h 

period (T- 0). Haemolymph was then sampled from krill individuals in each 

aquaria using identical removal methods as described for field sampled krill (see 

Section 5.2.6). Remaining krill were then subjected to various 'feeding' conditions, 

that is they were either starved for a further period of 12 h or given a food type 

treatments were as follows; 

- Filtered sea water (3 aquaria) 

- Filtered sea water plus deep water copepods (ea. 40 individ. I ·1) (3 aquaria) 

Filtered sea water plus surface water copepods (ea. 40 individ. I ·1
) (3 aquaria) 

Filtered sea water plus mixed phytoplankton/copepod food type from surface 

waters (3 aquaria). 
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After this 12 h period haemolymph was sampled from krill (n = 5). in each aquaria. 

Krill were kept on ice after haemolymph sampling and then stored at - 20 oc for 

moult stage and sex determination. An identical experiment was also performed 

except with the modification that after the 12 h starvation period krill were either 

starved or fed for a reduced period of 6 hand then sampled. 

Krill moult stage was determined as described previously (Sect. 5.2.6). 
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5.3 RESULTS 

5.3.1 Food availability and physico - chemical charcteristics 

Phytoplankton was mainly concentrated in the upper layers of the water column 

between depths of 10 and 30 m (up to 1.48 IJg total pigment 1-1
). Total pigment 

levels were low throughout the rest of the water column(< 0.03 !Jg total pigment I­

\ until a depth of 100 m where they increased slightly to 0.13 !Jg total pigment I - 1
• 

Therefore the most abundant source of phytoplankton food types would only be 

available for krill to exploit during their evening and night ascent to the surface 

layers of the water column. 

A summary of copepod abundance at various water column depths during the day, 

evening and night is shown in Table 5.1. A more extensive description of copepod 

distribution data throughout the water column is found in Chapter 4. In summary, 

during the total copepod density was greatest in the surface layer of the water 

column comprising of copepod species whereas larger copepod species were 

found in deeper depths of the water column. During the evening and night all 

copepod species became distributed throughout the water column. During the 

evening total copepod density appeared to be greatest in the deeper 50 m of the 

water column, whereas at night copepods were most abundant between 50 and 75 

m depth and also in the surface layer of the water column. 

141 



Table 5.1 Summary of total copepod abundance and species compoistion with water column depth during the day and night. Species 

compostion ranked with most abundant species at that depth first. 

Depth 
(m) 

0-25 

25-50 

50-75 

75- 100 

Day 
Total copepod 

abundance 
(No. individ. m - 3

) 

284 

42 

78 

13 

Species 
composition 

Copepoda J 
Acartia 
Pseudocalanus 
Oithona, Temora 

Copepoda J 
Oithona 
Acartia 

Metridia 
Copepoda J 
Pseudocalanus 
Oithona 
Calanus 
Acartia 
Euchaeta 

Euchaeta 
Metridia 

Evening 
Total cope pod Species 

abundance composition 
(No. individ. m - 3

) 

270 Copepoda J 
Metridia 
Acartia 
Pseudocalanus 
Oithona 
Temora 

24 

609 

1320 

Acartia 
Copepoda J 

Copepoda J 
Acartia 
Pseudocalanus 
Metridia 
Calanus 
Oithona 
Temora 
Euchaeta 

Copepoda J 
Acartia 
Metridia 
Calanus, Oithona 
Temora 
Euchaeta 

Night 
Total copepod 

abundance 
(No. individ. m - 3

) 

451 

181 

450 

287 

Species 
composition 

Copepoda J 
Metridia 
Pseudocalanus 
Acartia, Oithona 
Temora 

Copepoda J 
Pseudocalanus 
Metridia, Temora 
Oithona 
Calanus 
Acartia 

Copepoda J 
Metridia 
Calanus 
Acartia 
Pseudocalanus 
Temora 

Copepoda J 
Pseudocalanus 
Calanus, Metridia 



As krill were concentrated in the depths of the water column between 50 and 100 

m during the day only larger copepod species and low phytoplankton densities 

were available for krill to utilize. During the evening and night, as krill ascended to 

the surface layers of the water column both smaller copepod species and higher 

densities of phytoplankton became available. The change in copepod distribution 

throughout the water column nocturnally compared with during the day also meant 

that smaller copepod species became available to krill even at deeper depths of 

the water column. 

Physico - chemical characteristics were relatively uniform throughout the water 

column. Temperature ranged from ea. 4 °C to ea. 8 °C in shallow to deeper 

depths of the water column. Salinity also remained fairly constant from depths of 

110 m to 20 m in the water column ranging from a salinity of ea. 30 to ea. 34. 

From depths of 20 m up to the surface the salinity was lower ranging from 30 to 17 

respectively. Oxygen content of surface and deeper depths of the water column 

was relatively uniform with ea. 60 % oxygen at depths of 100 m and ea. 70 % 

oxygen at depths of 50 m. 

5.3.2 Moult stage and He 

The relative composition of krill moult stages during DVM is shown by Figure 5.1. 

During the day the proportion of both male and female krill was approximately split 

between moult stages AIB and B/C, whereas during the evening slightly more 

females appeared to be in B/C stages compared with AIB moult stages. Similarly 

during the evening the proportion of males in B/C moult stages compared with AIB 

seemed to increase. During the night, nearly all free - swimming female krill 

sampled were in moult stage B/C. The proportion of male krill in moult stage B/C 

during the night in contrast with females was less with a higher proportion of males 
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... 

in moult stage A/8. Both male and female krill in d stage moult appeared to be 

low throughout DVM varying between 0 and ea. 20 %. 

Sf. Day 
Sf. ES 
~ ED 
¥ CES 
Sf. CED 
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-
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-
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Percentage of sample 

Figure 5.1 Male (d" ) and female ( .Sf.) krill moult stage during the day, evening (E), 

and night (N) from surface (S) depths of 0 - 50 m and deep (D) depths of 50 - 100 

m. Caged krill indicated by C. Moult stage A/8 =solid bars, 8/C =crosshatched 

bars and D =open bars. (n = 14- 25). 

When comparing krill [He] with moult stage and sex the most noticeable difference 

in [He] were related to sex and not moult stage (see Figs 5.2, 5.3 and 5.4). 

Female krill appeared to approximately twice the [He] compared with males . 

During DVM median female [He] ranged from 1.84 to 2.40 mmol I - 1 whereas male 

[He] ranged from 0.90 to 1.22 mmoll -1
. 
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Male A/B 

Female A/B 

Male B/C 

Female B/C 

0 0.5 1 1.5 2 2.5 3 
He (mmoll-1 ) 

Figure 5.2 Median [He] of krill (n = 9 - 13) shown with 95 % confidence intervals in 

different moult stages during the day from depths between 50 and 100 m the water 

column. Non - overlapping v - shaped notches indicate significantly different 

values at the 95 % confidence level. 

During the day there was no significant difference between [He] in moult stages 

A/B or B/C in the same sex krill (Fig. 5.2). There were, however, significant 

differences in the [He] of each moult stage between male and female krill. 

Again, as shown by Figure 5.3 similarly with during the day there were no 

significant differences between He levels in moult stages A/B or B/C in the same 

sex krill at any depth during the night. There were significant differences between 

both male moult stages at any depth and all female moult stages and any depth. 
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male 0-50m AJB 

male 50-1 OOm AJB 

male 50 -1 OOm B/C 

female 0-50 m AJB 

female 50-1 00 AJB 

female 0-50m B/C 

female 50-1 OOm B/C 

0 0.5 

~ 
~ 
~ 

~ 

1 1.5 
He (mmoll-1) 

£I:[ 
+ l E 

r3Q 
• 

2 2.5 3 

Figure 5.3 Median [He] of krill (n = 4 - 8) shown with 95 % confidence intervals in 

different moult stages during the evening from depths between 50 to 100 m and 0 

- 50 m the water column. Non - overlapping v - shaped notches indicate 

significantly different values at the 95 % confidence level. 

Again these differences in [He] between male and females were also evident 

during the night with female [He] significantly greater than male [He] (see Fig. 

5.4). 
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Male 8/C 0 

Female 8/C 

0 0.5 1 1.5 2 2.5 
He (mmoll-1) 

Figure 5.4 Median He levels of krill (n = 10 - 12) shown with 95 % confidence 

intervals in different moult stages during the night from depths between 25 to 100 

m in the water column. Non - overlapping v - shaped notches indicate 

significantly different values at the 95 % confidence level. 

5.3.3 Feeding, [He], lactate and glucose during DVM 

Feeding by male and female caged krill was low during the evening and similar to 

day captured krill stomach total pigment levels (Fig. 5.5). There were, however, 

significant differences amongst the median krill stomach total pigment values 

during DVM and caged krill and non -caged krill as indicated by a Kruskal - Wallis 

test performed followed by a box plot (T statistic= 100.98, P < 0.01). There were 

no significant differences between surface and deep caged male krill either during 

the evening or night. Caged male krill with the exception of night - time retrieved 

surface caged krill did not have significantly greater stomach total pigment content 

than day captured krill. All male caged krill had significantly lower stomach total 

pigment levels (like day - captured krill) compared with evening or night captured 

krill. Caged females similarly with caged males had similar and not significantly 

different stomach total pigment contents during the evening compared with day 

captured. Evening sampled female caged krill, as male caged krill had 

significantly lower stomach total pigment content than compared with evening or 

night captured female krill. Night caged females in contrast with males did have 
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significantly greater stomach total pigment values compared with day captured 

krill. Female krill caged in surface waters during the night in particular were not 

significantly different to night captured female krill, although those females caged 

in deeper water at night did have significantly lower stomach total pigment content 

than night captured female krill. 

cf'day {trn 
cf' eve .:3 I t I 
cf'night 3 It I 0 

cf' ES fi-iD 
cf' EO {& Ill 

cf' NS {lte ID 

cf' NO ~ 0 Ill 

Sf. day {fo111 
Sf. eve 

Sf. night t-----[]3 0 0 0 

Sf. ES 00. 
Sf. EO 00 
Sf. NS CifJ--t 0 

Sf. NO * 0 

0 0.9 1.9 2.9 3.9 4.9 5.9 

Stomach content (IJ9 total chlorophyll individual -1) 

Figure 5.5. Median herbivorous feeding by male and female free - swimming krill 

(n = 6- 21) during the day, evening and night and by male (c:?') and female ( ~) 

caged krill during the evening (E) and night (N) in surface depths (S) and deep (D) 

depths. Non - overlapping v - shaped notches indicate significantly different 

values at the 95 % confidence level. 
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Haemocyanin concentration in male and female krill also appeared to be related to 

their DVM as shown in Figure 5.6. A Kruskal - Wallis test performed followed by a 

box plot indicated that there were significant differences between the median [He] 

at the 95% confidence level (T statistic= 107.746, P < 0.01). 

c?'day 
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~ NS 
~ ND 

0 

0~ 

~ 
~ I +I 1-------4 

~-------~[ It :=JI-----i 
~ 
~ 
~ 

ID 

~----~~C--~i ____ _~--~ 
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I I + I 
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Figure 5.6 Median [He] of male and female free - swimming krill (n = 4 - 25) 

during the day, evening and night and by male (~) and female ( Sf) caged krill 

during the evening (E) and night (N) in surface depths (S) and deep (D) depths. 

Non - overlapping v - shaped notches indicate significantly different values at the 

95 % confidence level. 

Male [He] were significantly greater during the night than during the day or 

evening. There was also a significant difference between male krill caged in 

surface water during the night and males captured during the evening. There 
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were, however, no significant differences between day captured, evening 

captured, evening caged or night deep water caged male krill. In contrast with 

males, female [He] increased significantly during the evening part of their DVM. 

Female [He] from evening captured krill were not significantly different to night 

captured female levels. Both evening and night captured female krill [He] were 

significantly greater than female krill retrieved from cages during those periods. In 

particular evening and night caged krill [He] were not significantly different to day 

captured krill [He]. 

Again as with herbivorous feeding rates and [He], haemolymph lactate 

concentrations appeared to be related to krill DVM (Fig. 5.7). 
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Figure 5.7. Median lactate concentrations of male (cl') and female ( ~ ) free­

swimming krill (n = 2 - 7) from various depths as indicated during the day, evening 

(eve) and night and by male and female caged krill (cage) in surface depths (S) 

and deep (D) depths. Non- overlapping v- shaped notches indicate significantly 

different values at the 95% confidence leveL 

A Kruskal - Wallis test performed followed by a box plot indicated that there were 

significant differences amongst the medians at the 95 % confidence level (T 

statistic = 56.351 , P < 0.001 ). Male lactate concentrations were significantly less 

during the night than compared with during the day. Indeed male lactate 

concentrations during the night were significantly different with water column 

depth. That is to say lactate concentrations were lower in krill captured from 

deeper water than compared with surface waters. In contrast during the evening 

male lactate concentrations were significantly greater in krill captured from deeper 
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water than compared with those captured from surface waters. In fact those 

lactate concentrations from male krill caught in deeper waters were higher but not 

significantly different to day captured krill from 100 - 75 m although they were 

significantly greater than compared with day captured krill from 80 - 90 m. 

Similarly female krill showed this same . pattern of significantly greater lactate 

concentations in krill captured during the night from 100 -75 m depths than 

compared with day captured krill from 80 -90 m but no significant difference 

compared with day captured krill from 80 -90 m. Female lactate concentrations 

were significantly lower in krill captured during the night from surface waters 

between 0 - 50 m than compared with deeper depths between 50 and 100 m. 

Interestingly, female krill captured during the night from surface water had even 

lower lactate concentrations, although from deeper depths there was no significant 

difference between evening and night captured individuals. 

A similar pattern to lactate was shown for krill glucose concentrations during DVM 

with the difference that glucose concentrations seemed to increase during. the 

evening and night rather than the decrease shown by lactate concentrations. The 

pattern of krill glucose concentrations with DVM is shown in Figure 5.8. 

A Kruskal - Wallis test performed followed by a box plot indicated that there were 

significant differences amongst the medians at the 95 % confidence level (T 

statistic= 56.198, P < 0.001). 
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Figure 5.8. Median glucose concentrations of male (d" ) and female ( ~ )free -

swimming krill (n = 2- 7) from various depths as indicated during the day, evening 

(eve) and night and by male and female caged krill (cage) in surface depths (S) 

and deep (D) depths. Non - overlapping v - shaped notches indicate significantly 

different values at the 95% confidence level. 

Male glucose concentrations were significantly greater during the evening in 

surface waters than compared with either during the day and from deeper depths 

during the evening. Moreover male glucose concentrations were significantly 

greater during the night in surface waters than compared with during the evening 

in surface waters. Glucose concentrations from krill captured from deeper water 

(1 00 - 75 m depths) were similar with those of evening captured krill from similar 

depths of between 75 and 100 m. Male krill retrieved from cages during the 

evening had similar glucose concentrations with day captured male krill. Female 
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krill glucose concentrations increased significantly during the evening compared 

with during the day. During the evening female glucose concentrations were 

significantly greater in shallower depths between 0 and 50 m than compared with 

75 - 100 m depths. Female glucose concentrations from 75 - 100 m depths 

during the night rose significantly above evening levels although they were still 

significantly lower than glucose concentration of krill captured from shallower 

depths between 25 and 50 m during the night. Female krill retrieved from surface 

waters in the evening had significantly greater [He] than those retrieved from 

deeper depths 

5.3.4 Recovery of [He] 

The recovery of [He] after a 12 h starvation period with various food types 

available at different points during krill DVM is shown by Figure 5.9. The 

proportion of male and female krill pooled in the samples for each each treatment 

is presented in Table 5.2 

Table 5.2 Proportion of male and female krill in pooled haemolymph samples for 

each feeding treatment. Values are presented as means +/- SD. 

Treatment 

No food type - starvation 
prior to feeding 
Deep water food type 

Surface water food type 

No food type starved 

Pooled sample sex composition(%) 
Fema~ Male 

48 ±6 52 ±6 

54± 12 46 ± 12 

43 ± 8 57± 8 

56± 9 44 ±9 
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Figure 5.9 Recovery of haemocyanin after a 12 h period starvation period 

(Starved1) followed when subsequently offered a deep water food type (OFT) or 

surface water food type (SFT) or no food type (Starved2). Median He level (n = 2 

-6) shown with 95 % confidence intervals. Non - overlapping v - shaped notches 

indicate significantly different values at the 95 % confidence level. 

A Kruskal - Wallis test performed followed by a box indicated that there was a 

significant difference amongst the medians at the 95 % confidence level (T statistic 

= 10.52, P < 0.0014). There were no significant differences between krill starved 

in the 12 h period prior to feeding and those krill that continued to starve for a 

further 12 h period. [He] was, however, significantly greater when krill were 

offered either food type. In particular krill [He] was significantly greater when 

offered a surface water food type than compared to a deep water food type. 
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5.4 DISCUSSION 

5.4.1 Moult stage, sex and [He] 

The difference in moult stages observed progressively through DVM suggests that 

krill change from moult stages A/8 to 8/C fairly quickly during DVM. The higher 

proportion relative to during the day of females in 8/C stages in the evening 

compared with males suggests again asynchronous behaviour in the form of 

changing of moults stages by males and females. This earlier change to 8/C 

moults stages by females may be a consequence of their earlier ascent to the 

surface waters to feed, although further investigations with many more replicate 

krill would be required to determine whether this is the case. 

Values for [He] of Meganyciphanes norvegica presented here are some of the 

highest recorded (1 - 2 mmol.r1
) for any crustacean (Mangum, 1983; Truchot, 

1992). This has been noted before by Spicer and Stromberg (2002). However, 

what was not noted by these authors is the fact that there is such a massive sex 

difference in [He]. This is because that the individuals used by Spicer and 

Stromberg (2002) were predominantly males, most of the females were gravid and 

so were not used in experiments. lt does mean that on the rare occasions where 

they pool males and females for analysis (Spicer and Stromberg, Pers. Comm.) 

the derived data should now be considered suspect. Fortunately this does not 

change the overall story they present. Sex differences are present but rare in 

crustaceans (e.g. Horn and Kerr, 1963; 8aden et al., 1990; Chen and Cheng, 

1993; Spicer and 8aden, 2000) but even then the difference I found is 

unprecedented. 
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5.4.2 The cost of not feeding 

Male and female [He] appeared to significantly increase in the night and evening 

periods of DVM respectively. Recorded in Chapter 4 is the pattern for krill feeding 

and sex where females seemingly feeding earlier during the evening than males 

which fed most extensively at night. Therefore this increase in [He] occurs at the 

same time as increased feeding occurs for both male and female krill. In support 

of krill [He] appeared to be associated with feeding during DVM, those krill 

prevented from feeding during DVM (by placing in cages) did not show the same 

increases in [He] as krill which had been able to feed. Therefore not being able to 

feed during their DVM means that they cannot restock their [He). Lower [He] 

associated with unfed individuals compared with fed individuals agrees with the 

conclusions by Spicer and Stromberg (2002) that He is broken down by krill for 

nutrition. Moreover, the laboratory experiments investigating the subsequent 

recovery of [He] after krill had being starved and then offered a food types also 

support the idea that krill break down their He when starved. These laboratory 

experiments also suggested that krill can then recover their [He] more quickly (and 

perhaps to a higher level) with certain food types. [He] of krill offered a surface 

food type compared with a deep water food type were significantly greater after 12 

h. These [He] associated with deep water food types suggests and supports the 

conclusions of Chapter 4 that krill do not feed extensively during the day period of 

their DVM when only these deep water food types are available. 

Lower lactate concentrations and higher glucose levels also appeared like [He] to 

be associated with feeding by krill during DVM. Significant variation in lactate and 

glucose levels with different depths for each of the sampling times during DVM is 

likely to be associated with the asynchronous feeding pattern of krill as discussed 

in Chapter 4. That is krill at various depths in the water are likely to have fed to 

different extents due to different timing of their ascent to the surface layers of the 
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water column, therefore possibly explaining the variation between lactate and 

glucose levels between water column depths at any one sampling time. For 

lactate concentrations asynchronous feeding is a likely explanation as during the 

day when krill do not feed extensively lactate levels were similar. Although, during 

the day lactate concentrations were significantly different between sampling 

depths both lactate concentrations were low and significantly lower for krill feeding 

during the evening. Lactate levels during the nights were lower(< 4 mmol r 1
) and 

nearer to the values obtained by Spicer et al. (1999) under normoxic laboratory 

conditions (2.03 mmol r1
) than compared with during the day (> 4 mmol r1

). 

Female glucose reached significantly greater concentrations during the evening 

period of their DVM than for males at any time during their DVM. Lactate 

concentrations were also much higher and significantly greater in depths of 80 -

90 m during the day for females than for males during the day. Therefore it 

appears that female krill show a more extreme pattern of metabolism during their 

DVM. That is females show greater lactate debts but also higher stomach total 

pigment content and greater glucose levels during their DVM than males. [He] 

were also significantly greater for females than males. 

5.4.3 Feeding - part of the strategy for DVM? 

The need to migrate to the surface to recover from debts incurred during the day 

has been suggested by De Robertis et al. (2001 ). When investigating the anoxic 

feeding and subsequent recovery of the amphipod Orchomene obtusus, they 

suggested that these amphipod must migrate from the anoxic bottom waters 

where they feed at least once a day to the oxygenated regions of the water column 

to recover from the anaerobic respiration debts they incur whilst in the anoxic 

waters. Therefore, whether the cause of the oxygen debt is from switching to 

anaerobic metabolism because of anoxia/hypoxia or from switching to anaerobic 
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metabolism because of a reduced capacity to transport oxygen because of 

reduced [He] from starvation it seems that a mechanism of recovering from these 

depths is part of the strategy for migration. Therefore in the case of M. norvegica 

it would seem that an important part of their DVM strategy must be to recover from 

the debts they incurred during the day that is lower [He] and consequently an 

oxygen debt from anaerobic metabolism. 

Using He for nutrition may incur difficulties for krill. As He is a very large protein it 

must be broken down into amino acids before it can be used for energy. 

Additionally, as it is a large protein there must be a substantial energy cost to re­

synthesizing He if it is to be used as a respiratory pigment. Consequently there are 

two costs to using He for nutrition i.e. it must be broken down first and secondly it 

must then be re - synthesised to use a respiratory pigment. There is also the 

question of what happens to the copper from He once the respiratory pigment has 

been broken down. To fully understand the role of He (for nutrition) in DVM these 

factors need further consideration. Investigating blood ammonia in relation to [He] 

during DVM may provide more evidence concerning whether He is being broken 

down during DVM. Examining the energy content of He together with the energy 

costs of re - synthesis would provide more necessary information to explain the 

costs and/or benefits of using He for nutrition. 

Although there are 'problems' associated with using He for nutrition it does seem 

clear from the laboratory experiment investigating the recovery of He with feeding 

that krill [He] can recover to higher levels in a shorter timescale with some food 

types compared with others. Indeed krill recovered their He to a greater 

concentration when offered surface water food types compared with deep water 

food types. Therefore supporting the hypothesis that krill recover their [He] when 

they migrate to the surface to feed at night. Males and females seem to follow the 

same pattern of He, lactate and glucose concentrations although asynchronously 
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during their DVM, thus supporting the idea that the metabolic state of krill drives 

the feeding pattern of DVM. As suggested by Spicer et al. (1999) there must be 

driving force such as predator avoidance to enter hypoxic waters. As the krill 

appear to break down their He during the day without hypoxia I would further 

suggest that there must be a driving force such as predation for krill to show a 

strategy involving the breaking down and rebuilding of their [He] during DVM. 

Furthermore given that female krill show a more extreme change in metabolic 

state during their DVM together with that they have [He] approximately twice those 

of males there must be another factor than just predation influencing their DVM 

strategy. lt would seem that female krill have a greater need to feed and gain 

energy and greater costs of residing in deeper depths during the day. lt may be, 

as Tarling (2003) suggested, that greater demand for energy for reproduction by 

females may be driving their riskier DVM than males. Cuzin- Roudy et al. (2004) 

suggested that food quality and quantity are extremely important in growth moult 

and egg development. Therefore its seems likely that the energy required by 

females for these processes in reproductive development are greater than for 

males and therefore mean females have a greater need for energy. 

Spicer and Stromberg (2002) found that there was an increase in [He] with 

increased temperature in fed animals whereas in contrast with an increase in 

temperature [He] were lower for starved individuals. lt may be advantageous to 

krill if during for example during the summer months when temperatures are much 

warmer in the surface layers than compared with deeper layers if when they 

migrate to the surface to feed in these warmer waters that they can rebuild their 

[He] more quickly. Spicer et al. (1999) found that M. norvegica under hypoxic 

conditions produced more L-lactate. Therefore even though krill seem to switch to 

anaerobic metabolism and incur an oxygen debt under normoxic conditions in 

deeper waters as they break down their He it seems that if these deeper waters 
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are hypoxic the oxygen debts are far greater. Consequently, environmental 

conditions may intensify the oxygen debts that krill already have from breaking 

down their He during DVM. On the other hand environmental conditions such as 

temperature as mentioned above may actually facilitate the recovery of [He] when 

krill go up to the surface and feed. 
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Chapter 6 

General Discussion: 

The role of feeding in krill diel vertical migration 
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6.1 Feeding and metabolism, a strategy for DVM? 

The strong pattern of krill migrating to the surface, feeding and then returning to 

deeper depths of the water column (e.g. Appendix A, Chapter 4, Lass et al., 2001, 

Onsrud and Kaartvedt, 1998; Stuart and Pillar, 1990; Simard et al., 1986) suggests 

that feeding must form, or affect, part of the strategy for DVM. Therefore, although 

modelling studies have suggested that patterns of predation risk may be key to 

understanding krill DVM (e.g. Alzono and Mangel, 2001) it seems surprising that 

there so few studies consider the possible role of feeding in DVM. Although 

feeding during DVM has been documented it is difficult to establish the role of 

feeding in DVM because most of the studies which have examined feeding in 

relation to DVM have described patterns but have not investigated mechanisms 

(e.g. Sameoto, 1980; Onsrud and Kaartvedt, 1998; Lass et al., 2001). Although it 

is important to establish patterns of feeding during DVM it is also true that it is 

difficult to interpret from field observations the mechanisms for DVM. Tarling and 

his co - workers (2000) suggested that in an optimisation model they developed 

that both feeding and predation risk are important driving factors during DVM. The 

results of this thesis suggest that the feeding strategy of krill and their DVM 

strategy seem to be very interlinked and thus highlight the importance of 

considering feeding as part the mechanism for DVM. 

A summary of the DVM strategy and feeding strategy of M. norvegica proposed 

from the results of this thesis is presented below (see Fig. 6.1). The model 

presented is discussed in relation to the results of this thesis in the text that follows 
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Figure 6.1 Tentative model of the mechanisms involved in DVM illustrating the inter- linked nature of DVM, feeding and predation avoidance. 



The timing of feeding during DVM is a key part of determining the relationship 

between DVM and feeding and therefore whether a NDVM to the surface layers is 

to feed. Even though there have been studies suggesting a timescale for feeding 

(e.g. Sameoto, 1980; Onsrud and Kaartvedt, 1998) their suggestions are based 

upon field observations. They are also primarily based upon gut content analysis 

and therefore cannot suggest when food types have been eaten as they may have 

remained in gut content. The laboratory experiments presented in Chapter 4 

could be taken to suggest that krill do not feed on deep - water food types 

available to them during the day but on surface water food types available to them 

during the night, therefore supporting the idea that krill do not feed during the day 

but only nocturnally. The observed concentration of krill in deeper layers during the 

day and low pigment content of day caught krill (see Chapter 4) also supports the 

suggestion that krill do not feed during the day. Consequently, the low feeding 

rates on deep water food types (Chapter 4) and higher feeding rates on surface 

water food types means that krill must ascend to the surface to feed. Nakagawa et 

al. (2003) also found a similar a pattern of decreased daytime feeding and 

increased feeding in the night for the krill Euphausia pacifica. Increased feeding at 

night has also been recorded in both Euphausia vallentini and Euphausia 

/ongirostris (Gurney et al., 2002.) Additionally it would appear that as copepods 

also became dispersed and therefore available throughout the water column at 

night whereas phytoplankton remained only available in higher densities in the 

surface waters that migration to feed in the surface layers of the water column 

must be to feed on both copepods and phytoplankton. Therefore if krill do not (or 

cannot) feed during the day on the food types available then it lead to the 

question, is there a cost of not being able to feed? Spicer and Stromberg (2002) 

suggested that krill break down their He when starved for nutrition in a higher 
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magnitude and shorter timescale than has been recorded for other crustacean 

species. Therefore, over a short timescale under conditions of starvation krill can 

break down their He. Krill appeared to break down their He during the day whilst 

not feeding (Chapter 5). Reduced [He) could in turn mean a reduced capacity for 

the uptake and transport of oxygen and consequently a reduced capacity for 

aerobic metabolism (while the very low 02 affinity of M. norvegica He (Spicer and 

Stromberg, 2002) makes the role of this pigment in gas transport questionable, we 

really need values oxygen tensions for arterial and venous haemolymph before we 

can make meaningful interpretations). Therefore, as expected krill switched to 

anaerobic metabolism and this was indicated by an increase in lactic acid in the 

haemolymph. Therefore [He] was being broken down at the same time as an 

oxygen debt was being generated. This could be interpreted as meaning there 

was indeed a cost from not being able to feed during the day. Therefore with a 

clear cost to not feeding during the day krill must have some means for recovering 

from the debts they incurred during the day. Laboratory experiments investigating 

the recovery of [He] in starved krill when offered food types available either during 

the day or night periods of krill DVM indicated that [He) were recovered more 

quickly (and possibly to greater concentrations) on surface water food types 

compared with deep water food types (see Chapter 5). Field data suggested a 

similar pattern of He breakdown and recovery, as [Hc]s were significantly greater 

at night in female and males than compared with during the day. Females [He] 

increased earlier during DVM with an earlier evening ascent to the surface water 

than compared with later ascent to the surface at night by males (see Chapters 4 

and 5). Indeed this increase in both males and females followed the same pattern 

as their feeding again suggesting that [He) were recovered nocturnally when 

feeding in surface waters. Consequently the breakdown and subsequent recovery 

of He was completed in the course of DVM. The large variance in stomach 
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pigment content with depth in both male and female krill during day, evening and 

night periods of DVM (see Chapter 4) suggests that krill are feeding 

asynchronously. The asynchronous feeding activity of both male and female krill 

strongly supports the hunger - satiation hypothesis elegantly presented in the 

recent review by Pearre (2003) whereby ascent to the surface layers is driven by 

hunger with individuals then descending to deeper depths when satiated. Hays et 

al. (2001) suggested that in the copepod Metridia pacifica individuals with larger 

lipid stores remained at depths and did not migrate to the surface layers as their 

risk of starvation was not imminent and therefore there was no reason for 

exposure to the increased predation risk in the surface layers. Therefore, 

perhaps not only do krill migrate at different times during their DVM but also 

maybe not all krill in each DVM cycle, depending on their energy status, need to 

migrate. Large variation between individuals was also shown in their lactate and 

glucose levels at each sampling period during DVM, again supporting the 

interpretation that krill did not migrate, feed and recover synchronously. The 

hunger - satiation hypothesis as discussed extensively by Pearre (2003) fits this 

pattern of krill feeding and metabolism especially if satiation is modified to include 

the recovery of metabolic debts incurred during the day. Such asynchronous 

patterns for feeding and recovery of debts suggest that DVM is an individual based 

strategy. That is, it is the recovery and feeding of the individual that determines 

their ascent and descent in DVM and not the movement of a group or swarm of 

individuals, which determines their movement. Although, Burrows and Tarling 

(2004) suggested from their model of DVM that krill may make decisions based on 

the behaviour of their conspecifics as well as their own internal state because 

there is a high premium to occupying the most profitable depth zone at night. 

Perhaps asynchronous behaviour of individuals actually facilitates the use of 

resources by krill as not all krill occupy the same depth at any time. Consequently, 
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as it seems that krill migrate individually, whether krill actually swarm or whether 

these groups of individuals observed in the field are coinciding DVMs of individuals 

must be questioned. Therefore it seems that krill suffer costs during the day but 

with only a limited time for nocturnal ascent to the surface layers of the water 

column to feed the recovery of He must be quick and therefore their energy 

acquisition from feeding must be equally as short in order to rebuild He 

concentrations. 

6.2 DVM and its influence on krill feeding 

A limited time to feed means that krill must have an appropriate feeding strategy if 

they are to recover from the debts that they incurred during the day. Krill were 

suggested to be opportunistic omnivores in Chapter 2 with the food types eaten 

related to the morphology of the feeding basket (see Chapter 3 for discussion). A 

short time available for searching for food (i.e. only at night) and often a variable 

abundance of food such an opportunistic feeding strategy would facilitate the 

recovery of debts incurred during the day. According to optimal foraging theory 

as proposed by MacArthur and Pianka (1966), a generalist feeding strategy would 

be favoured in variable environments particularly when krill have such a limited 

time to recover their debts from during the day. That is, by including more food 

types (possibly less profitable) in their diet, generalists have to spend less time 

searching for food. In addition to observations that krill are flexible feeding on a 

variety of food types (see Chapter 2 for discussion) krill also seem to be equipped 

to deal with a varied diet. Fevolden (1982) suggested that the higher degree of 

enzyme heterozygocity in M. norvegica compared with Thyansoessa rashii was 

related to a more varied diet. Buchholz and Saborowski (2000) also suggest that 

induction of enzymes including chitinases indicates ominvory in both E. superba 
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and M. norvegica and emphasizes their ability to respond to highly variable trophic 

environments. Krill may not only have to deal with a variety of food types but also 

differing densities of food types both during their DVM (i.e. in surface and deeper 

depths) and seasonally (i.e. with spring blooms). When krill were offered various 

densities of surface water food types they showed a steeper increase in ingestion 

rates at higher food densities suggesting that they are able to utilize patches of 

high food density (see Chapter 4). Buchholz and Saborowski (2000) suggested 

that a basal level of digestive enzyme activity ensures immediate utilization of 

patchy food sources. An ability to quickly respond to patches of food would be 

advantageous to krill when trying to recover in a short time from their daytime 

incurred debts. Meyer et al. (2002) suggested that enzyme activity in E. superba 

was significantly higher in lower food conditions and suggested that therefore food 

assimilation was more efficient at low food levels. Therefore, the ability of krill to 

respond to food patches and also to efficiently assimilate food at low food levels is 

advantageous in a variable food environment, as it would facilitate the recovery of 

debts incurred during the day even under low food conditions. Therefore above all 

krill seem flexible generalist feeders able to utilize both phytoplankton and 

zooplankton. 

6.3 Female and male DVM 

Tarling (2003) predicted that female krill undertake a riskier DVM (in terms of 

predation risk) than male in order to fuel reproduction by ascending higher in the 

water column. Female krill in this study also appeared to ascend to shallower 

depths than males (see Chapter 4) however, not only did females appear to 

undertake a riskier DVM in terms of predation risk they also seemed that to be 

undertaking a more extreme pattern of DVM than males in terms of their feeding 

and metabolism (see Chapter 5). Tarling (2003) also suggested that female and 
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male krill have different energetic demands as a result of their reproduction based 

on the findings of Cuzin - Roudy (2000) that by the time female M. norvegica are 

ready to spawn they have accumulated more than 1 000 eggs with a lipid content 

of more than 3 mg ash - free dry weight. lt is difficult to comment, however, on 

any possible differences between female and male metabolism. Although there 

have been numerous studies investigating krill metabolism in relation to 

feeding/energy demands (e.g. Holm - Hansen and Huntley, 1984; lkeda, 1984; 

I ked a and Dixon, 1984; Frazer et al.. 2002; Saborowski et al., 2002 and also see 

review by Quentin et al., 1994) no distinction has been made between males and 

females. Virtue et al. (1996) found that mortality was significantly greater in 

reproductive male Euphausia superba than in females and suggested that this was 

because of low lipid levels in males. Therefore perhaps the apparent riskier DVM 

strategy of females is not riskier in the long term as they have a lower mortality 

because they have higher lipid stores. Therefore, determining (a) whether female 

krill do have higher metabolic demands compared with males, (b) how females 

assimilate energy to fuel their reproductive demands and (c) whether the pattern of 

female DVM is indeed riskier should be the focus of future work considering the 

mechanism for the differences in the DVM of krill sexes. 

6.4 Wider implications for proposed DVM model 

Most krill are omnivorous feeding upon both phytoplankton and zooplankton 

(Mauchline and Fisher, 1969; Mauchline, 1980). Meganyctiphanes norvegica is 

normally described in the literature as predominately carnivorous. Herbivorous 

feeding by M. norvegica is clear from the results of this thesis (see Chapters 2 and 

4) and has been frequently documented (e.g. Sameoto, 1980; Simard et al., 1986; 

Onsrud and Kaartvedt, 1998; Kaartvedt, et al., 2002 Lass et al., 2001) and 

suggested from fatty acids as dietary indicators (Virtue et al., 2000). Other 
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species (Thysanoessa macura) considered as mainly carnivorous have been 

suggested to feed on phytoplankton based on the presence of enzymes such as 

laminarinase and galactosidase (Mayzaud et al., 1985). Species which have been 

described predominately as herbivorous such as, E. superba actually appear to be 

flexible feeders and omnivorous because feeding on animal prey has been 

frequently documented (e.g. Price et al., 1988; Pakhomov et al., 1997; Atkinson 

and Snyder, 1997; Atkinson et al., 1999; Cripps et al., 1999). Enzyme activities 

characteristic of an omnivore have been recorded (e.g. Mayzaud et al., 1985; 

Buchholz and Saborowski, 2000). Nyctiphanes australis has also been suggested 

to feed upon both phytoplankton and zooplankton (Dalley and McCiatchie, 1989; 

Ritz, et al., 1990). Euphausia pacifica has been suggested to feed upon both 

diatoms and carnivorously on copepods in laboratory conditions (Ohman, 1984; 

Stuart, 1986) and even ciliates (Nakagawa et al., 2004). Euphausia lucens has 

also been suggested to feed upon both phytoplankton and zooplankton (Stuart 

and Huggett, 1992; Gibbons, et al., 1991). Therefore, all of the above mentioned 

species seem flexible, omnivorous feeders perhaps suggesting that they have 

similar feeding strategies. If most krill are omnivorous and flexible feeders then it 

raises the question is their feeding strategy driven by the same need to acquire 

energy quickly in a short time? Consequently it may be hypothesised that perhaps 

the model of DVM proposed in this thesis where krill have to recover from debts in 

a short time scale during the night may be common to all euphausiids, although 

further investigations would be required examining more krill species to determine 

whether this is the case. 

The pattern of ascending to feed at night and then returning to deeper depths has 

been recorded in M. norvegica (Chapter 4, Appendix A, Simard et al., 1986; 

Onsrud and Kaartvedt, 1998) E. pacifica (Nakagawa et al., 2003) E. lucens 
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(Gibbons, 1993). This similar ascent to surface layers in other krill species further 

suggest that maybe krill have common strategy for DVM. lt may be expected if 

other species of krill also do not feed during the day but only nocturnally that they 

have similar costs which they must recover from like M. norvegica. Furthermore 

nocturnal feeding has also been suggested in copepods (Simard et al., 1985; 

Atkinson et al., 1996; Hays et al., 2001; Urban- Rich et al., 2001; Tarling et al., 

2002; Kibirige and Perissinotto, 2003) suggesting that maybe the proposed model 

of DVM could be a more general strategy found in other zooplankton such 

copepods. Moreover, (Kibirige and Perissinotto, 2003) found higher plant pigment 

concentrations in the guts of all the species (including mysids and shrimp 

Palaemon spp.) they examined during the night than compared with during the 

day. Again this diel cycle of feeding by other crustacean species may suggest that 

they may follow a similar strategy of feeding and DVM with M. norvegica. 

Particularly if DVM is driven by the need to obtain energy or recover from debts. 

As Hays et al. (2001) suggested that copepods Metridia pacifica did not migrate if 

they had larger lipid stores perhaps DVM in copepods is indeed driven by the 

same motivations to obtain energy. Sekino and Yamamura (1999) from an 

optimisation model demonstrated that zooplankton individuals change their 

migrating behaviour depending on the amount of accumulated energy. lt seems 

extremely likely that part of the drive for DVM is driven by the need to obtain 

energy. Studies such as Tarling et al. (2002) have dismissed the hunger -

satiation hypothesis (Tarling et al., 2002 was criticised by Pearre, 2003 although 

Pearre's criticism was then refuted by Tarling et al., 2003). They have suggested 

that DVM is driven by predator evasion as Pearre (2003) pointed out copepods in 

this study actually descended before the arrival of krill suggesting that copepods 

were perhaps indeed satiated and not descending because of predation. The fact 

that both copepods and krill co occur during DVM in the surface water suggests 
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that they are both driven by a common need to obtain energy for example. The 

need to migrate may also be to recover from debts in some way. The need to 

migrate to the surface to recover from debts incurred during the day has been 

suggested by De Robertis et al. (2001 ). When investigating the anoxic feeding 

and subsequent recovery of the amphipod Orchomene obtusus, they suggested 

that these amphipods must migrate from the anoxic bottom waters where they 

feed at least once a day to the oxygenated regions of the water column to recover 

from the anaerobic respiration debts they incur whilst in the anoxic waters. 

Therefore the need to migrate may not be to feed but also to recover from debts 

that have been incurred. lt is also likely that predation is a factor in DVM as in 

particularly the case of M. norvegica why would they descend to depths especially 

when hypoxic and suffer costs such as the breakdown of their He when they are 

so poorly equipped for anaerobic metabolism (Spicer et al., 1999). The effect of 

predators on the DVM of Daphnia has been documented. Von elert and Pohnert 

(2000) suggested that Daphnia showed a stronger DVM response with increasing 

concentration of fish karimone. Brewer et al. (1999) also found a similar effect of 

the presence of fish karimone on Daphnia. They found that Daphnia pulicaria 

clones were about twice as sensitive to fluid disturbances in the presence of fish 

karimone in light conditions. Loose and Dawidowicz (1994) has also 

demonstrated that Daphnia magna shows increasing strength of migration with 

increased concentration of fish karimones. Therefore, its seems that, in common 

with the view that recurs through all DVM literature, predator evasion is likely to be 

part of the DVM strategy for zooplankton. There is, however, no reason assume 

that it must be either predation avoidance or feeding that drive DVM. lt is most 

likely that as suggested by several authors (e.g. Gabriel and Thomas, 1988; 

Lampert, 1989; Tarling et al., 2000) that DVM is driven by a need to obtain food 

and to avoid visual predators. Houston et al. (1993) suggest that often 
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maximizing energy intake is associated with an increase in predation risk and that 

optimal fitness is a trade - off between balancing these two factors. Lui et al. 

(2003) modelled the DVM of zooplankton and showed that they can balance 

optimal food intake against predation risk. Sekino and Yamamura (1999) 

suggested that migrating behaviour of Daphnia changes depending on the amount 

of accumulated energy and concluded that this implies that the nutritional status of 

zooplankton is important in determining their migrating behaviour. Burrows and 

Tarling (2004) also predicted that by reducing metabolic cost in their model that 

animals would spend less time in the surface ascending later and descending 

earlier than if metabolic costs were greater. Therefore, it is likely that the driving 

force of DVM is a balance between obtaining sufficient energy and avoiding 

predators and with perhaps the risks that are taken in terms of predation 

dependent upon the energy state of a particular individual. 

In summary it seems that as M. norvegica appears to break down its respiratory 

pigment (He) for nutrition and when it has such a poor capacity for anaerobic 

metabolism as suggested by Spicer et al. (1999) the need to reside in the deeper 

layers of the water column must indeed be great (for example from predators). 

Consequently it would seem that the drive to migrate to the surface to feed and 

therefore recover from daytime incurred debts must be equally as great. 

Consequently, I suggest that DVM is driven by the internal state of individual krill, 

M. norvegica. Furthermore, the model of DVM proposed may be common to all 

krill that are diel vertical migrators and it may also be applicable other zooplankton 

such as copepods which show DVM with increased nocturnal feeding. 
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6.5 Future considerations and research 

The results of this thesis strongly suggest that feeding should be considered as an 

important component and indeed included as at least a part of the mechanism for 

DVM. Further investigations are required to investigate whether the model DVM 

strategy proposed is common to both other krill species and other zooplankton. 

Further investigation is also required to examine the difference in the DVM of 

female and male krill, again not only in M. norvegica but also in other krill species. 
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Appendix A 

Preliminary investigations of associations 

between feeding by krill and DVM 
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A.1 INTRODUCTION 

A.1.1 Krill DVM and feeding 

Krill are well known diel vertical migrators (Mauchline, 1980). The pattern of 

feeding during diel vertical migration (DVM) of northern krill, Meganyctiphanes 

norvegica has been documented (e.g. Sameoto, 1980; Simard et al., 1986; 

Kaartvedt et al., 2002; Onsrud and Kaartvedt, 2002) although, there is still much 

uncertainty surrounding the feeding behaviour of this species during its DVM and 

also why it shows this DVM behaviour. For example, some studies have 

suggested that M. norvegica are mainly carnivorous (Bamstedt and Karlson, 

1998) whereas other studies suggest an opportunistic omnivorous feeding habit 

(Lass et al., 2001; Kaartvedt et al., 2002). Whether M. norvegica feeds throughout 

its DVM or only at night is also still unresolved (see Chapter 1, General 

Introduction). The questions of whether krill feed throughout DVM, why they feed 

on given food types and also the mechanism underlying their DVM are central to 

the purpose of this thesis. Consequently establishing a pattern for feeding during 

DVM is of critical importance to the questions I will address. Therefore although 

not a novel study, the pattern of M. norvegica feeding during their DVM in 

Gullmarsfjorden was examined to provide information to design the experiments of 

the thesis. Thus the objectives of this field study were to observe the pattern of 

krill feeding in relation to the available food types (i.e. phytoplankton and 

zooplankton) by measuring herbivorous and carnivorous feeding in situ on these 

food types during the day and night of their diel vertical migration. This field study 

of DVM is based on observing patterns and, also, is not entirely novel. Therefore 

it has not been included as a chapter in the thesis. 
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A.1.2 Physico - chemical water column characteristics and food 

type availability 

The effect of the physical environment on feeding by M. norvegica was not the 

focus of this thesis. Evidence concerning whether the hydrography affects the 

diel vertical migration of M. norvegica is contradictory. Onsrud and Kaartvedt 

(1998) examined the DVM of M. norvegica in relation to the physical environment, 

food and predators and suggested that the pycnocline did not represent an 

impenetrable barrier (c.f. Bergstrom and Stromberg, 1997). They also highlighted 

that in studies suggesting that the ascending migration of krill at night was 

inhibited by a pycnocline that the difference in krill behaviour may have not been 

due to the physicals gradients involved but due to alternative explanations not 

examined by those studies. To inform the designing of the experiments presented 

in this thesis, however, salinity and temperature were measured in the studies of 

this appendix. 

Investigating the effect of food type availability on the diel vertical migration by krill 

was, however, a key focus of this thesis. Therefore, to inform future experiments 

on krill feeding was investigated in relation to the food items available during its 

DVM. 

A.1.3 Estimating in situ feeding rates 

Most feeding rates are calculated in laboratory - controlled conditions. These 

controlled conditions, however, can be problematic if the aim is to extrapolate from 

laboratory - calculated, feeding rates to krill in field conditions. Morris (1984) 

suggested filtration data for E. superba must be extrapolated with care, as the 

filtration mechanism may be different under various environmental and energetic 

constraints. Price et al. ( 1988) suggested that laboratory feeding rates 
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underestimate in situ feeding rates because of the small experimental vessels 

used in laboratory studies. They found that the clearance rates of Antarctic krill, 

Euphausia superba feeding on copepods were seven to ten times greater and on 

algae were around two times higher when krill were allowed to feed in large 50 litre 

tubs compared with smaller 5 litre bottles. Similarly, Morris (1984) found that 

filtration rates for E. superba in flow through conditions compared with closed or 

constant volume experiments were much higher. Therefore being able to estimate 

ingestion rates in field conditions overcomes the problems associated with 

laboratory experiments such as small unrealistic experimental containers. A 

method of overcoming these problems associated with calculating feeding rate 

under laboratory conditions is to try and estimate feeding rates from field caught 

individuals. Carnivorous in situ feeding rates have been determined for M. 

norvegica by Bamstedt and Karslon (1998). They calculated ingestion rates using 

laboratory derived digestion times together with field caught krill stomach contents. 

Kierboe et al. (1982) found that gut content from field caught copepods 

Centropages hamatus, multiplied by gut clearance rates gave similar ingestion 

rates to those calculated in their laboratory studies. Perissinotto and Pakhomov 

(1996) highlighted that in situ techniques such as gut fluorescence used to 

estimate herbivorous feeding by krill have shown ingestion rates are higher than 

estimated under laboratory conditions. Wang and Concover (1986), however, 

found that using the gut fluorescence method underestimated ingestion rates in 

the copepod Temora longicomis and suggested this may have been because plant 

pigments were broken down into non fluorescent residues during their residence in 

the gut. Concover et al. (1986) supported these ideas as they found that 

chlorophyll a. and its derivatives can be destroyed or absorbed during the passage 

through the gut. The use of gut fluorescence does however provide a means of 

tracing individuals during their DVM and give an idea of feeding activity. Thus 
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although using the gut fluorescence method may underestimate the amount of 

pigment in the gut it does provide a means of quantifying pigments in order to 

compare feeding activity of krill during their DVM. Another problem with using 

these methods of calculating in situ ingestion rates is, however, that they are 

essentially based upon laboratory derived digestion times or gut evacuation rates. 

Heyraud (1979) suggested that transit times are shorter when krill are feeding 

continuously and in the absence of food it is much longer (up to 8 h) before krill 

empty their guts (La Rosa,1976 as cited by Heyraud, 1979). Indeed Antezana et 

al. (1982) suggested that krill Euphausia superba can retain their gut contents for 

up to 7d when starved. Perissinotto and Pakhomov (1996) when investigating gut 

evacuation rates of phytoplankton by E. superba suggest that gut evacuation rates 

can only be realistically estimated when krill are allowed to continue ingesting 

particles uninterruptedly. Bamstedt and Karlson (1998) also highlight the need for 

determining digestion times based on krill feeding continuously. 

A.1.4 Krill density and feeding 

Krill are often found in layers or aggregations in the water column (Mauchline, 

1980; Siege! and Kalinowski, 1994). Studies manipulating feeding conditions for 

krill are, however, mostly performed in the laboratory using isolated krill. Ritz 

(2000) suggested that higher estimated field ingestion rates compared with 

laboratory estimated rates may not be attributed to the confinement of 

experimental containers but may be due to a higher feeding efficiency within 

aggregations compared with the isolated krill used in laboratory studies. 

Antezana and Ray (1984) thought that the large chlorophyll gut content of E. 

superba could not be attributed to phytoplankton alone and therefore suggested 

that coprophagy may occur in a swarm. Therefore although in this study it was 

only possible to examine the effects of small groups of krill on feeding I was 
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interested in whether krill group size affected the clearance and ingestions rates of 

each experimental container. 

A.1.5 'Active' or 'passive' feeders? 

Whether krill can detect and stay with patches of high food density is an important 

consideration when trying to establish a pattern and also mechanism for their 

feeding behaviour. McCiatchie (1985) suggested that M. norvegica feeds where 

its prey is in high density or patch. Hofmann et al. (2004) examined the spatial 

distribution of E. superba and suggested that krill swim slower and turn more 

frequently in areas of high food concentration. Price (1989) found that 

Thysanoessa raschii kept themselves in algal patches by turning back at the 

boundary. Establishing whether krill actively swim searching for food or whether 

they passively filter water and collect food is therefore an important part of 

determining feeding behaviour during DVM. Examining feeding rates of tethered 

krill against freely swimming krill in laboratory conditions could in part explain 

whether krill are active or passive feeders. 

A.1.6 Rationale of appendix and aims 

Although not included as part of the main body of the thesis the studies presented 

here (Appendix A) were important in forming the basis for particularly the early 

chapters of the thesis. In particular it was important to examine and understand 

the pattern of krill feeding with DVM in the model system to be used before 

designing experiments to manipulate the model system. Also although some of 

these studies were 'unsuccessful' they were influential in forming the ideas, 

direction and methods for the experiments in the chapters of this thesis. 

The main aim of the appendix was to provide information about the pattern of krill 

feeding with DVM in the model system to inform the experimental design for each 
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of the chapters of this thesis. As describing the pattern of feeding by M. norvegica 

during DVM has already been documented (e.g. Simard et al., 1986; Onsrud and 

Kaartvedt, 1998; Lass et al., 2001), this study has not been included in the main 

body of the thesis. In particular the description of krill DVM presented in this 

appendix has not been included in the thesis for the reason as pointed out by 

Hays (2003) when reviewing the adaptive significance and ecosystem 

consequences of zooplankton DVM 'there is probably little more to be gained by 

more simple descriptions of day and night vertical distributions of zooplankton.' 

Other studies presented in this appendix, although 'unsuccessful' they were 

influential in forming the ideas, direction and methods for the experiments in the 

chapters of this thesis and thus have been included in this appendix. 

Therefore the aims of the work presented in this appendix were to: 

• determine a pattern for krill feeding during DVM to provide information to 

design the studies of this thesis; 

• and to explore potential experiments that could be useful in determining the 

feeding strategy of krill. 
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A.2 MATERIALS AND METHODS 

A.2.1 Collection of Plankton 

Meganyctiphanes norvegica were collected as described in chapter 4 methods 

during the day (11th Mar 2002) proceeding into the night (12th Mar 2002). Krill were 

collected from depth ranges of 100-75 m, 75- 5 Om and 50-0 m by horizontal 

oblique tows. During 'day' time the back scattering layer on the echo sounder 

indicated that krill were mainly concentrated at depths between 100 - 50 m 

therefore three replicate tows were made for krill at 100- 75 m and 75- 50 m. 

One trawl was made for the range of 50 - Om in order to confirm that no krill were 

present. During the night the back scattering layer indicated that krill were 

distributed throughout the water column, therefore two tows were made for the 

following depth ranges 100- 75 m, 75- 50 m and 50- 0 m. Repeated tows for 

each depth range cannot be regarded as 'true' replicate tows because tows are 

inevitably temporally different due to the continuous nature of DVM. Therefore 

technically it is impossible to replicate a tow. Consequently, although even if 

repeated tows were taken they cannot be regarded as replicates but only as 

individuals tows. I did, however, on this first sampling occasion take 3 (during the 

day) and 2 (during the night) tows at the same depth to examine the variance 

between tows. 

Zooplankton were collected by a vertical tow using a WP- 2 (200J.Jm) net, from a 

range of depths encountered by krill during DVM (100- 75 m, 75- 50 m, 50-25 

m and 25 - 0 m), during the day and night. A flow meter was attached to the 

aperture of the net in order to estimate the volume of water filtered and thus 

density of copepods per m ·3. Zooplankton were immediately preserved in 4- 5% 

formaldehyde solution. 
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Temperature and salinity were measured at various points throughout the water 

column using a conductivity temperature depth recorder. Water was collected in 

Niskin tubes from twelve depths as follows, 100 m, 80 m, 60 m, 50 m, 40 m, 30 m, 

20 m, 15 m, 12 m, 7 m, 5 m, and 2 m. A 200 ml sample was taken from each of 

these tubes and preserved with Lugol's solution for phytoplankton identification. A 

sample of water was also taken to estimate chlorophyll a and thus give a measure 

of the total phytoplankton at each depth. Although it would have been more 

informative to have more than one zooplankton tow for each depth and also more 

than one water collection for each depth for phytoplankton analysis, time 

constraints made this impossible. Also, as stated above repeated tows would be 

temporally different and thus not replicates. 

Krill were sorted within 10 min of landing on deck. For estimation of herbivorous 

feeding approx. 50 krill were chosen randomly, placed in aluminium foil, and 

frozen r 20°C} in order to prevent the degradation of chlorophyll pigments present 

in the gut from light. Remaining krill were preserved in 4 - 5% formaldehyde 

solution for analysis of gut content and enumeration of krill. 

A.2.2 Herbivorous feeding 

Herbivorous feeding was estimated by measuring gut content of chlorophyll 

pigments. Chlorophyll pigments were measured using a fluorescence method 

suggested by Parsons et al. (1984). Krill were thawed and the stomach/gut 

dissected out (n = 15 - 30) taking care to avoid damaging the gut and thus 

causing loss of content. Each gut was placed in 90% ethanol (10 ml) for 12- 18 

h to extract pigments. Chlorophyll a was quantified by fluorometric determination 

of chlorophylls and phaeopigments using a Turner Systems® fluorometer. Kruskal 

- Wallis tests followed by box plots using STATGRAPHICS plus 5.0 (1994- 2000, 
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statistical Graphics Carp) were performed to analyze difference between feeding 

at different depths. 

A.2.3 Carnivorous feeding 

The guts from krill analyzed for chlorophyll pigments were used for estimation of 

carnivorous feeding (n = 15). Stomach/guts were stained with methylene blue and 

examined for copepod mandibles. 

A.2.4 Food type availability/abundance 

A. Zooplankton 

Zooplankton were filtered through a 60 1-1m sieve, rinsed with fresh water, and 

replaced in a solution of 70 % ethanol with 3 % glycerol. Zooplankton samples 

were sub-sampled using a Flosom plankton splitter and divided into eight parts. 

Three 1/8 subsamples were used for identification and enumeration of 

zooplankton. Copepods were identified to genus. All other zooplankton was 

identified to class or genus. 

B. Phytop/ankton 

Immediately after collection duplicate water samples (100 ml) from each depth 

were filtered onto Whatman glass micro-fibre filters (GF/F) and extracted in 90% 

ethanol for 12- 14 h. Chlorophylls and phaeopigments were determined using the 

fluorescence method described previously for gut content analysis. A 50 ml water 

sample (preserved in Lugol's solution) was also placed in a settlement chamber 

for 24 h, after which phytoplankton were identified to genus and counted. 
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A.2.5 Laboratory feeding experiments 

Meganyctiphanes norvegica were collected as described in methods of chapter 2 

during Jan and Feb 2002. Krill were transferred (within 5 min of harvest) into 

sealed thermos containers (Rubbermaid drinking water thermosflask, vol. = 80 I) 

containing filtered sea water (salinity = 34 PSU) and transported to KMRS within 2 

h of capture. In the laboratory krill were maintained in fibre - glass aquaria (vol. = 

350 I) covered with dark plastic to keep krill in darkness. Aquaria were supplied 

with natural 'deep' sea water pumped into the station from a depth of 35 m (salinity 

= 34 PSU, T = 6 °C). All experiments were carried out within 5 days of capture. 

Copepods were collected, from the same location as krill. Copepods were 

returned to the laboratory within 2 h of capture in sealed thermos containers 

(Rubbermaid drinking water thermosflask vol. = 20 I) containing filtered sea water. 

At KMRS copepods were maintained in aerated plastic containers (vol. = 80 I) 

supplied with natural surface (pumped into station from depth of 6 m S = 34 PSU, 

T = 4 °C} water or deep water. All experiments were carried out within 5 d of 

capture. 

An isolated culture of the algae Thalassiosira weissflogii was kindly supplied by 

Peter Thor at KMR. Batch uni - algal cultures of Thalassiosira weissflogii were 

maintained in sea water under constant light and temperature (T = 15 °C} 

conditions. 

A.2.6 Krill density and feeding rates 

The effect of the krill density on clearance rate and ingestion rate of M. norvegica 

was investigated using various densities of krill. ANOVA was used to test for 

significant differences in feeding rates using STATGRAPHICS plus 5.0 (1994 -

2000, statistical Graphics Carp). For all feeding experiments a group of similar size 
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krill (body length, i.e. rostrum tip to end of telson = 30 - 36 mm) were selected 

from the stock aquaria and then transferred to experimental containers. 

A surface water assemblage of copepods (density= ea. 120 copepods I - 1
) was 

offered to several densities of krill (1, 3, 5 and 7 individual krill per 2.3 I bottle) to 

examine the effect of krill density on clearance/ingestion rates per bottle. A 

volume of stock water/food type was added to filtered surface sea water and 

mixed thoroughly to give the desired food type density. Control bottles contained 

only the food type whereas experimental bottles also contained the required krill 

density. Control (n = 6) and experimental (n = 4) glass bottles (vol. = 2.3 I) were 

filled with sea water containing the copepod food type in a haphazard order, to 

account for variation between bottles in food type concentration throughout the 

'filling' process. Thorough mixing continued throughout this filling process, to 

ensure that the food type remained in a homogenous suspension. At the start and 

end of the filling process two control bottles were taken for verification of copepod 

concentration at the start of the experiment. A number of krill to give the required 

density were placed in each experimental bottle, after which the bottle was then 

filled until the water overflowed. Plastic film was placed over the mouth of each 

bottle to exclude air and then the lid gently tightened. In order to maintain 

zooplankton in suspension, all bottles were placed on a rotating plankton wheel (2 

rev. min - 1
) and left overnight in a temperature controlled room (T = 6 °C) for 12-

13 h. At the end of this period, bottles were removed from the wheel, and the 

contents analysed for copepod density. Each bottle was rinsed three times to 

ensure all copepods were removed for quantification. Krill removed from the 

experimental bottles were also rinsed to remove any copepods adhering to the 

exoskeleton. The contents of each bottle was emptied and placed in a Petri dish 

with ethanol (70 %) to fix the remaining copepods. All of the copepods present 

were counted under low power (x 10) magnification. 
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A.2. 7 Gut evacuation studies 

The diatom Tha/assiosira weissflogii was added to 50 I of filtered sea water to 

produce a concentration of 0.3 mg carbon I - 1
. Approximately 50 to 70 similar 

sized krill (body length, i.e. rostrum tip to end of telson = 30 - 36 mm) were 

selected from the stock aquaria and then transferred to the experimental 

container. Krill were left for 3 h to feed. After this 3 h time krill were transferred to 

50 I of filtered sea water and then at time intervals (0, 5, 10, 20, 40, 60, 90, 180, 

240 min) 5 krill were removed for stomach chlorophyll content analysis. These krill 

were frozen immediately at - 80 °C. Stomach chlorophyll content was determined 

using exactly the same method as for field caught krill (see herbivorous feeding 

section above). This gut evacuation study was also repeated with the 

modification that when krill were transferred after 3 h to filtered seawater, the 

filtered seawater contained 6 mg carbon I - 1
. Carbon was added in an attempt to 

maintain ingestion and in turn gut evacuation. Perissinotto and Pakhomov (1996) 

suggested that gut evacuation rates could only be realistically determined when 

krill are allowed to continue ingesting particles uninterruptedly. They also suggest 

that gut evacuation rates and passage times were not constant in Euphausia 

supetba and slow down when feeding ceases or slows. 

A.2.8 Tethered krill experiment 

The effect of the ability of krill to swim and search for food on clearance rate 

(volume of water cleared of food by consumer per unit time) and ingestion rate 

(amount of food consumed per unit time) of M. norvegica was investigated using 

tethered krill. For all feeding experiments a group of similar size krill (body length, 

i.e. rostrum tip to end of telson = 30 - 36 mm) were selected from the stock 

aquaria and then transferred to experimental containers. 
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A surface water assemblage of copepods (density = ea. 90 copepods I - 1
) was 

offered to tethered and non - tethered krill to examine the effect the ability of krill 

to swim and search for food clearance/ingestion rates per bottle. A volume of 

stock water/food type was added to filtered surface sea water and mixed 

thoroughly to give the desired food type density. Control bottles contained only the 

food type whereas experimental bottles contained either a 'freely swimming' 

individual krill or a tethered krill. Krill were tethered to a wire as follows; gently 

blotted krill (to remove excess water) were fixed by their carapace to wire using 

adhesive. Cold seawater was poured over the adhesive to speed fixing time and 

therefore reduce the time krill were out of water. Control with food type only (n = 

4); control with food type only with wire in bottle (n = 4) and experimental krill 

tethered (n = 8) and non - tethered krill (n = 8) glass bottles (vol. = 2.3 I) were 

filled with sea water containing the copepod food type in a haphazard order, to 

account for variation between bottles in food type concentration throughout the 

'filling' process. Thorough mixing continued throughout this filling process, to 

ensure that the food type remained in a homogenous suspension. At the start and 

end of the filling process two control bottles were taken for verification of copepod 

concentration at the start of the experiment. Tethered or non- tethered krill were 

placed in each experimental bottle, after which the bottle was then filled until the 

water overflowed. In order to maintain zooplankton in suspension, all bottles were 

placed on a rotating plankton wheel (2 rev. min - 1
) and left overnight in a 

temperature controlled room (T = 6 °C) for 12- 13 h. At the end of this period, 

bottles were removed from the wheel, and the contents analysed for copepod 

density. Each bottle was rinsed three times to ensure all copepods were removed 

for quantification. Krill removed from the experimental bottles were also rinsed to 

remove any copepods adhering to the exoskeleton. The contents of each bottle 

was emptied and placed in a Petri dish with ethanol (70 %) to fix the remaining 
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copepods. All of the copepods present were counted under low power (x 1 0) 

magnification. 

Preliminary studies investigating the functioning of the feeding basket involved 

removal of appendages from the feeding basket. However, this investigation of 

feeding basket function was not pursued because most krill did not survive 12 h 

after removal of appendages from the basket. 
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A.3 RESULTS 

A.3.1 Krill and their DVM 

The ascent of krill into the surface layers at night from deeper depths is shown by 

krill abundance at various depths during the course of one day and night by Figure 

A.1 . 

0 . 

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 

Krill abundance (individ. m -3) 

Figure A.1 Diel vertical migration by krill. Abundance of krill in shallow to deep 

depths during the day (open bars) and night (solid bars). Each bar represents one 

'replicate' tow. 

Krill were concentrated in the lower 50 m of the water column and absent from the 

upper 50 m of the water column during the day. In particular the greatest densities 

of krill were recorded in the deepest part of their daytime distribution between 100 

and 75 m. During the night krill had become spread throughout the water column 

and were recorded in all sampling depths. At night krill were most abundant in the 
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upper 50 m of the water column signifying that most krill had migrated up into the 

upper layers of the water column. 

Difference between tows taken at the same depth during the night were slight, with 

the largest difference in abundance being 0.27 individ. m -3 for tows taken 

between 50 and 75 m. The differences between tows during the day were, 

however, greater with a difference of as much as 1.52 individ. m -3 between tows 

taken for 100 - 75 m. Although between 50 and 75 m abundance estimates were 

similar with the greatest difference between tows only being 0.02 individ. m - 3
. 

The distribution of krill body lengths in the water column during the day and night 

are shown by Figures A.2 and A.3. During the day smaller body length krill 

appeared to reside higher in the water column than longer length krill. 
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I XJ 
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75 - 100 I 

30 34 38 42 46 50 

Body length (mm) 

Figure A.2 Day - time distribution of krill sizes. Median krill body length shown 

with 95 confidence intervals at sampling depths of 50-75 m (krill measured = 90) 

and 75 - 100 m (krill measured =100). Non -overlapping v- shaped notches 

indicate significantly different values at the 95% confidence level. 
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At night the median body length of krill in the deepest depths between 75 and 100 

m of the water column was less slightly higher in the water column between 50 

and 75 m. In depths between 50 and 75 m krill median body length was 

significantly longer than in the surface waters above between 0 and 50 m. There 

was no significant difference between median body lengths of krill caught in the 

deepest depths between 75 and 100 and surface waters between 0 and 50 m. 
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Figure A.3 Night - time distribution of krill sizes. Median krill body length shown 

with 95 confidence intervals at sampling depths of 0- 50 m (krill measured = 70), 

50 - 75 m (krill measured =70) and 75 - 100 (krill measured = 60). Non -

overlapping v - shaped notches indicate significantly different values at the 95 % 

confidence level. 
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Body length showed a proportional relationship with wet body mass see Figure 

A.4. 

0.8 
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Figure A.4 Relationship between krill body length and krill wet mass. Confidence 

limits (dark grey lines) and prediction limits (broken line) at the 95 % confidence 

level for fitted s- curve regression model. (n = 389). 

The relationship between krill body length and wet mass was relatively strong 

fitting as- curve regression model (1 1• 386 = 93.13, P < 0.0001) were wet mass= 

exp (1.85816- 119.04/length). Therefore as krill body length increased wet mass 

increased proportionally. 

Although there was a difference in the body lengths of krill found at different 

depths of the water column there did not seem to be any relationship between krill 

body length and gut content (Fig. A.5). 

194 



-'7 

~ ·s; 
:c 
.!: - 0.38 c: 
Q) D 

E D 0> D ·a.. 0.28 D D 
(ij D D - D 
.9 D 

0> 0.18 D D 2: D D 
0 D 

c D D g. D .s 0 0 8 -----c 
c: 0.08 - B H ., 

0 

8 ~ 
0 D D 

8 0 
0 B 0 D 

.c: J) 0 D D 8 D D a u .. D 0 8 
D B 0 0 

~ -0.02 0 0 

.9 32 35 38 41 44 47 50 (/) 

Body length (mm) -
-c 
:~ 
-c 
c: - 0.21 c: 
Q) D 

E 0.17 D 
0> 8 ·a.. Q 

D 

(ij 0.13 0 8 -.9 D 
D D 

0> 0.09 D c 
2: D D g 

c 0 8 
D 0.05 c 

~ - - B <> 
c: If 0 D 

~ 0 
0 0.01 

D 0 8 u D 
D 6 B 0 

0 0 0 8 n Q b .c: D 

u D 

~ -0.03 
.9 39 41 43 45 47 49 51 (/) 

Body length (mm) 

-
-c ·s; 
:c 
.!: - 0.22 D c: 
Q) D 

E 0.18 0> 0 ·a.. 0 

(ij 0.14 
D - 0 D 
D D 

0 B -0> 0.1 0 D 
c 

:::1. --c: 
~ 0.06 
c: 
8 0.02 
.c: 0 

tl c 8 c u 0 8 
~ -0.02 
.9 30 34 38 42 46 50 (/) 

Body length (mm) 

Figure A.5 Stomach pigment content shown against krill body length at different 

depths of the water column (a = 0 - 50 m, b = 50 -75 m, c = 75 - 100 m) during 

the night. Fitted with linear regression model (black line) shown with confidence 

limits (dark grey line) and prediction limits (broken line). 
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During the night in depths between 0 and 50 m there was no significant 

relationship at the 95 % confidence level (,-2 1, 106 = 2.59, P > 0.05) between krill 

body length and stomach pigment content. Between depths of 50 and 75 m, again 

there was no statistically significant relationship at the 95 % confidence level (,-2 1. 

ss= 2.75, P > 0.05) between krill body length and stomach pigment content. In the 

deepest depths between 75 and 100 m there was also no statistically significant 

relationship at the 95 % confidence level (,-21, 57 = 4.35, P > 0.05) between krill 

body length and stomach pigment content. 

A.3.2 Physico - chemical water column characteristics and food 

type availability 

Differences in the physico - chemical characteristics were observed throughout 

the water column (see Figs A.6, A.7 and A.8). Both temperature and salinity 

generally increased with increasing depth of the water column on all three 

sampling occasions during February and March. In contrast chlorophyll a. 

increased with decreasing water column depth. Therefore as krill migrated to the 

surface layers of the water column they would have experienced a decrease in 

temperature and salinity but an increase in phytoplankton abundance. This 

increase in chlorophyll concentration became more marked at the start of March 

up to ea. 0.4 kg chlorophyll a. m -3
, see Fig. A.7) and slightly later in March (up to 

ea. 0.6 kg chlorophyll a. m -3
, see Fig A.8) with the onset of the spring bloom 

compared with early February (ea. 0.2 kg chlorophyll a. m -3
, see Fig. A.6). There 

did not, however to be a large change in the profile of temperature and salinity in 

the water column on the three sampling occasions. 
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Temperature (0 C) salinity Chlorophyll a. (kg m -3) 
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Figure A.6 Physico-chemical characteristics of the water column recorded using CTD. Temperature (a), salinity (b) and chlorophyll a. (c) 

shown with depth of the water column during the day of the 261
h February 2002. 
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Figure A.7 Physico-chemical characteristics of the water column recorded using CTD. Temperature (a), salinity (b) and chlorophyll a. (c) 

shown with depth of the water column during the day of the 5th March 2002. 
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Figure A8 Physico-chemical characteristics of the water column recorded using CTD. Temperature (a), salinity (b) and chlorophyll a. (c) 

shown with depth of the water column during the day of the 11th March 2002. 



Food type availability changes during the course of krill DVM due to differing 

abundance of food types at various depths of the water column. The figures that 

follow indicate the availability of phytoplankton and copepod food types at the 

depths encountered by krill during the day and during their nocturnal ascent to the 

surface layers of the water column. 

The increase in phytoplankton abundance with decreasing water column depth as 

shown by chlorophyll a. levels estimated from water samples taken from various 

depths throughout the water column as shown by Figure A.9 confirms the 

chlorophyll profile recorded by the CTD (see Figs A.6- A.8). Phytoplankton was 

mainly concentrated in the uppermost 20 m of the water column (up to ea. 2.5 IJg 

chlorophyll a. I - 1
) . Thus, as krill migrated into the surface layers of the water 

column a greater abundance of phytoplankton would have been available 

compared with at the deeper depths that they reside in during the day. 
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Figure A.9 Phytoplankton abundance (shown as chlorophyll a.) in shallow to deep 

depths of the water column during the day (open bars) and night (solid bars). 
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Copepods were found throughout the water column during both during the day and 

night, however, copepod species composition and density differed between day 

and night between and between sampling depths (Fig. A.10). 

-E -.r:. 
Q. 
Cl) 
c 0 

11) 
I 

11) 
....... 

11) 
....... 

0 
0 -

Day Night 

!liiiiiiiiiiillll 

275 220 165 110 55 0 55 110 165 220 275 

Copepod abundance (individ. m "
3

) 

Figure A.1 0 Copepod density during DVM. Density of various copepod species 

( • = Calanus spp. m1 = Metridia spp. ~ =Copepoda J ~ = Acartia sp. 

~ = Pseudocalanus sp. IIID = Oithona sp) shown in the same order at each depth 

during the day (shown left of central axis) and night (shown right of central axis). 

The greatest density of coepods was observed in the mid to upper parts of the 

water column both during the day and night (see Table A.1). Therefore copepods 

would have become more abundant as krill migrated to the upper parts of the 

water column at night. 
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Table A.1 Total copepod abundance and species compoistion with water column 

depth during the day and night. Species compostion ranked with most abundant 

species at that depth first. 

Da Ni ht 
Depth Total copepod Species Total cope pod Species 
(m) abundance 

(No. individ. m - 3
) 

compostion abundance 
(No. individ. m - 3

) 

compostion 

0-25 52 Oithona 1119 Oithona 
Copepoda J Copepoda J 
Pseudocalanus Metridia 

Pseudoca/anus 
Acartia 
Calanus 

25-50 71 Copepoda J 43 Metridia 
Oithona Pseudocalanus 
Pseudocalanus Copepoda J 
Metridia Oithona 

Calanus 

50-75 45 Metridia 31 Calanus 
Copepoda J Copepoda J 
Pseudocalanus Metridia 
Calanus Pseudocalanus 

Oithona 

75-100 25 Calanus 66 Calanus 
Metridia Copepoda J 
Copepoda J Metridia 

Pseudocalanus 
Oithona 

There was also a difference, both during the day and night, between the species 

compostion of the upper parts of the water column ( 0- 50 m depth) and deeper 

parts of the water column (50 - 100 m depth). This difference between species 

compostion between deeper parts the water column and surface waters was 

mainly associated with coepod size, for example larger copepod species were 

found in deeper depths and smaller copepod species found at shallower depths. 

During the day small copepod species such as Oithona, and copepoda J were 

most abundant in shallower depths of 0 - 50 m (between 0 - 25 m Oithona = 24 
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individ. m - 3
, Copepoda J = 24 individ. m - 3 and between 25- 50 m Oithona = 17 

individ. m- 3
, Copepoda J = 32 individ. m- 3

) compared with deepr depths 50-

1 00 m where Oithona appeared to be absent and the density of copepoda J 

became less with increasing depth (copepoda J density = 13 individ. m - 3 

between 50 - 75 m and only 2 individ. m - 3 75 - 100 m). Pseudocalanus 

appeared to be most abundant int the middle of the water column during the day 

with densities between 13 and 8 individ. m - 3 between depths of 75 and 25 m. 

Larger copepod species such as Calanus spp. and Metridia spp. were most 

abundant between 1 00 and 50 m in the water column with densities of between 5 

and 11 individ. m - 3 for Ca/anus spp. and 10 and 18 individ. m - 3 for Metridia spp. 

compared with densities of< 1 individ. m- 3 (Ca/anus spp) and < 7 individ. m- 3 

(Metridia spp.). Similarly with during the day at night smaller copepod species 

dominated the copepod assemblage of the surface waters with Oithona (449 

individ. m - 3
), Pseudocalanus (110 individ. m - 3

), Acartia (10 individ. m - 3
) and 

Copepoda J (373 individ. m - 3
) all found in their greatest densities between 0 and 

25 m depth. Metridia were also present in high numbers (169 individ. m - 3
) 

between 0 and 25 m. All species at night seemed to be distributed throughout the 

water column with even larger copepod species such as Ca/anus recorded in 

shallow depths and smaller species such as Oithona found in deeper depths (see 

Table A.1). Therefore at night there was not such as great contrast in species 

composition between shallow and deeper depths although there was a great 

difference between copeopd abundance between shallow and deeper depths with 

copepod densities between 25 and 0 m more than ea. 20 times those between 50 

and 100 m. 
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A.3.3 Herbivorous feeding 

As krill migrated to the shallow depth of the water column a higher density of 

phytoplankton food types became available to utilize compared with the low 

density of phytoplankton in the deeper depths that krill resided in during the day. 

The Figure A.11 shows how stomach chlorophyll a. content changed throughout 

krill DVM. 

D2 ~ + 

D2 ~ + 

D2 • D3 • D3 + + 

D3 -11}-++ + 

N1 ~ 
N1 ~ + + + 

N2 -fX3- + 

N2 DO----
N3 ~ + 

N3 I:IeJ--. 

-0.03 0.17 0.37 0.57 0.77 
Stomach content (J.Jg chlorophyll a. individ·-1> 

Figure A.11 Krill feeding during the day (D) and proceeding night (N) of the 11/1 ih 
March 2002 at shallow to deep depths (1 = 0 - 50 m, 2 = 50 - 75 m, 3 = 75 -

100m). Median chlorophyll a. shown for each depth with 95 % confidence 

intervals (n = 29 to 40 for each sample). Non - overlapping v - shaped notches 

indicate significantly different values at the 95 % confidence level. 

Krill stomach chlorophyll a. content was greatest during the night than compared 

with during the day (see Fig. A.11 ). A Kruskal - Wallis test performed followed by 

a box plot indicated that there was a significant difference amongst the medians at 

the 95% confidence level (T- statistic = 174.832, P < 0.05). During the day krill 

had low densities of phytoplankton available to utilize and a correspondingly low 

stomach chlorophyll a. content. At night as krill migrated to the surface layers a 

greater abundance of phytoplankton would have become available and stomach 

chlorophyll a. content was much greater than during the day. Stomach chlorophyll 
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a. content at night was, however, very variable with values ranging from as low as 

0.004 up to 2.82 1-1g chlorophyll a. individ. - 1
. 

Leading up to the spring bloom krill were sampled only during the day from the 

deepest 50 m of the water column. No krill were caught in the upper 50 m of the 

water column on any of the sampling occasions during February and March 2002. 

Stomach chlorophyll contents from krill caught in tows taken from the same depth 

were variable, and in some cases significantly different from those obtained for 

tows taken at the same depth. For example, a Kruskal- Wallis tests indicated that 

there was a significant difference amongst median stomach content for krill 

sampled during the day on February the 26th (T- statistic= 16.5068, P < 0.001) 

and also on the 5th March (T - statistic = 25.2448, P < 0.001 ). Although stomach 

chlorophyll content was variable between tows, all daytime stomach chlorophyll 

contents values obtained were extremely low (Figs A.11 , A.12 and A.13). In 

particular all median stomach chlorophyll values on the night of the 11th March 

were greater than 0.03 and up to 0.16 1-1g chlorophyll a. individ. -1 whereas daytime 

stomach chlorophyll content values on the 11th of March did not exceed 0.0035 1-Jg 

chlorophyll a. individ. - 1
. 

Median stomach content values at any depth during the day of the 26th February 

did not exceed 0.003 1-Jg chlorophyll a. individ. -1
. Similarly during the day of 5th 

March median stomach content values did not exceed 0.003 1-Jg chlorophyll a. 

individ. - 1
. These low stomach chlorophyll contents were similar to daytime 

stomach content values during the spring bloom period sampled on the 111
h of 

March when daytime stomach pigment content values did not exceed 0.0035 1-Jg 

chlorophyll a. individ. -1
. Therefore even when chlorophyll a. values and therefore 
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phytoplankton abundance was greater in the surface layers daytime stomach 

chlorophyll levels were still extremely low 

02 ~' 
03 [[}' .. 

03 {} 0 .. • • 

-0.001 0.002 0.005 0.008 0.011 0.014 

Stomach content (!Jg chlorophyll a. individ. ·1) 

Figure A.12 Krill stomach content (n = 25 for each sample) during the day (D) on 

the 26th February 2002 at deeper depths of the water column (2 = 50 - 75 m, 3 = 

75 - 1 OOm). Median chlorophyll a. shown for each depth with 95 % confidence 

intervals. Non - overlapping v - shaped notches indicate significantly different 

values at the 95 % confidence level. 
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Figure A.13 Krill stomach content (n = 10 -15 for each sample) during the day (D) 

on the 5th March 2002 at deeper depths of the water column (2 =50- 75 m, 3 = 

75- 100m). Median chlorophyll a. shown for each depth with 95 % confidence 

intervals. Non - overlapping v - shaped notches indicate significantly different 

values at the 95 % confidence level. 

Krill which were starved for 18 h in filtered sea water under laboratory conditions 

had lower stomach chlorophyll levels than daytime caught krill. The median 

stomach chlorophyll value for starved krill (n = 1 0) was 0.0002 j.Jg chlorophyll a. 

individ. - 1
. 

A.3.4 Krill density and feeding rates 

The density of krill in this particular study appeared to have an affect on the 

clearance and ingestion rates per bottle. As shown by Figures A.14 and A.15 

clearance and ingestion rates did not increase directly proportionally with and 

increase in krill density. In fact although as krill density increased clearance and 

ingestion rates per bottle increased as the krill density reached 5 or 7 individuals 

per bottle the increase was less marked than at lower krill densities. 
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Figure A.14 The effect of krill density (n = 4) on mean clearance rate for each krill 

density showing 95 % confidence intervals. 

The effect on individual krill clearance rates was not extrapolated from the data 

because comparisons between krill density data would then be confounded 

because it cannot be assumed that clearance rates of individuals in each bottle 

are similar. As can be seen from clearance and ingestion rates where one krill is 

present the 95 % confidence intervals indicate that the mean clearance rate is 

variable due to the variation between individuals. Therefore clearance and 

ingestion rates per bottle and not individual krill rates were used to examine the 

effect of krill density clearance or ingestion rate. 

ANOVA performed indicated that there was a significant difference amongst mean 

clearance rates at the 95% confidence level (F3011 = 5.63, P < 0.02). Fishers least 

significant difference test suggested that the difference was between krill densities 

of 1 and 5 and 1 and 7. 
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Figure A.15 The effect of krill density (n = 4) on mean ingestion rates for each krill 

density showing 95 % confidence intervals. 

ANOVA performed using STATGRAPHICS plus 5.0 (1994 - 2000, statistical 

Graphics Corp) indicated that there was a significant difference amongst mean 

ingestion rates at the 95% confidence level (F3• 11 = 5.98, P < 0.02). Fishers least 

significant difference test suggested that the difference was between krill densities 

of 1 and 5 and 1 and 7. 
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A.3.5 Gut evacuation rates 

Gut evacuation studies were characterised by extremely variable results. The 

relationship between stomach chlorophyll content and time was negatively 

correlated (intercept = 0.011 , slope = - 0.000074) but weak (r-2 1, 48 = 9.21, P < 

0.05) when krill were given T. weissflogii as a phytoplankton food type (Fig. A.16). 
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Figure A.16 Gut evacuation of M. norvegica (n = 5 for each time point) when given 

T. weissflogii phytoplankton food type. Line of best fit shown (stomach content = 

0.0111992-0.0000740214 *time). 

When charcoal was added to try and maintain passage of gut content and prevent 

the retention of material in the gut there was no relationship (r-2 1. 43 = 0.24, P > 

0.05) between gut chlorophyll content and time (Fig. A.17). 
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Figure A.17 Gut evacuation of M. norvegica (n = 5 for each time point) when given 

T. weissflogii phytoplankton food type and then charcoal to maintain gut 

evacuation. 

Gut evacuation studies using field caught krill were also unsuccessful due to the 

variability of individual krill gut content at time zero. 

A.3.6 Passive or active feeders? 

Studies which prevented the movement of krill by tethering krill were unsuccessful 

as most of the krill did not survive the duration of the experiment. Again, krill did 

not survive the removal of parts of the feeding basket therefore investigating 

feeding basket function by removal of parts of the basket was not successful. 
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A.4 DISCUSSION 

A.4.1 Krill DVM and food type availability 

Krill were concentrated in deeper depths of the water column during the day and 

distributed throughout the water column and night therefore exhibiting a strong diel 

vertical migration, similar to that recorded by Liljebladh and Thommason (2001) 

and Tarling et al. (1998). Indeed, krill may have been concentrated at even 

deeper depths during the day and this deeper daytime residence may explain the 

variability between repeated tows taken at the deeper depth during the day and 

also the overall lower daytime density of krill compared with at night. The fjord 

was ea. 115 m deep therefore krill may have been residing at depths greater than 

100 m. lt was, however, not possible to sample this deepest 15 of the water 

column because of the possibility that the trawl may have collided with the 

sediment. 

Significantly smaller body length krill appeared to reside higher in the water 

column during the day than longer body length individuals. Again at night 

significantly different body length krill were found at different depths of the water 

column for example significantly longer body length krill were found between 50 

and 75 m depths compared with between 0 and 50 m and 100 an 75 m depths. 

This difference in body length with depth suggests an asynchronous migration 

pattern for krill of various body lengths. Whether this difference in distribution is 

also related to krill sex requires further investigation. 

Krill appeared to reside in deeper water column depths during the day on all 

sampling occasions. The low gut chlorophyll content of individuals collected 

during the day on these sampling occasions suggests that krill did not go into 

surface depths to feed during the day even as the spring bloom became more 

prominent and phytoplankton levels became greater in the surface layers of the 
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water column. When sampled at night krill appeared to have migrated into colder, 

shallow waters. During this ascent to the surface layers of the water column krill 

would have experienced a slight decrease in salinity. Although both this decrease 

in salinity and temperature would have become much greater compared with the 

conditions in deeper water if krill did migrate into the upper 25 m of the water 

column. Due to the depths sampled it is impossible to determine whether krill did 

migrate into the upper 25 m of the water column as one trawl was taken for the 

depths between 0 and 50 m. In order to determine whether krill were present in 

the upper 25 m of the water column at night krill trawls would need to be taken 

both from smaller depth intervals e.g. 0 - 25 m. As copepods and phytoplankton 

were most abundant in this upper 25 m of the water column krill would have to 

experience greater changes in temperature and salinity compared with those they 

experience during the day at deeper depths in order to utilize the more abundant 

food sources of the surface layers of the water column. The effect of temperature 

and salinity on krill were not the focus of this thesis and therefore although 

interesting it was more important to pursue whether krill do enter the surface water 

than the effect of these physico - chemical characteristics on the krill. 

As krill appeared to remain in the deepest 50 m of the water column during the day 

the higher phytoplankton abundance in the surface layer of the water column 

would have been unavailable to krill to utilize during the day. Also, mainly larger 

copepod species such as Calanus spp. and Metridia spp. would have been 

available to krill during the day and relatively low densities of smaller copepod 

species compared with the higher densities of smaller copepods in the surface 

water. Therefore there was a difference in the 'size' of copepod species available 

for krill to utilize during the day compared with at night. Consequently 

investigations concentrated on the effect of food types available during the day 

compared with those available at night on feeding rates. 
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A.4.2 Herbivorous feeding 

Night - time caught krill had significantly higher stomach chlorophyll levels than 

compared with the extremely low values obtained for day - caught krill on any 

sampling occasion. Therefore krill appeared to feed only herbivorously during 

their nocturnal ascent to the surface layer of the water column. These lower 

stomach chlorophyll values during the day support the conclusions of Lass et al. 

(2001) that krill do not feed during the day. Although this change in herbivorous 

feeding activity may, as Simard (1980) suggested, be that krill switch to 

herbivorous feeding at night, it is unlikely as Lass et al. (2001) have found that krill 

also have mandibles in their stomach content at night. Krill starved for 18 hours 

had lower stomach chlorophyll levels than daytime caught krill. Lower values of 

starved krill does not necessarily suggest that krill were feeding during the day on 

phytoplankton. The 18 h period that krill were starved for in the laboratory is a 

longer time period than krill caught in the day would have potentially been starved 

for from the previous night feeding. Additionally, the krill starved in the laboratory 

probably had lower stomach chlorophyll values at the start of the 18 h period than 

krill which had been feeding during a 'night' period in the field. On no occasion 

even when krill were fed a natural surface water food type in the laboratory were 

stomach chlorophyll values recorded as high as those from field caught krill. 

Therefore for the same reasons as discussed for gut evacuation experiments it 

was not possible to gain a realistic stomach chlorophyll content value for starved 

krill either in the laboratory or from field caught krill. For this reason feeding rate 

studies in the laboratory in this study are not used to extrapolate to krill in field 

conditions but as a means to explaining feeding feeding behaviour under different 

feeding conditions. Variability in median stomach chlorophyll content between 

tows during the day may have also been due to different sampling times during 
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DVM and therefore differing length 'starvation' periods. For example krill captured 

in tows taken later in the day may have had a longer 'starvation' period and 

therefore lower stomach chlorophyll content. 

As krill appeared to feed only during their nocturnal ascent to the surface layers 

large variability within tows of stomach chlorophyll content suggests asynchronous 

migration by krill. As there was a significant difference in krill body length at 

different depths of the water column again further investigation considering krill 

sex as a possible variable in DVM need to be considered in future studies. 

There was either no relationship or a weak relationship between krill body length 

and stomach chlorophyll content of krill caught at various depths of the water 

column. This lack of relationship may be explained by the great variation between 

individuals and therefore difficulty in teasing out a relationship between body 

length and stomach pigment content form the background noise. That is, 

asynchronous migrations would lead to variability between individual stomach 

chlorophyll content. Therefore, establishing whether there is a relationship 

between krill body size needs to be investigated under controlled conditions i.e. in 

the laboratory. Performing feeding studies in the laboratory with different body 

length krill may further explain this relationship between krill body length and 

feeding. 

A.4.3 In situ ingestion rates 

Gut evacuation studies were on the whole unsuccessful. Many of the gut 

evacuation studies attempted were based on using a food type which 

Meganyctiphanes norvegica from Gullmarsfjorden was thought to consume (J. I. 

Spicer, Pers. Comm). Feeding experiments (see Chapter 2), however, suggested 

that M. norvegica did not feed upon the phytoplankton T. weissflogii . These gut 

evacuation experiments confirmed the results of feeding experiments of Chapter 2 
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many experimental modifications such as changing the density of T. weissflogii, 

changing the incubation time of krill with the food type all suggested that M. 

norvegica did not feed upon this food type. The main problem concerning these 

gut evacuation studies therefore appeared to be offering krill a food type which not 

only would they consume but that they would feed upon in a sufficient density so 

that there would be a great change in stomach pigment levels with gut evacuation. 

Therefore gut evacuation studies were performed on night - time field caught krill. 

Using field caught krill, however, also created problems as the variability between 

individual krill was too great to observe any relationship between gut content and 

time and therefore estimate gut clearance rates. Although this variability may 

have been overcome by using greater replicates, it was concluded that with the 

great amount of variables potentially affecting gut clearance rates of krill in the 

field, e.g. food density that in the limited time available carrying out more gut 

clearance studies was not pertinent to the investigations of this thesis. That for the 

gut evacuation studies to be used to calculate ingestion rates of field caught krill 

information would be required on the effect of food density on gut evacuation rates 

and the effect of mixed 'natural' diets on gut evacuation rates. Given that it is 

evident that krill can retain gut contents for up to 7 d (Antezana et al., 1982) when 

starved it is likely that variables such as food density affect gut passage time of 

given food types. Therefore gut evacuation rate studies were not pursued as 

investigating the effect of food density of various food types on gut evacuation 

rates was not feasible in the time scale of this thesis and not of direct 

consequence to addressing the questions of this thesis. 

A.4.4 Krill density 

The effect of increasing krill density on clearance and ingestion rates was not 

directly proportional. Increasing the number of krill did not lead to a directly 
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proportional increase in clearance and ingestion rates. Although at higher krill 

densities clearance rate was significantly greater than compared with lower krill if 

individual krill rates in these larger group sizes could be determined they would be 

lower than for individual krill. Although it has been suggested that krill swarming 

actually increases feeding efficiency the numbers of krill used in this study are low 

compared with swarms of krill and therefore as Ritz (2000) suggested krill may not 

behave the same way in small groups in the laboratory as they do in large swarms 

in the field. Consequently, the problems of creating 'swarm' behaviour in the 

laboratory or at least using large groups of krill in the laboratory was not possible 

therefore because of the lack of relevance these krill density studies were not 

pursued any further. 
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