An Investigation of the Contingent Negative Variation Using Signal Processing Methods

Nichols, Martin John

http://hdl.handle.net/10026.1/2555
http://dx.doi.org/10.24382/4149
University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

An Investigation of the
Contingent Negative Variation Using Signal Processing Methods

Martin John Nichols

This thesis is submitted in partial fulfilment of the requirements of the Council for National Academic Awards for the degree

Department of Neurological Sciences, Freedom Fields Hospital, Plymouth.

August 1982

I hereby declare that whilst registered as a candidate for the degree of Doctor of Philosophy with the Council for National Academic Awards I have not been registered for any other qualification of the CNAA or any other examining body.

Signed
M. J. Nichols

In accordance with regulations 3.8 and 3.9 I have attended and participated in the following:-

Lectures in Communication Engineering (Intended for B. Sc Hons. Students) October 1977 - May 1978. IEE Meeting, Savoy Place, London, "Microprocessors in Medical Instrumentation". 31st May 1978. BES/HPA, Nottingham, "International Evoked Potentials Symposium". 4th - 6th September 1978. EPTA, Scientific Meeting, Romford.25th November 1978. EURASIP, Lausanne, Switzerland, "First European Signal Processing Conference". 16th - 19th September 1980.

EEG Society, Scientific Meeting, Plymouth.9th May 1981.

Using Signal Processing Methods

M.J. Nichols

Abstract

The Contingent Negative Variation (CNV) is one of many types of electrical response signals which appear in the electroencephalogram (EEG) of man subsequent to one or more stimuli. Generally these responses are small in comparison to the normal background EEG and had always been thought to consist of a response component which was added to the background EEG. Professor B. McA. Sayers of Imperial College suggested that the auditory response might actually be due to a temporary ordering of the phases of the components of the background EEG. A model, allowing for additive and ordering effects, is proposed here. This model was tested on both auditory and CNV responses using statistical tests not previously used in evoked potential studies. The tests showed that while the additive model satisfactorily described the auditory responses; it did not explain the CNV responses so well. However, both sets of responses showed a certain amount of phase ordering and this was consistent with the model which showed that a repetitive additional component would always incorporate the phase ordering effect. In the absence of detectable additivity pure phase re-ordering might alternatively occur as proposed by Sayers.

The CNV's of a patient group were also studied and certain tests are proposed as a possible method of diagnosis. The reliability of these tests was not conclusively proved as much larger control and patient groups would be required to do this.

An important part of this work involved the introduction of a quantitative method for assessing the effectiveness of methods of removing eye movement artefact from the EEG. This allowed the development of a more extensive correction method which was tested against two other techniques and found to be superior. This correction method will provide the basis for further research and the development of a corrector to be made commercially.

For each section the references are numbered [1], [2], and are listed at the end of that section.

Tables and diagrams are numbered 'a-b' where 'a' denotes the section number and ' b ' the numerical sequence within that section. Diagrams and tables have been inserted after, and as near as possible to the text which first refers to them.
Page
Declaration 2
Abstract 3
References, Tables and Diagrams
(Annotation of) 4
Table of Contents 5
List of Diagrams 10

1. Introduction 14
1.1 The Origins of Electroencephalography 14
1.2 Technological Change 15
1.3 Evoked Potentials 16
1.4 Additivity and Ordering 18
1.5 An Application of the CNV to Diagnostic Medicine 20
References 21
2. Theoretical Development 24
2.1 Models for Additivity and Phase Ordering in Evoked Responses 24
2.2 Tests of the Models 27
2.2.1 Histograms of Phase and Amplitude 28
2.2.2 Angular Statistical Tests for Phase Ordering 31
2.2.2.1 The Rayleigh Test of Circular Variance 33
2.2.2.2 The Modified Rayleigh Test of Circular Variance 34
2.2.2.3 The Hodges Ajne Test 36
2.2.3 Tests of Additivity 36
2.2.3.1 Pre- and Post- Stimulus Energy Tests 36
2.2.3.2 Pre- and Post- Stimulus Mean Amplitude Differences Test 37
2.2.3.3 Nearest and Furthest Mean Amplitude Test 38
2.3 Eye Movement Corrections 39
2.4 Assessment of the Eye Movement Correction Methods 45
2.5 The Modified Correction Method 49
References 56
3 Experimental Techniques 59
3.1 Initial CNV tests 59
3.2 Data Transfer and Preliminary Processing 61
3.3 Eye Movement Corrections 63
3.4 Processing of Eye Movement Data 65
3.5 CNV Acquisition 68
3.6 Processing of CNV's 70
3.7 AEP Acquisition 75
3.8 Processing of AEP's 77
3.9 Fourier Transform Considerations 79
References 84
4 Experimental Apparatus 87
4.1 Choice of Apparatus 87
4.2 Analogue Electronics 88
4.2.1 Testing of the Analogue Electronics 96
4.3 High Speed Serial Data Link 102
4.4 Minicomputers and Software 108
4.5 Other Equipment 110
4.5.1 Eye Movement Correction Screen 110
4.5.2 The CNV Stimulus Generator 112
4.5.3 The AEP Stimulus Generator 114
References 115
5 Results and Discussion 116
5.1 Eye Movement Corrections 116
5.2 Auditory Evoked Potentials 12.4
5.3 The CNV's of Normal Subjects 131
5.3.1 The Average CNV's 132
5.3.2 Energy Tests 135
5.3.2.1 Broadband Energy Tests 135
5.3.2.2 Amplitude Histograms 138
5.3.2.3 Pre- and Post- Stimulus Mean Amplitude Differences Test 140
5.3.2.4 Nearest and Furthest Mean Amplitude Test 142
5.3.2.5 Discussion of Results of Energy Tests 145
5.3.3 Tests for Phase Ordering 146
5.3.3.1 Phase Histograms 146
5.3.3.2 Rayleigh Test of Circular Variance 146
5.3.3.3 Modified Rayleigh Test of Circular Variance 151
5.3.3.4 Hodges-Ajne Test 151
5.3.4 Discussion of Energy and Phase Results 156
5.4 The CNV's of Abnormal Subjects 160
5.4.1 The Averaged CNV's 160
5.4.2 Energy Tests 160
5.4.2.1 Broadband Energy Tests 163
5.4.2.2 Amplitude Histograms 163
5.4.2.3 Pre- and Post- Stimulus Mean Amplitude Differences Test 163
5.4.2.4 Nearest and Furthest Mean Amplitude Test 166
5.4.2.5 Discussion of Results of Energy Tests 166
5.4.3 Tests for Phase Ordering 169
5.4.3.1 Phase Histograms 170
5.4.3.2 Rayleigh Test of Circular Variance 170
5.4.3.3 Modified Rayleigh Test of Circular Variance 175
5.4.3.4 Hodges-Ajne Test 175
5.4.4 Discussion of Energy and Phase Results 175
5.5 Distinction Between Patients and Normals on the Basis of their CNV's 181
5.6 The Development of the CNV from trial-to-trial in Normals and Patients 188
References 197
6 Conclusions 199
6.1 Eye Movement Artefact Removal 199
6.2 Evoked Potentials 200
6.3 Auditory Evoked Potentials 200
6.4 The CNV's of Normal Subjects 201
6.5 The CNV's of Abnormal Subjects 202
6.6 Distinctions between the CNV's of Normals and Patients 203
6.7 Future Work 204
6.7.1 Eye Movement Artefact Removal 204
6.7.2 Auditory Evoked Potentials 205
6.7.3 The CNV's of Patients and Normals 205
References 207
7 Acknowledgements 208
8 Appendices
8.1 Calculation of Expected Phase Values for Idealized CNV's A1-1
8.2 Transformation of the Rayleigh Probabilities to those of Circular Variance A2-1
8.3 Probability Levels for the Modified Rayleigh Test A3-1
8.4 Probability Levels for the Hodges- Ajne Test A4-1
8.5 The Paired t-Test A5-1
8.6 The t-Test' A6-1
8.7 Fortran Programme 'DATAPLOT' A7-1
8.8 Fortran Programme used in the Analysis of the Eye Movement Correction Methods A8-1
8.9 Special Instructions for Peripheral Control A9-1
8.10 PAL 8 Computer Programme Used to Control the Data Acquisition Process A. 10-1
8.11 PAL 8 Computer Programme Used to Store the Data onto Disk A11-1
8.12 Fortran Programmes used in the Analysis of the CNV Data A12-1
Published Papers (2) Pocket inBack cover

		Page
Figure Number		
2-1	Phasor diagrams showing phase ordering and additivity.	26
2-2	An Idealized CNV response.	29
2-3	A diagrammatic representation of the Fourier Transform of Figure 2-2.	29
2-4	The Rose diagram.	32
2-5	The eye movement artefact correction method due to McCallum and Walter.	41
2-6	The equivalent circuit of Figure 2-5.	41
2-7	The equivalent circuit of Figure 2-5 with Potentiometer.	42
2-8	The eye movement artefact correction method due to Girton and Kamiya.	44
2-9	A typical vertical EOG signal during the the eye movement correction experiments.	44
2-10	The measurement of the autocorrelation coefficient.	48
2-11	A graph of the variation of the a.c.c. with the EOG amplitude.	51
3-1	The initial attempts at recording CNV responses.	60
3-2	The electrode positions for the EOG signals.	66
3-3	A silver-silver chloride measuring electrode.	66
3-4	The raw CNV waveform and EOG signals.	71
3-5	An averaged 1 second ISI CNV waveform.	72
3-6	The frequency response of the digital low pass filter.	74
3-7	A typical CNV phase histogram.	76

3-8 Typical averaged auditory responses. 78
3-9 A typical pair of AEP phasor diagrams. 80
4-1 A block diagram of the data acquisition
and processing system.
4-2 block diagram of the input section of
the EEG machine.
4-3 The circuit of an amplifier and sample
hold module.
4-4 The crystal oscillator and divider
network.
4-5a The amplitude response of the data
acquisition system.
4-5b The phase response of the data acquis-
ition system.
$\begin{array}{lll}\text { 4-6 The connection of the measurement system } \\ \text { for the ramp response tests. } & 100\end{array}$
4-7 The input and output ramp waveforms. 101
4-8 A block diagram of one of the serial $\begin{aligned} & \text { transceivers. } \\ & \text { tra3 }\end{aligned}$
4-9a The circuit diagram of one of the serial 105
transceivers.
4-10 The eye movement correction screen. 111
4-11 The circuit of the CNV stimulus generator. 113
5-1 The eye movement correction signals and
their a.c.f.'s
5-2 The effect of electrode loading. 123
Typical Pre- and Post- Stimulus AEP phasor
diagrams.
5-4 The averaged CNV's (1 second ISI) of the
normal subjects.
5-5 The averaged CNV's (4 second ISI) of the
normal subjects.
$\begin{array}{lll}\text { 5-6 Typical amplitude histograms of a normal } \\ & \begin{array}{l}\text { Tubjects } 1 \text { second ISI CNV. }\end{array}\end{array}$

5-7a	Typical phase histograms of a normal subjects 1 second ISI CNV.	147
$5-7 b$	Typical phase histograms of a normal subjects 4 second ISI CNV.	148
5-8	The averaged CNV's (1 second ISI) of the abnormal subjects.	16.1
5-9	The averaged CNV's (4 second ISI) of the abnormal subjects.	162
5-10a	Typical phase histograms of an abnormal subjects 1 second ISI CNV.	171
5-10b	Typical phase histograms of an abnormal subjects 4 second ISI CNV.	172
5-11ia	Amplitude vs. phase for the first harmonic of the averaged 1 second ISI CNV's.	184
5-11 b	Amplitude vs. phase for the first harmonic of the averaged 4 second ISI CNV's.	185
5-12a	Amplitude vs. phase for the second harmonic of the averaged 1 second ISI CNV's.	186
5-12b	Amplitude vs. phase for the second harmonic of the averaged 4 second ISI CNV's.	$1: 87$
5-13	Amplitude vs. trial number for normal subjects 1 second ISI CNV's. Harmonic 2.	189
5-14	Phase vs. trial number for a normal subjects 1 second ISI CNV's. Harmonic 1.	1.90
5-15	Phase vs. trial number for an abnormal subjects 1 second ISI CNV's. Harmonic 1.	190
5-16a	```Phase vs. trial number for a normal sub- subjects 1 second ISI CNV's. Harmonic 2.```	192
5-16b	Phase vs. trial number for an abnormal subjects 1 second ISI CNV's. Harmonic 2.	192
5-17	Amplitude vs. trial number for a normal subjects 4 second ISI CNV's. Harmonic 1.	193

5-18 Phase vs. trial number for the 4 second ISI CNV's of all the normal subjects.194 Harmonic 1.

5-19 Phase vs. trial number for the 4 second ISI CNV's of all the abnormal subjects. Harmonic 1.195

1.1 The Origins of Electroencephalography

Electrical engineers are frequently surprised to find that electrical activity of the brain was observed as long ago as 1875 [1]. Their surprise is however understandable when one considers the infant state of electrical engineering at that time. The discovery was due to a British Physiologist called Richard Caton. Caton used Thomson's (moving magnet) reflecting galvanometer to observe electrical fluctuations from the exposed surfaces of the brains of rabbits and monkeys. The potentials were of the order of millivolts and the necessary amplification was provided optically by the galvanometer. Using this galvanometer Caton was able to study and subsequently comment on the electrical activity he observed. His findings were presented at a Conference and published in the British Medical Journal in August 1875 [1]. Despite being unable to make graphic recordings of the activity, Caton detected background and stimulus related potentials.

However it was not until 1929 that Hans Berger [2] discovered the electroencephalogram (EEG) in man. He used a string galvanometer connected to electrodes attached to the scalp. Berger tried many different types of electrodes made from different metals. Unfortunately however Berger's work remained unnoticed for a number of years until Adrian and Matthews [3] (1934) and Jasper and Carmichael [4] (1935) reviewed and confirmed it.

1.2 Technological Change

Technological advances at this time made it possible for the electrical activity to be amplified and displayed on a cathode ray tube (CRT). Then resulting waveforms could then be photographed for a permanent record. These early valve amplifiers were usually a.c. coupled and often suffered from pick-up of external interference. An elegant solution to this problem was the advent and adoption of the differential amplifier which was able to reject the commonmode noise at its input. During the 1940's pen recorders became more widely available and for the first time electroencephalographers could have an immediate permanent record of the brain's electrical activity. Interest in the developing field of EEG analysis grew rapidly. Many workers tried to make objective quantitative analyses of the EEG. A physicist by the name of Dietsch [5] was probably the first worker to examine the frequency of the EEG signals. He performed Fourier analysis on short sections of EEG signals using a mechanical desk calculator in the early 1930's. The method was very tedious and it was not until 1943 that Walter [6] overcame this disadvantage with his frequency analyser. This instrument consisted of a bank of twenty tuned reeds covering the range 1.5 to 30 Hz . The movement of each reed was used to switch a charging current into a capacitor and thus to integrate the activity over a ten second period. The outputs of the integrators being roughly proportional to the amount of activity in given frequency band.

During the late 1940's and early 50's a considerable
amount of interest was also shown in topographic EEG displiays. Typically these devices employed twenty or more CRT's to display simultaneous EEG signals from different points on the scalp. Like the frequency analyser previously described the 'toposcopes' suffered from the instability of the valve technology of the day.

The development of new concepts in statistical communication theory give rise to the EEG signals being considered as a stochastic process. Brazier and Casby [7,8]. (1951,1952) were some of the first workers to apply auto and crosscorrelation analysis to the EEG. Subsequently this method became quite popular as a shortcut to obtain the power spectrum of the EEG signal.

The major developments of the late 1950's and early 60's were however in the advent and use of the new solid state technology. The equipment was more reliable and required far less maintenance and calibration than the valve equipment that it replaced. Furthermore the advent of the digital computer made the calculation of the power spectrum a much less awesome prospect although it was not until the introduction of the Fast Fourier Transforms (FFT) by Cooley and Tukey [9] in 1965 that this method became practical for multichannel work.

1.3 Evoked Potentials

In parallel with these developments in the analysis of the background EEG signal came developments in the analysis
of potentials evoked by some external stimulus. Dawson [1,0] (1947) was the first person to record potentials evoked by stimulation of a peripheral nerve. He used photographic superimposition whereby the waveform was displayed on a CRT whilst a camera, set for a time exposure, recorded the waveform on film. The stimulation was applied many times each causing a single scan of the CRT screen. The evoked potential is thus visible on the developed photograph due to the re-inforcing effect of the overlapping individual responses. This elaborate technique was necessary because the magnitude of the individual evoked responses were considerably smaller than the normal background EEG activity.

Development of the analysis of evoked potentials was limited by the lack of equipment capable of improving the signal to background EEG ratio. It was realised at an early stage that if it were possible to average a number of evoked responses an improvement in signal to background EEG would be achieved. Early analogue averagers were built but were cumbersome and difficult to use. The advent of digital memory and logic devices made averaging a much more attractive technique and during the early 1960's many discoveries were made in the field of evoked responses. Furthermore, the advent of the general purpose laboratory minicomputer meant that evoked responses could be studied without further special equipment (except the stimulator). It was during the study of certain evoked potentials that Walter [11] discovered a new evoked potential which later became known as the Contingent Negative Variation (CNV). This evoked potential was found to occur between a pair of conventional auditory or visual
stimuli provided that the patient was required to perform some action on receiving the second stimuli. The response was found to be a gradual negative shift subsequent to the first, or warning stimulus, and increasing in negativity until the second stimulus when the desired action was performed. Unlike normal visual, auditory or somatosensory evoked responses, the CNV depended on active participation by the subject and thus involves the higher mental processes.

1.4 Additivity and Ordering

Since their discovery, it had always been thought that evoked potentials were due to an additional signal component which was added to the background EEG signal. Professor Sayers [12] questioned this basic assumption and performed several tests to try and establish whether the Auditory Evoked Potential (AEP) could be caused by some other mechanism. One of Sayers tests [12] involving taking a section of normal background EEG and re-arranging the phases of the Fourier components. He found that by doing this the section of background EEG could be made to resemble an AEP. Sayers also found that if the energy contained in an AEP was calculated and compared with that for a section of background EEG, there was no significant difference [12]. This led Sayers to the conclusion that AEP's could in fact be due not to an additional signal, but to some form of phase ordering of the on-going background EEG signal. One could, for example, envisage a number of EEG generators becoming entrained for a short while subsequent to the stimulus presentation. This would give the characteristic shape of the AEP
but would not change the energy content of the EEG.

In order to try and verify this, Professor Sayers obtained the Fourier transforms of a set of AEP's. A diagram was then constructed showing the phase angles of the transformed responses for each harmonic [1;2]. From these diagrams Sayers was able to detect that the phase angles obtained did not form an uniform pattern between $+\pi$ and $-\pi$ but formed groups.

In subsequent studies Sayers used histograms to show these phase ordering effects [13]. For each of a number of the harmonic frequency components histograms were plotted to show the number of times the phase angle fell into any one of twenty-four frequency intervals of width $2 \pi / 24$ radians (i.e. 1.5°) . From these histograms Sayers observed grouping in harmonics 2 to 5 (the fundamental frequency in these observations was 1.5625 Hz.$)$ The amount of phase aggregation was found to be dependent on the stimulus level but not on the degree of latency. When no stimulus was applied the phases of the transformed EEG formed a roughly uniform distribution [13].

The importance of Sayers' findings were such that it was considered desirable to carry out similar experiments on CNV's to establish whether they were also due to phase re-ordering as had been previously suggested by Walter [14].

1.5 An Application of the CNV to Diagnostic Medicine

Since it was first reported in 1964 the CNV has not been widely used in routine diagnostic medicine. One possible area in which the CNV may be useful is in the early diagnosis of a hereditary neurological disorder known as Huntington's Chorea (HC). This illness affects several areas of the brain including the cortex, the caudate macleus and other parts of the 'corpus striatum [15]. These are all areas thought to be involved in the generation of the CNV [16]. The disease is currently diagnosed only in its later stages, usually in middle age, when the chorea (uncontrollable movement) becomes apparent. The condition becomes progressively worse causing pre-senile dementia and after a distressing long illness, ultimately leads to premature death.

A possible diagnostic procedure would therefore be to compare the CNV's of those people at risk (i.e. those with a known family history of HC) with those obtained from a normal population. Significant deviation from the normal CNV may thus indicate the presence of the disease before the other symptoms become apparent. Clearly the clinicians would have to establish the limits of the normal CNV and also whether other neurological conditions could give similar CNV's to those of HC victims. However before this can take place it is necessary to conceive, design, build and test equipment and processing methods suitable for extracting a reliable quantitative description of the CNV.
[1] Caton R, "The Electric Currents of the Brain" British Medical Journal, Volume 2, page 278, August 1875.
[2.] Berger H, "Uber das Elektrenkephalogramm des Menschen" Archiv fur Psychiatrie and Nervenkrankheiten, Volume 87 pp 52.7-570, 1929.
[3] Adrian E D, Matthews B H C, "The Berger Rhythm: Potential Changes from the Occipital Lobes in Man" Brain, Volume 57, Part 4, pp 355-385, December 1934.
[4] Jasper H H, Carmichael L, "Electrical Potentials from the Intact Human Brain"

Science, Volume 81, pp 51-53, January 1935.
[5] Dietsch G, "Fourier-Analyse von Elektroencephalogrammen des Menschen"

Pflugers Archiv fur die Gesamt Physiologie des Menschen und der Tiere, Volume 230, pp 106-112,1932.
[6] Walter W G, "An Automatic Low Frequency Analyser" Electronic Engineering, Volume 16, pp 9-13, June 1943.
[7] Brazier M A B, Casby J U, "An application of the M.I.T. digital electronic correlator to a problem in the EEG". Electroencaphalography and Clinical Neurophysiology Volume 3, page 375, 1951.
[8] Brazier M A B, Casby J U, "Cross correlation and autocorrelation studies of electroencephalographic potentials"
[8] continued
Electroencephalography and Clinical Neurophysiology, Volume 4. pp 201-211, 19.52.
[9] Coolley J W, Tukey J W, "An Algorithm for the Machine Calculation of Complex Fourier Series" Mathematics of Computation, Volume 19, pp 297-301, 1965
[10] Dawson G D "Cerebral Responses to the Electrical Stimulation of the Peripheral Nerve in Man"

Journal of Neurology, Neurosurgery and Psychiatry, Volume 10, pp 134-140., 1947.
[11] Walter W G, Cooper R, Aldridge V J, McCallum W C, Winter A L, "Contingent Negative Variation: An Electric Sign of Sensorimotor Association and Expectancy in the Human Brain".

Nature, Volume 203, pp 380-384, July 1964.
[12] Sayers B McA, Beagley H A, Henshall W R, "The Mechanism of Auditory Evoked EEG Responses"

Nature, Volume 247, pp 481-483, February 1974.
[13] Sayers B McA, Beagley H A, Riha J, "Pattern Analysis of Auditory-Evoked EEG Potentials"

Audiology, Volume 18, pp 1-16, 1979.
[14] McCallum W C, Knott J R, (Editors) "Event-Related Slow Potentials of the Brain: their relation to behaviour" Electroencephalography and Clinical Neurophysiology, Supplement No. 33 Part II Discussion, page 128 Published by Elsevier Scientific Publishing Company 1973.
[15] Scott D F, Heathfield K W G, Toone B, Margerison J H, "The EEG in Huntington's chorea: a clinical and neuropathological study" Journal of Neurology, Neurosurgery and Psychiatry, Volume 35i, pp 97-102, 1972
[16] McCallum W C, Papakostopoulos D, Gombi R, Winter A L, Cooper R, Griffith H B,
"Event Related Slow Potential Changes in Human Brain Stem"

Nature, Volume 242, pp 465-467, 1973.

2.1 Models for Additivity and Phase Ordering in Evoked Responses

Although introduced as being mutually exclusive, there is no fundamental reason why an evoked response should not be the result of both additive and phase re-ordered components. Furthermore any added signal giving the characteristic shape of either an AEP or a CNV will have its own well defined phase spectrum. Thus the identification of a phase pattern in an evoked response (CNV or AEP) is not in itself sufficient evidence for phase re-ordering. At this point it is as well to define what is meant by phase ordering and phase re-ordering. Phase ordering is used here to describe the situation where a phase spectrum has a recognizable pattern irrespective of the cause of this pattern, whereas phase re-ordering is used to describe the situation where the phases of an existing signal have been changed so as to cause phase ordering. Since phase patterns are not sufficient evidence for phase re-ordering, it is necessary to consider amplitude characteristics as well.

Consider first a finite realisation of the pre-stimulus background EEG signal which is of the same length as the section of EEG containing the evoked response. Because the signal is random the Fourier harmonic components into which it may be analysed will have random amplitudes and phases. If the nth harmonic is selected it may be very conveniently represented in amplitude and phase by a phasor on a phasor diagram. The same procedure can be carried out for each prestimulus realisation recorded in a series of trials, i.e. the
nth harmonic component of each realisation may be plotted as a phasor on the same phasor diagram. This procedure will result in a diagram such as is shown in Fig. 2-lia; in which the amplitudes are random and the phase angles, which are also random, are distributed approximately uniformly about a circle. For ease of comprehension a circle of arbitrary radius has been superimposed on the phasor diagram. The crosses on the circles indicate the directions of the phasors.

Now consider the effects of a stimulus on this diagram. Assume that the phasor diagram for the post-stimulus section of EEG containing the evoked response may be derived directly from the pre-stimulus phasor diagram. If the evoked response were due to phase re-ordering effects its nth harmonic phasor diagram would be obtained by rotating all of the phasors of Fig. 2-1a towards the preferred phase angle. Thus the phasor diagram of Fig. 2-1b would be obtained. The characteristic feature is that although there is phase ordering present the amplitudes are unaltered. The phase ordering present is responsible for the characteristic waveform of the evoked response. This phase re-ordering model may now be compared with the additive signal model. This will be considered for the two cases of low and high level stimulus. In the low level stimulus case it is assumed that a small additive evoked response is produced which may be analysed into its harmonic components. The nth harmonic component, assumed to be the same in each realisation, is represented as a small phasor which has to be added to each of the phasors of Fig. 2-1a to produce the post-stimulus phasor diagram. This produces Fig. 2-1c. This figure shows that a certain amount of phase ordering is produced while the amplitudes of the nth

Fig. 2-1a Background EEG

Fig. 2-1b
Phase ordering

Figure 2-1
Phasor diagrams

Fig. 2-1c
Small additive component

harmonic are changed. Those phasors directed towards the preferred angle are increased in length, whilst those opposed are decreased. For a small additive signal the average length of the phasors would be virtually unaltered. The same argument may be applied in the case of a high level stimulus. The phasor to be added to Fig. 2-1a is now large and the poststimulus phasor diagram is as shown in Fig.2-1d. It is seen that the large additive signal results in pronounced phase ordering and a considerable increase in phasor amplitudes.

The models clearly demonstrate that phase ordering will be produced by either mechanism and will increase with stimulus level. The presence of an additive component may be inferred by changes in amplitude of the nth harmonic. In the next section the statistical tests used to detect phase ordering and amplitude and energy changes will be described.

2.2 Tests of the Models

Various processing methods and tests were devised in an attempt to determine which of the above models was the most appropriate to the CNV. Because of the variable nature of the CNV, both from subject to subject, and also from trial to trial with the same subject, evidence for phase ordering has to be sought on a statistical basis. It is possible to detect phase ordering by Fourier transforming the 'Negative Variation' sections of a sequence of CNV's (i.e. that section of the CNV remaining when the two involuntary stimulus responses were ignored) and testing the phase values. One method of visually detecting phase ordering would be to plot phase histograms, whereas the variability of the responses
could be judged by plotting amplitude histograms.

2.2.1 Histograms of Phase and Amplitude

The phase values for each harmonic frequency component could be grouped into bands of known angular width such that the range $-\pi$ to π was covered in a number of steps. Histograms could then be plotted showing, for a particular frequency, the distribution of the phase values. If phase ordering were present then the phase histograms would be expected to show aggregation about-some particular phase value. Indeed if the responses were identical, then in the absence of any noise the histograms would show a given frequency component of every response as having the same phase value. However if no phase ordering were present then the phase histograms would be expected to exhibit an uniform distribution of phase over the range $-\pi$ to π.

By considering the shape of an ideal CNV response [1] it is possible to predict the values, for each harmonic. frequency, around which phase grouping should take place. Figure 2-2 shows an idealised CNV of about one second interstimulus interval. Ignoring the evoked responses R_{1} and R_{2} the responses may be considered as a linear function of time. This may be Fourier transformed as follows:-

$$
\begin{align*}
x(n) & =\frac{1}{N} \sum_{i=0}^{N-1}\left[x(i) e^{\frac{-2 \pi j i n}{N}}\right] \quad \ldots \ldots . \ldots \ldots . . \tag{1}\\
& =\frac{1}{N} \sum_{i=0}^{N-1}\left[x(i)\left(\cos \left(\frac{2 \pi i n}{N}\right)-j \sin \left(\frac{2 \pi i n}{N}\right)\right)\right] . \tag{2}
\end{align*}
$$

but $x(i)=-k i$ over the range $0 \leqslant i<N$

Fiqure 2-2
An idealized C.N.V response.

$$
x(n)=\frac{1}{N} \quad \underset{i=0}{N-1}\left[-k i \cos \left(\frac{2 \pi i n}{N}\right)\right]+\frac{j}{N} \sum_{i=0}^{N-1}\left[k i \sin \left(\frac{2 \pi i n}{N}\right)\right] \ldots(3)
$$

The first harmonic component is thus
$x(1)=\frac{1}{N} \sum_{i=0}^{N-1}\left[-k i \cos \left(\frac{2 \pi i}{N}\right)\right]+\sum_{N}^{j} \cdot \sum_{i=0}^{N-1}\left[k i \sin \left(\frac{2 \pi i}{N}\right)\right] \ldots(4)$

The individual terms of these summations may be represented as shown in Figure 2-3. The resultant (i.e., the first harmonic component) is clearly in either the third or fourth quadrant. In fact calculation shows that for large N the angle approaches -90°. Thus the phase histograms would be expected to show aggregation at this phase angle. Additional calculations (see Appendix 8.1) showed that the phase angles of all of the first 6 harmonics would aggregate at -90°. Furthermore, for longer CNV's (i.e. those with a longer ISI) which often change shape after approximately two seconds $[2]$ the phase angles are also in the third and fourth quadrants. This suggests that all normal. CNV's. should have phase histograms which show aggregation in the third and fourth quadrants.

One disadvantage of phase histograms is that the phase data is cyclic yet the histogram axis is not. This disadvantage can be illustrated by assuming that, for example, an evoked response has a phase which tends towards π. Instead of a group of phase 'bins' at π one would observe a cluster at π and a cluster at $-\pi$ (i.e. at opposite ends of
the angular scale). This problem can be overcome by using either Rose diagrams (see Figure 2-4) or by using the phasor diagrams previously described. Whichever method of display is chosen the question to be resolved remains the same. This is simply whether the phase ordering observed occurs by chance or whether there is some mechanism forcing the phasors to some preferred direction.

Histograms could also be plotted for the amplitude information. Provided the background EEG were negligible, these would give information about the variability of the CNV responses. If, for example, each individual CNV response was identical to the next, then the amplitude histograms would show only one value of amplitude for each frequency component. If, on the other hand, the responses were very variable then the amplitude histograms would show many values of amplitude i.e. a spread of amplitude. This may be useful in the classification of certain subject categories. One difficulty which arises with amplitude histograms is that of the choice of the amplitude scale and interval. Unfortunately this choice might be critical in assessing whether one subjects responses are more variable than anothers.

2.2.2 Angular Statistical Tests for Phase Ordering

To determine whether the grouping of a set of phasors could have occurred by chance it is necessary to perform angular statistical tests on the harmonic components of the sample of individual CNV's. These tests are described below. All three tests are non-parametric.

Figure 2-4

The Rose diagram

2.2.2.1 The Rayleigh Test of Circular Variance

This is the first of a number of tests used to determine whether a set of N phase angles $\left\{\theta_{i}\right\}$ are distributed in a non-uniform manner. It could therefore be used to detect phase ordering.

The circular variance can be calculated as follows:- [3]

$$
\begin{equation*}
\text { Circular Variance So }=1-\bar{R} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
\text { where } \bar{R} & =\sqrt{\overline{\mathrm{C}}^{2}+\overline{\mathrm{S}}^{2}} \quad \ldots \ldots \ldots \tag{6}\\
\text { and } \overline{\mathrm{C}} & =\frac{1}{\mathrm{~N}} \sum_{i=1}^{N} \cos \theta_{i} \ldots \ldots \ldots \tag{7}
\end{align*}
$$

$\bar{S} \quad=\frac{1}{N} \sum_{i=1}^{N} \sin \theta_{i}$

Clearly if $\theta_{1}=\theta_{2}=\ldots \ldots \ldots=\theta_{N}=\theta$ then $\overline{\mathrm{C}}=\cos \theta$ and $\overline{\mathrm{S}}=\sin \theta$

This gives

$$
\begin{align*}
& \bar{R}=\sqrt{\cos ^{2} \theta+s} \tag{9}\\
& \text { So } \quad=\quad 0
\end{align*}
$$

This corresponds to the perfect phase ordering situation where all the phase angles are the same.

Alternatively consider the situation where $\theta_{i}=\frac{2 \pi i}{N}$ i.e. $\left\{\theta_{i}\right\}$ are distributed uniformly over the range 0 to 2π. In this case the summations \bar{C} and \bar{S} are both zero.

Hence $\bar{R}=0$

$$
\begin{equation*}
\text { So }=1 \tag{12}
\end{equation*}
$$

This corresponds to the situation where all the phase angles are uniformily distributed. Thus to determine whether a set of angles are distributed in a significantly nonuniform manner, tables of the Rayleigh distribution must be consulted. However the commonly tabulated Rayleigh distribution probabilities [3] are in terms of R not \bar{R}. These two quantities are related by the expression $R=N \bar{R}$. (In the broadest sense \bar{R} is more meaningful than R since \bar{R} always lies between zero and one whereas R lies between zero and N).

Alternatively, however the tables can be transformed to yield significance levels for So in place of'R. Details of this transformation and the resulting tables for So are given in Appendix 8.2

2.2.2.2 The Modified Rayleigh Test of Circular Variance

In an attempt to take both the amplitude and the phase angle into consideration Johnson [4] suggested the use of the modified test statistic To given by

$$
\begin{equation*}
T o=1-\sqrt{\left[\frac{\sum_{i=1}^{N} r_{i} \cos \theta_{i}}{\sum_{i=1}^{N} r_{i}}\right]^{2}+\left[\frac{\sum_{i=1}^{N} r_{i} \sin \theta_{i}}{\sum_{i=1}^{N} r_{i}}\right]^{2}} \cdots \tag{13}
\end{equation*}
$$

Where r_{i} is the length of the ith phasor
θ_{i} is the phase angle of the ith phasor

If $\left\{\theta_{i}\right\}$ are all aligned (i.e. $\cdot \theta_{1}=\theta_{2} \ldots \ldots . .=\theta_{N}$) then the statistic $T O=0$ whereas if the angles are uniformly distributed over the range $0-2 \pi$ and all the phasors have the same length then $T O=1$.

Unfortunately however the distribution of To is not easily obtainable and is likely to depend critically on the assumptions made in deriving it. However, Moore [5], uses the rank of the phasor magnitudes rather than their magnitudes and thus avoids this problem. Thus a new statistic Uo may be defined.

Uo $=1-\sqrt{\left.\left[\frac{\sum_{i=1}^{N} R_{i} \cos \theta_{i}}{\sum_{i=1}^{N} R_{i}}\right]+\left[\frac{\sum_{i=1}^{N} R_{i} \sin \theta_{i}}{\sum_{i=1}^{N} R_{i}}\right]\right]^{2} .}$
Where R_{i} is the rank of the ith phasor.

This is closely related to the statistic R^{*} proposed by Moore [5] and significance levels for Uo may be obtained from those for R^{*} by use of the formula

$$
\begin{equation*}
R^{*}=\frac{\left(1-U_{0}\right)(N+1)}{2 \sqrt{N}} \tag{15}
\end{equation*}
$$

Tabulated values of the probabilities for Uo are given in Appendix 8.3. Where calculated values of Uo are significantly different from unity then the phasors are nonuniformly distributed.

2.2.2.3 The Hodges-Ajne Test

This is an alternative test used to determine whether a set of angles are distributed in a non-uniform manner. The test statistic, m is given by the minimum number of observations lying in any semi-circle. If the value of m is small in relation to the number of observations, N then the angles are non-uniformly distributed. For given values of m and N the significance level of the test may be calculated from the formula [6].

Provided $m<\frac{N}{3}$

This test is similar in principle to that used by Sayers [7]. A table of significance levels is given in Appendix 8.4

2.2.3 Tests of Additivity

These tests were used in an attempt to detect changes in the energy content of the evoked responses. These tests are described below.
2.2.3.1 Pre - and Post - Stimulus Energy Tests

The energy in the pre- and post-stimulus records was
compared by means of a two tailed t-test. For a section of pre-stimulus EEG the mean square value was calculated using the formula

$$
\begin{equation*}
E=\frac{1}{N} \sum_{i=1}^{N} \quad x_{i}{ }^{2} \tag{17}
\end{equation*}
$$

where E is proportional to the signal energy
N is the number of data points over which E is to be calculated
x_{i} is the ith value of the signal

This calculation was repeated for the section containing the CNV response and the difference between the two values was noted. For one second ISI CNV's the lengths of the pre- and post- stimulus sections were the same ($\mathrm{N}=80$ or 640 ms) but for the 4 second ISI CNV's only 200 points (1.6 seconds) of pre- stimulus information was available whereas 400 points (3.2 seconds) were included to encompass the CNV response.

The differences for each of the thirty-two trials were then averaged and the mean of the differences was subjected to a two-tailied t-test (see Appendix 8.5) to determine whether it was significantly different from zero. A non-significant mean value indicated no statistical difference between preand post-stimulus energy. A significant positive value indicated that the post-stimulus energy exceeded the prestimulus energy, whilst a significant negative value indicated the reverse.

2.2.3.2. Pre - and Post - Stimulus Mean Amplitude Differences Test

each of the thirty-two trials the differences between the corresponding pre- and post-stimulus phasor lengths for a given harmonic component were formed. The mean of the differences was calculated and tested to establish whether it was significantly different from zero. A significant positive result indicated that the evoked potential was associated with an additive effect at the nth harmonic, although it gave no indication as to the mechanism involved. Because of the limited amount of pre-stimulus information (see section 2.2.3.1) it was not possible to perform this test on the four second ISI CNV's: (See also Appendix 8.5)

2.2.3.3 Nearest and Furthest Mean Amplitude Test

This test investigated the variation of amplitude with phase angle in the post-stimulus nth harmonic phasor diagram. Increased amplitudes in the direction of preferred phase combined with decreased amplitudes in the opposed direction would be evidence for an additive effect. The mean length of that half of the vectors whose phase angles lay within the smallest arc was calculated as was that of the remaining vectors. A one-tailed t-test was then performed to determine whether the former mean value was greater than the latter. In order to allow for the possibility of unequal variances, a correction was made to the degrees of freedom used in these statistical tests (See Appendix 8.6). A significant result would provide evidence for an additive effect. This test is not infallible, however. The additive signal might combine with an oppositely directed phasor to produce a small phasor in the smallest arc, or alignment of all the phasors in the
preferred direction would also render the test unreliable. For these reasons the results of this test should not be examined without reference to the tests for phase ordering previously described.

2.3 Eye Movement Corrections

At an early stage of the investigation it was found to be necessary to remove the effects of eye movements from the measured EEG signal. These effects are due to a steady pottential between the cornea and the retina of each eye. When the eyes are moved the proportion of this potential detected at the scalp electrodes varies and hence an artefact related to the ocular position is superimposed on the EEG signal. Because of the relative magnitudes of the EEG and the corneoretinal potential the artefact introduced is considerably greater than the EEG. Thus the EEG may be completely obscured by the artefact. A number of workers $[8,9,10,11,12,13]$ had published details of methods for removing the artefact but no record of a comparison of the available techniques could be found.

One method of removing the effects of eye movements from the EEG was proposed and used by McCallum and Walter [8]. The method is based on the use of a potentiometer to balance out the effects of vertical eye movements. One end of the potentiometer was connected to a mid-frontal electrode and the other end to an electrode placed on the mastoid processes as shown in Figure 2-5. The centre tap of the potentiometer was used as a reference for a vertex EEG electrode. The operation of the circuit is best explained by the use of
a simplified equivalent circuit as depicted by Figure 2-6. The EOG signal ($\mathrm{V}_{\text {EOG }}$) is shunted by the resistors $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ in series. These resistors represent the tissue etc. surrounding the eye. At point P_{1} aliong this resistance chain the EEG generator may be considered to be connected. Another point (P_{2}) represents the mastoid process. If the EEG signal is measured between points P_{3} and P_{2} then the observed signal will be the sum of both the EEG and a fraction of the EOG. The fraction of the EOG signal contained in the EEG will be given by $R_{3} /\left(R_{1}+R_{2}+R_{3}\right)$.

$$
\begin{equation*}
\therefore \quad V=V_{E E G}+\frac{R_{3} V_{E O G}}{R_{1}+R_{2}+R_{3}} \tag{18}
\end{equation*}
$$

If, however, the potentiometer is connected as shown in Figure 2-7a then by adjusting the position of the wiper the vertical EOG component can be balanced out. The point of balance can be derived from the re-drawn circuit figure 2-7b. The current, I, from the EOG generator splits into I_{1} and I_{2} at the connection of R_{5} and R_{1}

$$
\begin{align*}
& I_{1}=\frac{R_{1}+R_{3}}{R_{1}+R_{3}+R_{5}} \tag{19}\\
& I_{2}=\frac{R_{5}}{R_{1}+R_{3}+R_{5}} \tag{20}
\end{align*}
$$

The potentiometer, R_{5}, may be represented as two resistors in series the common point being the wiper. Thus the two resistors have the values $k R_{5}$ and (1-k) R_{5} where

Figure 2-5

Eye movement correction method due to McCallum and Walter.

The simplified equivalent circuit without potentiometer

Figure $2-7 a$

The simplified equivalent circuit
with potentiometer.

Figure 2-7b The re-drawn equivalent circuit.
k is a fraction between 0 and 1 representing the setting of the potentiometer. When $I_{1} k R_{5}$ equals $I_{2} R_{3}$ then the EOG signal will be eliminated from the EEG.

Thus

$$
\begin{align*}
& I_{1} k R_{5} \quad=\quad I_{2} R_{3} \tag{21}\\
& \frac{R_{1+} R_{3}}{R_{1}+R_{3}+R_{5}} \quad I \quad k R_{5}=\frac{R_{5}}{R_{1}+R_{3}+R_{5}} \quad I \quad R_{3} \ldots \tag{22}\\
& \therefore \quad\left(R_{1}+R_{3}\right) k=R_{3} \\
& \therefore \quad k=\frac{R_{3}}{R_{1}+R_{3}^{\prime}} \tag{24}\\
& \text { Since } \frac{R_{3}}{R_{1}+R_{3}} \text { is always in the range } 0 \text { to } 1 \text { for positive } \\
& \text { values of } R_{1} \text { and } R_{3} \text { the balance point can always be attained. }
\end{align*}
$$

A variation of this technique was proposed by Girton and Kamiya [9] and is shown in Figure 2-8. The observed EEG signal is again assumed to be the sum of the true EEG and a fraction of the EOG signals. Unlike McCallum and Walters method, this technique allows for the independant correction of both horizontal and vertical components of the EOG in the EEG. The horizontal and vertical components of the EOG are obtained from electrodes placed around the eyes and are amplified by the differential amplifiers A_{1} and A_{2}. The EEG signal is amplified by a further differential amplifier A_{3} connected to electrodes at the vertex and at the mastoid processes. Fractions of the amplified EOG components are then tapped off by means of the potentiometers R_{1} and R_{2}.

Figure 2-8
The method of Girton and Kamiya

Figure 2-9

A typical vertical left EOG signal during
the eye movement correction experiments

These signals are then summed by the resistors R_{3} and R_{4}. Finally the summed EOG components are subtracted from the EEG by means of a further differential amplifier A_{4}. Thus the output signal V consists of the corrupted EEG signal less fractions of the horizontal and vertical components of the EOG. By adjusting the potentiometers R_{1} and R_{2} these fractions can be chosen so as to remove the corrupting EOG components in the output signal.

Both these techniques (McCallum and Walters and Girton and Kamiya) rely on the manual adjustment of the potentiometer(s) to obtain maximum artefact rejection. These adjustments are normally made whilst observing the chart output and are thus subjective. As the balance point (i.e. the point of maximum artefact rejection) is approached so the effect of further adjustment becomes more difficult to assess because of the masking nature of the background EEG. The process of adjustment is also rather slow. If, for example, it takes one minute to adjust each potentiometer, then for a 16 channel recording it would take about a quarter of an hour to set the potentiometers for McCallum and Walters method or over half an hour for Girton and Kamiya's method. This would normally be quite unacceptable.

2.4 Assessment of the Eye Movement Correction Methods

The quantitative assessment of the different correction procedures was based on the knowledge that the autocorrelation function (a.c.f.) of a rectangular waveform is triangular. [14] In the experiments described in Section 3.3 the almost periodic eye movements produced an EOG which was
nearly a rectangular wave (Figure 2-9) and so the measured EEG's were contaminated by a nearly rectangular wave. It is shown below that incomplete correction may be detected by the presence of a triangular component of the same period as the EEG present in the a.c.f. of the corrected EEG. If the a.c.f. showed no triangular components of similar period to the EOG, then the correction procedure was effective. If the a.c.f. fell rapidly to an average value of zero the efficiency of the corresponding correction was high. This method allowed very small residual EOG signals to be detected in the background EEG activity even in cases where they were visually indiscernable in the corrected waveform.

Let $Q(t)$ be the EEG signal after incomplete correction

$$
\begin{equation*}
\text { Then } C_{q q}(\tau)=\varepsilon[Q(t) Q(t+\tau)] \tag{25}
\end{equation*}
$$

Where $C_{q q}(\tau)$ is the autocovariance of Q at lag τ, $\dot{\varepsilon}$ denotes the expected value and all signals are adjusted to have zero mean value.
$Q(t)$ may be considered to be the sum of the uncorrupted EEG signal $E(t)$ and the remaining artefact $I(t)$, so that

$$
\begin{equation*}
Q(t)=E(t)+I(t) \tag{26}
\end{equation*}
$$

Hence

$$
\begin{aligned}
& C_{q q}(\tau)= \varepsilon\{[E(t)+I(t)] \cdot[E(t+\tau)+I(t+\tau)]\} \ldots(27) \\
&= \varepsilon[E(t) \cdot E(t+\tau)]+\varepsilon[I(t) \cdot I(t+\tau)] \\
&+\varepsilon[E(t) \cdot I(t+\tau)]+\varepsilon[I(t) \cdot E(t+\tau)] \ldots \ldots(28) \\
& \text { or } \quad C_{q q}(\tau)=C_{e e}(\tau)+C_{i i}(\tau)+C_{e i}(\tau)+C_{i e}(\tau)(29)
\end{aligned}
$$

where the suffices indicate the auto and cross covariances.

Because $E(t)$ and $I(t)$ are statistically independant, $C_{e i}(\tau)^{\prime}=C_{i e}(\tau)=0$, while $C_{e e}(\tau)$ will fall rapidly with increasing $\tau{ }^{\dagger}$

Hence
$C_{q q}(\tau) \simeq C_{i i}(\tau)$ for large. π.
Since the autocorrelation function and the autocovariance function are related by the variance then
$\mathrm{R}_{\mathrm{qq}}(\tau) \simeq \mathrm{R}_{\mathrm{ii}}(\tau)$ for large τ. (where R denotes the autocorrelation function)

Since $I(t)$ is approximately rectangular then $R_{i i}(\tau)$ and hence $R_{q q}(\tau)$ will be triangular.

Thus to assess the effectiveness of the correction method the autocorrelation function of the corrected waveform was calculated and plotted. Those a.c.f.'s which contained any triangularity were examined further and the period, and the peak to peak envelope amplitude of the triangularity were noted at a lag of two seconds. A two second lag was chosen since the initial decrease in the autocorrelation had always been completed within two seconds (by observation of the a.c.f.'s). Figure 2-10 shows graphically how these measurements were made. The peak to peak amplitude of the a.c.f.'s at this lag is referred to as the autocorrelation co-efficient (a.c.c.)

[^0]

The autocorrelation co-efficient (acc) is the peak to peak amplitude of the envelope of the autocorrelation function at a lag of two seconds.

As a practical test of the sensitivity of the method a square wave of known amplitude was added to a section of 'eyes open' background EEG. The frequency of the square wave was chosen to be $0: \cdot 8 \mathrm{~Hz}$ as this was about the most common frequency observed in the EOG signals during the eye movement correction experiments. The resultant signal was analysed in the same way as the corrected EEG signals. Table 21 shows the results of these tests with differing amounts of square wave added to the synthetic background EEG. From the table it may be deduced that the autocorrelation coefficient gives a good indication of the magnitude of residual artefact and can detect residual components with amplitudes of only one quarter of the background. Figure 2-11 shows the variation of the a.c.c. with differing amounts of residual square wave present in the EEG.

2.5 The Modified Correction Method

The modified form of Quilters correction method [10] is described here. The fundamental assumption upon which the method is based is that the measured EEG signal can be considered to be formed from a linear combination of the true EEG and the interfering artefact signals. Thus if the artefact signals could be measured independently of the EEG then by subtracting the appropriate fractions of the artefact signals from the observed (corrupted) EEG the true EEG could be established. Fortunately, the artefact signals due to eye movements can be obtained by placing electrodes in close proximity to the eyes, thus if the fractions of these signals present in the observed EEG are known the true EEG can be

The results of tests performed to determine
the sensitivity of the ACC to residual square wave

SQUARE WAVE BACKGROUND	$\underset{d B}{\text { RATIO }}$	$\stackrel{\text { ACC }}{\text { OBSERVED }}$	FREQUENCY obsERVED	COMMENT
100/10	+ 20	1.489	0.8	Triangularity easily visible in ACF Square wave easily visible in EEG.
50/10	+ 14	1.447	0.8	"
40/10	$+12$	1.430	0.8	*
30/10	+ 9.5	1.375	0.8	"
18/10	+ 5.1	1.211	0.8	"
10/10	0	0.885	0.8	Triangularity easily visible in ACF. Square wave visible in EEG but noisy.
7.5/10	- 2.5	0.717	0.8	Triangularity easily visible in ACF. Square wave just visible in EEG.
5/10	-6.0	0.552	0.82	Triangularity visible in acF Square wave not visible in EEG.
3.75/10	-8.5	0.465	0.82	Triangularity visible in ACF
2.5/10	-12.0	0.383	0.78	Triangularity just visible in ACP
0/10	-	0.256	-	No visible periodicity in ack

Figure 2-11

A graph showing the variation of the autocorrelation co-efficient with the amplitude of a synthesized square EOG signal.
obtained. Since the eyes are free to swivel about two axes it is necessary to allow for both horizontal and vertical artefact signals. Furthermore since the eyes do not always move in unison or through the same amount of arc, and may have different dipole moments, it may be necessary to allow for horizontal and vertical components from each eye in the EEG.

Assuming that the transmission path between the source and the scalp electrode is linear and $M(t)$ is the measured EEG signal, $\mathrm{E}(\mathrm{t})$ is the true EEG signal, $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}, \mathrm{~K}_{4}$ are constants, $V_{L}(t)$ is the vertical component of the left EOG $H_{R}(t)$ is the horizontal component of the right EOG etc., then
$M(t)=E(t)+K_{1} V_{L}(t)+K_{2} V_{R}(t)+K_{3} H_{L}(t)+K_{4} H_{R}(t)$
or
$E(t)=M(t)-\left[K_{1} V_{L}(t)+K_{2} V_{R}(t)+K_{3} H_{L}(t)+K_{4} H_{R}(t)\right] \ldots(31)$

Thus if the constants $K_{1} \ldots \ldots K_{4}$ could be found then the uncorrupted EEG signal $E(t)$ could be determined.

Rewriting equation (30) in discrete time form gives
$M(i)=E(i)+K_{1} V_{L}(i)+K_{2} V_{R}(i)+K_{3} H_{L}(i)+K_{4} H_{R}(i)$
where i represents the sample number.
Defining

$$
\begin{align*}
M_{V L} & =\Sigma\left[M(i) V_{L}(i)\right] \tag{3.3}\\
M_{V R} & =\Sigma\left[M(i) V_{R}(i)\right] \tag{34}\\
M_{H L} & =\Sigma\left[M(i) H_{L}(i)\right] \tag{35}\\
M_{H R} & =\Sigma\left[M(i) H_{R}(i)\right] \tag{36}
\end{align*}
$$

Where all the summations are carried out over the range $i=1$ to N, the number of data samples.

Substituting equation (32) into equation (33) gives:-

$$
\begin{align*}
M_{V L}=\Sigma\left[\left\{E(i)+K_{1} V_{L}(i)+K_{2} V_{R}(i)+K_{3} H_{L}(i)+K_{4} H_{R}(i)\right\} V_{L}(i)\right] & \ldots(37) \\
=\Sigma\left[E(i) V_{L}(i)+K_{1} V_{L}^{2}(i)+K_{2} V_{R}(i) V_{L}(i)+K_{3} H_{L}(i) V_{L}(i)\right. & + \\
\left.K_{4} H_{R}(i) V_{L}(i)\right] & \ldots \ldots(38) \\
\text { defining } P_{V L} & =\Sigma V_{L}^{2}(i) \\
& \ldots \ldots(39) \tag{40}\\
C_{C L} & =\Sigma\left[V_{L}(i) H_{L}(i)\right] \tag{41}\\
C & =\Sigma\left[V_{L}(i) H_{R}(i)\right] \tag{42}
\end{align*}
$$

gives
$M_{V L}=\sum\left[E(i) V_{L}(i)\right]+K_{1}{ }^{P} V_{L L}+K_{2} B+K_{3} C_{C L}+K_{4} C$

Substituting equation (32) into equation (34) and defining

$$
\begin{align*}
& \mathrm{P}_{\mathrm{VR}}=\Sigma \mathrm{V}_{R}^{2}(i) \tag{4.4}\\
& \mathrm{D}=\Sigma\left[\mathrm{V}_{R}(i) H_{L}(i)\right] \tag{45}\\
& C_{C R}=\Sigma\left[V_{R}(i) H_{R}(i)\right] \tag{46}
\end{align*}
$$

gives
$M_{V R}=\Sigma\left[E(i) V_{R}(i)\right]+K_{1} B+K_{2} P_{V R}+K_{3} D+K_{4} C_{C R}$
Substituting equation (32) into equations (35) and (36) in a similar manner and defining

$$
\begin{align*}
P_{H L} & =\Sigma H_{L}^{2}(i) \tag{48}\\
P_{H R} & =\Sigma H_{R}^{2} \tag{49}\\
A & =\Sigma[i) \tag{50}\\
& -53-
\end{align*}
$$

gives
$M_{H L}=\Sigma\left[E(i) H_{L}(i)\right]+K_{1} C_{C L}+K_{2} D+K_{3} P_{H L}+K_{4} A \ldots(51)$ and

$$
\begin{equation*}
M_{H R}=\sum\left[E(i) H_{R}(i)\right]+K_{1} C+K_{2} C_{C R}+K_{3} A+K_{4} P_{H R} \tag{52}
\end{equation*}
$$

Equations (43), (47), (51), (52) may be more conveniently handled if written in matrix form.
$\left[\begin{array}{c}M_{V L} \\ M_{V R} \\ M_{H L} \\ M_{H R}\end{array}\right]=\left[\begin{array}{l}\Sigma\left[E(i) V_{L}(i)\right] \\ \Sigma\left[E(i) V_{R}(i)\right] \\ \Sigma\left[E(i) H_{L}(i)\right] \\ \Sigma\left[E(i) H_{R}(i)\right]\end{array}\right]+\left[\begin{array}{llll}\mathrm{P}_{\mathrm{VL}} & \mathrm{B} & \mathrm{C}_{\mathrm{CL}} & \mathrm{C} \\ B & \mathrm{P}_{\mathrm{VR}} & \mathrm{D} & \mathrm{C}_{\mathrm{CR}} \\ \mathrm{C}_{\mathrm{CL}} & \mathrm{D} & \mathrm{P}_{\mathrm{HL}} & \mathrm{A} \\ \mathrm{C} & \mathrm{C}_{\mathrm{CR}} & A & \mathrm{P}_{\mathrm{HR}}\end{array}\right]\left[\begin{array}{l}\mathrm{K}_{1} \\ \mathrm{~K}_{2} \\ \mathrm{~K}_{3} \\ \mathrm{~K}_{4}\end{array}\right]$.
or

$$
\begin{equation*}
\underset{\sim}{M}=\underset{\sim}{Z}+\underset{\sim}{X} \cdot \underset{\sim}{K} \tag{54}
\end{equation*}
$$

Where $\underset{\sim}{M}, \underset{\sim}{Z}, \underset{\sim}{X}$ and $\underset{\sim}{K}$ represent the respective matrices. The elements of the column matrix $\underset{\sim}{Z}$ may be considered as the cross co-variance between the true EEG signal and the four artefact signals at zero lag.

Provided $E(i)$ does not affect the artefact signals $V_{L}(i)$ etc. then the correlation between $E(i)$ and the artefact signals will be small. The matrix $\underset{\sim}{Z}$ is thus assumed to be zero.

The values $\mathrm{K}_{1}-\mathrm{K}_{4}$ may now be obtained by solving the equation

$$
\begin{equation*}
\underset{\sim}{M}=\underset{\sim}{X} \cdot \underset{\sim}{K} \tag{55}
\end{equation*}
$$

Since matrices $\underset{\sim}{M}$ and $\underset{\sim}{X}$ only involve quantities which
can be obtained from the signals $M(i)$ and $V_{L}(i), V_{R}(i)$, $H_{L}(i)$ and $H_{R}(i)$.

Therefore $\underset{\sim}{K}=\underset{\sim}{X}{\underset{\sim}{x}}^{\mathbf{M}}$

The values of $\mathrm{K}_{1} \ldots \mathrm{~K}_{4}$ may then be substituted into equation (31) and hence the true EEG signal can be calculated.

There are however a number of limitations to this technique. The most important of these are:-
(i) A considerable amount of computation is involved in the calculation of the 'sums of products' terms in matrices $\underset{\sim}{X}$ and $\underset{\sim}{M}$.
(ii) The matrix $\underset{\sim}{Z}$ may not be sufficiently small to be neglected.
(iii) The method (as described) cannot be applied online since a prior knowledge of the signals over N data points is required.

Offsetting these disadvantages are:-
(i) No manual setting up is required. (Unlike the methods due to McCallum and Walter and Girton and Kamiya where manual setting of the potentiometers is required. Manual setting up is both time consuming and is subjective and is therefore also inaccurate).
(ii) The method is self-optimizing i.e. New and optimum values of $K_{1}-K_{4}$ are found for each N point data epoch.
[1] McAdam D W, "Physiological Mechanisms" Published in "Event-Related Slow Potentials of the Brain: Their relations to Behaviour" Edited by McCallum W C E Knott J R Electroencephalography and Clinical Neurophysiology Supplement No. 33, pp 79-86. Published by Elsevier Scientific Publishing Company 1973.
[2] Rohrbaugh J W, Syndulko K, Lindsley D B, "Brain Wave Components of the Contingent Negative Variation in Humans"

Science, Volume 191, pp 1055-1057, 1976.
[3] Mardia K V, "Statistics of Directional Data" Published by Academic Press (London), 1972.
[4] Johnson T E, A Private Communication with the Author.
[5] Moore B R, "A Modification of the Rayleigh test for Vector data"

Biometrika, Volume 67, pp 175-180, 1980.
[6] Hodges J L, "A bivariate sign test"
Annals of Mathematical Statistics
Volume 26, pp 523-527, 1955.
[7] Beagley H A, Sayers B McA, Ross A J, "Fully Objective ERA by Phase Spectral Analysis"

Acta Oto-laryngologica, Volume 87, pp 270-278, 1979.
[8] McCallum W C, Walter W G, "The Effects of Attention and Distraction on the Contingent Negative Variation in Normal and Neurotic Subjects" Electroencephalography and Clinical Neurophysiology, Volume 25, pp 319-329; 1968.
[9] Girton D G, Kamiya J, "A simple on-line technique for removing Eye Movement Artifacts from the EEG" Electroencephalography and Clinical Neurophysiology, Volume 34, pp 212-216, 1973.
[10] Quilter P M, MacGillivray B B, Wadbrook D G, "The Removal of Eye Movement Artefact from EEG Signals using correlation Techniques" Random Signals Analysis, IEE Conference Publication No. 159, pp 93-100, 1977.
[11] Whitton J L, Lue F, Moldofsky H, "A spectral Method for removing Eye Movement Artifacts from the EEG" Electroencephalography and Clinical Neurophysiology, Volume 44, pp 735-741, 1978.
[12] Hillyard S A, Galambos R, "Eye Movement Artifact in the CNV"

Electroencephalography and Clinical Neurophysiology, Volume 28, pp 173-182, 1970.
[13] Corby J C, Kopell B S, "Differential Contributions of Blinks and Vertical Eye Movements as Artifacts in EEG Recording"

Psychophysiology, Volume 9, pp 640-644, November 1972.
[14] Barlow J S, Brazier MAB, "A Note on Correlator for Electroencephalographic Work"

Electroencephalography and Clinical Neurophysiology Volume 6i, pp 3:21-325, 1954.

3.1 Initial CNV Tests

In order to gain first hand information about the problems associated with obtaining CNV responses two subjects were examined using conventional evoked response averaging equipment. These tests were carried out using equipment available at Freedom Fields Hospital during the first few months of this investigation. The two stimuli used were an auditory 'click' followed by a flashing lamp. Averaging over 64 trials was performed by a Medelec DAV6 digital averager. The resulting average CNV's are shown in Figure 3-1:

The observations made from these tests shaped the way in which the present measurement system was developed and the tests were performed. These observations are summarized below.
(1) The dynamic range of the averager ${ }^{\dagger}$ was often exceeded causing it to reject some of the trials.
(2) The onset of the visual stimulus caused the subjects to blink in several of the individual trials. These blinks are highly undesirable since they introduce an artefact which is synchronised to the visual stimulus.
${ }^{\dagger}$ The Medelec DAV6 averager uses an 8 bit analogue-todigital converter and hence has an inherent dynamic range of one part in 2^{8} or 48 dB . at the input. However this range is only fully utilized if the gain of the preceeding analogue stage is set such that the largest input signal just fails to overload the converter. Unfortunately the variable nature of most bioelectric signals means that the amplitude of the largest signal cannot be predicted. Thus either a considerable amount of "Headroom" must be allowed (which in turn reduces the effective dynamic range), or a certain degree of overloading of the converter must be tolerated.

Figure 3-1

The initial attempts at recording CNV responses
(3) The subjects became tired and showed less motivation in the later trials.
(4) The subjects frequently moved their eyes which invariably caused the signal averager to overload. This indicated the presence of quite large artefacts induced by eye movements.

As a result of these observations -
(1) The dynamic range of the proposed data acquisition system was increased to 72 dB .
(2) Two auditory stimuli were used in place of one auditory and one visual.
(3) The possibility of using fewer trials in the averaging process or alternative methods to averaging would clearly have to be considered.
(4) Some method of removing the effects of eye movement artefact would have to be implemenṭed.

3.2 Data Transfer and Preliminary Processing

During transfer from the disk of the minicomputer logging system to a data base on the Polytechnic main computer several tests were performed to verify the authenticity of the data and to ensure that no errors occurred in the transfer. In view of the large amounts of data involved these tests were performed automatically. The eye movement correction experiments involved the transfer of nearly 100,000 twelve bit words for each subject and approximately 400,000 words for each subject for the CNV tests.

For compatibility with conventional hardware each of the twelve bit words was split into two six bit quantities to which parity and marker bits were added. These eight bit quantities (bytes) were initially transferred to the main computer on paper tape although eight inch, single density, single sided, floppy disks were subsequently adopted for speed and ease of handling. To each batch of 1024 words (2048 bytes) were added a batch number, an unique 'start of batch' indicator and a modulo 256 (eight bit) checksum.

When read into the main computer the parity and marker bits were tested for each byte and the checksum re-calculated and compared with that read for each batch. Any errors then found were reported ${ }^{2}$ and the faulty batch was rejected. Rejected batches were re-transferred at a later date. The data for each experiment and subject was stored in a sequential access data file along with certain relevant system and other parameters (e.g. the sample rate, the analogue filter cut-off frequencies, the amplitude calibration constants, subjects name etc.) The final test of the transferred data was performed with the aid of a programme written in Fortran IV and using the Gino [1] graphics subroutines. This programme (Appendix 8.7) was used to plot the data on an interactive graphics terminal where a visual comparison ${ }^{3}$

[^1]was made with the relevant section of the chart output of the EEG machine.

3.3 Eye Movement Corrections

As previously mentioned the eye movement artefact is caused by a standing potential between the cornea and the retina of the eye[2]. Whilst the eyes remain stationary the potential recorded from scalp electrodes will contain no artefact (except possibly a d.c. component) but any change in position will result in an artefact being superimposed on the background EEG activity. The amount of artefact introduced is related to the angular displacement of the eye and the position of the measuring electrodes [2]: Several methods of removing the artefact have been suggested based on the subtraction of a fraction of the electrooculogram (EOG) i.e. the potential measured at electrodes placed in close proximity to the eyes, from the measured EEG [3,4,5]

Other methods involving a considerable degree of cooperation from the subjects $[6,7]$ were examined but rejected on the grounds that such co-operation cannot always be obtained, particularly with very young, old or diseased subjects.

In order to test the effectiveness of the methods due to McCallum ε Walter [3], Quilter [5] and a modified form of Quilters method derived here, eye movement experiments were performed on six volunteers. The volunteers were asked to make periodic eye movements whilst the EOG and EEG data was stored for subsequent analysis. To obtain consistent
eye movements through a known angle (20°) the wooden screen described in section 4.5.1 was utilised.

During these experiments the subjects were asked to fixate on the illuminated centre LED. One of the peripheral LED's was then switched on and the subjects were told to look repeatedly from the centre LED to the illuminated one at the periphery of the screen and back.

Whilst the subject was performing this task eight second epochs of data were digitized at 125 samples per second and stored. This procedure was repeated twice for each of the eight LED's around the periphery of the screen and for ten subjects. The data thus obtained consisted of digitized versions of the following six analogue signals:-
(i) The vertical component of the left EOG (electrodes 6 \& 7).
(ii) The vertical component of the right EOG (electrodes 2 and 3).
(iii) The horizontal component of the left EOG (electrodes 4 and 5).
(iv) The horizontal component of the right EOG (electrodes 4 \& 5).
(v) The vertex EEG referred to linked earlobes.
(vi) The analogue corrected vertex EEG (McCallum and Walters method [3].

The positions of the electrodes for the EOG signals
are shown in Figure 3-2.

Prior to the recordings the subjects were asked to make extreme up and down eye movements in order that the balancing potentiometer utilized in the correction method due to McCallum and Walter [3] could be adjusted for the optimum artefact rejection. It should be noted however that this "optimum setting" was somewhat subjective in that it was based on a visual assessment of the residual eye movement artefact present in the chart output of the EEG machine.

The digitized signals were then transferred from the minicomputer logging system to the Polytechnic main computer for analysis. To assess the effectiveness of the correction techniques the procedure described in section 2.4 was utilized.

3.4 Processing of Eye Movement Data

The computer programme in Appendix 8.8 was used to perform the eye movement corrections described in section 2.5 This programe also calculates the auto-correlation function of the corrected signal for analysis of the effectivness of the correction method. It was realized at an early stage that although Quilter's original correction method only used single horizontal and vertical EOG components it should be tried to discover if the modified method was significantly better. Furthermore, since visual examination of the early data showed a high degree of correlation between the left and right vertical EOG components it was thought worthwhile to try a correction based on two horizontal EOG components but only one vertical component. (The horizontal components

Figure 3-2
Electrode positions for eye movement corrections

Figure 3-3
Chlorided silver wire
low frequency electrode
of the EOG's were not so highly correlated as the vertical ones). This correction method (the three channel method) may be derived in a similar way to that described in section 2.5 except that the initial equation is
$M(t)=E(t)+k_{1} V(t)+k_{2} H_{L}(t)+k_{3} H_{R}(t)$.
where $V(t)$ is the vertical EOG signal from either the left or the right eye and all other quantities are as described in 2:. 5

The following processing was thus performed.
(i) Correction by Quilter's method and calculation of autocorrelation function (acf).
(ii) Correction by the three channel method and calculation of the acf.
(iii) Correction by the method described in 2.5 i.e. the four channel method and calculation of the acf.
(iv) Calculation of the acf for the signal corrected by the method of McCallum and Walter.

In the four channel method electrodes 6-7 (vertical left EOG), 4-5 (horizontal left EOG), 2-3 (vertical right EOG) and 4-1 (horizontal right EOG) were used, (see Figure 3.2). In the three channel method all the above electrodes were used with the exception of those giving the vertical right EOG signal. For Quilters method electrodes $6-7$ and 4-5 were used. (This is very slightly different to the electrode placements used by Quilter who would have used 6-7 and 5-7 instead of 6-7 and 4-5).

In an attempt to obtain consistent CNV's from the subjects the recording procedure was standardized. The subjects were seated at one end of the recording room facing; and at about 2 metres distant from the end wall. The silversilver chloride electrodes were attached to the subject with glue (scalp electrodes) or adhesive tape (facial electrodes). Facial electrodes (see Figure 3-2) were used to record the four components of the EOG for subsequent eye movement artefact correction by the four channel method described in Section 2.5 Two channels of CNV information were obtained from electrodes located at the vertex and at a point on the midine approximately 30 mm anterior to the vertex. Both electrodes used a common reference which was obtained from a pair of connected electrodes on the left and right earlobes.

After being attached to the subject the electrodes were filled with 'Neptic' electrode gel by means of a syringe with a blunted needle inserted into the hole in the plastic body of the electrode holder (see Figure 3-3) The blunted needle of the syringe was also used to abraid the skin under the electrode whilst the gel was inserted. This procedure ensured a low impedance between the electrode and the scalp (typically $5 \mathrm{k} \Omega$ or less). When all the electrodes had been similarly treated the impedance between an arbitrary electrode and each of the others was measured using a Specialised Laboratory Equipment model EIT impedance meter.

This instrument measures (approximately) the modulus of the complex impedance at 13 Hz . It is important to note that
although the electrode scalp interface impedance is largely resistive at low frequencies, the use of a resistance measuring device with a d.c. internal source must be avoided at all cost when using chlorided silver electrodes [8]. Failure to observe this principle results in a serious degradation of the electrode stability.

If the impedance between any electrode pair was found to be greater than $5 k \Omega$ the skin below the offending electrode was further abraided until this value was achieved. When the impediance of all the electrodes was satisfactory they were connected to the EEG machine and the electrode selector switches ${ }^{\dagger}$ set for the required electrode pairs. The filters in the data acquisition system (see Section 4.2) were set for a -3 dB passband of 0.016 to 30 Hz . The sample rate was 125 Hz .

In order to familiarize the subject with the stimuli eight presentations were made during which the subject was not required to respond to the second stimulus. The subject was then told to "press the button as quickly as you can when you hear the tone" and a further thirty-two trials were made constituting the CNV run.

Since one particular area of interest was the effect of the inter-stimulus interval (ISI) i.e. the time delay between the click and the tone, two sets of thirty-two CNV trials were made. The first with a one second ISI and the second with a four second ISI. In each case eight presentations

[^2]were made (with the appropriate ISI) before the run.

Abstract

As with the previous section the digitized signals were transferred from the logging: system to the Polytechnic main computer for processing and analysis.

3.6 Processing of CNV's.

Because the CNV is of such a small magnitude in comparison to the normal background EEG activity they are difficult to quantify on an individual basis. Typically the CNV may be of $5-20 \mu \mathrm{~V}$ in magnitude whereas normal background activity can be $50 \mu \mathrm{~V}$ or more. However in favourable circumstances the individual $C N V^{\prime \prime}$ s can be observed in chart output of the EEG machine (see Figure 3-4). The normal method employed to improve CNV to background EEG (which may be regarded as signal to noise) ratio is to take a number of individual CNV's and average them. This process produces an average CNV but since the background EEG is not correlated from trial to trial the background EEG in the average is reduced by a factor proportional to the square root of the number of individual CNV's included in the average. In their original report Walter and colleagues [9] used averages of six or twelve trials.

After verification of the stored CNV data a programme was used to calculate the average CNV and plot this waveform on a graph plotter. The averaging was normally carried out over thirty-two indiṿidual CNV's. A typical average CNV is shown in Figure 3-5. Prior to averaging, each individual CNV was processed to remove the effects of eye movements as

previousily described. In an attempt to further improve the averaged CNV a linear phase digital lowpass filter was used to remove some of the remaining higher frequency background components. A linear phase filter was chosen in order to preserve the shape of the CNV as much as possible. The response and weighting co-efficients of the filter used most often are given in Figure 3-6. This and other filters have been designed with the aid of the computer programme given in the book by Rabiner and Gold [1i0].

In view of the work of Professor Sayers and colleagues [11, $12,13,14,15,16]$ concerning the nature of the audittory evoked response it was decided to perform similar experiments on the CNV. Sayers showed that the auditory evoked response may be due not to an additional response, but to a re-ordering of the phase spectra of the background, i.e. the phases of certain frequencies of the background EEG generators become entrained by the stimulus and hence reshape the background EEG into the characteristic auditory evoked response. One of Sayers' most important tests was to calculate the energy in the EEG before and during the response to the auditory stimulus. According to Sayers if., as had previously been assumed, the response was an additional signal then the energy during the response would be greater than that before or after, whereas if the response was due to a phase re-ordering then the energy would not change. Sayers offered evidence to suggest that this response may indeed be due to a phase re-ordering. A programme was therefore written to calculate the energies of individual background and CNV sections of the EEG. In addition to this test Fast

Frequency Hz .

Fourier transforms of the CNV's were performed and the phases of the first few frequency components were noted. This procedure was repeated for each of the thirty-two CNV measurements for each subject. The phase information for each frequency components was then sorted into twenty four bands of fifteen degrees each. Histograms :(Figure 3-7) were then plotted for each frequency component showing the number of times a phase angle occurred within each band.

3.7 AEP Acquisition

In view of the important nature of Professor Sayers work $[11,12,13]$ on the Auditory Evoked Potential (AEP), and the possible relevance of his findings to other evoked potentials (e.g. the CNV), it was decided to perform a short series of experiments in an attempt to confirm his results. AEP's were recorded from three subjects whilst relaxed and seated in the measurement room. The recording electrodes were placed at the vertex and on the right mastoid processes for the EEG signal, and in the usual facial positions for the four channel eye movement corrections. The auditory stimulus was obtained from an Amplaid stimulus generator set to deliver 1 kHz . tone bursts with 100 ms duration including approximately 10 ms of rise and fall according to a "cosine squared" law. This signal was applied to the right transducer of a pair of Koss K 6 stereo headphones. The subjects auditory threshold was then determined by applying the above stimulus with gradually decreasing intensity. When the subject could no longer hear the stimulus tone then the threshold had been found. The experiment then commenced with an

HARMONIC 1
-76-
HARMONIC 2

HARMONIC 3

auditory stimulus 7.0 dB (65 for one subject) above the threshold. Thirty-two sections of the EEG/EOG signals were then recorded each with two stimulus presentations at known places within each section. This gave a total of 64 evoked responses at this stimulus level. A further thirty-two trials were then made with the stimulus level set to 40 dB above the subjects threshold.

3.8 Processing of AEP's

The stored AEP's were first processed to remove any eye movement artefact by the four channel correction method. The average AEP was then calculated and plotted. A typical pair of high and low stimulus averaged AEP's are shown in Figures 3-8a and 3-8b. A test was then performed to determine whether the energy present in the EEG signal after stimulus was any different to that in the signal prior to the stimulus. The "energy" values were calculated by summing the squares of values of the 64 data points preceeding and succeeding the stimulus as described in Section 2.2.3.1 Since the sampling rate was $1: 25 \mathrm{~Hz}$ this represented 0.512 seconds of data prior and subsequent to the stimulus. The differences betwen the pre- and post-stimulus energey values were calculated for each of the 64 individual responses, and the mean of these differences was subjected to a two-tailed t-test. The result of this test indicated whether the mean of the differences was significantly different from zero.

In an attempt to establish whether phase-ordering was present the eye movement corrected sections of EEG containing the AEP's were subjected to Fourier transformation by a

radix two FFT. The phases of the six lowest frequency components (excluding the d.c. term) were stored for each of the 64 AEP's. Histograms were then plotted showing the number of times the phase angle of the transformed AEP's fell within a particular range for each of these six frequency components (sometimes referred to as harmonics).

As an alternative to the phase histogram, phasor diagrams were plotted showing, for a particular harmonic frequency, the amplitudes and phases of the transformed responses. These diagrams were also plotted for the sections of EEG data preceeding the application of the stimulus (i.e. background EEG data). A typical pair of background/AEP phasor diagrams are shown in Figure 3-9. For clarity the phasors were represented by a cross at (what would have been) the tip of the phasor. Also for ease of interpretation a circle of arbitrary radius has been drawn and onto this small triangles have been added to show the phases of the components independently of their amplitudes. Like the phase histograms the phasor diagrams were plotted for each of the first six harmonics. . The statistical tests described in Section 2.2.2 were then applied to the phasor diagram information.

3.9 Fourier Transform Considerations

Several of the methods adopted for studying the CNV's and the auditory evoked potentials (AEP's) made use of a time to frequency transformation. A Fast Fourier Transform (FFT) was used to split the responses up into different frequency components which could then be studied in greater detail. A number of important factors were considered in

PRE STIM.

POST STIM.
HARMONIC 1

Figure 3-9 A typical AEP phasor diagram
choosing the parameters of the transform. These included the length of the section of data to be transformed; the required spectral resolution, and the time (and cost) of the transformation. However since the lengths of both the CNV's and AEP's were well defined these proved to be the ultimate limitation. In practice the response data was augmented with a number of zero valued "data" points to bring the total number of points up to a value suitable for transformation with the radix 2 FFT.

Because of the finite length (T_{m}) of the data the spectrum obtained was that of the data convolved with that of the window or truncation function. If, for example, the truncation function was rectangular i.e.

$$
\begin{array}{r}
\text { data to be transformed }=\text { data multiplied by one } \\
\left(0<t<\mathrm{T}_{\mathrm{m}}\right) \\
= \\
\\
\text { elsewhere, }
\end{array}
$$

then the spectrum of the data would be convolved with the well known SINC function with zero crossings at frequencies of $n / T m$, where $n=\ldots-3,-2,-1,1,2,3$. This would result in distortion of the true spectrum to an extent that would often be unacceptable. For this reason many other truncation functions have been devised which cause much less spectral distortion. The truncation function chosen was the cosine taper (sometimes referred to as the raised cosine) which was applied for 10% of the data length at each end of the data. This function can be described mathematically by the following expressions:-

$$
W(t)=\begin{array}{ll}
\frac{1}{2}\left[1-\cos \left\{\frac{t \pi}{0.1 T_{m}}\right\}\right] & 0<t<0.1 T_{m} \\
1 & 0.1 T_{m}<t<0.9 \\
\frac{1}{2}\left[1-\cos \left\{\frac{(1-t) \pi}{0.1 T_{m}}\right\}\right] & 0.9 T_{m}<t<T_{m}
\end{array}
$$

This window function has smaller and more rapidly decreasing side lobes than the rectangular window which resulted in much less spectral leakage [17].

Where it was necessary to augment the response data with zeros to fulfil the transform requirements; the windowing was applied prior to the addition of the zeros. Since windowing the zeros does not remove any discontinuity at the end of the true data. Furthermore since the d.c. component was of no interest it was removed by subtracting the mean value of the data from the data.

The FFT algorithm adopted was that described by Robinson [18]. The FORTRAN implementation of this algorithm was capable of forward and inverse Fourier transforms. The data to be transformed was submitted to the subroutine as an array of complex numbers. Since all the input data was real, the imaginary components of the array were set to zero before transformation took place. The N output data points were returned to the calling program in the same array and were generally complex. For some of the analysis methods these were then converted by a further subroutine to modulus and phase information arrays. Although N complex points were returned by the FFT only the first $N / 2+1$ were meaningful since
the remaining $N / 2-1$ points represent the negative frequency values. (i.e. a mirror image of the first N/2 points. The zero frequency or d.c. component was not mirrored).
[1] Computer Aided Design Centre, "GINO-F" and "GINOGRAF" User Manuals.

Published by the CAD Centre, Madingly Road, Cambridge.
[2] Geddes L A, Baker L E, "Principles of Applied Biomedical Instrumentation"

Chapter 11, pp 509-517. Published by John Wiley ε Sons, New York. 2nd Edition 1975.
[3] McCallum w C, Walter W G, "The Effects of Attention and Distraction on the Contingent Negative Variation in Normal and Neurotic Subjects"

Electroencephalography and Clinical Neurophysiology, Volume 25, pp 319-329, 1968.
[4] Girton D G, Kamiya J, "A simple on-line technique for removing Eye Movement Artifacts from the EEG" Electroencephalography and Clinical Neurophysiology, Vollume 34, pp 212-216, 1973.
[5] Quilter P M, MacGillivray B B, Wadbrook D G, "The Removal of Eye Movement Artefact from EEG Signals using Correlation Techniques".

Random Signals Analysis, IEE Conference Publication No. 159, pp 93-100, 1977.
[6] Hillyard S A; Galambos R, "Eye Movement Artifact in the CNV"

Electroencephalography and Clinical Neurophysiology, Volume 28, pp 173-182, 1970.
[7] Corby J C, Kopelil B S, "Differential Contributions of Blinks and Vertical Eye Movements as Artifacts in EEG Recording"

Psychophysiology, Volume 9, pp 640-644, 1972.
[8] Cooper R, Osselton J W, Shaw J C, "EEG Technology" Chapter 2, page 20 Third Edition, Published by Butterworths, London, 1980.
[9] Walter, W G, Cooper R, Aldridge V J, McCallum W C, Winter A L, "Contingent Negative Variation": An Electric Sign of Sensorimotor Association and Expectancy in the Human Brain". Nature, Volume 203, pp 380-384,1964.
[10] Rabiner L R, Gold B, "Theory and Application of Digital Signal Processing"

Chapter 3 and pp 194-204 Published by PrenticeHall, New Jersey, 1975.
[11] Sayers B McA, Beagley H A, Henshall W R, "The Mechanism of Auditory Evoked EEG Responses" Nature, Volume 247, pp481-483; 1974.
[12) Sayers B, McA, Beagley H A, "Objective Evaluation of Auditory Evoked EEG Responses". Nature, Volume 251, pp 608-609, 1974.
[13] Inbar G F (Editor), "Signal Analysis and Pattern Recognition in Biomedical Engineering". Part 1, pp 7-22 Published by Halsted Press Division, John Wiley \& Sons, New York 1975.
[14) Sayers B, McA, Beagley HA, Riha J, "Pattern Analysis of Auditory Evoked EEG Potentialis" Audiology, Volume 18, pp 1-16, 1979.
[115] Beagley H A, Sayers B McA, Ross A J, "Fully Objective ERA by Phase Spectral Analysis" Acta Oto-laryngologica Volume 87, pp 270-278, 1979.
[16] Ross A J, Beagley H A, Sayers B McA, "Signal Statistics in Objective Auditory Evoked Potential (Detection by the Phase Spectral Method" Journal of Biomedical Engineering, Volume 2, pp 310314, 1980.
[17] Otnes R K, Enochson L, "Digital Time Series Analysis" pp 281-285 Published by John Wiley and Sons, 1972.
[18] Robinson E A, "Multichannel Time Series Analysis with Digital Computer Programs"

Page 63 Published by Holden-Day, San Francisco Revised Edition 1978.

4. Experimental Apparatus

In order to investigate the processing of EEG signals a data acquisition and storage system was required. Several constraints were placed on the choice of this system. The most serious constraint was the lack of finance to fund such a system. However a considerable amount of equipment was available both at the Polytechnic and at Freedom Fields Hospital. Thus whilst the apparatus described here may not be the most elegant solution possible, it is a solution which, for the main parts, utilised freely available equipment.

4.1 Choice of Apparatus

Two commonly used methods for the storage of the EEG data were initially considered. The first of these being an analogue magnetic tape system. This method has the advantage that large amounts of data may be recorded and stored for subsequent retrieval and analysis. Typical modern instrumentation tape recorders are capable of storing seven channels of data with a bandwidth extending from d.c. (by the use of frequency modulation) to 20 kHz or more depending on the tape speed. Since EEG signals are normally of interest between d.c. and 40 Hz . very low tape speeds may be used. With such low speeds many hours of data may be stored on a 366m (1200 feet) spool of tape.

The second technique considered was on-line digital storage. The signals are first amplified and filtered in the normal way but are than digitised instead of being sent to the usual., EEG chart recorder. The digitised signal may be
stored on any convenient medium but magnetic tape or disk is most common due to the high rates at which the data may be transferred. This method has the advantage that once digitised, the signals are subject to no further noise or distortion. Since two minicomputers were available one of which had a high speed analogue-to-digital converter, multiplexer and numerous other interface components, and the other a flying head disk of approximately 2.5 M bytes capacity, the digital method was chosen. Furthermore, since evoked responses lasting but a few seconds were to be studied the disadvantage of being unable to store more than a few minutes of data was not considered important. An added bonus was that the minicomputer could be programmed to provide pulses at the chosen instant to trigger the external stimulus generators necessary for evoked response studies.

4.2 Analogue Electronics

Figure 4-1 is a block diagram of the complete data acquisition system. The EEG signals were obtained from silver-silver chloride electrodes attached to the subject by glue or adhesive tape. These signals were fed into the electrode selector switches and differential amplifiers of an eight channel Elma-Schönander electroencephalograph. In addition to producing the normal paper chart record, the electroencephalograph was coupled to external amplifiers and filters to allow the information from six of the eight channels to be digitised and stored for subsequent analysis.

The point at which the signals were extracted from the EEG machine was chosen such that the electrode selector

switches and the first stage (d.c. coupled x 50) of amplification were utilised (see Figure 4-2). The next stage of amplification in the EEG machine could not be used because the interconnection between the first and second stages formed a high pass C-R network with a cut-off frequency of 0.069 Hz . This frequency was not low enough for CNV recordings where 0.016 Hz . is usually considered to be a more appropriate lower limit (this value corresponds to a time constant of 10 seconds). For this reason the differential outputs of the first stage were wired to a 25 pin 'D type' socket on the rear of the EEG machine. In this way the machine was still able to perform its normal duties and could simply be un-plugged from the additional equipment used to digitise the signals. When used for data logging a fairly short screened multicore cable with a 25 pin 'D type' plug at either end was used to connect the EEG machine to a screened box containing modules for amplifying, filtering and sampling six of the eight EEG machine channels (further modules could be added at a later date should it become necessary to digitise all eight channels).

The input circuit of each module (see Figure 4-3) comprised of a differential high pass C-R network with switchable capacitors to give cut-off frequencies of $0.016,0.034$ and 0.16 Hz . The differential signals were then converted to unbalanced form by an amplifier comprising of two BIFET ${ }^{\dagger}$ operational amplifier integrated circuits (RCA type 3140) and a single bipolar operational amplifier (type $\mu \mathrm{A}$ 741). The gain of this stage was adjusted to 1100 . The variable resistor VR1 was incorporated to allow optimisation of the

[^3]

> 16 switches allowing any of the 8 channels to be connected to any pair of scalp electrodes.

The circuit of an amplifier and sample hold module
common mode rejection ratio (CMRR). The diodes $d_{1}-d_{4}$ were incorporated to protect the input circuits of the 3140 operational amplifiers.

The output of this stage was then fed into a second order active filter based on the Sallen and Key design [1]. The calculation of the circuit elements for the desired cut-off frequencies (30,70 and 130 Hz . switch selectable) was simplified by the use of the tables given in Millman and Halkias [2]. After careful consideration of the various frequency response characteristics the Butterworth filter was chosen because it had a suitably flat amplitude response in the passband without undue phase distortion. The cut-off frequencies of 30,70 and 130 Hz . were chosen because they are commonly used in EEG work and would therefore make any results obtained from our data logging system comparable with results obtained by other workers. Low pass filtering is necessary to prevent aliasing in the subsequent digitisation stage and to attenuate some of the unwanted higher frequency components (e.g. muscle artefact, power frequency interference etc.) High pass filtering (the CR input network) was included to minimise the drift which can occur because of electrode instability. After low pass filtering the signals were further amplified by an operational amplifier (type $\mu \mathrm{A}$ 7.41) connected in the non-inverting mode with a variable gain. The gain of these amplifiers was set to utilise the complete range of the 12 bit analogue to digital converter with scalp signals of \pm $700 \mu \mathrm{~V}$ (channels $1-4$) and $\pm 350 \mu \mathrm{~V}$ (channels 5 \& 6). The final function of the modules was to sample and hold the output of the final amplifier at the required instant in time.

This function was performed by a Signetics type LF 398 integrated circuit.

In order to sample the analogue signals at the required rate a pulse signal was generated by an oscillator and divider network which was then fed into each of the six sample and hold IC's. This pulse signal was also fed into the PDP 8/f Hybrid Computer Interface [3] so as to cause an interrupt at every sample instant. Since the sampling was to be performed at precisely regular intervals a quartz crystal oscillator and a frequency divider were built specially. The oscillator (Figure 4-4) used a circuit recommended by the crystal manufacturers [4] and provided a signal of approximately 1 volt RMS at a frequency of 100 kHz . This signal was squared by $\mathrm{T}_{\mathrm{r}} 2$ and divided in frequency by two Transistor-Transistor Logic (TTL) 7490 decade dividers and a TTL 74.934 bit binary divider as shown in Figure 4-4. The outputs of the 7493 give possible sampling frequencies of $500,250,125$ or $62 \cdot 5 \mathrm{~Hz}$. Since only two of these frequencies were likely to be needed (125 or 250 Hz..) a two position toggle switch was employed to select the required frequency and feed it to the input of a TTL 74121 monostable multivibrator. This device was employed to convert the square wave output of the divider chain into a pulse waveform, with a $100 \mu \mathrm{~s}$ active period, necessary for the sample hold circuit. The sampling frequencies are accurate to within approximately one part in 10^{5}.

The six sampled analogue waveforms were then passed to an Analogue Devices : MPX8A multiplexer and a Hybrid Systems Corp. ADC-591-12A-G 12 bit analogue to digital converter. These two devices were part of the PDP 8/f Hybrid Computer Interface

designed and built by Yeats [i3].

4.2.1 Testing of the Analogue Electronics

The amplitude and phase responses of one channel of the measurement system are shown in Figures 4-5a and 4-5b. In addition to measuring the amplitude and phase responses other tests were performed to determine the common mode rejection ratio (CMRR) and the effect of the filtering on a ramp waveform (similar to an ideal CNV). The CMRR was measured by connecting the inputs of the channel under test together at the headbox and injecting a 15 Hz . sine wave signal between the connected inputs and earth. The common mode input voltage (V_{ic}) and the output voltage (V_{OC}) were measured and the common mode gain (A_{C}) found by dividing V_{Oc} by V_{ic}. The CMRR was then obtained by dividing the differential gain (A_{D}) by the common mode gain (A_{C}). The values of the CMRR for channels 1 and 5 are given in table 4-1.
Table 4-1

The Common Mode Rejection Ratio for Channels 1 and 5

CHANNEL	A_{D}	A_{C}	CMRR	CMRR $d B$
$1+$	14290	0.182	78520	97.9
5^{+}	28570	0.2 .12	134800	102.6

\dagger
The time constant was set to 10 seconds and the low pass filter was set to a cut-off frequency of 30 Hz .

The circuit of Figure 4-6 was used to show the likely effect of the low and high pass filters on an ideal CNV response. The function generator was set to deliver a ramp waveform which was fed into an attenuator and also to the Channel 2 multiplexer input. The output of the attenuator was fed into the headbox and amplified and filtered in the usual way before being passed on to the multiplexer. Figures 4-7a and 4-7.b show the two waveforms, one having been subjected to low and high pass filtering, and the other having undergone no filtering ${ }^{\dagger}$ It may be observed from these diagrams that the distortion introduced is quite small. The settings of the low and high pass filters were 30 Hz . and 0.016 Hz . ('time constant $=10$ seconds). The amplitude of the ramp signal at the headbox input connections was as indicated in Figure 4-7b. Because of the unusual connection the voltages indicated in Figure 4-7a must be multiplied by the system gain (14290) to give the true voltage levels.
\dagger except that inherent in the sampling process.

* See Figures 4-2 \& 4-3.

Figure 4-7a
The ramp input waveform (X 14290)

Figure $4-7 \mathrm{~b}$
The ramp output waveform.

In order to transfer the digital data from the minicomputer in the measurement room to the remote minicomputer with the magnetic disk, a pair of high speed serial data transceivers were designed and built. Two identical units were made to allow bi-directional communications to take place over a four-wire link using the 20 mi current loop convention. The units were constructed on Vero-cards with 43way edge connectors suitable for insertion into the extended input/output (I / O) bus racking system with which both the PDP 8!s were fitted. This bus comprised of all the input/ output timing pulses, the accumulator input and output lines six of the twelve memory buffer lines (from which the $1 / 0$ devices were addressed), the instruction skip line, the interrupt request line and power supplies of $+15,+5$, and -15 volts. A block diagram of one of the serial transceivers is given in Figure 4-8. The design of the transceivers was based on two large scale integration integrated circuits. These were the Intersil 6402 Universal Asynchronous Receiver Transmitter (UART) and the Motorola MC 14411 Baud rate generator. The UART is a device capable of translating 8 bit parallel binary data into a serial data stream at a rate determined by an externally supplied clock signal. Simultaneously the device can receive a serial data stream and convert it to an 8 bit parallel binary data word. By means of an internal register, which may be loaded by the user, the device can be instructed to perform many variations on this basic theme. (e.g. the device can be instructed to generate a parity bit and append this to the data being transmitted whilst any received data is

checked for parity errors). The Baud rate generator was used to generate one of a number of standard frequencies used for serial data transmission. Selection of the particular frequency required was controlled by a group of five dual-in-line switches giving serial data rates from 75 Baud up to $38 \cdot 4 \mathrm{k}$ Baud. The full circuit diagram of one of the transceivers is given in Figure 4-9. In order to achieve electrical isolation between the equipment in the measuring room and the remote minicomputer, all the data (both transmitted and received) was passed through a pair of optoisolators.

Numerous Transistor-Transistor Logic (TTL) gates perform the necessary interfacing and decoding between the signals on the 43-way I/O. bus and the UART. Additional circuitry,"in the form of $I / C ' s 10$ and 13 , perform the functions associated with the control and generation of programme interrupts. These interrupts may be generated when the UART is ready to transmit another 8 bit word (a transmitter interrupt) or when the UART has just received an 8 bit word (a receiver interrupt): I/C 14 performs an 'inclusive $O R$ ' of the three possible receiver error conditions which may then be detected (by the software) upon execution of a 'Skip on error' instruction. Table 4-2 gives a list of the instructions decoded and acted upon by the serial transceivers.

[^4]

Instructions Obeyed By The Serial Data Transceivers

OCTAL INSTRUCTION CODE	MNEMONIC	ACTION
6621	SDR	Skip if the receiver has
6631	RUD	Read the data word
6641	SKERR	Skip if an error has been detected
6622	DUI	Disable all interrupts
6632	ERI	Enable receiver interrupts
6642	ETI	Enable transmitter interrupts
6624	STR	Skip if the transmitter is ready for more data
6634	LStat	Load the control status register
6644	OUT	Load the data and transmit

A more detailed account of the operation of these instructions and their effect on the serial data transceivers is given in Appendix 8.9.

The analogue to digital (A-D) converter and the multiplexer were controlled by a Digital Equipment Co. PDP 8/f minicomputer with 8 k words of ferrite core memory. Since evoked potentials were to be studied the computer was also used to present trigger pulses to the external stimulus generators at the appropriate instants. As the digital data was acquired it was stored in the memory of the minicomputer. Simultaneously the data was transmitted over a high speed serial data link to the second PDP 8 minicomputer some distance away from the measurement room for storage on a magnetic disk.

The operation of the complete measuring system can best be described by outlining the sequence of events involved in obtaining a single evoked response.
(i) The minicomputer waits until the operator pushes a button to start the acquisition process.
(iii) Under interrupt control the six analogue data channels are digitised and stored in the memory of the minicomputer. The interrupts are generated by a crystal oscillator and divider giving either 125 or 250 samples per second.
(iii) Under interrupt control the data stored in the memory of the minicomputer is transferred via the serial data link to the second (remote) minicomputer. The interrupts are generated every time the serial data link becomes inactive.
(iv) When not busy (i.e. when not interrupted) the minicomputer displays via two ten bi.t digital-toanalogue converters and an X-Y CRT display any one of the six incoming data channels.
(v) When each sample is taken the minicomputer checks the sample number and if a preset number have been taken it sends a pulse to trigger the first stimulus generator.
(vi) When each sample is taken the minicomputer checks the sample number and if another preset number have been taken it sends a pulse to trigger the second stimulus generator.
(vii) After each sample has been taken a test is performed to determine whether the required total number of samples have been taken and if so whether they have all been sent to the remote minicomputer for permanent storage.
(viii) If both conditions in (vii) are met then the minicomputer waits for the remote minicomputer to acknowledge that the data has been successfully stored before returning to state (i) above.

The sequence of events for the remote minicomputer is as follows;
(i) Send the 'Ready' signal to the minicomputer in the measurement room.
(ii) Wait for the data and store it in core memory as it arrives. Perform tests to detect transmission errors. When all the data for the evoked response has been received store it. on the magnetic disk.
(iv) Return to state (i)

The two programmes to perform the above tasks were written in the PAL 8 assembly language and listings are given in Appendices 8.10 and 8.11.

It should be noted that the speed of the serial data link may be greater or less than the rate at which the data is acquired since the computer memory is used as a temporary storage buffer.

For analysis and processing of the evoked responses the data stored on the magnetic disk of the PDP 8 minicomputer was transferred on either paper tape or floppy disks to a large database on the Polytechnic main computer.

4.5 Other Equipment

4.5.1 Eye Movement Correction Screen

Our experiments comparing the effectiveness of various methods of removing eye movement artefact from the EEG were undertaken with the aid of a simple wooden screen shown in Figure 4-10. The screen was approximately 1.3 m square into which a set of nine 5 mm red light emitting diodes (L.E.D.'s) were inserted on a 0.55 m grid. A remote control box allowed any of the LED's to be switched on or off as required. The procedure adopted for using the screen is described in Section 3.3.

Figure 4-10

The eye movement correction screen.

4.5.2 The CNV Stimulus Generator

In order to record CNV's it is necessary to present the subject with some form of stimulus. The type of stimulus is not important to the final result and the two most commonly used stimuli are auditory and visual. Some workers use two auditory stimuli (e.g. a click followed by a tone [5] whereas others use combinations of auditory and visual stimuli (e.g. a click followed by a flashing light [6]. Our initial experiments at Freedom Fields Hospital had indicated that the use of a visual stimulus was to be avoided if possible since this often resulted in the subject blinking and hence introducing an artefact in synchronism with this stimulus.

The stimulus paradigm subsequently chosen was that of a click followed by a 1 kHz . tone of 90 dB . intensity (A weighting). The circuit used for generating this is given in Figure 4-11.

In order to obtain correct CNV responses the subject must perform some action upon receipt of the second stimulus. It is normal practice to use a hand held push button which the subject is required to press.

It is also normal for the push buttom to be connected to the stimulus generator in order to terminate the second stimulus. This feature gives the subject some motivation for responding to the second stimuli and was incorporated in our stimulus generator.

The equipment used in the recording of the AEP's was virtually identical to that used for the CNV's. The only difference was in the generation of the stimulus. The auditory stimuli were deli'vered from an Amplaid stimulus generator to the right transducer of a pair of Koss K6 stereo headphones. Triggering of the stimulus generator was performed at the required instants by the PDP 8 minicomputer. Two different levels of stimulus were applied. A 1 kHz . tone of 100 ms duration incliuding 10 ms of rise and fall according to a cosine squared law was used. The low level stimulus was applied at a level of 40 dB . above the subject's auditory threshold, while the high level stimulus was applied 70 dB . above it. These stimuli were presented as the subject sat relaxed in a chair.
[1] Sallen R P, Key E L, "A Practical Method of Designing R C Active Filters"

Institute of Radio Engineers, Transactions on Circuit Theory, Volume CT2, pp 74-85, 1955.
[2] Millman J, Halkias C C, "Integrated Electronics: Analog and Digital Circuits and Systems" Chapter 16, page 550. Published by McGraw-Hill Kogakusha Ltd., 1972.
[3] Yeats R W, "Hybrid Computing and its Applications" Internal Report, School of Electrical Engineering, Plymouth Polytechnic, January 1975.
[4] Interface Quartz Devices Ltd., "Typical Oscillator Circuits" Available from Interface Quartz Devices Ltd., 29 Market Street, Crewkerne, Somerset TA18 7JU.
[5] Hillyard S A, Galambos R; "Eye Movement Artifact in the CNV"

Electroencephalography and Clinical Neurophysiology, Volume 28, pp 173-182, 1970.
[6] Walter W G, Cooper R, Aldridge V J, McCallum W C, Winter A L, "Contingent Negative Variation: An Electric Sign of Sensorimotor Association and Expectancy in the Human Brain" Nature, Volume 203, pp 380-384, July 1964.

5.1 Eye Movement Corrections

A set of typical waveforms depicting the raw EEG, the raw (vertical left) EOG and the corrected EEG are given in Figure 5-1 (a-c). Also shown are the autocorrelation functions (a.c.f.'s) of the EEG, the EOG and the corrected EEG signals Figure 5-1 (d-f). Table 5-1 gives the results as evaluated from the plots derived from four experiments. This table gives both the frequencies and the autocorrelation co-efficients (a.c.c.'s, see Section 2.4 for details) of each of the corrected EEG's along with the frequency of the EOG deduced from its own a.c.f. Some of the frequencies present appear to be harmonics of the EOG which suggests that the path between the eye and the scalp electrode may be frequency selective or non-linear. If this is so then the proportions of the harmonics making up the rectangular EOG will not be maintained at the scalp electrode. This will result in some harmonics being over or under corrected and thus remaining in the output waveform.

When the artefact contains components due to both eye movements and blinks (which do not have the same effect on the EEG [1]), then the computerised correction will attempt to achieve an optimum correction so that as much as possible of both components is removed. This is still a compromise however, since neither artefact signal can be completely removed by this method whilst the other is present in the same section of signal record. The methods of McCallum and

(a)

The ACF of (a)

(b)

The ACF of (b)

(c)

The ACF of (c)

QUANTITATIVE RESULTS OF EYE MOVEMENT

EXPERIMENTS

EYE MOVEMENT	PARAMETER	$\begin{aligned} & 2 \text { CHANNEL } \\ & \text { CORRECTION } \\ & (\pm 0.02) \end{aligned}$	3 CHANNEL CORRECTION (± 0.02)	4 CHANNEL CORRECTION (± 0.02)	$\begin{aligned} & \text { ANALOGUE } \\ & \text { CORRECTION } \\ & (\pm 0.02) \end{aligned}$	$\begin{gathered} \text { EOG } \\ \text { FREQ. } \\ (\pm 0.02) \end{gathered}$	INTERPRETATION
DOWN	FREQ. r	$\begin{aligned} & 0.70^{\text { }} \\ & 0.09 \end{aligned}$	$\begin{aligned} & \text { N.P. } \\ & \text { N.P. } \end{aligned}$	N.P. N.P.	$\begin{aligned} & 0.38^{*} \\ & 0.38 \end{aligned}$	0.38	A B
LEFT	FREQ. r	$\begin{aligned} & \mathrm{N} . \mathrm{P} . \\ & \mathrm{N} . \mathrm{P} . \end{aligned}$	$\begin{aligned} & \mathrm{N} . \mathrm{P} . \\ & \mathrm{N} . \mathrm{P} . \end{aligned}$	N.P. N.P.	$\begin{aligned} & 0.27+ \\ & 0.16 \end{aligned}$	0.36	A
UP	FREQ. r	N. P. N.P.	N. P. N.P.	N. P. N.P.	$\begin{aligned} & 0.33+ \\ & 0.22 \end{aligned}$	0.38	A
RIGHT	FREQ. r	$\begin{aligned} & 0.55^{*} \\ & 0.22 \end{aligned}$	$\begin{aligned} & 0.50^{*} \\ & 0.15 \end{aligned}$	$\begin{aligned} & 0.50^{*} \\ & 0.15 \end{aligned}$	$\begin{aligned} & 0.55^{*} \\ & 0.28 \end{aligned}$	0.52	A

FREQ. = frequency of autocorrelation function (Hz)
$r=$ autocorrelation coefficient at $T=2 \mathrm{sec}$.
N.P. denotes a non-periodic autocorrelation function indicating complete correction.

A means correlation technique better than analogue technique.
B means 4 and 3 channel correction are better than 2 channel.

* denotes a frequency related to the EOG frequency.
+ denotes a frequency unrelated to the EOG frequency.

Waliter, and Girton [2] and Kamiya [3] make no allowances at all for the differential contributions of blinks and eye movement artefacts.

The deductions made from forty-eight experiments are summarized in Table 5-2. Due to the amount of computer time involved only the vertical and horizontal eye movements were analysed (i.e. The Forty-eight other experiments involving the subjects looking to the corners of the eye movement screen were, with a few exceptions, not analysed).

Table 5-2

Summary of Results of Quantitative
Eye Movement Experiments

INTERPRETATION	VERTICAL EYE MOVEMENT	HORIZONTAL EYE MOVEMENT
A	20	
D	3	17
E	3	7
F	2	0
G	1	0
H	1	1

A means the correlation correction method was better than the analogue method.
D means both the correlation correction and the analogue correction were equally effective.
E means the 3 -channel correction was better than the 2 channel correction.
F. means the 2 channel correction was better than the 3 channel correction.

G means the 4 channel correction was not the best.
H means the correlation correction was incomplete.

From Table 5-2 it was deduced that:
(i) The correlation correction technique was complete in 96% of the cases.
(ii) In the majority of cases (77\%) the correlation correction technique was superior to the analogue correction technique.
(iii)In 21% of the cases it was not possible to distinguish between the effectiveness of the analogue and correlation techniques.
(iv) The evidence from interpretations E and F suggests that to correct for horizontal eye movements it may be necessary always to use the 3 -channel correction rather than only a 2 -channel correction. This is to be expected since the ocular dipoles tend to oppose each other during horizontal eye movements whereas they re-inforce each other during vertical eye movements.
(v.) Interpretation G indicates that in 98% of cases the $4-$ channel correction is as good as or better than the other methods. However if computing time is at a premium (e.g. in an on-line situation) it would probably be adequate to rely on the 3-channel correction method.
(vi) Interpretation D shows that the analogue technique was as good as the correlation technique more often for horizontal eye movements than for vertical eye movements. (7 times against 3 times out of 48 experiments). Since the analogue technique is not intended to correct for horizontal eye movements, this suggests that it may

In addition to the points previously mentioned, two other disadvantages of the analogue techniques were noted. Firstly it was difficult to optimise the potentiometer setting required to minimise the artefact and analogue correction would therefore be very time consuming in multichannel recording. Second, in all the subjects tested there was a degree of coupling between the EOG and EEG when the EOG changed rapidly. This was probably due to the R.C. network formed by the potentiometer resistance ($25 \mathrm{k} \Omega$) and the electro-chemical capacitance of the electrode-skin interface. This effect was reduced when a larger value potentiometer (1M Ω) was used. Unfortunately however this solution adversely affects the common mode rejection ratio of the EEG machine's differential amplifier (because of the increased source impedance of the input with the $1 M \Omega$ potentiometer in circuit). The presence of this R.C. time constant will result in distortion of the EOG and hence false correction of the artefact. This may be the reason behind the evidence in (Vi) above that the analogue technique may even be erroneous. This is illustrated in Figure 5-2.

In conclusion it was found that the 4 -channel computerised correlation method of correcting the EEG for eye movement artefact gave complete correction in 96% of the cases studied. However, in practice the 3 -channel method would normally be adequate. The analogue technique was never the best. Furthermore it was very time consuming and quite possibly erroneous.

E_{i}	scalp EEG signal.
C_{o}	stray capacitance (usually negligible).
R_{s}	resistance of the electrode jelly.
R_{f}	Faradic resistance.
W	Warburg impedance.
C	electro-chemical capacitance.
	see [11] for further details.
	+These quantities are usually resistive and small for Ag-AgCl electrodes.

Normal situation when R_{1} is
large in comparison with $\mathrm{R}_{\mathrm{f}}+\mathrm{W}$.

The situation when R_{1} is small.

Figure 5-2 The effect of electrode loading.

Some of the above work has been published [4].

A more detailed account has also been written as a longer paper with the title "Comparison of Methods for Removing Eye Movement Artefact from the EEG" for submission to the IEEE Transactions on Biomedical Engineering. This paper has not yet been submitted at the request of the National Research Development Corporation who have awarded a grant towards the development of a Commercial EEG Eye Movement Artefact Corrector based on the above work which they intend to patent.

5.2 Auditory Evoked Potentials

64 pre-stimulus and 64 post-stimulus realisations each of length 0.512 s were recorded at the two levels of stimulus for three different subjects.

Following the earlier work [5-8], the pre- and poststimulus realisations were given the statistical test described in 2.2.3.1 above, the test for changes in signal energy, and phase histograms were also plotted for the first six harmonic frequency components. The statistical test showed that only one out of the six sets of results (3 subjects $x 2$ stimulus levels) exhibited a significant energy difference and in the sense that the energy in the poststimulus case exceeded that in the pre-stimulus case.

The results of these tests are shown in table 5-3.

Table 5-3

Comparison of Pre- and Post- Stimulus AEP Energy

	Subject	$\begin{aligned} & \text { Mean of } \\ & \text { difference } \\ & \times 10^{-8} \end{aligned}$	(degrees of freedam)	$\begin{gathered} \mathrm{T} \\ \text { Statistic } \end{gathered}$	\%. Significance
Low	1	0.0075	63	0.129	N-S
LEVEL	2	-. 1305	63	-0.709	$\mathrm{N}-\mathrm{S}$
STIMULUS $(+40 \mathrm{~dB})$	3	0.6817	63	2.729	1.0
HIGH	1	0.1265	63	1.548	20
LEVEL	2	0.2238	63	1.129	N-S
STTMULUS (+ 7.0dB)	* 3	0.2558	63	0.886	N-S

* 65dB. above threshold

The results obtained were in accord with Sayers' findings [5] since he could not establish any consistent difference between the pre- and post- stimulus energies of the averaged waveform. This result led Sayers to the important conclusion that if there were no additional energy in the evoked response, then the characteristic shape of the AEP must be due to some form of phase alignment of certain background components.

However, this test was not considered very reliable since the contribution of every harmonic component was included in the energy calculation and the higher harmonics were probably representative of background noise. Thus the effects of background noise were likely to mask the presence of the AEP. Furthermore, while the phase histograms indicated phase ordering they did not reveal the cause. For these reasons the findings of the previous workers [5-8] although confirmed, were not considered conclusive.

The data was also subjected to the other statistical tests described in sections 2.2.2 and 2.2.3. These tests held potential advantages over the previous test since they were applied to individual harmonic components. They could therefore be used to investigate the first few harmonics which would be expected to constitute the major components of the AEP. The higher harmonics which were expected to be associated with the random background could be ignored. Typical pre- and post- stimulus phasor diagrams are shown in Figure 5-3. The triangles on the circles indicate the directions in which the phasors lie, while the crosses indicate the locations of the phasor tips. The results of the statistical tests carried out for harmonic numbers 1-6 are shown in Table 5-4. Each broad column of results contains the value of the test statistic, the number of degrees of freedom v and the level at which the result is significant. A significant positive result in column (B) means that the nearest mean amplitude is greater than the furthest. A significant positive result in column (C) means that the post-stimulus amplitude is greater than the pre-stimulus

```
PRE STIM.
POST STIM.
HARMONIC 1
```


PRE STIM.
POST STIM.
HARMONIC 2

Figure 5-3

Typical Pre- and Post-Stimulus AEP phasor
diagrams

HARMONIC STMBER 5 FRECUNXI	STIMUUS LEVEL	SUBJECT	NEAREST-FURTMEST YEAN AMPLITUDE (B)			PRE-POST MEAN amplitude DIFYERENCES (C)			RAYTEIGH CIRCUAR VARTANCE (D)	HCOGES-ANE (E)		MOOIFIED RAMIEIG: CISCUAR VARIAMCE (F)
			T	v	\$	T	v	5	So s	m	5	to \$
$\begin{gathered} 1 \\ 1.953 \\ \mathrm{~Hz} \end{gathered}$	Lew	1 2 3	-0.294 3.67 1.69	63 64 63	$\begin{aligned} & \text { N-S } \\ & .05 \\ & 5 \end{aligned}$	$\left\lvert\, \begin{gathered} -0.273 \\ 3.96 \\ 1.01 \end{gathered}\right.$	63 63 63	$\begin{aligned} & \mathrm{N}-\mathrm{S} \\ & 0.1 \\ & \mathrm{~N}-\mathrm{S} \end{aligned}$	$\begin{array}{ll} 0.735 & 5 \\ 0.612 & 0.1 \\ 0.398 & 0.1 \end{array}$	19 12 7	$\begin{aligned} & 2.5 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.6771 \\ & 0.4390 .1 \\ & 0.3450 .1 \end{aligned}$
	HIGH	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	1.55 0.550 -0.136	62 61 38	$\begin{aligned} & 10 \\ & \mathrm{~N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \end{aligned}$	$\begin{aligned} & 2.80 \\ & 5.35 \\ & 2.50 \end{aligned}$	63 63 63	$\begin{aligned} & 1 \\ & 0.1 \\ & 2 \end{aligned}$	$\begin{array}{ll}0.538 & 0.1 \\ 0.278 & 0.1 \\ 0.332 & 0.1\end{array}$	13 4 5	0.005 0 0	$\begin{array}{lll}0.477 & 0.1 \\ 0.224 & 0.1 \\ 0.336 & 0.1\end{array}$
$\begin{gathered} \stackrel{2}{3.906} \\ \mathrm{~Hz} \end{gathered}$	Low	1 2 3	$\begin{aligned} & 1.68 \\ & 0.992 \\ & 0.700 \end{aligned}$	64 58 64	$\begin{aligned} & 5 \\ & \mathrm{~N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \end{aligned}$	$\begin{aligned} & 2.27 \\ & 4.13 \\ & 6.78 \end{aligned}$	$\begin{aligned} & 63 \\ & 63 \\ & 63 \end{aligned}$	$\begin{aligned} & 5 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{array}{ll} 0.584 & 0.1 \\ 0.487 & 0.1 \\ 0.204 & 0.1 \end{array}$	14 11 2	$\begin{gathered} 0.019 \\ 0 \\ 0 \end{gathered}$	$\begin{array}{ll} 0.512 & 0.1 \\ 0.461 & 0.1 \\ 0.198 & 0.1 \end{array}$
	HIG	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{gathered} -0.513 \\ 5.09 \\ 0.851 \end{gathered}$	59 55 64	$\begin{aligned} & \mathrm{N}-\mathrm{S} \\ & .05 \\ & \mathrm{~N}-\mathrm{S} \end{aligned}$	$\begin{aligned} & 4.96 \\ & 3.34 \\ & 5.85 \end{aligned}$	$\begin{aligned} & 63 \\ & 63 \\ & 63 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{array}{ll} 0.440 & 0.1 \\ 0.445 & 0.1 \\ 0.266 & 0.1 \end{array}$	10 12 6	$\begin{gathered} 0 \\ 0.001 \\ 0 \end{gathered}$	$\begin{array}{lll}0.340 & 0.1 \\ 0.308 & 0.1 \\ 0.205 & 0.1\end{array}$
$\begin{gathered} 3_{3}^{3} \\ 5.893 \\ \mathrm{~Hz} \end{gathered}$	L0w	1 2 3	$\begin{aligned} & 2.33 \\ & 0.480 \\ & 0.498 \end{aligned}$	62 64 63	$\begin{aligned} & 2.5 \\ & \mathrm{~N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \end{aligned}$	$\begin{aligned} & 3.57 \\ & 2.16 \\ & 0.632 \end{aligned}$	63 63 63	$\begin{aligned} & 0.1 \\ & 5 \\ & v-5 \end{aligned}$	$\begin{array}{ll} 0.370 & 0.1 \\ 0.605 & 0.1 \\ 0.643 & 0.1 \end{array}$	9 17 16	$\begin{gathered} 0 \\ 0.45 \\ 0.17 \end{gathered}$	$\begin{array}{ll} 0.254 & 0.1 \\ 0.504 & 0.1 \\ 0.594 & 0.1 \end{array}$
	HIG	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{gathered} 2.83 \\ 0.0 \\ -0.763 \end{gathered}$	$\begin{aligned} & 64 \\ & 63 \\ & 42 \end{aligned}$	$\begin{aligned} & 0.5 \\ & \mathrm{~N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \end{aligned}$	$\begin{aligned} & 3.50 \\ & 1.60 \\ & 1.91 \end{aligned}$	63 63 63	$\begin{aligned} & 0.1 \\ & 20 \\ & 10 \end{aligned}$	$\begin{array}{ll} 0.303 & 0.1 \\ 0.580 & 0.1 \\ 0.572 & 0.1 \end{array}$	5 14 13	$\begin{gathered} 0 \\ 0.019 \\ 0.005 \end{gathered}$	$\begin{array}{ll} 0.199 & 0.1 \\ 0.350 & 0.1 \\ 0.502 & 0.1 \end{array}$
$\underset{\substack{4 \\ 7.812 \\ \mathrm{H}_{2}}}{\substack{4 \\ \hline}}$	Low	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{gathered} 1.51 \\ -0.362 \\ 3.08 \end{gathered}$	$\begin{aligned} & 64 \\ & 63 \\ & 61 \end{aligned}$	$\begin{aligned} & 10 \\ & \mathrm{~N}-\mathrm{S} \\ & 0.5 \end{aligned}$	$\begin{gathered} 0.0 \\ -0.310 \\ 1.75 \end{gathered}$	63 63 63	$\begin{aligned} & \mathrm{N}-\mathrm{S} \\ & \mathrm{~N}-5 \\ & 10 \end{aligned}$	$\begin{array}{ll} 0.735 & 5 \\ 0.757 & 5 \\ 0.542 & 0.1 \end{array}$	20 20 14	5.1 5.1 0.019	$\begin{array}{ll} 0.648 & 1 \\ 0.789 & \mathrm{~N}-\mathrm{s} \\ 0.421 & 0.1 \end{array}$
	HIG	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{gathered} 1.75 \\ -1.18 \\ 0.995 \end{gathered}$	$\begin{aligned} & 63 \\ & 61 \\ & 64 \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{N}}^{\mathrm{N}} \mathrm{~S} \\ & \mathrm{~N}-\mathrm{S} \end{aligned}$	$\left\lvert\, \begin{gathered} 1.81 \\ -1.40 \\ 1.75 \end{gathered}\right.$	63 63 63	$\begin{aligned} & 10 \\ & 20 \\ & 10 \end{aligned}$	$\begin{array}{ll} 0.403 & 0.1 \\ 0.777 & 5 \\ 0.458 & 0.1 \end{array}$	7 22 11	$\begin{array}{r} 0 \\ 20 \\ 0 \end{array}$	$\begin{array}{ll} 0.282 & 0.1 \\ 0.797 & \mathrm{~N}-\mathrm{S} \\ 0.417 & 0.1 \end{array}$
$\begin{gathered} \stackrel{3}{9.765} \\ \mathrm{~Hz} \end{gathered}$	LOW	1 2 3	$\begin{gathered} -1.21 \\ 0.07 \\ 0.814 \end{gathered}$	$\begin{aligned} & 47 \\ & 64 \\ & 64 \end{aligned}$	$\begin{aligned} & \mathrm{N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \end{aligned}$	$\left\lvert\, \begin{gathered} 1.90 \\ -0.092 \\ 1.81 \end{gathered}\right.$	63 63 63	$\begin{aligned} & 10 \\ & \mathrm{~N}-5 \\ & 10 \end{aligned}$	$\begin{array}{ll} 0.787 & 10 \\ 0.348 & \mathrm{~N}-5 \\ 0.713 & 1 \end{array}$	23 24 17	$\begin{aligned} & 20 \\ & \mathrm{~N}-\mathrm{S} \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.812 \text { N-S } \\ & 0.76310 \\ & 0.6621 \end{aligned}$
	HIG	1 2 3	$\begin{gathered} 1.25 \\ -0.02 \\ 0.551 \end{gathered}$	$\begin{aligned} & 59 \\ & 64 \\ & 63 \end{aligned}$	$\begin{aligned} & \mathrm{N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \end{aligned}$	$\begin{gathered} -0.772 \\ -0.983 \\ 1.81 \end{gathered}$	63 63 63	$\begin{aligned} & \mathrm{N}-\mathrm{S} \\ & \mathrm{~N}-5 \\ & 10 \end{aligned}$	$\begin{array}{ll} 0.705 & 1 \\ 0.385 & \mathrm{~N}-\mathrm{S} \\ 0.463 & 0.1 \end{array}$	20 26 11	$\begin{array}{r} 5.1 \\ \mathrm{~N}-\mathrm{S} \\ 0 \end{array}$	$\begin{array}{ll} 0.612 & 0.1 \\ 0.891 & \mathrm{~N}-\mathrm{s} \\ 0.456 & 0.1 \end{array}$
$\begin{gathered} { }^{6} .718 \\ \mathrm{~Hz} \end{gathered}$	LOW	1 2 3	$\begin{aligned} & 1.65 \\ & 0.821 \\ & 1.49 \end{aligned}$	$\begin{aligned} & 64 \\ & 59 \\ & 64 \end{aligned}$	$\begin{aligned} & 10 \\ & \mathrm{~N}-\mathrm{S} \\ & 10 \end{aligned}$	$\begin{gathered} 2.96 \\ -2.98 * \\ 1.83 \end{gathered}$	63 63 63	$\begin{aligned} & 1 \\ & 1 \\ & 10 \end{aligned}$	$\begin{array}{ll} 0.686 & 1 \\ 0.957 & \mathrm{~N}-\mathrm{S} \\ 0.638 & 0.1 \end{array}$	17 28 17	$\begin{aligned} & 0.45 \\ & \mathrm{~N}-\mathrm{S} \\ & 0.45 \end{aligned}$	$\begin{array}{ll} 0.566 & 0.1 \\ 0.932 & \mathrm{~N}-\mathrm{S} \\ 0.523 & 0.1 \end{array}$
	HICH	1 2 3	$\begin{gathered} 1.19 \\ 1.37 \\ -1.31 * \end{gathered}$	$\begin{aligned} & 57 \\ & 64 \\ & 61 \end{aligned}$	$\begin{aligned} & \text { N-S } \\ & 10 \\ & 10 \end{aligned}$	$\begin{gathered} -1.18 \\ -1.64^{*} \\ 1.79 \end{gathered}$	63 63 63	$\begin{aligned} & \mathrm{N}-\mathrm{S} \\ & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.875 \mathrm{~N}-\mathrm{S} \\ & 0.79910 \\ & 0.861 \mathrm{~N}-\mathrm{S} \end{aligned}$	26 21 25	$\begin{aligned} & \mathrm{N}-5 \\ & 9.8 \\ & \mathrm{~N}-\mathrm{S} \end{aligned}$	$\begin{aligned} & 0.839 \mathrm{~N}-\mathrm{S} \\ & 0.708 \mathrm{~s} \\ & 0.934 \mathrm{~N}-\mathrm{S} \end{aligned}$

amplitude. Positive significant results in the remaining columns indicate phase ordering.

N-S means non-significant. While all levels of significance were recorded in order to extract maximum information, levels in excess of 5 \% were regarded as nonsignificant. Some of the test statistics in columns (B) and (C) are negative. The ones marked by an asterisk were significant in a negative direction. This occurred in column (C) and meant that the post-stimulus amplitude was less than the pre-stimulus one. This also occurred once in column (B) and indicated that the more widely spaced phasors were larger than the "grouped" ones. However, examination of the corresponding columns (D), (E) and (F) reveals that no phase ordering i.e. grouping had in fact occurred and the test would therefore be unreliable. (See also section 2.2.3.3). The level of significance between columns (B) and (C) do not always agree. The Nearest and Furthest Mean Amplitude Test (one-tailed) depends specifically upon the details of the assumed additive model and is not infallible, vide statistical Test B. By comparison the Pre- and Post- Stimulus Mean Amplitude Differences Test (two-tailed) tests for an additive effect irrespective of the mechanism by which it occurs. Inspection of column (C) showed that thirteen out of the eighteen results obtained for harmonics $1-3$ were significant at the 5% level (i.e. additive signal detected in 72% of cases), while for harmonics 4-6 only two out of the eighteen results were significant. For column (B) the corresponding figures were six out of eighteen and two out of eighteen. Inspection
of column (C) showed that only in one case was the mean of the amplitude differences significantly less than zero (i.e. the pre- stimulus phasors were larger than the post stimulus ones). The remaining twenty-one cases were not significant in either direction. On an individual basis and ignoring significance levels nine cases showed a poststimulus decrease in energy. Taken together these results indicated that additive energy could be detected in a large percentage of the cases for harmonics 1-3. Interestingly the Pre- and Post- Stimulus Mean Amplitude Differences Test applied to the second harmonic gave a positive significant result for each subject and for both levels of stimulus, and was the only test to do this. This may be a useful result audiologically but further investigation would be advised.

Columns (D), (E) and (F) revealed that the Rayleigh Test of Circular Variance, the Hodges-Ajne, and the Modified Rayleigh Test of Circular Variance were all in good agreement for the first three harmonics. However, the modified Rayleigh Test statistic was less than the Rayleigh statistic in 17 cases out of 18 which suggested that the amplitudes were orientated towards the preferred direction. This was not true for harmonics 4-6. In these cases the Rayleigh and Hodges-Ajne tests agreed but the modified Rayleigh Test did not always agree with them. Inspection of the tabulated results revealed that harmonic components $1-3$ were strongly phase ordered while harmonics 4-6 showed less phase ordering. Overall, post-stimulus phase ordering was seen to be significant at the 5\% level in all but seven of the thirty six cases observed.

Reflection upon all the observations so far made it apparent that harmonics 1-3 exhibited different amplitude and phase properties to harmonics 4-6. Harmonics 4-6 showed less evidence of phase ordering and even less evidence of additive energy. All of this was regarded as evidence that harmonics 4-6 were more representative of the noisy background EEG than of the evoked response. This in turn lent further support to the previously stated opinion that the comparison of pre- and post- stimulus realisation energies was unlikely to provide a reliable means for the investigation of additive energy, due to the masking effects of the higher harmonic noise.

Returning to Table 5-4, Column (C) taken together with Column (D) showed that when the AEP contained an additive component there was also phase ordering. This finding agreed well with the proposed additive model. Thus out of 29 cases exhibiting phase ordering 14 (or 48.3%) contained an additive component. There was also a pronounced tendency for additive and phase ordering effects to be concentrated in the first three harmonics. In other respects the occurrence of ordering or additivity appeared random. For example, for an individual the occurrence of ordering or an additive component in a particular harmonic at one level of stimulus did not necessarily mean that it would be found in the same harmonic for a different level of stimulus.

5.3 The CNV's of Normal Subjects

CNV responses were recorded from a total of five normal
subjects between the ages of 18 and 60 years. Both one and four second interstimulus intervals were used according to the procedure described in section 3.5. Prior to further processing all the individual CNV responses were corrected for the effects of eye movement artefact as described in section 2.5 .

5.3.1 The Averaged CNV's

After processing to remove eye movement artefact the CNV's were averaged, filtered with the low pass digital filter described in section 3.6 and plotted. The resulting averaged CNV's are shown in Figures 5-4 a-e (1 second ISI) and Figures 5-5 a-e (4 second ISI). The averaged CNV waveforms were then used to determine the section of the response to be analysed in the subsequent sections i.e. the 'Negative Variation' section excluding the evoked responses. This section was determined in terms of 'sample numbers' and for the one second ISI was found to lie between samples 472 and 536 (The stimuli being given concurrently with samples 407 and 532), whereas for the four second ISI it was found to lie between samples 295 and 695 (The stimuli being given concurrently with samples 219 and 719). Since the digital filter was used in most of the subsequent analysis, the sample numbers obtained from the averaged CNV responses included a delay due to the filter identical to that which would be obtained in the subsequent processing. Any processing carried out on unfiltered data used points 462 and 526 (1 second ISI) or points 285 and 685 (4 second ISI).

(a)

(b)

(c)

Figure $5-4$
The averaged one second ISI CNV's
of normal subjects.

（a）

（d）

（b）

（e）

（c）

Figure 5－5
The averaged four second ISI CNV＇s
of normal subjects．

These tests were performed to establish whether any additive component could be detected in the CNV response.

5.3.2.1 Broadband Energy Tests

Prior to the calculation of the mean energy for the pre- and post- stimulus sections of the CNV's, the data was corrected for the effects of eye movements and filtered in the usual manner. One of the side effects of the eye movement correction procedure was to remove any d.c. component present in the data epoch and, where an individual CNV response contained a marked negative shift, the effect of this was to cause a positive shift of the pre- and poststimulus baselines. Thus prior to the calculations described in section 2.2.3.1 it was necessary to re-establish the true baseline. This was achieved by subtracting the mean signal level, calculated over that section of the data prior to the S1 stimulus, from the data. Furthermore, to allow for any small d.c. drift during the acquisition of the data; the mean signal level was also calculated for that section of the data from a point one second after the 52 stimulus (to allow the S 2 evoked response and the CNV to return to the zero level) to the end of the data record. This value was subtracted from this section of the data. Between these two mean values the data was corrected by subtracting the appropriate fraction of the difference between these values. The overall correction was thus:-

Section of data (sample numbers)

$1 \leqslant k \leqslant S 1$	$x_{k}=x_{k}-\frac{1}{S 1} \sum_{i=1}^{S 1} x_{i}$
S1 < k \leqslant S2+D	
S2+D $<\mathrm{k} \leqslant \mathrm{N}$	$\mathrm{x}_{\mathrm{k}}=\mathrm{x}_{\mathrm{k}}-\frac{1}{(N-S 2-D)} \sum_{\text {S2+D }}^{N} \mathrm{x}_{\mathrm{i}}$

Where S 1 is the sample number corresponding to the instant of the S 1 stimulus application.

S2 as above for S2.

D is the delay after S 2 to allow the responses to settle. (a figure of one second ($D=125$) was used).
x_{i} is the $i^{\text {th }}$ data point.
$\mathrm{N} \quad$ is the total number of data points.

This correction is subsequently referred to as the baseline correction.

After applying this correction to each CNV response the mean energy values were calculated and subjected to a T-test as previously described. The results of these tests are shown in Tables 5-5a and 5-5b.

Broadband energy tests of normal subjects
One second ISI CNV's

Subject	Number of Responses	T	Significance Statistic Level \%	Number of* Besponses Post pre
1	31	2.91	1.0	7
2	32	7.05	$\ll 0.1$	1
3	19	5.22	$\ll 0.1$	3
4	32	2.18	5.0	10
5	32	4.69	$\ll 0.1$	6

Table 5-5b
Broadband energy tests of normal subjects
Four second ISI CNV's

Subject	Number of Responses	T	Significance Statistic Level \%	Number of* Responses Post $<$
1	32	2.47	2.0	11
2	32	3.47	0.2	3
3	32	4.39	$\ll 0.1$	5
4	32	3.72	0.1	7
5	32	5.55	$\ll 0.1$	5

* The number of individual responses where the post-stimulus energy was less than the pre-stimulus energy.

They show that for both ISI's and to a level of significance of at least 5\%, and mostly considerably better, the CNV response contained more energy than the background EEG prior to stimulation. The conclusion drawn from this was that the CNV must contain additional energy. On an individual basis however, 58 out of 306 (18.9\%) of the CNV responses contained less energy than the background EEG. This possibly reflected the variability of the background EEG and of the CNV rather than it implied the CNV energy migh't have been less than the background.

5.3.2.2 Amplitude Histograms

The background EEG has a virtually random amplitude and phase but an added signal component due to the CNV might be expected to have a constant amplitude and phase. If the amplitude of the added component were the same for each stimulus and were large in comparison with the background EEG, then the $n^{\text {th }}$ harmonic component of each response would be similar. Hence the $n^{\text {th }}$ harmonic amplitude histogram for a sequence of CNV's should exhibit a peak about some preferred value. Amplitude histograms were plotted to test this hypothesis. It was found that the amplitude histogram of the first harmonic of the one second ISI CNV's showed some similarities. In particular most exhibited a lower amplitude limit while the most probable amplitudes were different for different subjects. A typical histogram is shown in Figure 5-6. None of the other harmonics showed any obvious patterns. It was thought that the absence of definite patterns in the histograms of the higher harmonics might indicate the masking effects of the background EEG. Accordingly a comparison of

HARMONIC 1

the spectra of the background EEG was made with the spectrum of the averaged CNV. The latter spectrum would be relatively free of background EEG due to the averaging process.

The spectrum of the averaged CNV's displayed the presence of signal power at frequencies of up to 12 Hz . Over this frequency range the signal levels were about 0.5 $6.5 \mu \mathrm{~V} \mathrm{~Hz} .^{-\frac{1}{2}}$ By comparison the background EEG contained signal levels of $1.5-13.8 \mu \mathrm{~V} \mathrm{~Hz} .^{-\frac{1}{2}}$ over the same range. Thus the frequency components of the background EEG were indeed compatible to or greater in amplitude than those of the CNV, and were therefore capable of masking it.

5.3.2.3 Pre- and Post- Stimulus Mean Amplitude Differences

Test

These tests were performed on the mean of the amplitude differences of the pre- and post- stimulus phasors as described in section 2.2.3.2. Because of the limited amount of pre-stimulus information available these tests were not carried out on the four second ISI CNV's. The results of the tests are shown in Table 5-6. The column giving the significance level of any detected difference shows that additivity was only detected in 11 of the 30 results. Furthermore, only 2 of these 11 were significant at the 5% or higher level. Surprisingly however, 13 of the 30 results showed decreased amplitudes in the post-stimulus case (denoted by asterisks in the table) although only 2 of these results were statistically significant at the 5\% level.

For Normal Subjects

Subject Number	Mean of Differences $\times 10^{-5}$	Stand.Dev. of Differences $\times 10^{-5}$	Harmonic Number	T	v	Significance
1	$\begin{array}{r} 0.1586 \\ 0.0144 \\ -0.0381 \\ 0.0709 \\ 0.0974 \\ -0.1399 \end{array}$	$\begin{aligned} & 0.4696 \\ & 0.3228 \\ & 0.2387 \\ & 0.2889 \\ & 0.4162 \\ & 0.2229 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{gathered} 1.88 \\ 0.248 \\ -0.888^{*} \\ 1.37 \\ 1.30 \\ -3.49 * \end{gathered}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 10 \\ & \mathrm{~N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \\ & 20 \\ & \mathrm{~N}-\mathrm{S} \\ & 0.2 \end{aligned}$
2	$\begin{array}{r} 0.1561 \\ 0.0651 \\ 0.0449 \\ 0.0110 \\ -0.0079 \\ -0.0261 \end{array}$		$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{gathered} 1.83 \\ 1.31 \\ 1.28 \\ 0.33 \\ -0.33^{*} \\ -1.21^{*} \end{gathered}$	$\begin{aligned} & 31 \\ & 31 \\ & 31 \\ & 31 \\ & 31 \\ & 31 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \\ & \mathrm{~N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \end{aligned}$
3	$\begin{array}{r} -0.0974 \\ 0.0362 \\ 0.0884 \\ -0.0780 \\ -0.0451 \\ 0.0292 \end{array}$		$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	-1.00^{*} 0.33 1.59 -1.47^{*} -1.27^{*} 0.65	$\begin{aligned} & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \\ & 20 \\ & 20 \\ & \mathrm{~N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \end{aligned}$
4	$\begin{array}{r} 0.0880 \\ 0.0797 \\ 0.0435 \\ -0.0532 \\ -0.0355 \\ -0.0412 \end{array}$		$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{gathered} 1.39 \\ 1.79 \\ 1.39 \\ -2.20^{*} \\ -0.896^{*} \\ -1.58^{*} \end{gathered}$	$\begin{aligned} & 31 \\ & 31 \\ & 31 \\ & 31 \\ & 31 \\ & 31 \end{aligned}$	$\begin{gathered} 20 \\ 10 \\ 20 \\ 5 \\ \mathrm{~N}-\mathrm{S} \\ 20 \end{gathered}$
5	$\begin{array}{r} 0.2115 \\ 0.2965 \\ 0.2428 \\ -0.1074 \\ -0.0951 \\ -0.0671 \end{array}$	$\begin{aligned} & 0.8769 \\ & 0.6157 \\ & 0.4536 \\ & 0.3109 \\ & 0.3153 \\ & 0.2202 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{gathered} 1.36 \\ 2.72 \\ 3.03 \\ -1.95^{*} \\ -1.71^{*} \\ -1.72^{*} \end{gathered}$	$\begin{aligned} & 31 \\ & 31 \\ & 31 \\ & 31 \\ & 31 \\ & 31 \end{aligned}$	$\begin{array}{r} 20 \\ 2 \\ 1 \\ 10 \\ 10 \\ 10 \end{array}$

[^5]
5.3.2.4 Nearest and Furthest Mean Amplitude Test

These tests were performed on the amplitudes of poststimulus phasors for the one and four second ISI CNV's described in section 2.2.3.3. The results are shown in Tables 5-7a and 5-7b for the one and four second ISI's respectively. For the one second ISI the significance column shows that additivity was detected in 7 cases out of 30 , but of these only 4 were significant at the 5% level. In one case (i.e. subject 4, harmonic 3), the furthest phasors had larger amplitudes than the nearest. For the four second ISI CNV's additivity was detected in 4 cases and of these only 2 were significant at the 5% level. The furthest phasors had larger amplitudes than the nearest in 2 cases.

Nearest and Furthest Mean Amplitude Test

For 1 second ISI CNV's of Normal Subjects

Subject Number	Nearest		Furthest		Harmonic	T	v	$\underset{\sim}{\text { Significance }}$
	$\begin{aligned} & \text { Mean } \\ & \times 10^{-5} \end{aligned}$	St.Dev. $\times 10^{-5}$	$\begin{aligned} & \text { Mean } \\ & \times 10^{-5} \end{aligned}$	$\begin{aligned} & \text { St.Dev. } \\ & \times 10^{-5} \end{aligned}$				
1	1.04	0.353	0.761	0.523	1	1.76	28	5
	0.650	0.361	0.514	0.269	2	1.19	28	$\mathrm{N}-\mathrm{S}$
	0.380	0.251	0.382	0.328	3	-0.017	30	$\mathrm{N}-\mathrm{S}$
	0.485	0.311	0.560	0.380	4	-0.609	31	$\mathrm{N}-\mathrm{S}$
	0.807	0.431	0.831	0.535	5	-0.137	30	$\mathrm{N}-\mathrm{S}$
	0.418	0.168	0.354	0.234	6	0.882	29	$\mathrm{N}-\mathrm{S}$
2	1.24	0.457	0.769	0.363	1	3.23	30	0.5
	0.643	0.368	0.456	0.301	2	1.58	31	10
	0.439	0.237	0.415	0.192	3	0.322	31	$\mathrm{N}-\mathrm{S}$
	0.308	0.202	0.309	0.217	4	-0.017	32	$\mathrm{N}-\mathrm{S}$
	0.293	0.134	0.211	0.114	5	1.86	31	5
	0.276	0.107	0.216	0.107	6	1.58	32	10
3	0.805	0.434	0.781	0.337	1	0.131	17	N-S
	0.660	0.288	0.675	0.426	2	-0.09	18	$\mathrm{N}-\mathrm{S}$
	0.575	0.258	0.554	0.318	3	0.165	19	$\mathrm{N}-\mathrm{S}$
	0.362	0.200	0.241	0.149	4	1.48	16	10
	0.274	0.156	0.303	0.162	5	-0.396	19	$\mathrm{N}-\mathrm{S}$
	0.329	0.219	0.253	0.257	6	0.690	19	$\mathrm{N}-\mathrm{S}$
4	0.813	0.388	0.641	0.383	1	1.26	32	$\mathrm{N}-\mathrm{S}$
	0.525	0.337	0.419	0.254	2	1.00	30	$\mathrm{N}-\mathrm{S}$
	0.332	0.168	0.432	0.171	3	-1.65*	32	10
	0.243	0.162	0.259	0.101	4	-0.337	27	$\mathrm{N}-\mathrm{S}$
	0.298	0.110	0.359	0.258	5	-0.368	21	$\mathrm{N}-\mathrm{S}$
	0.202	0.142	0.239	0.125	6	-0.777	32	$\mathrm{N}-\mathrm{S}$
5	2.16	0.813	1.52	0.800	1	2.24	32	2.5
	1.17	0.463	1.47	0.817	2	-1.26	25	$\mathrm{N}-\mathrm{S}$
	0.985	0.541	0.973	0.607	3	0.061	32	$\mathrm{N}-\mathrm{S}$
	0.603	0.247	0.506	0.274	4	1.05	32	$\mathrm{N}-\mathrm{S}$
	0.548	0.276	0.456	0.305	5	0.895	32	$\mathrm{N}-\mathrm{S}$
	0.340	0.216	0.335	0.164	6	0.08	30	$\mathrm{N}-\mathrm{S}$

Nearest and Furthest Mean Amplitude Test
For 4 second ISI CNV's of Normal Subjects

Subject	Nearest		Furthest		Harmonic	T	v	Significance
	Mean $\times 10^{-5}$	$\begin{gathered} \text { St.Dev. } \\ \times 10^{-5} \end{gathered}$	Mean $\times 10^{-5}$	$\begin{aligned} & \text { St.Dev. } \\ & \times 10^{-5} \end{aligned}$				
1	$\begin{aligned} & 0.740 \\ & 0.370 \\ & 0.451 \\ & 0.357 \\ & 0.430 \\ & 0.342 \end{aligned}$	$\begin{aligned} & 0.304 \\ & 0.219 \\ & 0.246 \\ & 0.125 \\ & 0.176 \\ & 0.252 \end{aligned}$	$\begin{aligned} & 0.491 \\ & 0.448 \\ & 0.324 \\ & 0.308 \\ & 0.460 \\ & 0.432 \end{aligned}$	$\begin{aligned} & 0.267 \\ & 0.243 \\ & 0.120 \\ & 0.163 \\ & 0.221 \\ & 0.190 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{gathered} 2.47 \\ -0.958 \\ 1.85 \\ 0.954 \\ -0.429 \\ -1.03 \end{gathered}$	$\begin{aligned} & 32 \\ & 32 \\ & 23 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{~N}-\mathrm{S} \\ 5 \\ \mathrm{~N}-\mathrm{S} \\ \mathrm{~N}-\mathrm{S} \\ \mathrm{~N}-\mathrm{S} \end{gathered}$
2	$\begin{aligned} & 1.11 .9 \\ & 0.943 \\ & 0.347 \\ & 0.721 \\ & 0.531 \\ & 0.383 \end{aligned}$	$\begin{aligned} & 0.554 \\ & 1.05 \\ & 0.230 \\ & 0.744 \\ & 0.5 .14 \\ & 0.221 \end{aligned}$	$\begin{aligned} & 0.912 \\ & 0.744 \\ & 0.624 \\ & 0.462 \\ & 0.327 \\ & 0.354 \end{aligned}$	$\begin{aligned} & 1.13 \\ & 0.349 \\ & 0.583 \\ & 0.260 \\ & 0.152 \\ & 0.213 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{gathered} 0.663 \\ 0.721 \\ -1.77 * \\ 1.32 \\ 1.52 \\ 0.369 \end{gathered}$	$\begin{aligned} & 23 \\ & 19 \\ & 20 \\ & 19 \\ & 18 \\ & 32 \end{aligned}$	$\mathrm{N}-\mathrm{S}$ $\mathrm{N}-\mathrm{S}$ 5 $\mathrm{N}-\mathrm{S}$ 10 $\mathrm{N}-\mathrm{S}$
3	$\begin{aligned} & 0.806 \\ & 0.715 \\ & 0.510 \\ & 0.475 \\ & 0.437 \\ & 0.370 \end{aligned}$	$\begin{aligned} & 0.382 \\ & 0.324 \\ & 0.323 \\ & 0.237 \\ & 0.177 \\ & 0.152 \end{aligned}$	$\begin{aligned} & 0.879 \\ & 0.74 .1 \\ & 0.606 \\ & 0.401 \\ & 0.341 \\ & 0.333 \end{aligned}$	$\begin{aligned} & 0.373 \\ & 0.372 \\ & 0.280 \\ & 0.176 \\ & 0.152 \\ & 0.171 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{gathered} -0.547 \\ -0.214 \\ -0.903 \\ 1.00 \\ 1.65 \\ 0.648 \end{gathered}$	$\begin{aligned} & 32 \\ & 31 \\ & 31 \\ & 29 \\ & 31 \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{N}=\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \\ & 10 \\ & \mathrm{~N}-\mathrm{S} \end{aligned}$
4	$\begin{aligned} & 0.554 \\ & 0.428 \\ & 0.419 \\ & 0.330 \\ & 0.331 \\ & 0.312 \end{aligned}$	$\begin{aligned} & 0.226 \\ & 0.235 \\ & 0.177 \\ & 0.176 \\ & 0.192 \\ & 0.184 \end{aligned}$	$\begin{aligned} & 0.503 \\ & 0.449 \\ & 0.378 \\ & 0.279 \\ & 0.435 \\ & 0.320 \end{aligned}$	$\begin{aligned} & 0.259 \\ & 0.268 \\ & 0.141 \\ & 0.160 \\ & 0.219 \\ & 0.124 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{array}{r} 0.615 \\ -0.227 \\ 0.738 \\ 0.845 \\ -1.43 * \\ -0.147 \end{array}$	$\begin{aligned} & 31 \\ & 31 \\ & 30 \\ & 32 \\ & 31 \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \\ & \mathrm{~N}-\mathrm{S} \\ & 10 \\ & \mathrm{~N}-\mathrm{S} \end{aligned}$
5 $-\quad$	$\begin{aligned} & 1.06 \\ & 0.864 \\ & 0.789 \\ & 0.887 \\ & 0.728 \\ & 0.577 \end{aligned}$	$\begin{aligned} & 0.951 \\ & 0.499 \\ & 0.444 \\ & 0.353 \\ & 0.418 \\ & 0.377 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 0.930 \\ & 0.684 \\ & 0.866 \\ & 0.663 \\ & 0.602 \end{aligned}$	$\begin{aligned} & 0.806 \\ & 0.488 \\ & 0.479 \\ & 0.645 \\ & 0.330 \\ & 0.452 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{array}{r} -0.114 \\ -0.382 \\ 0.642 \\ 0.110 \\ 0.485 \\ -0.166 \end{array}$	$\begin{aligned} & 31 \\ & 32 \\ & 32 \\ & 24 \\ & 30 \\ & 31 \end{aligned}$	$\mathrm{N}-\mathrm{S}$ $\mathrm{N}-\mathrm{S}$ $\mathrm{N}-\mathrm{S}$ $\mathrm{N}-\mathrm{S}$ $\mathrm{N}-\mathrm{S}$ $\mathrm{N}-\mathrm{S}$

* denotes that the furthest phasors were larger than the nearest phasors.

5.3.2.5. Discussion of Results of Energy Tests

The results of the Pre- and Post- Stimulus Mean Amplitude Differences tests and of the Nearest and Furthest Mean Amplitude tests, which indicated additivity for only a minority of the harmonic components, were in contrast to those of the pre-stimulus and CNV broadband energy tests which offered strong evidence of additivity. The differences may be attributed to either the effects of the background EEG or to the suitability of the tests. For example, the Nearest and Furthest Mean Amplitude test could be prone to error and while positive results supported the additivity model, negative ones did not necessarily disprove it. It. was assumed that for each trial the noise and signal amplitudes were the same and that the response was the same in both amplitude and phase. These assumptions may not have been sufficiently true and if, for example, the response had a random phase there would be no detectable preferred direction even though added energy was present. Also in the additive model a phasor could have been reversed from a large phasor in one direction to a small phasor in the preferred direction. This would have been contrary to the general assumption that phasors would be larger in the preferred direction. Thus the test was not infallible and there may have been added energy in some of the other cases. The Pre- and Post-Stimulus Mean Amplitude Differences test could have been affected by variations in the background EEG and thus made unreliable. Alternatively the extra energy detected by the broadband tests could have been at frequencies other than those examined.

5.3.3 Tests for Phase ordering

The following tests were performed to establish whether any phase ordering could be detected in the CNV response.

5.3.3.1 Phase Histograms

It was found that the phase histograms of the first harmonic of the CNV's were visually similar for all subjects and for both one second and four second ISI's as predicted in Section 2.2.1 and Appendix 8.1. Typical phase histograms for both ISI's are shown in Figures 5-7a and 5-7b. The patterns observed in these histograms are evidence for phase ordering. Similar histograms, for the higher harmonic frequency components, did not exhibit any noticeable phase patterns or ordering. Because of the limited number of observations made and the relatively large number of phase intervals necessary to observe patterns and ordering, the phase histograms were not considered to be very reliable indicators of these effects. Furthermore, since it was necessary to judge visually the presence (or absence) of phase patterns only limited credence could be given to these histograms.

5.3.3.2 Rayleigh Test of Circular Variance

The results of this test are given in tables 5-8a and 5-8b for the one second and four second ISI CNV's respectively. For the one second ISI the test gave a significant result in 10 out of the 30 cases studied while of these only 6 were significant at the 5% level. In the case of the

HARMONIC 1

HARMONIC 2

HARMONIC 3

Figure 5-7a A typical one second ISI phase histogram of a normal subject

HARMONIC 1

HARMONIC 2

HARMONIC 3

Figure 5－7b A typical four second ISI phase histogram of a normal subject

Table 5-8a
Circular Variance for 1 second ISI CNV's of Normal Subjects

Subject ${ }^{\text {' }}$	Harmonic	Number of Trials	So	Significance \%
1	1	31.	0.202	0.1
	2	31	0.554.	1.0
	3	31	0.787	$\mathrm{N}-\mathrm{S}$
	4	31	0.9116	N -S
	5	31	0.7113	10.0
	6	31	0.806	$\mathrm{N}-\mathrm{S}$
2	1	32	0.683	5.0
	2	32	0.893	$\mathrm{N}-\mathrm{S}$
	3	32	0.940	$\mathrm{N}-\mathrm{S}$
	4	32	0.804	$\mathrm{N}-\mathrm{S}$
	5	32	0.848	$\mathrm{N}-\mathrm{S}$
	6	32	0.796	N-S
3	1	19	0.642	10
	2	19	0.699	$\mathrm{N}-\mathrm{S}$
	3	19	0.781	N-S
	4	19	0.425	1.0
	5	19	0.694	$\mathrm{N}-\mathrm{S}$
	6	19	0.855	$\mathrm{N}-\mathrm{S}$
4	1	32	0.747	N-S
	2	32	0.695	10.0
	3	32	0.841	$\mathrm{N}-\mathrm{S}$
	4	32	0.700	10.0
	5	32	0.902	$\mathrm{N}-\mathrm{S}$
	6	32	0.780	N-S
5	1	32	0.354	0.1
	2	32	0.990	$\mathrm{N}-\mathrm{S}$
	3	32	0.661	5.0
	4	32	0.792	$\mathrm{N}-\mathrm{S}$
	5	32	0.877	N-S
	6	32	0.771	$\mathrm{N}-\mathrm{S}$

Table 5-8b
Circular Variance for 4 second ISI CNV's of Normal Subjects

four second ISI CNV's only 2 out of the 30 cases were significant and of them only 1 was significant at the 5% level. Thus phase ordering appeared to be less pronounced' in the case of the four second ISI CNV's. This difference reflected the more complex composition of the longer ISI CNV's.

5.3.3.3 Modified Rayleigh Test of Circular Variance

The results of these tests are shown in tables 5-9a and 5-9b for the two ISI's used. For the one second ISI phase ordering was significant in 10 out of the 30 cases, being significant at the 5% level in 7 cases. For the four second ISI the figures were 4 and 3 respectively. Thus the phase again appeared to be less pronounced in the four second ISI CNV's.

5.3.3.4 Hodges-Ajne Test

Tables 5-10a and 5-10b show the results of these tests for the one and four second ISI CNV's respectively. The one second ISI CNV's exhibited ordering in 5 cases out of 30 and of these 4 were significant at the 5% level. There were only 2 cases of ordering in the results for the four second ISI CNV's and only 1 was significant at the 5% level.

Table 5-9a
The Modified Circular Variance Tests for the 1 second ISI CNV's of Normal Subjects

| 1 | Subject | Harmonic | $\begin{array}{c}\text { Number of } \\ \text { Trials }\end{array}$ | Uo |
| :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Significance

\%\end{array}\right]\)

The Modified Circular Variance Tests for the 4 second
ISI CNV's of Normal Subjects

Subject	Harmonic	Number of Trials	Uo	Significance \%
1	1	32	0.506	1.0
	2	32	0.929	N-S
	3	32	0.717	$\mathrm{N}-\mathrm{S}$
	4	32	0.848	N-S
	5	32	0.87 .3	N-S
	6	32	0.832	$\mathrm{N}-\mathrm{S}$
2	1	. 32	0.743	$\mathrm{N}-\mathrm{S}$
	2	32	0.970	$\mathrm{N}-\mathrm{S}$
	3	32	0.857	$\mathrm{N}-\mathrm{S}$
	4	32	0.651	5.0
	5	32	0.623	5.0
	6	32	0.848	$\mathrm{N}-\mathrm{S}$
3	1	32	0.959	$\mathrm{N}-\mathrm{S}$
	2	32	0.912	$\mathrm{N}-\mathrm{S}$
	3	32	0.953	$\mathrm{N}-\mathrm{S}$
	4	32	0.788	$\mathrm{N}-\mathrm{S}$
	5	32	0.827	$\mathrm{N}-\mathrm{S}$
	6	32	0.790	$\mathrm{N}-\mathrm{S}$
4	1.	32	0.947	N-S
	2	32	0.679	10.0
	3	32	0.844	$\mathrm{N}-\mathrm{S}$
	4	32	0.777	$\mathrm{N}-\mathrm{S}$
	5	32	0.966	$\mathrm{N}-\mathrm{S}$
	6	32	0.921	$\mathrm{N}-\mathrm{S}$
5	1	32	0.816	N-S
	2	32	0.770	N-S
	3	32	0.746	$\mathrm{N}-\mathrm{S}$
	4	32	0.796	$\mathrm{N}-\mathrm{S}$
	5	32	0.962	$\mathrm{N}-\mathrm{S}$
	6	32	0.758	$\mathrm{N}-\mathrm{S}$

Table 5-10a
The Hodges-Ajne test for the 1 second ISI CNV's of normals

Table 5-10b
The Hodges-Ajne test for the 4 second ISI CNV's of normals

5.3.4. Discussion of Energy and Phase Results

Table 5-11 summarises the additivity and phase ordering results which were found to be significant at the 5% level.

That part of the table concerned with phase ordering. was inspected in order to compare the results of the different tests. Asterisks were used to indicate similar results which were given by either two or three of the tests. Scanning of the rows showed that the results of the phase ordering tests were mainly consistent and therefore probably reliable. The Modified Rayleigh test tended to produce more results which were significant than either of the other two tests and this was because it took into account both amplitude and phase information. For the one second ISI CNV's phase ordering was detected in 8 cases out of 30 at the 5\% level. For the four second ISI CNV's only 3 of the 30 were significant at the 5% level.

It was stated above (Section 5.3.3.1) that the phase histograms of the first harmonic for both the one and four second ISI CNV's had similar patterns which were evidence of phase ordering, but that the effect was less obvious for the higher harmonics. Inspection of the results of the statistical tests for phase ordering partly confirms those findings. Table 5-12 shows the mean directions of the phasors and the levels of significance for some of the results. It can be seen that for the one second ISI CNV's the mean direction of the phasors falls in the theoretically predicted

Summary of Additivity and phase Ordering Results Significant
at the 5\$ level for Normal Subjects

		ADDITIVITY		PHASE ORDERING		
ISI	SUBJECT 'NUMBER	NEAREST ε FURTHEST MEAN AMPLITUDE	PRE \& POST MEAN AMPLITUDE DIFFERENCES	RAYLEIGH CIRCULAR VARIANCE	MODIFIED RAYLEIGH CIRCULAR VARIANCE	HODGES-AJNE
1	1	H ${ }^{\text {a }}$		H1*, H2*	H1*, H2*	H1*, H2*
	2	H1, H5+		H1*	H1*	
	3			H4*	H1, H4*	H4*
	4				H2	
	5	H1	H2+, H 3	H1*, H3	H1*	H1*
4	1	H1, H3+		H1*	H1*	H1*
	2				H4, H5	

Hn indicates that the nth harmonic had a significant result.

+ indicates additivity with no accompanying ordering.
* indicates agrement between two or more tests.

Table 5-12
Mean Directions and Significance for Selected Cases

Isi	HARMONIC NUMBER	SUBJECT NUMBER	NUMBER OF RESPONSES	MEAN DIRECTION	SIGNIFICANCE OF PHASE ORDERING \dagger
1	1	1.	31	-70	S
		2	32	-75	S
		3	1.9	106	S
		4	32	-82	N-S
		5	32	-8,1	S
	2	1	31	-102	S
		2	32	114	$\mathrm{N}-\mathrm{S}$
		3	19.	116	N-S
		4	32	-76	S
		5	32	5.1	N-S
	3	1	31	140	$\mathrm{N}-\mathrm{S}$
		2	32	-24	N-S
		3	19.	-125	$\mathrm{N}-\mathrm{S}$
		4	32	-36	N-S
		5	32	57	S
4	1	1.	32	-57	S
		2	32	108	$\mathrm{N}-\mathrm{S}$
		3	32	138	$\mathrm{N}-\mathrm{S}$
		4	32	-129	N-S
		5	32.	-159	N-S
	2	1	32	-5	$\mathrm{N}-\mathrm{S}$
		2	32	-125	N-S
		3	32	7	N-S
		4	32	10	N-S
		5	32	131	$\mathrm{N}-\mathrm{S}$
	3	1	32	155	$\mathrm{N}-\mathrm{S}$
		2	32	104	$\mathrm{N}-\mathrm{S}$
		3	32	95	N-S
		4	32	-150	$\mathrm{N}-\mathrm{S}$
		5	32	36	$\mathrm{N}-\mathrm{S}$

S indicates phase ordering detected by any of the three tests significant at the 5% level.

N -S indicates no significant phase ordering.
range of 0° to -90° in 4 out of 5 cases and for 3 of these there was also significant phase ordering. Hence a distinctive pattern would indeed be anticipated in the phase histogram. The mean direction is less likely to be in the predicted range and the degree of ordering is also seen to be decreased as the harmonic number increases. This is in agreement with the reduced observable phase ordering in the phase histograms of the higher harmonics. The results for the four second ISI CNV's showed little phase ordering and many of the angles were outside the predicted range. This did not agree with the conclusion reached by visual inspection of the phase histograms. This discrepancy was probably due to the unreliability of the phase histograms for the reasons previously mentioned.

Table 5-11 was also inspected to check whether additivity was always accompanied by phase ordering as the additivity model would suggest. It was noted that in three cases additivity was detected in the absence of detectable phase ordering. This may have been due to the limitations of the tests or it may indicate that the CNV response cannot be described by the additivity model.

Overall it appears that the CNV responses of normal subjects may contain a certain amount of added random energy and are therefore probably less deterministic in nature then, for example, an auditory evoked response.

CNV responses were also recorded from a total of five patients for whom Huntington's chorea had been diagnosed. Once again two interstimulus intervals were used fone and four seconds) and prior to further processing the individual responses were corrected for the effects of eye movement as described in Section 2.5

5.4.1 The Averaged CNV's

After processing to remove eye movement artefact the CNV's were averaged, filtered with the low pass digital filter described in Section 3.6 and plotted. The results of this procedure are shown in Figures 5-8 a-e and 5-9 a-e. A characteristic feature of some of these CNV's was the slow return to the baseline subsequent to the $S 2$ stimulus. This feature, known as the Post Imperative Negative Variation, has been described elsewhere [9] although not in connection with Huntington's chorea. Some of the averaged CNV's were generally similar to those obtained from normal subjects (e.g. Figure 5-8c) whilst others (e.g. Figure 5-8b) showed very little evidence of a CNV response at all. The differences in the averaged waveforms of normals and patients were exploited in distinguishing between the two categories as described in Section 5.5
5.4.2. Energy Tests

These tests were performed to establish whether any additive component could be detected in the CNV response of the H.C. patient group.

(a)
-162-

(d)

(b)

(e)

(c)

Figure 5-9

The averaged four second ISI CNV's of abnormal subjects.

The same processing procedure was used in these tests as that described in Section 5.3.2.1. The results of the tests are shown in Tables 5-13a and 5-13b. In the case of the one second ISI CNV's there was evidence of added energy at the 5% level of significance in 3 cases out of the 5 subjects investigated. There was considerably more added energy in the case of subject 5. For the four second ISI CNV's 4 of the subjects showed evidence of added energy at. the 5% significance level. Thus for both ISI's the majority of the subjects showed increased energy in the post stimulus realizations. However, as indicated by the right most column in Tables 5-13a and 5-13b, there were a number of individual responses where the pre-stimulus energy was greater than the post-stimulus energy.

5.4.2.2 Amplitude Histograms

Some amplitude histograms were produced as it was thought that they might have shown some differences to those of normal subjects. However, they did not exhibit any characteristic feature which could be of diagnostic value.
5.4.2.3 Pre- and Post-stimulus Mean Amplitude Differences Test

The results of this test on the one second ISI CNV's are shown in Table 5-14. All but one of the results showed evidence of added energy in at least one harmonic at the 5% level. It was not possible to discover any pattern in the occurrence of significant results. Once more it was noted

Table 5-13a
aroadband Energy Tests of Abnormal Subjects one second ISI CNV's

Subject	Number of Responses	T Statistic	Significance Level	Number of Responses Post < Pre
1	32	1.89	10	10
2	32	1.81	10	10
3	32	3.75	0.1	8
5	32	3.47	0.2	7

Table 5-13b

- Broadband Energy Tests of Abnormal Subjects four second ISI CNV's

Subject	Number of Responses	r Statistic	Significance Level	Number of Responses Post \& Pre
1	30	3.73	0.1	4
2	32	2.56	2.0	9
3	32	1.64	20	7
4	32	5.16	$8<0.1$	6
5	32	3.16	8	8

* The number of individual responses where the post-stimulus energy was LESS than the pre-stimulus energy.

1 second ISI

Subject Number	Mean of Differences $\times 10^{-5}$	St.Dev. of Differences $\times 10^{-5}$	Harmonic Number	T	\checkmark	Significance
1	0.178	1.02	1	0.990	31	N-S
	0.179	0.403	2	2.52	31	2.0
	-0.003	0.318	3	-0.059*	31	$\mathrm{N}-\mathrm{S}$
	-0.053	0.260	4	-1.15 *	31	$\mathrm{N}-\mathrm{S}$
	0.019	0.252	5	0.434	31	$\mathrm{N}-\mathrm{S}$
	0.069	0.209	6	1.86	31	10
2	0.189	0.576	1	1.94	31	10
	0.065	0.509	2	0.727	31	$\mathrm{N}-\mathrm{S}$
	-0.064	0.646	3	-0.557*	31	N-S
	0.379	0.887	4	2.42	31	5.0
	-0.168	0.724	5	-1.31.	31	20
	-0.010	0.504	6	-0.118*	31	$\mathrm{N}-\mathrm{S}$
3	-0.067	0.666	1	-0.568*	31	$\mathrm{N}-\mathrm{S}$
	0.029	0.555	2	0.297	31	$\mathrm{N}-\mathrm{S}$
	-0,139	0.356	$\therefore 3$	-2.21.	31	5
	0.035	0.336	4	0.585	31	$\mathrm{N}-\mathrm{S}$
	-0.089	0.337	5	-1.49*	31	20
	-0.070	0.252	6	-1.58.	31	20
4	-0.016	0.502	1	-0.184*	31	$\mathrm{N}-\mathrm{S}$
	0.147	0.242	2	3.44	31	0.2
	0.05	0.136	3	2.08	31	5
	-0.017	0.113	4	-0.85	31	$\mathrm{N}-\mathrm{S}$
	-0.051	0.117	5	-2.46 *	31	2
	-0.021	0.159	6	-0.747*	31	N-S
5	0.202	0.622	1	1.84	31	10
	0.213	0.572	2	2.11	31	5
	0.409	0.664	3	3.49	31	0.2
	0.901	0.731	4	6.98	31	$\ll 0.1$
	0.507	0.677	5	4.23	31	$\ll 0.1$
	0.246	0.580	6	2.40	31	5

* denotes a reduction in the post stimulus amplitude
that subject 5 showed enhanced evidence of additivity in each of the harmonics. Those cases in which the energy showed a decrease were marked by an asterisk in the table.
5.4.2.4 Nearest and Furthest Mean Amplitude Test

The results of these tests are shown in Tables 5-15a and $5-15 b$. The single tailed paired t-test produced only one result which was significant for the one second ISI CNV's and this was evidence that the nearest phasors were smaller than the furthest. Thus this test provided no evidence for increased energy. In the case of the four second ISI CNV's there were 5 significant cases and 4 of these were significant at the 5\% level.
5.4.2.5 Discussion of Results of Energy Tests

Comparison of the results in Tables 5-13a, 5-14 and 5$15 a$ for the one second ISI CNV's did not reveal any noticeable correlations. However, it was noted that the Pre- and PostStimulus Mean Amplitude Differences tests offered more evidence of additivity than the Nearest and Furthest Mean Amplitude test. The results obtained from it were therefore more in agreement with the detection of added energy by the Broadband Energy test. However, there were discrepancies between these tests although they were based on exactly the same preand post- stimulus data. For example according to Table 5-14 there was no evidence of additivity for subject 3 but according to the Broadband Energy test additivity was detected at a level of significance of 0.1%. It was thought that this discrepancy may have occurred because the added energy of the response was located in higher harmonics than those considered.

1 second ISI

	Nearest		Furthest					
Subject Number	$\begin{aligned} & \text { Mean } \\ & \times 10^{-5} \end{aligned}$	$\begin{aligned} & \text { St.Dev. } \\ & \times 10^{-5} \end{aligned}$	Mean $\times 10^{-5}$	$\begin{aligned} & \text { St.Dev. } \\ & \times 10^{-5} \end{aligned}$	Harmonic	T	\checkmark	Significance
1	1.24	0.657	1.07	0.977	1	0.599	28	$\mathrm{N}-\mathrm{S}$
	0.564	0.496	0.550	0.290	2	0.100	25	N-S
	0.312	0.192	0.267	0.213	3	0.631	32	$\mathrm{N}-\mathrm{S}$
	0.191	0.090	0.265	0.133	4	-1.84	28	* 5
	0.204	0.149	0.229	0.231	5	-0,367	27	$\mathrm{N}-\mathrm{S}$
	0.233	0.232	0.226	0.094	6	0.110	21	$\mathrm{N}-\mathrm{S}$
2	0.874	0.386	0.802	0.398	1	0.519	32	$\mathrm{N}-\mathrm{S}$
	0.596	0.540	0.569	0.395	2	0.166	29	$\mathrm{N}-\mathrm{S}$
	0.483	0.309	0.581	0.497	3	-0.673	26	N-S
	1.02	0.857	0.869	0.799	4	0.504	32	N-S
	0.423	0.368	0.482	0.473	5	-0.399	30	N -S
	0.439	0.454	0.326	0.219	6	0.394	23	$\mathrm{N}-\mathrm{S}$
3	0.667	0.236	0.681	0.393	1	-0.116	26	$\mathrm{N}-\mathrm{S}$
	0.476	0.196	0.437	0.270	2	0.466	29	$\mathrm{N}-\mathrm{S}$
	0.220	0.137	0.220	0.118	3	0.014	31	$\mathrm{N}-\mathrm{S}$
	0.354	0.282	0.309	0.159	4	0.353	25	$\mathrm{N}-\mathrm{S}$
	0.307	0.163	0.269	0.134	5	0.713	31	$\mathrm{N}-\mathrm{S}$
	0.176	0.126	0.242	0.191	6	-1.15	28	$\mathrm{N}-\mathrm{S}$
4	0.498	0.352	0.498	0.319	1	0.00	32	$\mathrm{N}-\mathrm{S}$
	0.430	0.200	0.364	0.214	2	0.899	32	$\mathrm{N}-\mathrm{S}$
	0.251	0.159	0.224	0.137	3	0.511	31	$\mathrm{N}-\mathrm{S}$
	0.129	0.088	0.166	0.088	4	-1.16	32	$\mathrm{N}-\mathrm{S}$
	0.133	0.078	0.154	0.062	5	-0.821	30	$\mathrm{N}-\mathrm{S}$
	0.143	0.079	0.173	0.099	6	-0.947	31	$\mathrm{N}-\mathrm{S}$
5	0.972	0.534	0.908	0.486	1	0.352	32	$\mathrm{N}-\mathrm{S}$
	0.803	0.555	0.595	0.415	2	0.620	30	$\mathrm{N}-\mathrm{S}$
	0.980	0.682	0.776	0.500	3	0.966	29	$\mathrm{N}-\mathrm{S}$
	1.55	0.730	1.25	0.650	4	1.20	32	$\mathrm{N}-\mathrm{S}$
	1.00	0.601	1.10	0.628	5	-0.453	32	$\mathrm{N}-\mathrm{S}$
	0.625	0.324	0.725	0.746	6	-0.493	21	$\mathrm{N}-\mathrm{S}$

* denotes that the furthest phasors were larger than the nearest phasors.

Table 5-15b
Nearest and Furthest Mean Amplitude Test for Abnormal Subjects
4 second ISI

	Nearest		Furthest		-			
Subject Number	$\begin{aligned} & \text { Mean } \\ & \times 10^{-5} \end{aligned}$	$\begin{aligned} & \text { St.Dev. } \\ & \times \quad 10^{-5} \end{aligned}$	Mean $\times 10^{-5}$	$\begin{aligned} & \text { St. Dev. } \\ & \times 10^{-5} \end{aligned}$	Harmonic	\%	v	Significance
1	1.59	0.774	1.00	0.451	1	2.52	24	1
	1.17	0.736	1.49	0.584	2	-1.33	28	- 10
	1.18	0.504	1.07	0.471	3	0.613	30	$\mathrm{N}-\mathrm{S}$
	0.857	0.600	0.952	0.508	4	-0,467	29	N-S
	0.814	0.392	0.919	0.382	5	-0.741	30	N-S
	0.783	0.344	0.752	0.422	6	0.225	29	$\mathrm{N}-\mathrm{S}$
2	1.51	0.857	1.42	1.25	1	0.233	28	N-S
	1.46	1,44	1.06	0.583	2	1.02	20	N-S
	0.909	0.670	0.727	0,467	3	0.895	28	$\mathrm{N}-\mathrm{S}$
	0.567	0.416	0.609	0.326	4	-0.318	30	N-S
	0.541	0.390	0.482	0.327	5	0.467	31	N-S
	0.403	0.181	0.775	0.258	6	-0.908	28	$\mathrm{N}-\mathrm{S}$
3	1.30	0.869	0.847	0.317	1	1.96	19	5
	1.10	0.578	0.574	0.252	2	3.33	21	0.5
	0.781	0.541	0.794	0.477	3	-0.069	32	N-S
	0.685	0.529	0.581	0.450	4	0.600	31	N-S
	0.493	0.428	0.560	0.377	5	-0.474	32	$\mathrm{N}-\mathrm{S}$
	0.616	0.232	0.555	0.256	6	0.703	32	$\mathrm{N}-\mathrm{S}$
4	0.457	0.225	0.667	0.356	1	-1.99	27	* 5
	0.617	0.361	0.484	0.284	2	1.16	30	N-S
	0.399	0.211	0.459	0.274	3	-0.693	30	$\mathrm{N}-\mathrm{S}$
	0.381	0.230	0.449	0.151	4	-0.989	27	$\mathrm{N}-\mathrm{S}$
	0.288	0.166	0.373	0.220	5	-1.24	30	$\mathrm{N}-\mathrm{S}$
	0.409	0.261	0.312	0.168	6	1.24	27	$\mathrm{N}-\mathrm{S}$
5	1.05	0.504	0.949	0.416	1	0.632	31	N-S
	1.19	0.557	0.870	0.409	2	1.87	29	5
	0.699	0.273	0.811	0.400	3	-0.922	28	$\mathrm{N}-\mathrm{S}$
	0.876	0.399	0.655	0.342	4	1.69	31	10
	0.647	0.270	0.608	0.348	5	0.350	30	$\mathrm{n}-\mathrm{S}$
	0.421	0.333	0.742	0.409	6	-2,43	31	. 2.5

* denotes that the furthest phasors were larger than the nearesc phasors.

However it was considered unlikely that CNV energy would be found at higher harmonics without also being present in the lower harmonics (i.e. those more near to the fundamental frequency of the response). Hence the added energy may have been associated with a random element of the response or to an artefact. In other cases the test results on the harmonic components may have been subject to errors in either the transformation process or the subsequent testing (e.g. the limitations of the Nearest and Furthest Mean Amplitude test described in.Section 2.2.3.3). While much of this remains conjecture a clear conclusion must be that although the responses of abnormal subjects may sometimes contain added energy it is not possible to exploit this in any useful way because the results are essentially random.

Comparison of the results for the four second ISI CNV's given in Tables 5-13b and 5-15b confirmed the lack of correlation between the Broadband Energy test and the Nearest and Furthest Mean Amplitude test. The former of these tests offered far more evidence of additivity, again suggesting that the added energy may have been present mainly in the higher harmonics.
5.4.3 Tests for Phase Ordering

The tests described below were carried out in an attempt to detect any phase ordering present in the CNV responses of the patient group.

From the one second ISI CNV phase histograms it was noticed that angles of about 10° tended not to occur. A similar minimum in the phase pattern had been observed in the case of normal subjects. By contrast to the histograms of normals, those of the abnormals showed an accumulation of values in the vicinity of $+180^{\circ}$. They also exhibited a smaller peak at negative angles $\left(-80^{\circ}\right.$ to $\left.180^{\circ}\right)$. Thus it appeared that there might be a method, based on phase angles, to at least partially differentiate between patients and normals. A typical one second ISI CNV phase histogram for an abnormal is shown in Figure 5-10a.

The four second ISI CNV phase histograms of the abnormals showed a larger peak in the vicinity of 150° than either the one second ISI CNV phase histograms of abnormals or normals. A typical phase histogram is shown in Figure 5-10b.

Thus whilst for normal subjects the one and four second ISI CNV phase histograms were similar those for the patients were not.

5.4.3.2 Rayleigh Test of Circular Variance

Tables 5-16a and 5-16b show that there was very little evidence for phase ordering for either ISI CNV. At the 5\% significance level there were only 2 (out of 30) positive results for the one second ISI and only 4 (out of 30) positive results for the four second ISI CNV's.

HARMONIC 1

Figure 5－10b A typical four second ISI phase histogram of an abnormal subject

Circular Variance for 1 second ISI CNV's
of Abnormal Subjects

Subject	Harmonic	Number of Trials	So	Significance \%
1	1	32	0.868	N-S
	2	32	0.873	$\mathrm{N}-\mathrm{S}$
	3	32	0.737	N-S
	4	32	0.829	$\mathrm{N}-\mathrm{S}$
	5	32	0.624	5
	6	32	0.869	N-S
2	1	32	0.889	$\mathrm{N}-\mathrm{S}$
	2	32	0.896	N-S
	3	32	0.991	N-S
	4	32	0.807	$\mathrm{N}-\mathrm{S}$
	5	32	0.874	$\mathrm{N}-\mathrm{S}$
	6	32	0.808	$\mathrm{N}-\mathrm{S}$
3	1	32	0.966	$\mathrm{N}-\mathrm{S}$
	2	32	0.744	N-S
	3	32	0.946	$\mathrm{N}-\mathrm{S}$
	4	32	0.847	N-S
	5	32	0.870	$\mathrm{N}-\mathrm{S}$
	6	32	0.895	$\mathrm{N}-\mathrm{S}$
4	1	32	0.805	N-S
	2	32	0.771	$\mathrm{N}-\mathrm{S}$
	3	32	0.858	N-S
	4	32	0.788	$\mathrm{N}-\mathrm{S}$
	5	32	0.681	5
	6	32	0.995	$\mathrm{N}-\mathrm{S}$
5	1	32	0.694	10
	2	32	0.809	N-S
	3	32	0.751	N-S
	4	32	0.800	N-S
	5	32	0.794	$\mathrm{N}-\mathrm{S}$
	6	32	0.762	$\mathrm{N}-\mathrm{S}$

Table 5-16b
Circular Variance for 4 second ISI CNV's
of Abnormal Subjects

Subject	Harmonic	Number of Trials	So	Significance \%
1	1	30	0.844	N-S
	2	30	0.901	N-S
	3	30	0.761	$\mathrm{N}-\mathrm{S}$
	4	30	0.934	N-S
	5	30	0.812	N-S
	6	30	0.885	N-S
2	1	32	0.874	N-S
	2	32	0.853	N-S
	3	32	0.954	N-S
	4	32	0.720	10
	5	32	0.925	N-S
	6	32	0.983	N-S
3	1	32	0.403	0.1
	2	32	0.653	5
	3	32	0859	N-S
	4	32	0.771	$\mathrm{N}-\mathrm{S}$
	5	32	0.963	$\mathrm{N}-\mathrm{S}$
	6	32	0.857	$\mathrm{N}-\mathrm{S}$
4	1	32	0.738	N-S
	2	32	0.811	N-S
	3	32	0.897	$\mathrm{N}-\mathrm{S}$
	4	32	0.868	$\mathrm{N}-\mathrm{S}$
	5	32	0.784	$\mathrm{N}-\mathrm{S}$
	6	32	0.784	N-S
5	1	32	0.657	5
	2	32	0.689	5
	3	32	0.910	$\mathrm{N}-\mathrm{S}$
	4	32	0.815	$\mathrm{N}-\mathrm{S}$
	5	32	0.863	$\mathrm{N}-\mathrm{S}$
	6	32	0.858	N-S

These results (Tables 5-17a and 5-17b) were similar to those of the Rayleigh Test. There were no cases of significance at the 5% level for the one second ISI CNV's and only 3 cases for the four second ISI CNV's.
5.4.3.4 Hodges-Ajne Test

This test indicated only one case of phase ordering at the 5\% level for the one second ISI CNV's and only one, case for the four second ISI CNV's. The results are shown in Tables 5-18a and 5-18b.
5.4.4 Discussion of Energy and Phase Results

Table 5-19 summarises the results of energy and phase tests applied to the harmonics which were significant at the 5\% (or better) level. Harmonic numbers which are asterisked indicate those cases in which phase ordering was detected by at least two of the tests. The Rayleigh test indicated some results to be significant which the other two tests did not substantiate. Examination of the additivity results shows that the Nearest and Furthest Mean Amplitude test did not reveal any cases of significant additivity for the one second ISI CNV's although the Pre- and Post- Stimulus Mean Amplitude Differences test did. It is even more interesting to note that the former test however did indicate cases of significant additivity for the four second ISI CNV's. This contrasting result probably reflected the different composition of the one and four second ISI CNV's. In fact the averaged four second ISI CNV responses were more like the averaged four

Table 5-17a
The Modified Rayleigh Test of Circular Variance for 1 second ISI CNV's of Abnormal Subjects

Subject	Harmonic	Number of Trials	Uo	Significance \%
1	1	32	0.764	N-S
	2	32	0.856	N-S
	3	32	0.662	10
	4	32	0.894	N-S
	5	32	0.682	10
	6	32	0.874	N-S
2	1	32	0.773	N-S
	2	32	0.805	N-S
	3	32	0925	$\mathrm{N}-\mathrm{S}$
	4	32	0.799	$\mathrm{N}-\mathrm{S}$
	5	32	0.906	$\mathrm{N}-\mathrm{S}$
	6	32	0.801	N-S
3	1	32	0.909	N-S
	2	32	0.671	10
	3	32	0.900	$\mathrm{N}-\mathrm{S}$
	4	32	0.829	N-S
	5	32	0.879	N-S
	6	32	0.958	N-S
4	1	32	0.806	N-S
	2	32	0.672	10
	3	32	0.771	N-S
	4	32	0.833	N-S
	5	32	0.695	N-S
	6	32	0.947	N-S
5	1	32	0.691	10
	2	32	0.810	N-S
	3	32	0.706	N-S
	4	32	0.726	N-S
	5	32	0.805	N-S
	6	32	0.696	N-S

The Modified Rayleigh Test of Circular Variance for
4 second ISI CNV's of Abnormal Subjects

Subject	Harmonic	Number of Trials	Uo	Significance \%
1	1	30	0.665	10
	2	30	0.858	N-S
	3	30	0.698	$\mathrm{N}-\mathrm{S}$
	4	30	0.867	N-S
	5	30	0.846	N-S
	6	30	0.861	N-S
2	1	32	0.835	N-S
	2	32	0.901	N-S
	3	32	0.920	N-S
	4	32	0.765	N-S
	5	32	0.813	N-S
	6	32	0.914	$\mathrm{N}-\mathrm{S}$
3	1	32	0.338	0.1
	2	32	0.484	0.1
	3	32	0.860	$\mathrm{N}-\mathrm{S}$
	4	32	0.674	10
	5	32	0.939	N-S
	6	32	0.812	N-S
4	1	32	0.831	$\mathrm{N}-\mathrm{S}$
	2	32	0.787	$\mathrm{N}-\mathrm{S}$
	3	32	0.914	$\mathrm{N}-\mathrm{S}$
	4	32	0.913	$\mathrm{N}-\mathrm{S}$
	5	32	0.823	$\mathrm{N}-\mathrm{S}$
	6	32	0.695	N-S
5	1	32	0.704	N-S
	2	32	0.590	5
	3	32	0.886	$\mathrm{N}-\mathrm{S}$
	4	32	0.736	$\mathrm{N}-\mathrm{S}$
	5	32	0.821	N-S
	6	32	0.932	N-S

Table 5-18a
Results of the Hodges-Ajne Test for 1 second ISI CNV's of Abnormal Subjects

Subject	Harmonic	Number of Trials	M	Significance
1	1	32	12	N-S
	2	32	12	N-S
	3	32	9	18
	4	32	12	N-S
	5	32	7	2.8
	6	32	12	N-S
2	1	32	12	N-S
	2	32	13	N-S
	3	32	14	N-S
	4	32	11	N-S
	5	32	11	N-S
	6	32	11	N-S
3	1	32	13	N-S
	2	32	9	18
	3	32	13	N-S
	4	32	12	$\mathrm{N}-\mathrm{S}$
	5	32	12	N-S
	6	32	12	N-S
4	1	32	11	N-S
	2	32	9	18
	3	32	13	N-S
	4	32	11	N-S
	5	32	8	7.8
	6	32	14	N-S
5	1	32	8	7.8
	2	32	11	N-S
	3	32	10	$\mathrm{N}-\mathrm{S}$
	4	32	11	$\mathrm{N}-\mathrm{S}$
	5	32	10	N-S
	6	32	10	$\mathrm{N}-\mathrm{S}$

Results of the Hodges-Ajne Test for 4 second ISI CNV's of Abnormal Subjects

Table 5-19
Summary of Additivity and Phase Ordering Results Significant
at the $5 \$$ level for the Patient Group

		- ADDITIVITY		PHASE ORDERING		
ISI	SUBJECT NUMBER	NEAREST 6 FURTHEST MEAN AMPLITUDE	PRE-POST MEAN AMPLITUDE DIFFERENCES	CIRCULAR variance	MODIPIED CIRCULAR variance	HODGES-AJNE
1	1		H2 ${ }^{+}$	H5*		H5*
	2		$\mathrm{H4}^{+}$			
	3					
	4		H2 ${ }^{+}$H3 ${ }^{+}$	H5		
	5		$\begin{aligned} & \mathrm{H2}{ }^{+} \mathrm{H3}{ }^{+} \mathrm{H4}^{+} \\ & \mathrm{H} 5^{+} \mathrm{H} 6^{+} \end{aligned}$			
4	1	H1 ${ }^{+}$				
	2					
	3	H1 H2		H1 ${ }^{*} \mathrm{H} 2 *$	H1* $\mathrm{H}_{2}{ }^{*}$	H1 *
	4					
	5	H2		H1 H2*	H2*	

Hn indicates that the nth harmonic had a significant result.

+ denotes additivity without phase ordering.
* denotes two or more ordering tests are in agreement.
second ISI CNV responses of normals than were the one second ISI responses. The table also shows that a number of instances of additivity without phase ordering occurred. For the one second ISI CNV's there were 9 spread between 4 different subjects and for the four second ISI CNV's there was onl'y 1 case.

The conclusions must therefore be that (i) the CNV responses of abnormals may contain added energy but that this may be random in nature rather than part of a true CNV response, (ii) the responses show very little phase ordering and (iii) additivity may occur unaccompanied by phase ordering.
5.5 Distinction Between Patients and Normals on the Basis of their CNV's

The previous two sections have shown that the CNV responses of patients tend to be more random than those of normals. It has also been shown that their averaged CNV waveforms were generally different (Section 5.4.1). Further attempts were therefore made to distinguish between the two subject categories in a quantitative manner on the basis of their averaged CNV responses. In particular (i) the distribution of amplitude and phase of the individual harmonics of the averaged CNV were compared and (ii) plots of amplitude verses phase angle with subject as a parameter were also compared. Attempts to distinguish between patients and normals on the basis of the trial-by-trial development of the CNV's are described in the next section.

In the case of the first three harmonics of the one second ISI CNV's of normals (see Table 5-20) it was found that with

Phase Angles of the Fourier Components of the Averaged one second ISI CNV's of Normal and Abnormal Subjects

		NORMAL SUBJECTS	ABNORMAL SUBJECTS
Subject No.	Harmonic	Phase Angle	Phase Angle

only one exception the phase angles were negative. By contrast the patients had phase angles covering a wider range $\left(+160^{\circ}\right.$ to -1.40° compared with -176° to $+12^{\circ}$ for normals).

Plots of amplitude verses phase angle with subject as a parameter indicated on the graphs are shown in Figures 5-11a and 5-11b for the one and four second ISI's respectively. The baseline correction procedure used in obtaining these plots was different to that described in Section 5.3.2.1 and used previously. The reason for this change was that the slow return to baseline found in some of the abnormal subjects averaged CNV's made it difficult to obtain a meaningful post S2 average background EEG level. Therefore the averaged CNV's of both patients and normals were baseline adjusted by subtracting the mean value calculated over a one second length of background EEG preceeding the S 1 stimulus. This is a technique which has been adopted previously by other workers [10].

Inspection of Figures 5-11a and 5-11ib reveals that separate areas of the graphs may be ascribed to the normals and patients, although there are instances where the points for the two groups are close together. This method of distinguishing between normals and patients therefore requires more research in order to establish its reliability and usefulness. Similar comments apply in the case of the second harmonic where there is slightly more of an overlap between the areas ascribed to patients and normals (Figures 5-12a and 5-12b). It is possible that such plots may offer useful additional diagnostic evidence for the clinician. It is really necessary first,

however, to investigate much larger populations of patients and normalis.

5.6 The Development of the CNV from trial-to-trial in Normals and Patients

In order to examine the trial-by-trial development of the CNV plots of harmonic amplitude and phase verses trial number were produced for both normal and abnormal subjects. In the case of the one second ISI CNV's of normal subjects the plots for harmonic two, subjects 1 and 2 exhibited slight evidence for increased amplitudes i.e. a plateau, over the range of trial numbers 9 to 20 and 12 to 22 respectively. These plots are shown in Figures 5-13a and 5-13b. None of the other amplitude plots, either of normal or abnormal subjects, showed any obvious patterns.

There was some evidence in the plots of phase verses trial number that the development of the one second ISI CNV response was different in abnormal subjects to that in normal subjects. Thus whilst for the normals there was a tendency in the case of harmonic 1 for only negative phase angles to occur in the earlier trials with positive angles only occurring in the subsequent trials, (see Figure 5-14), the abnormals showed that both positive and negative phase angles could occur throughout the acquisition sequence (see Figure 5-15). There was also some evidence from the amplitudes verses phase plots for the averaged CNV's to suggest that those normals whose amplitude and phase co-ordinates were furthest from those of patients had trial-by-trial phase angles which were negative up to the final few trials. Thus the phase angles

Amplitude vs Trial number for a 1 sec . ISI CNV of a normal subject. Harmonic 2.

Amplitude vs Trial number for a 1 sec . ISI CNV of a normal subject. Harmonic 2.

Phase vs Trial number for a 1 sec . ISI CNV of a normal subject.
subject 1

Figure 5-15
Phase vs Trial number for a 1 sec . ISI CNV of an abnormal subject.
of the most "normal" subjects were characteristically negative for the earlier trials whilst those of the abnormals were characteristically randomly positive or negative. This difference may provide another means for differentiating between the two groups but again more results would be required to confirm these findings. In the case of harmonic 2 both positive and negative phase angles were found throughout the acquisition sequence and for both normals and patients (see Figure 5-16a and 5-16b).

Plots of amplitude verses trial number for the first harmonic of the four second ISI CNV's of the normals did not reveal any definite pattern, although in some cases the midtrial values may be slightly larger (see Figure 5-17). No similar evidence could be found for the abnormal subjects.

The plots of phase angle verses trial number for the first harmonic of the four second ISI CNV's were inspected. The phase angles for the initial trials were either negative or positive for the normal subjects (see Figure 5-18) but were positive for each of the abnormal subjects (see Figure 5-19). Again this may be useful but more results would be required to confirm these findings.

The corresponding plots of amplitude and phase for the second harmonic of the four second ISI CNV's of both patients and normals revealed little further information.

In conclusion it would appear that the phase properties of the harmonic components are more significant than those of the amplitude. In particular the phase properties of the

Phase vs Trial number for a 1 sec . ISI CNV of a normal subject.

Figure 5-16b
Phase vs Trial number for a 1 sec . ISI CNV of an abnormal subject.

Figure 5-17

Amplitude vs Trial number for a 4 sec . ISI CNV of a normal subject.

PHASE VS TRIAL NUMBER

PHASE VS TRIAL NUMBER

PHASE VS TRIAL NUMBER

Figure 5-18
Phase vs Trial number for the 4 sec . ISI CNV's of the normal subjects.

PHASE VS TRIAL NUMBER
HARTLONIC 1

HARMONIC 1

Phase vs Trial number for the 4 sec .
first harmonic of the one second ISI CNV response may, subject to confirmation, allow differentiation between the normal and patient groups. In this case the initial phase angles are negative for the normals and either positive or negative for the patients. The onset of positive phase . values occurs at much later trial numbers for normals than for the patients.
[1] Corby J C, Kopell B S, "Differential Contributions of Blinks and Vertical Eye Movements as Artifacts in EEG Recording" Psychophysiology, Volume 9, pp 640-644, November 1972.
[2]. McCallum W C, Walter W G, "The Effects of Attention and Distraction on the Contingent Negative Variation in Normal and Neurotic Subjects"

Electroencephalography and Clinical Neurophysiology, Volume 25, pp 319-329, 1968.
[3] Girton D G, Kamiya J, "A Simple on-line Technique for Removing Eye Movement Artifacts from the EEG" Electroencephalography and Clinical Neurophysiology, Volume 34, pp 212-216, 1973.
[4] Jervis, B W, Nichols M J, Allen E, Hudson N G; Johnson T E, "The Quantitative Assessment of Electroencephalograms Corrected for Eye Movement Artefact" EUSIPCO-80, Short communication and poster digest, Swiss Federal Institute of Technology, Lausanne, Switzerland 1980 .
[5] Sayers B McA, Beagley H A, Henshall W R, "The Mechanism of Auditory Evoked EEG Responses" Nature, Volume 247, pp 481-483, 1974.
[6] Sayers B McA, Beagley H A, Riha J, "Pattern Analysis of Auditory-Evoked EEG Potentials" Audiology, Volume 18, pp 1-1:6, 1979.

Beagley H A, Sayers B McA, Ross A J, "Fully objective ERA by Phase Spectral Analysis" Acta Otolaryngology, Volume 87, pp 270-278, 1979.
[8] Sayers B McA, "Science and Judgement in Biological Signal Analysis" in "Signal analysis and pattern recognition in biomedical engineering" Edited by Inbar G F, Halstead Press, New York, pp 3-32, 1975.
[9] Dongier M, "Separation of the various independant phenomena among the slow potential changes (Contingent Negative Variations)" Electroencephalography and Clinical Neurophysiology, Volume 27, pp 108-109, 1969.
[10] Loveless N E, Sanford A J, "The CNV Baseline: Considerations of Internal Consistency of Data" Published in "Event-Related Slow Potentials of the Brain: Their relations to Behaviour", Edited by McCallum W C ε Knott J R. Electroencephalography and Clinical Neurophysiology Supplement No. 33, pp 19-23. Published by Elsevier Scientific Publishing Company, 1973.

Cooper R, Osselton J W, Shaw J C, "EEG Technology" page 13. Published by Butterworths, 1969.

6.1 Eye Movement Artefact Removal

A method of testing the effectiveness of eye movement. artefact removal techniques has been derived. This procedure was used to test four methods of removing eye movement artefact from the EEG. These four methods were (i) the analogue method using a potentiometer due to McCallum and Walter [1], (ii) The computational method due to Quilter et al [2], (iii) our extension of Quilters method to incorporate three EOG components, (iv) our extension of Quilters to incorporate four EOG components. Recordings were made from normal volunteer subjects who were asked to make deliberate eye movements and the various methods of removing the artefact from the EEG were compared.

It was found that the computational correction method gave excellent results particularly when the horizontal and vertical components of the EOG of both eyes were taken into account. However it was possible to obtain good artefact removal using both horizontal, but only one vertical EOG component (i.e. the three EOG components method). The reduction in the computational effort obtained by this simplification may be important in an on-line multi-channel situation.

The four EOG component method of eye movement artefact removal was used in all the subsequent investigations.

6.2 Evoked Potentials

New models have been developed to describe the fundamental nature of evoked potentials in terms of additive and phase re-ordered components. The models showed that a repetitive additional component or an alignment of existing background EEG components could give rise to observable phase ordering in the post stimulus response. Tests were then contrived in an attempt to determine which of these mechanisms was operative in both auditory evoked potentials and the much longer Contingent Negative Variations.

6.3 Auditory Evoked Potentials

The tests mentioned above were applied to the auditory evoked potentials recorded from normal volunteer subjects. Of the 36 sets of results (3 subjects, 2 stimulus levels; 6 harmonics) 29 exhibited phase ordering. Some of the harmonic components were found to contain additional energy and all of these exhibited phase ordering. This finding was consistent with the proposed additivity model although a combination of the additive and phase re-ordered models could give the same results. However, 15 of the 29 results showing phase ordering did not show any additive effects. Thus either the additivity tests were not sufficiently sensitive to detect small additional components, or pure phase re-ordering was also present.

For all the subjects tested, and for both levels of auditory stimulation, the first three harmonic components all showed significant phase ordering. Furthermore, in all but
one harmonic for one subject, the results of all three phase ordering tests were significant at 0.1% or better. This result may be useful in the diagnosis of audiological defects or establishing auditory thresholds, since the statistical results give a quantitative indication of the presence or absence of a response whereas inspection of the averaged waveform is rather subjective.

6.4 The CNV's of Normal Subjects

The pre- and post- stimulus (i.e. broadband) energy tests showed that all the CNV's of the normal subjects contained additional energy. However only a small proportion of the harmonics examined showed any evidence of this feature. Thus the additional energy must have been at frequencies other than those studied. Some of the harmonics exhibited phase ordering although this feature was much less pronounced than the phase ordering observed in the auditory evoked potentials. The one second ISI CNV's showed more ordering than the four second and most of the ordering observed was confined to the lower harmonics. There were some examples of phase ordering without any accompanying additivity. Thus like the auditory responses the CNV's might be explained in terms of a mixture of the additive and phase re-ordered models.

However some results were in conflict with this conclusion. There were instances where additivity was detected in the absence of any phase ordering. This may have been the effect of a non-repetitive additional component.

The trial-by-trial analysis of the phase components of the CNV's revealed that for the first harmonic negative phase angles tended to occur in the early trials. Some of the second harmonic amplitude components showed a plateau in the middle of the acquisition sequence.

6.5 The CNV's of Abnormal Subjects

The broadband energy tests revealed fewer instances of additivity in the CNV's of the abnormal subjects than for the normal subjects. However the individual harmonics showed a slightly higher number with detectable additivity than those of the normals.

There were fewer cases of phase ordering than for the CNV's of the normal subjects. Thus the CNV's of the abnormal subjects did not fit either the additive or phase re-ordered models so well as those of the normal subjects. This may have been due to the limitations of the models or it may have indicated the differing nature of the responses obtained from the Huntingtons Chorea group.

The averaged CNV waveforms tended to support the latter theory since the one second CNV's showed little similarity with those of the normals. The four second CNV's however, particularly those for subjects three and five, did appear slightly more like the normal CNV's. These observations are supported by the phase ordering tests. The one second ISI CNV's exhibited no phase ordering in the lower harmonics whereas those of subjects three and five for the four second

ISI CNV's did.

Generally the CNV"s of the patient group were most easily characterised by their averaged waveforms. These waveforms sometimes showed a slow return to baseline.

6.6 Distinctions between the CNV's of Normals and Patients

As stated above the averaged CNV waveforms of the HC patients tended to be rather different to those of the normal group. This may be a sufficient difference to aid the detection of H.C. However, the patients for whom H.C. had only recently been diagnosed (i.e. those at an early stage of the illness) showed more normal averaged CNV's than did those for whom the disease was at an advanced stage. (Compare the recently diagnosed H.C. of Figure 5-8c with Figures 5-4a-e).

Another feature of the averaged waveforms of the patient group was that of the slow return to baseline subsequent to the S 2 stimulus exhibited by some of the subjects. This may also be a useful diagnostic feature.

An alternative to the averaged waveform was provided by the plots of amplitude verses phase for the various normal and abnormal subjects. It may be possible to ascribe certain areas of these graphs to each of the two populations.

The analysis of the phase angle of the first harmonic on a trial-by-trial nature may also be of diagnostic value since all the normal subjects tested produced negative phase
angles for the initial trials whereas the patient group did not.

6.7 Future Work

6.7.1 Eye Movement Artefact Removal

As previously mentioned hardware to perform the eye movement artefact removal procedure is to be developed and produced commercially. There are a number of improvements and tests which should be carried out before this is done. The method should first be tested to ensure that any frontal EEG activity which may be present in the EOG signals is not superimposed on the EEG by the correction procedure. One possible way of achieving this would be to, experiment with the placement of EOG electrodes in order to find electrode positions which maximise the EOG and minimise the EEG amplitudes.

The presence of harmonics of the EOG in the corrected EEG signal may be due to a frequency selective path between the eye and the scalp. The most likely characteristic of such a path would be that of a low pass filter. The correction procedure assumes that the path between the eye and the scalp is linear and has an infinite bandwidth. The correction method may thus overcorrect the higher harmonics of the EOG and hence leave traces of these components in the corrected signal. A possible cure for this phenomena would be to introduce a filter (either electrical or digital) into the EOG signal path. The filter would have to have the same
properties as those of the electrical path between the eye and the scalp. This may simply be of a frequency selective nature or may include non-linearities. It might even be possible for the correction procedure to have a set-up' mode whereby the nature of this network is determined by the correction system before the corrector is used.

6.7.2 Auditory Evoked Potentials

The statistical tests for phase ordering should be applied to a much larger sample of auditory evoked potentials covering a wide range of auditory stimulation levels. The results of the statistical tests should then be correlated with the findings of audiologists to determine whether the statistical tests for phase ordering would be audiologically useful.

6.7.3 The CNV's of Patients and Normals

Although several possible diagnostic procedures have been suggested, much larger samples of normals, patients with H.C. and patients with other neurological defects must be examined before these procedures could safely be adopted.

Further research should be aimed at establishing why the broadband energy tests do show additional energy whereas the tests on the individual harmonics sometimes do not. It should be possible to account for this extra energy and hence balance the energy figures. The extra energy may be contained in the d.c. term or in the higher harmonics.

The time to return to the baseline should be measured to establish whether any correlation can be detected between this and the severity of the disease.
[1] McCullum W C, Walter W G, "The Effects of Attention and Distraction on the Contingent Negative Variation in Normal and Neurotic Subjects" Electroencephalography and Clinical Neurophysiology, Volume 25, pp 319-329, 1968.
[2] Quilter P M, MacGillivray B B, Wadbrook D G, "The Removal of Eye Movement Artefacts from EEG Signals using Correlation Techniques" Random Signals Analysis, IEE Conference Publication No. 159, pp 93-100.

I would like to thank the many people who have given me help and advice throughout the course of this research project. In particular special thanks must go to my Supervisors, Drs. Barrie Jervis (Dept. of Communication Engineering, Plymouth Polytechnic), Elaine Allen (Dept: of Neurological Sciences, Freedom Fields Hospital, Plymouth), and John Fryer (Dept. of Mathematics Statistics and Operational Research, Exeter University) for their unwavering support and encouragement. Special thanks must also go to Dr. Terry Johnson (Dept. of Mathematics, Statistics and Computing, Plymouth Polytechnic) for his advice on the use of angular statistics and allowing me to use his computer subroutines to calculate these statistics. I would particularly like to thank Mr. Nigel Hudson (Dept. of Neurological Sciences, Freedom Fields Hospital), for applying and removing the measuring electrodes from the subjects and for liaising with the consultants and next of kin of the Huntington's chorea patients.

Thanks are also due to the members of staff, both academic and technical of the Departments of Communication Engineering and Electrical E Electronic Engineering who have given their advice so freely. Special mention must be made to the advice given by Mr. Alan Roberts and Mr. Adrian Jerram concerning the PDP8 minicomputers and the hybrid computer interface utilized in the data acquisition system.

I would also like to thank the past and present members of staff of the Plymouth Polytechnic Computer Centre for their
help and advice on programming matters.

For financial support I would like to thank the Devon County Local Education Authority and the Nuffield Foundation.

For permission to use their facilities I would like to thank Mr. B.R. Webster, Head of the Department of Electrical E Electronic Engineering.

For showing me their facilities and for several hours of useful and interesting discussion I would like to thank Drs. W.C. McCallum and R. Cooper of the Burden Neurological Institute, Bristol and Dr. P. Fenwick of St. Thomas' Hospital and The Institute of Psychiatry, London.

For her accurate and painstaking typing of this thesis I would like to thank Mrs. L. Mortimore.

Finally I would like to thank all those volunteers who participated in the tests and without whom this research would not have been possible.

Calculation of Expected Phase Values for Idealized CNV's

By considering the CNV as one of the simple shapes shown below it is possible to calculate the resulting phase angles for each of the harmonic frequency components. These calculations were performed using a microcomputer to compute the discrete Fourier transform of each of the possible CNV shapes. The listing of the computer programme and the results are given below.

WAVESHAPE
HARMONIC

1	2	3	4	5	6

Type 0

$\begin{array}{llllll}-90 & -90 & -90 & -90 & -90 & -90\end{array}$
 $-57.4-89.6 \quad-77.5 \quad-89.3-81.9 \quad-88.9$
 0 * 0 0

* Phase angles are indeterminate due to zero amplitudes of these harmonic components.

```
10 FI=3.14159265
20 INFUT " NUMBER OF FOINTS ":N
30 DIM FT (N-1)
40. INPUT " MAXIMUM AMPLITUDE ";K
50 INPUT " WHICH TYFE OF CNU WAUESHAPE ";G
60 IF Q=0 THEN SL=K/N
70 IF Q>0 THEN SL =2*K/N
8.0 INPUT " HARMONIC :NUMEEF ";H
90 FOR I=0 TO N-1
100 IF I < N/2 THEN FT(I)=SL:I:I : GOTO 140
110 IF Q=0 THEN FT(I):=SL*I
120 IF Q=1 THEN FT(I)=K
130 IF Q=3 THEN FT(I):=-SL_*I+2:%K
140 NEXT I
150 C=0
160 S=0
170 FOR I=0 TO N-1
180 C=C + FT(I)*CDS(2*FI*I*H/N)
190 S=S-FT(I)*SIN(2*FI*I*H/N.)
200 NEXT I
210.C=C/N
220 S=S/N
230 FRINT "REAL=";C;" ";"IMAG=";S
240 TH=180/FI*ATN(S/C)
250 IF C>0 GOTD 290
260 IF S>0 THEN TH=TH+180 : GOT'O 290
270 TH=TH-180
280 GOTO 290
290 PRINT "THETA=";TH
300 GOT0 80
```


Transformation of the Rayleigh Probabilities to those of Circular Variance

Using the definitions given in section 2.2.2.1 a relationship may be derived between the Rayleigh statistic R and the circular variance statistic S_{O}. For a set of N angles $\left\{\theta_{i}\right\}$ the Rayleigh statistic is given by

Clearly this is simply N times \bar{R} as defined by equation 6 of section 2.2.2.1.

```
since So = 1-\overline{R}
then }\mp@subsup{S}{O}{}=1-\frac{R}{N
```

Hence a table of critical values of S_{o} may be compiled from a table of critical values of R by dividing each 'R' value by N and subtracting the resulting value from unity.

A table thus obtained is given overleaf.

N

	0.10	0.05	0.01	0.001
5	0.333	0.246	0.121	0.009
6	0.382	0.310	0.175	0.060
7	0.428	0.358	0.229	0.109
8	0.465	0.398	0.275	0.153
9	0.496	0.431	0.313	0.192
10	0.552	0.460	0.335	0.225
11	0.544	0.484	0.373	0.257
12	0.563	0.506	0.398	0.284
13	0.580	0.525	0.420	0.308
14	0.595	0.542	0.440	0.331
15	0.609	0.557	0.458	0.351
16	0.621	0.571	0.475	0.370
17	0.63 .3	0.583	0.490	0.387
18	0.643	0.595	0.540	0.403
19	0.652	0.606	0.516	0.417
20	0.661	0.615	0.528	0.431
21	0.669	0.625	0.539	0.444
22	0.677	0.633	0.549	0.456
23	0.684	0.641	0.559	0.467
24	0.691	0.649	0.568	0.478
25	0.697	0.656	0.577	0.488
30	0.723	0.685	0.613	0.530
35	0.744	0.708	0.641	0.564
40	0.760	0.727	0.664	0.591
45	0.774	0.743	0.682	0.6614
50	0.786	0.756	0.699	0.633
64	0.810	0.784	0.732	0.672

APPENDIX 8.3

Probability Levels for the Modified Rayleigh Test

The following tabie gives the critical values of U_{0} as derived from Moore [section 2 reference 5]. The derivations are calculated from

$$
U_{0}=1-\frac{2 \sqrt{N} R^{*}}{(N+1)}
$$

Table of Critical Values of U_{0}

N

	0.1	0.05	0.01	0.001
5	0.264	0.192	0.094	
6	0.320	0.248	0.139	
7	0.365	0.295	0.181	
8	0.404	0.334	0.219	
9	0.436	0.368	0.253	0.176
10	0.462	0.397	0.282	0.224
12	0.506	0.444	0.332	0.266
14	0.541	0.483	0.375	0.304
16	0.57 .0	0.515	0.412	0.336
18	0.594	0.541	0.443	0.365
20	0.61 .4	0.563	0.469	0.389
22	0.631	0.583	0.491	0.413
24	0.64 .7	0.600	0.512	0.470
30	0.684	0.641	0.560	0.485
32	0.692	0.652	0.573	0.535
40	0.725	0.688	0.617	0.617
60	0.774	0.744	0.684	0.629
64	0.782	0.752	0.695	0.629
80	0.804	0.778	0.726	0.667
100	0.826	0.802	0.755	0.700

APPENDIX 8. 4

Probability Levels for the Hodges-Ajne Test

The following table gives the critical values of m for the Hodges-Ajne test.

Table of Critical Values of m

	0.10	0.05	0.025	0.01
9	0	0	0	0
10	1	0	0	0
11	1	0	0	0
12	1	1	0	0
13	1	1	1	0
14	2	1	1	0
15	2	2	1	1
16	2	2	1	1
17	3	2	2	1.
18	3	3	2	2
19	3	3	2	2
20	4	3	3	2
21	4	4	3	2
22	5	4	3	3
23	5	4	4	3
24	5	5	4	3
25	6	5	4	4
30	7	7	6	5
35	9	9	8	7
40	11	10	10	9
50	15	14	13	12
60	19	18	14	13

APPENDIX 8.5

The Paired t-Test

Where a set of experimental results fall naturally into pairs the above statistical test may be employed to establish whether a consistent difference between each of the paired values exists. An example will best illustrate the method.

Two students, X and Y, measured the resistance of twelve resistors. Each student measured all the resistors and the results they obtained are shown in the table.

	RESISTOR											
STUDENT	1	2	3	4	5	6	7	8	9	10	11	12
X	100	90	130	110	117	75	32	88	41	57	18	6.7
Y	105	91	128	109	119	77	32	87	36	60	21	72

Are one students results consistently higher than the others?

The differences are first calculated;
$x=\begin{array}{lllllllllllll} \\ x & -5 & -1 & 2 & 1 & -2 & -2 & 0 & 1 & 5 & -3 & -3 & -5\end{array}$

If there was no consistent difference between the students measurements then the differences should form a zero mean normal distribution. The t-test is used to test this hypothesis.

Mean value $=\bar{x}=\frac{\sum x}{N}$

$$
\begin{aligned}
& =\frac{-12}{12} \\
\bar{x} & =-1
\end{aligned}
$$

An estimate of the variance is given by

$$
\dot{\sigma}^{\dot{2}}=\frac{1}{\bar{N}-1}\left[\Sigma x^{2}-{\frac{(\Sigma x)^{2}}{N}}^{2}\right]
$$

$=\frac{1}{12-1}\left[108-{\frac{(-12)^{2}}{1 i 2}}^{2}\right]$
$=8.73$
$\therefore \hat{\sigma}=2.95$

The t statistic is given by
$t=\frac{|\bar{x}-\mu|}{\frac{\hat{\sigma}}{\sqrt{N}}}$
$=\frac{|-1-0|}{2.95} \quad 12$
$t=1.17$ with ($\mathrm{N}-1$) degrees of freedom.

Tables of the t statistic show that with 11 degrees of freedom a value of 1.17 is not significant. Hence there is no evidence that one students measurements are higher than the others.

The t-Test

Because of the relatively small number of observations made in some of our tests the t statistic was used in preference to the normal Z statistic. Frequently the question to be resolved was "could these two sets of observiatons have come from the same parent population?"

Where this was so the test statistic was calculated according to the formula

$$
t=\frac{\bar{X}_{A}-\bar{X}_{B}}{\sqrt{\frac{S_{A}{ }^{2}+S_{B}^{2}}{N_{A}} \frac{N_{B}}{}}}
$$

where \bar{X}_{A} was the calculated mean of the N_{A} observations
\bar{X}_{B} was the calculated mean of the N_{B} observations
S_{A} was the standard deviation of the 'A' observations
S_{B} was the standard deviation of the 'B' observations

Furthermore since the variances $S_{A}{ }^{2}$ and $S_{B}{ }^{2}$ were only estimates of the variances of the entire population, a 'pooled sum of squares' method was used to estimate the number of degrees of freedom to be used with the t statistic. This was calculated from the formula

$$
\nu=\frac{\left[\frac{S_{A}^{2}}{N_{A}}+\frac{S_{B}^{2}}{N_{B}}\right]^{2}}{\frac{\left[\frac{S_{A}{ }^{2}}{N_{A}}\right]^{2}}{N_{A}+1}+\frac{\left[\frac{S_{B}{ }^{2}}{N_{B}}\right]^{2}}{N_{B}+1}}
$$

which although rather complex, caused no extra work since both the t statistic and the number of degrees of freedom were calculated by computer. (Had the calculations been made by hand then the F test would have been used to establish whether the variances $S_{A}{ }^{2}$ and $S_{B}{ }^{2}$ were sufficiently different to warrant calculation of v by the formula given in place of $\left.N_{A}+N_{B}-2\right)$.

When the appropriate values of t and v had been ascertained then the tables were consulted to determine whether the test was significant or not. If the test was "is \bar{X}_{A} less than \bar{X}_{B} ?" or "is \bar{X}_{A} greater than \bar{X}_{B} ?" then a 'one tailed' test was performed whereas if the test was "is \bar{X}_{A} different from \bar{X}_{B} ?" then a two tailed test was performed. The only difference between these two tests is that the tables give areas (i.e. probabilities) for one tail only. Thus for two tailed tests the probabilities must be doubled.

APPENDIX 8.7

FORTRAN Programme 'DATAPLOT'

This programme was used for plotting the raw EOG/EEG data on a graphics terminal or graph plotter. The programme uses the GINO graphics subroutines. Listings of subroutines 'IDATIN' and 'GETNAM' which are used to read the data in from a data file and to obtain a filename from the user are given in Appendix 8.12.

The listing of programme 'DATAPLOT' follows.

```
            INTEGER*2 INP(1024),RNAME (20'), IBATNO
```

 LOGICAL CSE
 DATA CSE/.FALSE./
 1 WRITE (1,2.)
 FORMAT ('TEKTRONLX(0) OR CALCOMP(1) OUTPUT')
 $\operatorname{READ}(1, *, E R R=1)$ IDEVIC
NOMINATE THE REQUIRED DEVICE
IF (IDEVIC.EQ.1) CALL CC906
IBAUD $=1200$
CALL DEVSPE (IBAUD)
CALL UNITS (0.24)
CALL GETNAM (RNAME)
18 WRITE (1, 20)
20 FORMAT ('WHICH BATCH')
22 READ (1, *, ERR $=18$) IBATNO
IF (IBATNO .LT. O)GO TO 999
IF (FLOAT (IBATNO/6) .NE . FLOAT(IBATNO)/6.) GO TO 18
24 WRITE (1; 27)
27 FORMAT (SCALE FACTOR')
KEAD ($1, *$, ERR $=24$)SCALE
SET FOR SOLID LINES.
AND CLEAR THE SCREEN.
CALL PICCLE
CALL BROKEN (0)
$S T X=150$ 。
$\mathrm{X}=\mathrm{STX}$
STY=70.
$\mathrm{Y}=0$.
CALL MOVTO2 (X,Y)
$\mathrm{DO} 200 \mathrm{I}=1,6$
$Y=Y+20$.
CALL MOVTO2 (X,Y)
$\mathrm{Y}=\mathrm{Y}+100$.
CALL LINTO2 (X,Y)
$Y=70$
DO $300 \mathrm{I}=1,6$
$\mathrm{X}=\mathrm{STX}$
CALL MOVTO2 (X,Y)
$\mathrm{X}=950$.
CALL LINTO2 (X,Y)
$\mathrm{Y}=\mathrm{Y}+120$.
KBAT=IBATNO
CALL MOVTO2 (40. 740.)
CALL CHAHOL ('DATA FROM FILE *.')
CALL CHAARR RNAME 20,2)
CALL MOVTO2 (0.,690.),
CALL CHAHOL 'VL EOG*.')
CALL MOVTO2 $20 \cdot 650$.)
CALL CHAINT (KBAT 3)
CALL MOVTO2 $0 ., 55^{3}$.
CALL CHAHOL('VR EOG*.')
KBAT=KBAT+1
CALL MOVTO2 (20., 530.)
CALL CHALNT KBAT 3)
CALL MOVTO2 0.450.
CALL CHAHOL ('HL EOG*.')
$K B A T=K B A T+1$
CALL MOVT02 (20.,410.)
CALL CHAINT (KBAT 3)
CALL MOVTO2 O., 330.)
CALL CHAHOL('HR EOG*.')
$\mathrm{KBAT}=\mathrm{KBAT}+1$
CALL MOVTO2 (20., 290.)
CALL CHAINT KBAT, 3)
CALL MOVTO2 0.210.$)$
CALL CHAHOL('M1 EEG*.')
KBAT $=$ KBAT +1
CALL MOVTO2 (20. 170.)
CALL CHAINT KBAT 3)
CALL MOVTO2 0.90 .
CALL CHAHOL ('M2 EEG*.')
KBAT $=$ KBAT +1
CALL MOVTO2 (20., 50.)
CALL CHAINT (KBAT, 3)
$Y \mathrm{D}=600$.
LE=IBATNO

DO $400 \mathrm{~L}=1,6$
$\mathrm{Y}=\mathrm{STY}+\mathrm{YD}$
$\mathrm{X}=\mathrm{STX}$
CALL MOVTO2 (X,Y)
CALL DATIN(LE, INP, RNAME,SF1,SF2,SAMRAT,CSE)
DO $350 \mathrm{I}=1$, 1024
$Y=F L O A T($ INP (I)) *SF 1 *SCALE
$\mathrm{IF}(\mathrm{L} . \mathrm{GE}$ - 5) $\mathrm{Y}=\mathrm{Y} * \mathrm{SF} 2 / \mathrm{SFl}$
$Y=Y / 10, \$+S T Y+Y D$
$\mathrm{X}=\mathrm{X}+0.78125$
350 CALL LINTO2 (X, Y)
LE $=\mathrm{LE}+1$
400 YD=YD-120.
CALL MOVTO2 (0., 0.)
CALL CHAMOD
GO TO 22
999 CALL PICCLE
CALL DEVEND
CSE=.TRUE.
CALL DATIN (IBATNO, INP, RNAME, SF1,SF2, SAMRAT, CSE)
CALL EXIT
END

APPENDIX 8.8

FORTRAN Programme used in the Analysis of the Eye Movement Correction Methods

This programme was used to calculate the correction constants for, the four channel eye movement correction method. The calculated constants were printed and applied to the data to give the corrected EEG signal. The autocorrelation function of the corrected signal was subsequently calculated and plotted on a graphic terminal. Subroutine 'MES1' was then used to measure both the a.c.c. and the frequency of the a.c.f. by means of the graphics cursor which was set by the user to the appropriate points on the graph.

The autocorrelation function of the signal corrected by the method of McCallum and Walter (and stored as the sixth data channel) was finally calculated and plotted. Once again subroutine 'MES1' was used to estimate the a.c.c. and the frequency of the a.c.f.

The subroutines used are listed after the main programme. Although having similar names these subroutines are not necessarily the same as some of those listed in Appendix 8.12.THE PROGRAM REMOVES ANY D．C OFFSET ON ANY OF
THE INPUT DATA CHANELS.
REAL M1M M2M
REAL VL（1024），VR（1024），HL（1024），HR（1024），Ml（1024），M2（1024）
DIMENSION X1． 4,5 ）X2（4，5），RM1（4），RM2（4）
DIMENSION CORI（1024）
DIMENSION COVAR1（512），COVAR2（512）
INTEGER＊2 BATNO，INP（1024），FNAME（7）
LOGICAL CSE
CSE＝．FALSE．
$\mathrm{N}=1024$
$\mathrm{NCORL}=512$
READ THE NUMBER OF THE FIRST BATCH OF DATA
TO BE PROCESSED．
THE DATA IS ASSUMED TO BE IN THE FOLLOWING ORDER ；VL ${ }^{2}$ ， $\mathrm{HL}, \mathrm{HR} \mathrm{Ml}^{\mathrm{Ml}} \mathrm{M}^{\mathrm{M}}$ Ml IS＇THE ChANNEL TO＇BE CORRECTED BY THE MODIFIED QUILTER TECHNIQUE．
M2 IS THE CHANNEL CORRECTED BY THE BURDEN TECHNIQUE．
GET THE SCALE FACTORS FROM THE DATA FILE．
5 WRITE $(1,6)$ FOR EOG DATA．SF2 FOR EEG DATA．
6 FORMAT（ 4 CHANNEL EYE MOVEMENT CORRECTION PROGRAM＇）
CALL GETNAM（FNAME）
WRITE（1，10）
10 FORMAT（WHICH BATCH OR－1 TO QUIT＇）
READ（1，＊）BATNO
IF（BATNO ．LT．0）GO TO 5000
IF（BATNO ．GT．191）GO TO 2999
IF（FLOAT（BATNO／6）．NE．FLOAT（BATNO）／6．）GO TO 2999
WRITE（1， 14 ）
14 FORMAT（FILTER THE BURDEN SIGNAL（0）NO（1）YES＇）
$\operatorname{READ}(1, *)$ IBRDFL
WRITE（1， 16 ）
16 FORMAT（ ${ }^{*}$ FILTER THE CORRECTED SIGNAL（0）NO（1）YES＇）
READ（1，＊）ICRRFL
WRITE（1，18）
18 FORMAT（＇PLOT THE CORRECTED WAVEFORM＇）
READ（1，＊）IPLTCR
20 WRITE（1，22）BATNO
22 FORMAT（＇EYE MOVEMENT CORRECTIONS 4 CHAN．BATCH＇，IS）
WRITE（ 1,24 ）FNAME
24
FORMAT
L＝BATNO
READ THE DATA AND CONVERT TO REAL FORMAT．
CALL DATIN（L，INP，FNAME，SF1，SF2，SAMRAT，CSE）
DO $32 \mathrm{I}=1$ ， N
32 VL（I）$=$ FLOAT（INP（I））＊SF1
$\mathrm{L}=\mathrm{L}+1$
CALL DATIN（L，INP，FNAME，SF1，SF2，SAMRAT，CSE）
DO $34 \mathrm{I}=\mathrm{I}$ ， N
$34 \underset{\mathrm{~L}=\mathrm{L}+1}{\mathrm{VR}(\mathrm{I})=\mathrm{FLOAT}(\mathrm{INP}(\mathrm{I})) * S F 1}$
CALLL DATIN（L，INP，FNAME，SF1，SF2，SAMRAT，CSE）
DO $36 \quad I=1$ ，N
$\mathrm{L}=\mathrm{L}+1$
CALL DATIN（L，INP，FNAME，SF1，SF2，SAMRAT，CSE）
DO $38 \quad I=1, N$
$38 \underset{\mathrm{~L}=\mathrm{L}+1}{\mathrm{HR}(\mathrm{I})}=\mathrm{FLOAT}(\operatorname{INP}(\mathrm{I})) * \mathrm{SF} 1$
CALL DATIN（L，INP ，FNAME ，SF1，SF2，SAMRAT，CSE）
DO $40 \mathrm{I}=1, \mathrm{~N}$
40．M1（I）＝FLOAT（INP（I））＊SF2
$\mathrm{L}=\mathrm{L}+1$
CALL DATIN（L，INP ，FNAME，SF1，SF2，SAMRAT，CSE）
DO $52 \mathrm{I}=1$ ， N
52 M2（I）$=$ FLOAT（INP（I））＊SF2
WRITE（1，56）SF1，SF2
C

```

```

SUBTRACT THE MEAN OF EACH DATA BATCH FROM THE DATA．
CALL SMEAN（N，VL，VLM）
CALL SMEAN（N，VR，VRM
CALL SMEAN（N，HL，HLM）

```

\section*{\(A=0\).
\(B=0\) \\ \(\mathrm{C}=0\).
\(\mathrm{D}=0\).
\(\mathrm{E}=0\).
\(\mathrm{F}=0\).
\(\mathrm{G}=0\).
\(\mathrm{P}=0\).
\(\mathrm{Q}=0\).
\(\mathrm{R}=0\).
\(S=0\).
\(\mathrm{T}=0\).
\(\mathrm{U}=0\).
\(\mathrm{V}=0\).}

D0 100 I \(-1, N\)

\(C=C+V L\}\) I
\(D=D+V L\}\) I
\(\mathrm{E}=\mathrm{E}+\mathrm{VR}\{\mathrm{I}\) ) *VR F I
\(\mathrm{G}=\mathrm{G}+\mathrm{VR}\left\{\mathrm{I}\left\{\begin{array}{c}\mathrm{HR} \\ \mathrm{P}=\mathrm{P}+\mathrm{HL} \\ \mathrm{I}\end{array}\right\} \begin{array}{l}\mathrm{I} \\ \mathrm{HL}\end{array}\right.\)
\(\left.\left.\begin{array}{l}\mathrm{Q}=\mathrm{Q}+\mathrm{HL} \\ \mathrm{R}=\mathrm{R}+\mathrm{HR}\end{array}\right\} \mathrm{I}\left\{\begin{array}{l}\mathrm{I}\end{array}\right\} \begin{array}{l}\mathrm{HR}\end{array}\right\} \mathrm{I}\)
S \(=\) S+M1 \(\{\) I \(\}\) VL
\(T=T+M 1\} \mathrm{I}\{\mathrm{VR}\} \mathrm{I}\)
\(\mathrm{U}=\mathrm{U}+\mathrm{Ml}\) I \(\left.\} \mathrm{I}\} \mathrm{I}_{\mathrm{HL}}\right\} \mathrm{I}\)
CONTINUE
\(\mathrm{X} 1,1,2=\mathrm{B}\)
X1 \(1,3,3=C\)
X1 1\(\} 2,4=\mathrm{D}\)

X1 \(2,2,4=G\)
X1 \(3,3,4=0\)
\(\times 134,4=R\)
X1
X1 \(\{3,5=\mathbf{U}\)
C
\(x(4,5)=V\)
SET UP SYMMETRICAL MATRIX.

\(\left.\left.\left.\begin{array}{l}\text { X1 } \\ \text { X1 } \\ \text { X1 }\end{array}\right\} \begin{array}{l}1,1 \\ 3,2\end{array}\right\}=X 1\right\} \begin{aligned} & 1,4 \\ & 2,3 \\ & 2\end{aligned}\)

SOLVE THE SIMULTANEOUS EQUATIONS BY THE GAUSS PIVOTAL METHOD:
MSIZE=4
CALL GAUSS (MSIZE,X1,RM1)
IF (IBRDFL :EQ. I CAlL FILTER (N,M2)
WRITE (1,150)
150 FORMAT THE CORRECTION CONSTANTS ARE ',//)
WRITE ( 160 )

200 FORMAT \(4(3 \times(\operatorname{Fl2}, 5), I=1,4)\)
DO 220 APPLY THE CORRECTIONS TO THE DATA.
\(\operatorname{CORI}(\mathrm{I})=\mathrm{ML}(\mathrm{I})-(\mathrm{RML}(1) * \mathrm{VL}(\mathrm{I})+\mathrm{RMl}(2) * \mathrm{VR}(\mathrm{I})+\mathrm{RMI}(3) \star \mathrm{HL}(\mathrm{I})\)
\(1+\) RMI (4)*HR(I))
220 CONTINUE
PLOT THE CORRECTED DATA.
CALCULATE AND PRINT THE CROSS CORRELATIONS
IF (ICRRFL .EQ• 1 )CALL FILTER (N,COR1)
IF (IPLTCR .EQ. I)CALL GRAPH3(N,COR1,SAMRAT)
SC=200.
CALL AUTCO (N,COR1,NCORL, COVAR1)
CALL GRAPH3 (NCORL, COVARI, SAMRAT)
WRITE ( 1,240 )
FORMAT( MEASURE(0.) NO (1) YES')
READ (1,*) IMES

IF (IMES .EQ: 1)CALL MESI
CALL AUTCO (N,M2,NCORL, COVAR2)
CALL TNOUA ('WAI'TING, BURDEN ACF NEXT',24)
READ ( \(1, *\) ) IWT
CALL GRAPH3 (NCORL , COVAR2, SAMRAT)
WRITE ( 1,240 )
READ ( 1 *) IMES
IF (IMES .EQ. 1)CALL MESI
2999 WRITE ( 1,4000 ) BATNO
4000 FORMAT BATCH NUMBER INCORRECT', I6)
5000 CSE=.TRUE.
CALL DATIN(L,INP, FNAME, SF1, SF2, SAMRAT, CSE)
CALL DEVEND
CALL EXIT
END

SUBROUTINE MESI
```

ดด๑๐்
MEASURES THE ACC \& FREQUENCY
BY MEANS OF THE GRAPHICS CURSOR.
WRITE (1, 10)
10 FORMAT ('GIVE CO-ORDS . FOR ACF')
CENLIN=0.
$X M=400$.
XS=100.
$\mathrm{Y} S=390^{\circ}$.
CALL CURSOR(ICOM,X,Y)
$\mathrm{X}=\mathrm{X}-\mathrm{XS}$
$\mathrm{Y}=\mathrm{Y}-\mathrm{YS}$
CALL CURSOR(ICOM,XI,Y1)
$\mathrm{Xl}=\mathrm{Xl}-\mathrm{XS}$
$\mathrm{Yl}=\mathrm{Yl}-\mathrm{YS}$
$\left.\mathrm{Sl}=(\mathrm{Y}-\mathrm{Y} 1) /(\mathrm{X}-\mathrm{X} 1)^{1}\right)$
$\mathrm{Cl}=\mathrm{Y} 1-\mathrm{Sl} \mathrm{X}^{2}$
C
DRAW FIRST CONSTRUCTION LINE
$\mathrm{XL1}=50$.
$\mathrm{XL} 2=750$.
$\mathrm{YLL}=\mathrm{S} 1 * \mathrm{XLL}^{+} \mathrm{Cl}$
CALL MOVTO2 (XLI $+X S, Y L 1+Y S)$
$\mathrm{YL} 2=\mathrm{S} 1 * \mathrm{XL} 2+\mathrm{C} 1$
CALL LINTO2 (XL2+XS,YL2+YS)
CALL CURSOR(ICOM,X,Y)
$\mathrm{X}=\mathrm{X}$-XS
$\mathrm{Y}=\mathrm{Y}-\mathrm{YS}$
CALL CURSOR(ICOM,XI,Y1)
$\mathrm{X} 1=\mathrm{XI}-\mathrm{XS}$.
$\mathrm{Y} 1=\mathrm{Y} 1-\mathrm{YS}$
$\mathrm{S} 2=(\mathrm{Y}-\mathrm{Y} 1)$
$\mathrm{C} 2=\mathrm{Y} 1-\mathrm{S} 2 * \mathrm{XI}$
DRAW SECOND CONSTRUCTION LINE
YL1 $=$ S2*XL1 +C 2
CALL MOVTO2 (XL1+XS,YLl+YS)
YL2 $=$ S2*XL2 + C2
CALL LINTO2 (XL2+XS, YL2+YS)
$A=(\operatorname{ATAN}(S 1)+\operatorname{ATAN}(S 2)) / 2$.
S=SIN(A) COS(A)
$\mathrm{C}=(\mathrm{C} 1+\mathrm{C} 2) / 2$.
IF CENLIN .EQ. 1.) CALL MOVTO2 (XLI+XS,YS+S*XLI+C)
IF (CENLIN .EQ. 1.)CALL LINTO2 (XL2+XS,YS+S*XL2+C)
TEST FOR ZERO SLOPE
IF (S .EQ• O.) GO TO 100
$\mathrm{S} 3=-1 \% \mathrm{~S}$
$\mathrm{YM}=\mathrm{S}$ * $\mathrm{XM}+\mathrm{C}$
C3aYM-S3*XM
XP1ㅁ(C1-C3)/(S3-S1)
$\mathrm{XP} 2=(\mathrm{C} 2-\mathrm{C} 3) /(\mathrm{S} 3-\mathrm{S} 2)$
YPl $=\mathrm{S} 3 \star \mathrm{XP} 1+\mathrm{C} 3$
$\mathrm{YP} 2=\mathrm{S} 3 * \mathrm{XP} 2+\mathrm{C} 3$
GY=SQRT(. XP1-XP2)*(XP1-XP2) + (YP1-YP2)*(YP1-YP2))/400.
$\mathrm{YPl}=\mathrm{S} 1 * X M+\mathrm{Cl}$
$\mathrm{YP} 2=\mathrm{S} 2 * \mathrm{XM}+\mathrm{C} 2$
$D Y=A B S(Y P 1-Y P 2) / 400$.
CALL MOVTO2 (0., 700 .)
CALL CHAMOD
WRITE ($1,210$.
210 FORMAT ('GIVE CO-ORDS. FOR TIME MEASUREMENT')
CALL CURSOR (ICOM, X, Y)
CALL CURSOR (ICOM, XI, Y1)
$\mathrm{DX}=(\mathrm{ABS}(\mathrm{X}-\mathrm{XI}) / 800). * \frac{1.096}{}$
$\mathrm{F}=1 . \mathrm{DX}$
CALL MOVTO2 (0., 650.)
CALL CHAMOD
WRITE (1, 240)DY, F
240

```
            INTEGER*2 NAME(7),TBUFF(7)
            6 WRITE(1;8)
            8 FORMAT('GIVE NAME OF FLLE TO BE PROCESSED')
            READ (1,10)NAME
            10 FORMAT(7A2)
            IF(NAME (1),:EQ.' ')GO TO 100
            DO. 20 I=1.7
                TBUEF(I)=NAME (I)
            RETURN
    100 DO 120 I=1,7
    120. NAME(I)=TBUFF(I)
            RETURN
            END
C
            SUBROUTINE AUTCO(NPOINT;,DATA,NCOREL,AUTOCF)
                                    CALCULATES THE ACF
            DIMENSION DATA(NPOINT),AUTOCF(NCOREL),DATAZM(1O24)
            INTEGER*2 2l
            AMEAN=0.
            DO 10 I=l,NPOINT
            10 AMEAN=AMEAN+DATA(I)
        AMEAN=AMEAN/FLOAT (NPOINT)
            DO 15 I=1,NPOINT
            15 DATAZM(I)=DATA(I)-AMEAN
            DO 25 I=1;,NCOREL
            II=I-1.
            STORE=0.
            Zl=NPOINT-II
            DO 20 J=1,ZI
            20 STORE=STORE+DATAZM(J)*DATAZM(J+II)
            AUTOCF(I)=STORE
            STORE=ABS (AUTOCF(I'))
            DO 30: I=1,NCOREL
            30 AUTOCF(I)=AUTOCF(I)/STORE
            RETURN
    999 WRITE(1, 40)NPOINT,NCOREL
    40 FORMAT('ERROR IN ŅUMBER OF CORRELATIONS',2I8)
        STOP
        END
    SUBROUTINE SMEAN(NPTS,DATA,RMEAN)
        DIMENSION DATA(NPTS)
        RMEAN =0.
        DO 20 I=1,NPTS
    20. RMEAN=RMEAN+DATA(I)
        RMEAN =RMEAN/NPTS
        DO 30 I=1,NPTS
    30 DATA (I)=DATTA(I)-RMEAN
        'RETURN
        END
        SUBROUTINE FILTER(NPTS,XT)
                                    LOW PASS FILTER THE DATA.
        DIMENSION XT(NPTS),ZA(11),ZB(21),DATOUT(1024)
        ZA(1)=0.03125
        ZA}2=0
        ZA}3= =-0.09375
        ZA
        ZA}}5=0.312
        ZA}6=0.
        ZA
        ZA}}8=0
        ZA
        ZA
        ZA
        ZB
        ZB}}2=0
        ZB}3=0
        ZB}}4=0
        ZB
        2B(6)=0.
```

```
    ZB
    ZB}8=0
    ZB(91)=0.3125
    ZB
    ZB
    2B (12)=0.
    ZB}{13}=0.312
    ZB
    2B}15=0
    ZB
    ZB(17)=-0.09375
    ZB
    ZB}19=0
    ZB}20=0
    ZB(21)=0.03125
    M=11
    DO 21 I=1,NPTS
    J=M
    IF(M .LT. I)GO TO 19
    STORE=XT(I)
    DO 20 Kl
    STORE=STORE + XT(I-K+1)*ZA(K)
    1. DATOUT(I)=STORE
    DO 30 I=1,NPTS
    30
    MT(I)=DATOUT(I)
    DO 41 I=1,NPTS
    J=M
    STORE=0.
    IF(M .LT. I)GO TO 39
    STORE=XT(I)
    G0 TO 41
    39 D0 40 K=1,
    STORE=STORE + XT(I-K+1)*2B(K)
    41 DATOUT(I)=STORE
    DO 50 I=1,NPTS
    50 XT(I)=DATƠUT (I)
    RETURN
    END
    SUBROUTINE GAUSS(K,B,X)
                            A SUBROUTINE TO SOLVE SIMULTANEOUS
                                    EQUATIONS BY THE GAUSS PIVOTAL METHOD
    DIMENSION A(4,5),X(4),B(4,5)
        INTEGER*2 Z1,z2,z3,z44,Z5,z6,Z7
        Z1=K+1
    DO 10 I= I,K
        10 A(I,J)=B(I,J)
                                    SAVE INPUT DATA
    Z2=K-1
    DO 35 I= 1,Z2
    =1
    DO 15 J=I,K
    15 IF (ABS (A(L,I)) .LT. ABS(A(J,I)))L=J
    IF
    IF(L .EQ. I)GO TO 21
    Z3=K+1
    DO 20 N=I,Z3
    SAVE=A(I N)
    A(I,N)=A(L,N)
    20 A(L,N)=SAVE
    21 24=1+1
    DO (35 M=Z4,K
    Z5=1+1
    Z6=K+1
    D0 35 J=Z5,26
    35 A(M,J)=A(M,J)-D*A(I,J)
    DO 50 L=1,K
    J=K+1-L
    IF(J .EQ. K)GO TO 45
    Y=A(J,K+1)
    Z7=K-1
    D0 40 M=J,Z7
    40 Y
    Y=Y-A(J,M+1)*X(M+1)
```

```
            X(J)= Y/A(J,J)
    IF(J .NE.K)GO T0 50
    45 X(J)-A(J,K+1)/A(J,J)
    5 0 ~ C O N T I N U E ~
    RETURN
    60 WRITE (1,65)
    65 FORMAT('ERROR MESSAGE ZERO COLUMN FOUND')
        STOP
        END
    SUBROUTINE DATIN(IBATNO,IDATA,RNAME,SF1,SF2,SAMRAT,CSE)
C
$INSERT SYSCOM>ASKEYS
    INTEGER*2 IDATA(1024),ONAME (7),RNAME (7), TITLE(36), NME (6)
    INTEGER*2 RWKEY,NLEN NLEN2, PRIMNO,NBAT,IBATN0, IAAI (4)
    LOGICAL OPEN, NEOPPEN,CSE
    DATA NEOPEN %.FALSE;
    RWKEY=1.
    PRIMNO=1
    NLEN=1.4
    NLEN2=NLEN/2
    IF (NEOPEN)GO TO 1300
    IF(CSE)RETURN
    900 OPEN=OPEN SA(RWKEY, RNAME, NLEN , PRIMNO)
    IF(.NOT. OPEN)GO TO 17.00
    DO 1000 IC=1,NLEN2
1000 ONAME (IC)=RNAME (IC)
    NEOPEN=.TRUE.
    READ (5,3000,
    READ {5,3010;END=1800,ERR=1900 MAXBAT
    READ (5,3020,END=1800,ERR=1900)TITLE
    DO 234'IL=1,4
    234 IAA1 (IL)=TITLE (IL+20)
    DECODE (8,236, IAA1)SAMRAT
    236 FORMAT(F8.4)
1100 READ(5,END = 1800,ERR=1900.)NBAT
    READ(5',END=1800,ERR=1900)(IDATA(I), I= 1, 1024)
    IF(NBAT .NE. IBATNO)GO TO 1100
    NBAT=NBAT+1
    RETURN
1200 OPEN=CLOSSA(PRIMNO')
    IF(.NOT. OPEN)GO TO 1600
    NEOPEN=.FALSE.
    RETURN
1300 IF(CSE)GO TO 1200
    DO 1400 IC =1, NLEN2
1400 IF (ONAME(IC)}\cdotNE. RNAME (IC))GO TO 1500
    IF(:IBATNO .GE. NBAT)GO TO 1100
1500 OPEN=CLOS$A(PRIMNO)
    IF(OPEN')GO TO 900
1600 WRITE (1,1610)ONAME
1610 FORMAT('*** CANT CLOSE FILE ',7A2,' ***')
    STOP 1
1700 WRITE(1,1710)RNAME
1710 FORMAT('*** CANT OPEN FILEE ',7A2,' ***')
    STOP }
1800 WRITE (1,1810)RNAME
1810 FORMAT('*** END OF FILE ',7A2,' ***')
    STOP 3
1900 WRITE (1,1910)IBATNO,RNAME
1910 FORMAT('*** ERROR TRYING TO READ BATCH ',I5,' FROM FILE',7A2,
    STOP }
3000 FORMAT(6A2,2F8.6)
3010 FORMAT I4)
3020 FORMAT(36A2)
    END
    SUBROUTINE GRAPH3(N,DATA,SAMRAT)
                                    PLOTS A GRAPH ON THE REQUESTED GRAPHICS DEVICE.
    DIMENSION DATA(N),XARRY(1024),YARRY(1024)
    INTEGER*2 IYLAB(7), IYLAB2(9)
    LOGICAL INIT
    DATA INIT/ 'FALSE;/',CR','O-','VO','LT','S ','*.' /
```


IF (INTT)GO TO 50
CALL. T4010
CALL DEVSPE (IBAUD)
CALL UNITS 0.24)
50
CALL WINDOW $(0$
CALL CHASIZ (15., 15.)
DO $60 \mathrm{I}=1$, N
XARRY $(\mathrm{I})=$ FLOAT (I)/SAMRAT
YARRY (I)=DATA(I)
60
CONTINUE
CALL MOVTO2 $(450 ., 0$.
CALL CHAHOL 'TIME SECONDS*.')
CALL MOVTO2 50.300.)
CALL CHAANG'(90.)
IF (IACF .EQ. O)GO TO 100
CALL CHAARR (IYLAB2,9,2)
GO T0 150
100 CALL CHAARR (IYLAB,7,2)
150 CALL CHAANG (0.)
CALL GRAF (XARRY YARRY,N,0)
CALL MOVTO2 (0., 379.$)$
CALL CHAMOD
INLT=.TRUE
RETURN
END

Special Instructions for Peripheral Control

The following instructions were used to control the peripheral devices connected to the PDP8 minicomputer. Since these peripherals were not part of the standard PDP8 equipment, the instructions controlling them are described in detail in this appendix.

$\begin{aligned} & \text { OCTAL } \\ & \text { CODE } \end{aligned}$	MNEMONIC	DESCRIPTION
6056	OUTX	Load the 10 least significant bits of the accumulator into the $\mathrm{X} 10 \mathrm{bit} \mathrm{D} / \mathrm{A}$ converter and convert to analogue. Pulse the z modulation output. This instruction was used for $X-Y$ display of stored data.
6066	OUTY	As above but for the Y D/A converter.
6412	SION*	Enable the interrupt facility from the hybrid computer interface Skip/Interrupt inputs.
641:4	SIOF*	Disable the interrupt facility from the the hybrid computer interface Skip/ Interrupt inputs.
6441	ADINP*	Load the 1.2 bit word from the analogue to digital converter into the accumulator.
6442	STC *	Start the conversion process on the 12 bit A/D converter. (Conversion takes approximately $3.5 \mu \mathrm{~s}$)
6451	MXR *	Set the multiplexer to select the channel number given by the 3 least significant bits of the accumulator. (i.e. Channels 0-7).
6501	ACOUT*	Load the accumulator into the output register available on the hybrid computer Patch Panel.

OCTAL CODE	MNEMONIC	DESCRIPTION
6504	ACIN*	Load the accumulator from the input register on the hybrid computer interface Patch Panel.
6511	SK1*	Skip the next instruction if the Patch Panel number one input is at a logical '1'.
6221	SDR	Skip the next instruction if the serial data transceiver has received a byte of data.
6622	DUI	Disable interrupts from the serial data transceiver.
6624	STR	Skip the next instrūction if the serial data transceiver is ready to transmit a new data byte.
6631	RUD	Read the received data from the serial data transceiver into the $8 t^{1}$ least significant bits of the accumulator. Clear the SDR flag.
6632	ERI	Enable the received data interrupt facility on the serial data transceiver (i.e. allow interrupts to occur when serial data is received).
6634	LStat	Load the 5 least significant bits of the accumulator into the serial data transceiver status control register \dagger^{2}.
6641	SKERR	Skip the next instruction if either a praming, parity or over-run error has occurred in receiving serial data.
6642	ETI	Enable the transmitter interrupt facility on the serial data transceiver. (i.e. allow interrupts to occur whenever the serial data transmitter is not busy).
6644	OUT	Load the $8{ }^{+1}$ least significant bits of the accumulator into the serial data transmitter and transmit. Clear the STR flag.

Notes
These peripherals are part of the Hybrid Computer Interface [see Section 4 reference 3].
\dagger^{1} May be less than 8 bits. This depends on the setting of the Universal Asynchronous Receiver Transmitter status control register.
\dagger^{2} The 5 control bits have the following functions

Parity inhibit. A '1' disables the generation and checking of the parity bit.

Stop bit select. A '1' gives two stop bits. A '0' gives one stop bit.

Character length select. Bits 8 and 9 allow characters of either $5,6,7$ or 8 bits to be transmitted and received.

8

bit | 8 | 9 | | |
| ---: | :--- | :--- | :--- |
| 0 | 0 | 5 bits | |
| 0 | 1 | 6 bits | |
| 1 | 0 | 7 bits | |
| | 1 | 1 | 8 bits |

Even parity enable. A logical '1' selects even parity. A logical '0' selects odd parity. (Subject to bit 11 being a logical '1'.

APPENDIX 8.10

PAL 8 Computer Programme Used to Control the Data
 Acquisition Process

This programie was used to control the A-D converter, the multiplexer, the serial interface, the stimulus presentation and an $X-Y$ display during the acquisition of the EEG data. The programme was started and controlled by means of the console switches. The starting address is ${ }^{200}{ }_{8}$ in field zero. Two locations (131_{8} and 132_{8}) must be set, by means of the console switch register, to contain the two's complement of the sample numbers at which time the stimulus pulses are to be presented.

```
e.g. If the S1 stimulus is to be presented after
200}10\mathrm{ samples have been taken, then location
```


Whilst running the programme will show on an $X-Y$ display whichever channel is selected by the three least significant console switches.

The assembly language listing follows.

00216	6634
00217	$6 E 31$
00220	6631
00221	6030
00222	6042
00223	4436
00224	4437
00225	6412
00226	6642
00227	6001
00230	5442
00231	7200
00232	1126
00233	3105
00234	3102
00235	3103
00236	4434
00237	4435
00240	2122
00241	1122
00242	1123
00243	7650
00244	5254
00245	4436
00246	4437
00247	7300
00250	3050
00251	6412
00252	6642
00253	5442
00254	6002
00255	5442
00400	0400
00400	3506
00401	6004
00402	2106
00403	$350 E$
00404	2106
00405	1000
00406	3505
00407	$210 E$
00410	1106
00411	1107
00412	7700
00413	7402
00414	1050
00415	1041
00416	3270
00417	5620
00420	0000
00421	6511
00427	5224
00423	5423
00424	6624
00425	5227
00426	5420
00427	6031
00430	5237
00431	5421
00432	6041
00433	5235
00434	5422
00435	7402

```
STRT,
```

```
STRT,
```

$\begin{aligned} & S K! \\ & J M! \end{aligned}$	
JMP	1 ITIMR
STR	
JMP	
JMP	IUARTT
KSF	
JMP	ITfYR
TSF	
	+2
	1 ITTYT

/ SHOULD NOT GET HERE !!
'/ THIS SECTION RECTORES THE AC LINK
/ AND RETURNS TO TME INTERRUPTED / SECTION.

RETN,
IDF
CDIO
CLA CLL CMA
TAD ELSP
DCA SWSP

00443	1506
00444	3000
00445	7340
00446	1106
00447	3106
00450	1506
00451	3047
00452	7340
00453	$110 E$
00454	3106
00455	$150 E$
$0045 E$	3046
00457	1047
00460	6005
00461	7200
00462	1046
00463	5400

```
TAD 1 SWSP
DCA 0
CLA CLL CMA
TAD SLSP
DCA SWSP
TAD I SWSP
DCA TFG
CLA CLL CMA
TAD SNSP
DCA SKSP
TAD S SW5P
DCA TAC
RTF
CLA
TAD TAC
/ THIS SECTION SAMPLES AND STORES THE DATA IN THE CORE BÜFFER.
```

00464	7300
00465	6451
00466	4424
00467	4425
00470	3101
00471	7327
00472	6451
00473	6442
00474	7300
00475	1102
00476	4431
00477	3104
00500	1101
00501	3504
00502	4426
00503	7620
00504	5267
00505	7327
00506	6451
00507	4427
03510	7420
00511	5430
00512	6414
00513	7300
00514	1111
00515	3050
00516	5430

TIMER,	CLA CLL MXR JMS I ISAM	/ SET MULTIPLEXER TO CHAN. 0 $/$ SEND S1 OR S2 IF NECESSARY
NKCHNL,	JMS I ICURT	/ CONUERT CURRENT CHAN.
	DCA SAVE	
	CLA CLL CML IAC	FTL
	MXR	/ GROUND MULTIPLEXER INPUT TO
	STC	/ MINIMISE CROSSTALK.
	CLA CLL	
	TAD MADD	
	JMS I IPOINI	.
	DCA CURPNT	
	tad save	
	DCA I CURPNT	
	JMS I IMPYR	
	5NL CLA	
	JMP NXCHNL	
	CLA CLL CML IAC	RTL
	M ${ }^{\text {R }}$	
	JMS I IINC	
	SNL	
	JMP I IRETN	
	SIDF	/ TAKEN ALL SAMPLES SD DISABLE
	CLA CLL	/ TIMER INTERRUPT.
	TAD 03.	
	DEA PRIOR	
	JMP I IRETN	
	/	

/ THIS SECTION TA:̈ES EATA FROM THE / CORE ELFFEF GNO TRANSMITS IT DVEF / THE EERIAL DATA LINE.
UARTTX, DUI
ION
CLAD CLL $\quad /$ FIRET OR SECOND SIK BITS ?

00517	6622
00520	6001
00521	7300
00522	1124
00523	7640
00524	5346
00525	1057
00525	7450
00527	5343
00530	7041
00531	1065
00532	7700
00533	5343
00534	1103
00535	4437
00536	3105
00537	1505
00540	5544

	CLL
	CLA
JMP	SECND
TAD	ZERD?
SNA	
JMP	TXEND
CIA	
TAD	D0:
SMif	CLA
JMP	ThEND
TAD	OUCHN
JMS	I IPOIN2
DCA	CUROP
TAD	I CUROP

A10-5


```
00660 5E32
00661
006E2
006E4
00665
00655
00670
00571
00E72 5632
0 0 6 7 3 0 0 0 0
00674}70
00676
00577
00700
00701
00703
00704
00705
00706700
00707 7450
00710 5324
0071.1 6201
00713 7450
00714 5322
00715 7001
00716 7440
00717 7402
00720 1072
00721 5673
00722 1071
00724 1070
00725 5E73
0 0 7 2 6 ~ 1 0 6 7
00727 5673
00730 1060
00731 5673
00732 1055
00733 5673
01000 0000
01001 7300
01002 1233
01003 7040
01004 6501
01005 7340
0100E E50
01007}7730
01011 1131
01012 7650
01013 5225
01014 1130
01015 3233
01016 }205
01017 1132
01021 5230
01022 1130
01023 3233
01024 5600
01025 1133
01026 3233
01027 5600
01030 1'134
01031 3233
01032 5600
01033
0001
\begin{tabular}{|c|c|c|c|}
\hline 00660 & 5E32 & & JMP I POINL \\
\hline 00661 & 1063 & FOUR, & TAD FOURP \\
\hline O06E? & 5632 & & JMP I PRINI \\
\hline 00563 & 1062 & THREE, & TAD THREEP \\
\hline 00664 & 5632 & & JMP I POINI \\
\hline 00665 & 1061 & TWO, & TAD TWOP \\
\hline 00655 & 5632 & & JMP I POINI \\
\hline 00607 & 1060 & ONE, & TAD ONEP \\
\hline 00670 & 5 537 & & JMP I POIN1 \\
\hline 00671 & 1057 & ZERD, & TAD ZERDP \\
\hline \(00 E 72\) & 5632 & & JMP I PDIN1 \\
\hline 00673 & 0000 & POIN2, & \\
\hline 00674 & 7041 & & CDA \\
\hline 00675 & 6211 & & CDF+10 \\
\hline 00676 & 7450 & & SNA \\
\hline 00577 & 5332 & & JMP ZER \\
\hline 00700 & 7001 & & IAC \\
\hline 00701 : & 7450 & & SNA \\
\hline 00702 & 5330 & & JMP D \\
\hline 00703 & 7001 & & IAC \\
\hline 00704 & 7450 & & SNA \\
\hline 00705 & 5326 & & JMP T \\
\hline 00706 & 7001 & & IAC \\
\hline 00707 & 7450 & & SNA \\
\hline 00710 & 5324 & & JMP TH \\
\hline 0071.1 & 6201 & & CDF +0 \\
\hline 00712 & 7001 & & IAC \\
\hline 00713 & 7450 & & SNA \\
\hline 00714 & 5322 & & JMP F \\
\hline 00715 & 7001 & & IAC \\
\hline 00716 & 7440 & & SZA \\
\hline 00717 & 7402 & & HLT \\
\hline 00720 & 1072 & & TAD 05P \\
\hline 00721 & 5673 & & JMP I PDIN2 \\
\hline 00722 & 1071 & F, & TAD 04P \\
\hline 00723 & 5673 & & JMP I PDIN2 \\
\hline 00724 & 1070 & TH, & TAD 03P \\
\hline 00725 & \(5 E 73\) & & JMP I POIN2 \\
\hline 00726 & 1067 & T, & TAD 02P \\
\hline 00727 & 5673 & & JMP I PDIN2 \\
\hline 00730 & 1060 & 0, & TAD O1P \\
\hline 00731 & 5673 & & JMP I POIN2 \\
\hline 00732 & 1055 & ZER, & TAD OOP \\
\hline 00733 & 5673 & & JMP I POIN2 \\
\hline & 1000 & \(\times 1000\) & \\
\hline 01000 & 0000 & SAMPLE, & \\
\hline 01001 & 7300 & & CLA CLL \\
\hline 01002 & 1233 & & TAD LOGDUT \\
\hline 01003 & 7040 & & CMA \\
\hline 01004 & 6501 & & ACOUT \\
\hline 01005 & 7340 & & CLA CLL CMA \\
\hline O100E & E501 & & ACOUT \\
\hline 01007 & 7300 & & CLA CLL \\
\hline 01010 & 1057 & & TAD ZEROP \\
\hline 01011 & 1131 & & TAD MS1 \\
\hline 01012 & 7650 & & SNA CLA \\
\hline 01013 & 5225 & & JMP TS1 \\
\hline 01014 & 1130 & & TAD LGT \\
\hline 01015 & 3233 & & DCA Lagout \\
\hline 01016 & 1057 & & TAD ZERDP \\
\hline 01017 & 1135 & & TAD MS2 \\
\hline \(0: 020\) & 7650 & & SNA CLA \\
\hline 01021 & 5230 & & JMP TS2 \\
\hline 01022 & 1130 & & TAD LGT \\
\hline 01023 & 3233 & & DCA LOGOUT \\
\hline 01024 & 5600 & & JMP I SAMPLE \\
\hline 01025 & 1133 & TS1, & TAD 51 \\
\hline 01026 & 3233 & & DCA LOGOUT \\
\hline 01027 & 5600 & & JMP I SAMPLE \\
\hline 01030 & 1134 & T52, & TAD S2 \\
\hline 01031 & 3233 & & DCA LOGOUT \\
\hline 01032 & 5600 & & JMP I SAMPLE \\
\hline 01033 & 0001 & LOGOUT, & 1 \\
\hline
\end{tabular}
```

01034	0000	MPYR,	0	
01035	2102		CLA MADD	
01037	1102		TAD MADD	
01040	1121		TAD LIMIT	
01041	7650		SNA CLA	
01042	3102		DCA MADD	
01043	1102		TAD MADD	
01044	6451		MXR	/ AC TO MULTIPLEXER. 6451
01045	5634		JMP I MPXR	
01045	7402	TTYTK,	HLT	
01047	0000	WTBL.	0	
01050	7300		CLA: CLL	
01051	6E21		SDR	
01052	5251		JMP . -1	
01053	6631		RUD	
01054	7041		CIA	
01055	1127		TAD STCDDE	
01056	7640		SEA CLA	
01057	5251		JMP : -6	
01050	5647		JMP I WTBL	
01061	0000	RNDWT,	0	
01062	7300		CLA CLL	
01063	6504		ACIN	
01064	0110		AND 01	
01055	7650		SNA CLA	.
01066	5263		JMP - ${ }^{-3}$	
01067	5661		JMP I RNDWT	
01070	0000	CURT,	0	
01071	6442		STC	/ START AD CONUERSION. 64.2
01072	7300		CLA CLI	
01073	7000		NOP	
01074	7000		NDP	
01075	7000		NOP	
01076	7000		NOP	
0.1077	6441		ADINP	/ GET DATA FROM AD. G441
01100	5670		JMP I CURT	
01101	7402	TTYRK,	HLT	
01102	0000	RSTIN,	0	
01103	7300		CLA CLL	
01104	1051		TAD PO	
01105	3057		DEA ZERDP	
01108	1052		TAD P1	
01107	3060		DCA DNEP	
01110	1053		TAD P2	
01111	. 3061		DCA TWDP	
01112	1054		TAD P3	
01113	3052		DCA THREEP	
01114	1055		TAD P4	
01115	30E3		DCA FOURP	
011:6	1056		TAD P5	
01117	3064		DCA FIVEP	
01120	5702		JMP I RSTIN	
01121	0000	RSTIOU,	0	
01122	7300		CLA CLL	,
01123	1051		TAD PO	
01124	3065		DCA DOP	
01125	1052		TAD P1.	
011.2	3065		DCA D1P	
01127	1053		TAD PZ	
01120	3067		DCA 02P	
01151	1054		TAD P3	
01132	3070		DCA 03P	
011.33	1055		TAD P4.	
01134	307:		DCA 04P	
01135	1056		TAD P5	
01136	3072		DCA DSP	
01137	5721		JMP I RETOU	
01140	0000	RSTD,	\bigcirc	
01141	7300		CLA CLL	
01':42	1051.		TAD PO	

01143	3073		DCA DOP
01144	1052		TAD P1
01145	3074		DCA D1P
01146	1053		TAD P, 2
01147	3075		DCA D2P
01150	1054		TAD P3
01151	3076		DCA D3P
01152	1055		TAD P4
01153	3077		DCA D4P
01154	1055		TAD P5
01155	3100		DCA D5P
01156	5740		JMF I RETD
01157	0000	INC3,	0
01160	7300		CLA CLL
01161	2073		152 DOP
01162	2074		ISE D1P
01163	2075		IS2 D2P
01164	2076		ISZ D3P
01165	7000		NOP
0116 G	2077		ISL D4P
01167	2100		IS2 D5P
01170	1073		TAD DOP
01171	1120		TAD NOSAMS
011.72	7200		CLA
01173	5757		JMP I INC3
	1200	*1200	
01200	7300	DISPLA,	CLA CLL
01201	7604		LAS
01202	01.12		AND 07
01203	3135		DCA DISNUM
01204	3136		DCA XDIS
01205	1135	NXLOC,	TAD DISNUM
01206	4444		JMS I IPOIN3
01207	2137		DCA CPTR
01210	7330		CLA CLL CML RAR
0121.	1537		TAD I CPTR
01212	E201		CDF+0
01213	7110		CLL RAR
01214	7110		CLL RAR
01215	6062		OUTY
0121G	7300		CLA CI
01217	1136		TAD YDIS
01220	$605 ?$		OUTX
01221	2135		ISZ XDIS
01222	4443		JMS L IINC3
01223	1135		TAD XDIS
01224	7041		CIA
01225	1052		TAD P1
01226	7640		SIA CLA
01227	5205		JMP NXLDC
01230	4445		JMS I IRSTD
01231.	5201		JMP NKLOC-4
01232	0000	PDIN3,	0
01.233	70.1		CIA
01234	E211		$C D F+10$
01235	7450		SNA
01235	5271		JMP DZ
-01237	7001		IAC
01240	. 7450		SNA
01241	5267		JMP DO
01242	7001		IAC
01243	7450		SNA
01244	5255		JMP DTWD
01245	7001		IAC
01245	7450		SNA
01247	5253		JMP DTHREE
01250	6201		CDF+0
01251	7001		IAC
01252	7450		SNA
01253	52E1		JMP DFQUR
01254	7001		IAC
01255	7440		5ZA
$0125 E$	7402		HiL

ACIN ACOUT	6504
ADINP	5441
CDIO	6203
CPTR	0137
CUROP	0105
CURPNT	0104
CURT	1070
DFOUR	1261
DISNUM	0135
DISPLA	1200
DO	1257
DTHREE	1263
DTWO	1265
DU!	6522
D2	1271
DOP	0073
D1P	0074
D2P	0075
D3P	0076
D4P	0077
15P	0100
ERI	6E32
ETI	ES42
F	0722
FINSH:	0254
FIVIP	0064
FOUni	OEE!
FOURP	0053
ICURT	0025
IDISP	0042
IINC	0027
IINCR2	0033
INNC3	0043
MPXR	0025

LIMIT	0121	SKERR	6641
LOGOUT	1033	SK!	6511
LSTAT	6634	SP	012
MADD	0102	START	0200
MPXR	1034	ctatus	0125
MS1	0131	STC	6442
MS2	0132	STCODE	0127
M ${ }^{\text {R }}$	6451	STR	6624
M1	0113	STRT	0421
M2	0114	SW	0124
M3	0115	CNSP	0105
M4	0116	SWSPL	0107
MS	0117	51	0133
HOSAMS	0120	52	0134
NYCHNL	0467	Ti	0726
NX'LOC	1205	TAC	0046
0	0730	TFG	0047
DNE	0667	TH	0724
ONEP	0060	THREE	0553
OUCHN	0103	THFEEP	0062
OUT	6644	TIMER	0464
QUTX	6052	TRIAL	0122
QUTY	SOE?	ThiALS	0123
OOP	0065	TRIEND	0231
01	0110	TS1	1025
$01 P$	0065	T52	1030
92 P	0067	TTYRY	1101
03	0111	TTYTX	1046
03P	0070	TWO	0665
04P	0071	ThOP	0061
05P	0072	TXEND	0543
07	0112	UARTTK	0517
PDIN:	0632	WAIT	0230
POIN	0673	NTEL	1047
POINS	1232	KDIS	0136

INCRI	0600	PRIOR	0050	ZER	0722
INCR2	0515	PO	0051	ZERO	0671
INC3	1157	P1	0052	ZERDP	0057
IPOIN1	0031	P2	0053		
[PDINS	0032	P3	0054		
IPOIN3	0044	P4	0055		
IRETN	0030	P5	0056		
IRNDWT	0037	RETN	0436		
IRSTD	0045	RNDWT	1081		
IRETIN	0034	RSTD	1140		
IRSTOU	0035	RSTIN	1102		
ISAM	0024	RSTOU	11.21		
IEERU	0040	RUD	6631		
ISTRT	0041	SAMPLE	1000		
ITIMR	0023	SAUE	0101	.	
ITTYRS	0021	SDR	E621		
ITTYTK	0022	SECND	0546		
IUARTT	0020	SERU.	0400		
IWTBL	0036	SIOF	E414		
LGT	0130	SION	6412		

ERRORS DETECTED:
LINKS GENERATED: 1

PAL 8 Computer Programme Used to Store the Data onto Disk

This programe was used to store the data on a magnetic disk. It made use of the OS8 operating system User Service Routine (USR) to create core image files into which the data were transferred. Details of the USR may be found in the OS8 Software Support Handbock available from the Digital Equipment Company.

The programme consists of two sections:-
a) Memory locations $0_{8}^{-3652} 8$ (Disk store programme). This section stores the data received over the high speed serial interface in a memory buffer, checks for transmission errors and calls the USR to create data files and store the data. Each data file is automatically given a new filename based on a "seed" name specified by the operator. (e.g. If the operator specified the "seed" name as MJNOOO then the subsequent files would have the names MJN001, MJN002, MJTN003.
b) Memory locations $16000_{8}-16777_{8}$ (Data examine and transfer programme).

This section is stored on disk with the data in every data file. Subsequent to the completion of the data acquisition process it allows the operator to display (via D-A converters and an X-Y display) any of the six stored channels in the data file. It also allows the
operator to send the data to floppy disk (or paper tape) for transfer to the main computer. These functions are controlled by simple commands typed at the console terminal.

e.g.	. R XYZ007	would cause 058 to load the data in file XYZ $007 . S V$ and start the Data examine and transfer programme.
	D 0	would display channel zero on the $X-Y$ display.
		would set the initial batch number transferred onto floppy disk (or paper tape) to 48.
	P	would transfer the data to floppy disk or paper tape (depending on which of these was connected).
	Control	would transfer control back to OS8.

The programme is started by giving the oS8 command "R DDS44".

The assembly language listing of the programme follows.


```
\begin{tabular}{|c|c|c|c|}
\hline 00032 & 0303 & 2C, & \\
\hline 00033 & 0305 & ZE, & 305 \\
\hline 00034 & 7775 & MCNC, & \\
\hline 00035 & 0336 & UPARRD, & 336 \\
\hline 00036 & 0215 & CR. & 215 \\
\hline 00037 & 0212 & LF, & 212 \\
\hline 00040 & 0007 & 07. & 7 \\
\hline 00041 & 0016 & 016, & 16 \\
\hline 00042 & 0017 & 017, & 17 \\
\hline 00043 & 0060 & 060, & 60 \\
\hline 00044 & 0077 & 077, & 77 \\
\hline 00045 & 0177 & 0177, & 177 \\
\hline 00046 & 0377 & 0377, & 377 \\
\hline 00047 & 4000 & 04000, & 4000 \\
\hline 00050. & 7700 & 07700. & 7700 \\
\hline 00051 & 7777 & M1. & -1 \\
\hline 00052 & 7776 & M2. & -2 \\
\hline 00053 & 7775 & M3. & -3 \\
\hline 00054 & 7774 & M4, & -4 \\
\hline 00055 & 7773 & M5, & -5 \\
\hline 0005E & 7772 & ME, & -6 \\
\hline 00057 & 7771 & M7, & -7 \\
\hline 00060 & 7766 & M12, & -12 \\
\hline 00061 & 7746 & M32, & -32 \\
\hline 00062 & 7720 & M50. & -60 \\
\hline 000E3 & 7706 & M72, & -72 \\
\hline 00064 & 7677 & M101, & -101 \\
\hline 00065 & 0000 & MADD, & 0 \\
\hline 00065 & 0000 & CURPNT, & \\
\hline 00067 & 6000 & NOSAMS, & 6000 \\
\hline 00070 & 0000 & SUE, & \\
\hline 00071 & 0000 & TEMP, & 0 \\
\hline 00072 & 0000 & TEMP2, & 0 \\
\hline 00073 & 0000 & TEMP3, & 0 \\
\hline 00074 & 0000 & ACMLTR, & 0 \\
\hline 00075 & 7400 & HANADR, & 7400 \\
\hline
\end{tabular}
            / - NUMBER OF SAMPLES TO BE TAKEN.
                                    / ADDRESS AT WHICH THE DEVICE HANDLER
                                    / MAY BE PLACED. NOTE THAT THIS IS A DUMMY
                                    / ADDRESS SINCE THE DEUICE (BEING THE
                                    / SYSTEM DEVICE) IS ALWAYS (?) RESIDENT.
00076 0317
00077 2031
\begin{tabular}{ll}
00100 & 0101 \\
00101 & 0401 \\
00102 & \(24 G 1\)
\end{tabular}
NAMEP, NAMI / POINTS TO FILENAME.
NAM1, 401 / FILENAME DEFAULTS'TD
NAM2, 24GO / DATOOO.5U
00103 EOGO NAMS, 6060
00104 2326 NAM4, 2326
00105 1400 HK5, 1400
00106 0000
0 0 1 0 7 0 0 0 0 0 ~ C P Y N T Y , ~ 0 ~ 0
0 0 1 1 0 0 0 3 3 ~ N U M E L K , ~ 3 3 ~
00111 0000 STBLK,
001121000 CCBARA, }100
0011344200
CCEFCW, 4200
    FCW1, }741
        FCW2, }700
        PNTR, }400
0011E 4000 PNTR, 4.00
```



```
00122 1400 PO, 
/ START DF BUFFER AREA (FIELD'0) 'GETCH'.
/ HANDLER ENTRY ADDRESS. DETERMINED
/ BY 'FETCH'
/ NUMBER OF ELOCKS FDR EACH FILE.
/ NEXT FREE BLOCK ON DISK.
/ LOCATION AT WHICH THE CORE
/ IMAGE OF THE CCE IS STORED.
/ FUNCTION CONT. WORD FOR STIORING
/ THE CCE.
/ FUNCTION CDNTROL HORD.
/ SEE OSB SOFTWARE SUPPORT MANUAL
/ PAGE 4-2.
```



```
00255 5261
00256 1043
00257 3071
00260 2117
00261 1103
00252 0050
00253 1071
00264 3103
00265 1117.
00266 7650
00266 7650
00270
00271
00272 4375
00274
00275
00276
00277
00300
0 0 3 0 1
00302
00303
00304
00305
0030
00310
00311
00312 1102
00313 4325
00314 7540
00315 5320
00316 1043
0 0 3 1 7 3 0 7 1
0 0 3 2 0 1 1 0 2
0 0 3 2 1 0 0 5 0
0 0 3 2 2 ~ 1 0 7 1 2
00323 3102
00324 5650
00325 0000
0032E 0044
0 0 3 2 7 7 0 0 1
00330 30717
00332 1071
00333 10E3
00334 5725
00335 0000
00336 7100
00337 3150
00340 1150
0 0 3 4 1 0 0 5 0
00342 1150
003437006
0 0 3 4 4 7 0 0 5
0 0 3 4 5 7 0 0 6
00346 5735
0 0 3 4 7 ~ 0 0 0 0
00350
0.351
00352
0035%
00354
0 0 3 7 7
0400
LBY,
JMP LB
TAD 0G0
DCA TEMP
ISZ CARRY
AND 077700
TAD TEMP
DCA NAMB
TAD CARRR:
SNA CLA
    1103
    4335
7640
    5300
    1043
    307.
    2117
    1071
    4071
MEY,
JMP I RENAME
TAD NAMB
JMS PESW
JMS PESN
\begin{tabular}{|c|c|}
\hline & JMP LBY \\
\hline & DCA TEMP \\
\hline & ISZ CARRY \\
\hline LBY, & TAD NAM3 \\
\hline & AND 07700 \\
\hline & TAD TEMP \\
\hline & DCA NAM3 \\
\hline & TAD CARR \\
\hline & SNA CLA \\
\hline & JMAP I RENAME \\
\hline & TAD NAMS \\
\hline & JMS PESW \\
\hline & JMS INC \\
\hline & SZA CLA \\
\hline & JMP MBY \\
\hline & TAD 060 \\
\hline & DCA TEMP \\
\hline & ISZ CARRY \\
\hline MEY, & TAD TEMP \\
\hline & JMS PBSW \\
\hline & DCA TEMP \\
\hline & TAD NAM3 \\
\hline & AND 077 \\
\hline & TAD TEMP \\
\hline & DCA NAM3 \\
\hline & TAD CARRY \\
\hline & SNA CLA \\
\hline & JMP I RENAME \\
\hline & TAD NAMZ \\
\hline & JMS INC \\
\hline & SZA CLA \\
\hline & JMP HEY \\
\hline & TAD 060 \\
\hline & DCA TEMP \\
\hline HBY, & TAD NAMZ \\
\hline & AND 07700 \\
\hline & TAD TEMP \\
\hline & DCA NAM2 \\
\hline & JMP I RENAME \\
\hline INC, & \\
\hline & AND 077 \\
\hline & IAC \\
\hline & DCA TEMP \\
\hline & DCA CARR' \\
\hline & TAD TEMP \\
\hline & TAD M72 \\
\hline & JMP I INC \\
\hline
\end{tabular}
                                    THIS SUBRDUTINE SIMULATES THE
                                    PDPBE 'BSW' INSTRUCTION.
                                    / IT WAS WRITTEN BY A. JERRAM.
PESW, 0
O
CLL SA SAVE!
DCA SAUE!
TAD SAUEI
AND 07700
TAD SAVEI
RTL
RTL
RTL
JMP I PBSW
ZCHRO,
0
TSF*
JMP . -1
TLS
CLA CLL
                                    / THIS SUEROUTINE USES THE USR
                                    / TO STORE THE DATA ON THE
                                    / RKO5 DISK.
0 0 4 0 0 0 0 0 0 ~ D S K , ~ 0 ~
```

00401	7300		CLA CLL	
00402	1076		TAD DEUNME	/ GET DEUICE NAME FRDM CONSTANT
00403	3224		DCA FARG1	/ AREA; AND PREPARE TO FETCH THE
00404	1077		TAD DEUNME+1	1 DEVICE HANDLER.
00405	3275		DCA FARG2	
00406	1075		TAD :HANADR	/ GET THE LOCATION AT WHICH THE
00407	3226		DCA FARC3	/ HANDLER MAY BE PLACED.
00410	1100		TAD NAMEP	/ POINTS TO THE FILENAME.
00411	3247		DCA EARG1	
00412	3250		DCA EARG2	/ CLEAR 2ND. ARG.
00413	1100		TAD NAMEP	
00414	3336		DCA CARGI	
00415	1110		TAD NUMBLK	/ GET THE FILE LENGTH.
00416	3337		DCA CARG2	/ (IN BLOCKS).
00417	7300		CLA CLL	
00420	6201		CDF+0	
00421	6212		CIF+10	
, 00422	4420		JMS I USR	1 JUMP TD USR.
00423	0001		1	/ DENDTES "FETCH" FUNCTION.
00424	0000	FARG1,	0	
00425	0000	FARG2,	0	
00426	0000	FARC3,	0	
00427	7402		HLT	/ ERROR IN GETTING HANDLER.
00430	7300		CLA CLL	
00431	1225		TAD FARG2	/ NOW THE DEVICE NUMPER.
00432	0042		AND 017	/ MASK OFF UPPER BITS.
00433	3106		DCA CPYNUM	
00434	1226		TAD FARG3	/ ENTRY POINT OF HANDLER.
00435	3107		DCA CPYNTY	
00436	1110		TAD NUMELK	/ CALCULATE UALUE IN AC
00437	0046		AND 0377	/ ON ENTRY TD USR IN THE
00440	7106		CLL RTL	/ "ENTER" MODE. SEE OSB
00441	7006		RTL cpynum	/ SOFTWARE SUPPORT MANUAL
00442	$\underline{1106}$		$\begin{aligned} & \text { TAD CPYNUM } \\ & \Gamma \cap F+n \end{aligned}$	/ PAGE 2-7.
00444	6212		CIF+10	
00445	4420		JMS I USR	
00446	0003		3	/ DENOTES "ENTER* FUNCTION.
00447	0000	EARG1,	0	
00450	0000	EARG2,	0	
00451	7402		HLT	/ ERROR RETURN.
00452	7300		CLA CLL	
00453	1247		TAD EARG1	/ NOW THE FIRST EMPTY
00454	31.11		dCA STBLK	/ BLOCK ON THE DEUICE.
00455	1113		TAD CCBFCW	/ CONTROL WDRD FOR THE CCB AREA.
00456	3306		DCA CHARGI	
00457	1112		TAD CCBARA	/ LOCATION AT WHICH THE CCE
00460	3307		DCA CHARG2	$/$ IS STORED IN CORE.
00461	1111		TAD STELK	/ FIRST M.T. BLOCK.
00462	3310		DCA CHARG3	
00463	2111		ISZ STBLK	/ ALLDW ONE BLOCK FOR THE CCEE.
00464	7000		NDP	
00465	1114		TAD FCW1:	/ GET FIELD 1 FCW.
0046E	3315		DCA HARGI	
00467	3316		DCA HARGZ	/ FIELD 1 EUFFER STARTS AT 0.
00470	1111		TAD STBLK	/ NEXT M.T. BLOCK AFTEF CCB.
00471	3317		DCA HARGS	
00472	1115		TAD FCW2	/ GET FIELD 0 FCW.
00473	3324°		DCA HARG4	
00474	1105		TAD HK5	/ START OF FIELD O BUFFER.
00475	3325		DCA HARG5	
00476	1111		TAD STELK	1 ALLOW FOR FIELD 1 DATA.
00477	1041		TAD 016	1 = 14 DATA, 2 PRDG. $=16$ (8.).
00500	3111		DCA STBLK	
00501	1111		TAD STBLK	
00502	3326		DCA HARG6	
00503	6201		CDF+0	
00504	6202		CIF+0	
00505	4507		JMS I CPYNTY	/ SRUE CCE.
00506	0000	CHARE1,	0	
00507	0000	CHARG2,	0	
00510	0000	CHARG3,	0	
00511	7402		HLT	

00512	6201
00513	6202
00514	4507
00515	0000
00516	0000
00517	0000
00520	7402
00521	6201
00522	6202
00523	4507
00524	0000
00525	0000
00526	0000
00527	7402
00530	7300
00531	1106
00532	6201
00533	6212
00534	4420
00535	0004
00536	0000
00537	0000
00540	7402
00541	5600

$\begin{array}{ll}00542 & 0000 \\ 00543 & 7300\end{array}$ 00544 7130 00545 $00546-2132$ 00547
00550

00552113
005531067 $\begin{array}{ll}00554 & 7200 \\ 00555 & 5742\end{array}$ 00555 00557 7301 005601065 005613055 $\begin{array}{ll}00562 & 1056 \\ 00563 & 1065\end{array}$ 00564 00565 00556 0056 00570
00571
00572 00573
005747.106

005751070
005765766 0600
CMS I
CMS I
HARG1, 0
HARG1, 0
HARGZ,
HARGZ,
HARG3,
HARG3,
HLT
HLT
CDF+O
CDF+O
IMS I CPYNTY / SAVE FIELD O DATA.
IMS I CPYNTY / SAVE FIELD O DATA.
HARG4, 0
HARG4, 0
HARG5,
HARG5,
HARGE,
HARGE,
HLT
HLT
CLA CLL
CLA CLL
CDF+0
CDF+0
CIF+10
CIF+10
4
4
CARG1,
CARG1,
CARG2,
CARG2,
HLT
HLT
JMP I DSK
JMP I DSK
/ THIS SURROUTINE INCREMENTS ALL THE
/ THIS SURROUTINE INCREMENTS ALL THE
/ DATA POINTERE AND SETS THE LINK
/ DATA POINTERE AND SETS THE LINK
/ IF ALL THE SAMPLEE HAVE REEN TAKEN.
/ IF ALL THE SAMPLEE HAVE REEN TAKEN.
INCR1, O
INCR1, O
CLA CLL
CLA CLL
ISZ ZEROP
ISZ ZEROP
ISZ TWOP
ISZ TWOP
ISZ THREEP
ISZ THREEP
ISZ FOURP
ISZ FOURP
TAD THREEP
TAD THREEP
TAD NDSAMS
TAD NDSAMS
CLMP
CLMP
O
O
CLA CLL IAC
CLA CLL IAC
TAD MADD
TAD MADD
DCA MADD
DCA MADD
TAD ME
TAD ME
TAD MADD
TAD MADD
JMP I MAINC
JMP I MAINC
GETWRD,
GETWRD,
JMS I IGETBY
JMS I IGETBY
DCA SUE
DCA SUE
JMS I IGETBY
JMS I IGETBY
CLL RTL
CLL RTL
CLL RTL
CLL RTL
CLL RTL
CLL RTL
JMP I GETWRD
JMP I GETWRD
*600
*600
/ THIS SUBROUTINE RETURNS THE CURRENT
/ THIS SUBROUTINE RETURNS THE CURRENT
/ POINTER FDR THE CHANNEL REQUESTED EY
/ POINTER FDR THE CHANNEL REQUESTED EY
/ THE AC CONTENTS. IT ALSO SETS THE
/ THE AC CONTENTS. IT ALSO SETS THE
/ DATA FIELD.
/ DATA FIELD.

00600	0000
00601	7041
00502	6201
00503	7450
00604	5237
00605	7001
00606	7.450
00607	5235
00610	7001
00611	7450
00612	5233
00613	6211
00614	7001

POIN1, O
POIN1, O
CIA
CIA
CDF+O
CDF+O
SNA
SNA
JMP ZERD
JMP ZERD
IAC
IAC
SNA
SNA
JMP ONE
JMP ONE
IAC
IAC
SNA
SNA
JMP TWO
JMP TWO
CDF+10
CDF+10
IAC
IAC

00615	7450		SNA	
00616	5231		JMP THREE	
00617	7001		IAC	
. 00620	7450		SNA	
00621	5227		.JMP FOUR	
00522	7001		IAC	
00523	7440		SZA	
00E24	7402		HLT	
00625	1135		TAD FIVEP	
00626	5600		JMP I POIN1	
00627	1134	FOUR,	TAD FOURP	
00630	5600		JMP I POIN1	
00631	1133	THREE,	TAD THREEP	
00632	5600		JMP I POIN1	
00633	1132	TWD,	TAD TWOP	
00634	5600		JMP I POINI	
00635	1131	ONE,	TAD ONEP	
00635	5600		JMP I POIN1	
00637	1130	ZERO,	TAD ZERDP	
00540	5600		JMP' I POIN1	
00641	0000	RSTIN,		
00642	7300		CLA CLL	
00543	1122		TAD PO	
00644	3130		DCA ZERDP	
00645	1123		TAD P1	
00546	3131		DCA ONEP	
00E47	1124		TAD P2	
00650	3132		DCA TWOP	
00651	1125		TAD P3	
00652	3133		DCA THREEP	
00553	1126		TAD P4	
00554	3134		DCA FDURP	
00655	1127		TAD PS	
00656	3135		DCA FIUEP	
00657	5641		JMP I RSTIN	
00650	0000	NLMPNT,		
00661	7300		CLA CLL	
00 ES 2	1035		TAD CR	
00653	4536		JMS I ICHRD	
00664	1037		TAD LF	
00565	4535		JMS I ICHRO	
00656	1.102		TAD NAM2	
00657	0044		AND 077	
00670	4536		JMS I ICHRD	
00671	1103		TAD NAM3	
00672	7012		RTR	
00673	7012		RTR	
00674	7012		RTR	
00675	0044		AND 077	
00576	4536		JMS I ICHRD	
00677	1.103		TAD NAM3	
00700	0044		AND 077	
00701	453E		JMS I ICHRD	
00702	5660		JMP I NUMPNT	
00703	0000	GETBY,	0	
00704	7300		CLA CLL	
00705	6621	WAIT,	SBR	
00705	5325		JMP CNTRLC	
00707	6631		RUD	
00710	0044		AND 077	
00711	6641		SKERR / TEST	FOR ERRORS.
00712	5703		JMP I GETBY	
00713	7300		CLA CLL	
00714	1152		TAD 2SPCE	
00715	4536		JMS I ICHRO	
00716	1027		TAD ZT	
00717	4536		JMS I ICHRO	
00720	1031		TAD $2 \times$	
00721	4536		JMS I ICHRO	
00727	1033		TAD ZE	
00723	4536		JMS I ICHRO	
00724	5777'		JMP TRL	
00725	6031	CNTRLC,	KSF	

02060	4536		JMS I ICHRO	
02061	6203		CDF CIF+0	/ ENSURE I/F AND D/F $=0$
02062	542		JMP 1 MONST	
02053	1073	NOCC,	TAD MEMP3	/ NOW CHECK FOR NUMBER 0-9 OR
02065	7510		SPA	/ LETTER A-z (UPPER CASE).
02065	5214		JMP GTCR	
02067	1060		TAD M12	
02070	7510 5300		${ }_{\text {SPA }}{ }^{\text {SPA }}$	$/$ WAS A NUMEER
02072	1057		TAD M7	
02073	7510		SPA	
02074	52.14		JMP GTCR	/ CODE WAS 72-100 OCTAL SO ERROR.
02075	1051		TAD M32	
02077	5214		JMP GTCR	/ CODE HAS ; 132 (z) SD ERROR.
02100	7300	OK,	CLA CLL	
02101	1073		TAD TEMP3	
02102	13554		DCA LEPTR	
02104	4536		JMS 1 ICHRD	/ ECHO TO TTY.
02105	2154	OK5.	$15 Z$ PTR	/ INCREMENT POINTER.
02107	1355		TAD MCRET	/ TEST FOR RETURN.
02110	7440		SZA	
02111	55714.		JMP GTCR	
02113	4773.	LFEED,	JMS CRLF	/ PRINT RETURN AND LINEFEED.
02114	1155 3156		TAD PPTR	/ SET TEMP3 POINTER=START
02116	1154	NXCH,	TAD PTR.	
02117	7041		CIA	
02120	1156		TAD TPTR	
02121	7700		SMA CLA	/ JUMP BACK IF FINISHED
02123	1556		TAD I TPTR	/ GET CURRENT CHAR.
02124	4535		JMS I ICHRD	
02126	2156		ISZ TPTR	/ INCREMENT POINTER.
02127	5316		JMP NYCH	
02130	1357	ROUT,	SAD FLAG	$/$ GET FLAG
02132	5337		JMP FLSET	
02133	7001		IAC	
02134	3357		DCA FLAG	/ SET FLAE
02135	1356 4536		TAD SLSH	/ AND PRINT "/"
02137	7340	FLSET,	CLA CLL CMA	1 SET AC=-1
02140	1154		TAD PTR.	/ dec Pointer.
02142	1155		TAD PPTR	
02143	7041		CIA	
02144	1154		TAD PTR	
02145	77.10		SPA CLA	$/$ BACK TO START OF BUFFER.
02146	5205		JMP STAPT	/ YES SL CHAR.
02150	4536		JMS I ICHRD	/ AND ECHO IT.
02151	5214		JMP GTCR	
02152	7601	MREDUT,	-177	
02153	7753	MCNTU,	-25	
02154	7756	MCNT,	-12 -15	
02156	0057	SLSH,	57	
02157 02160	0000 3500	${ }^{\text {FLAGG, }}$ PSTRG,	$\stackrel{0}{\text { STRING }}$	
02173	2200			
02174	2224			
02175	2206			
022176	${ }_{0}^{2214}$			
	2200	Page		
02200	0000 1036	CRLF,		

02202	4536		JMS I ICHRO	
02203	1037		TAD LF	
$0220{ }^{\circ}$	4536		JMS I ICHRD	
02205	5600		JMP I CRLF	
02205	0000	ZCHRR,	0	
02207	6031		KSF	
02210	5207		KMP - ${ }^{\text {K }}$	
-02212	0045		AND 0177	
02213	5606		JMP I ZCHRI	
02214	0000	PRINT,	0	
$\begin{aligned} & 02715 \\ & 02216 \end{aligned}$	13072		$\begin{aligned} & \text { DCA TEMP2 } \\ & \text { TAD I TEMPZ } \end{aligned}$	
02217	7450		SNA	
02220	5614		JMP I PRINT	
02221	4536		JMS I ICHRO	
02225	2072		152 TEMP2	
02223	5216		JMP PRINT+2	
$\begin{aligned} & 0224 \\ & 02225 \end{aligned}$	$\begin{array}{r} 7300 \\ 1155 \end{array}$	TSTNME,	$\frac{C L A}{\text { TAD }} \text { CLIT }$	$/$ TEST THE FILENAME IS UALID. / CHECK THE LENGTH FIRST.
02226	7041		CIA	
02227	1154		TAD PTR	
02230	1057		TAD M7	
02231	7640		SZA CLA	
02232	5265		JMP ERMESS	
02233 02234	1555 1054		$\begin{aligned} & \text { TAD I PPTR } \\ & \text { TAD M101 } \end{aligned}$	$/$ IS the first character alpha.
02235	7710		SPA CLA	
02238	5265		JMP ERMESS	
02240	3156		DCA TPTR	/ Name lodks ok so pack into
02241	1155		TAD PPTR	$/ 6$ EIT OCTAL.
02242	3154		DCA PTR	
02243	1554	NXCHRP,	TAD I PTR	
O2244	7105		CLL ATL	
02246	7006		RTL	
02247	7006		RTL	
02250	3071		DCA TEMP	
02251 02252	2154		IS2 PTR	
02253	0044		AND 077°	
02754	1071		TAD TEMP	
02255	3556		DCA I TPTR	
- 02256	2154 2156		ISZ PTRTR	
02260	1154		TAD PTR	
02251	1157		TAD LIMIT	
02262	7710		SPA CLA	
02264	$577{ }^{\circ}$		JMP GMME	
02765	7300	ERMESS.	CLA CLL	
02256	${ }_{4}^{1271}$		TAD PSTRIN	
02267 02270	4214 5775		JMS PRINT	
02271	3632	PSTRIN,	STRIN2	
802376	2005			
	3500	*3600		
03600	0212	SiRING,	212	
03501 03602	0215 0320		${ }_{4 P}^{15}$	
03603	0314		"	
03604	0305		"E	
03605	0301		"A	
03606	0323		"S	
03607 03610	0305		"E	
03611	0324		$\stackrel{\square}{\square}$	
03512	0331		${ }^{\text {n }}$	
03613	0320		"P	
- 03615	0240		${ }^{\text {e }}$	

03616	0306		"F	
03617	0311		"I	
03620	0314		"L	
03621	0305		"	
03622	0316		"N	
03623	0301 :		"A	
03624	0315		"M	
03625	0305		"E	
03626	0212		212	
$03 E 27$	0215		215	
03630	0276		" ${ }^{1}$	
03631	0000		0	
03632	0212	STRIN2,	212	
03633	0215		215	
03634	0311		II	,
03635	0316		"N	
03636	0326		${ }^{2} \mathrm{~V}$	
03537	0301		"A	
03640	0314.		"L	
03641	0311		"I	
03542	0304		"D	
03643	0240			
03644	0316		"N	
03645	0301		${ }^{4} \mathrm{~A}$	
03646	0315		"M	
03647	0305		${ }^{\circ} \mathrm{E}$	
03650	0212		212	
03651	0215		215	
C3652	0000		0	
	0001	FIELD 1	1	THIS IS STORED AT THE SAME TIM
	6000	*6000	1	AS THE DATA. IT ENABLES THE USER TO
16000	7300		CLA CLL /	EXAMINE (ON AN X-Y DISPLAY)OR TRANSFER
16001	6026		PLS 1	THE DATA TO THE SERIAL LINE OUTPUT,
16002	6046		TLS $/ 1$	BY USING THE OSB 'RUN DEV:FILENAME'
16003	1350		TAD STUS/	COMMAND. ONCE RUNNING THE USER MAY TYPE
16004	6634		LSTAT /	THE FOLLOWING COMMANNDS;
			$\begin{aligned} & / \\ & 1 \\ & / \end{aligned}$	"H NNN" TO SET THE BATCH NLMBER TO NNN. "P" TD TRANSFER THE DATA TO THE SERIAL LINE.
16005	7300	NX'CMD,	CLA CLL	
16005	621.		CDF +10	
16007	4777.'		JMS PCRLF	
16010	4776'		JMS GETCHR	
16011	3356		DCA CMND	
16012	1356		TAD CMND	
15013	1357		TAD MH	
16014	7650		SNA CLA.	
16015	5233		JMP HDR	
16016	1356		TAD CMND	
16017	1350	,	TAD MP	
16020	7650		SNA CLA	
16021	5775^{\prime}		JMP PUNEH	
16022	1356		TAD CMND	
16023	1361		TAD MD.	
16024	7650		SNA CLA	
16025	5774'		JMP DISP	
16026	1352.	ERROR,		
16027	4773'		JMS CHRIUT	
16030	1363		TAD GMK	
16031	4773'		JMS CHROUT	
16032	5205		JMP NXCMD	
16033	1262	HDR,	TAD SPCE	
16034	4773;		JMS CHROUT	
16035	1365		TAD EUFF	
1603 E	3365		DCA BUFFP	
16037	4776'	GET,	JMS GETCHR	
16040	3355		DCA TMPSTR	
16041	1355		TAD TMPCTR	
15042	1352		TAD M2GO	
16043	7710		SPA CLA	
16044	5256		JMP ENDCHK	
15045	1355		TAD TMPETR	

16046	1353		TAD M272
15047	7700		SMA CLA
16050	5226		JMP ERROR
16051	1355		TAD TMPSTR
16052	1352		TAD M260
16053	3766		DCA I BUFFP
16054	2356		152 RULFP
16055	5237		JMP GET
16056	1355	ENDCHK,	TAD TMPSTR
16057	1354		TAD MCR
16050	7640		SZA CLA
16061	5226		JMP ERRDR
16062	33 E 4		DCA EATND
160 E 3	13 EE		TAD BUFFP
1606.4	7041		CIA
16065	1365		TAD BUFF
16065	7650		SNA CLA
16067	5314		JMP ENDHDR
16070	4324		JMS EUFDEC
16071	3364		DCA RATNO
16072	1366		TAD EUFFP
16073	7041		CIA
16074	1365		TAD BUFF
16075	7650		SNA CLA
16076	5314		JMP ENDHDR
$1 E 077$	4324		JMS EUFDEC
16100	4332		JMS TENS
16101	1354		TAD BATND
16102	3354		DCA BATNO
16103	1366		TAD EUFFP
16104	7041		CIA
16105	1355		TAD BUFF
15106	7650		SNA CLA
16107	5314		JMP ENDHDR
16110	4324		JMS RUFDEC
16111	4341		JMS HUNS
16112	1364		TAD BATNO
16113	3364		DCA BATND
16114	7300	ENDHDR,	CLA CLL
16115	1364		TAD BATNO
16116	7510		SPA
16117	5226		JMP ERRDR
15120	1351		TAD PM193
16121	7.710		SPA CLA
16122	5205		JMP NYCMD
16123	5226		JMP ERRDR
16124	0000	BUFDEC,	
16125	7340		CLA CLL CMA
16125	1356		TAD BUFFP
16127	3366		DCA EUFFP
16130	1766		TAD I BUFFP
16131	5724		JMP I BUFDEC
16132	0000	TENS,	
16133	7041		CIA
16134	3371		DCA TI
16135	1370		TAD KTEN
16135	2371		IS2 Til
16137	5335		JMP : -2
16140	5732		JMP I TENS
16141	0000	HUNS,	
16142	7041		CIA
16143	3371		DCA T1
16144	1367		TAD KHUN
16145	3371		ISZ T1
16146	5344		JMP : -2
16147	5741		JMP I HUNS / CDNSTANTS
15150	0017	STUS,	17
16151	7477	PM193,	7477
16152	7520	M250,	-260
16153	7505	M272,	-272
16154	7563	MCR,	7563
16155	0000	TMPSTR,	0

16267	7110		CLL RAR
16270	7110		CLL RAR
16271	6066		QUTY
16272	7300		CLA CL
16273	1344		TAD PXDIS
16274	6056		OUTX
16275	2345		ISE CPTR
16276	7300		CLA CLL
16277	2344		ISZ PXDIS
16300	1344		TAD PXDIS
16301	1347		TAD PM2000
16302	7710		SPA CLA
16303	5265		JMP NKLOC
16304	6031		KSF
16305	52E1		JMP DISP+5
16306	5772'		JMP NXCMD
16307	0000	CHRIN,	0
16310	7300		CLA CLL
16311	6031		KSF
16312	5311		JMP . -1
16313	6036		KRE
16314	0767'		AND P0177
16315	1766'		TAD P0200
16316	5707		JMP I CHRIN
16317	0000	CHROUT,	
16320	6041		TSF
16321.	5320		JMP . -1
16322	6046		TLS
16323	7300		CLA CLL
16324	5717		JMP I CHROUT
1 E325	0000	PCRLF,	
16325	1341		TAD PCR
16327	4317		JMS CHROUT
16330	1342		TAD PLF
16331	4317		JMS CAROUT
16332	5725		JMP I PCRLF
16333	0000	UAOUT,	0
16334	6624		STR
16335	5334		JMP .-1
16336	6644		OUT
16337	7300		CLA CLL
16340	5733		JMP I UADUT
16341	0215	PCR,	215
16342	0212	PLF,	212
16343	0000	CHAN,	0
16344	0000	PXDIS,	0
16345	0000	CPTR,	0
16346	0300	Pa300,	300
16347	6000	PM2000,	6000
1 E350	7772	PME,	7772
16351	0000	CNTR,	0
16352	0000	CHND,	0
16353	6000	MCNT,	6000
16354	0000	DFLD,	
16355	0000	CKSM,	0
1636 6	6557		
16367	6556		
16370	6532		
16371	6162		
!6372	6005		
16373	6471		
16374	6411		
16375	6164		
16376	6560		
16377	6400		
	6400	*6400	
16400	0000	LLDR,	0
16401	7300		CLA CLL
16402	1362		TAD KLD
16403	3346		DCA T:2
16404	4777'		JMS UAOUT

16405	2346		152 T2
16405	5204		JMP . -2
16407	5600		JMP I LLDR
16410	0100	P0100,	100
16411	0000	WRDOUT,	0
16412	3347		DCA T3
16413	7300		CLA CLL
16414	1347		TAD TY
16415	0361.		AND PO7700
15416	7012		RTR
16417	7012		RTR
16420	7012		RTR
16421	1210		TAD P0100
16422	4245		JMS EPTY
16423	3346		DCA 12
16424	1346		TAD T2
16425	1776'		TAD CKSM
15426	0360		AND P0377
16427	3776'		DCA CKSM
16430	1346		TAD T2
16431	4777'		JMS UAOUT
16432	1347		TAD T3
16433	0355		AND PO77
16434	4245		JMS EPTY
16435	3346		DCA T2
16436	1346		TAD TR
16437	1776'		TAD CKSM
16440	0350		AND P0377
16441	3776'		DCA CKSM
16442	1346		TAD T2
16443	4777'		JMS UADUT
16444	5511		JMP I KRDOUT
15445	0000	EPTY,	0
16445	0356		AND PDI 77
16447	3351		DCA 16
16450	1354		TAD PM7
16451	3352		DCA 17
1 E452	3353		DCA EITS
16453	1351		TAD TG
16454	7010		RAR
16455	7430		SZL
16456	2353		ISZ BITS
16457	2352		ISZ T7
16450	5254		JMP -4
16461	7300		CLA CLL
16462	1353		TAD BITS
16463	7010		RAR
16464	7200		CLA
16465	1351		TAD TG
16465	7430		SZL
16467	1357		TAD PO200
16470	56.45		JMP I EPTY
16471	0000	POINT,	0
16472	7041		CIA
16473	6201		CDF+0
16474	7450		SNA
16475	5330		JMP DZ
10476	7001		IAC
16477	7450		SNA
16500	5326		JMP DD
1 E501	7001		IAC
16502	7450		SNA
16503	5324		JMP DTW
1E504	6211		$C D F+10$
16505	7001		IAC
1650G	7450		SNA
16507	5322		JMP DTH
16510	7001		IAC
16511	7450		SNA
18512	5320		JMP DF
16513	7001		IAC
16514	7440		S2A
16515	7402		HLT

ACMLTR	0074	FLAG	2157	MCRET	2155	PCR	6341
BATNO	6164	FLSET	2137		6161	PCRLF	6325
EITS	6553	FNME	2000	MH	6157	PLF	6342
EUFDEC	6124	FOP	6564	MONST	0021	PM193	6151
BUFF	6165	FOUR	0627	MP	6160	PM2000	6347
BUFFP	6166	FOURP	$0: 34$	MREDUT	21.52	PME	6350
CARG1	0536	GDAT	6222	M1	0051	PM7	6554
CARG2	0537	GET	6037	M101	0064	PNTR	0116
CARRY	0117	GETEY	0703	M12	0050	POINT	647:1
CCBARA	0112	GETCHR	6600	M2	0052	POINI	0600
CCEECW	0113	GETND	6532	M260	6152	P0100	6410
CHAN	6343	GETWRD	0566	M272	6153	P0177	6556
CHARGI	0506	GNME	0206	M3	0053	P0200	6557
CHARG?	0507	GTCF	2014	M32	0061	P0300	6346
CHARG3	0510	HANADR	0075	M4	0054	P0377	6560
CHC	6625	HARG1	0515	M5	0055	P077	E5S5
CHNO	6352	HARG2	0516	MS	0056	P07700	6561
CHRIN	6307	HARG3	0517	MSO	0062	PPTR	0155
CHRDUT	6317	HARG4	0524	$M 7$	0057	PRINT	2214
CKSM	E355	HARE5	. 0525	M72	C063	PSIRG	2160
CMND	6156	HARGS	0526	NAMEP	0!00	PSTRIN	2271
CNTR	6351	HEY	0320	NAM1	0101	PTR	0154
CNTfLC	0725	HDR	6033	NAME	0102	PUNCH	6200
CPTR	6345	HK5	0105	NAM3	0103	PXDIE	6344
CPYNTY	0107	HUNS	6141	NAM4	0104	P0	0123
CPYNUM	0105	ICHRD	0136	NEXT	0216	P!	0123
CR	0035	IDS\%	0141	NOCC	20E3	P2	0124
CRLF	2200	IGETBY	0146	NCCU	2045	P3	0125
CURPNT	0066	IGTWRD	0145	NDFLG	2034	P4	0125
DEUNME	0076	1 INCR	0142	NOPER	0153	P5	0127
D $=$	E520	IMAINC	0143	NOSAMS	0057	GMK	6163
DFLD	6354	INC	0325	NUMELK	0110	RENAME	0250
DISNUM	0121	INCR1	0542	NUMPNT	0560	ROUT	2130
DISP	6254	INPRT	0137	NYCH	2116	RSTIN	0641
DO	E526	IPOIN:	0144	NYCHRP	2243	RUD	6631
DSK	0400	IRENME	0140	NYCMD	6005	SAVE	6522
DTH	E522	IRSTIN	0147	NXLOC	E265	SAVE1	0150
DTW	E524	KHUN	6167	OK	2100	SAVE3	0151
DZ	6530	KLD	6562	OK5	2105	SDR	6621
EARG1	0447	KTEN	8170	ONE	0635	SKERR	6641
EARG2	0450	LBY'	02 El	ONEP	0131	SLSH	2:56
ENDCHK	6056	LF	0037	OP	6567	SPCE	6162
ENDHDR	6114	LFEED	2113	QUT	6644	START	2005
EPTY	6445	LIMIT	0157	DUTX	6055	STATUS	0022
ERYESS	2265	LLDR	6400	Quty	EOES	STBLK	0111
ERROR	6026	LStat	6634	016	0041	STCODE	0025
EXIT	ES13	MAD ${ }^{\text {d }}$	0065	017	0042	STR	6524
FARG1	0424	MAINC	0555	0177	0045	ETRING	3600
FARG2	0425	MEY	0300	0377	0045	STRIN2	3632
FARG3	0426	HCL	6623	04000	0047	STRT	E203
FCL!	0114	MCNC	0034	050	0043	STUS	E150
FCW2	0115	MCNT	6353	07	0040	SUE	0070
FIN	6251	MCNTJ	2154	077	0044	TEMP	0071
FIP	6563	MCNTU	2153	07700	0050	TEMP2	0072
FIUEP	$0: 35$	MCR	6154	PBSW	0335	TEMP3	0073

TENS	$E: 32$
THP	6555
THREE	0531
THREEP	0133
TMPST	0023
TMPSTE	6155
TPTR	0156
TRIALS	0024
TRILIM	0025
TRL	0211
TSTNME	2224
TWO	$0 E 33$

FORTRAN Programmes used in the Analysis of the CNV Data

The listings of the three major analysis programmes are given in this appendix together with their associated subroutines. These programmes perform (i) The Pre- and Post- Stimulus (Broadband) Energy Test as described in section 2.2:3.1; (ii) The tests described in sections 2.2.2.1 (The Rayleigh Test of Circular Variance), 2.2.2.2 (The Modified Rayleigh Test), 2.2.2.3 (The Hodges-Ajne Test) and 2.2.3.3 (The Nearest and Furthest Mean Amplitude Test); (iii) All the tests in (ii) and in addition the test described in section 2.2.3.2 (The Pre- and Post- Stimulus Mean Amplitude differences test). All the CNV data were tested using programme (i). The one second ISI CNV's were tested using Programme (iii) whilst the four second ISI CNV's could only be tested using Programme (ii) because of the limited amount of pre-stimulus information available.

Programmes similar to (i) and (iii) were used in the analysis of the auditory responses.

The programmes listed in this appendix and in appendices 8.7 and 8.8 use a number library subroutines and functions specific to the Prime $750 / 550$ system installed at Plymouth Polytechnic.

```
Brief details of these are as follows:-
```

a) On the Prime computer system the FORTRAN input / output unit numbers are as follows:unit $1=$ Input / output from / to the users terminal. unit $5=$ Input / output from / to PRIMOS file unit 1. unit 6 = Input / output from / to PRIMOS file unit 2 .

Thus READ (1,*)A,I would perform a READ operation from the users terminal. The '*' infers free format whereby any numbers separated by spaces or commas are assigned to the elements of the variable list.
2) Applications Library and Operating System Subroutines.

The following routines are part of the PRIMOS applications library.

CLOS \$ $^{\dagger}{ }^{\dagger}$	Closes a file by its PRIMOS file unit number.
EXST\$A	Tests whether the file specified exists or not.
FILL\$A	Fills an array with a specified ASCII character.

MSUB\$A	Copies a string of characters into another string.
NLEN\$A	Returns the number of non-blank characters in a string array.
OPEN\$ ${ }^{+}{ }^{\text {+ }}$	Opens a file for reading or writing on a specified PRIMOS file unit.
TREE\$A	Tests a string of characters to establish whether they constitute a valid file treename. The file need not exist.
YSNO\$A	Prompts the user with a specified string and requests a YES or NO answer. Returns a logical .TRUE. or .FALSE. according to the users reply.
\dagger	May be treated as Functions or Subroutines.

The following routines are part of the PRIMOS operating system.

EXIT Returns from FORTRAN to PRIMOS.

TNOUA Transfers a character string to the users terminal without appending a 'newline' sequence.

TODEC
Writes the argument as a decimal number on the users terminal.
3) Graphics subroutines

The following subroutines form part of the GINO graphics package. For further details see the GINOGRAF and GINO-F manuals or contact The GINO-F Support Team, C.A.D. Centre, Madingley Road, Cambridge, CB3 0HB.

ARCTO2	DEVEND
BROKEN	DEVSPE
CC81	LINTO2
CC906	MOVTO2
CHAANG	PENSEL
CHAARR	PICCLE
CHAFLO	S5660
CHAINT	SYMBOL
CHAHAR	T4010
CHAHOL	
CHAMOD	UNITS
CHASIZ	WINDO2
CURSOR	WINDOW

The following subroutine is part of the GINOGRAF graphics package.

GRAF

```
#のOOOOOO
BROADBAND POWER ANALYSIS OF PRE- AND POST-STIMULUS CNV'S
INPUT FILES: DATA
OUTPUT FILES: RESULTS\ENG.CNV . ....
SYSCOM>ASKEYS
REAL DATA(1024), SSPRS1 (32),,SSS1 (32),MUPR,MUSI
DIMENSION TRDAT 1024)
INTEGER*2 FNAME(20),CHANAN,BATNRS(32),BLINE,DEL
INTEGER*2 SSR,EP1,EP2
INTEGER BATNO;CHNO,RESNAM(20),RESLEN,ODEV
LOGICAL FILE
    COMMON ODEV
    DATA ODEV/99%
    FILLE=.TRUE.
    N=1024
    ICHAR=' '
    DEL=125
                GET THE DETAILS OF THE SECTIONS TO BE
                                    ANALYSED.
        1. WRITE(1,2)
    2 FORMAT('LENGTH OF SECTION 1')
    READ(1,*,ERR=1)NL1
    3 WRITE(I,4)
    4 \text { FORMAT('LENGTH OF SECTION 2')}
    READ(1,* ERR=3)NL2
    5 WRITE (1,6)
    6 \text { FORMAT ('START OF SECTION 1')}
    READ(1,* ERR=5)EP1
    7 WRITE(1,8)
    8. FORMAT ('START OF SECTION 2')
    READ (1,*,ERR=7)EP2
C
                                    ONE SECOND STIMULUS POINTS
                                    ISl=407
                                    IS2=532
    9 WRITE(1,10)
    10 FORMAT('ONE OR FOUR SECOND PARADIGM')
    READ(1,* ERR=9)IPARA
    11 WRITE(1,12)
    12 FORMAT('PERFORM BASELINE CORRECTIONS')
    READ(1,*,ERR=11)BLINE
    IF(BLIṄE .LT. O .OR. BLINE .GT. 1)GO TO 11
    IF BLINE .EQ. 1)ICHAR='B'
    IF IPARA .EQ: 1 GO TO 14
    IS1=219
    IS2=719
    IF(IPARA .NE. 4)GO TO 9
    14 IF(.NOT. YSNOSA'('STORE RESULTS IN A FILE',23,ASDYES))
                            PREPARE THE FILENAME FOR THE RESULTS
    CALL FILLSA(RESNAM, 40,' ')
    ENCODE(19 15,RESNAM)ICHAR
15. FORMAT ''PO3400>RESULTS>ENG',A1)
    RESLEN=NLEN$A(RESNAM,40)
                            GET THE FILENAME OF THE DATA TO BE PROCESSED.
18 CALL GETNAM(FNAME)
    NL=NLEN$A(FNAME,40)
                            TEST FOR A VALID NAME.
    IF (.NOT. TREE$A(FNAME,NL,NT,NTL))GO TO 18
        ADD THE NAME OF THE DATA INPUT FILE
        TO THE RESULTS FILENAME TO GIVE A UNIQUE
            FILENAME.
        I9=MSUB$A(FNAME ,NL,NT,NT+NTL-1, RESNAM, 40,RESLEN+1,RESLEN+NTL)
        RESLEN=NLENSA(RESNAM,40)
            GET THE NUMBER OF THE CHANNEL TO BE ANALYSED.
```

C

```
    20 WRITE (1, 30)
    30 FORMAT, 'CHANNEL 4 OR 5')
        \(\operatorname{READ}(1, *\), ERR=20) CHNO
        IF (CHNO :NE. 4 .AND. CHNO .NE. 5)GO TO 20
```

 CHANAN \(=\) CHNO-3:
 C
C
C
C
ECORR=1 IF DATA IS TO BE CORRECTED FOR EYE MOVEMENTS.
$=0$ IF NOT.

ECORR=1
ifilt $=1$ If data is to be filtered. $=0$ IF NOT.

IFILT=1
get the numbers of the batches to be analysed.
CALL BATNOS (BATNRS,MBAT)
now the iterative bit
DO $240 \mathrm{IC}=1$, MBAT
BATNO $=$ BATNRS' (IC)
54 WRITE (1, 55) BATNO
55 FORMAT('PROCESSING BATCH',14)
GET THE CORRECTED OR UNCORRECTED DATA.
CALL EYECOR (FNAME BATNO CHANAN DATA, SF1, SF2 SAMRAT, ECORR) IF (BLINE .EQ. 1) CALL BASLNE (DATA, N, 1, IS1, IS $2+D E L, N$)

APPLY FILTER IF REQUIRED.
IF(IFILT .EQ. 1)CALL FILTER(N,DATA)
SSR=SUBSAMPLING RATE
SSR=1
EPI=START OF PRE-SI DATA
N1=NLl*SSR
$\mathrm{N} 2=\mathrm{SSR}$
REMOVE PRE-STIMULUS DATA AT REQUTRED POINTS and perform analysis. Store results in array SSPRSI.
$\mathrm{L} 1=0$
DO $135 \mathrm{I}=1, \mathrm{~N} 1, \mathrm{~N} 2$
$\mathrm{Ll}=\mathrm{LL}+1$
$135 \operatorname{TRDAT}(\mathrm{~L} 1)=\mathrm{DATA}(\mathrm{I}+\mathrm{EPl}-1)$
CALL SSQRE(NL1,TRDAT,SSPRSI(IC))
$\mathrm{Nl}=\mathrm{NL} 2 * \mathrm{SSR}$
$\mathrm{L} 1=0$
D0 $200 \mathrm{I}=1, \mathrm{~N} 1$, N 2
$\mathrm{LI}=\mathrm{L} 1+1$
200 TRDAT (L1) $=\operatorname{DATA}(\mathrm{I}+E P 2-1)$
CALL SSQRE(NL2,TRDAT,SSSI(IC))
240 CONTINUE
Calculate mean and st. dev. for pre-stim. data.
CALL STDMN (MBAT, SSPRS1,MUPR,SIGPR)
WRITE (1,510)MUPR, SIGPR
510 FORMAT('MEAN OF PRE-SI ',E16.8,' STANDARD DEV.',E16.8)
CALCULATE MEAN AND ST. DEV. FOR POST-Stim. DATA.
CALL STDMN (MBAT, SSS 1 MUSI,SIGSI)
WRITE (1,520)MUS1,SIĢS1
520 FORMAT('MEAN OF S'1 ' E 16.8 ,' STANDARD DEV. ',E16.8)
IF (NOT. FILE)GO TO 560
IF (:NOT: EXSTSA(RESNAM, RESLEN)) GO TO 550

WRITE (1, 540)RESNAM
540 FORMAT (OVERWRITE EXISTLNG FILE : ', 20A2)
IF (NOT. YSNOSA(${ }^{\circ}$ YES OR NO , $\left.10, A S D N O\right)$)FILE=.FALSE.
IF IFOT. FILE GO TO 560
$550 \mathrm{IF}($ NOT: OPENSA 2 , RESNAM, RESLEN, 2)) GO TO 2900
560 DO 600 IC=1 MBAT
DIFF=SSSL (IC)-SSRRS 1 (IC)
WRITE (1, 730)BATNRS (IC), SSPRS1 (IC), SSSI (IC), DIFF
IF (FILE)WRITE (6,735) BATNRS (IC), SSPRSI (IC), S'SSI (IC), DIFF
600 CONTINUE

735 FORMAT (I3 3 (E16.8 2
$)^{\text {El6.8. }}$
IF (FILE) CALL CLOS\$A(2)
1900 CALL. CLOS\$A(1)
2900
CALL EXIT
2901 WRITE (1,2901)RESNAM
STOP (CANT OPEN RESULTS FILE : , 20A2)
END:


```
    40 FORMAT('FILTER')
    READ(1;*,ERR=38.)IFILT
๑ดのด
                                    ALLOW VARIABLE SCALE FACTORS SO AS TO GET
                    ALL THE' POINTS ON THE PHASOR DIAGRAM.
    45 WRITE(1,50)
    50 FORMAT('MULTIPLICATION FACTOR')
    READ(1 *, ERR=45)SF
    SF=SF*I.5E6
C
    GALL BATNOS(BATNRS,MBAT)
    SSR=1
    Nl=NP*SSR
    CALL FILLLSA'(LABB1, 40,'')
    ENCODE(57,52,LAB1)TDLEN,NP,SSR,EP1,BLINE
        52 FORMAT(I3, PT FFT,',I3,' DATA PTS,'SSR= ',I2,', POST =', I3,
    +4X,'B. LINE=',
                                    NOW THE ITERATIVE BIT
        DO 640 IC=1,MBAT
        BATNO=BATNRS (IC)
        5 4 ~ W R I T E ( 1 , 5 5 ) B A T N O ~
        55 FORMAT''PROCESSING BATCH' I4)
        CALL EYECOR(FNAME BATNO,CHANAN,DATA,SF1,SF2,SAMRAT ,ECORR.)
        IF(BLINE -EQ. 1)CALL BASLNE (DATA,N,1,IS1,IS2+DEL,N
        IF(IFILT .EQ. 1 CALL FILTER(N,DATA)
    ISTRT=EP1-1
C
                    EXTRACT DATA TO BE ANALYSED AND PUT
                    INTO TRDAT.
    Ll=0
    DO 135 I=1,N1,SSR
    Ll=L1+1
    135 TRDAT(L1)=DATA(I+ISTRT)
    TAPER THE DATA.
    CALL TAPER2(TRDAT,NP)
    DO 136 I=1,TDLEN
    TDATA(I)=CMPLX(0.,0.)
    136 IF(I .LE. NP)TDATÁ(I)=CMPLX(TRDAT(I),0.)
                            CALL FFT SUBROUTINE
    151 CALL NLOGN(LGTDLN,TDATA,-1.)
    DO 160 IHAK=1,6 /* STUDY HARMONICS 1-6
C
    160 Sl(IHAR,IC)=TDATA(IHAK+1)*2./FLOAT(NP)
    640 CONTINUE
    CALL PHASRI(Sl,MBAT,SF,SAMRAT,FNAME,LAB1,IDEV)
    CALL PHASRI(S1,MBAT,SF,SAMRAT,FNAME,LAB1, -1)
    IF(IDEV. EQ. O. OR. IDEV .EQ. 2)CALL TIIN`(IXYZ)
    DO 1650 IHAR=1,6
    ANGLE(K)=ATAN2(AIMAG(SI (IHAR,K)),REAL(Sl (IHAR ,K)))
    RAD(K)=CABS(Sl(IHAR,K))
    1630 CONTINUE
C
                                    NOW DO THE STATISTICAL TESTS.
    WRITE(1, 1635)IHAR
    1635 FORMAT(20X, ANGULAR STATISTICS FOR POST-STIMULUS CNV HARMONIC',
    +I3, ()
    CALL RSTATI(RAD,MBAT)
    CALL ASTATI}ANGLE,MBAT
    CALL ASTAT2 (ANGLE,MBAT)
    CALL VSTAT1 ANGLE,RAD,MBAT)
    CALL VSTAT3 ANGLE,RAD,MBAT
    CALL VSTAT2(ANGLE,RAD,MBAT)
    WRITE(1,1640i)
    1640 FORMAT(////)
    1650 CONTINUE
```



```
    135 TRDAT(Ll)=DATA(I+ISTRT)
        CALL TAPER2(TRDAT,NP)
        DO 136 I=1,TDLEN
    TDATA(I)=CMPLX(0.,O.)
    136 IF(I .LE. NP)TDATA(I)=CMPLXX(TRDAT(I),0.)
    '151 CALL. NLOGN(LGGTDLN,TDATA -1 % STUDY')
    160 PRES1(IHAR,IC)=TDATA(IHAR+1)*2./FLOAT(NP)
C
    ISTRT=POSS-1
    Ll=0
    DO 200 I=1,N1;SSR
    Ll=Ll+1
    200 TRDAT(L1)=DATA(I+ISTRT)
    CALL TAPER2(TRDAT,NP)
    DO 220 I=1,TDLEN
    TDATA(I)=CMPLX(0.,0.)
220 IF(I .LE. NP)TDATA (I)=CMPLX(TKDAT(I),0.)
    CALL NLOGN(LGTDLN ,TDATA,-1.\bullet)
    DO 230 IKAR=1,6
    230 Sl(IHAR,IC)=TDATA(IHAR+1)*2./FLOAT(NP)
    6 4 0 ~ C O N T I N U E ~
    CALL PHASOR(PRES1,S1,MBAT,SF,SAMRAT,FNAME, LAB1,IDEV)
    CALL PHASOR(PRESI,SI,MBAT'SF,SAMRAT,FNAME,LLAB1,-1)
    IF(IDEV .EQ. O)CALL TIIN(1XYZ)
    DO 1650 IHAR=1,6
    DO 1600 K=1,MBAT
    ANGLE(K)=ATAN2(AIMAG(PRESI (IHAR,K)),REAL(PRESI (IHAR,K)))
    RAD (K)=CABS (PRESI (IHAR,K))
1600 CONTINUE
    WRITE(1, 1610)IHAR
1610 FORMAT(20X,'ANGULAR STATISTICS FOR PRE-STIMULUS HARMONIC',I3)
    CALL RSTATl (RAD MBAT)
    CALL ASTAT1}ANGLE,MBAT)
    CALL ASTAT2 ANGLE,MBAT)
    CALL VSTAT1 ANGLE,RAD,MBAT)
    CALL VSTAT3 ANGLE,RAD,MBAT
    CALL VSTAT2 ANGLE,RAD,MBAT)
    WRITE(1,1620)
1620 FORMAT(7////)
    DO 1630 K=1,MBAT
    ANGLE(K)=ATAN2(AIMAG(S1(IHAR,K)),REAL(Sl(IHAR,K)))
    RAD(K)=CABS(S1 (IHAR K))
    RADDIF (IHAR,K)=CABS(Sl'(IHAR,K))-CABS (PRES1 (IHAR,K))
    CONTINUE , WRITE(1, 635)IHAR
1635 FORMAT(2OX ANGULAR STATISTICS FOR POST-STIMULUS HARMONIC ', I3)
    CALL RSTAT (RAD,MBAT)
    CALL ASTATI. ANGLE,MBAT)
    CALL ASTAT2(ANGLE,MBAT)
    CALL VSTATl' ANGLE,RAD,MBAT)
    CALL VSTAT3 ANGLE,RAD,MBAT
    CALL VSTAT2 ANGLE, RAD,MBAT)
    WRITE(1, 1640)
1640 FORMAT( }7/%
1650 CONTINUE
1900 CALL CLOS$A(1)
    WRITE(1,2200)
2200,FORMAT(},/ RESULTS OF A PAIRED T-TEST ON THE PRE-POST RADIUS *
    LENGTHS' %/7)
    MBAT 1=MBAT-1
    DO 3000 IHAR=1,6
    SUM=0.
    DO 2000 I=1,MBAT
2000 SUM=SUM+RADDIF(IHAR,I)
    RMEAN=SUM/FLOAT(MBAT)
    SUMSQ=0.
    DO 2100 I=1,MBAT
2100 SUMSO=SUMSO+(RADDIF(IHAR, I)-RMEAN )*(RADDIF (IHAR,I)-RMEAN )
    STDEV=SQRT(SUMSQ/FLOAT(MBATL))
    TSTAT=RMEAN/(STDEV/SORT(FLOAT(MBAT)))
    WRITE (1, 2210) IHAR, RMEAN STDEV,TSTAT,MBAT1
2210 FORMAT HARMONIC= 'I2,5X,'MEAN= , ,14.8,5X
3000 CONTINUE 
    END
```

SUBROUTINE ASTATI（ANGLE，N）

```
THIS SUBROUTINE CALCULATES SUMMARY STATISTICS FOR THE N ANGULAR
    VALUES (RADIANS) STORED IN ARRAY'ANGLE'.
    MEAN DIRECTION .... THETA=ATAN(S/C)
    WHERE }\quad\textrm{C}=\mathrm{ AVERAGE COSINE VALUE
        S = AVERAGE SINE VALUE
```

 CIRCULAR VARIANCE VO=1-SQRT(C*C+S*S)
 VO HAS A VALUE 1 FOR COMPLETE UNLFORMITY ON THE CIRCLE
 0 FOR A SET OF IDENTICAL ANGLES
 WRITTEN BY TERRY JOHNSON. DEPT. OF MATHS. STATS. \& COMPUTING
 PLYMOUTH POLYTECHNIC.
 DIMENSION ANGLE(N)
 DATA PI/3.1415926536/
 \(C=0\)
 \(\mathrm{S}=0\)
 DO \(1 \mathrm{I}=1\), N
 \(\mathrm{C}=\mathrm{C}+\mathrm{COS}\)
 $\mathrm{S}=\mathrm{S}+\mathrm{SIN}$$($ ANGLE $(\mathrm{I})\}$
$\mathrm{C}=\mathrm{C} / \mathrm{N}$
$\mathrm{S}=\mathrm{S} / \mathrm{N}$
THETA=ATAN2 (S, C)
$V 0=1-S Q R T\left(C * C+S^{*} S\right)$
WRITE (1,100) THETA
THETA $=$ THETA* $180 /$ PI
WRITE $(1,102)$ THETA
WRITE 1,101) VO
FORMAT (? MEAN DIRECTION', $13 \mathrm{X}^{\prime}=,, \mathrm{F} 10.5,^{\prime}$ RADIANS')
100 FORMAT \mathbf{l}° MEAN DIRECTION' $13 X^{\prime}={ }^{\prime}, \mathrm{F} 10.5^{\prime}$
101 FORMAT
102 FORMAT
FORMAT (27X, $=, F 10.5,{ }^{2}$ DEGREES')
RETURN
END
SUBROUTINE ASTAT2 (ANGLE,N)
のดดดดดดดดดด
WRITTEN BY TERRY JOHNSON. DEPT. OF MATHS. STATS. \& COMPUTING
PLYMOUTH POLYTECHNIC.
DIMENSION ANGLE(N)
DIMENSION ANGLE (N)
DATA. PI/3.1415926536/
$\mathrm{M}=\mathrm{N}$
$\mathrm{DO} 1 \quad \mathrm{I}=1, \mathrm{~N}$
IF (ANGLE (I).GT.0.0) GO TO 3
AMIN $=$ ANGLE (I)
AMAX $=A M I N+P I$
DO $2, J=1, N$
IF (ANGLE (J) . GT .AMIN.AND.ANGLE (J) •LE .AMAX) NR=NK+1
THIS SUBROUTINE TESTS THE N ANGULAR VALUES IN ARRAY 'ANGLE'
C FOR UNIFORMITY OF DISTRIBUTION ON THE CIRCLE USING THE
C HODGES-AJNE TEST. THE TEST STATISTIC IS M WHERE M IS THE
C MINLMUM NUMBER OF OBSERVATIONS FOUND IN ANY SEMI-CIRCLE.
CONTINUE
GO TO 5
3 AMAX=ANGLE (I)
AMIN $=$ AMAX -PI
DO $4 \mathrm{~J}=1, \mathrm{~N}$
IF (ANGLE (J) . GE. AMIN.AND.ANGLE (J). LT.AMAX) NR=NR+1
CONTINUE
5 IF (NR.LT.M) M=NR
IF ($N R \cdot L T \cdot M) ~ M=N R$
$I F(N R \cdot L T \cdot M) \quad M=N-N R$
CONTINUE
WRITE (1,100) M
๑ภのดの
FOR M LESS than ($\mathrm{N} / 3$) EXACT SIGNIficance is GIVEN by
$S=(N-2 * M) \cdot{ }^{N} C \cdot 2^{(1-N)}$

IF (M.GT.N/3) RETURN
$S=(N-2 * M) /(2.0 * *(N-1))$
IF(M.EQ.O.) GO TO ?
DO $6 I=I, M$
$\quad \mathrm{Se}=\mathrm{S} *(\mathrm{~N}+1-\mathrm{I}) \cdot / \mathrm{I}$
OO FORMAT ${ }^{\circ}{ }^{\circ}$ HODGES-AJNE TEST STATISTIC $=$ ' I4)
101 FORMAT ('LEVEL OF SIGNIFICANCE $=$, ,flo.5)
RETURN
END
SUBROUTINE BASLNE(DATA,N,NP1,NP2,NP3,NP4)
CORRECT THE BASELINE OF A SECTION OF EEG
BY AVERAGING BETWEEN NP1\&NP2 AND ALSO
BETWEEN NP 3\&NP 4. CALCULATE THE DIFFERENCE
BETWEEN THE AVERAGES AND SUBTRACT THE
APPROPRIATE FRACTION FROM THE DATA:
FINALLY ADJUST THE SECTIONS NP1-NP2 AND
NP3-NP4 TO HAVE A ZERO MEAN.
INTEGER*2 $\mathrm{N}, \mathrm{NP} 1, N P 2, N P 3, N P 4, \mathrm{Z1}, \mathrm{Z2}$
DIMENSION DATA(N)
CALL SECTAV (NP1,NP2, DATA, SAV1)
CALL SECTAV (NP3,NP4,DATA,SAV2)
GRAD=(SAV2-SAV1)/(FLOAT(NP3-NP2))
DO 70 I=1,NP2
$\mathrm{Z} 1=\mathrm{NP} 2+1$
DO $72 \mathrm{I}=21, \mathrm{NP} 3$
72 DATA (I) =DATA (I)-SAV1-GRAD* (I-NP2)
Z2=NP3+1
DO $74 \mathrm{I}=22$, N
$74 \operatorname{DATA}(I)=\operatorname{DATA}(I)-S A V 2$
RETURN
END
SUBROUTINE BATNOS(BATS,MAX)
GET A SEQUENCE OF BATCH NUMBERS FROM THE USER.

INTEGEK*2 BATS(32)
LOGICAL YSNOSA
10 WRITE $(1,20)$
20 FORMAT (${ }^{\circ}$ HOW MANY BATCHES TO BE PROCESSED')
READ ($1, *, E R R=10) M A X$
IF (MAX' GT. 32 .OR. MAX .LT. 1)GO TO 10
IF (MAX .EQ. 32)GO TO 100
ITBAT=0
$\mathrm{I}=1$
40
CALL TODEC (ITBAT)
IF (NOT. YSNOSA(' TO BE INCLUDED ', 16,1))GO TO 50
$\operatorname{BATS}(I)=I T B A T$
$\mathrm{I}=\mathrm{I}+1$
ITBAT=ITBAT+6
IF(I .LE. MAX)GO TO 40
RETURN
$100 \mathrm{DO} \quad 120 \mathrm{I}=1$, MAX
$\operatorname{BATS}(I)=(I-1) * 6$
120
CONTINUE
RETURN
END
SUBROUTINE DATIN(IBATNO, IDATA,RNAME,SF1,SF2,SAMRAT,CSE)
THIS SUBROUTINE READS DATA FROM A DATA FLLE SPECIFIED BY ARGUMENT RNAME. THE BATCH SPECIFIED IS READ INTO IDATA. THE PROGRAM ALSO RETURNS THE SCALE FACTORS SF1, SF2, AND THE SAMPLE RATE. (SAMRAT) SETTING CSE $=-1$ CLOSES ANY OPEN FLLE AND RETURNS.

LOGICAL CLOS\$A,OPENSA
INTEGER*2 IDATA (1024), ONAME (20), RNAME (20), TITLE (36) , NME (6).
INTEGER*2 RWKEY,NLEN,NLEN2,PRIMNO, NBAT,IBATNO, IAA1 (4)

LOGICAL NEOPEN, CSE
DATA NEOPEN \%.FALSE $\%$
RWKEY=1
PRIMNO $=1$
NLEN=40
NLEN2=NLEN $/ 2$
IF (NEOPEN) GO TO 1300
IF (CSE)RETURN
900 IF (NOT. OPENSA (RWKEY, RNAME,NLEN,PRIMNO)) GO TO 1700
DO 1000 IC $=1$, NLEN2
1000 ONAME (IC) $=$ RNAME (IC)
NEOPEN=.TRUE.
$\operatorname{READ}(5,3000, E N D=1800, E R R=1900$) NME, SF1 , SF2
$\operatorname{READ}(5,3010, \mathrm{END}=1800, \mathrm{ERR}=1900$) MAXBAT
READ (5,3020, END $=1800$; $E R R=1900$).TITLE
DO 234 IL=1,4
234 IAAl (IL) =TITLE (IL+20)
DECODE (8,236, LAAI)SAMRAT
236 FORMAT (F8.4)
$1100 \operatorname{READ}(5, \mathrm{END}=1800, \mathrm{ERR}=1900) \mathrm{NBAT}$
$\operatorname{READ}(5, E N D=1800, E R R=1900)(\operatorname{IDATA}(I), I=1,1024)$
IF (NBAT .NE. IBATNO)GO TO 1100
NBAT $=\mathrm{NBAT}+1$
RETURN
1200 LF (.NOT. CLOS\$A(PRIMNO)) GO TO 1600
NEOPEN=.FALSE.
RETURN
1300 IF (CSE)GO TO 1200
DO 1400 ICal, NLEN2
1400 IF (ONAME (IC) . NE. RNAME (IC) GO TO 1500
IF IBATNO GE. NBAT GO TO 1100
1500 IF (CLOS\$A (PRIMNO)) GO TO 900
1600 WRITE (1,1610)ONAME
1610 FORMAT (${ }^{\prime} \neq \star$ CAN NOT CLOSE FILE ', 20A2, ${ }^{\prime}$ ***')
STOP 1
1700 WRITE (1,1710) RNAME
1710 FORMAT ('*** CAN NOT OPEN FILE ', 20A2,' ***')
STOP 2
1800 WRITE (1,1810)RNAME
1810 FORMAT ('*** END OF FILE ', 20A2,' ***') STOP 3
1900 WRITE (1, 1910) IBATNO RNAME
1910 FORMAT' '*** ERROR TRYING TO READ BATCH',I5,' FROM FILE',
+20A2,' $* * *^{\prime}$)
STOP 4
3000 FORMAT (6A2, 2F8.6)
3010 FORMAT (I4)
3020 FORMAT (36A2)
END
SUBROUTINE EYECOR(FNAME, BATNO, ICHAN, COR1,SF1,SF2, SAMRAT,ECORR)
THIS PROGRAM IS INTENDED TO MINIMISE THE AMOUNT OF E.O.G POWER IN THE E.E.G. IT USES THE MODIFIED QUILTEK TECHNLQUE. HORIZONTAL AND VERTICAL COMPONENTS OF BOTH EYES ARE TAKEN INTO CONSIDERATION. THE PROGRAM REMOVES ANY D.C OFFSET ON ANY OF THE INPUT DATA CHANNELS.
REAL VL(1024) VR(1024), HL(1024), $\mathrm{HR}(1024), \mathrm{El}(1024)$, CORI (1024)
DIMENSION Xl (4,5), RMI (4), RHS (4)
INTEGER*2 BATNO, INP (1024), FNAME (20)
LOGICAL CSE
DATA CSE /.FALSE./
$\mathrm{N}=1024$
THE DATA IS ASSUMED TO BE IN THE FOLLOWING ORDER G VL VR OR ML HR THE CHANNELS'TO BE CORRECTED BY THE MODIFIED QUILTER TECHNIQUE
SF1 FOR EOG DATA. SF2 FOR EEG DATA.
CHECK THAT THE BATCH NUMBER IS VALID.
IF (BATNO .LT. O OR. BATNO GT. 191)GO TO 2999
IF (FLOAT (BATNO/6) . NE. FLOAT (BATNO)/6.)GO TO 2999
L=BATNO
C
READ THE DATA AND CONVERT TO REAL FORMAT.
CALL DATIN(L, INP, FNAME,SF1,SF2,SAMRAT,CSE)
DO $22 \mathrm{I}=1$, N
$22 \mathrm{VL}(\mathrm{I})=\mathrm{FLOAR}(\operatorname{INP}(\mathrm{I})) * S F 1 * 1 . E-06$
$\mathrm{L}=\mathrm{L}+1$
CALL DATIN(L, INP , FNAME, SF1, SF2, SAMRAT, CSE)
DO $24 \mathrm{I}=1$, N
$24 \operatorname{VR}(\mathrm{I})=\mathrm{FLOAT}(\mathrm{INP}(\mathrm{I})$) *SF1*1.E-06

```
L=L+l
CALL DATIN(L,INP,FNAME,SF1,SF2,SAMRAT,CSE)
26
L=L+1)=FLOAT(INP(I)!)*SFl*1.E-06
L=L+1
CALL DATIN(L,TNP,FNAME,SF1,SF2,SAMRAT,CSE)
DO 28 I=1,N
28 HR(I)=FLOAT(INP(I))*SFI*1.E-06
    IF(ICHAN .GE. 2)L=L+1
        CALL DATIN(L, INP,FNAME,SF1,SF2, SAMRAT,CSE)
        DO (IO = I=1.NT(INP(I))*SF2*1.E-06
            SUBTRACT THE MEAN OF EACH DATA BATCH FROM THE DATA.
        CALL SMEAN(N,E1,ELAV)
        IF(ECORR .NE. I.)GO TO 1000
        CALL SMEAN(N,VL,VLM)
        CALL SMEAN{N,VR,VRM
        CALL SMEAN(N,HR,HRM)
                FORM THE CORRELATION SUMS OF PRODUCTS.
    A=0
    C=0
    D=0.
    F=0
    P=0
    Q=0.
    S=0
    V=0.
    DO 100 I=1,N
    l}\begin{array}{l}{A=A+VL}\\{B=B+VL}\\{C=C+VL}\end{array}}{\begin{array}{l}{I}\\{I}\end{array}
    C=C+VL{II
    E=E+VR{I AVR{I
    F=F+VR{I, *HL}
    G=G+VR
```



```
    R=R+HR
    T=T+EL{
    U=U+El
    CONTINUE
    X1; 1, 质)=A
    X1 1,3}=C
    X1 1,4=D
    X1, (2,2}=E
    X1}}2,4}=
    X1}{3,3==
    X1 (3,4 =Q 
    RHS(1)=S
    RHS
    RHS (4)=V
        SET UP SYMMETRICAL MATRIX.
    X1 (2,1)=X1
    X1 { 3,1 = X1. {
    X1 {3,2}=X1 \ 2;4
    XI (4,3)=X1
                        SOLVE THE SIMULTANEOUS EQUATIONS BY THE
                            GAUSS PIVOTAL METHOD.
    CALL GAUSS(4,X1,,RHS,RM1)
```

```
C
    DO 220 I=1,N
    CORI(I)=El(I) - (RMl(1)*VL(I) +, RMl(2.)*VR(I) + RMl(3)*HL(I)
    1+ RMI (4)*HR(I))
    220. CONTINUE
    RETURN
    1000 D0 1010 I= 1,N
    1010 CORL(I)=E1'(I)
    RETURN
2999 WRITE(1, 4000)BATNO
4000 FORMAT ( % / %, BATCH NUMBER INCORRECT', I6.)
        END
    SUBROUTINE FILTER(NPTS;XT)
C
        DIMENSION XT(NPTS),DATOUT(1024);H(128)
        REAL H
        LOGICAL GOTEM,OPENSA,CLOS$A
        INTEGER*2 WTFILE(20),NLEN$A
        DATA GOTEM / .FALSE./
        IF(GOTEM)GO T0 60
        4 WRITE (1,5)
        FORMAT('NAME OF FILLTER CO-EFFICIENT FLLE')
        READ(1,8,ERR=4)WTFILE
        8 FORMAT 20A2)
            NLEN=NLENSA(WTFTLE,40)
            IF(.NOT. OPENSA(1,WTFILE,NLEN ; 2))GO TO 100
            READ(6,10)
        10 FORMAT(/)
            READ (6,15)ICASE
    15 FORMAT(6X,I2)
C C CASE 1 = ODD LENGTH, SYMMETRICAL
    ISGN=1
            IF(ICASE.EQ. 3 .OR. ICASE .EQ. 4)ISGN=-1
            READ (6, 20)N
    20 FORMAT (16X,I4)
            N2=(N+1)/2
            DO 50 I=1,N2
            READ (6,40)H(I)
    40 FORMAT(9X,E15.8)
    50 H(N+1-I)=H(I)*FLOAT(ISGN)
        GOTEM=.TRUE.
        IF(.NOT. CLOS$A(2))GO TO 110
    60 DO 80 I=1,NPTS
        STORE=0.
        IF(N .LT. I)GO TO }7
        STORE=XT(I)
        G0 T0 80
        70 D0 75 K=1,N
    75 STORE=STORE + XT(I-K+1)*H(K)
    80 DATOUT(I)=STORE
        DO 85 I=1,NPTS
    85 XT(I)=DATOZUT(I)
    RETURN
    100 WRITE (1, 105)WTFILE
    105 FORMAT('CANT' OPEN FILE', 10A2)
    STOP
    110 WRITE(1,115)WTFILE
    115 FORMAT('CANT CLOSE FILE',10A2)
        STOP
    END
    SUBROUTINE GAUSS(K,B,RHS;X)
C
                    A SUBROUTINE TO SOLVE SIMULTANEOUS
                    EQUATIONS BY THE GAUSS PIVOTAL METHOD
    DIMENSION A(7,8),X(K),B(K,K),RHS(K)
    INTEGER*2 Z2,Z3,Z4,Z5,Z6,Z7
                    AUGMENT INPUT MATRICES
                    AND SAVE INPUT DATA.
        DO 12 I=1.,K
    DO 10 J=1,K
    10 A(I,J) =B(I,J)
```

$12 A\left(I_{1} K+1\right)=R H S(I)$
Z2 $2 \mathrm{k}-1$
D0 $35 \mathrm{I}=1, \mathrm{Z2}$
$\mathrm{L}=\mathrm{I}$
DO
15
$\operatorname{IF}(A B S(A(L, I)\} \cdot \operatorname{LT} \cdot A B S(A(J, I))) L=J$.
IF (ABS $(A(L, I) \quad E Q .0) G O T O$.
IF (L EQ. 1)GO TO 21
$23=\mathrm{K}+1$
DO $20 \mathrm{~N}=\mathrm{I}, \mathrm{Z} 3$
SAVE=A (I,N)
$A(I, N)=A(L, N)$
$20 \mathrm{~A}(\mathrm{~L}, \mathrm{~N})=$ SAVE
$21 \mathrm{Z4}=\mathrm{I}+1$
D0 $35 \mathrm{M}=\mathrm{Z4}, \mathrm{~K}$
$D=A(M, I) / A(I, I)$
$25=1+1$
$26=K+1$
D0 $35 \mathrm{~J}=25, \mathrm{Z} 6$
$35 A(M, J)=A(M, J)-D^{*} A(I, J)$
DO $50 \mathrm{~L}=\mathrm{L}=1, \mathrm{~K}$
$J=K+1-L$
LF (J.EQ.K)GO TO 45
$\mathrm{Y}=\mathrm{A}(\mathrm{J}, \mathrm{K}+1)$
27=K-1
D0 $40 \mathrm{M}=\mathrm{J}, 27$
40
$Y=Y-A(J, M+1) * X(M+1)$
$X(J)=Y\} A(J, J)$
IF (J.NE. K)GO TO 50
$45 \mathrm{X}(\mathrm{J})=\mathrm{A}(\mathrm{J}, \mathrm{K}+1) / \mathrm{A}(\mathrm{J}, \mathrm{J})$
CONTINUE
RETURN
60 WRITE $(1,65)$
65 FORMAT (' ERROR MESSAGE ZERO COLUMN FOUND')
STOP
END
SUBROUTINE GETNAM (NAME)

INTEGER*2 NAME (20), TBUFF (20), NLENSA
LOGICAL EXSTSA
DATA TBUFF/'NONAMEGIVEN $/$
6 WRITE $(1,8)$
8 FORMAT('GIVE NAME OF FLLE TO BE PROCESSED')
READ (1,10)NAME
10 FORMAT (20A2)
IF (NAME (1) EQ. ' ')GO TO 100
DO $20 I=1,20^{\circ}$
20 TBUFF (I)=NAME (I)
GO TO 130
$100 \mathrm{DO} \mathrm{i} 20 \mathrm{I}=1,20$
120 NAME (I) $=\operatorname{TBUFF}(\mathrm{I})$
130 IF (EXSTSA(NAME, NLEN\$A(NAME, 40)))RETURN
WRITE (1,140 .) NAME
140' FORMAT ${ }^{\text {GO TO }}$ (INVALID OR NON-EXISTANT FLLE : ', 20A2)
GO TO 6
END
SUBROUTINE NLOGN (N, X, SIGN)
THIS PROGRAM PERFORMS THE FFT.
N-BASE 2 LOG OF NO. OF POINTS. X= COMPLEX ARRAY OF DATA FOR TRANSFORMATION. SIGN $=-1 \cdot$ FOR FFT.
SIGN= +1: FOR IFFT
TRANSFORMED DATA IS RETURNED IN X.
WRITTEN BY E. A. ROBINSON.
DIMENSION M(12)
COMPLEX WK,HOLD, Q, X (2048)
$1 \begin{aligned} & \mathrm{DO} \mathrm{L}^{1} \mathrm{I}=1, N \\ & \mathrm{M}(\mathrm{I})=2 * *(\mathrm{~N}-\mathrm{I}) \\ & \mathrm{DO} \mathrm{L}=1, \mathrm{~N}\end{aligned}$
NBLOCK $=2 * *(L-1)$
LBLOCK=LX/NBLOCK

```
            LBHALF=LBLOCK/2
            K=0
            DO 4 IBLOCK=1,NBLOCK
            FK=K
            FLX=LX
            V=SIGN*6.283185308*FK/FLX
            WK=CMPLX(COS (V),SIN(V.)
            ISTART=LBLOCK* (IBLOCK-1)
            DO 2 I=1, LBHALF
            J=ISTART+I
            JH=J+LBHALF
            Q=X(JH)*WK
            X (JH)=X(J. -Q 
            CONTINUE
            DO 3 I=2,N
            II=I
            IF(K.LT.M(I))GO TO 4
                    K=K-M(I)
                    K=K+M(II)
            K=0
            DO 7 J=1,LX
            IF(K.LT.J)GO TO 5
            HOLD=X(J)
            X (J)=X (K+1)
    X(K+1)=HOLD
    5 DO 6 I=1,N
    II=I
    IF(K.LT.M(I))GO TO 7
    6 K=K-M(I)
    7K=K+M(II)
        IF(SIGN.LT.O.)RETURN
            DO }8\mathrm{ I=1,LX
    8 X(I)=X(I)/FLX
    RETURN
    END
    SUBROUTINE PHASOR(PRE,POST,NMAX,SF,SAMRAT,FNAME,ILABL,DEVICE)
                            PRE- AND POST-STIMULUS PHASOR DLAGRAMS.
    COMPLEX PRE (6,64),POST(6,64)
    INTEGER*2 DEV&CE,ODEV,ILAB1(40), FNAME (20)
    COMMON ODEV
                            TEST FOR A VALID DEVICE CODE
```



```
                                    1=CaLCOM 536 vIA 906
                                    2=SIGMA 5670 COLOUR.
    IF(DEVICE
            .GT. 3)GO T0 999
            SKIP THE INITLALISATION IF THIS
            DEVICE ALREADY BEEN INITIALISED
    IF(DEVICE .EQ ODEV)GO TO 50
    IF(DEVICE .LT: O)GO TO 600
                            DE-ASSIGN CURRENT DEVICE IF
                            DIFFERENT DEVICE REQUESTED.
    IF(ODEV .NE. 99)CALL DEVEND
                        ASSIGN REQUESTED DEVICE
    IF(DEVICE .EQ. O)CALL T4010
    IF(DEVICE .EQ: 1)CALL CC906
    IF DEVICE .EQ. 2 CALL S5660
    IF(DEVICE .EQ. 3)CALL CC81
    IBAUD=1200
    CALL DEVSPE(IBAUD)
    IF:(DEVICE .EQ. O)CALL UNITS(1.0)
    IF. DEVICE .EQ. 1 CALL UNITS}{1.0
    IF(UEVICE .EQ. 2 CALL UNITS(1.5)
    IF(DEVICE .EQ. 3)CALL UNITS(0.75)
    ODEV =DEVICE
50 CALL CHAHAR(1,0)
    XS=46.
    YS=70
    XD=100.
    CRAD=40.
    CALL WINDO2(0.,250.,0.,200.)
```


RADSM=0.
RADSMS $=0$.
TF (DEVICE .EQ. 2) CALL PENSEL(2,0.,0) /* YELLOW
DO 300 NTR $=1$. NMAX
$\mathrm{X}=\mathrm{REAL}(\mathrm{POST}$ ($\mathrm{H} \mathrm{HAR}, \mathrm{NTR})$)
Y=AIMAG (POST (IHAR, NTR)
RAD=CABS (POST (IHAR,NTR))
RADSM-RADSM+RAD
RADSMS=RADSMS+RAD*RAD
$\mathrm{PHI}=\mathrm{ATAN} 2(\mathrm{Y}, \mathrm{X})$.
XI=CRAD*COS PHI
$\mathrm{Yl}=$ CRAD*SIN $\}$ PHI
CALL MOVT02 (X1+XS+XD, Yl + YS)
CALL SYMBOL
CALL MOVTO2 (SF*X+XS+XD,SF*Y+YS)
300
IF (DEVICE EQ. 2)CALL PENSEL(7,0.,0) /* WHITE
RADMN $=$ RADSM/FLOAT (NMAX)
RADSTD=SQRT ($\mathrm{RADSMS}^{(R A D S M * R A D S M / F L O A T(N M A X)) / F L O A T(N M A X-1)) ~}$
CALL MOVTO2 $108 ., 10$.)
CALL CHAHOL $\}^{\circ}$ AV. RAD $=$ *. $^{\circ}$)
CALL MOVTO2 $138 ., 10$.)
CALL CHAFLO (KADMN, 10)
CALL MOVTO2 $108 ., 4$.
CALL CHAHOL ${ }^{\prime} \mathrm{ST} . ' \mathrm{DEV}=$ *. $\left.^{\prime}\right)$
CALL MOVTO2 $138 ., 4$.
CALL CHAFLO (RADSTD, 10)
CALL MOVTO2(0., 180.)
CALL CHAMOD
IF (DEVICE .EQ. 0. OR. DEVICE .EQ. 2)CALL TIIN(IXYZ)
400 CONTINUE
ODEV=DEVICE
RETURN
600 ODEV $=99$
CALl DEVEND
RETURN
999 WRITE (1,1000)DEVICE
1000 FORMAT ('INVALID PLOTTING DEVICE CODE', I5)
STOP 1 (
END
SUBROUTINE PHASRI(DATA,NMAX, SF, SAMRAT, FNAME, ILAB1,DEVICE)
SINGLE PHASOR DIAGRAM
COMPLEX DATA 6,32)
INTEGER*2 DEVICE,ODEV, ILABI (40), FNAME (20)
COMMON ODEV
TEST FOR A VALID DEVICE CODE
CURRENTLY 0=TEKTRONIX
$1=$ CALCOMP 536 VIA 906
$2=$ SIGMA 5670 COLOUR.
IF(DEVICE .GT. 2)GO TO 999
SKIP THE INITIALISATION IF THIS device already been initialised

IF (DEVICE .EQ. ODEV)GO TO 50
IF (DEVICE .LT. 0) GO TO 600
DE-ASSIGN CURRENT DEVICE IF
DIFFERENT DEVICE REQUESTED.
If(ODEV .NE. 99)CALL DEVEND
ASSIGN REQUESTED DEVICE
IF (DEVICE .EQ - 0) CALL T4010
IF DEVICE •EQ. 1 CALL CC906
IF (DEVICE -EQ. 2) CALL S5660
IBAUD $=1200$
CALL DEVSPE (IBAUD)
IF (DEVICE .EO. 0) CALL UNITS (1.0)
IF DEVICE .EQ. 1 CALL UNITS 3 1.0
IF(DEVICE .EQ. 2)CALL UNITS(1.5)
ODEV=DEVICE
CALL CHAHAR $(1,0)$
$\mathrm{XS}=100$.
$\mathrm{Y}=70$.

```
            CRAD=50.
            CALL WINDO2(0.,250., 0., 200.)
            CALL WINDOW(11)
            DO 400 IHAR=1, 6
            CALL TITLE(FNAME,ILABI,DEVICE)
            CALL MOVTO2(XS,YS)
            CALL SYMBOL}
            CALL MOVTO2 (XS-CRAD,YS)
            CALL ARCTO2 (XS,YS,XS-CRAD,YS,0)
            CALI MOVTO2(XS-15,145.)
            CALL CHAHOL 'CNV DATA.*.')
            CALL MOVTO2 XS-15.135.)
            CALL CHAHOL 'HARMONIC *.'')
                    CALL CHAINT (IHAR,2)
の๑@லの\Omega
                                    DRAW PHASOR DIAGRAM
                                    RADSM=SUM OF RADII.
                                    RADMN=AVERAGE RADII.
                                    RADSTD=STANDARD DEVIATION OF RADII.
    RADSM=0.
    RADSMS=0.
    DO 250 NTR=1,NMAX
    X=REAL(DATA(IHAR,NTR))
    Y=AIMAG(DATA(IHAR,NTR))
C
                    CALCULATE SUMS AND SUMS OF SQUARES.
                            RAD=CABS (DATA(IHAR,NTR))
                            RADSM=RADSM+RAD
                            RADSMS=RADSMS+RAD*RAD
                    CALCULATE ANGLE.
    PHI=ATAN2(Y,X)
    Xl=CRAD*COS}PHI
    YI=CRAD*SIN(PHI)
                                    PUT TRIANGLE ON CIRCLE AT CORRECT ANGLE.
                            CALL MOVTO2(XI+XS;Y1+YS)
                            CALL SYMBOL(1)
C
    CALL MOVTO2(SF*X+XS,SF*Y+YS)
    CALL SYMBOL(3)
                                    CALCULATE STATISTICS.
    RADMN=RADSM/FLOAT(NMAX)
    RADSTD=SQRT((RADSMS-RADSM*RADSM/FLOAT(NMAX))/FLOAT(NMAX-1))
                            PUT RESULTS ON GRAPH.
    CALL MOVTO2(30.,10.)
    CALL CHAHOL
    CALL MOVTO2 70., 10.)
    CALL CHAFLO RADMN,10)
    CALL MOVTO2(30.,4:)
    CALLL CHAHOL }
    CALL MOVTO2 70.,4*)
    CALL CHAFLO RADSTD,10)
    CALL MOVTO2(0., 180.)
    CALL CHAMOD
    IF(DEVICE .EQ. 0)CALL TIIN(IXYZ)
    CONTINUE
            ODEV=DEVICE
            RETURN
    6 0 0 ~ O D E V = 9 9
    CALL DEVEND
    RETURN
    999 WRITE(1,1000)DEVICE
1000 FORMAT( INVALID PLOTTING DEVICE CODE',I5)
1000 FORMAT('INVALID PLOTTING DEVICE CODE',IS)
    END
    SUBROUTINE RSTATl (RAD,N)
                    CONTINUE
```

C
DIMENSION RAD(N)
SUM=0.
SUMSO=0.
D0 10 I=1,N
SUM=SUM+RAD(I)
SUMSQ=SUMSQ+RAD(I)*RAD(I)
10 CONTINUE
RADMN=SUM/FLOAT(N)
RADSTD=SQRT((SUMSQ-SUM*SUM/FLOAT(N))/FLOAT(N-1))
WRITE (1,20)RADMN, RADSTD
20 FORMAT(},'MEAN RADIUS LENGTH',9X,' =', E14.4,
RETURN
END
SUBROUTINE SECTAV(N1,N2,A,AV)
๑ด๑の
FIND THE MEAN VALUE OF THE DATA
BETWEEN POINTS N1 AND N2:
DIMENSION A(1024)
AV=0.
DO 10 I=N1;N2
10 AV=AV+A(I)
AV=AV/FLOAT (N2-N1)
RETURN
END
SUBROUTINE SMEAN(NPTS,DATA,RMEAN)
C
REMOVE THE MEAN VALUE FROM THE DATA.
DIMENSION DATA(NPTS)
RMEAN=0.
DO 20 I=1,NPTS
20 RMEAN=RMEAN+DATA(I)
RMEAN=RMEAN/NPTS
DO 30 I=1,NPTS
30 DATA (I)=DATA(I)-RMEAN
RETURN
END
SUBROUTINE SSQRE(N,DATA,SUMSQ)
๑ロロのロ
CALCULATE THE SUMS OF THE SQUARES
OF THE SIGNAL AND DIVIDE BY THE
NUMBER OF POINTS.
DIMENSION DATA(N)
SUMSQ=0.
DO 200 I=1,N
200 SUMSO=SUMSOB + (DATA(I))*(DATA(I))
SUMSQ=SUMSQ/FLOAT(N)
RETURN
END
SUBROUTINE STDMN(N,DATA,MEAN,STDEV)
CALCULATE THE MEAN AND SD.
REAL MEAN
DIMENSION DATA(N)
SUM=0
DO 100 I=1 N
100
SUM=SUM + DATA(I)
MEAN=SUM/FLOAT (N)
SUM=0.
DO 200 I=1 NN _ SUTA(I) - MEAN)*(DATA(I) - MEAN)
STDEV=SQRT(SUM/FLOAT(N-1))
RETURN
END
SUBROUTINE TAPER2(X,N)
TAPERS ARRAY X AND SUBTRACTS MEAN
DIMENSION X(N)
DOUBLE PRECISION SUMI,SUM2,SUM3

```

SUMI \(=0.0\)
SUM2=0.0
SUM \(3=0.0\)
DO 1 Irl, N
W=WINDY ( t , N )
SUMI \(=\) SUMI +W
SUM \(3=\) SUM \(3+W * W\)
SUM2 \(=\) SUM2+W*X(I)
SUM2 \(=\) SUM2/SUM1
SUM3 \(=\) SORT (N/SUM3)
DO 2 I=1,
\(\mathrm{X}(\mathrm{I})=(\mathrm{X}(\mathrm{I})-\) SUM2 \() *\) SUM \(3 * W I N D Y(I, N)\)
RETURN
END
FUNCTION WINDY(J,N1)
PARAMETER (PI=3.1415926536)
\(\mathrm{TL}=0.125\)
AN \(=\) FLOAT ( N 1 )
ANl \(=\) AN-1
TL IS THE TAPER LENGTH ( PER UNIT )
NTL \(=1 F I X(T L * A N+0.5)\)
WINDY=1.0
\(\mathrm{A} \mathrm{J}=\mathrm{J}-0.5\)
IF (J.GE. NTL AND. J .LE. (N1-NTL) )RETURN
WINDY=(1:- COS (PI*AJ/ (ANi*TL) ) ) 12 .
IF(J.GT. (NI-NTL))
+WINPY=(1. + COS(PI*(AJ+NTL-AN1)/(AN1*TL)))/2.
RETURN
END
SUBROUTINE TITLE(FNAME,GENINF,DEVICE)
pUTS A title and filename on a graph.
INTEGER*2 FNAME (20), GENINF (40), ODEV , DEVICE, NLENSA, GL
COMMON ODEV
TEST FOR A VALID DEVICE CODE
CURRENTLY \(0=T E K T R O N I X\)
\(1=\) CAL COMP 536 VIA 906
2= SIGMA 5660 (5670)
3=CALCOMP 81
IF(DEVICE .GT. 3)GO TO 999
SKIP THE INITIALISATION IF THIS
device already been initialised
IF (DEVICE .EQ. ODEV)GO TO 50
IF (DEVICE .LT. 0)GO TO 200
DE-ASSIGN CURRENT DEVICE IF
DIFFERENT DEVICE REQUESTED.
IF(ODEV .NE. 99)CALL DEVEND
ASSIGN REQUESTED DEVICE
IF (DEVICE -EQ. O) CALL T4010

IF (DEVICE .EQ. 3)CALL CC81
IBAUD=1200
CALL DEVSPE(IBAUD)
IF (DEVICE -EQ• 0) CALL UNITS \((1.0)\)
IF DEVICE .EQ. 1 CALL UNITS \(1: 0\)

50 CALL PICCLE
CALL WINDO2 (0., 240., 0., 185.)
CALL WINDOW (1)
CALL MOVTO2 80. 180.)
CALL CHAHAR \(\{1,0)\)
CALL CHAHOL 'BATA FILE: *'
NL=IFIX (FLOAT (NLENSA(FNAME, 40) )/2. +0.5 )
CALL CHAARR(FNAME,NL,2)
```

 CALL MOVTO2(0.,174.)
 GL=IFIX(FLOAT(NLEN$A(GENINF,80))/2. + 0.5)
 CALL CHAARR(GENINE,GL,2)
 CALL MOVTO2(0.,170.)
 CALL CHAMOD
 ODEV=DEVICE
 RETURN
 200 ODEV=99
 CALL DEVEND
 RETURN
 999 WRITE(1, 1000)DEVICE
 1000 FORMAT('INVALID PLOTTING DEVICE CODE',I5)
 STOP 1
 END
 SUBROUTINE VSTAT1(ANGLE,RAD,N)
 THIS SUBROUTINE CALCULATES SUMMARY STATISTICS FOR THE N VECTORS
 WHOSE DIRECTIONS ARE STORED IN ARRAY 'ANGLE' AND WHOSE MAGNITUDES
 ARE STORED IN ARRAY 'RAD'.
 RESULTANT DIRECTION THETA=ATAN(S/C)
 WHERE S: = WEIGHTED AVERAGE OF SINE VALUES
 C = WEIGHTED AVERAGE OF COSINE VALUES
 AND THE WEIGHTING FACTORS ARE THE VECTOR MAGNITUDES.
 DISPERSION FACTOR UO=1-SQRT(S*S+C*C)
 UO HAS VALUE 1 FOR A ZERO MAGNITUDE RESULTANT VECTOR
 O FOR A SET OF ALIGNED VECTORS
 WRITTEN BY TERRY JOHNSON. DEPT. OF MATHS. STATS. \& COMPUTING
PLYMOUTH POLYTECHNIC.
DIMENSION ANGLE(N),RAD(N)
DATA PI/3.1415926536/.
C=0
SUMRAD=0.0
DO 1 I=1,N
SUMRAD=SUMRAD+RAD(I)
C=C+RAD (I) *COS (ANGLE (I))
S=S+RAD(I)*SIN(ANGLE(I)
C=C/SUMRAD
S=S/SUMRAD
THETA=ATAN2(S,C)
U0=1-SQRT(S*S+C*C)
WRITE(1,100) THETA
THETA=THETA*180/PI
WRITE (1,101) THETA
WRITE (1,102) U0
100 FORMATY''RESULTANT DIRECTION' 8X,'= ',F10.5,' RADIANS')
FORMAT} 27X ULTANT DIRECTION '5' DX',
FORMAT ('DIS'PERSION FACTOR',10X,'=',F10.5)
RETURN
END
SUBROUTINE VSTAT2(ANGLE,RAD,N)
THIS SUBROUTINE EXAMINES THE N VECTORS WHOSE DIRECTIONS ARE STORED
IN ARRAY ANGLE AND WHOSE MAGNITUDES ARE STORED IN ARRAY RAD. THE
PROGRAM IDENTIEIES THE (N/2) VECTORS WHICH LIE IN THE SMALLLEST ARC
AND COMPARES THE AVERAGE LENGTH OF THESE VECTORS WITH THE AVERAGE
LENGTH OF THE REMAINING VECTORS. COMPARISON IS MADE BY A T-TEST
WITH AN APPROXIMATE CORRECTION FOR (POSSIBLE) UNEQUAL VARIANCES.
WRITTEN BY TEKRY JOHNSON. DEPT. OF MATHS. STATS. \& COMPUTING
PLYMOUTH POLYTECHNIC.
DIMENSION ANGLE(N),RAD(N),TEMP(100)
DOUBLE PRECISION SUM11,SUM12,SUM21,SUM22
DATA PI/3.1415926536/
๑๑๑
STORES ANGLES IN A TEMPORARY ARRAY AND ARRANGES IN ASCENDING
ORDER USING A BUBBLE SORT.

```
```

C
1 TEMP(I=1 =ANGLE (I)
TEMP(I)=AN
MAX=1
AMAX=TEMP(1)
NMAX=N-I+2
DO 3 J=2,NMAX
IF(TEMP(3)..LE.AMAX) GO TO 3
AMAX=TEMP(J)
MAX=J
3 CONTINUE
TEMP (MAX)=TEMP (NMAX)
TEMP(NMAX)=AMAX
C
FIND THE (N/2) VALUES LYING IN THE SMALLEST ARC.
N2=N/2
DMIN=TEMP(N2)-TEMP(1)
AMIN=TEMP (1)
AMAX=TEMP(N2)
DO 4 I=2,N
IU=I+N2-1
IF(IU .LE. N)UPPER=TEMP(IU)
IF
IF((UPPER-TEMP(I)) .GE. DMIN)GO TO }
DMIN=UPPER-TEMP(I)
AMIN=TEMP(I)
AMAX=UPPER
CONTINUE
๑ด\Omega
CALCULATES MEAN AND VARIANCE FOR BOTH SETS OF DATA
SUM1 1=0.0
SUMI 2=0.0
SUM2 1=0.0
SUM22=0.0
N2=0
N21=0
CONST=0.
IF(AMAX.GT.PI) CONST=2*PI
DO 5 I=1,N
A=ANGLE(I)
IF(A .LT. O.)A=A+CONST
IF(A .LT. AMIN .OR. A .GT. AMAX)GO TO }
N2=N2+1
SUM1I =SUMI 1+RAD(I)
SUMl:2-SUM1 2+RAD(I)*RAD(I)
GO TO 5
6 SUM2 1=SUM2 l +RAD(I)
N2l-N21+1
SUM22=SUM22+RAD(I)*RAD(I)
CONTINUE
SUM1 10SUM11/N2
SUM21=SUM21/N21
SUM12=(SUM12/N2-SUM11*SUM11)/(N2-1)
SUM22=(SUM22/N21-SUM21*SUM21)
CALCULATES T-STATISTIC AND OUTPUTS RESULTS
TSTAT=SNGL((SUM11-SUM21)/DSQRT(SUM12+SUM22))
DF=(SUM1 2+SUM22)* (SUM1 2+SUM22)
DF=DF/(SUM12*SUM12/(N2+1)+SUM22*SUM22/(N21+1))-2
SUM1 2=DSQRT (SUM1 2*N2).
SUM22=DSQRT(SUM22*N21)
WRITE(1,100)N2, SUM11, SUM12
WRITE {1,101')N21,SUM21,SUM22
WRITE(1'102)TSTAT,DF
100 FORMAT(''MEAN,AND'S.D. OF LENGTHS OF THE',I4,' CLOSEST '
+ VECTORS =',E16.8,E16.8)
101 FORMAT('MEAN AND S.D. OF LENGTHS OF THE',I4,' REMAINING '
+VECTORS = El6.8,E16.8.
+'MORMAT(/' T-STATISTIC '=',F10.5,' WITH ',F6.1,
RETURN
END.
SUBROUTINE VSTAT3(ANGLE,RAD,N)
C
THIS SUBROUTINE CALCULATES A 'MODLFIED DISPERSION' STATISTIC FOR

```
```

C 'N' VECTORS WHOSE DIRECTIONS ARE STORED IN ARRAY 'ANGLE' AND WHOSE

```
```


[^0]: $\dagger_{\text {The }}$ autocovariance function $C{ }_{e}(\tau)$ of the EEG signal $E(t)$ will fall rapidly to zero with increasing τ since the EEG contains no regular periodic component.

[^1]: 1 The marker bit was used to indicate whether the six bits concerned were the most (marker bit $=1$) or the least (marker bit $=0$) significant of the original twelve bit word.
 ${ }^{2}$ Paper tape error rates $\simeq 1: 1.8 \times 10^{6}$ bits Floppy disk error rates < 1:34.7 x 106 bits.
 ${ }^{3}$ An identical waveform was not expected since the chart output of the EEG machine had different filtering to that employed in the acquisition electronics.

[^2]: These switches allow each of the machines differential amplifiers to be connected to any two electrodes on the scalp.

[^3]: ${ }^{\dagger}$ An integrated circuit employing both bipolar and field effect transistors.

[^4]: Figure 4-9a The circuit of one of the serial data transceivers

[^5]: * denotes that the post-stimulus amplitudes were smaller than the pre-stimulus amplitudes.

