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Precision Control of a Sensorless Brushless Direct Current Motor System 
Matthew John Knight 

Abstract 
Sensorless control strategies were first suggested well over a decade ago with the aim of 

reducing the size, weight and unit cost of electrically actuated servo systems. The 

resulting algorithms have been successfully applied to the induction and synchronous 

motor families in applications where control of annature speeds above approximately one 

hundred revolutions per minute is desired. However, sensorless position control remains 

problematic. 

This thesis provides an in depth investigation into sensorless motor control strategies for 

lrigh precision motion control applications. Specifically, methods of aclrieving control of 

position and very low speed thresholds are investigated. The developed grey box 

identification techniques are shown to perform better than their traditional white or black 

box counterparts. Further, fuzzy model based sliding mode control is implemented and 

results demonstrate its improved robustness to certain classes of disturbance. Attempts to 

reject uncertainty witlrin the developed models using the sliding mode are discussed. 

Novel controllers, wlrich enhance the performance of the sliding mode are presented. 

Finally, algorithms that achieve control without a primary feedback sensor are 

successfully demonstrated. Sensorless position control is aclrieved with resolutions 

equivalent to those of existing stepper motor technology. The successful control of 

annature speeds below sixty revolutions per minute is achieved and problems typically 

associated with motor starting are circumvented. 
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Electrically generated torque 

Load torque 

Exogenous load torque 

Electromechanical time constant 

Power converter gain 

Torque constant 

Current sensor gain 

Torque controller gain 

Torque controller time constant 

Magnetic coenergy 

Torque angle increment 

Advance angle 

Back electromotive force 

Observer gain sequence 

Sliding manifold 

Bandwidth 

Applied electrical power 

Mechanical output power 

Power loss 

Total encoder count 
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k 

n 

COj 

s 

Current sample 

Speed 

Ideal no load angular velocity 

Laplace operator 

Symbols for Chapter 4 

cp Regression vector 

B Regressions 

z Data set 

s(t,B) Prediction error 

VN Perfotinance measure 

G Gradient 

H Hessian 

c Number of clusters 

V Cluster prototype 

JL Step size 

1] Search direction 

w Network weights 

N Number of data in the training sets 

F Activation function 

r Number of regressors 

')... Eigenvalue 

~ Eigenvector 

<l> Shortest eigenvector 

sif Cluster compatibility criteria 

X Matrix of regression vectors 

y Vector of regressands 

u Partition matrix 

r Normalised degree of fulfilment 
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D 

F 

Distance 

Cluster Covariance Matrices 

Number of searches across minimum 

Termination criterion 

Maximum number of training epochs 
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Symbols for Chapters 5 and 6 

s 
M 

c 

~(t,y,u) 

T,. 

SSE 

K 

Sliding manifold 

Constant design parameter 

Constant design parameter 

Constant design parameter 

Constant design parameter 

Uncertainty and variation within the plant parameters 

Uncertainty and variation within the control interface 

Switching function 

Orthogonal Transform Matrix 

Submatrix resulting from partitioning B into the regular form 

Submatrices of A resulting from partitioning into the regular form 

Diagonal, Stable Design Matrix 

Stable design matrix 

Bounded matched uncertainty 

Error 

Regression vector 

Time taken to reach sliding manifold 

Rise time 

Settling time 

Sum of Squares Error 

Condition number 
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B 

J 

F 

D 

IL 

~ 

f 

Viscous friction 

Inertia 

Covariance matrix 

Distance Matrix 

Eigen value 

Eigen vector 

Electrical angular position 

Mechanical angular position 

uncertain, time-varying, unknown bounded term 

Radius ofboundary layer 

Motor stall torque 

Vector ofPolynomials 

Vector of Polynomials 

Offset 
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Symbols for Chapter 7 

H 

t1H 

G 

H 

J 

k 

Plant sample frequency 

Model sample frequency 

Time taken to reach next Hall effect device status change 

Least squares estimate of tl.T sw 

Position 

Model predicted position 

Velocity 

Position indicated by Hall effect devices 

Magnitude of angle associated with Hall effect device status change 

Discrete time state transition matrix 

Discrete time driving matrix 

Measurennentjacobian 

Sample number 
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& Measurement residual 

~ Single winding holding torque 

hz Double winding holding torque 

w Angle between motor phases 

K Kalman gain 

p Covariance matrix 

Abbreviations and Acronyms 

ARMA: 
ARMAX : 
ARX: 
BJ : 
BL: 
BLAC: 
BLDC : 
DC: 
DIRAPP: 
DISO: 
DSCAPP: 
EKF : 
EMF: 
ep: 
FCM: 
FCARX: 
FIR : 
FSMC : 
FMBSSMC: 
FRESPBE: 
GBM: 
GK: 
HED : 
ISMC : 
KF: 
KFSIDA: 

KFSIFM: 

LS: 
mmf : 
MSE : 
NARX: 

Autoregressive Moving Average 
Autoregressive Moving Average with exogenous input 
Autoregressive Moving Average with exogenous input 
Box Jenkins model structure 
Boundary Layer 
Brushless A. C. 
Brushless DC 
Direct Current 
Direct Approach Algorithm 
Dual input single output 
Discrete Approximations Approach 
Extended Kalman Filter 
Electro Motive Force 
Encoder Pulses 
Fuzzy C-Means 
Fuzzy Clustered ARX 
Finite Impulse Response 
FuzzySMC 
Fuzzy Model Based Sensorless SMC 
Fuzzy model trained on PBEQU residuals 
Grey Box Model 
Gustafson Kessel 
Hall Effect Device 
Integral SMC 
Kalman Filter 
Kalman Filter with Sterling Interpolation using Direct Approach 
Algorithm and the Fuzzy model for Observation Streams 
Kalman Filter with Sterling Interpolation using the Fuzzy model 
and Hall effect data for Observation Streams 
Least Squares 
Magneto motive force 
Minimum Squared Error 
Nonlinear ARX 
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NNARX : 
N.m: 
OE: 
P: 
PBEQU: 
PBEGD: 
PBEREG: 
PC: 
PD : 
PEC: 
PEM: 
PID: 
PMSM: 
PWM : 
RLS : 
RMS: 
RMSE: 
RPEM: 
RPLR: 
RPM : 
SISO : 
SMC : 
VAF : 
w.p.: 
w.p.1: 
w.r.t. : 

Neural Network ARX 
Newton Meter 
Output Error 
Proportional 
Power Balance Equations 
PBEQU trained on gradient descent 
PBE used as a regressor in a fuzzy model 
Phase Coordinate 
Proportional plus Derivative 
Power Electronic Converter 
Prediction Error Method 
Proportional plus Integral plus Derivative 
Permanent Magnet Synchronous Motor 
Pulse Width Modulation 
Recursive Least Squares 
Root Mean Squared 
Root Means Squared Error 
Recursive PEM 
Recursive PLR 
Revolutions per Minute 
Single Input Single Output 
Sliding Mode Control 
Variance Accounted For 
with probability 
with probability 1 
with respect to 
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Chapter 1 

Introduction 

Micro-actuation has relevance in many highly technological areas. Such areas include 

medical procedures, computer sciences, fibre-optics and the related photonics field. As 

each of these areas is drawn inexorably toward the miniature, so the requirement for 

improved accuracy, repeatability and resolution in manipulation increases. At the same 

time, greater impetus has been placed on the reduction of size, weight and cost of the 

manipulation. 

Precision motion control is defined within this work to be the control of the position of a 

device to within microns, over a minimum range of tens of millimetres. This has been 

traditionally achieved through the use of a controller, a motor, a threaded shaft and a 

feedback device. There are naturally variations around this theme, for instance linear 

motors are beginning to enjoy significant application because they circumvent the 

requirement for a threaded shaft (Coelingh et a/, 1998). 

In recent times permanent magnet motors have come to the fore as attractive devices for 

actuation. The maturation of these permanent magnet motors has been driven mainly by 

their enhanced performance characteristics over the brushed or stepping alternatives 

(Rahman and Zhou (1996), Ellis (1996), Mighdoll (1996), Sen (1990)), the ever 

improving performance of magnetic materials available and the decreasing cost of high 

speed electronic components (Rahman and Zhou, 1996). One of the major drawbacks 

associated with the permanent magnet machine, as viewed in many areas of technology, 

is the need for sensors in rotor position feedback. These sensors are required for efficient 
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commutation of the motor; however they effect the system in the same manner as the 

addition of a position feedback device (Ogasawara and Ak:agi (1991), Iizuka et al (1985), 

Matsui (1996)). "Sensorless" control of the motor has therefore been the subject of much 

research over recent years. The term "Sensorless" in this case is a misnomer; parametric 

variations within the motor itself have been shown to yield armature position (Matsui and 

Shigyo (1992), Wu and Slemon (1991), Corley and Lorenz (1998)); in this sense the 

motor becomes not only the actuator but also the sensor. 

The typical precision motion control system, as described above may be improved in one 

of two ways. 

1) Performance - In terms ofrepeatability, accuracy and resolution. 

2) Cost - In terms of size, assembly, weight and financial. 

There is significant research effort dedicated to the first of these approaches, and 

nanometer resolution has been achieved, e.g. Awabdy et al (1998). In addition devices 

may be found commercially from companies such as Newport Motion Controls, Melles 

Griot and SDS Queens gate to achieve similar performance. 

The second of these approaches may in the limit be considered to fall into the area of the 

so called 'nano-technologies', if size alone is considered. There are distinct advantages 

to be gained from also minimising the cost to the system in terms of the remaining 

categories. In 1983, in the sequel to his famous speech from 1960, 'There's plenty of 

room at the bottom' (Feynman, 1992), Feynman asks how to make 'precise things from 

imprecise tools' (Feynman, 1993). Taken within context, he was of course discussing the 

possibility of producing miniscule devices from the technology available at the time. 

However, the question may be paraphrased 'How do you make precise devices from 
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imprecise measurements? ', and in so doing an area of significance to all precision motion 

control applications is revealed. 

It will be shown within Chapter 2 that .research to date within the field of sensorless drive 

control has focused on the accurate speed control of the motor armature. Since, when the 

rotor position is known, efficient commutation of the motor may be achieved without the 

presence of sensors. This rotor position is more easily estimated at higher speeds. 

Approaches such as observers and Kalman filters have been prevalent within the 

literature (Tomita et al (1998), Dhaouadi et al (1991), Bierke et al (1997), Kettle et al 

(1998), Navrapescu and Craciunescu (1997)), since often direct measurement of motor 

parameters is not achievable (Matsui and Shigyo, 1992). The fundamental problem with 

both has been the dependence upon accurate a priori knowledge of motor parameters 

(Stronach and Vas, (1998)). Sliding mode has been also applied to sensorless control 

(Utkin (1993), Furuhashi et al (1992)), the inherent problems associated with sliding 

mode, i.e. chattering and high gain have posed problems in application (Ishigame et al 

(1993), Suyitno et al (1993)). 

The objective of this work is therefore to define an algorithm that will reliably provide an 

indication of armature position at very low or zero speed. The algorithm should not rely 

on an explicit actuator model. In addition, the algorithm must be capable of producing 

rotational measurement accuracies equal to that of equivalent technology without 

introducing sensors which do not already exist within the system. 

The objective of this work will be achieved by fulfilling the following aims 
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- A thorough literature review of existing methods for sensorless control 

will be undertaken, in order to assess the applicability of existing methods 

to low and zero speed sensorless control. 

- An experimental test system will be developed to provide analogy to 

systems commonly encountered in industry. This system will be capable 

of data capture for subsequent analysis. 

- Modelling and identification of the system will be undertaken, the 

performance of the techniques assessed according to a defined set of 

measures. 

- Sliding mode control will be investigated because of its invariance 

property; methods of incorporating the most accurate models will be 

developed. 

- A variety of methods for estimating or controlling motor kinematic 

parameters will be developed. 

1.1 Thesis Organisation 

Chapter 2: Motion Control Systems begins with an introduction to permanent magnet 

motors, and their application to small drive systems. Several members of the permanent 

magnet motor family, and their performances are discussed. 

Sensorless control methods for the synchronous motor, invented a little under two 

decades ago were made possible by the advent of high speed, low cost electronics. The 

Chapter continues with an exposition of the techniques which have been successfully 

applied within the technology over that time. It is shown that in general, sensorless 

· control methodologies fit into one of three categories, and that with the exception of a 
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few algorithms have dealt with accurate speed control, but not position control at low 

speed or standstill. 

Chapter 3: Experimental Test Rig Modelling and Control then moves on to discuss the 

development of a test rig capable of precision motion control. Aspects of it' s mechanical, 

electrical and software design are considered where departures from the industry 

standards are made. These departures are made in order to ensure full state feedback 

from the system. 

The system is then modelled from first principles and the models, once developed, are 

compared to assess their accuracy and viability within a controller operating in real time. 

Controllers based on the selected model are then developed and implemented on the 

experimental system. 

Chapter 4: System Identification considers the use of techniques other than those in 

Chapter 3, to describe system dynamics. The approaches of Chapter 3 are classically 

defined as being modelling techniques, whereas the approaches described in Chapter 4 

move into the science of system identification. Within this Chapter, models are first 

developed based on the linear difference equation. Following on, advanced nonlinear 

identification techniques, specifically those based on artificial neural networks and fuzzy 

clustering, are used to obtain high fidelity models of the system. Finally within this 

Chapter, methods to incorporate known information about the system are discussed and 

implemented. The approach, which is a hybrid of the modelling strategy (white-box) and 

the nonlinear identification strategies (black-box), is referred to as the grey-box approach 

and is demonstrably better than either of the alternative approaches. 
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Chapter 5: Sliding Mode Control - Classical Approaches serves to introduce the 

robust control strategy referred to within the literature as the sliding mode. It is discussed 

within the text that this controller is able to force a system state to converge to a manifold 

within the state space, and from thereafter to remain on it. This is an extremely attractive 

prospect, since it results in a controller that demonstrates reduced order performance and 

complete invariance to parametric error within the plant model and to a certain class of 

disturbance. This Chapter provides the theory and implementations of sliding mode 

controllers for use with the experimental test rig. 

Chapter 6: Sliding Mode Control- Advanced Approaches continues with the theme of 

robust control. It was shown in Chapter 5 that whilst the sliding mode maintains many 

attractive properties, there are also some decidedly unattractive characteristics. The 

primary drawback in the implementation is a phenomenon referred to as control chatter. 

A second drawback is that the controllers implemented in Chapter 5 are only invariant to 

a certain class of disturbance. The work presented in this Chapter has two main threads. 

The first is the use of an integral action to enhance the robustness of the controller. Two 

novel controllers are suggested. The second part of the Chapter considers the use of a 

discontinuous control action within observers and model following controllers to 

incorporate robustness and convergence properties. 

Chapter 7: Precision Sensorless Motion Control combines all of the previous work to 

produce sensorless control algorithms which meet the specification of the objective 

described earlier within this Chapter. The problem is initially defined and the 

performance of equivalent technology is also described. Algorithms based on optimal 

estimates of position are then developed. A fundamentally different approach is 
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subsequently adopted using the sliding mode controllers of Chapter 6. Results are 

presented. 

Finally this work is concluded in Chapter 8 with a discussion 'and recommendations for 

future work. 

1.2 Motivations and Contributions of this Work 

The rapid evolution of motor technology, and the subsequent research activity has led to a 

proliferation of motor models and approaches to the estimation of model performance. 

Upon inspection of the literature, however, there is very little dedicated to the 

identification of a synchronous motor with a time variant load. Further, the emergent 

grey-box modelling techniques have yet to become established as methods for achieving 

high performance system models. The first motivation of this work was therefore to 

provide a study of the methods applicable to the identification of a brushless D.C. motor 

servomechanism. In addition, because the system is understood to an extent, methods 

were sought to incorporate this knowledge into the identified models, and thus adhere to 

the fundamental tenet within the field of system identification that only the phenomena 

which are not understood should be modelled. The resulting study, embodied in Chapter 

4 is believed to be an original contribution to the study of nonlinear systems 

identification. 

Having learned from the experience of modelling and identification that no model is 

perfect, but some are useful, it was a natural progression to consider the invariance 

property of the sliding mode. Despite tremendous research effort in this field, some 

difficulties still exist. Unknown nonlinear functions as disturbance have not been 
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considered and the existence of the chatter phenomenon frequently leads to a controller 

that can only guarantee tracking accuracy to within a certain vicinity of the set point, and 

certain classes of disturbance are not formally considered within the theory. It is an 

appealing prospect to use the stochastically optimal models of the system from chapter 4 

in the adaptation of the deterministic controller parameters, such that the performance of 

the controller is enhanced. This is precisely what is achieved with the fuzzy model based 

sliding mode controllers discussed in Chapters 6 and 7. There is no doubt that these 

enhanced controllers perform better than the classical sliding mode controllers, yet 

maintain their advantages in implementation. These controllers therefore constitute a 

contribution to the field of adaptive robust control. 

The original motivation of this work was to produce a sensorless precision motion control 

algorithm capable of operation at low speed and standstill of the armature. The majority 

of sensorless control methods within the literature to date have considered the accurate 

control of the armature at high to medium speed. The application of the fuzzy model 

based controllers to this problem, and the successful control of kinematic parameters 

associated with the armature, at low and zero speed, is therefore the last of the significant 

contributions made by this work. 
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Chapter 2 

Motion Control Systems 

2.1 Introduction 

Motion Control refers to the control of kinematic parameters such as torque, velocity or 

position. This Chapter is dedicated to reviewing those technologies which serve to 

provide the vital interface between electrical and mechanical engineering. This interface 

is found wherever mechanical motion is controlled by electronics and pervades a vast 

range of products. Consideration of this interface reveals a large and important area of 

technology, to which motor drives are fundamental. In Japan the term 'Mechatronics' 

has been coined to describe these technologies, and usually carries the connotation of 

small drives. This term is now well established in the West, but the term 'motion control 

system' is often used in its stead to describe small controlled drives such as position or 

velocity servomechanisms. Motion control systems are in general characterised by 

precision, low transient response times, immunity to parameter variations, torque and 

inertia perturbations. 

Two important reasons for the research activity within this area, and for the increasing 

technical variety of the drive systems to be found are: 

I) Increasing use of computers and electronics to control mechanical motion: 

The trend towards automation demands new devices with a wide variety of 

physical and control characteristics. 
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2) New 'enabling technology' in power semiconductors and integrated 

circuits, leading to the development of nonclassical motors such as the 

brush less D.C. (BLOC) motors and steppers in a wide variety of designs. 

The scope of the technologies encompassed in the 'motion control system' is far too 

broad to be comprehensively discussed within this work. Instead, the reader is referred to 

the many excellent introductory texts on the subject (e.g. Bolton, 1999), and this Chapter 

concentrates specifically on the technology which will be subsequently applied in later 

Chapters. It begins with a discussion of drives in general and describes the primary 

reasons for the selection of one drive over another. The salient features of the selected 

drive are then discussed. Finally within this Chapter, sensorless control methodologies 

are discussed with specific reference to the brushless motor. 

2.2 Adjustable Speed Drives 

Three common reasons for preferring an adjustable speed drive over a fixed speed motor 

in general are: 

I) Energy saving. 

2) Velocity or position control. 

3) Amelioration of transient performance. 

Whilst for the smaller drives the singular most important of these is the velocity or 

position control, the other two factors have been significant in forcing the development of 

the technologies. Here, only velocity/position control is considered for motion control 

systems. Obvious examples of velocity control are the electric train, portable hand tools, 

and domestic washing machine drives. In buildings, elevators are interesting examples in 

which not only position and velocity are controlled, but also acceleration and its 
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derivative, jitter. Countless processes in_the manufacturing industry require position and 

velocity control to varying degrees of precision. Particularly with the trend towards 

automation, the technical and commercial growth in drives below about 20 kW is very 

vigorous. Many system level products incorporate an adjustable speed drive as a 

component. A robot, for example, may contain between three and six independent drives, 

one for each axis of movement. Other familiar examples are found in office machinery: 

positioning mechanisms for paper, printheads, magnetic tape, and read/write heads in 

floppy, hard disk and CD rom drives. 

2.3 Motor Selection 

The proliferation of new ideas, materials and components obviously generates many 

opportunities but also complicates the selection of the optimum drive for a particular 

application. Attempting to trace the evolution of the different motor types in such a way 

as to bring out their prominent features, provides a clear framework to reduce the 

· ambiguity frequently faced in the selection of the optimum drive. The motor plays a 

significant part in determining the characteristics of the system and also serves to 

determine the requirements on the power semiconductors, the converter circuit and the 

controller. Within this work, the a.c. induction motor will not be considered since it is 

not an efficient drive to apply to small motion control systems. This is because the 

efficiency and power factor of the induction motor drops in small motor sizes due to the 

natural laws of scaling. If a motor of given geometry was scaled down at the same rate, 

the magneto motive force (m.m.f.) required to produce a given flux density decreases in 

proportion to the linear dimensions. However the cross-section available for conductors 

decreases with the square of the linear dimension, as does the area available for heat 
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transfer. This continues down to the size at which the mechanical air-gap reaches a lower 

limit determined by manufacturing tolerances. Further scaling down results in an 

approximately constant m.m.f. requirement, whilst the areas continue to decrease with the 

square of the linear dimension. There is an 'excitation penalty' which becomes more 

severe as the scale is reduced. It is for this reason that permanent magnets are so 

necessary in small motors. 

2.3.1 Small Motors For Drives 

The evolution of brushless motors is based around three generations. The classical 

motors: D.C. commutator (wound field) and a.c. synchronous constitute the first of these 

generations. The term classical emphasises the fact that these motors satisfy three 

important criteria· 

I) They all produce essentially constant instantaneous torque 

2) They operate from pure D.C. or a.c. sinewave supplies 

3) They can start and run without electronic controllers 

The classical motors of the first generation are readily coupled to electronic controllers to 

provide adjustable speed; indeed it is with them that most of the technical . and 

commercial development of power electronic control has taken place. 

The second generation motors are ~erived from those of the first generation by replacing 

· the field windings with permanent magnets. The synchronous motor immediately 

becomes brushless, but the D.C. motor must go through an additional transformation, 

from second to third generation with the inversion of the stator and rotor, before the 

brushless version is achieved. Each of the motors will be treated below in turn 
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The D. C. Commutator Motor 

The traditional D.C. commutator motor with electronically adjustable voltage has always 

been prominent in motion control. It is easy to control, stable, and requires relatively few 

semiconductor devices. Developments in electronics have helped to keep it competitive 

in spite of efforts to displace it with a.c. drives. 

Many objections to the commutator motor arise from operational problems associated 

with the brush gear. It is not that brush gear is unreliable, on the contrary, it is reliable, 

well proven and forgiving of abuse. However commutator speed is a limitation, 

additionally noise, wear, commutator and brush gear is considerable. Cooling of the 

rotor, which carries the torque producing winding is not always easy, and is a further 

limiting factor. 

The PM D. C. Commutator Motor 

In small D.C. commutator motors, replacing the field winding and pole structure with 

permanent magnets usually permits a considerable reduction in stator diameter, because 

of the efficient use of radial space by the magnet and the elimination of field losses: 

Armature reaction is usually reduced and commutation is improved, owing to the low 

permeability ofthe magnet. The loss of field control is not as important as it would be in 

a larger drive, because it can be overcome by the controller and in small drives, the need 

for field weakening is less common anyway. The PM D.C. motor is usually fed from an 

adjustable voltage supply, either linear or pulse width modulated. 

The Brushless D. C. PM Motor 

The smaller the motor, the more sense it makes to use permanent magnets for excitation. 

There is no single breakpoint below which PM brushless D.C. (BLOC) motors 
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outperform induction motors, but it is in the 1-!0kW range. Above this size the induction 

motor improves rapidly, whilst the cost of magnets works against the PM motor. Below 

it, the PM motor has better efficiency, torque per ampere, and effective power factor. 

Moreov'er, the power winding is on the stator where its heat can be removed more easily, 

while the rotor losses are extremely small. These. factors combine to keep the 

torque/inertia ratio high in small motors. 

The brushless D.C. motor is also easier to control, especially in its squarewave 

configuration. Although the inverter is similar to that required for induction motors, 

usually with six transistors for a three phase system, the control algorithms are simpler 

and readily implemented in a microprocessor. 

The Brushless PM a. c. Motor 

The permanent magnet synchronous machine (PMSM) has permanent magnets instead of 

a field winding. Field control is once again sacrificed for the elimination of brushes, 

sliprings and field copper losses. This motor is a 'classical' salient pole synchronous a.c. 

motor with approximately sine distributed windings, and it can therefore run from a 

sinewave supply without electronic commutation. 

The magnets can be mounted on the rotor surface or they can be internal to the rotor. The 

interior construction simplifies the assembly and relieves the problem of retaining the 

magnets against centrifugal force. It also permits the use of rectangular instead of arc 

shaped magnets, and usually there is an appreciable reluctance torque which leads to a 

wide speed range at constant power. 
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It should be noted that the three motors discussed provide smooth torque with low ripple. 

An important class of brush less motor which has not been discussed is the stepper motor. 

This type of motor is always brush less and unlike the BLDC or PMSM motors, are used 

almost exclusively without any form of shaft position sensing. By definition, the stepper 

motor is a pulsed torque machine, and is therefore incapable of achieving ripple free 

torque by conventional means. Variable rductance and hybrid stepper motors can 

achieve an internal torque multiplication through the use of multiple teeth per stator pole 

and through the 'Vernier' effect of having different numbers of teeth on the rotor and 

stator. Both of these effects work by increasing the number of torque impulses per 

revolution, and the price paid is an increase in the commutation frequency and iron 

losses. Stepper motors therefore have high torque to weight and high torque to inertia 

ratios but are limited in top speed and power to weight ratio. The fine tooth structure 

requires a small airgap, which adds to the manufacturing cost. Beyond a certain number 

of teeth per pole the torque gain is 'washed out' be scale effects that diminish the 

variation of inductance on which the torque depends. Because of the high magnetic 

frequency and the effect of m.m.f. drop in the iron, such motors require expensive 

lamination steels to get the best out of them. Further details on the stepper motor may be 

found in Kenjo, ( 1985). 

2.3.2 Cascaded Motion Control 

The singular most typical method for motor control is the so called 'cascaded motion 

control', which consists of three control loops (see for example Subrahmanyam, 1996). 

One for the control of torque, one for speed and one for position. It is assumed that each 

of these loops will be equipped with appropriate sensing devices. Whilst the outer two 
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loops, and their realisation, are considered in some detail in later chapters, the torque 

control loop is not. This is primarily because this control loop is already realised within 

the commercially available power electronic converter, providing a simple potentiometer 

for its gain adjustment. The torque control loop is therefore considered here for 

completeness. The Permanent Magnet D.C. commutator machine dynamics, which. 

maintain a notable generality to all motors, are given by the equations 

di . 
V= Ri + L-+Aw, 

. dt 
(2.1) 

1 dw,=T-T. 
dt ' I 

(2.2) 

df} 
-=liJ 
dt ' 

(2.3) 

'J. = A-1 (2.4) 

The torque (2.1) control loop for the constant flux linkage (A-) machine implies armature 

current control for the permanent magnet D.C. brush (DC) motor. In the case of the 

brushless D.C. motor, with constant flux linkage, this implies current control within the 

stator phases. The design of the torque loop requires knowledge of the load torque. In 

practice, this is not known precisely (see Chapter 3 for a discussion of this), and the load 

torque is assumed to be constant. Once the design is complete, the effect of load 

variations are observed and suitable corrections are made to the controller gains if 

required. For a constant load torque, the DC motor current/voltage relationship can be 

written from (2.1 )-(2.4) 

(2.5) 

where r,m is the electromechanical time constant of the motor given by the equation 
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(2.6) 

The typical torque controller is based on a proportional integral (PI) structure, with the 

gain K51 and time constant rs,. The open loop transfer function of the system using a PI 

controller is given 

A() K,,(l+srs,) KcKrK1srem 
s = sr,,R s2Tem T, +STem +I 

(2.7) 

where Kc is the gain of the power converter between controller and motor, Kr = T; /I is 

the torque constant and K1 is the current sensor gain. 

2.4 Synchronous Motors for Drives 

The Brushless D.C. and the Permanent Magnet a.c. machines were discussed briefly 

above. This section serves to provide further detail on their characteristics, greater detail 

may be found in Miller ( 1993). Synchronous motors (SMs) are in general three phase a.c. 

fed in the stator and D.C. (or PM) excited in the rotor. As the stator currents produce an 

m.m.f. traveling at the angular velocity uJI: 

{l)l = 2Jif.. (2.8) 

the rotor m.m.f. (or PM) is fixed to the rotor. The rotor angular velocity w, is: 

(2.9) 

in order to obtain two standing m.m.f. waves. It is a known fact that only in this situation 

a non zero average torque per revolution is obtained. Yet, in an alternative interpretation, 

non zero average torque is produced when the magnetic eo-energy in the machine Wco 

varies with rotor position: 

T = (awco J.. dB, _ w, 
e ae, I, =.cl' dt p 

(2.1 0) 
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e, is the geometrical rotor position angle. Thus a magnetically anisotropic (reluctance) 

exciterless rotor may also be used. In all cases the number of pole pairs is the same on the 

stator and on the rotor. 

As the synchronous motor speed is rigidly related to the stator frequency only the 

development of power electronic converters (PEC), variable voltage and frequency 

sources, has made the synchronous motor suitable for variable speed drives. 

The higher efficiency, power density and, power levels per unit have thus become the 

main assets of variable speed synchronous motor drives. 

2.4.1 . Drive Classification 

Permanent magnet synchronous motor drives exist in several distinct forms. These forms 

may be differentiated with respect to the generated current waveform, voltage/frequency 

correlation and motion sensor presence (Moczala et al, 1998). 

Classification based on the applied current waveform reveals two distinct types, those 

with a rectangular current waveform and those with sinusoidal. This leads to the 

common names that differentiate the two, the BLDC and the PMSM drive. Secondly 

consideration can be paid to the presence of motion sensors, predictably BLDC or 

PMSM ·drives without motion sensors are prefixed with the term "sensorless". 

Finally PMSM drives may controlled through one of the following means 

• Scalar (V I f) control - a damper cage on the rotor is required; 

• Vector control (current or current and voltage); 

• Direct torque and flux control (DTFC). 
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Regardless of the method of control, the stator current waveforms must be synchronised 

with the rotor position in order to guarantee efficient commutation of the motor. This is 

where sensorless control has grown from. In essence an attempt is made to synchronise 

the rotor position with the excited stator coil without the use of sensors. Clearly there are 

distinct advantages in terms of unit cost, robustness and to some extent size. Sensorless 

control is quite naturally a subject of significance as far as this work is concerned. 

Further discussion is deferred until the next section. It is sufficient to state that sensors on 

the rotor provide gating signals with respect to the rotor position 9er, for the inverter 

drive. 

CXPM direction 
of motion 

Figure 2.1: Rectangular or sinusoidal current control; aa - advance angle 
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Rectangular current control is preferred when the PM e.m .f. is nonsinusoidal 

(trapezoidal) - q = 1, concentrated coi I stator windings - to reduce torque pulsations and 

take advantage of a simpler position (proximity) sensor or estimator. 

Scalar control (V I f) is related to sinusoidal current control without motion sensors 

(sensorless) (Figure 2.2). 

Reference 
Fequencies 

!J.f' 

1v• ~ t--v-· -~ 
o...;;;~===-.. f' ._ __ _, 

PWM 

Torque 
Angle 

Increment 
Estimator 

Inverter 

io 
V a 

vb 

ib 

Figure 2.2: V If (scalar) control for PM - SM (and for RSM) with torque angle 

increment compensation 

The torque angle increment /18 is estimated and the reference frequency is increased by 

/1( to compensate for the torque variation and keep the motor currents in synchronism 

with the rotor during transients. A rotor cage is useful to damp the oscillations, as 

ramping the frequency is limited. 

Low dynamics applications may take advantage of such simplified solutions. For faster 

dynamics applications vector control is used (Figure 2.3). 
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va vb 

Position and 
Velocity 
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8,62 m, 
01 02 

1 0-::-
d 
- f-

(J), dt 

Figure 2.3: Basic vector control of PM- SM (1) with motion sensor (2) Sensorless 

The rotor position and speed are either measured or estimated (for sensorless drives) and 

used as velocity feedback (cor) and vector rotator (8er) to generate reference phase 

currents. Closed loop or open loop PWM is used to "construct" the current (or voltage) 

waveforms locked into synchronism with the rotor. The PMSM is controlled along the d -

q model in rotor co-ordinates which corresponds to D.C. for steady state. 

Correlating i/ with iq • is a matter of optimisation according to some criterion. Vector 

control is considerably more complicated in comparison with V I f control but superior 

dynamic performance is obtained (faster torque control, in essence). 
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I ll I 
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~Speed ~-:f ~ Commutation PWM I 
Controller r; table -y Inverter \~ 

B A.s X 
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t: Flux, torque 

Js and velocity 
observer 
tiJr 

(J.)r 02 

Figure 2.4: Direct torque and flux control (DTFC) of PM- SMs 

To simplify the motor control, the direct torque and flux control (DTFC for IMs) has 

been extended to PM - SM (and to RSMs) as torque vector control (TVC) in Sousa and 

Bose (1994). 

The stator flux and torque direct control leads to a table of voltage switchings (voltage 

vector sequence). Vector rotation has been dropped but flux and torque observers are 

required. While speed is to be observed, rotor position estimation is not required in 

sensorless driving. 

Again, fast flux and torque control may be obtained even in sensorless driving. 

Rectangular current control and sinusoidal current control (through vector control or 

DTFC) are going to be detailed in what follows for motion sensor and sensorless driving. 
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2.4.2 The Rectangular Current Control System 

In general a rectangular current control system contains the BLDC motor, the PWM 

inverter and the cascaded motion control loop (Figure 2.5). 

Commutation Table 

B, 
e, 

Position and 
Speed Estimators 

m, 
OJ, 

Figure 2.5. Rectangular current control of BLDC 

P(p-) j 

CD00000 

Q1Q2 

Q3QO 

a) b) 

Q5Q6 

Figure 2.6: a.) Current sequencing b.) Phase connection 
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The current sequence, produced through the inverter provides adequate control, with 120° 

current waveforms. In Figure 2.6 shows also the position of the 6 elements of the 

proximity sensors with respect to the axis of the phase a for a zero advance angle a. = 0. 

The location of proximity sensors P(a+, a-, b+, b-, c+, c-) is situated 90° (electrical) 

behind the pertinent phase with respect to the direction of motion. 

With two phases conducting the stator active m.m.f. is on from 60° to 120° with respect to 

the rotor position. The ideal voltage vector (Figure 2.6) also jumps 60° for any phase 

commutation in the inverter. Each phase is on 120° out of 180° for the 120° conducting 

strategy. 

To reverse the speed the addresses (Power Switches) of the proximity sensor elements 

action are shifted by 180° (P(a+) 7 P(a-); P(b+) 7 P(b-); P(c+) 7 P(c-)). The proximity 

sensor has been located for zero advance angle to provide similar performance for direct 

and reverse motion. However, through electronic means, the advance angle may be 

increased as speed increases to reduce the peak PM flux in the stator phase and thus 

produce more torque, for limited voltage, at high speeds. 

Using the same hardware, 180° conduction conditions may also be provided for at high 

speeds, when all three phases conduct at any time. 

2.4.3 Practical Performance 

So far the phase commutation transients have been n"eglected. They however introduce 

notable torque pulsations at a frequency of 6w, (Figure 2.7), which is much lower than 

those due to current chopping. To account for them complete simulation or testing is 

required (Vanlandingham, 1985). 
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There are also some spikes in the conducting phase when the other two phases commute 

(points A and 8 on Figure 2.7). 

Not shown in Figures 2.6 and 2.7 is the cogging torque produced at zero current by the 

slot - openings in presence of rotor PMs. Special measures are required to reduce the 

cogging torque to less than 2- 5% of rated torque for high performance drives. 

Torque Ripple 

It is a known fact that an ideal SM- with sinusoidal m.m.f. and constant airgap, when fed 

with sinusoidal symmetric currents in the stator at frequency m1 = m, produces a constant 

torque (Nasar et al, 2000). 

In reality torque ripple 1 may occur due to: 

a. stator (and rotor) slot openings; 

b. magnetic saturation .caused flux harmonics; 

c. current waveforms; 

d. PM field pulsations due to stator slot openings (cogging torque). 

Items a to c cause the so called electromagnetic pulsating torques while d causes the zero 

stator current or cogging torque. 

Rotor pole (or PM) span correlation with stator slot openings, stator slot inclination or 

PM pole inclination, fractional q (slots per pole and phase) and, finally, special current 

waveform shaping through PEC control are all methods to reduce these, basically 

reluctance, parasitic torques (Lorenz et al, 1994) to less than I% of rated torques. High 

1 Torque ripple investigation requires, in most cases, FEM analysis- two, quasi - two or three dimensional 

(Lorenz et a/, 1994) 
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performance smooth torque drives capable to operate below 20rpm in sensorless control 

or under 1 rpm with position sensor control are thus obtained. 

24(3 1 
! phase a ! 
' I 

Figure 2.7: Torque pulsations due to phase commutation 

While at low speeds current chopping is feasible at high speeds, one current pulse 

remains (Figure 2.8). The current controller gets saturated and the required current is not 

reached. 

reference ClUTent 

ach1al clUTent 

Figure 2.8. Current waveform at high speeds 

As the advance angle is zero (aa = 0) there is a delay in "installing" the current and thus, 

as the e.m.f. is "in phase" with the reference current, a further reduction in torque occurs. 
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2.5 Sensorless Control 

Sensorless control within the I iterature IS intended for speed controlled drives. The 

alleviation of the sensor requirement reduces hardware costs and improves mechanical 

reliability. It will be shown here that high performance drives that are designed for either 

low speed or accurate positioning are not considered within the literature and position 

sensors are still required (Boldea and Nasar, 1999). It is the aim of this work to relieve 

the need for position sensors in precision control of the motor armature position. This 

section serves as a thorough exposition of the technology and methods associated with 

sensorless control. Since the induction motor has been identified in previous sections of 

this chapter as inappropriate for small motion control drives, it is not considered within 

the following text. It is acknowledged that sensorless control of this type of motor has 

been and continues to be a fruitful area of research. The reader is referred to one of the 

many research papers available, e.g. Joetten and Maeder (1983), Ferrah et a! (1992), Xu 

and Novotny ( 1991) and Simones and Bose ( 1995). 

2.5.1 Sensorless Control Based on Back EMF Measurement 

Sensor less control based on the back EMF is perhaps the best known of the approaches. 

It is important to draw attention to the fundamental differences between the PMSM and 

the BLDC motor. These are given in detail in Pillay and Krishnan, (1991). Of concern 

here is that the back EMF waveforms of the PMSM and the BLDC motor are sinusoidal 

and trapezoidal respectively. In addition, one phase of the BLDC motor is left non

excited at any given instant, leaving the winding free for use as an interface between the 

motor and relevant instrumentation for parametric variation measurement. Conversely, 
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the PMSM has all three windings excited at any one time, exacerbating the problem of 

direct measurement. 

Neutral Point Voltage Computation 

It may be demonstrated (Voultoury, 1998) that the phases of the BLDC motor are 

commutated every 60 electrical degrees. This implies that only six signals are required to 

drive the BLDC motor. The importance of synchronisation between phase excitation and 

zero crossing of the back EMF, should at this . point be noted; since for efficient 

commutation of the motor this is a major design goal. 

It transpires that the zero crossing point of the trapezoidal back EMF waveform occurs at 

specific rotor positions. At any given time, two phase currents are opposite, the third is 

equal to zero. 

The stator terminal voltages may be modelled, point x in the diagram has been chosen 

here, according to the following equations: 

(2.11) 

(2.12) 

(2.13) 

where R and L represent the phase resistance and inductance respectively; E represents 

the phase back EMF; V is the phase voltage referenced to ground and VN is the stator 

connection voltage referenced to ground, the suffixes A,B and C represent the motor 

phases. 

It may be seen by inspection of the equations (2.11 ), (2.12)and (2.13) that at the point 

where the back EMF of phase A is equal to zero, the following is true 
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(2.14) 

(2.15) 

In this case, VA is the terminal voltage of winding A; VN is the neutral voltage and V0 is 

the inverter source D.C. voltage. 

A simple comparator circuit may be used to turn the zero crossing points into digital 

signals for commutation, as demonstrated by I izuka et al (1985). Here it was shown that 

by delaying these points by 90 electrical degrees, the inverter could be driven directly 

from the comparator signal. Variable speed control was achieved by chopping the motor 

with a PWM signal generator with variable duty cycle. 

It is perhaps noteworthy to mention that this approach led to the effective solution of 

sensorless control for air conditioner compressor motors, and in so doing was the first to 

demonstrate the practical implementation of sensorless control. Since this time, neutral 

point voltage commutation (or zero crossing commutation) has become. the subject of 

much research and practical implementation. It is probably the most widely used 

approach to sensor less control of the BLOC motor (Kenjo and Nagomori, ( 1985), 

Voultoury, ( 1998), Gee and Thorn, ( 1988), Jeong et a/, ( 1999)) . 

. Third Harmonic Commutation 

An alternative approach to the neutral point voltage computation cited above is that of 

third harmonic commutation. This approach was originally suggested and patented by 

Yukosavic, ( 1990). The approach relies on the fact that the phase angle of the third 

harmonic of the back EMF is a function of the rotor position. As per the approach above, 

the back EMF of the non-excited phase winding (equation (2.15)) may be derived. 
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Examination of the back EMF waveform reveals that it is according to Fourier, an odd 

function. This observation is extremely important, since it is possible to represent an odd 

function by its fundamental component and harmonics. Specifically, the trapezoidal 

waveform may be represented as 

"' 
J(B) = L b2n-l sin((2n- I )e) (2.16) 

0 

h b 
_ 4E·sin((2n-l)a) 

w ere 2n-l - ( )2 
1[ 2n -I a 

In this equation E is constant, representing the magnitude of the back EMF waveform 

excursions; n is an integer and a is the angle of the waveform as it traverses from its 

positive to negative (typically 30° for a 120° commutated motor). From examination of 

the equations above it may be seen that j{2) contains not only the fundamental 

component, but also the odd harmonics. Further consideration shows that the amplitudes 

of the higher harmonics decrease rapidly. By substituting values for n and assuming that 

a is 30°, j{2) may be shown to be 22% of the fundamental. Since the third harmonic 

amplitude is far greater than any other, the terminal voltages of the motor may be 

satisfactorily expressed as 

VA = V1 sin(B)+0.22 V1 sin (3B) 

V8 =V1 sin(B+
2
;)+0.22 ~sin 3(B+

2
;) 

Vc =V1sin(e- 2
;).+0.22 ~sin {e- 2

;) 

where V 1 is the magnitude of the applied voltage. 

(2,17) 

Summation of these equations will remove the fundamental component, leaving only the 

harmonics, in fact, the fifth, seventh, eleventh and the thirteenth harmonics are also 
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cancelled out. It is the third harmonic that constitutes the majority of the remaining 

waveform. Therefore summation of the terminal voltages actually serves as an efficient 

extraction of the third harmonic from the terminal voltages. Analysis of the voltage 

applied by the motor driver, in the s·ame manner as above, will not yield a third harmonic 

component. This demonstrates that the third harmonic is therefore a product of the back 

EMF, which is in turn a product of the rotation of the rotor. It follows from this 

observation that the third harmonic of the back EMF contains information about the rotor 

position. 

This method relies on the premise that the sum of the terminal voltages will contain no 

fundamental component, in practice however, asymmetry of the motor may be given to 

introduce some of the fundamental component. A more robust method of extracting the 

third harmonic of the back EMF is then required. Commonly, the sensed voltages are 

integrated as an approach to solve this problem, however it is not applicable in this case, 

since integration results in severe distortion of the position information as the noise is 

emphasised with respect to the third harmonic. In addition, the use of resistors with wide 

tolerances and large offset operational amplifiers in the practical system serves to 

exacerbate the motor asymmetry. 

Problems Associated with Back EMF Measurement 

There are fundamental problems associated with using the back EMF m sensorless 

control: 

• Since the induced back EMF at zero speed is zero, there can be no means of 

knowing the rotor position. lt is clearly important to have knowledge of the rotor 

position for stable starting of the motor. 
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• Below a certain speed, the stator resistance drop and the switching noise of the 

inverter dominates the stator voltage, the back EMF is very difficult to measure 

and once again efficient commutation becomes difficult. 

Low Speed Operation 

There have been approaches adopted to overcome these problems. The problems 

associated with low speed operation have been dealt with by Ogasawara and Akagi, 

( 1991 ). This approach was based on the detection of the on/off state of the free wheeling 

diodes connected in anti-parallel with the power transistors of the inverter, in order to 

determine the commutation instant. 

Starting 

Starting the motor represents a serious problem when considering the application of the 

sensorless control of a permanent magnet motor. Of the proposed methods for starting; 

some that have been suggested are as follows (Matsui, 1996): 

• Use of an auxiliary sensor 

• Open loop control 

• Specific gate pattern 

• Arbitrary starting 

• Salient pole motor 

A low cost auxiliary sensor, such as a Hall effect device, may be used to detect rotor 

. position at standstill. Within the context of this paper, adding a sensor to the system is 

clearly undesirable, since the problems discussed earlier, specifically robustness and size 

once again become a consideration. 

Open loop control involves the use of a rotating magnetic field. If the rotor position is 

predefined then control of the motor from standstill to a point where rotor position may 

be reliably calculated has been achieved. If the rotor position is not known then the use 
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of open loop control may result in a temporary reverse of the motor or worse still may 

lead to starting failure. 

Firing of a specific gate pattern of the inverter has been reported in Matsui and Shigyo 

( 1992) and the method involves the high frequency chopping of a given gate pattern. 

This will align the rotor to the excited phase. Once alignment has been achieved then the 

open loop starting method may be employed. 

Firing of an arbitrary gate pattern is achieved as above but with an arbitrary gate pattern. 

In some cases, however, this approach may lead to a temporary reverse of the motor. In 

extreme cases, stable starting cannot be achieved. 

Use of the salient pole motor for starting has been described by Wu and Slemon, (1991). 

This approach not only forms the basis for a robust starting procedure but is the basis of 

position and speed co.ntrol based on magnetic saliency discussed below. 

2.5.2 Sensorless Control Based on Magnetic Saliency 

Control based on back EMF, in most cases, is only practically applicable at mid to high 

speeds, where inverter losses are negligible in comparison to the magnitude o( the 

induced back EMF. At zero and low speed the EMF is too small and accurate position 

estimation is not possible. The approach based on magnetic saliency, however, could 

potentially be applied at any speed, including zero speed (Acarnley et al 1985, Ertugrul 

and Acarnley 1994, Kulkami and Ehsani 1992). This method is based on the detection of 

the current gradient, since this is dictated by the incremental inductance of the motor 

windings, which is in turn dependent upon the rotor position. When the rotor and 

winding are aligned, the flux linkage is maximised; when rotor and winding are 

completely misaligned, the magnetic circuit is dominated by the large air gap. If it is 
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assumed that the mutual inductance between phases is small, then the voltage equation 

for one phase may be written in terms of the current and flux linkage 

V= Ri + d\jl 
dt 

since the flux linkage may be expressed in terms 

V= Ri + d\jl . di + d\jl . de 
di dt de dt 

then 

(2. 18) 

(2.19) 

(2.20) 

Rearranging to give an expression for the rate of change of current with respect to time 

di 

dt 

. d\jl de 
V-RI--·-

de dt (2.21) 

the incremental inductance shown in the denominator is rotor position dependent. Hence 

the rate of change of current is also related to rotor position. It may be seen that this 

relationship is confounded by the dependence on current and on the back EMF term. 

2.5.3 Observer Approaches to Sensorless Control 

In the preceding sections the permanent magnet motor and direct sensorless control has 

been considered. As explained, there are cases whereby the direct approach to sensorless 

control is impractical, either in the face of unacceptable noise, or in the case of the 

PMSM no direct method of measurement of machine parameters. It is at this point that 

alternative methods of deriving motor state are employed. Within this section special 

. . 

consideration to the use of such approaches as the Kalman filter, Luenberger observer 

and sliding mode is paid, with specific reference to the control of the permanent magnet 

motor. 

2-26 



Motion Control Systems 

Observers 

The observer is by definition, a system that recursively estimates the state of another 

system. The Luenberger observer (Luenberger, 1971 ), such as the type under discussion 

here may be used in the state estimation of a deterministic, time varying system. In 

practical application, there is no direct method of parameter measurement using the 

PMSM and the measurement of the BLOC parameters can be adversely effected by 

phenomena such as switching noise. Whilst the Luenberger will not directly compensate 

noise, it does allow the controller access to such parameters as back EMF or incremental 

inductance within the motor windings. 

Observers, such as those cited in the literature (Consoli et a/ 1994; Matsui 1996; Matsui 

and Shigyo I 992; Jones and Lang, 1989) have generally either made use of the voltage or 

the current equations of the motor. The approach developed below is based on the 

arguments found in Matsui ( 1996), before the development of the observer may begin a 

new orthogonal axis, y-8 must be introduced (Figure 2.9). This hypothetical axis will 

· represent the assumed position of the rotor. The d-q axis, as ever, represents the actual 

rotor position. Introduction of this second frame (i.e. y-8) is imperative, since as will be . 

apparent, it must be possible to estimate the error between the estimated and the actual 

rotor position. It is important to note, therefore, that the state of the electrical machine is 

independent of the frame of reference from which it is observed. 
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la 
B 

The aim of the observer is to minimise the angular error, Llli, between the y-8 and the d-q 

axis. The angular error may be formally expressed as 

A 

M=B - B (2.22) 

A 

where 9 is the actual rotor position (d-q) and f) is the estimated rotor position (y-8). With 

slight modification to the voltage equations derived above, the voltage equation of the 

PMSM may be obtained. In this case Ra and La represent the armature resistance and 

inductance. K represents the EMF constant. 
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In order to obtain the y-o equivalent two-axis model; the transformation matrix, which is 

based on the assumed rotor position must be used 

(2.24) 

By following conventional control, the y axis current is controlled to be zero and the 

generated torque may be expressed 

[ 

dL 

[
V] R+ -r _ dt 

V, LB. 
c 

r = Kri0 cos!lB 

Where 

- LBc l[i ] . [- Sini1B] 
R + dL i: + K E e Cosi1B 

dt 

K = {IK iJ =dB Be = dBc R = R L = '}_L 
E IJ 2 ' dt ' dt ' a ' 2 a 

(2.25) 

(2.26) 

If the ideal condition is assumed, then 11E=O and B c = B , from here an estimation for the 

rotor speed and position may be developed by rearranging (2.24). 

(2.27) 

From this equation the hypothetical speed, Be may be obtained by the following 
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V -(R+dL)j 
/M dl 6 

e, = ----'----------''--- (2.28) 

From the assumption that ~E = 0 it may be stated that v5M = v5 . From (2.27) 

V -(R+ dL)j 
6 dt 6 e, = -----'----'-- (2.29) 

KE + Li, 

In reality, the ideal operating condition is not constant; corresponding correction of the 

hypothetical speed is required. Consider the voltage applied to the y axis, under ideal 

conditions it may be expressed from (2.26) as 

( 
dL) · viM= R+dti,-LB,i6 (2.30) 

This voltage is hypothetical, but may be calculated by transforming the actual current by 

equation (2.23). In a similar manner, the actual applied voltage may also be obtained 

from equation (2.24). They axis voltage difference may be obtained as 

(2.31) 

assuming that the rotor is not stationary, and that the angular error ~e is approximately 

zero, then (2.30) may be approximated as 

(2.32) 

This equation is critical in that it demonstrates the direct relationship between the angular 

error and the voltage difference. In order to control the position of the rotor, a simple 

algorithm may be applied to increase or decrease the applied voltage according to the 

position error. As stated this approach has been documented in (Matsui, 1996). Control 

with the voltage observer was achieved above a threshold of approximately 100 rpm. 

Below this speed, the voltage observer was found to be incapable of satisfactory control. 
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This was attributed to the fact that current ripple increases with reduced speed, and by 

virtue of this, the variation in estimated speed increased. Secondly, it was shown that in 

the lower speed range, the applied voltage was correspondingly lower and the effect of 

dead time, voltage drop across the switching devices and power feeder was more 

significant. Whilst in the literature the effect of dead time was compensated for, the 

voltage drop was not. 

A second observer based instead on the current model was subsequently suggested within 

the same work. Within this model the current input to the motor was measured using a 

current sensor and fed into the observer. Since the current based observer did not use the. 

voltage information, the controller was free of the errors introduced by inverter 

inaccuracy. It was shown that the current model based control was more stable than the 

voltage based alternative. 

There have been other forms of observer employed in sensorless. control of rotor position 

and velocity. One method proposed (Wu and Slemon, 1991) uses motor current 

harmonics to calculate the inductance matrix, which contains the rotor position 

information. This method capitalises on the fact that the harmonic voltage vector is equal 

to the difference between the inverter output voltage vector and the average output 

voltage vector. Another rather sophisticated approach has been proposed by Cardoletti 

and Cassat (1992) and later, a modified approach by Corley and Lorenz, ( 1998), this 

approach estimates flux, position and speed from zero through to high speed. This 

method is based. on tracking the magnetic saliency via an inverter generated high 

frequency voltage, which serves to produce high frequency currents that vary with rotor 

position. The sensed currents are then demodulated using a heterodyning technique to 
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produce a signal that is roughly proportional to the difference between the actual rotor 

position and estimated rotor position. 

lt is interesting to note that a disturbance observer based disturbance cancellation has 

been used as a method to achieve robust control (Tomita et a!, 1998). In this method a 

disturbance is added to the open loop system, and is estimated by the observer. The 

estimated disturbance is then fed back to cancel the actual disturbance. lt has been shown 

in M ita et a!, ( 1998) that this method actually only amounts to an alternative integral 

controller and thereby robust stability is not assured. In order to achieve true robust 

stability, the observer must include a filter based on robust control theory. Such an 

approach would be to include the use of deterministic robust control or artificial 

intelligence based control. 

Kalman Filters 

An alternative approach to the Luenberger observer in the estimation of system states is 

to employ the Kalman filter. In the case of sensorless motor control, however, the 

Kalman filter is not sufficient since the equations of the motor are non~linear. Where the 

Kalman filter is an optimum estimator, the Extended Kalman filter (EKF) is not; since the 

nonlinear equations of the system are. linearised about the current estimated state 

trajectory. In this case, optimality is defined as the minimisation of a mean square error 

cost function. Despite this, the EKF has been used to solve the problems associated with 

sensorless control (Dhaouadi et a!, (1991), Beierke S. et a/,(1997) Kettle et a!, (1998) 

Navrapescu and Craciunescu, (1997)). Within this context, the EKF is able to estimate 

motor states despite the fact that the measured input signals may be corrupted by random 

noise and may be subject to measurement error. 
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The process and measurement noise is assumed to be uncorrelated, having zero mean and 

norrnal gaussian distribution Kettle et a/, ( 1998). 

It will be shown later in Chapter 3 that the motor may be described by the following 

x~[;]. 
0 I 0 0 

<I>;, 0 
B Km f= 

I 
(2.33) , --

J J J 
K, Ra I 

0 -

L L L 

. The feedback measurement is to be the back EMF of the motor. Whilst the motor model 

assumes that the back EMF will be a linear function of speed, it may be sensibly expected 

that the back EMF when the motor is in steady state will take the forrn as discussed 

earlier in this chapter, therefore the measurement matrix H( ~klk-1) will be of the forrn 

0 0~1 A. cos( B klk-1 ) 

0 

(2.34) 

Note that in the above equations, V is presented as an input and i as a state variable. This 

has been adopted primarily because the applied control signal is likely to be a voltage 

under a pulse width modulation regime. 

The state equations and Kalman filter may be used to estimate the motor states; in this 

case rotor position and velocity. !fusing the EKF for state estimation then it may be used 

as an observer. The estimation of rotor position may be used for commutation and 

estimated velocity used for regulation of speed. Approaches to sensorless control cited in 

the references above have all employed and confirrned the validity of this approach. 
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Extended Kalman Filter for State Estimation 

The motor model describes a deterministic system with additional stochastic disturbances 

(i.e. the external load torque). The EKF produces a generalised weighted least squares 

solution for the state estimate with a minimum expected square error. When· system states 

are inaccessible, the estimates of state generated by the EKF may be used instead. In 

such a case, use of the EKF estimates will yield the optimal feedback system in the 

expected mean square sense. 

Used as an observer, the filter inputs will be the plant outputs (z) and the deterministic 

inputs (u); as per the definition of the Luenberger observer. The filter outputs will be the 

A 

optimal plant state estimate X(kik). It may be shown, (Furuhashi et a!, 1992), that if an 

observer's gain sequence is chosen to beG= <I>K, then the observer is a Kalman filter. 

Of importance to note is that the EKF is sub-optimal. Therefore, the established 

relationship between the Kalman filter gain and the observer gain sequence, should not 

infer that using the Kalman filter approach to determining observer gains for state 

estimation is necessarily better than design by stipulation of desired convergence 

properties through use of a eigenvalue placement method. 

Sliding Mode 

The use of sliding mode for motor control has been well documented e.g. Furuhashi et al 

( 1992), Lin and Chiu (1998), Utkin (1993). It has been shown that variable structure 

control demonstrates the following advantages; order reduction, decoupling design 

procedure, disturbance rejection, insensitivity to parameter variation and simple 

implementation (Utkin, 1993), for these reasons, sliding mode will feature heavily within 

this work and supporting theory is treated rigorously in Chapter 5. At this point, however, 
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sliding mode is introduced as a means to achieve sensorless control of the synchronous 

motor. This section is begun by the introduction of principles associated with sliding 

mode control of the synchronous motor, before describing how it may be employed in 

state estimation. Pre-empting the discussion in Chapter 5, sliding mode may best be 

described by a diagram (Figure 2.1 0), Figure 2.1 O.a is the phase plane trajectory of a 

system. Figure 2.1 O.b represents the same system with negative feedback sign. It can be 

seen that Figure 2.10.c is a combination of these two systems. Figure 2.1 O.c illustrates 

how the combination of these two systems results in stability. The straight line 

intersecting the axis is known as the sliding plane. Figure 2.1 O.d illustrates the · 

"chattering" phenomenon that IS caused by finite switching times between the two 

systems. 

The motor may be expressed in the d-q axis with the following differential equations: 

. did . 
Vd =nd +Ld-+Ldt9 w 

dt 
(2.35) 

(2.36) 

(2.37) 

da 
-={l) 

dt 
(2.38) 

2-35 



Motion Control Systems 

A B 

c D 

Figure 2.10: The principle of sliding mode a) Phase portrait of system displaying limit 

cycles b) Phase portrait of unstable system c) Phase portrait of combined system 

d)Chattering 

From previous work, it may be written 

[ ~ ] = k [ ~; J and 
(2.39) 

where k is the Park transformation matrix (Krause et a/, 1995). The suffixes A, B and C 

represent the stator phase windings. The goal of the sliding mode controller will be to 

make the error between the angular speed and a reference speed equal to zero. The 

deviation from the desired motion may be described by 

d 
S1 =c[w0 -w(t)]+ - [w0 - w(t)] 

dt 
(2.40) 
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where c is a positive real value; roo is a reference input and ro(t) is the rotor velocity. The 

next objective for the controller will be to make the component id equal to some reference 

input i0. 

(2.41) 

Let the voltages of the inverter, V A, VB and V c constitute a three phased balanced system 

such that 

T 

S3 = f(vA +VB + Vc }it (2.42) 
0 

s3 should equal zero for all T. 

The control vr = (VA VB Vc) should enforce the sliding mode along the manifold 

sT =(si s2 sJ. The equations of motion of the system (2.35) and (2.36) projected 

onto s sub-space are derived by the differentiating vector s. 

ds = F+DV 
dt 

(2.43) 

where FT=(fi , h , jj). jj=O and the scalars Ji and h depend on the motor state and 

reference inputs, load torque and their time derivatives. D will depend upon the task at 

hand; the approach documented by Lin and Chiu (1998), is examined in order to continue 

development from here. 

The problem associated with sliding mode is that of 'chattering'. Sliding mode relies on 

the infinite switching speed of the controller. In a practical system, this is not realisable 

and the result is that the manipulated variable will be discontinuous and overshoot around 

the sliding manifold will occur. One approach to alleviate the 'chattering phenomenon' 

was discussed by Utkin, (1993). In this method a low pass filter is added to the 

controller, thus introducing a boundary layer around the manifold (Figure 2.11 ). 
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Sliding Plane 

Switching Manifold 

Figure 2 .11: Bo·undary layer normalisation 

The Sliding Mode Observer 

The alternative method of avoiding chattering is to avoid introducing the control effort 

from the sliding mode directly to the motor. If, instead an observer is introduced and the 

sliding mode is allowed to occur within that, then no stress will be applied to the motor. 

The sliding mode observer maintains the salient feature of the sliding mode, which is 

being robust to disturbance. 

Since the switching signals of the sliding mode observer contain the induced voltages of 

the motor, rotor position and velocity estimation may be achieved directly from the 

switching signals. The estimated position may be used directly for locating the position 

of the rotor, however estimated velocity is heavily contaminated by switching signal 

noise. 

Therefore the adaptive sliding mode observer is introduced. The switching ripples ofthe 

sliding mode observer have no effect on this method. It may be seen that the equation of 

the motor might be rewritten as: 
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x [~qs ]+~- L~s 
lds 0 

Lss 

0 
] x [Vqs] _ 3ke [-m sine]+ [Wq] 

__ 1_ Vds 21 mcose Wd 

Lss 

0 

(2.44) 

where W represents the disturbance due to parameter variations and V; represents the 

induced back EMF. From this equation, the observer may be constructed as follows 

(2.45) 

where /\ denotes an estimated value, K the switching gain and 

(2.46) 

The sliding manifold is realised by the switching function as 

A 

S= i s-is =O=es (2.47) 

Once this has been established then the error equation may be obtained by subtracting 

(2.45) from (2.46) to give 

A 

es = H es+ J(V;- V;)+ Kl(es) 

Once the switching gain is chosen correctly the following will hold true 

es = e = 0 s 

and may be rewritten as 

z=-Kl(e5) 

(2.48) 

(2.49) 

(2.50) 

The signal z will contain information of the induced voltages of the motor. As seen 

previously, position and velocity may be estimated from this signal. 

It is shown in Furuhashi et a/ (1992) that the observer may be made adaptive by replacing 

the error function by an estimation of the induced voltage and applying an adaptive 

scheme. 
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The sliding mode observer can be shown to differentiate the output error, however it 

incorporates a low pass filter with a cutoff frequency which varies with the measurement 

noise. This will alleviate the problem associated with finding the speed by differentiating 

a position signal that is contaminated by the switching ripples, and speed measurement 

may take place. 

2.5.4 Artificial Intelligence in Sensorless Control of Drives 

Until this point, observers for sensorless control have been considered. It has been 

demonstrated how at reasonable speeds, accurate control of rotor speed and position has 

been achieved. The application of artificial intelligence (AI) techniques has, until 

recently, seldom been considered in control of drive systems (Stronach and Vas , 1998), 

fewer still in the control of the sensorless permanent magnet machine. Impetus at this 

point is therefore shifted from the practical implementation and results achieved with the 

methods discussed so far, to the perceived benefits that AI techniques are likely to yield. 

The control systems considered so far have required knowledge of the motor. This 

knowledge is represented as a set of differential equations that rapidly become complex 

and they are based around many assumptions about the system. In addition, these models 

may depend upon knowledge of motor parameters that are either difficult to measure, or 

change significantly when the system is in use. In Vas (1999) various AI techniques 

including associative memory networks, artificial neural networks and neuro-fuzzy 

networks were implemented in a sensorless drive control system in order to demonstrate 

their ability to cope with sensorless control without explicit a priori knowledge of the 

motor. Torque ripple of the motor can be minimised by the application of optimum 

current waveforms (Carlson R. et a/, 1992), however the optimum waveform changes 
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with load (Kocybik and White, 1997). The optimum waveform therefore must be 

calculated with knowledge of the load, alternatively, the waveform generator must be 

made adaptive. Work in Kocybik and White, (1997) demonstrated the effective removal 

of torque ripple from the system through calculation of the optimum waveform. It may 

noteworthy to point out that one of the principle limiting factors of the observers 

application (discussed above) was the occurrence of greater torque ripple at low speed. it 

is clear that minimisation of torque ripple is therefore attractive. 

·In Tzes et a! ( 1995), the· back propagation neural network in the specialised learning 

mode was employed in order to compensate the effects of friction in a micro

maneuvering system. Whilst this drive was not specifically sensorless, the principle of 

employing AI techniques was demonstrated, since an explicit model of the system was 

not available and a sufficient model would have been very difficult to derive. 

In Denai and Hazzab (1997), lshigame et al (1993), Suyitno et al (1993), fuzzy logic is 

employed in the controller as per the AI improved observers from the list above. Of 

special relevance to this paper is the use of fuzzy logic in order to improve the behavior 

of a sliding mode controller. As pointed out in Tzes et al (I 995), there have been many 

attempts to eliminate chattering; but of these attempts, none have simultaneously 

considered robustness. In addition the observation noise caused by high gain of the 

controller has not been compensated for. The papers Ishigame et a/ ( 1993) and Suyitno 

et a! (I 993) introduce a non-linear system which is composed of the weighted average of 

linear systems with fuzzy inference. The chattering phenomenon is shown to be reduced 

by combining the sliding mode control input and the equivalent control input through use 
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of fuzzy infe.rence. This approach is shown to improve the performance of a sliding 

mode controller. 

2.6 Discussion 

This chapter has served to introduce the permanent magnet synchronous motor and the 

brushless D.C. motor and explain why these motors are most attractive to drive 

applications. Further, their differences have been explained and common methods 

available for their control have also been discussed. It has been seen that position sensing 

devices are required not only for speed. control, but more fundamentally for efficient 

commutation of the motor. Sensorless methodologies for control of the brushless D.C. 

motor specifically have been discussed. The direct measurement methods have been 

based on the premise that the motor will be symmetrical, unfortunately they tend not to 

be, and in high accuracy applications some form of compensation is required. The 

PMSM is known to produce a reduced torque ripple, and has therefore it too has been the 

subject of much interest. The unfortunate aspect of the PMSM is that all three windings 

of the motor are energised at any given instant. Direct measurement of motor parameters, 

therefore, becomes difficult and some fomi of estimation is required. Estimation; within 

this context, is described as the process of extracting information unavailable for 

measurement, for any reason, from the available data. This data may contain 

measurement error and may also be influenced by external random disturbances. 

The observer approach has been shown to provide reasonable performance when 

estimating speed. The accuracy of the full state Luenberger Observer is as before 

contingent by the accuracy of the plant model and knowledge of the plant parameters, the 

motor when coupled to a nonlinear load is likely to demonstrate very different dynamics 
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to the idealised model. The Kalman filter approaches alleviate the need for a highly 

accurate model, however, acquisition of the initial covariance matrices are often difficult 

since statistical descriptions of the sensor errors are required (Dhaouadi et al., 1991 ). The 

sliding mode observer has been seen to perform very much better than the Luenberger 

observer, this is due to the invariance property of the sliding mode. The chatter 

phenomenon does not cause any problems within the implementation of an observer, 

since no physical properties need consideration. Sliding mode is invariant only to a class 

of uncertainty, and therefore the observer error dynamics may be effected by certain 

types of exogenous disturbance. The sliding mode has the advantage over the Kalman 

filter that no initial covariance matrix is required, but very similar performance can be 

obtained. (In fact it will be described in Chapter 6 that the Kalman filter and sliding 

mode observer have the same convergence properties). 

The remainder of this work therefore concentrates on the use of the sliding mode and the 

modelling and identification of the test system in order to arrive at a low speed position 

sensorless control drive. 
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Chapter 3 

Experimental Test Rig Modelling and Control 

3.1 Introduction 

The development of an experimental test system, which will form the basis for all 

subsequent experimentation, is of fundamental importance to this work. It follows that 

development of accurate system models based on knowledge acquired a priori also and 

of extreme interest; since these models will be used to develop controllers later within 

this work. This Chapter is divided into major sections; first the test rig is introduced and 

its mechanical and electronic properties are discussed. A novel approach to sensor 

bandwidth reduction is developed, other measurement devices are also discussed in order 

to achieve full state measurement within the system. Secondly, models are developed 

from knowledge of the motor, and assumptions about the load torque. These models vary 

in. complexity, from simple third order transfer function models to models based on the 

magnetic circuit of the motor. The performance of the respective models are subject to 

comparison before two controllers are developed in the final section of this Chapter. 

These controllers are applied to the system. The first is a proportional, integral, 

derivative (PID) controller, designed using the Zeigler-Nichols approach .. The second is 

. an integral action state feedback controller, which will serve to form a convenient basis 

for work within later Chapters. 
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3.2 Test Rig Properties 

The diagram shown in Figure 3.1 provides a schematic overview of the system and also 

serves to illustrate signal inputs and outputs from which data may be acquired. Within 

this section, the salient mechanical features of the system are first discussed. Discussion 

then turns to the systems through which data may be sensed and subsequently acquired. 

3.2.1 

> ......__ 
Amplifier 

D 
Brushless DC Motor 

Encoder 

Position 

Current 

Figure 3.1: Top Level Si mu/ink Model of the Linear Stage and Motor 

Mechanical Description of the Stage 

The motion control system for this work has been chosen to provide a good analogy with 

the type of system in common use within industry. Since the system is meant to provide 

proof of concept, nonlinearities which are normally associated with poor performance of 

a linear stage must be incorporated into the system. The commercially available 

brushless D.C. motor has been specifically chosen since its dynamic performance will be 

strongly affected by variations within the load. The motor is supplied with a 500 pulse 
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per revolution optical quadrature encoder. The technical specifications for both the motor 

and encoder may be found in Appendix B, Part A. In essence the stage consists of a lead 

screw, carriage and slide rails. The carriage is constrained to move in a single dimension 

by the slide rails and is coupled via a nut to the screw. The motor is rigidly coupled to 

the screw, so that when it rotates, the screw also rotates. Since the screw and carriage are 

linked, but since the carriage can only move linearly, a displacement of the carriage takes 

place. The position of the carriage is then implied from the screw pitch and knowledge of 

the number of rotations performed by the motor. Figure 3.2 illustrates the physical 

construction of the test rig. 

Figure 3.2: Physical Construction of the Test Rig 
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Figure 3.3: Rigid Coupling Between Motor and Lead Screw 

The slide rails come in many guises within the typical linear motion stage, the task is to 

support the central carriage and constrain its movement to a single axis. It is also 

imperative that the movement within the selected axis is as free as possible, i.e. friction 

should be minimised. Typically in low load applications ball bearings in a configuration 

such as that shown in Figure 3.4(a) are used. If the stage is designed for higher load 

ratings, or if the stage is designed for greater linear displacement accuracy, then the cross 

roller bearing design Figure 3.4(b) is preferred (Newport, 1999). The system in use 

within this project uses the former (Figure 3.5). 
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Figure 3.4: Slide Rail Arrangements, Ball Bearings (left) and Crossed Roller (right)" 

The mechanism in the test rig (Figure 3.5) does not provide the bearings with their own 

housing, like that shown in Figure 3.4(a). Therefore the balls tend to rub against one 

another as well as the supporting rail. This produces high levels of point friction, which 

in turn leads to increased mechanical wear and acoustic noise. The bearing system in the 

test rig uses a recirculating ball system, the principle of which may be seen in Figure 

3.5(b). 

Figure 3.5: Test rig slide rail Photograph(left) and Diagram of Principle(right) 

~ Pictures reproduced courtesy of Newport Motion Contols Ltd 
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Recirculation allows the carriage to travel large distances without the need for a large 

bearing housing. In the re-circulating system, the balls travel along the housing in the 

opposite direction to the carriage. When they reach the end of the housing they are 

channelled back to the front of the housing. The major drawback associated with this 

system is that it is highly sensitive to contaminants, which can lodge between bearings 

and prevent proper operation. Figure 3.6 provides a cut away illustration of the 

recirculating system in use within the system (not to scale). 

Figure 3.6: Cut-away of the Recirculating Ball and Rail System -

The two most common types of screw are the lead screw Figure 3.7(a) and the ball screw 

Figure 3.7(b). The ball screw uses recirculation in the same manner as the slide rail. 

This approach greatly reduces the rubbing friction in comparison to the lead screw. The 

ball screw also allows higher load ratings. The lead screw is, however, far cheaper and is 

used within the test rig. Once again, contaminants can play a significant role in the 

overall performance ofthe system. 
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Load 

Nut Ball Hetum 

Figure 3.7: Screw types, Leadscrew (left) and Ball Screw (right)+ 

Use of an Oldham coupling to provide linkage between the motor and leadscrew allows 

positive drive whilst maintaining robustness to manufacturing error. The lead screw is 

supported at either end of the stage with journal bearings, their frictional contribution is 

insignificant at low speeds when compared to the rubbing friction associated with the 

screw and nut (Shing, 1994). 
' 

Throughout this work, the following will be assumed about the system 

• The leadscrew is rigid. 

• The coupling between motor and screw is rigid. 

Additionally, within this Chapter it will be assumed that the load friction apparent at the 

motor is constant. It will be shown in §3.3, that there is a direct correlation between 

motor load torque and current drawn by the motor; and models which incorporate the 

load current are a good deal more accurate. The next section will move on to discuss the 

mechanical test rig performance in terms of its open loop dynamics. 

+ Pictures reproduced courtesy of Newport Motion Contols Ltd 
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3.2.2 Test System Performance 

Coarse measurements suggest that the frictional torque required to rotate the lead screw is 

1.2N/m. As discussed, it" is important to acquire accurate knowledge of system 

parameters. Therefore, a relationship between speed and load torque is developed. The 

encoder position data may then be directly applied to the calculation of the load torque 

across the full travel of the stage. 

Based on the reiationship 

Tm =f.KM 

and introducing the relationship 

and the power balance equations: 

Applied electrical power: 

Mechanical output power: 

Power loss: 

Power balance: 

f>;=V·l 

·P;=P,+P; 

The motor speed may be expressed as (from (3.4)) 

from (3.3), (3.5) and (3.6), (3.7) may be re-expressed as 

Substitution of the equations (3.1) and (3.2) lead to the simplification 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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V I 
{JJ=---

KR K 
(3:9) 

. further manipulation leads to 

(3.10) 

The relationship between speed and load torque has therefore been established for 

constant voltage application. Manipulation of (3.1 0) yields the ideal angular speed, {JJ; 

(Tm=O), (3.11) and the stall torque of the motor, T ms ((JJ=O), (3.12) 

v v· 
{JJ=-=-

1 KR K 
M 

T = VKM 
ms R 

(3.11) 

(3.12) 

It is clear that a speed between zero and ideal is indicative of a load. The actual torque, 

assuming a linear rdationship between {JJ and his given as a fraction of the stall torque 

T =T ·(1-~)-r m ms F 
n, 

(3.13) 

Where n denotes speed (rpm) and n; denotes ideal no load speed. This equation will be 

used later within the Chapter 4. The carriage was driven across the total length of travel, 

in both directions, and position data was acquired. Figure 3.8 illustrates the results. The 

convention that forward travel is away from the motor has been adopted throughout this 

work. It can be readily seen that the frictional perturbation has significant effect on the 

stage performance. It can also be seen that the effect is not symmetrical, i.e. the frictional 

effect is completely different when traveling in one direction, compared with the reverse. 

The spikes on the graphs are due to numerical differentiation of the data. 
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Figure 3.8: Comparison of Carriage Speed in Forward and Reverse Direction 

3.2.3 Electrical Characteristics of the Test System 

The control of motor voltage is achieved through a commercially available amplifier. 

From the perspective of this work, the only issue associated with the electronics is the 

measurement of physically relevant state variables. In principle, there are three circuits 

within the electronic subsystem. In order of discussion they are 

• Speed control unit/controller interface 

• Position measurement unit 

• Current measurement unit 
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The following sections move on to discuss their operation. The circuit diagrams are 

provided in Appendix B, Part B. 

Controller Interface 

Control of the system was initially performed with a Motorola 68000 microprocessor 

system. The interface consisted of eight usable digital inputs and eight outputs. The 

development of the control electronics was therefore constrained to meet these 

specifications. Speed control is achieved by providing the amplifier with an analogue 

voltage, the circuit shown (Figure B.l), therefore uses a seven bit digital signal to provide 

a series of 128 unique speeds. The eighth output was then used to provide directional 

information. An amplification unit was also used to achieve proper scaling of the speed 

signal for the amplifier. Figure B.2 illustrates the direction circuit and the amplifier unit. 

Because of the relatively slow interface between the 68000 and the computer for data 

analysis, and because of the heavy constraint on memory within the 68000 system, 

development was transferred to a PCL 7 I 8 data acquisition card which interfaced to the 

ISA computer bus. The circuit used to provide directional information has a very low 

overhead in terms of output requirement and therefore remains. The amplifier circuit also 

remains, if only to provide a buffer between the power electronics and the computer. 

This section of the electronics is used to provide information about the applied excitation 

voltage. Rather than increasing computational overhead by measuring this voltage, its 

value can be determined implicitly if the electronics are calibrated correctly. The circuit 

in Figure B.3 is used to achieve this calibration. Of principle concern is that full speed is 

achieved when the speed output is at a maximum and zero speed is achieved when the 

output is zero. The series of amplifier circuits are used to provide a full range of 
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operations on the control voltage. In order to minimise the effect of controller dead-band 

due to friction the summing amplifier is used to add an additional regulated voltage to the 

control voltage, thus providing a threshold which is adjusted so that the motor is just 

stopped with zero control voltage. The final amplifier in the circuit is used to amplify the 

entire signal, judicious selection of the amplifier gains allows the system to achieve the 

desired zero and maximum speeds with the controller. 

Position Measurement 

The device used for rotary position feedback is the quadrature optical encoder which 

provides three output channels, A, B and I (Appendix B, Part A). Channels A and B are 

placed 90° out of phase with one another and provide position and direction feedback 

information. The index (I) channel provides an index pulse once every rotation of the 

encoder to enable precise 'homing' of the device; this additional channel is not important 

to this work, since the limit switches are used to provide a home position. The encoder 

provides 500 pulses per revolution. When used in quadrature (channels A and B 

together) the effective number of pulses per revolution increases to 2000. In order to 

achieve accurate position measurement, all pulses must be registered and counted by the 

measurement (host) software. The host bandwidth, assuming no additional 

computational effort is therefore automatically set to a minimum of 

2000·n H: r == z 
60 

(3.14) 

Where yis the system bandwidth and n the speed (revolutions per minute) of the motor. 

3-I2 



Experimental Test Rig Modelling and Control 

In applications such as data acquisition it would be attractive to stream data from the 

system to a host computer. Even in low speed applications it is clear that the bandwidth 

requirement acts as a constraint on minimum hardware performance. 

Sensor Bandwidth Reduction 

A solution to this problem has been developed using a power integrated circuit (PlC) 

microprocessor. The microprocessor accepts the two channel signals from the encoder 

line driver and acts as a state machine to provide an eight bit position signal output. In 

addition, an available ninth output pin is used to provide the host system with information 

pertaining to the rotational direction of the motor. With the addition of this output, and 

correct integration with the controller software the bandwidth requirement is effectively 

reduced from (3.14) to 

2000-n H 
r = 15300 z (3.15) 

Using this system it is possible to achieve accurate position feedback using a 68000 

microprocessor and a 2000 pulse per revolution encoder at motor speeds of up to 1000 

revolutions per minute, which far exceeds the mechanical capabilities of the system. 

System Design 

The bandwidth reduction circuit is shown in Figure B.4. The line driver (U I) is required 

to provide the microchip with coherent channel signals. The microprocessor interface 

consists simply of an oscillator circuit (U3) and the microprocessor (U2). The 

microprocessor provides TTL compatible signals that may then be fed to an appropriate 
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data acquisition unit. In the example of this work, the data acquisition unit had an 

effective bandwidth of 8kHz. 

The host c-code and microprocessor embedded code flow diagrams are shown in Figure 

3.9 and Figure 3.10 respectively. Figure 3.9 represents the logical flow through a routine 

that will be resident within the host process. Its function is to provide a solution to the 

equation 

i=lc 

Tc =_LE, (3. 16) 
i=O 

where T c represents the total encoder count from initialisation to the current sample K. 

Of significance are the facts that the motor may travel in both a forward and reverse 

sense, and that once having reached 255 pulses in a monotone increasing cycle, or 0 in a 

monotone decreasing cycle, the firmware will 'wrap' to 0 or 255 respectively. Therefore, 

knowledge of the previous encoder output, direction and current encoder value are all 

required in order to calculate the true encoder value and minimise the bandwidth 

requirement. 

Within the diagrams, K and K-1 are used to represent the current and previous sample 

respectively. E represents the encoder value, S represents the encoder states. TC 

indicates the total encoder count and Dir or Direction are used interchangeably to indicate 

the direction of motor travel. 

Figure 3.10 illustrates the logical flow through the firm ware code. There are four 

possible states (S) in which the output signals might reside. Converting signals A and B 

to binary representation yields the states 

0. Neither A nor B are logical I 
I. A but not B is logical I 
2. B but not A is logical I 
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3. A and B are logical I 
In terms of flow through the states, when traveling in the forward direction the encoder 

sequence is given by 

0~2~3~1~0~2~3~1 ... 

The microprocessor executes, in general, I instruction per cycle and operates at I OMHz. 

Once within the software loop, state transition may be checked at up to 1.666MHz. in the 

event of a transition, 700ns are required for processing. The worst case operating scenario 

is a state change every sample, i.e. once approximately every O.I3J.!S, this corresponds to 

a motor speed of 231769 revolutions per minute, therefore effectively guaranteeing that 

every state generated by the encoder will be registered. 

Current Measurement 

The final circuit of concern is the one which is used to achieve current measurement. 

Since direct current was anticipated, hall effect current measurement was not viable. 

Instead, a shunt resistor is placed in the motor supply line. A precision amplifier is then 

used to measure the voltage drop across the resistor and to provide a voltage proportional 

to it. This method of measurement is not ideal since it is very noisy. A resistor-capacitor 

low pass filter is used in the output stage of the amplifier in order to try and smooth this 

signal. The circuit is shown in Figure B.5. 
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E(K-1)=E(K) 

Set states 
S(K)=O,S(K·1)=0, 
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Yes 

Tc=Tc+(255-E(K-1)-E(K)) Tc=Tc-(255-E(K)-E(K-1)) 

Figure 3.9: Higher Level Programme Flow 

Tc=Tc-(E(K-1)-E(K)) 

No 

S(K-1)=S(K) 
E(K-1)=E(K) 

Figure 3.10: Low Level Programme State Machine 
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3.3 Model Development 

Of fundamental importance to the development of efficient control algorithms for the 

system is the development of sufficiently accurate motor models. Since motors of all 

shapes and sizes have been used in innumerable applications from power generation to 

robot control, there exists a vast quantity of literature based on the modelling of these 

machines e.g. Rahman and Zhou ( 1996), Hemati and Leu (1992), Pill ay and Krishnan 

(1991) and Low et a! ( 1996). Extremely elaborate models have been developed based on 

the magnetic circuit of the motor, e.g. Shi and Li, (1996) however these models are 

c6mputationally expensive, subsequently less complex models are considered within this 

work. 

There are two motor types under consideration here. The brushed commutator D.C. (DC) 

motor and the brushless D.C. (BLOC) motor; although the BLOC motor will be more 

generally treated as the synchronous motor. Clearly, the BLOC is of direct relevance to 

the work. since this is the type of motor used for actuation of the stage. The selection of 

the DC motor has been largely dictated by the requirement for a simple motor model in 

order to validate control schemes later on within this work, since the BLOC motor is 

multi input by nature, where as the DC only requires a single control input. 

This Chapter begins with the treatment of the DC motor, mathematical models are built 

into transfer function form and then state space form, simplifications and assumptions are 

highlighted where necessary. 
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3.3.1 Modelling with a Transfer Function 

The D.C. motor is among the most simple to model. This work therefore begins with the 

comparatively simple task of expressing the DC motor model in terms of its transfer 

function and equivalent state space model. As explained in the previous section the 

principle reason for consideration of the DC motor lies in the ability to subsequently 

apply the model to control structures, complex derivation of torque ripple induced by 

brush commutation (e.g. Kocybik, 2000), for instance is not of primary concern here. 

Consider the equivalent circuit of the DC motor: 

.. . 
L dza 

dt -. E 

Figure 3.11 : Equivalent Circuit of the DC Motor 

From Figure 3.11 it may be written 

(3.17) 

This is commonly referred to as the voltage balance equation. The generated back EMF 

(E) is proportional to speed and flux density of the rotor (armature) field. It may be 

written, 

E = {J)KC!> (3.18) 
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In a similar manner the torque generated by the motor may be expressed as 

(3.19) 

Finally, the motor will drive a load (even if that load is only the rotor armature), the load 

may be generalised as the sum of frictional and inertial components. 

d{J) 
TL = J- + B{J) 

dt 

The torque balance equation may be expressed as 

(3.20) 

(3.21) 

Kct> can be seen to be constant in both equations (3.18) and (3.19). Therefore, for ease of 

identification, Ke will be used to indicate the electrical gain constant and km the 

mechanical constant. 

Applying Laplace transforms to equations (3.17)-(3.20) 

V(s) = ( Ls+ R)I(s)+ E(s) (3.22) 

(3.23) 

(3.24) 

E(s)= K.{J)(s) (3.25) 

Figure 3.12 illustrates the block diagram of the motor. From this diagram the transfer 

function of the motor may be expressed as 

(3.26) 

Alternatively, (3.26) may be written 
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(3.27) 

since~s) = £9(t); B(t) = J m(t) dt 

1 J(s) 1 m(s). 
Ls+R Js+B 

E(s) 

Figure 3.12: Block Diagram Representation of the D. C. Motor 

it is desirable to further simplify the motor model. Since the motor inductance IS 

typically negligible, its effects may be ignored. Hence (3 .27) reduces to: 

B Km 
V(s)= s{R(Js+B)+KmK. } 

(3.28) 

and after further manipulation to: 

(3.29) 

On inspection of equations (3 .18) and (3.19), it can be seen that the effect ofthe constants 

K. and Km increase with speed, their effect could therefore be lumped together with the 

effects of viscous friction. At this point, definitions of new motor parameters will serve 

to tidy the equation. 

Let 
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combining (3.29),(3.30) and (3.31) yields 

K 
G ( s) = ----:--

Js2 + Fs 

alternatively 

Ks 
G(s) = ( ) 

ss+a 

where K' = Km . a = F and T m = - = RJ 
· RJ J a RB+KmKe 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

K, in this equation is the open loop gain constant, Tm is the motor time constant. 

3.3.2 State Space Modelling 

The transfer function for the D.C motor has been successfully derived in the previous 

section. Unfortunately, transfer functions are limited to single input, single output 

systems. A lesser problem is that zero initial conditions are assumed. The models 

functionality would be significantly enhanced if position, speed and acceleration could all 

be expressed without the need for differentiation of the model output. Attention is 

therefore diverted to the state space modelling of the motor. Modelling may be achieved 

through either direct conversion from the transfer function previously derived, or from 

the differential equations given (3.17) and (3.20). Rearranging (3.27) gives 

(3.34) 
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Alternatively, in matrix form 

X, 0 I 

Xz = 0 0 
X

3 
O _ (BR+KmK.) 

JL 

0 [X'] 1 X 2 + 
_ (BL + RJ) X 

JL 3 

0 

0 V 
Km 

JL 

(3.35) 

The matrix form above is known as the companion form and will be useful later in the 

development of certain control schemes. As stated, the alternative method for deriving 

the state space model is to use the differential equations directly, reiterating, 

. dl 
Va =E+l R +L-a 

a u dt 

E = {J)KC!> 

d{J) 
TL =J-+B{J) 

dt 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

It will be of some benefit to split the load into internal and external components. The 

torque balance equation can be rewritten as 

d{J) 
J-+B{J)+Tx =la.KC!> 

dt 

Where T xis the external load torque. ·Rewriting equations (3.36) and (3.40) 

L dl" = -1 R - K {/)+V 
dt a a e a 

d{J) 
J-=-B{J)-Tx +la.Kct> 

dt 

(3.40) 

(3.41) 

(3.42) 
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d(} 
Now, let XI = B,X2 =- = (t),and XJ = i let Tx =VI and vu= v2 

dt 

such that 

X1 =X 2 

• VI B KM 
X2 =----X +-X 

J J 2 J 

• K. R V 2 XJ =--X --X +-
·.L 2 L 3 L 

(3.43) may be more concisely expressed in matrix form as per equation (3.44) 

XI 0 I 0 

[~J 
0 

X2 0 
B Km - vl = 
J J J 

XJ K, Ra v2 0 
L L L 

(3.43) 

(3.44) 

At this point treatment of the DC motor model is abandoned since sufficient models for 

simulation have been derived and instead the BLOC is now considered. 

33.3 The Lumped Parameter Model 

Given the phase windings A, 8 and C, the transformation from the three-phase model to 

. an equivalent two-phase description is desired. The Park transformation (3.45) is 

commonly used in obtaining this conversion, since it possesses the unique property of 

eliminating all time varying inductances from the machine voltage equation (Krause et al, 

1995). 
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Cose cos(e- 2
;) cos(e+ 

2
;) 

k=3_ Sine sin(e-
2
;) Sin(e+ 2

;) (3.45) 
3 

I I 

2 2 2 

Another advantage of this transform is that it may be equally well applied to voltage, 

current, flux linkage or electrical charge. It may be written 

/qdOs = k · fabcs (3.46) 

Where 

(3.47) 

(Jabcs Y = ffas fbs fcs) (3.48) 

where f represents any of the afore mentioned sets of variables. Assuming that the three 

phase voltages are given 

di 
V. = r)as + L,s ~ + A.mw, cos( e) as dt (3.49) 

(3.50) 

V . L dies 1 (e 2i) 
CS = r,/CS + <S- + -"m{l)r COS +-

. dt 3 
(3.5I) 

where rs, Lss and Am represent the stator resistance, stator self inductance and flux linkage 

due to the permanent magnet respectively. 9 and ffi represent the position and velocity 

respectively, suffix rm represents the mechanical rotor position and suffix r represents the 

electrical equivalent. The corresponding voltages in the dqO axis will be 

· . diqs ( . ( )) Vq, = r,1qs + Lss - + w,A.m sm B, 
dt 

(3.52) 
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(3.53) 

The electromagnetic torque generated by the motor may be expressed in terms of the 

rotor reference frame according to the following equation (Krause et a!, 1995). 

(3.54) 

Where Ads = Am cos(B,) and Aqs = Am cos(B,). In addition to this, the mechanical load 

placed on the motor is given 

(3.55) 

In this case, the mechanical load is given in two parts, first the viscous friction (B) and 

second the inertia (J) of the motor, Tx in this case represents the external load placed on 

the motor. This external load is extremely important to the validity the model from a 

practical perspective. 1t is this load that serves to represent the external system, in the 

case of this work, the load is time variant and non-linear, (Armstrong-Helouvry et a!, 

1994). The addition of I: potentially provides a useful interface for an external torque 

observer. The. torque balance equation may be derived by equating (3.54) and (3.55): 

(3.56) 

The voltage and torque equations above may be used in order to model the motor to a 

reasonable degree of accuracy. In order to make use of these equations in a control 

system, they must first be converted into a usable format. Rewriting equations (3.52), 

(3.53) and (3.56) leads to 

(3.57) 
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(3.58) 

dw 3 A.m ( )· 3 Am . ( )· B Tx -=--cosB 1 ---smB 1 --w--
dt 2 J ' qs 2 J ' d< J J 

(3.59) 

I 

e, = fw(;}i; +B(o) (3.60) 
0 

Equation (3.60) gives the mathematical description of the rotor position. ; is a dummy 

variable of integration, and 61::0) is the zero time position of the rotor. 

equations (3.57) to (3.60) may now be expressed in state space format, 

0 I 0 0 0 

XI 0 
B - ~ A.m sin(x ) 3 Am ( ) 

XI 
ul --cos x 

J 2 J I 2 J I J 
x2 

- A. m cos(x1) rs x2 
+ u2 = 0 0 

XJ L, Lss XJ Lss 
(3.61) 

0 - A.m sin(x1) 0 
rs x4 UJ 

x4 
L, Lss L,. 

XI 

[~]=[~ 0 0 ~] x2 

0 x3 
(3.62) 

x4 

3.3.4 The Phase Co-ordinate Model 

The phase co-ordinate model (Kenjo and Nagamori, 1985) is based on phase equations 

using stator and rotor circuits. In the case where there are more than 2 slots per pole per 

phase the inductance matrix contains sinusoidal terms. Development of this model will 

focus on the salient pole rotor, since the cylindrical rotor may be viewed as a special case 

of the former. 
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The phase inductance matrix [L] is: 

Laa Lab Lac Laj Lad, Lq, 

Lab Lbb Lbc Lbf Lbd, Lq, 

[L]= Lac Lbc Lee Lcf Led, Lq, 
(3.63) 

Laf Lbf Lcf Lff Lfd, 0 

Lad, Lbd, Led, Lfd, L drdr 0 

Lq, Lq, Lq, 0 0 L q,q, 

For distributed windings (more than 2 slots per pole per phase) all inductance's linked to 

the stator (self, mutual and stator/rotor inductance's) are rotor position, 8,, dependent: 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

(3.69) 

(3.70) 

(3. 71) 

Led = Lsd cos(e + 2n) 
' ,. r 3 (3.72) 
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(3.73) 

(3.74) 

(3.75) 

L = -L sinB uq, .fq, r (3.76) 

(3.77) 

(3.78) 

Rotor inductances are evidently independent of rotor position as the saliency is based on 

the rotor itself 

(3.79) 

(3.80) 

(3.81) 

where Ln, Ld I and Ld I are leakage inductances while the others are related to main flux 
r r 

path. On the other hand, for concentrated windings (I slot per pole per phase), when 

cylindrical pole permanent magnet rotors are used, all stator inductances are independent 

of rotor position. Only the motion related inductances between the constant field current 

permanent magnet equivalent circuit and the stator windings depend on rotor position. 

Ls Lab Lab LaAe.,) 

[L1M = 
Lab L,. Lab La1 (B.,) 

(3.82) 
Lab Lab L, La1 (B.,) 

La1 (B,J La1 (B.,) L.1 (e.,) 0 
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The stator self inductance L, and the stator/stator mutual inductances Lab are all equal to 

each other. To a first approximation 

Lo L --ab -
3 

The voltage/current equation in phase co-ordinates is: 

[Vs] [rs 0] [i'] d [As] 
· V, = 0 r, . i, + dt A, 

with 

[A]=[r(eJ]·[i] 

(i]= [i.,ib,ic,if,J 

(r] = diag(r,, r,, r,,O] 

(3.83) 

(3.84) 

(3.85) 

(3.86) 

(3.87) 

(3.88) 

Finally the electromagnetic torque Te may be calculated from the eo-energy derivative 

with respect to rotor position: 

After neglecting magnetic saturation, (3.84) is multiplied by [i]T: 

[if(v] = [r].[i]· (if+~ G[r ].(i].(if) +~·(if· a! .. [L(e .. )]· [i] 

The last term is the electromagnetic power P elm 

The motion equations are 

J d(J) 
- -' = T;- TLoad 
p dt 

(3.89) 

(3.90) 

(3.91) 

(3.92) 

3-29 



Experimental Test Rig Modelling and Control 

d(eeJ w, ----
dt p 

(3.93) 

The result is a set of eight non-linear differential equations with time varying coefficients. 

These equations are used for special cases for machines with some asymmetry or for 

unbalanced supply voltage operation. 

Also, for the concentrated stator winding and permanent magnet cylindrical rotor, the 

phase variable model is the model of choice as L.t(Scr), Lbt(Ser) and Lct(Ser) are contain a 

high harmonic content. In order to avoid the inductance dependence on rotor position, for 

distributed windings, the space phasor (d-q) model is used (See Vas ( 1993) and Appendix 

8, Part C). 

3.3.5 Performance Measures 

Performance measures are extremely important for the validation of derived models. The 

selection of performance measures is heavily application dependent. Three measures of 

· performance based on common modelling objectives will be used to quantify modelling 

error ( c (t)). Model error is first described based on the following relationship 

c(t) = y(t)- .Y(t) (3.94) 

where y(t) is the system output and .Y(t) is the models estimate of the system output. 

The first of the three measures to be used is the infinity norm given by 

(3.95) 

The infinity norm of a signal depends on the extreme values of error. Since extreme 

values will be sporadic, the infinity norm represents the worst-case model estimate. 
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The root mean square error semi-norm is also used to quantify the performance of the 

model. As opposed to the infinity norm, where the peak values of error were of concern, 

here it is the average value of error, the root mean square (RMS) of the error is given by 

(3.96) 

The concept of the RMS error is used commonly within many engineering fields to 

describe the concept of average value, a low value for this performance measure does not 

imply that no large peaks in error occur, simply that they are not common and do not 

contain large values of energy. 

The final performance measure is based on the ability of the model output to track the 

system output. Here, absolute error is only implicitly considered and the impetus is 

placed on how the signals vary with time. The percentile variance accounted for (VAF) 

is given as 

VAF= 100%{1 
var( c(t)) l 
var(y(t)) 

(3.97) 

When the model output ( y) and the system output (y) are identical, the V AF is given as 

100%, if the model is in error then the measure is lower. It is interesting to note that from 

the perspective of developing control algorithms based on the identified model, the V AF 

is of more significance to the designer, since this describes how well the model has 

captured the system dynamics. 
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3.3.6 Data Selection 

The selection of data upon which to validate models is a topic of some discussion within 

the research community. For now, a specification for the data will be presented, with the 

justification to come in Chapter 4. 

• The data should excite both low and high order dynamics 

• The variance of the data should be as broad as possible. 

• The bias of the data should be zero. 

In real terms, the data acquired must incorporate the dynamics from as much of the 

system as possible. Ideally, the excitation signal will be of variable amplitude and 

frequency in order to capture a wide range of system dynamics. The excitation signal 

should be of zero mean in order to avoid introducing unnecessary bias. To this end, a 

random stepwise signal with zero mean was used as a basis for the excitation signal. 

Random white noise was added to this signal. The system was subjected to this signal 

and current and position recorded as shown in Figure 3.13. The speed of the system is 

. simply taken as the derivative of the position signal after data acquisition. 
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Figure 3.13: Model Validation Data Set 

Figure 3.14 shows a comparison of the various models based on this validation data set 

The transfer function model, which is the only model to use only the voltage as an input, 

clearly establishes that this system is multi-input in nature. The state space model 

performs surprisingly well in comparison to the remaining two. The lumped parameter 

model, on the other hand is disappointing. This poor performance may be due to 

inaccurate estimates of self inductance and flux linkage, which are not specified by the 

manufacturer. The phase coordinate model performs well, however it is extremely costly 

when computational overhead is considered. 

provides a tabulation of the two meaningful models according to the performance 

measures discussed in §3.3.6. The next section within this work moves on to develop 

controllers based on these models. Since the state space model performs comparably to 

the others, but does not impose massive computational burden this will be the model used 

in the controller design. It is clear that the models may be improved. This could only be 
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achieved if the load were better understood. Since it is time variant, a method must be 

sought to identify the load subjected to the motor online. This will be the topic of 

consideration in Chapter 4. 

Table 3.1: Performance measures of the two meaningful models 
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Figure 3.14: Comparison of Models and the Actual System Performance 
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3.4 Controller development 

It is common that a proportional plus derivative (PO) or a PID controller is used for 

motor control (Seraji, 1983). It was seen in the last section that the single input single 

output model fails to consider the effect of load torque and therefore these models tend to 

be significantly less accurate than their state space counterpart. Furthermore, the state 

space model has been shown to perform nearly as well as the more complex phase 

coordinate model. Therefore, within this section two controllers will be developed. First 

a PID controller based on empirical observations gained from the stage is developed. The 

well known Zeigler-Nichols approach to this design is adopted (Unar et a!, I 996). 

Following on, an integral action controller is then be developed based on the state space 

model. This controller will be used in later Chapters as a basis for an advanced sliding 

mode controller. The motor model 

(3.98) 

is thought to be acceptable for the development of these controllers. 

Table 3.2: Nominal Motor Parameters 

Parameter Nominal Value Units 

Km 54e-3 NmA" 

K, 54e-3 Vs/rad 

L 0.0026 H 

R 0.64 n 

J 9e-3 Nms2 

B 7e-3 Nm/rad/s 
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Using the motor parameters given in 

Table 3.2, the equation (3 .98) becomes 

e 54x10-3 

V ( s) = 31.2 X l o-6 s3 + 7.698 X 1 o-3 s2 + 4.48 X 1 o-3 s 
(3.99) 

Within this work, the Zeigler-Nichols reaction curve method was chosen as the design 

approach. This has choice has been motivated primarily by the simplicity in deriving the 

controller coefficients. In addition, and perhaps more importantly, the system is stable. 

This makes the continuous cycling method inutile as a design approach for this system 

(Golten and Verwer, 1991 ). The reaction curve method is dependent upon excitation of 

the open loop system with a step input; Figure 3.1 5 illustrates the reaction curve derived 

from the simulated system. 

0.8 

Au 

0.2 

ND 

·------------------ ------------------------1 
I 
I 

nme. s 

~ --- Demand I 
- Siroolaled Speed 

Figure 3.15: System Reaction Curve 
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The PID transfer function is given as 

U(s)=K (l+sT +T,) 
E(s) c d s (3.1 00) 

where E is the system error and U is the control effort. Kc, Td and T; are the controller 

gain, derivative and integral time constant respectively. It is the Zeigler-Nichols method 

which is used to find these parameters, using the values from the reaction curve the 

parameters are given by 

K = 1.2 !::..u 
c ND 

T= D 
' 0.5 

(3.1 0 I) 

(3.1 02) 

(3.1 03) 

Insertion of the numerical values from Figure 3.15 yields the parameters 

Kc = 12, :Z: = 0.025 and T, = 0.1. Figure 3.16 illustrates the result of applying this 

controller to the simulated system. It is feature of the Zeigler-Nichols approach that the. 

response typically decays with a ratio of 4: I, the response is fast and these oscillations are 

not thought to be significant. 
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Figure 3.16: Simulated Plant Response Under PID Control 

The PID controller was implemented in real time on the test system; Figure 3.17 

illustrates the result. Clearly the response is oscillatory and is not acceptable. In addition 

the effect of changes within the load can clearly be observed within the plant response. 

The poor performance of the controller is attributed to the fact that the controller was 

developed on a model of the system that was known to be inaccurate. It is starkly 

illustrated here that a controller which is invariant to these load changes is also required, 

since mathematical tractability within future controller design is desired. In order to 

improve control performance, the system was tuned heuristically. 
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Figure 3.17: System Response Under Zeigler-Nichols PID 

Figure 3.18 illustrates the unsmoothed results. Clearly, there is a good deal of 

measurement noise present, however the tuned controller performs with near zero error. 
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Figure 3.18: Tuned Controller Response 
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The previous controller was based entirely on the assumption that the load torque could 

be ignored. It was seen that the controller required significant tuning before its 

performance was deemed acceptable. A controller will now be developed using modern 

control techniques in order -to take advantage of the additional understanding of the 

system dynamics afforded by the incorporation of the current state. Later within Chapter 

6, a similar approach to incorporating an integral action into the control channel is 

developed. The derivation there relies on the use of a special canonical form, known as 

the regular form. For this section, however, concern is simply for the introduction of an 

integral action and the subsequent development of a controller based on pole placement 

techniques. 

The state space model has been seen to perform reasonably in comparison to the system. 

It is therefore not unreasonable to use this model in developing the controller. Since 

concern is only with the control of motor speed, the position state is ignored to give 

[ ~~(r)J=[-- ~ ~j[x~(r)J+[~]u1 (r) x2 (t) K. R x2 (t) -
-- -- L 

L L _ 

(3.1 04) 

y(t)=Cx(t) (3.105) 

where x1(t)=w(t), x2 (t)=i(t) and U1(t)=V(t). For the time being load torque will_ 

be ignored and treated as an exogenous disturbance which will need correction by the 

integral action. Now consider the introduction of a signal which satisfies 

i(t) = r(t)- y(t) (3.1 06) 

where the differentiable signal r satisfies 

r(t) = r(r(t)- R) (3.1 07) 
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where r is a stable design matrix and R a constant demand vector. Now consider the 

control law given by 

(3.1 08) 

The control effort is derived by through a summation of the system states and the integral 

action, after multiplication by the feedback gains. The system equations may be written 

[~(t)]=[A O][x(t)]-[B][K K ][x(t)]+[O]r 
c-(t) c 0 c-(t) 0 1 2 s(t) r 

(3.1 09) 

subject to compatible dimensioning of the matrices. This equation may also be written as 

i(t) = ( .4- BK)x(t)+ tr(t) (3.110) 

with 

- [A A= 
c 

0] _ [x(t)] - [B] [ ] - [0] 
0 

,x(t)= s(t) ,B= 
0 

,K= K1 K2 andr= r. 

This final equation is easy to recognise as the state feedback problem. A controller for 

the system will now be developed based on this derivation. Inserting the nominal values 

'· 
for the motor into the equations and selecting 

C=[-1 0) 

yields 

[

-2.692 

.A= -20.77 

-I 
0~] -246.15 

0 

6 

(3.111) 

(3.112) 

(3.113) 
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(3.114) 

Since the matrix pair (A, B) is controllable, the control law is given by 

(3.115) 

The closed loop characteristic equation is given by 

I..U- A+ BKI = A.3 +(248.842+384.62k2)A.2 +(1035.4k2 + 2307.72kl + 78.725)A.+ 2307.72k3 

(3.116) 

The closed loop poles of the system are desired in the locations 

[-300 -10+ j5 -10- j5] (3.117) 

The selection of the conjugate pair as the dominant poles will provide a slightly under-

damped response, as in the case of the PID controller. In order to achieve this eigenvalue 

spectrum, the feedback gain matrix must be 

K=(2.537 0.185 16.25] (3.118) 

Implementation of this controller yields the step response with no load as in Figure 3.19. 
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Figure 3.19: Integral Action Controller Step Response, Time Response (top), Control 
Effort (bottom) 

The controller step response does not give overshoot and has a 2% settling time of 0.53 

seconds. Of interest is the effect that the load torque will have on the controller. A 

negative load of 0.2 Nm was applied in the simulation (Figure 3.20). The system in this 

case has a 2% settling time of 0.54 seconds, nearly identical to that of the system under 

no load conditions. The clear divergence from the demand over the initial period is due 

to the lack of a clear error to integrate. This fact is clearly illustrated in Figure 3.21 , 

where once the error has become significantly large, the controller then reduces the error 

to zero. 
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Figure 3.20: System with -0.2Nm Load, Step Response (top) , Control Effort (bottom) 
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Figure 3.21: Unforced System Response to -0.2Nm Load, Time Response (top), Control 
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This controller was implemented on the test system, the response of the system can be 

seen in Figure 3.22. There is clearly close agreement between the simulated response and 

the actual response to a step input. There is slight overshoot evident on the actual system 

and there remains some disparity between the simulation and the actual system. This is 

attributed as much to measurement error as variation within the load. 
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Figure 3.22: Step Response of Actual System Compared to Simulated Response 

It is clear however that a suitable controller can be derived based on mathematically 

tractable results if the model is of sufficient quality. There is still a requirement, however 

for a controller which will be invariant to the variations within the load. 
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3.5 Discussion 

This Chapter has served to introduce the experimental test rig. Its mechanical and 

electrical interfaces have been discussed. A novel approach to reducing system 

bandwidth requirements in the face of high frequency sensor signals has been developed. 

Several models of the system, based on a priori knowledge of the motor performance 

have been discussed, and their respective performances compared. The third order state 

space model has been shown to be sufficiently accurate to use as a basis from which to 

develop state feedback controllers. The higher order models may provide slight 

performance advantages, but it is clear that the load, for which only diminutive 

information is available, is the predominant cause of error within the models. Two 

controllers were developed based on the models discussed. The first was a PID 

controller, using the Zeigler-Nichols reaction curve method to find the initial controller 

parameters. These proved to provide an unacceptable controller performance. 

Subsequent tuning led to an acceptable controller, however it is clear that for the duration 

of this work, heuristic tuning of controllers is not an acceptable design approach. The 

second controller made use of the enhanced knowledge of system dynamics afforded by 

measurement of the load current. The controller was shown to perform much more 

predictably in practice. The integral action of the controller has been shown to reduce the 

steady state error of the system to zero, despite load uncertainties. This integral action 

may therefore be said to introduce a robustness to these disturbances. This type of 

controller will be used heavily later within this work. 
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System Identification 

Chapter 4 

System Identification 

4.1 Introduction 

The development of models to describe system behaviour is of interest within many areas 

of science and engineering. The models, once developed provide the user with a method 

for describing the behaviour of a system, and the means to develop prediction and control 

algorithms. In the previous Chapter, comprehensive models of the brushless direct 

current motor and its accompanying system have been derived based on prior engineering 

knowledge of the motor's physical construction. This approach to modelling is 

commonly referred to as the 'white-box' method. Implicit in this approach is that 

nonlinearities within the motor have negligible effect on system performance, and may be 

ignored. Within the literature there exist many motor models for which any number of 

superlatives are probably quite applicable, however within this work the motor is rigidly 

coupled to a load for which only diminutive information about its dynamics exist. The 

load is known to be time variant and it was shown to vary with relative position along the 

length of the stage in Chapter 3. When dealing with the system at the holistic level, it 

becomes necessary to investigate alternative approaches to the estimation of system 

performance. 

A common alternative to the white-box modelling methods described above is the black

box approach. This is approach represents the antithesis of the white-box method; thence 

its name is derived. The black-box approach relies on the collection of input excitation 
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and resultant output data. From a given data set, it becomes possible to search for 

correlation in the data and to define input-output relationships. In such a manner, the 

user is not strictly required to understand the latent system. The flexibility of such an 

approach has led to its application in fields as diverse as chemical process modelling 

(Hellendoorn and Driankov, 1997) to banana ripeness testing (Llobet et al., 1999). 

Clearly, definition of such systems through the white-box approach would soon become 

intractable. Figure 4.1 illustrates the output of a white-box phase coordinate model and 

its comparison with the motor coupled with the load (from Chapter 3). There is clearly a 

case here for using the black-box approach in order to improve modelling accuracy. 
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Figure 4.1 : Phase Coordinate Model Results 
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It has become the case that the black-box approach is used synonymously with the field 

of system identification. Throughout this work, however, the definition of system 

identification will be that of Ljung( 1998): 

[system identification is-] "the theory of designing mathematical models of 

dynamical systems from observed data" 

It will be demonstrated that black-box modelling, according to this definition comprises 

only one part of this research area. Neither of the two approaches discussed thus far are 

without merit. The white-box model is guaranteed to maintain physical relevance and 

thus provide an authentic characterisation of the modelled system, as opposed to a simple 

data description. Conversely, the black-box models are easier to construct than the 

white-box models and often leads to significant reduction in simulation times since the 

use of partial, differential and algebraic equations can be avoided. 

One final area of consideration within this Chapter will be to achieve synergy between 

the black-box and white-box approach, such that the advantages of both are retained. 

This comparatively new approach has been dubbed the 'grey-box' approach within the 

literature (Linskog, 1996). 

This Chapter now continues with the consideration of necessary mathematical 

foundations, upon which the black-box models are to be built. The concepts associated 

with fuzzy. clustering are also introduced. System models are then identified using 

artificial neural networks and fuzzy clustering, using data acquired from the test rig. In 

addition, comparative measures for the assessment of model quality are made. Finally, 
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methods are sought whereby the system models may be improved through the application 

of a-priori knowledge. 

4.2 Mathematical Foundations 

In the previous section system identification is described as being concerned with the 

development of a system model from observed data. Essentially this is the theory of 

inferring system outputs from system inputs at finite time t. The process of identification 

is to choose a model of sufficient flexibility, and one that is known to have performed 

well in the past. One specific family often employed because of this is based around the 

linear difference equation (Leonartis and Billings, 1985a) given by: 

(4.1) 

the system is represented in discrete time; this is principally because the data within this 

work is collected through sampling. The sample interval is assumed constant. Simple 

transposition of (4.1) allows the determination of the next system output given previous 

observations 

(4.2) 

Simply for the purposes of tidiness, and more compact notation two vectors are 

introduced 

8=[a1 ••• a. b1 ••• bm] 

tp(t)= [- y(t -1) ... - y(t -n) u(t -l) ... u(t -m)] 

Having defined (4.3) and (4.4) equation (4.2) may be rewritten as 

. y(t) = 1/)T (t 'yJ 

(4.3) 

(4.4) 

(4.5) 
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y(t) is an estimated value and depends heavily on the parameters within the vector(}, the 

equation ( 4.5) is therefore rewritten in order to reflect this: 

y(tl(}) = (/JT (t )e (4.6) 

Model structures such as the one in (4.6), which are linear in (}are referred to as linear 

regressions, rp(t) an auto-regression if it contains previous values of y(t). The vector 

rp(t) is known in general as the regression vector, its parameters the regressors. The 

model in (4.5) contains previous values of the variable to be calculated. Based on these 

definitions, the jll()del structure of equation ( 4.1) is given the general name Auto

Regression with eXogenous variables (or eXtra inputs), or AR.X as a convenient 

acronym. 

Ljung ( 1998), and others within the field generally agree that there three processes or 

entities within the system identification prototype. Given in logical order they are 

I. The data set 

2. The set of chosen candidate model structures, e.g. the AR.X model above 

· 3. The selection criteria 

The data set comes from the assumption that precise parameters in (}are unknown. These 

are therefore recorded inputs and outputs given over time interval I :s; t :s; N: 

ZN = {u(l),y(l), ... ,u(N),y(N)} (4.7) 

It is important to note that the input- output data need not be raw data collected from the 

system. If it is known, as in the case here, that torque is a principal component of 

disturbance then a model of torque based on output data might be used instead. 

Typically, input - output data is collected through designed experiments subject to design 
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constraints. The schematic diagram of the test rig is illustrated in Figure 3.1. The 

diagram illustrates a series of input and output nodes. These nodes represent points 

within the real system from which data may be collected. The aim is to collect data that 

will be maximally informative during training. The selection of the model structure is 

generally regarded as the most difficult part within the identification process. It has 

already been seen that a general multi-input single output (MISO) model structure such 

as (4.6) can be used, where the function f(tp(t),e) is a mapping which is parameterised 

in e. The task of finding a suitable model structure is naturally divided into two disparate 

tasks 

I. Choosing the regression vector tp(t) 

2. Choosing the static mapping f ( +) 

These are the topics of greatest consideration within this work and it will naturally be 

revisited in the following sections. Figure 4.2 illustrates the standard data set which was 

acquired from the test rig. This data set will be used throughout the identification 

process, except where stated. The reasons for selecting this data set will become clear 

later within the text. 
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Figure 4.2: Identification set I 

At this point, a general transfer function of a linear system with additive disturbance is 

defined for future reference 

(4.8) 

where q·1 denotes the backward shift operator, i.e. 

(4.9) 

e ( t) is assumed to be a sequence of independent variables with zero mean and variance 
I 

A.. Choice of the selection criteria is really the choice of measure for assessment of model 

performance. Since model and measured outputs are never precisely matched perfectly, 

an error term is introduced to reflect this 
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c:(riB) = y(r)- .Y&ie) (4.1 0) 

this term mlturally represents both unmodelled dynamics of the system, measurement 

noise within the data set and the effect of disturbances on the system. A typical choice 

for the minimisation of this error function is the quadratic cost function. 1t follows that 

the function that minimises the error c:(t IB) will be the function that selects Bin such a 

manner as to fit .YVIB) as closely to the measured outputs as possible. 

( 4.11) 

where V N in the case of the least squares method is given 

I N 2 I N 2 

vN(e.zN)=- L(y(r)- .Y(tle)) =-L(Y(t)-ql(t)e) 
N t=i N t=i 

( 4.12) 

The value of Bwhich minimises (4.11) will be denoted eN 

(4.13) 

It then becomes a matter of finding the solution to (4.13); in this case, since VN is 

quadratic in B, the minimum is given by setting the derivative to zero 

d 2 N 
O=-VN (e,zN) =-LIP(t){y(t)-q/ (t)e) 

dB N l=i 

(4.14) 

g1vmg 

N N L tp(t )y(t) = L tp(f )tpT (t )8 ( 4.15) 
1=1 1=1 

this leads to 

( 4.16) 
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The chosen norm and method of finding 8 may differ from application to application; 

however, in general, the principle remains the same. 

The ARX model has been discussed above; there are several alternatives to this model 

such as Output Error (OE), Auto Regression Moving Average with eXogenous variables 

(ARMAX), Box Jenkins (BJ) and Finite Impulse Response (FIR). lt was shown in 

Sjoberg et al. ( 1995), that all of the models might be summarised by the general form 

(4.17) 

where 

·(4.18) 

( 4.19) 

(4.20) 

( 4.21) 

(4.22) 

Each model structure can be considered to fit within this prototype, and all except the 

ARX structure are discussed individually in Appendix C, part 2. The ARX structure is 

discussed below because of its direct relevance to the remainder of this work. 

4.2.1 AutoRegression with eXternal inputs (ARX) 

The structure of the ARX model has already been discussed. The structure has poles 

within G of the transfer function description (4.8), and potential modelling accuracy is 

therefore improve·d in comparison to the FlR model (Appendix C, part 2). However, there 

remains only an algebraic relationship between past inputs and outputs. Therefore, the 
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ARX model will always be stable, irrespective of the modelled system. Figure 4.3 

illustrates the results of applying the ARX model to the identification data set shown in 

Figure 4.2, a prediction error method was used for training, which will be discussed in 

greater detail in §4.4.1. A discussion of the performance of this model is deferred until 

comparisons can be made with other models in §4.8. The model structure used was [4 4 

I], i.e. 4 previous regressors, 4 previous regressands and a time delay of 1 sample. This 

structure will be used throughout the nonlinear identification work since it has proved to 

be successful. 

X 10' 
10 .-----------------.-----------------.-----------------. 

8 

6 

0 

-2 --- Actual 
-Predicted 

-4~----------------~----------------~--------------~ 
0 500 1000 1500 

Sample Number 

Figure 4.3: Identification results for linear ARX model 
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In application of linear black-box models, the user is attempting to describe the system's 

frequency response (or impulse response) which is a ·mapping IR ~ JRP•m (where pis the 

number of outputs and m is the number of inputs). Depending on the application, this 

type of model might be entirely acceptable, if however, greater model fidelity and more 

detailed information about the system is required then non-linear modelling is required 

and the problem becomes more complicated. The principle reason for this increased 

complexity is that in the ideal, all system information will be included within the model; 

this implies a very broad spectrum of possible model descriptions to be considered. There 

has been significant research interest in this area and the application of structures based 

on neural networks, radial basis networks, wavelet networks, hinging hyperplanes and 

models based on fuzzy logic may all be readily found within the literature, for a review 

see for example Juditsky et al., (1995). The next section of this report moves on to 

consider some of the more general aspects of non-1 inear black-box modelling. 

4.3 Non-linear Black-box Models 

The regressors given within the last section provide the necessary degrees of freedom for 

the linear black-box case. It is therefore natural to extend their use to the non-linear case. 

Structures of the form 

;~le)= J(~(t ), e) (4.23) 

are used in non-linear black-box modelling, where f is a non-linear function 

parameterised by 8 and the components of rp(t) are similar to the regressors described in 

the linear case. With respect to the model structures described in the previous section, 

both the ARX and FIR models use one or both of the regressors, u (t- k) and y(t- k). 
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These data are measured variables and therefore offer no difficulty in application. The 

remaining models are based on previous outputs from the black-box model y(t~kiB), so 

instead of tp(t) in (4.23), the regression vector should be written tp(tiB). An obvious 

question is how the simulated output .Y.~-kiB) might be computed if the network 

output is given as for the NFIR and NARX models as the prediction .Y(t- kiB). The 

solution is based on the fact that the output of the model is equal to y. ~~e) if all of the 

measured inputs y(t-k) are replaced by the previous output .Y.~- kiB). According to 

the adopted nomenclature, all of the linear models discussed above in the non-linear form 

are prefixed with N (Non-linear). 

The linear models that employ a regression vector with past model outputs as a 

component (e.g. ARMA, ARMAX, NBJ, and NOE) correspond to recurrent structures 

(Leonartis and Billings, 1985b). In general, there is greater difficulty attributed to 

working with recurrent structures, since among other things, it becomes difficult to check 

under what conditions the obtained model is stable, and it takes an extra effort to 

calculate gradients for model parameter estimation (Norgaard et al., 2000). 

4.3.1 Other Choices of Regressors 

As alluded to within section 4.2, there is no reason to restrict the choice of regressor to 

those that that are just linear functions of measured inputs, measured outputs, and model 

outputs. Should physical insight be available then it may feasibly be used to transform 

raw data into more pertinent regressors. From an applied perspective, it is sufficient to 

regard the input ( u) and output (y) as transformations of the raw measurements, formed 
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in view of what is known about the system. For example, a so-called "Semi-physical 

Regressor" (Sjoberg, 1995) could be a load torque signal formed through current and 

angular velocity measurements, if it is believed that the torque signal is a principal 

stimulus of system performance. Despite the fact that the non-linear model can more 

readily characterise these relationships, there is no reason to waste computational effort 

in estimating phenomena that are already understood. 

Another type of pre-processing of raw data in the light of prior knowledge is to use 

filtered inputs as regressors e.g. 

L,(q)u(t) k = l, ... ,d (4.24) 

rather than u (t- k), where the filters Lk are tailored to the application. 

4.3.2 Other Structural Issues 

The combination of regressors clearly reflects structural assumptions about the system; 

there is obviously enhanced flexibility in using a non-linear model with a learning 

structure such as a neural network (Hunt et al., 1992). For instance, the parameterised 

functionfwithin a non-linear black-box model structure is defined either as linear or non

linear during training. A further motivation for this model is that it becomes easier to 

develop controllers than from the models discussed earlier, see for example Norgaard et 

al., (2000). In Ljung and Glad (1994), it is suggested first to build a linear model for the 

system. The residuals from this model will then contain all unmodelled non-linear effects. 

The neural network based model would then be modelled on these residuals, to pick up 

the system non-linearity. The outputs of the two models may be recombined to provide a 

gross system output prediction. This approach is attractive, since as has been seen in 
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Chapter 3, the steps in obtaining a linear model are well founded on prior knowledge and 

lead to reasonable models. Subsequent application of the nonlinear model based on 

white-box model residuals at least guarantees a model whose performance matches the 

linear white-box model. Inevitably within any model there must be some error expected 

in the estimation. This error is due to a bias inherent within the model due to an 

insufficient model structure. Unfortunately, the model size cannot be increased ad 

infinitum because as the model grows, so the variance of the model coefficients must 

grow for a given training set. This is referred to as the bias-variance dilemma and 

discussed in more detail in Appendix C, part 3. The selection of the most suitable model 

structure within this work will be dealt with on an individual basis. 

4.4 Training Algorithms 

In the course of system identification, the choice of training algorithm is of critical 

importance, since it affects the convergence of the selected model. This section of the 

report is dedicated to the consideration of some of the training algorithms available. It 

was shown in the first section of this Chapter how quadratic minimisation based on the 

least squares approach may be used to minimise VN(B). In general, however, an 

analytical computation of the minimum of VN(B) is not possible. The minimum must be 

sought through a numerical search procedure.· Such a procedure is commonly known as 

non-linear optimisation. 

It is assumed at this point that the model structure has been selected, and that a data set 

has been acquired. Clearly, the task of the optimisation, or training is to obtain a 

mapping from the dataset to the set of candidate models. 
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(4.25) 

The mean square error criterion from ( 4.12) is a common performance measure. Training 

schemes based on this criteria are known as Prediction Error Methods (PEM), since the 

training objective is to minimise a given norm of the prediction error. With the criterion 

given in (4.12) the PE method will correspond directly to maximum likelihood estimation 

if the noise signal distribution is Gaussian. 

4.4.1 The Prediction Error Method 

It has been seen that the objective using the mean square error criterion is given by 

(4.26) 

Searching for the minimum is achieved by consideration of the second order Taylor 

series expansion of the criterion in e~ 

(4.27) 

where the gradient is given by 

(4.28) 

and the Hessian is defined by 

(4.29) 

A sufficient condition for e=e. to be at a mm1mum is that the gradient is zero. In 

addition, that the Hessian is greater than zero, for all nonzero data vectors (v) i.e. 
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G(B.)= 0 

vT H(e.)v > o 

(4.30) 

( 4.31) 

The search begins with an initial guess at the parameters in 9, 9(0)· The selected training 

method then comes into its own and adjusts the weights according to some search 

criterion. This is usually achieved iteratively and generally takes the form 

(4.32) 

where e(;J specifies the current iteration, 7JuJ, the search direction and J..luJ the step size. 

Iteration continues until the minimisation criteria are satisfied. Unfortunately, the criteria 

described above will generally have more than one minimum. The method as described 

above will not guarantee convergence to the global minimum, but instead the minimum 

that is actually obtained will depend entirely on the choice of Bro;-

Gradient Descent 

Gradient descent is a prediction error method. The task of training is to obtain the 

mapping from the dataset to a set of candidate models, 

In this case, the objective is to minimise the mean square error according to 

B=argmjnVN(e,zN) 

The prediction error method is iterative and generally takes the form 

e(HIJ = e; + J..L;TJ; 

(4.33) 

(4.34) 

(4.35) 

where e(;J specifies the current iteration, 7J; specifies the search direction and J..l; 

specifies the step size. The iteration ~f the algorithm continues until such time as the 
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minimisation criteria is satisfied. The principle of the gradient descent method is to 

adjust the weights of the network in the opposite direction to the gradient, i.e 

(4.36) 

(4.37) 

where 

(4.38) 

If the step size J.J, is sufficiently small with this choice of direction, then it is always 

possible to achieve a reduction of the criterion, 

(4.39) 

As alluded to above, this method's convergence is entirely dictated by the step size. 

Frequently this step size is selected to be a constant. There is no guideline for this 

selection, but the need to maintain a small step size frequently leads to slow convergence. 

In Demuth and Beale (200 I), an alternative approach uses an adaptive step size to control 

the convergence. Irrespective of the step size, convergence using this algorithm is linear, 

and comparatively slow. When applied to neural networks, this method is known as 

back-propagation (Lewis et al. 1999), and despite the slow convergence, it has grown in 

popularity because of its simplicity in implementation and modest storage requirements. 

The slow convergence property has however led to implementations that are more 

sophisticated. 
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The Newton Method 

The previous methods rely on a first order approximation to the criterion in order to 

determine the search direction. The Newton method is a natural extension to the gradient 

method and uses a second order expansion of the criterion 

(4.40) 

The differential of the estimate is introduced 

( 4.41) 

The gradient and Hessian are given as 

(4.42) 

"( ) I N I N H(B)= VN B,ZN =-L\lf(t,B};!(t,BY -- L\lf'(t,B}o(t,B) 
N •=I N 1=1 

.. (4.43) 

Define the minimum as 

(4.44) 

which gives the update rule 

( 4.45) 

The search direction is determined by solving the system of equations 

(4.46) 

1lriJ is frequently referred to as the Newton search direction. The ideal step size for the 

Newton method would be one if the underlying criterion were truly quadratic (Sjoberg et 

al, 1995). In practice, the approximation of the criterion (4.40) might only be valid 

around a certain neighborhood of the current iterate. The full step might therefore bring 
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the new iterate to a point far from the point predicted by the approximation. To 

circumvent this problem, a line search of the step s1ze may be incorporated into the 

Newton method. In such a case, the method is known as the damped Newton method. 

Convergence of the damped Newton method cannot be guaranteed. In addition, 

calculation of the Hessian is a computationally demanding task. Often approximations to 

the Hessian matrix are calculated instead. These methods are known as quasi-Newton 

methods and are discussed further in Dennis and Schnabel (1983). For non-linear least 

squares problems, use of the quasi-Newton methods for training often leads to poor initial 

convergence Norgaard et a! (2000) and Dennis and Schnabel (I 983) recommend 

consideration of the Gauss-Newton methods which are especially suited to the non-linear 

least squares problem. 

Levenberg-M arq uardt 

A comprehensive description of the Levenberg-Marquardt algorithm· may be found in 

(Norgaard et a/, 2000), the algorithm is essentially a cross between the gradient descent 

method already discussed and the Gauss-Newton method (Lewis et al, 1999). In this 

approach, the minimisation is given 

e = arg mjn VN ( e, zN) subject to le- e(i-1)1 :$ 0; 

The update rule for the Levenberg-Marquardt algorithm is given as 

e(••l> = ei + J.J; 

Where the Hessian is given as 

(4.47) 

(4.48) 

(4.49) 
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(4.50) 

and the small constant A., which is used to alleviate ill conditioning problems with 

calculating the search direction. In practice, the Levenberg-Marquardt uses an 

approximation to the prediction error as in the case of the Gauss-Newton method. The 

value of o, represents the radius of a trusted region around the current estimate, within 

which the selection of the search direction for the approximation is assumed to 

correspond well with the search direction for the criterion VN ( e, zN). 

The Levenberg-Marquardt algorithm offers significant speed advantages over the basic 

gradient descent algorithm. 

4.5 Neural Network based Identification 

Neural networks are a popular tool for pattern recognition and are used increasingly for 

system identification (Norgaard et a!, 2001). The neural network used here is a two-layer 

perceptron network of the form 

( 4.51) 

The network uses 'tansig' activation functions within the input and hidden layer, the 

output layer uses a linear activation function in order that the network output is able to 

take on any value. ln the neural network training, the common mean square error of the 

estimate is used for the criterion of fit: 

(4.52) 
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W is given as the network weights, F is the activation function, N is the number of data in 

the training set and w is the network thresholds. The neural network is presented with the 

ARX structure is given by 

where 

e =[a! .. . an bl .. . bmf 

q;{t) =[ -.Y{t-1) .. . -y(t-n) u(t-1) .. u(t-m)J 

(4.53) 

(4.54) 

(4.55) 

e is the regression vector for tuning, IP(t) is the vector of previous inputs (u) and 

outputs of the system (y). The vector IP(t) is presented at the input nodes and the 

current value of position {y(t)) is presented at the output. In the case of the neural 

network, it was found that the standard identification set did not yield good results. This 

is discussed in greater detail in Sjoberg,(l995). Instead, a second identification set was 

introduced which lacked the additional high frequency step-wise excitation signal (Figure 

4.4). 
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Figure 4.4: Identification Set 2 

In the previous work, the lag space was selected heuristically through the design of the 

ARX model. An alternative approach to selecting the lag space was given by He and 

Asada ( 1993), this approach relies on the Lipschitz quotients and the assumption that the 

function that dominates the output is continuous. Under the assumption that the 

derivative of the output is bounded by some positive value 

(4.56) 

given 

y(t) =fo[<P (t) ,B] (4.57) 

introduce the Lipschitz quotient 
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(4.58) 

the Lipschitz condition states that provided the function fo is continuous, then the 

quotient is always bounded. The argument follows that if the differences, 

dy = y (1.)- y ( 1 J , dtp1 = tp1 ( t,)- tp1 ( 11) are small then the approximation may be made 

(4.59) 

(4.60) 

where r represents the number of regressors. lt follows that the Lipschitz quotient may 

be represented by 

(r) _ ldyl 
qij - ~(dtpl)2 + ... +(dtps 

( 4.61) 

(r) _ IJ;dtpl + ... + fdtp,l 

qY - ~{dtpl)z + ... +(dtp,)z 
(4.62) 

when this equality produced two interesting results in the cases where there are either too 

many or too few regressors. Consider the case when there is a regressor missing, 

(4.63) 

(4.64) 

In the most extreme example, it will be assumed that the output is dependent entirely on 

the rth regressor. There will be points where dy "* 0, and disregarding the regressor tp, 
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will lead to an infinite Lipschitz quotient. In the case where too many regressors are 

included 

(4.65) 

!.t;dq.>l + ... + frdq.>, I 
J( dq.>l )2 + ... + ( dtp, )2 

(4.66) 

The superfluous regressor in this case will have negligible effect on the Lipschitz 

coefficient and will lead to an insignificant reduction. The algorithm which is given in 

He and Asada (1993) has been implemented, the results of which are shown in Figure 

4.5. Because of the noise that was present in the current channel, it is difficult to 

determine anything definite, but the algorithm seems to be suggestive of a Jag space of 

two or four. The Jag space of [ 4 4 I] was selected through comparison of the developed 

models. 

After scaling of the data and training with the Levenberg-Marquardt algorithm, a neural 

network with 'tansig' activation functions on the input and hidden layer, and a linear 

activation function in the output node gave simulation results as shown in Figure 4.6 

(NNARX). 
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4.6 Fuzzy Identification 

The term fuzzy identification has come to represent the use of fuzzy logic in the 

modelling and representation of a system. Fuzzy models may be viewed as general 

function approximators and are therefore readily applied to the nonlinear regression 

problem of the form discussed in the previous sections. The fact that behaviour of a 

system can be easily represented linguistically e.g. 

If Voltage is High and Current is High then Speed is Fast 

naturally provides the user with a useful method by which a systems behaviour can be 

predicted entirely from empirical observation. Linskog (1996) provides a comprehensive 

discussion of this approach, which constitutes the first of the two principle methods: 

I. A series of if-then rules are used to articulate the expert knowledge. The 

model structure is generated implicitly from the rules supplied by the expert. 

If fine-tuning is required then Input I Output data may be used with a 

particular training algorithm. This form of parameter tuning takes advantage 

of the fact that the fuzzy model may be viewed as a network, analogous to 

artificial neural networks. From this description, the approach falls under the 

white or grey-box-modelling paradigm. 

2. In the second case, no prior information is assumed about the system, and 

only numerical data is used ·io construct the fuzzy rule base. The resulting 

rules are expected to provide a posteriori information about the system. This 

approach could clearly lead to· so-called emergent knowledge acquisition. 

The expert in this case is more inclined to analyse the model after 

construction, at which point new rules may be added or old rules modified in 

order to improve model performance. This approach clearly fits with the 

black or grey-box modelling approach. 
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The need for black and grey-box models to be applied in this work has been discussed in 

previous sections. Clearly, the linguistic interface between the expert and the machine 

make either of the two basic approaches to fuzzy identification attractive for modelling, 

since both prior knowledge and collected data may be easily incorporated into the model. 

In the following sections, the second approach to fuzzy identification is discussed and 

results from experimental work are given. 

4.6.1 Product Space Clustering 

The aim of clustering, specifically in this case product space clustering, is to decompose 

the nonlinear system behaviour into a series of local linear models. According to 

Verbruggen et a! (1999), a procedure must be followed in order to arrive at the final 

model: 

I. Data collection 

2. Structure Selection 

3. Data Clustering 

4. Selection of Cluster Number 

5. Generation of initial fuzzy model 

6. Simplification of the initial model 

7. Model validation 

It can be seen that the steps I, 2 and 7 are the same as those proposed earlier within this 

Chapter, and by Ljung (1998). The remaining steps· are peculiar to fuzzy model 

identification and are therefore discussed in due course.· 
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Data Clustering 

The goal of cluster analysis is to partition a given set of data into clusters, which will be 

subsets of the presented data. The criteria for these clusters is 

• Within cluster homogeneity; data within clusters should be as similar as possible. 

• Between cluster heterogeneity; data between clusters should be as different as 

possible. 

Of course, similarity is a subjective specification that will be dictated by the data type. 

Often, since the data is a real valued vector, distance measures can be used as a measure 

of similarity. In this specific case, consideration is paid to a regression structure for the 

data clustering. It has already been seen that different regressors may have different 

levels of relevance to the regressand; therefore, in the design of the experiment proper 

scaling of the data needs to be carried out in order to achieve reasonable distance 

measures. Of note is the fact that abstract classes of data can also be assigned integer 

values. A distance measure can be used once again, however, additional assumptions 

about the classes must be made, for instance if integer values were assigned classes, the 

class number I must be assumed more similar to class 2 than class 3. Further information 

and definitions of hard, fuzzy and possibilistic clustering may be found in Appendix C, 

part 4. 

4.6.2 Selecting the Number of Clusters 

In the last section, it was seen that partitioning could be achieved for a given data set. In 

the very simple example, it was also seen that the choice of cluster number was a 

hindrance to successful partitioning of the data with the first two methods. When 

clustering is performed on data about which there is no a priori knowledge it is usual that 
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the actual cluster number, c, has to be estimated. The clustering algorithm will then 

search for c clusters· regardless of physical relevance to the system. In this case, the 

results of analysis with different numbers of clusters need to be conipared with one 

another, based on some measure of quality, to find the optimal number of clusters. The 

appropriate cluster number can be detennined by two principal methods, these are 

discussed below. 

Validity Measures 

A standard method for arriving at the correct number of clusters is to use a measure of 

cluster quality. Validity measures within the context of fuzzy clustering; are used to 

assess the cluster quality. Criteria such as withiri cluster distance, entropy and partition 

density have all been used. It is generally accepted, however that a good cluster may be 

loosely described as not being particularly fuzzy. This reasoning stems from the fact that 

if the correct number of clusters has been selected then most of the data should fit neatly 

into one of the clusters. In the case of misclassification, the clusters cannot be expected 

to be well separated or compact. Most validity measures therefore concentrate on 

qualifying the separation and compactness of the clusters. 

Cluster validity analysis is performed by clustering the data several times with different 

values of c. Often it is also perfonned several times for a given value of c, with different 

. initial fuzzy partitions. Naturally, upon comparison, the number of clusters that 

minimises the validity measure is deemed the correct number of clusters. The use of 

validity measures is therefore quite involved because of its heuristic nature. 
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Compatible Cluster Merging (CCM) 

The principle of compatible cluster merging is to begin with c set to a value that is 

expected to be too high for the data set. The successive merging of compatible clusters is 

then used to reduce the number of clusters. Clearly, the central element to the success of 

the CCM method is what qualifies two compatible clusters. The original criteria 

suggested by Krishnapuram and Freg ( 1992) are based on the geometrical properties of· 

the cluster covariance matrices. Consider two cluster prototypical points vi, v
1

. Let the 

eigenvalues and unit eigenvectors of the clusters be denoted { A,ii>" .. ,A.in} ,{ ..111> •• • ,..11"} and 

{ ~il, ... , ~in}, {~JP" .. , ~1"} respectively. The criteria are then given 

~~~i- vill < k 
A-A )' 

(4.67) 

(4.68) 

(4.69) 

The first of the conditions states that clusters should be merged if they are parallel. The 

second that the normals of the clusters to the hyperplanes should be orthogonal to the line 

connecting the cluster centres. The last statement specifies that the clusters should be 

sufficiently close to one another. The values were derived because this algorithm was 

originally developed for the clustering of 2D image data. Kaymak and Babuska (1995) 

introduced the relaxed compatibility criteria for identification and function 

approximation; m addition, this approach also introduced an automated algorithm to 

replace the three design constants. They proposed the criteria 
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(4.70) 

(4.71) 

In this case the measure s~ assesses how parallel the clusters are to one another. st is 

used to calculate the distance between clusters. Criteria ( 4. 71) has been relaxed in 

comparison to (4.68) in order to accommodate cluster merging in noisy data. The two 

matrices then provide compatibility measures which are used in the algorithm given 

below 

repeat 

I. Cluster the data into c clusters 

2. Evaluate the compatibility criteria 

3. Calculate the compatibility matrix 

4. Determine groups of clusters for merging 

5. Checkthe heuristic 

6. Compute the new partition metric using 

until 

4.6.3 Generating the Fuzzy Model from Partitions 

It is assumed at this point that the structure of the model has been established this extends 

to the assumption that the regression data has also been collected and is available. Once 

the structure is selected, the. problem becomes analogous to the non-linear black-box 

identification problem, in thatthe regression 

(4.72) 
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is desired (see equation (4.23)). The difference in methods, however, might loosely be 

described as the difference between local and global models. Fuzzy modelling in this 

case is based on the premise that the regression problem can be decomposed into a 

number of locally linear regression problems. This is the reason why fuzzy models of 

this type are more readily interpreted and a priori knowledge incorporated than the 

alternative global models, such as neural networks. At this point, a matrix of regression 

vectors is defined as X, i.e. 

(4.73) 

the vector of regressands is denoted Y. The cross product of X and Y is known as the 

product space. The data set Z to be clustered is a subset within this product 

space, Z c X x Y and is known as the regression space. The regression ( 4. 72) defines a 

surface within this space. If this surface is partitioned into a series of linear surfaces 

(corresponding to a cluster), an affine Takagi-Sugeno fuzzy rule may be used to represent 

the local regression, hence an entire rule base may be used to represent the global system. 

Consideration is now paid to the Takagi-Sugerio model structure before further 

consideration to system identification is paid. 

4.6.4 The Takagi-Sugeno Model 

The Takagi-Sugeno model is a rule based fuzzy model suitable for identification of 

nonlinear systems (Takagi and Sugeno, 1985). The original form was given as per (4.74), 

where the consequent parameters of the rule are crisp functions of the inputs, i.e. 
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R,: IF f(x1 is Ap· .. ,x, is A,) THEN y, = g(x~' ... ,x,) i=1,2, ... , k (4.74) 

where x EX c IR.P is a crisp input vector, A1 is an antecedent multidimensional fuzzy set 

defined by the membership function f1A, ( x): X~ [ 0, 1], y, E JR. is the scalar output of the 

ith rule. The index i relates the variable to the ith rule and k is the number of rules in the 

rule base. 

The consequent function, g, is typically chosen as a suitably parameterised function, the 

functions form will remain constant throughout the rule base, and only the parameters 

will vary. A useful form of the consequent is the affine linear form of the Takagi-Sugeno 

model, in which rules are structured according to (4.75) 

y, =a,x+b, (4.75) 

where a1 is the so-called parameter vector and b1 is an offset. Within the product space· 

( fR.P+lxN) the affine Takagi-Sugeno consequents may be viewed geometrically as 

hyperplanes. The antecedent of the rule defines a fuzzy validity region for the 

corresponding hyperplane. It is quite clear how a rule base might therefore be used to 

produce a global, nonlinear function approximation. 

The outputy of the TS model is computed using the fuzzy mean formula 

(4.76) 

where [J, ( x) represents the degree of fulfilment of the 1-th rules antecedent, which is 

simply a measure of the degree of fulfilment of x in the fuzzy set A1 and is given by 

(4.77) 
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Since it may become difficult to interpret multidimensional fuzzy sets, the antecedent 

proposition is commonly defined in a conjunctive form, given by a series of single 

dimensional fuzzy sets combined with simple propositions 

IF xn is A,1 AND, ... ,AND x,. is A,. THEN y, = a,x+b, (4.78). 

in this case the degrees of fulfilment are calculated as ,B,(x)=,uA,.1(x1)A ... /\,LJA,.P(xp), 

where the min operator (A) may be replaced by alternative T-norms. In this case, the 

model output is calculated 

(4.79) 

where r, is the normalised degree of fulfilment 

( )- ,B,{x) 
Y, X - K (4.80) 

_Lpl(x) 
J=l 

a(x) and b (x) are input dependent parameters, given as convex linear combinations of 

the constant parameters a; and b; through the following relationship 

( 4.81) 

(4.82) 

The NARX structure discussed previously may be expressed in this pseudo linear form 

according to the following 

(4.83) 
}=I }=I 
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4.6.5 Identification in the Product Space 

Geometrically the consequents of the TS model discussed above may be represented as 

hyperplanes in the regression space. The antecedent fuzzy sets serve to divide the 

regression space in which the regression surface may be locally approximated by the 

consequent hyperplanes. The task of identification is to find the number, locations and 

parameters of these hyperplanes such that the regression surface is accurately 

approximated. This may be achieved through application of a set of fuzzy clustering 

methods, referred to as subspace fozzy clustering algorithms. Far fuller descriptions ·of 

the clustering techniques discussed below may be found in Hoppner et a/ ( 1999). An 

implementation of the fuzzy c-means algorithm may be found in the Mat lab 'fuzzy logic 

tool box' (Roger Jang and Gulley, 200 I). 

The Fuzzy C-Means Algorithm 

The fuzzy c-means algorithm may be used to group the data into probabilistic partitions. 

In order to achieve this, the optimal cluster centre points must be calculated. The cluster 

means (or prototypical points) are calculated according to 

m denotes the weighting exponent. If m is chosen as one then the fuzzy c means 

algorithm is a generalisation of the hard c means algorithm. Membership of a data 

point, zk is then calculated as a distance from each cluster centre, the distance ( 4.85) is 

one such measure that can be used 

(4.85) 
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where A is a norm inducing matrix. Finally, the partition matrix must be updated every 

iteration according to 

(4.86) 

The fuzzy c-means algorithm is commonly associated with clustering into spherical 

shells. However, by suitable replacement of the A matrix within the distance measure it 

is also possible to derive elliptic norms. Despite this additional capability, the fuzzy c-

means algorithm is limited in that it cannot detect different cluster shapes and is therefore 

prefers the fixed cluster form even if it does not exist within the data. In application to 

fuzzy model identification, this constraint is not ideal. Consideration is now paid to the 

Gustafson-Kessel algorithm, which is capable of detecting cluster shape. 

The Gustafson-Kessel Algorithm 

The Gustafson-Kessel (GK) algorithm (Gustafson and Kessel, 1979) is an extension of 

the FCM algorithm that uses an adaptive distance measure. Each of the clusters has its 

own norm-inducing matrix, which allows the algorithm to detect shape and orientation of 

the cluster. 

(4.87) 

The shape and size of the clusters is described by the cluster covariance matrices 

F = I:~~(.u,.kf (zk -v,}(zk -vf 
· I:=l(.u .. kr (4.88) 

The objective function of the GK algorithm· now contains the matrix A in its 

minimisation. Unfortunately, because the objective function is linear in A it cannot be 
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directly minimised with respect to A. In order to arrive at a solution, the determinant of A 

is usually constrained. The matrix is then allowed to vary, whilst maintaining a constant 

determinant. This has the effect of allowing the algorithm to optimise the cluster shape, 

whilst unfortunately keeping the cluster volume constant. 

The algorithm proposed by Gath and Geva ( 1989), is an extension of the GK algorithm 

that is also able to take size and density of the cluster into consideration. This property is 

attractive since there might be regions within the data more suitably approximated by 

larger or smaller clusters. The algorithm uses an exponential term in the distance 

measure that can produce very large numbers whilst clustering; this may lead in turn to 

processor stack overflows in practice. 

Antecedent Membership Calculation 

The antecedent parameters of the Takagi-Sugeno model may be calculated through 

application of the distance measure used within the clustering algorithm. In this case 

only the regressor x, the regressor component of the cluster prototype and the 

corresponding cluster covariance matrix are used. 

The distance measure may be evaluated as 

(4.89) 

using an inversion, this measure can be converted into the degree of fulfilment. One 

possible choice of inversion is to use the same equation as for the clustering algorithm 

Hellendoorn and Driankov (1997). 

I 
fJ,(x.)= Y. 

""c [d(x1 ,v%') .] m-l 

L...J=I d(x v') 
k> 1 

(4.90) 
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which considers all rules and calculates the degree of fulfilment of one rule with respect 

to the others. As is the case when used within the clustering algorithm, the sum of the 

membership degrees will equal one. 

Consequent Membership Calculation 

The fuzzy consequent parameters of the affine Takagi-Suger10 model may be calculated 

in one of two ways from the data clusters (Babuska, 1997). The first is based around the 

geometric interpretation of the cluster, using the covariance matrix. The alternative 

approach is a local least squares optimisation based on the derived fuzzy partition matrix 

The method based on the covariance matrix is discussed here, since this method has been 

found to perform better on the data. The eigenstructure of the cluster covariance matrix 

loosely describes the shape of the cluster.. The shortest eigenvector describes the normal 

vector to the hyperplane spanned by the remaining eigenvectors. The shortest 

eigenvector is defined as <I>,.. Based on the dataset ZN =[xT,y r and the cluster 

prototype, the consequent may be described implicitly by 

(4.91) 

The statement above means that the inner product of any vector belonging to the 

hyperplane and the shortest eigenvector is zero. The shortest eigenvector and the cluster 

prototype may be divided into a vector corresponding to the regressor x and a scalar 

corresponding to the regressand y. i.e. 

v, = [ ( v; f ; v( r 
<I>, = [ ( <t>;'r ; <t>; r 

(4.92) 

(4.93) 
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(4.91) may now be rewritten according to 

(4.94) 

After completion of the dot product operation, 

(4,95) 

Simplification yields 

I ( X )T I T 
Y =--<1> x+-<l>v 

<DY I <DY ' ' 
I I 

(4.96) 

..._______,.... '--.r---' 
aT h1 

which is directly equivalent to the Takagi-Sugeno model, (4.75). Figure 4.9 illustrates 

the result of applying the above theory to the identification set I, using the familiar [4 4 

I] structure. Through the validity measures discussed, 7 clusters was found to be 

optimum. 
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Figure 4.7: Identification results for fuzzy clustered model 

4. 7 Transforms for Regressor Data 

In this section, attempts to transform the data to provide greater physical relevance are 

made. Specifically, the current and voltage data are combined with the power balance 

equations (PBE's) in order to derive estimates of position directly from the data. The 

power balance equations give a good model of system performance, their untreated 

estimation of position is also provided (PBE in Table 4.1 ). The enhanced information is 

therefore incorporated with the fuzzy clustering approach in two ways, first the residuals 

of the PBE estimate are calculated, upon which a clustered model based on the same 

structure as in the previous section is trained (FRESPBE, Table 4.1 ), the outputs of both 

models are then summed together to provide a composite estimate of the position, as 
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discussed in §4.3.2. In the second approach, the PBE estimate is used in the clustered 

model as a direct replacement for the voltage regressor (PBEREG, Table 4.1 ). This 

approach was adopted after tests demonstrated degraded performance with three 

regressors (i.e., voltage, current and the PBE estimate). 

Using the power balance equations, 

P;(t) = V(t)·I(t) (4.97) 

(4.98) 

P;(t)=I(t(R (4.99) 

P, (t )= P; (t) + P; (t) (4.100) 

an expression for the motor speed based on quantities assumed constant and the available 

measurements may be derived, 

w(t)= V(t)·I(t)-I(t)
2 
·R 

I(t)·K ·R 
(4.101) 

where P; is the applied electrical power, P0 is the mechanical output power, and P1 is the 

dO(t) 
power loss. Since --= w (t), 

dt 

() 
· 'JV(t)·I(t)-I(t)2 ·R e t = dt 

0 l(t)·K ·R 

Figure 4.8 illustrates the estimate of ( 4.1 02) based current and voltage data. 

(4.102) 
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Figure 4.8: Power Balance Equation Estimate 

Figure 4.9 and Figure 4.10 show the results of applying the FRESPBE and PBEREG 

model structures respectively. The value of K may be used for tuning of the equation; 

here a gradient descent method with variable step size is used in order to tune the model. 

The gradient descent method has been discussed in section 4.5. As mentioned before, use 

of an adaptive step size can be used in order to obtain the convergence speed of a large 

step, but the accuracy of a small step. Here an algorithm is proposed based on an initial 

value for the step size determined by the user. The algorithm (PBEGD) is described 

below in Algorithm 4.1. 
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I. Initialise variables r/J, re,.,, j = 0 and k = 0 

2. Obtain the value for the criterion of fit VN ( Ow zN) 

3. Find o('+'l = e,- f.i(ip ( e(il) 

4. Obtain the new value for the criterion of fit VN ( e(i+l)' zN) 

5. If vN(e(i+l)'zN)=vN(ewzN) and J=r/J then k=k+l otherwise j=j+l 

6. f.l, = ~~k , vN ( ewzN) = vN ( e(l+l)'zN) 

7 .. If VN (e(i).zN)>rc,., and k > b then repeat the process from step 3 

Algorithm 4.1: Gradient Descent Algorithm for Power Balance Equations 

The value of r/Jdetermines the number of times the algorithm will search across the 

minimum, before reducing the step size; rc,1, determines the termination criterion in the 

event that it can be achieved and b defines the maximum value of k before the algorithm 

terminates. The initial model performance of this model is shown in Figure 4.8; Figure 

4.11 illustrates the estimate after tuning with Algorithm 4.1. 
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Figure 4.9: Fuzzy Clustering Based on the Power Balance Equation Residuals 
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Figure 4.10: Power Balance Equations as a Regressor for the Fuzzy Clustered Model 
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Figure 4.11: Power Balance Equation Estimate After Tuning with Gradient Descent 

4.8 Summary of Results 

Table 4.2 provides a summary of the results obtained within this work. Both the infinity 

norm and the RMS norm have units of encoder pulses in error. It can be seen how the use 

of the power balance equations can significantly improve the performance of the 

identification approaches. It should be noted that the neural network model was both 

trained and validated on a different data set consequently, comparison in terms of 

absolute values of error or average error cannot reasonably be compared. However, the 

VAF measure provides a value for the trackjng ability of the model based on the data 

presented, which provides a reasonable estimate of how the perform. The use of the 

power balance equations on their own outperform the models trained simply on 
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input/output data and provides the means to produce accurate models based on the 

nonlinear identification techniques. 

Table 4.1: Performance of the various approached to identification 

Model !!ell., (Encoder Pulses) l!c!L,.s (Encoder Pulses) VAF 

PC 9961 5574 98.4% 

ARX 5370 3046 99.41% 

NNARX 8874 5332 99.55% 

FCARX 5166 1982 99.7% 

PBEQU 4352 2326 99.85% 

FRESPBE 4938 2351 99.86% 

PBEGD 4911 2304 99.68% 

PBEREG 2535 594 99.97% 

4.9 Discussion 

Attention has been paid within this work to the identification of a servomechanism 

actuated by a brush less DC motor and subjected to large, time variant loads. Specifically 

the fundamental tenet within system identification has been explored, i.e. to identify only 

those phenomena that are unknown. It was initially found that a model based purely on 

empirical observation and a priori knowledge provided a reasonable result, but that 

significant improvements were ready to be made. The linear ARX structure was found to 

be of sufficient flexibility to provide a much-improved estimate over the phase coordinate 

model. Black-box approaches were investigated in terms of a neural network and a fuzzy 
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clustered rule base, both of which were based on the previously successful ARX 

structure. The neural network was found to favour strongly purely stepwise varying 

identification data, which should be considered when comparisons between the models 

are drawn. It is clear from this exercise in itself that correct selection of the input output 

data has profound effect on the resulting black-box model. The fuzzy clustered model 

was found to outperform the linear ARX model. Attention to the incorporation of a 

priori knowledge was paid. In the first attempts, a black-box model was used in a 

. complementary fashion to the white-box model in order to cancel estimation residuals. 

Incorporation of the white-box model estimate into the black-box model regression 

structure was found to outperform the previous approach significantly. Finally, the 

gradient descent training method was adopted from the neural network literature in order 

to minimise the white-box model error. This model was successful in minimising the 

root mean squared error of the estimate. The model performs well in comparison to the 

other models. However, this model has not captured the discontinuities within the data as 

well as the other models. The V AF measure is testament to this. It should be noted that 

this model has the advantage of simplicity and minimal computational load once trained 

over the fuzzy clustered and the neural network models. In a system with diminutive a 

priori understanding, the semi-physical or grey-box approach to modelling has been 

applied and shown to be a viable approach to obtaining highly accurate results. 

Subsequent work within the following Chapters will therefore use these grey-box models 

where possible. 
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4.10 Notes and References 

4.10.1 'Notes 

AT-Norm operator is a duple function and satisfies the following 

/(0,0) = 0,/(A, I)= f(l,A) =A 

f(A,B):5f(C,D) ifA:5CandB:5D 

/(A,B)=f(B,A) 

f( A,f(B,C)) = f(/( A, B),<:) 

(boundary) 

(monotonicity) 

(commutativity) 

(associativity) 

The first requirement imposes the correct generalization to crisp sets. The second 

requirement implies that a decrease in the membership values in A or B cannot produce 

an increase in the membership value in An B. The third requirement implies that the 

operator is indifferent to the order of the fuzzy sets to be combined. Finally, the fourth 

requirement allows the intersection of any number of sets to be taken in any order of pair-

wise groupings. The most frequently used T-norm operators are 

Minimum: 

Algebraic Product: 

Bounded Product: 

Drastic Product: 

T """ (A; B) = m in (A, B) = A A B 

Tap(A,B)=AB 

:t;,P (A, B)= Qv (A+ B-1) 

if B =I 

if A= I 
ifA,B<I 
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Chapter 5 

Sliding Mode Control: Classical Approaches 

5.1 Introduction 

In the formulation of many control problems there will typically be disparities between 

the performance of the plant mathematical model and the actual system. These 

discrepancies may be due to unmodelled system dynamics, parametric variation within 

the plant or the approximation of a system to a simple model. It is the control engineer's 

task to produce a controller that will attain prescribed performance despite these 

discrepancies. This has duly led to an intense research interest in robust control methods, 

whereby the controller has a low sensitivity to parametric change within the system, but 

maintains a suitably high disturbance rejection. One particular approach to achieving 

robust control is through the application of sliding mode. 

The term 'sliding mode' first appeared in the context of variable structured systems 

theory. Now practically all methods for control with variable structured systems are 

based on the deliberate synthesis of sliding modes. Sliding mode control (SMC) is 

described as 'deterministic'. One fixed, nonlinear control function is able to· provide 

guaranteed performance over a defined range of parametric variation. This makes SMC 

attractive since it is simple to implement and reliable. Because it relies on discontinuous 

switching SMC has found a significant interest within the field of robotics and motor 

control since there is very little effort in hardware modification required for 

implementation. 
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This Chapter is aimed at introducing the reader to SMC and its application to 

electromechanical devices. The Chapter first provides an introduction to the theory 

supporting SMC, design examples based on the models derived in the previous Chapter 

are also given. 

Before introducing the theory surrounding sliding mode. control, it is necessary to 

highlight the differences between this class of controller and other types of nonlinear 

robust controller. lt is not within the scope of this work to review each type of controller, 

however it is possible to group every controller as either belonging to the 'stochastic' or 

'deterministic' families. Self-tuning and other adaptive systems fall into the category of 

stochastic controllers. They constantly monitor parametric change and disturbance and 

through use of an on-line identification algorithm provide an appropriate globally stable 

control. 

Conversely, the family of deterministic controllers, of which sliding mode is a member, 

require only fixed nonlinear feedback control functions. They are able to operate over a 

predetermined space of parameter variation and disturbance without the need for any 

form of online identification of system parameters. An immediate advantage of this 

approach is that no statistical information about system parameters is required, robustness 

is therefore achieved not in the average sense but for all possible values of parameter 

uncertainty over the design range. Stochastic control systems are naturally ·more complex 

and generally more costly due to the additional hardware required for the sensing of these 

parameters. Within any control system, simplicity and reliability must be principal 

design targets, this is the primary reason why deterministic control methods are 

considered here, whilst stochastic control is largely left untreated. 
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5.2 Mathematical Background 

Modern Variable Structure Systems (VSS) are attributed to the work of Barbarashin and 

Emal'yanov in the early 1960's (Young and Ozugner, 1999). However earlier works 

from the fifties on discontinuous control actions by Flugge-Lotz and Typskin may be 

found within the literature. Indeed earlier works illustrating the principles supporting 

sliding mode control can be found by Kulebakin; and the work of Nickolski makes 

specific reference to a sliding mode (Zinober, 1994). However it was not until the mid 

1970's that works by ltkis (1976) and Utkin (1977) were published in English. Since 

then Sliding Mode Control (SMC) and VSC in general has been successfully applied to 

the design of robust regulators, adaptive schemes, tracking systems and fault detection 

schemes (Hung et al. 1993). The purpose of this section is to provide the reader with an 

introduction to the concepts that will subsequently be applied throughout the remainder 

of this work. 

A variable structure system (VSS) is a class of system whereby the control structure is 

deliberately varied during the control process. This structure variation is performed 

according to a predefined set of rules, which will depend on the instantaneous state of the 

system at timet. 

To begin this work the conventional example in terms of the state space method is given. 

Consider a second-order time invariant relay system given by 

x+a2x+a.x=u+ f(t) 
u=-Msgn(S) 

S=.x+cx 

(5.1) 

where M, a1, a2 and c are constant parameters, j{t) is a bounded disturbance and S is the 

sliding manifold. The system behavior may be analysed on the phase plane (x, x ). 
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Figure 5.1 shows the phase plane behaviour for the system in (5.1). It can be seen that 

the control action (u) is subject to discontinuities at the switching manifold (S=O). 

Comparison of the state trajectories along the sliding manifold indicates that they belong 

to two families. The first family correspond to S > 0 and u =-M and the second 

corresponds to S < 0 and u =M . Suppose that a representative point (RP) may 

represent the state of the system at any given instant in time upon the phase plane. Now 

suppose that the RP is somewhere within the section I at time t0 . The system is bound to 

follow one ofthe elliptic phase trajectories toward the sliding manifold. Once the system 

has reached the manifold it will attempt to penetrate region IV, whereby the phase 

trajectory switches from elliptic to hyperbolic and is forced back towards region I, where 

the trajectory once again switches back to elliptic and so the process continues. 

Ill w 

Figure 5.1: The principle of the sliding mode with two unstable phase portraits 
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Because of the phase trajectory topologies and by the contracting mapping principle the 

system is globally asymptotically stable. This is the principle behind sliding mode. 

Perhaps the best analogy to the system behavior whilst in sliding mode was drawn by 

ltkis ( 1976) and is quoted here: 

~----~-=h·--- ---~ --~.- ---~----1~1-----h---- c---. --~h---------~ ~-- --~ ---- --~-L-·-~-~-- --.-----1~-~-, ----~~ 

I 

1, e slluatwn reca s I e scene m e mo wn p1cture a 01, c est 01 , 
where the hero, recognised by neither French nor Italian authorities as a 

, citizen and therefore evicted by the customs officials of both countries, is I 
obliged to travel precisely on the international border between them. " . I 

It is a natural conclusion that if in the limit switching across the sliding line is achieved at 

an infinitely high frequency with infinitesimal amplitude that the system trajectory would 

coincide with the sliding manifold S = 0. Assuming this behavior, the system motion 

may then be interpreted as 

i+Cx=O (5.2) 

This result is extremely important since it may be seen that the system performance when 

in sliding mode depends neither on the plant parameters nor the disturbance, j{t) this is 

the invariance property of sliding mode control (Drazenovic, 1969). Attention is drawn 

at this point to the fact that if the system parameters are changed i.e. a1 and a2 then the RP 

on the phase plane will be forced to travel along an alternative phase trajectory. Provided 

that the phase trajectories remain in the opposing sense to one another, it will simply take 

a different amount of time within the transient before sliding mode is achieved. Whilst a 

systerp is in the transient it is referred to as reaching mode for sliding mode control 

systems. 
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The concept of sliding mode control has been established, it is now important to provide 

mathematical proof of the existence of sliding modes, so that control systems may be 

synthesised. 

5.2.1 Problem Statement 

This section begins with a formal definition of the concepts described above. A 

controller will be found to force the controlled system states to reach and thence remain 

on a predefined surface within the state space, referred to here as the sliding manifold. 

The system behavior once constrained to move only along this surface is described as the 

ideal sliding mode. This behavior has the important characteristics of order reduction and 

invariance to matched uncertainty. Design of a sliding mode controller is a two-stage 

process. Firstly the design of a surface within the state space such that the specified 

performance is obtained, and secondly the synthesis of a control law that will be 

discontinuous around the surface that will maintain an attractiveness to the closed loop 

motion. It is only at the point when the system reaches the sliding manifold that the 

system will become invariant to matched uncertainty (Spurgeon, 1991 ). During the 

reaching phase the system performance is subject to disturbances, it is therefore- an 

important design goal to minimise the time in the reaching phase. 

Consider the time invariant system with m inputs given by the equation 

x =[A +M(t)]x(t)+[ B+M(t)]u(t)+ f(;,u,t) (5.3) 

Where x = vector of statesE IR"'1 and u = Vector of controls E 1Rm'1 • A E IR"'" and 

Be lR"'m. Assume that n > m ~ I and that B is. of full rank m, assume also that the 

tuple(A,B) is controllable. M and 11B represent uncertainties and variations within the 
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plant parameters and the control interface respectively. The function f represents 

uncertain, time-varying additive terms that are assumed unknown but bounded by some 

function of the state. As stated, it is assumed that all disturbances are matched, i.e. they 

act only within the input control channels, 

(5.4) 

Where 9"l represents the range space. If it is assumed that the rank of [ B +M ( t) J = m 

for all t ~ 0 then it may be implied that total invariance· to parameter variation and 

uncertainty can be achieved according to a suitable choice of the limiting values of 

control. 

Let S: IR" ~ !Rm be a linear function defined as 

S(x)=Sx (5.5) 

Where S E !Rmxn is of full rank and is defined as the hyperplane 

s = {X E IR" : s (x) = o} (5.6). 

Swill be referred to from now on as the switching function. 

5.2.2 Equivalent Control Method 

If the control action in (5.3) is discontinuous with respect to the state vector then 

traditional methods for analysis of differential equations do not hold, since Lipschitz 

conditions are normally invoked in order to guarantee the existence of a unique solution 

(Edwards and Spurgeon, 1998). Since any function that satisfies Lipschitz conditions is 

necessarily continuous an alternative approach to analysis must be adopted. There are 

several methods for analysis available within the literature, such as that by Fillipov, 
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( 1988). However, the method of equivalent control proposed by Utkin (1992) is more 

intuitively appealing and is therefore the subject of this section. 

In general, the equivalent control might be described as the control action required to 

maintain an ideal sliding motion on S. lt is assumed initially that the disturbance in (5.3) 

is zero, such that 

x(t) = Ax(t)+ Bu(t) (5.7) 

Suppose now that at time t1 the system state reaches the sliding manifold Sand an ideal 

sliding motion takes place. This may be expressed as Sx(t)=O and S( t) = Sx(t) = 0 for all 

t ~Is. Substituting S into (5.7) now yields 

Sx(t) = SAx(t) + SBu(t) = 0 for allt ~ ls (5.8) 

Rearranging (5.8) gives 

SBu(t)=-SAx(t) (5.9) 

Solving for the control gives 

U ,q (t) = -(SB t' SAx(t) = -kx(t) (5.10) 

where 

(5.11) 

Ueq(t) is described as the linear open loop control required to force the state trajectory to 

remain in the null space of S whilst sliding. Through substitution of Ueq(l) into the 

system equation (5.7) 

x(t) = (1 - B(SB t' S }Ax(t) 

x(t)= (A- Bk)x(t) 

for all/ 2 Is (5.12) 

(5.13) 
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This is the equation for the closed loop dynamics of the system when in the sliding mode. 

Matched uncertainty occurs within the range space of B (9i(B)). During sliding motion 

the state trajectory lies entirely within the null space of S (X(S) ), since these are 

complementary, i.e. 

X(S)n9i(B) = {0} (5.14) 

It may readily be seen that the motion of the system is independent of the nonlinear 

control and is dependent only upon S, which will serve to determine the matrix k. 

Suitable choice of k will guarantee convergence of the state vector to the origin.· 

The equation for equivalent control has now been formulated. It is a reasonable question 

to ask why the equivalent control could not be applied directly as the control signal, since 

it is both simple and explicit. The reason becomes clear if one were to employ the 

following signal as the state feedback control law: 

u(t) = kx(t} (5.15) 

At this point some structured uncertainty is introduced to the nominal linear system of 

(5.7), i.e. 

x(t)= Ax(t)+ Bu(t)+ D;(t,x) 

This is a special case of (5.3) where 

n;(t,x)= J(t,u,x) 

(5.16) 

(5.17) 

The matrix De IR"x1 is known and the function 4: IR, x IR" ~ IR1 is unknown. This 

function may be interpreted as the representation of uncertainty within the system 

matrices A and B, or alternatively as an unknown exogenous perturbation acting on the 

system. As in the above argument, it is assumed that there exists a controller that is 
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capable of delivering the state trajectory to the manifold S (after timet,) and from then 

onward keeping it on the sliding surface, even in the face of uncertainty and disturbance. 

lt has been seen that this may be taken to represent s(l) = Sx(1) = 0 for all 1 ~ t.. Now 

following the same argument in the derivation of the equivalent control above yields 

ueq (t) = -(sBt (SAx(t) + so.;(t, X)) for all/~ Is (5.18) 

It can be seen that this equivalent control action is now dependent upon the unknown 

exogenous signal and is thus inutile as a practical feedback control signal. Equivalent 

control, as stated earlier, is best viewed as a tool for the analysis of the sliding mode since 

it represents the nominal control effort to maintain the ideal sliding motion. 

5.2.3 Existence Conditions 

Before moving on to the derivation of specific control structures it is important to first 

state the sufficient conditions which must be met before an ideal sliding motion may be 

synthesised. It is clear, and has been stated above that the manifold must be at least 

locally attractive. In other words, in an unspecified domain around the switching 

manifold, the state trajectories must be directed toward it. This may be expressed as 

lim S < 0 and lim S > 0 (5.19) 

The equations must be true for some domain, r c IR!". In this case the sliding surface is 

given 

D= S ny = {xe y,S(x)=O} (5.20) 

(5.19) is often replaced by the equivalent expression 

ss <0 (5.21) 

The expression (5.19) and equivalently (5 .21) are termed the reachability conditions. 
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Unfortunately (5.19) and (5.21) do not guarantee the existence of an ideal sliding motion. 

Rather, these criteria only guarantee that the sliding manifold will be approached 

asymptotically. A stronger proposition has therefore been made, known as the 77-

reachability condition (Siotine and Li, 1991), given by 

(5.22) 

This condition can be used in order to guarantee the ideal sliding motion. 77 is a small 

positive constant. Rewriting the Lyapunov function, V ( S) = .!_ S2 as 
2 

I d 2 I I --S :s:-77 S 
2 dt 

(5.23) 

and integrating between time 0 and the time at which the manifold is reached (Is) it 

·follows 

(5.24) 

From this the time ts must satisfy 

IS(O)I 
t,:S:--· (5.25) 

77 

5.2.4 Design of a Sliding Mode Controller for a BLDC motor 

This section considers the development of a sliding mode controller for one of the 

previous motor models. The motor model from Chapter 3 is considered, the model is 

given by 
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0 

BL+R.J 

JL 

0 

0 u(t) 
Km 
JL 

(5.26) 

Despite the fact that the 17-reachabi/ity condition provides a guarantee of convergence to 

the manifold in finite time, the normal condition is used here, with the requirement that 

the system is critically damped. 

A suitable sliding manifold is specified by the equation 

The control is specified as 

Since for sliding SS< 0 is required, 

SS={c- BL+R.J}s2 +{C (BL+RJ)+ Km ba -CC }xs 
2 JL I . JL JL I I 2 I 

+ - - + +-a x {c C2 BR+KmK, C BL+RJ Km b } S 
I 2 JL 2 JL . JL 2 2 

Hence if the feedback parameters are chosen to be 

+Km bdjSj 
JL 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

(5.31) 
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then SS < 0 reduces to 

and 

where 

=]_ JLC 1 (BL+R.J -C) 
r~ b K JL 2 

m 

. =]_{BR+K _ JLC1 _ JLC2 (BL-RJ C)} 
r2 b ' K K JL 2 

m m 

for stability, according to the definition for the sliding manifold, 

A, c2 1 J 2 =--+- C -4C 2 2 2 I 

and the condition for zero overshoot is expressed as 

The conditions· of reaching are satisfied across the entire state space if 

C < BL+RJ 
2 JL 

The parameters from Table 5.1 are used 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

(5.41) 
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Symbol 

J 

B 

Tr 
L 

Table 5.1: Nominal Motor Parameters 

Parameters 

Min. Max. 

9e-3 12e-3 

7e-3 7e-3 

le-2 50e-2 

0.0026 0.0026 

0.64 0.64. 

54e-3 54e-3 

54e-3 54e-3 

Insertion of these values into the controller design provides 

C2 <25.19 

Units 

Nms2 

Nm/rad/s 

Nm 

H 

n 
Vs/rad 

NmA- 1 

Therefore, choosing C2=20 provides C1 = I 00. This choice will be justified in simulation 

later, however, the relationship between transient response and control effort is 

highlighted here. A lower value of C2 will result in a lower demand being placed on the 

controller. From the selection of these two parameters that and the selection of the design 

gain b=l the initial controller gains are chosen as per Table 5.2. Figure 5.2 illustrates the 

time response of the motor to a step input, using the minimum plant parameters from 

Table 5.1. The corresponding control action is shown in Figure 5.4. The maximum 

plant parameters are then inserted and the experiment repeated, Figure 5.3 and Figure 5.5 

illustrate the time response and control effort respectively. The maximum parameters are 

then used (Figure 5.3 and Figure 5.5). 

5-14 



Sliding Mode Control: Classical Approaches 

Table 5.2: Controller design parameters 

Parameter M in 

D 0.58e·3 

a, 13.1 

p, 
a2 2.5 

p2 

Max 

7.5 

1.9 

Selected 

0.5 

15 

4 

5 

1.4 

Parameters R=0.6 and L=0.5 are then selected to be out of the design bounds placed on 

them. Figure 5.6 shows the evolution of the position state. Figure 5.8 illustrates the 

control action, it can be seen that the control action briefly achieves the sliding mode but 

is unable to maintain it. The controller is now dependent upon the linear control in order 

to achieve robustness to both matched and unmatched disturbance. As a final point .for 

consideration at this juncture within the work is that the sliding mode controller will 

always converge to the manifold in finite time, provided that there exists a sufficient 

control action to achieve this. Control of motor position directly is therefore a poor 

choice for the control. A test on the nominal system is performed and rather than a unit 

step input being applied, a signal of ten times is used. The time response and control 

effort are shown in Figure 5.7 and 

Figure 5.9 respectively. The system has achieved a similar rise and settle time, however 

the control effort is nine times larger. Although within the literature sliding mode 

position controllers have been reported, because of this very practical limitation, it is far 

better to adopt sliding mode controllers for speed control, with a major control loop for 
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position if required. For the purposes of comparison, direct position control will be used 

within this Chapter, with a view to adjusting the control law later in Chapter 6. 

Table 5. 3 provides measures of the controller performance. The performance measures 

used throughout this work are the rise time (Tr), ±2% settling time (Ts), infinity norm of 

the control effort (Ju ( t )JJ and steady state error (SSE). 
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5-16 

... 



Sliding Mode Control : Classical Approaches 
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Figure 5.6: Parameters out of bounds Figure 5.8: Out of bounds Control effort 
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Figure 5.7: Response to step input=JO Figure 5.9:Associated control effort 

Table 5.3: Controller Performance according to specified measures 

Controller iiu (t )IL <JI) Tr (s) Ts(s) SSE (rad) 

Min. Param. 9 0.322 0.75 0 

Max. Param. 9 0.328 0.76 0 

Out. Param. 9 0.34 0.022 

lOx Unit step 81 0.35 0.76 0 
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5.3 Design Approaches Based on the regular form 

It can be seen from (5. 7) that the sliding motion is a control independent motion that 

depends on the choice of sliding surface. The precise effect, however, is not readily 

apparent. A convenient way to clarify these effects is to first transform the system into a 

suitable canonical form. In this form the system is decomposed into two connected 

subsystems, one acting m ~ (B) and the other in X( S). Since by assumption 

rank (B)= n there exists an orthogonal matrix ~ E IR"'" such that 

(5.42) 

where B2 E IR"xn and is non-singular. Let z = ~x and partition the new co-ordinates so 

that 

z=[:J (5.43) 

where z1 E IR"-m and z2 E !Rm. The nominal linear system (5.7) can then be written as 

i I (t) = All z I (t) + Al2 z 2 (t) 

i 2 (t) = A 21 z1 (t )+ A 22 z 2 (t) + B2u(t) 

(5.44) 

(5.45) 

which is referred to as the regular form. Equation (5.44) is referred to as describing the 

null-space dynamics and equation (5.45) as describing· the range-space dynamics. 

Functions J.,(t,x) and fm(t,x,u) represent the matched and unmatched uncertainty, 

projected into the regular form, respectively, For the time being, these uncertainties will 

not be considered. Suppose the matrix defining the switching function (in the new co

ordinate system) is compatibly partitioned as 
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(5.46) 

where s, E !Rmx(nxm) and s2 E (Rmxm. Since SB = S2B2 it follows that a necessary and 

sufficient condition for the matrix SB to be non-singular is that det ( S2) "* 0. By design 

assume this to be the case. During an ideal sliding motion 

for all/> Is 

and therefore formally expressing z2(t) in terms of z1 (I) yields 

Z2 (t) = -Mz1 (t) 

where M= s;'s,. Substituting in(5.44) gives 

(5.49) 

(5.47) 

(5.48) 

and thus the problem of hyperplane design may be considered to be a state feedback 

problem for the system (5.44) where zz(t) is considered to play the role of the control 

action. In the context of designing a regulator, the matrix governing the sliding motion 

( A11 - A12 M) must have stable eigenvalues. The switching surface design problem can 

therefore be considered to be one of choosing a state feedback matrix M to stabilise the 

reduced order system (A 1 ~, A 12). Because of the special structure of the regular form, it 

follows that the pair (A 1 ~,A 12) is controllable if and only if (A, B) is controllable. It can be 

seen from equation (5.46) that S2 has no direct effect on the dynamics of the sliding 

motion and acts only as .a scaling factor for the switching function. The choice of S2 is 

therefore somewhat arbitrary. A common choice however, which stems from the so

called hierarchical design procedure, is to let S2 =AB;' for some diagonal design matrix 

A E lRmxm which implies SB =A. By selecting M and S2 the switching function in 

equation (5.46) it completely determined. 
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Several approaches have been proposed for the design of the feedback matrix M 

including quadratic minimisation, eigenvalue placement and eigenstructure assignment 

methods. These approaches are discussed in Appendix D, part I. 

5.3.1 State-feedback Control Laws 

Of the many different multivariable sliding mode control structures which exist the one 

that will be considered here is essentially that of Ryan and Corless ( 1984) and may be 

described as a unit vector approach. Consider an uncertain system of the form 

x(t) = .:Jx(t) + Bu(t) + fm (t,x, u) + fu (t, X) (5.50) 

where the function /.,(t,x):llb~" ~~(B) and fm(t,x,u):~x~"x~m ~91(S) which 

represent the unmatched and unmatched uncertainty components of the system, which are 

unknown but assumed bounded. The function fu (t,x) is assumed to satisfy 

(5.51) 

The matched uncertainty is assumed to act through the control channels, i.e. 

f(t, x, u) = B ~(t, x, u) (5.52) 

where ~(t,x,u): ~x ~n x ~m~ ~m and is unknown but satisfies 

ll~(t,x, u ~~ ~ k1 llull + a(t,x) (5.53) 

where I > k1 ~ 0 is a known constant, a(·) is a known function and 

(5.54) 

The proposed control law consists of two components; a linear component to stabilise the 

nominal system; and a discontinuous component. Specifically 
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(5.55) 

where the linear component is given by 

(5.56) 

where Cl> E IRmxm is any stable design matrix and A = SB which satisfies 

(5.57) 

The non-linear component is defined to be 

for all S "* 0 (5.58) 

where P2 E IRmxm is a symmetric positive definite matrix . satisfying the Lyapunov 

equation 

(5.59) 

and the scalar function p(t,x), which depends only on the magnitude of the uncertainty, is 

any function satisfying 

(5.60) 

where y>O is a design parameter. In this equation it is assumed that the scaling parameter 

has been chosen so that k1 K(ll.) < I. It can be established that any function satisfying 

equation (5.60) also satisfies 

p(t,x) ~ ll;(r ,x,u )11 + r (5.61) 

and therefore p(t,x) is greater in magnitude than the matched uncertainty occurring in 

equation (5.52). lt can be verified that V ( S) = STP.zS guarantees quadratic stability for the 

switching states and in particular 
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(5.62) 

This control law guarantees that the switching surface is reached in finite time despite the 

disturbance or uncertainty and once the sliding motion is attained it is completely 

independent of the uncertainty. 

5.3.2 Unit Vector Sliding Mode Control of a Brush less D.C. Motor 

This section of the work is devoted to the development of a sliding mode controller for 

the third order system used previously in Chapter 3, specifically 

[:} 
0 0 

[:J 
0 

0 
B Km _!!.!_ (5.63) --
J J J 

- K. - Ra u2 0 
L L L 

In this section it is assumed initially that the load torque and the frictional load ·are 

negligible, the input control is therefore simply the applied voltage. Additionally it is 

assumed that the load inertia is not precisely known, such that 

(5.64) 

. where J N is the nominal value of the inertia determined experimentally and 

(5.65) 

The model may be rewritten in the form 

5-22 



Sliding Mode Control: Classical Approaches 

[~J 
0 0 

[:} 0 

0 0 Km 0 Uz (5.66) 
J 

- K, - Ra 
I 

-
0 L L L 

and the model is automatically in the regular form with the matrices given as 

A.,=[; l 
B=!!l_ 

z L 

The matrix which defines the switching function is given as 

The characteristic equation of A11 - A,2M is the quadratic equation 

(5.67) 

(5.68) 

(5.69) 

(5.70) 

(5.71) 

where the parameters ( and w" represent the damping ratio and the natural frequency 

respectively. The switching function obtained from the selection of S2 =I, and the value 

of M determined previously, is given by 

(5.72) 

from equation (5.56), the linear component of the control law Is given by 

u1 (t) = -LSAx(t)+ L<t>S(t) (5.73) 
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where <I> represents a negative definite scalar value which will determine the rate of 

decay of the state onto the switching manifold. Consideration of the range space 

dynamics in (5.45) reveals that 

(5.74) 

The matched uncertainty component is therefore given as 

(5.75) 

It will be assumed that the motor inductance is not precisely known, but is known to fulfil 

the bound 

(5. 76) 

where L is the nominal inductance specified by the manufacturer and LA is the actual 

phase inductance. It follows from (5.54) that the gain associated with the input 

uncertainty is 

(5.77) 

with the bounding function 

a(t,x),; -
1
-( K. lx2 (t)l+ Rlx3 (t)l) 

. IOLA 
(5.78) 

smce Amin I!B;1 r = 1/ LA the requirement of (5.54) is satisfied. It can be confirmed that 

the reduced order sliding motion is given by 

(5.79) 

(5.80) 
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which implies from (5.51) that 

(5.81) 

Appropriate values of the coefficients are therefore found to be k1 = .!.IIMII and k2 = 0. A 
2 

scalar value for pre-multiplication of the norilinear control element can now be found. 

Since I\= 1/ L and the parameter K (I\)= I, 

(5.82) 

Hence from the scaling function (5.60) 

(5.83) 

The nominal values of the motor in Table 5.1 are used in addition, the properties of the 

sliding motion have been assigned as (=I, {J)" = 5 rad/s, <I>= -20 and y2 = 0.01. The 

simulated time response to a step input of the plant when the nominal parameters are 

assumed to vary in accordance with Table 5.1 are shown in Figure 5.13 for the plant with 

minimum parameters and Figure 5.14 for the maximum parameters. Where it was 

initially assumed that the load friction was nil, its effects have been taken account of 

within the nonlinear control component. 
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. 
u(t) 1 

B j( ) dt 
x(t) 

C=I 
i y(t) 

I . 
A 

·I 

PLANT 

.._u....:..., (~t)_~ -(sBr1 SAx(t)+(sst <I>S(t) 

I . 
p(t,x,u) sgn(x) s ·I 

~ UNIT VECTOR CONTROLLER ' 
--- - --------------- - ----------------~ 

Figure 5.10: A Unit Vector Sliding Mode Regulator 

A sliding mode regulator (Figure 5.1 0) has been successfully designed and its 

performance may be seen in 

Figure 5.11 to be satisfactory, requiring 0.75 seconds to converge to the origin given 

initial conditions of x1 = 1, x2 = 0 and x3 = 0 . Chatter is evident as very high frequency 

switching within the control channel, the following section will be devoted to methods 

which will negate this effect. ln order to convert the regulator to a controller, it is simply 

a matter of choosing the correct space in which to control the system. 
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Figure 5.11: Performance of the Sliding Mode regulator, Top, Position evolution, Bottom, 

Control effort 

Assuming that there exists an appropriate coordinate transform, the regulator may be used 

as a controller by introducing a demand, d (t). The regulator will act within the error 

space in exactly the same manner as before. The principle of the controller acting with 

the transformation given by (5.84)-(5 .86) is shown in Figure 5.12. 

(5.84) 

(5.85) 

(5 .86) 
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Figure 5.12: A Unit Vector Sliding Mode Controller 
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Figure 5.13: Sliding Mode controller performance with minimum parameters 
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Figure 5.14: Sliding mode controller performance, plant maximum paraf!leters 

As per the controller developed in the last section, the unit vector contr~ller is able to 

demonstrate invariance to the bounded parameters, once sliding. It is plain to see that the 

chatter phenomenon is only just being maintained, illustrating that the controller is only 

just achieving the sliding mode. It can also be seen that the transient performance, and 

the rate at which the error state converges onto the manifold is also different. This is the 

typical performance one would expect to see whilst the controller is in the reaching 

phase. An important consideration of this work is the controllers robustness to sensor 

n01se. This has not been formally considered within the derivation of the controller and 

is significant since the circuit used for current measurement from the motor (see Chapter 

3) has only a single Resistor-Capacitor filter. Within the simulation, an extraneous noise 
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signal was introduced, it is assumed that the sensor noise can be modelled by a white 

noise signal with zero mean. It should be noted that practically, the signal will not match 

this description (Porat, 1997), but will suffice as an approximation. The signal is 

assumed to have a I 0% signal to noise ratio. The position and control effort are 

illustrated in Figure 5.15 and Figure 5.16 respectively. The controller maintains the 

demand, however, since the noise signal is essentially an unmatched disturbance, the 

system dynamics, even in the sliding mode are effected. Once again, the use of a major

minor feedback loop with the inner sliding mode controller for speed will serve to 

. severely restrict the effect that such signals have on the controlled position (Chapter 6). 

The controllers thus far developed have been shown to attain the sliding mode in finite 

time. The sliding mode theoretically obtained is the ideal sliding mode, which leads to 

discontinuous control across the manifold S. In the control of electrical machines such 

control is noted to be naturally discontinuous. However, the implementation of such 

controllers in a mechanical system will lead to a chatter motion within a boundary of the 

surface S rather than the ideal, smooth sliding motion. This phenomena is well reported 

to inflict undue wear and high heat losses within the actuators, the control law would be 

considered unacceptable. Within the next section, modifications to the control law are 

described which overcome this difficulty. 
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Figure 5.15: Sliding mode controller position control with current sensor subject to 10% 
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Figure 5.16: Sliding mode control, with current sensor subject to 10% SNR 

5.4 Anti Chatter Techniques 

The many advantages associated with SMC have been extolled within this work. The 

principle drawback associated with SMC, however, is the phenomenon referred to as 
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chattering (Young et al, 1999). This term is used to describe the finite frequency, finite 

amplitude oscillation of the controlled state around the sliding manifold. 

Chattering has two principle causes; the first is that digital implementations of the SMC 

with microprocessors of fixed sample rate may cause discretisation chatter (Habibi and 

Richards, 1992). The second cause is attributed to the fast dynamics in the control loop 

which are neglected in the system model. These dynamics are excited by the high 

frequency switching of the controller. In this case, the term 'unmodelled dynamics' refer 

to inertia associated with actuators and sensors, which in principle is much faster than the 

system dynamics. However, since a sliding mode controller is in theory infinitely fast, all 

dynamics of the system should, in principle, be accounted for. 

This effect is krtown to cause undue wear on mechanical components, high heat loss in 

electrical circuits and low control accuracy (Utkin, 1993). This has naturally served to 

limit the application of SMC. A very large research effort has therefore been directed at 

the neutralisation of the chattering effect. This section provides an overview of the 

techniques applied to date. 

To initiate this section, consider a first order plant. The plant is actuated with a second 

order unmodelled actuator, given by equations (5.87) and (5.88) respectively. 

x(t) = ax(t)+bu(t)+~(x,t) (5.87) 

(5.88) 

where a and b are assumed unknown plant parameters with known bounds. u(t) is the 

control variable and the disturbance ~ ( x, t) is also assumed to have known bounds. u(t) 

is the actual control input, and p represents the La place variable (to avoid confusion with 
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s). UJ (w>O) is used to represent the actuator bandwidth and the relationship w»a, 

signifying that the actuator dynamics are significantly faster than the system dynamics, 

permits the substitution of a small time constant f1 (fl = ~ > 0). 

5.4.1 Boundary Layer Normalisation 

This approach seeks to avoid control discontinuities within the control loop by replacing 

the discontinuous control law (sgn ( S), Figure 5.17.a) with a continuous saturation 

function (Figure 5.17.b). This function is an approximation of the manifold S (t) = 0 

with a boundary layer. 

The saturation function is given 

_ jMsign(S(t)) ifiS(t)l > f3 
u(t) = M 

-S(t) ifiS(t)l:::; f3 
f3 

(5.89) 

Where f3 defines the radius of the boundary layer. Consideration of this function shows 

that when the representative point is far from the manifold S(t)=O, the saturation function 

behaves precisely as the sign function, and the linear feedback gain is symmetrically 

saturated with a value of M within this region. Convergence ofthe state trajectory to the 

boundary layer is guaranteed through the same arguments for the system employing the 

sign function. It may be shown (Utkin et a!, 1999) that provided the unmodelled 

dynamics are stable and faster than the system dynamics that the controller will be stable. 

Intuitively it may be seen that higher feedback gains will ultimately cause chatter once 

again. The stability boundary is given 

5-33 



Sliding Mode Control: Classical Approaches 

M 3.fi-4(l )2 -< -aJJ 
f3 bj..J 

(5 .90) 

Further it may be shown that for oscillation free trajectories with critically damped 

eigenvalues the following inequality must hold 

M 3.fi - 4 (l 2 )2 -< - aj..J 
f3 bj..J 

(5 .91) 

One of the clear benefits of the boundary layer approach is that the resulting controller is 

continuous. The invariance condition is still partially achieved since the state trajectory 

is now confined to the E vicinity of the manifold S (t) = 0. However, since within the E 

vicinity of the manifold (i.e. within the boundary layer) the behaviour of the controller is 

not defined, convergence of the system to the origin of the phase plane is not guaranteed. 

lf-------- 1 

- !(·) !(·) -!(·) !(·) 

-------1 -l -1 

Figure 5.17: a. (left) the discontinuous sign junction b. (right) the continuous saturation 

function 

The controller developed in § 5.3.5 is now modified in order to incorporate a boundary 

layer, the discontinuous control action is now given as 

(5.92) 
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which provides an approximation to the saturation function where c is a small positive 

constant which defines the radius of the boundary layer (Chern and Wong, 1995). The 

unit vector controller of the previous section has been implemented using a value of 1 Nm 

for the friction, this is in keeping with the initial measurement taken from Chapter 4. 

Chatter within the control is evident (Figure 5.20). Also evident is the effect of the noise 

within the current measurement on the steady state (Figure 5.18). This was predicted in 

§5.3.5. The modified controller response is shown in Figure 5.19 for a boundary layer 

c = 0.1. The smoothed control action is shown in Figure 5.21. The introduction of the 

boundary layer has led to-a steady state error within 2% of the demand. The final value 

of the steady state etTOr will vary depending on the position of the carriage relative to the 

stage and therefore the perturbation to which it is subjected. As discussed, the boundary 

layer is only able to provide guarantees of position to within the c -vicinity. This fact 

will be of great importance within Chapter 6. 

,, ·----------------,_...-~--= 

.. , i 

I 
... 

. ·------------- ---------------------

.__,, 

_, 

l 4 s • 

""'"·' -·· 
Figure 5. I 8: Position control of the Figure 5.19: Position Control of the 

linear stage Linear stage with boundary layer 
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Figure 5.20: Con_trol effort illustrating Figure 5.21: Smoothed control effort 

chatter 

5.4.2 Observer Based Solution 

The boundary layer solution discussed above avoids generating a sliding mode by 

replacing the discontinuous control action with a continuous one. When employing a 

continuous controller, it becomes necessary to use some method of converting the 

discontinuous signal, such as pulse width modulation. Modem motor controllers are 

discontinuous and are able to switch in the mega hertz region. Whilst the boundary layer 

approach remains an attractive design option because of its simplicity, for internally high 

order nonlinear systems, such as the brushless D.C. motor linear control methods become 

insufficient for control. This has been one of the principle reasons for the interest in 

SMC. An alternative approach must therefore be conceived that will provide the 

discontinuous control but alleviate chatter. 

The fundamental approach adopted in the observer based solution is to generate the ideal 

SMC in a secondary, internal observer loop. Ideal sliding mode is possible in the 

controller since it is entirely generated within the controller software and will not contain 
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unmodelled dynamics. Despite the discontinuous signal being applied to the plant, no 

chattering occurs and the system behaves as if the equivalent control were being applied. 

Define a first order observer for the system given in (5. 7) 

i(t) = ax(t) + bu(t )+ L1x(t) (5.93) 

In this case L1 is the linear feedback gain for the observation error x(t)= x(t)-x(t). The 

dynamics of the observation error may be described by 

x(t) = ~(x,t)- L1x(t) (5.94) 

Both the observation error and the disturbance are assumed unknown but bounded. If a 

manifold is now introduced 

(5.95) 

then the ideal sliding mode controller for the observer loop may be defined as 

u(t) = MsgnS(t) (5.96) 

It is clear that since the observer acts as the controlled system,. and since the observer is 

able to react in the expected manner, that the ideal trajectory of the representative point 

will be realised. Recalling that in this case the output of the controller may be described 

as the equivalent control. In order to examine the behaviour of the of the system, the 

equivalent control method may be employ~d, solving 

S(t) = xd (t)- ax(t) -bu(t)- L1x(t) (5.97) 

for the control, yields 

bu,q (t )= xAt)- ax(t)- L1x(t )= 0 (5.98) 

It is shown in (Utkin et a/, 1999) that the stability bound in this case is given by 
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(5.99) 

The observer based solution to chatter ·prevention requires a greater design effort. 

However, observers serve to form an integral part of.many control applications. It has 

been shown here that they may easily be included in the controller design. In addition, 

both full and reduced order observers may be used and the designer is thus afforded a 

greater flexibility than when designing with the boundary layer solution. 

5.4.3 Regular form 

Both methods that have been described so far have assumed complete ignorance of the 

unmodelled actuator and plant dynamics. ln reality, however, at least partial information 

about the unmodelled dynamics can be obtained and additionally actuator outputs may be 

measured. For instance extremely accurate models are available for the brushless D.C. 

motor, in terms of the model structure, but parameters of the specific motor are uncertain. 

It makes sense to· include the known dynamics into the controller in order. to achieve 

better system performance. 

The principle supporting the regular form approach is that since the actuator and the 

system are block separated, a cascaded controller may be designed in two steps. The first 

step is to design the controller for the plant alone, assuming ideal actuator dynamics. 

Thus the desired actuator outputs Wd are defined. In the second step the actual control 

effort is used~ such that the actuator outputs may be guaranteed to follow the desired 

output with the relationship u(t)=ujJ). 

Because of the massive number of avai !able models for electric drives and controllers this 

method is especially attractive. It is important to note, however, that this method is not 
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applicable systems with unmodelled dynamics principally introduced by sensors, because 

measurements of both inputs and outputs of the unmodelled dynamics are required. 

Since sensor inputs are rarely available through measurement, other techniques to avoid 

chattering such as those discussed above should be employed in systems with unknown 

sensor dynamics. 

Proceeding under the assumption that the main source of unmodelled dynamics is the 

actuator, and that a reasonable model for the actuator with uncertain parameters is 

available, for instance 

w( ) - c;} u( ) - 1 u( ) 
p - 2 2 ' '2 p - (' 1)2 p P + wp + w f.lP + 

(5.1 00) 

where w =I I jt serves to provide an estimate of the actuator bandwidth, u(t) is the control 

input the system and w(t) is the measurable actuator output. 

In the first step of the design procedure, a continuous auxiliary control law wd(t) is 

developed for the system (5. 7) in order to track the desired trajectory xd(t). It is 

unimportant which design method is used in order to achieve this, however, due care 

should be taken in order to ensure that the system will still be able to track the trajectory 

despite the limited actuator bandwidth. 

For the system in equation (5.7), if a first order linear controller of the form 

wAt)= C(xAt)-x(t))= Cx.(t) (5.101) 

with proportional gain C>O is used, then the error dynamics will be given 

x.(t) = b(- Cx.{t )+ h(x,xd ,t )) (5.102) 
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The second step in the design is to drive the error we(t)=wct(t)-w(t) to zero. Since the 

inner control loop does not contain any unmodelled dynamics, a discontinuous controller 

may be designed as 

(5.1 03) 

with sliding variable 

S(t)=Kw,(t)+w,(t) (K>O) (5.104) 

Assuming that the first and second time derivatives ofwct(t) in (5.101) are available, and 

that the first time derivative of the actuator output dw(t)/dt is also available then the 

controller (5.1 03) leads to 

u(t) = J.l\v, (t) + 2J.Lw, (t) +M sgn S(t) (5.1 05) 

Using conventional tools for the analysis of sliding mode, it can be shown that S (t) and 

dS(t)jdt will have opposite signs for bounded dw(t)jdt and d2w(t)jdt 2 if the control 

gain M is sufficiently high, but bounded . 

. 5.4.4 Disturbance rejection 

The previous controller sought to achieve tracking of the desired trajectory with the 

output of the plant, this approach required the use of a linear control with an estimate of. 

the plant disturbance. However, this disturbance estimate is frequently unobtainable. 

The final approach discussed here provides a method by which the disturbance may be 

accurately estimated, whilst still avoiding chattering within the main control loop. This 

method may be viewed as a special case of integral sliding mode control (Utkin and Shi, 

1996). 
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The principle concept surrounding disturbance rejection via an SMC approach is to split 

the controller into two components; a continuous controller uc(l) for overall control of the 

plant and a discontinuous control ud(l) for the disturbance rejection and suppression of 

parametric uncertainty effects. The overall control u (t) takes the form 

(5.106) 

Once again, referring to the system described in equation (5.7), assume that the desired 

trajectory and b are known, but parameter a and disturbance d(x,t) are both unknown. A 

continuous controller may then be designed as 

(5.107) 

where C>O is the proportional feedback gam for the tracking error, x, (t). If it is 

assumed at the moment that the system contains no actuator dynamics then the 

disturbance rejection term of the controller may be set to zero such that u(t)=uc(t). 

Substitution of (5.1 07) into (5.87) then yields 

xc (t )+ Cx, (t) = -ax(t)- d(x,t) = J(x,t) (5.1 08) 

The error dynamics in (5.108) are perturbed by the function f(x,t);eO. Since these 

perturbations are not zero, the tracking error x.(t) does not go to zero. The discontinuous 

controller is designed to improve tracking performance by providing an estimate of the 

disturbance. A manifold is first defined as 

s(t)= x,(t)+ z(t) (5.109) 

where z is an auxiliary sliding variable given by 

z(t) =-id (t) = bu(t)-bM sgn S(t) (5.110) 
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After differentiation of (5.1 09), the sliding variable s(t) and the auxiliary variable z(t) 

may be substituted into the plant model (5.7) to yield 

s(t) = .x, (t) + z(t) (5.111) 

s(t) = -ax(t)- d(x,t)+b( u(t)- w(t)) -bM sgn S(t) (5.112) 

If the actuator output is fully measurable then (5.110) may be rewritten 

z(t) = -xd (t) +bw(t)-bM sgn S(t) (5.113) 

Since the actuator time constant is assumed small, sliding mode will exist if M is 

sufficiently large. The state trajectory will converge to zero after a finite time. If the 

initial conditions are chosen such that the auxiliary variable z(O)=-x,(O) then the reaching 

phase may be completely eliminated by setting S(O)=O in (5.109). Once in sliding 

mode, equivalent control may be employed in order to analyse the system behaviour. 

Solving (5.112) with S = 0 and w(t) = u (t) for the discontinuity term yields the 

continuous equivalent control 

udeq (t) = .!_ (- ax(t)- d(x,t )) 
b 

udeq (t) = J(x,t) 
b 

(5.114) 

(5.115) 

This gives an exact estimate of the disturbance acting on the system under continuous 

control alone. The second term in (5.1 06) may then be defined as 

(5.116) 

Now (5.1 08) may be replaced, so that exact tracking may be achieved with error 

dynamics given by 

x, (t) + Cx, (t) = 0 (5.117) 

5-42 



Sliding Mode Control: Classical Approaches 

5.5 Discussion 

This Chapter has served to introduce fundamental concepts associated with sliding mode 

control. The motor controller developed around traditional techniques has been applied 

in simulation and its time domain response shown to correspond well with an equivalent 

proportional, integral, derivative controller. The important invariance conditions of the 

controller have been discussed. The control effort of the ideal sliding mode controller is 

understood to be smooth, however, it is well recognised that the ideal controller cannot be 

realised and that control chatter is introduced to the system. This phenomena is highly 

undesirable within a practical system and therefore smoothing techniques have been 

investigated to achieve smooth control action. Results obtained show how these 

techniques may be employed at the expense of some other controller property. In the 

following Chapter, the controllers developed will serve to provide the foundation for 

more adyanced controllers. The design based around the classical approach will serve to 

form the basis of an integral action controller which takes special advantage of the Bush 

canonical form. The controller based on the unit vector approach will form the basis of 

the fuzzy model based controller. 

5.6 Notes and References 

5.6.1 Notes 

The first Markov Parameter, or simply Markov Parameter is given as the matrix product 

CB. Since this parameter is invariant to the change in state space, this parameter is 

simply a measure of the system input-output characteristics. 
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Chapter 6 

Sliding Mode Control: Advanced Approaches 

6.1 Introduction 

The ·previous Chapter served to introduce concepts which form the basis for the 

remainder of the work reported here. In the course of studying further methods for 

achieving the sliding mode, two original controllers have been evolved. This Chapter, 

therefore, aims to achieve two objectives. Firstly, an exposition of the new controllers, 

which are both based on the concept of introducing an integral action into the control 

channel, is given, lhis additional integral aclion has the effect of increasing system 

robustness to unmatched disturbances, and reduces steady state error to zero. The first of 

the two controllers provides a design approach for a standard sliding mode controller in 

the Bush canonical form and introduces an integral action into the control very simply. 

The second of the controllers demonstrates improved control performance over previous 

integral action sliding mode controllers through the introduction of recent theory from the 

field of computational intelligence. 

The second objective of this Chapter is to introduce the remaining concepts, which build 

on Chapter 5, and wi 11 be used later in lhe development of a sensorless control system, in 

Chapter 7. Specifically, robust state observers and model following sliding mode control 

are considered. 
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6.2 Integral Action Sliding Mode Controllers 

The boundary layer has the unique property among chatter reduction techniques of 

maintaining a guarantee of invariance to parametric uncertainty beyond a certain vicinity 

of the sliding manifold and robustness within the same vicinity. This leads to a controller 

with two modalities, and it was first recognised by Ryan and Corless (1984) that the 

additional freedom afforded by the boundary layer at the manifold could be used to 

improve the controller robustness to the inclusion of so called unmatched disturbance, i.e. 

those disturbances which do not act through the system control channels. The Ryan and 

Corless controller was theoretically elegant, however conservative. Davies and Spurgeon 

( 1993), subsequently made the controller less conservative by considering only a subset 

of the disturbances considered by Ryan and Corless. The practical applicability of the 

controller was reported in Davies, Edwards and Spurgeon (1994). 

The fundamental extension of these controllers to the traditional sliding mode controllers 

discussed within the last Chapter is to provide an additional integral action, which seeks 

to reduce asymptotically steady state error to zero as time tends to infinity. Three 

extensions to this work are proposed within this Chapter. The first uses the same 

principle and the properties of the Bush canonical form to provide a controller that 

radically simplifies the design of an integral action sliding mode controller. The second 

controller uses the theory as discussed by Spurgeon and Davies (1993) and the 

observation that controller performance is fundamentally limited by the plant uncertainty. 

It seems odd that one would argue that the sliding mode, with its guarantees of invariance 

to parametric uncertainty, is limited in its performance by the said uncertainty. It is 

indeed the case that transient response is not improved "significantly by the use of this 
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approach, however, the reader will be familiar with the process of selecting the non linear 

· gain from the Chapter 5. The magnitude of the nonlinear gain is determined directly 

from the magnitude of the uncertainty. It follows that reducing plant uncertainty leads to 

a safe reduction in non linear control gain, therefore the boundary layer may be reduced in 

magnitude and the high initial control response of the controller may also be reduced. 

Reduction in the boundary layer also leads to an increase in the guaranteed asymptotic 

tracking accuracy of the controller. The final controller recognises the relative 

complication of the previous controllers and an approach to reducing this burden is 

discussed. This final controller succeeds in reducing the computational burden· by 

adopting the same approach as the design of the sliding mode observer; first a 

proportional-integral controller is developed in compatible coordinates and then a 

discontinuous control is introduced in order to negate the effects of parametric 

uncertainty. 

The final controller discussed within this section are based on the concept of model 

following, a model with desired eigenvalues is provided and the uncertain system is 

constrained to perform in the same manner. This final controller will be of use in Chapter 

7, in part as the solution to sensorless precision motion control. 

6.2.1 A Canonical Form Integral Action Sliding Mode Controller 

The principle motivation for introducing a boundary layer is to negate the effects of 

control chatter, as discussed in the previous Chapter. The compromise to be made is that 

the controller is no longer capable of guaranteeing zero steady state error. As described 

above, it becomes attractive to introduce a feed forward integral action state that will 

reduce the error to zero asymptotically as time tends to infinity. This section concentrates 
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on· the method for introducing a feed forward integral action state that will be 

computationally simple to implement. This is achieved through the use of the Bush 

canonical form and similar arguments from §5.2.4. 

Motor Model 

As within the last Chapter, the nominal motor parameters are taken as those shown in 

Table 6.1 

Parameters 

Symbol Min. Max. Units 

J 0.010687 0.019960 Nms2 

F 7e-3 I 0.5e-3 Nm/rad/s 

T, le-2 50e-2 Nm 

L 0.0026 0.0026 H 

R, 0.64 0.64 n 
K, 0.54 0.54 NmA.·' 

Table 6.1 : Motor Parameters 

The objective of the controller will be to control the precise angle of the motor stator. 

The controller is error actuated and the traditional states are therefore introduced:· 

(6.1) 

(6.2) 

(6.3) 

where em and ed represent actual angular position and desired angular position, 

respectively. w, represents angular velocity of the motor stator. Because the controller 

does not constrain the system to remain on the sliding manifold, final tracking accuracy 

of the motor will not be guaranteed. It is therefore attractive to introduce a fourth state, 

which will be the integral of x 2 over time, i.e. the integral of position error. 
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I 

x, = J(em-ed)dt (6.4) 
0 

The motor dynamics may be represented in the controllable canonical form according to 

x, (t) 0 I 0 0 
x1(t) 

0 

0 0 I 0 0 
j2 (t) 

0 0 0 
x2 (t) + 0 u(t) (6.5) 

j3 (t) x3 (t) 
BR+K'"K' BL+RJ Km x4 (t) 0 0 - x4 (t) JL, JL JL, 

The system is now available for the development of the control scheme. 

Controller Design 

An integral error state has been introduced into the system model. It is not an 

unreasonable assumption that an accurate measure of this integral could be obtained in 

practical application. Attention is now drawn to the design of a controller that is able to 

fully employ this additional state to bring tracking error asymptotically to zero . 

. Begin by defining a manifold S(x) according to 

S ( x) = C1x2 + C2x3 + x4 (6.6) 

where C1 and C2 are design parameters to be found. Also define the control action to be. ·• 

(6.7) . 

where e, a1, a2 and d are design parameters which effect the local components of the 

control action and B is a control gain which will have a global effect. The well kn'own 

condition for the existence of the sliding mode (Utkin, 1977) may legitimately be used 

within the controller design and is given by 

(6.8) 

from (6.5),(6.6) and (6. 7), 
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SS={c -(BL+RJ)}s2+{C -C2+C (BL+RJ)_BR+KmK. Kmab}xs+ 
2 JL I 2 2 JL JL JL 2 J 

{ (
BL+RJ) Km } {K } K C -CC --ab x S+ ___.!!!._eb x -db___.!!!._JSJ 

I JL I 2 .!L 2 2 JL I JL 
X X 

(6.9) 

Once the system state is close to the sliding surface, (6.9) simplifies to 

SSI ={C -C2+C (BL+RJ) BR+KmK,_Kmab}xS+ 
s~o I 2 2 JL JL JL 2 J 

{ (
BL+RJ) K } {Km } K C -CC -___.!!!._ab x S+ -eb x -db___.!!!._JSJ 

I JL I 2 JL 2 2 JL I JL 
s s 

(6.1 0) 

Thus in order for (6.8) to hold, the following inequalities must be satisfied. 

a1 ={~ if x2S > 0 

if x2S < 0 
(6.11) 

ai ={~ if x3S > 0 

if x3S <0 
(6.12) 

which reduces to 

(6.13) 

(6.14) 

where 

=[JLC1 (BL+RJ -C)] 
r1 bK JL 2 

m 

(6.15) 

r =[ JL (c -C2 )+C BL+RJ BR+K.] 
2 bK I 2 2 K 

m m 

(6.16) 

additionally, 

(6.17) 
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JL 
e>--

bKm 
(6.18) 

Once in the sliding mode, S(x) defines completely the system dynamic performance, in 

the absence of unmatched disturbance (Spurgeon, 1991 ). The eigenvalues of S are given 

as 

(6.19) 

(6.20) 

To obtain a damping ratio of I or greater the inequality 

(6.21) 

must hold, the equality defines the gains for critical damping. In order to ensure that the 

system is made attractive to the sliding surface, given the inequalities (6.13)-(6.18) and 

equation (6.9) it is clear that if 

C < BL + RJ (6.22) 
2 JL 

then the system will be globally attracted to the sliding manifold. The controller 

parameters may be formally expressed as 

I (JLC1 (BL+RJ c)) a >-max --
1 b K JL 2 

m 

(6.23) 

fJ <.!_min(JLC, (BL+RJ -C)) 
I b K JL 2 

m 

(6.24) 

(6.25) 
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(6.26) 

I ( JL J d>-max -
b Km 

(6.27) 

e > .!.max( JL J 
b Km 

(6.28) 

C . (BL+RJ) 
2 <mm 

JL 
(6.29) 

C -c; 
1-

4 
(6.30) 

Finally, the discontinuous switching function of the control is replaced by a boundary 

layer. The above derivations are still valid (Utkin et al, 1999). Once the motor 

parameters are inserted into the inequalities (6.23)-(6.30), the following equalities are 

obtained with the controller gains selected as shown. Most of the controller gains 

selected show close agreement with the respective minimum or maximum values. The 

only gain which does not is the dither component d. This of course may be chosen to be 

much smaller with no cost to performance as long as it remains larger than the matched 

uncertainty component. 

ba
1 
> 17.78=20 (6.31) 

bf3
1 
< 8.76 = 5 (6.32) 

ba1 > 1.46 = 4 (6.33) 

bf32 < 1.23 = 1.1 (6.34) 

bd > 0.58e-3 = 5 (6.35) 

be> 0.58e- 3 = 0.2 (6.36) 
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(6.37) 

(6.38) 

The controller is compared with a sliding mode controller without the integral action, 

from §5.2.4. 

The first test is to demonstrate that the proposed controller can perform equally as well as 

a typical sliding mode controller in the absence of unmatched disturbance. Figures 6.1 

and 6.2 illustrate how the controller can perform well under such conditions; in this case 

the integral gain is given as 0.2. 

In the next test, it is assumed that an additive error is imposed on the speed state of the 

state output matrix, the two controllers are re-tested under these conditions. The set-point 

is now reduced in order to make clear the evolution of the position state. Figure 6.3 

illustrates the results. lt may clearly be seen that the traditional sliding mode controller 

maintains a steady state error, whereas the proposed controller does indeed reduce the 

error to zero. 

-•oo,--.~·-·-·--~ 

; 

·•OO!~---:--:---c--:--~~=~~=:::=~==:::J 0 5 10 -Ccnrol Ef'fort 

.JD,'----..,.___,__~__,.., --o----o--~~-, -
Figure 6.1: Sliding Mode Controller. Illustrating Control Chatter. 

6-9 



Sliding Mode Control : Advanced Approaches 

·SO 

'00·o~--~-7--~~~-5~~==~~==~==.o 
Tme 

Control enoo 
30 - - ' - r---...- -· ---r---.-r- - ·~-

Figure 6.2: Proposed Controller Performing without Chatter 

1 ------------------ --- - ------------------------ ------------ - ---·---
Poslbon \f'IOif ~ Mode Conlro4 'With lriep-al Adkln 

25,-------------~----~~--r~ =--~-~~~~· 
I -

:11:~ 
~ I --- - --------------- ---=--=---=---==~---------1 

05 

10 15 
Time 

Figure 6.3: Evolution of Controlled State Under Control by Sliding Mode and Proposed 

Controller 

6.2.2 Fuzzy Model Based Sliding Mode Control 

One drawback in the implementation of s liding mode control is that the guarantees of 

invariance in general only appl y to syste ms that satisfy the matching condition (Yao, 

1993). Disturbance which does not fulfill this condition, i.e . unmatched disturbance is 

not formally considered within the controller design. A more profound limitation in 
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practical application is the fundamentaf requirement that the control law is discontinuous 

across the sliding manifold, this leads to a phenomenon termed 'control chatter'. lt has 

been seen that a common approach to the negation of chatter is to use the boundary layer 

approach, in so doing, a compromise must be sought between desired tracking accuracy 

and controller bandwidth. 

Model errors due to parametric uncertainty lead to tracking error in controllers with a 

continuous approximation to the switching function, within the controller design, the 

controller feedback gains are increased to reduce these errors. This leads to high gain 

feedback control and despite the fact that these controllers can in theory use infinite 

feedback gain to achieve asymptotic tracking, such controllers are physically impractical 

because of the finite bandwidths associated with real systems. 

In Palm (1994) the apparent similarities between the sliding mode and fuzzy controllers 

were illustrated, which has subsequently motivated considerable research effort in 

. combining the two topologies in a manner that serves to reduce the limitation of the 

sliding mode. The most common approach to this has been to replace the continuous 

switching function of the boundary layer with an equivalent fuzzy switching function. 

However, as pointed out in O'Dell ( 1997), the fuzzy rule base commonly serves as a 

mimic of the original switching function and the advantages of such an approach are 

therefore unclear. Others have used a fuzzy rule base in making the sliding manifold 

adaptive, e.g. Ha et al. ( 1999), so as to minimise the reaching phase, good results have 

been reported. Babuska ( 1998) has demonstrated the ability of the affine Takagi-Sugeno 

model to model accurately a system through rule extraction from cluster data obtained 

within the regression space. These models may be used subsequently in order to extract 
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• 0 

locally linear state space models of the system and demonstrate model based control of 

both single input, single output (SISO) and multi input, multi output (MIMO) systems 

(Roubos et al., 1999). 

In this work, a system subjected to parametric uncertainty and disturbance is identified 

with a fuzzy rule base, the parameters of which ·are identified through use of the 

Gustaffson-Kessel subspace clustering algorithm (Chapter 4). Local models of the 

system under its instantaneous conditions are then extracted and subsequently used to 

design the sliding mode control gains. In this manner, the resultant controller will be 

shown qualitatively to improve closed loop transient performance whilst reducing the 

high gain feedback requirement, as a result of minimising system uncertainty. 

Within the 'following simulation study a third order model of a servomotor is used, the 

differential equations of which are given according to 

d! 
L-a =-I R - K (i)+ V 

dt a a ' u 
(6.39) 

d(i) 
J- = -B(i)-Tx + Ia.K 

d/ m 
(6.40) 

Where L is the motor inductance, la the armature current, Ke the back E.M.F constant, w 

the angular velocity of the armature, J the moment of inertia, B viscous friction, Tx the 

external load torque, Km the motor torque constant and Va the armature voltage. In 

addition B is introduced as the armature angular position. These equations may be 

rewritten in state space form according to the following, 
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. 
XI 0 I 0 

[;} 
0 

o o{;:] x2 0 
B Km _!:!J_ >'; = [l (6.41) = 
J J J 

X3 - K. - R. u2 
0 

L L L 

The model parameters are taken as shown in Table 6.2: 

Parameter Value (Nominal) Value (Actual) 

Ra 0.64 0.64 

L 0.0026 0.0026 

Ke 0.54 0.54 

Km 0.54 0.54 

J 0.01 0.02 

B 7e-3 I 0.5e-3 

Table 6.2: Motor Parameters 

Next within this work, the mechanism for fuzzy identification of this model is considered. 

After which, consideration to the sliding mode controller design is given. 

· Within this work the design approach Spurgeon and Davies ( 1993) is adopted in order to 

ensure zero steady state controller error. However, it is also recognised that if the system 

uncertainty can be reduced, then controller performance may be correspondingly· 

improved. Once local models of the system have been extracted, they may be used in 

order to provide enhanced information to the sliding mode controller. The principles 

associated with the design of a sliding mode controller with integral action are considered 

next. 
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Integral Action Sliding Mode Controller 

As alluded to in the introduction, the ideal sliding motion is control independent and 

defined only by the choice of sliding surface provided that certain assumptions about the 

system disturbance hold (Drazenovic, 1969). In terms of controller design it is 

convenient to convert the system equations into a suitable canonical form. In this form 

the system is decomposed into two connected subsystems, one acting in within the range 

space of matrix 8 and the other within the null space of the manifold S. In terms of 

design, the problem then becomes one of state feedback given desired system eigenvalue 

locations. Since by assumption the matrix B is of full rimk, there exists an orthogonal 

matrix ~ E JR"'" such that 

(6.42) 

where B2 E JRmxm and is non-singular. Let z = Tx and partition the new co-ordinates so 

that 

z=[:J (6.43) 

where z1 E JR"-m and z2 E JRm. The nominal linear system can then be written as 

z1 (t) = A11 z1 (t)+A12z2 (t) 

z2 (t) = ~1 z1 (t)+ ~2 z2 (t) + B2u(t) 

(6.44) 

(6.45) 

commonly known as the regular form. Equation (6.44) is referred to as describing_ the 

null-space dynamics and equation (6.45) as describing the range-space dynamics. From 

the perspective of the extracted local models, it is convenient to first convert the matrices 

to the controllability canonical form, thus the system is guaranteed to be in the regular 
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form for subsequent design. Suppose the matrix defining the switching function (in the· 

new co-ordinate system) is compatibly partitioned with z as 

(6.46) 

where SI E !Rmx(nxm) and sl E !Rmxm 0 Since SB = S2B2 it follows that a necessary and 

sufficient condition for the matrix SB to be non-singular is that the determinant of S2 is 

non zero. It is reasonable to assume that this conditionwill be met by design. During an 

ideal sliding motion 

for alii > t 
·' 

(6.47) 

and therefore formally expressing z2 (t) in terms of z1 (t) yields 

(6.48) 

where M= S;1S1 • Substituting into (6.44) gives 

(6.49) 

z2 (t) is considered to play the role of the control action. The switching surface design 

problem can therefore be considered to be one of choosing a state feedback matrix M to 

stabilise the reduced order system (A 11 ,A12 ). At this point the unit vector approach is 

. introduced. Consider an uncertain system of the form 

x(t)= Ax(t)+Bu(t)+ f(t,x,u) (6.50) 

where the function f: IR x IR" x !Rm ~ !Rm which represents the uncertainties or non

linearities satisfying the so-called matching condition, i.e. 

f(t,x,u)= sc;(t,x,u) (6.51) 
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where ~is unknown but satisfies the following inequality 

11~ (l,x,u )11:::; k~llull +a ( l,x) (6.52) 

where I> k1 ~ 0 is a known constant and a ( •) is a known function. The proposed control 

law comprises two components; a linear component to stabilise the nominal linear 

system; and a discontinuous component. Specifically 

(6.53) 

where the linear component is given by 

(6.54) 

where <1> is any stable design matrix and A= SB. The non-linear component is defined 

as 

( ) ( ) 

_ 1 ~s (I) 
u" I =-p l,x A ~~~s(l)ll+& for all s*O (6.55) 

where P2 is a symmetric positive definite matrix that satisfies the Lyapunov equation 

(6.56) 

and the scalar function p(1,x), which depends only on the magnitude ofthe uncertainty, 

is any function satisfying 

( ) (k111u,ll+a(1,x)+r) 
p l,x ~ ( ( )) l-kiK A 

(6.57) 

where· r > 0 is a design parameter. & is the radius of the boundary layer may be shown 

to be dependent on the actuator time constant and inversely proportional to the available 

control resources. In this equation it is assumed that the scaling parameter has been 
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chosen so that k
1
K{A) < 1. lt can be established that any function satisfying equation 

(6.57) also satisfies 

p(t,x) ~ 11; (t,x, u )11 + r (6.58) 

and therefore p(t,x) is greater in magnitude than the matched uncertainty occurring in 

this equation. It can be verified that V ( S) = sr~S guarantees quadratic. stability for the 

switching states and in particular 

(6.59) 

This control law guarantees that the switching surface is reached in finite time despite the 

disturbance or uncertainty and once the sliding motion is attained it is completely 

independent of the uncertainty. 

Now consider the introduction of additional states x, E !RP satisfying 

(6.60) 

where the differentiable signal r (t) satisfies 

r(t)=r(r(t)-R) (6.61) 

with r a stable design matrix and R a constant demand vector. Augment the states with 

the integral action states and define 

(6.62) 

The associated system and input distribution matrices for the augmented system are 

- [0 -CJ - [0] A= O A and B= B (6.63) 
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assuming the pair (A, 8) is in regular form, the pair (A, B) is also in regular form. The 

proposed controller seeks to induce a sliding motion on the surface · 

(6.64) 

where S and S, are design parameters, which govern the reduced order motion. The 

hyperplane system matrix and system matrix are partitioned as 

S=[~ 1:] (6.65) 

(6.66) 

and assume 1\. = SB is non-singular. If a controller exists which induces an ideal sliding 

motion on S and the augmented states are suitably partitioned, then the ideal sliding 

motion is given by 

.i:, (t) =(A,- A, M )x, (t )+( A,s;'s, + B, )r(t) (6.67) 

where M = s;1 SI and B, = [JP O""P r. In order for the hyperplane design method to be 

valid, it is necessary for the matrix pair ( A11 , A12 ) to be completely controllable. 

As per the development of the unit vector controller in the previous Chapter, a linear 

change of coordinates is·introduced according to 

T=[~ ~] (6.68) 

and let 

(6.69) 
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Then the nominal system may be rewritten in these coordinates as 

(6.70) 

(6.71) 

The overall control law is then given by 

u =u1 (x,r)+uJx,r) (6.72) 

where the discontinuous vector u. is given by 

u s r = c • ( ) {
-p (u1 ,y)A-' ifSict.S,r 

n ' 0 othenvise 
(6.73) 

It follows that, in terms of the original co-ordinates the control vector Ut is given by 

(6.74) 

u1 ( i, r) = Li + L,r + L/ (6.75) 

with gains defined as 

(6.76) 

(6.77) 

(6.78) 

The parameter S, can take any value. and does not affect the stability of the closed loop 
. . 

system. 

Model Extraction 

The work in Roubos et a! ( 1999) presents a method whereby the fuzzy clustered model 

may be represented as a local linear state space model. The ·following is an overview of 

the method adopted. The regression vector, which is represented by Ct is given by 
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(6.79) 

An affine Takagi-Sugeno rule may be represented by 

(6.80) 

(and TJ are vectors of polynomials in the previous sample (y(k-1)), and &the offset. K1 is 

the number of rules of the th offset. The model output is calculated as the degree of 

fulfillment p;t{&1h) for each antecedent variable and the resulting degrees of fulfillment 

(/Jii) for every rule are combined with the linear consequence according to the following 

p 

f3u(c,)= fl,u,h(c,h) (6.81) 
h=l 

Once the Takagi-Sugeno model has been derived, local linear state space models can be . 

calculated according to the following, 

Yu ( k + 1) = ( t;uY ( k) + 'h.U ( k) + 811 ) 

where 

(' = L:1.Uu(x,(k))·(u 
1 L:1.Uu ( X1 (k )) 

and 

(6.82) 

(6.83) 

(6.84) 

(6.85) 
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0
; _ L~1 .uu (xt (k ))-et, 
t- L~I.Uu(x,(k)) 

(6.86) 

In the case here, previous inputs are not considered and the A, B and C matrices of the 

model are thus simplified, the matrices are given 

SI~ I s1~2 C:1~a1 
I 0 0 

A= c;;_l c;-;_2 c;;_a, (6.87) 

0 

,;
0

,1 s;o,2 ~;o.al 

. . . 
771,1' 771,2 171,n, 

0 0 

B= . 
77;,2 

. 
772,1 172.n, (6.88) 

c = [: 0 ~] 
0 ... I 

(6.89) 

Controller structure and performance 

A benchmark sliding mode controller with integral action (SMCI) of the form previously 

discussed was designed to control the motor model of equation (6.41 ), using the nominal 

parameters of Table 6.2. Simulations were carried out using the actual parameters shown 

in Table 6.2. The principle of the proposed controller is illustrated in Figure 6.4. The 

controller uses the design approach outlined in the previous section, thus, stabilising 

condition's of the controller remain intact. Importantly, the extracted model is used to 

provide enhanced information to the controller, so that the controller may be made to 
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adapt to local operating conditions of the system. The controller is therefore referred to 

as a Fuzzy Adaptive Sliding Mode Controller (F ASMC). 
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Figure 6.4: Principle of FASMC 
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Both sets of controller eigenvalues were selected to provide unity damping ratio at 

22rad/s. The controllers were driven over a simulation sample period of 70 seconds. 

Results are illustrated in Figure 6.5. It can be seen that in terms of transient response, 

there is little to differentiate between the two controllers. However, consideration of the 

corresponding control effort (Figure 6.6) shows that that the high gain requirement of the 

SMCI has indeed been relaxed by the F ASMC. Additionally, the E-vicinity of the 

F ASMC was manually adjusted to be 6 times smaller than the corresponding SMCI 

before chatter occurred. 

15 
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8. 5 ., 
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~ 
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a) SMCI Control Effort 
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b) FASMC Control effort 

60 70 
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Figure 6.6: System control efforts 

A second test introduced unmatched disturbance to the system and the fuzzy model 

retrained to incorporate the uncertainty, the disturbance is analogous to a torque being 

placed on the motor and forcing rotation in the contrary direction to the demand, wh ich 
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changes simultaneously with the step increase in load. Figure 6.7 illustrates the effect of 

the disturbance on the SMCI, it can be seen that the disturbance significantly effects 

transient performance. Because of the integral action of the SMCI, the system is able to 

achieve asymptotic tracking as discussed within the literature. The F ASMC, on the 

other hand, recovers the system to the steady state taking only an additional 0.4 seconds 

when compared to the system without disturbance (Figure 6.8). The obvious error in the 

initial controlled state trajectory is due to the lack of large controller gain, in the event 

that the system were subjected to such a stringent test it would be necessary to increase 

the nonlinear control gain to circumvent this problem. 

a) System time response 
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Figure 6.7: SMCI response to Unmatched Disturbance 
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a) System time response 
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Figure 6.8: FASMC Response to Unmatched Disturbance 

6.3 Sliding Mode Observers 

8 

In the previous sections of this Chapter, the discussion of the control problem was based 

on the assumption that the system state vector is known. In practice, however, only a few 

of its components of some oftheir functions may be measured directly. This gives rise to 

the problem of determination or observation of the state vector through the information 

available within the measured variables. The field of state estimation has been of interest 

to researchers since the seminal work of Luenberger ( 1971 ), where the observer structure 

that bears his name (Figure 6.9) was introduced and was shown to be able to recreate the 

state vector from input-output measurements. 
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-·-·-·-·-----·-·-·-·--- --·-
u(t) 

B J( ) dt x(t) c y(t) 

A 
PLANT 

L 

B c y(t) 

A 
1 x(t) 

OBSERVER 

Figure 6.9: Plant with unobservable states and Luenberger observer 

The Luenberger observer relies on precise knowledge of the plant and it is natural that 

more recently significant research effort has been dedicated to the development of robust 

observers, since these have been shown to be convergent in the presence of uncertainty 

(Misawa and Hedrick, 1989). Walcott and Zak (1987) proposed a variable structure 

observer which requires the matching condition. Slotine et al. (1987) and more recently, 

Choi et al. ( 1999), have proposed observers that are independent of the matching 

condition by introducing a Lyapunov design procedure. An early reduced order 

asymptotic observer was introduced by Utkin ( 1977) and an observer design based on 

Utkin's equivalent control method (Utkin, 1992) was developed in Haskara et al. (1998). 

Essentially, a sliding mode observer consists of the standard Luenberger observer to 

asymptotically reconstruct the original state vector. The deliberate introduction of a 
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sliding mode into the structure of this observer is then used to guarantee convergence in 

finite time (Figure 6. 1 0). 

-·--- -- --------·---·-·---·-
u(t) 

B J( ) dt x(t) c y(t) 

A 
PLANT 

B c y(t) 

A 
x(t 

OBSERVER 

Figure 6. 10: A Sliding Mode Observer with Plant. 

This section is dedicated to the consideration of an observer for the nominal linear system 

subject to uncertainty described by 

.X= Ax(t) + Bu(t) + D~ (t,y,u) (6.90) 

y(t) = Cx(t) (6.91) 

where A E IR""n , B E !Rnxm ,C E JRpxn , D E IR"'"' with q $ p < nand the matrices B,C and D 

being of full rank. The function ~ (t , y, u) is assumed to be unknown but bounded by a 

known function . It is further assumed that the states of the system are unknown and only 

the signals u (t) and y ( t) are avai I able. 
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The objective is to synthesise an observer to generate a state estimate x(t)such that the 

error 

&(t) = x(t)-x(t) (6.92) 

tends to zero despite the presence of uncertainty. Furthermore the intention is to induce a 

sliding motion on the surface in the error space, according to 

(6.93) 

The particular observer structure that will be considered may be written in the form 

.i(t) = Ax(t )+ Bu(t )- G1C, (t) + G"v (6.94) 

where G" G" E IR"'P are appropriate gam matrices and v represents a discontinuous 

switched component to induce a sliding motion on S0 • 

Consider the dynamic system given in (6.90) and (6.91) and assume that 

I) rank( CD)= q 

2) The invariant zeros of (A,D,C) lie in the left half C _. 

It can be shown that under these assumptions there exists a linear change of coordinates 

x ~ Tx such that in the new coordinate system 

x1 (t) = ~ 1x1 (t) + A12x2 (t) + B1u (t) 

X2 (t) = A21 X1 (t) + A22x2 (t) + ~ u(t) + D2 &(t ,y, u) 

y(t) = x2 (t) 

(6.95) 

(6.96) 

(6.97) 

where x1 E IR"-P ,x2 E ~R_P and the matrix A11 has stable eigenvalues. The freedom of 

choice associated with A11 depends on the number of invariant zeros of (A, D, C). The 
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coordinate system above will be used as a platform for the design of a sliding mode 

observer. Consider a dynamic system of the form 

(6.98) 

(6.99) 

(6.1 00) 

where A;2 is a stable design matrix and cY = y- y. The discontinuous vector vis defined 

by 

(6.101) 

otherwise 

where P2 E llFxp is a Lyapunov matrix for A;2 satisfying 

(6.102) 

and the scalar function p(t,y,u) is chosen so that 

llc(t,y, u )11 < p(t ,y,u) (6.1 03) 

If the state estimation errors are defined as &1 = x1 - x1 and &2 = x2 - x2 then it is 

straightforward to show 

(6.1 04) 

(6.1 OS) 

Furthermore the non linear error system in (6.1 04)-(6.105) is quadratically stable and a 

sliding motion takes place on the surface defined in (6.93), the dynamic system in (6.98)-
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(6.100) may be regarded as an observer for the system in (6.90)-(6.91). It follows that if 

the linear gain 

(6.106) 

and the nonlinear gain 

(6.1 07) 

then the observer gain given in (6.98)-(6.1 00) can be written in terms of the original 

coordinate system in the form of (6.94). 

Another observer, introduced by Walcott and Zak ( 1987), considers the special case when 

the uncertainty is matched i.e. when D =B. They propose the observer structure given 

by 

z (t) = Az(t )+ Bu (t)- GCc(t) + Bv0 (6.1 08) 

where z represents an estimate of the true states x, and c = z- x is the state. estimation 

error. The output error feedback gain matrix G is chosen so that the closed loop matrix 

Ao = A- GC is stable and has a Lyapunov matrix P satisfying both 

(6. 109) 

for some positive definite design matrix Q and the structural constraint 

(6.11 0) 

for some non-singular matrix FE !Rmxp. The discontinuous vector v0 is given by 

(6.111) 

otherwise 
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where p 0 (t ,y, u) is a scalar function which bounds the uncertainty. The observer given 

in (6.94) may be viewed as a Luenberger observer (Luenberger, 1971) with an additional 

nonlinear term. lt can be shown that assumptions about the triple (A,D,C) are both 

necessary and sufficient conditions for the existence of such an observer which 

insensitive to matched uncertainty and induces a sliding motion on 

Sw = { c: Ell~" : FCc: = o} (6.112) 

The original formulation of Walcott and Zak required the use of symbolic manipulation 

to synthesise the matrices G and P that completely define the observer. More recently an 

analytic solution has been proposed based on the canonical form described in equations 

(6.95)-(6.97). An appropriate choice of G is that given in (6.1 06) and an appropriate 

choice of 

(6.113) 

In the special case of a square system an even more explicit solution can be obtained. 

This does not require the attainment of the canonical form (6.95)-(6.97) explicitly and in 

certain circumstances produces an observer with better numerical properties. 

6.3.1 Observer Design for a Brushless D.C. Motor 

Within this final section, state observers for the brush less DC motor mode are developed. 

The exposition begins with the development of the traditional Luenberger observer 

assuming perfect knowledge of the plant (Figure 6.9). The observer is then modified to 

incorporate a discontinuous term, the new observer may be seen to bear may similarities 

to the original Luenberger observer (Figure 6.1 0). Using the parameters in Table 6.3, 
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plant uncertainty is introduced to the plant and the performance of the observers is once 

again compared. 

Parameter Nominal Value Actual Value 

R 0.64 0.64 

L 2le-3 36e-3 

Km 0.32 0.32 

Ke 0.32 0.32 

J 61.5e-3 91e-3 

8 73.8e-3 le-2 

Table 6.3: Nominal and Actual Motor Parameters 

It is assumed here that the output equation y(t) = x. (t) may be used. It is also assumed 

that once again the load torque has negligible effect on the system and may be ignored. 

The motor model then becomes 

[:} 
0 I 0 

[~]+ 
0 

0 
B Km 0 -- u2 
J J 

- K. - Ra 0 L L L 

(6.114) 

y =[I 0 {:] (6.115) 

It is necessary to check the observability of the system; The observability matrix is given 

by 
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0 0 

Mo=[cr A)'C)' (ATfcr]= 0 
B 

(6.116) --
J 

0 0 
Km 
J 

which is of full rank n provided that B,J and Km are nonzero. The eigenvalues of the 

observer are determined by the characteristic polynomial 

!M -(A-LC)i=O 

I 

B 

J 

. [A. 
IM-(A-LC)i= ~ 

0 ] 0 d-o 
0 _K. 

L 

A. +11 -I 0 

IM-(A-LC)i= /2 
B Km A.+-
J J 

/3 
K, A. R. +-
L L 

0 

Km 
J 

- Ra 
L 

(6.117) 

(6.118) 

(6.119) 

Insertion of the nominal motor ·parameters into the state transition matriX. provides an 

eigenvalue spectrum of 

eig(A)={O -4.23 -26.98} (6.121) 

The observer eigenvalues are chosen to be far to the left of the plant eigenvalues in order 

to ensure rapid convergence of the observer onto the plant states, i.e .. 
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eig(M-(A-LC)}={-10 -IS -35} (6.122) 

The specification of these eigenvalues leads from (6.120) to the observer gain matrix 

[ 
28.8] 

L = 12.44 

306.46 

(6.123) 

The observer performance is shown for each state in Figure 6.11-Figure 6.16 . 
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Figure 6.11: Luenberger Observer Recovering from Initial Position 
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Figure 6.13: Luenberger Observer Recoveringfrom Initial Current 

6-35 



Sliding Mode Control: Advanced Approaches 

6 

5 

2 

0 1 5 2 2 .5 3 • 5 5 
Tlme (s) 

Figure 6.14: Luenberger Observer Observation of Position in Response to a Step Input 
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Figure 6.15: Luenberger Observer Observation of Speed in Response to a Step Input 
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Figure 6.16: Luenberger Observer Observation of Current in Response to a Step Input 
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A sliding mode observer is designed according to the procedures above, using Matlab. 

The observer is subjected to the same tests as the Luenberger observer and its 

performance when the perfectly known plant is subject to a step input is illustrated in 

Figure 6.18-Figure 6.20. Since the plant has two stable invariant zeros, the design was 

restricted to choosing a single estimation pole, which was selected to be located at -0.5. 

The uncertainty component, p(t,y,u) was selected to be -3. As in the case of the 

Luenberger observer, perfect state reconstruction was achieved. Uncertainty of the class 

discussed in equat.ion (6.90) was introduced into the plant states of both the Luenberger 

observer and the Sliding mode observer (Figure 6.17). This uncertainty takes the form of 

a random signal of variance 0.02. This choice is sufficient to illustrate the effect without 

violating (6.1 03). 

u(t) 
B 

A 

~-- ~(t,y,u) 

x(t) 
dtl--~--1~ c 

Figure 6. 17: Plant with disturbance 

The matrix D2 takes the following form 

y(t 
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(6.124) 

which leads to a realistic noise component within the current channel. The results are 

illustrated in Figure 6.21-6.23 for the Luenberger observer and Figure 6.24-6.26 for the 

sliding mode observer. Provides root mean squared observation errors of the respective 

observers. The sliding mode observer has been tested under a series of sample periods, k, 

in order to illustrate that in the limit as k -t 0, & -t 0 . It is not however computationally 

' desirable, or indeed feasible to achieve this figure in simulation, therefore as sample 

period of 0.01 is used as the default for all sliding mode observers and controllers. 

Finally, parametric uncertainty is introduced according to Table 6.3, this uncertainty is 

not formally considered within the development above, it is therefore not surprising to 

see that both observers performance is reduced, although the sliding mode observers 

performance is on the whole better than that of the Luenberger observer (Figure 6.27 and 

Figure 6.28), because of the additional robustness to parametric uncertainty. 

Table 6.4: Root Mean Squared State Observation Errors for Luenberger Observer and 
Sliding Mode Observer at Three Different Sample Periods 

Observer Luenberger Sliding Mode Sliding Mode Sliding Mode 

llxl - xlllrms (rad) 

·llx2 -x211rms (rad/s) 

llx3 -.XJL (A) . 

844e-6 

24.4e-3 

9.6e-3 

k=O.Ol k=O.OOl k=O.OOOl 
1.3e-3 119.8e-6 9.7e-6 

I.Se-3 289.5e-6 64e-6 

1.8e-3 544.4e-6 171.7e-6 
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Figure 6.18: Sliding Mode Observer Position Estimation with Step Input into Ideal 
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Figure 6.20: Sliding Mode Observer Current Estimation with Step Input into Ideal System 
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Figure 6.21 : Luenberger Observer State Reconstruction of Position with Plant Subject to 
Noise 
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Figure 6.24: Sliding Mode Observer State Reconstruction of Position with Plant Subject 
to Noise 
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Figure 6.25: Sliding Mode Observer State Reconstruction of Speed with Plant Subject to 
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Figure 6.27: Luenberger Observer State Reconstruction Errors Under Plant Uncertainty 
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6.4 Model Following Sliding Mode Control 

Linear model following control is an efficient control method that avoids the difficulty of 

specifying a performance index which is usually encountered in the application of 

optimal control to multivariable control systems. The model that specifies the design 

objective is part of the system. However, Linear Model Following Control systems are 

inadequate wtien the plant is subject to large parameter variations or disturbances. This 

has led to the development of so called adaptive model following control schemes. There 

are two approaches to the design of adaptive model following systems using stability 

conditions. The first is based upon Lyapunov functions e.g. Shackcloth and Butchart 

(1966), while the second is based upon the hyperstability concept e.g. Landau (1974). 

Both approaches guarantee that the error tends to zero as t ~ oo but neither offer any 

direct quantitative design of the error transient. 

In model following systems the plant is controlled m such a way that its dynamic 

behaviour approximates that of a specified plant model. The model plant is part of the 

system and it specifies the design objectives. The adaptive controller should force the 

error between the model and the plant to zero as time tends to infinity, i.e. lim c-(t) = 0. 
l-+00 

The plant and the model are described by 

(6.125) 

(6.126) 

with the error vector given as 

(6.127) 
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It is assumed that the p~irs (AP,BP) and (Am,Bm) may be stabilised and that Amis a 

stable matrix. Differentiation of (6.127) and insertion of (6.125) and (6.126) provides the 

following 

Further, subtraction of the term Apxm yields 

i: =APe+( Am- AP)xP + Bmum- BPuP 

It follows that perfect model following will result if 

(Am- AP )xp +Bmum- Bpup = 0 

rearranging (6.130) provides the following 

UP= B!((Am -AP)xp +Bmum) 

insertion of ( 6.131) into ( 6.130) yields 

(Am- AP )xp+ Bmum- BPB; ((Am- AP )xp + Bmum) = 0 

(6.128) 

(6.129) 

(6.130) 

(6.131) 

(6.132) 

Clearly, in order to satisfy (6.130) for all xP and um the following equalities must hold 

( 1- BPB! )(Am- AP) = 0 

. (1-BPB!)Bm =0 

(6.133) 

(6.134) 

The equations (6.133) and (6.134) are the conditions for perfect model following as first 

described by Erzeberger ( 1968), Equation (6.131) is the equation for implementing the 

control. This control law leads to a controller response which is determined by the 

eigenvalues of the model. Since the eigenvalue spectrum of the model may not be 

determined by the designer the control response might not yield acceptable results. Later, 
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Chen ( 1973) proposed a small modification to the controller, by subtracting the term 

Apxm from (6.128), this yields 

(6.135) 

From equation (6.135), it is evident that choosing a control action of the form 

with 

(6.136) 

(6.137) 

(6.138) 

will lead to perfect model following if it is possible. Substitution of the control law 

(6.136)-(6.138) into (6.129) leads to 

(6.139) 

under the assumption that conditions (6.133) and (6.134) hold, then (6.139) simplifies to 

(6.140) 

In contrast to the controller proposed by Erzeberger, the controller proposed by Chen can 

have an arbitrary set of eigenvalues determined by the gain matrix K, since the tuple 

(Am, BP) is controllable. Since (6.140) is identical to the optimal state regulator problem 

(Anderson and Moore, 1971 ), then the gain matrix K may be chosen to optim ise a 

quadratic performance index in s. Hence, the error settling rates may be controlled. 

Additionally, if only partial state feedback is possible then perfect model following is still 

possible (Chen, 1973). 
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Model following control systems· were extended to incorporate a discontinuous control 

component in Young (1978). Following this original design, define an error dependent 

switching function 

S(c)=S& (6.141) 

which gives rise to a hyperplane in the error space 

S, = {c E IR" :Se =0} (6.142) 

As seen in the previous Chapter, during sliding the error state will satisfy the equation 

.Sc(t)=O 

Differentiation and substitution of (6.135) gives 

Si= s(Amc+(Am -AP)xm + Bmum- BPuP) = 0 

(6.143) 

(6.144) 

If by design the matrix product SB is non-singular, then the equivalent control may be 

deterinined as 

(6.145) 

substitution of the equivalent control into the model following control system of (6.135) 

gives 

(6.146) 

It is assumed that the plant and model dynamic equations satisfy the perfect model 

matching conditions. Comparison of these equations with the invariance conditions 

.discussed by Drazenovic ( 1969), it can be seen that the two coincide. Therefore if x P 

and um are considered disturbances to the error dynamics then the perfect model 

matching conditions guarantee that the behaviour of the sliding mode controller is 
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insensitive to these disturbances. If the conditions of (6.133) and (6.134) hold, then 

equation (6.146) reduces to 

(6.147) 

A unit vector type control is now introduced as in the work by Cor less et a/ ( 1985), a 

discontinuous unit vector control is introduced according to 

(6.148) 

with · 

(6.149) 

. ( )( )-1 PzS(t) 
u. = -p 1,& SB IIPzS(t)ll (6.1 SO) 

lt was pointed out in Chen ( 1973) and later in Zinober ( 1981) that the conditions of 

(6.133) and (6.134) may be met if 

(6.151) 

rank( Bp,Am- AP) =rank( BP) (6.1 52) 

lt follows that there exist compatibly dimensioned matrices such that 

(6.1 53) 

(6.154) 

This result may be used as an alternative to (6.138), with 

(6.1 55) 

to also achieve perfect model following. The complete model following control scheme 

is then given according to 
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(6.156) 

6.4.1 A Model Following Sliding Mode Controller for a BLDC 

Within this section a model following sliding mode controller will be developed using the 

test rig model used throughout this work so far. Initially, a the plant will assumed to have 

the state transition matrix 

[ 

0.95 1.486 

AP = 0.2311 -0.3087 

0.6068 -14.2379 

0.457] 
5.2185 

-29.1786 

which is stable since it has the eigenvalue spectrum 

(6.157) 

(6.158) 

and no poles appear in the right half of the complex plane. The performance of the model 

used within this work is shown in Figure 6.29. The motor· model is given by the 

equations found in §5.3.5, e.g. 

[~]-
0 I 0 

[:J 
0 

0 
B Km _5_ (6.159) 
J J J 

- K, - R. _!!1_ 0 
L L L 

·The controller gains are designed according to the previous section using a Matlab m-file 

script, these are given as 

L = [ 0.304 0.877 0.98) (6.160) 

F = [ 0 0.15 -0.25) (6.161) 
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G=l (6.162) 

(sst = O.o5 (6. 163) 

~ =5 (6.164) 

Step Response 

Evolution of Armature Posllion 
3 ,-------~r------

oL-----

-' -----=--=-=----: = = = = = = = =~ = = = = = = j 

1 
~ B 

L....ji__ __ .J_.l_ ____ _t_ ___ ---- ...J 

--,-------,-- -- - . -

--
1 5 2 25 

Time (sec.) 

Figure 6.29: Model response to a step input. A) Evolution of position. B) Evolution of 
speed. C) Evolution of current. 

The principle of the model following sliding mode controller is illustrated in Figure 6.30. 

This controller with the controller gains given in (6.160)-(6.164) was implemented in 

Matlab/Simulink with a value of p = 5 . The results shown in Figure 6.31-Figure 6.37 

illustrate how the model following controller is able to force successfully a slower system 

to follow a system with desired dynamics. The speed of the system shown in Figure 6.33 

6-49 



Sliding Mode Control: Advanced Approaches 

illustrates an overshoot of plant speed which eventually settles to zero error (Figure 6.34). 

This is due to the fast eigenvalues selected to ensure convergence of the system states to 

the model states. It shou ld be noted that in this simulation, the boundary layer was given 

a radius of zero in order to approximate the ideal performance as closely as possibl.e, as a 

direct consequence, the controller chatter is plainly visible in the system control effort. 

r® Plant 
x, (t) 

u, (t) 

B; (A. - A.) I+-

L4 
A u. (t) 

B'B Demand ' . 

~ u.(t) - p(t,c}(SB) ' ~ 
P,S(t) 

~ <f IJP,S(t)JI 

c(t) 
~ x_(t) 

Model ~ 

u, (t) - ( SB,) I (SA_ - <l>S) 

Figure 6.30: Principle of the Model Following Controller 
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Figure 6.31: Model and Plant position 
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Figure 6.32: Evolution of Position Error 
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Model Speed (desired) and Plant Speed (Actual) versus Time 

---------=--------------------:i 
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- Plant Speed 
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Figure 6.33: Model and Plant speed 

Speed Error (xm2-xp2) versus Time 
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Figure 6.34: Evolution ofSpeed Error 
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Model Current (Desired) and Plant Cooent (Actual) versus Time 
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Figure 6.35: Model and Plant Current 
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Figure 6.36: Evolution of Current Error 
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Control Effort versus nme 
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Figure 6.37: Model Following Control Effort 

6.5 Discussion 

The intuitively appealing concept of introducing a feed forward integral control action 

within a sliding mode controller has been taken from previous work and applied to the 

design of a controller within the context of a system expressed in the control canonical 

form. The approach has been shown to provide robustness to unmatched disturbance as 

the controlled state tends asymptotically towards the demand. The guarantees of sliding, 

stability and reaching are still ensured through judicious choice of control gains and use 

of traditional tests. This controller stems from the ' classical' approaches discussed in the 

early part of the previous Chapter and tends to lend itself readily to implementation since 

the control can be achieved without the use of matrix manipulation. 

The second controller, based on the synergy of sliding mode design approaches and 

nonlinear black box modelling has been presented. Performance of the controller has 
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been compared with a benchmark sliding mode controller and the controllers response 

has been found to be favourable. The controller has demonstrated clear advantages of 

using fuzzy logic in conjunction with sliding mode. Since the system uncertainties can be 

significantly reduced through use of fuzzy identification and linearisation techniques, the 

feedback control gains may be reduced, which in turn leads to a control effort of reduced 

magnitude. This lead.s directly to a reduction in the radius of the boundary layer, 

providing improvements in the final achievable tracking accuracy of the system. Since 

the fuzzy model does not discriminate· between matched and unmatched disturbance, but 

simply incorporates them into the model, the fuzzy adaptive sliding mode controller also 

enjoys improvements in the transient ·control performance when the system is subject to 

unmatched disturbance. It is finally pointed out that implementation of this algorithm is 

significantly more complex than the previous integral actions sliding mode controllers. 

Robust state observation within the framework of the sliding mode has also been 

introduced. This approach has been contrasted with the original approach of Luenberger 

and has been shown to outperform it when subject to certain types of disturbance, 

providing almost perfect state reconstruction. Finally, model following and the 

conditions for perfect model following has been explored. lt has been seen that since the 

conditions for perfect model following and the sliding mode invariance conditions 

(Drazenovic, 1969) coincide, that the sliding mode model following control system is . 

able to fo.rce a plant to perform according to a prescribed model, despite the presence of 

measurement noise. 
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Chapter 7 

Precision Sensorless Motion Control 

7.1 Introduction 

Sensorless control was introduced in Chapter 2 as a broad set of techniques which may be 

applied to the synchronous motor to achieve motion control without the need for a 

primary feedback sensor. It was seen within that Chapter that the methods considered 

could each generally be classified in one of three groups. The first of these groups 

involves the use of instrumentation to measure directly relevant state variables, such as 

the back EMF component of the signal. The second was based on state observation 

methods, improved robustness to signal noise and the use of state variables not directly 

related to armature position was reported. The final group considered was based on 

artificial intelligence and constitutes the emergent techniques within the sensorless 

motion control theory. It became abundantly obvious within that Chapter that whilst the 

approaches apparently worked well for high speed control, at lower and zero speeds very . 

few methods were available. The single approach that does achieve low and zero speed 

control is based on a heterodyning technique and is achieved at the expense of. 

introducing a good deal of additional electronics. Whether this approach could truly be 

considered sensor less is something of a moot point. 

The Hall effect proximity sensors traditionally used for commutation of the motor can be 

. 

embedded at manufacture and add little to the size or weight of the system. The lack of. 

pertinent physically measurable states at very low speeds or standstill leads to the early 
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conclusion within this Chapter, based on the review of Chapter 2, that sensorless 

precision motion control will only be achievable if the Hall effect sensors are 

incorporated into the system. It is also concluded that despite the results achieved in 

sensorless speed control, fundamentally new approaches are required in o~der to achieve 

sensorless position control. The objective of this Chapter then becomes one of estimating 

the armature position using very coarse measurements of position from the Hall effect 

devices and measurements of available physical state variables. It is noteworthy to 

mention that there are two methods which are commonly adopted to reconstruct unevenly 

sampled data, splines or regression analysis. Since within this work, the position data 

must be extrapolated from previous measurements, the spline approach is not considered 

since it rapidly leads to instability (Press et a/, 1997), for a review of spline methods the 

reader is referred to (Froberg, 1970). The next section of this Chapter moves on to 

discuss the feedback data available from the Hall effect devices. Following on, a series 

of approaches to the estimation of the armature position are presented. This chapter 

concludes with a discussion of the results obtained. 

7.1.1 Position Sensing with Hall Effect Proximity Sensors 

The Hall effect devices are built into the motor and provide commutation signals once 

every 120°. Their position is set at manufacture. The power switches used within the 

amplification unit are then programmed by these sensors to be on or off at each instant 

. during the armature rotation (see Chapter 2). It is conceivable that these Hall effect 

devices could be used in an alternative modality, whereby the edge of the signal is also of 

concern. In this case, the Hall effect devices might be used to provide the user with an· 

accurate position update once every 60°. The use of these sensors in this manner does not 
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provide any special difficulty in the sensing of the signal. Nor indeed does it create a 

major difficulty in interfacing. 

The Hall effect devices switch very accurately at known positions. It may be confirmed 

on an oscilloscope that this switching action takes place within one encoder increment. 

The likelihood, however is that despite switching at a finite angle, it will not be precisely 

60°. If it is assumed that they do switch precisely once every 60° then a cosine error is 

likely to result if the sensors are used for position sensing. It will be assumed within this 

work, that the precise angle at which the Hall effect devices switch can be calibrated 

before the algorithms are applied. Further, it will be assumed without loss of generality 

that the sensors within this work switch precisely at 60°. 

The state machine discussed in Chapter 3, used in bandwidth reduction of the encoder 

signal lends itself very well to the measurement of position based on the Hall effect data. 

This process is briefly reviewed here to illustrate salient differences between the 

machines. The reader is referred to Chapter 3 for a more thorough treatment of the topic. 

The Hall effect devices change states according the location of the motor armature. This 

is illustrated in Figure 7.1. 
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Figure 7.1: Hall Effect Device Status at Corresponding Armature Position 

If the Hall effect devices are assigned binary values (e.g. HED1 = 1, HED2=2,HED3=4) 

then ~ binary sequence for the Hall effect devices may be derived. Table 7.1 provides 

the binary representation of the Hall effect device states at each location. Based on the 

knowledge of the device switching sequence, Figures 3.9 and 3.10 may be extended to 

accommodate position measurement using the Hall effect devices. 

Table 7.1: Binary Representation of Hall Effect Device States at Various Armature Positions 

Position 
Value 5 3 2 6 4 

The fact that the Hall effect device switching frequency is dependent on the speed of the 

motor, and not on time e lapsed, leads to a case which will be termed within this work as 

the indeterminate sample frequency. It will be seen over the course of this chapter that 

this case is ill conditioned, and leads to many problems within the development of 
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subsequent algorithms. The fictitious example shown in Figure 7.2 illustrates the 

problem. In the example, the speed of the motor is varying, and it requires varying 

lengths of time to reach a position whereby the Hall effect device status will change. It 

should be clear, for example, that t1 -::t: 15 in Figure 7.2. This problem exists within optical 

·encoder feedback, since this device also discretises position. The solution in the case of 

the encoder is to increase its resolution to ensure the desired accuracy can be obtained. It 

should therefore also be noted that within this work all of the algorithms are applicable to 

feedback at higher ~esolutions than the nominal 60°, and improvements in the accuracy of 

the algorithms should be expected. 

4200-

3600- - - - - - - - - - - - - - - - - - - - - - - -

~ ---------------------

c2•- ------------
~ 
u; 
0 
Cl. 1800 

t, t. 
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Figure 7.2: An fllustration of the Indeterminate Sample Frequency Problem 
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7.1.2 An Additional Performance Measure 

In previous Chapters of this work, several performance measures have been introduced. 

Most significant to this Chapter are the performance measures of Chapter 4, i.e. the 

infinity norm, the root mean square of the error and the variance accounted for. Whilst 

these measures are useful in defining the performance of the system, an additional 

performance measure is proposed to quantify the smoothness of the estimate with respect 

to the actual signal. The percentile variance accounted for is once again used but the two 

signals for comparison are first differentiated. The non-smooth elements of the signals 

for comparison will be highlighted in their first derivatives, thus the derivative 

component serves as a high-pass filter. If the model and the plant outputs are not 

comparable, ttien the measure is increased. The performance measure is given in (7 .I): 

VAFDT=IOO· (7.1) 

7.2 Position Control with Stepper Motors 

It was discussed in Chapter 2 that the stepper motor is a brushless device that is almost 

· always used without shaft position sensing. The high torque to weight and torque to 

inertia losses were discussed and the observation that the stepper motor is limited in size, 

if step accuracy is to be maintained, was made. However, this Chapter considers the use 

of the synchronous machine without shaft position sensing and the nearest currently 

available equivalent that exists within current technology is the stepper motor. The 

objective of this entire work is to formulate a system that is capable of matching currently 
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available technology. Therefore, consideration to the stepper motor is now paid. The 

readers attention is drawn immediately to the fact that the synchronous motor maintains 

advantages over the stepper motor in terms of maximum speed, torque to weight ratio, 

torque to inertia ratio and torque ripple content. It seems reasonable to suggest that if the 

equivalent motion control can be achieved with one of the algorithms discussed here, 

then a system will have been formulated which not only matches, but performs better 

than currently available equivalent technology. 

There are basically three types of stepping motors; variable reluctance, permanent magnet 

and hybrid. They differ in terms of construction based on the use of permanent magnets 

and/or iron rotors with laminated steel stators. The common high accuracy stepper motor 

will provide the user with 200 steps per revolution, or a step angle increment of 1.8°. 

Stepper motors of higher resolution exist, however, their torque to volume ratio is 

extremely poor. Lin motors provide a hybrid stepper motor which is capable of a 0.45° 

step angle, the motor is 44mm in diameter and provides a torque of little over 0.5 Nm. 

Clearly in small direct drive systems, such as those under discussion here, these motors 

are unviable design solutions. A further limitation to the stepper motor is its low resonant 

frequency. When the armature steps from one location to the next it is forced to be held 

there by magnetic attraction. Since the armature coupled with a load will hold an inertia, 

the armature frequently overshoots the step position before coming to. rest at the 

equilibrium position. Resonance occurs when the step rate of the armature coincides with 

the peak overshoot, and in practice leads to a significant reduction in motor torque. 

There are options available to improve the step resolution of the motor, however. Half

stepping is a common technique used to improve the motor performance, a technique 
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referred to as micro-stepping is also available. The micro-stepping technique results in a 

reduction in motor torque, when the motor is coupled with a frictional load, this 

technique leads to dead zone within the control. It is therefore essential to minimise all 

forms of static friction from the load before the micro-stepping technique can be 

accurately applied. Attempts to apply a micro-stepping technique to a system with lead

screw is considered to be at best optimistic and the technique will not be considered here. 

7.2.1 Half-Stepping 

Provided that no part of the magnetic circuit is in saturation, exciting two motor windings 

simultaneously will produce a torque versus position curve that is the sum of the torque 

versus position curves for the two motor windings taken in isolation. For a two-winding 

stepper motor, the two curves will be W radians out of phase, and if the currents in the 

two windings are equal, the peaks and valleys of the sum will be displaced by W/2 

radians from the peaks of the original curves, as shown in Figure 7.3. This is the basis of 

half-stepping. The two-winding holding torque is the peak of the composite torque curve 

when two windings are carrying their maximum rated current (h2). For common two

winding permanent magnet or hybrid stepping motors, the two-winding holding torque 

will be: 

(7.2) 

where h 1 is the single-winding holding torque This assumes that no part of the magnetic 

circuit is saturated and that the torque versus position curve for each winding is an ideal 

·sinusoid. If any part of the motor's magnetic circuits is saturated, the two torque curves 

will not add linearly. As a result, the composite torque will be less than the sum of the 
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component torques and the equilibrium position of the composite may not be exactly W/2 

radians from the equilibrium of the original. 

I I 
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Figure 7.3: Torque Versus Position Curves for Separately and Simultaneously Exited 
Windings 

A nominal positioning system will now be described, in which the motor will have 

selected to provide sufficient torque to actuate the system. The lead screw has a pitch of 

lmm. Backlash and hysteretic effects within the system are assumed to be negligible. 

The stepper motor is assumed to operate at a step increment of 1.8°, which is accurately 

half-stepped to provide an angle of 0.9° per step increment. This provides an overall 

resolution for the linear stage of2.5 microns nominal. This system will be revisited later 

for comparison with the algorithms derived next within this Chapter. 

7.3 The Direct Approach 

The first of the approaches, which will be referred to as the direct approach involves the 

use of the models obtained from Chapter 4. It has already been seen that there exists 
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disparity between the model and the plant in terms of its performance and is therefore 

these models are not directly applicable to the accurate estimation of armature position. 

However, it should be possible, upon a change in the Hall effect device outputs to update 

the model with a summation of the plant/model residual. It is therefore desirable to find a 

model with a high V AF measure, since this reflects the tracking accuracy of the system. 

The infinity norm of the residuals is likely to be high on the first update from the Hall 

. effect devices, however the root mean square of the error should remain low over time. 

This algorithm uses the fuzzy model based on the power balance equations as the system · 

model and the experimental identification data as the plant. Attention is drawn at this 

point to the fact that the models developed in Chapter 4 required an identification data set 

and a separate validation set. 

Direct Approach Algorithm 

I. Calculate model output, {}MOD ( k) 

2. Check Hall Effect Devices for change in status 

3. If there has been no change go to step I 

4. Calculate new position to get H ( k) 

5. Calculate residual between model and Hall effect devices, 

c(k) = H(k) -{}MOD (k) 

6. Update the model state {}MoD ( k) ={}MOD ( k) + & ( k) 

Algorithm 7 .I: The Direct Approach 
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The experimental identification data was split into two halves to provide this. In this 

Chapter the entire identification data set is provided to the algorithms. It should be 

recognised that the identification data set contains noise and therefore the infinity norm 

performance measure cannot be fairly compared between the models of Chapter 4 and the 

algorithms discussed here. The Direct Approach method is given in Algorithm 7.1. 

Calculation of the Hall effect position is easily achieved, as discussed in §7.1.1. The 

algorithm was applied to the identification test set, with the additional Hall effect 

observation stream. Results are illustrated in Figures 7.3-7.5, and tabulated in Table 7.2 

at the end of this Chapter. The autocorrelation function of Figure 7.6 indicates that the 

errors are random and the histogram of Figure 7.5 illustrates a typically Gaussian 

distribution with zero mean. The direct approach represents the simplest method to be 

adopted in accurate position estimation and will therefore serve as a benchmark for 

subsequent methods. 
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Plot of Position tactueQ versus Position (Predicted) 
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Figure 7.4: Result of Applying the Direct Approach to the Fuzzy Model 
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Figure 7.5: Histogram of Prediction Errors for the Direct Approach 
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7.4 Least Squares Estimation 

The indeterminate sample frequency problem IS a ·significant hindrance to the 

implementation of algorithms for which the estimation of position would ordinarily be 

trivial. Here, the least squares estimation method is discussed, so that an optimal estimate 

of the time to the next Hall effect device status change can be made. This optimal 

estimate will be relied upon heavily within the next section to generate an algorithm 

which will make use of variations in sample frequency . 

. The basic least squares problem involves the estimation of a quantity X E IR" from a 

vector of linearly related known measurements, z E !Rm. 

z =.Hx+v (7.3) 

Where the matrix HE !Rmxn, m 2: n, and where v E !Rm is a vector of unknown 

measurement errors. Using the measurement vector z, an estimate of x, ( x), is desired, 

such that the sum of the squares of the errors between the actual measurements z and the 

estimated measurements Hx is minimised, e.g. 

J(x) = (z- HX)1 (z- Hx) = vtv = v1
2 +v~ + v; + ... v~ (7.4) 

To find the minimum, the partial derivatives of J with respect to each of the elements of 

x are equated to zero 

(7.5) 

then 

(7.6) 

and therefore 
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(7.7) 

if His of full rank, then H 1 H which is nx n is of full rank, that is, non-singular. Thus 

the inverse of H 1 H exists and the least squares estimate x given by equation (7. 7) is 

unique and a minimum. It is a minimum because the matrix of second derivatives of J 

(7.8) 

which is symmetric, is positive definite if His of full rank. Equation (7.7) shows that the 

least squares estimate .X is linearly related to the measurements z. 

Recursive least squares is an arrangement of the least squares solution in which each new 

measurement is used to update the previous least squares estimate that was based on 

previous measurements. Instead of processing all of the measurement data at once, the 

measurements are processed individually, with each new measurement causmg a 

modification in the current estimate. Least squares estimates are linear transformations of 

the measurements. The least squares estimate based on the first k+ I measurements can 

therefore be expressed as a linear transformation of the least squares estimate based on 

the first k measurements plus a linear correction term based on the (k+ I )th measurement 

alone. The least squares estimate based on k measurements is 

x ( k) = [ H1 
( k) H ( k) r H 1 

( k) z ( k) (7.9) 

The least squares estimate based on k+ I measurements is 

. x(k +I)= [ H1 (k+ l)H(k +I) r1 
H1 (k + I}z(k +I) (7.10) 

Where H (k +I} is H ( k) with an additional row h1 (k +I) 
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[ 
H(k) ] 

H(k+l)= ht(k+l) (7 .11) 

and the vector of measurements z ( k +I) is the measurement vector z ( k) with one 

additional scalar measurement z<+1 . 

z(k+l)=[z(k)] 
z<+l 

Then 

Ht(k+l)H(k+l)=[ Ht(k) h(k+l)J[ h~t!1)] 
= Ht (k)H(k)+h(k+ l)ht (k+l) 

Defining 

Gives 

p ( k + 1) = [ Ht ( k + I) H ( k + I) r 
= [ Ht (k)H(k)+h(k+1)ht (k + 1)J

1 

= [p-I (k )+h(k + l)ht (k +I) r 

(7 .12) 

(7 .13) 

(7.14) 

(7.15) 

Relation (7.15) is in a form for which the matrix inversion lemma (see notes) applies. 

Using the matrix inversion lemma on equation (7 .15) gives 

p ( k + I) = p ( k) __ P -'--( k.t.....,) h-:-( k_+____,l )'---h--:-'t (...,...k +-,I!._) P_,_( k,-!-) 
I +ht (k + I)P(k )h(k + 1) 

(7 .16) 

which is an update equation for P(k+l) in terms of P(k) and the next measurement 

equation coefficients, h( k + 1). Defining 
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o(k+l)= I +hr (k+ I)P(k)h(k+ 1) 

gives an update equation of 

P(k + 1) = P(k )- P(k )h(k + I)o- 1 
( k + I)h1 ( k + 1) P(k) 

= [1 -K(k+ I)hr (k+I)]P(k) 

The least squares estimate at step k+ I is 

x(k + 1) = P(k+ I)Ht (k + I)z(k +I) 

and after some manipulation, (7.20) becomes 

(7 .I7) 

(7 .IS) 

(7.I9) 

(7.20) 

(7 .21) 

The least squares estimate x(k+I) based on k+l measurements is the estimate x(k) 
' 

based on k measurements plus a gain 

K ( k + I) = P ( k) h ( k + I) o- 1 
( k + I) (7.22) 

multiplied by the difference between the new measurement and the predicted 

measurement 

ht (k+ I)x(k) (7.23) 

based on the previous estimate. These equations for recursive least squares estimation 

are collected in Algorithm 7.2. 
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Recursive Least Squares Estimation 

Initialisation 

P(n} =[ H 1 (n}H(n)J', x(n)= P(n)Ht (n}z(n) 
Where 

H(n)=[ht(t) ... ht(n)r, z(n)=[z1 ••• zJ 
Corrector gain 

5( k +I)= ht (k + l)P(k.)h(k + 1)+ I 

K(k +I)= P(k }h(k + 1)5-1 (k + 1) 

P(k+ 1) = [ l-K(k+l}h1 (k+ t)]P(k) 

Predictor-Corrector 

x( k +I}= x( k) + K ( k + t)[ z<+1 - ht ( k + l}x( k)] 

Algorithm 7.2: Recursive Least Squares Approximation 

7.5 The Discrete Approximations Approach 

Previous Chapters have dealt with the derivation of relatively complex models of the 

system. In all cases these models were based on continuous time. The approach 

proposed here works on the assumption that a state space or fuzzy model can be 

converted into a discrete equivalent. It will also be assumed, as in the direct approach, 

that position estimations from the model can be updated upon change in status by the Hall 

effect devices. Since the conversion to the discrete time has been made, it is possible to 

take samples from the model at a different sample frequency to the plant. The principal 

of the approach here is to estimate the length of time it will take to reach the next 
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transition in the Hall effect devices. In addition, the estimated length of time for the 

model to reach the equivalent position is calculated. With knowledge of these two values 

it is possible to vary the apparent model sample frequency, whilst sampling the plant at a 

constant frequency, so that the model and plant arrive at the Hall effect transition position 

simultaneously. This should reduce the first derivative component error between the 

plant and the model. The theory of converting to the discrete time is briefly reviewed 

before the approach is applied. 

Consider the nominal system described by 

x(t)= Ax(t)+Bu(t) (7.24) 

y(t) = Cx(t)+ Du(t) (7.25) 

The discrete time representation of the system is given according to 

x(k + 1) = A(T)x(k )+ r(T)u(k) (7.26) 

noting that the discrete time matrices A and r depend on the sample frequency T. 

When the sample period is fixed, A and r are constant. In order to determine the 

matrices A and r, the convolution integral given by 

I 

x(t) =eA' x(O) + JeA(t-r) Bu ( T )clr (7.27) 
0 

is used as the solution to (7.24). It is assumed that the input u(t) is sampled and fed into 

a zero order hold, so that it is constant between samples. Since 

(k+I)T 
x(k+l)= eA(k+I)T x(O)+eA(k+I)T J e-Ar Bu(r)dr (7.28) 

0 

and 
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kT 

x(k) = eAkT x(O)+eAkT J e-Ar Bu( T )d-r (7.29) 
0 

multiplication of(7.29) by eAr and subtraction ofthe result from (7.28) gives 

(k+I)T 

x((k + l)T)=eAT x(kT)+eA(k+l)T J e-Ar Bu(-r)d-r (7.30) 
kT 

Since by assumption 

u(t)=u(kT) kT<.5.t<kT+T (7.31) 

the constant u(-r)=u(kT) may be substituted into equation (7.30). If the variable A.is 

introduced as A.= T -I, then it may be written that 

T 

x( ( k +I )r) = eArx( kT) +eAT Je-A' Bu( kT)dt 
0 

T . 
(7.32) 

=eAT x(kT)+ JeA;. Bu(kT)dA. 
0 

By defining 

(7.33) 

(7.34) 

equation (7.32) may be rewritten as 

x((k + l)T) = 1\ (T)x(kT)+ r(T)u(kT) (7.35) 

which is of course identical to (7.26). Referring to equation (7.25), the output equation. 

becomes 

y(kT) = Cx(kT)+ Du(kT) (7.36) 
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matrices C and Dare constant and do not depend on the sample period T. This approach 

will now yield the state output at the discrete sampling instant. The output between 

sample instants is desired and the approach discussed can be easily modified to facilitate 

this. Using the system given in (7.24) and (7.25), and starting with the initial state x(10 ), 

the solution to the system is once again given by the convolution integral 

I 

x (1) = eA(,-r,) x(10) + JeA(r-r) Bu ( T) dr (7.37) 
'o 

The time response of the system is desired at 1 = kT + !:J.T, given 0 < !:J.T < T. Defining 

1 = kT + !:J.T, 10 = kT and as before u( T) = u( kT), the solution of x(t) is then given by 

JcT~6.T 

x( kT + tJ.T) = eAaT x ( kT) + J eA(<r +aT-r) Bu ( kT) dr 
kT 

ar 
=eAarx(kT)+ JeAJ.Bu(kT) d)., 

0 

· given A,= kT + !:J.T- r. Using the definitions (7.33), (7.34) and using (7.26), 

x( kT + tJ.T) =A ( tJ.T)x( kT) + r( tJ.T)u( kT) 

the system output can be expressed as 

y( kT + tJ.T) = Cx( kT + tJ.T) +Du( kT) 

= CA(tJ.T)x(kT)+[ Cf(tJ.T)+ D ]u(kT) 

(7.38) 

(7.39) 

(7.40) 

Therefore, the values of the system output, or system states can be computed at any time 

between sampling instants by calculating the values of A(tJ.T) and f(tJ.T) for various 

values of !:J.T. The system is known to maintain a finite sample frequency. Additionally, 

at an indeterminate time, the Hall effect devices will be able to provide an update on the 
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system position, as seen in the direct approach. The difficulty associated with the direct 

approach is the noncsmooth response during the update. 

The time taken for the model to reach the next Hall effect switching position can be very 

simply calculated using the speed state m and the position state e from the model. Given 

the current Hall effect position, H , and the magnitude of the Hall effect increment 

L\H (constant), the following expression provides an estimate of the time taken to reach 

the next transition 

(7.41) 

such that 

H <B <H+L\H (7.42) 

Clearly, when m is at a low speed, T.,. will be very large and the sample frequency L\TP 

should be used for the model in such instances. Based on the previous times at which the 

Hall effect devices have changed state, it is possible to produce a recursive least squares 

estimate of when the next switch time is likely to occur, THED. The probability of T.,. 

being equal to THw is very low since the model is not ideal. In general, the model will 

reach the position which corresponds to a change in the Hall effect devices, either before 

or after the plant. Since the discretisation procedure given above does not stipulate a 

constant value of L\T, it makes an intuitively appealing proposition to adjust L\Tsuch that 

the plant and model reach the next Hall effect switching position simultaneously. Given 

a fixed sample frequency for the plant, L\TP, the equation for the model sample frequency 

is given simply as 
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!::.T (T. -T ) /::.T _ !::.T + P sw HED 
M- p 

THED 

(7.43) 

Thus !::.T M will vary around !::.Tp. The results of applying the algorithm are illustrated and 

tabulated in Figure 7.7 and Table 7.2 respectively. The method is described in Algorithm 

7.3. The algorithm uses the recursive least mean squared estimation procedure from §7.4. 

A simple windowing function is used to obtain the set of most recent samples. 
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Figure 7.7: Histogram of Errors produced by Discrete Approximations Approach 
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Discrete Approximations Approach Algorithm 

I. Calculate model output, BMov ( k) and model speed, wMov ( k) 

2. Increase k by 11TM 

3. If there has been no change keep the current value of THED, go to I 

4 .. Calculate new position to get BHED ( k) 

5. Calculate residual between model and Hall effect devices, 

6. Update the model state BMov ( k) = BMov ( k) + c:( k) 

7. Calculate Tsw JB-(H +Llli)l , 
(£) 

THED (k + 1) = THED +K(k + !)[ zk+1 - ht (k + 1)TH£D (k) J 
111: (7: - T: ) 

8. 11TM = 11TP + P . sw HED , Go to Step I 
THED 

Algorithm 7.3: Discrete Approximations Approach Algorithm 

7.6 Kalman Filter with Stirling Interpolation 

The celebrated Kalman filter and its several extensions have without doubt been the most 

used and successful state estimators over the past thirty years. However, their use is 

contingent on the availability of the required derivatives, and the assumption that they 

can. be obtained with reasonable "effort. In the case of this work, as it has already been 

seen, samples between Hall effect devices are not available, and the derivative does not 

exist. It makes sense to recast the Kalman filter in a new light and rather than using the 
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derivative of the covariance matrix, one should attempt to interpolate the covariance 

matrix using a divided differences scheme. Derivative free Kalman filters and the 

unscented Kalman filter are recent advances in the field of state estimation. They have 

been developed because the Kalman filter uses a Taylor series approximation to the 

derivative, and significant bias or convergence problems have been encountered. It 

follows that since through use of a polynomial, a certain amount of extrapolation IS 

possible, that observations do not need to be available at each sample. There are many 

examples of such extensions to the Kalman filter available in the text, for instance Julier 

and Uhlmann ( 1994), !to and Xiong (2000), Norengaard et a/ (2000), The filter 

realisation proposed by Norengaard et a/ (2000) is particularly attractive since it is also 

reported to work with observation streams operating at different sample frequencies. The 

reader is referred to the paper for the derivation of the filter and only those equations 

which are essential to the algorithm are considered here. 

7.6.1 Review of State Estimation for Nonlinear Systems 

The complete derivation of the Kalman filter may be found in Appendix D, Part I. Here, 

the techniques are reviewed for subsequent development. The nominal system is given as 

x(k +I)= f(x(k ),u(k ), v(k)) 

y(k)=g(x(k),w(k)) 

(7.44) 

(7.45) 

v(k) and w(k) are typically assumed to be Gaussian with zero mean and uncorrelated 

with current and past. states. The conditional expectations of the state and covariance 

matrix are sought, e.g. 

x(k) = E[ x(k )Irk-! J (7.46) 
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P(k) = E[ (x(k )-x(k ))( x(k)- x(k )f lyK-I J (7.47) 

where y<-l is a matrix of previous measurements, 

Y <-1 [ ]r 
= Yo Y1 ··· YH (7.48) 

It is often the case that the measurement (a posteriori) update of the state estimate is 

restricted to be linear, for the sake of convenience. Selection of the update so that the 

covariance ofthe estimation error is minimised, yields the following 

where 

Pxy ( k) = E [ ( x, - x,) (y, - y, f ly*-1
] 

py ( k) = E [ (y, - y,) (y, - _yJ ,y<-1 J 

(7.49) 

(7.50) 

(7.51) 

(7.52) 

(7.53) 

As the various expectations are generally intractable, one form of approximation or 

another is generally used. For instance, it is well known that the extended Kalman filter 

·is based on Taylor linearisation of the state transition and the output equations. 
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7.6.2 The Kalman Filter with Sterling's Interpolation 

. The Kalman filter reported in Norengaard et al (2000) makes use of a divided differences 

scheme to obtain the covariance matrices. The divided difference equations are given 

here for subsequent reference in the algorithm description 

S~ (k),; {(g, (:x* +hsx_,, w* )- g, (x*- hsx.;, w* ))j2h} 

s;:! ( k) = { ( g, ( :x., wk + hsw.j)- g, ( :x., wk - hsw.j)) /2h} 

(7.54) 

(7.55) 

(7.56) 

(7.57) 

.s~l (k) = { ~ ( g, (:x,, w* +hsw.;) + g, (:x., w.- hsw.J )- 2g, (:x., w*) )} (7.61) 

The a posteriori Filter update 

Consider an augmented state vector consisting of state vector and process measurement 
noise: 

x = [x +fu: J =[~+ill] 
v +~v 

(7.62) 
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Since the process noise is assumed to be independent of the state, the conditional 

covariance of 6i is 

fi.=[P o]=[i.;x o][sx O]r=S-S"! 
X 0 Q 0 S, 0 S, X X 

The state estimate can be given by 

- hl - nx - n, J (' - ) 
xk+l = h2 xk, uk, v, 

+ 2~2 :L:~J{x. +hsx.p,uk,vk )+ J(xk -hsx.p>uk, v,) 

+ 2~2 :L:=J{x*'u*,v* +hs,.p)+ f(x.,u*,v* -hs,.p) 

As the basis of the covariance update, the following shall be used 

P(k + 1) = [ S"' (k)S" (k)][ S"' (k)S" (k)r 

(7.63) 

(7.64) 

(7.65) 

a factored update of the covariance matrix is introduced using the following compound 

matrix 

(7.66) 

The a-priori Filter update 

The a priori estimate of the output is calculated in a similar fashion as for the states 

- hl - nx - nw (- - ) 
y,.= 2 g x*, w* 

h 

+ 2~2 :L:·=I g(x* +hsx.p' w. )+ g(x.- h:S,.p, wk) (7.67) 

+ 2~2 :L::1 g(x., w. +hsx.p )+ g(x,, w* -hsx.p) 

and 

s y ( k) = [ s~ ( k) s~ ( k) s~l ( k) s~ ( k) J (7.68) 
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nw indicates the dimension of the measurement noise vector. The a priori cross 

covariance matrix is given by 

(7.69) 

The Kalman gain and the a posteriori update may be carried out according to (7.49) and 

(7.50), with (7 .49) rewritten 

(7.70) 

The covariance matrix may be written 

ft = (s - Ks(l) )(s - KS(IJ)T + Ks(l) (KS(IJ)T + KS(2
) (Ks(2l)T + KS(2

) (Ks(2l)T (7.71) 
X y:r X y.t )lW yw }'% )'X )lW yw 

which has the Cholesky factor 

(7.72) 

7.6.3 Results 

The filter algorithm discussed above was applied directly to the data. A fuzzy model, 

who's output is available at every sample was used as the first observation stream with 

the Hall effect data used as the second. Clearly the Hall effect data is not available at 

every sample, but is expected to be significantly more accurate than the model. The 

initial covariance matrices were therefore initialised to reflect this 

The results of applying the filter are shown in Figure 7.8, clearly the results do not 

compare favourably to the direct approach discussed as the benchmark position estimator. 

The problem occurs because the fuzzy model tends to be trusted more highly between 

Hall effect device switches, and because the Hall effect devices do not switch often 
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enough. Despite the apparently poor performance of this filter, it is computationally less 

expensive than the Kalman or Extended Kalman Filter. It has in addition been shown to 

outperform either of these approaches. It is poor observation data which causes this 

performance. The filter is provided with the output of the direct approach algorithm in 

attempt to provide enhanced information to the filter and the output of the fuzzy model. 

Filter Algorithm 

I. Initialise :X0 , P(O),k = 0 

2. Compute y,,s~l(k),s~,l(k) 

3. Compute Pxy according to Pxy ( k) = Sx ( k )( Sii ( k) f and perform householder 

triangularisation on (7.68) 

4. Solve Kk [ Sy ( k) Sy ( k) r = Pxy for the Kalman gain. Since Sy is square and 

. triangular orily forward and back substitutions are needed: first solve for 

k': k Is;= pxy and then solve for Kk: KkSy = k'. 

5. A posteriori update of the state estimate xk = :x. + Kk (Yk- Yk) 

6. A posteriori update of the covariance matrix factor, Sx ( k), is performed using 

Householder triangularisation on (7.72) 

7. Determine xk+~>S.a ( k + l),Sxw ( k + !) 

8. Use Householder triangularisation on (7 .66) to compute Sx ( k) 

9. k = k +I, go to step 2. 

Algorithm 7.4: Kalman Filter with Sterling Interpolation 
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Plot of Position (actual) versus Position (Predicted) 
VAF 99.7144% RMSE 1834.6 RMSDE 1808.3 X 10' 

10 r-~------------~r---------------~----------------~ 

nme 

Figure 7.8: Filter Application to Hall Effect Devices and Fuzzy Model 
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lt can clearly be observed that the V A F and the RMS measures of the error are worse 

than the direct approach results. This is due to the state space model which is used within 

the filter and has a small effect on the accuracy. However, a significant drop in the 

VAFDE measure, due to the smoothing effect of the filter, has been observed. The 

implication of this latter result is that the speed estimate of the filter is very close to 

actual. 

7. 7 Model Based Fuzzy Sliding Mode Control 

Model based sliding mode control was discussed in the previous Chapter. It was 

demonstrated that the plant could be forced to follow a model perfectly using the theories 

supporting the sliding mode. A model based on the PBEREG structure of Chapter 4 is 

used in conjunction with the fuzzy linearisation procedure of Chapter 6, in order to 

simultaneously provide an estimate of the current location of the armature and provide 

estimates of the system dynamics, from which controller gains are derived·. As in the 

direct approach discussed above, the. Hall effect devices are used to update the model 

position. Finally, a PID controller is introduced to define the controller performance. 

The overall system is shown in Figure 7.10 
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Figure 7.10: Model Following Sliding Mode Controller System 

Since this algorithm requires that the plant interact with the rest of the system, use of the 

by now standard identification data set is not possible. For this reason, a purely 

simulation based study of the following algorithm must be made. Although this is not the 

ideal case, the use of the PBEREG model has been seen to provide an extremely good 

approximation to the actual system. Since in addition to this model, a fuzzy model for 

use within the controller is required, the less accurate fuzzy model based on the voltage 

and current regressors is also used to provide estimates of the plant dynamics. The 

nominal state space model is used within the system to provide the states to be followed. 

In the last Chapter, the concept of model following was introduced, and the ramifications 

of the sliding mode model following controller meeting the invariance conditions 

discussed. To reiterate, the implication of the invariance conditions is that given a plant, 

it may be forced to fo llow a model perfectly, rejecting all errors between the model and 

plant. The assumption, for these conditions to hold, is that the plant is perfectly known. 

In reality, as has been discussed throughout this work, this is simply not the case. The 

performance of the model following controller is therefore directly effected by the final 
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accuracy of the plant model. The first task within the development of this algorithm is 

therefore to develop a controller which will be capable of adapting to estimated changes 

in the plant dynamics. A fuzzy model wi ll be used, as in the case of the adaptive sliding 

mode controller with integral action, to provide these estimates in plant dynamics. 
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~ 
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Parameters 
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Figure 7.11: Model Following Sliding Mode Controller Signal Flow Diagram 

Those boxes shown shadowed in Figure 7. 11 correspond to the controller gains which are 

updated by the "update controller parameters" block at each iteration. For a discussion of 

the controller gains the reader should refer to Chapter 6. ln the following, it will be 

demonstrated that an imperfectly known plant will generate error within the model 

following control system. After that, it w ill be demonstrated that use of the controller 

illustrated in Figure 7.11 will lead to a marked improvement in performance. lnitially, it 

wi ll be assumed that full state feedback is available. The model following controller in 

both cases is designed with an eigenvalue spectrum of { -100 -I 0 + j - I 0 - j} , with 

the null space pole selected as -2.5. The model is treated in the open loop initially, for 
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reasons of clarity. Unit step changes in speed demand are provided to the model. Figure 

7.12 illustrates the result of applying the controller to the imperfectly known plant. The 

response illustrates a peak overshoot of 66%, with a peak in control effort of 5.2 volts. 
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Figure 7.12: Model Following with an Imperfectly Known Plant 
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Figure 7.13: Fuzzy Model Based Model Following with an Imperfectly Known Plant 
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Figure 7.14: Sliding Mode Model Following Applied to a Perfectly Known Plant 
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Figure 7.13 illustrates the result of applying the fuzzy model based controller to the same 

system. A 4% overshoot exists, the corresponding peak in control effort is reduced to 2.7 

volts. The results clearly support the intuitively appealing postulate that minimising error 

between the nominal plant and actual plant will result in superior control. For 

completeness, and in order to demonstrate the control effort, the controller was applied to 

the perfectly known plant. The results are illustrated in Figure 7 .14. There is a slight 

disparity between model and plant in this case. This is due· to the selection of the 

marginally under-damped eigenvalues and the approximation to the ideal switching 

frequency. It will be noticed that even in the case of the sliding mode controller applied 

to an imperfectly known plant, the theory suggests asymptotic tracking of the model 

states, this is clearly visible in Figure 7.12. 

In the case of the controller above, full state feedback was assumed. Clearly, this 

assumption is flawed when attempting to achieve Sensorless control. The direct approach 

above will be used in conjunction with the fuzzy model of the plant (PBERES). The 

direct approach is selected because of its computational efficiency and generally good 

accuracy. The derivative of the algorithm output will be taken to represent system speed. 

It has been seen that the errors associated with the direct approach are of zero mean, 

Gaussian distribution and are uncorrelated, i.e. they approximate white noise. It should 

be noticed that the noise appearing through the encoder measurement channel may be 

viewed as matched uncertainty, to which of course, the sliding mode is invariant. 

Using this approach, it is now demonstrated that speed control may be achieved after an 

initial transient response. It was discussed in Chapter 2 that applications requiring speed 
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control are in general more concerned with the steady state response and therefore this 

transient is not considered to be significant. 

7 .---.----.----.----.----.----.----.----.---.~---

6 

5 

2 

0.5 1.5 2 2.5 
nme, s 

3 3.5 4 4.5 5 

Figure 7. 15: Sensorless Model Following Speed Controller, time domain response 
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Figure 7. 17: Control Efforts Associated with SMFSC illustrated: A. Model B. Plant 
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Because of the high derivative feature of the direct approach, and the associated 

difficulties in estimating very low system speed, position control is not directly possible 

through the model following approach. It is however possible to interpret the model 

following approach in a slightly different manner, and suggest that a model, acting under 

the control of an external loop could be used to provide position information. The error. 

between plant model and desired model could then be regulated to zero. The fuzzy 

sliding mode controller with integral action is used to perform this control. However, in 

this case the feed-forward demand signal used in Chapter 6 is ignored, since there is no . 

demand signal as such, merely the error term which is completely compensated by the 

nonlinear and integral terms of the controller. This also serves to simplify the design 

slightly. It stands to reason that the best performance of the algorithm will occur 

simultaneously with the transition of the Hall effect status. In a similar manner, the worst 

performance will occur immediately before the transition. It is an attractive prospect that 

the error between plant model and plant will grow linearly as a function of the distance 

from the last known Hall effect position. In order to test this corollary, the algorithm will 

be subjected to three tests. First, the system will be driven to 1.99 ·pi= 0.995 rev 

(Figure 7.18), 22/12·pi=0.9166rev(Figure 7.19) and 2·pi=l rev (Figure 7.20). In 

order to ensure proper comparison, the model controlling PID is tuned to be overdamped, 

thus ensuring that spurious Hall effect data, apparent due to plant overshoot, is not 

included. 

7-40 



2000 
., ., 
~ 1500 
Q. 
~ .. 
81000 
c 
w 
c:' ,g 

Vi 
0 

Q. 

0 2 4 6 8 

2 4 6 8 

A 

10 

B 

10 
Time, s 

Precision Sensorless Motion Control 

- Plant Position 
Model Position 

12 14 16 18 20 

12 14 16 18 20 

Figure 7.18: Position estimation at 1.99tr radians (1 2 encoder pulses steady state error) 
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Figure 7.19: Position estimation at 22/12tr radians (6 encoder pulses steady state error) 
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Figure 7.20: Position estimation at 2rc radians (zero steady state error) 

Clearly, the error associated with this algorithm will be strongly dictated by the quality of 

the plant model. In a final test of the sensorless position controller, the identification data 

used as the plant data from the other algorithms is used to represent the model. In this 

manner, quantitative comparisons may be made with the other algorithms. The results 

are given in Table 7.2. 

7.8 Summary of Results 

Table 7.2 provides a summary of the results obtained within this Chapter. Both the 

infinity norm and the RMS norm have units of encoder pulses in error. It can be seen that 

the direct approach, despite its simplicity performs well in comparison with the more 

computationally expensive approaches. It should be noted that the algorithms KFSIDA 

and FMBSSMC both use the direct approach to improve their estimates. This use of the 
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direct approach in other algorithms represents the same philosophy as in Chapter 4, 

where an already accurate model was built into other structures to provide enhanced 

information. The Discrete Approximations approach performs well in terms of all the 

performance measures used, however, it has already been discussed that this algorithm is 

computationally intensive and would not represent a viable algorithm unless implemented 

on a stand alone digital signal processor. The fuzzy model based position controller 

(FMBSSMC) demonstrates reasonable results. This is made all the more remarkable by 

the fact that the identification data used never achieves the steady state. Therefore this 

controller is always kept within the reaching phase and invariance conditions anticipated 

are not realised. 

Table 7.2: Algorithm Performances as Defined by the Performance Measures 

Algorithm VAF VAFDE JJttns (ep) JJcJJ., (ep) 

DIRAPP 99.99 229.45 250.21 4705 

DSCAPP 99.99 70.74 312.4 3542 

KFSIFM 99.71 1808.3 1834.6 5346 

KFSIDA 99.98 29.75 361.13 4705 

FMBSSMC 99.91 57.09 974.1 3639.7 

7.9 Discussion 

This final Chapter has served to draw much of the work from previous Chapters together 

in order to achieve sensorless precision motion control of a brush less D.C. motor system. 

The direct approach, which relies purely on an accurate model and Hall effect 

measurements of position, has been seen to perform well. This algorithm represents the 

simplest possible approach to position estimation and represents a very small· 
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computational burden. The discrete approximations approach, which relies on least 

squares estimation of the time taken to the next change in Hall effect status, was seen to 

reduce the high derivative associated with the direct approach, however, the average error 

and variance accounted for within the error signals increased. The discrete 

approximations approach may be viewed as an adaptive method that does not require 

precise knowledge of the plant. Though this property is extremely attractive, it comes at 

the cost of high computational burden and does not represent a attractive algorithm for 

real time implementation. The Kalman filter approach using interpolation reflected the 

reduction in the high derivative component of the position estimate found in the discrete 

approximations approach. Once again the reduction in this measure came at the cost of 

average error and overall tracking accuracy. The algorithm represented a further 

improvement in estimation over the discrete approximations approach. Although this 

algorithm is reported within the literature to be able to cope with observation streams at 

different sample frequencies, this has not been apparent within the experiments. It is not 

clear whether this is as a result of the unevenly spaced data, or the number of samples 

attempted between Hall effect status changes. Finally, fuzzy model based sliding mode 

controllers were investigated as a novel approach to the sensorless control problem. The 

controllers represent a fundamental shift in the approach to sensorless motion control, 

whereby the plant is forced to follow a prescribed motion as opposed to forcing the model 

to estimate the position of the plant. 

Through use of these approaches, it has been demonstrated that it is possible to generate a 

sensorless speed controller which is capable of very low speed operation with zero error 

after finite time, and a sensorless position controller which will maintain a nominal 
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integral squared steady state error. Comparisons with the system of §7.2 shows that the 

position control algorithm will achieve comparable positioning accuracies, with the worst 

case estimate being of the order 6 microns, and nominal case 3 microns. 

7.10 Notes and References 

7.10.1 Notes 

The matrix inversion lemma makes use of the form 

(7.73) 

The proof of the lemma requires multiplication of (7.73) by r + uvt to obtain the identity 

matrix 

-1 r-luvtr-l (r +uvt) 
(f+uvt) (r+uvt)=r-1 (f+uvt)- . _ 

I +vtr 1u 

r-lu (vt + vtr-luvt) 
= I+ r- 1uvt - ----'--,---.,...---'-
. l+vtr-1u 

r-1u(l + vtr-1u)vt 
= I + r-1uv t - ----'-...,----,-....:.....-

1 +vtr-1u 

=I 

(7.74) 

Choleski's Method of matrix inversion is based on the assumption that the matrix A is 

symmetric and positive definite. It may be written A = LLr '·where L is a lower triangular 

matrix. The inverse may be obtained from 

(7.75) 

and only one inversion of a triangular matrix and one multiplication is required. 

Householder's method is presented in Froberg, (1970) pp 130-132. 
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Chapter 8 

Discussion, Conclusions and Suggestions for Future Work 

8.1 Discussion and Conclusions 

The concept of sensorless motion control was introduced in Chapter l. Chapter 2 then 

went on to refine the definition of the theories with respect to motors suitable for small 

drive systems. It was seen as a result of the further definition of the concept of sensorless 

motion control that the algorithms discussed loosely fit into one of three categories: 

Direct measurement methods 

·observer based methods 

Artificial intelligence based methods 

Of the several methods within each of these sets, only high and medium speed control 

was generally considered. It was apparent that direct measurement methods were not 

directly applicable to achieving the goal of this work. In addition, the methods based on 

artificial intelligence remain an emergent technology, and comparatively nebulous in 

their definition. Conversely, the observer based methods, specifically those based on the 

. sliding mode, appeared to present realistic scope for extension to low and zero speed 

motor control. 

Chapter 3 described the development of an experimental test rig upon which to test 

algorithms developed in later Chapters. Models of the system were then developed based 

on a-priori knowledge of physical properties of the system. A data set was acquired from 
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the experimental system, based on a series of specifications, which ensured suitability for 

model validation. Only two of the four models developed provided performances which 

approximated the real system. It was seen that the variations within the frictional load of 

the system was a major constraint to the models accuracy. The phase coordinate model, 

which was one of the two successful models, represented a significant computational 

overhead, and subsequently, the third order state space model was selected for controller 

design. The Zeigler-Nichols approach to the selection of PID coefficients was seen 

within the simulation to provide the characteristic 4: I decay ratio in the time response. 

Subsequent implementation of the PID on the actual system led to a hunting response, 

which was strongly dictated by the variations in frictional perturbation associated with 

the load. Manipulation of the controller gains led to the demonstration of superior system 

performance. A full state feedback integral action controller was then developed and 

applied to the system, experimental results were shown to correlate well with the 

simulated system response. 

Chapter 4 described the identification of the experimental test rig. The commonly used 

linear difference equation model family was discussed. The auto-regression with 

exogenous variables model structure was considered, specifically because of its 

guaranteed stability, and a linear ARX model was developed. Further enhancements to 

the were made through the introduction of fuzzy clustering, and artificial neural network 

techniques. The neural network technique was found to strongly favor system excitation 

signals of a lower frequency, the fuzzy clustered approach was found to perform better 

than either the neural network or the linear models. Attempts were then made to 
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aggregate the knowledge of the system obtained from Chapter 3 and the nonlinear 

identification processes of Chapter4. This was achieved using two different approaches 

The raw data collected from the system was first transformed using a

priori knowledge from Chapter 3, to provide the black box structure with 

data that was of greater physical relevance. 

A prediction error method from Chapter 4 was applied to the model 

structures from Chapter 3. 

The former approach was seen to provide better model estimates, whereas the latter 

approach served to provide the user with new information about model parameters. The 

latter approach could therefore have application in data-mining tasks. 

The sliding mode was considered in Chapter 5. The invariance property was introduced 

and the equivalent control method for analysing controller performance was discussed. 

Several controllers were then developed based on the existing sliding mode control 

theory and the third order state space model of Chapter 3. The chatter phenomenon was 

introduced and several methods for preventing its manifestation were considered. 

Significantly, the boundary layer approach was seen to provide a controller which was 

globally stable and uniformly bounded. Controllers which employ the boundary layer 

cannot, however, guarantee final tracking accuracy to any precision beyond the radius of 

the boundary layer. Practical implementation of the controllers, both with and without 

the boundary layer illustrated the need for a chatter suppression method. Methods to 

capitalise on the additional degree of freedom afforded by the boundary layer were · 

discussed in Chapter 6. The first of the two integral action controllers, introduces a 

simple approach to the design of an integral action controller, which is based on the Bush 
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companion form. This controller, despite its simplicity was shown to provide asymptotic 

tracking of the demand. It was shown that this could be achieved even with a boundary 

layer of sufficient size to suppress chatter. It was shown in Chapter 5 that sliding mode 

can in theory achieve invariance to parametric uncertainty. In practice, to achieve this, 

the feedback gains must be increased to accommodate the uncertainty. This leads to 

theoretical controllers which achieve asymptotic tracking through the selection of infinite 

feedback gains. However, those controllers do not represent practical solutions because 

of the impractical specification of system bandwidth. The second of the two controllers 

evolved in Chapter 6 sought to achieve improved performance over traditional integral 

action controllers by incorporating enhanced information about the system. This 

information came from the linearisation of fuzzy models developed in Chapter 4. By 

virtue of the fact that the controller was then provided with reduced uncertainty within 

the plant, lower controller gains were selected safely. As a direct result of these reduced 

controller gains, reductions in the radius of the boundary layer were achieved whilst still 

suppressing chatter. This reduction in the size of the boundary layer leads directly to 

improved guarantees of tracking accuracy in finite time, the integral action finally served 

to ensure asymptotic tracking. Discontinuous Observers were then considered within 

Chapter 6. Comparisons of performance between the Luenberger observer and the 

sliding mode observer were made. It was shown that the sliding mode observer was 

robust to a certain class of disturbance, where errors in state reconstruction were 

exhibited by the Luenberger observer. Finally in Chapter 6, model following sliding 

mode control was introduced as a natural extension to observer theory. The conditions 

for perfect model following were discussed and they were seen to match the conditions of 
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invariance for sliding mode controllers. A controller without a boundary layer was then 

developed to provide an illustration of the model following controller performance, near 

perfect reconstruction of the speed state was illustrated after an initial transient. 

Algorithms to achieve sensorless precision motion control were developed in the final 

section. The problem was identified early within the Chapter as reconstructing a smooth 

estimate of position from unevenly spaced sample data. Divided difference schemes 

were reported to be unstable where extrapolation of several samples was required. 

Reconstruction of the position state then naturally fell to the use of regression models 

from Chapter 4, coupled with the use of observation streams that would realistically be 

available from the system. The direct approach was the first method to be considered and 

successfully integrated nonlinear system models with sensor feedback. The discrete 

approximations approach was based on the direct approach, but also used a property of 

discrete time models to ensure better tracking accuracy of the model with the plant. A 

significant improvement in the smoothness of the estimate was made over the direct 

approach. A Kalman filter, which used a form of interpolation, was next applied to the 

problem. The filter had been reported to provide better estimates than the Kalman filter 

and to be faster than the extended Kalman filter. In addition, the filter was reported to 

perform well with data of different sample frequencies. Use of the same signals applied 

within the direct approach led to a significantly worse performance from the filter, 

because of the instability associated with polynomial extrapolation. However the filter 

performance was greatly improved by the use of two Continuous observation streams. 

The filter demonstrated extremely good smoothing characteristics. Finally within 

Chapter 7, the concept of forcing the model to follow the plant was reversed and methods 
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to force the plant to follow the model were sought. The principle advantage associated 

with this approach was that control was achieved and the system kinematic parameters 

are known implicitly. The dynamic performance of the system is dictated by the 

selection of the model, which may be totally defined by the user. A model following 

sliding mode controller, which like the second of the integral action controllers developed 

in Chapter 6, uses a fuzzy model to determine the controller gains, was described. This 

model has been shown to achieve low speed control, in the order of 60 revolutions per 

minute, with zero error after an initial transient, which is dictated by the users selection of 

pole locations. Further, the theory supports much lower speed control to less than 10 

revolutions per minute, under the provision that the transient period may be extended. 

The model following speed controller could not be applied directly to the control of 

position because of high transients associated with the position correction within the 

direct approach, and the difficulties associated with estimating zero speed with the hall 

effect devices. A final controller based loosely on the full state feedback model 

following controller was described and applied to the problem. The controller was shown 

to perform position control of an imprecisely known plant to accuracies which 

approximate those becoming available commercially, typically 3 microns. Because of 

· the numerous advantages the synchronous motor over the alternative forms of actuator, 

the design solution proposed is considered to be superior to the alternatives. The 

objective of this work has thus been met. 

8.2 Suggestions for Future Research 

Future research topics on the theoretical and experimental development of sensorless 

precision motion control systems should comprise work in three disparate areas. Initial 
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work would be purely developmental and would first consider the implementation of the 

sensorless control algorithms in real time. Methods to reduce nonlinearities within the 

system should be investigated, this would include the use of a ball screw instead of a 

lead-screw and crossed roller bearings upon which to mount the carriage. The motor 

amplifier should provide the user with greater control over the torque control loop. The 

controller should be implemented on a dedicated processor. These improvements will 

enhance the performance of all the control algorithms discussed within this work. 

Finally, further work should be carried out to research the incorporation of algorithms 

which will reduce the effects of backlash, hysteresis and motor torque ripple. 

The singular largest constraint on the accuracy of the algorithms discussed within 

Chapter 7 is the accuracy of the identified models. The second area for further work 

should therefore be focussed on techniques to improve performance. This work 

considers the development of system models off-line. It would be distinctly 

advantageous in a practical system to develop online identification techniques to ensure 

that the model remains as accurate as possible. Though spline methods are not applicable 

to the extrapolation of motor position, they can be used for its interpolation. This would 

provide a neat method for identification of position based on a-priori measurements of 

the Hall effect devices. Within this work, only time domain reconstruction of the Hall 

effect data is considered. An attractive future proposition would involve the use of 

frequency domain system identification techniques. Algorithms designed for unevenly 

spaced data, such as the Lomb-Scargale Periodogram will have to be used to achieve this. 

The final area for future research occurs at a more general level. Further applications for 

the fuzzy model based sliding mode controllers should be found. In addition, an 
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Discussion, Conclusions and Suggestions for Future Work 

algorithm capable of neural network linearization should be sought and applied to the 

design of sliding mode controllers, in the same manner as the fuzzy model based sliding 

mode controllers. In an alternative scenario, the design of sliding mode controllers could 

be extended to design based on Diophantine equations, such that polynomial models 

could be applied directly to the selection of controller gains. Finally, it is acknowledged 

that significant speed enhancements could be made to the models if a suitable algorithm 

could be found to map fuzzy clustered models to a neural network structure. 
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Abstract 

This paper demonstrates the application of grey 
box modelling to a servo mechanism actuated by a 
brushless direct current motor (BLOC) under 
significant torque perturbation. It is first 
demonstrated that the application of a third order 
linear model . is insufficient for accurate modelling 
or simulation of this particular system. A limited 
test of a common black box model structure is then 
performed. The effects of poorly understood torque 
perturbation are illustrated and are identified as the 
principle cause of modelling error. A grey box 
model utilising the linear model and input output 
data is then developed and significant improvement 
in modelling accuracy is demonstrated: 

1 Introduction 

On going work at the University of Plymouth is 
concerned with the development ofa linear transla
tion stage for precision motion control. Impetus has 
been placed on the achievable resolution, 
repeatability, accuracy and range of the system. 
With these constraints placed on the design and for 
reasons discussed below, a brushless direct current 
(BLOC) motor is envisaged as the device most 
appropriate for actuation of the stage. 

BLOC Motors are used in direct drive applica
tions primarily because of their increased 
torque/weight ratio. In comparison with their 
brushed counterpart they eliminate the problem_s 
associated with mechanical wear whilst minimising 
electrical and acoustic noise. In addition the 
physical construction of the BLOC allows for better 
heat dissipation and a higher torque/speed ratio is 
thus achievable [I). . 

The BLOC does however pose a greater chal
lenge than the brushed equivalent when modelling 

and control is considered, since it is multi-input by 
nature and exhibits coupled non-linear dynamics. 

For use in precision motion control it is impera
tive that the effects of torque . ripple and frictional 
effects are identified in order that effective control 
may be performed (3). There has been much work . 
within the field of BLOC modelling and identifica-

. tion, in [1], the motor model is treated in detail. In 
(4] the effects of magnetic saturation an_d reluctance 
variation are modelled. [5] builds on the work of 
[I) and (4] in order to provide a computationally 
efficient phase variable model of the BLOC. 

Whilst there are several studies devoted to 
modelling the BLOC motor, there are few that deal 
with modelling the motor once a load is applied. 
Use of a neural network in specialised learning 
mode has been shown to cope with the additional 
unmodelled non-linear effects well [6], however this 
approach does little to elucidate system parameters 
for subsequent use in a feedback controller and 
blackbox control becomes necessary. 

2 Modelling 

The key problem in system identification is to 
.. fin.d a suitable model structure, within which a 
model that represents a given system to an 
acceptable degree of accuracy is to be found. 
Fitting a model once a given structure has been 
identified (parameter estimation) is in many cases a 
lesser problem. An axiom within the field of 
system identification is to estimate only that which 
is unknown. More specifically, when identifying a 
system a priori knowledge and physical insight 
about the system should be used where possible. It 
has become customary to distinguish be~een the 
varying levels of prior know~edge, they are 
de.scribed as follows(?]: 

• White Box Models: These are used to describe 
the system when it is perfectly known. It has in this 
case been possible to construct a model entirely 
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from physical insight and a priori knowledge of the 
system. 
• Black Box Models: No physical insight is 
available. ln this case the chosen model will have a 
structure that is known to have sufficient flexibility 
and has been proven in application. 
• Grey Box Models: In this case some physical 
insight is available, but several parameters must be 
determined from observed data. Under this heading 
two more explicit sub categories are worthy of 
consideration: 
- Physical Modelling: A model structure can be 

built on physical grounds, which has a certain 
number of parameters to be estimated from 
observed data. 

- Semi-physical modelling: Physical insight is 
used to suggest how the observed data 
comprises certain non-linear elements. These 
elements are then subjected to identification 
with black box model structures. · · 

Within the context of this paper, attention is paid 
primarily a grey box modelling method, since the 
BLOC motor is well understood and is accessible to 
mathematical modelling. However, the additional 
load is poorly understood and modelling of the 
system directly becomes impossible. · 

3 Experimental set-up 

An experimental test rig has been constructed 
for model validation. A brushless D.C. motor rated 
at 250W is used for actuation of a linear stage with 
440mm travel. The stage is constructed of a 2mm
pitch lead screw with ground steel slide rails. The 
stage is subject to large frictional forces, which vary 
over its entire length. A 500 pulse per revolution 
quadrature optical encoder is used for position 
feedback. This provides a linear displacement 
resolution of 360 microns. Data is captured using a 
microprocessor unit, within this work "t5 is used to 
describe sample period. 

4 White Box Modelling 

There are many excellent texts available that 
describe the BLOC motor using white box, mathe
matically derived models. Common models such as 
the space phasor ( d-q) and the phase co-ordinate 
model are easily found within the literature [2). 
However these models are eighth order and non
linear thus posing significant difficulties where 
simulation is concerned. In addition it becomes 

exceedingly difficult to design model based 
contl(ollers around these equations and the motor 
model is often approximated to a third order state 
space or transfer function model of the form shown 
in equation ( 1 ). 

[I} 0 I 0 

;:Hl]u.-l-:+· 0 
B K. 
J J x .. K - R. 0 ' 
L L 

·GJ 
( I ) 

y = [1 0 

Where X.,X2 and X3, are the position, speed and 
applied current respectively. B is given as the 
viscous friction, J the moment of inertia, R and L 
the resistance and inductance of the motor 
respectively. ~ and Km are the electrical and 
mechanical gains of the motor, U 1 is the applied 
voltage and u2 is the applied load torque. 

For this study the third order model is used and 
it is accepted that there will be a small disparity 
between this model and a more accurate model such 
as one of the two discussed above. 

Since this is a white box model, there is assumed 
no a priori knowledge of torsional variance along 
the stage length, instead a constant measured value 
oftorque is used. 

.. 

.. 

Figure I. Comparison between model predicted and 
actual position 

Figure (I) illustrates the output of the model in 
comparison with the results obtained from the actual 
system. lt might be seen that the model is a fair 
approximation of the system, however the torque 
perturbation which varies over the length of the 
stage clearly has a significant effect on the 
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performance of the system and implicitly effects the 
performance of the linear model. 

5 Black Box Modelling 

When a system is poorly understood models are 
often created using a input output representation. 
Instead of using a physically relevant state vector, 
the state of the system is represented by a fmite 
number of past inputs and outputs of the system. A 
structure commonly used to achieve this is the 
NARX (Non-linear AutoRegressive with eXoge
nous input). It has been shown that this structure is 
able to represent the observable and controllable 
modes of a large class of discrete-time non-linear 
sys_tems. It has been shown in [7] that non-linear 
black box models, specifically the NARX model 
may be applied more successfully to a brushed D.C. 
motor than a linear alternative, such as ARX (Auto 
Regressive with eXogenous input). 

The NARX model establishes a relationship 
between the collection of past input-output data and 
the predicted output 

A( ) 1y(k), .. . ,y(k-ny+lh) yk+l = 
u(k), ... ,u(k-nu +1) 

(2) 

Where k denotes discrete time samples, nu and 
ny are related to the systems order. There are sev
eral other popular structures for input-output model
ling, such as the NOE (Non-linear Output Error), 
which includes past model outputs and the NAR
MAX (Non-linear Auto Regressive Moving 
Average with eXogenous inputs) which includes the 
previous prediction errors in the regression vector. 
The regression vector of these models cannot be 
constructed directly from the data, but rather the 
regression problem must be solved in a recurrent 
manner. It has been shown that this recurrence may 
lead to instability, and it becomes very difficult to 
verify the predictors' stability. 

It will be noted at this point that in general 
piecewise constant or binary signals often employed 
within identification of linear systems are not 
suitable for the identification of non-linear systems. 
Rather sinusoids of varying amplitude and 
frequency are preferred. At this stage within the 
work there is no practical way in which input 
signals of sinusoidal form may be applied. There
fore square wave inputs of varying frequencies and 
magnitudes are applied, as an approximation. It is 
noted that this will degrade the performance of the 

\ 

model and the application of sinusoidal inputs will 
be investigated at a later stage within the work. 

Figure 4 shows the performance of the NARX 
model when trained for a system excited under a 
15v, 0.6Hz input signal This model represents a 

Figure 4 : NARX model output compared with 
. actual at 0.6Hz excitation (<s = 12.44mS) 

significant improvement over the linear model. 
However, the same NARX model applied to step 
input-output data performs poorly outside of the 
trained dataset (Figure 5). 

.. / 
// .... ....... . 

/ 

.. 
·~.~~~~-7-.. ~~.~~~-~--~~-~~*~~.. __ 

Figure 5: NARX model output in response to a step 
input (<s = 21.15mS) 

6 Grey Box Modelling 

It may be seen that the accuracy of the linear 
model is strongly influenced by the unmodelled 
torque perturbation apparent at the motor shaft 
(figure 1). This variation may be prin<;ipally 
attributed to frictional effects. The solution is 
clearly to incorporate a model of this torsional 
variation. Since friction has the property of being 
time variant, the dynamics of the stage are poorly 
understood and modelling from first principles 
becomes impossible. A black box approach 
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becomes the choice for modelling stage behaviour. 
At this point the readers attention is drawn to the 
fact that there are two fundamental categories that 
distinguish modelling approaches, referred to as 
Global and Local. The NAR.X input-output model 
discussed above is an example of a global model, 
whereby an attempt to describe the system is made 
using non-linear functional relationships between 
system variables. Conversely, local models attempt 
to cope with complexity and non-linearity of 
systems by decomposing the modelling problem 
into a number of simpler, and often linear, sub 
components. The local modelling technique is 
conceptually simple and intuitively more appealing 
since they more closely approximate the methods by 
which humans learn and solve problems. Fuzzy 
models may be viewed as local models. 

At this point use is made of the input-output data 
used in training the NAR.X model. It may be shown 
that the torque at the motor shaft is given by 

d() r--
r = dt 

I 2}00 
( 3 ) 

Where y is the no load speed of the motor and 
2100 is the torque/speed gradient as specified by the 
manufacturer. 

One of the inputs to the grey box model, which 
will be discussed in more detail directly is a torque 
observer which uses the position information that is 
the subject of estimation. In order to avoid 
recurrence within the model the following torque 
observer based upon current might be used. 

The equation of motion is given 

dm 
J-=Tm -T, 

dt 
(4) 

where T m is the electromagnetic torque gener
ated by the motor and T1 is the total perturbing 
torque at the motor rotor, expressed as 

(5) 

where T;, T10 and Tr are the inertial, load and 
frictional torques respectively. Ln addition, it may 
be shown that 

(6) 

where 1• is the reference torque current. The 
parameters within the equations (5) and (6) are J 
and K7 they deviate from the values rated within the 

model Vn and K7;,) by 

( 7) 

( 8) 

In terms of torque, the variations of L\.1 and /),}( r 

are Afsro, and 6Kr/·, respectively. The torque per
turbation may t~refore be expressed as 

Tper =TL +Alsmr -Mr ·I· (9) 

Finally, making use of (6),(7) and (8) in (4) the 
following torque perturbation observer may be 
derived 

( 10) 

The output of this observer might be used as a 
direct input to the model. However, at this stage 
this has not been implemented and will be the 
subject of further work. 

The torque data and the output of the linear 
model subjected to the same excitation signal as the 
actual system are used as inputs to a multi-input 
single output fuzzy clustered model. Ln this respect 
full knowledge of the system derived 
mathematically is utilised, but the poorly 
understood torque perturbation is also incorporated 
into the model. 

Before results are discussed, a description of the 
fuzzy clustered model is given, the interested reader 
is referred to [8] for a far more detailed treatment of 
the concepts outlined here. 

6.1 The Affine TS Model 

The affine Takagi-Sugeno (TS) fuzzy model 
comprises a set of rules in the following form: 

If x is A1 then y, =a{ x+b1 

i = 1,2 .. . , K 

Where X E X c ~ P is a crisp input vector, A1 

is a multidimensional fuzzy set: 

f.J Ai (x) : X ~ [0,11 y, e ~is the scalar output of 

the llh rule, a 1 E ~ P is a parameter vector and b1 is 

a scalar offset. The index I relates the variable to 
the Im rule and K is the number of rules in the rule 
base. The output y of the TS model is computed 
using the fuzzy mean formula 
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( 11) 

Where f]lx) represents the degree of fulfilment 
of the Ith rules antecedent, which is simply a 
measure of the degree of fulfilment ofx in the fuzzy 
set A1 and is given by 

( 12) 

Since it may become difficult to interpret 
multidimens ional fuzzy sets, the antecedent 
proposition is commonly defined in a conjunctive 
form, given by a series of single dimensional fuzzy 
sets combined with simple propositions: 

Ifx1 is Au and . . . and Xp is A1.P then 
T y, =a, x+b1 

in this case the degrees of fulfilment are 
calculated as 

/], (x) = J.1 A1.1 (x 1) 1\ . . ·. 1\ J.1A, .f' (x p) 

where the min operator (A) may be replaced by 
alternative T-norms. In this case the model output 
is calculated 

' K ) K y= l~ r, (x)a,T x+ ~r, (x};, = 

aT(x)x+b(x) (13) 

Where y; is the normalised degree of fulfilment 

( )- /3, (x) 
y, X - K ( 14) 

LP;(x) 

a(x) and b (x) are input dependent 

parameters, given as convex linear combinations of 
the constant parameters a; and b; through the 
following relationship 

( 15) 

( 16) 

The NARX model discussed above may be 
expressed in this pseudo linear model according to 
the following 

n. 

y(k+l)= l:a,,
1
y(k- j+l)-f, 

j = l 

n. 

Lb,,1 u(k- j+l)+c, ( 17) 
j=l 

6.2 Fuzzy Clustering 

Once the structure of the model has been 
decided, the identification problem becomes a static 
non-linear regression y=F(x). The regression space 
is given by 

Z =(X, Y) c 9'l n ( 18) 

Where n is the regression space and is given by 
the dimension of the regressor (p )+I. Within the 
regression space the equation y=F(x) defines a 
hypersurface known as a regression surface. 

Geometrically the consequents of the TS model 
discussed above may be represented as hyperplanes 
in the regression space. The antecedent fuzzy sets 
serve to divide the regression space in which the 
regression surface may be locally approximated by 
the consequent hyperplanes. The task of 
identification is to find the number, locations and 
parameters of these hyperplanes such that the 
regression surface is accurately approximated. This 
may be achieved through application of a set of 
fuzzy clustering methods, referred to as subspace 
fuzzy clustering algorithms. 

The set of data to be clustered, across the 
regression space, is constructed by concatenating a 
matrix containing the regression vectors and the 

. regressand vector. The model under consideration 
here is a multi input, single output second order 
system. 

The clustering algorithm employed to cluster the 
data once in the above form is known as the 
Gustafson-Kessel fuzzy clustering algorithm which 
may be found discussed in more detail in [8]. 

Each cluster obtained by the product space 
clustering of the training data may be regarded as a 
local linear approximation of the regression 
hypersurface. The global model may be expressed 
as a TS model whereby each cluster is used to 
represent a TS rule through estimation of the 
consequent parameters and derivation of the 
antecedent through the fuzzy partition matrix. 

7 Results 

The identification model described above was 
applied to the servomechanism data, using 150 of 
the 450 samples as training data (samples 50-200). 
The linear model was excited with a step input as 
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per figure (2). The stage was also fed a step-input 
signal and the values for torque derived. Results are 
shown in figure (6) compared against the entire data 
set. The model may be seen to be extremely 
accurate with a measured error of zero in 
simulation. 

" i I 

~ ' 
~ ,, 

.. 
--

Figure 6: Grey Box model response to a step-input 
(ts = 21.15mS)· 

Following this test, a 0.8Hz bipolar step input was 
used to excite both the actual stage and the linear 
model. Once again the training set used was 
between the samples 50 and 200. Once again the 
prediction error is zero figure (7). A data set from a 
second step input test was used without retraining 
after the first step input test. In this case there was 
simulation error. This may be attributed to the fact 
that since the torque perturbation varies from run to 
run, the system has actually been trained using a 
system with fundamentally different dynamics. 

Figure 7. Grey Box model output at 0.8Hz (<, = 
12.44mS) 

8 Conclusions 

Within this paper an approach to modelling non
linear, poorly understood systems has been 
demonstrated. The grey box modelling approach 
relies on prior data and information, and in the case 
of the system under consideration, because of the 

time variant dynamics there cannot be a great deal 
of certainty concerning the a priori input output 
data. Within this work it has been demonstrated that 
the grey box approach alleviates the need for an 
extremely accurate linear model, affording the 
designer some inaccuracy within the linear model 
and thus potentially expediting the design process. 
The black box approach has been shown to perform 
well with the system under consideration, if a 
bipolar step input is used for system excitation, 
however it must be noted that the performance of 
this model will most likely be improved by the use 
of sinusoidally excited training data. From point of 
view of simulation, the system demonstrates 
extremely high accuracy and if Input-Output data is 
readily acquired and the system reasonably well 
understood, then the reader is strongly advised to 
consider the grey box approach to modelling. 
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Abstract 
A method of sliding mode control based on 
a fuzzy model identified through input 
output data is presented. In this approach 
the advantages of the sliding mode control 
technique are maintained, however 
parametric uncertainty and unmatched 
disturbance are acknowledged as limiting 
factors of controller performance and their 
effects are sought to be minimised. 
Controller performance is compared with 
an equivalent conventional sliding mode 
controller. 

Keywords: Fuzzy model identification, 
Adaptive sliding mode control, motor 
control. 

Introduction 

Precision motion control has relevance in many 
technological areas, it has found application in 
medical, electronic manufacture and mechanical 
disciplines to name but a few. As the requirement 
for progressively more accurate position control 
continues to grow, the performance requirements 
placed on the positioning device become ever more 
stringent. In systems where friction is present, it is a 
notoriously difficult phenomenon to measure, in 
addition to the parametric llllcertainties associated 
with the controller and device load. It is therefore 
necessary to employ methods of control that Will 
perform in a prescribed manner despite system 
uncertainty. 
One of the earliest approaches to control of 
uncertain systems was sliding mode control (SMC) 
or variable structure control• (VSC), first introduced 
to western researchers by the seminal works of 
Utkin [1 0] and Itkis [5]. The central feature of SMC 
is the sliding mode, in which the dynamic motion of 
the controlled system is constrained to remain within 
a prescribed subspace of the full state space. The 
sliding mode is achieved by ensuring that the 
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prescribed manifold within the state space is made 
attractive to the system [5]. Once the manifold is 
reached, the system is forced to remain on it 
thereafter. When on the manifold, i.e. during the 
sliding motion, the system dynamics are equivalent 
to a system of lower order, which is insensitive to 
boJh parametric uncertainty and unknown 
disturbances that satisfy the matching condition. 
One of the principle drawbacks of sliding mode is 
that it in general only applies to systems that satisfy 
the matching condition [11]. Secondly and most 
significantly, the control law is discontinuous across 
the sliding manifold, this leads to a phenomenon 
termed 'control chatter' in practical systems. 
Chatter involves high frequency control switching 
and may lead to excitation of previously neglected 
high frequency system dynamics. Smoothing 
techniques such as boundary layer normalisation 
have been employed in order to negate the effects of 
control chatter, however such an approach leads to a 
controller that can only guarantee tracking accuracy 
to within the e-vicinity of the demand DJ, where e is 
the radius of the boundary layer. A compromise 
must therefore be sought between desired tracking 
accuracy and controller bandwidth. 
The apparent similarities between the sliding mode 
and fuzzy controllers was illustrated in [8], this has 
subsequently motivated considerable research effort 
in combining the two topologies in a manner that 
serves to reduce the mentioned drawbacks of the 
sliding mode. The most common approach to this 
has been to replace the continuous switching 
function of the boundary layer with an equivalent 
fuzzy switching function . However, as pointed out 
in [7], the fuzzy rule base commonly serves as a 
mimic of the original switching function and the 
advantages of silch an approach are therefore 
unclear. Others, e.g.[4], have used a fuzzy rule base 
in making the sliding manifold adaptive, so as to 
minimise the reaching phase, good results have been 
reported. Babu5ka [I] has demonstrated the ability 
of the affme Takagi-Sugeno consequent to locally 



model a system through rule extraction from cluster 
data obtained within the regression space. (9] 
subsequently uses such fuzzy models in order to 
extract locally linear state space models of the 
system and demonstrate model based control of both 
single input-single output (SISO) and multi input, 
single output (MISO) systems. 
In this work, the parametric uncertainty and 
disturbances that the system is subject to are 
recognised as the root cause of the high gain 
feedback requirement and control chatter. It follows 
that if these uncertainties can be reduced then 
enhanced controller performance may be achieved 
as will be shown. 

Fuzzy Modelling 
Fuzzy identification is a term used that has come to 
represent the use of fuzzy logic in the modelling and 
representation of a system. Since fuzzy models may 
be viewed as general function approximators, they 
are readily applied to the nonlinear regression 
problem. The approach adopted within this work is 
to decompose the model into a static nonlinear 
regression. The problem of model identification is 
then decomposed into two separate problems, the 
first is selection of the regression structure, the 
second, the selection of the fuzzy model form, for 
example, the required number of membership 
functions and membership crispness. 
The desired regression may be expressed in the form 

.Y~Io )= J(q>(t 1o) (1) 

It has been shown in [1] that the regression surface 
within the product space may be represented as a 
series of local approximations. 
Through use of a subspace clustering algorithm such 
as the Gustafson-Kessel algorithm, it is possible to 
derive local approximations to this regression 
surface. Further, through use of the eigenvalues of 
the cluster covariance matrix given by 

F. :r,:_,(Jl,,t r {zt - v,}(zt -vJ 
, :r,:_,(Jl,..tr (2) 

it is possible to interpret these local models and 
subsequently derive a fuzzy rule to represent this 
local approximation. In repeating this process for 
each data cluster, a global model of the system may 
be generated. 
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Figure 1 : Typical model result compared to system 

output. 

Previous work has considered the accuracy of this 
approach in comparison to neural networks and 
'white box' models, results have demonstrated that 
this local approach to modelling can provide 
superior results [6]. . 

Model Extraction 
It has been shown in (9] that once the Takagi 
Sugeno model has been derived, local linear state 
space models can be calculated according to the 
following, 

y, {A:+ 1} = L.:,Jlu (x, (k }) · y11 (k +I} 

:r,:,Jlu (x, (k }) 

Yu (k + 1} = (~11y(k }+1J11U (k }+Ou) 
where 

(; L.:,Jl11 (x, (k }) · (" 
L~1 Jl11 (x,(k}) 

. L~1 Jl11 (x,(k}) · 1J11 
1], = "" c, ( ( )) ~~-·J.I." x, k 
and 

o·- :r,:,J.I.a (x, (k ))·9u 
1

- 2',~1 J.1.11 (x,(k)) 

(3) 

(4) 

(5) 

(6) 

(7) 

In the case here, previous inputs are not considere<l 
and the A, B and C matrices of the model are thus 
simplified, the matrices are given 

(,:. (,:1 (,:.., 
1 0 0 

A= (; .. (;,2, (;,.., (8) 

0 

(~ .. (~.2 (~ .... 

E 



17;,, 17~2 11;,, 
0 0 

B== 17;,, 71;,2 11;., {9) 

11~ .• 11~ .2 11~ .... 

c~[l 
0 

!] {10) 

Results 
The principle of the proposed controller is illustrated 
in Figure 2. Essentially, enhanced information about 
the controlled system may 'be extracted from the 
fuzzy model. Thls information may then be 
employed in the design of the controller gains in 
order to acrueve optimality of the controller pole 
locations. In this manner the proposed controller 
may be described as a Fuzzy Adaptive Sliding Mode 
Controller (F ASMC). 

Figure 2: Principle ofFASMC 

The controller was compared to a benchmark sliding 
mode controller with integral action [2]. Both 
controllers were designed to provide critical 
damping at a natural frequency of 22rad/s. The 
controllers were tested over a sample period of 70 
seconds. Results are illustrated in figure 3. 
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Figure 3: System outputs over' 70 seconds 
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It can be seen that in terms of system response that 
there is little to differentiate the two. 
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Figure 4: System control efforts 
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Figure 5: Real time sliding mode controller response 

However, consideration of the corresponding control 
effort (figure 4) shows that that the rugh gain 
associated with the SMCI is not apparent with the 
F ASMC. In addition it is worthwhile to note that the 
£-vicinity of the F ASMC was 6 times smaller than 
the corresponding SMCI. 
Implementation of the SMCI shows good agreement 
with the simulation results. However, as system 
load torque varies with position, which is manifested 
as unmatched disturbance, it can clearly be seen how 
the controller performance is subject to these effects 
and how it is left to the integral action states to bring 
the system back to zero steady state error. Thls is 
due entirely to the poor representation of the system 
by the model. 
In a second test, an unmatched disturbance was 
introduced to the system and the fuzzy model re
trained to incorporate the uncertainty. Figure 6 
ilJustrates the effect of the disturbance on the SMCI, 
and it can be seen that the disturbance significantly 



effects transient performance. Since the disturbance 
is constant the effects are not as profound as they 
might be. The F ASMC on the other hand appears to 
recover the system to the steady state in almost the 
same time as the system without disturbance (figure 
6). The initial change in direction is caused by the 
lack of initial control effort from the controller. 

Figure 6: SMCI response to unmatched disturbance 

From a practical perspective, it is unlikely that the 
control system would be subjected to a test of this 
severity. However, since the load torque has been 
recognised as unmatched, and since this is known to 
vary with both position and time [6], similar effects 
can be observed by simply moving the carriage to a 
different location and repeating the step change in 
demand (figure 5). 
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Figure 7: FASMC response to unmatched disturbance 

Conclusion 
The proposed algorithm has demonstrated how the 
synergy of traditional control structures and fuzzy 
logic can be used in order to produce an improved 
controller. Practical implementation of the sliding 
mode with integral action controller has 
demonstrated the ability of this controller to reject 
unmatched disturbance, as originally discussed in 
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[2], and has also served to validate simulation results 
obtained. Before the apparent advantages of this 
controller can be confmned, further cautious 
research is required. However, the initial results are 
suggestive of a controller that demonstrates reduced 
controller gain, reduced sensitivity to unmatched 
disturbance and an improved guarantee of fmal 
tracking accuracy. Work on the practical 
implementation of the F ASMCI continues. 
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Abstract: A method for combining black box 
nonlinear models and sliding mode control is presented. 
In this approach the advantages of the sliding mode 
control technique are maintained, however parametric 
uncertainty and unmatched disturbances are 
acknowledged as limiting factors of controller 
performance, and their effects are sought to be 
minimised through the use of local linearisation of the 
non-linear model. Simulation results demonstrate 
performance improvements. 

1. Introduction 
One of the earliest approaches to control of uncertain 
systems was sliding mode control (SMC) or variable 
structure control (VSC), first introduced to western 
researchers in the seminal works of Utkin [ 1] and Ilk is 
(2). The central feature of SMC is the sliding mode, in 
which the dynamic motion of the controlled system is 
constrained to remain within a prescribed subspace of 
the full state space. The sliding mode is achieved by 
ensuring that the prescribed manifold within the state 
space is made attractive to the system [2). Once the 
manifold is reached, the system is forced to remain on it 
thereafter. When on the manifold, i.e. during the sliding 
motion, the system dynamics are equivalent to a s;ystem 
of lower order, which is insensitive to both parametric 
uncertainty and unknown disturbances that satisfy the 
matching condition. 
One of the principle drawbacks in implementation of 
sliding mode control is that it in general only applies to 
systems that satisfy the matching condition [3]. 
Secondly, and more significantly, the control Jaw is 
discontinuous across the sliding manifold, this leads to a 
phenomenon termed 'control chatter' in practical 
systems. Chatter involves high frequency control 
switching and may lead to excitation of previously 
neglected high frequency system dynamics. Smoothing 
techniques such as boundary layer normalisation have 
been employed in order to negate the effects of control 
chatter, however such an approach leads to a controller 
that can only guarantee tacking accuracy to within the £

vicinity of the demand [4], where £ is the radius of the 
boundary layer. A <,:<>mpromise must therefore be 

sought between desired tracking accuracy and controller 
bandwidth. 
In (5) the apparent similarities between the sliding mode 
and fuzzy controllers was illustrated, which has 
subsequently motivated considerable research effort in 
combining the two topologies in a manner that serves to 
reduce the limitation of the sliding mode. The most 
common approach to this has been to replace the 
continuous switching function of the boundary layer 
with an equivalent fuzzy switching function. However, 
as pointed out in (6], the fuzzy rule base commonly 
serves as a mimic of the original switching function and 
the advantages of such an approach are therefore 
unclear. Others have used a fuzzy rule base in making 
the sliding manifold adaptive, e.g. [7], so as to minimise 
the reaching phase, good results have been reported. 
Babuska (8) has demonstrated the ability of the afftne 
Takagi-Sugeno model to accurately model a system 
through rule extraction from cluster data obtained 
within the regression space. These models may be used 
subsequently in order to extract locally linear state space 
models of the system and demonstrate model based 
control of both single input, single output (SISO) and 
multi input, multi output (MIMO) systems (9). 
In this work, the parametric uncertainty and 
disturbances that the system is subject to are recognised 
as the root cause of the high gain feedback requirement 
and control chatter. It follows that if these uncertainties 
can be reduced then enhanced controller performance 
may be expected. The controller improvements are 
demonstrated through simulation of a D.C. motor with 
differential equations expressed as 

L dl .. = -I"R" - K,ro +V" 
dt 

dro 
J-=-Bro-Tx +l".K,. 

dJ 

(I) 

(2) 

Where L is the motor inductance, la the armature 
current, K, the back EM.F constant, ro the angular 
velocity of the armature, J the moment of inertia. B 
viscous friction, T~ the external load toque, K, the motor 
torque constant and Va the armature voltage. In addition 
(J is introduced as the armature angular position. These 
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equations may be rewritten in state space form 
according to the following, 

X 1 =8,X2 = d() =a>,X3 =i and 
dt 

let 

Tx =U1 and V., =U2 

Xs 0 I 0 

[~} 
0 

Xz 0 
B K,. _us 

= 
J J J 

X J _K. _Ro Uz 0 
L L L 

1'; =(I 0 o{f:l (3) 

The model parameters are taken to be 

Parameter Value (Nominal) Value 
(Actual) 

R.. l.2Q I.5 n 
L 0.05H 0.09H 
Ke 0.6 0.6 
Km 0.6 0.6 
J 0.135 0.15 
B 0 0.02 

Table I: Motor parameters 

Next within this work, the mechanism for fuzzy 
identification of this model is considered. After whlch, 
consideration to the sliding mode controller design is 
paid. Results are then presented which demonstrate a 
significant reduction irr controller gain, control chatter 
and an improvement in controller performance where 
unmatched disturbance is introduced. 

2. Fuzzy Identification 
Fuzzy identification is a term used that has come to 
represent the use of fuzzy logic in the modelling and 
representation of a system. Since fuzzy models may be 
viewed as general function approximators, they are 
readily applied to the nonlinear regression problem. 
There are two fundamentally different approaches that 
may be taken in the identification of a system. FirStly 
the system may be identified through ~xplicit expression 
of system performance, e.g. 'if voltage is hlgh then 
velocity is high'. Secondly, and the approach adopted 
within this work is to decompose the model into a static 

onlinear regression. The problem of model 
identification is then decomposed into two separate 

roblems, the first is selection of the ·regression 
cture, the second, the selection of the fuzzy model 

form, for example, the required number of membershlp 
functions and membershlp crispness. 
The desired regression may be expressed in the form 

.Y~Io)=J(«p(t~o) (4) 

where y is the regressand, 8 the vector of regressions 
which is to be parameterised in the identification 
process, and the vector rp(t} is known as the regression 
vector, its parameters the regressors. It has been shown 
in [8] that the regression surface withln the product 
space may be represented as a series of local 
approximations. 
Through use of a clustering algorithm such as the 
Gustafson-Kessel algorithm, it is possible to derive local 
approximations to this regression surface. Further, 
through the use of the eigenvalues of the cluster 
covariance matrix given by 

F.= r:EI (llt,k r (zk -VI )(zk -VI )T 

I : I:jJ.l,,k)"' 
(5) 

it is possible to interpret these local models and 
subsequently derive a fuzzy rule to represent this local 
approximation. In repeating this process for each data 
cluster, a global model of the system may be generated. 
Previous work has considered the accuracy of thls 
approach in comparison to neural networks and 'white 
box' models, and results have demonstrated that thls 
local approach to modelling can improve results [10). 
The rule extraction process is briefly discussed here for 
completeness, however the reader is directed to [8) for a 
far more complete discussion. 
It has been shown that a useful form of the fuzzy 
consequent is the affine linear form [11] of the Takagi
Sugeno (TS) model, in which rules are structured 
according to (6): 

T 
y, =a, x+b, (6) 

where a; is the so called parameter vector and b; is an 

offset. Within the product space ( 1R p+lxN) the affine 
Takagi-Sugeno consequents may be viewed 
geometrically as hyperplanes. The antecedent of the 
rule defines a fuzzy validity region for the 
corresponding hyperplane. The output y of the TS 
model is computed using the fuzzy mean formula 

I.:,.P, (x)y, 
y= 

I.:,.P,(x) 
(7) 

where fJ#x) represents the degree of fulfilment of the ith 
rules antecedent, which is simply a measure of the 
degree of fulfilment of x in the fuzzy set A1 and is given 
by ' 

f3t = J.l AI (x) (8) 
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Since it may become difficult to interpret 
multidimensional fuzzy sets, the antecedent proposition 
is commonly defined in a conjunctive form, given by a 
series of single dimensional fuzzy sets combined with 
simple propositions. In this case the degrees of 
fulfilment are calculated as 

/3, (X) = f.l At.t< ~) I\ . .. I\ f.l AI .P ( ~P) , where the m in 

operator (A) may be replaced by alternative T-norms. In 
this case the model output is calculated 

y=( ~ r .(x)a!}+ ~ r . (x}'J . = c1 (x)x+b(x) 
i=1 1 

l i=1 1 
I 

(9) 
where 1J is the normalised degree of fulfilment, given by 

r, (x)= /' (x) (10) 

l:.B, (x) 
Jal 

and a (x) and b (x) are input dependent parameters, 

given as convex linear combinations of the constant 
parameters a; and b; through the following relationship 

(11) 

(12) 

The regression structure discussed previously (4) may 
be expressed in this pseudo linear form according to the 
fo!Jowing 

~ "" ji(k+1) = La,.1y(k- j+1)+ Lh,_p(k - j + 1) -tc, 
J• l J•l 

(13) 

The distance measure of the clustering algorithm, given 
by 

D(x .. ,v;')=(x .. -v,t F,r(x .. -v,) (14) 

may be inverted and used to provide the degree of 
fulfilment of each rule for given data. One possible 
choice of inversion is to use the same equation as for the 
clustering algorithm 

1 
/3, (xJ = • s s Y. • (15) 

L
1

•
1

[ d(x.,v, )/d(x.,vJ] --
which takes all rules into account and calculates the 
degree of fulfilment of one rule with respect to the 
others. Once the antecedent parameters have been 
calculated, the consequent parameters require 
derivation. There are two ways in which the fuzzy 
consequent parameters of the affine TS model may be 
calculated from the data clusters. The first is based 
around the geometric interpretation of the cluster, using 
the. covariance matrix. The alternative approach is a 
local least squares optimisation method based on the 

derived fuzzy partition matrix. The former method is 
discussed here. The eigenstructure of the cluster 
covariance matrix loosely describes the shape of the 
cluster. The shortest eigenvector describes the normal 
vector to the hyperplane spanned by the remaining 
eigenvectors. The shortest eigenvector is defined as cl>;. 
Based on the dataset ~=[Xl";yf and the cluster 
prototype, the consequent may be described implicitly 
by 

ci>1•(zN -v;)=o (16) 

The shortest eigenvector and the cluster prototype may 
be divided into a vector corresponding to the regressor x 
and a scalar corresponding to the regressand y. i.e. 

v, =[(v:t ;V, r 
<I>, =[(Cl>:t ;cr>r r 
may now be rewritten according to 

After Simplification 

(17) 

(18) 

(19) 

y = - -
1
-( er>: f x+-

1- cr>; v, (20) cr>r Cl>r 
'---..---' 

o[ b, 

which is directly equivalent to the affine Takagi-Sugeno 
model consequent. 
This approach was employed in the identification of the 
model given in (3). A regression structure of [3 1] was 
used with 5 clusters. Of importance to the identification 
of the model is the selection of the input signal, in this 
case a stepwise random signal was used. The percentile 
variance accounted for 01 AF) measure, which provides 
a measure of model tracking accuracy was calculated as 
99.2% which indicates good model accuracy. 

Figure I: Model output vs System output 
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3. Model Extraction 
The work in (9] presents a method whereby the fuzzy 
clustered model may be represented as a local linear 
state space model. The following is an overview of the 
method adopted. The regression vector, which is 
represented by e, is given by 

£1 (k) =[{y, (k)}~' , ... ,{y, (k)}:_. 

,{u1 (k + 1)}::: , ... , {u., (k + 1)}::] 
(21) 

An affine Takagi-Sugeno rule may be represented by 

(k 1) 
L~tf311 (e,)((11y(k)+7Juu(k)+911 ) 

~ + X , 
l'tt~lfJu 

(22) 

~ and Tl are vectors of polynomials in the previous 
sample (y(k-1)), and 9 the offset. K1 is the number of 
rules of the 11h offset. The model output is calculated as 
the degree of fulfilment J1;1(t:11,) for each antecedent 
variable and the resulting degrees of fulfilment (~1;) for 
every rule are combined with the linear consequence 
according to the following 

(23) 

Once the Takagi Sugeno model has been derived, local 
linear state space models can be calculated according to 
:he following, 

(k+ 1) L~11lu (x, (k ))· Y11 (k + 1) 
y, 0 .L:.Jllt(.:c,(k)) 

Y11 (k+ 1)= (~11y(k)+7111u(k )+911 ) 

;vbere 

,.. - I::.JL,, (.:c, (k))· ,, 
~I - L~1Jllt(.:c,(k)) 

• L~.Jlu (.:cl (k ))·71, 
11 = ~ JC1 ( ( )) .L.n.1 Jl11 .:c, k 
nd 

t- L~i'Jlll (.:c, (k))-o, 
I- L~1Jlll(.:c,(k)) 

(24) 

(25) 

(26) 

(27) 

(28) 

n the case here, previous inputs are not considered and 
'le A, B and C matrices of the model ·are thus 
implified, the matrices are given 

,1~ ,1~ ,.: ... 
1 0 0 

A= ,;,. ,;,2 ,;,.., (29) 

0 

,~,1 ,~,2 ~~.a, 

71.:. 71~2 71~ ... 
0 0 

B= 71;.J 71;,2 71;,., (30) 

71~.J 71~,2 71~ .... 

C=[~ 
0 ... 

!] ... 00 0 

(31) 

4. Sli~ing Mode 
Once Joc;i] models of the system have been extracted, 
they may be used in order to provide enhanced 
infonnation to the sliding mode controller. The theory 
associated with the design of the sliding mode controller 
is revised here, and once again the reader is referred to 
the many excellent texts available on the subject, e.g. 
[2], [4]. As alluded to in the introduction, the sliding 
motion is control independent and depends only on the 
choice of sliding surface. In terms of controller design 
it is convenient to convert the system equations into a 
suitable canonical fonn. In this form the system is 
decomposed into two connected subsystems, one acting 
in within the range space of matrix B and the other 
within the null space of the manifold ·s. In terms of 
design, the problem then becomes one of state feedback 
given desired system eigenvalue locations. Since by 
assumption the matrix B is of full rank, there exists an 
orthogonal matrix T, e R""" such that 

~=~] ~ 
where ~ e Rmxm and is non-singular. Let z = Tx and 
partition the new co-ordinates so that 

z = [ ;:) (33) 

where z1 e Ro-m and ~ e Rm. The nominal linear 
system can then be written as 

i 1 (t)=A, 1z1 (t)+A,2z2 (t) (34) 

i 2 (t )= A21 Z 1 (t )+ A22z2 (t )+ B2 u(t) (35) 

commonly known as the regular form. Equation (34) is 
referred to as describing the null-space dynamics and 
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equation (35) as describing the range-space dynamics. 
From the perspective of the extracted local models, it is 
convenient to first convert the matrices to the 
controllability canonical form, thus the system is 

. guaranteed to be in the regular form for subsequent 
design. Suppose the matrix defining the switching 
function (in the new co-ordinate system) is compatibly 
partitioned with z as 

sr: =(s. S2 ] (36) 

where S1 e Rmx(nxm) and Sz e RIIIXIII. Since SB = SzBz it 
follows that a necessary and sufficient condition for the 
matrix SB to be non-singular is that the determinant of 
Sz is non zero. It is reasonable to assume that this 
condition will be met by design. During an ideal sliding 
motion 

S1z1{t)+S2z2 {t)=O forallt > t, (37) 

and therefore formally expressing :zz(t) in terms of z1(t) 
yields 
Z2(t) =-Mz1(t) (38) 

where M= s;t SI. Substituting into (34) gives 

i 1 {t) = (A.1 -A12M)z1 (t) (39) 

:zz(t) is considered to play the role of the control action. 
The switching surface design problem can therefore be 
considered to be one of choosing a state feedback 
matrix M to stabilise the reduced order system (All, 
Al2). 
At this point the unit vector approach is introduced. 
Consider an uncertain system of the fonn 

x(t)= Ax(t)+Bu(t)+ f(t,x,u) (40) 

where the function f : R x Rn x R"' ~ R01 which 
represents the uncertainties or non-linearities satisfying 
the so-called matching condition, i.e. 

f(t, X, u) = B~(t, X, u) (41) 

where ~ is unknown but satisfies the following 
inequality 

~ (t,x,u ~ S AJ lul+a(t,x) (42) 

where 1 > k1 ~ 0 is a known constant and a(·) is a 
known function. The proposed control law comprises 
two components; a linear component to stabilise the 
nominal linear system; and a discontinuous component. 
Specifically 

u(t) =ul(tJ+un(tJ (43) 

where the linear component is given by 

u1 {t) =-A-1 (SA-~S)x(t) (44) 

where ~ is any stable design matrix and A = SB. The 
non-linear component is defined as 

( ) ( ) 
_1 ~s(t) 

u~ I = -p t,x A I ( '\1 for a)] s;tO (45) 
~siJI+E 

where P2 is a. symmetric positive definite matrix that 
satisfies the Lyapunov equation 
P11/>Hrf'P1 = -/ (46) 
and the scalar function p(t; x), which depends only on 
the magnitude of the uncertainty, is any function 
satisfying 

( ) (AJiu,l+a(t,x)+r) 
p t,x ~ ( ( )) 1-AJK A 

(47) 

where "(>0 is a design parameter. £ is the radius of the 
boundary layer may be shown to be dependent on the 
actuator time constant and inversely proportional to the 
available · control resources. In this equation it is 
assumed that the scaling parameter has been chosen so 
that k1K(A) < 1. It can be established that any function 
satisfying equation (47) also satisfies 

p(t,x):2:~(t,x,u~+r (48) 

and therefore p(t; x) is greater in magnitude than the 
matched uncertainty occurring in this equation. It can be 
verified that V(s)=sTP2s guarantees quadratic stability 
for the switching states and in particular 

Vs -.i s-2rll~sl (49) 

This control law guarantees that the switching surface is 
reached in finite time despite the disturbance or 
uncertainty and once the sliding motion is attained it is 
completely independent of the uncertainty. 
Now consider the introduction of additional states x. e 
RP satisfying 

x, = r(t)- y(t) (50) 

where the differentiable signal r(t) satisfies 

r(t) = r(r(t)- R) (51) 

with r a stable design matrix and R a constant demand 
vector. Augment the states with the integra) action states 
and define 

X=[;] (52) 

The associated system and input distribution matrices 
for the augmented system are 

- [0 -c] - [0] A= O A an~ B = B (53) 

assuming the pair (A, B) is in regular form, the pair 

( A,B) is also in regular form. The proposed controller 
seeks to induce a sliding motion on the surface 

S = (i E frP : Sx = S,r} (54) 
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where S and S, are design parameters, which govern the 
reduced order motion. The hyperplane system matrix 
and system matrix are partitioned as 

S=[t ·;2 •] (55) 

+--+ +--> t - - n 

[ 

n "' ] 

A= 1: t tm 
(56) 

and assume A = S B is non-singular. If a controller 
exists which induces an ideal sliding motion on S and 
the augmented states are suitably partitioned, then the 
ideal sliding motion is given by 

i 1 (t) =(A,.- AaM )x1 (t)+(A12S;1S, + B, )r(t) (57) 

where M = Sz'1S1 and Br =[Ip Onxp]T. In order for the 
hyperplane design method to be valid, it is necessary for 

the · matrix pair ( A11 , A12 ) to be completely 

controllable. The overall C?ntrollaw is then given by 

u = u1(x,r )+ u,(:i,r) (58) 

where the discontinuous vector u, is given by 

( ) _ {-P. (uL ,y )A_, if Si "1: S,r 
u, s,r -

0 otherwise 
(59) 

It follows that, in terms of the original co-ordinates the 
control vector u1 is given by 

u1 (x,r )= Li+"L,r+ L/ 

with gains defined as 

L= -A-1(SA- rflS) 

L, = A 1S, 

(60) 

(61) 

(62) 

(63) 

The parameter S, can take any value and does not affect 
the stability of the closed loop system. 

5. Controller· structure and performance 
A benchmark sliding. mode · controller with integral 
action (SMCI) of the form previously discussed was 
developed to control the motor model of equation (3), 
using the nominal parameters of table 1. All 
simulations were carried out using the actual parameters 
shown in table 1. 
The principle of the proposed controller uses the design 
procedures discussed above to redesign the controller 
based on the enhanced information provided by the 
fuzzy model matrices. The controller is therefore 

referred to as a fuzzy adaptive sliding mode controller 
(F ASMC) and its principle is illustrated in figure 2, 

Figure 2: Principle of FASMC 

both controllers were initially designed to provide 
damping ratio of 1 at 22radls. The controllers were 
driven over a simulation sample period of 70 seconds. 
Results are illustrated in figure 3. 

~~. --~.~-~~~~»~--~=----~---=~--~~ 
~ - w· ~ 

\ 

Figure 3: System outputs over 70 seconds 

It can be seen that in ·terms of system respo'nse that there 
"is little to differentiate between the two. However, 
consideration of the corresponding control effort (Figure 
4) shows that that the high gain requirement of the 
SMCI is relaxed by the F ASMC. In addition it is 
worthwhile to note that the e-vicinity of the FASMC 
was 6 times smaller than the corresponding SMCI. ., __ , 

!!. 

~ 

b - .....___.. 

-ji I J. r 
1Q 

1! .11 ,. -111' ~ M 

Figure 4: System control efforts 
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A second test introduced matched disturbance to the 
system and the fuzzy model retrained to incorporate the 
uncertainty. Figure 5 iUustrates the effect of the 
disturbance on the SMO, it can be seen that the 
disturbance significantly effects tranSient performance. 
Since the disturbance is constant the effects are not as 
profound as they might be. The F ASMC, on the other 
hand, appears to recover the system to the steady state 
in almost the same time as the system without 
disturbance (figure 6). The initial change in direction is 
caused by the lack of initial control effort from the 
controller, which in this case is a disadvantage. 

Figure 5: SMCI response to unmatched disturbance 

Figure 6: F ASMC response to unmatched disturbance 

6. . Conclusions 
A new controller based on sliding mode design 
approaches and a nonlinear black box model has been 
presented. Performance of the controller has been 
compared with a benchmark sliding mode controller and 
the controllers response has been found to be 
favourable. This work is currently in its initial stages 
and further cautious research must be carried out before 
flte apparent advantages of this approach can be 

confirmed. However, the controller has initially 
demonstrated clear advantages of using fuzzy logic in 
conjunction with sliding mode in terms of increased 
final tracking accuracy, reduced controller gain 
requirement and reduced sensitivity to unmatched 
disturbance. F ASMC in this work only extends to the 
SISO case and in addition, it is assumed that 
input/output data is available for the system it is finally 
pointed out that implementation of this algorithm is 
significantly more complex than the SMO. Further 
work will concentrate on the implementation of the 
controller in a practical system and. the development of 
proofs for the apparent controller characteristics. 
Subsequent work will extend the above work to the 
MIMOcase. 
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Abstract. Nonlinear identification techniques are in common use within research 
domains. This approach to modelling has been shown repeatedly within the literature to 
provide favourable results when attempting to model poorly understood systems. This 
paper presents a comparison of fuzzy and neural network identification techniques 
applied to input/output data collected from an experimental test rig. 

Key Words: Identification, fuzzy modelling, neural network modelling. 

l. INTRODUCTION 

Nonlinear identification techniques are in common 
use across a broad spectrum of research disciplines . 
Within the field of system identification, nonlinear 
models have found application in fie lds as diverse as 
chemical process modelling [I] to banana ripeness 
t~sting [2]. 

· Within this work nonlinear models based on artificial 
· futelligence are applied to a regression structure for 
. t{je identification of a custom built linear positioning 

coupled between the brushless direct current (BLOC) 
motor and the mechanism carriage. The amplifier 
serves to provide the motor with an excitation 
voltage. All identification data is captured in the 
open loop, performance of the system is therefore 
heavily dependent on the frictional perturbation 
apparent at the motor armature. This friction is due 
to i) Rubbing and viscous between the nut and the 
leadscrew ii) Viscous friction between carriage and 
slide rails iii) manufacturing alignment error and 
finally, although to a far lesser extent [4) ,iv) friction 
within the journal bearings. The test system has been specifically 

to exhibit high sensitivity to load 
. In this case the non-linearity is friction 

is well known to be time variant [3 ], and will 
shown to vary with linear displacement. 

of the system is therefore a nontrivial 
and provides the opportunity to compare the 

ing approaches adopted. 

test rig schematic can be found in 
I. The incremental encoder (IENC) provides 

pulses per revolution of the motor. This is the 
iple sensor used for position feedback. The gear 

in this case is a lead screw with nut, which is 

Conference Number: 7883 953 

Figure I: Schematic diagram of test system 

Open loop speed of the carriage across the total travel 
of the stage has been measured in both directions 
(Fig. 2). The following equation provides the 
relationship between motor speed and load torque. 



(I) 

Manipulation of ( l) yields the ideal angular speed, w1 

(when T,.=()) and the stall torque of the motor, T ms 

(when w=O) 

The actual torque, assuming a linear relationship 
between w and T,_ is given as a fraction of the stall 
torque 

T = T ·(1-.!:J-T.F m ms · 
n, 

(2) 

From Fig. 2 it may now be readily seen that the load 
torque significantly varies, and is non-symmetrical, 
across the stage length. 

-500 .----------., 

1==:-&:':': 
· '

000o 50 100 150 200 ?50 lOO l50 400 450 --
Figure 2 : Motor speed across mechanism travel 

This fact will be shown to have significant impact on 
models derived later within this work. 
At this point it is timely to introduce the performance 
measure used to assess the models tested later within 
this paper. The percei?tile variance accounted for 
(V AF) is given as 

VAF = 100%·[1- var(y- y)] . (3) 
var(y) 

When the model out output ( y) and the system 

output (y) are identical, the V AF is given as I 00%, if 
the model is in error then the measure is lower. This 
provides a convenient figure for immediate 
assessment of model quality. 

3. MODELLING 

Within the literature there are many models available 
to describe the BLOC motor. These vary in 
complexity from comparatively simple third-order 
state-space models, to extremely elaborate models 
based on the motor magnetic circuit. Here a 
comprorrllse between computational load and model 
accuracy is struck through use of the phase co
ordinate model, a more detailed description of which 
can be found in [5] . · 
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3.1 The phase co-ordinate model 
When cylindrical pole permanent magnet rotors are 
used, all stator inductances are independent of rotor 
positiOn. Only the motion related inductances 
between the permanent magnet equivalent circuit and 
the stator windings depend on rotor position. 

(4) 

The stator self inductance L, and the stator/stator 
mutual inductances Lab are all equal to each other. 
To a first approximation 

Lo 
L =--ab 

3 
(5) 

Where L0 is the nominal inductance specified by the 
manufacturer. The voltage/current equation in phase 
co-ordinates is: 

[V,] = [r, 0]. [~·' ] + !!__[1.,] 
vr 0 rr lr dt A.r 

(6) 

with 

[A.]= [L(Ber )] · [i] (7) 

(8) 

(9) 

(10) 

Where i is the applied phase current, r is the nominal 
stator resistance, A. the magnetic flux and L(Ou) is the 
time varying inductance, dependent on angular 
position Ou. The motion equations are given 

(11) 

dt p 
(12) 

Where J is the moment of inertia of the load, p is the 
number of motor poles, Wr is the angular velocity of 
the armature, T. is the electromagnetic torque and 
T,ood is the torque applied by the load. The load 
torque was taken as 1200mNm nominal, from Fig. I, 
i.e. the load torque was considered· constant 
throughout the stage travel. Fig. 3 illustrates the 
model performance when compared with the actual 



performance under step input excitation. All motor 
parameters were taken 

. 
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Figure 3. Step input excitation comparison between 
linear model and actual system response 

from the motor manufacturers data sheet. The 
inertia] load of the system was unknown and was 
used to tune the model. Results can be seen to be 
quite satisfactory. It is significant that zero speed 
crossing has not been considered within this 
simulation. In order to achieve fair comparisons 
between the models, a validation data set of 30000 
samples has been collected, Fig. 4. This data has 
been subsequently decimated where computational 
limitations have occurred. 

.... •·. 

-I 
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Figure 4. Training and validation data 

The fuzzy arid neural models require a training set 
and a validation set. For these models the collected 
data was divided into haJves, and the models were 
trained on the first set, and tested on the last. Since 
the motor model does not require training in the same 
manner as these models, the comparison between the 
model and system was carried out over the entire test 
period. The results are shown in Fig. 5. The 
calculated V AF is given as 38.23%. 
It can be seen that the model most likely suffers from 
incorrect frictional and inertial parameters, in 
addition the cumulative effects of speed zero 
crossing, and unmode!Jed nonlineari9es within the 
system, such as amplifier dead time are attributed to 
the performance of the model. 
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4. IDENTIFICATION 

In light of the fact that the system parameters are not 
known precisely, it is preferable to model the system 
according to the black or grey box modelling 
paradigms, whereby a structure of known flexibility 
is chosen and input/output data is used to train the 
model. The autoregressive with exogenous variable 
(ARX) structure has been selected for fitting under 
both neural network and fuzzy methods. 

·10 

"12o!---:._;-. ----!--:';u,------!"---:,_.:-:-----! --
Figure, 5. White box model performance with 
validation data 

The ARX structure is introduced as 

y(t)=q/(t)f (13) 

where 

B=[a1 •• • an b1 •• • bmf (14) 

q{t) =[ -y(t- 1) .. . - y(t- n) u(t-1) .. u(t-~J 
(15) 

8is the regression vector for tuning, qJ(t) is the vector 
of previous inputs (u) and outputs of the system (y). 
When using a neuraJ network or a fuzzy clustering 
method, the problem neatly divides into 

(a) Choosing the regression structure 
(b) Choosing the parameters of the tuning method 

The difference between the two approaches can be 
considered as the difference between global 
modelling (neural network model) and local 
modelling (fuzzy model). The two are discussed in 
further detail below. From the perspective of 
available data, severaJ parameters have been 
measured directly from the system and are available 
for use within the regression structure. 

(a) Position 
(b) Speed 
(c) Applied voltage 

In addition, with knowledge of the above three 
parameters, two additional vectors may be calculated 

(d) Linear white box model prediction, (4)-(12) 
(e) Load torque, (2) 



The position vector is used as the regressand in all 
cases, in addition, because of noise created in 
numerical differentiation of the position data, the 
speed vector is only used in the derivation of the load 
torque vector (e). It has already been seen that the 
load torque has a significant effect on the system 
performance and is therefore physically relevant and 
should be included within the regression structure, 
possibly after filtration. Whether the applied voltage 
should be used directly, or first filtered through the 
motor model is a question under consideration within 
this paper and is thus deferred for later discussion. 
The Matlab system Identification toolbox was used 
for rapid prototyping of the ARX model and a 4,4, I 
structure was found to be the most suitable for the 
available data. 

4.1 Neural Network based ARX 
Neural networks are a popular tool for pattern 
recognition and are used increasingly for system 
identification [6). The neural network used here is a 
two-layer perceptron network of the form 

Y, ( li) ~ r:( ~W,J; ( t w,,q>+ w,, J + ~0 J 
(16) 

and the mean square error of the estimate is used for 
the criterion of fit: 

1 N 2 1 
~(o,zN)=-lJy(t)-.Y(tiB)) +-rim 

2Nt=l 2N 
(17) 

W is given as the network weights, F is the activation 
function, N is the number of data in the training set 
and w is the network thresholds. After scaling of the 
data and training with the Levenberg-Marquardt 
algorithm, the model typically gave simulation 
results as shown in Fig 6. The V AF in this case is 
99.98%. 
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Figure 6. One step ahead neural network model 
output , 

These results are based on the step ahead prediction 
of the system output. In the case where the system 
output is not immediately known, the step ahead 
prediction cannot be used and simulation must be 
based on input signals alone. Fig. 7 illustrates the 
result of applying the network from Fig. 6 to direct 
simulation of the system 
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Figure 7. NARX model simulation 

The regression structure was based on the load torque 
and the linear model output, in order to assess the 
model performance with an alternative regression 
structure, . the model was instead trained with control 
voltage and load torque, Fig. 8 illustrates a typical 
result 

u 

c 
J ·• 

u.~--;;.----;;;;---... ;;;;----;..,::;---;:- =:-----:::,,..::---, ._ ...... 
Figure 8. NARX model (Control and Torque 
regressors) 

Whilst this model represents an improvement over 
the last model (in this case V AF 10%, in the last 
uruneasurable), there is clearly room for 
improvement. Further investigation is being carried 
out. 

4.2 Fuzzy based ARX 
The term fuzzy identification has come to represent 
the use of fuzzy logic in the modelling and 
representation of a system. Fuzzy models may be 
viewed as general function approximators and are 
therefore readily applied to the nonlinear regression 
problem of the form discussed in the previous 
section. The fact that behaviour of a system can be 
easily represented linguistica lly e.g. 
If Voltage is High and Current is High then Speed is 
Fast 
naturally provides the user with a useful method by 
which a systems behaviour can be predicted entirely 
fro.m empirical observation [7] provides a 
comprehensive discussion of this approach, which 
constitutes the first of the two principle methods: 
1. The expert knowledge is articulated through a 

series of if then rules . The model structure is 
generated implicitly from the rules supplied by 
the .expert. 



2. In the second case, no prior information is 
assumed about the system, and only numerical 
data is used to construct the fuzzy rule base. · 

Clearly, the linguistic interface between the expert 
and the machine make either of the two basic 
approaches attractive for modelling, since both prior 
knowledge and collected data may be easily 
incorporated into the model. The latter of these two 
approaches is discussed by Babuska [8) and is the 
foundation for this work. 

4.2.1 Data Clustering 
The goal of cluster analysis is to partition a given set 
of data into clusters, which wiJI be subsets of the 
presented data. The criteria for these clusters is 
• Within cluster homogeneity: Data within clusters 

should be as similar as possible. 
• Between cluster heterogeneity: Data between 

clusters should be as differef!t as possible. 
In this case similarity can be measured as a function 
of distance. Because of the relatively small number 
of permutations between regression structure and 
number of clusters, cluster validity was used to select 
the number of clusters, in this case 7. If. the 
regression surface is partitioned into a series of linear 
surfaces (corresponding to a cluster), then an affme 
Takagi-Sugeno fuzzy rule [9) of the form (18) may 
be used to represent the local regression. 

R1 :IF f(x1 is .A~> .. . ,.x1 isA1} 

T THENy1 =a1 x+b1 

i= l ,2, ... ,k (18) 

where x EX c !RP is a crisp input vector, A; is an 
antecedent multidimensional fuzzy set defined by the 

membership function )JA1 (x):X ~[0, 1], y1 eR is 

the scalar output of the im rule. The index i relates 
the variable to the ith rule and k is the number of rules 
in the rule base. 

The consequent function will maintain its form 
throughout the rule base, only its paramet~rs will . 
vary. The antecedent of the rule defines a fuzzy 
validity region for the corresponding hyperplane. A 
rule base might therefore be used to produce a global, 
nonlinear function approximation. 
The NARX structure discussed previously may be 
expressed in this pseudo linear form according to the 

·: following 

n • 

.Y(k+l)= :La1•1y(k - j +I)+ 
J=l 

(19) 

Product Space Identification 
antecedent fuzzy sets serve to divide the 

space in which the regression surface may 
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be locally approximated by the consequent 
hyperplanes. The task of identification is to find the 
number, locations and parameters of these 
hyperplanes such that the regression surface is 
accurately approximated. This may be achieved 
through application of a set of fuzzy clustering 
methods, referred to as subspace fuzzy clustering 
algorithms, specifically the Gustaffson-Kessel (GK) 
algorithm is used here, discussion of which may be 
found in [I 0). 

4.2.3 Membership calculation 
The antecedent parameters of the Takagi Sugeno 
model may be calculated through application of the 
distance measure used within the clustering 
algorithm. In this case only the regressor x, the 
regressor component of the cluster prototype and the 
corresponding cluster covariance matrix are used. 
Using the GKI algorithm, the distance measure may 
be evaluated as 

D(xk,v:)=(xt-v,f l';x(xk-v1) (20) 

using an inversion, this measure can be converted 
into the degree of fulfilment. One possible choice of 
inversion is to use the same equation as for the 
clustering algorithm [8] 

(21) 

which takes all rules into account and calculates the 
degree of fulfilment of one rule with respect to the 
others. · 
There are two ways in which the fuzzy consequent 
parameters of the affine Takagi-Sugeno model may 
be calculated from the data clusters. The first is 
based around the geometric interpretation of the 
cluster, using the covariance matrix. The alternative 
approach is a local least squares optimisation based 
on the derived fuzzy partition matrix the former 
method based on the covariance matrix is discussed 
here. (22) may be derived from the relationship 
implicit between the shortest eigenvector of the 
cluster covariance matrix and the regression surface. 

1 { x)T 1 r 
Y=-- Cl> . x+-<I>.v. 

Cl>{ I Cl>{ I I 

(22) 

~ '---v---" 
aT bl 

which can be seen to be directly equivalent to the 
affine Takagi-Sugeno model, 
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Figure 9. Fuzzy clustered ARX simulation 

Fig. 9 illustrates the result of training a fuzzy model 
according to exactly the same test data for the second 
neural network model (control voltage and load 
torque inputs). The VAF in this case is 99.2954%. It 
should be noted that there is sensor noise present 
within the validation and training data, and it seems 
reasonable to assume that both the fuzzy model and 
the neural network based model could be improved 
by better training sets. It would also appear that the 
fuzzy model is to a certain extent robust to these 
errors (Fig. 9), once again this is a subject under 
research. 

5. DISCUSSION AND CONCLUSIONS 

It is generally well accepted that linear models are 
useful when linearisation around a local operating 
point is possible. As control system requirements 
increase in terms of useful operating range, it will 
become essential that alternative methods for 
effective system identification become available. 
Within this work an attempt has been made to 
compare methods by which this may be achieved. 
Thus far within the work, the local approach to 
regression surface approximation has been the most 
successful, however a far more complete picture will 
be gleaned once the optimal size for the training set 
data has been identified and larger validation samples 
are taken. Further work will also,consider the use of 
alternative regression structures, in the hope that the 
recurrence introduced by, for instance the auto 
regressive with moving average model, might serve 
to further improve performance. 
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Abstract. This paper is concerned with modelling and identification of a mechanical 
device consisting of brushless motor and its servomechanism under normal operating 
conditions. After modelling the system by means of a LUGRE non linear model, a 
number of experimental tests have been carried out for estimating a set of unknown 
pertinent parameters. Fot this purpose a Linear Least Squares Method and a 
Quasilinearization algorithm, respectively, for a linearized and a non linear model have 
been used. The results confirm the validity of the non linear LUGRE model as well as the 
suitability of the Quasilinearization algorithm. 
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1. INTRODUCTION 

Brushless motors have been used during the last 
years in an increasing number of applications, 
including industrial process control and robotics, 
where they are widely used for position and 
movement control of mechanical devices with 
multiple degrees of freedom. In order to be able to 
optimize the performance of such systems in terms 
of accuracy, robustness and speed it is necessary that 
adequate and reliable mathematical models of the 
underlying proces5es are available. It is worth noting 
that quite often such models are generally not 
availab.le at the design stage and they must be 
determined through a set of identification procedures 
to be carried out on the real plant, [3], [4]. 

This paper is concem~d with modelling and 
identification of a mechanical device cqnsisting of a 

. brushless motor and its servomec.~anism under 
normal operating conditions. For this purpose a 
description of the mathematical model used for the 
motor, the transmission mechanism and the load is 
given in section 2. This description takes the non 

. linear friction effects into account. In particular the 
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LUGRE model is herewith reviewed, which has been 
recently developed through a joint co-operation · 
project by the University of Lund (Sweden) and 
Grenoble (France). This section also includes ··a 
complete model including the servomechanism and 
the experimental set-up used for identification tests. 

The identification methods used for determining the 
dynamical behaviour of the considered mechanical 
system are descnbed in section 3. Two methods are 
presented, the former of which is used for identifying 
the dynamics of a linearized model, while the latter 
one is used for estimating the parameters of the 
complete non linear dynamics. Both methods aim at 
the estimation of pertinent system parameters of 
continuous-time models with discrete measurements. 
The former method is essentially based on the Linear 
Least Squares Method, while the latter one is based 
on the Quasilinearization algorithm [4]. 

The results obtained by the identification methods 
after a number of experimental tests, carried out in 
different operating conditions, are presented in 
section 4. 



2. MATHEMATICAL MODEL OF MOTOR 

The mechanical system, shown in Fig. I , consists 
of a brushless motor connected through a lead screw 
(2mm pitch) to hydro-dynamically lubricated slide 
rails. Motor is a 250W brushless DC motor with 500 
ppr quadrature encoder. The motor drive -used is a 
commercially available servo amplifier. Speed 
control is achieved through a proportional voltage 
applied at its terminal. 

Fig.l Mechanical system 

The mathematical model of the response of the 
brushless motor rotation angle Sm to the electric 
driving tension u is assumed to be given by the 
equation: 

(1) 

where Ku is the active torque, Jm is th~t total 
rotational inertia coefficient (motor + load) and F 
represents the resultant of friction torque. A 
mathematical model capable to describe the majority 
of phenomena connected with experimentally 
observed friction is the LUGRE model [1], ·[6). 
According to this model , it is possible to regard the 
interaction of two bodies moving with a relative 
angular velocity vas giving rise to the friction 
torque: 

dz 
F = CT0 z + CJ"1 - + F v 

dt V 
(2) 

depending on the internal variable z, which is 
assumed to evolve according to the equation :; 

• CTo j•J Z=V---z "I 
g(v) 

(3) 
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(4) 

It is convenient to use a state space model, with state 

vector components x1 = Bm .• x2 = IJ.,;, , x1 = z, input 

variable u and equation: 

(5) 

where matrices A0 and B0 are the ··linear part and 

f(x) represents a non linear vector describing the 

friction nonlinearities. It can be easily verified that 
such matrices and vector have the form : 

0 

(6) 

If the motor angular variable .9 m is assumed to be 
observed, the output equation is given by: 

y(t) = [1 o o}x (7) 



3. IDENTIFICATION ALGORITHM 

The identification procedure allows to estiinate, on 
the basis of discrete-time measurements of the input 
and output variables ~ u(tJ } N;- 1 and e { y(tJ } N;~ 1 at 
instants {!; = (i-1) h } ;-1 , the parameter vector: 

which, according to equation (6), is composed by a 
linear part and a non linear part given by : 

The identification procedure is composed by a 
two-step algorithm operating as follows: 

• An initial estimate of the linear part is done by 
means of a Linear Least Squares Method for the 
continuous time system with discrete measurements; 

• An iterative refinement of the complete parameter 
vector is done by the Quasilinearization method (4). 

At the end of the iterative procedure it is possible to 
obtain both the linearized model and the non linear 
one. Some particular numerical routines have been 
used for speeding up the convergence rate, that is 
normally rather slow for the standard 
Quasilinearization algorithm. 

4.RESULTS 

After validating the identification method through as 
set of artificially generated data files, a number of 
different identification tests have been carried out on 
the real paint and the resulting files have been 
processed by the above outlined idet1tification 
procedure. The results obtained are quite satisfactory 
and confirm the validity of the nonlinear LUGRE 
model as well as the efficiency of the 
Quasilinearization algorithm. In fact, it can be noted 
the quite good agreement between the identified and 
measured motor responses to the input signals. 

Some preliminary results of the non linear 
identification are shown in Fig. 2 and Fig.3. These 
results derive from open-loop experiments where the 
input signal was constituted by a step function and 
by a sinusoidal function. Other tests, not reported in 
the paper, conducted by using different types of input 
signals, confirm the validity of the LUGRE model. 
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~bstract 

ligh precjsion positioning mechanisms with accurate displacement 
esolutions find employment in many industrial applications. In devices 
uch as incremental encoders, the high resolution comes at the expense of 
ncreased sensor bandwidth. This design note describes a low-cost method 
or implementing effective bandwidth reduction, without reducing the 
.chievable displacement resolution. 

~eywords: data capture, sensor bandwidth, incremental encoder, real-time 
•peration 

. Introduction effort, is therefore automatically set to a minimum of 

2000n 
y=--Hz 

60 
(1) ligh precision position control is finding application 1n many 

spects of industry, such as fibre optics, integrated circuit 
!lanufacture and machining. Typically, displacement control 
an be achieved through the use of piezoelectric devices, 
tepper motors, direct current motors or synchronous machines 
ucb as the brusbless direct current motor. The latter two 
ctuator categories given above require an additional feedback 
evice for control of armature position. A typical device used 
or rotary position feedback is the quadrature optical encoder, 
tbicb provides, in general, three output channels, A, B and I. 

where y is the system bandwidth and n the speed (revolutions 
per minute) of the motor. 

Channels A and B are placed 90° out of phase with 
ne another and provide position and direction feedback 
!lformation [1]. The index (I) channel provides an index pulse 
nee every rotation of the encoder to enable precise 'homing' of 
1e device; this additional channel is not important to this work. 
~ typical encoder might provide 500 pulses per revolution. 
Vhen used in quadrature (channels A and B together) the 
ffective number of pulses per revolution increases to 2000. If 
ccurate position measurement is required, then all pulses must 
e registered and counted by the measurement (host) software. 
be host bandwidth, assuming no additional computational 

In applications such as data collection it would be 
attractive to stream data from the system to a host computer. 
Even in low speed applications it is clear that the bandwidth 
requirement acts as a constraint on minimum hardware 
performance. 

2. Sensor bandwidth reduction 

A solution to this problem has been developed using a PlC 
microprocessor [2]. The microprocessor accepts the two 
channel signals from the encoder line driver and acts as a 
state machine to provide an eight-bit position signal output. 
In addition, an available ninth output pin is used to provide 
the host system with information pertaining to the rotational 
direction of the motor. With the addition of this output, and 
correct integration with the controller software the bandwidth 
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Figure 1. Band with reduction circuit. 

quirement is effectively reduced from ( 1) to 

(2) 

;ing this system it is possible to achieve accurate position 
edback using a 68 000 microprocessor and a 2000 pulse per 
volution encoder at motor speeds of up to 1000 revolutions 
r minute, which would ordinarily far exceed the mechanical 
pabilities of a typical positioning system. 

System design 

te bandwidth reduction circuit is shown in figure 1. The line 
iver (Ul) is required to provide the microchip with coherent 
annel signals. The microprocessor interface consists simply 
an oscillator circuit (U3) and the microprocessor (U2). The 
[croprocessorprovides 1TL compatible signals that may then 
fed to an appropriate data collection unit. In the example of 

[s work, the data collection unit had an effective bandwidth 
8kHz. 

The host C-code and microprocessor embedded code flow 
1grams are shown in figures 2 and 3 respectively. Figure 2 
presents the logical flow through a routine that will be 
;ident within the host process. Its function is to provide 
;olution to the equation 

i=k 

Tc= LE; (3) 
i=O 

1ere Tc represents the total encoder count from initialization 
the current sample k. Of significance are the facts that the 
~tor may travel in both a forward and a reverse sense, and 

16 

that once having reached 255 pulses in a monotone increasing 
cycle, or 0 in a monotone decreasing cycle, the finnware will 
'wrap' to 0 or 255 respectively. Therefore, knowledge of the 
previous encoder output, direction and current encoder value 
are all required in order to calculate the true encoder value and 
minimize the bandwidth requirement. 

Within the diagrams, K and K - 1 are used to represent 
the current and previous sample respectively. E represents 
the encoder value, S represents the encoder states. TC 
indicates the total encoder count and Dir and Direction are 
used interchangeably to indicate the direction of motor travel. 

Figure 3 illustrates the logical flow through the firmware 
code. There are four possible states (S) in which the output 
signals might reside. Converting signals A and B to binary 
representation yields the states 

0. Neither A nor B is logical 1 
1. A but not B is logical 1 
2. B but not A is logical 1 
3. A and B are both logical 1 

In terms of flow through the states, when travelling in the 
forward direction the encoder sequence is given by 

0~2-+3-+1~0-+2~3-+1 .... 

Not shown in figure 2 is the code used to reset the total encoder 
count TC, as indicated in figure 4. 

The microprocessor executes, in general, one instruction 
per cycle and operates at 10 MHz. Once within the software 
loop, state transition may be checked at up to 1.666 MHz. In 
the event of a transition, 700 ns is required for processing. The 
worst case operating scenario is a state change every sample, 
i.e. once approximately every 0.13 iJ.S; this corresponds to 



Sensor bandwidth reduction for data capture 

Yes 

Yes Yes 

Figure 2. Flow diagram of the host C-code. 

Set states 
S(I:<)=O.S(K- 1)=0 , 
E(K )=O,E(K- 1)= O. 

Olr-0 

E(K)=E(K-1) 
Dir=Dir 

No No 

E(K)=E(K-1 }-1 
Dir=O 

No No 

S(K-1 )=S(K) 
E(K-1 )=E(K) 

Figure. 3. Flow diagram of the microprocessor embedded code. 

motor speed of 231 769 revolutions per minute, therefore 
Iectively guaranteeing that every state generated by the 
1coder will be registered. 

. Simulink implementation 

imulink is a part of the Mathworks MATLAB TM package 
1d provides the user with many attractive features for system 

identification and control system design. The real-time 
workshop and windows target provides the user with the 
capability of data collection through a resident input/output 
card. Within the example system a PCL-718 data collection 
card from Advantech was used. This card can operate at 
up to I 0 kHz bandwidth, but limitations of the host personal 
computer meant that the effective bandwidth was reduced to 
8kHz. The additional seven digital inputs required represented 
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Figure 4. Simulink implementation of the encoder block. 

Lly a small overhead in sampling in comparison to only 
ro inputs. Through the Simulink environment data can be 
reamed directly to the personal computer hard disk drive 
r subsequent analysis. Figure 4 illustrates the Simulink 
1plementation of the encoder block. The block 'wrap detect' 
!OWn in figure 4 is represented by figure 2. 

Conclusions 

method for effective sensor bandwidth reduction has been 
·esented here. Feedback signal fidelity is not compromised in 
is approach and allows data sampling at significantly reduced 
equencies. This has clear advantages when computationaUy 
tense algorithms are required to execute in real time. 
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Additionally, the system robustness and compatibility with 
multi-tasking operating systems is tremendously enhanced 
since the sampling frequency is reduced to an achievable figure. 

The overall cost of the hardware to produce the system 
was less than £5, and in cases where there is only one signal 
requiring high frequency sampling, this approach offers a cost
effective method to reduce the overall data collection system 
specification. 
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Abstract: A method for combining black box non linear models and sliding mode control is 

presented. In this approach the advantages of the sliding mode control technique are maintained, 

however parametric uncertain!)' and unmatched disturbances are acknowledged as limiting factors 

of controller performance, and their effects are sought to be minimised through the use of local 

linearisation of the nonlinear model. Simulation results demonstrate performance improvements. 



Introduction 

One of the earliest approaches to control of uncertain systems was sliding mode 

control (SMC) or variable structure control (VSC), first introduced to western 

researchers in the seminal works of Utkin ( 1977) and Itkis ( 1976). The central 

feature of SMC is the sliding mode, in which the dynamic motion of the 

controlled system is constrained to remain within a prescribed subspace of the full 

state space. The sliding mode is achieved by ensuring that the prescribed 

manifold within the state space is made attractive to the system (Itkis, 1976). 

Once the manifold is reached, the system is forced to remain on it thereafter. 

When on the manifold, i.e. during the sliding motion, the system is equivalent to 

an unforced system of lower order, termed the equivalent system, which is 

insensitive to both parametric uncertainty and unknown disturbances that satisfy 

the matching condition. 

Sliding mode control design is a two stage process, first, sliding manifolds are 

chosen so that the equivalent system is stable and will yield the desired transient 

response. Second, the control law is determined based on the specific plant 

parameters in order to ensure that the sliding mode can be obtained. 

One drawback in the implementation of sliding mode control is that the 

guarantees of invariance in general only apply to systems that satisfy the matching 

condition (Yao, 1993). Disturbance which does not fulfil this condition, i.e. 

unmatched disturbance is not formally considered within the controller design. A 

more profound limitation in practical application is the fundamental requirement 

that the control law is discontinuous across the sliding manifold, this leads to a 

phenomenon termed 'control chatter'. Chatter involves high frequency control 

switching and may lead to excitation of previously neglected high frequency 

system dynamics. Smoothing techniques such as boundary layer normalisation 

have been employed in order to negate its effects. Through this approach the 

transient performance of the closed loop system is maintained, however such an 

approach leads to a loss of asymptotic stability and a controller that can only 

guarantee final tracking accuracy to within the ~::-vicinity of the demand (Edwards 

and Spurgeon, 1998), where 1:: is the radius of the boundary layer. A compromise 

must therefore be sought between desired tracking accuracy and controller 

bandwidth. 
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Model errors due to parametric uncertainty lead to tracking error in controllers 

with a continuous approximation to the switching function, within the controller 

design, the controller feedback gains are increased to reduce these errors. This 

leads to high gain feedback control and despite the fact that these controllers can 

in theory use infinte feedback gain to achieve asymptotic tracking, such 

controllers are physically impractical because of the finite bandwidths associated 

with real systems. 

In (Palm, 1994) the apparent similarities between the sliding mode and fuzzy 

controllers were illustrated, which has subsequently motivated considerable 

research effort in combining the two topologies in a manner that serves to reduce 

the limitation of the sliding mode. The most common approach to this has been to 

replace the continuous switching function of the boundary layer with an 

equivalent fuzzy switching function. However, as pointed out in (O'Dell, 1997), 

the fuzzy rule base commonly serves as a mimic of the original switching function 

and the advantages of such an approach are therefore unclear. Others have used a 

fuzzy rule base in making the sliding manifold adaptive, e.g. (Ha et al., 1999), so 

as to minimise the reaching phase, good results have been reported. Babuska 

(1998) has demonstrated the ability of the affine Takagi-Sugeno model to model 

accurately a system through rule. extraction from cluster data obtained within the 

regression space. These models may be used subsequently in order to extract 

locally linear state space models of the system and demonstrate model based 

control of both single input, single output (SI SO) and multi input, multi output 

(MIMO) systems (Roubos et al., 1999). 

In this work, a system subjected to parametric uncertainty and disturbance is 

identified with a fuzzy rule base, the parameters of which are identified through 

use of the Gustaffson-Kessel sub space clustering algorithm. Local models of the 

system under its instantaneous conditions are then extracted and subsequently 

used to design the sliding mode control gains. In this manner, the resultant 

controller will be shown qualitatively to improve closed loop transient 

performance whilst reducing the high gain feedback requirement, as a result of 

minimising system uncertainty. 

Within the following simulation study a third order model of a servomotor is used, 

the differential equations of which are given according to 
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dw 
J- = - Bw- T + I .K (2) d/ X a m 

Where L is the motor inductance, la the armature current, Ke the back E.M.F 

constant, w the angular velocity of the armature, j the moment of inertia, B 

viscous friction, Tx the external load toque, Km the motor torque constant and Va 

the armature voltage. In addition B is introduced as the armature angular 

position. These equations may be rewritten in state space form according to the 

following, 

dB . 
XI= e,x2 =- = w,XJ =I and let Tx =VI and v. = u2 

dt 

I 0 

[~} 
0 

B Km _!!.J_ 
J J J 

K. R. u2 
0 

L L L 

The model parameters are taken as shown in Table I: 

!Table 1 

Next within this work, the mechanism for fuzzy identification of this model is 

considered. After which, consideration to the sliding mode controller design is 

given. Results are then presented which demonstrate a significant reduction in 

controller gain, control chatter and an improvement in controller performance 

where an unmatched disturbance is introduced. 

Fuzzy Identification 

Fuzzy identification is a term used that has come to represent the use of fuzzy 

logic in the modelling and representation of a system. Since fuzzy models may be 

viewed as general function approximators, they are readily applied to the 

nonlinear regression problem. There are two fundamentally different approaches 
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I. 

that may be taken in the identification of a system. Firstly the system may be 

. identified through explicit expression of system performance, e.g. 'if voltage is 

high then velocity is high'. Secondly, and the approach adopted within this work 

is to decompose the model into a static nonlinear regression. The problem of 

model identification is then decomposed into two separate problems, the first is 

selection of the regression structure, the second, the selection of the fuzzy model 

form, for example, the required number of membership functions and membership 

crispness. 

The desired regression may be expressed in the form 

y(tle) = f(IP(t),e) (4) 

where y is the regressand, e the vector of regressions which is to be parameterised 

in the identification process, and the vector rp(t) is known as the regression vector, 

its parameters the regressors. It has been shown in (Babuska, 1998) that the 

regression surface within the product space may be represented as a series of local 

approximations. 

Through use of a clustering algorithm, it is possible to derive local 

approximations to this regression surface. Further, through the use of the 

eigenvalues of the cluster covariance matrix given by 

F = I:_l(.ui.kf (zk -v;){zk -vJ 
· I:=l (.ui.k r (5) 

it is possible to interpret these local models and subsequently derive a fuzzy rule 

to represent this local appro~imation. In repeating this process for each data 

cluster, a global model of the system may be generated. Previous work has 

considered the accuracy of this approach in comparison to neural networks and 

'white box' models, and results have demonstrated that this local approach to 

modelling can improve results (Knight et al., 200 I). 

The rule extraction process is briefly described here for completeness, however 

the reader is directed to (Babuska, 1998) for more complete discussion. 

It has been shown that a useful form of the fuzzy consequent is the affine linear 

form (Takagi and Sugeno, 1985) of the Takagi-Sugeno (TS) model, in which rules 

are structured according to (6): 
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where a; is the so called parameter vector and b; is an offset. Within the product 

space ( JRP•I•N) the affine Takagi-Sugeno consequents may be viewed 

geometrically as hyperplanes. The antecedent of the rule defines a fuzzy validity 

region for the corresponding hyperplane. The outputy of the TS model is 

computed using the fuzzy mean formula 

I~, /3. (X )y, 

y= I::,fJ.(x) (7) 

where K is the nmber of rules in the rule base. /3; ( x) represents the degree of 

fulfilment of the irn rules antecedent, which is simply a measure of the degree of 

fulfilment of x in the fuzzy set A; and is given by 

Since it may become difficult to interpret multidimensional fuzzy sets, the 

antecedent proposition is commonly defined in a conjunctive form, given by a 

series of single dimensional fuzzy sets combined with simple propositions.· In this 

case the degrees of fulfilment are calculated as /3; ( x) = f.JA,,I (x1) 1\ ... 1\ f.JA;.P(xp), 

where the min operator (A) may be replaced by alternative T-norms. In this case 

· the model output is calculated 

( 
K rJ . K T -y= 2: y.(x)a. x+ 2: y.(x)b. =a (x)x+b(x) 

. ll I . ll I 
I= I= 

(9) 

where Y; is the normalised degree of fulfilment, given by 

( ) - /3;(x) 
Y, X - K (10) 

'LP, (x) 
J=l 

and a ( x) and b ( x) are input dependent parameters, given as convex linear 

combinations of the constant parameters a; and b; through the following 

relationship 
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The regression structure discussed previously (4) may be expressed in this pseudo 

linear form according to the following 

n., nu 

y(k+I)= l>,.1y(k- j+I)+ _l);.1u(k- J+l)+c; (13) 
i=l J=l 

The distance measure of the clustering algorithm, given by 

may be inverted and used to provide the degree of fulfilment of each rule for 

given data. One possible choice of inversion is to use the same equation as for the 

clustering algorithm 

I 
fJ. (x,) = Y. (IS) 

L :., [ d ( x, , v,'} / d ( x, , v;) J ,.._, 

which takes all rules into account and calculates the degree of fulfilment of one 

rule with respect to the others. Once the antecedent parameters have been 

calculated, the consequent parameters require derivation. There are two ways in 

which the fuzzy consequent parameters of the affine TS model may be calculated 

from the data clusters. The first is based around the geometric interpretation of 

the cluster, using the covariance matrix (Babuska and Verbruggen, 1997). The 

alternative approach is a local least squares optimisatioh method based on the 

derived fuzzy partition matrix. The former method is discussed here. The 

eigenstructure of the cluster covariance matrix loosely describes the shape of the 

cluster. The shortest eigenvector describes the normal vector to the hyperplane 

spanned by the remaining eigenvectors. The shortest eigenvector is defined as 

<I>;. Based on the dataset zN = [xr' YT] and the cluster prototype, the 

consequent may be described implicitly by 

The shortest eigenvector and the cluster prototype may be divided into a vector 

corresponding to the regressor x and a scalar corresponding to the regressand y. 

Le. 
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may now be rewritten according to 

After simplification 

I ( X )T I T y=-- <1>; x+-<l>;v; (20) 
<l>y <!>Y 

I I 
. '-----.r------" 

T a, b, 

which is directly equivalent to the affine Takagi-Sugeno model consequent. 

This approach was employed in the identification of the model given in (3). A 

regression structure of [3 I] was used with 5 clusters. Of importance to the 

identification of the model is the selection of the input signal, in this case a 

stepwise random signal was used as shown in figure I. The percentile variance 

accounted for (V AF) measure, which provides a measure of model tracking 

accuracy \VaS calculated as 99.2% which indicates good model accuracy. 

!Figure 1 

The model structure selected uses the applied voltage as the regressor. 

Performance increases in terms of tracking error and total root mean squared error 

may be gleaned if the model also uses the motor load current within the regression 

structure (Knight et al., 200 I). However, from the perspective of this work, 

· absolute error of the model is not significant, only the ability of the model to track 

the regressand. Computational burden is therefor.e reduced by accepting a 

marginal degradation in the model performance and only using the single 

regressor. 

Model Extraction 

The work in (Roubos et al., 1999) presents a method whereby the fuzzy clustered 

model may be represented as a local linear state space model. The following is an 
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overview of the method adopted. The regression vector, which is represented by 

1:1 is given by 

An affine Takagi-Sugeno rule may be represented by 

s and 17 are vectors of polynomials in the previous sample y(k -I), and B the 

offset. K, is the number of rules of the f' offset. The model output is calculated 

as the degree of fulfilment /1;1 ( E:1h) for each antecedent variable and the resulting 

degrees of fulfilment (fJ/i) for every rule are combined with the linear 

consequence according to the following 

p 

fJ/i ( ~:,) = TI J.l;h (~:,h) (23) 
h=l 

Once the Takagi Sugeno model has been derived, local linear state space models 

can be calculated according to the following, 

where 

and 

s' = I~IJ.i/i(x,(k))·s/i 
' L~~J.ili(x,(k)) 

I ~I J.lii ( x, ( k)) •IJu 

L~IJ.lii (x, (k)) 

(24) 

(26) 

(27) 

9 



8
• = I:~.u/i ( xl (k ))·B/i 
1 

L~1 ,UI,(x1 (k)} 
(28) 

In the case here, previous inputs are not considered and the A, Band C matrices of 

the model are thus simplified, the matrices are given 

r;;.l s1~2 S't~al 
I 0 0 

A= s-;.1 s-;.2 (;,a
1 

(29) 

0 

s-~.1 s:o.2 s~J,al 

. 
T/;.n, '71.1 'lu 

0 0 

B= '7;.1 '7;.2 T/;,n, (30) 

. . . 
'lnu,l '7nu,2 T/no.nl 

c = [~ 
0 

~] (31) 

0 . . . I 

Integral Action Sliding Mode 

As described in the introduction, the sliding mode is traditionally associated with 

a switching action which is discontinuous about a prescribed surface within the 

state space. Practical implementation of a sliding mode controller frequently 

leads to a phenomenon known as chattering. This is often due to the excitation of 

previously unmodelled system dynamics. Many solutions have been proposed to 

prevent chatter. Perhaps the most famous of these is the boundary layer approach 

first proposed by Slotine and Sastry (1983). The approach involves replacing the ·· 

discontinuous switching function with an equivalent continuous function. The 

implication of changing the switching function is that the system state is no longer 

constrained to remain on the prescribed sliding surface, but merely to remain 

within a certain vicinity of it. It follows directly that the equivalent system 

dynamics will be to some extent affected by any matched disturbance to which the 

system is subjected (Spurgeon, 1991 ). 
10 



It was recognised in (Ryan and Corless, 1984) that this additional degree of 

freedom afforded by the boundary layer at the manifold could be used to improve 

the controller robustness to so called unmatched disturbance, i.e. those 

disturbances which do not act within the system control channels. The controller 

that was subsequently developed was theoretically elegant and intuitively 

appealing, however it was conservative. By considering a subset of the 

disturbances originally used in (Ryan and Corless, 1984), the controller was made 

less conservative in (Spurgeon and Davies, 1993). The fundamental extension of 

these controllers over the traditional controllers is the introduction of an additional 

integral action state. This controller state seeks to reduce the steady state error 

asymptotically to zero. Within this work the design approach is adopted in order 

to ensure zero steady state controller error. However, it is also recognised that if 

.the system uncertainty can be reduced, then controller performance may be 

correspondingly improved. 

Once local models of the system have been extracted, they may be used in order 

to provide enhanced information to the sliding mode controller. The principles 

associated with the design of a sliding mode controller with integral action are 

considered next. As alluded to in the introduction, the ideal sliding motion is 

control independent and defined only by the choice of sliding surface provided 

that certain assumptions about the system disturbance hold (Drazenovic, 1969). 

In terms of controller desigri it is convenient to convert the system equations into 

a suitable canonical form. In this form the system is decomposed into two 

connected subsystems, one acting in within the range space of matrix B and the 

other within the null space of the manifold S . In terms of design, the problem 

then becomes one of state feedback given desired system eigenvalue locations. 

Since by assumption the matrix B is of full rank, there exists an orthogonal matrix 

. I'_ E JRnxn SUCh that 

J;B = [ ;,] (32) 

where B2 E IRmxm and is non-singular. Let z = Tx and partition the new co

ordinates so that 

11 



z = [ ::] (33) 

where z1 E IR"-m and z2 E !Rm. The nominal linear system can then be written as 

commonly known as the regular form. Equation (34) is referred to as describing 

the null-space dynamics and equation (35) as describing the range-space 

dynamics. From the perspective of the extracted local models, it is convenient to 

first convert the matrices to the controllability canonical form, thus the system is 

guaranteed to be in the regular form for subsequent design. Suppose the matrix 

defining the switching function (in the new co-ordinate system) is compatibly 

partitioned with z as 

where SI E !Rmx(nxm) and s2 E ]Rmxm. Since SB = S2B2 it follows that a necessary 

and sufficient condition for the matrix SB to be non-singular is that the 

determinant of S2 is non zero. It is reasonable to assume that this condition will 

be met by design. During an ideal sliding motion 

and therefore formally expressing z2 (t) in terms of z1 (t) yields 

Z2 (t) = -Mz1 (t) (38) 

where M= S;1S1 • Substituting into (34) gives 

z2 (t) is considered to play the role of the control action. The switching surface 

design problem can therefore be considered to be one of choosing a state feedback 

matrix M to stabilise the reduced order system ( A1 P A12 ). 

At this point the unit vector approach is introduced. Consider an uncertain system 

of the form 

12 



i(t) = Ax(t)+Bu(t)+ f(t,x,u) (40) 

where the function f: 1R x IR" x !Rm ~ !Rm which represents the uncertainties or 

non-linearities satisfying the so-called matching condition, i.e. 

f(t,x,u)=B~(t,x,u) (41) 

where ~is unknown but satisfies the following inequality 

11~ (t ,x, u )11 ~ k1 \\u\1 +a (t ,x} (42) 

where I > k1 ~ 0 is a known constant and a ( •) is a known function. The proposed 

control law comprises two components; a linear component to stabilise the 

nominal linear system; and a discontinuous component. Specifically 

u(t)=u1(t)+u.(t) (43) 

where the linear component is given by 

u1 (t)=-A- 1(SA-<I>S)x(t) (44) 

where <I> is any stable design matrix and A = SB. The non-linear component is 

defined as 

( ) 
· ( ) _ 1 ~s (I} 

un t =-p l,x A ll~s(l}ll+& foraliS;tO (45) 

where P2 is a symmetric positive definite matrix that satisfies the Lyapunov 

equation 

and the scalar function p (I, X) , which depends only on the magnitude of the 

uncertainty, is any function satisfying 

() (k1 \\u,\\+a(t;x)+r) (47) 
p I, X ~ ( ( )) 1-kiK A 

where y>O is a design parameter. The radius of the boundary layer ( & ) may be 

shown to be dependent on the actuator time constant and inversely proportional to 

the available control resources. In this equation it is assumed that the scaling 

13 



parameter has been chosen so that k1 K (I\) < I . Where K ( •) represents the 

spectral condition number. It can be established that any function satisfying 

equation ( 4 7) also satisfies 

p(t, x) ~ 11~ (t, x, u )11 + r (48) 

and therefore p ( t, x) is greater in magnitude than the matched uncertainty 

occurring in this equation. It can be verified that V ( S) = sr ~S guarantees 

quadratic stability for the switching states and in particular 

V ~ -s~"s- 2y ll~sll ( 49) 

This control law guarantees that the switching surface is reached in finite time 

despite .the disturbance or uncertainty and once the sliding motion is attained it is 

completely independent of the uncertainty. 

Now consider the introduction of additional states x, E ]RP satisfying 

x, = r(t)- y(t) (50) 

where the differentiable signal r (t) satisfies 

r(t) = r(r(t)-R). (51) 

with r a stable design matrix and R a constant demand vector. Augment the states 

with the integral action states and define 

x = [:] (52) 

The associated system and input distribution matrices for the augmented system 

are 

- [0 -CJ - [0] A= O A and B = B (53) 

assuming the pair (A, B) is in regular form, the pair (A, iJ) is also in regular 

form. The proposed controller seeks to induce a sliding motion on the surface 

S = {x E IR"•P: Si= S,r} (54) 
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where S and S, are design parameters, which govern the reduced order motion. 

The hyperplane system matrix and system matrix are partitioned as 

s = [ ~ ;2] (55) 

[ 

n m l <------+ <-----+ t - - n 
A= ~'' ~~2 (56) 

A2, An ! m 

and assume A= SB is non-singular. If a controller exists which induces an ideal 

sliding motion on S and the augmented states are suitably partitioned, then the 

ideal sliding motion is given by 

x, (r) = ( .4,- A,M)x, (r) +( .4,s;'s, + B, )r(t) (57) 

T 

where M= s;' S, and B, = [I, O"x"] . In order for the hyperplane design 

method to be valid, it is necessary for the matrix pair ( A11 , A12 ) to be completely 

controllable. The overall control law is then given by 

u=u,(x,r)+u"(x,r) (58) 

where the discontinuous vector Un is given by 

(59) 

It follows that, in terms of the original co-ordinates the control vector u1 is given 

by 

with gains defined as 

L,=-A-'(<t>S,+S1B,) (62) 

L, =A-'s, (63) 

IS 



The parameter S, can take any value and does not affect the stability of the closed 

loop system. 

Controller structure and performance 

A benchmark sliding mode controller with integral action (SMCI) of the form 

previously discussed was developed to control the motor model of equation (3), 

using the nominal parameters of Table I. All simulations were carried out using 

the actual parameters shown in Table I. 

The principle of the proposed controller is illustrated in Figure 2. The controller 

uses the design approach outlined in the previous section, thus, stabilising 

conditions of the controller remain intact. Importantly, the extracted model is 

used to provide enhanced information to the controller, so that the controller may 

be made to adapt to local operating conditions of the system. The controller is 

therefore referred to as a Fuzzy Adaptive Sliding Mode Controller (F AS MC). 

!Figure 2 

both sets of controller eigenvalues were selected to provide unity damping ratio at 

22rad/s. The controllers were driven over a simulation sample period of 70 

seconds. Results are illustrated in Figure 3. 

!Figure 3 

It can be seen that in terms of transient response, there is little to differentiate 

between the two controllers. However, consideration of the corresponding control 

effort (Figure 4) shows that that the high gain requirement of the SMCI has indeed 

been relaxed by the FASMC. Additionally, the ~::-vicinity of the FASMC was 

manually adjusted to be 6 times smaller than the corresponding SMCI before 

chatter occurred. 

!Figure 4 
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A second test introduced unmatched disturbance to the system and the fuzzy 

model retrained to incorporate the uncertainty, the disturbance is analogus to a 

torque being placed on the motor and forcing rotation in the contrary direction to 

the demand, which changes simultaneously with the step increase in load. Figure 

5 illustrates the effect of the disturbance on the SMCI, it can be seen that the 

disturbance significantly effects transient performance. Because of the integral 

action of the SMCI, the system is able to achive asymptotic tracking as discussed 

within the literature. The F ASMC, on the other hand, recovers the system to the 

steady state taking only an additional 0.4 seconds when compared to the system 

without disturbance (Figure 6). The obvious error in the initial controlled state 

. trajectory is due to the lack of large controller gains, in the event that the system 

were subjected to such a stringent test it would be necessary to increase the 

nonlinear control gain to circumvent this problem. 

!Figure 5 

!Figure 6 

Conclusions 

A new controller based on the synergy of sliding mode design approaches and 

nonlinear black box modelling has been presented. Performance of the controller 

has been compared with a benchmark sliding mode controller and the controllers 

response has been found to be favourable. The controller has demonstrated clear 

advantages of using fuzzy logic in conjunction with sliding mode. Since the 

system uncertainties can be significantly reduced through use of fuzzy 

identification and linearisation techniques, the feedback control gains may be 

reduced, which in turn leads to a control effort of reduced magnitude. This leads 

directly to a reduction in the radius of the boundary layer, providing 

improvements in the final achievable tracking accuracy of the system. Since the 

fuzzy model does not discriminate between matched and unmatched disturbance, 

but simply incorporates them into the model, the F ASMC also enjoys 

improvements in the transient control performance when the system is subject to 

unmached disturbance. The F ASMC in this work only extends to the SISO case 

and in addition, it is assumed that input/output data is available for the system. It 
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is finally pointed out that implementation of this algorithm is significantly more 

complex than the SMCL To date, limited success in the practical implementation 

of the controller has been enjoyed. Subsequent work will also extend the method 

to the MIMO case. 
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Figure I: Model output vs System output 

Figure 2: Principle of FASMC 

Figure 3: System outputs over 70 seconds 

Figure 4: System control effons 

Figure 5: SMCI response to unmatched disturbance 

Figure 6: F ASMC response to unmatched disturbance 

Parameter Value Value 

(Nominal) (Actual) 

R. 1.20 1.5 n 

L 0.05 H 0.09 H 

Ke 0.6 0.6 

Km 0.6 0.6 

J 0.135 0.15 

B 0 0.02 

Table I: Motor parameters 
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Abstract. The paper presents several models derived from both input

output data and a-priori knowledge of an experimental test rig. The test 

rig is based on a brushless de motor, rigidly coupled to a nonlinear, time

variant frictional load. Models based on the linear difference equation are 

developed and methods for incorporating a-priori knowledge into this 

structure are then explored. This complementary approach to the use of 

well founded knowledge and input-output data is found to perform better, 

according to the performance measures adopted, than the models using 

input-output data or a-priori knowledge alone. 

Key Words: Identification, modelling, semi-physical modelling, fuzzy clustering 



1. INTRODUCTION 

The development of models to describe system behaviour is of interest within many areas of 

science and engineering. The models, once developed provide the user with a method for 

describing the behaviour of a system, and the means to develop prediction and control 

algorithms for the system. 

The brusWess direct current motor (BLOC) is an attractive option for the actuation of robotic 

systems primarily because of its low maintenance requirement and its cleanliness, however, it 

does pose problems to the user in terms of deriving an acceptable model, since it is highly 

coupled and multi-input. In addition, the load applied to such a system is not typically 

considered within the modelling literature because of a need to maintain' generality within the 

model derivation. Within this work, a motor coupled to a nonlinear load is explicitly 

considered and approaches to system identification are explored. A common model derived 

from physical principles is first described and system fundamentals are outlined. The work 

then moves on to use nonlinear identification techniques, namely neural networks and fuzzy 

clustering. The results of the identification are compared in section 7 using common 

performance measures. Section 6 of this paper, improvements on the identified model 

performance are made through use of data transformation based on well founded physical 

relationships. Throughout this work, each of the models are provided with a suitable acronym 

which is used within the summary of results to identify individual model performance. 

2. EXPERIMENTAL TEST SYSTEM 

The experimental test system has been designed to provide an analogy with precision motion 

control systems in common use throughout industry. The system has, however been 

engineered such that variation in the load torque will have significant effect on the systems. 

dynamic performance. In principle, the motor is linked to a lead screw with a rigid coupling. 

The nut on the screw is fixed to a central carriage, which is in turn constrained to move in a 



single degree of freedom (Fig 1). When the motor is excited, the carriage is forced to move 

along the lead screw and if motor armature angular position is measured, then the linear 

displacement of the carriage may also be calculated. 

The schematic diagram of the system can be found in Fig 2. The incremental encoder (IENC) 

provides 2000 pulses per revolution of the motor. This is the principle sensor used for 

position feedback. The gear system in the diagram corresponds to the lead screw and nut. 

The amplifier- serves to provide the motor with a pulse width modulated excitation voltage 

and provides correct gating signals to the motor for efficient commutation. Within this work, 

all identification data is captured from the real system in the open loop, performance of the 

system is therefore heavily dependent on the frictional perturbation ~parent at the motor 
, .,-•r .. 

armature. The frictional load has been shown within the literature to be time variant, e.g. 

(Armstrong-Helouvry et al. 1994), next it will also be shown that the load to which the motor 
l . 

is subjected is also dependent upon carriage position 

The speed of the carriage across the total length of the stage has been measured in both 

directions (Fig. 3). The following equation, which may be derived from the power balance 

equations provides the relationship between motor speed and load torque. 

(I) 

Where V is the terminal voltage, T m is the generated torque, aJ is the motor angular velocity, K 

is the motor constant and R is the motor phase resistance. Manipulation of (1) yields the ideal 

angular speed, £U; (when T m=O) and the stall torque of the motor, T ms (when aJ=O). The actual 

torque, assuming a linear relationship between aJ and TL is given as a fraction of the stall 

torque 

(2) 



Where Tr is the motor friction torque. From the relationship given in (2), it may be readily 

seen from Fig. 2 that the load torque significantly varies, and is non-symmetrical, across the 

stage length. 

It is also important to highlight the fact that the generated torque and the armature current are 

directly linked according to the equation 

(3) 

This relationship and (I) will be fundamental to the selection of input data later in sections 

five and six. 

3. PERFORMANCE MEASURES 

Performance measures are extremely important for the validation of derived models. The 

selection of performance measures is heavily application dependent. Three measures of 
l 

performance based on common modelling objectives will be used to quantify modelling error 

( c(t) ). Model error is first described based on the following relationship 

c(t)=y(t)-y(t) (4) 

where y(t) is the system output and y(t) is the models estimate of the systems output. The 

first of the three measures to be used is the infinity norm given by 

(5) 

The infinity norm of a signal depends on the extreme values of error. Since extreme values 

will be sporadic, the infinity norm represents the worst case model estimate. 

The root mean square error semi-norm is also used to quantify the performance of the model. 

As opposed to the infinity norm, where the peak values of error were of concern, here it is the 

average value of error, the root mean square (RMS) ofthe error is given by 

( 

T J~ lkll,.. ~ ~~[ c(t/ dt (6) 



The concept of the RMS error is used commonly within many engineering fields to describe 

the concept of average value, a low value for this performance measure does not imply that no 

large peaks in error occur, simply th!!t they are not common and do not contain large values of 

energy. 

The final performance measure is based on the ability of the model output to track the system 

output Here, absolute error is only implicitly considered and the impetus is placed on how 

the signals vary with time. The percentile variance accounted for (V AF) is given as 

VAF = I00%·[1- var(c(t))l 
var(y(t)) 

.(7) 

When the model output (y) and the system output (y) are identical, the V AF is given as 

I 00%, if the model is in error then the measure is lower. It is interesting to note that from the 

p~rspective of developing control algorithms based on the id.entified model, the V AF is of 

more significance to the designer, since this describes how well the model has captured the 

system dynamics. 

4. MODELLING 

Within the literature there are many models available to describe the BLOC motor. These 

vary in complexity from comparatively simple third-order state-space models, to extremely 

elaborate models based on the motor magnetic circuit. Here a compromise between 

computational load and model accuracy is struck through use of the phase co-ordinate model, 

a more detailed description of which can be found in (Krause et a/, 1995). 

When cylindrical pole permanent magnet armatures are used, all stator inductances are 

independent of armature position. Only the motion related inductances between the 

permanent magnet equivalent circuit and the stator windings depend on the armature angular 

position. The inductance matrix of the BLOC may therefore be described by 

5 
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(8) 

The stator self inductance Ls and the stator/stator mutual inductances Lab are all equal to each 

other. First approximation yields 

L =- Lo 
ob 

3 
(9) 

Where L0 is the nominal inductance specified by the manufacturer. The voltage/current 

equation in phase co-ordinates is : 

(10) 

with 

' [A] =[L(e.r)].[i] (11) 

[i] = p •, ib , i c, i fo J (12) 

[r] = diag[r,, r, .r,.o] (13) 

(14) 

Where i is the applied phase current, r is the nominal stator resistance, A the magnetic flux 

and L(BeJ is the time varying inductance, dependent on angular position Ber· The motion 

equations are given 

J d(J)r = T. - TLood 
p dt 

dt p 

(15) 

(16) 

Where J is the moment of inertia of the load, p is the number of motor poles, (J)r is the angular 

velocity of the armature, Te is the electromagnetic torque and T1oad is the load torque apparent 

at the motor armature. The load torque was taken as 1.2 Nm nominal, from Fig. 2, i.e. the 



load torque was considered constant throughout the stage travel. Fig. 4 illustrates the model 

performance when compared with the actual performance captured from the system. All 

motor parameters were taken from the motor manufacturers data sheet The inertial load of 

the system was unknown and was assumed negligible in comparison to the frictional 

perturbation. The results of this model are given in section 7, Table 1, PC. 

5. IDENTIFICATION 

Despite the fact that the motor used for actuation of the system is fairly well understood, it 

should be clear that there exists only diminutive information about the motor load. The reader 

is reminded that this load is time variant and that it has been shown to also vary with relative 

position along the length of the stage. An approach that may be taken in overcoming this 

latter variation is to use a lookup table within the system to describe relative loads. This leads 

to high computational storage requirements and is not an appealing solution. Within this 

section alternative approaches to identification based on input output data collected from the 

system are explored. Initially the models are provided simply with untreated data from the 

system. Later within this section attempts will be made to transform th~ data in such a 

fashion as to incorporate prior knowledge of the system into the model, and to restrict its 

overall flexibility . 

The process of identification is to choose a model of sufficient flexibility, and one that is 

known to have performed well in the past. One specific family often employed is based 

around the linear difference equation. The most simple model from this family is the finite 

impulse response filter, the next model in the family is the so called auto-regressive with 

exogenous inputs (ARX) structure. The remaining model structures require recurrence in 

training and are therefore impossible to implement in the fuzzy clustering approach because 

the model estimate is not readily available during training. The models discussed here are 

therefore all based around the ARX structure. 



When using a neural network or a fuzzy clustering method, the problem of identification 

becomes one of choosing the regression structure and choosing the parameters of the tuning 

method. In essence, the difference between the two approaches can be considered as the 

difference between global modelling (neural network model) and local modelling (fuzzy 

model). The two are discussed in further detail below. 

The first premise within the process of identification is to assume that input output data of 

sufficient quality and quantity may be obtained from the system. In addition, it should be 

noted that signals such as pseudo random binary sequences which are in common use for the 

identification of linear systems, are not suitable for the identification of nonlinear systems. 

The input and output nodes from Fig 2. directly correspond to the data available to the model 
' 

for identification Position will always be used as the regressand for the model, however an 

interesting choice, and one that will ultimately effect the accuracy of the model, is which data 
1 

should be used as regressors. Initially, this work begins with the use of the control voltage 

where it is assumed that the system is calibrated to faithfully reproduce the signal, and the 

measured current drawn by the motor. This latter choice is designed to reflect the correlation 

between load torque apparent at the motor armature and current. 

In this work, step wise varying signals of various amplitudes were applied to the system and 

data was collected over a period of approximately 14 seconds at ten millisecond intervals. 

This provides a data set (.t') that may be neatly divided into two distinct sets, one for 

validation, the other for training. It was found early on within this work that the fuzzy 

clustering method and the neural network preferred alternative types of excitation signal. 

Where the fuzzy clustering algorithm worked better with additional noise placed on the 

demand signal, the neural network performed better without this noise. Therefore different 

data was provided to the neural network in order to improve modelling performance. The 

complete data sets are shown in Fig. 5 and Fig 6. 



The method described in (He and Asada, 1993) was used in an attempt to identify the lag 

space of the chosen regressors. This method relies on the assumption that the system may be 

represented by a function that is reasonably smooth in the regressors. The regressors used in 

this work are corrupted by noise and the illustrations of the order index graphs are far from 

conclusive, however there are knee points at lags of 2 and 4 (Fig. 7). Further use of the 

Matlab system Identification toolbox, based on these uncertain results did however confirm 

that the structure [[4 4] [4 4] 1] worked weB for the data. Fig. 8 illustrates the result of 

applying the linear ARX model to the data {ARX). 

It is finally worthwhile to note that within this work only model predictive behaviour of the 

models is considered. If it were possible to use previous values of the system output, i.e. , in a 

step ahead approach to the estimation the tremendously improved results will be observed. 

S.l Neural Network based ARX 

Neural networks are a popular tool for pattern recognition and are used increasingly for 

system identification (Norgaard et al, 2001 ). The neural network used here is a two-laver 

perceptron network of the form 

(17) 

The network uses tansig activation functions within the input and hidden layer, the output 

layer uses a linear transfer function in order that the network output is able to take on any 

value. In the neural network training, the common mean square error of the estimate is used 

for the criterion of fit: 

} N 2 

¥;..( B,zN) =-I(y(t)-y(tjB)) 
LNM 

{18) 

W is given as the network weights, F is the activation function, N is the number of data in the 

training set and w is the network thresholds. The neural network is presented with the ARX 

structure is given by 



where 

8:, [a1 ••• an b1 • •• bmf 

q;{t) =[ -y(t-1) ... -y(t-n) u(t-1) .. u(t-m)] 

(19) 

(20) 

(21) 

8is the regression vector for tuning, q:\t) is the vector of previous inputs (u) and outputs of the 

system (y). The vector lf(t) is presented at the input nodes and the current value of position 

(y(lj) is presented at the output 

5.1.1 Training Algorithms 

In the identification of a system with a neural network, th!! ch?ice of training algorithm 

greatly effects the convergence properties of the model. Within this work, two training 

algorithms are considered explicitly, the Gradient descent method and the Levenberg

Marquardt. These two approaches are discussed next. 

Gradient Descent 

Gradient descent is a prediction error method. The task of training is to obtain the mapping 

from the dataset to a set of candidl_lte models, 

zN ~e 

In this case the objective is to minimise the mean square error (18) according tp 

0 = argmjn VN ( 8,zN) 

The prediction error method is iterative and generally takes the form 

8U•lJ = 8; + JJ/l; 

(22) 

(23) 

(24) 

where 8Ul specifies the current iteration, 7J; specifies the search direction and Ji; specifies the 

step size. The iteration of the algorithm continues until such time as the minimisation criteria 

is satisfied. The principle of the gradient descent method is at each iteration to adjust the 

weights of the network in the opposite direction to the gradient, i.e 

la 



(25) 

(26) 

where 

(27) 

If the step size Jl; is sufficiently small with this choice of direction, then it is always possible 

to achieve a reduction of the criterion, 

(28) 

Frequently the step size is selected as constant within_ the i:ralning_ This can lead to slow 

convergence of the network due to a need for the step size to remain smalL In (Demuth and 

Beale, 2001), an approach to using an adaptive step size is proposed to control the 

convergence of the network This approach will be used later on in section 6. 

Levenberg-Marquardt 

A comprehensive description of the Levenberg-Marquardt algorithm may be found in 

(Norgaard et a/, 2000), the algorithm is essentially a cross between the gradient descent 

method already discussed and the Gauss-Newton method (Lewis et a/, 1999). In this 

approach, the minimisation is given 

(29) 

The update rule for the Levenberg-Marquardt algorithm is given as 

(30) 

(31) 

Where the Hessian is given as 

(32) 

8=0, 

/I 



and the small constant ~ which is used to alleviate ill conditioning problems with calculating 

the search direction. In practice, the Levenberg-Marquardt uses an approximation to the 

prediction error as in the case of the Gauss-Newton method. The value of .5,represents the 

radius of a trusted region around the current estimate, within which the selection of the search 

direction for the approximation is assumed to correspond well with the search direction for 

the criterion Vw ( B, Z w) . 

The Levenberg-Marquardt algorithm offers significant speed advantages over the basic 

gradient descent algorithm and is therefore used throughout the neural network modelling · 

discussed here. 

After scaling of the data and training with the Levenberg-Marquardt algorithm, a neural 

1 

network with tansig activation functions on the input and hidden layer, and a linear activation 

function in the output node typically gave simulation results as shown in Fig 9 (NN ARX). 

5.2 Fuzzy based ARX 

The terrnfozzy identification has come to represent the use of fuzzy logic in the modelling and 

representation of a system. Fuzzy models may be viewed as general function approximators 

and are therefore readily applied to the nohlinear regression problem of the form discussed in 

the previous section. The fact that behaviour of a system can be easily represented 

linguistically e.g. 

If Voltage is High and Current is High then Speed is Fast 

naturally provides the user with a useful method by which a systems behaviour can be 

predicted entirely from empirical observation (Linskog, 1996) provides a comprehensive 

discussion of this approach, which constitutes the first of the two principle methods: 

I. The expert knowledge is articulated through a series of if then rules. The model structure 

is generated implicitly from the rules supplied by the expert. 

/2.. 



2. In the second case, no prior information is assumed about the system, and only numerical 

data is used to construct the fuzzy rule base. 

The first of these approaches ·provides the user with a convenient a interface through which 

prior information may be incorporated into the model via linguistic rules. The latter of these 

two approaches is data driven and is closely akin to the neural network approach to model 

derivation. The key advantage, however, is that information about the system may be 

subsequently extracted from the model once identification is complete. Further discussion on 

this subject and related topics is given by Babuska (1998) and provides the foundation for this 

section of the work. 

5.2.1 Data Clustering 

The goal of cluster analysis is to partition a given set of data into clusters, which will be 

subsets of the presented data The criteria for these clusters is. 

• Within cluster homogeneity: Data within clusters should be as similar as possible. 

• BetWeen cluster heterogeneity: Data between clusters should be as different as possible. 

In this case similarity can be measured as a function of distance. Cluster validity was used to 

select the number of clusters because of the relatively small number of permutations between 

regression structure and number of clusters, in this case 5. If the regression surface is 

partitioned into a series of linear surfaces (corresponding to a cluster), then an affine Takagi

Sugeno fuzzy rule (Takagi and Sugeno, 1985) of the form (33) may be used to represent the 

local regression. 

1\: IF f(x1 is ~.1 andx2 is~.2 and . .. andxp is~.P )THEN Y; =a{ x+b; i=1,2, ... ,k (33) 

where x EX c !RP is a cnsp input vector, A; is an antecedent multidimensional fuzzy set 

defined by the membership function f.l" (x): X__.. [0,1), y, e IR is the scalar output of the ilh rule. 

The index i relates the variable to the ilh rule and k is the number of rules in the rule base. 



The consequent function will maintain its form throughout the rule base, only its parameters 

will vary. The antecedent of the rule defines a fuzzy validity region for the corresponding 

hyperplane. A rule base might therefore be used to produce a gl.obal, nonlinear function 

approximation. 

The ARx structure discussed previously may be expressed m this pseudo linear form 

according to the following 

y(k + 1)= i:a;.jy(k- j + 1)+ ~);Ju(k- j + 1)-tc; (34) 
j~l j=l 

5.2.2 Product Space Identification 

The antecedent fuzzy sets serve to divide the regression space, in which the regression surface 

may be locally approximated by the consequent hyperplanes. The task of identification is to 

find the number, locations and parameters ·of these hyperplanes such that the regression 

surface is accurately approximated. This may be achieved through application of a set of 

fuzzy clustering methods, referred to as subspace fuzzy clustering algorithms, specifically the 

Gustaffson-Kessel (GK) algorithm is used here, discussion of which may be found in 

(Gustafson and Kessel, 1979). ~ 

5.2.3 Membership calculation 

The ·antecedent parameters of the Takagi Sugeno model may be calculated through 

application of the distance measure used within the clustering algorithm. In this case only the 

regressor x, the regressor component of the cluster prototype and the corresponding cluster 

covariance matrix are used. 

Using the GK algorithm, the distance measure may be evaluated as 

(35) 



using an inversion, this measure can be converted into the degree of fulftlment. One possible 

choice of inversion is to use the same equation as for the clustering algorithm (Hellendoom 

and Driankov, 1997) 

(36) 

which takes all rules into account and calculates the degree of fulfilment of one rule with 

respect to the others. 

There are two ways in which the fuzzy consequent parameters of the affine Takagi-Sugeno 

model may be calculated from the data clusters. The first is based around the geometric 

interpretation of the cluster, using the covariance matrix: -The alternative approach is a local 

least squares optimisation based on the derived fuzzy partition matrix the former method 

based on the covariance matrix. is discussed here. Equation (37) may be derived from the 

relationship implicit between the shortest eigenvector of the cluster covariance matrix and the 

regression surface. 

I ( ')T I T Y =--<1>. x+-<l>v 
<1>-" ' <l>Y ' ' 

' ' 

(37) 

'------v------' ~ 
a,T b, 

which can be seen to be directly equivalent to the affine Takagi-Sugeno model, Fig. 10 

illustrates the result of training a fuzzy model (FC ARX). It should be noted that there is 

sensor noise present within the validation and training data, and it seems reasonable to assume 

that both the fuzzy model and the neural network based model could be improved by better 

training sets. 

6. TRANSFORMS FOR REGRESSOR DATA 

In this final section, attempts to transform the data to provide greater physical relevance are 

made. Specifically, the current and voltage data are combined with the power balance 

equations (PBE's) in order to derive estimates of position directly from the data The power 

15 



balance equations provide a good model of system performance, their untreated estimation of 

position is also provided (PBE). The enhanced information is therefore incorporated with the 

fuzzy clustering approach in two ways, first the residuals of the PBE estimate are calculated, 

upon which a clustered model based on the same structure as in the previous section is trained 

(FRESPBE), the outputs of both models are then summed together to provide a composite 

estimate of the position. In the second approach, the PBE estimate is used in the clustered 

model as a direct replacement for the voltage regressor (PBEREG). This approach was 

adopted after tests demonstrated degraded performance with three regressors (i.e., voltage, 

current and the PBE estimate). 

Using the power balance equations, 

P,(t) =V(t)·I(t) (38) 

(39) 

~(t) = l(t)2 ·R (40) 

?, (t) = P, (t) + ~ (t) (41) 

an expression for the motor speed based on quantities assumed constant and the available 

measUrements may be derived, 

ll.l(t) = V(t)·l(t)-I(t)
2 

·R 
l(t)·K·R 

(42) 

where P; is the applied electrical power, Po is the mechanical output power, arid P1 is the 

dB(t) 
power loss. Since--= ll.l(t), 

. dt 

B(t)= jV(t)·l(t)-l(t)
2 

·R dt 
0 l(t)·K·R 

(43) 

Fig. 11 illustrated the estimate of(43) based on the available current and voltage data Fig. 12 

and Fig. 13 show the results of applying the FRESPBE and PBEREG model structures 

respectively. The value of K may be used for tuning of the equation, here a gradient descent 

{j, 



method with variable step size is used in order to tune the model. The gradient descent 

method has been discussed in section 5.1. As mentioned before, use of an adaptive step size 

can be used in order to obtain the convergence speed of a large step, but the accuracy of a 

small step. Here an algorithm is proposed based on an initial value for the step size 

determined by the user. The algorithm (PBEGD) is described below 

I. Initialise variables tP, T""1,j = 0 and k = 0 

2. Obtain the value for the criterion of fit VN ( e(i)> zN) 

4. Obtain the new value for the criterion of fit VN ( e(i+l)' zN) 
··.···:r' .... 

7. If vN(~i),zN)>rcrit and k >t5 then repeat the process from step 3 

The value of tP determines the number of times the algorithm will search across the minimum, 

before reducing the step size r""' determines the termination criterion in the event that it can 

be achieved and t5 defines the maximum value of k before the algorithm terminates. The 

initial model performance of this model is shown in Fig 11, Fig 14 illustrates the estimate as a 

result of tuning. 

7. SUMMARY OF RESULTS 

Table 1 provides a summary of the results obtained within this work. Both the infinity norm 

and the rms semi-norm have units of encoder pulses in error. 

Table I: Performance of the various approached to identification 



If can be seen how the use of the power balance equations can significantly improve the 

performance of the identification approaches. It should be noted that the neural network 

model was both trained and validated on a different data set and therefore it is only ilie V AF 

which provides fair comparison. The use of the power balance equations on ilieir own 

outperform ilie models trained simply on in:put/output data and provides ilie means to produce 

accurate models based on the nonlinear identification techniques. 

8. DISCUSSION AND CONCLUSIONS 

Attention has been paid wiiliin this work to ilie identification of a servo mechanism actuated 

by a brushless DC motor and subjected to large, time variant loads. Specifically the 
,. ·.-.,.-;,· 

fundamental tenet within system identification· has· been explored, i.e. to identify only . 

phenomena which are unknown. It was initially found that a model based purely on empirical 
' . 

observation and a priori knowledge provided a reasonable result, but that significant 

improvements were ready to be made. The linear ARX structure was found to be of sufficient · 

flexibility so as to provide a much improved estimate over the phase coordinate model. Black 

box approaches were investigated in terms of a neural network and a fuzzy clustered rule 

base, both of which were based on the previously successful ARX structure. The neural 

network was found to strongly favour purely step wise varying identification data, which 

should be considered when comparisons between the models are drawn. It is clear from this 

exercise in itself that correct selection of the input output data has profound effect on the 

resulting black box model. The fuzzy clustered model was found to outperform the linear 

ARX model. Finally, attention to the incorporation of a priori knowledge was paid. In the 

first attempts, a black box model was used in a complementary fashion to the white box 

model in order to cancel estimation residuals. Incorporation of the white box model estimate 

into the black box model regression structure was found to significantly outperform the 

previous approach. Finally, the gradient descent training method was adopted from the neural 

network literature in order to minimise the white box model error. This model was successful 

(C( 



in minimising the root mean squared error of the estimate and performs well in comparison to 

the other models. However, this model has not captured the discontinuities within the data as 

well as the other models. The V AF measure is testament to this. It should be noted that this 

model has the advantage of simplicity and minimal computational load once trained over the 

fuzzy clustered and the neural network models. In a system with diminutive a priori 

understanding, the semi-physical or grey box approach to modelling has been applied· and 

shown to be a viable approach to obtaining highly accurate results. 
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Figure legend 

Figure I : Photograph of system 

Figure 2: System Schematic Diagram 

Figure 3: Speed of Carriage in Forward and Reverse Direction 

Figure 4: Phase Coordinate Model Results 

Figure 5: Identification set I 

Figure 6: Identification set 2 

Figure 7: Order index versus Jag space 

Figure 8: Identification results for linear ARX model 

Figure 9: Identification results for neural network 

Figure I 0: Identification results for fuzzy clustered model 

Figure II: Power balance equation estimate 

Figure I2: Fuuy clustering based on the power bal!m.ce equation residuals 

Figure 13: Power balance equations as a regressor for the fuzzy clustered model 

Figure 14: Power balance equation estimate after tuning with gradient descent 

Model !!elL !le !Inns 

PC 16700 7743 95.73% 

ARX 5370 3046 99.41% 

NNARX 8874 5332 99.55% 

FCARX 5I66 I982 99.7% 

PBEQU 4352 2326 99.85% 

FRESPBE 4938 235I 99.86% 

PBEGD 49li 2304 99.68% 

PBEREG 2535 594 99.97% 
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Abstract: A method for combining black box nonlinear models and sliding mode control 

schemes is presented. It is demonstrated that the advantages of the sliding mode control technique 
I 

are maintained. In addition, the effects of parametric uncertainty and unmatched disturbances are 

minimised through the use of a fuzzy model. Two fuzzy model based sliding mode control 

topologies are developed from the theory and simulation results demonstrate the usefulness of this 

approach. 



1. Introduction 

One of the earliest approaches to control of uncertain systems was sliding mode 

control (SMC) or variable structure control (VSC), first introduced to western 

researchers in the seminal works of Utkin (23] and Itkis [I 0]. The central feature 

of SMC is the sliding mode, in which the dynamic motion of the controlled 

system is constrained to remain within a prescribed subspace of the full state 

space. The sliding mode is achieved by ensuring that the prescribed manifold 

within the state space is made attractive to the system [ 1 0]. Once the manifold is 

reached, the system is forced to remain on it thereafter. When in the sliding 

mode, the system is equivalent to an unforced system of lower order, termed the 

equivalent system, which is insensitive to both parametric uncertainty and 

unknown disturbances that satisfy the matching condition. 

There remain several drawbacks in the implementation of sliding mode 

controllers. The first is that is that the guarantees of invariance in general only 

apply to systems that satisfy the matching condition (24]. Disturbance which does 

not fulfil this condition, i.e. unmatched disturbance is not formally considered 

within the controller design. A second limitation is the fundamental requirement 

of a discontinous control law across the sliding manifold, in practical systems this 

leads to a phenomenon termed 'control chatter'. Chatter involves high frequency 

control switching and may lead to excitation of previously neglected high 

frequency system dynamics. In addition it is known to cause high heat losses in 

electronic systems and undue wear in mechanical systems. Smoothing techniques 

such as boundary layer normalisation have been employed in order to prevent 

chatter from manifesting within the control channel. Through this approach the 

transient performance of the closed loop system is maintained, however, such an 

approach leads to a loss of asymptotic stability and a controller that can only 

guarantee final tracking accuracy only to within a certain vicinity of the demand 

[7]. A compromise must therefore be sought between desired tracking accuracy 

and controller bandwidth. 

Model errors due to parametric uncertainty lead to tracking error in controllers 

with a continuous approximation to the switching function, within the controller 

design, the controller feedback gains are increased to reduce these errors. This 

leads to high gain feedback control and despite the fact that these controllers can 
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10 theory use infinte feedback gam to achieve asymptotic tracking, such 

controllers are physically impractical because of the finite bandwidths associated 

with real systems. 

In [ 15] the apparent similarities between the sliding mode and fuzzy controllers 

were illustrated, which has subsequently motivated considerable research effort in 

combining the two topologies in a manner that serves to reduce the limitation of 

the sliding mode, whilst still maintaining the guarantees of global uniform 

ultimately bounded stability and invariance to matched disturbance. The most 

common approach to this has been to replace the continuous switching function of 

the boundary layer with an equivalent fuzzy switching function. However, as 

pointed out in (14], the fuzzy rule base commonly serves as a mimic of the 

original switching function and the advantages of such an approach are therefore 

unclear. Others have used a fuzzy rule base in making the sliding manifold 

adaptive, e.g. [9] , so as to minimise the reaching phase, good results have been 

reported. Babuska [2] has demonstrated the ability of the affine Takagi-Sugeno 

model to model accurately a system through rule extraction from cluster data 

obtained within the regression space. These models may be used subsequently in 

order to extract locally linear state space models of the system and demonstrate 

model based control of both single input, single output (SISO) and multi input, 

multi output (MIMO) systems [16]. 

In this work, a system is assumed to be subject to parametric uncertainty and 

disturbance. This system is identified with a fuzzy rule base, the parameters of 

which are identified through use of the Gustaffson-Kessel subspace clustering 

algorithm. Local models of the system under its instantaneous conditions are then 

extracted and subsequently used to design the sliding mode controller gains. It is 

demostrated that the enhanced knowledge of the system can be applied directly in 

the synthesis of improved controllers. 

Within the following simulation study a third order model of a servomotor is used, 

the differential equations of which are given according to 

dl 
L - a =-1 R -K w+V dt a a e a 

(1) 

(2) 
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Where L is the motor inductance, la the armature current, Ke the back E.M.F 

constant; m the angular velocity of the armature, J the moment of inertia, B 

viscous friction, Tx the external load toque, Km the motor torque constant and Va 

the armature voltage. In addition e is introduced as the armature angular 

position. These equations may be rewritten in state space form according to the 

following, 

X 1 =8,X2 = dfJ =m,X 3 = i and let Tx =U1 and Va =U2 
dt 

x. 0 1 0 

f~} 
0 

X2 0 
B Km _u. 

~ =[1 0 
J J J 

XJ - K~ - Ra u2 
0 

L L L 

The model parameters are taken as shown in Table 1: 

!Table 1 

oHJ (3) 

Next within this work, the mechanism for fuzzy identification of this model is 

considered. The two controllers based on existing theory are then developed. 

Finally, two simulation studies are presented the first is based on the integral 

action controller, the second on the model following controller. Finally the work 

concludes with a discussion of the results. 

2. Fuzzy Identification 

Fuzzy identification is a term used that has come to represent the use of fuzzy 

logic in the modelling and representation of a system. Since fuzzy models may be 

viewed as general function approximators, they are readily applied to the 

nonlinear regression problem. There are two fundamentally different approaches 

that may be taken in the identification of a system. Firstly the _system may be 

identified through explicit expression of system performance, e.g. 'if voltage is 

high then velocity is high'. Secondly, and the approach adopted within this work 

is to decompose the model into a static nonlinear regression. The problem of 

model identification is then decomposed into two separate problems, the first is 

4 



selection of the regression structure, and the second is the selection of the fuzzy 

model form, for example, the required nuniber of membership functions and 

membership crispness. 

The desired regression may be expressed in the form 

y ( t le)= J ( cp ( t), e) (4) 

where y is the regressand, e the vector of regressions which is to be parameterised 

in the identification process, and the vector cp(t) is known as the regression vector, 

its parameters the regressors. It has been shown in (Babuska, 1998) that the 

regression surface within the product space may be represented as a series of local 

approximations. 

Through use of a clustering algorithm, it is possible to derive local 

approximations to this regression surface. Further, through the use of the 

eigenvalues of the cluster covariance matrix given by 

F = :L:=l(f..l.i) r (zk -vi )(zk -vi )T 
1 

2::=1 (f..l.i.k r (5) 

it is possible to interpret these local models and subsequently derive a fuzzy rule 

to represent this local approximation. In repeating this process for each data 

cluster, a global model of the system may be generated. Previous work has 

considered the accuracy of this approach in comparison to neural _networks and 

'white box' models, and results have demonstrated that this local approach to 

modelling can improve results [ 11]. 

The rule extraction process . is briefly described here for completeness, however 

the reader is directed to [2] for more complete discussion. 

It has been shown that a useful form of the fuzzy consequent is the affme linear 

form [22) of the Takagi-Sugeno (TS) model, in which rules are structured 

according to (6): 

(6) 

where ai is the so called parameter vector and bi is an offset. Within the product 

space ( JRP+lxN) the affine Takagi-Sugeno consequents may be viewed 

geometrically as hyperplanes. The antecedent of the rule defmes a fuzzy validity 
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region for the corresponding hyperplane. The output y of the TS model ts 

computed using the fuzzy mean formula 

:L:, ,8, (x) y, 
y= K 

L ,.,.B, (x) 
(7) 

where K is the nmber of rules in the rule base. /3; ( x) represents the degree of 

fulfilment of the i 1
h rules antecedent, which is simply a measure of the degree of 

fulfilment of x in the fuzzy set A; and is given by 

(8) 

Since it may become difficult to interpret multidimensional fuzzy sets, the 

antecedent proposition is commonly defined in a conjunctive form, given by a 

series of single dimensional fuzzy sets combined with simple propositions. In this 

case the degrees of fulfilment are calculated as {3, ( x) = J1 Ai,l (x1) 1\ . .. 1\ J1 Ai.P (xP), 

where the min operator ( 1\) may be replaced by alternative T -norms. In this case 

the model output is calculated 

(
K T} K T -y= I y.(x)a. +I r.(x)?.=a (x)x+b(x) 

. 
1 

I I . 
1 

I I 
l = l = 

(9) 

where Y; is the normalised degree of fulfilment, given by 

(10) 

and a ( x) and b ( x) are input dependent parameters, given as convex linear 

combinations of the constant parameters a; and b; through the following 

relationship 

(11) 

(12) 

The regression structure discussed previously (4) may be expressed in this pseudo 

linear form according to the following 
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n. n, 

y(k + l)= ~>i.jy(k- j +I)+ I,b;,ju(k- j + l)+c; (13) 
j=l j= l 

The distance measure of the clustering algorithm, given by 

(14) 

may be inverted and used to provide the degree of fulfilment of each rule for 

given data. One possible choice of inversion is to use the same equation as for the 

clustering algorithm 

(15) 

which takes all rules into account and calculates the degree of fulfilment of one 

rule with respect to the others. Once the antecedent parameters have been 

calculated, the consequent parameters require derivation. There are two ways in 
.. 

which the fuzzy consequent parameters of the affine TS model may be calculated 

from the data clusters. The first is based around the geometric interpretation of 

the cluster, using the covariance matrix [3]. The alternative approach is a local 

least squares optimisation method based on the derived fuzzy partition matrix. 

The former method is discussed here. The eigenstructure of the cluster covariance 

matrix loosely describes the shape of the cluster. The shortest eigenvector 

describes the normal vector to the hyperplane spanned by the remaining 

eigenvectors. The shortest eigenvector is defined as «<>;. Based on the dataset 

ZN = [ xr ,/] and the cluster prototype, the consequent may be described 

implicitly by 

«<> . • (zN- v.) = 0 
t l 

(16) 

The shortest eigenvector and the cluster prototype may be divided into a vector 

corresponding to the regressor x and a scalar corresponding to the regressand y . 

i.e. 

(17) 

7 



(18) 

may now be rewritten according to 

( 19) 

After simplification 

} ( x )T 1 T 
Y = - - <1> . x +- <1>1 v. 

<I>~ I <I>Y I 
I I 

(20) 

'"---v---' 
aT b, 

which is directly equivalent to the affme Takagi-Sugeno model consequent. 

This approach was employed in the identification of the model given in (3). A 

regression structure of [3 1] was used with 5 clusters. Of importance to the 

identification of the model is the selection of the input signal, in this case a 

stepwise random signal was used as shown in figure 1. The percentile variance 

accounted for (V AF) measure, which provides a measure of model tracking 

accuracy was calculated as 99.2% which indicates good model accuracy. 

!Figure 1 

The model structure selected uses the applied voltage as the regressor. 

Performance increases in terms of tracking error and total root mean squared error 

may be gleaned if the model also uses the motor load current within the regression 

structure [11]. However, from the perspective of this work, absolute error of the 

model is not significant, only the ability of the model to track the regressand. 

Computational burden is therefore reduced by accepting a marginal degradation in 

the model performance and only using the single regressor. 

3. Model Extraction 

The work in [ 16] presents a method whereby the fuzzy clustered model may be 

represented as a local linear state space model. The following is an overview of 

the method adopted. The regression vector, which is represented by t:1 is given by 

8 



An affine Takagi-Sugeno rule may be represented by 

(22) 

(and 11 are vectors of polynomials in the previous sample y(k-1), and (J the 

offset. K1 is the number of rules of the fh offset: The model output is calculated 

as the degree of fulfilment J111 ( £1") for each antecedent variable and the resulting 

degrees of fulfilment (/3/i) for every rule are combined with the linear 

consequence according to the following 

p 

/3/i (cl)= njlih (clh) (23) 
h=l 

Once the Takagi Sugeno model has been derived, local linear state space models 

can be calculated according to the following, 

. (k !)- L:1J11i(x1 (k))·Yu(k+l) 
Yi + - K L1:1 Jlli (XI ( k)) 

(24) 

(25) 

where 

(26) 

(27) 

and 

(J' = r.:1Jl11 (XI (k )) .(Jii 

. 
1 

L~~Jlu(xl(k)) 
(28) 

In the case here, previous inputs are not considered and the A, Band C matrices of 

the model are thus simplified, the matrices are given 
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'I~ I ,1~2 sl:a. 
I 0 0 

A= ,;,1 (;,2 s;,a. (29) 

0 

,~,I ,~,2 s~P. 

T/::1 T/:,2 11:., 
0 0 

(30) 

T/~,1 T/~.2 T/~.~ 

C=[~ 0 ~] 
0 ... I 

(31) 

4. Integral. Action Sliding Mode 

As described in the introduction, the sliding mode is traditionally associated with 

a switching action which is discontinuous about a prescribed surface within the 

state space. Practical implementation of a ·sliding mode controller frequently 

leads to a phenomenon known as chattering. This is often due to the excitation of 

previously unmodelled system dynamics. Many solutions have been proposed to 

prevent chatter. Perhaps the most famous of these is the boundary layer approach 

first proposed by [ 19]. The approach involves replacing the discontinuous 

switching function with an equivalent continuous function. The implication of 

changing the switching function is that the system state is no longer constrained to 

remain on the prescribed sliding surface, but merely to. remain within a certain 

vicinity of it. It follows directly that the .equivalent system dynamics will be to 

some extent affected by any matched disturbance to which the system is subjected 

[20]. 

It was recognised by Ryan and Carless [ 17] that this additional degree of freedom 

afforded by the boundary layer at the manifold could be used to improve the 

. controller robustness to so called unmatched disturbance, i.e. those disturbances 

which do not act within ~e system control channels. The controller that was 

subsequently developed was theoretically elegant and iii.tuitively appealing, 

lO 



however it was conservative. By considering a subse.t of the disturbances 

originally used in [ 17], the controller was made less conservative in [21]. The 

fundamental extension of these controllers over the traditional controllers is the 

introduction of an additional integral action state. This controller state seeks to 

reduce the steady state error asymptotically to zero. Within this work the design 

approach is adopted in order to ensure zero steady state controller error. 

However, it was also recognised in [12], that if the system uncertainty can be 

reduced, then controller performance may be correspondingly improved. The 

principles associated with the design of a sliding mode controller with integral 

action are considered next. As alluded to in the introduction, the ideal slidmg 

motion is control independent and defined only by the choice of sliding surface 

provided that certain assumptions about the system disturbance hold [6]. In terms 

of controller design it is convenient to convert the system equations into a suitable 

canonical form. In this form the system is decomposed into two connected 

subsystems, one acting in within the range space of matrix B and the other within 

the null space of the manifold S. In terms of design, the problem then becomes 

one of state feedback given desired system eigenvalue locations. Since by 

assumption the matrix B is of full rank, there· exists an orthogonal matrix 

T, E IR""" such that 

(32) 

where B2 E IRmxm and IS non-singular. Let z = Tx and partition the new co

ordinates so that 

z = [::] (33) 

where z1 E IR."-m and z2 E IRm. The nominal linear system can then be written as 

(34) 

(35) 

commonly known as the regular form. Equation (34) is referred to as describing 

the. null-space dynamics and equation (35) as describing the range-space 

dynamics. From the perspective of the extracted local models, it is convenient to 

11 



first convert the matrices to the controllability canonical form, thus the system is 

guaranteed to be in the regular form for subsequent design. Suppose the matrix 

defining the switching function (in the new co-ordinate system) is compatibly 

partitioned with z as 

(36) 

where S1 E IR'"x(nxm) and S2 E IR'"xm. Since SB = S
2
B

2 
it follows that a necessary 

and sufficient condition for the matrix SB to be non-singular is that the 

. determinant of S2 is non zero. It is reasonable to assume that this condition will 

be met by design. During an ideal sliding motion 

(37) 

and therefore formally expressing z2 (t) in terms of z1 (t) yields 

(38) 

where M= s;•s •. Substituting into (34) gives 

(39) 

z2 ( t) is considered to play the role of the control action. The switching surface 

design problem can therefore be considered to be one of choosing a state feedback 

matrix M to stabilise the reduced order system ( A11 , A1 J. 
At this point the unit vector approach is introduced. Consider an uncertain system 

ofthe form 

x(t)=Ax(t)+Bu(t)+ f(t,x,u) (40) 

where the function f:JRxlR"x!R'" ~IR'" which represents the uncertainties or 

non-linearities satisfying the so-called matching condition, i.e. 

f(t,x,u) = B~ (t,x,u) (41) 

where ~ is unknown but satisfies the following inequality 

11~ (t,x,u )11 $ k1 11ull+a(t,x) (42) 

12 



where I > k1 ;:: 0 is a known constant and· a ( •) is a known function. The proposed 

control law comprises two components; a linear component to stabilise the 

nominal linear system; and a discontinuous component. Specifically 

u(t)= u1 (t)+u. (t) (43) 

where the linear component is given by 

(44) 

where <I> is any stable design matrix and A = SB. The non-linear component is 

defmed as 

( ) ( ) 
_1 . J;s ( t) 

u. t =-p t,x A ~~~s(t)il+£ foraliS;eO (45) 

where P2 is a symmetric positive definite matrix that satisfies the Lyapunov 

equation 

(46) 

and the scalar function p(t,x), which depends only on the magnitude of the 

uncertainty, is any function satisfying 

(47) 

where y>O is a design parameter. The radius of the boundary layer ( £) may be 

shown to be.dependent on the actuator time constant and inversely proportional to . 

the available control resources. In this equation it is assumed that the scaling 

parameter has been chosen so that k1K"(A)<l. Where K"(•) represents the 

spectral condition number. . It can be established that any function satisfying 

equation ( 4 7) also satisfies 

p (t,x);:: 11~ (t,x,u )11+ r (48) 

and therefore p ( t, x) is greater in magnitude than the matched uncertainty 

occurring in this equation. It can be verified that V ( S) = sr J;S guarantees 

quadratic stability for the switching states and in particular 

13 



(49) 

This. control law guarantees that the switching surface is reached in finite time 

despite the disturbance or uncertainty and once the sliding motion is attained it is 

completely independent of the uncertainty . 

. Now consider the introduction of additional states x, E JR. P satisfying 

x, = r(t)- y(t) (50) 

where the differentiable signal r (t) satisfies 

r(t)= r(r(t)-R) (51) 

With r a stable design matrix and R a constant demand vector. Augment the states 

with the integral action states and define 

.x=[:] (52) 

The associated system and input distribution matrices for the augmented system 

are 

- [0 A= 
0 

(53) 

assuming the pair (A, B) is in regular form, the pair (A, B) is also in regular 

form. The proposed controller seeks to induce a sliding motion on the surface · 

(54) 

where S and S, are design ·parameters, which govern the reduced order motion. 

The hyperplane system matrix and ~ystem matrix are partitioned as 

S=[-t ~] (55) 

(56) 
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and assume A = SB is non-singular. If a controller exists which induces an ideal 

sliding motion on S and the augmented states are suitably partitioned, then the 

ideal sliding motion is given by 

x, (t) = ( A11 - A,,M )x, (t )+ ( A,s;'s, + B, )r(t) (57) 

. . T 

where M= s;'s, and B, = [IP Onxp] . In order for the hyperplane design 

method to be valid, it is necessary for the matrix pair { A11 , A
12

) to be completely 

controllable: The overall control law is then given by 

u = u1 { .i, r) + u" { .i, r) 

(58) 

where the discontinuous vector u. is given by 

u"(s,r)={-p,(uL,y)A-
1 

if Sx7oS,r 
0 otherwzse · 

(59) 

It follows that, in terms of the original co-ordinates the control vector u1 is given 

by 

(60) 

with gains defined as 

L =-A -I (SA -<I>S) (61) 

(62) 

(63) 

The parameter S, can take any value and does not affect the stability of the closed 

loop system . 

. 5. Model Following Sliding Mode Control 

Linear model following COIItrol is an efficient control method that avoids the 

difficulty of specifying a performance index which is usually encountered in the 

application of optimal control tci multivariable control systems. The model that 

specifies the design objective is part of the system. However, Linear Model 
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Following Control systems are inadequate when the plant is subject to large 

·parameter variations or disturbances. This has led to the development of so called 

adaptive model following control schemes. There are two approaches to the 

design of adaptive model following systems using stability conditions. The first is 

based upon Lyapunov functions (e.g. Shack cloth and Butchart, [ 18]), while the 

second is based upon the hyperstability concept (e.g. Landau, [ 13]). Both 

approaches guarantee that the error tends to zero as t ~ "" but neither offer any 

direct quantitative design of:the error transient. The controller to be presented 

here presents a novel approach to· the integration of the fuzzy model to the model 

following control theory, such that the advantages implicit in usmg a more· 

accurate model are attained. 

In model following systems, the plant is controlled in such a way that its dynamic 

behaviour approximates that of a specified plant model. The model plant is part 

of the system and it specifies the design objectives. The adaptive controller 

should force the error between the model and the plant states to zero as time tends 

to infinity, i.e. lime (t) = 0. The plant and the model are described by ,....,_ 

(64) 

x, (t) = A,x, (t )+ B,u, (t) (65) 

with the error vector given as 

(66) 

It is assumed that the pairs ( AP, BP) imd (A .. , B.,) may be stabilised and that 

A,is a stable matrix. Differentiation of (66) and insertion of (64) and (65) 

provides the following 

t (t) = A .. x, (t)+ B .. u, (t )- APxP (t)- BPuP (t) (67) 

Further, subtraction of the term Apxm yields 

(68) 

[t follows that perfect model following will result if 

(69) 
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rearranging (69) proyides the following 

(70) 

insertion of (70) into (69) yields 

Clearly, in order to satisfy (69) for all x P and u .. the following equalities must 

hold 

(72) 

(73) 

The equations (72) and (73) are the conditions for perfect model following as first 

described by Erzeberger [8], Equation (70) is the equation for implementing the 

control. This control law leads to a controller response which is determined by 

the eigenvalues of the model. Since the eigenvalue spectrum of the model may 

not be determined by the designer the control response might not yield acceptable 

results. Later, Chen [5] proposed a small modification to the controller, by 

subtracting the term APx'" from (67), this yields 

E (t} = A .. E (t}+ {A,- AP }x .. {t}+ Bmum (t}- BPuP (t) (74) 

From equation (74), it is evident that choosing a control action of the form 

(75) 

with 

(76) 

(77) 

will lead to perfect model following if it is possible. Substitution of the control 

law (75)-(77) into (68) leads to 

· E (t) = AmE(t)+ (A,- AP )xP (t)+ Bmum (t)-BPKE (t )

BPB; (A,- AP }x,. (t }- BPB;B~u .. (t) 
. (78) 
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under the assumption that conditions (72) and (73) hold, then (78) simplifies to 

(79) 

In contrast to the controller proposed by Erzeberger [8], the controller proposed 

by Chen [5] can have an arbitrary set of eigenvalues determined by the gain 

matrix K, since the tuple { Am,Bp) is controllable. Since (79) is identical to the 

optimal state regulator problem [I], then the gain matrix K may be chosen to 

optimise a quadratic performance index in £ . Hence, the error settling rate!) may 

be controlled. Additionally, if only partial state feedback is possible then perfect 

model following is still possible [5]. 

Model follo~ing control systems were extended to incorporate a discontinuous 

control component in [25]. Following this original design, define an error 

dependent switching function 

S(t:)=St:(t) (80) 

which gives rise to a hyperplane in the error space 

S, ={t:E JR" :St:{t)=O} (81) 

As seen in the previous chapter, during sliding the error state will satisfy the 

equation 

S£(t)=O (82) 

Differentiation and substitution of (74) gives 

(83) 

If by design the matrix product SB is non-singular, then the equivalent control 

may be determined as 

(84) 

substitution of the equivalent control into the model following control system of 

(74) gives 
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It is assumed that the plant and model dynamic equations satisfy the perfect model 

matching conditions. Comparison of these equations with the invariance 

conditions discussed by Drazenovic [6], it can be seen that the two coincide. 

Therefore if xP and um are considered disturbances to the error dynamics then the 

perfect model matching conditions guarantee that the behaviour of the sliding 

mode controller is insensitive to these disturbances. If the conditions of (72) and 

(73) hold, then equation (85) reduces to 

(86) 

A unit vector type control is now introduced as in the work in [4], a discontinuous 

unit vector control is introduced according to 

with 

u, (t )=-(ss)-' (SA,- <I>S)e (t) 

-1 ~S(t) . 
u. =-p(t,t:)(SB) II~S(t)ll 

(87) 

(88) 

(89) 

It was pointed out in [5] and later in [26] that the conditions of (72) and (73) may 

be met if 

(90) 

(91) 

It follows that there exist compatibly dimensioned matrices such that 

(92) 

B G=B p m (93) 

This result may be used as an alternative to (77), with 

(94) 

to also achieve perfect model following. The complete model following control 

scheme is then given according to 
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u(t) = u1 (t )+ u. (t )+u2 (t) (95) 

6. Simulation studies 

Within this work, the derived controllers employ adaptive controller gains. For 

the sake of clarity, the controller signal flow diagrams illustrate the adaptive gains 

by means of a shadowed box with an arrow drawn across it. The box. entitled 

"update controller parameters" is the part of the algorithm which is responsible 

. for making these changes. 

· 6.1. Integral Action Control 

A benclirnark sliding mode controller with integral action (SMCI) of the form 

previously discussed was developed to control the motor model of equation (3), 

using the nominal parameters of Table I. All simulations were carried out using 

the actual parameters shown in Table 1. 

The principle of the proposed controller is illustrated in Figure 2. The controller 

uses the design approach ·outlined in the previous section," thus, stabilising 

conditions· of the controller remain intact. Importantly, the extracted model is 

used to provide enhanced information to the ·controller, so that the controller may 

be made to adapt to local operating conditions of the system. The controller is 

therefore referred to as a Fuzzy Adaptive Sliding Mode Controller (FASMC). 

I Figure 2 I 
both sets of controller eigenvalues were selected to provide unity damping ratio at 

22rad/s. The controllers were driven over a siml)lation sample period of 70 

seconds. Results are illustrated in Figure 3. 

I Figure 3 

It can be seen that in terms of transient response, there is· little to differentiate 

between the two controllers. However, consideration of the corresponding control 

effort (Figure 4) shows that that the high gain requirement of the SMCI has indeed 
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been relaxed by the FASMC. Additionally, the £-vicinity of the FASMC was 

manually adjusted to be 6 times smaller than the corresponding SMCl before 

chatter occurred. 

jFigure 4 

A second test introduced unmatched disturbance to the system and the fuzzy 

model retrained to incorporate the uncertainty, the disturbance is analogus to a 

torque being placed on the motor and forcing rotation in the contrary direction to 

the demand, which changes simultaneously with the step increase in load. Figure 

5 illustrates the effect of the disturbance on the SMCI, it can be seen that the 

disturbance significantly effects transient performance. Because of the integral 

action ofthe SMCI, the system is able to achive asymptotic tracking as discussed 

within the literature. . The FASMC, on the other hand, recovers the system to the 

steady state taking only an additional 0.4 seconds when compared to the system 

without disturbance (Figure 6). The obvious error in the initial controlled state 

trajectory is due to the lack of large controller gains, in the event that the system 

were subjected to such a stringent test it would be necessary to increase the 

· nonlinear control gain to circumvent this problem. 

jFigure 5 

jFigure 6 

6.2 Model Following Control 

As in the previous case, a benchmark controller based on the traditional theory is 

developed (Model Following Sliding Mode Controller (MFSMC)). Within this 

work, three models based on the structure of (3) are assumed. First the model 

based on the norninaLparameters of the motor; this model is assumed to be 

known, since the parameters will be specified by the manufacturer. Second, the 

model based on the actual plant; these parameters will be assumed to be unknown, 

but their variation from the nominal plant parameters are bounded. Finally, the 

third model is specified based on the desired performance of the system, it is this 
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model which the plant will be forced to follow. The three sets of parameters are 

provided in Table I as nominal, actual and demand respectively. 

In the ideal case, the plant and nominal models will be identical. In this case, the 

invariance condition leads to a rejection of uncertainty between model and plant 

and perfect model following will result. Figure 7 illustrates the result of applying 

the model following sliding mode controller to a system whose parameters are 

perfectly known. In the simulation study, a demand in speed is applied which for 

the first four seconds is one, for the remainder of the time the demand is minus 

one. For the purposes of simplicity, the demand system is treated in the open 

loop, therefore the model armature speed which is not equal to the demand is a 

result of the motor steady state gain. Nearly perfect model following is achieved 

using the range space eigenvalue assignment {-100 -10+ j -10- j}, with the 

null space pole set to { -2.5}. 

!Figure 7 

In the case of model following the invariance conditions are used to reject errors 

between the demand model and the nominal model. In the practical case, there 

will also be disparity between the nominal and plant models and an error in the 

model following will result (Figure 8). The magnitude of this error will be 

entirely dependent upon how much in error of one another the models are. 

!Figure 8 

It follows that provided a fuzzy model can be found which reduces the uncertainty 

of the plant, errors due to model disparity will be reduced when model following. 

The structure of the fuzzy modi:! based model following sliding mode controller 

(FMMF) is shown in Figure 8. 

!Figure 9 

!Figure 10 
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Uncertainty in the plant is introduced and the two controllers are resimulated. The 

results are illustrated in Figure 9 (MFSMC) and Figure I 0 (FMMF). It is 

immediately obvious that the two controllers now lack the control chatter of the 

ideal case. This is because the controllers are not achieving the sliding mode, 

merely attempting to converge to it. As anticipated, perfect model following is 

not achieved. The control effort of the FMMF controller is significantly reduced 

. in amplitude over the MFSMC, and approximates the amplitudes associated with 

the ideal case. It follows that the task of the fuzzy model and the model following 

controller is identical in that the root mean square (RMS) error between the model 

and the plant should be minimised, whist the percentile variance accounted for. 

should be maximised. In the ideal case the RMS error will be zero and the V AF 

will be I 00%. Constraints in simulation do not permit the ideal case since the 

switching frequency of the discontinuous control component is theoretically 

infinite. However, an approximation to this ideal case, at a sarriple frequency of 

I kHz in simulation ·provides the results of model following shown in Table 2. 

!Table 2 

7. Conclusions 

. Two new controllers based on the synergy of sliding mode design approaches and 

nonlinear black box modelling have been presented. Performance of the 

controllers has been compared with that of benchmark sliding mode controllers 

and the controllers response have been found to be favourable .. The controllers 

have demonstrated obvious advantages in using fuzzy logic in conjunction with 

sliding mode. In the case of the frrst controller it is seen that since the system 

uncertainties can be significantly reduced tluough use of fuzzy identification and 

linearisation techniques, the feedback control gains may be reduced, which in turn 

leads to a control effort of reduced magnitude. This leads directly to a reduction 

in the radius of the boundary layer, providing improvements in the fmal 

achievable tracking accuracy of the system. Since the fuzzy model does not 

discriminate between matched and unmatched disturbance, but simply 

incorporates them into the model, the F ASMC also enjoys improvements in the 

transient control performance when the system is subject to unmached 

disturbance. The model following controller is based on the premise that there 
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will be disparity between the nominal and actual systems. This will be true iri all 

practical cases. Since the sliding mode offers the invariance property to the 

rejection of errors between the nominal system and demand system, any errors 

which occur between nominal system and plant will not be formally considered 

within the controller. It is therefore necessary to introduce the fuzzy model in 

place of the nominal model in order to minimise uncertainty within the plant. 

This approach is shown to significantly reduce the errors between the plant and 

demand transient performance. The controller presented here is shown to 

significantly outperform the traditional model following sliding mode controller 

when plant uncertainty exists. 
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Figure I: Model output vs System output 

Figure 2: Principle of FASMC 

Figure 3: System outputs over 70seconds 
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·Figure 4: System control efforts 

Figure 5: SMCI response to unmatched disturbance 

Figure 6: FASMC response to unmatched disturbance 

Figure 7: Near Perfect Model Following 

Figure 8: Principle ofFMMF 

Figure 9: Model Following with an Imperfectly Known Plant 

Figure 10: Fuzzy Model Following with an Imperfectly Known Plant 

Parameter Value Value Value 

(Nominal) (Actual) (Desired) 

R. (.Q) 1.2 1,5 0.66 

L(H) 0.05 0.09 0.066 

Ke (Vs/rad) 0.6 0.6 0.1 

Km(NmA"') 0.6 0.6 0.84 

1 (Nmsl) 0.135 0.15 0.2 

B(Nrnlradls) 0 0.02 0.02 

Table I: Motor parameters 

Measure Ideal Unknown Plant Unknown Plant 

Case (MFSMC) (FMMF) 

VAF 99.98% 84.83% 98.84% 

RMS 0.039 1.63 0.29 

Table 2: Performance Measures for the Model FolloWing Controllers 
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APPENDIXB 

DATA SHEETS AND CIRCUIT DIAGRAMS 

Part A: Data Sheets 



maxonmotor 

Digital Encoder HP HEDL 9140 
500 Counts per turn, 3 Channels, with Line Driver 

ma x.45.5 

Order Number ~ 

-1137959 j ____ l __________ ~ __ _J 

+ Motor Order Number 

- maxon EC motor 045 mm 
brushless, 150 Watt."'¥- Of to-circuit"" 
Details see page 107 

- maxon EC motor045 mm 
bnlshless, 150 Wat1, "'¥- Of to-drcuit
Oetails see page 107 

- maxon EC motor 045 mm 
brushless, 150 Watt, "'¥- Of to-drcur 
Oetals see page 107 

I 
maxon EC motor 045 mm 
brushless, 150 Watt. -v- Of to-drcur 
Details see page 107 

maxon EC motor 045 mm 
brushless, 250 Wat1, "'¥- Of to-circuit"" 
Details see page 108 

maxon EC motor 045 mm 
brushless, 250 Watt, "'¥-or to-<:ircur 
Details see page 108 

maxon EC motor 045 mm 
brushles$, 250 Watt. -v- or to«cur 
Details - page 108 

maxon EC motor 045 mm 
bnlshless, 250 Watt. -v- or t.-drcult"" 
·Details see page 108 

maxon EC motor 045 mm 
bnlshless, 250 Watt. -v- or to-drcur 
Detail see page 108 

maxon EC motor 045 mm 
blushless, 250 Watt. -v- or to~ 
Oetals - page 108 

maxon EC motor 060 mm 
blushless, 400 Watt, "'¥-or to-drarir 
Details - page 109 

maxon EC motor 060 mm 
brushless, 400 Wat1, "'¥- or to-circuit"" 
Details see page 1 09 

Technical Dm 

Supply -.g. 5V:t10% 
Oulpul...,... TTL~ 

Number "' cNnnels 2 + 1 Index Chwonel 

Counlo pet lum 500 ,_ .... (~ IIO"e 

Logic- wldlh. !Nn.45"e 
Rise lime" 
"(lrplc:III.C c.. • 25 pF, Ro. = 11 w. 25.C) 180ns 
f ....... 
"(lrplc:III.C C.. .! 25 pF, Ro. = 11 W. 25•C) 40ns 

178 --

Index PIAN wlclll (t)'pic;8l) 90"e 

Oponling......,........ ..... 0/+70"C 

Moment ollnefte "'code- so.egcm> 
Mu aocelerallon 250'000 rac1 r 
Oulput CUITenl per c:Nnnet !Nn.-1mA,max.51M 

Mu~hqueney -.100kHz - ltodl ........ 
c::J S.....wd ...,.._, 

~ SpecUI.,....._ (on teQUeSI!) 

CVde C • 36Cre 

PuiM p. 180" 

I I J I 
I I I -- • . 

Channel B 

~j 11 
If, 1:1'. 

Channel I 

~ ~ js-.j'.,.,.,a.ase· 
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Planetary Geamead 
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Details see page 157 

Planetary Geamead 
042 mm, 2.94-14.7 Nm 
Details see page 157 

Planetary Gearflead 
062 mm, 8-50 Nm 
Details see page 158 

Planetary Gearflead 
042 mm, ~.94-14.7 Nm 
Details see·page 157 

Planetary Gearflead 
062 mm, 8-50 Nm 
Oetals see page 158 

Pin .uoc.tlon 

Cllble- z Vcc5VDC 
Cllble brown = GNO 
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Cllble yelow z Channel A 

Cllble grey = Channel a 
Cllble pink z Channel B 

+Brake 

a ... ke028mm 
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OetaU page 188 
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DetaM page 188 
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maxon motor 

maxon EC motor CE 
045 mm, brushless, 250 Watt approved 
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:G &+-t'--~·· ·-------------'4 ------
& & 

max.45.5 33-0.6 

Motor 'JYpe: 
maxon EC motor 045 mm, brushless ... 

1 Asaigned ,..,_. rMing 

2 Nominal volllge 
3 Noloed~ 
.. .SIIillll!lque 
5 SpeecMorque gradienl 

.• Jfo'IDidOiftlllili 
7 'fennnl...-...nce piiUe"' .,_ 
• MR.~ lpeed 
9 Mex. conllnuoul CUim1l at 5'000 rpm 

10 ....... _..._.torque at 5'000 rpm 
11 Mex.~ 
u "''ixque COftll8nl 
13 Speed COftll8nl 

14 ~ ""- COftll8nl 
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181 ,..,._~IPNM_IQ__.l 
17 Thennll...-....::e ~~ 
-~,..,...._~ 
111 ~ ""- COftll8nl winding . 

~lmecaniiW11811Mor 

1.5 -0.1 

max.2.5 

101.5-0.5 

max.144 

Order Number 
Motor Data 

w 250 250 
~ 24.00 36.00 
rpm 5300 6300 

mNn1 2250 . 3000 
rpnlmNm 2.40 2.10 

• fM 05 370 
Ohm 0.-48 0.64 
rpm 12000 12000 

A 7.10 6.00 
mNm 263 300 

"' 83.0 85.0 
mNmiA 43.3 54.0 

rptfN 220 175 ... 5.00 5.00 
gaa2 209 209 

mH 0.17 0.26 
KIW 1.70 1.70 
KIW 

250 250 
-48.00 24.00 
6500 9100 
3250 3910 
2.00 2.34 
290 . 11311 
1.04 0.15 

12000 12000 
4.70 12.5 
306 286 
65.0 642 
71.0 25.0 
135 382 
5.00 5 .00 
209 209 
0.44 0 .06 

1.70 
1.10 
16 

850 

Resolver 
026mm, 10V 

Oelalls page 185 

Dlgltal-Enc:oder 
HPHEOl.t140 

500 CTP, 3 chan. 
Details page 178 

B.-.ke 
0 28 mm. 24 VDC 

0.4Nm 
Details page 188 

deep 
1iel 

dp• profondeur 
prolundldad 

250 250 
36.00 48;00' 
11000 11100 
5260 5610 . 
2.10 1.97 
1062 e1ec · 
0.21 0.35 

12000 12000 
10.6 8.20 
303 304 
85.2 85.6 
312 41.0 
306 233 
5.00 5.00 
209 209 
0.01 0.15 
1.70 1.70 
1.10 1.10 
16 16 

850 850 

• Stock program 

0 Standard program 

• Specfial program (on request!) 

e Motor c:onnec:tor Sa1I'Mid cable gland PG7 
• Axial pay Id llxllillo.cl < 20 N 0 mm 

> 20 N max. 0.14 mm 
• Prelollded baU bearings 
• Max. ball bearing lo8ds 

axial (dynamic) 20 N 
=~mm from flange) 180 N 

force (stallc) 170 N 
same as 8bove. shaft suppolted 5000 N 

• Radial play/ball bearings 0.02 mm 
• Amblenllempef81ure 1110ge -20f+12s·c 
• Max. permiSsible winding lempefalln +125"C 
e Weight of mo4Dr 1150 g 
e ProlediDn ID IP54 
• Va"-lsted in the labia- nominal. 

c.ble Connec:tlon 
Cable 1 ·----······ mo4Dr winding 1 
cable 2 ····-··--· mo4Dr winding 2 
Cable 3 --·········· moiQr winding 3 cable w1111e ••••••• Hal811n1101' 3 
cable brown .... - Hal sensor 2 
cable grMO --··· HaiMOSOr 1 
cable ye1ow -··· GNO 
Cable ur-y ---·· VHol 4.5+24V DC 

I• Opllons: Temperature monlloltng (PTC), 
. motor oonnoc:tof with plug 

,..,.. __ ,..e.jodlr>.._ 



Part B: Circuit Diagrams 
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Figure B.2: Interface to provide analogue speed signal from 7 bit input 
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Figure B.4: Interface providing amplification of speed signal and direction information 
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APPEND/XC 

Motor Models and Supporting System Identification Theory 

Part 1: The Space Phasor Model 

According to Chapter 3, (Vas, 1993), the stator current space phasor, ~ in stator eo-

ordinates may be defined as 

.,., 2 (· . 2 • ) 
1 =-· 1 +a·l +a ·1 s 

3 
a b c (C. I) 

The superscript s is used to denote stationary dq variables. From (3.89) and (3.84) the 

phase a flux linkage Aa is given 

(C.2) 

The inductance definition given in (3.85) yields 

A =L ~(T)+~L ~(T)+~L ~(T'e218")+L ~(i'e18")+L ~(i 'e18")-~(JL 'i ei8
.,) a si S 2 0 .r 2 2 s aJ j sdr dr sqr qr 

(C.3) 

The stator flux space phasor X. is: 

(C.4) 

Applying the structure of (C.2) to Ab and A.c allows the re-expression of (C.4) 

Multiplying (C.5) by ~-JO., to obtain: 

The relationships 



(C.7) 

(C.&) 

are space phasors in rotor co-ordinates (aligned with rotor d axis). With (C.7) and (C.&), 

(C.6) becomes: 

1 (L 3 L J~ 3 L ~' L . ' L . ' "L . ' 11.,= si+- 0 1s+- 21s + sJ 1J + sd 1d +j sq 1q . 2 2 ' ' ' ' 

Next, the stator phase equations in stator co-ordinates are: 

r i -V =- dA.a 
·'a a dt 

ri -V =- dA.b 
s b b dt 

. dA.c . 
r1 -V=--

s ,. c dt 

These may be translated to space phasors as 

- s -s di s d (- 0 ) 0 di - 0 ri -V =--s-=--A.e1 " =-e1 "-s-J·mA.e1 " 
s ·' s dt dt s dt ' s 

The final form of (C.I3) is: 

dO., 
(j) =--

' dt 

and 

(C.9) 

(C.! 0) 

. (C.ll) 

(C.I2) 

(C.l3) 

(C.I4) 

(C. IS) 

(C.l6) 

(C.l7) 



Coincidentally, these expressions are identical to those for the induction machine. Only 

the flux definition (C.l3) is different. 

(C.l8) 

(C.l9) 

(C.20) 

with 

(C.21) 

(C.22) 

Ldm and Lqm are called the d - q magnetising inductances. The rotor to stator currents 

may be reduced to . 

. L 
!..!_ - _!!.__ - K - - f i/ Ldm 

(C.23) 

(C.24) 

(C.25) 

(C.26) 

(C.27) 

(C.28) 

(C.29) 

(C.30) 



Magnetic saturation may be accounted by unique A..Jm(im) and Aqm(im) functions to be 

either calculated or measured. The stator equations (C.I4) and (C. IS) in dq co-ordinates 

become 

(C.31) 

(C.32) 

Adding the rotor equations in rotor dq co-ordinates 

(C.33) 

(C.34) 

(C.35) 

(C.36) 

(C.37) 

(C.38) 

The torque, Te, is: 

(C.39). 

Finally, the d-q variables are related to the abc variables by the Park transformation: 

2;r _,_ 
a= e 3 

(C.40) 

(C.41) 



Notice also that all rotor variables are reduced to the stator: 

V' 
V = __j__ 

I 
KJ 

' r 
r =-f
I K 2 

f 

' rd 
r =-'-
d, K 2 

d 

L ' 
L = _:!!____ 

d,t K 2 
d 

L ' 
L =~ 

qJ K l 
q 

(C.42) 

(C.43) 

(C.44) 

(C.45) 

(C.46) 

(C.47) 

(C.48) 

The motion equation (3.96) is to be added. Like the phase co-ordinate model, the dq 

model is also of 8th order and non-linear but contrary to the phase co-ordinate model, the 

coefficients are position independent. 

Part 2: Additional Model Structures 

Finite Impulse Response (FIR) 

The simplest model is the finite impulse response structure, which corresponds to the 

choice of all monic polynomials within (4.17) equal to one. The model is thus described 



y(t) = B(q-1 ~(t )+ ~(t) (C.49) 

The corresponding predictor is given 

(C.50) 

Or, expressed in regressor form 

.Y(tiB) = ql (t )9 (C.51) 

where the regression vector is given 

q:>(t)= [u(t -l),u(t -2), ... ,u(t -m)] (C.52) 

the corresponding parameter vector is 

(C.53) 

AutoRegression with Moving Average (ARMA) 

The Auto Regression with Moving Average process introduces the noise component to 

the model. In this case, the polynomials set equal to one are D, 8 and F. The regression 

model is therefore 

The regression model is described by 

with 

q:>(t,B) = [y(t -1), .. . ,y(t- n) t:(t,B), ... ,c(t- k,B)] 

the corresponding parameter vector is 

8 = [al' ... ,a" C1' .•. ,ck] 

(C.54) 

(C.55) 

(C.56) 



AutoRegressive, Moving Average with eXogenous inputs (ARMAX) 

A more general form of the ARX model is the ARMAX model that has a structure 

corresponding to polynomials F and D equal to I. In this case, the residuals of the 

estimation are introduced to the regression vector. The regression model is described by 

.Y(tle)= ql (t,e)e 

with 

Q1(t,e) = fy(t -1), ... ,y(t- n) · u(t -I), ... , u(t- m) c(t,e), ... ,c(t- k,e)] 

. · the corresponding parameter vector is 

e = [ai' ... ,a. bo, ... .'bm ci' ... ,ck] 

(C.57) 

(C.58) 

(C.59) 

The inclusion of the C polynomial implies a relationship between the regression vector 

and model parameters, this structure can be described as recurrent, and estimation of . 

model parameters becomes more complex. 

Output Error (OE) 

The Output Error model corresponds to the polynomials A, C and D in ( 4.17) equal to 

one, i.e. 

with 

{O(t,O) = [.Y(t -110 ), ... ,y(t- niB) u(t -1), ... , u(t- m)] 

8=[- fr, ... ,-J, b0 , .•• ,bJ 

Other forms 

· (C.60) 

(C.61) 

(C.62) 

Table 4.1 provides details of some linear black-box model structures not discussed above. 



Table 4 I· Black-box model structures .. 

Structure Name Polynomials set equal to I 

ARARX F,C 

ARARMAX F 

BJ (Box Jenkins) A 

Part 3: A Discussion of the Bias-Variance Tradeoff 

Bias and Variance 

Revisiting (4.11), the model of highest quality may be described by 

e.(m)=arg minv(e) 
8 

(C.63) 

in this case m is used to describe the dimension of the parameter vector. The vector 

B. (m) will depend on the properties of rp. A quality measure will be introduced for a 

given ONas 

(C.64) 

The model may be interpreted as describing the models' expected input output data fit to 

the system, given a new data set with the same regressor properties. ON is the estimate of 

Obased on the dataset ZN (4.7). 

Now assume that the minimisation (C.63) has been achieved and a set ofparameters for 

the estimate 0 N has been Obtained. Jt is aJSO aSSUmed that the model 0. (m) iS 

acceptable, at least in the sense that the model residuals are white noise. (C.64) may be 

expressed as 

(C.65) 

(C.65) approximates to 



V, (m)= Ev(eN ),., ~ + EIIJ(tp )- J(tp,e. (m)~l2 
+ EIIJ(tp,e.(m ))- J(tp, eN 11

2 

Norse 

(C.66) 

Bios Variance 

From (C.66) it can be seen that if the noise component is negligible, then V .(m) can be 

decomposed into two parts, namely one due to bias and the other due to variance of the 

estimation. 

Clearly, 

(C.67) 

In this case, only the bias c<;>mponent will be contained m V,(m). The estimate will 

converge to the best case system approximation, for a given structure and size. Consider 

the parameter vector eN; it will have a covariance matrix describing its deviation from 

the ideal, e. (m). Applying this error to the resultant variation in prediction performance 

(C.68) 

Combining (C.66) and (C.68) 

(C.69) 

The expected loss of estimation accuracy when the model is applied to a new data set is 

given in (C.69). With a loss function defined as per ( 4.11) and ( 4.12), the equivalent 

equation for the expected approximation performance when the model is applied to the 

training data is given 

(C.70) 

Clearly, the potential approximation ability of a given model structure increases with m. 

However, an increase in the number of parameters used leads to a direct penalty within 



the variance contribution. lm:reasing the number ofp:armneters by one (m+ I) is attractive 

since it decreases V. (B(m ))~ however if the decrease is less than ).IN then the addition of 

!:his panunete.r ,-.,·m degmde the overall model pertonnonc-e v. {m). Parameters such as 

these are termed spurious. Often the term ·vve;fit" is used to describe what happens to 

the model when spurious parameters are used. The bias component in (C.66} is 

minimised tor a given pammeter dimension by mi11imising the number of timctions used 

to pnrnmeterise the regressiml vector (i.e. the number of basis fiiDctions inj). A good deal 

of resenrch interest currently focuses upon finding high quality basis functions that are 

c.apabie of function approximation. 

Part 4: Hard, JiUZQ~ and Probabilistic PartitWns 

Hard Partitioning 

hnagi:ne that t.tJe data in Figur-e C. l needs partitioning into two clusters. Clearly~ from tbe 

diagram there are t'WO distinct sets of data { l-,5} and { 8- 12}. There remain two data 

points that do not readily fit either of the clusters satisfactorily. 

9o 0 10 
o ou 

8 0 
12 

I 

'-------- ----------------------------------------------- -- ------------- ---------------------
Figure C.1: A data set in IR 2 

A hard partition may be expressed by the following properties 



c 

UA,=Z (C. 71) 
i=l 

(C.72) 

0cA, cZ, (C.73) 

(C.71) stipulates that all data supplied in Z be collectively contained in the subsets A,. 

(C.72), on the other hand, stipulates that none of the subsets may be empty, or completely 

contain Z. Finally (C.72) ensures that the subsets are disjoint. These conditions may 

instead be expressed in terms of the equivalent logical relationships 

c 

v J.iA, =I 
r=l 

(C.74) 

(C.75) 

O<J.IA, <I, t:::;i:::;c (C.76) 

The degrees of membership of data to a given cluster can be represented in a matrix 

format, denoted V. This matrix will represent hard partitioning, if and only if the 

following criteria, which are follow directly from equations (C.74)-(C.76), are met 

(C.77) 

c 

~>ik =I, (C.78) 
i=l 

(C.79) 

Consider the twelve data points in Figure C.l, the data might be partitioned into two 

subsets by 



I 2 3 4 5 6 7 8 9 10 I I 12 

V= I I I I I I 0 0 0 0 0 0 (C.80) 

0 0 0 0 0 0 

Clearly, the resulting partition matrix is not entirely satisfactory. The problem stems 

from the fact that each data point must be assigned exclusively to a cluster. This may 

lead to misrepresentation ofthe data, in the case of the example above, neither point 6 or 

7 fit closely with the remaining points. Arguably, they would constitute another class of 

the data, however, it will be shown later that each cluster is represented by a membership 

function and unnecessary introduction of additional clusters is unattractive, · Fuzzy and 

probabilistic cluster partitioning may instead be employed to overcome the problems 

associated with hard partitioning. 

Fuzzy Partitioning 

In the case of fuzzy partitioning the requirement 

J.i;k E {0,1}, l::'>i::'>c, l:'>k:'>N (C.81) 

is relaxed, such that any given data may have a real valued membership of between zero 

and one to any cluster, i.e. 

l::'>i::'>c, l:'>k:'>N (C.82) 

provided that its total degree of membership to all clusters is one, i.e. (C.78) remains true. 

The partition matrix could possibly be rewritten 

2 3 4 5 6 7 8 9 10 11 12 

V= I I I I 0.5 0.3 0 0 0 0 0 (C.83) 

0 0 0 0 0 0.5 0.7 

In this case, it can be seen that the data point 6 is accurately represented, since it is 

between the distinct sets of data. However, arguably point 7 is still misrepresented, since 



it is further away from the two clusters than point 6, yet still has an equal effect on the 

clusters. 

Probabilistic partitioning 

The final partitioning method relaxes (C.78), such that the membership of a data point 

does not have to sum to one across the clusters. Instead the less restrictive constraint that 

for all k there exists a value of i such that the membership of data i,k is greater than zero, 

formally 

3i,Jlik > 0, '<lk (C.84) 

The matrix U may now be expressed as 

2 3 4 5 6 7 8 9 10 11 12 

U;, I I I I I 0.5 0.15 0 0 0 0 0 (C.85) 

0 0 0 0 0 0.5 0.2 

The lower degree of representation of either of the clusters is now represented by the 

lower assigned membership. This form of partitioning is also referred to as possibilistic 

partitioning e.g. Chapter 4,(Krishnapuram and Keller 1993 and Hoppner et al., 1999); 

here the term probabilistic is adopted as per Chapter 4, (Krishnapuram and Freg, 1992). 



APPENDIX D 

Additional Control Theory 

Part 1: State Feedback Matrix Design Methods 

Robust Eigenstructure Assignment 

For the case of a scalar controlled problem, specification of the (n - I) eigenvalues 

associated with the sliding mode will uniquely determine the matrix M of equation (5.48) 

For multi-input systems this is not the case. In such a situation the available degrees of 

freedom may be used to modally shape the system response by a judicious choice of 

eigenvector form and/or ensure that the resulting closed-loop system is maximally robust 

to system parameter variations. However the eigenvector corresponding to a given 

elgenvalue must lie in an allowable sub-space which is determined by the system matrix, 

the input matrix and the eigenvalue itself. To evaluate robustness, a bound upon the 

individual eigenvalue sensitivity c; is given by 

(DJ) 

Here K(V) denotes the condition number of the matrix V of right eigenvectors and is a· 

measure of the orthogonality of the eigenvectors Vj. The closer the eigenvectors of a 

matrix are to being orthogonal, the smaller is the associated condition number and the 

greater the robustness of the eigenvalue locations to changes in the elements of the 

matrix. In robust eigenstructure assignment the feedback matrix is obtained by assigning 

a set of linearly independent right eigenvectors corresponding to the state feedback 



required eigenvalues such that the matrix of eigenvectors is as well-conditioned as 

possible. 

Direct Eigenstructure Assignment 

In the previous subsection, the additional degrees of freedom in the pole placement 

problem for multi-input systems were used to minimise the condition number of the 

associated eigenvalues. If information is known about a desirable weighting of the system 

states for each mode, it is possible to choose a desired eigenvector specification. Again 

this will not necessarily be achievable because it may not lie within the prescribed 

allowable sub-space. 

Quadratic Minimisation 

Consider the problem of minimising the quadratic performance index 

J=.!_ r x(tf Qx(t) dt 
2 . 

(0.2) 

where Q is both symmetric and positive definite and t, is the time at which sliding motion 

commences. The aim is to minimise equation (0.2) subject to the system equation (5.7) 

under the assumption that sliding takes place. It is assumed that the state of the system at 

time t,, x(t,), is a known initial condition and is such that x(t) ~ 0 as t ~ I. The matrix Q 

from equation (0.2) is transformed and partitioned compatibly with z so that 

TQTT =[QII 
r r QT 

12 

(0.3) 

and subsequently define 

(0.4) 



and 

(0.5) 

After some algebraic manipulation equation (0.2) may then be written in the new Co-

ordinate system as 

(0.6) 

Recall the constraint equation may be written as 

(0.7) 

Eliminating the z2 contribution from equation (0.7) using equation (0.5) the modified 

constraint equation becomes 

(0.8) 

where 

(0.9) 

The positive definiteness of 0 ensures that 022 > 0, so that 022-
1 exists, and also that 

Q >0. Furthermore, the controllability of the original (A, B) pair ensures that the pair (A , 

A 12) is controllable. The problem thus becomes that of minimising the functional (0.6) 

subject to the system (0.7) and thus can be interpreted as a standard linear-quadratic 

optimal state-regulator problem. 



PART 2: DERIVATION OF THE DISCRETE TIME KALMAN FILTER 

Some Results for Linear Mean Square Estimation 

There are four results for LMMS estimation which are key to the development of the 

Kalman filter. Because of their importance their derivations are included as notes at the 

end of this appendix. 

Minimum Mean Square Estimate 

For the random vectors x and z, the LMMS estimate of x given z IS 

(D.IO) 

Where mx is the mean of x and m, is the mean of z. Specifically, if x and z are zero

mean random vectors, then the LMMS estimate of x based on z 1s 

(D.II) 

Orthogonality of the Measurements and Estimation Error 

This result, known as the orthogonality principle, states that if x, z and x satisfy equation 

(D.! 0), then the measurement vector z- m, is orthogonal to the estimation error x- x, 

that is 

E[(z-m,)(x-xf]=o 

Estimation of Linear Composition 

For the random vectors x,y, w and z if 

x= Ay+Bw 

Then the LMMS estimate of x based on z is given by 

(D.l2) 

(D.l3) 



x=A.Y+Bw (0.14) 

Where y is the LMMS estimate of y based on z and w is the LMMS estimate of w 

based on z. 

Incorporation of Orthogonal Data 

For the random vectors x, z1 and z2 , if z1 - m,1 and z2 - m, 2 are orthogonal, 

(0.1 S) 

The LMMS estimate of x based on z1 and z2 is 

(0.16) 

Where x1 is the estimate of x based on z1 - m,1 and x2 is the estimate of x based on 

THE DISCRETE TIME KALMAN FILTER 

The derivation of the Kalman filter in its simplest form ts now presented. Some 

nomenclature to be used is first introduced: 

x(k+llk) istheLMMSestimateofx(k+l) based on z(l),z(2), ... ,z(k) 

x( k + tik +I) is the LMMS estimate of x( k + 1) based on z (!), z(2), ... , z ( k + 1) : 

z ( k + tlk) is the LMMS estimate of z( k + 1) based on z(l), z(2), ... ,z( k) 

Similar definitions are used for estimates and so forth. Some other useful definitions 

follow 



tu( k +Ilk)= x( k +I)- x( k +Ilk) is the state prediction error. 

tu ( k + Ilk + I) = x ( k +I)- x ( k + Ilk+ I) is the state estimation error 

D.z ( k +Ilk)= z ( k +I)- z ( k +Ilk) is the measurement prediction error 

P ( k + Ilk) = E [tu ( k + Ilk) tu7 
( k +Ilk) J is the state prediction error covariance 

P( k +Ilk+ I)= E[ tu( k +Ilk+ I) tu7 
( k +Ilk+ I) J is the state estimation error covariance 

Prediction and Correction 

Prediction 

For the system 

x(k +I}= F(k )x(k )+ w(k) 

z(k +I)= H(k+ l)x(k+ l)+v(k +I) 

(0.17) 

(0.18) 

Using the linear composition result shown in equation (D.14) results in the optimal 

estimate of x(k+l) given data through the k'h step. 

(0.19) 

If equation (D. 10) is used the estimate is 

(D.20) 

Because w( k) and z ( i), i =I, 2, ... , k are uncorrelated, then 

E[ w(k)z7 (k)] = 0 (0.21) 

Therefore, equation (0.20) gives 

(D.22) 



And equation (0.19) reduces to 

x(k + tlk) = F(k )x(klk) (0.23) 

Where x(OIO}=E[x(o)]=O. This is to say that the best prediction of the state at the 

next step is to pass the estimate from the previous step through the system state coupling 

matrix F. In a similar fashion, applying the linear composition result in equation (0.14) 

to the stochastic system output 

· z(k+l)=H(k+l)x(k+l)+v(k+l) (0.24) 

Gives 

(0.25) 

Because v ( k) and z ( i) are uncorrelated for· k * i 

(0.26) 

And therefore 

(0.27) 

Indicating that the best prediction of the next measurement is to pass the predicted state 

through the measurement coupling matrix H. 

Correction 

Proceeding to the corrector equations. The measurement prediction errors 

~( k+ Ilk)= z(k+ 1)- z( k +Ilk) (0.28) 

Are also termed the measurement residuals, or innovations. Rather than using the 

original measurements z(t),z(2), ... ,z(k), ... , it is expedient to use the measurement 



residuals & ('10), & ( 2jl ), ... , & ( k jk -I), ... , as the measurements. The two are 

equivalent because either may be found deterministically from the other. Collecting the 

residuals through step k into a single vector of measurements 

(0.29) 

The quantity x(k+'ik) then denotes the LMMS estimate of x(k+l} based on &k. 

Using the orthogonality principle in equation , the measurement residuals and the 

estimation error are orthogonal, that is 

(0.30) 

Postmultiplying both sides of equation X by HT ( k +I) gives 

(0.31) 

Because & k and v ( k +I} are uncorrelated 

(0.32) 

Because the collection of measurements &, through step k and the measurements 

&(k+ljk) at step k+l are orthogonal, any LMMS estimates based on &,and 

& ( k + ljk) are, according to the equation (0.16), the sum of the two individual estimates 

X ( k + ljk + I) = X ( k + ljk) + E [X ( k + I) I& ( k + ljk) J (0.33) 

Which is an expression of result 4, the incorporation of orthogonal data where 

E[ x(k + l)j&( k + Ijk )] is defined as the best estimate of x(k +!)based on &( k +.ljk). 



The incorporation of new data in the form of the residuals only involves making additive 

corrections to the previous predictions, not complete recalculations. 

Using result I, for the minimum mean square estimate, then 

E[ x(k+t)i&(k + tjk )] = E[ x(k + l)&T (k + ljk )]x 

{E[ &(k+1jk)&r(k+ljk)Jr &(k+tjk) 

If the Kalman gain is defined as 

Then equation (0.33) becomes 

x(k + tjk + 1) = x(k+ tik )+ K(k+ t)&(k+ tjk) 

Kalman Gain and Error Covariances 

Kalman Gain 

(0.34) 

(0.35) 

(0.36) 

Finding an expression for the recurs1ve calculations of the Kalman gam sequence 

K(l),K(2),K(3), ... , is the most involved part ofKalman filtering. As it shall soon be 

discovered, the solution consists of a set of three recursive equations with coupled 

matrices, from which the Kalman gains can be computed. 

Substituting equation (0.18) into the measurement residual in equation (0.28) gives 

&(k+lik) = z(k + 1)- z(k + tjk) 

= H(k + l)x(k + 1)+ v(k + 1)- H(k + l)x(k + tjk) 

= H(k + 1)1ll(k + tjk )+v(k + 1) 

From equation (0.37) 

(0.37) 



E [ <lz( k + 1\k )<lzr ( k + Ijk)] = H ( k + l)E[ ~( k + 1\k )ruJ ( k + 1\k)] 

xHr (k + 1)+ H(k + l)E[ ~( k + Ijk )vr (k + 1)] 

+E[v(k+l)~r (k+ 1\k)Hr (k+l)] 

+E[v(k+l)vr (k+l)] 

Because v( k + I) and ~ ( k + IJk) are uncorrelated 

Using the definition of the state prediction error covariance gives 

And equation becomes 

E[ <lz(k + tJk )<lzr (k + tJk )]= H (k + t) P(k+ tJk) Hr (k + 1)+ R(k +I) 

Similarly, using the definition of the state prediction error results in 

E[x(k + t)<lzr ( k + ljk )] = E{[ ~(k + tJk )+x( k+ tjk )][ <lzr ( k + IJk) ]} 

(0.38) 

(0.39) 

(0.40) 

= E[ ~(k +1\k)&r(k+ 1\k )]+E[ x(k + 1\k)<lzr (k + ljk)] 

(0.41) 

Because v ( k +I) is uncorrelated with x ( k + !Jk) and because the estimate x ( k + IJk) 

and the estimation error ~( k + IJk) are orthogonal, 

E[ x(k + IJk )&r (k+IJk)] = 0 (0.42) 

Therefore 

(0.43) 

Using equation (0.37) results in 



l:ll ( k +Ilk)= H ( k +I) !J.x ( k +Ilk)+ v ( k +I) 

And 

E[ x(k + I}l:llT ( k +Ilk)]= E{&(k +Ilk)[ H(k + l}&(k + l[k) + v(k +I} r} 
=El[ &( k +Ilk )&T (k +Ilk )HT (k +I} JJ. 

+ [ fuc ( k +Ilk) vT ( k + I) J 

But v ( k +I) and tJ.x ( k +Ilk) are uncorrelated, and therefore 

E[&( k +Ilk )vT (k +I}]= 0 

Thus 

E[ x(k + I)l:llT ( k+ l[k )] = E[ &( k+ Ilk )&T (k + l[k )HT (k +I}] 

= P(k+ Ilk )HT (k+ 1) 

And therefore the Kalman gain is 

K ( k + I) = E [ x ( k + I) l:ll T ( k + I)] { E [ l:ll ( k + I) l:ll T ( k + I)]}_, 

= P(k +l[k)HT (k+ I}[ H(k + I}P(k +Ilk )HT (k + 1)+ R(k +I)J' 

Error Covariances 

If the system equation is used 

x(k +I}= F(k )x(k )+ w(k} 

And 

Then the state prediction error is 

&(k+ Ilk)= x(k+ I}-x(k + l[k) 

= F(k }&( klk )+ w( k} 

(0.44) 

(0.45) 

(D.46) 

(0.47) 

(0.48) 

(0.49) 

(0.50) 

(0~51) 



And the state prediction error covariance is 

P(k+ Jik) == E[ fu(k+ Iik)fu
7 (k+ Ilk)] 

== E {[ F( k }fu( kik )+ w(k) ][ F(k }fu( kik )+ w(k) r} 
== F(k }E[ fu(k lk )fu

7 
{ kik )] F7 (k }+ F(k }E[ fu{klk )w7 (k} J 

+E[ w(k}fu7 (kik)]F 7 
(k}+E[ w(k)w7 (k)] 

Because x( k ik) and w( k} are uncorrelated, 

Giving 

(0.52) 

(0.53) 

(0.54) 

Where P(kik) is the estimation error covariance. Finally, for the equations to be 

recursive, an equation for the covariance of the state estimate error P ( k + Jik +I) is 

required. If equation (0.36) is used 

The state estimation error becomes 

·Substituting the measurement prediction error in equation (0.37) 

Into equation (0.57) gives 

fu{ k + Jik +I)== fu( k +Ilk)- K(k +I} H(k + I}fu{k +Ilk)- K (k + I}v(k + l) 

== [I- K (k + I}H(k + I}]fu(k +Ilk)- K (k + I}v(k +I} 

(0.55) 

. (0.56) 

(D.57) 

(D.58) 



Hence, 

P( k +Ilk+ 1) = E[ ru:(k +Ilk+ l)ru:r ( k +Ilk+ 1)] 

= [1- K(k + !)H(k + l)]E[ ru:( k +Ilk )ru:r ( k+ Ilk)] 

x[1-K(k+l)H(k+l)r -[1-K(k+l)H(k+l)] 

xE[ ru:(k+ Ilk )vr (k + l)]Kr (k + 1)- K(k+ 1) 

xE[ v(k + I)ru:r ( k +Ilk)][ 1- K(k + !)H(k + l)r 

+K(k + l)E[ v(k + l)vT (k+ 1) ]KT ( k + 1) 

Because ill { k +Ilk) and v ( k + I) are uncorrelated 

Giving 

P(k+ Ilk+ I)= [1- K(k+ !)H(k+ l)]P(k +Ilk) 

x[ 1-K(k + l)H(k +l)r +K(k + !)R(k+ !)KT (k +I) 

Equation (0.61) may be put into a simpler form as follows 

(0.59) 

(0.60) 

(0.61) 

P(k+ Ilk+ 1) = [1-K(k + !)H(k + l)]P(k+ Iik)-P(k+ Iik)HT (k+ l)x Kr (k+ 1) 

+K(k +I)[ H(k+ l)x P( k +Ilk) Hr (k + 1)+ R(k +I) ]KT (k +I) 

(0.62) 

But from equation (0.48), 

Therefore, equation (D.61) simplifies to 

P(k+IIk+!) = [ 1-K(k + l)H(k + I)]P(k+ Ilk) (1).64) 

And the Kalman filter is completely derived. 



Summary of Equations 

Plant Model: 

Observation Model: 

A A 

Predictive Estimate: . Xk+ilk = <l>k Xkik+rkuk +Gt(J)k 

Current Estimate: A A ( A ) _ 

Xklt=Xklk-i+Kk zk-H,xtlk-1 -Vk 

Gain: 

A priori covariance: 

A Posteriori covariance: 

Plant Noise Model: 

Measurement Noise Model: cov{v, ,vk }= RkJ,.k,E{v.} = 0 

Kronecker delta function: 
{

I 
J -

1,) 0 
i = j 
i;t.j 

(0.65) 

(0.66) 

(0.67) 

(0.68) 

(0.69) 

(0.70) 

(0.71) 

(0.72) 

(0.73) 

(0.74) 


