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Introduction

c;msidered and the existence of the chatter phenomenon frequently leads to a éontroller
that can only guarantee tracking accuracy to within a certain vicinity of the set point, and
certain classes of disturbance are not formally considered within the theory. It is an
appealing prospect to use the stochastically optimal models of the system from chapter 4
in the adaptation of the deterministic con&oller parameters, such that the performance of
the controller is enhanced. This is precisely what is achieved with the fuzzy model based
sliding mode controllers discussed in Chapters 6 and 7. There is no doubt that these
enhanced controllers perform better than the classical sliding mode controllers, yet
maintain their advantages in implementation. These controllers therefore constitute a
contribution to the field of adaptive robust control.

The original motivation of this work was to produce a sensorless precision motion control
algorithm capable of operation at low speed and standstill o_f the armature. The majority
of §ensorless c;.ontrol methods within the literature to date héve considered the accurate
control of the armature at high to medium speed. The applidation of the fuzzy model
based qontro]lefs to this problem, and the successful control of kiﬁematic parameters
associated with the armature, at low and zero speed, is therefore the last of the significant

contributions made by this work.
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Chapter 2

Motion Control Systems

2.1  Introduction

Motion Control refers to the control of kinematic parameters such as torque, velocity or
position. This Chapter is dedicated to reviewing those technologies which serve to
p;'ovide the vital interface between electrical and mechanical engineering. This interface
is found wherever mechanical motion is controlled by electronics and pervades a vast
range of products. Consideration of this interface reveals a large and important area of
technology, to which motor drives are fundamental. In Japan the term ‘Mechatronics’
has been coined to describe these technologies, and usually carries the connotation of
small drives. This term is now well established in the West, but the term ‘motion control
S)}stem’ is often used in its stead to describe small controlled drives such as position or
velocity servomechanisms. Motion control systems are in general _characterised by
precision, low transient response ti.mes, immunity to parameter variations, torque and
inertia perturbations.
Two important reasons for- the research activify within this area, and for the increasing
technical variety of the drive systems to be found are:
1) Incregsing use of computers and electronics to control mechanical motion.
The trend towards automation demands new devices with a wide variety of

physical and control characteristics.
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2) New ‘enabling technology’ in power semiconductors and integrated
circuits, leading to the development of nonclassical rﬁotors such as the
brushless D.C. (BLDC) motors and steppers in a wide variety of designs.

The scope of the technologies encompassed in the ‘motion control system’ is far too
broad to be comprehensively discussed within this work. Instead, the reader is referred to
the many excellent introductory texts on the subject (e.g. Bolton, 1999), and this Chapter
concentrates specifically on the technology which will be subsequenfly applied in later
Chapters. It begins with a discussion of drives in gehera’l and describes the primary
reasons for the selection of one drive over another. The salient features of" the selected
drive are then discussed. Finally within this Chapter, sensorless control methodblogies

are discussed with specific reference to the brushless motor.

2.2 Adjustable Speed Drives

Three common reasons for preferring an adjustable s;peed drive over a fixed speed motor
in general are:

1) Energy saving.

2) Velocity or position control.

3) Amelioration of transient performance.
Whilst for the. smaller drives the singula; most important of these is the velocity or
position.control, the other two factors have been sigﬁiﬁcant in forcing the development of
the technologies. Here, only velocity/position control is considered f.0r motion control
systems. Obvious examples of velocity control are the electric train, portable hand tools,
and domestic washing machine drives. In buildings, elevators are interesting examples in

which not only position and velocity are controlled, but also acceleration and its

2-2



Motion Control Systems

derivative, jitter. Countlelss processes in the manufacturing industry require position and
velocity control to varying degrees of precision. Particularly V\.lith the trend towards
automation, the technical and commercial growth in drives below about 20 kW is very
vigorous. Many system level products incorporate an adjustable speed drive as a
component. A robot, for example, may contain between three and six independent drives,
one for each axis of movement. Other familiar examples are found in office machinery:
positioning mechanisms for paper, printheads, magnetic tape, and read/write heads in

floppy, hard disk and CD rom drives.

2.3 Motor Sélection

The proliferation of new idea.s, materials and components obviously generates many
opportunities but also complicates the selection of the optimum drive for a particular
application. Attempting to trace the evolution of the differeﬁt motor types in such a way
as to bring out théir prominent features, provides a clear framework to reduce the
- ambiguity frequently faced in the selection of the optimum drive. The motor plays a
signiﬂcént part in determining the characteristics of the system and also serves to
determine the requirements on the power semiconductors, the converter circuit and the
controller. Within this work, the a.c. induction motor will not be considered since it is
“not an efficient d.rive to apply to small motion control systems. This is because the
efficiency and power factor of the induction motor drops in small motor sizes due to the
natural laws of scaling. If a motor of given geometry was scaled down at the same rate,
the magneto motive force (m.m.f} required to produée a given {lux density decreases in
propértion to the linear dimensions. However the cross-section available for conductors

decreases with the square of the linear dimension, as does the area available for heat
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transfer. This continue;s down to the size at which the rﬁechanica] air-gap reaches a lower
limit determined by manufacturing tolerances. Further scaling down results in an
approximately constant m.m.f. requirement, whilst the areas continue to decrease with the
square of the linear dimension. There is an ‘excitation penalty’ which becomes more
severe as the scale is reduced. It is for this reason that permanent magnets are so

necessary in small motors.

2.3.1 - Small Motors For Drives

The evolution of brushless motors is based around three generations. The classical
motors: D.C. commutator (wound field) and a.c. synchronous constitute the first of these
generations. The term classical emphasises the fact that these motors satisfy three
important criteria

1) They all produce essentially constant instantaneous torque

2) They operate from pure D.C. or a.c. sinewave supplies

3) They can start and run without electronic controllers
The classical motors of the first generation are readily coupled to electronic controllers to
provide adjustable speed; indeed it is with them that most of the tecﬂnical.and
commercial development of power electronic control has taken place.
The second generation motors arer derived from those of the first generation by replaéing

-the field windings with permanent magnets. The synchronous motor immediately

becomes brushless, but the D.C. motor must go through an additional transformation,
from second to third generation with the inversion of thelstator and rotor, before the

brushless version is achieved. Each of the motors will be treated below in turn
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The D.C. Commutator Motor

The traditional D.C. commutator motor with electronically adjustable voltage has always
been prominent in motion control. It is easy to control, stable, and requires relatively few
semiconductor devices. Developments in electronics have helped to keep it competitive
in spite of efforts to displace it with a.c. drives.

Many objections to the commutator motor arise from operational problems associated
with the brush gear. It is not that brush gear is unreliable, on the contrary, it is reliable,
well proven and forgiving of abuse. However commutator speed is a limitation,
additionally noise, wear, commutator and brush gear is considerable. Cooling of the
rotor, which carries the torque producing winding is not always easy, and is a further

limiting factor.

The PM D.C. Commutator Motor

In small D.C. commutator motors, replacihg the field winding and pole structure with
permanent magnets usually permits a considerable reduction in stator diameter, because
of the efficient use of radial space by the magnet and the elimination of field losses:
Armature reaction is usually reduced and commutation is improved, owing to the low
pérmeability of the magnet. The loss of field conu;ol is not as important as it would be in _
a larger drive, because it can be overcome by the controller aﬁd in small drives, the need
for field weakening is less common anyway. The PM DC motor is usually fed from an

adjustable voltage supply, either linear or pulse width modulated.

' The Brushless D.C. PM Motor

The smaller the motor, the more sense it makes to use permanent magnets for excitation.
There is no single breakpoint below which PM brushless D.C. (BLDC) motors
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outperform induction motors, but it is in the 1-10kW range. Ab-ov'e this size the induction
motor improves rapidly, whilst the cost of magnets works against the PM motor. Below
it, the PM motor has better efficiency, torque per ampere, and effective power factor.
Moreover, the power winding is on the stator where its heat can be removed more easily,
while the rotor losses are extremely small. These . factors combine to keep the
torque/inertia ratio high in small motors.

The brushless D.C. motor is also easier to control, especially in its squarewave
configuration. Although the inverter is similar to that required for induction motors,
usually with six transistors for a three phase system, the control algorithms are simpler

and readily implemented in a microprocessor.

The Brushless PM a.c. Motor

The permanent magnet synchronous machine (PMSM) has permanent magnets instead of
a field winding. Field control is dnce again sacrificed for the elimination of brushes,
sliprings and field copper losses. This‘motor is a ‘classical’ -salient pole synchronous a.c.
motor with approximately sine distributed windings, and it can therefore run from a
;inewave supply without electronic commutation.

The magnets can be mounted on the rotor surface or they can be internal to the rotor. The
interior construction simplifies the assembly and relieves the problem of retaining the
magnets against' centrifugal force. It also permits the use of rectangular instead of arc
shaped maghels, and usually there is an appreciable reluctance torque which leads to a

wide speed range at constant power.
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It should be noted that the three motors discussed provide smooth torque with low ripple.
An important class of brushless motor which has not been discussed is the stepper motor.
This type of motor is always brushless and unlike the BLDC or PMSM motors, are used
- almost exclusively without any form of shaft position sensing. By definition, the stepper
motor is a pulsed torque machine, and is therefore incapable of achieving ripple free
torque by conventional means. Variable reluctance and hybrid stepper motors can
achieve an internal torque multiplication through the use of multiple teeth per stator pole
and- through the ‘Vernier’ effect of having different numbers of teeth on the fotor and
stator. Both of these effects work by increasing the number of torque impulses per
revolution, and the price paid is an increase in the commutation frequency and iron
losses. Stepper motors therefore have high torque to weight and high torque to inertia
ratios but are limited in top speed and power to weight ratio. The fine tooth structure
requires a small airgap, which adds to the manufacturing cost. Beyond a certain number
of teeth per pole the torque gain is ‘washed out’ be scale effects that diminish the
variati.on of ind-uctance on which the torque depends. Because of the high magnetic
frequency and the effect of m.m.f. drop in the iron, such motors require expensive
lamination steels to get the best out of them. Further details on the stepper motor may be

found in Kenjo, (1985).

2.3.2 Cascaded Motion Control

The -singular most typical method for motor control is the so called ‘cascaded motion
control’, which consists of three control loops (see for example Subrahmanyam, 1996).
One for the control of torque, one for speed and one for position. 1t is assumed that each

of these loops will be equipped with appropriate sensing devices. Whilst the outer two
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loops, and their realisation, are considered in some detail in later chapters, the torque
control loop is not. This is primarily because this control loop is already realised within
the commercially available power electronic converter, providing a simple potentiometer
for its gain adjustment. The torque ‘control loop is therefore considered here for
completeness. The Permanent Magnet D.C. commutator machine dynamics, which-

maintain a notable generality to all motors, are given by the equations

v=Ri+ L% o, @.1)
dt
do
J—==T,-T, 22
dt e I ( )
de
—=w 2.3
o (2.3)
=4 (2.4)

The torque (2.1) control loop for the constant flux linkage (4) machine implies armature

current control for the permanent magnet D.C. brush (DC) motor. In the case of the
brushless D.C. motor, with constant flux linkage, this implies current control within the
stator phases. The design 'Of the torque loop requires knowledge of the load to.rqule. In
practice, this is. not known precisely (see Chapter 3 for a discussion of this), and the load
torque is assumed to be constant. Once the design is complete, the effect of load -
variations are observed and suitable corrections are made to the controller gains if
required.. -For a constant load torque, the DC motor current/voltage relationship can be

written from (2.1)-(2.4)

_ I(S) B ST,
G(s)= Vis) (szrm're +s7, + 1) R . @)

where 7, is the electromechanical time constant of the motor given by the equation

2-8



Motion Control Systems

_JR

Tem _‘Az

(2.6)
The typical torque controller is based on a proportional integral (P1) structure, with the
gain K, and time constant 7;. The open loop transfer function of the system using a PI

controller is given

K.,(1+s7,) K.K,K,st,,
st R szrmre +s7, +1

A(S)=

2.7)

where K. is the gain of the power converter between controller and motor, K, =T, /I is

the torque constant and X, is the current sensor gain.

2.4 Synchronous Motors for Drives

The Brushless D.C. and the Permanent Magnet a.c. machines were discussed briefly
above. This section serves to provide further detail on their characteriétics, greater detail
" may be found in Miller (1993). Synchronous motors (SMs) are in general three phase a.c.
fed in the stator and D.C. (or PM) excited in the rotor. As the stator currents produce an
m.m.f. traveling at the éngular velocity ay:

w, =21, - (2.8)

the rotor m.m.f. (or PM) is fixed to the rotor. The rotor angular velocity o, is:

@, =, =2mnp 2.9

in order to obtain two standing m.r‘n.f. waves.-lt is a known fact that only in this situation
a non zero average torque per revolution is obtained. Yet, in an alternative interpretation,
non zero average torque is produced when the magnetic co-energy in the machine W,,

varies with rotor position:

T = W, ,-ﬂ:wr (2.10)
ag" I=ct dt p
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9, is the geometrical rotor position angle. Thus a magnetically anisotropic (reluctance)
exciterless rotor may also be used. In all cases the number of pole pairs is the same on the
stator and on the rotor.

As the synchronous motor speed is rigidly related to the stator frequency only the
development of power electronic converters (PEC), variable voltage and frequency
sources, has made the synchronous motor suitable for variable speed drives.

The higher efficiency, power density and, power levels per unit have thus become the

main assets of variable speed synchronous motor drives.

.2.4.1 . Drive Class_ification

Permanent magnet synchronous motor drives exist in several distinct forms. These forms
may be differentiated with respect to the generated current waveform, voltage/frequency

correlation and motion sensor presence (Moczala et al, 1998).

Classification based on the applied current waveform reveals two distinct types, those
with a rectangular current waveform and those with sinusoidal. This leads to the
common names that differentiate the two, the BLDC and the PMSM drive. Secondly
consideration can be paid to the presence of motion sensors, predictably BLDC or
PMSM " drives without motion sensors are prefixed with the term “sensorless”.

Finally PMSM drives may controlled through one of the following means
» Scalar (V /{) control - a damper cage on the rotor is required;
= Vector control (current or current and voltage);

»  Direct torque and flux control (DTFC).
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The current sequence, produced through the inverter provides adequate control, with 120°
current waveforms. In Figure 2.6 shows also the position of the 6 elements of the
proximity. sensors with respect to the axis of the phase a for a zero advance angle o, = 0.
The location of proximity sensors P(a+, a-, b+, b-, ¢+, c-) is situated 90° (electrical)
behind the pertinent phase with respect to the direction of motion.

With two phases conducting the stator active m.m.f. is on from 60° to 120° witﬁ respect to
the rotor position. The ideal voltage vector (Figure 2.6) also jumps 60° for any phase
commutation in the inverter. Each phase is on 120° out of 180° for the 120° conducting
strategy.

To reverse the speed the addresses (Power Switches) of the proximity sensor elements
action are shifted by 180° (P(a+) > P(a-); P(b+) > P(b-); P(c+) > P(c-)). The proximity
sensor has been located for zero advance angle to provide similar performance for direct
and reverse motion. However, through electronic means, the advance angle may be
increased as speed increases to reduce the peak F"M flux in the stator phase and thus
produce more torque, for limited voltage, at high speeds.

Using the same hardware, 180° conduction conditions may also .be provided for at high

speeds, when all three phases conduct at any time.

2.4.3 Practical Performance

So far the phase commutation transients have been neglected. They however introduce
notable torque pulsations at a frequency of 6w, (Figure 2.7), which is much lower than

those due to current chopping. To account for them complete simulation or testing is

required (Vanlandingham, 1985).
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There are also some spikes in the conducting phase when the other two phases commute
(points A and B on Figure 2.7).

Not shown in Figures 2.6 and 2.7 is the cogging torque produced at zero current by the
slot - openings in presence of rotor PMs. Special measures are required to reduce the

cogging torque to less than 2 - 5% of rated torque for high performance drives.

Torque Ripple

Itisa known fact that an ideal SM - with sinusoidal m.m.f. and constant airgap, when fed
with sinusoidal symmetric currents in the stator at frequency ®; = ,, produces a constant
torque (Nasar et al, 2000).

In reality torque ripple' may occur due to:

a. stator (and rotor) slot openings;

b. magnetic saturation caused flux harmonics;

c. current waveforms;

d. PM field pulsations due to stator slot dpenings (cogging torque).

Items a to ¢ cause the so called electromagnetic pulsating torques while d causes the zero
stator current or cogging torque.

Rotor pole (or PM) span correlation with stator slot openings, stator slot inclination or
PM pole inclination, fractional q (slots per pole and phase) and, finally, special current
waveform shaping through PEC control are all met};ods to reduce these, basically

reluctance, parasitic torques (Lorenz et al, 1994) to less than 1% of rated torques. High

' Torque ripple investigation requires, in most cases, FEM analysis - two, quasi - two or three dimensional
(Lorenz et al, 1994)
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2.5 Sensorless Control

Senso.rless control within the literature is intended for speed controlled drives. The
all_eviation of the sensor requirement reduces hardware costs and improves mechanical
reliability. It will be shown here that high performance drives that are designed for either
low speed or accurate positioning are not considered within the literature and position
sensors are still required (Boldea and Nasar, 1999). It is the aim of this work to relieve
the need for position sensors in precision control of the métor armature position. This
section serves as a thorough exposition of the technology and methods associatc_ed with
sensorless control. Since the induction motor has been identified in previous sections of
this chapter as inappropriate for small motion control drives, it is not ‘co.nsidered within
the following text. It is acknowledged that sensorless control of this type of motor has
been and continues to be a fruitful area of research. The reader is referred to one of the
many research papers available, e.g. Joetten and Maeder (1983), Ferrah et a/ (1992), Xu

and Novotny (1991) and Simones and Bose (1995).

2.5.1 Sensorless Control Based on Back EMF Measurement

Sensorless control based on the back EMF is berhaps the best known of the approaches.
tis important to draw attention to the fundamental differences between the PMSM and
the BLDC motor. These are given in detail in Pillay and Krishnan, (1991). Of concern
here is that the Iback,EMF waveforms of the f’MSM and the BLDC motor are sinusoidal
and trapezoidal respectively. In addition, one phase of the BLDC motor is left non-
excited at any given instant, leaving the winding free for use as an interface between the

motor and relevant instrumentation for parametric variation measurement. Conversely,
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the PMSM has all three windings excited at any one time, exacerbating the problem of

direct measurement.

Neutral Point Voltage Computation

It may be demonstrated (Voultoury, 1998) that the phases of the BLDC motor are
commutated every 60 electrical degrees. This implies that only six signalé are required to
drive thel BLDC motor. The importance of synchronisation between phase excitation and
zero crossing of the back EMF, should at this‘.pdint be noted; since for efficient
commutation of the motor this is a major design goal. |

It transpires that the zero crossing point of the trapezoidal back EMF waveform occurs at
specific rotor positions. At any given time, two phase currents are opposité, the third is
equal to zero.

The stator terminal voltages may be modelled, point x in the diagram has been chosen

here, according to the following equations:

V,=E +V, _ (2.11)
_ dig
VB=RIB+L87+EB+VN (2.12)
_ di,
chfRJC—LC;+EC+VN | (2.13)

where R and L represent the phase resistance and inductance respectively; E represénts
the phase back EMF; V is the phase voltage referenced to ground and Vy is the stator
connection voltage referenced to ground, the suffixes A,B and C represent the motor
phaSes.

It may be seen by inspection of the equations (2.l>l), (2.12)and (2.13) that at the point

where the back EMF of phase A is equal to zero, the following is true
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= Ystle (2.14)
2
or, expressed in another way,
v
V=, =2 (239)

In this case, ¥ is the terminal voltage of winding A; Vy is the neutral voltage and Vj is
the inverter source D.C. voltage. '

A simple comparator circuit may be used to turn the zero crossing points into digital
signals for commutation, as demonstrated by lizuka ef a/ (1985). Here it was shown that
.by delaying these points by 90 elcctricél degrees, the inverter could be driven directly
from the comparator signal. Variable speed control was achieved by chopping the motor
with a PWM signal generator with va.riable duty cycle.

It is perhaps noteworthy to mention that this approach led to the effective solution of
sensorless control for air conditioner compressor motors, and in so doing was the first to
demonstrate the practical implementation of sensorless control. Since this time, neutral
point voltage commutation (or zero crossing commutation) has become the subject of
much research and practical implementation. It is probably the. most widely used
approach to sensorless control of the BLDC motor (Kenjo and Nagomo;‘i,. (1985),

Voultoury, (1998), Gee and Thorn, (1988), Jeong er al, (1999)).

Third Harmonic Commutation

An alternative approach to the neutral point voltage computation cited above is that of_-
third harmonic commutation. This approach was originally suggested and patented by
Vukosavic, (1990). The approach relies on the fact that the phase angle of the third‘
harmonic of the back EMF is-a function of the rotor position. As per the approach above,

the back EMF of the non-excited phase winding (equation (2.15)) may be derived.
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Examination of the back EMF waveform reveals that it is according to Fourier, an odd
function. This observation ts extremely important, since it is possible to represent an odd
function by its fundamental component and harmonics. Specificaily, the trapezoidal

waveform may be represented as

ib“  sin((2n - 1)9) (2.16)
1]
where b, , = 4E-sin((2n2—l)a)
7r(2n—l) a

In this equation E is constant, rebresenting the magnitude of the back EMF waveform
excursions; n is an integer and a is the aﬁgle of the waveform as it traverses from its
positive to negative (typically 30° for a 120° commutated motor). From examination of
the equations above it may be seen that f2) contains not only the fundamental
component, but also the odd harmonics. Further constderation shows that the amplitudes
of the higher harmonics decrease rapidly. By substituting values for n and assuming that
a is 30°, A2) may be shown to be 22% of the fundamental. Since the third harmonic
amplitude is far greater than any other, the terminal voltages of the motor may be
satisfactorily expressed as

V,=V, sin(0)+022 V¥, sin (36)

VB =VISI'H(B+ZT”J+O.22 V,sin 3(9+2§J (217)
Ve —Vszn(é—%J+022 V, sin 3(9—-2—375)

where V), is the magnitude of the applied voltage.
Summation of these eqﬁations will remove the fundamental component, leaving only the

harmonics, in fact, the fifth, seventh, eleventh and the thirteenth harmonics are also
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cancelled out. It is the third harmonic that constitutes the .majority of the remaining
waveform. Therefore éummation of the terminal voltages actually serves as an efficient
extraction of the third harmonic from thf: terminal voltages. Analysis of the voltage
applied by the motor driver, in the same manner as above, will not yield a third harmonic
component. This demonstrates that the third harmonic is therefore a product of the back
EMF, which is in tum a product of the rotation of the rotor. It follows from this
observation that the third harmonic of the back EMF contains information about the rotor
position.

Th-is method relies on the premise that the sum of the terminal voltages Will contain no
fundamental component, in practice however, asymmetry of the motor may be given to
introduce some of the fundamental component. A more robust method of extracting the
third harmonic of the back EMF is then required. Comfnonly, the sensed voltages are
_ integrated as an approach to solve this problem, however it is not applicable in this case,
since integration results in severe distortion of the positi;)n information as the noise is
emphasised with respect to the third harmonic. In addition, the use of resistors with wide
tolerances and large offset operational ampliﬁel;s in the practical system serves to

exacerbate the motor asymmetry.

Problems Associated with Back EMF Measurement

There are fundamental problems associated with using the back EMF in sensorless
control: |

¢ Since the induced back.EMF at zero speed is zero, there can be no means of

knowing the rotor position. It is clearly important to have knowledge of the rotor

position for stable starting of the motor.
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¢ Below a certain speed, the stator resistance drop and the switching noise of the

inverter dominates the stator voltage, the back EMF is very difficult to measure
and once again efficient commutation becomes difficult.

Low Speed Operation

There have been approaches adopted to overcome these problems. The problems

associated with’ low speed operation have been dealt with by Ogasawara and Akagi,

(1991). This approach was based on the detection of the on/off state of the free wheeling

diodes connected in anti-parallel with the power transistors of the inverter, in order to

determine the corﬁm.utation instant.

Starting

Starting the motor represents a serious problem when considering the application of the

sensorless control of a permanent magnet motor. Of the propésed methods for starting, '

some that have been suggested are as follows (Matsui, 1996):

o Use of an auxiliary sensor
e Open loop control

e Specific gate pattern

e Arbitrary starting

e Salient pole motor

A low cost auxiliary sensor, such as a Hall effect device, may be used to detect rotor
- position at standstill. Within the context of this paper, adding a sensor to the system is
clearly undesirable, since the problems discussed earlier, specifically robustness and size
once again become a consideration.

Open loop control involves the use of a rotating magnetic field. If the rotor position is
predefined then control of the motor from standstiil to a point where rotor position may

be reliably calculated has been achieved. If the rotor position is not known then the use
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of open loop control may result in a-temporary reverse of the motor or worse still may
lead to starting failure.
Firing of a specific gate pattern of the inverter has been reported in Matsui and Shigyo
(1992) and the methed involves the high frequency chopping of a given gate pattern.
This will align the rotor to the excited phase. Once alignment has been achieved then the
open loop starting method may be employed.
Firing of én arbitrary gate pattern is achieved as above but with an arbitrary gate pattern.
In some cases, however, this approach may lead to a temporary reverse of the motor. In
extreme cases, stable starting cannbt be achieved.
- Use of the salient pole motor for starting has been degcribed by Wu and Slemon, (1991).
This approach not only forms the basis for a robust starting procedure but is the basis of

position and speed control based on magnetic saliency discussed below.

2.5.2 Sensorless Control Based on Magnetic Saliency

Control based on back EME, in most cases, is only practically applicable at mid to high
speeds, where inverter losses are negligible in comparison to the magnitude of 'thg
induced back EMF. At zero and low speed the EMF i§ too small and accurate position
estimatioﬁ is not possible. The approach based on magnetic saliency, however, cqu!d
potentially be applied at any speed, including zero speed (Acarnley et al 1985, Ertugrul
and Acarnley 1994, Kulkarni and Ehsant 1992). This method is based on the detection of
the current gradient, since this is dictated by the ipcremental inductance of the motor
windings, which is in turn dependent upon the rotor position. When the rotor and
winding are aligned, the flux linkage is maximised; when rotor and windiﬁg are

completely misaligned, the magnetic circuit 1s dominated by the large air gap. If it is
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assumed that the mutual inductance between phases is small, then the voltage equation

for one phase may be written in terms of the current and flux linkage

v =Ri+3¥ ' . (2.18)
dt

since the flux linkage may be expressed in terms

v R+ i dv do (2.19)
di ‘dt do dt

then

V:Ri+l$+d—wA@ (2.20)
dt do dt

Rearranging to give an expression for the rate of ch'ange of current with respect to time

di _ o dt
dt |

(2.21)
the incremental inductance shown in the denominator is rotor position dependent. Hence
the rate of change of current is also related to rotor position. It may be seen that this

relationship is confounded by the dependence on current and on the back EMF term.

2.5.3 Observer Approaches to Sensorless Control

In the preceding sections the permanent magnet motor and direct sensorless control has
been considered. As explained, there are cases whereby the direct approach to sensorless
control is impractical, either in the face of unacceptable noise, or in the case of the
PMSM no direct method of measurement ;Jf machine parameters. It is at this point that
alternative methods of deriving motor state are employed. Within this section special
consideration to the use of such approaches as the Kalman 'ﬁl‘ter, Luenberger observer
and sliding mode is paid, with specific reference to the control of the permanent magnet

motor.

2-26



Motion Control Systems

Observers

The observer is by definition, a system that recursively estimates the state of another
system. The Lﬁenberger observer (Luenberger, 1971), such as the type under discussion
here may be used in the state esfimation of a deterministic, time varying system. In
practical application, there is no direct method of parameter measurement using the
PMSM and the measurement of the BLDC parameters can be adversely effected by
phenomena such as switching noise. Whilst the Luenberger will not directly compensate
noise, it does allow the controller access to such pararﬁeters aé back EMF or incrementat
inductance Iwithin the motor windings.

Observers, such as those cited in the literature (Consoli et al 1994; Matsui 1996; Matsui
and Shiéyo 1992; Jones and Lang, 1989) have generally either made use of the voltage or
the current equations of the motor. The approach developed below is based oﬁ the
arguments found in Matsui (1996), before the development of the observer may begin a
new orthogonal axis, y-6 must be introduced (Figure 2.9). This hypothetical axis will
" represent the assumed position of the rotor. The d-q axis, as ever, represents the actual
rotor position. Introductien of this éecond frame (i.e. y-8) is imperative, since as will be -
, appe{rent, it must be possible to estimate the error between the estimated and the actual
rotor position. It is important to note, therefore, that the state of the elect_rical machine is

ihdependent of the frame of reference from which it is observed.
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Vasr — (R + d—L)i,,
» dt
0. = - (2.28)
K +Li

From the assumption that AE = 0 it may be stated that vsy= vs. From (2.27)

0. = (2.29)

In reality, the ideal operating condition is not constant; corresponding correction of the
hypothetical speed is required. Consider the voltage applied to the y axis, under ideal

conditions it may be expressed from (2.26) as

Vo =(R+@]i, ~L8.i, (2.30)
dt
This voltage is hypothetical, but may be calculated by transforming the actual current by

equation (2.23). In a similar manner, the actual applied voltage may also be obtained

from equation (2.24). The v axis voltage difference may be obtained as

Avy= V- vpg= — 0K sinAO : 231)
assuming that the rotor is not stationary, and that the angular error A# is approximately
zero, then (2.30) may be approximated as .

Av,= —GK A ' | (2.32)
This equation is critical in that it demonstrates the direct relationship between the angular
error and the voltage difference. In order to control the position of the rotor, a simple
algorithm may be applied to increase or decrease the applied voltage according to the
position error. As stated this approach has been documented in (Matsui, 1996). Control
with the voltage observer was achieved above a threshold of approximately 100 rpm.

Below this speed, the voltage observer was found to be incapable of satisfactory control.
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This was attributed to the fact that current ripple increases with reduced speed, and by
virtue of this, the variation in estimated speed increased. Secondly, it was shown that in
the lower speed range, the applied voltage was correspondingly lower and the effect of
dead time, voltage drop across the switching devices and power feeder was more
significant. Whilst in the literature the effect of dead time was comperisated for, the
voltage drop was not.

A second observer based instead on the current model was subsequently suggested within
thé same work. Within this model the current input to the motor was measured using a
current sensor and fed into the observer. Since the current based observer did not use the-
voltage information, the controller was free of the errors introduced by inverter
inaccuracy. It was shown that the current model based control was more stable than the
voltage based alternative.,

There have been other forms of observer employed in sensorless. control of rotor position
and velocity. One method proposed (Wu and Slemon, 1991) uses motor current
harmonics to calculate the inductance matrix, which contains the rotor position
information. This method capitalises on the fact that the harmonic voltage vector is equal
to the difference between the inverter output voltage vector and the average output
voltage vector. Another rather sophisticated épproach has been propc;sed by Cardoletti
and Cassat (1992) and later, a modified approach by Corley' and Lorenz, (1998), this
apprbach estimates flux, position and speed from zero through to high speed. This
method is based on tracking the magnetic saliency via an inverter generated high
frequen.cy voltage, which serves to produce high frequency currents that vary with rotor

position. The sensed currents are then demodulated using a heterodyning technique to
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produce a signal that is roughly proportional to the difference between the actual rotor
position and estimated rotor position.

It is interesting to note that a disturbance obsefver based disturbance cancellation has
been used as a method to achieve robust control (Tomita et al, 1998). In this method a
disturbance is added to the open loop system, and is estimated by the observer. The
estimated disturbance is then fed back to cancel the actual disturbance. It has been shown
in Mita et al, (1998) that this method actually only amounts to an alternative integral
controller and thereby robust stability is not assured. In order to achieve true robust
stability, the observer Amust include a filter based on robust control theory. Such-an
approach would be to include the use of deterministic robust control or artificial

intelligence based control.

Kalman Filters

An alternative approach to the Luenberger observer in the estimation of system states is
to employ the Kalman filter. In the case of sensorless motor control, however, the
‘Kalman filter is not sufficient since the equations of the motor are non-linear. Where the
Kalman filter is an optimum estimator, the Extended Kalman filter (EKF) is not; since the
nonlinear equations of the system are. linearised about the current estimated state
trajectory. In this casé, optimality is defined as the minimisation of a mean square error
cost function. Despite this, the EKF has been used to solve the problems associated with
sensorless control (Dhaouadi et al, (1991), Beierke S. et al,(1997) Kettle et al, (1998)
Navrapescu and Craciunescu, (1997)). Within this context, the EKF is able to estimate
motor states despite the fact that the measured input signals may be corrupted by random

noise and may be subject to measurement error.
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The process and measurement noise is assumed to be uncorrelated, having zero mean and
normal gaussian distribution Kettle et af, (1998).

It will be shown later in Chapter 3 that the motor may be described by the following

] - o
0 0 1 0 0
s=lw|, o=lo -£ K| po|-L (2.33)
_ J J J
i K. R 1
0 -2 _Ta -
i L L] L L

. The feedback measurement is to be the back EMF of the motor. Whilst the motor model -
assumes that the back EMF will be a linear function of speed, it may be sensibly expected

that the back EMF when the motor is in steady state will take the form as discussed

A
earlier in this chapter, therefore the measurement matrix H (xm_l) will be of the form

l 0 0
H[xm-l ) =10 A4 CO.S{BI;U:—I J 0 (2.34)
0 0 |

Note that in the above equations, V is presented as an input and 7 as a state variable. This
has been adopted primarily because the applied control signal is likely to l:;e a voltage
under a pulse width modulation regime.

The state equations and Kalman filter may be used to estimate the motor states; in this
case rotor position and velocity. If using the EKF for state estimation then it may be used
as an observer. The estimation of rotor position may be used for c&mmutation and
estimated velocity used for regulation of speed. App-ro.;.tches to sensorless control cited in

the references above have all employed and confirmed the validity of this approach.
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Extended Kalman Filter for State Estimation

The motor model describes a deterministic system with additional stochastic disturbances
(i.e. the external load torque). The EKF produces a generalised weighted least squares
solution for the state estimate with a minimum expected square error. When system states
are inaccessible, the estimates of state generated by the EKF may be used instead. 11.1
such a case, use of the EKF estimates will yield the optimal feedback system in the
expected mean square sense.

Used as an observer, the filter inputs will be the plant outputs (z) and the deterministic

inputs (u); as per the definition of the Luenberger observer. The filter outputs wili be the

optimal plant state estimate x(). It may be shown, (Furuhashi et al, 1992), that if an

observer’s gain sequence is chosen to be G = @K, then the observer is a Kalman filter.

Of importance to note is that the EKF is sub-optimal. Therefore, the established
relationship between the Kalman filter gain and the observer. gain sequence, should not
infer that using the Kalman filter approach to determining'observer gains for state
estimation is necessarily better than design by stipulation Qf desired convergence

properties through use of a eigenvalue placement method.

Sliding Mode

The use of sliding mode for motor control has been well documented e.g. Furuhashi et al
(1992), Lin and Chiu (1998), Utkin (1993). It has been shown that variable structure
control demonstrates the following advantages; order reduction, decouplingv design_
procedure, disturbance rejection, insensitivity to parameter variation and simple
implementation (Utkin, 1993), for these reasons, sliding mode will feature heavily within

this work and supporting theory is treated rigorously in Chapter 5. At this point, however,
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sliding mode is introduced as a means to achieve sensorless cont'rol of the synchronous
motor. This section is begun by the introduction of principles associated with sliding
mode control of the synchronous motor, before describing how it may be employed in
state estimation. Pre-empting the discussion in Chapter 5, sliding mode may best be
described by a diagram (Figure 2.10), Figure 2.10.Ia is the phase plane trajectory of a
system. Figure 2.10.b represems:the same system with negative feedback sign. It can be
seen that Figure 2.10.c is a combination of these two systems. Figure 2.10.c illustrates
how the combination of these two systems results in stability. The straight line
intersecting the axis is known as the sliding plane. Figure 2.10.d illustrates the
"chattering" phenomenon that is caused by finite switching times between the two
systems.

The motor may be expressed in the d-q axis with the following differential equations:

v, =ri, +Ld%’+Ldqu (2.35)
Cdip -

Vy=rig+ Ly~ (,i+0) (2.36)
do . : '

r=/""+Bw, T= Mz -1, +9) 2.37)

da |

o 2.38

di 2.3%)
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where ¢ is a positive real value; wp is a reference input and w(t) is the rotor velocity. The
next objective for the controller will be to make the component i, equal to some reference
input .

S, =iy —iy (2.41)
Let the voltages of the inverter, VA,V and V¢ constitute a three phased balanced system

such that

T
Sy =W, +V, +V )i (2.42)

[

S; should equal zero for all T.

The control ¥” =(V, ¥, V.) should enforce the sliding mode along the manifold

§" =(S, S, S,). The equations of motion of the system (2.35) and (2.36) projected

onto s sub-space are derived by the differentiating vector s.

Z'—f =F+DV | (2.43)
where F'=(f; , 2, f5). ﬁ=0.and the scalars £ and f2 depend on the motor state and
reference inputs, load torque and their timp derivatives. D will depend upon the task at
hand, the approach documented By Lin and Chiu (1998), is examined in order to continue
development from here.

Thé p'roblem associated with sliding mode is that of ‘chattering’. Sliding mode relies on
tﬁe.inﬁnite switching speed of the controller. In a practical system, this is not realisablg
and the result is that the manipulated variable will be discontinuous and overshoot around
the sliding manifold will occur. One approach to alleviate the ‘chattering phenomenon’

was discussed by Utkin, (1993). In this method a low pass filter is added to the

controller, thus introducing a boundary layer around the manifold (Figure 2.11).
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The sliding mode observer can be shown to differentiate the output error, however it
incorporates a low pass filter with a cutoff frequency which varies with the measurement
noise. This wil] alleviate the problem associated with finding the speed by differentiating
a position signal that is contaminated by the switching ripples, and speed measurement

may take place.

2.5.4 Artificial Intelligence in Sensorless Control of Drives

Until this point, observers for sensorless control have been considered. It has been
demonstrated how at reasonable speeds, accurate control of rotor spced_ and position has
been achieved. The application of aniﬁcial intelligence (Al) téchniqués has, until
recently, seldom been considered in control of drive systems (Stronach and Vas , 1998),
fewer still in the control of the sensorless permanent magnet machine. Impetus at this
point is therefore shifted from the practical implementation and results achieved with the
. methods discussed so far, to the perceived benefits that Al techniques are likely to yield.

The contrbl éystems considered so far have required knowl'edge of the motor. This
knowledge is represented as a set of differential equations that rapidly become complex
and they are based around many assumptions about the system. In addition, these models
© may depen‘d upon knowledge of motor parameters that are either difficult to measure, or
change significantly when the system is in use. In Vas (1999) various Al techniques
including associative memory networks, artificial neural networks and neuro-fuzzy
networks were implemented in a sensorless drive control system in order to demonstrate
their ability to cope with sensorless contrc;] without explici; a priori knowledge of the
motor. Torque ripple of the motor can be minimised by the application of optimum

current waveforms (Carlson R. et al, 1992), however the optimum waveform changes
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with load (Kocybik and White, 1997). Thé'opt}mum waveform therefore must be
calculated with knowledge of the load, alternatively, the waveform generator must be
made adaptive. Work in Kocybik and White, (1997) demonstrated the effective removal
of torque ripple from the system through calculation of the optimum waveform. It may
noteworthy to point out that one of the principle limiting factors of the observers
application (discussed above) was the occurrence of greater torque ripple at low speed. It
1s ;:lear that minimisation of torque ripple is therefore attractive.

‘In Tzes et al (1995), the back propagation neural network in the specialised leami_ng
mode was employed in order to compensate the effects of friction in a mi.'cr(-)-
maneuvering system. Whilst this drive was not specifically sensorless, the principle of
employing Al techniques was demonstraied, since an explicit model of the system was
not availaBle and a sufficient model would have been very difficult to derive.

In Denai and Hazzab (1997), Ishigame et al (1993), Suyitno et al (1993), fuzzy logic is
employed in the controller as per the Al improved observers from the list above. Of
special relevance to this paper is the use of fuzzy logic in order to improve the behavior
of a sliding mode controller. As pointed out in Tzes et al (1995), there have been many
aﬁempts to eliminate chattering; but of these atte'mpts, none have simultaneously
considered robustness. In addition the observation noise caused by high gain of the
controller has not been compensated for. The papers Ishigame et al (1993) and Suyitno
et al (1993) introduce a non-linear system which is composed of the weighted average of
linear systems with fuzzy inferencg. The chattering phenomenon is shown to be reduced

by combining the sliding mode control input and the equivalent control input through use
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of fuzzy inference. This approach is shown to improve the performance of a sliding

mode controller.

2.6 Discussion

This chapter has served to introduce the permanent magnet synchronous motor and the
brushless D.C. motor and explain why these motors are most attractive {o drive
applications.  Further, their differences have been explai'ned and common methods
available for their control have also been discussed. It has been. seen that position sensing
devices are required not only for speed control, but more fundamentally for efficient
commutation of the motor. Sensorless methodologies for control of the brushless D.C.
motor specifically have been dis_cussed. The direct measurement methods have been
baséd on the premise that the motor will be symmetrical, unfortunately they tend not to
be, and in high accuracy applications some form of compensation is required. The
PMSM is known to produce a reduced torque ripple, and has therefore it too has been the
subject of much interest. The unfortunate aspect of the PMSM is that all three windings
of the motor are energised at any given instant. Direct measurement of motor parameters,
rtherefo-re, becomes difficult and some form of estimation is required. Estimation, within
this context, is described as the process of extracting information unavailable for
measurement, for any relason, from the available data. This data may contain
measurement error and may also be influenced by external random disturbances.

The observer approach has been shown to provide reasonable performance when
estimating speed. The accuracy of the full state Luenberger Observer is as before
contingent by the accuracy of the plant model and knowledge of the plant parameters, the

motor when coupled to a nonlinear load is likely to demonstrate very different dynamics
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to the idealised model. The Kalman filter approaches alleviate the need for a highly
accurate model, however, acquisition of the initial covariance matricgs are often difficult
since statistical descriptions of the sensor errors are required (Dhaouadi et al.,1991). The
sliding mode observer has been seen to perform very much better than the Luenberger
observer, this is due to the invariance property of the indiﬁg mode. The chatter
phenomenon does not cause any problems within the implementation of an observer,
since no physical properties need consideration.- Sliding mode is invariant only to a class
of uncertainty, and therefore the observer error dynamics may be effected by certain
types of exogenous disturbance. The sliding mode.has the advantage over the Kalman
filter that no initial covariance matrix is required, but very similar performanée can be
obtained. (In fact it will be described in Chapter 6 that the Kalman filter and sliding
mode obsgrver haye the s-:ame convergence properties).

The remainder of this work therefore concentrates on the use of the sliding mode and the
modelling and identification of the test system in order to arrive at a low speed position

sensorless control drive.
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Chapter 3

Experimental Test Rig Modelling and Control

3.1 Introduction

The development of an experimental test system, which will form the basis for all
subsequent experimentation, is of fundamental importance to this work. It follows that
development of accurate system models based on knowledge acquired a priori also and
of extre':-me interest; since these models will be used to develop controllers later within
this work. This Chapter is divrided into major sections; first the test rig is introduced and
its mechanical and eleclroﬁic propeﬁies are discussed. A novel approach to sensor
bandwidth reduction is developed, other measurement devices are also discussed in order
to achieve full state measurement within lhe; system. Secondly, models are developed
from knowledge of thé motor, and assumptions about the load torque. These models vary
in.complexity, from simple third order transfer function models to models based on the
magnetic circuit of the motor. The performance of the respective models are subject to
comparison before two controllers are developed in the final section of this Chapter.
These controllers are applied to the system. The first is a proportional, integral,
derivative (P1D) controller, designed using the Zeigler-Nichols approach. The second is
_an integral action state feedback controller, which will serve to form a convenient basis

- for work within later Chapters.
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Test System Performance

Coarse measurements suggest that the frictional torque required to rotate the lead screw is

1.2N/m.

As discussed, it' is important to acquire accurate knowledge of system

parameters. Therefore, a relationship between speed and load torque is developed. The

encoder position data may then be directly applied to the calculation of the load torque

across the full travel of the stage.

Based on the relationship
T =1K,,

and introducing the relationship

and the power balance equations:

Applied electrical power:
Mechanical output power:
Power loss:

Power balance:

P=V-I
P=T w
B=I"-R
F=F+h

The motor speed may be expressed as (from (3.4))

£
w===
Tm

from (3.3), (3.5) and (3.6), (3.7) may be re-expressed as

V- I-I'R
w=——
T

m

Substitution of the equations (3.1) and (3.2) lead to the simplification

G3.1)

(3.2)

(3.3)

(3.4)
(3.5)

(3.6)

G3.7)

o@

3-8



Experimental Test Rig Modelling and Control

|
= - (39
@ KR K 39

- further manipulation leads to

w:%—{;’k _ (3.10)

The relationship between speed and load torque has therefore been established for
constant voltage application. Manipulation of (3.10) yields the ideal angular speed, @;

(T.»=0), (3.11) and the stall torque of the motor, Tns (w=0), (3.12)

LA G.11)
KR K,
VK
T, =t 3.12
w =g (3.12)

It is clear that a speed between zero and ideal is indicative of a load. The actual torque,

assuming a linear relationship between w and T} is given as a fraction of the stall torque

Tm=Tm-{l—£)—TF : - (3.13)

n.

Where n denotes speed (rpm) and »; denotes ideal no load speed. This equation will be
used later within the Chapter 4. The carriage was driven across the total length of travel,
in both directions, and position data was acquired. Figure 3.8 illustrates the results. The
convention that forward trével is away from the motor has been adopted throughout this
work. It can be readily seen that the frictional perturbation has significant effect on the
stage performance. It can also be seen that the effect is not symmetrical, i.e. the frictional
effect is completely different when traveling in one direction, compared with the reverse.

The spikes on the graphs are due to numerical differentiation of the data.
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The following sections move on to discuss their operation. The circuit diagrams are

‘provided in Appendix B, Part B.

Controller Interface

Control of the system was initially performed with a Motorola 68000 microprocgssor
system. The interface consisted of eight usable digital inputs and eight outputs. The
development of the control electronics was therefore constrained to meet these
specifications. Speed control is achieved by providing the amplifier with an analogue
voltage, the circuit shown (Figure B.1), therefore uses a seven bit digital signal to provide
a series of 128 unique speeds. The eighth output was then used to provide directional
information. An amplification unit was also used to achieve proper scaling of the speed
signal for the amplifier. Figure B.2 illustrates the. direction circuit and the amplifier unit.
Because of the relatively slow interface between the 68000 and the computer for data
analysis, and because of the heavy constraint on hemory within the 68000 system,
development was transferred to a PCL 718 data acquisition card which interfaced to the
ISA computer bus. The circuit used to provide directional information has a very low
overhead in terms of output requirement and therefore remains. The amplifier circuit also
remaiﬁs, if only to provide a buffer between the power electronics and the con;puter.
This section of the electronics is used to provide information about the applied excitation
voltage. Rather than increasing computational overhead by measuring this voltage, its
value can be determined implicitly if the electronics are calibrated correctly. The circuit
in Figure B.3 is used to achieve this calibration. Of principle concern is that full spee»d is
achieved when the speed output is at a maximum and zero speed is achieved when the

output is zero. The series of amplifier circuits are used to provide a full range of
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operations on the control volfage. In order to minimise the effect of controller dead-band
due to friction the summing amplifier is used to add an additional regulated voltage to the
control voltage, thus providing a threshold which is adjusted so that the motor is just
stopped with zero control voltage. The final amplifier in the circuit is used to amplify the
entire signal, judicious selection of the amplifier gains allows the system to achieve the

desired zero and maximum speeds with the controller.

Position Measurement

The device used for rotary position feedback is the quadrature optical encoder which
provides three output channels, A, B and | (Appendix B, Part A). Channels A and B are
placed 90° out of phase with one another and provide position and direction feedback
information. The index (I) channel provides an index pulse once every rotation of the
encoder to enable precise ‘homing’ of the device; this additional channel is not important
to this work, since the limit switches are used to provide a home position. The encoder
provides 500 pulses per revolution. When used in quadrature (channels A and B
together) the effective number of pulses per revolution increases to 2000. In order to
achieve accurate position measurement, all pulses must be registered and counted by the
measurement (hostj software. The host bandwidth, assuming no additional

computational effort is therefore automatically set to a minimum of

2000-n
}/ =

H. ' 3.14
o e | (3.14)

Where yis the system bandwidth and n the speed (revolutions per minute) of the motor.
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In applications such as data acquisition it would be attractive to stream data from the
system to a host computer. Even in low speed applications it is clear that the bandwidth

requirement acts as a constraint on minimum hardware performance.

Sensor Bandwidth Reduction

A solution to this problem has been developed using a power integrated circuit (PIC)
microprocessor. The microprocessor accepis the two channel signals from the encoder

line driver and acts as a state machine to provide an eight bit position signal output. In

* addition, an available ninth output pin is used to provide the host system with information

pertaining to the rotational direction of the motor. With the addition of this output, and
correct integration with the controller software the bandwidth requirement is effectively

reduced-from 3.14) to

2000-n
= Hz 3.15
" 15300 G-15)
Using this system it is possible to achieve accurate position feedback using a 68000

microprocessor and a 2000 pulse per revolution encoder at motor speeds of up to 1000

revolutions per minute, which far exceeds the mechanical capabilities of the system.

Systém Design

The bandwidth reduction circuit is shown in Figure B.4. The line driver (U1) is required
to provide the microchip with coherent channel signals. The microprocessor interface
consists simply of an oscillator circuit (U3) and the microprocessor (U2). The

microprocessor provides TTL compatible signals that may then be fed to an appropriate
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data acquisition unit. In the example of this work, the data acquisition unit had an
eff;ective bandwidth of 8kHz.

The host c-code and microprocessor embedded code flow diagrams are shown in Figure
3.9 and Figure 3.10 respectively. Figure 3.9 represents the logical flow through a routine
that will be resident within the host process. Its function is to provide a solution to the

equation

i=k
.= ) E, (3.16)
where T¢ rebresents the total encoder count from initialisation to the current sample K.
Of signiﬁcance are the facts that the motor may travel in both a forward and reverse
sense, and that once having reached 255 pulses in a monotone increasing cycle, or 0 in a
monotone decreasing cycle, the firmware will “wrap’ to 0 or 255 respectively. Therefore,
knowledge of the previous encoder output, direction and current encoder value are all
required in order to calculate the true encoder value and minimise the bandwidth
requirement.
Within th§ diagrams, K and K-1 are used to represent the current and previous sample
respectively. E represents the encoder value, S represents the encoder states. TC
indicates the total encoder count and Dir or Direction are used interchangeably to indicate
the dire(;tion of motor travel.
Figure 3.10 illustrates the logical flow through the firmware code. There are four
possible states (S) in which the output signals might reside. Converting signals A and B
to binary representation yields the states
0. Neither A nor B are logical |

1. A but not B is logical 1
2. B butnot A is logical 1
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3. A and B are logical 1
In terms of flow through the states, when traveling in the forward direction the encoder

sequence is given by

0222321202233 ->1...

The microprocessor executes, in general, 1 instruction per cycle and operates at [0MHz.
Once within the software loop, state transition may be checked at up to 1.666MHz. in the
event of a transition, 700ns are required for processing. The worst case operating scenario
is a state change every sample, i.e. once approximately every 0.13ps, this corresponds to
a motor speed of 231769 rcvqlutions per minute, therefore effecti\}ely guaranteeing that

every state generated by the encoder will be registered.

Current Measurement

The final circuit of concern is the one which is used to achieve current measurement.
Since direct current was anticipated, hall effect current measurement was not viable.
Instead, a shunt resistor is placed in the motor supply line. A precision amplifier is then
used to measure the voltage drop across the resistor and to brovide a voltage proportional
to it. This method of measurement is not ideal since it is very noisy. A resistor-capacitor
iow pass filter is used in the output stage of the amplifier in order to try and smooth ;his

signal. The circuit is shown in Figure B.5.
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33 Model Development

Of fundamental importance to the development of efficient control aléorithms for the
system 1s the development of sufficiently ac-curate motor models. Since motors of all
shapes and sizes have been used in innumerable applications from power generation to
robot control, there exists a vast quantity of literature based on the modelling of these
machines e.g. Rahman and Zhou (1996), Hemati and Leu (1992), Pillay and Krishnan
(1991) and Low er al (1996). Extremely elaborate models have been developed based on
thé magnetic circuit of the motor, e.g. Shi and Li, (1996)_ however these models are
computationally expensive, subsequently less complex mcdéis ére considered within this
work.

There are two motor types under consideration here. The brushed commutator D.C. (DC)
motor and the bm;hless D.C. (BLDC) motor; although the BLDC motor will be more
generally treated as the synchronous motor. Clearly, the BLDC is of direct relevance to
the work, since this is the type of motor used for actuation of the stage. The selec>ti0n of
the DC motor has been largely dictated by the requirement for a simple motor model in
order to validate control schemes later on within this work, since the BLDC motor is
multi input by nature, where as the DC only requires a single control input.

This Chapter begins with the treatment of the DC motor, mathematical models are built
into transfer function form and then state space form, simplifications and assumptions are

highlighted where necessary.
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In a similar manner the torque generated by the motor may be expressed as

T =i Kb (3.19)

Finally, the motor will drive a load (even if that load is only the rotor armature), the load

may be generalised as the sum of frictional and inertial components.

dw
T,=J ="+ Bo (320

The torque balance equation may be expressed as

deo _ . .
JT)’[_+BCD:IEK® | (32])

K® can be seen to be constant in both equations {3.18) and (3.19). Therefore, for ease of
identification, K. will be used to indicate the electrical gain constant and k., the

mechanical constant.

Applying Laplace transforms to equations (3.17)-(3.20)

V(s)=(Ls+R)I(s)+E(s) | (3.22)
T.(s)=(Js+B)afs) | (323)
L (s)=K,i(s) | | (32
E(s)=Kao(s) - | (3.25)

Figure 3.12 illustrates the block diagram of the motor. From this diagram the transfer

function of the motor may be expressed as

@ K,
AL (Ls+ R)(Js+ B)+ KK, (3-26)

Alternatively, (3.26) may be written
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K, K
R
K
K=—x 331
R B (3.31)
combining (3.29),(3.30) and (3.31) yields
K
G(s)=——— 3.32
(s) Js* + Fs ( )
alternatively
K -
G(s)=—— (3.33)
sls + a) .
where K, =£<l_a =£and T, = l:.._RJ_
TORJ J a RB+K_ K,

K_ in this equation is the open loop gain constant, 7, is the motor time constant.

3.3.2 State Space Modelling

The transfer function for the D.C motor has been successfully derived in the previous
.section. Unfortunately, transfer functions are limited to single input, single output
systems. A lesser problem is that zero initial conditions are assumed. The models
functionality would be significantly enhanced if position, speed and acceleration could all
be expressed wi}hou’t the need for differentiation of the model output. Attention is
therefore diverted to the state space modelling of the motor. Modelling may be achieved
through either direct conversion from the transfer function previously derived, or from

the differential equations given (3.17) and (3.20). Rearranging (3.27) gives

9 K
Ly ‘ m (3.34
y () JLs* +(BL+RJ)s* +(BR+K K, )s. ).
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Alternatively, in matrix form

Xi| |o | 0o [x 0 X,
X2(=|0 0 I X,|«| o v r=ft 0 0]x,
1o _(BR+K,K,) (BL+RJ) X, K, X,
JL JL JL
(3.35)

The matrix form above is known as the companion form and will be useful later in the
development of certain contro} schemes. As stated, the alternative method for deriving

the state space model is to use the differential equations directly, reiterating,

‘ dl
V.=E+1 R, +L=2 (3.36)
dt
E = oK® _ (3.37)
T, =1,K® (3.38)
dw
T[, =J—dt—+Ba) | | _ (3.39)

It will be of some benefit to sphit the load into internal and external components. The

torque balance equation can be rewritten as

dw
JE+BCD+TX =Ia.Kq) (340)

Where Tx is the external load torque. ' Rewriting equations (3.36) and (3.40)

dl

L—==-1,R,-K,o+V, G4
dt
dow

J;:—BQ—TX +10.K(D . (3.42)
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Now, let X|=(9’X2=%=Q)Jand X3=i1€f TX :Ul and Va=U2

such that
X =X,
. U B K
X2 =—7'—7X2 +7M-X3 (3.43)
. K U
X3=—_ eX2—£X3+—2
L L L

(3.43) may be more concisely expressed in matrix form as per equation (3.44)

oo 0 v v] 1o o]
X2|=(0 Bk, X, |+ -= = X, (3.44)
: J J J ] lo1 o
X3 o K R | X U, X
L L L] | L ]

At this point treatment of the DC motor model is abandoned since sufficient models for

simulation have been derived and instead the BLDC is now considered.

3.3.3 The Lumped Parameter Model

Given the phase windings A, B and C, the transformation from the three-phase model to
- an- equivalent two-phase description is desired. The Park transformation (3.45) is
commonly used in obtaining this conversion, since it possesses the unique property of

eliminating all time varying inductances from the machine voltage equation (Krause et al,

1995).
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Cos@ COS[Q —T"'J C (9 +2—J
k=2| Sing Sin(ﬂ - Tﬂ) S [9 +_’5J (3.45)
1 1 1
| 2 2 2 |

Another advantage of this transform is that it may be equally well applied to voltage,

current, flux linkage or electrical charge. It may be written

Sqdos =k fopes : (3.46)
Where

(fraos " =l fu 1] (3.47)
Vases) =fes fos fas] | (3.48)

where f represents any of the afore mentioned sets of variables. Assuming that the three

phase voltages are given

.

V. o=ri +L_ ;: + 1, cos(8) . (3.49)

Voo = riig + Ly 221 2 0 cos(@ - 2—”] (3.50)
dt 3

V,=ri ,+L_ —d'“’ +A,0, cos(é’ +2—”) ' (3.51)
Todt 3

where r;, Lgs and A, represent the stator resistance, stator self inductance and flux linkage
due to the permanent magnet respectively. 0 and o represent the position and velocity

respectively, suffix rm represents the mechanical rotor position and suffix r represents the

electrical equivalent. The corresponding voltages in the dg0 axis will be

| di
V, =ri, +L, —;f +w, A, (sin(6.)) (3.52)
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Vi =iy + L -‘%‘-m/h (cos(8,)) (3.53)

The electromagnetic torque generated by the motor may be expressed in terms of the

rotor reference frame according to the following equation (Krause et al, 1995).

T = (EJ[%](A[E;‘W ~Agiy) : (3.54)

2
Where 1, = A_cos(6,) and Ags = Ay cos(@.). In addition to this, the mechanical load

placed on the motor is given

T, =J‘;—?+Bm+TX (3.55)

In this case, the mechanical load is given in two parts, first the viscous friction (B) and
second the inertia (/) of the motor, Ty in this case represents the external load placed on
the motor. This external load is extremely important to the validity the model from a
practical perspective. It is this load that serves to represent the external system, in the
case of this work, the load is time variant and non-linear, (Armstrong-Helouvry et al,

1994). The addition of T, potentially provides a useful interface for an external torque .

observer. The torque.balance equation may be derived by equating (3.54) and (3.55):

J ‘Z—‘;’ +Bo+T, = G)(}Lm cos(0, )i,, - A, sin(9, )i,,) (3.56)

The voltage and torque equations above may be used in order to model the motor to a
reasonable degree of accuracy. In order to make use of these equations in a control
system, they must first be converted into a usable format. Rewriting equations (3.52),
(3.53) and (3.56) leads to

di i .
;:‘ s e O (g Yoo , (3.57)

s 55 58
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o _Tde @Ay (oo V)4 Pas 3.58
” LT -(cos(B, )+ L (3.58)
do 3 A, . 34, .\ B T '
70:—:57(‘03(9’)!“‘—ET]—S”T(Q‘,)T‘IS—ja)“TX (359)
6, = [ol&He +6(0) (3.60)

0

Equation (3.60) gives the mathematical description of the rotor position. & is a dummy

variable of integration, and &0) is the zero time position of the rotor.

Let x, = 0.x,=w,x;, =i, and x, =i andlet u, =T, u, =V, and u, =V,

equations (3.57) to (3.60) may now be expressed in state space format,

— 1 0 0 0
; B 32, . u
: 7 Tageme) et 1
X
=0 - Zmcos(y,) - 0 Pl M (3.61)
X . L, || Ly |
x, 0 -2 sin(x,) 0 -5 ¥4 el
-7 L I3 Ls.v n | s ]
X
K1_[1 o o o]x .
] lo1 0 0fx '
X4

3.3.4 The Phase Co-ordinate Model

The phase co-ordinate mode! (Kenjo and Nagamori, 1985) is based on phase equations
using stator and rotor circuits. In the case where there are more than 2 slots per pole per
phase the inductance matrix contains sinusoidal terms. Development of this model will

focus on the salient pole rotor, since the cylindrical rotor may be viewed as a special case

of the former.
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The phase inductance matrix [L] is:

Lo Lo L Ly Ly L,
Ly Ly Ly Lbf Lbd, Lq,
o oo
af b of T s
L Lbd, L.:d,, L o, Ld,ar, 0
| Lq.‘ Lq, Lq, 0 Lq,q, ]

For distributed windings (more than 2 slots per pole per phase) all inductance's linked to

the stator (self, mutual and stator/rotor inductance's) are rotor position, 8,, dependent:

L,=L,+L,+L,cos(26,) '- (3.64)
. 2r
Ly=L,+L,+L, 005(26’, + —3~] (3.65)
[ 2
L.=L,+L,+1L, cos[za, _TJ (3.66)
L, =-—: Lo (3.67)
* . 2+L,cos(26,) '
L
L=~ ° 5 (3.68)
2+ L, cos| 20, + Tﬂ)
L
L,=- 2 5 (3.69)
2+ 1L, 003(20, - Tﬂ)
L, =L, cosd, (3.70)
2 ‘
Ly =L, cos(e, —;B’EJ (3.71)
L, =L, cos[é?r +2§) : _ (3.72) .
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L,=L,;cosd, | (3.73)
L =L, cos[e, _ %’f) (3.74)
L,=L, cos(ﬂ, +2TﬂJ (-3.75)
L, =-L, sinf, ‘ (3.76)
Ly, =Ly, sin(e, - %”J . 3.77)
L, =L, sin[ﬁ, + 27”) - (3.78)

Rotor inductances are evidently independent of rotor position as the saliency is based on

the rotor itself

Ly=L,+L, (3.79)
Ly =Ly+L,, (3.80)
L, =L,+L,, (3.81)

where Ly, Ldrl and Ly are leakage inductances while the others are related to main flux

path. On the other hand, for concentrated windings (1 slot per pole per phase), when
cylindrical pole permanent magnet rotors are used, all stator inductances are independent
of rotor position. Only the motion related inductances between the constant field current

permanent magnet equivalent circuit and the stator windings depend on rotor position.

L, L, © Ly Laf (gzr )
_ Lab L.\' Lab Laf (Her ) .
[L]PM B Lab Lab L.r Laf (aer ) (3 82)
Laf (ger) Laf (ger) Laf ger) 0
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The stator self inductance L and the stator/stator mutual inductances L., are all equal to

each other. To a first approximation
L,=—-— (3.83)

The voltage/current equation in phase co-ordinates is:

A
= ||+ = (3.84)
LV, 0 r | |i, | dtiA,

with

[1]=12(6, )] [F] o (3.85)
=i iyini| | | | (3.86)
[r]= diagly, 1, 1..0] - (3.87)
[4]=[4..4,.2.0] | - (3.88)

Finally the electromagnetic torque T may be calculated from the co-energy derivative

with respect to rotor position:

7, - %) - d(g")‘j[z]d[fr | (3.89)

After neglecting magnetic saturation, (3.84) is muitiplied by [

T = L v e Ly 2 i |
[TW1=PLEMT + (M T )+ 6 oo, 10 690
The last term is the electromagnetic power Pein

_M=£_.' 0 i '
N e OO R (3.91)

The motion equations are

J do,

=T -T, ' 3.92
p dt e Load ( )
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d(ger) — a)-r (3-93)
dt P

The result is a set of eight non-linear differential equations with time varying coefficients.
These equations are used for special cases for machines with some asymﬁetry or for
unbalanced supply voltage operation.

Also, for the concentrated stator winding and permanent magnet cylindrical rotor, the
phase variable model is the model of chqice as Laf(Oer), Loi(Ber) and Lcf(O,,) are contain a
high harmonic content. In order to avoid the inductance dependence on rotor position, for
dis_tfibﬁted windings, the space phasor (d-q) mbdel is used (See -Vas (1993) and Appendix

B, Part C).

3.3.5 Performance Measures.

Performance measures are extremely important for the validation of derived models. The
selection of performance measures is heavily application dependent. Three measures of

: performance based on common modelling objectives will be used to quantify modelling

error (£(r)). Model error is first described based on the following relationship

e(t)=y(1)-(1) | | (3.94)
where y(t) is the system output and j/(t) is the models estimate of the system output.

The first of the three measures to be used is the infinity norm given by
el # suplz (¢) o (3.95)
2 N

The infinity norm of a signal depends on the extreme values of error. Since extreme

values will be sporadic, the infinity norm represents the worst-case model estimate.
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The root mean square error semi-norm is also used to quantify the performance of the
model. As opposed to the infinity norm, where the peak values of error were of concern,

here it is the average value of error, the root mean square (RMS) of the error is given by

¢

T—o

r %
s [Iim _[g(t)z dt] (3.96)

The concept of the RMS error is used commonly within many engineering fields to
describe the concept of average value, a low value for this performance measure does not
imply that no large peaks in error occur, simply that they are not common and do not
contain large values of energy.

The final performance measure is based on the ability of the model output to track the
system output. Here, absolute error is only implicitly considered and the impetus is
placed on how the signals vary with time. The percentile variance accounted for (VAF)

is given as

var(£(r))

VAF =100%-| | -————=% (3.97)
var(y(t))

When the model output ( ) and the system output (y) are identical, the VAF is given as

100%, if the model is in error then the measure is lower. It is interesting to note that from

the perspective of developing control algorithms based on the identified model, the VAF

is of more significance to the designer, since this describes how well the model has

captured the system dynamics.
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3.3.6 Data Selection

~ The selection of data upon which to validate models is a topic of some discussion within
the research community. For now, a specification for the data will be presented, with the
justification to come in Chapter 4.

e The data should excite both low and high order dynamics

e The variance of the data should be as broad as possible.

e The bias of the data should be zero.

In real terms, the data acquired must incorporate the dynamics from as much of the
sysiem as bossible. ldeally, thé excitation signal will be of variable amplitude and
frequency in order to capture a wide range of system dynamics. The excitation signal
should be of zero mean iﬁ order to avoid introducing unnecessary bias. To this end, a
random stepwise signal with zeroc mean was used as a basis for the excitation signal.
Random white noise was added to this signal. The system was subjected to this signal
and cuﬁent and positioh recorded as shown in Figure 3.13. The speed 6fthe system is

_simply taken as the derivative of the position signal after data acquisition.
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3.4 Controller development

[t is common that a proportional plus derivative (PD) or a PID controller is used for
motor control (Seraji, 1983). It was seen in the last section that the single input single
output model fails to consider the effect of load torque and therefore these models tend to
be significantly less accurate than their state space counierpart. Furthermore, the state
space model has been shown to perform nearly as well as the more complex phase
coordinate model. Therefore, within this section two controllers will be dev‘eloped. First
a PID controller based on empirical observations gained from the stage is devclope:d. The
well known Zeigler-Nichols approach to this design is adopted (Unar er al,- 1996).

Following on, an integral action controller is then be developed based on the state space |
model. This controller will be used in later Chaptefs as a basis for an advanced sliding

mode controller. The motor model

6 K
—(s5)= i : 3.98
V(s) s(Ls + R\Js + B)+ K _K_s ( ' )

is thought to be acceptable for the development of these controllers.

Table 3.2: Nominal Motor Parameters

Parameter Nominal Value » Units

Ko 54e-3 . NmA”
K, 54e-3 Vs/rad
L 0.0026 ’ H

R. 0.64 Q

J 9e-3 Nms?
B 7e-3 Nm/rad/s
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The PID transfer function ts given as

Uls) I |
E(S)_KE[I+57:,+ S) . (3.100)

where F is the system error and U is the control effort. K., 7; and T; are the controller
gain, derivative and integral time constant respectively. It is the Zeigler-Nichols method
which is used to find these parameters, using the values from the reaction curve the

parameters are given by

K =124 (3.101)
ND :
D
T=2 3.102
0 ( )
T, =§ (3.103)

Insertion of the numerical values from Figure 3.15 yields the parameters

K =12,T,=0.025 and 7,=0.1. Figure 3.16 illustrates the result of applying this

c H

controller to the simulated system. It is feature of the Zeigler-Nichols approach that the
response typically decays with a ratio of 4:1, the response is fast and these oscillations are

not thought to be stgnificant.
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The previous controller was based entirely on the assumption that the load torque could
be ignored. It ‘was seen that the controller required significant tuning before its
performance was deemed acceptable. A controller will now be developed using modern
control techniques in order to take advantage of the additional understanding of the
system dynamics afforded by the incorporation of the current state. Later within Chapter
6, a similar approach to incorporating an integral action into the control channel is
de;/elopgd. The derivation there relies on the use of a special canonical form, known as 7
the regular form. For this section, however, concern is simply for the introduction of an
integral action and the subsequent development of a controller based on pole placement
techniques.

The state space model has been seen to perform reasonably in comparison to the system.
It is therefore not unreasonable to use this model in developing the controller. Since

concern is only with the control of motor speed, the position state is ignored to give

(¢ K

e

L

[;‘c:(r))}= 7 j["'(’)]+ ? U, (1) | ;3.i04)
L

y(1)=Cx(r) (3.105)
where x,(1)=w(t), x,(r)=i(r) and U, (¢)=¥(z). For the time being load torque will |

be ignored and treated as an exogenous disturbance which will need correction by the

integral action. Now consider the introduction of a signal which satisfies

£(t) = r(t)- y(1) (3.106)
where the differentiable signal r satisfies

F(t)=T(r(r)-R) S (3.107)
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where [ is a stable design matrix and R a constant demand vector. Now consider the

control law given by
u(r)=-Kx(e)- K, [é(r) dt (3.108)

The control effort is derived by through a summation of the system states and the integral

action, after multiplication by the feedback gains. The system equations may be written

OO e g o

subject to compatible dimensioning of the matrices. This equation may also be written as

£(1)=(A-BK)x(r)+Tr(r) | (3.110)

" with

R |

This final equation is easy to recognise as the state feedback problem. A controller for

the system will now be developed based on this derivation. Inserting the nominal values

.

for the motor into the equations and sélecting

C=[-1 0} (3.111)
yields

(2692 6 0
A=|-2077 -246.15 0 (3.112)
-l 0 0

[0
B=|384.62 (3.113)

0
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0
=0 (3.114)
1

Since the matrix pair (,:1,[3) is controllable, the control law is given by

u(t) = kx, (1) + ey, (1) + k, [& dt (3.115)
The closed loop characteristic equation is given by

|A7— 4+ BK|= A’ +(248.842+384.62k, ) A +(1035.4k, + 2307.72k, + 78.725) A + 2307.72k,
(3.116)

The closed loop poles of the system are desired in the locations
[-300 —10+/5 -10- 5] (3.117)
The selection of the conjugate pair as the dominant poles will provide a slightly under-

damped response, as in the case of the PID controller. In order to achieve this eigenvalue

spectrum, the feedback gain matrix must be

K =[2537 0.185 16.25] | (3.118)

Implementation of this controller yields the step response with no load as in Figure 3.19.
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3.5 Discussion

This Chapter has served to introduce the experimental test rig. lts mechanical and
electrical »ivnlerfaces have been discussed. A novel approach to reducing éystem
bandwidth requirements in the face of high frequency sensor signals has been developed.
Several models of the system, based on a priori knowledge of the motor performance
have been discussed, and their respective performances compared. The third order state
space-model has been shown to be sufficiently accurate to use as a basis from which to
develop state feedback controllers. The highef order models may provide slight
performance advantages, but it is clear that the load, for which only diminutive
information is available, is the predominant cause of error within the models. Two
controllers were developed based on the models discussed. The first was a PID
controller, using the Zeigler-Nichols reaction curve method to find the initiai controller
parameters. These proved to provide an unacceptable controller performance.
Subsequent tuning led to an acceptable controller, however it is clear that for the duration
of this work, heuristi;: tuning of controllers is not an acceptable design approach. The
second controller made use of the enhanced knowledge of system dynamics afforded by
measurement of the load current. The controller was shown to perform much more
predictably in practice. The integral action of the controller l-las been shown to reduce the
steady state error of the system to zero, despite load uncertainties. This integral action
may therefore be said to introduce a robustness to these disturbances. This type of

controller will be used heavily later within this work.
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Chapter 4

System Identification

4.1 Introduction

The development of models to describe system behaviour is of interest within many areas
of science and engineering. The models, once developed provide the user with a method
for describing the behaviour of a system, and the meahs to develop prediction and control
algorithms. In the previous Chapter, comprehensive models of the brushless direct
current motor and its accompanying systém have been derived based on prior engineering
knowledge of the motor’s physica_! construction. This approach to modelling is
commonly referred to as the ‘white-box’ method. Implicit in this approach is that
nonlinearities within the motor have negligible effect on system performance, and may be
ignored. Within the literature there exist many motor models for which any number of
supgrlatives are probably quite applicable, however within this work the motor is rigidly
coupled to a load for which only diminutive information about its dynamics exist. The
load is known to be time variant and it was shown to vary with relative position along the
length of the stage in Chapter 3. When dealing with the system at the holistic level, it
becomes necessary to investigate alternative approaches to the estimation of system
performance.

A common alternative to the white-box modelling methods described above is the black-
box approach. This is approach represents the antithesis of the white-box method; thence

its name is derived. The black-box approach relies on the collection of input excitation
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It has become the case that the black-box approach is used synonymously with the field
of system identification. Throughout this work, however, the definition of system

identification will be that of Ljung(1998):

[system identification is ~] “the theory of designing mathematical models of

dynamical systems from observed data”

It will be demonstrated that black-box modelling, according to this definition comprises
only one part of this research area. Neither of the two approaches discussed thus far are
without merit. The white-box model is guaranteed to maintain physical relevance and
thus provide an authentic characterisation of the modelled system, as opposed to a simple
data description. Conversely, the black-box models are easier to construct than the
white-box models and often leads to significant reduction in simulation times since the
use of partial, differential and algebraic equations can be avoided.

One final area c;f consideration within thi_s Chapter will be to achieve synergy between
the biack-box and white-box approach, such that the advantages of both are retained.
This comparatively new approach has been dubbed the ‘grey-box’ approach within the
literature (Linskog, 1996).

-This Chapter now continues . with the consideration of necessary mathematical
foundations, upon which the black-box models are to be built. The concepts associated
with fuzzy clustering are also introduced. System models are then identified using
artificial neural networks and fuzzy clustering, using data acquired from the test rig. In

addition, comparative measures for the assessment of model quality are made. Finally,
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methods are sought whereby the system models may be improved through the application

of a-priori knowledge.

4.2 Mathematical Foundations

in the previous section system identification is described as being concerned with the
devetopment of a system model from observed data. Essentially this is the theory of
inferring system outputs from system inputs at finite time 7. The process of identification
is to choose a model of sufficient flexibility, and one that is known to have performed
wéll in the past. One specific family often employed because of this is based around the
linear difference equation (Leonartis and Billings, 1985a) given by:

y(r)+a,y(t— l)+...+a,,y(t—n)=blu(t -l)+...+bm(t—m) 4.1
the system is represented in discrete time; this is principally because the data within this
work is collected through sampling. The sample interval is assumed constant. Simple
transposition of (4.1) allows the determination of the next system oﬁtput given previous
observations

Wt)=—ayle-1)-...—a,ylt —n)+bult —=1)+...+ b ult —m) (4.2)

Simply for the purposes of tidiness, and more compact notation two vectors are

introduced
0=[a,...a, b..b,] | (4.3)
qo(t)z[— y(t—l)...—y(r—n) u(t —'I)...u(t—m)] (4.4)

Having defined (4.3) and (4.4) equation (4.2) may be rewritten as

A)=e" () | (4.5)
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y(r) is an estimated value and depends heavily on the parameters within the vector 8, the
equafion (4.5) is therefore rewritten in order to reflect this:

5(i8)= " | (4.6)
Model structures such as the one in (4.6), which are linear in & are referred to as linear

regressions, qp(!) an auto-regression if it contains previous values of y(t). The vector

(p(t) is known in general as the regression .vector, its parameters the regressors. The

model in (4.5) contains previous values of the variable to be calculated. Based on these
definitions, the model structure of equation (4.1) is given the general name Auto-
Regression with eXogenous variables (or eXtra inputs), or ARX as a conventent
acronym.
Ljung (1998), and others within the field generally agree that there three processes or
entities within the system identification prototype. Given in logical order they are

1. The data set

2. The set of chosen candidate model structures, e.g. the ARX model above

" 3. The selection criteria

The data set comes from the assumption that precise parameters in &are unknown. These

are therefore recorded inputs and outputs given over time interval | <t <N:

2" ={u(1).y(1)...., u(W), AN} @.7

It is imbortant to note that the input — output data need not be raw data collected from the
system. If it is known, as in the case here, that torque is a principal component of
disturbance then a model of torque based on output data might be used instead.

Typically, input — output data is collected through designed experiments subject to design
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constraints. The schematic diagram of the test rig is illustrated in Figure 3.1. The
diagram illustrates a ser_i_es of input and output nod'es. These nodes represent points
within the real system from which data may be collected. The aim is to collect data that
- will be maximaily informative during training. The selection of the model structure is
generaily regarded as the most difficult part within the identification process. It has

already been seen that a general multi-input single output (MISO) model structure such
as (4.6) can be used, where the function f(go(’t),t?) is a mapping which is parameterised
in 8. The task of finding a suitable model structure is naturally divided into two disparate

tasks

1. Choosing the regression vector ¢(t)

')

These are the topics of greatest consideration within this work and it will naturally be

2. Choosing the static mapping f(-

revisited in the following sections. Figure 4.2 illustrates the standard data set which was
acquired from the test rig. This data set will be used throughout the identification
process, except where stated. The reasons for selecting this data set will become clear

later within the text.
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£(le) = y(e)- 5(16) (4.10)

this term naturally represents both unmodelled dynamics of the system, measurement
noise within the data set and the effect of disturbances on the system. A typical choice

for the minimisation of this error function is the quadratic cost function. It follows that

the function that minimises the error £(t|0) will be the function that selects #in such a
manner as to fit j/(t‘@) as closely to the measured outputs as possible.
min ve(0.2,) @.11)

where Vy in the case of the least squares method is given

/,0.2°)=+ 5 (0)- 3(06) =%Z( 0] (4.12)

1=

The value of @ which minimises (4.11) will be denoted 8,
8, =arg min¥,(6.2,) (4.13)

It then becomes a matter of finding the solution to (4.13); in this case, since Fy is

quadratic in £, the minimum is given by setting the derivative to zero

O:digVN(e,z”) Zqo(t( (1)-9" (1)6) | (4.14)
giving"

‘Z:]fp( t)y(t)=§co(t)¢r(t)6’ | : (4.15)
this leads to

[Zw ()" (2) ]er ' | (4.16)

=1
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The chosen norm and method of finding © may differ from application to application;
however, in general, the principle remains the same.

The ARX model has been discussed above; there are several alternatives to this model
such as Quiput Error (OE), Auto Regression Moving Average with eXogenous variables
(ARMAX), Box Jenkins (BJ) and Finite Impulse Response (FIR). It was shown in

Sjoberg et al. (1995), that all of the models might be summarised by the general form

A b= 2L+ St @i
where

AlgM)=1+ag" +...+a,q™" (4.18)
Blg™)=b,+b,g7 +...+b,q" (4.19)
Clg)=1+cq™ +..4c,g™ (4.20)
Dlg)=1+dg +..+dq" | (4.21)
Flg")=1+fq" . fq (4.22)

Each model structure can be considered to fit within this prototype, and all except the
ARX structure are discussed individually in Appendix C, part 2. The ARX structure is

discussed below because of its direct relevance to the remainder of this work.

4.2.1 AutoRegression with eXternal inputs (ARX)

The structure of the ARX model has already been discussed. The structure has poles
within G of the transfer function description (4.8), and potential modelling accuracy is
therefore improved in comparison to the FIR model (Appendix C, part 2). However, there

remains only an algebraic relationship between past inputs and outputs. Therefore, the
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In application of linear black-box models, the user is attempting to describe the system's
frequency response (or impulse response) which is a'm‘apping R — R”™ (where p is the
number of outbuts and m is the number of inputs). Depending on the applicatiqn, this
type of model might be entirely acceptable, if however, greater model fidelity and more
detailed information about the system is required then non-linear modelling is required
and the problem becomes more complicated. The principle reason for this increased
complexity is that in the ideal, all system information will be included within the model;
this implies a very broad spectrum of possible model descriptions to be considered. There
has been significant research interest in this area and the application of structures based
on neural networks, radial basis networks, wavelet networks, hinging hyperplanes and
models based on fuzzy loéic may all be readily found within the literature, for a review
see for example Juditsky et al., (1995). The next section of this report moves on to

consider some of the more general aspects of non-linear black-box modelling.

4.3 Non-linear Black-box Models

The regressors given within the last section provide the necessary degrees of freedom for
the linear black-box case. It is therefore natural to extend their use to the non-linear case.

Structures of the form

3(6)= £ (o). 0) - (4.23)
are used in non-linear black-box modelling, where f is a non-linear function
parameterised by 0 and the; components of ¢(?) are similar to the regressors d»escribed in
the linear case. With respect to the model structureé described in the previous section,

both the ARX and FIR models use one or both of the regressors, u(¢—k) and y(t-k).
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These data are measured variables and therefore offer no difficulty in application. The

remaining models are based on previous outputs from the black-box model y(t - k|¢9), SO
instead of @ (1) in (4.23), the regreésion vector should be written (a(tlé}). An obvious
question is how the simulated output y, (r.—k|6’) might be computed if the network
output is given as for the NFIR and NARX models as the prediction jf(t —k|8). The

solution is-based on the fact that the output of the model is equal to y, (t 9) if all of the

measured inputs y(f—k) are replaced by the previous output 3, (t — k[H). According to

the adopted nomenclature, all of the linear models discussed above iﬁ the non-linear form
are prefixed with N (Non-linear).

The linear models that employ a regression vector with past model outpits as a
component (e.g. ARMA, ARMAX, NBJ, and NOE) correspond to recurrent structures
(Leonartis and Billings, 1985b). In general, there is greater difficulty attributed to
working with recurrent structures, since among other things, it becomés difficult to check
under what conditions the obtained model is stable, and it takes an extra effort to

calculate gradients for model parameter estimation (Norgaard et al., 2000).

4.3.1 Other Choices of Regressors

As alluded to within section 4.2, there is no reason to restrict the choice of regressor to
those that that are just linear functions of measured inputs, measured outputs, and model
outputs. | Should physical insight be available then it may feasibly be used to transform

raw data into more pertinent regressors. From an applied perspective, it is sufficient to

regard the input (u) and output (y) as transformations of the raw measurements, formed
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in view of what is known about the system. For example, a so-called "Semi-physical
Regressor" (Sjoberg, 1995) could be a load torque signal formed through current and
angular velocity measurements, if it is believed that the torque signal is a principal
stimulus of system performance. Despite the fact that the non-linear model can more
readily characterise these relationships, there is no reason to waste computational effort
in estimating phenomena that are already understood.

Another type of pre-processing of raw data in thé light of prior knowledge is to use

filtered inputs as regressors e.g.
L(gul) k=1,....d _ (4.24)

rather than u (s — k), where the filters Ly are tailored to the application.

4.3.2 Other Structural Issues

The combination of regressors clearly reflects structural assumptions about the system;
there is obviously enhanced flexibility in using a non-linear model with a learning
structure such as a neural network (Hunt ef al., 1992). For instance, the parameterised
function fwithin a non-linear black-box model structure is defined either as linear or non-
‘linear during training. A further motivation for this model is that it becomes easier to
develop controllers than from the models discussed earlier, see for example Norgaard et
al., (2000). In Ljung and Glad (1994), it is suggested first to build a linear model for the
systém. The residuals from this model will then contain all unmodelled non-linear effects.
The neural network based model would then be modelled on these residuals, to pick up
the system non-linearity. The outputs of the two models may be recombined to provide a

gross system output prediction. This approach is attractive, since as has been seen in
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Chapter 3, the steps in obtaining a linear model are well founded on prior knowledge and.
lead to reasonable models. Subsequent application_ of the nonlinear model based on
white-box model residuals at least guarantees a model whose-performance matches the
linear white-box model. Inevitably within any model there must be some error expected
in the estimation. This error is due to a bias inherent within the model due to an
insufficient model structure. Unfortunately, the model size cannot be increased ad
infinitum because as the model grows, so the variance of the model coefficients must
grow for a given training set. This is referred to as the bias-variance dilemma and
discussed in more detail in Appendix C, part 3. The selection of the most suitable model

structure within this work will be dealt with on an individual basis.

4.4  Training Algorithms

In the course of system identification, the choice of training algorithm is of critical
importance, since it affects the convergence of the selected model. This section of the
report is dedicated to the consideration of some of the training algorithms available. It
was showﬂ in the first section of this Chapter how quadratic minimisation based on the
least squares approach may be used to minimise Vy(6€). In general, however, an
analytical computation of the minimum of VN(G?) is not possible. The minimum must be
sought throﬁgh a numerical search procedure." Such a procedure is c;)mmonly known as
non-linear optimisation.

It is assumed at this point that the model structure has been selected, and that a data set
has been acquired. Clearly, the task of the optimisation, or training is to obtain a

mapping from the dataset to the set of candidate models.
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zZ¥ 50 (4.25)

The mean square error criterion from (4.12) is a common performance measure. Training
schemes based on this criteria are known as Prediction Error Methods (PEM), since the
training objective is to minimise a given norm of the prediction error. With the criterion
given in (4.12) the PE method will correspond directly to maximum likelihood estimation -

if the noise signal distribution is Gaussian.

4.41 The Prediction Error Method

It has been seen that the objective using the mean square error criterion is given by -

f=arg min ¥,(6,2") (4.26)

Searching for the minimum is achieved by consideration of the second order Taylor
series expansion of the critérion in &,

’ "

v,l,z")=v,(6..2")+(0-6.Y ¥, (9_,ZN)+%(9—0_)TVN (6..2"Yo-9.)

4.27)
where the gradient is given by
v ey dvy(6,27)
Ge.)=v, (6.,2" )= 2= (4.28)
do
8-=6.
and the Hessian is defined by
ey dW,(0,27)
H@.)=V, {6.,2")= D2 (4.29)
do 5=8,

A sufficient condition for 6=8, to be at a minimum is that the gradient is zero. In

addition, that the Hessian is greater than zero, for all nonzero data vectors (v) i.e.
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G(6.)=0 (4.30)
v H(@ >0 | (431)
The search begins with an initial guess at the parameters in 6, 0(p). The selected training

method then comes into its own and adjusts the weights according to some search

criterion. This is usually achieved iteratively and generally takes the form
Gy =0, + 14y (4.32)
where 9(1.) spec:iﬁes the current iteration, My the search direction and My the step size.

[teration continues until the minimisation criteria are satisfied. Unfortunately, the criteria
described above will generally have more than one minimum. The method as described
above will not guarantee convergence to the global minimum, but instead the minimum

that is actually obtained will depend entirely on the choice of 6.

Gradient Descent

Gradient descent is a prediction error method. The task of training is to obtain the

mappirig from the dataset to a set of candidate models,

-~

FAEY . (4.33)
In this case, the objective is to minimise the mean square error according to

A

§=argmin¥,, (6,2") | (434)
The prediction error method is iterative and generally takes the form

[

sy = 6+ 1, : (4.35)

where 6, specifies the current iteration, 7, specifies the search direction and g,

specifies the step size. The iteration of the algorithm continues until such time as the
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minimisation criteria is satisfied. The principle of the gradient descent method is to

adjust the weights of the network in the opposite direction to the gradient, i.e

n=-G(6,) (4.36)
O =0~ ”(f)G(g(')) (4.37)
where
N
G(8y)= &%E—) (4.38)
o=0,

If the step size u. is sufficiently small with this choice of direction, then it is always

possible to achieve a reduction of the criterion,
V(0 2" )<V (6, 2") : (4.39)

As alluded to above, this method’s convergence is entirely dictated by the step size.
Frequently this steplsize is selected to- be a constant. There is no guideline for this
selection, but the need to maintain a small step size frequently leads to slow convergence.
In Demuth and Beale (2001), an alternative approach uses an adaptive step size to control
the convergence. Irrespective of the step size, convergence using this algorithm is linear,
and comparatively stow. When applied to neural nefworks, this method is known as
back-propagation (Lewis et al, 1999), and des;;ite the slow convergence, it has grown in
popularity because of its simplicity in implementation and modest storage requirements.
The slow convergence property has however led to implementatidns that are more

sophisticated.
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The Newton Method

The previous methods rely on a first order approximation to the criterion in order to
determine the search direction. The Newton method is a natural extension to the gradient

method and uses a second order expansion of the criterion
7.(6.2" )=V, (6,.2")+[6 -6, Glo, )+%[9 0,1 Ho,Jo -6, (4.40)

The differential of the estimate is introduced

w(t,0)= dj};gg) (4.41)
The gradient and Hes;ian are given as

Gle)=v, (6.2")= % Z w(.0)y(0)- () o (4.42)
HE)=v, 0.2")= 13 oMo ) -1 v (.6 A
Define the minimum as

0=G(g,)+H(8,) -4, ] (4.44)
which gives the update rule

Fon) =0, - H(6,,)5(0,) | (4.45)
The search direction is determined by solving the system of equations

He by =-6l6,) _ | (4.46)

1 is frequently referred to as the Newton search direction. The ideal step size for the
Newton method would be one if the underlying criterion were truly quadratic (Sjoberg ez
al, 1995). In practice, the approximation of the criterion (4.40) might only be valid

around a certain neighborhood of the current iterate. The full step might therefore bring

4-18



System [dentification

thel new iterate to a point far from the point predicted by the approximation. To
circumvent this problem, a line search of the step .size may be incorporated into the
Newton method. In such a case, the method is known as the damped Newton method.
Conv‘ergence of the damped Newton method cannot be guaranteed. In addition,
calculation of the Hessian is a computationally demanding task. Often approximations to
the Hessian matrix are calculated instead. These methods are known'as quasi-Newton
methods and are discussed further in Dennis and Schnabel (1983). For non-linear least
squares problems, use of the quasi-Newton methods for training often leads to poor initial
convergence Norgaard ef al (20'00) and  Dennis and Schnabel (1983) recommend
consider'ation of the Gauss-Newton methods which are especially suited to the non-linear

.. least squares problem.

Levenberg-Marquardt

A comprehensive description of the Levenberg-Marquardt algorithm may be found in
(Norgaard et al, 2000}, the algorithm is essentially a cross between the gradient descent
method already discussed and the Gauss-Newton method (Lewis et al, 1999). In this

approach, the minimisation is given

~

6 =arg mgn Vy (9, Z”) subject to '9 - 6’(,_])| <5, (4.47)

The update rule for the Levenberg-Marquardt algorithm is given as

Oy =0 +4 | (4.48)

|&(8)+ ,1,.1] u,=-G(g,) (4.49)

Where the Hessian is given as
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2 (9 we(6,2")

9=0,
and the small constant A, which is used to alleviate ill conditioning problems with
calculating the search direction. In practice, the Levenberg-Marquardt uses an
approximation to the prediction error as in the case of the Gauss-Newton method. The

value of & represents the radius of a trusted region around the current estimate, within
which the selection of the search direction for the approximation is assumed to

correspond well with the search direction for the criterion Yy (B,ZN ) .

The Levenberg-Marquardt algorithm offers significant speed advantages over the basic

gradient descent algorithm.

4.5 Neural Network based Identification

Neural networks are a popular tool for pattern recognition and are used increasingly for
system identification (Norgaard et a/, 2001). The neural network used here is a two-layer

perceptron network of the form

7(0)= (Z f(z ,¢+w,0]+W,o] 4.51)

The network uses 'tansig' activation functions within the input and hidden layer, the
output layer uses a linear activation function in order that the network output is able to
take on any value. In the neural network training, the common mean square error of the

estimate is used for the criterion of fit:
2

h(0.2")=o- 310 -3(16) | (452)

r=|
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W is given as the network weights, F is the activation function, N is the number of data in
the training set and w is the network thresholds. The neural network is presented with the

ARX structure is given by

yt)=o" ()0 | (4.53)
where
6=la,...a, b..bJ (4.54)

;a(r):[__y(f_l)...-y(f_) uft—)..sft-m)] | - ‘ | 455)

6 is the regression vector for tuning, ¢(¢) is the vector of previous inputs (u) and
outputs of the system ( y) The vector ¢(r) is pfesented at the input nodes and the
current value of position (y(t)) is presented at the output. In the case of the neural

network, it was found that the standard identification set did not yield good results. This
is discussed in greater detail in Sjoberg,(1995). Instead, a second identification set was
introduced which lacked the additional high frequency step-wise excitation signal (Figure

4.4).
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q; =

y(ti)_y(l.l)
40(‘-)_5”(’1)’

it J (4.58)

the Lipschitz condition states that provided the function f; is continuous, then the
quotient is always bounded. The argument follows that if the differences,

dy = y(t,.)—y(tj) . do,=,(1,)-¢, (tj) are small then the approximation may be made

=L dp+ Ldg ..+ Ly, (4.59)
o9, o9, 99,
dy = fdo + f,dg, +...+ f.do, (4.60)

where r represents the number of regfessors. It follows that the Lipschitz quotient may

be represented by

4 - |4 (4.61)

J(do) +..+(dp,)

0 |fdop, +...+ f.do,
" J(de) +..+(do,)

when this equality produced two interesting results in the cases where there are either too

(4.62)

many or too few regressors. Consider the case when there is a regressor missing,

=) _ el
" de) .+ (doL)

(4.63)

ey _ d9) +. +(dp) | fRe +... fdo,

© o J@dn) ++(de) () +. 4 (de)

(4.64)

in the most extreme example, it will be assumed that the output is dependent entirely on

the #" regressor. There will be points where dy # 0, and disregarding the regressor Q.
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will lead to an infinite Lipschitz quotient. In the case where too many regressors are

included
o || 2 (4.65)
\/(dqol ) +...+(de,,)
do,) +...+(dg,)’ ‘
,-S-'“)= \/( @) +...+(do,) |fde +...+fdp, (4.66)

Jdg ) +..+(do,) J(dp) +..+(dp,)’

The superfluous regressor in this case will have negligible effect on the Lipschitz
coefficient and will lead to an insignificant reductioﬁ. The algorithm which is given in
He and Asada (1993) has been implemented, the results of which are shown in Figure
4.5. Because of the noise that was present in the current channel, it is difficult to
determine anything definite, but the algorithm seems to be suggestive of a lag space of
two or four. The lag space of [4 4 1] was selected through comparison of the developed
models.

After scaling of the data and training with the Levenberg-Marquardt algorithm, a neural
network with 'tansig' activation functions on the input and hidden layer, and a linear

activation function in the output node gave simulation results as shown in Figure 4.6

(NNARX).
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4.6 Fuzzy Identification

The term fuzzy identification has come to fepresenl the use of fuzzy logic in the

modelling and representation of a system. Fuzzy models may be viewed as general

function approximators and are therefore readily applied to the nonlinear regression

problem of the form discussed in the previous sections. The fact that behaviour of a

system can be easily represented linguistically e.g.

If Voltage is High and Current is High then Speed is Fast

naturally provides the user with a useful method by which a systems behaviour can be

predicted entirely from empirical observation. Linskog (1996) provides a comprehensive

discussion of this approach, which constitutes the first of the two principle methods:

1.

A series of if-then rules are used to articulate the expert knowledge. The
model structure is generated implicitly from the rules supplied by the expert.
If fine-tuning is required then Input / Output data may be used with a
particular training algorithm. This form of parameter tuning takes advantage
of the fact that the fuzzy model may be viewed as a network, analogous to
artificial neural networks. From ihis description, the approach falls under the
white or grey-box-modelling paradigm.

In the second case, no prior information is assumed about the system, and
only numerical data is used to construct the fuzzy rule base. The resulting
rules are expected to provide a posteriori information about the system. This
approach could clearly lead to so-called emergent knowledge acquisition.
The expert in this case is more inclined to analyse the model after
construction, at which point new rules may be added or old rules modified in
order to improve model performance. This approach clearly fits with the

black or grey-box modelling approach.
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The need for black and grey-box models to be applied in this work has been discussed in
previous sections. Clearly, the linguistic interface between the expert and the machine
make either of the two basic approaches to fuzzy identification attractive for modelling,
since both prior knowledge and collected data may be easily incorporated into the model.
In the following sections, the second approach to fuzzy identification is discussed and

results from experimental work are given.

4.6.1 Product Space Clustering

The aim of clustering, specifically in this case product space clustering, is to decompose
the nonlinear sysfem behaviour into a series of local linear models. According to
Verbruggen et al (1999), a procedure must be followed in order to arrive at the final
model:

1. Data collection

Structure Selection

Data Clustering

Selection of Cluster Number
Generation of initial fuzzy model

Simplification of the initial model

R

Model validation

. It can be seen that the steps 1, 2 and 7 are the same as those proposed earlier within this
Chapter, and by Ljung (1998). The remaining steps'are peculiar to fuzzy model

identification and are therefore discussed in due course.
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Data Clustering

The goal of cluster analysis is to partition a given set of data into clusters, which will be
subsets of the presented data. The criteria for these clusters is

»  Within cluster homogeneity; data within clusters should be as simtlar as possible.
= Between cluster heterogeneity; data between clusters should be as different as
possible.

Of course, similarity is a subjective specification that will be dictated by the data type.
Often, since the data is a real valued vector, distance measures can be used as a measure
of similarity. In this specific case, conside‘ration is paid to a regression structure for the
data clustering. It has already been seen that different regressors may have different
levels of relevance to the regressand; therefore, in the design of the experiment proper
_sca]ing of the data needs to be carried out in order to achieve reasonable distance
measures. Of note is the fact that abstract classes of data can also be assigned integer
values. A distance measure can be used once again, however, additional assumptions
about the classes must be made, for instance if integer values were assigned classes, the
class number 1 must be assumed more similar to class 2 than class 3. Further information
and definitions of hard, fuzzy and possibilistic clustering may be found in Appendix C,

part 4.

4.6.2 Selecting the Number of Clusters

In the last section, it was seen that partitioning could be achieved for a given data set. In
the very simple example, it was also seen that the choice of cluster number was a
hindrance to successful partitioning of the data with the first two methods. When

clustering is performed on data about which there is no a priori knowledge it is usual that
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the actual cluster number, ¢, has to be estimated. The clustering algorithm will then
search for ¢ clusters regardless of physical relevance to the system. In this case, the
results of analysis with different numbers of clusters need to be compared with one
another, based on some measure of quality, to find the optimal number of clusters. The
appropriate cluster number can be determined by two principal methods, these are

discussed below.

Validity Measures

A standard method for arriving at the correct number of clusters is to use a measure of
cluster quality. Validity measures within the context of fuzzy lclustering; are used to
assess the cluster quality. Criteria such as within cluster distance, entropy and partition
densi‘ty have al! been used. It is generally accepted, however that a good cluster may be
loosely described as not being particularly fuzzy. This reasoning stems from the fact that
if the correct number of clusters has been selected then most of the data should fit neatly
into one of the clusters. In lhe case of misclassification, the clusters cannot be expecfed
to be well separated or compact. Most validity measures therefore concentrate on
qualifying the separation and compactness of the clusters.

Cluster validity analysis is performed by clustering the data several times with different
values of c. Often it is also performed several times for a given value of ¢, with different
_initial fuzzy partitions. Naturally, upon comparison, the number of clusters that
minimises the validity measure is deemed the correct number of clusters. The use of

validity measures is therefore quite involved because of its heuristic nature.
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Compatible Cluster Merging (CCM)

The principle of compatiBIe cluster merging is to begin with ¢ set to a value that is
expected to be too high for the data set. The successive merging of compatible clusters is
~ then used to reduce the number of clusters. Clearly, the central element to the success of
the CCM method is what qualifies two compatible clusters. The original criteria -

suggested by Krishnapuram and Freg (1992) are based on the geometrical properties of

the cluster covariance matrices. Consider two cluster prototypical points v,, v,. Let the
1202 i

eigenvalues and unit eigenvectors of the clusters be denoted {A A S A ,...,A tand
] g Jl n

{¢,.,,...,¢5."},{¢ﬂ,...,¢jn} respectively. The criteria are then given

6, a2k, k=l (4.67)

bu 8 V=Y, |5 k,, k=0 (4.68)
2 v, —vj.||| .

I -, 2<k <4 (4.69)

\/Z_JZSka,

The first of the conditions states that clusters should be merged if they are parallel. The
: secoﬁd that the normals of the clusters to the hyperplanes should be orthogonal to the line
connecting the cluster centres. The last statement specifies that the clusters should be
sufficiently close to one another. The values were deri-ved because this algorithm was
originally developed for the clustering of 2D image data. Kaymak and Babuska (1995)
introduced the relaxed cdmpatibility criteria for identification and function
approximation; in addition, this approach also introduced an automated algorithm to

replace the three design constants. They proposed the criteria
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2k &

n

i T
slj = qﬁin ¢jn

1 (4.70)

2 _ 4 *
5 = "v, —v}," <k, Kk

0 4.71)

K

In this case the measure s,;. assesses how parallel the clusters are to one another. s? is

i
used to calculate the distance between clusters. Criteria (4.71) has been relaxed in
comparison to (4.68) in order to accommodate cluster merging in noisy data. The two
matrices then provide compatibility measures which are used in the» algorithm given
below

r_é:ﬁeat

1. Cluster the data into ¢ clusters

2. Evaluate the compatibility criteria

3. Calculate the compatibility matrix

4. Determine groups of clusters for merging

5. Check-the heuristic

6. Compute the new partition metric using

until

4.6.3 Generating the Fuzzy Model from Partitions

It is assumed at this point that the structure of the model has been established this extends
to the assumption that the regression data has also been collected and is available. Once
the structure is selected, the problem becomes analogous to the non-linear black-box

identification problem, in that the regression

)= 7(p(t).6) ' (4.72)
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is desired (see equation (4.23)). The difference in methods, however, might loosely be
described as the difference between local and global models. Fuzzy modelling in this
case is based on the premise that the regression problem can be decomposed into a
number of locally linear regression problems. This is the reason why fuzzy models of
this type are more readily interpreted and a priori knowledge incorporated than the
alternative global models, such as neural networks. At this point, a matrix of regression

vectors is defined as X i.e.

@

X = qu ' : S (4.73)

Pn
the vector of regressands is denoted ¥. The cross product of X and Y is known as the
product space. The data set Z to be clustered is a subset within this product
space,Z c X xY and is known as the regression space. The regression (4.72) defines a
surface within this spdce. If this surface is partitioned into a series of linear surfaces
(corresponding to a cluster), an affine Takagi-Sugeno fuzzy rule may be used to represent
the locaj regression, hence an entire rule base may be used to represent the global system.
Consideration is now baid to the Takagi-Sugeno model structure before further

consideration to system identification is paid.

4.6.4 The Takagi-Sugeno Model

The Takagi-Sugeno model is a rule based fuzzy model suitable for identification of
nonlinear systems (Takagi and Sugeno, 1985). The original form was given as per (4.74),

where the consequent parameters of the rule are crisp functions of the inputs, i.e.
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R :lFf(xl is A4,,....x, is4,) THEN y, :g(x,,...,x,.) 1=1,2,....k (4.74)

where x e X c R”is a crisp input vector, 4; is an antecedent multidimensional fuzzy set
defined by the membership function p,,(x): X —>[0,1], y, € R is the scalar output of the

" rule. The index i relates the variable to the /" rule and k is the number of rules in the
rule base.

The consequent function, g, Is typically chosen as a suitably parameterised function, the
functions form will remain constant throughout the rule base, and only the paraﬁeters
will vary. A useful form of the consequent is the affine linear form of the Takagi-Sugeno
model, in which rules are structured according to (4.75)

y,=ax+b, . | — (4.75)
where g; is the so-called parameter vector and b; is an.offset. Within the product space’
(R?*™¥) the affine Takagi-Sugeno consequents may be viewed geometrically as
hyperplanes. The antecedent of the rule defines a fuzzy validity region for the
corresponding hyperplane. Tt is qui»te clear how a rule base might therefore be used to
produce a global, nonlinear function approximation.

The output y of the TS model is computed using the fuzzy mean formula

)- > Bx)y,
> B(x)

(4.76)

where S, (x) represents the degree of fulfilment of the i rules antecedent, which is

simply a measure of the degree of fulfilment of x in the fuzzy set 4, and is given by

B, =i (x) (4.77)
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Since it may become difficult to interpret multidimensional fuzzy sets, the antecedent
proposition is commonly defined in a conjunctive form, given by a series of single

dimensional fuzzy sets combined with simple propositions
IF x,, is 4, AND,...,AND x, is4, THENy, =ax+5, (4.78) .
in this case the degrees of fulfiiment are calculated as ﬂ,.(x) = (XA A (X)),

where the min operator (A) may be replaced by alternative T-norms. In this case, the

model output is calculated
K K r . _ ,

v (St e 37, b, = e )
i=] =l

where y, is the normalised degree of fulfilment

7, (x)= Kﬁﬂ _ ' (4.80)

> B,(x)

J=l
E(x) and E(x)are input dependent parameters, given as convex linear combinations of

the constant parameters a; and b; through the following relationship
~ K ’
alx)=2,,7.(x)a, (4.81)

~ K
blx)=Y" 7. (xh, (a8
The NARX structure discussed previously may be expressed in this pseudo linear form

according to the following

)= a, ylk—j+1)+ 3 b, ulk—j+1)+, (4.83)
J=1 J=1
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4.6.5 Identification in the Product Space

Geometrically the consequents of the TS model discussed above may be represented as
hyperplanes in the regression space. The antecedent fuzzy sets serve to divide the
regression space in which the regression surface may be locally approximated by the
consequent hyperplanes. The task..of identification is to find the number, locations and
parameters of these hyperplanes such that the regression surface is accurately
approximated. This may be achieved through applicatioﬁ of a set of fuzzy clustering
methods, referred to as su‘bspace fuzzy clustering.algorithms. Far fuller descriptions of
the clustering techniques discussed below may be found in Hoppner er al (1999). :An
implementation of the fuzzy c-means algorithm méy be foﬁnd in the Matlab ‘fuzzy logic

toolbox’ (Roger Jang and Gulley, 2001).

The Fuzzy C-Means Algorithm

The fuzzy c-means algorithm may be used to group the data into probabilistic partitions.
In order to achieve this, the optimal cluster centre points must be calculated. The cluster

means (or prototypical points) are calculated according to

Z:L, (ﬂ.‘k )m Zy

v, =] (4.84)

i 'Z:L.(:“m )

m denotes the weighting exponent. If m is chosen as one then the fuzzy c means
algorithm is a generalisation of the hard ¢ means algorithm. Membership of a data

point, z, is then calculated as a distance from each cluster centre, the distance (4.85) is
one such measure that can be used

D =(z,-v) 4(z, -v,) ’ _ (4.85)

A
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where A4 is a norm- inducing matrix. Finally, the partition matrix must be updated every

iteration according to

I
Z 5.

The fuzzy c-means algorithm is commonly associated with clustering into spherical

My = (4.80)

shells. However, by suitable replacement of the A matrix within the distance measure it
is also possible to derive elliptic norms. Despite this additional capability, the fuzzy c-
means algox;ithm is limited in that it cannot detect different cluster shapes and is therefore
prefers the fixed cluster form even if it ddes not exist within the data. [n application to
fuzzy model identiﬁcl:ation, this constraint is not ideal. Consideration is now paid to the

Gustafson-Kessel algorithm, which is capable of detecting cluster shape.

The Gustafson-Kessel Algorithm

The Gustafson-Kessel (GK) algorithm (Gustafson and Kessel, 1979) is an extension of
the FCM algorithm that uses an adaptive distance measure. Each of the clusters has its
own norm-inducing matrix, which allows the algorithm to detect shape and orientation of

the cluster.

D =(z,-v) A(z,-v) | (4.87)

The shape and size of the clusters is described by the cluster covariance matrices

_ Zebwd) (@)@ -v)

F = : | (4.88)

, | Zf:l(’ufl* )”'

The objective function of the GK algorithm- now contains the matrix 4 in its

minimisation. Unfortunately, because the objective function is linear in A4 it cannot be
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directly minimised with respect to A. In order to arrive at a solution, the determinant of 4
is usually constrained. The matrix is then allowed to var-y, whilst maintaining a constant
determinant. This has the effect of allowing the algorithm to optimise the cluster shape,
whilst unfortunately keeping the cluster volume constant.

The algorithm proposed by Gath and Geva (1989), is an extension of the GK algorithm -
that is also able to take size and density of the cluster into consideration. This property is
attractive sinée there might be regions within the data more suitably approximated by
larger or smaller clusters. The algorithm uses an exponential term in the distance
measure that can produce very large numbers whilst clustering; this may lead in turn to

processor stack overflows in practice.

Antecedent Membership Calculation

The antecedent parameters of the Takagi-Sugeno model may be calculated through
application of the distaﬁce measure used within the clustering algorithm. In this case
only the regressor. x, the regressor component of the cluster prototype and the
) corresponding cIL_lster covariance matrix are used.

The distancé measure may be eValuated as
D(x,v7 )= (% -v) F (%, -v,) , (4.89)
using an inversion, this measure can be converted into the degree of fulfilment. One

possible choice of inversion is to use the same equation as for the clustering algorithm

Hellendoorn and Driankov (1997).

B.(x,)= (4.90)
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which considers all rules and calculates the degree of fulfilment of one rule with respect
to the others. As is the case when used within the clustering algorithm, the sum of the

membership degrees will equal one.

Consequent Membership Calculation

The fuzzy consequent parameters of the affine Takagi-Sugeho model may be calculated
in one of two ways from the data clusters (Babuska, 1997). The first is based around the
geometric interpretation of the cluster, using the covariance matrix. The alternative
approach is a local least squares optimisation based on the derived fuzzy partition matrix

The fnethod based on the covariance mairix is discussed here, since this méthod has been
found to perform better on the data. The eigenstructure of the cluster covariance matrix
loosely describes the shape of the cluster. The shortest eigenvector describes the normal

vector to the hyperplane spanned by the remaining eigenvectors. The shortest
eigenvector is defined as ®,. Based on the dataset Z" =[xr, y]T apd the cluster
prototype, the consequent may be described implicitly by

®,-(2"-v,)=0 (4.91)

The statement above means that the inner product of any vector belonging to the
hyperplane and the shortest eigenvector is zero. The shortest eigenvector and the cluster
prototype may be divided into a vector corresponding to the regressor x and a scalar

corresponding to the regressand y. i.e.
T T :
v = [(“7 ) v ] | , (4.92)

@, = [((D;.‘_)T @ T (4.93)
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(4.91) may now be rewritten according to

) [(d)f)T ;Cb,y]-([xr;y]r —[(Vf)T ;‘-’,-yT] =0

After completion of the dot product operation,
((I)f)T (x—v,‘.‘)+.CDf'(y~v,,’)= 0
Simplification yields

y:—-——l ((bf)TJH——l @7y,
®’ ®?
~— e ——— N —

af ]
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(4.94)

(4:95)

(4.96)

which is directly equivalent to the Takagi-Sugeno model, (4.75). Figure 4.9 illustrates

the result of applying the above theory to the identification set 1, using the familiar [4 4

1] structure. Through the validity measures discussed, 7 clusters was found to be

optimum.
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discussed in §4.3.2. In the second approach, Fhe PBE estimate is used in the clustered
model as a direct replacement for the voltage regressor (PBEREG, T;cib]e 4.1). This
approach was adopted after tests demonstrated degraded performance with -three
regressors (i.e., volFage, current and the PBE estimate).

Using the power balance equations,

P =V (1)-1(1) (4.97)
F1)=T,(1) (1) ‘ (4.98)
R(1)=1(:) R | (4.99)
P()=R()+R() | (4.100)

an expression for the motor speed based on quantities assumed constant and the available

measurements may be derived,

0Kk (4.101)

o(t)= V() 1()-1(c) R

where P; is the applied electrical power, P, is the mechanical output power, and P; is the

power loss. Since dé;ft) =a)(t),

o(r)- ’J-V(t).](t)—l(t)2 R,

= oxx (4.102)

Figure 4.8 illustrates the estimate of (4.102) based current and voltage data.
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l. Initialise variables ¢,7,,,,/j=0and k=0

2. Obtain the value for the criterion of fit V), (B(F),ZN)

3. Find 6, =6, - 4,G(6,)

4. Obtain the new value for the criterion of fit V), (9

(:‘+l)=ZN)

5. 1 ¥y (80

2")=¥,(6,,2") and j = ¢ then k=k-+1 otherwise j =+

6. g,:li, Vo (82" ) =Vu (8

N
of 0 oy 2"

7. If Vy (6(,.)'2 N )> 7, and k£ > ¢ then repeat the process from step 3

Algorithm 4.1: Gradient Descent Algorithm for Power Balance Equations

The value of ¢determines the number of times the algorithm will search across the

minimum, before reducing the step size; 7, determines the termination criterion in the

event that it can be achieved and § defines the maximum value of k before the algorithm
terminates. The initial model performance of this model is shown in F'igure 4.8; Figure

4.11 illustrates the estimate after tuning with Algorithm 4.1.
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input/output data and provides the means to produce accurate models based on the

nonlinear identification techniques.

Table 4.1: Performance of the various approached to identification

Model l¢], (Encoder Pulses) || (Encoder Pulses) VAF

PC 9961 5574 98.4%
ARX 5370 3046 99.41%

- NN ARX 8874 ' 5332 99.55%
FC ARX 5166 1982 o 99.7%

| PBEQU 4352 2326 | 99.85%
FRESPBE 4938 2351 ! 99.86%
PBEGD 4911 2304 99.68%
PBEREG 2535 594 99.97%

4.9 Discussion

Attention has been paid within this work to the identification of a servomechanism
actuated by a brushless DC motor and subjected to large, time variant loads. Specifically
the fuﬁdamental tenet within system identification has been explored, i.e. to identify only
those phenomena that are unknown. It was initiélly foupd that a model based purely on
emptrical observation and a priori. knowledge provided a reasonable result, but that
significant improvements were ready to be made. The linear ARX structure was found to
be of sufficient flexibility to provide a much-improved estimate over the phase coordinate

model. Black-box approaches were investigated in terms of a neural network and a fuzzy
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clustered rulg base, both of which were based on the previously successful ARX
structure. The neural network was found to favour strongly purely stepwise varying
identification data, which should be considered when comparisons between the models
are drawn. It is clear from this exercise in itself that correct selection of the input output
data has profound effect on the resulting black-box model. The fuzzy clustered model
was found to outperform the linear ARX model. Attention to the incorporation of a
priori knowledge was paid. In the first attempts, a black-box model was used in a
. complementary fashion to the white-box model in order to cancel estimation residuals.
lﬁcorporation of the white-box model estimate into the black-box ﬁdodel regression
structure was found to outperform the previous approach significantly. Finally, the
gradiént descent training method was adopted from the neural network literature in order
to minimise the white-box model error. This model was successful in minimising the
root mean squared error of the estimate. The model performs well in comparison to the
other mgdels.- However, this model has not captured the discontinuities within the data as
well as the other models. The VAF measure is testament to this. Ittshould be noted that
this model has the advantage of simplicity and minimal computational load once trained
over the fuzzy clustered and the neural network models. In a system with diminutive a
priori understanding, the semi-physical -or grey-box approach to modelling has been
applied and shown to be a viéble approach to obtaining highly accurate results.
Subsequent work within the following Chapters will therefore use these grey-box models

where possible.
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4.10 Notes and References

4.10.1 Notes

A T-Norm operator is a duple function and satisfies the following

£(0,0)=0, f(4,1)=/(1,4)=4 (boundary)
F(4,B)< f(C,D)ifA<Cand B<D _ (monotonicity)
f(4,B)=f(B,4) » (commutativity)
(4,7 (8.C))=f(/(4,B),C) (associativity)

The first requirement imposes the correct generalization to crisp sets. The second
requirement implies that a decrease in the membership values in A or B cannot produce
an increase in the membership value in A(1B. The third reduirement implies that the
operator is indifferent to the order of the fuzzy sets to be combined. Finally, the fourth
requirement allows the intersection of any number of sets to be taken in any order of pair-

wise groupings. The most frequently used T-norm operators are

Minimum: T (4,B)=min(4,B)=AAB
Algebraic Product: T,(4,B)=AB
~Bounded Product; T,,(4,B)=0v(4+B-1)
A ifB=1
Drastic Product: T,(4,B)={B if4=1
0 ifd,B<lI
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Chapter 5

Sliding Mode Control: Classical Approaches

5.1 Introduction

In the formulation of many control problems there will typically be disparities between
the performance of the plant mathematical model and the actual system. These
discrepancies may be due to unmodelled system dynamics, parametric variation within
the plant or the approximation of a system to a simple model. It is the control engineer’s
task to produce a controller that will attain prescribed performance despite these
discrepancies. This has duly led to an intense research interést in robust control methods,
whereby the controller has a low sensitivity to parametric change within the system, but
maintains a suitably high disturbance rejection. One particular approach to achieving
robust control is through the application of sliding mode.

The term ‘sliding mode’ first appeared in the context of variable structured systems
theory. Now practically all methods for control with variable structured systems are
based on the deliberate synthésis of sliding modes. Sliding mode control (SMC) is
described as ‘deterministic’. On_e fixed, nonlinear control function is able to provide
guaranteed performance over a defined range of parametric variation. This rﬁakes SMC
attractive since it is simple to implement and reliable. Because it relies on discontinuous
switching SMC has found a significant interest within the field of robotics and motor
control since ‘there is very little effort in. hardware modiﬁcation‘ required for

implementation.
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This Chapter is aimed at introducing the reader to SMC and its application to
electromechanical devices. The Clmpter first provides an introduction to the theory
supporting SMC, design examples based on the _models derived in the previous Chapter
are also given.

Before introducing the theory surrounding sliding mode control, it is necessary to
highlight the differences between this class of controller and other types of nonlinear
robust controller. It is not within the scope of this work to review each type of controller,
however it is possible to group every controller as either belonging to the ‘stochastic’ or
‘deterministic’ families. Self-tuning and other adaptive §ystems fall into the category of
stochastic controllers. They constantly monitor parametric change and disturbance and
through use of an on-line identification algorithm pr(;vide an appropnate globally stable
control.

Conversely, the family of deterministic controllers, of which sliding mode is a member,
require only fixed nonlinear feedback control functions. They are able to operate over a
predetermined space of parameter variation and disturbance withiout the need for any
form of online identification of system parameters. An' immediate advantage of this
approach is that no statyisltical information about system parameters is required, robustness
is therefore achieved not in the average sense but for all possible values of parameter
uhceﬁaiﬁty over the design range. Stochastic control systems are naturally more complex
and generally more costly due to the additional hardware required for the sensing of these
parameters. Within any control system, simplicity and reliability must be principal
désign targets, this is the primary reason why deterministic control methods are

considered here, whilst stochastic control is largely left untreated.
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5.2  Mathematical Background

Modern Variable Structure Systems (VSS) are attributed to the work of Barbarashin and
Emal’yanov in the early 1960’s (Young and Ozugner, 1999). However earlier works
from the fifties on discontinuous control actions by Flugge—Loti and Typskin may be
found within the literature. Indeed earlier works illustrating the principles supporting
sliding mode control can be found by Kulebakin; and the work of Nickolski makes
specific reference to a sliding mode (Zinober, 1994). However it was not until the mid
1970’s that works by Itkis (1976) and Utkin (1977) were published in English. Since
then Sliding Mode Control (SMC) and VSC in general has been successfully applied to
the design of robust regulators, adaptive schemes, tracking systems and fault detection
schemes (Hung er al. 1993). The purpose of this section is to provide the reader with an
introduction to the concepts that will subsequently be applied throughout tﬁe remainder
of this work.

A variable structure system (VSS) is a class of system whereby the control structure is
deliberately varied during the control process. This structure variation is performed
according to a predefined set of rules, which will depend on the instantaneous state of the
system at time 1.

To Begin this work the conventional example in terms of the state space method is given.

Consider a second-order time invariant relay system given by

5c'+a25c+a,x:u+f(t)
u=~Msgn(S) : 5.1

S=x+cx
where M, a,,l a; and ¢ are constant parameters, fAf) is a bounded disturbance and S is the

sliding manifold. The system behavior may be analysed on the phase plane (x,x).
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Because of the phase trajectory topologies and by the contracting mapping principle the
system is globally asymptoticaily stable. This is the principle behind sliding mode.
Perhaps the best analogy to the system behavior whilst in sliding mode was drawn by

Itkis (1976) and is quoted here:

“The situation recalls the scene in the motion picture “La loi, ¢’est loi”,
where the hero, recognised by neither French nor Italian authorities as a
citizen and therefore evicted by the customs officials of both countries, is
obliged to travel precisely on the international border between them.”

It is a natural cqnqlusion that if in the limit switching across the sliding line is achieved at
an infinitely high frequency with inﬁnlitesimal amplitude that the system trajectory would
coincide with the sliding manifold S=0. Assuming this behavior, the system motio-h
may then be interpreted as
x+Cx=0 (5.2)
This result is extremely important since it may be seen that the system performance when
in slidi.ng mode depends neither on the plant parameters nor the d.isturbaljce, At this is
the invariance property of sliding mode control (Drazenovic, 1969). Attention is drawn
at this point té the fact that if the system parameters are changed i.e. a; and a; then the RP
on the phase plane will be forced to travel along an alternative phase trajectory. Provided
that the phase trajectories remain in the opposing sense to one another, it will simply take
a different amount of time within the transient before sliding mode is achieved. Whilst a
system is in the transient it is referred to as reaching mode for sliding mode control

systems.
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The concept of sliding mode control has been established, it is now important to provide
mathematical proof of the existence of sliding modes, so that control systems may be

synthesised.

5.2.1 Problem Statement

This section begins with a formal definition of the concepts described above. A
controller will be found to force the controlled system states tol reach and thence remain
on a predefined surface within the state space, referred to here as the sliding manifold.
The system behavior once constrained to move only along this surface is described as the
ideal sliding mode. This behavior has the important characteristics of order reduction and
invariance to matched uncertain.t'y. Design of a sliding mode .controller is a two-stage
process. Firstly the design of a surface within the state space such that the specified
performance is obtained, and secondly the synthesis. of a control law that w:II be
discontinuous around.the surface that will maintain an attractiveness to the closed loop
motion. It is only at the point when the system reaches the sliding manifold that the
system will become invariant to matched uncertainty (Spurgeo-n, 1991). During the
reaching phase the system performance is subject to disturbances, it is therefore an
important design goal to minimise the time in the reaching phase.

Consider the time invariant system with m inputs given by the equation
k= A+24()|x(e)+[ B+2B(e) Ju(t) + £ (x,,0) (5.3)
Where x = vector of statese R™ and u = Vector of controls e R™. 4eR™ and

BeR™" . Assume that r > m > 1 and that B is.of full rank m, assume also that the

tuple(4,B) is controllable. A4 and AB represent uncertainties and variations within the
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plant parameters and the control interface respectively. The function f represents
uncertain, time-varying additive terms that are assumed unknown but bounded by some
function of the state. As stated, it is assumed that all disturbances are matched, i.e. they

act only within the input control channels,

R(B)=R([B,A8]) (5.4)
Where R represents the range space. If it is assumed that the rank of [B+AB(I)] =m

for all £ 2 O then it may be implied that total invariance to parameter variation and
~uncertainty can be achieved according to a suitable choice of the Iimiting' values of
control.

Let S:R” — R" be a linear function defined as .

S'(x) = Sx (5.5)

Where § € R™” is of full rank and is defined as the hyperplane

S={xeR":S(x)=0} (5.6).

S will be referred to from now on as the switching function.

5.2.2 Equivalent Control Method

If the control action in (5.3) is discontinuous with respect to the state vector then
traditional methods for analysis of differential equations do not hold, since Lipschitz
conditions are normally invoked in order to guérantee the existence of a unique solution
{Edwards and Spurgeon, 1998). Since any. function that satisfies Lipschitz conditions is
necessarily continuous an alternative apprqach to analysis must be adopted. There are

several methods for analysis available within the literature, such as that by Fillipov,
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(_I 988). However, the method of equivalent control proposed by Utkin (1992) is more
intuitively appealing and is therefore the subject of this section.

In general, the equivalent contrel might be described as the control action required to
maintain an ideal sliding motion on S. It is assumed initially that the disturbance in (5.3)
is zero, such that

J'c(t)=Ax(t)+ Bu(t) : (5.7)
Shppose now that at time ¢, the system state reaches the sliding manifold S and an ideal
sliding motion takes place. This may be expressed as Sx(t)=0 and s$(t)= Sfr(t): 0 for all
(21, Substituting S into (5.7) now yields |

Sx(t)=SAx(t)+ SBu(t)=0 forallr> » (5.8)
Rearrangiﬂg (5.8) gives
SBu(t) = -8Ax(t) ' (5.9

Solving for the control gives .

U, (6)=—(SB) " Sax(r) = —kx(tr) (5-10)
where
k=(SB)"'s4 ‘ » (5.11)

U,q(¥) is described as the linear open loop control required to force the state trajectory to
remain in the null space of S whilst sliding. Through substitution of U,(#) into the

system equation (5.7)
()=~ B(sBY'Shax(t)  forallrz, (5.12)

#)=(4-BR)() | (5.13)
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This is the equation for the closed loop dynamics of the system when in the sliding mode.

Matched uncertailnty occurs within the range space of B (R(B)). During sliding motion
the state trajectory lies entirely within the null space of S (X(S)), since these are

complementary, 1.e.

R(S)R(B)={0} (5.14)
It may readily be seer; that the motion of the system is independent of the nonlineér
control and is dependent only upon S, which will serve to determine the matrix £.
Suitable choice of k will guarantee convergence of the state vector to the origin.”
The equation for eéuivalent controi has now been formulated. It is a reasonaBIe question
to ask why the equivalent control could not be applied directly as the control signal, since
it is both simple and explicit. The reasoﬁ becomes clear if one were to employ the
following signal as the state feedback control law:

ule) = fox(?) | (5.15)
At this point some structured uncertainty is introduced to the nominal linear system of
(5.7, 1.e.

i(t)= Ax(r) + Bu(t) + DE(1, x) | (5.16)
This i.s a special case of (5.3) where

D&t x)= f{t,u,x) (5.17)
The matrix De R™ is known and the function £:R, xR” — R’ is unknown. This

 function may be interpreted as the representation of uncertainty within the system
matrices 4 and B, or altematively as an unknown exogenous perturbation acting on the

system. As in the above argument, it is assumed that there exists a controller that is
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capable of delivering the state trajectory to the manifold S (after time t;) and from then
onward keeping it on the sliding surface, even in the face of uncertainty and disturbance.

It has been seen that this may be taken to represent §(f)=Sx(t}=0 for all 1 > 1. Now
. following the same argument in the derivation of the equivalent control above yields

u, {t)=—(SB) " (SAx(t)+ SDE&(r, x)) for all £ 2 ¢ (5.18)

¢q

It can be seen that this equivalent control action is now dependent upon the unknown
exogenous signal and is thus inutile as a practical feedback control signal. Equivalent
control, as stated earlier, is best viéwed as a tool for the analysis of the sliding mode since

it represents the nominal control effort to maintain the ideal sliding motion.

5.2.3 Existence Conditions

Beforelmoving on to the derivation of specific control structures it is important to first
state the sufficient conditions which must be met before an ideal sliding motion may be
synthesised. It is clear, and has been stated above that the manifold must be at least
locally attractive. In other words, in an unspeéiﬁed domain around the switching

manifold, the state trajectories must be directed toward it. This may be expressed as

lim$<0and limS>0 - (5.19)

5-0* 50
The equations must be true for some domain, y < R". In this case the sliding surface is
given

D=Smy={xey,s(x)=o} (5.20)
(5.19) is often replaced by the equiv_alent expression

S8 <0 (5.21)

. The expression (5.19) and equivalently (5.21) are termed the reachability conditions.
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Unfortunately (5.19) and (5.21) do not guarantee the existence of an ideal sliding motion.

Rather, these criteria only guarantee that the sliding ma_nifold will be approached
asymploticall.y. A stronger proposition has therefore been made, known as the 7-
reachability condition (Slotine and Li, 1991), given by

58 <-n)s| : (5.22)

This condition can be used in order to guarantee the ideal sliding motion. 77 is a small

* positive constant. Rewriting the Lyapunov function, V(S) = %Sz as

1d .

——S8°<-n|S 5.23

T n|S| (5.23)

and integrating between time 0 and the time at which the manifold is reached (i) it

- follows
|5 (r.)|-|S(0)| < -, (5.24)
From this the time t; must satisfy

[se)

g s (5.25)
n .

5.2.4 Design of a Sliding Mode Controlter for a BLDC motor

This section considers the development of a sliding mode controller for one of the
previous motor models. The motor model from Chapter 3 is considered, the model is

given by
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x(1)] |0 l 0 x (1)

x5 (1)[=]0 0 l x (1) |+

5(0)) o _BR+KK. _BL+RJ || x(1)
i JL JL ]

0
0
.9

LJL

u(r)

(5.26)

Despite the fact that the n-reachability condition provides a guarantee of convergence to

the manifold in finite time, the normal condition is used here, with the requirement that

the system is critically damped.

A suitable sliding manifold is specified by the equation

S(x)=Cx, +Cyx, +x, (5.27)
The control is specified as
u= I:a,xI +a,x, +dsgn (S)]b ‘ (5.28)
Since for sliding SS < 0 s required,
ss=lc,-BLtRJI\ e BL+RJJ+—K—"'ba, ~CC, xS
JL : JL
e -cr BRAEK, o BLYRJ K, baz}sz (5.29)
L JL JL
+—”’bd]S|
58], = {C - BR+K K, i, BL+RJ K, , 2}x23
JL AR
+C (B“RJJ Ko pa—cc,bxs (5.30)
- JL JL
+£bd|S|
L
Hence if the feedback parameters are chosen to be
f S$>0
a =19 ‘f (5.31)
B if S§<0
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if S>>0
a,=1% ’f ” (5.32)
B if $<0
then SS <0 reduces to
Bi<rn<q | (5.33)
B <y, <a, (5.34)
and
ds 0k (5.35)
Kb .
where
1 JLC,( BL+R,J
=— “ -C 5.36
4\ b Km [ JL 2) ( )
72:1 BR+KE_JLC,_JLCZ[BL—RJ_CZJ (537)
b K K_ JL

for stability, according to the definition for the sliding manifold,

A, =—%+%,/c§ -4C, ' (5.38)
A = -%—%\/Ci' -4C, o (5.39)

and the condition for zero overshoot is expressed as
C: 24C, (5.40)
The conditions of reacHing are satisfied across the entire state space if

BL+RJ
JL

C, < (5.41)

The parameters from Table 5.1 are used
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Table 5.1 Nominal Motor Parameters

Parameters
Symbol Min. Max. Units
J 9e-3 12e-3 Nms*
B Te-3 7e-3 Nm/rad/s
T le-2 50e-2 " Nm

L 0.0026 0.0026 H

R, 0.64 0.64 Q
K, 54e-3 54e-3 Vs/rad
Kn 54e-3 54e-3 NmA™

Insertion of these values into the controller design provides

C,<25.19

Therefore, choosing C,=20 provides C, =100. This choice will be justified in simulation

later, however, the relationship between transient response and control effort is

highlighted here. A lower value of C; will result in a lower demand being placed on the

controller. From the selection of these two parameters that and the selection of the design

gain b=1 the initial controller gains are chosen as per Table 5.2. Figure 5.2 illustrates the

time response of the motor to a step input, using the minimum plant parameters from

Table 5.1. The corresponding control action is shown in Figure 5.4. The maximum

plant parameters are then inserted and the experiment repeated, Figure 5.3 and Figure 5.5

illustrate the time response and control effort respectively. The maximum parameters are

then used (Figure 5.3 and Figure 5.5).
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Table 5.2: Controller design parameters

Parameter Min Max Selected
D 0.58¢™ - 0.5

e, 13.1 - 15

B, . - 7.5 4

a, 2.5 - 5

JiA - 1.9 1.4

Parameters R=0.6 and L=0.5 are then selected to be out of the design bounds placed on
them. Figure 5.6 shows the evolution of the position state. Figure 5.8 illustrates the
control action, it can be seen that the control action briefly achieves the sliding mode but
is unable to maintain it. The controller is now dependent upon the linear control in order
to achieve robustness to both matched and unmatched disturbance. As a final point for
conéideration at this juncture within the work is that the sliding mode controller will
always converge to the manifold in finite time, provided that there exists a sufficient
control action to achieve this. Control of motor position directly is therefore a poor
choice for the control. A test on the nominal system is performed and rather than a unit
step input being applied, a signal of ten times is used. The time response and control

effort are shown in Figure 5.7 and

Figure 5.9 respectively. The system has achieved a similar rise and settle time, however
the control effort is nine times larger. Although within the literature sliding mode
position controllers have been reported, because of this very practical limitation, it is far

better to adopt sliding mode controllers for speed control, with a major control loop for
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5.3  Design Approaches Based on the regular form

It can be seen from (5.7) that the sliding motion is a control independent motion that
depends on the choice of sliding surface. The precise effect, however, is not readily
apparent. A convenient way to clarify these effects is to first transform the system into a

suitable canonical form. In this form the system is decomposed into two connected

subsystems, one acting in R(B) and the other in ®(S). Since by assumption

rank (B) = n there exists an orthogonal matrix 7, € R™ such that

T,B=[O} - (5.42)
B!

where B, € R™ and is non-singular. Let z=T x and partition the new co-ordinates so

that

z =[z'] (5.43)
Z

where z, e R™" and z, e R™. The nominal linear system (5.7) can then be written as
2,(t)= 4,,2,(t)+ 4,,2,(r) | (5-44)

2,(t)= Ay,2, (1) + 45,2, (1) + B,ulr) | | (5.45)

which is referred to as the regular form. Equation (5.44) is referred to asldescribing the
null-space dynamics and equation (5.45) as describing "the range-space dynamics.
Functions £, (r,x) and f, (r,x,u) represent the matched and unmatched uncertainty,
projected into the regular form, respectively-, For the time being, these uncertainties will

not be considered. Suppose the matrix defining the switching function (in the new co-

ordinate system) is compatibly partitioned as
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ST =[s, S;] ' o (5.46)

where S, e R™™™ and S, e R™. Since SB=S,B, it follows that a necessary and
sufficient condition for the matrix SB to be non-singular is that det(S,)=0. By design
assume this to be the case. During an ideal sliding motion

S,z,(t)+S,z,{r})=0 for all £ > f (5.47)

and therefore formally expressing z(f) in terms of z)(¢) yields

Z,(1)=-Mz (t) ' ' (5.48)

where M =S;'S, . Substituting in.'(-5.'44) gives

5(0)=(4, -4, M)z, (1) (549

and thus the problem of hyperplane design may be considered to be a state feedback
problem for the system (5.44) where zz(;) is considered to play the role of the control
action. In the context of designing a regulator, the matrix governing the sliding motion
(4,,— 4,M) must have stable eigen‘values. The switching surface design problem can

 therefore be considered to be one of choosing a state feedback matrix M to stabilise the
reduced order system (4,;, 4,2). Because of the special structure of the regular form, it
follows that the pair (4, 4)3) is controllable if and only if (4, B) is controllable. It can be
seen from equation (5.46) that S; has no direct effect on the dynamics of the sliding
motion and acts only-as a scaling factor for the switching function. The choice of S; is

therefore somewhat arbitrary. A common choice however, which stems from the so-

called hierarchical design procedure, is to let S, = AB;' for some diagonal design matrix

AeR™ which implies SB=A. By selecting M and S, the switching function in

equation (5.46) it completely determined.
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Several approaches have been proposed for the design of the feedback matrix M
including quadratic minimisation, eigenvalue placement and eigenstructure assignment

methods. These approaches are discussed in Appendix D, part 1.

5.3.1 State-feedback Control Laws

Of the many different multivariable sliding mode control structures which exist the one
that will be considered here is essentially that of Ryan and Corless {1984) and may be

described as a unit vector approach. Consider an uncertain system of the form

5(1)= dx(t) + Bu()+ f, (txu)+ f,(6x) (5.50)
where the function f, (,x):RxR" - N(B) and £, (t,x,u) :RxR"xR"™ - R(S) which

represent the unmatched and unmatched uncertainty components of the system, which are

unknown but assumed bounded. The function £, (1,x) is assumed to satisfy

|4 ()] < ] + &, (5.51)
The matched uncertainty is assumed to act through the contro! channels, i.c.

At x, u) = BE(t, x, wy ' | (5.52)
where E(t,x,u):Rx R”xR™ — R"™ and is unknown but satisfies

|, x, u)| < &, u] + a2, x) (5.53)

where | > k; 2 0 is a known constant, a(-) is a known function and

ky < \/ Arsin Bz_I"_: - . (5.54)

The proposed control law consists of two components; a linear component to stabilise the

nominal system; and a discontinuous component. Specifically
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w(t)=u (1) +u,(1) (5.55)
where the linear component is given by

u,(t)=-A"(54 - DS)x(r) (5.56)
where @ e R™" is any stable design matrix and A = S8 which satisfies

ke (A)]B;] <1 (5.57)

The non-linear component is defined to be

u,(f)=—p(t, x)A™ Posle) forall S0 _ , ' (5.58)

[P.s()]
where P, eR™” is a symmetric positive definite matrix .satisfying the Lyapunov
eqﬁation
PO+D P =1 (5.59)
and the scalar function p(1,x), which depends only on the magnitude of the uncertainty, is

any function satisfying

IsI(pah(o s O )+ s O+t 0)+ 7,
(1= ()]271)

(5.60)

p(t,x) 2

where y>0 is a design parameter. In this equation it is assumed that the scaling parameter
has been chosen so that kyk(A) < 1. It can be established that any function satisfying

equation (5.60) also satisfies

p(tx) 2 |E (s, x,u)|+¥ (5.61)

aﬁd therefore o(¢,x) is greater in maghitude than the matched uncertainty occurring in
equation (5.52). It can be verified that ¥ (S)=S"A,S guarantees quadratic stability for the

switching states and in particular

521
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V<-STS-2y|PS| (5.62)
This control law guarantees that the switching surface is reached in finite time despite the
disturbance or uncertainty and once the sliding motion is attained it is completely

independent of the uncertainty.

5.3.2 Unit Vector Sliding Mode Control of a Brushless D.C. Motor

This section of the work is devoted to the development of a sliding mode controller for

the third order system used previously in Chapter 3, specifically

} 0 ] 0 0

X B K S 9

u

X |={0 —— = |x|+-—+ (5.63)

J J J
X, X3

o K & e

3 L L] A

In this section it is assumed initially that the load torque and the frictional load are
negligible, the input control is therefore simply the applied voltage. Additionally it is
assumed that the load inertia is not precisely known, such that

K K '
ikl R Y : 5.64
J Jy d (.64)

~where J,, is the nominal value of the inertia determined experimentally and
|£,]<0.5 (5.65)

The model may be rewritten in the form
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10 2l
x,|=]0 == % |+ 0 | (5.66)
% kK, & B 1

0 -— ——= L

L L L] -

and the model is automatically in the regular form with the matrices given as

[0 1

4, =_0 0 (5.67)
[0

A4, = X, : (5.68)
L J '
U

B, :T2 (5.69)

The matrix which defines the switching function is given as

o K

M=[M M2 2] 2&@"] (5.70)
J J

The characteristic equation of A,, — 4,M is the quadratic equation

A +2w A+0} =0 - (5.71)

where the parameters § and @, represent the damping ratio and the natural frequency

respectively. The switching function obtained from the selection of S, =1, and the value

of M determined previously, is given by

5(0) =[%a)j Koo, l]x(t) (5.72)

from equation (5.56), the tinear component of the control law is given by

u (1) =—LSAx(1)+ LDS(r) (5.73)
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where @ represents a negative definite scalar value which will determine the rate of
decay of the state onto the switching manifold. Consideration of the range space

dynamics in (5.45) reveals that

f= K ()-Rer (0028 1 (1) (5.74)

The matched uncertainty component is therefore given as

Fo(txu) = —lL(Kexz (1) + Rox, (1) -, (1)) (5.75)

It will be assumed that the motor inductance is not precisely known, but is known to fulfil
the bound

L-L
5, =4

J|6.[<0.1 (5.76)

4

where L is the nominal inductance specified by the manufacturer and L, is the actﬁal
phase inductance. It follows from (5.54) that the gain associated with the input
uncertainty is

1

ky = oL (5.77)
with the bounding function
a(t,x)= 101L (Km0 + Rls (1)) (5.78)
. ’
since y\ A |B;' [ =1/L, the requirement of (5.54) is satisfied. I can be confirmed that
the reduced order sliding motion-is given by
5(0)=x,(1) | (5.79)
%, (1) = 28w, %, {t) - ?x, (1) - &, (Myx, (1) + Myx, (1)) . (5.80)
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which implies from (5.51) that

£ <5 vl o) (5.8)

Appropriate values of the coefficients are therefore found to be &, = %"M" and k,=0.A
scalar value for pre-multiplication of the nonlinear control element can now be found.
Since A =1/L and the parameter x (A)=1,

1—kye (A)] By = 0.9 O (5.82)

Hence from the scaling function (5.60)

)~ (b ()] K. ()] R §2|+5L||M|[ ¢ (o) +1027,) 55

The nominal values of the motor in Table 5.1 are used in addition, the properties of the

sliding motion have been assigned as ¢ =1, @, =5 rad/s, ®=-20and y, =0.01. The

simulated time response to a step input of the plant when the nominal parameters are
assumed to \./ary in accordance with Table 5.1 are shown in Figure 5.13 for the plant with
minimum‘ p;lrameters and Figure 5.14 for the maximum parameters. Where it was
initially assumed that the load friction was nil, its effects have been taken account of

within the nonlinear control component.
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signal was introduced, it is assumed that the sensor noise can be modelled by a white
noise signal with zero meén. It should be noted that practically, the signal will not match
this description (Porat, 1997), but will suffice as an approximation. The signal is
assumed to have a 10% signal to noise ratio. The position and control effort are
illustrated in Figure 5.15 and Figure 5.16 respectively. The controller maintains the
demand, however, since the noise signal is esséntially an unmatched disturbance, the
system dynamics, even in the sliding moede are effected. Once again, the use of a major-
minor feedback loop with the inner sliding mode controller for speed will serve to
. se.ver‘él.y'restrict the effect that such signals have on the controlled position (Chapter 6).

The controllers thus far developed have been shown to attain the sliding mode in finite
time. The sliding mode theoretically obtained is the ideal sliding mode, which leads to
discontinuous control across the manifold S. In the control of electrical machines such
control is noted to be naturally discontinuous. i—lowever, the implementation of such
* controllers in 2 mechanical system will lead to a chatter motion within a boundary of the
surface § rather than th;a ideal, smooth sliding motion. This phenomena is well reported
t6 inflict undue wear and high heat losses within the actuators, the control law would be
considered unacceptable. Within the next section, modifications to the control law are

described which overcome this difficulty.
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chattering (Young et al, 1999). This term is used to describe the finite frequency, finite
amplitude oscillation of the controlled state around the sliding manifold.

Chattering has two principle causes; the first is that digital implementations of the SMC
with microprocessors of fixed sample rate may cause discretisation chatter (Habibi and
Richards, 1992). The second cause is attributed to the fast dynamics in the control loop
which are neglected in the system model. These dynamics are excited by the high
frequency switching of ghe controller. In this case, the term ‘unmodelled dynamics’ refer
to inertia associated with actuators and sensors, which in principle is much faster than the
system dynamics. However, since a éliding mode controller is in theory infinitely fast, all
dynamics of the system should, in principle, be accounted for.

This effect is kriown to cause uqdue wear on mechanical components, high heat loss in
electrical circuits and low control accuracy (Utkin, 1993). This has naturally served to
limit the application of SMC. A very large research effort has therefore been directed at
the neutralisation of the chattering effect. This section provides an overview of the
techniques applied to date.

To init'iate. this section, consider a first order plant. The plant is actuated with a second

order unmodelled actuator, given by equations (5.87) and (5.88) respectively.

x(t)= aac(:)_+bu(z)+§(x,x) (5.87)
3 w? _ 1 :
W)= e W) o 1f U(p) , (5.88)

where a and b are assumed unknown plant parameters with known bounds. u{f) is the

control variable and the disturbance é’(x,t) is also assumed to have known bounds. u(t)

is the actual contro! input, and p represents the Laplace variable (to avoid confusion with
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s). @ (w>0) is used to represent the actuator bandwidth and the relationship w»a,

signifying that the actuator dynamics are significantly faster than the system dynamics,

permits the substitution of a small time constant ,u(,u = %) > 0).

5.4.1 Boundary Layer Normalisation

This approach seeks to avoid control discontinuities within the control loop by repiacing

the discontinuous control law (sgn(S), Figure 5.17.a) with a continuous saturation

function (Figure 5.17.b). This function is an approximation of the manifold S{¢)=0

with a boundary layer.

The saturation function is given

Msign(S(1)) if|S(e)|> B

Ho= %S(r) irls(e)<B

(5.89)

Where # defines the radius of the boundary layer. Consideration of this function shows

that when the representative point is far from the manifold S(#)=0, the saturation function
behaves precisely as the sign function, and the linear feedback gain is symmetrically
saturated with a value of M within this region. Convergence of the state trajectory to the
boundary layer is guaranteed through the same arguments for the system employing the
sign function. It may be shown (Utkin et al, 1999) that provided thle unmodelled
dynamics are stable and faster than the system dynamics that the controller will be stable.
- Intuitively it may be‘ seen that higher feedback gains will ultimately cause chatter once

again. The stability boundary is given
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unmodelled dynamics. Despite the discontinuous signal being applied to the plant, no
chattering occurs and the system behaves as if the equivalent control were being applied.

Define a first order observer for the system given in (5.7)

x(1) = ax(t) + bu(t) + L,x(r) : (5.93)

In this case ; is the linear feedback gain for the observation error x{t) = x(t)- )E(r). The
dynamics of the observation error may be described by

x(1)=¢(x0)-Lx (1) ' (5.94)

Both the observation error and the disturbance are assumed unknown but bounded. If a

manifold is now introduced

S(1)=x,(r)-2(r) - (5.95)
_then the ideal sliding mode controller for the observer loop may be defined as
u(l)=Msgn .§‘(t) (5.96)

It is clear that since the observer acts as the controlled system, and since the observer is
able to react in the expected manner, that the ideal trajectory of the representative point
will be realised. Recalling that in this case the output of the controller may be describéd

as the equivalent control. In order to examine the behaviour of the of the system, the

equivalent control method may be employed, solving

S(t)=x, (1) - ax(t)-bu(r) - L7 (¢) (5.97)
for the control, yields
bu,,(t)= X, (£)—ax(t)- L,x(r)=0 (5.98)

It is shown in (Utkin et al, 1999) that the stability bound in this case is given by
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L, +a<2(l-au) (5.99)
H )

The observer based solution to chatter prevention requires a greater design effort.
However, observers serve to form an integral part of . many control applications. [t has
been shown here that they may easily be included in the controller design. In addition,
both full and reduced order observers may be used and the designer is thus afforded a

greater flexibility than when designing with the boundary layer solution.

5.4.3 Regular form

Both methods that have been described so far have assumed complete ignorance of the
unmodelled actuator and plant dynamics. In reality, however, at least partial information
about the unmodelled dynamics can be obtained and additionally actuator outputs may be
measured. For ins'tance extremély accurate models are available for the brushless D.C.
motor, in terms of the model structure, but parameters of the specific motor are uncertain.
l‘t makes sense to- include the known dynamics into the controller in ofder-to achieve
better system perfoﬁnance.

The principle s.upporting the regular form approach is that since the actuator and the
system are block separated, a cascaded controller may be designed in two steps. The first
step is to design the controller for the plant alone, assuming ideal actuator dynamics.
‘Thus the desired actuator outputs wy are defined. In the second step the actual control
effort is used, such that the actuator outputs may be guarénteed to follow the desired
output with the relationship u(f)=uLf).

Because of the massive number of available models for electric drives and controllers this

method is especially attractive. It is important to note, however, that this method is not
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applicable systems with unmodelled dynamics principally introduced by sensors, because
measurements of both inputs and outputs of the unmodelled dynamics are required.
Since sensor inputs are rarely available through measurement, other techniques to avoid
chattering such as those discussed above should be employed in systems with unknown
sensor dynamics.

Proceeding under the assumption that the main source of unmodelled dynamics is the
actuator, and that a reasonable model for_the actuator with uncertain parameters is

available, for instance

W(p)=—5—e—sU(p)= =~ U(p) (5.100)

pl+2a0p+@° (fip+1)°
where w =1/ zserves to provide an estimate of the actuator bandwidth, u(t) is the control
iﬁput the system and w(t) is the measurable actuat‘or output.
In the first step of the design procedure, a continuous auxiliary control law wy(t) is
developed for the system (5.7) in order to track the desired tr_ajectory xA). It is
unimportant which désign method is used in order to achieve this, however, due care
should be taken in order to ensure that the system will still be able to track tﬁe trajectory
despite the limited actuator bandwidth.
For the system in equation (5.7), if a first order linear controller of the form -
w, ()= Clx,(¢)~ x(t)) = Cx, () (5.101)
with proportional gain C>0 is used, then the error dynamiés will be given

%,(t)=b(- Cx,(t) + hl(x,x, 1)) | , (5.102)
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The second step in the design is to drive the error we(t}=wy(1)-w(t) to zero. Since the
inner control loop does not contain any unmodelled dynamics, a discontinuous controller

may be designed as

U(p)=(ap+1)'W,(p)+MsgnS(p) (5.103)
with sliding variable

S(y=Kw,(()+w, (1) (K>0) | (5.104)
Assuming that the first and second time derivatives of wy(t) in (5.101) are available, and

that the first time derivative of the actuator output dw(t)/dt is also available then the

controller (5.103) leads to
u(e) = 2250, () + 20, (1) + M sgn S(1) (5.105)
Using conventional tools for the analysis of sliding mode, it can be shown that S(r) and

dS(t)/dt will have opposite signs for bounded dw(t)/d! and d’w(t)/ds* if the control

gain M is sufficiently high, but bounded.

.5.4.4 Disturbance rejection

The previous controller sought to achieve tracking of thé desired trajectory with the
output of the plant, this approach required the use of a linear contro] with an estimate of .
the plant disturbance. However, this aisturbance estimate is frequently unobtainable.
The final approach discussed here provides a method by which the disturbance may be
accurately estimated, whilst still avoiding chattering wi.lhin the. main control loop. This
method may be viewed as a special case of integral sliding mode control (Utkin and Shi,

1996).
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The principle concept surrounding disturbance rejection via an SMC approach is to split
the controller into two components; a continuous controller u.{z} for overall control of the

plant and a discontinuous control u,4() for the disturbance rejection and suppression of

parametric uncertainty effects. The overall control u(r) takes the form

ult)=u (t)+u,(t) (5.106)
Once again, referring to the system described in equatilon (5.7), assume that the desired
trajectory and & are known, but parameter a and disturbance d(x,#) are both unknown. A

continuous controller may then be designed as
u(t)= %(Cxe )+ x,(1) (5.107)

where C>0 is the proportional feedback gain for the tracking error, x, (t) If it is

assumed at the moment that the system contains no actuator dynamics then the
disturbance rejection term of the controller may be set to zero such that w(®)=u.1).

Substitution of (5.107) into (5.87) then yields
£, (6)+Cx, (1) = —ax(t) - d(x,0) = f(x.0) (5.108)
The error dynamics in (5.108) are perturbed by the function f(x,t) #0. Since these

perturbations are not zero, the tracking error x.(f) does not go to zero. The discontinuous
controller is designed to improve tracking performance by providing an estimate of the

disturbance. A manifold is first defined as
s(t) = x, ()+ z(r) (5.109)
where z is an auxiliary sliding variable given by

2(t1)=-x,(r)=bu(r)-bMsgnS(¢) (5.110)
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After differentiation of (5.109), the sliding variable s(t) and the auxiliary variable z(t)

may be substituted into the plant model (5.7) to yield

5(e) = x,(e) + 2(¢) (5.111)
$(1)=—ax(r)=d(x,0)+b(u(r)-w(z))-bM sgn S(t) (5.112)

If the actuator output is fully measurable then (5.110) may be rewritten
2(1)=—x,(t)+bw(r)—bM sgnS(r) (5.113)
Since the actuator time constant is assumed small, sliding mode will exist if M is

sufficiently targe. The state trajectory will converge to zero after a finite time. If the

initial conditions are chpsen such that the auxiliary variable z(0)=-x.(0) then the reaching
phase may be completely eliminated by setting S(0)=0 in (5.109). Once in sliding
mode, equivalent control may be employed in order to analyse the system behaviour.
Solving (5.112) with S=0and w(¢)=u(t)for the discontinuity term yields the

continuous equivalent control
ag1) = 3 (- axl0)- d(x.1) (5.14)

nagt) =2 (;‘") | ‘ N CAIL)

This gives an exact estimate of the disturbance acting on the system under continuous

control alone. The second term in (5.106) may then be defined as
uy (1) =1, (1) | (5.116)
Now (5.108) may be replaced, so that exact tracking may be achieved with error

dynamics given by

%, (1)+Cx, (1) =0 BN CATY)
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5.5 Discussion

This Chapter has served to introduce fundamental concepts associated with sliding mode
control. The motor controller developed around traditional tgchniques has been applied
in simulation and its time domain response shown to correspond well with an equivalent
proportional, integral, derivative controller. The important invariance conditions of the
;:ontroller have been discussed. The control effort of the ideal sliding mode controller is
understood to be smooth, however, it is well recognised that the ideal controller cannot be
realisedland that control chatter is introduced to the system. This phenomena is highly
undesiré;blelz within a practical system and therefore smoothing techniques have been
investigated to achieve smocﬁh control action. Results obtained show how these
techniques may be employed at the expense of some other controller property. In the
following Chapter, the controllers developed will serve to provide the foundation for
more advanced controllers. The design based around the classical approach will serve to
form the basis of an integral action controller which takes special advantage of the Bush
canonical form. The controller based on the unit vector approach will form the basis of

the fuzzy model based controller.

5.6 Notes and References

5.6.1 Notes

The first Markov Parameter, or simply Markov Parameter is given as the matrix product
CB. Since this parameter is invariant to the change in state space, this parameter is

simply a measure of the system input-output characteristics.
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Chapter 6

Sliding Mode Control: Advanced Approaches

6.1 Introduction

The previous Chapter served to introduce concepts which form the basis for the
remainder of the work reported here. In the course_of studying further methods for
achieving the sliding mode, two original controllers -Eaﬁe been evolved. This Chapter,
therefore, aims to achieve two objectives. Firstly, an exposition of the new controllers,
which are both based on the concept of introducing an integral action into the control
channel, is given; this additional integral action has the effect of increasing system
robustness to unmatched disturbances, and reduces steady state error to zero. The first of
the twd controllers provides a design approach for a standard sliding mode controller in
the Bush canonical form and introduces an integral action into the control very simply.
iThe second of the contfollers demonstrates improved control performance over previous
integral action sliding mode controllers lthrough the introduction of recent theory from the
field of computational intelligence. |

The second objective of this Chapter is to introduce the remaining concepts, which build
on Chapter 5, and will be used later in the development of a sensorless control system, in
Chapter 7. Specifically, robust state observers and model following sliding mode control

are considered.
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6.2 Integral Action Sliding Mode Controllers

The boundary layer has the unique property among chatter reduction techniques of
maintaining a guarantee of invariance to parametric uncertainty beyond a certain vicinity
of the sliding manifold and robustness within the same vicinity. This leads to a controller
with two modalities, and it was first recognised by Ryan and Corless (1984) that the
additional freedom afforded by the boundary layer at the manifold could be used to
improve the controller robustness to the inclusion of so called unmatched d_isturbance, ie.
those distﬁrbances which do not act through the system control chanpels. The Ryan and
Corless controller was theoretically elegant, however conservative. [5av.ies and Spurgeon
(1993), subsequently made the controller less conservative by considering only a subset
of the disturbances considered by Ryan and Corless. The practical applicability of the
controller was reported in Davies, Edwards and Spurgeon (1994).

The fundamental extension of these controllers to tﬁe traditional sliding mode controllers
discussed within the last Chapter is to provide an additional integral action, which seeks
to reduce asymptotically steady state error to zero as time tends to infinity. Three
extensions to this work are proposed within this Chapter. The first uses the same
principle and the properties of the Bush canonical form to provide a controller that
radically simpiiﬁes the design of an integral action sliding mode controller. The second
.controller uses the theory as vdiscusséd by Spufgeon and Davies (1993) and the
observation that controller performance is fundamentally limited by the plant uncertainty.
It seems odd that one would argue that the.sliding mode, with its guarantees of invariance‘
to parametric u;lcertainty, is limited in its performance by the said uncertainty. It is

indeed the case that transient response is not improved significantly by the use of this
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approach, however, the reader will be familiar with the process of selecting the nonlinear
- gain from the Chapter 5. The magnitude of the nonlinear gain is determined directly
from the magnitude of the uncertainty. It follows that reducing plant uncertainty leads to
a safe reduction in nonlinear control gain, therefore the boundary layer may be reduced in
magnitude and the high initial control response of the controller may also be reduced.
Reduction in the boundary layer also leads to an increase in the guaranteéd asymptotic
tracking accuracy of the controller. The final controller recognises the- relative
complication of the previous controllers and an approach to reducing this burden is
discussed. This final controller succeeds in reducing the computational burdeﬁ' by
adopting the same approach as the design of the sliding mode observer; first a
proportional-integral controller is _develdped in compatible coordinates and then a
discontinuous control is introduced in order to negate the effects of parametric
uncenainty.

The final controller discussed within this section are based on the concept of model
following, a model with desired eigenvalues is provided and the uncertain system is
constrained to perform in the same manner. This final controller will be of use in Chapter

7, in part as the solution to sensorless precision motion control.

6.2.1 ‘A Canonical Form Integral Action Sliding Mode Controller

The principle motivation for introducing a boundary layer is to negate the effects of
control chatter, as discussed in the previous Chapter. The compromise to be made is that
the controller is no longer capable of guaranteeing zero steady state error. As described
above, it becomes attractive to introduce a feed forward integral action state that will

reduce the error to zero asymptotically as time tends to infinity. This section concentrates
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. on' the method for introducing a feed forward integral action state that will be
computationatly simple to implement. This is achieved through the use of the Bush

canonical form and similar arguments from §5.2.4.
Motor Model

As within the last Chapter, the nominal motor parameters are taken as those shown in

Table 6.1
Parameters

Symbol Min. ' vMax. Units
J 0.010687 0.019960 Nms®
F 7e-3 10.5e-3 Nm/rad/s
T le-2 50e-2 Nm
L - 0.0026 0.0026 H
R, 0.64 0.64 Q
K 0.54 0.54 Nm A™

Table 6.1 : Motor Parameters

The objective of the controller will be to control the precise angle of the motor stator.

The controller is error actuated and the traditional states are therefore introduced:-

x, =68 -8, | ' 6.1)
X, =%, =0, 6.2)
X, = j; = —-—a.)m (6‘3)

where &, and 6, represent actual angular position and desired angular position,

respectively. @, represents angular velocity of the motor stator. Because the controller
does not constrain the system to remain on the sliding manifold, final tracking accuracy
of the motor will not be guaranteed. It is therefore attractive to introduce a fourth state,

which will be the integral of x; over time, i.e. the integral of position error.
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v = [(6,-6,)dr (6.4)

The motor dynamics may be represented in the controllable canonical form according to

. [0 1 0 0 ] [0 ]

% (1) xl(t.)

. 0 0 | 0 () 0 '

’_‘2([; =[0 o 0 ] 2(’) +[ 0 |u(r) (6.5)
X X

dl BR+K K BL+RJ |’ K,

x4(l) 0 0 - L - L x4(!) E—

‘The system is now available for the development of the control scheme.
Controller Design

An integral error state has been introduced into the system model. It is not an
unreasonable assumption that an accurate measure of this integral could be obtained in
practical application. Attention is now drawn to the design of a controller that is able to
fully employ this additional state to bring tracking error asymptotically to zero.

~ Begin by deﬁning a manifold S(x) according to

S(x) =Cyx, +C,x, +x, ; (6.6)
where C; and C; are design parameters to be found. Also define the control action to be. -

V()= [—exl —ax,-a,x, —dsgn (S)]B (§.7) '
where e, a;, a; and d are design parameters which effect the local components of the -
control actioﬁ and B is a control gain which will have a global effect. The weli known
condition for the existence of the sliding mode (Utkin, 1977) may legitimately bcv used
within the controller design and is given by

S§<0 - (6.8)

from (6.5),(6.6) and (6.7),
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-&s‘*:{c2 -(B“RJ)}S’ +{C, -C? +C2(BL+RJ)— BR+ KK, —fﬂazb}x33+
JL

JL JL JL
C, ( BL+ RJ]—C,Q B pls el Enopls —apBns)
JL JL L, JL,
(6.9)

Once the system state is close to the sliding surface, (6.9) simplifies to

ss|_ =4¢ ¢ +C2(BL+RJ)— BR+ KK, -ﬂazb xS+
5%0 JL JL
B P (6.10)
o 'I’J‘LJ'RJ)-C,C2 e bl st En oy ly —ap En g
JL JL JL, JL,
Thus in order for (6.8) to hold, the following inequalities must be satisfied .
a, if %S>0
a, = , (6.11)
B f x5<0
a, if x5>0
a, = _ (6.12)
B, if xS5<0
which reduces to
B o<y <q (6.13)
B, <y, <a, (6.14)
where
JLC,( BL+RJ
= -C 6.15
Y |:me ( L 2)] ( )
JL , BL+RJ
72=[me (c,-c)+c, rd —BR+K¢} | (6.16)
additionally,
a2k (6.17)
bK
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JL
bK

m

(6.18)

e >

Once in the sliding mode, S(x) defines completely the system dynamic performance, in

the absence of unmatched disturbance (Spurgeon, 1991). The eigenvalues of S are given

as
c, 1 .

4=—7Z+5 (c;-4c) (6.19)
C, |

h=-h-o (c;-4c)) (6.20)

To obtain a damping ratio of 1 or greater the inequality

C}=24C, (6.21)
must hold, the equality defines the gains for critical damping. In order to ensure that the
system is made attractive to the sliding surface, given the inequalities (6.13)-(6.18) and
equation (6.9) it is clear that if

c, <BLARS (6.22)
ST

then the sy.,stem will be globally attracted to the sliding manifold. The controller

parameters may be formally expressed as

a,>lmax JLC‘(BL+RJ—C2) (6.23)
b K\ JL |
| (JLC,(BL+RJ ‘
B e 6.24
bl (2 ) -
a2>—max(;}(—L(C,—C§)+C2BL+RJ—BR+KL,J (6.25)
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(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

Finally, the discontinuous switching function of the control is replaced by a boundary

layer. The above derivations are still valid (Utkin er al, 1999). Once the motor

parameters are inserted into the inequalities (6.23)-(6.30), the following equalities are

obtained with the controller gains selected as shown.

Most of the controller gains

selected show close agreement with the respective minimum or maximum values. The

only gain which does not is the dither component d. This of course may be chosen to be

much smaller with no cost to performance as long as it remains larger than the matched

uncertainty component.

ba, >17.78=20
bp <8.76=5
ba,>146=4
bp, <123=1.1

bd >0.58¢-3=5

be >0.58¢-3=0.2

(631)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)
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C,=88 (6.37)

C, =1936 (6.38)
The controller is compared with a sliding mode controller without the integral action,
from §5.2.4.

The first test is to demonstrate that the proposed controller can perform equally as well as
a typical sliding mode controller in the absence of unmatched disturbance. Figures 6.1
and 6.2 illustrate how the controller can perform well under such conditions; in this case
the integral gain is given as 0.2.

In the next test, it is assumed that an additive error is imposed on the speed state of the
state output matrix, the two controllers are re-tested under these conditions. The se.t-point
is now reduced in order to make clear the evolution of the position state. Figure 6.3
illustrétes the results. It may clearly be seen that the traditional sliding mode controller
maintains a steady state error, whereas the proposed controller does indeed reduce the

error to zero.

Figure 6.1 Sliding Mode Controller, lllustrating Control Chatter.
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practical application is the fundamental requirement that the control law is discontinuous
across the sliding manifold, thi's leads to a phenomenon termed ‘control chatter’. It has
been seen that a common approach to the negation of chatter is to use the boundary layer
approach, in so doing, a compromise must be sought between desired tracking accuracy
and controller bandwidth.
Model errors due to parametric uncertainty lead to tracking error in controllers with a
continuous approximation to the switching function, within the controller desién,. the
‘controller feedback gains are increased to reduce these errors. This leads to high gain
feedback éc;ritrol and despite the fact that these controllers can in theory use infinite
. feedback gain to achieve asymptotic tracking, such controllers are physically impractical
because of the finite bandwidths associated with real systems.
In Palm (1994) the apparent similarities between the sliding mode and fuzzy controllers
were illustrated, which has subsequently motivated considerable research effort in
~combining the two tapologies in a manner that serves to reduce the limitation of the
sliding mode. The most common approach to this has been to replace the continuous
switching function of the boundary layer with an equivalent fuzzy switching function.
However, as pointed out in O'Dell (1997), the fuzzy rule base commonly serves as a
mimic of the original switching function and the advantages of such an approaclh are
therefore unclear. Others have used a fuzzy rule base in making the sliding manifold
~ adaptive, e.g. Ha ef al. (1999), so as to minimise the reaching phase, good results have
been reported. Babuska (1998) has demonstrated the ability of the affine Takagi-Sugeno
. model to model accurately a system through rule extraction from cluster data obtained

within the regression space. These models may be used subsequently in order to extract
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locally linear state spﬁce models of the system and demonstrate model based control of
both single input, single output (SISO) and multi ini)ut, multi output (MIMO) systems
(Roubos et al., 1999).

In this work, a system subjected to parametric uncertainty and disturbance is identified
with a fuzzy rule base, the parameters of which are identified through use of the
Gustaffson-Kessel subspace clustering algorithm (Chapter 4). Local models of the
system under its instantaneous conditions are then extracted and subsequently used to
design the sliding mode control gains. In this manner, the: resultant controller will be
shown qualitatively to im;ﬁro've closed loop transient performance whilst reducing the
high gain feedback requirement, as a result of minimising system uncertainty.

Within the ‘following simulation study a third order model of a servomotor is used, the

differential equations of which are given according to

14 o -ILR -Kw+V, ' (6.39)
dt
dw

J==—Bo-T,+ 1K, -~ (6.40)

Where L is the motor inductance, I, the armature current, K, the back E.M.F constant,
the angular velocity of the armature, J the moment of inertia, B viscous friction, Ty the
external load torque, K, the motor torque constant and ¥, the armature voltage. In
addition ¢ is introduced as the armature angular position. These equations may be
rewritten in state space form according to the t;ollowing,

X, =0,X, =g£:a),X3 =iandlet 7, =U, and V, = U,
: dt



)'(l 0 ]

)‘(2 =10 —£
. J
X3 LO _KE
- - L

The model parameters are taken as shown in Table 6.2:

e > e

w

[
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v X
_T]I_ Y]=[l 0 0] jz
& 3

L ]

(6.41)

Parameter Value (Nominal) Value (Actual).
a 0.64 0.64
L 0.0026 0.0026
Ke - 0.54 0.54
Knm ' 0.54 0.54
J 0.01 0.02
7e-3 10.5¢-3

Table 6.2: Motor Parameters

Next within this work, the mechanism for fuzzy identification of this model is considered.

After which, consideration to the stiding mode controller design is given.

* Within this work the design approach Spurgeon and Davies (1993) is adopted in order to

ensure zero stéady state controller error. However, it is also recognised that if the system

uncertainty can be reduced, then controller performance may be correspondingly’

improved. Once local models of the system have been extracted, they may be used in

order to provide enhanced information to the sliding mode controller. The principles

associated with the design of a sliding mode controller with integral action are considered-

next.
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Integral Action Sliding Mode Controller

As alluded to in the introduction, the ideal sliding motion is control independent and
defined only by the choice of sliding surface provided that certain assumptions about the
system disturbance hold (Drazenovic, 1969). In terms of controller design it is
convenient to convert the system equations into a suitable canonical form. In this form
the system is decomposed into two connected subsystems, one acting in within the range
space of matrix B andlthe other within the null space of the manifold S. In térms of
-.design, the problem then becomes one of state feedback given desired system eigenvalue

" locations. Since by assumption the matrix B is of full rank, there exists an orthogonal

matrix T,é R™” such that
¢

TB= [ ] (6.42)
BZ

where B, € R™" and is non-singular. Let z=7x and partition the new co-ordinates so

that

, =[z-]' - | (6.43)

where z, € R and z, e R”. The nominal linear system can then be written as

(1) = 4,2, (1) + 4,2, (1) (6.44)
z, (t) = 4,2, () + Ay,2, (1) + Bu(r) (6.45)
commonly known as the regular form. Equation (6.44) is referred to as describing the
~ null-space dynamics and equation (6.45) as describing the range-space dynamics. From

the perspective of the extracted local models, it is convenient to first convert the matrices

to the controllability canonical form, thus the system is guaranteed to be in the regular
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form for subsequent design. Suppose the matrix defining the switching function (in the -

new co-ordinate system) is compatibly partitioned with z as

ST =[S, S,] (6.46)
where S, e R™(™ and $,eR™". Since SB=S5,B, Ft follows that a necessary and
sufficient condition for the matrix SB to be non-singular is that the determinant of S, is

non zero. It is reasonable to assume that this condition will be met by design. During an

ideal sliding motion
8,2, (1) + S,z (t) =0 forall 1 > ¢, S S (6.47)
ana therefore formally expressing z, (f) in terms of z, (¢) yields

7, (1) =Mz (1) | (6.48)
where M = §;'S, . Substituting into (6.44) gives
5 () =(4, - 4,M)z (1) L (6.49)
z, (t) is consi(iered to play the role of the control action. The switching surface design

problem can therefore be considered to be one of choosing a state feedback matrix M to

stabilise the reduced order system (4,,,4,). At this point the unit vector approach is

- introduced. Consider an uncertain system of the form

x()= Ax(1)+Bu(t)+ f(t,x,u) (6.50)
where the function f:RxR"xR"™ — R"™ which represents the uncertainties or non-

linearities satisfying the so-called matching condition, i.e.
- f{txu)= BE(1,x,u) | _ (6.51)
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where £ is unknown but satisfies the following inequality
& (e, x,2)|} < &, [lul| + @ (2, %) (6.52)

where 1>k, 20 is a known constant and a(+) is a known function. The proposed control

law comprises two components; a linear component to stabilise the nominal linear

system; and a discontinuous component. Speciﬁgally

u(t)=u,()+u,(t) (6.53)
where the linear component is given by

u () =-A"(SA-®S)x(1) (6.54)
where @ is any stable design matrix and A =$B. The non-linear component is deﬁnedl

as

u, (t)=—p(t,.x) A ” Bs (1) for all s£0 (6.55)

Ps (t)" +&
where P, is a symmetric positive definite matrix that satisfies the Lyapunov equation
P+ Py =1 (6.56)
and the scalar function p(t,x), which depends only on the -magnitude of the uncertainty,
is any function satisfying

k "u,||+a(t,x)+7)

(1-kx(A))

where 'y > 0 is a design parameter. ¢ is the radius of the boundary layer may be shown

p(t,x)Z(

(6.57)

to be dependent on the actuator time constant and inversely proportional to the available

control resources. In this equation it is assumed that the scaling parameter has been
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chosen so that kx(A)<1. It can be established that any function satisfying equatvion
(6.57) a!so satisfies

p(Lx)2 e (L xu)|+r | (6.58)
and therefore p(r,x) is greater in magnitude than the matched uncertainty occurring in

this equation. It can be verified that ¥ (§)=S"AS guarantees quadratic stability for the
switching states and in particular
V<-s"s=2y|Rs| ‘ (6.59)

This control law guarantees that the switching surface is reached in finite time despite the
disturbance or uncertainty and once the sliding motion is attained it is completely

independent of the uncertainty.

Now consider the introduction of additional states x, € R” satisfying

x, =r(t)-y(t) (6.60)
where the differentiable signal r(¢) satisfies |

0)=T((0)-8) | - e
with T" a st.-':uble design matrix and R a constant demand vector. Augment the states with

the integral action states and define
Ik
X= [ ] (6.62)

The associated system and input distribution matrices for the augmented system are
- (0 -C - |0
A= and B= (6.63)
0 4 B
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assuming the pair (A, B) is in regular form, the pair (A, B) is also in regular form. The
proposed controller seeks to induce a sliding motion on the surface
S={xeR™":5%=S,r} (6.64)
where S and S, are design parameters, which govemn the reduced order motion. The

hyperplane system matrix and system matrix are partitioned as

s=|'s = s, (6.65)

i | | | 60
A4y, Azz_im

a
Il
ot

and assume A =SB is non-singular. If a controller exists which induces an ideal sliding
motion on § and the augmented states are suitably partitioned, then the ideal sliding
motion is given by

50 = (A ) () (S5, +8,)r(0) (6.67)

where M =S5;'S, and B = [1 pooQgmr ]T. In order for the hyperplane design method to be

valid, it is necessary for the matrix pair A , A, | to be completely controllable.
L[X p 1z p y

As per the development of the unit vector controller in the previous Chapter, a linear

change of coordinates is‘introduced according to

I 0
T=|" 6.68
[Sl SZ] (6.68)
and let

fitap | (6.69)
S B x, ’
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Then the nominal system'may be rewritten in these coordinates as
x, =A,x (1)+4,S(¢)+ b,r (1) : (6.70)
S{1) =S, 4%, (1) + S,4,,5;'S (1) + Au (1) +S,B,r (1) (6.71)
The overall control law is then given by
u=u,(%r)+u, (%r) | (6.72)

where the discontinuous vector u, is given by

u, (5,r)= —p(u,y)A" i SES,r 673
my 0 otherwise '

It follows that, in terms of the original co-ordinates the control vector ; is given by
4, (x,8,7) = A {=S, Ay x, +( @ =5, 4,87 ) S~ (S, +S5,8,)r+5,4} C(6.74)
u,(i,r) =Lx+Lr+Lr (6.75)

with gains defined as

L=-A"(54-@S) (6.76)
L =-A"'(0S,+S,B,) (6.77)
L =A"S, | C(678)

The parameter S, can take any value and does not affect the stability of the closed loop

system.
Model Extraction

The work in Roubos ef af (1999) presents a method whereby the fuzzy clustered model
may be represented as a local linear state space model. The following is an overview of

the method adopted. The regression vector, which is represented by & is given by
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(K = (GO s, R0 o (D (D) (6.79)
An affine Takagi-Sugeno rule may be represented by

_ Z,-K:’. By (51 )(fify(k)Jf Ufi“(k) + 91;)
Z,"Z ﬁli

¢ and n are vectors of polynomials in the previous sample (y(k-1)), and Othe offset. K;is

(6.80)

y,(k+1)

the number of rules of the /™ offset. The model output is calculated as the degree of
‘fulﬁ]lment i) for each antecedenf variable and the resuliing degrees of fulfillment ‘

() for every rule are combined with the linear consequence according to the following

B:(&)= IP]#M (&) (6.81)

Once the Takagi-Sugeno model has been derived, local linear state space models can be

calculated according to the following,

:Ip,i(x,(k))-yﬁ (k+l)

y,(l;+l)=

K (682)
‘ Zi:l /u’f(x’ (k))

vi(k+1)=(gp (k) +nu(k)+6,) (6.83)
where
¢l = ,-Sl;:‘h(xl (/C))'Q',,. (6.84)

Y (xl (k)) )
e Ta Lz () (6.85)

iz Hii (x,.(k))

and
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. _ Zzlﬂh (x.r (k))'gﬁ
6 = Z:Iﬂ"(x' (k)) | (6.86)

In the case here, previous inputs are not considered and the 4, B and C matrices of the

model are thus simplified, the matrices are given

[ é'l._l C-"’I.J e é’l..a.
1 o ... 0
A= Gra v Gag (6.87)
0 L
[Snr Sz Sna ]

My Mha - Tha
0 .. ... 0

B= 77;,1 7?2..2 77;_",, (6.88)
s Tz - T, |
1 0 ... 0

c=|: (6:89)
0 |

Controller structure and performance

A benchmark sliding mode controller with integral action (SMCI) of the form previously
discussed was désigned to control the motor model of equation (6.41), using the nominal
parameters of Table 6.2. Simulations were carried out using the actual parameters shown -
in Table 6.2. The principle of the proposed controller is Iillustrated in Figure 6.4. The
controller uses the design approach outlined in the previous section, thus, stabilising
conditions of the controller remain intact. Importantly, the extracted model is used to

provide enhanced information to the controller, so that the controller may be made to
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The objective is to synthesise an obserw?r to generate a state estimate x(¢)such that the
error

Ce()=%x(r)—x(r) (6.92)
tends to zero despite the presence of uncertainty. Furthermore the intention is to induce a

sliding motion on the surface in the error space, according to

S, ={geR":Ce =0} (6.93)
The particular observer structure that will be considered may be written in the form

i) = 43 (t)+ Bu(t)- G,C,(1)+ G,y L (6.99)
where G,,G, € R™"are appropriate gain matrices and v repregents a discontinuous

switched component to induce a sliding motion on ;.

Consider the dynamic system given in (6.90) and (6.91) and assume that
1) rank(CD)=¢q

2) The invariant ieros of (4,D,C} lie in the left half C .

It can be shown that under these assumptions there exists a linear change of coordinates

x — Tx such that in the new coordinate system

xl (£)= A% () + A%, (0)+Bu(r) (6.95)
%, (1) = Ay, (£) + Ay, (1) + Bu(e)+ D, (1, 3,u) (6.96)
y()=x(1) (6.97)

where x, e R"”,x, e R” and the matrix 4, has stable eigenvalues. The freedom of

choice associated with A4, depends on the number of invariant zeros of (A,D,C). The
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coordinate system above will be used as a platform for the design of a sliding mode

observer. Consider a dynamic system of the form

% ()= 4% (0)+ A%, (1) + Bu(t) - 4,¢, (1) (6.98)
£y (1) = Ay, (6)+ A%, (1) + By (1) = (A — 453 )5, (1) +] D ||v (6.99) -
#(1)=%(1) (6.100)

where 4, is a stable design matrix and ¢, = y—y. The discontinuous vector v is defined

by
P :

. -p(r,y,u)”fzu ifg, #0 6100
0 otherwise

where P, € R”” is a Lyapunov matrix for 4, satisfying

Py +(4,) P+1=0 | (6.102)

and the scalar function p(t, y,u') is chosen so that

le (e y.2)| < 2 (6, y,4) | | (6.103)

If.the state estimation ‘errors are defined as & =x,—-x and & =x,-x, then it is
straightforward to show

&(0)= 4,5 (¢) '- g (6.104),

6 (1) = Ay, () + Ay () D,y - Do (1) T (6.105)
Furthermore the nonlinéar error system in (6.104)-(6.105) is quadratically stable and a

sliding motion takes place on the surface defined in (6.93), the dynamic system in (6.98)-
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(6.100) may be regarded as an observer for the system in (6.90)-(6.91). It follows that if

the linear gain

-1 AIZ
G =T L%—Ax} (6.106)

and the nonlinear gain

G, =|pjr| * 6.107
ey (6.107)

then fhe observer gain given in (6.98)-(6.100) can be written in terms of the original
coordinate system in the form of (6.94).

Another observer, introduced by Walcott and Zak (1987), considers the special case when
the uncertainty is matched i.e. when D= B. They prquse thé observer structure given
by

:2(1‘)=Az(t)+Bu(t)—GC'g(lt)+B’v0 (6.108)
where z represents an estimate of the true states x, and &£ = z—x is the state estimation
error. The output error feedback gain matrix G is chosen so that the closed loop matrix

Ay, = A—-GC is stable and has a Lyapunov matrix P satisfying both

PA+ATP+Q=0 | (6.109)
for some positive deﬁnite.design matri)-( Q and the structural constraint

PR=C"FT » ' (6.110)

for some non-singular matrix F e R™”. The discontinuous vector v, is given by

FC .
- _-po(.t,y’u)”F—C;” ifCe+#0

6.111)

Vo
0 otherwise
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where' p, (£, y,u) is a scalar function which bounds the uncertainty. The observer given

in (6.94) may be viewed as a L.uenberger observer (Luenberger, 1971) with an additional

nonlinear term. [t can be shown that assumptions about the triple (4,D,C) are both

necessary and sufficient conditions for the existence of such an observer which

insensitive to matched uncertainty and iﬁduces a sliding motion on -
Sw={ceR": FCs =0} ' (6.112)

The original formulation of Walcott and Zak required the use of symbolic manipulation
to synthesise the matrices G and P that completely define the observer. More recently an
analytic solution has been proposed based on the canonical form described in equations
(6.95)-(6.97). An appropriate choice of ¢ is that given in (6.106) and an appropriate

choice of
F=(P8,) (6.113)
In the special> case of a square system an even more explicit solution can be obtained.

This does not require the attainment of the canonical form (6.95)-(6.97) explicitly and in

certain circumstances produces an observer with better numerical properties.

6.3.1 Observer Design for a Brushless D.C. Motor

Within this final section, state observers for the brushless DC motor mode are developed.
The exposition begins Qith the development of the traditional Luenberger observer
assuming perfect knowle&ge of the plant (Figure 6.9). The observer is then modified to
incorporate a discontinuous term, the new observer may be seen to bear may similarities

to the original Luenberger observer (Figure 6.10). Using the parameters in Table 6.3,
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plant uncertainty is introduced to the plant and the performance of the observers is once

again compared.

Parameter Nominal Value : Actual Value

R ‘ "~ 0.64 0.64
L 2le-3 ' 36e-3
Km 0.32 0.32
Ke S %7 | 032
;o 615e3 91e-3

B - 73.8¢e-3 le-2

Table 6.3 Nominal and Actual Motor Parameters

It is assumed here that the output equation y(r)=x, () may be used. It is also assumed

that once again the load torque has negligible effect on the system and may be ivgnored.

The motor model then becomes

. 0 1 0
X, 3 K X, 0
):Cz =0 —7 7’" X, |+ 0 u, (6]]4)
% Kk & |B]|1
0O =+ =2
T ) A
X .
y=[1 0 0] x, | | (6.115)
X3

It is necessary to check the observability of the system: The observability matrix is given

by
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(6.116)

0 ¢

L J

which is of full rank » provided that B,J and K,, are nonzero. The eigenvalues of the

observer are determined by the characteristic polynomial

|A1-(4-LC)|=0 (6.117)
B | ]
. a0 0% ! ]? l
|pr-(4-LC)=||0 4 0o]-|0 —g = || % [I 0 0] (6.118)
00 2 .k R A
L L L]
A+l -1 0
|Ar-(4-LC)|=| 4, ,1+§ —% (6.119)
[ K, ,1+R"
L L i
|/11—'A+'LC|=)J‘+{(£+&J+l,}iz+{ M)+(£+&)A+Iz}l
- J L JL J L)'

(6.120)

BR +K.K R, K
T | P BLLTLLTS A Y ALY |
JL L? 7

lnsértion of the nominal motor parameters into the state transition matrix provides an
eigenvalue spectrum of

eig(4)={0 —4.23 -26.98} (6.121)
The observer eigenvalues are chosen to be far to the left of fhe plant eigenvalt_xes iﬁ order

to ensure rapid convergence of the observer onto the plant states, 1.e.
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eig(A7-(A4-LC)}={-10 -15 -35} . ‘ (6.122)
The specification of these eigenvalues leads from (6.120) to the observer gain matrix

28.8
L=| 1244 (6.123)
306.46

The observer performance is shown for each state in Figure 6.11-Figure 6.16 .
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0
D,=|0 | (6.124)
1

which leads to a realistic noise component within the current channel. The results are
illustrated in Figure 6.21-6.23 for the Luenberger observer and Figure 6.24-6.26 for the
sliding mode observer. Provides root mean squared observation errors of the respective
observers. The sliding mode observer has been tested under a series of sample periods, £,
in order to illustrate that in the limitas £k — 0, £ — 0. It is not however computationally
desirable, or indeed feasible to achieve this figure in simulation, therefore as samplé
period of 0.01 is used as thé default for all sliding mode observers and controllers.
Finally, parametric uncertainty is introduced accordiné to Table 6.3, this uncertainty is
not formally considered within the development above, it is therefore not surprising to
see that both observers performance is reduced, although the sliding mode observe;s
performance is on the whole better than that of the Luenberger observer (Figure 6.27 and

Figure 6.28), because of the additional robustness to parametric uncertainty.

Table 6.4: Root Mean Squared State Observation Errors for Luenberger Observer and
Sliding Mode Observer at Three Different Sample Periods

Observer Luenberger  Sliding Mode  Sliding Mode  Sliding Mode
k=0.01 k=0.001 ~ k=0.0001
" X, — 31" (rad) 844e-6 1.3e-3 119.8¢-6 9.7¢-6
, ”xz - 3}2” (rad/s) 24.4¢-3 1.5e-3 289.5e-6 6de-6
" X, — ;%" (A) . 9.6e-3 1.8e-3 544 .4e-6 171.7e-6
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6.4 Model Following Sliding Mode Control

Linear model following control is an efficient control method that avoids the difficulty of
specifying a performance index which is usually encountered in the application of
optimal contro! to multivariable control systems. The model that specifies the design
objectiv.'e is part of the system. However, Linear Model Following Control systems are
inadequate when the plant is subject to large parameter variations or disturbances. This
has led tothe devglopment of so called adaptive model following contr-ol schemes. ’i’here
are two approaches to the design of adaptive model following systems using stability
conditions. The first is based upon Lyapunov functions e.g. Shackcloth and Butchart
(1966), while the second is based upon Fhe hyperstability concept e.g. Landau (1974).
Both approaches guarantee that the error tends to zero as ¢ — oo but neither offer any
direct quantitative design of the error transient.

In model following systems the plant is controlled in such a way that its dynamic
behaviour ‘approximates that of a specified plant model. The model plant is part of the

system and it specifies the design objectives. The adaptive controller should force the

error between the model and the plant to zero as time tends to infinity, i.e. lime(r)=0.

=

The plant and the model are described by

%, = Ap (1)x,+B,(t)u, (6.125)
x,=Ax +Bu, (6.126)
with the error vector given as

£=x,-x, ' (6.127)
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It is assumed that the pairs (4,,B,) and (4,,B,) may be stabilised and that 4,is a
stable matrix. Differentiation of (6.127) and insertion of (6.125) and (6.126) provides the
following

E=Ax,+Bu, —Ax, ~Bu, (6.128)
Further, subtraction of the term A4,x, yields

é=Ae+(4,-A4,)x,+Bu,—Bu, (6.129)

It follows that perfect model following will result if

(4,-A4,)x,+Bu,—Bu,=0 : (6.130)
rearranging (6.130) provides the following

u, = B1((4,-4,)x, +B,u,) (6.131)
insertion of (6.131) into (6.130) yields
(4,-4,)x,+B,u,~B,B}((4,-4,)x,+B,u,)=0 (6132
Clearly, in order to satisfy (6.130) for all x, and u,, the following equalities must hold

(1-8,8.)(4,-4,)=0 ' ' (6.133)
(1-8,81)B,=0 (6.134)

The equations (6.133) and (6.134) are the conditions for perfect model following as first
described by Erzeberger (1968), Equation (6.131) is the equation for implementing the
control. This control law leads to a controller response which is determined by the
éigenvalues of the model. Since the eigenvalue sbectrum of the model may not be

determined by the designer the control response might not yield acceptable results. Later,

6-44



Sliding Mode Control: Advanced Approaches

Chen (1973) proposed a small modification to the controller, by subtracting the term

A x, from (6.128), this yields
é=Ae+(4,-A4,)x,+Bu,~Bu, (6.135)

‘From equation (6.135), it is evident that choosing a control action of the form

u, = U +u , | (6.136)
~ with

u'=Ke ©(6.137)

u,=B'(4,-4,)x,+BB,u, (6.138).

will lead to perfect model following if it is possible. Substitution of the control law

(6.136)-(6.138) into (6.129) leads to

é=Ae+(A,-4,)x,+Bu,-BKe-B,B (A, ~4,)x,-B,BBu (6.139)

popmtm
under the assumption that conditions (6.133) and (6.134) hold, then (6.139) simplifies to
é=(4,-B,K)e . (6.140)

In contrast to the controller proposed by Erzeberger, the controller proposed by Chen can
have an arbitrary set of eigenvalues determined by the gain matrix K, since the tuple
(Am, Bp) is controllable. Since (6.140) is identical to the optimal state regulator problem
(Anderson and Moore, 1971), then the gain matrix K may be chosen to optimise a
quadratic performance indéx in ¢. Hence, the error settling rates may be controlled.

Additionally, if only partial state feedback is possibie then perfect model following is still

possible (Chen, 1973).
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Model following control systems were extended to incorporate a discontinuous control
componeht in Young (1978). Following this original design, define an error dependent

switching function

S(¢)=Se | (6.141)
which gives rise to a h)-fperplane in the error sbace

S£={gena":éa=0} ' - (6.142)

As seen in the previous Chapter, during sliding the error state will satisfy the equati_bn
Se(r)=0 (6.143) |
Differentiation and substitution of (6.135) gives |
Sé-=S(Am£+(Am—AP)xm+BmumﬂBpup)zo (6.144)

If by design the matrix product §B is non-singular, then the equivalent control may be

determined as
4, =(SB,) S{4,6+(4,~4,)x,+B,u,) | (6.145)

substitution of the equivalent control into the model following control system of (6.135)

gives
£ =‘(1—BP(SEP)-I S)(Amg +(4,-4,)x,+B,u,) | (6.146)-

It is assumed that the plant and model dynamic equations satisfy the perfect model
matching conditions. Comparison of these equations with the invariance conditions

.discussed by Drazenovic (1969), it can be seen that the two coincide. Therefore if x,

and u, are considered disturbances to the error dynamics then the perfect model

matching conditions guarantee that the behaviour of the sliding mode controller is
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insensitive to these disturbances. If the conditions of (6.133) and (6.134) hold, then

equation (6.146) reduces to
i=(1-8,(s8,)" 5) 4.6 (6.147)

A unit vector type control is now introduced as in the work by Corless et al (1985), a

discontinuous unit vector control is introduced according to

‘u=u +u, ' (6.148)

with -

u (1) =—(SB)" (4, - ©S) £ (1) . (6.149)
o BS(t

un-z_p(t,g)(SB) “PSEI;" (6.150)

It was pointed out in Chen (1973) and later in Zinober (1981) that the conditions of

(6.133) and (6.134) may be met if

rank (B, B, ) =rank(8,) (6.151)
rank (8,, 4, - 4,) = rank (8, |  (6152)

1t follows that there exist compatibly dimensioned matrices such that

BF=4,-4, (6.153)
BG=8, (6.154)

This result may be used as an alternative to (6.138), with
u,(1) = Fx, (1) +Gu,, (1) (6.155) .

to also achieve perfect model following. The complete mode! following control scheme

1s then given according to
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u(t):u,(r)+u" (1) +uy (1) : (6.156)

6.4.1 A Model Following Sliding Mode Controller for a BLDC

Within this section a model following sliding mode controller will be developed using the
test rig model used throughout this work so far. Initially, a the plant will assumed to have

the state transition matrix

0.95.  1.486 0.457
4,=102311 -03087  5.2185 (6.157)
0.6068 —14.2379 -29.1786 '

which is stable since it has the eigenvalue spectrum

0
eig(4,)=1 -3.28 (6.158)
-21.29

and no poles appear in the right half of the complex plane. The performance of the model
used within this work is shown in Figure 6.29. The motor -model is given by the

equations found in §5.3.5, e.g.

[ . [ ]

; 0 1 0 0
5 B Kk || u
iz = 0 "7 7’" x2 + —7] (6159)
X3 o _‘Ke B R, X5 L,
| L L] | L

" The controller gains are designed according to the previous section using a Matlab m-file

script, these are given as

L=[0.304 0877 0.98] | (6.160)

F=[0 015 -0.25] (6.161)
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been compared with a ber-mhmark sliding mode controller and the controllers response
has been found to be favourable. The controller has demonstrated clear advantages of
using fuzzy logic in conjunction with sliding mode. Sincg the system uncertainties can be
significantly reduced through use of fuzzy identification and linearisation techniques, the
feedback control gains may be reduced, which in turn leads to a control effort of reduced
magnitude. This leads directly to a reduction in the radius of the boundary layer,
providing improvements in the final achievable tracking accuracy of the system. Since
the fuzzy model does not discriminate between matched and unmatched disturbance, but
simply incorporates them into the model, the fuzzy adaptive sliding mode controller also
enjoys improvements in the transient -control performance when the system is subject to
unmatched disturbance. 1t is finally pointed out that implementation of this algorithm is
significantly more complex than the previous integral actions sliding mode contllollers.
Robust state observation within the framework of the sliding mode has also been
introduced. This approach has been contrasted with the original approach of Luenberger
and has been shown to outperform it when subject to certain types of disturbance,
providing almost perfect state reconstruction. Finally, >moderl following and the
conditions for perfect model following has been explored. It has Been seen that since the
conditions for perfect model following and the sliding mode invariance conditions
(Drazen.ovic, 1969) coincide, that the sliding mode model following control system is
able to fo’rce a plant to perform according to a prescribed model, despite the presence of

measurement noise.
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Chapter 7

Precision Sensorless Motion Control

7.1 Introduction

Sensorless control was introduced in Chapter 2 as a broad set of techniques which may be

applied to the synchronous motor to achieve motion control without the need for a

primary feedback sensor. It was seen within that Chapter that the methods considered

could each generally be classified in one of three groups. The first of these groups

involves the use of instrumentation to measure directly relevant state variables, such as

the back EMF component of the signal. The second was based on state observation

methods, improved robustness td signal noise and the use of state variables not directly

related to armature position was reported. The final group considered was based on

artificial intelligence and constitutes the emergent techniques within the sensorless

motion control theory. It became abundantly obvious within that Chapter that whilst the

approaches apparently worked well for high speed control, at lower and zero speeds very .
few methods were available.. The single approach that does achieve low and zero speed

control is' based on a heterodyning technique and is achieved at the expense of.
introducing a good deal of additional electronics. Whether this approach could truly be

considered seﬁsorless is something of a moot point.

The Hall effect proximity sensbrs traditionally used for commutation of the motor can be

embedded at manufacture and add little to the size or weight of the system. The lack of .

peftinent physically measurable states at very low speeds or standstill leads to the early
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conclusion within this Chapter, based on the review of Chapter 2, that sensorless
precision motion control will only be achievable if the Hall efféct Sensors are
incorporated into the system. It is also concluded that despite the results achieved in
sensorless speed control, fundamentally new approaches are required in order to achieve
sensorless position control. The objective of this Chapter then becomes one of estimating
the armature position using very coarse measurements of position from the Hall effect
devices and measurements of available physical state variables. It is noteworthy to
mention that there are two methods which are commonly adopted to reconstruct unevenly
sampled data, splines or regression analysis. Since within this work, the positi.onl data
must be extrapolated from previous measurements, the épline approach is not considered
since it rapidly leads to instability (Press et al, 1997), for a review of spline methods the
reader is referred to (Froberg, 1970). The next section of this Chabter moves on to
discuss the feedback data available from the Hall effect devices. Following on, a series
of approaches to the estimation of the armature position are presented. This chapter

concludes with a discussion of the results obtained.

7.1.1 Position Sensing with Hall Effect Proximity Sensors

The Hall effect devices are built into the motor and provide commutation signals once
every 120°. Their position is set at manufacture. The power switches used within the
_ amplification unit are then programmed by these sensors to be on or off at each instant
-during the armature rotation (see Chapter 2). It is conceivable that these Hall effect
devices could be used in an alternative modality, whereby the edge of the signal is also of
concern. In this case, the Hall effe(;t devices might be used to provide the user with an’

accurate position update once every 60°. The use of these sensors in this manner does not
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provide any special difficulty in the sensing of the signal. Nor indeed does it create a
.mgjor difﬁcully in interfacing.

The Hall effect devices switch very accu‘rately at known positions. It may be confirmed
on an oscilloscope that this switching action takes place within one encoder increment.
The likelihood, however is that desptte switching at a finite angle, it will not be precisely
60°. If it is assumed that they do switch precisely once every 60° ti1en a cosine error is
likely to result if the sensors are used for position sensing. It will be assumed within this
work, that the precise angle at which the Hall effect devices switch can be calibrated
before the algorithms are applied. Further, it will be assumed without loss of generality.
that the sensors within this work switch precisely at 60°.

The state machine discussed in Chapter 3, used in bandwidth reduction of the encoder
signal lends itself very well to the measurement of position based on the Hall effect data.
This process is briefly reviewed here to illustrate salit;.nt differences between the
machines. The reader is referred to Chapter 3 for a more thorough treatment of the topic.
The Hall effect devices change states according the location of the motor armature. This

is illustrated in Figure 7.1.
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7.1.2  An Additipnal Performance Measure

In previous Chapters of this work, several performance measures have been introduced.
Most significant to this Chapter are the performance measures of Chapter 4, 1.e. the
infinity norm, the root mean square of the error and the variance accounted for. Whilst
these measures are useful in defining the performance of the systeﬁ, an additional
performance measure is proposed to quantify the smoothness of the estimate with respect
to the actual signal. The percentile variance accounted for is., once again used but the two
signals for comparison are first differentiated. The non-smooth elements of the signals
for comparison will be highligﬁtea in their first derivatives, thus the derivative
éomponent serves as a high-pass filter. [If the model vand the plant outputs are not
comparable, then the measure is increased. The performance measure is given in (7.1):

@ﬂ]

var(
dt
VAFDT =100 1-————~
dy(1)
dr

7.2 Position Control with Stepper Motors

(7.1)

It was discussed in Chapter 2 that the stepper motor is a brushless device that is almost
- always used without shaft position sensing. The high torque to weighi and torque to
inertiaAlossves were discussed and the obServati.o.n that the stepper motor is limited in size,
if step accuracy is to be maintained, was made. However, thi§ Chapter considers the use
of the synchronous machine without shaft position sensing and the nearest currently
available equivalent that exists within current technology is the stepper motor. The

objective of this entire work is to formulate a system that is capable of matching currently
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available technology. Therefore, consideration to the stepper motor is now paid. The
readers attention is drawn immediately to the fact that the synchronous motor maintains
advantages over the stepper motor in terms of maximum speed, torque to weight ratio,
tor.que to inertia ratio and torque ripple content. It seems reasonable to suggest that if the
equivalent motion control can be achieved with one of the algorithms discussed here,
then a system will have been formulated which not only matches, but performs better
than currently available equivalent technology. _

There are basically three types of stepping motors; variable reluctance, permanent magnet
and hybrid. They differ in terms of construction based on the use of permanent magnets
and/or iron rotors with laminated steel stators. The common high accuracy stepper motor
will provide the user with 200 steps per revolution, or a step angle increment of 1.8°.
Stepper motors of higher resolution exist, however, their torque to volume ratio is
extremely poor. Lin motors provide a hy.brid stepper motor which is capable of a 0.45°
step angle, the motor is 44mm in diameter and provides a torque of little over 0.5 Nm.
Clearly in small direct drive systems, such as those under discussion here, these motors
are unviable design solutions. A further limitation to the stepper motor is its low resonant
frequency. When the armature steps from one location to the next it is forced to be held
there by magnetic attraction. Since the armature coupled with a load will hold an inertia,
the armature frequently overshoots the step position before coming to rest at the
equilibriﬁm positi-on. Resonance occurs when the step rate of the armature coincides with |
the peak overshoot, and in practice leads to a significant reduction in motor torque.

There are options available to improve the step resolution of the motor, however. Half-

stepping is a common technique used to improve the motor performance, a technique
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referred to as micro-stepping is also available. The miéro-stepping technique results in a
reduction in motor torque, when the motor is coupled with a frictional load, tﬁis
tech‘nique leads to dead zone within the control. It is therefore essential to minimise all
forms of static friction from the load before the micro-stepping technique can be
accurately applied. Attempts to apply a micro-stepping technique to a system with lead-

screw is considered to be at best optimistic and the technique will not be considered here.

7.2.1 Half-Stepping

Provided that no part of the magnetic circuit is in saturation, exciting two motor windings
simultaneously will produce a torque versus position curve that is the sum of the torque.
Versus position curves for the two motor windings taken in isolation. For a two-winding
stepper motor, the two curves will be W radians out of phase, and if the currents in the
two windings are equal, thel peaks and valleys of the sum will be displaced by W/2
radians from the peaks of the original curves, as shown in Figure 7.3. This is the basis of
half-stepping. The two-winding holding torque is the peak of the composite torque curve
when two windings are carrying their maximum rated current (h2). For common two-
winding permanent magnet or hybrid stepping motors, the two-winding holding torque

will be:

h=\2-h (1.2)
where #, is the single-winding holding torque This assumes that no part of the magnetic
circuit' is saturated and that thé torque versus position curve for each winding is an ideal

“sinusoid. If any part of the motor's magnetic circuits is saturated, the two torque curves

will not add linearly. As a result, the composite torque will be less than the sum of the
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disparity between the model and the plant in terms of its performance and is therefore
these models are not directly applicable to the accurate estimation of armature position.
However, it should be possible, upon a change in the Hall effect device outputs to update
the model with a summation of the plant/model residual. It is therefore desirable to find a
model with a high VAF measure, since this reflects the tracking accuracy of the system.
The infinity norm of the residuals is likely to be high on the first update from the Hall
- effect devices, however the root mean square of the error should remain l().w over time.
This algorithm uses the fuzzy model based on the power balance equations as the system
model and the experimental ildentiﬁcati_on data as the plant. Attention is drawn at this
point to the fact that the models devel-oped in Chapter 4 required an identification data set

and a separate validation set.

Direct Approach Algorithm
I. Calculate model output, 6,,,, (k)

2. Check Hall Effect Devices for change in status

3. Ifthere has been no change go to step 1

4. Calculate new position to get H(k)
5. Calculate residual between model and Hall effect devices,
e(k)=H (k)= bOy0p (k)

6. Update the model state 6, (k) = 6,05 (k) + &(k)

Algorithm 7.1: The Direct Approach
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The experimental identification data was split into two halves to provide this. In this
‘Chapter the entire identification data set is provided to the algorithms. It should be
recognised that th.e identification data set contains noise and therefore the infinity norm
performance measure cannot be fairly compared between the models of Chapter 4 and the
atgorithms discussed here. The Direct Approach‘method is given in Algorithm 7.1.
Calculation of the Hall effect position is easily achieved, as di‘scussed in §7.1.1. The
algorithm was applied to the identification test set, with the additional Hall effect
observation streém. Results are illustrated in Figures 713-7.5, and tabulated in Table 7.2
at the end of this Chapter. The autocorrelation function of Figure 7.6 indicates that the
errors are random and the histbgram of Figure 7.5 illustrates a typically Gaussian
distribution with zero mean. The direct approach represents the simplest method to be
adopted in accurate position estimation and will therefore serve as a benchmark for

subsequent methods.
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7.4 Least Squares Estimation

The indeterminate sample frequency problem is a significant hindrance to the
implementation of algorithms for which the estimation of position would ordinarily be
trivial. Here, the least squares estimation method is discussed, so that an optimal estimate
of the time to the next Hall effect device status change can be made. This optimal
estimate will be relied upon heavily within the next section to generate an algorithm
which will make use of variations in sample frequency.

.The basic least squares problem involves the estimation of a quantity xeR”from a
vector of linearly related known measurements, z € R",

z=Hx+v (7.3)
Where the matrix HeR™, m2n, and where veR"™ is a vector of unknown

measurement errors. Using the measurement vector z, an estimate of x, (%), is desired,

such that the sum of the squares of the errors between the actual measurements z and the

estimated measurements Hx is minimised, e.g.
J(J?)z(z—HiY(z—Hi):v*v:v,z+v§+v32+...v:, (7.4)
To find the minimum, the partial derivatives of J with respect to each of the elements of

x are equated to zero

1 T
(a{J = 6{ a{ a{ =-H'"(z- Hz)=0 (7.5)
ox ox, Ox, ox, :
then
H'Hx = H'z (7.6)

and therefore
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i=(H'H) H'z , .7
if H is of full rank, then H'H which is nxn is of full rank, that is, non-singular. Thus

the inverse of H'H exists and the least squares estimate X given by equation (7.7) is

unique and a minimum. It is a minimum because the matrix of second derivatives of J

a7t dx

2
oJ_20 (a_{): H'H (7.8)
di

which is symmetric, is positive definite if H is of full rank. Equation (7.7) shows that the
least squares estimate x is linearly related to the measurements z.

Recursive least squares is an arrangement of the least squares solution in which each new
measurement is used to update the previous least squarés estimate that was based on
p.revious measurements. Instead of processing all of the measurement data at once, the
measurements are processed indfvidually, with each new measurement cdusing a
modification in the current estimate. Least squares estimates are linear transformations of
the measurements. The least squares estimate based on the first &+1 measurements can
therefore be expressed as a linear transformation of the least squares estimate based on
the first k measurements plus a linear correction term based on the (k+1)™ measurement

alone. The least squares estimate based on £ measurements is

#(k)=[H (k) H (k)| H' (k)z(l;t) (7.9)
The least squares estimate based on £+1 measurements is

(k) =[H (k1) H (k)] HY (k1) 2(k 1) AT

Where H(k+1) is H(k) with an additional row A" (k +1)
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H(k+l)=[ H (k) ] (7.11)

B (k+1)
and the vector of measurements z(k +-l) is the measurement vector z(k) with one

additional scalar measurement z, .

z(k+1)=|izz(k)} ' (7.12)
Then
H (k+1)H (k+1)=[ H' (k) h(k+l)]{hf6£?l)} 013
= H"(k)H (k)+h(k+1)n" (k+1)

Defining

K=[H'()HE)] | (7.14)
Gives

P(k+1)=[H' (k+1)H (k+1)]

=[H' (k) H (k) + h(k+1)A" (k+1)] (1.15)

[ (k)+h(k+1)A (k+1)]"
Relation (7.15) is in a form for which the matrix inversion lemma (see notes) applies.
Using the matrix inversion lemma on equation (7.15) gives

gy PR (k1) (8
P(k+1)=P(k)- ]+ht(k+1)rp(k)h(k+l)

(7.16)

which is an update equation for P(k+1) in terms of P(k) and the next'measurement

equation coefficients, h(k +l). Defining -
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S(k+1)=1+A" (k+1)P(k)h(k+1) (7.17)
K(k+1)=P(k)h(k+l)5"(k+l) (7.18)

gives an update equation of

P(k+1)= P(k)= P(k)h(k+1)8™ (k +1) ' (k +1) P(k)

=[I-k(k+1)A (k+1)]P(k) (7:19)
The least squares estimate at step k+1 is
(k+1)=P(k+1)H" (k+1)z(k +1) (7.20)
and aftér some manipulation, (7.20) becomes
(k1) = 2(k) + i (k+1)[ 2, — AT (k+1)%(k)] (7.21)

The least squares estimate %(k+1) based on k+1 measurements is the estimate (k)

based on k£ measurements plus a gain

k(k+1)= P(k-)h(k+l)5".(k+l) (7.22)
multiplied by the difference between the new measurement and the predicted
measurement

W (k+1)%(k) | o (7.23)
based on the previous estimate. These equations for recursive least squares estimation

are collected in Algorithm 7.2.
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Recursive Least Squares Estimation

Initialisation

Pr)=[H' () H(m)]",  #(n)=P(n)H' (n)2(n)
Where

H(n)=[h(1) ... W' (n)], 2(n)=[z, .. z,]
Corrector gain

S(k+1)=h"(k+1)P(k)h(k+1)+]
k(k+1)=P(k)h(k+1)67" (k+1)
P(k+1)=[1-x(k-+1)A" (k+1)]|P(k)

Predictor-Corrector
#k+1)=3(k)+x(k+1)] 2, -4 (k+1)2(k)]

Algorithm 7.2: Recursive Least Squares Approximation

1.5 The Discrete Approximations Approach

Previous Chapters have dealt with the derivation of relatively complex models of the
system. In all cases fhese models were based on continuous time. The approach
proposed here works on the assumption that a state space or fuzzy model can be
converted into a discrete equivalent. It will also be assumed, as in the direct approach,
that pbsition estimations from the model can be updated upon change in status by the Hall
effect devices. Since the conversion to the discrete time has been made, it is possible to
take samples from the model at a different sample frequency to the plant. The principal

of the approach here is to estimate the length of time it will take to reach the next
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transition in the Hall effect devices. In addition, the estimated length of time for the
model to reach the equivalent position is calculated. With kﬁowledge of these two values
it is possible to vary the apparent model sample frequency, whilst sampling the plant at a
constant frequency, so that the model and plant arrive at the Hall effect transition position
simultaneously. This should reduce the first derivative component error between the
plant and the model. The theory of connverting to the discrete time is briefly reviewed
befolre the approach is applied.

Consider the nominal system described by

5(t)= Ax(1)+ Bu(r) o O (7.29)
(1) = Cx(e)+ Du (1) | (125 .
The discrete time representation of the system is given according to

x(k+1)= A(T)x(k)+T(T)u(k) ‘ (7.26)
noting tﬁat the discrete time matrices A and I depend on the sample frequency T.

When the sample period is fixed, A and I' are constant. In order to determine the

matrices A and I', the convolution integral given by
x(t)=e"x(0)+ J'eA(H)Bu (r)dr : (7.27)
0

is used as the solution to (7.24). It is assumed that the input u(¢) is sampled and fed into

a zero order hold, so that it is constant between samples. Since
{(k+0)7
x(k + l) = e"(“')rx(O) +e T I e *" Bu (r) dr (7.28)

0

and
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kT
x(k)=e"x(0)+e™ _[e""Bu(f)a’T (7.29)

o

multiplication of (7.29) by e*” and subtraction of the result from (7.28) gives

(k+)T
x((k+0)T)=ex(kT)+e" [ e Bu(r)dr (7.30)
kT
Since by assumption
u(t)=u(kT) kT <t<kT+T : (7.31)

the constant u(7)=u(kT) may be substituted into equation (7.30). If the variable 4 is

introduced as A =T —¢, then it may be written that

x((k+1)T)=e""x(kT)+e" Tje-""Bu(kT)d:

. _ (7.32)
=e*x(kT)+ [e* Bu(kT)dA

By defining

A(T)=e" _ (7.33)

r(r)= ( [e dﬂ] B (7.34)

equation (7.32) may be rewritten as

x((k+1)T)= A(T)x(kT)+T(T)u(kT) (7.35)

which is of course identical to (7.26). Referring to equation (7.25), the output equaﬁon ,

becomes

y(kT) = Cx(kT)+ Du(kT) (7.36)
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matrices C and D are constant and do not depend on the sample period 7. This approach
will now yield the state output at the discrete sampling instant. The output between
sample instants is desired and the approach discussed can be easily modified to facilitate

this. Using the system given in (7.24) and (7.25), and starting with the initial state x(tﬂ),

the solution (o the system is once again given by the convolution integral

x(1)=e*x(t, )+ [e" ™) Bu(r)dr (7.37)

The time response of the system is desired at £ =T +AT, given 0<AT <T. Defining

t =kT + AT, t, = kT and as before u(7)=u(kT), the solution of x(r) is then given by
kT+AT

x(kT +aT)=e*"x(kT)+ | ™" IBu(kT) dr

kT

. (7.38)
=e™Tx(kT)+ [e*Bu(kT) dA
5
: giVen A =kT + AT —r. Using the definitions (7.33), (7.34) and using (7.26),
x(kT +AT) _ A(AT)x(kT)+ I"(AT)u(i;:T) (7.39)
the system output can be expressed as
y(AT +AT)=Cx (kT +AT)+ Du{kT)

= CA(AT)x(kT)+[CT(AT)+D]u(kT) | (7.40)

Therefore, the values of the system output, or system states can be computed at any time
between sampling instants by calculating the values of A(AT) and T'(AT) for various

values of AT. The system is known to maintain a finite sampie frequency. Additionally,

at an indeterminate time, the Hall effect devices will be able to provide an update on the
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system position, as seen in the direct approach. The difficuity associated with the direct
approach is the non-smooth response dqring the update.

The time taken for the model to reach the next Hall effect switching position can be very
simply calculated using the speed State @ and the position state @ from the model. Given
the current Hall effect position, H, and the magnitude of the Hall effect increment
AH (constant), the following expression provides an estimate of the time taken to reach '

the next transition

- |o-(H +AH)|

LS ———— ' (7.41)
w
_such that
H<f<H+AH _ (7.42)

Clearly, when @ 1s at a low speed, T, will be very large and the sample frequency AT,
should be used for the model in such instances. Based on the previous times at which the

Hall effect devices have changed state, it is possible to produce a recursive least squares

estimate of when the next switch time is likely to occur, T,,. The probability of T,

being equal to T, is very low since the model is not ideal. In general, the model will

reach the position which corresponds to a change in the Hall effect devices, either before
or after the plant. Since the discretisation procedure given above does not stipulate a
constant value of AT, it makes an intuitively appealing proposition to adjust AT such that

the plant and mode! reach the next Hall effect switching position simultaneously. Given
. a fixed sample frequency for the plant, AT, , the equation for the model sample frequency

is given simply as
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Discrete Approximations Approach Al goritﬁm

Calculate model output, BMO.D (k) and model speed, w,,, (k)

Increase k£ by AT,
If there has been no change keep the current value of Tyzp, go to 1

.. Calculate new position to get 8, (k)

. Calculate residual between model and Hall effect devices,
£(k)=H (k)= Byo0 ()

Update the model state 8,5, (k) = 6,0, (k) + (k)

|9—(H+AH)| |

@
Tep (k+1) = Ty +rc(k+l)[z,m ~h' (k+1)T,, (k)]

+ ATP (T:vw - THED)

THED

Calculate 7, =

AT, = AT, ,GotoStep 1 .

Algorithm 7.3: Discrete Approximations Approach Algorithm

Kalman Filter with Stirling Interpolation

The celebrated Kalman filter and its several extensions have without doubt been the most

used and successful state estimators over the past thirty years. However, their use is

contingent on the availability of the required derivatives, and the assumption that they

can-be obtained with reasonable effort. In the case of this work, as it has already been

seen, samples between Hall effect devices are not available, and the derivative does not

exist. It makes sense to recast the Kalman filter in a new light and rather than using the
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derivative of the covariance matrix, one should attempt to interpolate the covariance
matrix using a divided differences scheme. Derivative free Kalman filters and the
unscented Kalman filter are recent advances in the field of state estimation. They have
been developed because the Kalman filter uses a Taylor series approximation to the
derivative, and significant bias or convergence problems have been encountered. It
follows that since through use of a polynomial, a certain amount -of extrapolation is
possible, that observations do not need to be available at each sample. There are many
examples of such extensions to the Kalman filter available in the text, for instance Julier
and Uhlmann (1994), lto and Xiong (2000), Norengaard er al (2000). The filter
realisation proposed by Norengaard et a/ (2000) is particularly attractive since it is also>
reported to work with observation streams operating at different sample frequencies. The
reader is referred to the paper for the derivation of the filter and only those equations

which are essential to the algorithm are considered here.

7.6.1 Review of State Estimation for Nonlinear Systems

The complete derivation of the Kalman filter may be found in Appendix D, Part 1. Here,

the techniques are reviewed for subsequent development. The nominal system is given as

x(k+1)= 7 (x(k),u(k),v(k)) - | (7.44)
y(k)=g(x(k),w(k)) (7.45)
v(k) and w(k) are typically assumed to be Gaussian with zero mean and uncorrelated

with current and past states. The conditional expectations of the state and covariance

matrix are sought, e.g.

% (k) =E[x (k)" ] (7.46)
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P(k)= E[(x(k)-f(k))(x(k) -x (k) |Y“} (7.47)
where Y*”' is a matrix of previous measurements,

Y=y, » o vl : (7.48)

It is often the case that the measurement (a posteriori) update of the state estimate is
restricted to be linear, for the sake of convenience. Selection of the update so that the

covariance of the estimation error is minimised, yields the following

K, = P, (k)P (k) (7.49)
%, =%+ K, [y - %] (7.50)
where

5 =E[ 1]

ny(k)=E[(¥rfk)(yk—'E)T[Y""'} (7.51)
Py(’f)=E[(yk ~¥) (3 -V )TlY‘;'} (7.52)
P(R)=E[(x,~&)(x -2 ) |v* | = P(k)- K., (k) K] (7.53) .

As the various expectations are generally intractable, one form of approximation or
another is generally used. For instance, it is well known that the extended Kalman filter

is based on Taylor linearisation of the state transition and the output equations.
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7.6.2 The Kalman Filter with Sterling’s Interpolation

. The Kalman filter reported in Norengaard ef a/ (2000) makes use of a divided differences
scheme to obtain the covariance matrices. The divided difference equations are given

here for subsequent reference in the algorithm description

S (k) = {( (8 + 4.5 )~ £ (B~ H3, %, )) f20) (154)
SO (k)= {( f,l(fc,(,uk,.\_:k vhS, )= 17 - K, ) /2h} (7.55)
s (k) = {( g (5 +45.,.7 )~ g (% - 45, ,.%,)) /2h} (7.56)
s (k)= {(g,.(fk,wk +hs, ) g%, - h5,,,)) /2h} (1.57)

(f,(ik +h3, 9, )+ £ (% —h&x_j,uk,ifk)—2j:(iﬁ,uk,ﬂ))} (7.58)

st (k)={ h;—l (ﬁ (%, u0,7, + s, )+ £ (Zoey, %, —hs, ;) =2 (J’Et,uk,ﬂ))}(7.59)

(g,(fk+h§ ) +g, (% - ks, ;% )2g,(xk,w*))} (7.60)

_ (gj(fk,v'v,‘ +4s,, )+ g (%% - 45, ) - 28, (fk,w,c))} (7.61)

Thea posteriori Filter update

Consider an augmented state vector consisting of state vector and process measurement
noise:

f=[§+Ai]=[f+Ax] | (1.62)
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Since the process noise is assumed to be independent of the state, the conditional

covariance of AX is

~ ~ n T
potP ol fS oS o g | P
0o ol |o sllo s

The state estimate can be given by

_ h’=n —n R _
Xiel :—;_vf(xhuk!vk)

th zp |f(xk +hs,p,u,,,v,)+f(fck "hf,,,,,u,,,\_’,,) t7-64)
2h2 Z,,,f(xk,u,,,v,c+hs ) f(xm“;” _h )
As the basis of the covariance update, the following shall be used
Pk+1)=[S.()S. (k)][sﬁ(k)sn ©)] (7.655

a factored update of the covariance matrix is introduced using the following compound

matrix

S.(k+1)=[s¥(k) V() sP(k) 58 (k)] (7.66)
The a-priori Filter update

The a priori estimate of the output is calculated in a similar fashion as for the states

_ h-n -
L LR
1 n - -
v Y (R A, )+ g (5 S, ) (7.67)
) l n, —_ - — _ = —
+W pzlg(xk,wk+hsx|p)+g(xk,w,(—hsx’p)
and 7
S,00=[s0(0) S8 s2k) s2w)] (1.68
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n, indicates the dimension of the measurement noise vector. The a priori cross
covariance matrix is given by

P (k)=5.(k)S (k) (7.69)
The Kalman gain and the a posteriori update may be carried out accordi.ng to (7.49) and

(7.50), with (7.49) rewritten

(7.70)

K= £, ()5, (5)S, (&) |

The covariance matrix may be written

~

P=(5. - KksU)(5. - ks®) + ks (ksD) + ks (ka?)T +ks9(ks®) (.71)
which has the Cholesky factor

8, (K) =[5, (1)-K.SY (k) K, SU(k) KSD (k) kS (k)] (7.72)
7.6.3 Results

The filter algorithm discussed above was applied directly to the data. A fuzzy model,
who’s output is available at every sample was used as the first observation stream with
the Hall effect data used as the second. Clearly the Hall effect data is not available at
every sample, but is expected to be significantly more accurate than the model. IThe
initial covariance matrices were therefore initialised to reflect this

The results of applying the filter are shown in Figure 7.8, clearly the results do not
compare favourably to the direct approach discussed as the benchmark position estimator.
The problem occurs because the fuzzy model tends to be trusted more highly between

Hall effect device switches, and because the Hall effect devices do not switch often

7-29



Precision Sensorless Motion Control

enough. Despite the apparently poor performance of this filter, it is computationally less
expensive than the Kalman or Extended Kalman Filter, It has in addition been shown to
outperform either of these approaches. It is poor observation data which causes this
performance. The filter is provided with the output of the direct approach algorithm in

attempt to provide enhanced information to the filter and the output of the fuzzy model.

Filter Algorithm |

1. Initialise X,, P(0),k=0

2. Compute 7,82 (k),89 (k)

3. Compute P, according to ny.(k) =S (k)(Sﬁ (k))T and perform householder
triz;lngularisation on (7.68)

4. Solve K, [§y (k)S, (k):lT = P, for the Kalman gain. Since S, is square and
triangular only forward and back substitutions are needed: first solve for
k':k'S] =P, and then solve for K, : K,S =k'.

5. A posteriori update of the state estimate %, =X, + K, (»;, - %)

6. A posteriori update of the covariance matrix factor, S‘, (k) , is performed using
Householder triangularisation on (7.72)
7. Determine XS (K +1),S,, (k +1)
| 8. Use Householder triangularisation on (7.66) to compute S, (k)

9. k=k+1,gotostep 2.

Algorithm 7.4: Kalman Filter with Sterling Interpolation
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It can clearly be observed that the VAF and the RMS measure§ of the error are; worse
than the direct approach results. This is due to the state space model which is used within
the filter and has a small effect on the accuracy. However, a significant drop in the
VAFDE measure, due to the smoothing éffect of the filter, has been observed. The
implication of this latter result is that the speed estimate of the filter is very close to

actual.

7.7 Model Based Fuzzy Sliding Mode Control

Model based sliding mode control was discussed in the previous Chapter. It was
demonstrated that the piant could be forced to follow a model perfectly using the theories
supporting the sliding mode. A model based on the PBEREG structure of Chapter 4 is
used in conjunction with the fuzzy linearisation procedure of Chapter 6, in order to
simultaneously provide an estimate of the current location of the armature and provide
estimates of the system dynamics, from which controller gains are derived. As in the
d_irect approach discussed above, the_Hlall effect devices are used to update the model
position. Finally, a PID controller is introduced to define the controller pgrformance.

The overall system is shown in Figure 7.10
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Figure 7.13 illustrates the result of applying the fuzzy model based controller to the same
system. A 4% overshoot e).<ists, the corresponding peak in control effort is reduced to 2.7
volts. The results clearly support the intuitively appealing postulate that minimising error
between the nominal plant and actual plant will result in superior control. For
completeness, and in order to demonstrate the control effort, the controller was applied to
the perfectly known plant. The results are illustrated in Figure 7.14. There is a slight
disparity between model and plant in this case. This is due to the selection of the
marginally under-damped eigenvalues and the approximation to the ideal switching
frequency. It will be noticed that even in the case of the sliding mode controller applied
to an imperfectly known plant, the theory suggests asymptotic tracking of the model
states, this 1s clearlylvisible in Figure 7.12.

In the case of the controller above, full state feedback was assumed. Clearly, thi_s
assumptioﬂ is flawed wheﬁ atterhpting to achieve Sensorless control. The direct approach
above will be used in conjunction with the fuzzy model of the plant (PBERES). _The
direct approach is selected because of its computational efficiency and generally good
accuracy. The derivative of the algorithm output will be taken to represent system speed.
It has been seen that the errors associated with_the direct approach are of zero mean,
Gaussian distribution and are uncorrelated, i.e. they approximate white noise. It should
be notiéed that the noise appearing through the encoder measurement channel may be
viewed as matched uncertainty, to which of course, the sliding mode is invariant.

Using this approach, it is now demonétrated that speed control may be achieved after an

initial transient response. It was discussed in Chapter 2 that applications requiring speed
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Because of the higi1 derivative feature of the direct approach, and the associated
difficulties in estimating very low system speed, position control is not-directly possible
through the model following approach. It is however possible to interpfet the model
following approach in a slightly different manner, and suggest that a model, acting under
the control of an external loop could be used to provide position information. The error.
between plant model and desired model could then be regulated 10 zero. The fuzzy
sliding mode controtler with integral action is used to perform this control. However, in
this case the feed-forward demand signal used in Chapter 6 is ignored, since there is no -
demand signal as such, merely the error term which is completely compensated by the
nonlinear and integral terms of the controller. This also serves to simplify the design
stightly. It stands to reason that the best performance of the algorithm will occur
simultaneously with the transition of the Hall effect status. In a similar manner, the worst
performance will occur immediately before the transition. It is an attractive prospect that
the error between plant mﬁdel and plant will grow linearly as a function of the distance
from the last known Hall effect position. In order to test this corollary, the algorithm will
be subjected to three tests. First, the system will be driven to 1.99- pi =0.995 rev
(Figure 7.18), 22/12- pi =0.9166 rev(Figure 7.19) and 2-pi=1rev (Figure 7.20). In
order to ensure proper co'mpérison, the model controlling PID is tuned to be olverdam]ﬁed,

thus ensuring that spurious Hall effect data, apparent due to plant overshoot, is not

included.
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direct approach in other algorithms represents the same philosophy as in Chapter 4,
where an already accurate model was built into other structures to provide enhanced
information. The Discrete Approximations approach performs well in terms of all the
performance measures used, however, it has already been discussed that this algorithm is
computationally intensive and would not represent a viable algorithm unless implemented
on a stand alone digita! signal processor. The fuzzy model based position controller
(FMBSSMC) demonstrates reasonable results. This is madé all the more remarkable by
the fact that the identification data used never achieves the steady state. Therefore this
controller is alwa'y.s kept within the reaching phase and invariance conditions anticipated

are not realised.

Table 7.2: Algorithm Performances as Defined by the Performance Measures

Algorithm VAF VAFDE “g __{ep) "g"m (ep)
DIRAPP 99.99 229.45 250.21 4705
DSCAPP 99.99 70.74 3124 3542
KFSIFM 99.71 1808.3 1834.6 5346
KFSIDA 99.98 29.75 361.13 4705

. FMBSSMC 99.91 57.09 974.1 3639.7

7.9 Discussion

This final Chapter has served to draw much of the work from previous Chapters together
in order to achieve sensorless precision motion control of a brushless D.C. motor system.
The direct approach, which relies purely on an accurate model and Hall effect
measurements of position, has been seen to perform well. This algorithm represents t;he

simplest possible approach to position estimation and represents a very small
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computational burden. The discrete approximations approach, which relies on least
squares estimation of the time taken to the next change in Hall effect status, was seen 1o
reduce the high derivative associated with the direct approach, however, the average error
and variance accounted for within the error signals increased. The discret.e
approximations ap;.)roach may be viewed as an adaptive method that does not require
precise knowledge of the plant. Though this property is extremely attractive, it comes at
the cost of high computational burden and does not represent a attractive algorithm fqr
real time implementation. The Kalman filter approach using interpolation reflected the
reduction in the high derivative cbmponent ofthe position estimate found in the discrete
approximations approach. Oqce again the reduction in this measure came at the cost of
average error and overall tracking accuracy. The algorithm represented a further
imprhovement in estimation over the discrete approximations approach. Although this
algorithm is reported within the literature to be able to cope with observation streams at
different sample frequencies, this has not been apparent within the experiments. It is not
clear whether this is as a result bf the unevenly spaced data, or the number of samples
atte-mpted between Hall effect status changes. Finally, fuzzy model based sliding mode
controllers were investigated as a novel approach to the sensorless control problem. The
controllers represent a fundamental shift in the approach. to sensorless motion control,
whereby the plant is forced to follow a prescribed motion as opposed to forcing the model
to estimate the position of thé plant.

“Through use of these approaches, it has been demonstrated that it is possible to generate a
sensorless speed controller which is capable of very low speed operation with zero error

after finite time, and a sensorless position controller which will maintain a nominal
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integral squared steady state error. Comparisons with the system of §7.2 shows that the
position control algorithm will achieve comparable positioning accuracies, with the worst

case estimate being of the order 6 microns, and nominal case 3 microns.

7.10 Notes and References

7.10.1 Notes

The matrix inversion lemma makes use of the form

o I w'r

r [ U
( +uv) 1+v T 'u

(7.73)

The proof of the lemma requires multiplication of (7.73) by T +uwv' to obtain the identity

matrix

rw'r™ (C+ uv*)

(F+uv*)FI(T+uv*)=r"(l"+uv*)m

1+v' Ty

Tt I"_lu(v*+v?l"'uv*)
=/+1" w' - ’
. 1+v71"'1u‘ (7.74)

I""u(H—v"l""u)vT
=I+T w' -
. 1+viT '

=]

Choleski’s Method of matrix inversion is based on the assumption that the matrix A4 is

symmetric and positive definite. It may be written 4 = LI", where L is a lower triangular

matrix. The inversé may be obtained from
At=(r) =) (1.75)
and only one inversion of a triangular matrix and one multiplication is required.

Householder’s method is presented in Froberg, (1970) pp 130-132.
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Chapter 8

Discussion, Conclusions and Suggestions for Future Work

8.1 Discussion and Conclusions

The concept of sensorless motion control was intrpduced in Chapter 1. Chapter 2 then
went on to refine the deﬁnition of the theories with respect to motors suitable _fo; small
drive systems. If was seen as a result of the further definition of the concept of sensorless
motion control that the algorithms discussed loosely fit into one of three categories:
- Direct measurement methods
- ‘Observer based methods
- Artificial intelligence based methods
Of the several methods within each of these sets, only high and medium speed control
was generally considered. It was apparent that direct measurement methods were not
directly applicable to achieving the goal of this work. In addition, the methods based on
artificial intelligénce remain an emergent technology, and comparatively nebulous in
their definition. Conversely, the observer based methods, specifically those based on the
- sliding mode, appeared to present realistic scope for extension to low and zero speed
motor control.
Chapter 3 described the development of an experimental test rig upon which to test
_ algorithms developed in later Chapters. Models of the system were then developed based

on a-priori knowledge of physical properties of the system. A data set was acquired from
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the experimental system, based on a series of specifications, which ensured suitability for
model validation. Only two of the four models developed provided performances which
approximated the real system. It was seen that the variations within the frictional load of
the system was a major constraint to the models accuracy. The phase coordinate model,
which was one of the two successful models, represented a significant computational
overhead, and subsequently, the third order state space model was selected for controller
design. The Zeigler-Nichols approach to the selection of PID coefficients was seen
within the simulation to provide the characteristic 4:1 decay ratio in the time response.
Subsequent implementation of the PH) on the actual system led to a hunting response,
which was strongly dictated by the variations in frictional perturbation associated with
the load. Manipulation of the controller gains led to the demonstration of superior system
performance. A full state feedback integral action controller was then developed and
applied to the system, experimental results were shown to correlate well with the
simulated system response.

Chapter 4 described the identification of the experimental test rig. The commonly used
linear differeﬁclze equation model family was discussed. Theé auto-regression with
exogenous variables model structure was considered, specifically because of its
guaranteed stability, and a linear ARX model was developed. Further enhancements to
t-hc3 were made through ﬁe introduction of fuzzy clustering, and artificial neural network
techniques. The neural network technique was found to strongly favor system excitation
signals of a lower frequency, the fuzzy clustered approach was found to perform better

than either the neural network or the linear models. Attempts were then made to
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aggregate the knowledge of the system obtained from Chaptelr‘ 3 and the nonlinear
identification procésses of Chapter4. This was achieved using two different approaches
- The raw data collected- from the system was first transformed using a-
priori knowledge from Chapter 3, to provide the black box structure with
data that was of greater physical relevance.
- A prediction eﬁor method from Chapter 4 was applied to the model

structures from Chapter 3.
The former approach was seen to provide better model estimates, whereas the latter
approach served to provide the user with new infomation about model parameters. The
latter approach could therefore have application in data-mining tasks.
The sliding mode was considered inl Chapter 5. The invariance property was introduced
and the equivalent control method for analysing controller performance was discussed.
Several controllers were then devé]oped based on the existing sliding mode control
theory and the third order state space model of Chapter 3. The chatter phenomenon was
introduced and several methods for preventing its manifestation were considered.
Significantly, the boundary layer approach was seen to provide a controller which was
globally stable and uniformly bounded. Controllers which employ the boundary layer
cannot, however, guarantee ﬁnal tracking accuracy to any precision beyond the radius of
the boundary layer. Practical impleme‘:ntation of the controllers, both with and without
the boundary layer il]usﬁated the need for a chatter suppression method. Methods to
capitalise on the additional degree of freedom afforded by the boundary layer were
discussed in Chapter 6. The first of the two integral .action controllers, introduces a

simple approach to the design of an integral action controller, which is based on the Bush
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companion form. This controller, despite its simplicity was shown to provide asymptotic
tracking of the demand. It was shown that this could be achieved even with a boundary
layer of sufficient size to suppress chatter. It was shown in Chapter 5 that sliding mode
can in theory achieve invariance to parametric uncertainty. In practice, to achieve this,
the feedback gains must be increased to accommodate the uncertainty. This leads to
theoretical controllers which achieve asymptotic tracking through the selection of infinite
feedback gains. However, those controllers do not represent practical solutions because
of the impractical speciﬁéation of system bandwidth. The second of the two controllers
evolved in Chapter 6 sought to achieve improved performance over traditional integral
action controllers by incorporating enhanced information about the system. This
information came from the linearisation of fuzzy models developed in Chapter 4. By
virtue of the fact that the controller was then provided with reduced unéeﬂainty within
the plant, lower controller gains were selected safely. As a direct result of these reduced
controller gains, reductions in the radius of the boundary layer were achieved whilst still
suppressing chatter. This reduction in the size of the boundary layer leads directly to
imﬁroved guarantees of tracking accuracy in finite time, the integral action finally served
to ensure asymptotic tracking. Discontinuous Observers were then considered within
Chapter 6. Comparisons of performance between the Luenberger observer and the
sliding mode observer were made. It was shown ﬁat the sliding mode observer was
robust to a certain class of disturbance, where errors in state reconstruction were
exhibited by the Luenberger observer. Finally in Chapter 6, model following sliding
mode control was introduced as a natural extension to observer theory. The conditions

for perfect model following were discussed and they were seen to match the conditions of

8-4



Discussicn, Conclusions and Suggestions for Future Work

invan'ancé for sliding mode controllers. A controller without a boundary layer was then
developed to provide an illustration of the model following controller performance, near
perfect reconstruction of the speed state was illustrated after an initial transient.
Algorithms to achieve sensorless precision motion control were developed in the final
section. The problem was identified eaﬂy within the Chapter as recon‘structing a smooth
" estimate of position from unevenly spaced sample data. Divjded difference schemes
were reported to be unstable where extrapolation of several samples was required.
'Reconstruction of the position state then naturally fell to the use of regression models
from Chapter 4, coupled with the use of observation streams that would rea]isticglly be
a';failable from the system. The direct approach was the first method to be considered and
successfully integrated nonlinear system models with sensor feedback. The discrete
approximations approach was based on the direct approach, but also used a property of
discrete time models to ensure betterv tracking accuracy of the model with the plant. A
significant improvement in the smoothness of the estimate was made over the direct
approach. A Kalman filter, which used a form of interpolation, was next applied to the
problem. The filter had been reported to provide better estimates than the Kalman filter
and to bé faster than the extended Kalman filter. In addition, the filter was reported to
perform well with data of different sample frequencies. Use of the séme signals applied
within the direct approach led to a significantly worse performance from the filter,
because of the instability associated with polynomial extrapolation. However the filter
performance was greatly improved by the use of two continuous observation streams.
The filter demonstrated- ex&emely good smoothing characteristics. Finally within

‘Chapter 7, the concept of forcing the model to follow the plant was reversed and methods
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to force the plant to foilow the model were sought. The principle advantage associated
with this approach was that control was achieved and the system kinematic parameters
are known implicitly. The dynamic performance of the. system is dictated by the
selection of the model, which may be totally defined by. the user. A model following
sliding mode controller, which like the second of the integral action controllers developed
in Chapter 6, uses a fuzzy model to determine the controller gains, was d;ascribed. This
model has been shown to achieve low speed control, in the order of 60 revolutions per
minute, with zero error gﬂer an initial transient, which is dictated by the users selection of
pole locations. Further, the theory supports much lower speed control to less than 10
revolutions per minute, under the provision that the transient period may be extended.
The model following speed controller could not be applied directly to the control of
position because of high transients associated with the position correction within the
direct approach, and the difficulties associated with estimating ‘zero speed with the hall
effect devices. A final controller based loosely on the full state feedback model
following controller was described and applied to the problem. The controller was shown
to perform position control of an imprecisely known plaﬁt to accuracies which
approximate those becoming available commercially, typically 3 microns. Because of
- the numerous advantages the synchronous motor over the alternative forms of actuator,
the design solution proposed is considered to be superior to the alternatives. The

objective of this work has thus been met.
8.2 Suggestions for Future Research

Future research topics on the theoretical and experimental development of sensorless
precision motion control systems should comprise work in three disparate areas. Initial
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work would be purely developmental al;ld would first consider the im[ﬂementation of the
sensorless control algorithms in real time. Methods to reduce nonlinearities within the
system should be investigated, this would include the use of a ball screw instead of a
lead-screw and crossed roller bearings upon which to mount the carriage. The motor
amplifier should provide the user with greater control over the torque control loop. The
controller should be implemented on a dedicated proéessor. These improvements will
enhance the i)erfbrmance of all the control algorithms discussed within this work.
Finally, further work should be carried out to research the incorporation of algorithms
which will reduce the effects of backlash, hysteresis and motor torque ripple.

The singular largest constraint on the accuracy of the algonthms discussed within
Chapter 7 is the accuracy of the identified models. The second area for further work
should therefore be focussed on techniques to improve performance. This work
considers the development of system models offline. It would be distinctly
advantageous in a practical system to develop online identification techniques to ensure
that the model remains as accurate as possible. Though spline methods are not applicable
to' the extrapolation of motor position, they can be used for its interpolation. This would
provide a neat method for identification of position based on a-priori measurements of
the Hall effect devices. Withjn this work, on]y time domain reconstruction of the Hall
effect data is consiciered. An attractive future proposition would involve the use of
frequency domain System identification techniques. Algorithms designed for unevenly
spaced data, such as the Lomb-Scargale Periodogram will have to be used to achieve this.
The final area f(;r future research occurs at a more general level. Further- applications for

the fuzzy model based sliding mode controllers should be found. In addition, an
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algorithm capable of neural network linearization shoﬁld be sought and applied to the
design of sliding mode controllers, in the same manner as the fuziy model based sliding
mode controllers. In an alternative scenario, the design of sliding mode controllers could
be extended to design based on Diophantine equations, such that polynomial models
could be applied directly to the selection of controller gains. Finally, it is acknowledged
that significant speed enhancements could be made to the models if a suitable algorithm

could be found to map fuzzy clustered models to a neural network structure.
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Fuzzy model identification  Adaptive sliding mode control motor control

Abstract: A method for combining black box nonlinear models and sliding mode control is
presented. In this approach the advantages of the sliding mode control technique are maintained,
however barametric uncertainty and unmatched disturbances are acknowledged as limiting factors
of controller performance, and their effects are sought to be minimised through the use of local

linearisation of the nonlinear model. Simulation results demonstrate performance improvements.



Introduction

One of the earliest approaches to control of uncertain systems was sliding mode
control (SMC) or variable structure control (VSC), first introduced to western
researchers in the sellrninal works of Utkin (1977) and Itkis (1976). The central
feature of SMC is the sliding mode, in which the dynamic motion of the
controlled system is constrained to remain within a prescribed subspace of the full
state space. The sliding mode is achieved by ensuring that the prescribed
manifold within the state space .is made attractive to the system (Itkis, 1976).
Once the manifold is reached, the system is forced to remain on it thereafter.
When on the mémifold, i.e. during the sliding motion, the system is equivalent to
an unforced system of l_ower order, termed the equivalent system, which is
insensitive to both parahetric uncertainty and unknown disturbances that satisfy
the matching condition.

Sliding mode control design is a two stage process, first, sliding manifolds are
chosen so that the equivalent system is stable and will yield the desired transient
response. Second, the control law is determined based on the specific plant
parameters in order to ensure that the sliding mode can be obtained.

One drawback in the implementation of sliding mode control is that the
guarantees of invariance in general only apply to systems that satisfy the matching
condition (Yao, 1993). Disturbance which does not fulfil this condition, i.e.
unmatched disturbance is not formally considered within the controller design. A
more profound limitation in practical application is the fundamental requirement
that the contro] law is discontinuous across the sliding manifold, this leads to a
phenomenon termed ‘control chatter’._ Chatter involves high frequency control
switching and may lead to excitation of previously neglected high frequency
system dynamics. Smoothing techniques such as boundary layer normalisation

~ have been employed in order to negate its effects. Through this approach the
transient performance of the closed loop system is maintained, however such an
approach leads to a loss of asymptotic stability and a controller that can only
guarantee final tracking accuracy to within the g-vicinity of the demand (Edwards
and Spurgeon, 1998), where ¢ is the radius of the boundary layer. A compromise
must therefore be sought between desired tracking accuracy and controller

bandwidth.



Model errors due to parametric uncertainty lead to tracking error in controllers
with a continuous approximation to the switching function, within the controller
design, the controller feedback gains are increased to reduce these errors. This
leads to high gain feedback control and despite the fact that these controllers can
in theory use infinte feedback gain to achieve asymptotic tracking, such
controllers are physically impractical because of the finite bandwidths associated
with real systems.

In (Palm, 1994) the apparent similarities between the sliding mode and fuzzy
controllers were illustrated, which has subsequently motivated considerable
research effort in combining the two topologies in a manner that serves to reduce
the limitation of the sliding mode. The most common approach to this has been to |
replace the continuous switching function of the bpundai'y layer withan
equi\;alent fuzzy switching function. However, as pointed out in (O’Dell, ]997},
the fuzzy rule base commonly serves as a mimic of the original switching function
and the advantages of such an approach are therefore unclear. Others have used a
fuzzy rule base in making the sliding manifold adaptive, e.g. (Ha er al., 1999), so
as to minimjse the reaching phase, good results have been reported. Babuska
(1998) has demonstrated the ability of the affine Takagi-Sugeno model to model
accurately a system through rule extraction from cluster data obtained within the
regression space. These models may be used subsequently in order to extract
locally linear state space models of the system and demonstrate model based
control of both single input, single output (SISO) and multi input, multi output
(MIMO) systems (Roubos et al., 1999). A

In this work, a system subjected to parametric uncertainty and disturbance is
identified with a fuzzy rule base, the parameters of which are identified through
use of the Gustaffson-Kessel subspace clustering algorithm. Local models of the
system under its instantaneous conditions are then extracted and subsequently
used to design the sliding mode control gains. In this manner, the resultant
controller will be shown qualitatively to improve closed loop transient
performance whilst reducing the high gain feedback requirement, as a result of
minimising system uncertainty.

Within the following simulation study a third order model of a servomotor is used,

the differential equations of which are given according to



dl,

L =—I R -Kw+V, (1)
dt |
Jngw=—Ba)—TX +1K, ()

Where L is the motor inductance, /, the armature current, K, the back E.M.F
constant, @ the angular velocity of the armature, J the moment of inertia, B
viscous friction, 7, the external load toque, K, the motor torque consté.nt and V,
the armature voltage. [n addition & is introduced as the armature.angular

position. These equations may be rewritten in state space form according to the

following,
dé .
X =0,X,=—=wX,=iandletT, =U,and V, =U,
dt
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The model parameters are taken as shown in Table 1:

Table 1

Next within this work, the mechanism for fuzzy identification of this model is
considered. After which, consideration to the sliding mode controller design is
given. Results are then presented which demonstrate a significant reduction in
controller gain, control chatter and an improvement in controller performance

where an unmatched disturbance is introduced.

Fuzzy ldentification

Fuzzy identification is a term used that has come to represent the use of fuzzy
logic in the modelling and representation of a system. Since fuzzy models may be
viewed as general function approximators, they are readily applied to the

nonlinear regression problem. There are two fundamentally different approaches
4



that may be taken in the identification of a system. Firstly the system may be
-identified through explicit expression of system performance, e.g. ‘if voltage is
high then velocity is high’. Secondly, and the approach adopted within this work
is to decompose the model into a static nonlinear regression. The problem of
model identification is then decomposed into two separate problems, the first is
selection of the regression structure, the second, the selection of the fuzzy model
form, for example, the required number of membership functions and membership
crispness.

The desired regression may be expressed in the form
y(116)=f(e(1).6) 4

where y is the regressand, 8 the vector of regressions which is to be parameterised
in the identification process, and the vector ¢f?) is known as the regression vector,
its parameters the regreisors. It has been shown in (Babuska, 1998) that the
regression surface within the product space may be represented as a series of local
approximatioﬁs.

Through use of a clustering algorithm, it is possible to derive local
approximations to this regression surface. Further, through the use of the

eigenvalues of the cluster covariance matrix given by

- Zil(#i.k )mN(zk Vi ?"(zk _vi)T 5)
‘ ZI(:I(‘”‘J‘)

it 1s possible to interpret these local models and subsequently derive a fuzzy rule

to represent this local appfogimation. In repeating this process for each data
cluster, a global model of the system may be generated. Previous work has
considered the accuracy of this approach in comparison to neural networks and
‘white box’ models, and results have demonstrated that this local approach to
modelling can improve results (Knight e/ al.., 2001).

The rule extraction process is briefly described here for completeness, however
the reader is directed to (Babuska, 1998) for more complete discussion.

[t has been shown that a useful form of the fuzzy consequent is the affine linear
form (Takagi and Sugeno, 1985) of the Takagi-Sugeno (TS) model, in which rqles

are structured according to (6):

Yi= aiTx +b, (6)



where a; is the so called parameter vector and b is an offset. Within the product

space (R”*"") the affine Takagi-Sugeno consequents may be viewed
geometrically as hyperplanes. The antecedent of the rule defines a fuzzy vahdity
region for the corresponding hyperplane. The output y of the TS model is

computed using the fuzzy mean formula

o (7
y > 500 )

where K is the nmber of rules in the rule base. g, (x) represents the degree of

fulfilment of the i™ rules antecedent, which is simply a measure of the degree of

fulfilment of x in the fuzzy set 4, and is given by

b= 1, (x) (8)

Since it may become difficult to interpret multidimensional fuzzy sets, the
antecedent proposition is commonly defined in a conjunctive form, given by a

series of single dimensional fuzzy sets combined with simple propositions. - In this

case the degrees of fulfilment are calculated as B, (x) =t (XAt 0 (X)),

where the min operator (A) may be replaced by alternative T-norms. In this case

- the model output is calculated

i=1 ! i=1

K r) K T -
y=| L7, (x)a |x+ X y;(x)p, =d (x)x+b(x) (9
where ¥, is the normalised degree of fulfilment, given by

r.(x)=i(f)— (10)

K

>,

and @(x)and b(x)are input dependent parameters, given as convex linear

combinations of the constant parameters a, and b, through the following

relationship

a(x)=zkK 7.(x)q, (11)

l;(x)=2{<=lyi(x)bi (12)



The regression structure discussed previously (4) may be expressed in this pseudo

linear form according to the following

Fk+1)=Y a_y(k-j+1)+D b u(k— j+1)+e (13)
=1 Jj=t

The distance measure of the clustering algorifhm, given by
D(xk"’;)=(xk_‘".)r‘cf(xk_V,) (14)

may be inverted and used to provide the degree of fulfilment of each rule for
given data. One possible choice of inversion is to use the same equation as for the

clustering algorithm
I

> La(xv) (s o))

which takes all rules into account and calculates the degree of fulfilment of one

B(x)= (15)

rule with respect to the others. Once the antecedent parameters have been
calculated, the conseduent parameters require derivation. There are two ways in
which the fuzzy consequent parameters of the affine TS model may be calculated
from the data clusters. The first is based around the geometric interpretation of
the cluster, using the covariance matrix (Babuska and Verbruggen, 1997). The
alternative approach is a local least squares optimisation method based on the
derived fuzzy partition matrix. The former method is discussed here. The
eigenstructure of the cluster covariance matrix loosely describes the shape of the
cluster. The shortest eigenvector describes the normal vector to the hyperplane

spanned by the remaining eigenvectors. The shortest eigenvector is defined as

®,. Based on the dataset Z" = [xT, yT] and the cluster prototype, the

consequent may be described implicitly by
d)l.-(ZN —-vl.)=0 (16)

The shortest eigenvector and the cluster prototype may be divided into a vector
corresponding to the regressor x and a scalar corresponding to the regressand y.

ie.



may now be rewritten according to

(o) ;mg}.[[xr,-y]" ey H: 0o (19)

After simphification

1 o\ |
y=_a(q>,.) X+ Oy (20)
%;—_’ ‘\_’E’_/

which is dir.eci]y equivalent to the affine Takagi-Sugeno model consequent.
This approach was employed in the identification of the model given in (3). A
regression structure of [3 1] was used with 5 clusters. Of importance to the
identification of the model is the selection of the input signal, in this case a
stepwise random signal was used as shown in figure 1. The percentile variance
accounted for (VAF) measure, which provides a measure of model tracking

accuracy was calculated as 99.2% which indicates good model accuracy.

Figure 1

The model structure selected uses the applied voltage as the regressor.
Performance increases in terms of tracking error and total root mean squared error -
may be gleaned if the model also uses the motor load current within the regression
structure (Knight et al., 2001). However, from the perspective of this work,

" absolute error of the model is not significant, only the ability of the model to track
the regressand. Computational burden is therefore reduced by accepting a
marginal degradation in the model performance and only using the single

regressor.

Model Extraction

The work in (Roubos er al., 1999) presents a method whereby the fuzzy clustered

model may be represented as a local linear state space model. The following is an
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overview of the method adopted. The regression vector, which is represented by

& is given by

LT

£ (1) =[ 1, (O O ) G ] @D)

An affine Takagi-Sugeno rule may be represented by

Z, By (gl)(gh (£ )+'7H”(k)+9“) (22)
>0 B,

¢ and 7 are vectors of polynomials in the previous sample y(k—1!), and @ the

)’:(k )

offset. K, is the number of rules of the /" offset. The model output is calculated
as the degree of fulfilment y, (&, ) for each antecedent variable and the resulting

degrees of fulfilment (ﬂ,,)for every rule are combined with the linear

consequence according to the following

Au(a) =T T (e) @3)

Once the Takagi Sugeno mode] has been derived, local linear state space models

can be calculated according to the following,

( ) Z,  Hii (xl k)) J’n(k"'l)
i= l/uf' (xf(k))

(24)

v, (k+1)=(g,y (k) +nu(k)+6,) (25)

where

Z. |‘u"( k))-{,, (26)
i= |’u" (x’(k))

,-IZI Hii (xl (k))'qh
f_-ll Hii (xf (k))

27)

’ —

and



.K'. #i (% (K)) -6,
i= l‘u" (x, (k))

In the case here, previous inputs are not considered and the 4, B and C matrices of

6 =

(28)

the model are thus simplified, the matrices are given

(¢ G o G ]

1 0 0
A= gl.l sz C;,a, (29)
0 : . B

Cat Sm2 ot S

771-,1 77;,2 771’,.:, |
0 . 0 _
B=|my my o Th, | (30)
_77;“_1 77;(,_2 Tf;o,n, i
1 0 ... 0
C=|: RS N E1)
0 . 1

Integral Action Sliding Mode

As described in the introduction, the sliding mode is traditionally associated with
a switching action which is discontinuous about a prescribed surface within the
state space. Practical implementation of a sliding mode controller frequently
leads to a phenomendn known as chattering. This is often due to the excitation of
previously unmodelied system dynamics. Many solutions have been proposed to
prevent chatter. Perhaps the most famous of these is the boundary layer approach
first proposed by Slotine and Sastry (1983). The approach involves replacing the ~
discontinuous switching function with an equivalent continuous function. The
implication of changing the switching function is that the system state is no longer
constrained to remain on the prescribed sliding surface, but merely to remain
within a certain vicinity of it. It follows directly that the equivalent system
dynamics will be to some extent affected by any matched disturbance to which the
system is subjected (Spurgeon, 1991).

10



It was recognised in (Ryan and Corless, 1984) that this additional degree of
freedom afforded by the boundary layer at the manifold could be used to improve
the controller robustness to so called unmatched disturbance, i.e. those
disturbances which do not act within the system control channels. The controller
that was sdbsequenlly developed was theoretically elegant and intuitively
appealing, however it was conservative. By considering a subset of the
disturbances originally used in (Ryan and Corless, 1984), the controller was made
less conservative in (Spurgeon and Davies, 1993). The fundamental extension of
these controllers over the traditional controllers is the introduction of an additional
integral action state. This controller state seeks to reduce the steady state error
asymptotically to zero. Within this work the design approach is adopted in order
to ensure Zero steady state controller error. However, it is also recognised that if
the system uncertainty can be reduced, then controller performance may be

correspondingly improved.

Once local models of the system have been extracted, they may be used in order
to proVide enhanced information to the sliding mode controller. The principles
associated with the design of a sliding mode controller with integral action are
considered next. As alluded to in the introduction, the ideal sliding motion is
control independent and defined only by the choice of sliding surface provided
that certain assumptions about the system disturbance hold (Drazenovic, 1969).
In terms of controller design it is convenient to convert the system equations into
a suitable canonical form. In this form the system is decomposed into two
connected subsystems, one acting in within the range space of matrix B and the
other within the null space of the manifold §. In terms of design, the problem
then becomes one of state feedback given desired system eigenvalue locations.

Since by assumption the matrix B is of full rank, there exists an orthogonal matrix

‘T, € R™ such that
0
T8 [ ] (32)
B?

where B, € R™" and is non-singular. Let z = Tx and partition the new co-

ordinates so that

11



2 :[Z'] (33)

where z, € R™" and z, € R". The nominal linear system can then be written as

()= 4,2 () + Az, (1) (34)

2, (1) = Ay 2, (1) + Apz, (1) + Bu (1) (35)

commonly known as the regular form. Equation (34) is referred to as describing
the null-space dynamics and equation (35) as describing the range-space
dynamics. From the perspective of the extracted local models, it is convenient to
first convert the matrices to the controllability canonical form, thus the system is
guaranteed to be in the regular form for subsequent design. Suppose the matrix
defining the switching function (in the new co-ordinate system) is compét'ibly

partitioned with z as

ST’T =[S| Sz] (36)

where S, € R”"™ and S, e R™". Since SB=S,B, it follows that a necessary

- and sufficient condition for the matrix SB to be non-singular is that the
determinant of S, is non zero. It is reasonable to assume that this condition will

be met by design. During an ideal sliding motion

S,z,(1)+ 5,2, (r)=Q forallz>¢, (37)
and therefore formally expressing z, (t) in terms of z,(¢) yields
z,(1)=-Mz,{t)  (38)
where M = S;'S,. Substituting into (34) gives
() =(4,- 4. M)z, (1) (39

z,(} is considered to play the role of the control action. The switching surface
design problem can therefore be considered to be one of choosing a state feedback
matrix M to stabilise the reduced order system (A“,Au).

At this-point the unit vector approach is introduced. Consider an uncertain system

of the form

12



i(t)=Ax(1)+Bu(t)+ [ (t,x,u)  (40)

where the function f:RxR"xR™ — R"™ which represents the uncertainties or

non-linearities satisfying the so-called matching condition, i.e.
f(tx,u)=BE(t,x,u) (41)
where £is unknown but satisfies the following inequality

le (o <k +aix) (@)

where 1-> &, >0 is a known constant and a(-) is a known function. The proposed

control law comprises two components; a linear component to stabilise the

nominal linear system; and a discontinuous component. Specifically
u(ty=u,(r)+u,(r) (43)
where the linear component 1s given Iby
u (1) =-A"(SA-®S)x(r) (44)
where @ is any stable design matrix and A = SB. The non-linear component is

defined as

u, (1) =.—p(t,x)/\" l Bs(1) forallS =0 (45)

les (r)" +te
where P, is a symmetric positive definite matrix that satisfies the Lyapunov
equation

PO+ P +1=0 (46)
and the scalar functiop p(!, x») , which depends only on the magnitude of the

uncertainty, is any function satisfying

(k [ +a (r:x)+7)

(l—le(A))

where y>0 is a design parameter. The radius of the boundary layer (a) may be

p({,x) 2 47

shown to be dependent on the actuator time constant and inversely proportional to

the available control resources. In this equation it is assumed that the scaling

13



parameter has been chosen so that kx (A)<1. Where () represents the

spectral condition number. It can be established that any function satisfying

equation (47) also satisfies
p(t.x)z|e(xu)|+y  48)

and therefore p(l‘,x) 1s greater in magnitude than the matched uncertainty

occurring in this equation. It can be verified that V' (§) = S™P,S guarantees

quadratic stability for the switching states and in particular
V<-s's-2y|Ps| (49)

This control law guarantees that the switching surface is reached in finite time
despite the disturbance or uncertainty and once the sliding motion is attained it is

completely independent of the uncertainty.

Now consider the introduction of additional states x_ € R” satisfying
X, =r(t)—y(t) 50)

where the differentiable signal r () satisfies
Ft)=T(r()-R) (51

with I a stable design matrix and R a constant demand vector. Augment the states

with the integral action states and define

X
i:[ ] (52)
X

The associated system and input distribution matrices for the augmented system

2:[0 "C] and 1§=[0} (53)
0 4 B

assuming the pair (4, B) is in regular form, the pair (;1, B‘) is also in regular

arc

form. The proposed controller seeks to induce a sliding motion on the surface

S={keR"":SE=Sr}  (54)
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where S and S, are design parameters, which govern the reduced order motion.

The hyperplane system matrix and system matrix are partitioned as

s=|'s’ s, | (59
L a

i-| A 4 |7 e
_AZI Azz_im

and assume A =SB is non-singular. If a controller exists which induces an ideal

sliding motion on S and the augmented states are suitably partitioned, then the
ideal sliding motion is given by

% (0)= (A - A,M)x, (0) + (4875, + B, )r(r) (57

0

nxp

where M =5;'S, and B, = [1 " In order for the hyperplane design

4
method to be valid, it is necessary for the matrix pair (ﬁ,,,ﬁ,z) to be completely

~ controllable. The overall control law is then given by

u=u(%r)+u,(%r)

(58)
where the discontinuous vector u, is given by

—p.(u,,.y)A”! i S7 e S r

0 (59)

)|

otherwise

It follows that, in terms of the original co-ordinates the control vector u; is given
by
(% r)=Li+Lr+Li  (60)

with gains defined as

L=-A"(SA-DS) (61)

L =-A"(®S, +5,B) (62).

L=A"S  (63)
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The parameter S, can take any value and does not affect the stability of the closed

loop system.

Controller structure and performance

A benchmark sliding mode controller with integral action (SMCI) of the form
previously discussed was developed to control the motor model of equation (3),
using the nominal parameters of Table 1. All simulations were carried out using
the actual parameters shown in Table 1. | |

The principle of the proposed controller is illustrated in Figure 2. The controller
uses the design approach outlined in the previous section, thus, stabilising
conditions of the controller remain intact. Importantly, the extracted model 1s
used to provide enhanced information to the controller, so that the controller may
be made to adapt to local operating conditions of the system. The controller is

therefore referred to as a Fuzzy Adaptive Sliding Mode Controller (FASMC).

Figure 2

both sets of controller eigenvalues were selected to provide unity damping ratio at
22rad/s. The controllers were driven over a simulation sample period of 70

seconds. Results are illustrated in Figure 3.

Figure 3

It can be seen that in terms of transient response, there is little to differentiate
between the two controllers. However, consideration of the corresponding control
effort (Figure 4) shows that that the high gain requirement of the SMCI has indeed
been relaxed by the FASMC. Additionally, the €-vicinity of the FASMC was
manually adjusted to be 6 times smatler than the corresponding SMCI before

chatter occurred.

Figure 4
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A second test introduced unmatched disturbance to the system and the fuzzy
model retrained to incorporate the uncertainty, the disturbance is analogus to a
torque Being placed on the motor and forcing rotation in the contrary direction to
the demand, which changes simultaneously with the step increase in load. Figure
5 illustrates the effect of the disturbance on the SMCI, it can be seen that the
disturbance significantly effects transient performance. Because of the integral
action of the SMCI, the system is able to achive asymptotic tracking as discussed
within the literature. The FASMC, on the other hand, recovers the systém to the
steady state taking only an additional 0.4 seconds when compared to the system
without disturbance (Figure 6). The obvious error in the initial controlled state
trajectory is due to the lack of large controller gains, in the event that the system
were subjected to such a stringent test it would be necessary to increase the

nonlinear control gain to circumvent this problem.

Figure 5

Figure 6

Conclusions

A new controller based on the synergy of sliding mode design approaches and
nonlinear black box modelling has been presented. Performance of the controller
has been compared with a benchmark sliding mode controller and the controllers
response has been found to be favourable. The controlier has demonstrated clear
advantages of using fuzzy logic in conjunction with sliding mode. Since the
system uncertainties can be sig;niﬁcéntly reduced through use of fuzzy
identification and linearisation techniques, the feedback control gains may be
reduced, which in turn leads to a control effort of reduced magnitude. This leads
directly fo a reduction in the radius of the boundary layer, providing
improvements in the final achievable tracking accuracy of the system. Since the
fuzzy model does not discriminate between matched and unmatched disturbance,
but simply incorporates them into the model, the FASMC also enjoys.
improvements in the transient control performance when the system is subject to
unmached disturbance. The FASMC in this work only extends to the SISO case
and in addition, it is assumed that input/output data is available for the system. It

17




is finally pointed out that implementation of this algorithm is significantly more
complex than the SMCI. To date, limited success in the practical implementation
of the controller has been enjoyed. Subsequent work will also extend the method

to the MIMO case.
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Figure 1: Model output vs System output
Figure 2: Principle of FASMC

Figure 3: System outputs over 70 seconds

Figure 4: System control efforts

Figure 5: SMCI response to unmatched disturbance

Figure 6: FASMC response to unmatched disturbance

Parameter Value Value
(Nominal) (Actual)

R, 1.2Q 1.5Q
0.05H 0.09 H

Ke 0.6 0.6

Km 0.6 0.6

J 0.135 0.15

B 0 0.02

Table 1: Motor parameters
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W)=o" (1) - 19

where

6=[a,...a, b..bF o (20)

1) =[—y(!—l). ~At-n) u(r—l)..u(t—m)] _ _ (21)
@is the regression vector for tuning, (1) is the vector of previous inputs () and outputs of the

system (). The vector (t) is presented at the input nodes and the current value of position

(y(1)) is presented at the output.

51.1 Training Algorithms

In the'r identiﬁcaﬁon of a system with a neural network, th_e,_» chgice of training algorithm
greatly effects the convergence propeﬁié of the model Wlthm this work, ﬁvo training
algorithms- are considered explicitly, the Gradient descent method and the Levenberg-
Marquardt. These two approaches are discussed next.

Gradient Descent
Gradient descent is a prediction error method. The task of training is to obtain the mapping

from the dataset to a set of candidate models,

P N (22)

Iﬂ this cése the objective is to minimise the mean square error (18) according to
é=mgm}nVN(0,Z") o (23)

The prediction error method is iterative and generally takes the form

iy =6, + 17, | | (24)

where 6, specifies the current iteration, 7; specifies the search direction and 4 specifies the
step size. The iteration of the algorithm continues until such time as the minimisation criteria

is satisfied. The principle of the gradient descent method is at each iteration to adjust the

weights of the network in the opposite direction to the gradient, i.e

lo



n.=-G{4,) | " | | 25)
9(:'4-]) =6, _#(.-)G(g(.-)) | (26)
where
N .
ofa,)- 07 @
8-, :

If the step size g, is sufficiently small with this choice of direction, then 1t is always possible
to achieve a reduction of the criterion,

V(8,0 2") <V (62" | (28)

Frequently the step size is selected as constant within the fraining. This can lead to slow
convergence of the ne;twork due to a need for the step size to remain small. In (Demuth and
beﬂe, 2001), an approach to using an adaptive step size is propoéed to control the
convergence of the network. 'fhis approach will be used later on in Section 6.
Levenberg-Marquardt

A comprehensive descripﬁon of the Llevenberg-Marquardt algonthm may be found in
(Norgaard er al, 2000), the algorithm is essentially a cross between ihe gradient descent
méﬂlo.d already discuss_ed and the Gauss-Newton method (Lewis et-al, 1999). In this
approach, the minimisation is given

0 =arg min¥,, (G,Z") subject to IB —9(,._1)| <6, (29)

The update rule for the Levenberg-Marquardt algonthm is given as

iy = O+ 1, _ : (30)

[R(6)+ 41 ] =-6(8,,) | (31)
Where the Hessian is given as

_dv,(8,2")

R(Gm) = (32)

9-¢
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and the small constant 4, which is used to alleviate ill conditioning problems with calculating

the search direction. In practice, the Levenberg-Marquardt uses an approximation to the

prediction error as in the case of the Gauss-Newton method. The value of &, represents the

radius of a trusted region around the current estimate, within which the selection of the search

direction for the approximation is assumed to correspond well with the search direction for

the criterion V,, (9, zv ) :

The Levenberg-Marquardt algoritm offers significant speed advantages over the basic
gradient descent algorithm and is therefore used throughout the neural network modelling-
discussed here. | L

After scaling of the data and waining with the Levenberg-Marquardt algorithm, a neural
network with tansig activation functions on the input and hidden layer, and a lil;ear activation

function in the output node typically gave simulation results as shown in Fig 9 (NN ARX).

5.2 Fuzzy based ARX

The term fuzzy identification has come to represent the use of fuzzy logic in the modelling and
representation of a system. Fuzzy models may be viewed as general function approximators
and are therefore readily applied to the nonlinear regression problem of the form discussed in
the prev;ous section. The fact that behaviour of a system can be easily represented
lihguistjcally e.g. |

If Voitage is High and Current is High then Speed is Fast

naturally provides the user with a u-s-eful method by which a systems behaviour can be
predicted entirely from empirical observation (Linskog, 1996) provides a comprehensive
discussion of this approach, which constitutes the first of the two principle methods:

1. The expert knowledge is articulated through a series of if then rules. The model structure

is generated implicitly from the rules supplied by the expert.

(2



2. In the second case, no prior information is assumed about the system, and only numertcal
data is used to construct the fuzzy rule base.
The first of these approaches provides the user with a convenient a interface through which
prior information may be incorporated into the model via linguistic rules. The latter of these
two approaches is data driven and is closely akin to the neural network approach to model
derivation. The key advantage, however, is that information about the system may be
subsequently extracted from the model once identification is complete. Further discussion on
this subject-and related topics is given by Babuska (1998) and provides the fotuindation for this

section of the work.

521 Data Clustering

The goal of cluster ana.lyslis 1s to partition a given set of data into clusters, which wivll be
Subsets of the presented data. The criteria for these clusters is’

= Within cluster homogeneit;: Data within clusters should be as similar as pos;_sible,

= Between cluster heterogeneity: Data between clusters should be as different as possible.

In this-case similarity can be measured as a function of distance. Cluster validity was used to
select the number of clusters because of the relatively small number of permutations between
regression structure and number of clusters, in this .case 5. If the regression surface is
partitioned intq a series of linear surfaces (corresponding to a cluster), then an ﬁne Takagi-
' Sugeno fuzzy rule (Takagi and Sugeno, 1985) of the form (33) may be used to represent the

local regression.

R :IF f(xis4,andx,is 4 ,and...and x, is 4, )THEN y, =a/ x +b, i=1,2,... k (33)

where xe X c R”is a crisp input vector, A; is an antecedent multidimensional fuzzy set

defined by the membership function 4, {x): X »[0,1], », eR is the scalar output of thei™ rule.

The index i relates the variable to tﬁe i rule and k is the number of rules in the rule base.



The consequent function will maintain its form throughout'the nﬂe base, only its parameters
will vary. The antecedent of the rule defines a fuzzy validity region for the correspondihg
hyperplane. A rule base might therefore be used to produce a global, nonlinear function
apprpxjmgtion.

The ARX structure discussed previously may be expressed in this pseudo linear form

according to the following

1) =S, plk - +1) 3b, ule- s+ 1)vc, 649

=1

5.2.2  Product Space Identification

The antecedent fuzzy sets serve to divide the regression sp..z_;gg'i‘n whach the regression surface
may bé locally approximated by the conseduent hyperplanes. The task of identification is to
find the number, locations and parameters ‘of these hyperplanes such that the regression
surface is accurately approximated. This may be achieved through application of a set of
fuizy clustering methods, referred to as subspace fuzzy clustering algorithms, specifically the
Gustaffson-Kessel (GK) algorithm is used here, discussion of which may be found in

(Gustafson and Kessel, 1979). .

5.2.3 Membership calculation

The "antecedent parameters of ﬁle T.akagi Sugeno model may be calculated through
application of the'distancé measure_used within thé clustering algorithm. In this case only the
regressor x, ﬁe regressor component of the cluster prototype and the correspondir_lg clugter
covarnance matrix are used.

Using the GK algorithm, the distance measure may be evaluated as

D(xk:v:) = (% —vl)r F (x-v) | : (35)
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using an inversion, this measure can be converted into the degree of fulfilment. One possible
choice of inversion is to use the same equation as for the clustering algorithm (Hellendoo.m
and Driankov, 1997)

1

Z[d(%()]/

which takes all rules into account and calculates the degree of fulfilment of one rule with

(36)

B (x#)=

respect to the others.

There are two ways in which .the fuzzy consequent parameters of the affine Takagi-Sugeno
model may be calculated from the data clusters. The first is based around the geometric
interpretation of the cluster, using the covariance matrii.‘i;l‘llé.altemative approach is a local
least squares optimisation based on the derived fuzzy partiion matrix the former method
iJased on the covariance matrix is discussed here. Equatioh (37). may b‘e derived from the

relationship implicit between the shortest eigenvector of the cluster covariance matrix and the

regression surface.

(37}

which can be seen to be directly eq;uivalent to the affine Takagi-Sugeno model, Fig. 10
illustrates the result of training a fuzzy model (FC ARX). It should be noted that there is
sensor noise present within the validation and training data, and it seems reasonable to assume
:that both the fuzzy model and the qeu:al network based model could be improved by better

training sets.
6. TRANSFORMS FOR REGRESSOR DATA

In this final section, attempts to transform the data to provide greater physical relevance are
made. Specifically, the current and voltage data are combined with the power balance

equations (PBE's) in order to derive estimates of position directly from the data The power

S



balance equations provide a good model of system performance, their untreated estimation of
position is also provided (PBE). The enhanced information is therefore incorporated with the
fuzzy clustering approach in two-ways, first the residuals of the PBE estimate are calculated,
upon which a clustered model based on the same structure as in the previous section is trained
(FRESPBE), the outputs of both models are then summed together to provide a composite
estimate of the positton. In the second approach, the PBE estimate is used in the clustered
model as a direct replacement for the voltage regreséor (PBEREG). This approach was
adopted after tests demonstrated degraded performance with three regressors (i.e., voltage,
current and the PBE estimate). |

Using the power balance equations,

P =V (1)-1(r) " (38)

P(1)=T,(t) w(r) | " | (39)
B()=1() R | | 0
B (t)=R(r)+R(r) (41)

an expression for the motor speed based on quantities assumed constant and the available

measurements may be derived,

V(r) I(6)-1(t)"-R
w(r)= 1(t)-K-R ' “2)

where P, is the applied electrical power, P, is the mechanical output power, and Py is the

-

power loss. Since

o-jrOL0 s, “

Fig. 11 iltustrated the estimate of (43) based on the available current and voltage data. Fig. 12

and Fig. 13 show the results of applying the FRESPBE and PBEREG model structures

respectively. The value of K may be used for tuning of the equation, here a gradient descent
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method with variable step size is used in order to tune the model. The gradient descent
method has l?eén discussed in section 5.1. As mentioned before, use of an adaptive step size
can be used in order to obtain the convergence speed of a large step, bﬁt the accuracy of a
smalll step. Here an algorithm is proposed based on an initial value for the step size
determined by the user. The algorithm (PBEGD) 1s described below

1. Initialise variables ¢,7_,,/j=0andk =0
2. Obtain the value for the criterion of fit ¥, (6,,Z")
3. Find 8, =6,- 4,G(6,)

4. Obtain the new value for the criterion of fit ¥, (B(M),

- I8

z¥)

5. If VNl(g(HI)?ZN):VN (9(,.),2"’) and j=¢ then k =k +1 otherwise j = j+1

6. 4, 21%’ V(82" ) =Y (8 2")

7. Ify, (9(,.)_2”)>1'm-, and k > & then repeat the process from step 3
The value of ¢ determines the number of times the algorithm will search across the minimum,
before reducing the step size 1., determines the termination criterton in the event that it can

be achieved and § defines the maximum value of & before the algorithm terminates. The
initial model performance of this model is shown in Fig 11, Fig 14 illustrates the estimate as a

result of tuning.
7. SUMMARY OF RESULTS

Table 1 provides a summary of the results obtained within this work. Both the infinity norm

and the rms semi-norm have units of encoder pulses in error.

Table 1: Performance of the various approached to identification



It can be seen how the use of the power balance equationé can signiﬁcam}y improve the
performance of the identiﬁcatioﬁ approaches. It should be noted that the néura] network
model was both trained and validated on a different data set and therefore it is only the VAF »
which provides fair comparison. The use of the power balance equations on their own
outperform the models trained simply on input/output data and provides the means to produce

accurate models based on the nonlinear identification techniques.
8. DISCUSSION AND CONCLUSIONS

Attention has been paid within this work to the identification of a servo mechanism actuated
by a brushless DC motor and subjected tq large, time variant loads. Specifically the
fundamental tenet within system identiﬁcation'haié-'élgé.én explored, i1.e. to identify only .
‘phenomena which are M6wn. It was initially found that a model based purely on empirical
observation and a pripri knowledge provided a reasonable result, but that significant
improvements were ready to be made. The linear ARX structure was found to be of sufficient -
flexability so as to provide a much improved estimate over the phase coordinate model. Black
box approaches were investigated in terms of a neural network and a fuzzy clustered rule
basé; both of which were bz-ised on the previously successful ARX structure. The neural
network was found to strongly favour purely step wise varying identification data, which
should be considered when comparisons between thé models are drawn. It is clear from this
exercise in itself that correct selection of the input output data has profound effect on the
| resulting black box model. The fuzzy clusteréd model was found to outperform the linear
ARX model. Finally, attention to the incorporation of a priori knowledge was paid. In the
first attempts, a black box model wés used in a complementary fashion to the white box
model in order to cancel estimation residuals. Incorporation of the white box model estimate
into the Black box model regression structure was found to significantly outperform the
previous approach, Finally, the gradient descent training metl.lod was adopted from the neural

network literature in order to mintmise the white; box model error. This model was successful
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in minimising the root mean squared error of the estimate and performs well in comparison to
the other models. However, this model has not captured the discontinuities within the data as
well as the other models. The VAF measure is testament to this. It should be noted that this
rﬁodel has the advantage of simplicity and minimal computational load once trained over the
fuizy clustered and the neural network models. In a system with diminuti\;e a priori
understanding, the semi-physical or grey box approach to modelling has been applied and

shown to be a viable approach to obtaining highly accurate results.
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Figure legend

* Figure 1: Photograph of system

Figure 2: System Schematic Diagram _
Figure 3: Speed of Cammage in Forward and Reverse Direction

Figure 4: Phase Coordinate Model Results

Figure 5: Identification set 1

Figure 6: Identification set 2

Figure 7: Order index versus lag space

Figure 8: Identification results for linear ARX model

Figure 9: Identification results for neural network

Figure 10: Identification results for fuzzy clustered model

Figure 11: Power balance equation estimate

Figure 12: Fuzzy clusleﬁng based on the power balance equation residuals

Figure 13: Power balance equations as a regressor for the fuzzy clustered model

1

Figure 14: Power balance equation estimate after fum'ng with gradient descent

Model el ... VAF
PC 16700 7743 95.73%
ARX 5370 3046 99.41%
NN ARX 8874 5332 99.55%
FC ARX 5166 1982 99.7%
PBEQU 4352 2326 99.85%
| FRESPBE 4938 2351 99.86%
PBEGD 49‘11 2304 99.68%
PBEREG 2535 594 99.97%
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An affine Takagi-Sugeno rule may be represented by

2 Bh( )(gn )+T,l,,.u(k)+9,;-) 22)
B,

¢ and n are vectors of polynomials'in the previous sample y(k-1), and 8 the

offset. K, is the number of rules of the /™ offset. The model output is calculated
as the degree of fulfilment y, (&, ) for each antecedent variable and the resulting

degrees of fulfilment (B,)for every rule are combined with the linear

consequence according to the following

B (EI )= ]j M (€i) | : (23)

Once the Takagi Sugeno model has been derived, local linear state space models

can be calculated according to the following,

z,=, Hy; (xl (k)) yi (k+1)

(k+1)= = (
S ) 29
yu (k+1)= (g, p (k) +n,u(k)+6,) 25)
where

* 2:'|,Ll,,-(x, (k))‘.c.h'

T (26)

2.-:| Hyi (xl (k)) .

. K'] i (x, (k )) Ny

=TS @7
n" Zi— Hyi (xl (k))
and

Z.— |luﬁ(xl k)) i (28)

X 2. My (4 (k)

In the case here, previous inputs are not considered and the 4, B and C matrices of

the model are thus simplified, the matrices are given



(&0 G o Ol ]

1 0 ... 0 S
A= gl;l gzz 2‘,a. (29)
0 : L :

(ST ST

BN M, |
0 ... ... 0
B=|n, Ty .- Th. (30)

C=f: SR E 31)

4. integrall Action Sliding Mode

As described in the introduction, the sliding mode is traditionaliy associated with
a switching action which is discontinuous about a prescribed surface within the
state space. Practical implementation of a 'sliding mode ;:ontroller frequently
leads to av phenomenon known as chattering. This is often due to the excitation of
previously unmodelled system dynamics. Many solutions have been proposed to
prevent chatter. Perhaps the most famous of these is the boundary layer approéch
first proposed by [19]. The approach involves replacing the discontinuous
switching function with an equivalent continuous function. The implication of
changing the switching function is that the system state is ﬁo longer constrained to
remain on the prescribed sliding surface, bﬁt merely to. remain within a certain
vicinity of it. It follows directly that the equivalent system dynamics will be to
some extent affected by any matched disturbance to which the system is subjected
120, | - . |
It was recognised by Ryan and Corless [17] that this additional degree of freedom
afforded by the boundary layer at the manifold could be ﬁséd to improve the
- controller robustness to so called unmatched disturbance, i.e. those disturbances
which do not act within _thé system control channéls. The controller that was
subsequently developed was theoretically elegant and intuitively appealing,
' 10



however it was conservative. By considering a subset of the disturbances
oi’iginally used 'm.[l7], the controller was made less conservative in [21]. The
fundamental extension of these controllers over the traditional controllers is the
introduction of an additional integral action state. This controller state seeks to
reduce the steady state error asymptotically to zerb. Within this work the design
ap:proach is adopted in order to ensure zero steady state controller error.
However, it was also recognised in [[2], that if the system uncertainty can be
reduced, then controller performance may be correspondingly improved. The
principles associated with the design of a sliding mode controller with integral
‘action are considered next. As alluded to in the introduction, the ideal sliding
motion is control independent and defined only by the choice of sliding surface
provided that certain assumptions about the system disturbance hold [(6]. In terms
of controller design it is convenient to convert the system .equations into a suitable
canonical form. In this form the system is decomposed into two connected
subsystems, one acting in within the range space of matrix B and the other within
_ the null space of the manifold §. In terms of design, the problem then becomes
one of state feedback given desired system eigenValue locations. Since by
assumption the matrix Bis of full rank, there exists an orthogonal matrix

T e R™ such that

78 =[°] (32)
B, :

where Bze R™™ and is non-singular. Let z=Txand partition the new co-

ordinates so that

: =[z'] | ' 33)

where z, € R"™" and z, € R™. The nominal linear systerh can then be written as
2 ()= Az, (1) + A,2,(t) (34)

5, (t)= Ay 7, (1) + Apz, (£)+ Byu(r) | (35)

commonly known as the regular form. Equation (34) is referred to as describing
the null-space dynamics and equation (35) as describing the range-spade
dynamicé. From the perspective of the extracted local models, it s convenient to
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first convert the matrices to the controllability canonical form, thus the system is
guaranteed to be in the regular form for subsequent design. Suppose the matrix
defining the switching function (in the new co-ordinate system) is compatibly

partitioned with z as
ST =[S, S,] - (36)

where S,€ R™™and 5, R™. Since SB=S,B, it follows that a necessary
and sufficient condition for the matrix SBto be non-singular is that the
- determinant of S, is non zero. It is reasonable to assume that this condition will

be met by design. During an ideal sliding motion
Sz (t)+$,2,(£)=0 forallz>y, (37)

and therefore formally expressing z, (¢) in terms of z, (¢) yields
z,(1)=-Mz (¢t) | _ , (38)
where M = S;' 'S, . Substituting into (34) gives

2 (t)=(A,~ A, M)z (1) : (39)

z,(t) is considered to play the role of the control action. The switching surface

design problem can therefore be considered to be one of choosing a state feedback

matrix M to stabilise the reduced order system (4, 4,, ).

~ At this point the unit vector approach is introduced. Consider an uncertain system

of the form
k()= Ax(c)+ Bu(e)+ f (1, x,u) - : 40)

where the function f:RxR"xR”™ —» R" which represents the uncertainties or

non-linearities satisfying the so-called matching condition, i.e.
£ (t,x,u)=BE(t,x,u) ' (41)
where £ is unknown but satisfies the following inequality

lle (txu)|<k ||u"+a(t,x) (42)‘
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where 1> 4, 20 is a known constant and ¢;(+) is a known function. The proposed

control law comprises two components; a linear component to stabilise the

nominal linear system; and a discontinuous component. Specifically

w(t)=u () +u,(t) - 43) .

where the linear component is given by
w (1)=—A"(SA-®S)x(r) | ' (44)

where @ is any stable design matrix and A = SB. The non-linear component is

defined as

_Bs(1)

u, (t)=—p(t,x)A” W

forallS$#0 (45)

where P, is a symmetric positive definite matrix that satisfies the Lyapunov

‘equation
PO+® P +1=0 _ (46)

and the scalar function p(t,x), which depends only on the magnitude of the

uncertainty, is any function satisfying

(e Jef| + e (2. %) +7)

(1-ki(A))

p(t,x)z 47

where 1>0 is a design parameter. The radius of the boundary layer (£) may be

shown to be dependent on the actuator time constant and inversely proportional to

‘the available control resources. In this equation it is assumed that the scaling

parameter has been chosen so that kk(A)<l. Where x{+) represents the

spectral condition number. . It can be established that any function satisfying
equation (47) also satisfies '

p(t,x)2 "ﬁ (t,x,u)"+'y | (48)

“and therefore p(t.x) is greater in magnitude than the matched uncertainty
occurring in this equation. It can be verified that ¥ (S)=S"BRS guarantees

quadratic stability for the switching states and in particular

13



V<—ss— ZYHst" (49)

This control law guarantees that the switching surface is reached in finite time -
despite the disturbance or uncertainty and once the sliding motion is attained it is

completely independent of the urcertainty.

.Now consider the introduction of additional states x, € R” satisfying
%, =r(t)=y(1) | (50)
where the differentiable signal r (1) satisfies

F(£)=F(r(t)-R) (51)

with T 2 stable design matrix and R a constant demand vector. Augment the states

with the integral action states and define

) | _
.i:[ ] | (52)
. X . .

The associated system and input distribution matrices for the augmented system

are

2:[0 _C] and B:[O] | _' (53)
0 4 B

assuming the pair (A,B) is in regular form, the pair (;1,5) is also in regular

. form. The proposed controller seeks to induce a sliding motion on the surface
s={teR"":Sx=Sr} (54)
where S and S, are design parameters, which govern the reduced order motion.

The hyperplane system matrix and sysfem matrix are partitioned as

s=|'s s, | | (55)
.Z: %” %2 In (56)
_AZI Azzdim
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and assume A =SB is non-singular. If a controller exists which induces an ideal
sliding motion on S and the augmented states are suitably partitioned, then the

ideal sliding motion is given by

i,(1)=(.:1“—fi',M)x,(t)+(;1nS;'S,+B,)r(t) | _ (57)

where A =S;'S, and B, -_—.[Ip ' Onxp]r. In order for the hyperplane design
method to be valid, it is necessary for the matrix pair (ﬁ,,,/i,z) to be completely
controllable: The overall control law is then given by

u=u (%,r)+u,(%r)

(58)
where the discontinuous vector u,, is given by
-~ JVIAT ifSE£S
u, (s,r)={ P )AT I ST S (59)
0 otherwise - '

It follows that, in terms of the original co-ordinates the control vector u is given
by

u (B,r)=Li+Lr+Lr | (60)

with gains defined as

L=-A"(sA-®S) (61)
L =-A"(®S,+58,) ' (62)
L=A"S, . 7 (63)

The parameter S, can take any value and does not affect the stability of the closed

loop system.

5. Model Following Sliding Mode Control

Linear model following control is an efficient control method that avoids the
difficulty of specifying a performance index which is usually encountered in the
application of optimal control to multivariable control systems. The model that

specifies the design objective is part of the system. However, Linear Model
' ' ' 15



Following Control systems are inadequate when the plant is subject to large
' parameter variations or disturbances. This has led to the development of so called
adaptive model following control schemes. There are two appfoaches to the
design of adaptive model following systems using stability conditions. The first is
based upon Lyapunov functions (e.g. Shackcloth and Butchart, [18]), while the
second is based upon the- hyperstability concept-(e.g. Landau, [13]). Both
approaches guarantee that the error tends to zero as f — oo but neither offer any
direct quantitative design of ‘the error transient. The controller to be presented
here presents a novel approach to the integration of the fuzzy model to the model
following control theory, such that the advantages implicit in using a more’
accurate model are attained.

In model following systéms, the plant is controlled in such a way thaf' its dynamic
behaviour approximates that of a specified plant model. The model plant is part
of the system and it specifies the design objectives. The adaptive controller

should force the error between the model and the plant states to zero as time tends

to infinity, i.e. limg(¢)=0. The plant and the mode! are described by
x,(t)=Apx, (t)+ Bu, (1) (64)

;km (t)= Ax, (1)+B,u,(f) -+ (65)
with the error vector given as _

£(t)=x, (t)-x, (¢) - | (66)
It is assumed that the pairs (AP,BP) and (A,,B, ) may be stabilised and that
A is a stéble matrix. Differentiation of (66) and insertion of (64) and (65)
provides the following |
E(t)=Ax,(¢)+Bu,(t)-Ax, (1)~ B,u,(t) (67)

Further, subtraction of the term A4,x,, yields

E()=Ae(r)+(4,-4,)x, >(t)+Bmum (1)-B,u, (1) (68)

’

It follows that perfect model following will result if

(AM_AP)x.ﬂ (t)+Bmum(’)_Bpup (t)=0 (69)
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rearranging (69) provides the following

u, (t)=81((4,-4,)x, (t)+>Bmum (_z)) (70)
insertion of (70) into (69) yields

(4, =4, )%, ()4 B, ()~ B, BL (4, - 4, )x, (0)+ B, (1)) =0 (71)

Clearly, in order to satisfy (69) for all x, and u,_ the following equalities must

hold
(I_BPB;)(AM._AP):O ‘ | (72)
(1-B8,8})B, =0 | (73)

The equations (72) and (755) are >the conditions for perfect model following as first
described by Erzeberger [8], Equation (70) is the equation for implementing the
control. This control law leads to a controller response which is determined by
the eigenvalues of the model. Since the eigenvalue spectrum of the model may
not be determined by the designer the control response might not yield acceptable
results. Later, Chen [5] proposed a small modification to the controller, by

| subtracting the term A x,, from (67), this yields

()= A4,8(t)+ (A, — 4, )%, (1) + B (1) =B, (1) (74)

From equation (74), it is evident that choosing a control action of the form

u, (£)=1, (£)+u, (¢) . 75)
with

u()=Ke(r) - (76)
u, ()= B! (4, -4, )x, (1)+ B! B,u, () | 7

will lead to perfect model following if it is possible. Substitution of the control
law (75)-(77) into (68) leads to '
E(£)=A,e(t)+(4, -4, )x, (£)+ Bu, (t)-B,Ke(t)-

(78)
BB (4,-4, )%, (£)-B,B!B.u, {t) '
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under the assumption that conditions (72) and (73) hold, then (78) simplifies to
 £(1)=(4,-B,K)e(t) , | (79)

In contrast to the controller proposed by Erzeberger [8], the controller proposed

by Chen [5] can have an arbitrary set of eigenvalues determined by the gain

matrix X, since the tuple (AM,BP) is controllable. Since (79) is identical to the

optimal state regulator problem [1], then the gain matrix K may be chosen to
optimise a quadratic performance index in £. Hence, the error settling rate‘svmay
be controlled: Additionally, if only partial state feedback is possible then peifect
model following is still possible [5]. .

Model following control systems were extended to. incorporate a discontinuous
control component in [25]. Following this original design, define an error

dependent switching function

S(e)=Se(r) | , (80)
which gives rise to a hyperplane in the error space

5, ={ee R" :Se(t)=0} | | - (81

As seen in the previous chapter, during sliding the error state will satisfy the

 equation

Se(t)=0 | | - (82)
Differentiation and substitution of (74) gives
 Se(t)=S (A, (e)+ (4, — 4, ) x, ()+ Byt (1)- B, (1)) =0 (83)

If by design the matrix product SB is non-singular, then the equivalent control

may be determined as
4, (1)= (5B, )" S (A, (1)+(4, — 4, )x, (t)+ B, (1)) - (84)

substitution of the equivalent control into the model following control system of
(74) gives

&(t)=(1-8,(s8,) S)(Ane () + (4 =4, )%, (0)+ Byt (1)) (85)
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It is assumed that the piant and model dynamic equations satisfy the perfect model
matching conditions. Comparison of these equations with the invariance
conditions discussed by Drazenovic [6], it can be seen that the two coincide.
Therefore if x, and u,, are considered disturbances to the error dynamics then the
perfect model matching conditions guarantee that the behaviour of the sliding
mode controller is insensitive to these disturbances. if the conditions of (72) and

(73) hold; then equation (85) reduces to
-t
£(t)=(1-8,(s8,)"S)4.(1) (86)

A unit vector type control is now introduced as in the work in [4], a discontinuous

unit vector control is introduced according to
u(r)=u (t)+u,(t) (87)

w1th

u, (t)=—(SB)" (54, - ®S)e (1) | (88)
_ " BS(f)
u, =—p(t,e)}(SB) ||PS(1)|| (89)

It was pointed out in [5] and later in [26] that the conditions of (72) and (73) may

be met if
rank(B,, B, ) = rank (8, ) | (90)
rank(B,, 4, - 4, ) = rank (B, ) - . 91)

It follows that there exist compatibly dimensioned matrices such that

BF=4-4, (92)

BG=8 (93)

p m
This result may be used as an alternative to (77), with

u,(t) = Fx, (1) + Gu, (1) (94)

to also achieve perfect model following. The complete model following control

scheme is then given according to
19



.

u(t)=u, (t)+u, ('z)+_u,_(z) , | | (95)

6. Simulation studies

Within this work, the derived controllers employ adaptive controller. gains. For
the sake of clarity, the controller signal flow diagrams illustrate the adaptive gains
by means of a shadowed box with an arrow drawn across it. The box entitled

"update controller parameters" is the part of the algorithm which is responsible

- for making these changes.

~ 6.1. Integral Action Control

A benchmark sliding mode controller with integral action (SMCI) of the form
previously‘discussed was developed to control the motor model of equation (3),
using the nominal parameters of Table 1. All simulations were carried out using
the actual parameters shown in Table 1. _

The principle of the proposed controller is illustrated in Figure 2. The controller
uses the design approach outlined in the pre\}ious section, thus, stabilising
conditions of the controller remain intact. Importantly, thé extracted model 1s
used to provide enhanced information to the controller, so that the controller may
be made to adapt to local operating conditions of the system. The controller is
therefore referred to as a Fuzzy Adaptive Sliding Mode Controller (FASMCQC).

Figure 2

both sets of controller eigenvalues were selected to provide imjty damping ratio at
22rad/s. The controllers were driven 6vcr a. simulation sample period of 70

seconds. Results are illustrated in Figure 3.

Figure 3

- It can be seen that in terms of transient response, there is little to differentiate

between the two controllers. However, consideration of the corresponding control

effort (Figure 4) shows that that the high gain requirement of the SMCI has indeed
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~been relaxed by the FASMC. Additionaﬂy, the e-vicinity of the FASMC was

manually adjusted to be 6 times smaller than the comresponding SMCI before

chatter occurred.

Figure 4

A second test introduced unmatched disturbance to the system and the fuzzy
model retrained to incorporate the un.cen‘.ainty, the disturbance is analogus to a
toi'que being placed on the motor and forcing rotation in the confrary direction to
the demand, which changes simultaneously with the step increase in load. Figure
5 illustrates the effect of the disturbance on the SMCI, it can be seen that the-
disturbance sigﬁiﬁcantly effects transient performance. Because of the integral
action of the SMCI, the system is able to achive asymptotic tracking as discussed
within the literature. . The FASMC, on the other hand, recovers the system to the
steady state taking only an additional 0.4 seconds when compared to the system
without disturbance (Figure 6). The obvious error in the initial controlled state

trajectory is due to the lack of large controller gains, in the event that the system

‘were subjected to such a stringent test it would be necessary to increase the

‘nonlinear control gain to circumvent this problem.

Figure 5

Figure 6

6.2 Model Following Control

As in the previous case, a benchmark controller bﬁsed on the traditional theory is
developed (Model Following Sliding Mode Controller (MFSMC)). Within this
work, three models based on the structure of (3) are assumed. First the model
based on the nominal parameters 6f the motor; this model is assumed to be
known, since the parameters will be specified by the manufacturer. Second, the
model based on the actual plant; these parameters wiil be assumed to be unknown,
but their variation from the nominal plant parameters are boun'ded. Finally, the

third model is specified based on the desired performancq of the system, it is this
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mode! which the plant will be forced'to follow. The three sets of parameters are
provided in Table 1 as nominal, actual and demand respectively.

[n the ideal case, the plant and nominal models will be identical. In this case, the
invariancé condition leads to a rejection of uncertainty between model and plant
and perfect model following will result. Figufe 7 illustrates the result of applying
the mode! following sliding mode controller to a system whose parameters are
perfectly known. In the simulation -study, a demaﬂd in speed is applied which for |
the first four seconds is one, for the remainder of the time the demand is minus
one. For the purposes of simplicity, the demand system is treated in the open
loop, therefo-re the model armature speed which is not equal to the demand is a

result of the motor steady state gain. Nearly perfect model following is achieved
using the range space eigenvalue assignment {-100 10+ ; —10- j}, with the

null space pole set to {-2.5}.

(Figure 7

In the case of mode! following the invariance conditions are used to reject errors
between the demand model and the nominal model. In the practical case, there
will also be disparity between the nominal and plant models and an error in the
model following will result (Figure. 8). The magnitude of this error will be

entirely dependent upon how much in error of one another the models are.

Figure 8

It follows that provided a fuzzy model can be found which reduces the uncertainty
of the plant, errors due to model dispanty will be reduced when model fol-lowing.
The structure of the fuzzy model based model following sliding mode controller
(FMMEF) is shown in Figure 8. ‘

Figure 9

Figure 10
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Uncertaihty in the plant is introduced and the two cdntro’]]ers are resimulated. The
results are illustrated in Figure 9 (MFSMC) and Figure 10 (FMMF). It is
immediately obviqus that the two controllers now lack the control chattér of the
ideal case. This is because the controllers are not achieving the sliding mode,
merely attempting to converge to it. As anticipated, perfect model following is
not achieved. The control effort of the FMMF controller is significantly reduced
.in amplitude over the MFSMC, and approximates the amplitudes associated with
the ideal'case. It follows that the task of the fuzzy mode! and the model following
controller is identical in that the root mean square (RMS) error between the model
and the plant should be minimised, whist the percentile variance accounted for.
should be maximised. In the ideal case the RMS error will be zero and the VAF
will be 100%. Constraints in simulation do not permit the ideal case since the
“switching frequency of the discontinuous control component is theoretically
infinite. However, an approximation to this ideal case, at a sample frequency of

1kHz in simulation-provides the results of model following shown in Table 2.

Table 2

7. Conclusions

.Two néw controllers based on the synergy of sliding mode desigﬁ approache-:s and
nonlinear black box modelling have been presented. Performance of the
controllers has been compared with that of benchmark sliding mode controllers
and the controllers response have been found to be favourable. The controllers
have demonstrated obvious advantages in using fuzzy logic in conjunction with
sliding mode. In the case of the first controller it is seen that since the system
" uncertainties can be significantly reduced through use of fuzzy identification and
linearisation techniques, the feedback control gains may be reduced, which in tun
leads to a control effort of reduced magnitude. This leads directly to a reduction
in the radius of the boundary layer, providing improvexhents in the final
achievable tracking accuracy of the system. Since the fuzzy model does not
discriminate between matched and unmatched disturbance, but simply
incorporates them into the model, the FASMC also enjoys improvements in the
transient control performance when the system is subject to unmached

disturbance. The model following controller is based on the pfemise that there
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will be disparity between the nominal and actual systems. This will be true in all
practical cases. Since the sliding mode offers the invariance property to the
rejection of errors between the nominal sjstem and demand system, any errors
which occur between nominal system and plant will not be formally considered
within the controller. It is therefore necessary to introduce the fuzzy model in
place of the nominél model in order to minimise uncertainty within the plant.
This approach is shown to significantly reduce the errors between the plant and
demand transient performance. The controller presented here is shown to
significantly outperform the traditional model fol-lowinglslidirig mode controller

when plant uncertainty exists.
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Figure 1: Model output vs Systelﬁ output
Figure 2. Principle of FASMC
Figure 3: System outputs over 70 seconds
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"Figure 4: System control efforts

Figuré 5: SMClI response to unmatched disturbance

Figure 6: FASMC response to unmatched disturbance

Figure 7: Near Perfect Model Following
Figure &: Principle of FMMF

Figure 9: Model Following with an Imperfectly Known Plant

Figure 10: Fuzzy Mode! Following with an Imperfectly Known Plant

Parameter Value Value Value -
(Nominal) (Actual) (Desired)

R, () 12 15 0.66

L (H) 0.05 [0.09 0.066

Ke (Vs/rad) 0.6 - 0.6 0.1

Km (NmA™) 0.6 0.6 0.84

J (Nms®) 0.135 0.15 o.i

B (NmUrad/s) |0 0.02 0.02
Table 1 Motor parameters
.Measure Ideal Unknown Plant | Unknown Plant

Case | (MFSMC) (FMMF)

VAF 99.98% | 84.83% 98.84%
RMS 0.039 1.63 029

Table 2: Pérformance Measures for the Model Following Controllers
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APPENDIX B

DATA SHEETS AND CIRCUIT DIAGRAMS

Part A: Data Sheets



















APPENDIX C

Motor Models and Suppdrting Systeni Identification Theory

Part 1: The Space Phasor Model

According to Chapter 3, (Vas, 1993), the stator current space phasor, 7, in stator co-

ordinates may be defined as
fj:%-(ia+a-ib+a2-ic) (C.1)

The superscript s is used to denote stationary dg variables. From (3.89) and (3.84) the
phase a flux linkage A, is given
Ag =L+ Lyiy + Li, + Li + Lygiy +1L

(C.2)

ag, ’qr
The inductance definition given in (3.85) yields
A,=LR (i) + % LR(7) +%L2R (e )+ LR (ije™ J+ L, R(i, e )-R(jL, i, e )
(C3)

The stator flux space phasor A, is:

5

T = %(,10 +ad, +a’A,) | (C4)

~ Applying the structure of (C.2) to & and A, allows the re-expression of (C.4)
II__L ;T 3L ;e 3L'-'S" 2j6, Loi el w1 i Tl L ii e/l C5

=L +5 W +5 i e +Lyi e+ L0, e =L i Te (C.9)
Multiplying (C.5) by e /* to obtain:

a5 =i 3 TS _— 3 Ts _—f Y .r .o . ., r
Ale S6ec =(L:/ +5L0J15e 16 +§-L2(1_‘e ’g") +L,i; +Lsd,’d, +_;qu'th
(C.6)

The relationships



A, =2"e"% (C.7)
P=ite o | (C.8)
are space phasors in rotor co-ordinates (aligned with rotor d axis). With (C.7) and (C.8),

(C.6) becomes:

J— 3 - 3 - . r . I . . T
A, = (LJ, +EL0J1I +5L213 +Lyi, +Lyi, + L, 0 (C.9)
Next, the stator phase equations in stator co-ordinates are:
ri, -V, =- a2, (C.10)
dt ,
dA : :
ri -V, === C.11
s'h b df ( )
ri. -V =- d4, : (C.12)
dt
These may be translated to space phasors as
T 7S zs 7T ] 2, . T
AR ALY ¢ g I S (C.13)
' dt dt dt
The final form of (C.13) is:
I di -
ri V. =—-——-jw,Ai C.14
58 5 dt .] r°°s ( )
40 _ : _
w =2 C.15
S (C.15)
and
di
Vo=ri, +L,—2 C.16
0 $°0 si dt ( )
i, i, +i)
e (C.17)



Coincidentally, these expressions are

the flux definition (C.13) is different.
A, = A+ j2,
/ld = leirl + Adm

. r . F « r
Aam = Lymiy + Lyl + Lyl

with
3
Ly, = E(Lo + Lz)

3
Lqm =§(LO _L2)

identical to those for the induction machine. Only

(C.18)

(C.19)

(C.20)

(C21)

(c.iz)

Lam and Lgy are called the d - q magnetising inductances. The rotor to stator currents

may be reduced to .

i :L’fzK
. L S
1_[ dm
i L
L= oK,
L
4 Loggm
PR o
i L
9 _ Tsq _
r —Kq
1y L,

(C.23)

(C.24)

(C.25)

(C.26)
(€27
(C.28)

(C.29)

(C.30)



Magnetic saturation may be accounted by unique Agm(im) and Aqu(im) functions to be

either calculated or measured. The stator equations (C.14) and (C.15) in dg co-ordinates

become
dA
V,=ri,+—4-@ A C.31
d s'd df r'vg ( )
dA
V,=ri, +"i—;’+a),,1‘, (C.32)

Adding the rotor equations in rotor dq co-ordinates

Vy=r, +% (C.33)
iy * % =0 | (C.34)
ryi, + dj[‘*r =0 (C.35)
Ay = Lyiy + Ay (C.36)
Ay =L, +2,, . _ (C.37)
A, =L i, +4, (C.38)

The torque, T, is:

Ty 3 : : :
T, == pR(j4], )=5p(/1drq i) | (C.39)
Finally, the d-q variables are related to the abc variables by the Park transformation:

V=V, +jV, = %(Va +aV, +a'V | (C.40)

a=e 3 (X))



Notice also that all rotor variables are reduced to the stator:

r

v, :
V=2 (C42)
J
r, = [:f : (C.43)
7
L r
L= Kﬂ2 (C.44)
!
ry r
O (C45)
d
L r
L, =~ C.46
“=g (C.46)
2t | (C.47)
9 K 2 .
g
L r
— 4
L, = K‘Z (C.48)

The motion equation (3.96) is to be added. Like the phase co-ordinate model, the dg
mode! is also of 8" order and non-linear but contrary to the phase co-ordinate model, the

coefficients are position independent.

Part 2: Additional Model Structures

Finite Impulse Response (FIR)

The simplest model is the finite impulse response structure, which corresponds to the

choice of all monic polynomials within (4.17) equal to one. The model is thus described



)= Blg™ Jult)+elt) (C.49)
The corresponding predictor is given

6)= Blg™ () . (C.50)
Or, expressed in regressor form

Ho)=¢" () ' (C.51)
where the regression vector is given

olt) = (e = 1) ule = 2),...,ult - m)] | | (C.52)
the corresponding parameter vector is

0 =[b,.b,,....5,] (C.53)

AutoRegression with Moving Average (ARMA)

The Auto Regression with Moving Average process introduces the noise component to
the model. In this case, the polynemials set equal to one are D, B and F. The regression
model is therefore

The regression model is described by

Hdp)=o" (.0} (C.54)
\\fith
o(t,0)=[r=1)...(t=n) &0.6)....e(c- k,0)] (C.55)

the corresponding parameter vector is




AutoRegressive, Moving Average with eXogenous inputs (ARMAX)

A more general form of the ARX model is the ARMAX model that has a structure
corresponding to polynomials F and D equal to 1. In this case, the residuals of the

estimation are introduced to the regression vector. The regression model is described by
ie)=o" (1.6)8 (C.57)
with

o(t,0) =yt =1),.... y(r=n) ule=1).....ult-m) £(.6),....&(t - k,0)] (C.58)
. the corresponding parameter vector is

8=(a,....a, by,....b, ¢, ...c;] (C.59)
The inclusion of the C polynomial implies a relationship between the regression vector

and model parameters, this structure can be described as recurrent, and estimation of _

model parameters becomes more complex.

Output Error (OE)

The Output Error model corresponds to the polynomials A, C and D in (4.17) equal to

one, i.e.

5lie)=o7 (.00 | (C.60)
with
o(t.0)=[3-16)..., 5t - rg) ule-1)...,ult - m)) (C.61)
0= frveerfy byveenb] | _ (C.62)
Other forms

Table 4.1 provides details of some linear black-box model structures not discussed above.



Table 4.1: Black-box model structures

Structure Name Polynomials set equal to |
ARARX F,C
ARARMAX F

BJ (Box Jenkins) | A

Part 3: A Discussion of the Bias-Variance Tradeoff

Bias and Variance
Revisiting (4.:] 1), the model of highest quality mdy be described by
8.(m)=arg min v(6) (C.63)

in this case m is used to describe the dimension of the parameter vector. The vector

6. (m) will depend on the properties of ¢. A quality measure will be introduced for a
given éN as

EV(6, )=V.(m) | (C.64)

The model may be interpreted as describing the models’ expected input output data fit to

the system, given a new data set with the same regressor properties. § » is the estimate of

@ based on the dataset Z" (4.7).

Now assume that the minimisation (C.63) has been achieved and a set of parameters for
the estimate éN has been obtained. It is also assumed that the model 8_(m) is

acceptable, at least in the sense that the model residuals are white noise. (C.64) may be

expressed as

v.(m)=£76, )= 1+ o) - b0 €65

(C.65) approximates to



vim= 570, )~ 4 +El@)- 1.0 + Elro.tm)- 10 (co0

Noise

Bias Variance
From (C.66) it can be seen that if the noise component is negligible, then V.m) can be
decomposed into two parts, namely one due to bias and the other due to variance of the

estimation.

Clearly,

lim @, — 8, (m) (C.67)

Now

In this case, only the bias component will be contained in ¥,(m). The estimate will
converge to the best case system approximation, for a given structure and size. Consider
the parameter vector 8, ; it will have a covariance matrix describing its deviation from

the ideal, @,(m). Applying this error to the resultant variation in prediction performance

£rloh6)- rleo.(m)f <22 (C68)
Combining (C.66) and (C.68)
V)= £V, )= 2+ A2+ E| (o)~ 1(0.8.(m)}} =V10.(n)+ 1% (C.69)

The expected loss of estimation accuracy when the model is applied to a new data set is
given in (C.69). With a loss function defined as per (4.11) and (4.12), the equivalent
~ equation for the expected approximation performance when the model is applied to the

training data is given
£, 6.)=76.(m)- 17 (C.70)

Clearly, the potential approximation ability of a given model structure increases with m.

However, an increase in the number of parameters used leads to a direct penalty within






Ua=2 | (C.71)

ANA =0, iz j<e : (C.72)
bcAcZ, 1<i<c¢ (C.73)
(C.71) stipulates that all data supplied in Z be collectively contained in the subsets 4 .
(C.72), on the other hand, stipulates that none of the subsets may be empty, or completely

contain Z. Finally (C.72) ensures that the subsets are disjoint. These conditions may

instead be expressed in terms of the equivalent logical relationships

[

v ud, =1 (C.74)

i=]
pA ApA =0, 1€i#j<c (C.75)
O<pd <1, 1<i<c (C.76)

The degrees of membership of data to a given cluster can be represented in a matrix
format, denoted U. This matrix will represent hard partitioning, if and only if the

following criteria, which are follow directly from equations (C.74)-(C.76), are met

s, €{0,1}, 1<iSc, 1<ks<N (C.77)

>y =1, I<k<N (C.78)

i=]

0<d <N (C.79)
k=l .

Consider the twelve data points in Figure C.], the data might be partitioned into two

subsets by



1 5 6 789
U=1 11000 O O O (C.80)
0 001 1 1 1 1

o =N

3
!
0

(= e

Clearly, the resulting partition matrix is not entirely satisfactory. The problem stems
from the fact that each data point must be assigned exclusively to a cluster. This may
lead to misrepresentation of the data, in the case of the example above, neither point 6 or
7 fit closely with the remaining points. Arguabl)}, they would constitute another class of
the data, however, it will be shown later that each cluster is represented by a membership
function and unnecessary introduction of additional clusters is unattractive, Fuzzy and
probabilistic cluéter partitioning may instead be employea to overcome the problems

associated with hard partitioning.

Fuzzy Partitioning

In the case of fuzzy partitioning the requirement

-y €{0,1}, 1<i<c,1<k<N (C.81)
is relaxed, such that any given data may have a real valued membership of between zero
and one to any cluster, 1.e.

4 €[0,1], ISisc,1Sk<N \ (C.82)

provided that its total degree of membership to all clusters is one, i.e. (C.78) remains true.
The partition matrix could possibly be rewritten

1 2345 6 7 891011 12
U=1 11110503000 0 0 (C.83)
000000507 111 1 1

In this case, it can be seen that the data point 6 is accurately represented, since it is

between the distinct sets of data. However, arguably point 7 is still misrepresented, since



it is further away from the two clusters than point 6, yet still has an equal effect on the

clusters.

Probabilistic partitioning

The final partitioning method relaxes (C.78), such that thé membership of a data point
does not h.ave 1o sum to one across the clusters. [nstead the less restrictive constraint that
for all k there exists a value of i such that the membersh.ip of data i,k is greater than zero,
formally

3,1, >0,k ' | (C.84)

The matrix U may now be expressed as

I 2 3 45 6 7 8 9 10 11 12
U=1 11110501500 0 0 0 (C.85)
00 0O0O0OO0OS5S 02 11 1 1 1 '

The lower degree of representation of either of the clusters is now represented by the
lower assigned membership. This form of partitioning is also referred to as possibilistic
partitioning e.g. Chapter 4,(Krishnapuram and Keller 1993 and Hoppner et al., 1999),

| here the term probabilistic is adopted as per Chapter 4, (Krishnapuram and Freg, 1992).



APPENDIX D

Additional Control Theory

Part 1: State Feedback Matrix Design Methods

Robust Eigenstructure Assignment

For the case of a scalar controlled problem, specification of the (n - 1) éigenvalues
associated v;/ith the sliding mode will uniquely determine the matrix M of equation (5.48)
For multi-input systems' this is not the case. In su-ch a situation the available degrees of
freedom may be used to modally shape the system response by a judicious choice of
eigenvector form and/or ensure that the resulting closed-loop system is maximally robust
o system parameter variations. However the eigenvector corresponding to a given
eigenvalue must lie in an allowable sub-space which is determined by the system matrix,
the input matrix and the eigenvalue itself. To evaluate robustness, a bound upon the

individual eigenvalue sensitivity ¢; is given by

vaxle) <) =1 o)
Here x(V) denotes the condition number of the matrix ¥ of right eigenvectors and is a

measure of the orthogonality of the eigenvectors vi. The closer the eigenvectors of a
matrix are to being orthogonal, the smatler is the associated condition number and the
greater the robustness of the eigenvalue locations to changes in the elements of the
matrix. In robust eigenstructure assignment the feedback matrix is obtained by assigning

a set of linearly independent right eigenvectors corresponding to the state feedback



required eigenvalues such that the matrix of eigenvectors is as well-conditioned as

possible.

Direct Eigenstructure Assignment

In the previous subsection, the additional degrees of freedom in the pole placement
problem for multi-input systems were used to minimise the condition number of the
associated eigenvalues. If information is known about a desirable weighting of the system
states for each mode, it is possible to choose a desi;ed eigenveptor specification. Again
this will not necessarily be achievable because it may not lie within the prescribed

allowable sub-space.

Quadratic Minimisation

Consider the problem of minimising the quadratic performance index

TI:% [ =) ox() a | (D.2)

where Q is both symmetric and positive definite and t; is the time at which sliding motion
commences. The aim is to minimise equation (D.2) subject to the system equation (5.7)
under the assumption that sliding takes pléce. It is assumed that the state of the system at
time t;, x(t5), is a known initial condition and is such that x(t) » 0 as t — 1. The matrix Q

from equation (D.2) is transformed and partitioned compatibly with z so that

T Qu le
TOT = D.3
rQ ’ |:Q17; sz (b3

and subsequently define

~

Q=0 - le- ;2|Q2| ‘ (D4)



and

v=2,+0,0,2 (D-5)
After some algebraic manipulation equation (D.2) may then be written in the new Co-

ordinate system as
| .
J=5 f 20z, +V Qv dt (D.6)
Recall the constraint equation may be written as
Z.'1(")= Allzl(t)+ Alzzz(’) (D.7)

Eliminating the z; contribution from equation (ID.7) using equation (D.5) the modified

constraint equation becomes

~

z,(c)= Az, () + 4,,v(t) | (D.8)
where
fa =4, - 4, 2-2]Q2| (D.9)

The positive definiteness of Q ensureé that Qx > 0, so that Q"' exists, and also that
0>0. Furthermore, the controllability of the original (A, B) pair ensures that the pair ( 4,

A}2) is controllable. The problem thus becomes that of minimising the functional (D.6)
subject to the system (D.7) and thus can be intérpreted as a standard linear-quadratic

optimal state-regulator problem.



PART 2: DERIVATION OF THE DISCRETE TIME KALMAN FILTER

Some Results for Linear Mean Square Estimation

There are four results for LMMS estimation which are key to the development of the
Kalman filter. Because of their importance their derivations are included as notes at the

end of this appendix.

Minimum Mean Square Estimate

For the random vectors x and z, the LMMS estimate of x given z is

55=E[(x—mx)(z—mz)r}{E[(z—mz)(z—mz)r]}ﬁl(z—mz)+m; (D.10)

Where m, is the mean of x and m, is the mean of z. Specifically, if x and z are zero-

mean random vectors, then the LMMS estimate of x based on z is

| J'czE[sz]{E[zzT]}_lz (D.11)

Orthogonality of the Measurements and Estimation Error

This result, known as the orthogonality principle, states that if x,zand x satisfy equation
(D.10), then the measurement vector z—m, is orthogonal to the estimation error x—-x,

that is

E[(z-m)(x-3) | =0 (D.12)

Estimation of Linear Composition

For the random vectors x, y,w and z if
x=Ay+ Bw (D.13)

Then the LMMS estimate of x based on z is given by



x=Ay+Bw (D.14)
Where p is the LMMS estimate of y based on z and w is the LMMS estimate of w

based on z.

Incorporation of Orthogonal Data

For the random vectors x,z, and z,, if z, —m,, and z, —m,, are orthogonal,

E[(z,—mz,)(zz—mzz)r]=0 : | (D.15)
The LMMS estimate of x based on z, and z, is

AR +E+m, (D.16)
Where %, is the estimate of x based on z,—m_ and £, is the estimate of x based on

"M,
THE DISCRETE TIME KALMAN FILTER

The derivation of the Kalman filter in its simplest form is now presented. Some

nomenclature to be used is first introduced:

%(k+1|k) is the LMMS estimate of x(k+1) based on z(1),z(2),...,z(k)
f(k+l|k+]) is the LMMS estimate of x(k +1) based on z(1),2(2),...,z(k+1) -

2(k+ l|k) is the LMMS estimate of z(k +1)based on z(1),z(2),...,z(k)

Similar definitions are used for estimates and so forth. Some other useful definitions

follow



Ax(k + llk) =x(k+1)- i'(k +1 |k) is the state prediction error.
Ax(k+1[k+ l) =x(k+ l)—fc(k +1)k+ 1) is the state estimation error
Az(k+]]k) =z(k+1)- E(k +1 |k) is the measurement pfediction error

P(k+1]k)= E[‘Ax(k +1[k)ax” (k +l|k):| is the state prediction error covariance

P(k +1|k+ 1) = E[Ax(k +1k+ l) AxT (k +1|k+ ])] is the state estimation error covariance

Prediction and Correction

Prediction

For the system

x(k+1)=F(k)x(k)+w(k) _ (D.17)
z{k+1)=H (k+D)x(k+1)+v(k+1) (D.18)
Using Athe linear composition result shown in equation (D.14) results in the optimal

estimate of x(k+1) given data through the k" step.

2(k+1]k)= F(k)é(k[k)+ w(k|k) (D.19)
If equation (D.10) is used the estimate is

(k) = E[w(k)2" (k) {E[2(6) 2" (k) ]} (k) (D.20)
Because w(k) and z(i), i=1,2,...,k are uncorrelated, then

E[w(k)z" (k)]=0 (D21)
Therefore, equation (D.20) gives

w(klk)=0 (D.22)



And equation (D.19) reduces to
F(k+1)k)=F(k)2(k|k) (D.23)
Where £(0|O) = E[x(O)] =0. This is to say that the best prediction of the state at the

next step is to pass the estimate from the previous step through the system state coupling
matrix F . In a similar fashion, applying the linear composition result in equation (D.14)

to the stochastic system output

Cz(k+D)=H(k+1)x(k+1)+v(k+1) : (D.24)
C‘ii\.fes
Fk+1[k)= H{k+1)2(k+1[k)+5(k+1]k) ~ (D25)

Because v(k)and z(i) are uncorrelated for k = i
S(k+1jk)=0 | (D.26)
And therefore

-2(k+i|k)=H(k+1)i(k+1|k) (D.27)
Indicating that the best prediction of the next m‘easurement 1s to pass the predicted state

through the measurement coupling matrix H .

Correction

* Proceeding to the corrector equations. The measurement prediction errors
Az(k+1k)=z(k+1)-Z(k+1[k) (D.28)
Are also termed the measurement residuals, or innovations. Rather than using the

original measurements z(1),z(2),...,z(k),..., it is expedient to use the measurement



residuals Az(1|0),Az(2|l),...,Az(k|k—l),...,as the measurements. The two are

equivalent because either may be found deterministically from the other. Collecting the

residuals through step 4 into a single vector of measurements
az, =[az(1)0) az(2ft) .. Az(kfe-1)]' (D.29)
The quantity i(k+l|k) then denotes the LMMS estimate of x(k+l) based on Az, .

Using the orthogonality principle in equation , the measurement residuals and the

estimation error are orthogonal, that is

E{Azk [x(k+1)¥i(k+1|k)]r}=o ' (D.30)
Postmultiplying both sides of equation X b); H(k+1)gives

E{Az,, [x(k+l)—£(k+1|k)]r'} H (k+1)=0 . (D.31)
Because Az, and v(k +1) are uncorrelated

E{Az,, [2(k+1)-2(k +1|k)]T} =E[Az,A7" (k+1[k) =0 (D.32)
Because the colltection of m;asurements Az, through step £ and the measurements

Az'(k+l|k) at step k+1 are orthogonal, any LMMS estima.tes based on Az, and
Az(k +-l|k) are, according to the equation (D.16), the sum of the two individual estimates
)“c.(k+l_|k+l):i(k+1|k)+E[x(k+l)’Az(k+l|k):| (D.33)
Which is an expression of result 4, the incorporation of orthogonal data where

E[x(k+1)|az(k + 1[k)] is defined as the best estimate of x(k+1)based on Az(k+1k).



The incorporation of new data in the form of the residuals only involves making additive
corrections to the previous predictions, not complete recalculations.

Using result 1, for the minimum mean square estimate, then

E[ x(k-+1)[az(k+1fk) ] = E[ x(k +1) 22" (k +1]k) ]

(B[ az(k+1je)as” (k+1[k) ]} Az(k+1]k) .
[f the Kalman gain is defined as
K(k+1)=E[x(k-+ 1)Az? (k+1)k) |{E[ Az (k-+1]E) a2 (& +l|k):|}_l (D.35)
Then eqt;alion (D.33) becomes -
F(k+1k+1)=2(k+1]k)+ K (k+1) Az (k+1[k) - (D.36)

Kalman Gain and Error Covariances

Kalman Gain

Finding an expression for the recursive calculations of the Kalman gain sequence
K(l),K(2),K(3),..., is the most involved bart of Kalman filtering. As it shall soon be

discovered, the solution consists of a set of three recursive equations with coupled
matri‘ces, from which the Kalman gains can be computed.
Substituting equation (D.18) into the measurement residual in equation (D.28) gives
Az(k+1lk)=z(k+1)-Z(k+1]k)
= H(k+1)x(k+1)+v(k+1)—H (k+1)%(k+1[k) (D.37)
= H(k+1)ax(k+1]k)+v(k+1)

From equation (D.37)



E[ az(k+1[k)a" (K +1]k)] = H (k-+1)E[ x(k + 1K) ax" (k+1]k)]
xHT (k+1)+ H (k-+1)E[ Ax(k+1[k)v" (k+1)]

(D.38)
+E[v(k+1)Ax" (k+ 1) HT (k+1)]
+E[v(k+1)V" (k+1)]
Because v'(k+l) and Ax(k+l|k) are uncorrelated
E[Ax(k +1Jk)v" (k+1)] = B[v(k+1)ax" (k+1})] =0 (D.39)
Using the definition of the state prediction error covariance gives.
P(k+1[k)=E[ ax(k+1[k)ax (k+1])] =0~ (D.40)

And equation becomes
E[ Az(k+1[k)az" (k+1)k)] = H (k1) P(k-+1[k) HT (k+1)+ Rk +1)
Simitarly, using the definition of the state prediction error results in

exi1)ae (k0] E{[as(e )5k ) (1))

=E[ ax(k+1[k)Az" (k+1]k) |+ B[ 2(k +1[k) A" (k +1k)]
(D.41)

Because v(k+1) is uncorrelated with 2(k+l|k) and because the estimate J"c(k+l|k)

and the estimation error Ax(k +l|k) are orthogonal,

E[ #(k+1|k)az" (k+1lk)]=0 . (D.42)
Therefore
E[x(k+1)az" (k+1]k) | = E[ Ax(k +1]k) az" (k+1k) ] (D.43)

Using equation (D.37) results in



Az (k+1)k)= H (k+1) Ax(k+1[k)+v(k+1) (D.44)
And
B[ x(k+1)az" (k+1[k)]= E{Ax(k+1|k)[H(k +1)ax(k +l|k)+v(k+l)]T}

) [Ax(k+1k)Ax" (k+1k) HT (k+1)] (D.45)

[ Ax(k+1Je )y (k+1)]

But v(k+1) and Ax(k+1|k) are uncorrelated, and therefore
E[ Ax(k+1[k)v" (k+1)]=0 4 .  (D46)
Thus |

E[x(k+1)AzT(k+1|k)]:E[Ax(k+1|k)mf(k+1|k)1f(k+1)]

= P(k+1[k)H" (k+1) 4D
And therefore the Kalman gain is
K (k+1)=E[x(k+1)az" (k-+1)]{B] Az (k +1) 2" (k+1) ]} Dt

= P(k+1Jk) HT (k+1)[ H (k+1) P(k+1jk) H (k+1)+ R (k+1)]" -
Error Covariances

If the system equation is used
x(k+1)= F(k)x(k)+w(k) | (D.49)
And
%(k+1]k) = F (k) z(|k) | (D.50)
Then the state prediction error is
Ax(k+1Jk) = x(k+1)- 2 (k+1{k)

(D51)
= F (k) Ax(k|k)+w(k) |



And the state prediction error covariance is
P(k+1]k) = E[ Ax (k1)) Ax" (k+1]k)]

= E[[F(k)_Ax(klk)+ w(k) L F (k) ax(k]) + W(")T}

(D.52)
= F(k)E[ Ax(k[k) A" (k[) | F (k) + F (k) E[ ax (k)W (k)]
+E[ w(k)ax” (k[k) | F7 (k) +E[ w(k)w" (k)]
Because x(klk). and w(k) are uncorrelated,
E[&(Hk)w?' (k)] = B[ w(k)ax" (k)] =0 (D.53)
Civing
P(k+1|k)=F (k) P(k|k)F" (k)+Q(k)+P(0]0)=P(0) (D.54)

Where P(k|k) is the estimation error covariance. Finally, for the equations to be

recursive, an equation for the covariance of the state estimate error P(k+]|k+l) is

;equired. If equation (D.36) is used

Rk +1lk+1)=2(k+1)E)+ K (k+1)Az(k+1]k) (D.55)
The state estimation error becomes

Az(k+1lk)= H(k+1)Ax(k+1jk)+v(k+1) : | " (D.56)
.- Substituting the measurement prediction error in equation (D.37)
IAz(k+l|k)=H(k+1)Ax(k+l|k)+v(k+]) (D.57)
Into equation (D.57) gives

Ax(k+1)k+1)= Ax(k+1]k) - K (k+1) H (k+1)}Ax(k+1]k) = K (k+1)v(k +1)

=[1-K(k+1)H (k+1)]ax(k+1jk)- K (k+1)v(k +1) (038



"~ Hence,

P(k+1Jk+1)=E[ Ax(k-+1je+1)Ax" (k+1[k +1)]
=[1- K (k+1) H (k-+1) JE[ Ax(k+ 1)) ax” (k+1]k)]

x[1-K(k+1)H (k+1)] ~[1- K (k+1) H (k+1)]

, (D.59)
B[ Ax(k+ k)Y (k+1) | KT (k+1)- K (k+1)
<E[v(k+)ax” (k+1[k) |[1-K (k+1)H (k+1)]
K (k+DE[v(k+1)V (k+1)]K7 (k +1)

Because Ax(k+1[k) and v(k +1)are uncorrelated
E[v(k+1)ax" (k+1]k)] = E[ Ax(k +1}E)" (k+1)] =0 . (D.60)
éiving
P(k+1lk+1)=[1-K(k+1)H (k+1)] P(k+1]k) D)

x[1-K(k+1)H(k+1)] +K(k+1)R(E+1)K7 (k+1)

Equati'on (D.61) may be put into a simpler form as follows \

Pk+1k+1)=[T-K(k+1)H(k+1)]P(k+1[k)- P(k+1}k) H™ (k+1)x K" (k+1)
+K (ke +1)| H(k+1)x P(k + 1K) H (k+1)+ R(k+1) | K" (k +1)

(D.62)
But from equation (D.és),
K (k+ ) H(k+1)P(k+1]k) HT (k+1)+ R(k+1)] = P(k+1Jk) H (k-+1) (D.63)
Therefore, equation (D.61) simplifies to
P(k+1lk+1)=[I-K{k+1)H(k+1)]P(k+1|k) (D.64)

And the Kalman filter is completely derived.



Summary of Equations

Plant Model:

Observation Model:

Predictive Estimate:

Current Estimate:

Gain:
A priori covariance:
A Posteriori covariance:

Plant Noise Model:

Measurement Noise Model:

Kronecker delta function:

X =Pux, +Tu, +G @,

z,=Hx, +v,

~ 2l —
Xesip =P, xiu+u, +G, @k

Ia) ra) Fal —_—
ik = xip1+ K, |z, — H, x| —vi

K, =Py HI{H, Py HT +R, ]
Peaw = @ Py @, +G,0,G/

Poe = Py — K, H Py,
cov{a),,a)k } = Q,‘é',lk , E{a)k } =0
cov{v, Yy } =R, , ,E{v,c } =0

(D.65)
(D.66)

(D.67)

(D.68)

(D.69)
(D.70)
(D.71)
(D.72)
(D.73)

(D.74)



