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ABSTRACT 

Examination of the literature reveals a paucity of dedicated research into collisions and 
groundings involving UK fishing vessels. The aim of this research was to provide answers 
to fundamental questions regarding the factors that contribute to fishing vessel traffic 
losses. Data for this study were gathered from a broad range of sources and an eclectic 
range of techniques employed in their analysis. 

The recent development of the UK fishing fleet and the pattern of losses from all causes is 
investigated for the period 1975 to 1994. Fishing vessel collision and grounding losses are 
then set in relative perspective by comparison with those arising from other causes. 

Aspects of the macro-environment in which the UK fishing fleet has operated since 1975 
are examined and the results .interpreted in the form of a comparative regional analysis. The 
micro-environment prevailing in the fishing fleet is exemplified through combining an array 
of observations made at sea on board working fishing vessels with questionnaire responses 
drawn from representative samples of British fishermen in 22 fishing ports around the 
country. 

A previously unattempted composite analysis of the circumstances of fishing vessel 
collision and grounding losses is presented and this allows for a number of conclusions to 
be drawn. A causal analysis technique is applied to fishing vessel casualties for the first time 
and leads to the identification of human factors as a more significant contributor to traffic 
losses than either technical or environmental factors. 

A novel programme of cross-validated observations of fishing vessel watch keepers in their 
working environment was pursued, providing data on how attention is allocated, workload 
levels at different stages in the fishing cycle and also on the watchkeeper's cognitive state 
while on duty. 

The thesis concludes with a wide ranging discussion and recommendations based on the 
research that could contribute to reducing loss of life and vessels in traffic events, made 
with due consideration for the physical and fiscal constraints that impinge upon the UK 
fishing fleet. 
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Chapter 1 

RATIONALE & METHODOLOGY 

"Crafty men condemn studies; simple men admire them; and wise men use them" 

(Francis Bacon, 1561-1626) 

1.1 Introduction 

The above quote epitomises the problem with research in the sphere of fishing boat safety. 

There are many people involved directly in and on the periphery of the UK fishing industry 

who because of obscure vested interest or from inexplicable, deep-rooted cynicism would 

dismiss any safety-related analysis emanating from an academic source. There are also 

those who glibly praise any work, the content of which exceeds their threshold of ability 

(or willingness) to absorb and comprehend then proceed to ignore the findings. Both these 

attitudes have by default made substantive contributions to affirming commercial sea 

fishing's place as the most dangerous of occupations in the UK ~HSE 1989). In the three 

years prior to the end of 1993, an average of one British fisherman was killed every eight 

days (SEASAFETY GROUP, UK 1994). 

During the research and compilation of this thesis, the author nevertheless encountered 

numerous "moments of delight" which were brought about by dealing with individuals who 

were perceptive enough to understand that while research studies cannot purport to offer 

instant and complete solutions to problems, they nevertheless have an important role to 

play. In many cases this role will amount to no more than the synthesising of information to 

confirm or deny by virtue of sound scientific process, concepts and principles that are 

already anecdotally taken as fact. These are Bacon's 'wise men' and it is they who will 

hopefully be astute enough to use the information contained in this thesis to work towards 

creating a safer environment within the British fishing industry. 
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1.2 Why pursue this study? 

Most seafarers have an opinion, verging on dogma in some instances, on the main reasons 

why fishing vessels have,been lost in collisions and groundings. Those involved in merchant 

shipping tend to have a particular set of beliefs, recreational and military sailors hold others 

and the fishermen themselves quite naturally have theirs. Many of the reasons cited are 

common to all of these parties but any trust invested in this apparent concensus may be 

misplaced. The much vaunted "common knowledge" on this subject seems to be largely 

based upon a thin slice of often biased personal observation supplemented by a large 

helping of hearsay and media reporting. Thus far, dedicated research into losses of fishing 

vessels in traffic events, their main collective causes and watchkeeping systems on board 

UK fishing vessels has been at best piecemeal and from a survey of the available literature it 

appears that no systematic and comprehensive study of these features ever been carried 

out. The goal of this thesis is to address this shortcoming in the corpus of human 

knowledge through quantification and analysis. In the frequently quoted words of Lord 

Kelvin; 

"!often say that when you can measure what you are !.peaking about, and express 

it in numbers, you know something about it; but when you cannot express it in 

numbers, your knowledge is a meagre and unsatisfactory kind. It may be the 

beginning of knowledge, but you have scarcely in your thoughts advanced to the 

stage of science, whatever the matter may be" 

(Quoted by CANTER, 1997) 

It is not within the remit of the thesis to apportion blame, nor is it intended to condemn 

fishermen in general and existing watchkeeping systems on fishing vessels around the 

coasts of the UK specifically. Using scientific method to gain insight into the origin of 

fishing vessel loss is the prime tool of this research and in the same way that a 

microbiologist might use this to pursue greater cognisance of disease, it is used to explore 

the total fishing vessel environment, observe the process of watchkeeping and highlight the 
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pathogenic factors. Ultimately, where the results are sufficiently unequivocal this allows for 

remedial action to be proposed. HAIGUf (1988), commenting upon public attitudes 

towards road traffic safety says; 

"Many of us have heard demands that we should 'do something', butit is only 

recently that there have been suggestions that we shm1ld 'know what we are doing' 

before we do if' . 

1.3 Thesis outline 

Chapter One is aimed at introducing the reader to the general approach taken in this 

research, including an outline of the basic concepts and terminology. 

By drawing on a range of information sources, the Second Chapter of this work presents 

an overview as a current "snapshot" of a British fishing tleet which has changed 

dramatically over the last twenty-five years. So far as providing an illustration of the size 

and composition of the tleet is concerned, this is probably the best that one might hope to 

achieve since the fishing industry has recently been undergoing a process of 

metamorphosis. Ideally, it will emerge in an as yet undefined end-state where catching 

capacity is perfectly matched to available fish resources, but it is yet to be seen whether this 

is realistically attainable. A time series review of the general situation regarding fishing 

vessel losses then serves to set collision and grounding losses in relative perspective. 

Chapter Three sets out to describe the "macro-environment" in which British fishing 

vessels operate. This includes national and regional analysis of climate, coastal topography, 

locations of fishing activity. The Fourth Chapter is an examination of the "micro-

environment", including physical conditions on board vessels (movement, nmse, 
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temperature, vibration, etc}, the composition and modus operandi of watchkeeping 

systems, and the watchkeepersthemselves, including the ways in which they are trained. 

Chapter Five explores the circumstances of fishing vessel traffic losses using information 

derived from many institutional and private sources. Processed data arising from 

questionnaire studies are presented and the concept of comparing responses to 

questionnaires with answers to the same questions asked in an interview situation - a 

recurrent theme in the thesis - is introduced. 

The Sixth chapter is aetiological, devoted to a causal analysis, usmg a representative 

sample of collision and grounding losses upon which detailed information relating to each 

individual event was available. In view of the heavy implication of one group of factors in 

this analysis, the results provide direction for the remainder of the thesis. 

Chapter Seven describes a dedicated programme of observation pursued on board three 

British fishing vessels, designed to address fundamental human factors questions relating to 

allocation of the watchkeeper's attention, workload, boredom, aspects of fatigue and 

vigilance in watchkeepers. The reader is acquainted with each of the "tools" employed by 

way of a series of brief reviews preceding an outline of the results. The validation process 

employed in support of the experimental measures is also explained. 

The ultimate Chapter is a concluding discussion in which points raised in the earlier 

Chapters are general considered in the broader context. The picture of watchkeeping 

behaviour derived from "field" observations is compared with that arising from interviews 

and written questionnaire responses. Where disparity is clear, the factors responsible for the 
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manipulation of the perceptions of fishermen and their attitudes and approach to the 

watchkeepingtask are discussed. 

The thesis concludes with a series of recommendations that are made with due sensitivity 

for technological, fiscal and personnel limitations in the British fishing industry. The 

recommendations highlight areas of further research that are deemed to hold most potential 

for reducing the likelihood of fishing vessels being lost in collision and grounding events. 

1.4 Comments on methodology 

In some branches of scientific study, practitioners are endowed with the luxury of being 

able to adjust input variables, observe the results and then repeat this process until 

reliability can be verified. In the present study, with its broad remit, there is no single 

research approach available which is capable of providing the full range of information 

necessary. Accordingly, a methodology which can best be described as "eclectic" has been 

adopted with a range of doctrines and systems having been freely borrowed to supplement 

the research methods that were specially conceived. 

Unlike many other types of scientific labour, a study in marine traffic safety often relies on 

information coming from sources that seem paradoxically unscientific. It would be quite 

difficult for example, to design an empirical experiment to show that it actually is safer for 

the watchkeeper to frequently look out of the wheelhouse windows than for him not to do 

so. Rationalism and intellect however dictate that even in the absence of such scientific 

"proof", frequent observation of the external navigational environment is a cornerstone of 

good watchkeeping practice. Clearly it would be folly to suspend the principles embodied 

in UK Admiralty M Notice No. I 020 (DOT, 1982), which implores watchkeepers on 
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fishing vessels to keep a good lookout, until a rigorous scientific study could be pursued. 

So although it is accepted that ceteris paribus statements supported by scientific evidence 

will inevitably find favour over anecdote, rational discourse does have a place in this type 

of study provided that its basis is explained. 

While is accepted that the "Kelvinian" goal of science is the quantification of factors that 

produce a certain result, there must also be room in a thesis dealing with maritime safety 

for what might best be called, "suggestive data". These arise where observations are made 

but drawing conclusions from them requires assumptions that make more than one 

interpretation of the situation possible. This situation frequently arises where data are 

scarce and with only limited numbers of observations possible to support some aspects of 

this study, has been unavoidable. 

1.4.1. Why study only losses? 

Fishermen are not renowned for being sedulous in their approach to reporting mmor 

incidents and "close-calls". This probably arises from their intimate familiarity with 

hazardous situations and is exemplified in questionnaire responses from 239 fishermen 

operating from 19 different ports around the coast of the UK, which showed that more 

than halfofthem (52%) had been on board some vessel when it had either run aground or 

been involved in a collision. Fortunately most of these events pass with no loss of life and 

only slight to moderate damage to the vessels concerned - a glancing blow or re-floating on 

a later high tide. Although little more than the grace of God often prevents these relatively 

inocuous incidents from becoming tragedies and undoubtedly much could be learned from 

analysing what went on in the run-up to seemingly inconsequential collision and grounding 
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events there is seldom any reliable record of this in existence. This is why only information 

from losses and not from all casualties and near misses has been used. 

1.4.2 Statistical techniques and graphics used 

A range of techniques has been used in this thesis to analyse data. These are outlined in 

Table 1.4.1. 

-
chapter 5 

_· , correlatiOns, chi:;squar~ test 

correlations, chi-squared test 

percent~e comparl·son% ]oss ratios, 
--J" ~;_,__ 

double axes histograms/line charts 

-histograms> pie.bharts, flow charts 
:_ - - ~ -~. - --

-
histograms, pie charts 

. pie charts, area charts; radar chcfi;t~, 

iphi:-sq_uared test--goodness of fit;test, _ . 
"' ~ . - - ~··- - - "" 

-~ --
2 ·period moving average. 

chapter 6 factor analysis, involving expert 

ratings, weighting, effect level 

calculation 

. chapter 7 correlati<.>ns, t·tests, Tiine Lin~ 

Analysis; 

chapter 8 

histograms> line charts, event trees, 

block scheme 

· histograms, line charts -

flow diagrams, 

Table 1. 4 .1. Statistical techniques and graphics used in this thesis. 

Unless otherwise stated the results of statistical tests in this work are assumed to be 

significant if the 5% level is not exceeded, i.e. p < 0.05 . Wherever a result is declared to be 

significant however, the potential for what is known in the statistical literature as a 

' 'Type 1" error (HEYES et al. 1986) is accepted. That is to say that even where an 

appropriate test indicates a result to be less than 5% likely to have happened by chance, 

there is always the possibility that this unlikely event could have happened. 
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Where statistical tests, such as chi-squared (x.2) are used, only the test statistic and the 

resulting level of significance are given since illustration of the full table of calculations 

would serve no meaningful purpose. The reader is referred to any standard statistical text 

book (e.g. HE YES et al. 1986) for explanation of statistical techniques not explained in the 

text. 

Where information is represented graphically, if no alternative source is indicated the reader 

may assume that this has arisen from the author's own researches in the course of this 

study. 

1.4.3 Sources of information 

Gathering the information required for this study was an onerous task in many ways. 'fhe 

data collection phase brought home to the author the anecdotal truth that research is as 

much a detective task as anything else and that the tact and diplomacy needed to unlock the 

door to data gathering can ultimately be as important as the techniques used in its analysis. 

A further complication is that much of the general information on the UK fishing fleet is 

incomplete and important features such as the number of operational vessels that constitute 

it, have varied in accord with legislative changes. 

Three main types of data were used in this study; those gained from official and unofficial 

records; those that were derived from questionnaires and interviews; and those that were 

recorded during field observations. These are shown with detail of their sources in Table 

1.4.2. 



data ~vpe source 

official and unofficial records Marine Accident Investigation Branch; Marine 

Safety Agency; Sea Fish Industry Authority; 

Ministry of Agriculture Fisheries and Food; 

Register of Shipping and Seamen; Sunderland 

Mutual Marine Insurance Co Ltd; Lloyd's 

Casualty Week 

questionnaires a11d interviews 2 questionnaires, both with responses from 22 

UK fishing ports (see Appendix 1 for list of 

ports with map). Questionnaire I achieving 239 

responses, questionnaire 11 achieving 139 

responses. (Details in Appendix 2) 

field observations 

20 structured interviews replicating 

questionnaire 2 

trips on fishing vessels recording data relating 

to watchkeeping practises and environmental 

data. 

Table 1.4.2. Data types used in this study and their sources. 

1.5 Comments on terminology 

9 

LANGLEY ( 1988) provides a compelling argument for avoiding the term, "accident" in 

any technical analysis of safety. Even though the word is in general use regarding events 

where injury or damage to property has occurred, it is shrouded in conceptual ambiguity 

and suggests an element of chance which must accordingly erode the possibility of 

assigning causes. Indeed some fishing vessel losses can be traced to single acts that are so 

conspicuous that even in common parlance, the use of the word, "accident" becomes 

inappropriate. In this thesis there is therefore no reference to marine traffic "accidents"; 
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rather to "events" and "incidents" when talking in general terms and to "collisions" and 

"groundings" when specifically dealing with these. Where both published and unpublished 

figures are used these is referred to as "data" or "information", rather than "statistics" since 

the latter, as EVANS (1991) points out, is the branch of mathematics dealing with 

hypothesis testing and confidence limits and thus using it to mean "data" invites needless 

ambiguity. 

So far as fishing vessels are concerned it is only where a vessel has actually been lost that a 

concerted effort is made to piece together a comprehensive account of events. In the UK, 

this is usually done by government bodies, primarily the Marine Accident Investigation 

Branch (MAIB) since 1989 (the Department of Transport or Board of Trade previously) 

and insurance companies. For this reason, the events analysed in this thesis invariably 

relate to either; "actual total losses" - where damage reached a point that the vessel is 

unable to be recovered physically; or "constructive total losses" - where the damage 

exceeded the point where it was economically feasible to attempt to repair the vesseL Thus 

wherever the term, "loss" is used in this work it may be taken to mean either of the above, 

Throughout this thesis, the terms, "skipper", " mate" and "crewman" are used. l'hese 

relate to the various ranks that compose the crews of UK fishing vessels and are likely to 

have watchkeeping duties. The International Maritime Organisation defines the first two of 

these roles as follows (IMO, 1988); 

"skipper" 

"mate" 

-any person having command or charge of a fishing vessel 

-any person exercising subordinate command of a fishing vessel, 

including any person, other thm1 a pilot, liable at any time to be 

in charge of the navigation of such a vessel. 
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In some cases, this being to some extent a function of the size of the vessel, the skipper will 

not possess a Class I or Class 11 Skipper's (fishing) Certificate of Competence and the mate 

will riot always hold a Class li Certificate. This information is seldom explicit in the 

casualty information sources so where the need arises, the ranks are accepted as they are 

stated in the reports that have been used. The term, "crewmen" in this thesis relates to all 

members of the complement of a fishing vessel except the skipper and mate. Where a 

watchkeeper had a supplementary role, such as being the vessel's engineer or cook, they 

were included with crewmen. The exception to this principle within the thesis is in Chapter 

7, where accurate information was available on the qualifications and experience of the 

respective subjects used in field observations. 

The term, "loss ratio" is used to describe the relationship between the number of vessels 

lost in any given year from a specified cause and the total number of vessels that could have 

been lost. Throughout the thesis, this ratio indicates the number oflosses per 1 00 vessels in 

the UK fleet at the beginning of the stated year. The loss ratio is therefore a measure of 

risk during the period, although it will not necessarily be entirely accurate because some 

vessels will be sold out of the fleet, laid up-or lost prior to the next census date. 

As might be expected in a study of marine traffic losses, the term, "visibility" appears from 

time to time throughout this work. MciNTOSH ( 1972) defines visibility as, "the greatest 

distance at which an object can be seen and identified with the naked eye in any particular 

circumstance." Features or objects at known distances from the reference point are used in 

assessing visibility from land stations but these are not available on the open sea so a much 

coarser scale has to be employed (BURGESS et al., 1988). 
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In the UK it is customary in marine accident reporting to refer to the visibility at the time of 

an event using the general terms, "good", "moderate" or "poor" though this is not the 

case in some other countries, for example Korea, where the Korean Marine Accident 

Inquiry Agency uses the additional term, "fog" (PARK, 1994). In its public information 

literature the United Kingdom Meteorological Office attaches the classification shown in 

Table 1.5.1 to these terms (UK METEOROLOGICAL OFFICE, 1995). In the present 

work, although reference is specifically made to fog where this is appropriate, the term, 

"poor visibility" may be taken to encompass fog. 

5 to 10 km 
I more than 10 km 

Table 1. 5 .1. UK Meteorological Office visibility classification. 

From the author's personal experience as a fishing skipper, it is known that there are 

females employed on board fishing boats in the UK, indeed one very successful fishing boat 

operated from Stornoway on the Isle of Lewis for many years with a female skipper. While 

tradition might dictate otherwise there is also no logical reason why women should not in 

the future play a much greater part in catching sector of the industry. No female 

"fisherpersons" were encountered or observed during this research however and given the 

necessarily anonymous nature of the questionnaires, it is impossible to ascertain whether 

any female subjects were included in the questionnaire study. For these reasons and 

because the term, "fisherperson" is rather awkward, the terms, fisherman, crewman, mate 

and skipper may be taken to encompass both male and female genders. 
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1.6 Definition of the study area 

The area covered in this study is that within which the British fishing fleet has operated 

since the mid 1970's and currently continues to operate in, with the exception of a relatively 

minor number of excursions made by a handful of vessel owners to exploit extremely 

limited distant water fishing opportunities. This operational area (Figure1.6.1) is 

approximately enclosed within the range oflatitudes 49°North, (the Brest Peninsula) to 62° 

North (where the water deepens to the north-east of the Shetland Isles) and between the 

continental mainland and longitude 14° West (the Rockall Bank), (pers. comms., Mr. G . 

Quelch, Assistant Chief Executive, National Federation of Fishermen's Associations, 1995 

and Mr R. Allan, Chief Executive, Scottish Fishermen's Federation, 1995 ). 

Figure 1. 6.1 Area within which most UK fishing activity takes place. 

Where analysis of any factor is pursued according to area in this study, the waters around 

the UK have been delineated in broad accord with two sources which themselves show 

mutual, though unrelated general agreement in this respect. Firstly the UK Admiralty 
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Hydrographic Office, which publishes Admiralty Sailing Directions (UK Hydrographic 

Department, 1989) for clearly defined areas (Figure 1.6.1) and secondly the International 

Council for the Exploration of the Sea (ICES), based in Copenhagen, Denmark, which has 

divided the fishing grounds ofNorth West Europe into ICES Fishing Areas for the purpose 

of providing fisheries management advice to nations with an interest in exploiting fish 

stocks in the region (Figure 1.6.2). 

Both of these bodies see merit in differentiating between the Northern and the Central 

North Sea zones, the Scottish West Coast and the English Channel. Division of the 

Western Approaches is more fraught however, with the Admiralty Hydrographic Office 

opting for three numbered zones while ICES attributes an umbrella numbering , Area VII, 

with ten sub- divisions, a, b, c, d, e, f, g, h, j and k. For the sake of simplification, all of 

these ICES sub-divisions and corresponding Admiralty sailing areas 27, 37 and 40 are 

included in the area referred to in this study as, Western Approaches, with the exception of 

ICES area VIId which forms part of the English Channel area. This latter exception 

provides a delineation which concurs with the Admiralty Hydrographic Office's concept of 

the English Channel, defining the extent of 'Sailing Directions', volume number 28. The 

resulting map, outlining the five areas referred to in this study is shown in Figure 1.6.3. 

For the rest of this work then, five areas are referred to: 

Area 1- Northern North Sea (including the waters around the Northern Isles) 

Area 2- Central North Sea 

Area 3- English Channel (incorporating the southemmost part of the North Sea and the 

Dover Strait) 

Area 4 - Western Approaches and Irish Sea (including the area to the west of IrelandO 

Area 5- Scottish West Coast (including the Minches) 



15 

66 

. . · ~ 

Figure 1.6.1 Delineation of sea areas around the UK used in compilation of Admiralty 
Sailing Directions. (Source: UK HYDROGRAPHIC DEPT., 1989). 

Fishing GTounds of 5'W 
NW Europe and ICES Areas 

Vb 
60' 

VIb 

VIIk 

Vllh 
5'E 

Figure 1.6.2 ICES delineation of the sea around the UK into fishing areas. (Source: SFIA. 
1996) 



Area5 
Scotish West Coast 

Area4 
Western Approaches 
and Irish Sea 

-

Area 1 
Northern North Sea 

Area2 
Central North Sea 

Figure 1.6.3 Delineation of waters around the UK for the purposes of the present study. 

1. 7 The concept of risk 

16 

Some of the scenarios considered in the course of this thesis include actions by 

watchk:eepers that might be classified by behavioural psychologists as "risk-taking". The 

use of the word, "risk" is a semantic matter of importance in the present study and warrants 

some clarification. 
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Certain activities which are accepted by society as being necessary, carry an inherent level 

of risk that is higher than that which exists in others. Marine commercial fishing is one of 

those activities, In the UK, as in all other maritime nations, the collective dependence upon 

fish as an important food source has led to general endorsement of the relatively high 

chance of loss of life and property in fishing operations. As a concept, risk is perceived 

through the fundamental human instinct of fear of the unknown and accordingly where the 

sources of the risk (collision and grounding as examples) are well known and have existed 

for many centuries it is quite natural that the degree of aversion to these risks will be 

diminished. 

A basic difference normally exists between the acceptable levels of risk for the individual 

and for the state. For the former, a more cogitative approach is normal, where the 

likelihood of a catastrophic event and its consequences are considered in the light of their 

potential effects on the individual's own lifestyle. In the case of the individual, where 

benefits (financial, social, status) are in some way linked to the level of risk, there will exist 

an optimum level up to which the risk of fatality and loss of property is acceptable. 

KIN CHIN ( 1978) suggested that a notional risk of accidental death amounting to I in I 06 

is generally acceptable in the UK although this would probably be regarded as conservative 

for many other countries. 

Governments on the other hand, often with the backing of international organisations, tend 

to favour a less polemic approach based mainly upon some form of cost-benefit study. For 

the state, trading the cost of vessel losses and deaths against the benefits that may accrue 

from preventing them, provides an alternative though not necessarily corresponding 

optimum. KIN CHIN ( 1982) proposes that by applying appropriate discount rates to the 
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future net income of a worker, the ·~present worth" of the remainder of his career can be 

assessed and this can be used as a measure of the value of his life. This method has been 

commonly used by the courts in the UK since the leading case of EDWARDS -V

NATIONAL COAL BOARD in 1949. Attempting to assess the future income of a 

fisherman whose livelihood is dependent upon fish stocks that are currently overexploited 

may nevertheless be an exigent task for even the most skilled of actuaries! 

SPIRO ( 1992) advocates the collation of information on government legislative action 

following some fatal accident and consequent expenditure by industry in compliance as a 

means of valuing life in marine accidents. None of these approaches however can allow for 

any valuation by the victims so these concepts of risk, with their pecuniary base, do not 

really provide for analysis of the factors that reconcile fishermen to whatever level of traffic 

accident risk they are prepared to accept. Perhaps more interesting still, they do not shed 

light on how fishermen "weigh-up" the various factors, Given the lack of opportunity cost 

attached to fishing for those who live in isolated fishing comunities and the rather 

unconventional career base the fishing industry involves (discussed in Section 4,2.11, 

below), non"monetary aspects in particular are likely to play a major part iri the psyche of 

the fisherman. 

The concept of "objective risk" and its perception amongst groups such as fishing vessel 

watchkeepers suffers from the fact that it has no generally agreed definition. Most research 

literature refers to risk using abstract terms such as probability, but in many ways this is 

unlikely to be helpful since the abstruse aspects of collisions and groundings are difficult to 

measure in any credible way and have to be dealt with on the subjective basis of expert 

judgement. Decision-making by fishing vessel watchkeepers may have little to do with 



19 

probability theory where complacency, boredom or fatigue have made inroads. Even 

where the watchkeeper is alert and motivated, if he has little idea about what he is doing he 

may reduce his cognitive input to a simple process of assessing the consequences of 

alternative courses of action and ranking these. 

Because many of the analyses in this research involve fishermen themselves defining and 

quantifying the situations in which they consider navigational danger to exist, the concept 

of subjective risk is more relevant. A large body of research work in this area accrued in 

the early 1980's, in which measurement of individual attitudes and responses to danger 

was the focus (eg. FISCHOFF et al., 1981; VLEK AND STALLEN, 1981; COVELLO, 

1983; HALE, 1984). HALE (1987) describes this type of research as the "expressed 

preference" approach since the outcome is a measure of the way in which individuals think 

about, classify or rate potentially dangerous situations. 

The use of the word "risk" per se, carries. with it connotations which may hamper the 

present study. Used in the context ofthe contribution ofindividuals to fishing vessel losses, 

it suggests that some conscious decision has been made to act in a manner that increases 

the likelihood of an undesirable event and while this does indeed feature in loss analyses 

(where a watchkeeper has left the wheelhouse unattended. for example) it is not uniquely 

the case, Applied to the watchkeeping system aboard fishing vessels, a component of the 

system that is customary in any particular segment of the fleet is unlikely to be perceived as 

risky even though under scrutiny it may prove to be so. 
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Chapter 2 

THE UK FISHING FLEET AND UK FISHING VESSEL LOSSES: 

AN OVERVIEW, 1975-1995. 

"The brave! that are no more: 
All sunk beneath the wave, 
Fast by their native shore" 

2.1 Fleet Structure and Composition 

William Cowper ( 1 731-1800) 
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The structure and mode of operation of the UK fishing fleet changed quite dramatically 

over the twenty year period, 1975- 1995. Prime movers in this process were the accession 

of the UK to the (then) European Community in 1973, and the assertion of jurisdiction 

over living resources of the sea in areas up to 200 miles from baselines by the UK and 

other countries following the lead given by Iceland in 1972. Figure 2.1.1, drawn from one 

of the Annexes to the Final Report of the Committee of Inquiry into Trawler Safety, 

presented to the UK government in 1969 (HOLLAND-MARTIN, 1969), shows the range 

of the deep sea fishing fleet at that time while figure 2.1.2 shows the ICES (International 

Council for the Exploration of the Sea) areas within which virtually all UK fishing has taken 

place since 1977. 

Worked by the British 

Deep Se.l Flshlre Fleet 

Figure 2.1.1 Principal fishing grounds worked by the UK fishing fleet in 1968. (Source: 
HOLLAND-MARTIN, 1969) 
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This closure of productive distant waters led to a severe reduction in viable fishing 

opportunities for a large proportion of ageing UK vessels which had been primarily 

designed to fish there. Whether by ecologically-aware policy design or the operation of 

market forces (see GARROD & WHITMARSH, 1994, for elaboration of this point), the 

resultant overcapacity was mainly addressed by the withdrawal from the fleet of those 

vessels which could not be readily adapted to fish nearer home. Between 1978 and 1986, 

the UK fishing fleet size fell by 43% in tonnage although this loss was counterbalanced by 

a trend towards an increase in number of vessels in smaller length categories, (Figure 

2.1.3). 
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Figure 2.1.2 ICES areas within which almost all UK fishing activity has taken place since 
1977. (source: SFIA, 1995) 

Fleet size then accelerated rapidly until 1990, when effective implementation of successive 

European Union, "Multi-Annual-Guidance-Plans" (MAGP I to Ill) (EC Regulation 

3699/83, 1983) which required reductions in both tonnage and engine power to prevent 

catching capacity outstripping fishing opportunities, (Table 2. 1.1) appears to have 
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intervened to stabilise the situation. The most recent version of the plan, MAGP IV, sets 

re-structuring targets for each fleet segment for 1997 to the end of 2002. Unlike its 

predecessors, this version of the plan will be accompanied by structural support measures 

under the EU Financial Instrument for Fisheries Guidance (FIFG). Its measures are 

designed to ensure significant reductions in fishing capacity in the fleets of EU nations, in 

the light of a definitive recent report from scientific advisers. The 'Lassen Report' 

(LASSEN, 1996) indicated that the general situation of fish stocks in Community and 

international waters has worsened recently, and for many commercial species, urgent steps 

are required to prevent their total collapse. 
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Figure 2.1.3 Total numbers of vessels in the UK fishing fleet, 1975 - 1993. (Source of 
data: Ministry of Agriculture, Food and Fisheries. 

The dramatic increase in vessel numbers between 1989 and 1990, shown in Figure 2.1.3, 

arose largely because of new fisheries conservation regulations requiring the registration 

and licensing of vessels of under 10 metres. 

Aside from this general picture of decline and later rise in tonnage, there exists a picture of 

radical change in prevalent mode of operation within the fleet and this is clearly evidenced 

in changes in the format used for fishing vessel casualty returns. In 1974, UK fishing fleet 
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casualties were clearly categorised by the UK Department of Trade under two mam 

groupings; "Deep Sea Trawlers" and "Fishing Vessels other than Deep Sea Trawlers" . The 

former mainly comprised very large demersal stem and side trawlers while the latter was a 

mixture of demersal and pelagic trawlers, demersal seine-netters and boats operating static 

fishing gear (drift-netters, gill-netters, crab-potters, etc). 

1 017 863 

Table 2.1.1. MAGP targets for UK fishing fleet reduction. (source: SFIA European and 
parliamentary briefs) 

In 1979, the format of fishing vessel casualty returns, published by the Department of 

Transport, was revised to consist of three sections, "over 80 feet", "40 to 79.9 feet" and 

"under 40 feet" . This move was significant in that it was as much a reflection of the 

changing composition of the fleet as it was relevant to the length categories used in the 

Fishing Vessels (Safety Provisions) Rules, 1975. 

By the mid 1980's, the number of large distant water demersal trawlers had declined by 

67% while numbers of smaller inshore vessels operating mainly within the UK Fishing Zone 

and pursuing various types of fishing, remained roughly constant, before rising from 1987 

on. In 1983, fishing vessel size groupings were metricated to become, "over 24metres", "12 

- 24 metres" and "less than 12 metres" . 
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Figure 2. 1.4 Numbers ofvessels at different sizes, 1975 - 1993. (Note differences in 
Y -axis scales) Source of data: MAFF. 



27 

From January 1st, 1998, the system of describing fishing vessels will be harmonised within 

the European Union by being divided into the following categories; "large" (>24 metres), 

"medium" (10- 24 metres) and "small" (<10 metres), (EUROPEAN INFO FLASH, 1994). 

Changes in the numbers and types of vessel in operation during the period are evidenced in 

the figures published by the Ministry of Agriculture, Fisheries and Food {MAFF) which 

were used to compile Figure 2.1.4. From 1984 onwards, these data indicate a gradual trend 

towards the re-introduction of very large (over 40 metre) fishing vessels. These are 

however very different to the previous generation of boats of this class, being mainly 

engaged in pelagic purse-seining and pelagic trawling and equipped with full watertight 

shelterdecks, refrigerated seawater tank fish preservation systems and an exhaustive 

inventory of navigational, fishfinding and safety equipment. These vessels tend to fish 

within fifty miles of the UK coastline and spend as much time in port, unloading their large 

catches and laid up during closed fishing seasons, as they do at sea. 

1985 also appears to have been a watershed year for the medium size classes of fishing 

boats. From that time, numbers of 24 - 33 metre and 33 - 42 metre vessels have expanded. 

The most likely reason for this is that, as coastal waters have come under increasing fishing 

pressure and become "fished-out", vessel owners previously operating smaller craft have 

invested in vessels that are better capable of fishing further out to sea and in less favourable 

weather conditions. It may be that the fleet will gradually revert to a structure similar to 

that in existence prior to the demise of the distant water fleet of the 1970's as an increasing 

number of UK operators begin to pursue what are currently lightly fished stocks on the 

continental shelf edge to the west of the British Isles. BRADY ( 1993) proposes that fishing 

in these waters is not suited to vessels of anything smaller than 35m in length. The 

economics of fishing also dictate that where longer steaming distances are concerned, it is 
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preferable to make fewer journeys with larger loads, so as fishing moves further offshore, 

fish-hold capacities must increase. In accordance with this operational remit, significant 

advances in the design and manning of this class of vessel began to show from the mid 

1980's onwards. For example, full length, watertight shelterdecks and advanced electronic 

navigational equipment became de rigeur and because of the increase in vessel length, 

Skippers and Mates have been required to gain appropriate Certificates of Competency. 

From reviewing the fishing trade press (eg. "Fishing News"; "Fishing News International"; 

"Commercial Fishing"; "Scottish Fishing Weekly"; etc. ) it is clear that a great number of 

those involved in capture fisheries in the UK are currently under quite severe financial 

pressure, yet many who would like to do so are finding it impossible to leave the industry. 

Although the EU Common Fisheries Policy (CFP) allows for member states to operate a 

system of decommissioning grants aimed at providing a financial incentive for owners to 

remove their vessels from the fleet, this was not a popular strategy with the UK 

government through the late 1980's and early 1990's. In addition to this, with the 

exception of replacement of vessels lost at sea, financial aid for newbuilding has been 

withdrawn and only improvements which do not result in an increase in vessel power or 

GRT have been eligible for grant assistance from the British government. Since the EU will 

usually only match a national grant once it has been arranged, and also because of the UK's 

general failure to meet MAGP targets (Table 2.1.1 ), British fishermen have found it almost 

impossible to access European money for replacing and improving their vessels. 

In 1992, the British government did announce a decommissioning scheme which was 

backed by some £25 million. This support was offered only on the condition that the 

industry agreed to an effort reduction scheme based upon a system of permanently limiting 

the number of days that UK fishing vessels could spend at sea in each year. This condition, 
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which has become known as the "days at sea issue" was vehemently attacked by 

fishennen's organisations on the premise that safety would be compromised because 

fishermen would be forced to go to sea in weather conditions that were unsuitable, simply 

to make up their time allocation. The National Federation of Fishennens Organisations 

(NFFO) has gone on to challenge the legality of the bill enabling this legislation in the 

European Courts and the "days at sea" regime has never been introduced. 

2.2 Fishing vessel losses 

This element of the research is mainly based on analysis of data collected ;by public bodies 

and insurance companies, frequently for purposes other than addressing the specific 

questions the author had in mind. While these data provide indisputable knowledge of 

numbers of vessels lost and associated fatalities, the difficulty in contriving a credible a 

measure of exposure to risk so far as fishing vessels are concerned, is problematic. 

To illustrate this point; it is well known that world wide, more people die as a result of 

being stung by bees than in shark attacks. Most people however would rather spend time 

in a garden where bees abound, than swim at a beach where even one shark has been 

sighted. To further complicate matters, while "number of fatalities per species" would 

appear to be a superior measure to a simple count of fatalities, it must be borne in mind that 

bees tend to be close to people much more frequently than sharks. Even if a process of 

nonnalisation for proximity was carried out, it would still be difficult to answer the 

question, "do bees pose a greater threat than sharks?" since people tend to exercise greater 

care in the presence of sharks. 

It would be conceptually possible to derive some figure for the mean amount of time, say 

days spent at sea per year, by each vessel. llhis could then be multiplied by the number of 
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vessels in the fleet during the year in question and finally related to the number of vessels 

lost and cause of loss to arrive at a figure for the percentage chance that a vessel will be 

lost to any given cause, on any given day. Paucity of the necessary information in this case 

however would render such analysis so imprecise that it would not constitute a meaningful 

component of a scientific study. While EV ANS (1984), talking of road traffic safety, 

expounds the view that there can be no all purpose definition of exposure, it is accepted for 

the purpose of this Chapter that a general measure of a fishing vessel's exposure to the risk 

of loss does exist and that this lies in normalisation of the annual number of vessels lost by 

reference to the number of vessels in the fleet during that year. Albeit it retrospective, this 

tactic provides a more accurate indicator of the relative level of loss risk within the fleet but 

it cannot of course detract from the fact that a greater overall number of vessels lost, 

regardless of fleet size, must inevitably lead to higher economic and human cost. 

ROMER et al. (1995) broadly describe this approach to companng maritime loss 

frequencies as being "empirical" and cite an alternative method, "ship domain theory" (eg 

FUJII, 1974) as having application in assessing collision and grounding frequencies. This 

latter proposition is based upon the traffic density and number of loss events in a given sea 

area and arrives at some probability that a vessel will fail to avoid an obstacle. The present 

author did in fact attempt to gain some idea of the rate of encounter with other vessels 

experienced by fishing boats by distributing standard forms for completion by willing 

fishing boat watchkeepers. Unfortunately, the forms were returned with a paucity of useful 

information since the encounter rate, defined as when either their own vessel or a give-way 

vessel had to change course in a meeting situation, was so low that it became meaningless. 

ROMER et al. conclude that for highly specific studies, for instance the development of a 

new bridge, ship domain theory may be appropriate but for more general studies, empirical 

analyses seem more advantageous. 



31 

The use of losses in the present study, rather than accidents, incidents or casualties also 

reinforces the use of empirical analyses rather than the ship domain approach in the present 

study because of confidence in the completeness of the database. All losses of fishing boats 

in the UK fleet have been recorded during the study period and therefore the empirical 

results must be conclusive. If data relating to incidents were being used however, this 

would not necessarily be the case since only a proportion of these are actually reported and 

even then the reports are only occassionally accompanied by the level of information 

required to make further analysis possible. 

2.3 Losses from aU causes 

Absolute numbers of losses of UK fishing vessels from all causes reached a peak of 52 in 

1981, falling to a low of 14 in 1987. The loss ratio for UK fishing vessels broadly mimics 

this pattern although the trend of rising losses through the most recent years is less 

pronounced. (Figure 2.3 .1 ). 
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Figure 2.3.1. Number of vessels lost from all causes and loss ratio for UK fishing fleet as a 
whole, for the period, 197 5-1993. 
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2.4 Losses by cause 

Since July, 1989, the Marine Accident Investigation Branch (MAIB) has assumed 

responsibility for the compilation and publishing of fishing vessel loss statistics. Established 

under Section 33 of the Merchant Shipping Act (1988), the MAIB operates under the 

Merchant Shipping (Accident Investigation) Regulations (1989) with powers to investigate 

accidents involving or occurring aboard all types of UK vessels and submits reports of 

inquiries to the Secretary of State, The MAIB categorises fishing vessel losses in broadly 

similar fashion to its predecessor, according to the nature of the loss, under the following 

headings; 

• Capsize 
• Collision 
11 Fire 
~~ Flooding 
• Foundering 
• Grounding 
• Heavy weather 
• Machinery damage 
• Missing 

Priorto the advent of the MAIB, "heavy weather" and "machinery damage" did not appear 

in official statistics as loss categories. For purposes of the analyses presented in this study, 

the convention adopted by MAIB in presenting statistics relating to fishing vessel accidents 

in general has been adopted; that is to say, figures for losses resulting from foundering and 

flooding are combined, and also the inclusion of those resulting from heavy weather 

damage and machinery damage under the heading, "other causes" . 

UK fishing vessel losses over the period 197 4 - 1994 were examined under these individual 

headings to investigate how the significance of each, as a cause of loss, altered during that 

time. 
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Figure 2.4. 1 shows that during the whole of the period, 197 5 - 1993, exactly half of all 

fishing vessels that were lost came to grief in foundering and flooding events. A further 

28% were lost in collision and grounding incidents and the remaining 22% were the result 

of fires, capsize, disappearance and other miscellaneous causes respectively. 

Using the high and low points of the annual distribution of losses over the study period as 

markers allows the somewhat arbitary delineation of three discrete time bands within the 

loss ratio time series: Period A (1975 - 1981) when the percentage ratio of losses 

increased slowly (regression coefficient = 0.005542; r = 0.0199); period B (1982- 1987) 

when this ratio fell dramatically (regression coefficient = -0.11331; r = 0.9329); and 

period C (1988- 1993) when it rose once again (regression coefficient = 0.018742; r = 

0.2939), (Figure 2.4.2). 
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Figure 2.4.2 Regression lines plotted on loss ratios forUK fishing fleet, 1975- 1993. 

Analysis of the distribution of causes of loss within each of these time bands provides a 

more tangible picture of the causal situation over the study period. Figures 2.4.3 (a), (b) 

and (c), show how the proportion of losses attributable to various causes has changed in 

these three periods, with collisions, groundings and fires diminishing in significance while 

the gravity of foundering & flooding and capsize increases substantially. Losses classified 

under the umbrella term, "other causes" (heavy weather, machinery damage, etc.) are of 

little consequence in the first two time periods, but become more important in the most 

recent. The number of vessels that disappear without trace, leaving the cause unknown 

remains variable throughout. 
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While this study is primarily concerned with fishing vessel losses arising from collisions and 

groundings, it serves to set these in perspective to give some general consideration to loss 

categories . 
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2.5.1 Foundering & Flooding 

Foundering and flooding events account for exactly half of the total number of fishing 

vessel losses over the entire study period. Figures 2.4.3 a, b and c shows that it has 

assumed increasing consequence over the three time periods, 197 5-81; 1982-87 and 1988-

93, when it was the cause of 45%, 49% and 55% of losses respectively. This trend is 

reiterated in figure 2.5.1 where the loss ratio for foundering and flooding is superimposed 

upon the actual number of vessels lost due to tbis cause. From a fluctuating situation in the 

late 1970' s and early 1980's, an increase in both absolute numbers of vessels lost in this 

way and in the proportion of the total number of vessels at risk, which succumbed to 

foundering and flooding, is clearly evident from 1987 onwards. 
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Figure 2.5.1 Numbers of fishing vessels lost and percentage loss ratio as a result of 
foundering and flooding 1975-1993. 

2.5.2 Capsize 

Although the actual number of events is small, a maximum of four losses in 1980, the nine 

year period from 1980 to 1988 showed a clear downward trend in capsize losses. 
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Figure 2.5.2 Number of fishing vessels lost and percentage loss ratio resulting from 
capsize, 197 5-1993. 

2.5.3 Fire 

The trend in fishing vessel losses resuJting from fires between 1975 and 1993 has been 

uneven, with a maximum of 10 vessels being lost in 1981 and none lost at all in 1990. The 

three years 1981 through to 1983 were notably bleak in respect of fire losses with 23 

vessels succumbing to this hazard while only 21 were lost in the same manner in the 

subsequent ten years. 
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Figure 2.5.3 Numbers of vessels and percentage loss ratio as a result of fire, 1975- 1993. 
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2.5.4 Missing 

The total number of fishing vessels presumed lost after going missing may of course include 

those which in reality went down for any of the other reasons. Mercifully, since 1985 only 

one loss has had to be recorded under this heading. 
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Figure 2.5.4 Numbers of fishing vessels assumed to be lost after going missing and 
resulting percentage loss ratio, 197 5-1993 . 

2.5.5 Collision 

1979 was an extremely grim year with regard to fishing vessel collision losses with nine 

being recorded, giving a loss ratio of 0.12%. This would mean that roughly one in every 

800 vessels in the UK fleet that year was lost in collisions. Put in these terms, 1979 offers a 

stark comparison with the years, 1987 1988 and 1990, when only around one in 10000 

fishing boats was lost in this way. In the early part of the 1990' s a disturbing trend towards 

a return to higher annual rates of collision losses was evident. 
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Figure 2.5.5 Number of fishing vessels lost and percentage loss ratio resulting from 
collision incidents. 

2.5.6 Grounding 

The very nature of some types of fishing activity involves fishing boats being presented 

with the risk of running aground. Some vessel types, those fishing for crabs and lobsters 

for example, tend to work near reefs and headlands where their target species are more 

plentiful. Many boats discharge their catches daily, or at other intervals during the fishing 

trip with the aim of achieving a price premium for freshness but each of these landings 

carries with it the risk of running aground. It is not surprising therefore that grounding has 

been the second most common cause of fishing vessel loss after foundering and flooding. 

With the exception of 1979, when only one fishing boat was lost in a grounding event, the 

ten years from 1975 to 1985 saw substantially more grounding losses than the subsequent 

period. The risk of a UK fishing boat being lost as a result of grounding in 1975 was 

marginally better than one in five hundred while in 1993, it was about one in a thousand. 
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The trend in grounding losses, although declining on average, has been erratic since the mid 

1980's. 
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Figure 2.5.6 Numbers of fishing vessels lost and percentage loss ratio resulting from 
groundings, 197 5-1993. 

2.6 Chapter discussion 

The UK fleet has undergone considerable change in size and structure since the mid 1970's. 

This was driven firstly by the imposition of firstly, 50 mile fishing limits which were 

subsequently pushed out to 200 miles. This, coupled with the oil price rises of that era, led 

to the demise of the British distant water fleet. 

While the present fleet structure has been more or less stable for a number of years, the 

effect of MAGP IV, in particular since it is accompanied by structural support measures, 

may well lead to noticeable change in the the early part ofthe next century. Already a trend 

towards a fleet composed of a small number of bigger, newer, more sophisticated vessels 

and a currently large but decreasing number of small, much older boats is becoming 
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apparent. This would suggest that a study of the relative importance of vessel length and 

age in traffic losses might be worthwhile. lihis is pursued in Chapter Four. 

Legislation proposed for the purpose of conservation of fish resources could also have an 

effect on the safety of the fleet. One of the arguments proposed by the NFFO to counter 

the UK government's plan to introduce a "days at sea" regime was that safety would be 

compromised since fishermen would be forced to go to sea in bad weather and work harder 

while they were out at sea to make sure they derived full .benefit from their fishing time 

allowance. Indeed, VEENSTRA & STOOP (1992) cite "restricted fishing days" as being a 

potential source of extra workload in a safety integration matrix for Dutch beam trawlers. 

It might equally be argued however that if the average amount of time vessels were 

spending at sea was compulsorily reduced, they would be at risk for a correspondingly 

reduced period and thus the fleet will become safer. 

The measure of exposure to risk embodied in the loss ratio is weakened from 1989 because 

of vessels of under l 0 metres being forced on to the register of shipping from that time on 

and thus into the risk normalisation process. Many of these small craft are operated on a 

part-time or seasonal basis, for instance by crofters in the Scottish Hebridean islands and 

owners of summer guest houses in Cornwall and Wales. Additionally, most of them spend 

considerable amounts of time in port because of bad weather. The result is that the 

calculated loss ratio may be, since this influx of small boats into the figures, biased towards 

making the fishing fleet look much safer than it actually is. 
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Figure 2.6.1 Ratio for all UK fishing vessel losses compared with loss ratio for all world 
shipping, 1975-1994. (Source: JAMRI, 1993). 

Comparison of the loss ratio for UK fishing vessels with the same for all world shipping 

(Figure 2.6.1) shows that up until 1989, the former was, on average higher. Since 1989 

however, there has been little difference between the two. With the under 1 Om vessels 

removed from the fishing vessel loss ratio however, the same analysis shows considerable 

disparity with that for over 12 metre fishing boats rising above 1% in 1994 while its 

counterpart remains below 0.4%, (Figure 2.6.2). 
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Figure 2.6.2. Loss ratio for all world shipping compared with same for UK fishing vessels 
ofover 12m. 

Albeit without corroborating evidence, BOURNE (1992) contradicts the reasoning in the 

previous paragraph, saying that since 1975 the number of accidents involving small fishing 
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vessels has made up an increasing proportion of the total. That he uses the term, "accident" 

rather than ' 'loss" may however have more than mere semantic significance. Figure 2.6.3 

shows the level of search and rescue activity related to fishing boats between the years 

1978 and 1990. A sharp increase can be seen from 1986 onwards - possibly the result of 

the introduction of much improved distress and communications systems. One might 

readily hypothesise that had this level of search and rescue not been available, there might 

have been many more "accidents" that would have turned into ''losses". Review of the 

level of "search and rescue' activity related to fishing vessels during the study period 

(Figure 2.6.3) tends to confirm that this is likely to be the case. 
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Figure 2.6.3. Annual numbers of search and rescue operations concerning fishing vessels 
around the UK coastline, 1978-1994. (Source: Royal National Lifeboat Institution, Public 
Relations Office, 1997) 

While perhaps rather difficult to substantiate, it is nevertheless a peripherally interesting 

hypothesis that period 'B' in Figure 2.4.2 i.e. falling losses from all causes, corresponds 

with a relatively buoyant phase in the UK national economy, during which finance for 

vessel improvement programmes was readily available. This is an argument often tendered 

by UK fishermen eager to see the level of grants and low interest finance for vessel 
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improvement raised and it is not necessarily without foundation. JOKSCH, (1984) for 

example, proposed that the index of industrial production is an effective explainer of the 

number of road traffic fatalities in the USA between 1930 and 1982. 
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Figure 2.6.4 Trend in annual growth in lending by UK banks (M4 measure). 
(source: JOHNSON & BRISCOE, 1995). 

Figure 2.6.4 illustrates the annual growth in UK money supply which is a surrogate for the 

level of bank lending between 1975 and 1993. From this it can be seen that it is probably 

true to say that it was generally easier for vessel operators to access finance during this 

period than either before or after, although it would be more accurate to incorporate the 

numbers of applications for vessel improvement grants into the analysis. 

Improvements to vessels must be planned and take time to complete so it is necessary to 

introduce a time lag into the analysis to test whether this availability of funding made any 

difference to the safety of the fleet. A range of different "time lags" from one to five years 

were tried to see whether the two variables provided any significant correlations however 

none gave an R2 value of more than 0.2, completely undermining the fishermen' s anecdotal 
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reasoning. Figure 2.6.5 illustrates this by plotting vessel losses against the M4 money 

supply index from two years prior to give virtually no correlation at all. Had there been a 

relationship of significance in this respect it would have been a useful guide to the time it 

takes for new measures, possible including legislation, to be translated into improved safety 

levels. 
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Figure 2.6.5. M4 money supply index correlated with numbers of fishing vessels lost where 
a two year time lag is included. 

The fact that since 1985, only one vessel was lost under the category, "missing" is probably 

due to a number of factors. The introduction of EPIRB (Electronic Position Indicator 

Rescue Beacon) devices which are installed to float free when a vessel goes down will 

undoubtedly have contributed to this, but other less obvious developments, for example 

better hydro-acoustic systems for locating wrecks and ROV (Remotely Operated Vehicle) 

camera systems for their positive identification and determination of cause of loss have also 

played their part. 

The decline in capsize losses through the 1980's may well be have been due to the 

widespread introduction of shelterdecks in the fishing fleet at this time since these tend to 
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delay the point at which stability is lost, thus reducing the chance of capsizing. 

Additionally, the application of new Fishing Vessel Safety Rules since 1977 which include 

regular surveys may have helped to identify stability problems before they led to 

catastrophe. There is no simple explanation however for the irregular pattern of capsize 

losses post 1988. 

The rest of this thesis is focused upon losses due to collision and grounding and it is hoped 

that the data presented in this chapter have served to set these in perspective, Considered in 

tandem, collisions and groundings account for 28% of all fishing boat losses during the 

study period compared with foundering and flooding which accounts for SO% (Figure 

2.4.1 ). This is contradictory to the findings of ROMER et a/ (1995} who state that, for all 

types of merchant shipping, founderings are on the decrease while collisions are increasing. 

Nevertheless, the reader could be excused for begging the question - why study these 

losses and the factors which surround them when they are not the ni.ost significant 

contributors to the overall loss rate? 

~he answer lies in the fact that collisions and groundings are "traffic" events, rather than 

'!material" ones and are likely to have common causes rooted in navigation and 

watchkeeping systems. Recent moves by competent authorities to improve levels of safety 

in the UK fishing fleet have tended to concentrate on material aspects, for example, the 

proposed MSA ''under 12 metre code of safe practice", currently in its consultation stage, 

which is aimed at ensuring small fishing boats meet essential stability and equipment 

criteria. This is understandable and correct given the high and apparently increasing role of 

foundering and flooding as a vector ofvesselloss. 
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At a time when fish resources appear to be overstretched and fishermen face the prospect 

of having to accept reduced earning opportunities in order to allow stocks to recover, 

safety measures that can be effected cheaply are likely to be more readily acceptable than 

those involving major expense. Meeting onerous technical criteria usually involves 

installation of equipment or fittings and can be a very costly matter. Improving the 

effectiveness of fishing watchkeepers and changing watchkeeping systems for the better 

may, on the other hand, be a simple and cheap matter if shortcomings in the present 

regimes can be identified using reliable methods. If the 28% of losses that are attributable 

to traffic events can then be reduced through informed yet inexpensive changes in attitude 

and approach, then research in this area must be justified. 

2. 7 Chapter summary 

o The size and structure of the UK fishing fleet changed markedly during the period, 

1975-1993. It is likely that even more pronounced changes in these respects will occur 

in the future, this being accelerated by fisheries management measures aimed at aligning 

fishing effort with available resources 

• Legislation introduced for fisheries management may have an effect on the safety of the 

fishing fleet, but it is a matter of debate whether this will be positive or negative. 

o A large number of small vessels became reckonable in calculation of loss ratios in 1989. 

This may have the effect of making the fishing fleet as a whole, look safer than it really 

was over the ensuing years. 
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• No correlation could be found between the availability of funding for vessel 

improvements and the number of fishing vessels lost to all causes. 

o The most common cause of fishing vessel loss between 1975 and 1993 was foundering 

and flooding though traffic events - collisions and groundings - together accounted for 

28% of all fishing vessel losses. 

• Most safety measures introduced in recent years have been of a technical nature, often 

involving significant cost for operators; nevertheless the number of founderings and 

floodings continues to increase. 

• Reducing the number of traffic losses might be possible with relatively little expense if 

improvements in the standard of watchkeeping, based on appropriate research, could be 

effected. 
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Chapter3 

THE UK FISHING VESSEL MACRO-ENVIRONMENT 

3.0 Introduction 

"In a bow/to sea went wise men three, 
On a brilliant night in June, 
They carried a net, and their hearts were set 
On fishing up the moon. " 

Thomas Love Peacock (1785-1866) 

so 

Although some aspects of the environment in which fishermen and their vessels operate are 

anecdotally well known, too little has been published to allow for a comprehensive resume 

based upon literature searching. Some relevant material does exist, for example data on 

noise on fishing vessels published by the Sea Fish Industry Authority, but this type of 

information is fragmented and no composite study has been attempted. The work in this 

chapter is accordingly based upon a wide range of sources - structured and unstructured 

interviews by telephone and in person, questionnaire responses, observation and data 

recording at sea, and reference to relevant publications which are not necessarily fishing-

related. 

In this chapter, the operating macro-environment of UK fishing vessels is described. This 

deals with factors such as marine traffic density, meteorological conditions, main fishing 

ports and the types and ages of vessels operating around the UK. The approach taken is 

that of offering a broad comparitive analysis of five fishing vessel operating areas which 

have been identified in this study and to use this to provide a general description of the 

operational macro-environment. 
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3.1 Geographical areas 

With the exception of only a very small number of boats licensed to fish seasonally in 

various distant water locations, the UK fishing fleet has tended to operate well within 200 

miles of the British coastline over the last twenty years. Recent technological developments 

in deep water fishing have led some operators to mount forays to fish the continental slope 

off the west coast of Scotland for non-quota controlled species, However, the contour of 

.the shelf edge means that even if this type of activity expands, the fleet's range of operation 

is unlikely to extend beyond 250 miles. Since 1991, a small number of vessels from SW 

England have pursued a high seas drift-net fishery for albacore tuna in the Bay of Biscay, 

but the increasingly precarious economics of this operation and pressure from the 

environmental lobby in connection with alleged high levels of cetacean by-catches 

(FIND LAY & SEARLE, in press) mean that the future of this fishery is uncertain. 

For the purposes of this study, the fishing waters around the UK have been divided into the 

five areas outlined in Figure 1.6.3. A brief description of each of these areas, highlighting 

the main navigational hazards is given in the sections to follow. For more complete 

information on any particular area, the reader is referred to the relevant volume of "UK 

Admiralty Sailing Directions", published by The UK Admiralty Hydrographic Office 

(UKHO), Taunton, England and also the "Atlas of the Seas Around the British Isles", (first 

edition, 1981) available in printed form or as a computer package known as the ''United 

Kingdom Digital Marine Atlas", both compiled by the MAFF Directorate of Fisheries 

Research. 

Figure 3 .1.1 is drawn from the Atlas of the Seas Around the British Isles and although 

slightly dated, is still nevertheless valid as an indication of the likely presence of merchant 

ships in the various areas, based upon recorded data for merchant marine traffic flow 
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(pers. comm. Mr J Ramster, 1996; responsible for compilation of "The Atlas of the the 

Seas Around the British Isles") 

Figure 3 .1. 1. Traffic flow of merchant shipping. Figures in boxes represent average 
numbers of merchant ships per day. (Source: MAFF, 1981) 

3.2 Area 1: Northern North Sea 

This area encompasses the Shetland and Orkney Isles both of which present challenging 

navigational conditions for mariners because of their ragged and fragmented nature and 

also the notoriously strong currents associated with the inter-island passages and the 

Pentland Firth. The East coast of mainland Scotland is less hazardous however with few 

off-lying islands and numerous fishing harbours with good access. Questionnaire responses 

from fishermen operating in this area indicate that 96% are of the opinion that their vessels 

are in a potential running aground situation fewer than once in every six months (Figure 

3.2.1). 
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Figure 3 .2.1. Percentage estimates of frequency of being in a potential running aground 
situation for fishermen operating in the Northern North Sea. 

Winds in the Northern North Sea are variable in both speed and direction during all seasons 

and are likely to exceed Beaufort force 5 for 60% to 65% of the time in winter and 20% to 

30% during the summer months. While the coastal waters are sheltered from south to 

south-west winds, very rough seas indeed can develop in gales from other directions. The 

area is notorious for the confused seas of hazardous proportions that can result from the 

combining of wind, swell and current in particular areas. Poor visibility resulting from fog 

is most prevalent between April and September although heavy snow showers in winter can 

induce very sudden decreases in visibility. Throughout the year, visibility in excess of 5 

miles will occur for around 72- 83% ofthe time (UKHO., 1994a). 

Marine traffic related to the oil industry is heavy in this area, with supply and standby 

vessels supporting dense concentrations of oil and gas rigs in particular areas and 

significant numbers of oil tankers calling at the Sullom Voe oil terminal in Shetland. Marine 

Safety Agency data on port entry (MSA, 1996a) suggest that for every port entry by a 

merchant vessel in this area, there are over thirty fishing vessel entries. In questionnaire 

replies, 12% of fishermen operating in this area reported that they faced very close quarters 

situations with other vessels more than once a day while at the other end of the range of 

possible questionnaire responses, 58% felt that such situations arose fewer than once every 

six months (Figure 3.2.2). 
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Figure 3 .2.2. Percentage estimates of frequency of being in a very close quarters situation 
for fishermen operating in the Northern North Sea. 

The main fishing ports in this area are Lerwick, Kirkwall, Scalloway, Scrabster, Wick, 

Lossiemouth, Buclcie, Macduff, Fraserburgh. The area sees probably the most eclectic 

range of fishing activity with all seven categories of fishing method illustrated in Section 

3.8 in evidence, although otter trawling and pair-trawling are the most prevalent with beam 

trawling by British boats in this area being a relatively recent development. . The Northern 

North Sea also supports the most modern sub-population of fishing vessels in the UK fleet 

with more than a third of vessels based in the port of Fraserburgh and over half of those 

based in Shetland having been built since 1980. Ports in this area are home to the largest 

vessels in the UK fleet, these being modern pelagic fishers, capable of switching between 

purse-seining and rnidwater trawling and able to carry up to 1000 tonnes of fish in 

refrigerated seawater tanks or in the most modem boats as frozen blocks. 

3.3 Area 2: Central North Sea 

The Central North Sea area covers a stretch of coastline with relatively few topographical 

navigation hazards. Save for the Firths of Tay and Forth and the Tees and Humber 

estuaries, there are few major indentations in the coastline pertaining to this area and only a 

small number of islands, all of which are within close proximity of the coast. Away from 

the estuaries, there are very few areas subject to particularly strong tides and currents and 

there are many fishing harbours to which access is generally good and well documented. 
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No fishermen operating in this area gave questionnaire responses indicating that their 

vessels are in situations where the potentiual for running aground exists any more 

frequently than once a month, the great majority (87%) being of the opinion that this 

happens less than twice a year (Figure 3.3.1). 
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Figure 3.3 .1. Percentage estimates of frequency of being in a potential running aground 
situation for fishermen operating in the Central North Sea. 

From October to March, gales from between NW and SW tend to occur quite frequently in 

the Central North Sea but during the summer months, the few gales that do occur are 

mainly from the north. Gales from a northerly or easterly direction can lead to the 

development of heavy swell and winds from the south or south-west produce steep choppy 

seas. There is a high incidence of poor visibility in the region, especially south of latitude 

55° N, this being mainly due to both radiation fog and sea fog, although precipitation may 

also be a factor. Visibility in excess of 5 miles can be expected in the area for 70 - 80% of 

the time during the summer months and 60 - 75% of the time in winter, (UKHO, 1995a). 

Sea fog is a common hazard in the late spring to the north of latitude 55° N. 

Merchant traffic is fairly dense, especially along the coastal zone (Figure 3 .1.1) with around 

twelve fishing boats entering port for every merchant vessel (MSA, 1996a). In spite of 

this, none of the fishermen operating in the Central North Sea could recount involvement in 

very close quarters situations with any greater frequency than once per month (Figure 
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3.3.2). This was the lowest of all the areas and as a corollary, the same area had the 

highest proportion ( 65%) of fishermen reporting the lowest frequency of such situations. 
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Figure 3.3 .2. Percentage estimates offrequency ofbeing in a very close quarters situation 
for fishermen operating in the Central North Sea. 

Within this area, covering the east coast from Rattray Head south to The Wash, the main 

fishing harbours are Peterhead, Aberdeen, Arbroath, Pittemweem, Eyemouth, North and 

South Shields, Whitby, Scarborough, Bridlington and Grimsby. Although up until the late 

1960's this area was intensively fished for herring using drift nets, this fishery is now 

extinct with very Little other types of pelagic fishing pursued by UK vessels. Otter and 

beam trawling are the most popular fishing methods although numerous smaller static 

netters and crabbers (also targeting lobster) operate along the coastal fringe. The few 

British distant water vessels that are licensed to fish are based in the Humber port of Hull 

and although they do not in fish in the Central North Sea, they inevitably pass through in 

transit from their home port. A third of vessels operating from Peterhead and the same 

proportion operating from Grimsby have been built since 1980. 
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3.4 Area 3: English Channel (including the Southernmost part of the North Sea and 
Dover Strait) 

The coastline of this area is indented in places with numerous small estuaries, but there are 

few offshore islands. The tidal stream accounts for the most of the current effect 

encountered in the area although persistent west or south-west gales can induce a flow 

through the Dover Strait. In the Strait itself, a strong tidal stream running into the wind 

can induce steep choppy seas while to the west of the Strait, longer swells can occur in 

south-west or westerly gales. In anticyclonic weather conditions, mist and haze can be 

extensive. In January, visibility will be in excess of five miles for 65% of the time on 

average and for around 80% of the time in July (UKHO, 1994b ). 

Asking fishermen who operate in this area how often they felt their vessels were in 

potential running aground situations produced an interesting result. A high proportion, 

33%, answered that they were in this situation about once each day and it was only after 

examination of the returned questionnaires that it became clear that a great many of these 

were 'beach-boats' - smaller day boats which are dragged up on to beaches such as at 

Hastings rather than kept in harbour overnight. The fishermen had answered the question 

quite literally! Notwithstanding this anomaly however, responses from fishermen in this 

area suggest the highest incidence of exposure to the immediate risk of running aground of 

all the five areas (Figure 3. 4.1). 
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Figure 3.4. 1. Percentage estimates of frequency of being in a potential running aground 
situation for fishermen operating in the English Channel and Dover Strait. 
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The most notable feature of this area is the density of marine traffic. The Dover Straits are 

anecdotally credited with being the busiest shipping zone in the world and there are only 

three fishing vessel port entries for every one merchant vessel entry. Overall, this area 

showed the most platykurtic distribution of frequency of close quarters situations occurring 

(Figure 3.4.2). Three-quarters of fishermen in the English Channel/Dover Strait area said 

they experience very close quarters situations with other vessels more frequently than once 

per month, with 13% proposing that they faced this hazard about once per day on average. 
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Figure 3 .4 .2. Percentage estimates of frequency of being in a very close quarters situation 
for fishermen operating in the English Channel and Dover Strait. 

Because of the comparitively short distance between Britain and the European continent in 

this area, much of this traffic is composed of ferries although numerous other vessel types 

pass through en route to ports such as Rotterdam, Bremen, Hamburg and those on the 

Baltic Sea. The Straits are subject to a ' 'Traffic Separation Scheme" (TSS) which includes 

special deep draught routes and which has "Inshore Traffic Zones" (ITZ) established on 

either side. Rule 10 of the 1972 International Regulations for the Prevention of Collisions 

at Sea notes that vessels using the traffic lanes do not enjoy any privilege that they do not 

have elsewhere and this has been interpreted by some fishermen as signalling that it is 

acceptable to fish within the TSS. Rule 10 (e) (i) supports this approach by stating that 

fishing vessels may enter separation zones or cross separation lines to engage in fishing 
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within the zone, but Rule 10 (i) goes on to undermine this reasoning by saying, "a vessel 

engaged in fishing shall not impede the passage of any vessel following a traffic lane", 

(M SA, 1996b ). 

The legal situation in this respect is unclear and an action was brought by the dependents of 

the crew of the Brixham registered beam trawler, Ocean Hound which was run down by an 

unidentified merchant vessel and lost with all hands in the northbound shipping lane in 

1991, against the estate of the skipper (also the owner) on the grounds that it was reckless 

to fish there in the uncertain visibility conditions pertaining at the time. This may have set a 

legal precedent were the action not abandoned when doubt was cast over whether the 

Ocean Hound was actually fishing at the time of her loss. Fishing does go on in the ITZ's 

with the blessing of Rule lO(d)(i) which unequivocally states, " ..... vessels engaged in 

fishing may use the inshore traffic zone. ", (MS A, 1996b ). 

Most important fishing ports in the southern North Sea, Dover Strait and English Channel 

area are; Lowestoft, Hastings, Newhaven and Poole. Almost 60% of vessels operating 

from the port of Lowestoft were built prior to 1980 and exactly half of the vessels 

operating from Poole are of the same genre. 

3.5 Area 4: Western Approaches and Irish Sea 

This area encompasses the Celtic Sea and the ragged coastline of the south oflreland. The 

relevant coastline of the British mainland is indented by numerous estuaries, many of which 

have fishing harbours within, and has a wide range of coast types, ranging from precipitous 

cliffs to mud flats and long sandy beaches. A very small proportion (4%) of fishermen 

operating in this area felt their vessels faced potential running aground situations more than 

once per day and these were mainly small crabbers. Most fishermen (85%) thought their 
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vessel faced a potential running aground situation fewer than once every six months (Figure 

3.5.1). 
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Figure 3.5.1 . Percentage estimates of frequency of being in a potential running aground 
situation for fishermen operating in the Western Approaches and Irish Sea. 

The sea state in the Western Approaches may be rough to very high during south-west 

gales. Such rough seas are to be expected in the area on 2 - 3 days per month during the 

summer and 6 - 7 days in winter. To the west of the Isles of Scilly, swells from between 

SW and NW may exceed 4 metres for as much as 10 days a month during the winter 

(UKHO, 1984; UKHO, 1996c). Strong currents are associated with many of the 

headlands along the relevant coast, such as Start Point, Trevose Head and Hartland Point 

and the greatest tidal range around the UK occurs in the Bristol Channel. Sea fog often 

occurs in the area in spring and summer as a result of warm winds from the south-west 

blowing over relatively cold water and usually disperses only when there is a change of air 

mass, such as the passage of a cold front. Visibility in excess of 5 miles can be expected 

for 75 - 85% of the time in winter and 80 - 85% of the time in summer, (UKHO, 1984; 

UKHO, 1996c). Merchant marine traffic density is high with eight fishing vessel port 

entries for every one merchant vessel entry, coming second only to the English Channel 

area where the ratio is 3: 1. Questionnaire responses from fishermen operating in this area 

indicate that 8% feel their vessels are involved in very close quarters situations at least 

once per day (Figure 3.5.2). Three quarters of them however report this situation 

occurring once per month at most. 
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Figure 3. 5 .2. Percentage estimates of frequency of being in a very close quarters situation 
for fishermen operating in the Western Approaches and Irish Sea. 

Main fishing harbours are Brixham, Salcombe, Plymouth, Mevagissey, Newlyn, Padstow, 

Bideford, Milford Haven and Fleetwood. 80% of the fishing vessels operating from 

Newlyn, the largest fishing port in the area, were built prior to 1980, making this sub-

population the oldest in any one major port in the UK. Both Brixham and Milford Haven 

have slightly younger fleets with 26% and 33% respectively being built since 1980. Beam 

trawling is particularly prevalent in this area although there are also significant numbers of 

otter trawlers and static gear boats. Pelagic fishing methods have been periodically 

popular, for hake (Merluccius merluccius) in the Irish Sea in the 1970' s, mackerel 

(Scomber scombrus) around the SW peninsula during the late 1970' s and 80's, and in 

recent years, for scad (Caranx trachums) and pilchards (Clupea pilchardus). 

3.6 Area 5: Scottish West Coast 

The Scottish west coast area probably holds more potential for grounding events than any 

of the other areas. The Inner and Outer Hebrides consist of many hundreds of islands and 

the coastline of the mainland is deeply indented by sea lochs with numerous offlying reefs, 

headlands and islands. The coastline is sparsely populated a feature carrying safety 

implications exemplified in the tragic case of the fishing boat, "Loch Erisort" which ran 

aground, apparently at full speed, on the Stour peninsula in 1981 . Four days passed before 
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the wreck was noticed and it was realised that all four crew had perished. In spite of the 

hazardous coastline, 89% of fishermen feel that their vessels are in a situation where there 

is potential for running aground less than once every six months and only 4% felt that this 

potential existed as often as once per week (Figure 3.6.1 ). 
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Figure 3.6.1. Percentage estimates of frequency of being in a potential running aground 
situation for fishermen operating in the Scottish West Coast area. 

Open ocean currents in the area average 0.5 knots but the tidal stream in the sea lochs and 

firths can be very unpredictable due to the effect of persistent winds in any direction or the 

draining effect of heavy rain or melting snow (UKHO, 1995b ). The area has a diverse 

range of possible swell conditions. In the NW, long Atlantic swells are prevalent and during 

winter between 30% and 40% of observations record waves of over 4m (UKHO, 1995b). 

Even the sounds and lochs of the Inner Hebrides exhibit rough seas and moderate swells 

from time to time, particularly in the winter months. Relatively mild airflow from the 

south-west over the cold waters can cause prolonged periods of reduced visibility, 

especially in springtime. The incidence of visibility in excess of 5 miles can be expected to 

be of the order of 79 - 88% during winter and 77 - 82% in summer, (UKHO, 1995b ). 

Merchant traffic density is the lowest around the UK with 3 7 fishing vessels entering 

pertinent ports for every one merchant vessel entry. The distribution of frequencies of very 

close quarters situation occurring in this area was very similar to that derived from 

responses to the same questionnaire by fishermen in the South West Approaches and Irish 

Sea area (Figure 3.6.2). 
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Figure 3.6.2. Percentage estimates of frequency ofbeing in a very close quarters situation 
for fishermen operating off the Scottish West Coast. 

Most important fishing ports are Annalong, Kilkeel, Portavogie, Girvan, Cambletown, 

Mallaig, Oban, Stornoway, Ullapool, Lochinver and Kinlochbervie. Main fishing method is 

otter trawling, with large numbers of vessels from ports in Northern Ireland targeting 

Norway lobster (Nephrops norvegicus) using this method. 87% of this Northern Ireland 

fleet as a whole, was built before 1980. There are also many smaller static gear boats 

operating within the Hebrides and an increasing fleet of large new vessels which, although 

registered in Scottish east coast ports, are operating from the northern ports of Lochinver 

and Kinlochbervie and fishing on the continental slope. 

The salient points covered in the above section are summarised in a table and composite 

graphs in Appendix 4. 

3. 7 Measures of the presence of fishing vessels in the areas 

A very broad idea of the proportions of the fishing fleet based in different areas can be 

gained from reviewing the numbers of vessels by licensing district (Table 3. 7.1 ). Vessel 

numbers in this table relate to numbers of vessels registered in the licensing districts but this 

is not an accurate guide to the numbers of vessels actually operating in the numbered sea 

areas at any given time. Many vessels registered in areas l and 2 actually spend the greater 

part of the year fishing in Area 5, the Scottish West Coast for example, and a sizeable 



64 

proportion of those registered in the Peterhead District (in Area 2) will fish in the 

Northern North Sea (Area 1 ) . For the purposes of this study it is clear therefore that 

assigning levels of fishing activity on the basis of licensing district or port of registry is not 

a sound approach for assessing the relative risk of loss in traffic events in the areas. 
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Table 3. 7.1. UK over 10 metre fleet by licensing district, at 31/12/94. (Source, SFIA 
Policy and Economics Department.) 

Deriving a reliable idea of the amount of fishing going on in the five areas and using this as 

a surrogate for the number of vessels likely to be ' at risk' at a given time is preferable. 

Comparing the intensity of fishing activity in these areas is not however an easy matter 

since responsibility for policing fisheries rests with three discrete authorities {MAFF, 

SOAFD and DANI) and mis-reporting of fishing locations by skippers is rife (from Pers. 

Comm. with many fishermen, 1996). 
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To overcome this, the percentage proportion of the fishing fleet regularly operating in each 

of the five areas was assessed on the basis of questionnaire responses from 239 fishermen 

in 22 British fishing ports in 1994. Figure 3. 7.1 illustrates the distribution that arose when 

fishing skippers were asked to roughly estimate which of the five areas they fished in and 

for what proportion of the year. 
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Figure 3. 7. 1. Questionnaire derived percentage proportions of UK fleet regularly operating 
in the different areas identified for this study. 

Figure 3. 7.1 indicates that over the course of one year, just under one third of the UK' s 

fishing fleet operates in the Scottish West Coast area. A further 26% operate in the 

northern part ofthe North Sea and 20% work in the Western Approaches. Just under 15% 

of the fleet operate in the English Channel and a surprisingly low 9% in the central part of 

the North Sea. These areas differ in size of course, and this needs to be considered in any 

analysis in which the density of fishing traffic per unit of area is an important factor. 

Nevertheless, where the salient factor is the proportion of the UK fleet operating in a given 

area, the above figures are adequate since the data allowed for these proportions to be 

"fine tuned" to acount for seasonal distributions of vessels in the areas. The weakness of 

the approach taken to arrive at these proportions however is that the excellent response to 

questionnaires by fishermen in the ports of North West Scotland may have produced a 
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slight overestimate of the amount of activity in Area 5. Conversely, a relatively poor 

response from fishermen based on the English East Coast ports may have induced a slight 

underestimate of activity in the adjacent sea area. 

3.8 Main fishing methods and phases of the 'fishing cycle' 

The fishing methods employed by the UK fishing fleet can be fitted into one of seven 

categories, according to gear type (FAO, 197n The categories are - pelagic purse

seiner; demersal or pelagic otter trawler; beam trawler (always demersal); demersal 

seine-netter; static nett er; crabber; longliner. Prior to 1989, information on the numbers 

of vessels in different fishing categories in each port was recorded in official statistics but 

this is no longer done. The figures in Appendix 1. illustrate the fishing method associated 

with each of these categories. 'fhere are often variations on these themes, for example 

demersal otter trawlers may also operate as part of a "pair team". While this is not 

technically the same as "otter trawling", the general fishing principle is similar with the 

exception that one large net is held open between two boats rather than each vessel having 

its own net held open by "otter boards". Since the mid 1980's, British demersal seine-net 

vessels have.also commonly operated in pair teams. 

The operation of fishing vessels in the UK is characterised by a fairly regular cycle of 

activity, the main features of which are dependent upon the type of fishing method 

employed, rather than other aspects, such as length of trip, vessel size, area of operation, 

etc. The cycle of phases that occur during the fishing trip can be generalised into two types; 

one applying collectively to crabbers, long-liners and static netters (Figure 3.8.1) and the 

other applying to otter trawlers, beam trawlers, demersal seine-netters and purse-seiners 

(Figure 3 .8.2). In addition to the "action" stages of the cycle, the points at which strategic 

decisions need to be made by the skipper are indicated on these figures. 
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Figure 3.8.1 Phases of the fishing cycle within each fishing trip for crabbing, long
lining and static netting fishing vessels in the UK fishing fleet 

(Key: 11 = steaming phases; D= fishing phases; • = decision points) 
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Figure 3.8.2. Phases of the fishing cycle within each fishing trip for otter trawling, 
beam-trawling, seine-netting and purse-seining fishing vessels in the UK fishing fleet. 

(Key: • = steaming phases; D = fishing phases; • = decision points) 
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3.9 Types of vessel, designs and equipment 

A fishing vessel may be required to fulfil any or all of a number of vital requirements during 

the course of operations. These will include; 

• safely and efficiently travel to andfromfishinggrounds 

• trace and identify target fish ~pecies 

• handle often complex fishing gear 

• provide means.of/oading the catch aboard during operations 

• provide a base for the primary processing of the catch 

• offer storage and preservation facilities for the catch 

• allow for the efficient discharge of the catch in port 

• provide suitable livingaccomodation for the crew 

The ways in which these criteria have been satisfied have changed over time, in accord with 

changes in target species, fishing gears, technological innovation, social norms and 

statutory requirements. 

Although there are essentially only seven prevalent fishing methods in the UK fishing fleet, 

the manner in which these may be pursued and the environmental circumstances in which 

vessels operate are manifold. The result is that an almost infinite range of vessel designs 

and layouts have arisen. Large otter trawlers operating in the deep water at the edge of the 

continental shelf west of Scotland are very different to small vessels using the same method 

to catch flatfish along the coastal fringe of the English Channel. The reader is directed to 

BRADY ( 1993)and the fishing trade press, particularly "Fishing News" and ''Fishing News 

International", both published by EMAP Heighway Ltd., for more detailed descriptions of 

individual vessels as required. 
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Certain design features do have bearing on the ability of the watchkeeper to perfonn his 

duty effectively. One of these is the quality of visibility from the wheelhouse windows. 

Department of Transport M Notice No. 1111 (1984), "Visibility from the wheelhouse of 

fishing vessels", implores fishing vessel owners and skippers to ensure unobstructed 

visibility from their wheelhouses. Questionnaire responses in 1994, ten years after this 

notice was issued, indicate that around 18% of fishing vessels have whalebacks or deck 

shelters which restrict visibility from the wheelhouse, as on the vessel shown in Plate 3.9.1. 

In most of these cases, the whaleback/deckshelter had been retro-fitted to an older vessel 

and although some innovative interim solutions to this impediment have been tried, for 

example the "periscope" shown in Plate 3.9.2, it is likely that these vessels will gradually be 

phased out of the fishing fleet. A matter of greater concern is that questionnaire responses 

revealed that there were even instances where visibility was impeded in newbuildings. 

Another aspect mentioned in the same M Notice, (No. 1111) is the additional installation of 

electronic equipment in positions which deleteriously affect visibility. While the extent of 

this problem was not assessed, anecdote suggests that it is a very common feature of older 

fishing boats, especially those with small wheelhouses. 

Whichever pennutation of operational criteria applies to any one vessel, the fact that the 

vessel must remain functional, even under extreme conditions (bad weather, loading, etc), 

has direct bearing upon the approach taken at the initial design stage. VEENSTRA & 

STOOP (1992) suggested that this requirement has led to the installation of massive and 

oversized equipment in the Dutch beam trawling fleet Within the UK, the same trend is 

evident aboard purse-seiners and trawlers where, for example selection of main winches by 

vessel owners appears to be done on the basis of an arbitary doubling of the centre-barrel 
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pull that is known to be required at the time of building. (pers. comm. Mr A Kennedy, 

Manager, Dauntless Trawl Winch Co. Macdufl: Scotland. 1995). 

Plate 3.9.1. Retro-fitted whaleback impeding forward vision from a fishing vessel ' s 
wheelhouse 

Plate 3.9.2. ''Periscope" installed to allow better forward vision from the wheelhouse of a 
fishing boat over a retro-fitted whaleback. 
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3.10 ·Chapter Discussion 

In a perfect world, where human error and technical failure would never occur, the 

probability of a fishing vessel being lost in a collision or grounding event would be equal in 

each of the five operational areas identified in this study. Reality however dictates that 

differences in the geographical, oceanographical and meteorological conditions that pertain 

in each area moderate and adjust the risk of losses due to these causes. It would be 

possible to construct "hazard gradients" running through the areas, based on criteria such 

as, number of offiying reefs, ruggedness of the coastline, traffic density, number of days of 

poor visibility per year, but it is.difficult to see what useful contribution this would make to 

the present study since the macro-environment is composed of elements which either 

cannot be varied or change only very slowly over time. The mobile nature of the fishing 

fleet and the national system of training mean that special vessel types and training schemes 

designed for certain areas are, in the main, unfeasible propositions. The analysis must 

therefore move on to description of the micro-environment, over which control is more 

easily exerted. 

3.11 Chapter summary 

o The salient features of the macro-environment in which UK fishing vessels operate are 

summarised in Table 3 .11. 1. 

• Most fishing by UK vessels takes place within 200 miles of the UK coastline. Within this 

general region, five areas of operation are identified, each with different geographical, 

meteorological and traffic situations. 

o The northern North Sea area sees the most eclectic range of fishing activity and ports 

there are the base for the most modern, and the largest fishing vessels in the UK fleet. 
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• The central North Sea has the least hazardous coastline of the five areas and supports 

the least amount of fishing activity. 

• l'he English Channel has the greatest density of merchant traffic of the five areas and 

fishing operations there are complicated by the existence of a Traffic Seperation 

Scheme. 

• The ragged coastline and the numerous islands and reefs in the Scottish West Coast area 

make it the most likely venue for groundings. This areas also supports the highest level 

of fishing activity of the five areas. 

• Assigning levels of fishing activity in the five areas on the basis of Licensing District for 

fisheries .management purposes is not a sound method of arriving at a figure for numbers 

of vessels 'at risk' in these areas. 
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Chapter4 

THE UK FISHING VESSEL MICRO-ENVIRONMENT 

4.0 Introduction 

"Its fine to hae the skipper's job 
If luck signs on as mate, 
For then ye 're called. a clivver chief. 
But should that mate desert ye well, 
The job 's nae just so great, 
For ye 're called an ees/issfeel." 

Peter Buchan, 'Stonny Bank' 
(clivver chief= clever fellow; eesliss feel= useless fool) 

75 

In this Chapter, conditions on board fishing vessels are examined with particular attention 

being given to features of watchkeeping systems and the stressors that may impinge on the 

efficiency of watchkeepers. Findings are presented for British fishing boats in general and 

also on a UK regional basis where this is appropriate. Unlike the merchant shipping 

industry, where the working conditions have been observed, measured and fairly well 

documented (e.g. MOREBY, 1975; SAGER, 1995; SCHAEDEL, 1995) little 

comprehensive infonnation is available on the conditions fishing vessel watchkeepers 

typically operate in. STRANKS {1994) lists physical environmental sources of stress in the 

workplace as; inadequate temperature control, poor workplace layout, poor illumination, 

excessive noise levels, inadequate ventilation, inappropriate work patterns and long hours. 

To these can be added the physical stress of perfonning a job of work on a platfonn that is 

constantly moving, often quite violently. There are also the psychological stresses specific 

to the fishing industry cited by HEINRICH ( 1988) in a Dutch study, which result from 

quotas and other fishing restrictions, financial pressures, awareness of risks, manning 

problems and problems in domestic life. 
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Monitoring the the onshore working environment, in factories, shops, construction sites etc. 

is the concern of the UK Health and Safety Executive (HSE) but at present its mandate ends 

"at the quayside" with respect to fishing vessels. The MSA has assumed responsibility for 

drawing up a Code of Safe Working Practice for the merchant shipping industry, which 

embodies the relevant European Union Directives and takes account of the 1978 

International Convention on Standards of Training, Certification and Watchkeeping 

(STCW). A similar Code for the fishing industry has been mooted by the MSA and this 

would include, amongst a range of other matters, reference to the 1995 STCW-F (a 

variation on the 1978 STCW convention specifically for fishing personnel) and the relevant 

EU Directives (pers. comm. Mr A. Dean, SFIA Technology, Hull, 1997}. There are now 

16 EU Directives, of which 11 have application in the shipping industry where workers are 

employed - the European Court of Justice having decided that share fishermen, unless they 

are joint owners of the vessel, are such (FISG, 1996). In addition to these main Directives, 

there are "daughter" Directives, one of which is 93/103/EEC Fishing Vessels, but little in 

this has any direct relevance to watchkeeping. The implementation of a Code of Practice 

for fishing boats is probably unlikely for many years since an extensive process of 

consultation with the fishing industry would need to take place and this could lead to 

protracted discussion, particularly over its financial cost to fishermen and how it might be 

effectively enforced. 

4.1 Crew size and delineation of labour 

Table 4.1.1, which is based upon a combination of questionnaire response data, interview 

data and articles in the primary UK fishing trade publication, ''Fishing News", gives an 

indication of the numbers of crew sailing on different types of British fishing vessels in the 

mid-1990's. 
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A broad relationship between fishing method and vessel size exists and both of these 

factors, along with the level of mechanisation and automation present on individual vessels, 

influences the number of crew carried. 

type of vessel 

purse-seiner I petagie trawler 

demersal otter trawler 

beam trawler 

demersal seine-netter 

static netter 

crabber 

long liner 

Table 4 .1.1. Crew sizes on different types of fishing vessels in the UK fleet. 

A common feature is that every vessel has a designated skipper even though, particularly on 

some of the larger pelagic fishing boats, there may be a number of holders of "skippers 

tickets" in the complement. Excepting of course, small single-handed vessels, it is usual for 

the second and additional crew members to assume some role to complement that of the 

skipper, for example as engineer or cook. When the crew exceeds four, one of the crew 

members, who may or may not actually hold the appropriate formal qualification, will 

normally assume the position of mate. 

On smaller boats with up to three crew, the delineation of labour is blurred but the 

respective roles and responsibilities become much more clearly defined as vessel size 

mcreases. Responsibility for safe navigation, selecting fishing grounds, administration and 

overseeing the deployment and recovery of gear invariably rests with the skipper. With the 

enginerooms on fishing boats being unmanned, he will also monitor and control a number of 
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systems from the wheelhouse. The mate tends to be responsible for overseeing the work on 

deck, including maintenance of fishing gear, primary processing and stowage of catches. 

While at sea, the engineer (often referred to in the UK fishing fleet as the "driver") carries 

out routine inspection and maintenance work on the engine(s), winches and hydraulics, but 

also works on deck during shooting, hauling and catch processing. He will usually operate 

the winches where these are not controlled by the skipper from the wheelhouse. The cook 

will obviously attend to the preparation of meals and snacks and, like the engineer will also 

work on deck during shooting and hauling and dealing with the catch. 

The regime outlined above is a general description of the respective roles and will vary, for 

example on some of the larger pelagic purse-seine fishing vessels, the cook will do little 

more than ,prepare food, his only duty beyond this being arranging the float line as it comes 

through the hydraulic hauling system. At the other extreme, a skipper may also act as the 

engineer or cook on a small 2 or 3 man vessel. 

4.2 Working hours 

The raison d 'etre for a fishing vessel is catching as much fish as possible in the shortest 

time, and return them to port to be sold. To this end, hours of work regimes on UK fishing 

boats are infinitely variable and impossible to generalise. At the one extreme, some beam 

trawlers operating from ports on the English east coast have a fairly well ordered system 

within which each member of the crew has an unbroken off-duty interval of six hours during 

each 24 period, excepting where some major problem requiring all hands arises. At the 

other extreme, demersal seine-net boats operating from ports in north-east Scotland spend 

long periods steaming to fishing grounds, perhaps the Bergen Bank in the northernmost 

reaches ofthe North Sea or the Rockall Bank, one and a half days steaming timewest of the 
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Scottish mainland, but once fishing starts the entire crew is likely to be working round the 

clock with sleep only available in brief cat-naps, 

The advent of new fishing techniques can have a remarkable effect on working hours. The 

introduction of "twin-rig" demersal otter trawling for Norway lobster (Nephrops 

norvegicus) since the late 1980's for example, changed what was once regarded as one of 

the most sedentary modes of mobile fishery in the UK into one of the most demanding. 

Previously, crews on Nephrops boats had the luxury of six hour hauls producing catches 

which would take, on average about 2 hours to sort, clean and stow, giving four hour rest 

periods for all except those keeping watch, each haul. Twin-rig trawling has increased 

catches rates by more than double (pers. comm. various fishermen, 1994/95) with the result 

that catches from the same haul length are taking five hours to deal with, leaving very little 

time for rest once fishing has started. 

At present, those employed in sea fishing are excluded from the European Union Working 

Time Directive, along with junior doctors and others involved in work at sea, i.e. offshore 

oil workers. This situation may change however, a recent written answer to a question in 

the UK Parliament (SFIA, EPB 1997) indicating that the British Government is about to 

enter into consultation in this regard. While the opinion of fishermen on this matter was not 

tested in the course of this study, there can be little doubt that any attempt at legislation 

would be met with strong opposition from the industry. It would also be virtually 

impossible to effectively enforce legislation in this area. 
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4.3 Fishermen's training and qualifications 

Traditionally, British fishermen went to sea at a young age and after a specified minumum 

length of time working on board approporiate vessels, became eligible to attempt the oral 

and written examinations leading to Department of Transport (fishing) Certificates of 

Competency. This is known as the "ticket" system and has (along with raising the financial 

collateral to invest in fishing boats) formed a career progression route for fishermen through 

the award of mate's, skipper's and more recently, engineer's tickets. 

Enquiries to the MSA and the UK Register of Shipping and Seamen revealed that no data 

currently exists regarding the number of practising fishermen in the UK who hold tickets 

although the former has invested £20 000 in researching this very point (Pers. Comm. UK 

Register of Shipping and Seamen, Cardiff, 1996). 

Resulting from international legislation which evolved over thirty years (Figure 4.3.1), 

October 1995 saw a new regime of qualifications for fishermen launched in the UK, based 

upon nationally recognised Vocational Qualifications (VQ's). The VQ system is planned to 

eventually replace the ticket system but the main training colleges are unwilling to embrace 

this change so the two are currently running alongside each other. Rather than being based 

upon oral and written examination, VQ's are assessed by the candidate presenting evidence 

of consistent competence in a variety of simulated navigational situations and to 

demonstrate understanding of the basis for their actions. The rationale for the introduction 

of the VQ system is that it is more flexible than its counterpart and can thus thus adapt 

better to new technologies as they are introduced and preparation for assessments can be 

more readily fitted around the fisherman's work schedule. The VQ also represents a move 

away from what is perceived as a test of academic ability towards a demonstration of 

practical skills. 
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The introduction of the VQ programme is regarded by some sectors of the British fishing 

industry as being a 'knee-jerk' reaction to the lntemational Convention on Standards for 

Training, Certification and Watchkeeping for Fishing Vessels (STCW-F) which was 

published in draft form by the International Maritime Organisation (IMO) in 1995. This 

convention is the end result of around thirty years of work at international level to develop 

appropriate minimum levels of knowledge required for certification of fishing personnel at 

given levels (Figure 4.3 .1 ). Indeed M Notice No. 1634 (M SA, 1995) actually states, "VQ 's 

have been introduced in compliance with the STCW-F (95)". Those responsible for 

compiling the VQ programme and its associated "units of competence" however, contend 

that these were in place before the STCW-F requirements were agreed, (pers. Comm, MrS. 

Potten, SFIA, 1996). The argument is largely academic however since both the British VQ 

training material and the STCW-F seem to be founded upon the Guidance Document on 

Fishermen's Training and Certification, published by IMO in 1988. 

Fishermen's responses in a questionnaire study show that at the time of taking their first 

navigational watch, 13% of fishermen had received no training at all and a further 24% had 

previously shared watches but had not been formally trained in any way, (Figure 4.3.2). 

Less than one quarter of British fishermen have received any shore-based training in 

watchkeeping at the time of taking their first watch. 
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General Conference of the International Labour Organisation (ILO) 
adopts Fishermen's Competency Certificate Convention, 1966 
(No.l25) in order to establish standards of qualifications for certificates 
of competency entitling persons to perform the duties of skipper, mate 
or engineer on board a fishing vessel. 

International Convention for the Safety of Life at Sea (SOLAS) 1974 
(Regulation 13, Chapter V) requires contracting governments to adopt 
measures for the purpose of ensuring that all fishing vessels are 
sufficiently and efficiently manned. 

International Conference on Safety ofFishing Vessels, 1977 notes 
Regulation 13 of the 1974 SOLAS Convention and adopted Resolution 
8. This invites the International Maritime Organisation (IMO) to 
consider the problem of training and certification of the crews of fishing 
vessels (outlined in the Torremolinos International Conference for the 
Safety of Fishing Vessels, 1977) in collaboration with the Food and 
Agriculture Organisation (FAO) of the United Nations. 

IMO prepares and adopts a number of resolutions -
A484(XII); A539(Xll); A622(XV); A623(XV) . 

Sixth Session of Joint IMO/ll.,O Committee on Training considers 
proposal to prepare document for guidance on fishermen's training. A 
Joint Working Group, including representatives of FAO, ILO and IMO 
produce a Guidance Document which is approved by the Maritime 
Safety Committee of the IMO. 

Document for guidance on Fishermen's Training and Certification is 
published by IMO. 

Draft Convention on Standards of Training, Certification and 
Watchkeeping for fishing vessels (STCW-F) is published by IMO. 

Figure 4.3.1. Recent evolution of international protocol that has driven watchkeeping 
training for fishermen. 
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Figure 4.3.2. Type of training in navigation and 'Rules of the Road at Sea' previously 
received at the time of taking a first navigational watch. 

Regional analysis of type of training prior to taking a first watch indicates that watchk.eepers 

on vessels operating primarily in the Northern North Sea have the lowest level of training 

while those on vessels fishing off the Scottish West Coast and in the Central North Sea are 

best prepared through training, (Figure 4.3 .3). 

type of training 

substantial shore-
based training 

r-
some training --ashore and 'on the 

~ 

some instruction 
'on the job' 

no training but had 
shared watches 

no training at all 
~ 

0 10 20 30 

• Scottish West Coast 

OVIIestern Approaches 

la English Channel 

OCentral North Sea 

• Northern North Sea 
__J 

40 50 60 

"to proportion of 
fishermen 

Figure 4.3 .3. Regional analysis of previous training undertaken by watchkeepers on fishing 
vessels in navigation and 'Rules of the Road ' at the time of taking a first navigational watch. 
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As a 'follow-up' to this section, fishermen were asked in an anonymous questionnaire study 

to respond honestly to the question; 

'While on watch, do you ever find yourself in situations where you are unclear of 

the appropriate course of action? Examples might be when encountering a tug 

towing a barge on a long tow and being unsure about which way to alter course, or 

being faced with a large vessel which should give way but shows no sign of doing 

so, leaving you to make a decision?" 

Figure 4.3.4 illustrates the proportions of different responses to this question given by 

fishermen operating in the five areas. A roughly similar pattern emerges; around half of all 

British fishermen admit to sometimes being unclear about what action they should take in a 

traffic situation. An average of 17% of them said they are unsure of themselves either 

often or very often and only 8% intimate that they always have a clear idea of what action 

they should be taking. 
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•Central North Sea 

CJEnglish Channel 
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Figure 4.3.4. Frequency of being unclear of the appropriate action in a traffic situation. 

4.4 Watchkeeping schedules and hours ofwork 

Watchkeeping schedules on UK fishing boats are not standardised and tend to vary 

according to a number of factors including vessel size, length of fishing trip, type of fishery, 

size of crew and the general ethos of the operator. Questionnaire responses from fishermen 

in 22 UK. fishing ports were the main source of the information presented in this section. 
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Where more than one completed questionnaire related to the same vessel, only one was 

actually used. 

On 79% of British fishing boats, the watchkeeper will be on duty alone. 63% of vessels 

operate watchkeeping rota systems in which most of the crew will be included, (Figure 

4.4.1). 

Regional analysis of the situation (Figure 4.4.2) reveals that it is far more likely that the 

skipper or the skipper and mate between them will take all of the navigational watches in 

the English Channel and the Western Approaches!Irish Sea areas. In the waters around both 

the east and west coasts of Scotland, the prevalent system is for all or most of the crew to 

be included in a watchkeeping rota. 

skipper or mate, 
alone, 10% 

aiVrrost of crew , 
in pairs, 21% 

skipper, 
alone, 6% 

aiVrrost of crew , 

alone, 63% 

Figure 4.4.1. Number and rank of personnel taking navigational watches on UK fishing 
vessels. 
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Figure 4.4.2. Regional distribution of rank and number of persons taking watches on UK 
fishing vessels. 

Based upon questionnaire responses from a representative sample, it was calculated that 

almost half ( 48%) of the boats in the UK fishing fleet employ 2 hour steaming watches. A 

further 32% use 3 hour spells of duty while the remaining 20% use either longer or shorter 

periods (Figure 4.4.3). A very small proportion (3%) employ watches of6 hours duration. 

3hrs 
J20A, 

4hrs 
9% 

5hrs 6hrs 1 hr 
0% 3% 2% 

1.5hrs 
6% 

Figure 4.4.3. Percentage proportions of the UK fishing fleet employing different watch 
durations while steaming to, from and between fishing grounds. 
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Figure 4.4.4 shows that while fishing, no vessels employ watches ofless than 2 hours and 

89% ofthe fleet uses 2, 3 or 4 hour durations (38%, 21% and 30% respectively). Double 

the proportion of vessels employ 6 hour watches while fishing than do while steaming, 6% 

cf3%. 

5hrs 

5% 

6hrs 1 hr 1. 5 hrs 
6".4 0% 0% 

3hrs 

21".4 

Figure 4.4.4. Percentage proportions of the UK fishing fleet employing different watch 
durations while towing fishing gear. 

Throughout the whole of the UK fishing fleet , the mean lengths of watches are~ 2.5 hours 

while the vessel is steaming and 3.1 hours while fishing mobile gear. The modal watch 

duration in both conditions is 2.0 hours with watches ranging in duration from 1 to 6 hours 

while steaming and 1.5 to 6 hours while fishing. Table 4.4.1 gives a breakdown of regional 

variation within these overall figures. From this it is clear that watchkeepers on fishing 

vessels operating in the English Channel tend to spend longer on watchkeeping duty than 

those on vessels in other areas. The shortest average watch duration occurs on vessels 

operating off the west coast of Scotland. Those vessels operating in the Northern North 

Sea showed the most uniformity in watch length with 61% using 2 hour watches while 
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steaming although this was not carried into fishing watches where, as in the other areas, 

there was no discernible pattern. 

tll'ell steaming (hours) range 

,Northern North Sea 2.28 

Central North Sea 

>English Channel 

Western Approaches 

Scottish West Coast 2.21 1.5-3 1.5-4 

Table 4.4.1. Mean duration in hours, of steaming and fishing watches in different areas of 
operation. 

Figure 4.4.5 offers a graphic inter-regional comparison of mean watch durations in both 

fishing and steaming modes and clearly shows the proclivity for longer watches in the 

southern half of the UK. 

Later in the questionnaire study, fishermen were asked whether on their boats, there were 

clear guidelines regarding a number of important points. These are listed in Table 4.4.2, 

along with the percentages of yes and no responses. Fishermen were asked, "On your 

vessel, are there clear guidelines regarding the following?" 
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Figure 4.4.5. Inter-regional comparison of watch durations. 
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• procedure for taking over the watch 

• using electronic navigation equipment 

• kreping an effective lookout 

• · circumstances in w.hjch the skipper, should be called 

• using the autopilot 

• using the engine controls 

• procedure for when visibility becomes reduced 

• procedure in the event of an emergency 

Table 4.4.2. Percentage responses to questions regarding watchkeeping guidelines in a 
questionnaire study. (n = 78). 

The author' s personal experience in the UK fishing industry gave cause to question the 

precision of these responses so a representative sample of twenty fishermen working on 

different boats was asked exactly the same questions during personal interviews. The 

interview responses are shown in Table 4.4.3. 

• procedure for takin_g over the watch 

• using electronic navigation equipment 

• keeping an effective lookout 

• circumstances in which the skipper sbouJd be called 

• using the autopilot 

• using the engine controls 

• procedurce for when visibility becomes reduced 70 30 

• procedure in the event of an emergency 50 

Table 4.4.3. Percentage responses to questions regarding watchkeeping guidelines m 
personal interviews. (n = 20). 

A Chi-squared (X2
) test was applied to the two sets of results to test whether the diferences 

between the proportions were the result of chance. The resulting x2 statistic of 20.85 
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suggests that the two results are significantly different at the I% level (p = 18.47). One 

may therefore assume that in the questionnaire study, where the fishermen had time to 

consider their answers, a number of them were simply providing the answer that they felt 

conformed with what was expected. In the interview situation, this time for consideration 

of the response was not available. 

4.5 Exposure to noise 

Industrial research into the stress effects of loud and continuous noise tend to fall into three 

categories; monitoring, motor skills and cognition and each of these has some bearing on 

watchkeeping (see JONES, 1983 for a competent review). Previous work has not thrown 

up any clear principle that can be generalised and it would appear that loud, continuous 

noise can have positive, negative or even no discernable effect on performance in each 

category. 

An SFIA Technical Information Service pamphlet (SFIA, 1988) states, 

"Modem fishing vessels are highly mechanised, relatively small and have all the 

necessary conditions to produce high noise levels. This is not the case with all 

vessels but there are frequent serious cases of this growing problem. " 

Noise in the wheelhouse of a fishing boat is invariably a combination of sounds of different 

frequencies that, for the purpose of measurement, may be summed together into one value 

The sources of this noise are varied and while some will be constant, others will emit 

different frequencies and sound levels at different stages of the fishing cycle. As an example 

of the former, one-of the vessels monitored in this study had a rotary converter housed in a 

cupboard at the rear of the wheelhouse to provide the appropriate level of electrical power 

for some of the electronic equipment. This gave out a constant high pitched whine 

throughout the duration of the fishing trip. More variable sounds were provided by 
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hydraulic systems while they were in use and by the main engines where the engine 

revolutions needed to be altered. 

Noise levels were measured on board four working fishing boats using a sound level meter 

with an octave band filter set incorporated, manufactured by CEL Instruments (UK) Ltd. 

(Figure 4.5.1). This piece of equipment is capable of approximating the auditory response of 

the human ear by automatically applying a frequency-determined weighting (A) to the sound 

level measured in decibels (dB) to give readings in dB(A). When assessing a watchkeeper's 

exposure to noise, it is the dose that is important, i.e. the duration of exposure in relation to 

the noise intensity. To address this point, the unit of Leq has been used to express the noise 

dose experienced by the watchkeeper. The Leq is the equivalent continuous noise level 

which would give the same total amount of sound enegy as fluctuating noise. For most 

industrial workers, an Leq period of 8 hours is appropriate but the SFIA declared that in the 

case of fishermen, a 24 hour Leq would be more meaningful in a general study of the 

working environment on fishing boats (ANON., 1988). Table 4.5.1 shows the Leq results 

that were obtained. 

Fig 4.5.1. C.E.L. Soundmeter. 
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Table 4.5.1. L"'~ noise values for various compartments on board different vessels. Figures 
in brackets are maximum dB(A) values (nvr = no value recorded). 

Monitoring in addition to finding the L"'~ values showed that the maximum dB(A) values , 

shown in brackets in Table 4.5.1, were achieved in the larger vessels while extremely noisy 

hydraulic systems were in operation during gear retrieval. Very high dB(A) readings were 

also made in the wheelhouses during hauling when VHF radios were on high volume 

settings. In the smallest vessel, which was 36 years old, the engine compartment was 

separated from the wheelhouse by only a thin wooden bulkhead with a door which the 

skipper, for no apparent reason, insisted upon keeping tied open for much of the time. The 

result was that normal conversation was virtually impossible at the steering position. 

In January 1990, regulations regarding noise at work came into force for industry in the UK 

(SI No. 1790, 1989). In these, three "action levels" are defined, the first two relating to 

daily personal noise exposure and the third to exposure in a single event. The maximum 

noise dosages for given time durations at the second action level are shown in Table 4.5.2. 

Comparing values in Tables 4.5.1 and 4.5.2 indicates that on the 18 metre beam trawler, any 

random 2 minutes spent in the engineroom without hearing protection would equal the 

maximum noise dose while any more than 30 seconds in the engineroom at the peak noise 

level would mean the second action level would be exceeded. 
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The Leq values shown in the first column of Table 4.5.1 are of greatest relevance to this 

study since these relate the level of noise to wruch watchkeepers would be subject during 

the course of watches. 

limiting dB(A) 

90 

93 

96 

99 

102 

105 

108 

lH 

114 

117 

120 

maximum~duration of exposure 
-

8 hours 

4 hours 

2 hours 

30 mins 

15mins 
-

7 mins 

4 mins 

2 mins 

1 min 

30 secs 

Table 4.5.2. Statutory UK maximum noise dosages for given time durations. (Source: 
HSE, 1990). 

4.6 Vibration 

Accurate specification of the effects of vibration on watchkeepers would be a very onerous 

task, largely because of the complex manner in which vibration impinges upon the body. 

SHOENBERGER & HARRIS summarised the problems very succinctly and survey of the 

ergonomics literature suggests that their early hypothesis still holds~ 

"Quantification of vibration responses will never reach the accuracy achieved in 

acoustics, due to factors such as the lack of a unique receptor for vibration, and 

the multiplicity of vibration transmission paths and the fact that vibration 

transmission to the body may be greatly altered by changes in body position and 

muscle tone " 

(SHOENBERGER& HARRIS, 1971) 
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While vibration levels were not formally measured on the vessels used in this study, this is 

nevertheless a clear potential source of stress and ultimately fatigue in watchkeepers. In the 

larger vessels there was some vibration, emanating from the main engine, felt through the 

wheelhouse floors, but this was not pronounced. On all three of these bigger boats, when 

the watchkeeper was seated in the deeply upholstered wheelhouse chair, little more than a 

faint throb could be felt while the vessel was either steaming, or towing the fishing gear. 

The conning position of the smaller crabber was a different matter however, and when 

either seated on the small bare wooden shelf seat or standing in the wheelhouse, the 

watchkeeper was subject to considerable vibration. 

In the mess areas on the larger boats, slightly more vibration could be felt than in the 

wheelhouses but again this was not at a disconcerting level. In the accommodation cabins 

however, vibration was quite pronounced in some of the bunks, especially those near the 

engineroom bulkhead and those very close to the propeller shafting and stem tube. The 

vibration emanating from the propulsion system became irregular and at times exaggerated 

while the vessels were towing fishing gear before a seaway. While not directly affecting the 

watchkeeping environment, vibration in bunks could well be a source of weariness and 

fatigue, but it was not possible to test this hypothesis during this research work. 

4.7 Temperature and ventilation 

Many studies have been made on the effects of heat and cold on mental and physical 

performance and several general reviews have been done (e.g., McCORMICK & 

SANDERS, 1983). The physiological relationship between an individual and his thermal 

environment is well established but the psychological equivalent is much less so. Heat 
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appears to have a more adverse effect on mental performance than cold, RAMSEY & 

MORRISSEY (1978) providing a comprehensive review of the effects of heat in tracking 

and vigilance tasks and summarising that exposure to higher temperatures over longer 

periods are likely to yield greater performance decrements. 

The common index for evaluating exposure to different (particularly hot) temperature 

environments is the Wet Bulb Globe Temperature (WBGT) value (ISO, 1982; WHO, 

1969). This incorporates air temperature, humidity, radiant heat and air movement into one 

single value. For practical reasons, it was not possible to use this measurement in the 

present study but air temperatures were measured in the workspaces of four vessels using a 

mercury thermometer. The results are shown in Table 4.7.1 which gives an L50 value, 

corresponding with the mid point of the cumulative frequency of air temperature readings, 

and in brackets, the high and low values. It should be noted that these data were derived 

from measurements made over full 24 hour cycles during the months of April and August 

and may not be representative of temperatures that might prevail at other times of the year. 

.. ~ ----- . ---. ------ ------------ -------------
wheelholl!le mwdo;'ck accomm. engine I'OIIm 1fl>rl!fng d""k Osbroom 

----- -- ---- -- - --- - -- - - -. . --- ---
lS m beam trawler 21 (27-11) 23 (28-11) 18 (20-14) 32 (3H5) 9 (11-4) ~2 (-l- -2) 

- - ------"· '-...i'--- --- .o_· 

; 22 m otter trawler 17 (23-7) 21 (25-19) 20" (22-20) 34 (37-28) 17 (21-11) nvr 
.. .. --··- ---

• 24 m pair-seiner I 19 (22-18) 21 (24~20} 19 (20-17) 32 (32-33) 19 (24-15) 1 (1~) I 
.. . - - - -

12 ma'abber 26 (28-25) nvr 18 (19-17) nvr 17 (20-16) nvr 
~ -·· . - - --. . - . - - -

Table 4.7.1. L5o air temperature values for various compartments on board different vessels, 
recorded in degrees Celsius. Figures in brackets are maximum and minimum values (nvr = 

no value recorded). 

On the assumption that keeping watch on a fishing boat lies somewhere between "office 

work" and "light work" in terms of physical effort, then with the exception of the small 

crab-potting vessel, the wheelhouse temperature values recorded compare favourably with 

the working temperatures recommended by the UK Health and Safety Executive, listed in 
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Table 4.7.2. Although temperatures in the mess areas were on average within acceptable 

limits, heat from cooking appliances meant that the "highs" were attained just before and 

during mealtimes when these areas were most used. Most main meals were thus consumed 

in relatively high temperatures, up to 28°C. On all three of the larger boats, the temperature 

in the shared sleeping space was quite steady, rising only gently as the fishing trip 

progressed. 

- ·~-- --
type o£work 

sedentary/offiw work 

light work 

heavy work 

19.4-22.8 

15.5-20 

12.8 -15,6 

Table 4.7.2. HSE recommended working temperatures. (source: HSE, 1989) 

In general, watchkeepers were observed to open windows as a cooling mechanism 

whenever wheelhouse temperatures rose markedly and most seemed quite keen to have the 

space well ventilated. This may not be the case during winter however when much lower 

outside temperatures might lead this action to produce temperatures too low for the 

watchkeeper's comfort. The accommodation spaces on the larger vessels were ventilated 

by open hatches or fans while their machinery spaces were ventilated by powerful fans. 

Mess areas all had windows which were permanently open except where spray was possible. 

The most useful measure of ventilation is the number of "air changes" in one hour but it 

was not possible to assess this for the vessels in this study. 

4.8 Lighting 

During the day, strong sunlight may result in glare which reduces the quality ofwatchkeeper 

vigilance because radar and echosounder VDU screens are difficult to view and other craft 



98 

or navigational hazards missed in visual scanning. The watchkeeping task is complicated 

during the hours of darkness since the person on duty not only needs to be acclimated to the 

dark to visually detect the lights of other ships and navigation signals but also needs some 

lighting system that allows him to refer to charts and other paperwork without losing his 

night vision. 

Using a photoelectric photometer, manufactured by Salford Electrical Instruments Ltd. 

(Figure 4.8.1), illuminance during daylight was measured in lux at the top of the backrest of 

the watchkeeper' s chair. Lux levels clearly depended upon the external lighting 

environment and varied between 320 lux on a dull and overcast day and 1250 lux when the 

sun was shining. These are acceptable values given that the HSE Guidance Note, HS(G)38 

'Lighting at Work' (ANON. 1987) specifies an average illuminance of 200 lux as being 

adequate for 'work requiring perception of detail' . This approach does not deal very well 

with the question of glare however which in this case can only rely on a visual assessment. 

Figure 4.8.1 Photoelectric photometer. 
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During daylight, the skippers and mates of the vessels observed used "brilliance" and 

"contrast" controls on the VDU displays to counter the effect of bright sunlight, resetting 

these appropriately as darkness set in. Crewmen on watch were not observed to make 

similar adjustments at any time. On at least two occassions, it was noted that where bright 

evening sun faded into darkness over the course of a crewman's watch, the VDU displays 

became un-necessarily bright to the extent of appearing "fuzzy" and possibly interfering 

with all round vision through wheelhouse windows. 

The working deck lighting on one of the vessels observed seriously impacted upon the 

watchkeeper's ability to visually scan the external navigational environment. Floodlights on 

the foremast were aimed back towards the three quarter length deck shelter so that the 

winch operator, who stood forward at the winch, could see the length marks on the warps 

which paid out over the shelter. The result was that the watchkeeper would have had great 

difficulty in seeing any other vessel approaching from a head-on direction. The lights were 

sometimes extinguished when the gear had been shot away but were more usually left on 

until the fish from the previous haul had been dealt with and stowed, this taking up to three 

hours where a good catch had been obtained. When the skipper was asked about this at the 

end of the trip, he said that he was aware of the problem but relied on the radar display 

while-these lights were in use. 

During darkness, only one of the three vessels had an operational red night light in the 

wheelhouse. Of the other two, a low power chart table lamp burned permanently in one 

wheelhouse, while in the other, the watchkeeper had to switch on the full wheelhouse 

lighting whenever it was required and then re-adapt his night vision when the lights were 

switched off. This latter situation may prevail in as many as 47% of British fishing boats 
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since, in a questionnaire study, only 53% of fishermen said that their vessels were provided 

with separate wheelhouse lighting system for use during darkness. 

4.9 Fishermen's attitude to working conditions 

It is widely recognised that fishermen worldwide are a hardy breed who are reticent when it 

comes to commenting adversely about their working conditions. UK fishermen are no 

exception to this adage and the culture of fishing communities bears evidence to the manner 

in which they have lived for centuries with tragedy and death. In Shetland for example, up 

until fairly recently, the womenfolk would knit jumpers for their men in unique "Fairisle" 

patterns, so that if the men were lost at sea, the bodies could be identified by the women 

when they washed ashore. In North-East Scotland, fishermen wore gold ear-rings so that if 

they were lost at sea and their bodies subsequently washed ashore, the ear-rings could be 

sold to pay for their buriaL Although they are vociferous in their complaining about fish 

prices, quotas and other legislation (for examples of this, the reader is referred to any 

edition of the UK fishing trade publication, "Fishing News" published by EMAP Heighway 

Ltd.) fishermen are hesitant to challenge their working conditions and are often fatalistic or 

devoutly religious and happy to devolve responsibility for safe passage to an omnipotent 

power. 

During interviews and in conversations in the course of this research, the only aspects of 

their immediate environment that fishermen complained about were respectively, fellow 

members of their crews failing to "pull their weight" and food -that was not to their taste. 

Little negative comment was made concerning working hours, noise and vibration levels or 

the general element of danger that prevails during fishing operations. 



101 

Defining the causes of this stoical approach is in many ways a matter of conjecture. There is 

undoubtedly an underlying element of "machismo". While it very difficult to measure, and 

no attempt has has been made to do so, is is nevertheless clear that many fishermen appear 

to derive considerable satisfaction from their ability to cope with arduous conditions. 

Younger fishermen in particular appear to revel in this ''work hard" ethos and tend to carry 

it ashore during their leaves to create a "play hard" culture in which heavy drinking and fast 

cars often figure. Another factor may be the remuneration regime that almost all UK 

fishermen are subject to. Except where repairing damaged gear is the cause, long spells 

working hard on deck are generally associated with big catches and given the share system 

of payment that prevails, these mean greater rewards at the end of the trip. Prolonged 

periods of duty may therefore be viewed in a positive light with the negative effects, 

possible fatigue during watchkeeping duty for example, being ignored. 

In personal interviews, 20 individual fishermen were asked whether they had ever refused to 

take a navigational watch on the grounds that they were dangerously tired after spending a 

very long time working on deck or (in the case of skippers) in the wheelhouse. None said 

they had, and all commented that this was something that simply was not done since this 

would be seen as weak and "letting down" the rest of the crew. 

4.10 Fishermens' perceptions 

It is ofinterest to know how fishermen themselves perceive the inherent risk attached to 

their work, for example, how they might rank the various causes of fishing vessel loss. 

Although no reference to fishermen could be found, much of the work in this general field 

has been aimed at determining the operating principles of the mind (known as "heuristics") 

since they act to reduce the complex task of making probablistic judgements to something 

that the individual can comfortably deal with. In this respect, and in particular with regard to 
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the rather emotive subject of vessel loss, one of the heuristics - "availability" - is of special 

interest. 

According to TVERSKY & KAHNEMAN (1973), individuals base their judgements ofthe 

likelihood of some given occurrence upon the ease with which that particular subject comes 

to mind. Things that come to mind easily are judged to be quite likely and vice versa. Thus 

when individuals are asked to make a judgement concerning the safety of fishing vessels 

with regard to collisions, they will tend to attribute a high rating if they cannot readily 

remember any such incidents, and a low rating where they are able to think of a collision 

incident very quickly. This is arguably a useful way of making judgements, since one of the 

factors aiding recall is the frequency in the past experience of the person concerned, of that 

particular type of event. Recall however, is also influenced by vividness. Thus a graphic 

description of an incident makes recall easier than a brief entry on the inner pages of a 

newspaper. Consequently, the availability heuristic, although generally useful, may 

introduce bias and more discussion of the risk of collision is likely to raise the "subjective" 

risk simply because it makes it easier to think of the risks. 

Throughout 1991 and 1992, nine British fishing vessels were lost in collision events, a 

number of which were vividly reported in the media and had widely publicised repercussions 

lasting over many months - the Ocean Hound, the Wi/he/mina J and the Margaret and 

Wi/Jiam //in 1991, the Suromaa, the Active and the Supreme in 1992. In the same period, 

seven vessels were lost in grounding events. In a survey in early 1993, fishermen were asked 

to estimate what percentages offishing vessels were lost in collisions and what percentage 

was lost in groundings. Figure 4.1 0.1 shows that the difference between the perceived and 

real situations was not far from being perfectly mirrored. 
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Figure 4.1 0 .1. Differences between real and perceived percentage of fishing vessel losses in 
collision and grounding events. 

Through the subsequent three years, 1993, 1994 and 1995, four vessels were lost in 

collisions, none of which events commanded a particularly high media profile and eighteen 

were lost in groundings. The previous question was again asked of a similarly representative 

group of fishermen in early 1996. Figure 4.1 0.2 indicates a stark difference in subjects' 

perception of the relative risk. 
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Figure 4.10.2. Differences in fishermen's perception of relative percentages of collision and 
grounding losses between 1993 and 1996. 

In a similar vein, it was proposed in this research to compare the questionnaire results 

shown in Figure 4.10.3 with a second set taken immediately after a high-profile collision or 

grounding loss, should one occur during the work. Fortunately for those who might have 
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been involved, but unfortunately for this research, no such event happened during the time 

alloted. 

human error 
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Figure 4.10.3. Fishermen's mean rank:ings, on a scale of 1-5, of the most common causes 
of fishing vessel traffic loss, by area (mean values are shown to allow for different size 
samples in each area). 

The availability heuristic has another side. JOB (1990) suggests a number of mechanisms 

which induce false perception of superior skill and safe operation in motor car drivers. One 

of these is that accidents and fatalities reported as occuring elsewhere, rather than impelling 

drivers to be more circumspect and safety-conscious, simply confirm feelings of driving 

superiority. FULLER (1988) agrees with this hypothesis, writing: 

"From behavioural theory, we can predict that every time a driver takes risks, 

either knowingly or otherwise, and "gets away with it", without any undesirable 

consequence, then that behaviour will be reinforced; that is; made more probable 

in similar circumstances in the future. " 

WOGALTER et al. (1987) found that the subjective assessment of risk decreases as 

familiarity with the hazard increases. If this is indeed the case, it could for example mean 
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that many of the losses that have occurred while no-one was at the helm may be the result 

ofthe watchkeeper having left the wheelhouse on a number of previous occassions with no 

adverse result, and so on for other risky behaviours, 

4.11 Aspects of the careers of UK fishermen 

The great majority of British fishermen come from fishing communities. In many cases, sons 

will follow fathers into fishing, often sailing on the same vessel as part-owners but equally 

likely to sail on board vessels owned by others. The reasons given by fishermen for entering 

the industry fall broadly into two categories - some see it as a "calling" while for others the 

alternative employment opportunities are extremely limited and lack the perceived 

excitement attached to fishing. The reality in a great many cases, is that it is ultimately 

difficult to separate the two since what may start off as a calling leads individuals inexorably 

into a lifestyle that is very difficuly to break out of To illustrate, a sixteen year-old who 

goes to sea to fish because his father did the same before him will find it difficult to retrain 

and re-orient himself to work ashore if twenty years on, at the age of 36 he decides that the 

job is not for him. This is borne out in the towns of Hull and Grimsby where after the 

decline of the British distant water fleet many former fishermen remained unemployed and 

to all intents and purposes, "unemployable" for decades ( pers. comm. Skipper T. Thresh, 

Fishing Manager, J. Marr & Sons, Hull, 1995). The manner in which income tax is levied 

on British fishermen also makes it difficult for fishermen to leave the industry. They are 

taxed under the "Schedule 4" pattern and are thus classed as self employed, paying their 

income tax in arrears rather than on a "pay as you earn" basis. In interviews, the majority of 

fishermen, particularly those with no financial interest in the vessels they sailed on, admitted 

to having had income tax problems at some point and said that tax arrears would make it 

difficult for them to leave the industry. 
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While no study has been done on the longevity of British fishermen anecdotal evidence 

suggests that it is rare for them to reach the statutory retirement age for men in the UK of 

65 years, while still working on fishing vessels of over 10 metres. In the course of research 

for this thesis, only two fishermen over the age of 65 years old were encountered. One of 

these operated a very small crabber single-handed and the other sailed as cook on board a 

24 metre long pair-seiner. Where fishermen have become owners or part-owners of vessels, 

the norm appears to be for them to phase themselves out of seagoing work during their late 

SO's, often gradually assuming the role of ship's husband and making and repairing fishing 

gear. Increasingly, share fishermen in the UK are investing in private pension provision 

within which they have the right to retire at age 55 under government regulations. 

4.12 Chapter discussion 

The way in which crewing systems are composed on larger fishing boats, including the 

duties attached to each rank has evolved over time and very broadly emulates that employed 

on merchant vessels. On vessels carrying five men or more, the role of each crew member 

seems to be fairly well defined and the structure appears to work quite efficiently. Although 

it was not observed during this study, the imprecise delineation of labour on many smaller 

vessels could easily lead to individual crew members, particularly the skipper, trying to 

attend to too many tasks, for too much of the time. The introduction of some requirement 

formalising the role of each member of the crew, this being related to time spent at sea and 

type of fishing done, would be a simple means of ensuring this is less likely to happen. 

Fishermen working long hours is a feature that is not easily addressed. The prescription of 

per se maximum work durations and minimum rest periods prior to watchkeeping duty 

would be difficult to justify since a regime that leaves one person dangerously fatigued will 

not necessarily have the same effect on another. This is recognised in M. Notice No. I 020 
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'Keeping a safe navigational watch on board fishing vessels' which is based upon Inter-

Governmental Maritime Consultative Organisation (IMCO) Resolution A.484(XII). This 

uses the phrase, " ..... sufficiently rested and otherwise fit for duty", rather than suggesting a 

per se rest period. Although intuitively one can of course say that a rested watchkeeper is 

preferable to an unrested one, fatigue presents a complex problem for research and the 

literature relating to maritime safety is festooned with glib references unaccompanied by 

supporting scientific evidence. Chapters 7 and 8 of this thesis deal respectively with the role 

of fatigue-related factors by measuring the extent to which they alter the points at which 

watchkeepers become cognitively overloaded and underloaded 

The fact that no record exists of the number of practising fishermen who hold qualifications 

in navigation and watchkeeping prevents the conceptual possibility of comparing rises or 

falls in the number of "ticketed" fishermen against rises and falls in the loss ratio resulting 

from traffic events. The MSAinitiative aimed at forming such a record may make this type 

of analysis feasible at some later date. 

While 37% of fishermen have had no training at all when they take their first navigational 

watch, two thirds of these say they have previously shared watches. This is probably an 

effective means of learning where the other watchkeeper is competent and clearly displays 

good practise but will probably have the opposite effect where this is not so. There is 

therefore a compelling argument for the implementation of some requirement for any 

instruction "on the job" to be done by personnel who themselves are properly trained and 

indeed, the data suggest that this is precisely how 39% of watchkeepers are trained before 

they take their first solo watch. The introduction of a formal VQ system of qualifications 

for fishermen, based on practical competence rather than academic ability, would therefore 
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appear to dovetail· well with this fairly prevalent informal system but only where the point of 

concern made above is addressed. 

If the possession of at least an elementary level VQ in watchkeeping was made mandatory 

for all fishing personnel sailing on vessels over I Om, before they were allowed to take a 

watch on their own, the data in this study indicate that less than 13% of fishermen would be 

directly affected, provided that shared watches became training sessions. Instruction in 

watchkeeping practise on the job is particularly common on vessels operating in the English 

Channel and Western Approaches I Irish Sea and the VQ system would therefore seem to 

be particularly suitable in these areas. 

Watchkeepers in the Northern North Sea seem to be relatively poorly trained, an ironic 

finding when it is noted that the area boasts the UK's two largest, best equipped fishermens' 

training centres - the Banff and Buchan College in Fraserburgh, Aberdeenshire and the 

North Atlantic Fisheries College in Scalloway, Shetland. When this is coupled with the 

finding in 3.2.4, that the most frequent situation in this area is for all of the crew to be 

included in the watchkeeping rota, a disconcerting picture emerges. M. Notice No. 1190 

states, 

" The need for competentwatchkeepers is self evident when making a landfall or 

navigating close to the coast, or in dense traffic, restricted visibility or severe 

weather conditions; yet casualties still occur where the man in charge of the watch 

in such circumstances is seriously deficientinlmowledge of navigation," 

Given the geographical and meteorological circumstances that prevail in the fishing areas 

around the northern half of the UK, it is difficult to see how this could be complied with 

where much of the crew is untrained though still included in a watchkeeping rota that is 

strictly adhered to. If a proper training on the job approach was embraced in these areas, 
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the situation could be dramatically improved. Information from the liraining Division of the 

SFIA suggests that for financial reasons rather than in the interest of providing the most 

appropriate form of training, the bigger training colleges want to stay with the ticket system 

rather than moving to on the job training with VQ qualifications (pers. comm., Mr Simon 

Potten, Training Coordinator, SFIA Training Division, 1996}. 

The question of when a watch duration becomes too long is one that is very difficult to 

answer. Although well over half of all UK vessels employ watches of two hours or less 

while they are steaming, watch lengths of up to six hours were noted in this study. Where 

the watchkeeper is well rested and not performing in a stressful environment, such as 

reduced visibility, heavy ship movement, excessive vibration, noise, heat or cold, this may 

not pose a problem. This research has shown that all of these factors may apply on fishing 

boats, often in concert and thus these "longer" watches may be a cause for some concern. 

Fishing boats operating around the southern half of the UK appear to display a proclivity for 

operating longer watch durations than those in the northern half SCHMIDTKE (1976) 

tested the performance of naval cadets on a radar-based navigation and collision avoidance 

system while they were on watch alone for four hour periods. He found a decrease in 

performance in the second half of these watches that was evidenced in some of his subjects 

failing to detect collision courses and being unable to take effective avoiding manoeuvres in 

time. Similar instances of detection latency over time in maritime watchkeeping experiments 

are reported by CAILLE et a/ ( 1965} (cited by DA VIES & P ARASURAMAN, 1982}. 

Chapter 7 of this thesis presents research aimed at identifying the time points during various 

types of watches (steaming, fishing, shooting/hauling) on fishing boats where the cognitive 

ability of the watchkeeper is reduced and thus provides a foundation for suggesting the 

appropriate duration of watches. 
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The questionnaire responses to questions regarding watchkeeping guidelines were initially 

encouraging, with more than three quarters of fishermen indicating that they were supplied 

with clear guidelines on the eight important points noted. The set of responses to the same 

question posed during interviews and the statistically significant difference between the two 

is however a disquieting result. Although the sample used in interviews was much smaller, 

the fact that in this situation, only 35% of fishermen said they were given clear guidelines as 

to what constitutes the keeping of a good lookout whereas 87% had said they were in 

written questionnaires indicates that watchkeeping guidelines are a matter that demands 

some attention. 

While the working environment on fishing vessels has been shown to be noisy, when viewed 

in the light of the statutory maximum noise dosages for shore-base workers, the noise levels 

recorded in wheelhouses are such that they are unlikely to pose any serious problem. It 

nevertheless be noted that the noise data recorded for this study were taken on board well 

found and maintained vessels and are not necessarily representative of the entire fleet. 

Wheelhouse temperatures were also within a range that would be unlikely to cause 

discomfort or stress. The temperature on the working deck of the largest vessel used in this 

study, a 24 metre pair-seiner, which was enclosed by a watertight shelter-deck was rather 

high for hard physical work and resulted in most of the crew working in oilskin dungarees 

and T -shirts and the engine room temperatures were as might be expected, also very high. 

While no convention was noted in the research, it would clearly be advisable for anyone 

who had been working in either of these two environments immediately prior to 

watchkeeping duty to be allowed some rest time in which to acclimate to the wheelhouse 

environment. As for the noise data, the temperature results presented must be qualified by 

saying that they were drawn from a small sample of vessels during the spring and summer 

months. 
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During the hours of daylight, lighting generally presents no problem for watchkeepers but in 

the dark, two factors were noted in this research the solutions to both of which are 

relatively simple. The first of these, inappropriately positioned deck floodlights, is a design 

problem which is apparently quite common, but easily solved by re-positioning or shielding 

the ex:isting lights. This is a feature that is not currently checked during mandatory four

yearly fishing vessel surveys but could easily be. The second problem, glare from VDU 

screens, demands even simpler solution. As noted in 3.2.8, this problem tended to arise 

only with crewmen who were unwilling to adjust brilliance and contrast settings. The 

skipper should instruct crewmen on how to moderate the glare from video screens and let 

them know that is is acceptable for them to make the necessary adjustments as the need 

anses. 

Perhaps the most important yet least tangible feature influencing safety in the fisherman's 

working environment is his attitude. It is a matter of debate whether it is possible to over

ride the fatalistic notion ingrained over generations, that "the sea gives and the sea takes" 

without a shift in cultural values. Given that British fishermen have relatively short careers, 

characterised by a phase of youthful ex:uberance giving way to a state of indifferent 

acceptance of the imperfect risk/reward balance the job offers, it is difficult to see how such 

a fundamental change could be engineered. Well designed training regimes are clearly a vital 

tool in replacing fatalism and its attendant risky behaviour with a "safety culture" approach 

but this will probably take considerable time before it shows beneficial effect. 

In section 4.10, it was demonstrated that the availability heuristic can be useful in raising 

fishermens' awareness of certain risks and the publication and distribution of Summaries of 

Investigations by the MAIB is probably a worthwhile pursuit in this respect. This has to be 
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tempered however with the possibility that this type of publication does no more than 

reinforce the notion that "accidents always happen to someone else" and encourage an 

attitude of complacent superiority in those who have managed to avoid such events. When 

this is coupled with the possibility that every time a watchkeeper does something risky and 

emerges unscathed, that action then becomes more likely in the future a frightening situation 

emerges. 

4.13 Chapter summary 

• A broad relationship has been identified between size of vessel and number of crew 

carried and although every vessel will have a designated skipper, delineation of labour is 

not always clear on smaller vessels. 

• It is impossible to generalise on working hours on British fishing boats and the advent of 

new technologies and fishing techniques can cause dramatic changes to this. At present, 

fishermen are excluded from legislation on working hours but there may be attenpts to 

change this in the future. 

o The system of training for fishermen is presently in a state of flux, between the traditional 

'ticket' system and the new VQ system. Although there is resistance from some 

quarters, the latter is probably more suited to the fishing industry and complements the 

prevalent informal training system operated on board fishing boats. 

o At the time of taking their first solo watch, fishermen operating in the Northern North 

Sea have least training and preparation while fishermen operating off the Scottish West 

Coast and in the Western Approaches are best prepared. 
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o Mean length of watches throughout the fishing fleet, while vessels are steaming to, from 

and between fishing grounds is 2.5 hours and while towing the fishing gear it is 3.1 

hours. The longest and shortest watches, in both steaming and fishing modes, are kept in 

the English Channel and off the Scottish West Coast, respectively. 

• A significant difference was found between written questionnaire responses and personal 

interview responses to the same set of questions regarding guidelines given to 

watchkeepers,on fishing vessels. 

• The working environment on the fishing vessels studied in this research was noisy, but 

not to the extent that it exceeded the maximum dosages that would be allowed in shore

based working environments in the UK. 

o During research for this work, although high temperatures were recorded in the engine 

spaces and on mess areas when cooking equipment was in use, the temperatures in 

accommodation spaces and in the wheelhouses were unlikely to be stressful. It must 

however be borne in mind that this research work was done during spring and summer, 

in relatively fine weather. 

• There are specific problems attached to lighting conditions m fishing vessels 

wheelhouses, but these are relatively simple solutions to these. 
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o Fishermen tend not to complain about their working conditions and accept risk and 

danger as being part and parcel oftheir profession. For various reasons, they also tend 

to find movement into other types of employment difficult. 
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"Some circumstantial evidence is very strong- as when you .find a trout in the milk" 

Henry Thoreau (1817 -1862) 

5.0 Introduction 

The most recent published work dealing with the circumstances ofUK fishing vessel losses 

was by M. J. Reilly, a researcher working in the Geography Department at the University 

ofDundee, (REILLY, 1984). The main thrust of his work was to compare the level of 

fishing vessel safety before and after the publication of the Holland-Martin Report 

(HOLLAND-MARTIN, 1969) which was commissioned following the consecutive loss of 

three British distant water trawlers in the space of eight days in 1968. Reilly found that the 

risk of loss or serious casualty was twice as great in 1981 than it had been at any time 

during the previous 20 years and identified vessel age as being an important factor. He did 

not however, give any specific consideration to fishing vessel traffic losses. Tvedt and 

Reese, in an unpublished report (TVEDT & REESE, unpublished 1986) attempted to 

identify interactions between different circumstances in fishing vessel losses from all causes 

but were hamstrung by the small number of records they had access to and could draw a ' 

limited number of tenuous conclusions. Beyond these references, no consolidated work on 

the circumstances of British fishing vessel collisions and groundings would appear to have 

been done. In the Netherlands, some research into the circumstances of traffic casualties 

has been pursued but this is limited to a specific sector (beam trawlers)ofthe Dutch fishing 

fleet (HEINRlCH, 1988; VEENSTRA & STOOP, 1992). 

The object of this chapter is to explore the collective circumstances in which fishing vessel 

traffic losses have occurred in recent years Using information derived from a range of 
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institutional and private sources, these circumstances are first presented descriptively and 

subsequently subjected to individual analyses. Processed data arising from questionnaire 

studies are also presented and the concept of comparing respondent's perceptions with 

reality is again implemented. The circumstances under scrutiny are, in the order of their 

presentation; 

• length of vessels lost - comparison of traffic loss records of three vessel length 

categories 

• vessel age at time of loss - analysis of the importance of vessel age as a factor in traffic 

losses 

• timing of losses - identification of the weekday, month and season when traffic losses 

are most likely to occur 

• location of losses - categorisation of the areas of operation of the UK fleet in terms of 

their importance as locations of traffic losses 

• operational status of vessel - the relative importance of steaming and fishing modes in 

traffic losses 

o visibility at time of loss - assessment of the importance of visibility as a factor in traffic 

losses 

• watchkeeper rank at time of loss - analysis of the respective roles of skippers, mates 

and crewmen in traffic losses 

In order that the relevant aspects of each of the circumstances dealt with in this chapter can 

be considered the layout of the chapter is unconventional in that the results of each section 

are specifically discussed before moving to the next. The chapter concludes with a general 

discussion of the findings. 
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5.1 Length of vessels lost in traffic events 

A search of the existing relevant literature failed to produce any published opinion on the 

elementary question of whether big fishing boats were safer than small ones so far as 

collision and grounding are concerned. At the simplest level, the numbers of vessels lost 

from the three length categories, "under 12 metres", "12 to 24 metres" and "over 24 

metres" can be reviewed using area charts for quick comparison of the relative scale of 

losses. 

Figure 5.1.1 shows that the greatest numbers of traffic losses occur in the 12 - 24 metre 

length class with fewest in the over 24 metre class. Treating collision and grounding 

losses individually results in a broadly similar pattern emerging, (Figures 5.1.2 and 5.1.3). 
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Figure 5 .1. 1. Numbers of UK fishing vessels lost in collision and grounding events by 
length class, 1979-1995. 
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Figure 5.1.2. Numbers ofUK fishing vessels lost in collision events by length class, 1979-
1995 
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Figure 5.1.3. Numbers of UK fishing vessels lost in grounding events by length class, 
1979-1995. 

Providing an accurate answer to the original question of whether bigger fishing boats have 

a better traffic-safety record than small ones however requires the number of vessels lost in 

each length category to be reviewed in the light of the numbers of vessels in the UK fleet 

that are at risk in those categories. Figure 5.1.4 indicates the loss rate per 100 vessels in 

each length category for the period 1979 to 1995 for both groundings and collisions, as 

moving average trendlines. 

This paints a very different picture to that arising from simple analysis of numbers of 

vessels lost. For the entire period under scrutiny, under 12 metre fishing boats are shown 

to have been proportionately less susceptible to loss in collision and grounding events than 

the other two length classes. The collision and grounding loss ratio for under 12 metre 

boats during the period was on average, 86% lower than for 12 - 24 metre vessels and 76% 
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lower than their over 24 metre counterparts. Over 24 metre boats were less likely to be lost 

in traffic events than 12 to 24 metre ones prior to 1985 but the situation reverted to its 

earlier state in 1991 . 
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Figure 5. 1.4. Percentage loss rate for UK fishing vessels lost in collision and grounding 
events by length class, presented as two period moving averages. 

A similar analysis for collision losses only (Figure 5.1.5) results in a situation where both of 

the larger length categories vie for the highest loss ratio over the period, with the most 

recent trend being for over 24 metre vessels to be more prone to loss. 
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Figure 5 .1. 5. Percentage loss rate for UK fishing vessels lost in collision events only, by 
length class, presented as two period moving averages. 
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Figure 5.1.6 shows that the trends for grounding loss ratios are very different to those for 

collisions, the most recent being for vessels in the 12 - 24 metre class to be most at risk. In 

both collisions and groundings, under 12 metre fishing vessels appear to have substantially 

better safety records than either of their two length class counterparts. 
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Figure 5.1.6. Percentage loss rate for UK fishing vessels lost in grounding events only, by 
length class, presented as two period moving averages. 

5.2 Age of vessel at time of loss 

A number of fairly recent commmentators on fishing vessel losses (REll,L Y, 1984~ 

HOLLAND-MARTIN, 1969~ HEDERSTROM & GYLDEN, 1992) have made reference 

to "age of vessel" as being a factor of some bearing. In this respect, it is easily conceivable 

that the increase in the proportion of vessels lost in foundering and flooding and capsize 

incidents over recent times may be partly an age-related phenomenon since more legislative 

attention has been focused on fundamental features of seaworthiness as time has 

progressed. Likewise, improved fire-prevention and fire-fighting technology has probably 

reduced over time the relative level of risk of loss due to fire. No specific reference to 

fishing vessel age at time of loss in traffic incidents could be found in the literature. 
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Figure 5.2.1, showing the recent trend in mean vessel age in the UK fishing fleet, provides 

a yardstick against which trends of age of vessels lost may be compared. The reader should 

note that an average age of 30 years has been assumed for vessels recorded in the official 

statistics as "over 25 years old". This has been done to negate the skewing effect that the 

few very old (up to 80 years) boats that are still registered and fishing would have on the 

data, so although not a truly accurate representation of the mean ages, this nevertheless 

offers a more realistic impression of the general vessel age situation. 

~ = 0.8015 

year 

Figure 5.2.1. Mean age by year, of all vessels in the UK fishing fleet in recent years. 
(Compiled from available data supplied by the Sea Fish Industry Authority, using mid
points of class intervals and assuming an average age of 30 years for vessels in the 'over 
25 yrs' category) 

Figure 5.2.2 shows that so far as vessels lost in collisions between 1975 and 1993 are 

concerned a barely perceptable rising trend is indicated, although the relationship is 

particularly weak. 
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Figure 5.2.2. Mean age offishing vessels lost in collisions, 1975- 1993 . 

Plotting the mean age at time of loss of vessels lost in grounding events however, shows a 

more clearly defined relationship (Figure 5.2.3). Although far fewer vessels were lost 

annually in this way during the late 1980' s and early 1990's (see Figure 2.5.6, ibid.), the 

mean age of victims has steadily increased. REILLY (1984) found the mean age at time of 

loss in fishing vessel groundings over the 8 year period, 1973 - 1980 to be 17.8 years. This 

increased between 1981 and 1993 to 22.7 years. 
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Figure 5.2.3 . Mean age of fishing vessels lost in groundings, 1975- 1983. 
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There are likely to be a number of tenable reasons for this, one of which is that the 

increased prevalence of more sophisticated electronic navigation equipment has been the 

precursor of both the general reduction in collision and grounding losses and of the reduced 

susceptibility of newer vessels to grounding loss. 

To test this theory, an "index of navigational sophistication" was compiled for British 

fishing vessels in four different age groups.; 0-5 years old; 5-10 years old; 10-20 years old; 

over 20 years old. The index was compiled on the basis of whether vessels were fitted with 

the 16 items of navigational equipment and systems listed in Table 5 .2.1. 

The information used in this analysis was derived from questionnaires sent to fishing vessel 

owners in 19 fishing ports around the UK who were accessed through the 'Year Books' of 

the National Federation of Fishermen's Organisations, the Scottish Fishermen' s Federation 

and the Secretary of the Northern Ireland Fishermen' s Group Training Association. 

• Decca Navigator 
• GPS 
• other electronic position fixing system 
• video track plotter 
• paper echosounder 
• video echosounder 
• video echosounder wilh digital depth display 
• sonar 
• more than one VHF radio 
• autopilot 
• autopilot alarm 
• magnetic compass 
• gyro compass 
• slabWsed radar 
• radar range ring alarm 
• ARPA 

Table 5 .2.1. Items of equipment incorporated in calculating "navigational sophistication". 
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Table 5.2.2. indicates, perhaps not unexpectedly, that older vessels were found to have, on 

average, a less sophisticated array of navigational equipment. The relationship between the 

four fishing vessels age groups and mean levels of navigational sophistication, in fact shows 

an almost linear correlation of -0.98. 

Table 5.2.2. Mean navigational sophistication index scores for fishing vessels, by age of 
vessel. 

5.3 Operational status at time of loss 

TVEDT and REESE (unpublished 1986) divide all fishing vessel casualties into two 

groups in their analysis~ those which were lost at sea while on a fishing voyage and those 

which were lost while in port. Such a distinction has little useful application in the present 

study which is specifically concerned with traffic losses and watchkeeping practice. It is of 

course possible that a fishing boat could be rammed by another vessel while lying tied to 

the quayside and subsequently lost. So far as can be ascertained however, this type of 

event is extremely rare and did not figure in any of the casualty reports that relate to cases 

in the data set used. 

Of the 34 traffic losses examined in detail during the course of this research, only three 

were lost while fishing. Further examination of Marine Accident Investigation Branch files 

made available to the Author in 1995 prompts the conclusion that relatively few (probably 

<10%) fishing vessels are lost in traffic accidents during the time that they are actually 

engaged in fishing operations. The vast majority of collision and grounding events that lead 

to the loss of fishing vessels happen during steaming to, from and between fishing grounds. 
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5.4 Timing of loss 

Because there were an average of 35.4 fishing vessel losses each year between 1975 and 

1995, it is tempting to state that 2.95 fishing boats are lost each month, or in extreme form, 

to say that one fishing vessel is lost every 10.3 days. Vessel losses do not however, 

necessarily occur with the regularity implicit in such comments. While analysis of the time 

distribution of events is common in road traffic and aviation safety studies, it appears less 

so in marine safety research. Work in this area has been done and data published for 

merchant marine accidents (e.g. APSLAND, 1995) but none could be found in the 

literature relating to fishing vessels. 

5.4.1 Inter-annual 

'the inter-annual distribution of numbers of fishing vessels lost due to collision and 

grounding, and the respective loss ratios have been outlined in Chapter Two. The 

combined loss ratio for all fishing traffic losses is shown along with actual numbers of 

vessels lost in Figure 2.3.1. It must be borne in mind that, for the reasons explained in 

Section 2.6, the loss ratio measure for the fleet as a whole is undermined by the inclusion 

on the Shipping Register of under 10 metre boats from 1989 onward. Nevertheless, a 

generally decreasing trend through the 1980's is evident with both number of losses and the 

loss ratio showing signs of rising in the early 1990's. 

5.4.2 Seasons and months 

No clear trend is evidenced in overall analysis of the numbers of collision and grounding 

losses (Figure 5.4. I) beyond confirmation that relatively more traffic losses occur during 

the Winter, late Autumn and early Spring months (October to April) where the mean 

monthly number of losses for the period 1975 - 93 was 13 .14, than in Summer when the 

mean was 12.6. This is as might he expected since there will be increased prevalence of 
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adverse natural phenomena- fog, snow, gales, etc. - during Winter, early Spring and late 

Autumn. This effect should nevertheless be counterbalanced to some extent by the increase 

in fishing activity when the weather is favourable during the summer. 
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Figure 5 .4.1. Numbers of fishing vessels lost in both collisions and groundings according 
to month, 1975 - 1993. 

Although the total number of losses in the sample is small, Figure 5.4.2 indicates that more 

fishing boats have been lost in collisions during late Spring, Summer and early Autumn, 

(May- October) than during the rest of the year (64% cf36%). Six collision losses have 

occurred in each of the months, March, August and October during the study period and 

no vessels at all were lost in a collision during the month of December between 1975 and 

1993. 
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Figure 5.4.2. Numbers of fishing vessels lost in collisions according to month of loss, 
1975-1993 (n = 44). 
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Save for the months of January, February and March, the monthly pattern of numbers of 

fishing vessels lost in grounding events was remarkably homogeneous between 1975 and 

1993 (Figure 5.4.3). The greatest number of grounding losses (16) during the study period 

occurred in March with January showing the second highest (14). Curiously, during 

February- the month between these two- the least number oflosses happened in this way. 
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Figure 5.4.3. Numbers of fishing vessels lost in groundings according to month of loss, 
1975-93. 

4.5.3 Weekday 

When taken together, analysis of the frequency of collision and grounding losses by day of 

the week indicates that these types of incidents have most commonly occurred towards the 

end of the week, with Friday being the "worst, day (Figure 5.4.4). A chi-squared 

statistical test for goodness of fit applied to these data gave a x2 statistic of 26.48, 

suggesting bias in the distribution of losses over the week that was significant beyond the 

1% level. 
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Figure 5.4.4. Number of fishing vessel losses in both collisions and groundings by day of 
the week, 1975- 1993. 

Figure 5.4.5 highlights Thursday and Sunday as the critical points in the week so far as 

numbers of fishing vessels that were lost in collisions between 1975 and 1993 are 

concerned. Numbers of collision victims are relatively low during Monday, Tuesday and 

Wednesday. During 1979, the worst year in the period for collision losses (see Figure 

2.5.5) a total of seven fishing vessels were lost in collision events with six of these 

occurring on Saturday or Sunday. 
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Figure 5.4.5. Number of fishing vessel losses due to collisions by day ofthe week, 1975-
1993 . 

The daily pattern of number of vessels lost in grounding events has its peak on Friday but 

also indicates high values for Saturday and in contrast to the same for collision losses, 
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Tuesday (Figure 5.4.6). Grounding losses also differ markedly from collisions in the 

number occurring on Sundays. 
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Figure 5.4.6. Number of fishing losses due to groundings by day of the week, 1975 -
1993. 

The question of isolating the "worst, day of the week for traffic events leading to the loss 

of the vessel, can only be meaningfully addressed by relating the proportion of the fishing 

fleet at risk on each day of the week to the distribution oflosses by weekday. Questionnaire 

responses from fishing skippers in 19 ports around the UK indicate that, on any given 

week, as much as 27% of the fleet, the greatest proportion on any one day, will be in transit 

between port and fishing grounds on Mondays (Figure 5.4.7). 
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Figure 5.4. 7. Percentage proportions of UK fishing fleet likely to be steaming to and from 
fishing grounds on different days of the week. 
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Over Tuesday and Wednesday, about I 0% of the fleet will be steaming, rising to 15% on 

Thursday and 20% on Friday. Saturday sees the least fishing boat traffic (6%) and although 

about 10% of the fleet is on the move on Sundays, much of this tends to be from late 

afternoon onwards. During the Monday to Friday period, many vessels operate on a daily 

basis which entails steaming out to and back from local grounds on the same day. This is 

particularly the case during the winter months. Drawing upon supplementary data derived 

from questionnaire responses, the proportion operating in this mode is roughly 10 - 12%, 

so the inflated proportions of steaming vessels evident on Monday and Thursday/Friday 

respectively suggsts an exodus to the grounds at the start of the week and a more gradual 

return towards the end. 

When broken down on a regional basis, it can be seen that this pattern is fairly consistent 

around the whole of the UK, with some minor variation (Figure 5.4.8). For example, more 

vessels are in transit and thus 'at risk' in the Western Approaches during Tuesday and 

Wednesday and this reflects the fact that a greater proportion of the South West, Welsh 

and Irish Sea fleets operate on a daily basis all year round. The Scottish fleets and those 

from ports on the east coast of England however tend to operate more within a weekly 

regime and the mass departure/return model is more prevalent. 

Given the proposition that there are certain days when more vessels are likely to be at risk 

of being involved in traffic incidents is established, one might expect the pattern of actual 

losses to move in line with this. Figure 5.4.9 demonstrates that this is not the case. In this 

figure, each arm of the chart represents a different weekday with the red area showing the 

way in which all types of navigational loss are distributed over the week. Superimposed 

upon this is the blue area which shows the proportions of the fishing fleet which are likely 
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to be at risk on given weekdays. Where red protrudes from under blue on any arm of the 

chart, disparity between these two proportions is indicated. 
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Figure 5.4.8. Regional variation in the proportions of the fishing fleet in transit to and from 
the fishing grounds according to day of the week. 

For collisions and groundings taken together, there appears to be some minor inconsistency 

between the two proportions on Tuesdays and Thursdays, but a notable amount of red is 

visible at the end of the week, particularly on Saturday. 

Sat Wed 

•% of total number of UK 
fishing vessels lost in 
navigational events 

• % of UK fishing fleet 
steaming to and from 
fishing grounds 

Figure 5.4.9. Radar chart comparing proportion of vessels steaming to and from fishing 
grounds on each weekday with proportion of total losses in navigational events. 
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To discern whether this effect was due to any inter-daily variation in either collision or 

grounding occurrences, similar displays were prepared for each of these causes of loss. 

Figure 5.4 .1 0 shows that so far as collision is concerned, Sunday and Thursday are the days 

of greatest disparity. Scrutiny of the very limited available information on individual events 

does suggest that many of these Sunday and Thursday collisions occur during the second 

half of both days. 

Sat Wed 

• o/o of total number of 
fishing vessels lost in 
collision events 

• o/o vessels in UK 
fishing fleet steaming 
to and from fishing 
grounds 

Figure 5.4.10. Radar chart comparing proportion of vessels steaming to and from fishing 
grounds on each weekday with proportion of losses due to collisions on those days. 

When the same type of display is presented for grounding losses (Figure 5.4.11), a small 

area of red protrudes on Tuesday while a significant disparity is apparent on Friday leading 

in to Saturday. Scrutiny of the available loss accounts indicates that these loss events are 

fairly well distributed throughout the duration ofboth of these days. 
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Figure 5 .4.11. Radar chart comparing proportions of vessels steaming to and from fishing 
grounds on each weekday with proportion of grounding losses occuring on those days . 

5.5 Location of loss 

The macro-environment in which the UK fishing fleet operates, described in detail in 

Chapter 3 incorporates considerable topographic and oceanographic diversity and also 

significant inter-regional variation in the type and volume of marine traffic. It might 

reasonably be expected that the incidence and type of fishing vessel loss will reflect these 

differences. For example, one would intuitively expect relatively more grounding losses to 

occur off the West Coast of Scotland where the navigator is faced with picking a safe path 

round many headlands and through the hundreds of islands and reefs, than in the Central 

North Sea, where the coastline tends to run in long sweeps with few hazards outside its 

contiguous zone. Survey of relevant literature indicated that no analysis of the location of 

fishing vessel traffic losses had been previously attempted. 

Information on the position at which fishing vessels were lost in traffic events was gathered 

from the sources noted in Section 1.4.2 for 112 collision and grounding events which 

occurred the period, 1975 - 1994 (this accounts for about two-thirds of relevant losses 
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during the period). Analysis of the locations of both collision and grounding losses taken 

together suggests a fairly even distribution in aU of the areas around the UK with the 

greatest proportion (24%) occurring in the Central North Sea and the least (14%) in the 

English Channel (Figure 5.5.1). 
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Coast 
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21% 
Blglish O'lannel 

14% 

l'brthern f\t>rth Sea 
19% 

Central f\t>rth Sea 
24% 

Figure 5. 5. 1. Locations of fishing vessel losses due to both collision and grounding, 
1975-93. 

When collision and grounding losses are taken separately (Figures 5.5.2 and 5.5.3), the 

picture changes quite dramatically. Only 11% of collision losses occurred on the Scottish 

West Coast while conversely, the same region accounted for 37% of grounding losses. The 

Central North Sea is the location of a relatively high proportion of collision losses (33%) 

but has no similar corollary, since only 17% of grounding loss events also happened there. 
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Figure 5.5.2. Locations of fishing vessel losses due to collision, 1975- 1993. 
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Relating the observed percentage frequencies for traffic losses in the different sea areas to 

those that would be expected if there was no relationship between sea area and loss due to 

either collision or grounding in a chi-squared statistical test gave a test statistic of ··l = 

24. 81. This suggests that the difference in frequency of occurrence of the two types ofloss 

is less than 1% likely to have happened by chance. 
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Figure 5.5.3 . Locations of fishing vessel losses due to groundings, 1975- 1993. 
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Unfortunately, this does not provide an ipso facto case for saying that vessels are more 

prone to either collision or grounding loss in any particular area since this requires some 

form of data normalisation. Figure 5. 5.4 compares the proportions of the total number of 

UK fishing boats that are likely to be steaming to and from fishing grounds in each of five 

areas with the proportion of traffic losses that have occurrred in each of these areas. The 

levels to which the former agrees with the latter are tabulated in Table 5.5.1 and for clearer 

understanding of the principle, disparities for each cause are displayed graphically in 

Figures 5.5.4, 5.5.5 and 5.5.6 on page 
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Table 5. 5. I. Proportions of UK fishing traffic losses related to the proportion of the UK 
fishing fleet likely to be at risk in particular areas. 

While a degree of diversity between proportions is evident for the Scottish West Coast, the 

Northern North Sea and the Western Approaches, the English Channel provides a very 

close match. The respective proportions for the Central North Sea are relatively disparate 

however, in global terms (Figure 5.5.4) and for both collisions and groundings when these 

are considered independently (Figures 5.5 .. 5 and 5.5.6 respectively). 
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Figure 5.5.4. Percentage distribution of all fishing traffic losses according to area, 
compared with percentage distribution of UK fishing fleet regularly operating in those 
areas. 
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Figure 5.5.5. Percentage distribution of fishing vessel collision losses according to area, 
compared with percentage distribution of UK fishing fleet regularly operating in those 
areas. 
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Figure 5.5.6. Percentage distribution offishing vessel grounding losses according to area, 
compared with percentage distribution of UK fishing fleet regularly operating in those 
areas. 

5.6 Visibility at the time of loss 

One might naturally expect serious collision and grounding incidents to be more likely 

during periods of impaired visibility. Analysis of a sample of 39 traffic loss events during 

the period 1985 - 94, for which reliable information regarding the prevalent state of 

visibility just before and at the time of the event was available, suggests that this may not 

necessarily be the case. The same system for classifying visibility into three categories -

"good", "moderate" and "poor" as explained in Chapter One was used; poor 

incorporating fog where visibility is less than 5 km, moderate where visibility is between 5 

and 10 km and good where visibility is in excess of 10 km. The sample of traffic loss events 

for which reliable information on visibility at the time was available was too small to be 

attributed to the different areas so only national figures are presented. Visibility was good 

in well over half (56%) of all collision and grounding events that led to the loss of a fishing 

vessel with moderate visibility at the time of 18% of all losses and poor visibility in 26% of 

cases, (Figure 5. 6. 1) . 
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Figure 5.6.1. Visibility at time of incident for all fishing vessel traffic losses. (n = 39). 

When collision and grounding losses in the same global sample are separated, (Figures 

5.6.2 & 5.6.3) a roughly similar pattern emerges. Although the collision sample includes 
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only twelve loss events, this amounts to 44% of the 27 losses of this type during the period 

in question, good visibility prevailed in exactly half of these occassions. The remaining half 

was evenly split between moderate and poor visibility conditions. 

For grounding losses the sample size was much larger (27 events) and although visibility 

may have a part to play, this would appear to be of a minor nature since 59% of these 

events occur in good visibility. 
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Figure 5.6.2. Visibility at time of incident for fishing vessel losses resulting from collisions 
(n = 12). 
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Figure 5.6.3. Visibility at time of incident for fishing vessel losses due to grounding (n 
27). 

5. 7 Rank of watchkeeper at the time of loss 

Using a sample of 42 traffic loss events compiled from casualty data relating to the period, 

1985 - 1994, for which reliable information on the status of the watchkeeper at the time of 

the event was available, the status of the watchkeeper at the time of the event was noted. 

When both collision and grounding losses are taken together, it can be seen that the skipper 

was on watch at the time of the event in almost half ( 4 7%) of all cases. Crewmen were on 

watch in 30% of the time, the Mate 8% of the time. A further and disquieting feature was 

that the wheelhouse was unmanned in 15% of these events (Figure 5. 7.1 ). 

skipper 
4JOAI 

rrate 

8% 

no-one 

15% 

crewrran 

30% 

Figure 5. 7 .1 . Rank of person on watch at time of event in all traffic losses. (n = 42) 
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When the overall situation is broken down into the constituent collisions and groundings, it 

can be seen that the Skipper was in charge of navigating the vessel in 53% of groundings 

and 36% of collisions (Figures 5.7.2 and 5.7.3). Mates were much more likely to be on 

watch when collisions occurred than groundings (14% cf 4%) while there was no great 

difference in the proportions of events in which Crewmen were in charge between 

collisions and groundings. Splitting collisions from groundings also shows that the 

proportion of occassions in which no-one at all was on watch was very high in the former 

(21%) and less so but still a cause for concern in groundings (12%). 

Again it must be emphasised that only 12 incidents comprised the collision sample although 

this did amount to 55% of the total number of collision losses during the period in question 

and may therefore be construed as being an acceptable sample size in terms of reliability. 

skipper 
36% 

mate 
14% 

no-one 
21% 

crewman 
29% 

Figure 5.7.2. Rank ofperson on watch at time of event in collisions. (n = 12) 
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Figure 5.7.3. Rank of person on watch at time of event in groundings. (n = 30) 

5.8 Visibility and watchkeeper rank considered in tandem 
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The previous two elements of this analysis of circumstances can be set against one another 

to examine how watchkeepers of differing rank perform in alternative states of visibility. 

Drawn from information in the sources noted in section 1.4.2, tables have been compiled 

which include a column headed "no-one". This relates to occasions where, although there 

may have been an individual accorded with watchkeeping duty, for whatever reason, there 

was no-one in the wheelhouse. The records from which information was drawn only 

occassionally refer to the rank of the watchkeeper who should have been present at the 

time of the event. 

Table 5.8.1 relates the rank ofthe watchkeeper to visibility at the time of the event in both 

types of fishing traffic losses. The table strongly implicates skippers who, in 26% of the 

cases studies in detail were on watch in good visibility at the time the loss event occurred. 

Another 18% of traffic losses happened while crewmen were on watch in good visibility. 

1 0% of these losses took place during poor visibility while crewmen were on watch. 



good 

moderate 

poor 

SKIPPER 

26 

15 

8 

CREWMAN NO-ONE 

18 

2.5 

10 

8 

0 

5 
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Table 5.8.1. Percentage occurrence of watchk.eeper status at time of incident in fishing 
vessel losses due to both collision and grounding. (n = 39). 

No collision losses occurred with the skipper on watch in good visibility and all of the 

collision losses which happened while a crewman was on watch took place in conditions of 

good visibility (Table 5.8.2). At the time of 17% of collision loss events in good visibility, 

there was no-one at all in the wheelhouse of the vessel. 

good 

moderate 

poor 

SKIPPER MATE CREWMAN NO-ONE 

0 

25 

17 

8 

0 

8 

25 

lf------0 ---1-" 
0 

17 

0 

0 

Table 5.8.2. Percentage occurrence of watchkeeper status at time of incident in fishing 
vessel losses due to collision. (n = 12). 

The same analysis performed for grounding losses (Table 5.8.3) portrays skippers in an 

even gloomier light since 3 7% of these happened while the skipper was on watch in good 

visibility. 7% of vessels in the sample were lost after running aground in poor visibility 

while no-one was in the wheelhouse. 

SKIPPER MATE CREWMAN NO-ONE 

good 

moderate 

poor 

J 
37 

11 

4 

4 

0 

0 

15 

4 

15 

4 

0 

7 

Table 5.8.3. Percentage occurrence of watchkeeper status at time of incident in fishing 
vessel losses due to grounding. (n = 27). 
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5.9 Chapter discussion 

The most interesting outcome of analysing the role of vessel length in both collision and 

grounding losses is the low rate of occurrence of under 12 metre boats when the resulting 

statistics are normalised to the numbers of vessels at risk (Figures 5.1.4, 5.1.5 and 5.1.6). 

Section 2.6 offers a number of reasons why this might be - many boats in this class being 

worked on a part-time basis, operated seasonally, and spending time in port during bad 

weather. It might also be argued that the under 12 metre class of vessel quite simply 

spends much less time at sea than bigger boats do, even in fair weather. When this point 

was put verbally to a sample of fifteen fishing skippers, some put forward a plausible 

additional reason - that small boats were "lighter on themselves" and were much more 

likely than larger ones to be successfully retloated with minimal damage following a 

grounding. 

Attempting to forecast the susceptibility of a fishing vessel to collision and grounding risk 

on the basis of its age is complicated by the fact that there are essentially two different age 

based considerations: on the one hand, there is the genre of the boat - this encompasses the 

features that are typical of boats built at any particular time, and on the other, there is the 

ageing process itself. Relating navigational sophistication to age has shown that older 

fishing boats generally have less sophisticated navigational equipment than those built more 

recently and it is comforting to believe that more sophisticated wheelhouse equipment 

performs an effective "task offioad" function, releasing more of the watchkeeper's available 

mental capacity to address the task of visual observation and processing of information 

from non-automated sources. While many items of navigational equipment that come on to 

the market can be retro-fitted, it would appear that there is a tendency for vessel owners to 

"make do with what they have" and thus, if one is to accept that better navigation 

equipment improves the performance of the system, the genre of the boat may indeed be a 
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predictor ofincreased grounding risk. It must be borne in mind however that no direct 

evidence is presented in this thesis or elsewhere, to indicate that the watchk:eepers 

themselves in new vessels perform any better than those in older ones. 

The relevant aspects of the ageing process itself will most likely manifest themselves in 

greater incidence of breakdown and malfunction in wheelhouse equipment. This has not 

been explored in depth in this study because the number of loss events for which detailed 

information was available and in which equipment breakdown was implicated was too small 

to provide for any meaningful analysis. Questionnaire responses from a representative 

sample of fishermen in 19 ports around the UK refute the contention made by KNOX, 

( 1994) that, "skippers of fishing trawlers, despite all the advances (in navigation 

technology) will sadly miss the paper chart, parallel rule and dividers". The vast majority 

ofthese fishermen were of the opinion that the safety of their vessels while in transit to and 

from the fishing grounds had been very much improved by the installation of GPS 

navigation system, adjustable alarm ring on the radar unit, and for those that had it, an 

automatic radar plotting aid (ARPA). 

A peripheral question must be addressed at this point however. If both collisions and 

groundings are related to the navigational capability of vessel and crew then should it not 

follow that each would display the same relationship between age and likelihood of loss, 

rather than the differing ones illustrated in figures 5.2.2 and 5.2.3? Two possible answers to 

this question exist: 

i) The relationship between vessel age and loss due to collision is less distinct than that for 

grounding because of the fact that the blame for the former, in a number of cases, lies with 

other (often non-fishing) vessels and these vessels do not select their stand-on targets 



147 

according to their age. That is to say, the watchkeeper aboard a new fishing vessel is just 

as likely to have to make a rapid decision on whether to evoke Rule 17 (b), ("When, from 

any cause, the vessel required to keep her course and speed finds herself so close that 

collision cannot be avoided by the action of the give way vessel alone, she shall take such 

action as will best aid-to avoid collision") as the watchkeeper aboard an older one, 

ii) Although sophisticated technology may help in the initial identification of the existence 

of a collision course, the fact that a decision has to be made by a fallible human operator -

even where sophisticated technology makes it abundantly clear that collision risk exists -

puts newer vessels as much at risk of loss in collision situations as older ones. 

The analysis is weakened however when,one considers that older vessels are probably more 

likely to be declared by insurers to be constructive total losses than newer ones because of 

increased susceptiblility to damage in grounding events and the resultant cost of repairs. 

In an "open" question forming part of a questionnaire study, many fishermen commented 

on technical measures that might help reduce the likelihood of collisions, for example, radar 

plotting aids. Few however had any suggestions for technical measures to reduce 

groundings and this type of response was consistent from. questionnaire to interview. This 

may be a feature of the 'horror' aspect of being in a collision which far outweighs the same 

for involvement in a grounding. This may be a feature of the availability heuristic, briefly 

explored in Chapter 4. 

A number offactors conspire to make fishing boats less vulnerable to invovlement in loss 

events while they are fishing, but one rather obvious reason stands out from the rest. The 

greatest number of fishing traffic losses occur in l2-24m length class. These, and the over 
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24 metre vessels will almost invariably be fishing far enough from shore to render the 

prospect ofrunningaground while fishing highly unlikely. This is. not to say that fishing 

boats are not vulnerable to collision and grounding while fishing, indeed the results of 

research into the workload of the watchkeeper, presented later in this thesis, shows that 

they are indeed more so at certain stages of fishing operations. This paradoxical situation is 

discussed in Chapter 7. 

The inter -annual pattern in UK fishing traffic losses declined up until about 1990, since 

when it has shown signs of rising. While the fishermen themselves might well argue that 

this is a manifestation of a harsher economic environment, the information presented in 

Section 2.6 of this thesis would not be supportive of this opinion. Economic factors may 

however exert some influence over other aspects of the timing of traffic losses. 

March is the month- during which most traffic losses have occurred and a number of 

features attach to this particular month that may be relevant in this respect. The weather 

of course can be treacherous in March, with a high incidence of sudden gales and frequent 

poor visibility as a result of rain, snow and fog. Perhaps less obvious is the fact that the 

period of daylight begins to lengthen and thus boats which operate mainly in the daylight 

hours begin to increase their number of hours worked, increasing the exposure to risk and 

opening up the potential for increased levels of fatigue. March is also, for a biological 

reason, a difficult time for the British fisherman since the fish have recently spawned and 

tend to display a low "condition factor" meaning that their weight to length ratio is 

generally at its lowest point for the whole year. J:he result of this is poor quayside prices 

for catches, increasing financial stress and a resultant prompting of fishermen to work 

longer hours to compensate. This will accordingly tend to increase the likelihood of fatigue, 

especially towards the end of a fishing trip. 
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When collision losses are separated from groundings, the most notable feature of the 

resulting monthly pattern is that only one vessel was lost in a collision event during the 

month of December throughout the 18 year period studied. The introduction of annually 

calculated Total Allowable Catches (T AC's) in the late 1970's and the resulting quota 

management regime in the UK meant that British catch allowances for a number of species 

were frequently exhausted during the last few weeks of the year and numerous vessels had 

to temporarily stop fishing, including larger ones which would not normally have been 

greatly hampered by the established bad weather pattern prevalent at this time. This would 

have had the effect of dramatically reducing the number of vessels being exposed to 

collision risk during the month of December, when there were no collision losses, in these 

years. While a plausible scenario for December however, this hypothesis does not explain 

why only one vessel was lost in a January collision when the fleet would have been back in 

operation, though bad weather of course, seriously limits the number of vessels operating 

during January in most years. 

Apart from the spike in the number of grounding losses that occurred during the month of 

March, which has already been discussed in a general context, and the trough in February, 

numbers of fishing vessels lost in this way display a remarkably homogeneous pattern 

throughout the rest of the year. Numbers of vessels lost in grounding events are higher 

during January, and it is tempting to suggest that this is because they are more likely to be 

declared as 'lost' where the incidence of powerful winter waves will cause greater damage 

to a grounded vessel more quickly than in the calmer seas of summer. This supposition 

would be confounded by the low number of vessels lost in February which, although a 

shorter month, would see wave action which might reasonably be expected to be as 

significant as during the preceding month. 
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The radar chart, based on normalised data for the daily incidence of collision losses shown 

as Figure 5.4.10, indicates that although many vessels will be steaming to and from fishing 

grounds on these days, Thursdays and Sundays harbour a disproportionately high incidence 

of losses of this type. Information on precise timing of these loss events was very ·limited 

but where this could be accessed, a tendency for the event to occur during between 15.00 

and midnight was indicated. While it must be viewed in the light of this information being 

only available for a small number of the total number of vessels lost in this way over the last 

twenty years, it would nevertheless tend to suggest the influence of stressors of some form, 

perhaps fatigue and even disorientation as vessels leave port late on Sunday evenings. 

So far as grounding losses are concerned, the amount of red showing on the Friday "arm" 

of Figure 5.4.11 might perhaps be explained by fatigue or cutting corners in eagerness to 

get back to port at the end of the week, but the relatively large red area for Saturday is 

both sinister and enigmatic, In addition to the obvious possibility of fatigue amongst 

watchkeepers returning to port, the general lack of fishing traffic on Saturdays may 

implicate the inter-related concepts of boredom, complacency and work underload. 

The low proportion of fishing vessel collision losses (-19.4%) and higher proportion of 

grounding losses (+6.6%), relative to the level of fishing activity evident in the Scottish 

West Coast area are features that might be expected, given the lower density of traffic per 

unit area and the difficult coastline, respectively (Chapter 3). The most striking feature of 

the analysis of the location of traffic losses is the high proportions of both collisions and 

groundings, relative to the number of fishing vessels operating there, that have occurred in 

the Central North Sea. Notwithstanding the fact that the level of fishing operations may 
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have been slightly underestimated in this area, the disparity in the two proportions is 

clearly a cause for concern. 

The preponderance ofcollisions in the Central North Sea area is difficult to explain. It is a 

large expanse and although fishing effort is concentrated in certain zones, this will be no 

more so than in the other areas. Merchant traffic is heavy in the eastern part, near the 

continental mainland but only moderate in the western part of the area where most fishing 

by British boats would tend to take place (again Figure 3.4.1). Likewise the high level of 

grounding losses is difficult to rationalise, the coastline being the least navigationally 

challenging of all the areas (Section 3, 10). 

One possible explanation, certainly for the high collision rate, is that up until the late 

1980's, a large fleet of "anchor-seiners" operated from the port of Grimsby. These vessels 

did not operate during the winter and put to sea for trips of up to twenty-one days with 

only three crew - a skipper, engineer and cook. It was customary for these vessels to fish 

during daylight only and to lie-to at night, during which time the whole crew would turn-in, 

leaving no-one in the wheelhouse on watch. With the information used in the present 

analysis stretching back to 1975, it may be that a number of the losses included came from 

the anchor-seining fleet but this cannot be ascertained since the fishing method of vessels 

lost is seldom recorded. 

In discussing the concept of weather-routeing for merchant ships, MOTTE ( 1972) stated, 

"poor visibility is the ship master's greatest enemy". Questionnaire responses from over 

300 fishermen showed that the fishermen themselves perceive bad visibility to be the the 

most significant causal factor in navigational losses, ranked even above human error, 

though only marginally so. 
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True consideration of the role of visibility at the time of fishing vessel loss events, requires 

that the proportions of the total number of traffic losses attached to good, moderate and 

poor visibility be set against the natural occurrence of these states in the study area, to 

assess whether any real effect is apparent. This presented some difficulty since the 

incidence of different states of visibility varies from area to area and only national figures 

for the visibility at the time of the loss events could be compiled in section 5. 7. Reference 

to Table 3. 11.1 shows that the lowest incidence of visibility in excess of 5 miles may be 

expected in the English Channel area during the Winter (SS - 75%). In none of the areas 

would visibility of more than 5 miles be expected to occur less than 70% of the time in 

Summer. This would therefore imply that over all of the five areas, throughout the year 

one might reasonably expect good visibility for more than roughly 65% of the time, with 

moderate and poor visibility prevailing for the rest. The finding that 56% of all fishing 

vessel traffic losses occur in good visibility and 44% in the other two options (Figure 

5 .6.1 }, suggests that reduced visibility is indeed a factor, though- perhaps not to the extent 

the fishermen themselves perceive it to be. If the above reasoning is to be accepted, then 

the figures for collision losses, where SO% occurred in reduced visibility strongly implicate 

reduced visibility, as.an influental factor. 

It is clear that fishing in the English Channel, where merchant traffic is most dense and 

poor visibility is a frequent occurrence, may be a hazardous pursuit since the Collision 

Regulations extend no privilege to vessels engaged in fishing when they cannot be seen. 

By the same token, reduced visibility would appear to be much less important in grounding 

losses wherever it occurs, because with 59% occurring in good visibility, the distribution is 

much closer to that which transpires naturally. The greater influence of reduced visibility in 

collision events agrees with KOSTILAINEN and TUOVINEN, (1981) who found that for 
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general merchant shipping in the Baltic Sea, higher proportions of collision losses (40%) 

than grounding losses (28%) occurred in poor visibility. COCKROFT ( 1976) however 

expressed the opinion that, on a worldwide basis, reduced visibility is a major factor in 

some 70% of collisions at sea. 

At first sight, the high percentage oftraffic loss events at the time of which the skipper was 

on watch (47%) could be construed as an indictment of the training and certification regime 

for fishermen. A number of points could be made to suggest that this is not necessarily the 

case and that it is to be expected that skippers will be on watch during the majority of 

losses. Firstly, on smaller vessels, operating on a daily basis, the skipper will be on watch 

for the entire trip from the point the boat leaves the quay to when she is tied up again, 

indeed where the vessel sails single-handed, this is inevitably the case. Secondly, a sound 

watchkeeping management system would dictate that the skipper should be on duty when 

navigating in a hazardous area or when there is a serious equipment malfunction. Thus it is 

actually to be expected that the skipper be on watch when some feature, or combination of 

features, of the navigational, natural or technical environments has been deemed to 

significantly increase the risk of collision or grounding. Furthermore, many skippers of 

smaller boats only nominally hold the rank, hold no qualifications and have not had any 

formal training. 

Of far greater concern is the fact that crewmen were on watch at the time of 29% of 

collisions and 3 1% of groundings, despite the finding in Section 4.4 that crewmen only 

take watches on 63% of British fishing boats. This suggests that crewmen were on watch 

on almost half(30% of63% = 48%) ofthe vessels on which they are required to take part 

in a watchkeeping rota when these vessels were involved in loss events. llhere is clearly a 
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need to find out why this should be the case and this is pursued in later chapters of this 

work. 

The "anchor-seinertheory" expounded earlier in this discussion may help to explain the 

high proportion (21 %}of collision losses that occurred during the study period while no

one at all was on watch. Such a simple explanation is far from watertight however since 

even if the data were influenced by this particular section ofthe.British fleet, it would not 

explain the 12% of grounding losses that occurred while the wheelhouses were empty. It is 

difficult to see any reason for an empty-wheelhouse collision or grounding other than poor 

watchkeeping management and bad seamanship. 

Although the sample used was small, the number of collision losses that have·happened 

while crewmen were on watch in good visibility probably indicates a lack of attention being 

given to keeping a good lookout (Table 5.8.2). This may well be a symptom of some 

deeper malaise, but whether this is obscure in nature or as simple as complacency is a 

debatable point. With the data going on to show that no-one was in the wheelhouse, iri 

good visibility in a further 17% of collision losses, the latter is nevertheless strongly 

implicated. The skipper was on watch in 42% of collision losses that occurred in reduced 

visibility but as discussed earlier, this in itself may not necessarily be a matter of concern. 

What is however, a source of unease is the fact that over a third of all groundings happen in 

good visibility, with the skipper on watch (Table 5.8.3). While the skipper is statistically 

more likely to be keeping watch than the·other ranks, it is difficult to find a reason for such 

a high proportion other than complacency and lack of attention, due ·possibly to work 
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underload or overload. Mates on the other hand, are likely to,be on watch for much less of 

the time than skippers (though more than crewmen) but the low proportion of traffic losses 

in all conditions of visibility where mates are on watch portrays them in a favourable light 

so far as their giving attention to the job is concerned. 

5.11 Chapter summary 

• Under 12 metre vessels are relatively less likely to be lost in collision and grounding 

events than their longer counterparts. 

• Vessels in the length range 12 - 24 metres have the poorest record of loss in traffic 

events over the study period although this situation temporarily changed during the 

period 1985 - 1991, when relatively more over 24 metre fishing boats were lost in this 

way. 

• The mean age of fishing boats lost in grounding events has risen steadily since 1975 but 

the age of vessels lost in collisions has remained steady in the same period. 

• Newer fishing vessels were found to be navigationally more sophisticated and this may 

be a reason for their reduced rate of loss in grounding events. If this is the case however, 

the same influence has not been exerted over collision risk. 

• March is the month during which fishing traffic losses have been most prolific. There are 

environmental, biological and economic reasons for this. 
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• The number of vessels that were lost in groundings in the month of February during the 

study period is low. Other than the fact that less boats are at sea because of bad 

weather, this is difficult to explain. 

• The analysis of the daily distribution of traffic losses implicates boredom, complacency, 

fatigue and disorientation after time ashore as major factors. 

• Relative to the level of fishing activity, few fishing boats have been lost in the Scottish 

West Coast area in collisions but the proportion of groundings is relatively high. 

• 11he Central North Sea has seen very high levels of losses due to both collision and 

grounding relative to the level of fishing operation in the area. The working system in 

the now defunct 'anchor-seiner' fleet is proposed as a possible factor in this respect. 

• Reduced visibility appears to be a factor in fishing vessel collision losses, but not to the 

extent that the fishermen themselves perceive. It does not however seem to exert much 

influence over occurrence of grounding losses. 

o A very high proportion of fishing vessel traffic losses occur while crewmen are on 

watch. 

o Many fishing boats were lost in traffic events during the study period while no-one at all 

was in the wheelhouse. This is clearly contradictory to the principles of good 

seamanship. 
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• The high proportion of grounding losses that have occurred with the skipper on watch in 

good visibility suggst that factors such as cognitive overload or underload are detracting 

from the attention given to the job. 
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Chapter6 

CAUSAL ANALYSIS: 
The aetiology of fiShing vessel coUision & grounding losses 

"Don't trost general impressions", said Holmes, "look for detail, Watson, detailf' 

Sir Arthur Conan Doyle (1859-1930) 

6.0 Introduction 

The question,"why?" is notoriously ambiguous and can have many different types of answer. 

Some of these refer to motivation' "in order to .... ", some are causal: "because .... happened 

first", some are typological: "because it is an example of .... ", and some invoke the existence of 

a social rule: "because it is the custom to ..... ". The type ofanswer required will often depend 

upon the questioner's overall perception of the field in which he is operating and on what 

originally aroused his curiosity. Accordingly, there are very few general rules governing the 

manner in which an explanation - in itself merely a human construct - should be provided. In 

science however, explanations tend· to form a particular subset of answers to the question, why? 

in that they usually demand some form of causal account. 

Causes, distinct from explanations, are real and not simply human constructs designed to aid 

understanding. MACKIE (1974) refers to causes as the "cement of the universe" since they are 

processes that, once started lead to a particular outcome at a later point in time. Therefore, if it 

is to be accepted, for example that X causes Y, then the corollary, that a change in causal factor 

X must produce a change in outcome Y, must also be accepted. 
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The approach to this chapter, embodies two important principles: 

1/ Cause cannot be defined in terms of statistical association. 

The classic philosophical example quoted by MARSH (1977.) to illustrate this conceptual 

discrepancy involves two wristwatches. Although different times may be showing on each, time 

can nevertheless be perfectly associated so long as both watches are running. ln this state, time 

on one watch can be correctly predicted from the time .displayed on the other, but not because 

the first causes the time on the other. Adjusting the time shown on the first watch will have no 

bearing on time given by the second. 

21 A number of different factors may combine to give rise to a certain event through the 

process of "multiple causality". This principle is fundamental to the reasoning offered in this 

chapter since the work outlined.proceeds from the standpoint that it may•be unrealistic to expect 

a perfect relationship between any one cause (amongst many) and effect. 

6.1 Rationale 

Anecdotally, human error is almost always noted as being the primary cause of collisions and 

groundings amongst all types of shipping(JAMRI, 1993; BOURN£, 1992). Although no study 

has to date been focused upon the fishing fleet, some general marine traffic accident researchers 

(e.g. WAGENAAR & GROENEWEG, 1987) have supported this idea with respect to fishing 

vessels, while others (T¥EDT & REESE, unpublished 1986) have differed in opinion, citing 

technical factors as the dominant causal grouping. A third group of causal factors -

environmental factors - is also commonly implicated in descriptions of marine traffic accidents 

although their influence is, in many instances.questionable. 
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The work outlined in this chapter represents a detailed investigation into the causes. of 

collision and grounding losses in the fishing fleet with the main analysis tool being quantification 

of the effect level of causal factors related to the casualties. Pursuing this type of analysis 

inevitably calls for a number of assumptions to be made and also what may appear in many 

instances to be arbitary qualification, grouping and quantification offactors. This might leave the 

reliability of the work open to challenge. To overcome any inconsistency that might arise in this 

respect if a single person were charged with scoring and allocation tasks, a team of experienced 

interraters has been used wherever appropriate and the strength of their agreement noted. The 

Author is deeply indebted to the experienced Fishing Skippers who so willingly gave up their 

time to make this contribution to the research, (see Acknowledgements) - and agreed not to 

open the quid pro quo bottle until their contribution was complete! 

Dissecting relevant casualty reports for thirty-four recent fishing vessel collision and grounding 

losses allows for isolation of forty-nine causal factors which can in general be grouped under 

three main factor headings, environmental, technical, and human. Within these three main 

groupings, seven sub-groups are identified. Taking factors grouped in this way and then setting 

them in a block scheme which then serves as a symbolic model is not a new approach, having 

been first exemplified in general safety studies the 1960's (ARINC, 1964). The technique has 

since been used with various adaptations to study merchant shipping casualties (DRAGER et 

al., 1978; KARLSEN & KRISTIANSEN, 1980; KOSTll..AINEN & TUOVINEN, 1981; 

QUINN & SCOTT (1982); TUOVINEN et al., 1983; PARK, 1994). Table 6.1.1 offers a 

comparison of the results of these earlier studies with the present one, in terms of number of 

groups, sub-groups employed and factors identified. 



PRESENT AUTHOR 
KARLSEN & KRISTIANSEN (1980) 
QUINN & SCOTI (1982) 
TUOVINEN et a/ (1983) 
PARK(1994) 

no. of groups 
3 
6 
4 
3 
3 

no. of sub-groups 
7 

21 

4 
12 
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no. of factors 
49 
200 
27 
60 
82 

Table 6.1.1. Comparison of numbers of causal groups, sub-groups and factors identified in 
earlier studies with the regime and findings of the present study. 

The aim of this part of the study is to allow the research to be focused later in the thesis, on the 

critical components of collision and grounding events, as indicated by the tendencies of the 

casualty data. The block scheme compiled in this chapter allows the flow of factors in each of 

the cases in the sample data set to be traced to the top event (i.e. loss due to grounding or 

collision). 

6.2 Casualty Data Sources 

Totally comprehensive information on fishing vessel casualties is quite rare and tends to have 

been compiled only where substantial litigation has followed a particular event. Although the 

advent of the Marine Accident Investigation Branch (MAIB) in 1989 prompted an immediate 

improvement in the recording of this type of data, it is nevertheless still difficult in most cases to 

build a complete picture of events leading to the loss of a vessel. In this study, three sources of 

information were used; 

i) MAIB files 

ii) Records of the Sunderland Marine Mutual Jmmrance Company 

iii) L/oyd's Casualty Week 
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6.2.1 MAIB flies 

The MAIB is responsible for investigating all marine accident events in the UK. Its remit is wide 

ranging and covers merchant vessels and fishing boats, both registered in the UK and foreign 

vessels operating in UK waters. 

The main purpose of the Branch's investigations is to identifY the causes of marine casualties and 

publicise these in the form of salutary summaries of investigations for dissemination amongst 

seafarers. An extract from one of these Summaries is given below. 

Extract from MAJB Summary of Investigations (No. l/94) 

Collision between two fishing vessels and their subsequent loss 

NatTative 

Two steel-hulled purse-seine net fishing vessels of 23.8 and 21.3 meh-es length arrived at 
fishing grounds off the coast of Notway at about midday and pt-epared for fishing 
operations. The weather was good with a north-west wind, fol'Ce 4 - 5, a moderate sea and 
3 -4 miles visibility. 

Before fishing began the two vessels lay stopped starboard quarter to starboard quarter 
whilst fish baskets were h'llnsfert'ed. When this operation was completed one vessel (B) 
remained stopped whilst the other (A) moved off intending to shoot her net. 

Initially A went ahead until B was about 300 meh-es astem and then turned to port with the 
intention of passing down B's starboard side. When the tum Was completed vessel A's 
skipper, who was alone in the wheelhouse whilst the t-est of the ct-ew wet-e preparing the 
fishing gear, engaged the auto-pilot and set the engine to give a speed of about 9 knots. he 
monitot'ed the auto-pilot, considered it was operating satisfactorily and tumed his attention 
to setting up his plotting equipment. By this time vessel B was about three points (33 
degt-ees) on his port bow distant about 1 cable (185 meh-es) and the skipper expected that 
he would pass her at a distance of about 80 meh-es. 

Very shot1ly after this his vessel shuck the bows of vessel B in way of her stat·board side. 
Such was the force of the impact that the sh'Uck vessel sank within six minutes. Fortunately 
her ct-ew wet-e able to take to the liferaft and wet-e pulled aboard vessel A without injury. 

Unfot1unately the collision had damaged vessel A so that 30 minutes after rescuing vessel B's 
ct-ew she also sank. Before abandoning vessel A, her skipper broadcast a MAYDAY signal 
and was able to include an accurate position. The crews on vessel A then took to the liferafts 
and were quickly picked up, all uninjured by a Norwegian t-escue helicopter. 
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Observations 

1. The autopilot had a history of unreliable operation and was not fitted with an off-course 
alarm. 

2. Vessel A had'attained the intended speed of about 9 knots when the collision occun'ed. 
3. The Skipper of vessel B was also engaged in the setting up of fishing gear and his fu·st 

indication of the collision was when he looked through the wheelhouse window and saw 
the bows of A coming towards him. 

Comment 

1. The most probable cause.of this accident was.malfunction of the auto-pilot which turned 
the moving vessel hard to port. This probably happened shortly aftet' the auto-pilot was 
engaged but with sufficient time for the vessel to have attained nearly full speed 

2. This incident highlights the danger of relying on the auto-pilot when navigating close to 
other vessels or dangers and the need to keep a proper lookout at all times. It is even more 
dangerous to place reliance, especially in a close quarters situation, on any equipment 
known to be unreliable. 

3. An off course alarm would have given warning that the required course was not being 
maintained. 

4. Merchant Shipping Notice No M.1471 gives guidance on the use of the automatic pilot 
and the testing of steering gear. This M Notice is based on the Merchant Shipping 
(Automatic Pilot and Testing of Steering Gear) Regulations 1981 (SI 1981 No. 5 71) 
which carries penalties for non-compliance. Also Merchant Shipping Notices M.l 020 
and M.1190 emphasise the vital importance of keeping a proper lookout at all times; 

In certain cases, the Chief Inspector of Marine Accidents may order a Special Investigation of 

the event and this will usually result in a detailed published account of the circumstances. In the 

majority of fishing vessel losses however, a routine investigation is pursued, involving self-report 

by the Master and crew (where available) of the vessel or vessels involved usually, though not 

always, followed up with interviews, The interviews are not based upon a standard format since 

it is MAIB policy that the Investigator should be allowed to use his discretion to attune the 

questioning to acquire the necessary information in the most effective way. (pers, comm., Capt. 

P.B. MARRIOTT, Chief Inspector of Marine Accidents, MAIB, 1995). Prima facie, this 

represents a laudable approach, and undoubtably holds the potential to yield the information 

necessary to derive fundamental causal factors where the interviewer is thoroughly conversant 

with operational procedures aboard fishing boats. Unfortunately, at thetime of writing, none of 

the MAIB investigators have any working experience of fishing operations and tend to draw 



upon the principles and practices of the merchant marine where the operational ethos is, in a 

number of respects, quite distinct from that of the fishing industry. 
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The result of this lack of feel for the fishing operation is that accident reports often contain 

information gaps or worse still, misinterpretations that obfuscate vital details of the event. In 

addition to this lack of empathy in MAIB reports, causes of loss are often attributed in a 

mechanistic way with little evidence of inclusion of factors beyond those that are immediately 

obvious in primary analysis of the event. 

6.2.2 Sunderland Marine Mutual Insurance Co Ltd 

Clearly, the records of the Sunderland Marine Mutual Insurance Co Ltd only hold details of the 

circumstances of vessel losses where insurance had been placed with the company. As the 

largest current insurer of fishing vessels in the UK (in 1995) however, the company has held an 

interest in a substantial proportion of recent fishing vessel losses which have been due to 

collision and grounding. As might reasonably be expected, access to records for the purposes of 

this study was limited to an anonymous outline of the details of relevant cases with no 

subsequent insurance related analysis of cause, since this is confidential. The outline information 

provided was nonetheless quite comprehensive in most cases and yielded much useful data for 

inclusion in causal analysis. 

6.2.3 LLoyds Casualty Week 

LLoyds Casualty Week is published weekly by LLP Ltd. and gives details of all manner of 

catastrophies that have happened, worldwide. Amongst these are fishing vessel casualties that 

have occurred, the report usually including details of vessel type, timing of the incident, position, 

weather conditions at the time, loss of life, etc. Initial casualty reports are often followed up with 
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updates in subsequent issues which may offer more expansive details on a previously 

reported incident. 

6.3 Sample Size and Representativeness 

A total of 34 cases of loss of fishing vessels in collision and grounding events during the period 

1989 - 1994 were sufficiently well described in one or a combination of the sources to allow for 

isolation of the components of the chain of causation. Before results can be obtained that may 

be credibly generalised to the whole population however, it is necessary to demonstrate that the 

sample used is representative. This means that the sample should ostensibly show the same 

characteristics, in the same proportions as the population from which it was drawn. 

One means of testing whether the sample used in this study is representative is to compare the 

distribution of collision and grounding losses by vessel length class, over the same period as the 

sample data was collected. Figure 6.3.1 shows that for the smallest class of vessels (<12 

metres) the data sample offered a perfect match and for the larger classes, fell well within the 

bounds of credibility with a strong positive correlation of 0.99 (p < 0.05) existing between the 

two sets of figures. 
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Figure 6.3.1. Comparison of percentage of study sample with actual UK fishing fleet losses due 
to collision and grounding by size of vessel, for the period 1989 - 1994. 
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6.4 The Chain,ofCausation 

It is common for one particular reason to be cited as'being the cause of some catastrophic event. 

This is understandable, given the natural human urge to simplify the situation in order to 

attribute blame in the most politically expedient manner. In reality however, it is unusual for 

things to be so simple. Although one particular ingredient may stand out amongst the others, 

catastrophies rarely flow from a unique cause and tend to. be the end result of several factors 

which foUow on from each other, i.e. a "chain" of causation. This is almost universaUy the case 

in fishing vessel traffic accidents, and thus the mechanism leading to the top event - loss of the 

vessel·- may generally be described in a meaningful way using iiil event tree system 

6.5 Event tree analysis 

Event tree analysis is a technique that aUows the logical representation of many factors that 

interact to result in an undesirable top event. While the available literature does not credit the 

technique to any single originator, LAMBERT (1973) and FUSSELL (1976) give early 

accounts of its use in safety and reliability studies, while DRAGER et a/ ( 1978) and 

W AGENAAR & GROENEWEG ( 1987) illustrate the feasibility of applying fault tree analysis 

to incidents .involving cargo vessels. No instance of the use of event trees with specific regard to 

fishing boat casualties could be found in published literature to date. 

The analysis proceeds by working backwards from the top event through the compilation of a 

network of contributory factors, set in chronological order. It is normaUy assumed that aU the 

basic events contributing to the top event are statistically independent but this does not preclude 

the possibility that one basic event may generate a number of factors that give rise to that top 

event. A hypothetical example of this would be where an explosion occurs, simultaneously 



rendering the watchkeeper unconscious and disabling the vessel's automatic steering. This is 

referred to by ALDWINCKLE & POMEROY (1989) as a "common cause failure". 
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Some users of the event tree concept advocate the differentiation of links between factors into 

AND or OR gates. This may be helpful, especially where the analysis pertains to an undesirable 

event in one of the process industries, but was not employed in the current exercise since the 

trees had to be as uncomplicated as possible to allow for rapid and easy assessment by 

successive independent interraters. 

6.6 Causal networking 

Event trees may provide qualitative or quantitative analysis, the former being a reduction the 

tree into implicant set combinations of contributory factors while the latter addresses the 

probablity of occurrence of the contributory events within a given time scale. "The 

implementation of fault trees in this study is aimed at providing a simple description of the 

relationship·between the factors that contribute to each casualty in the data set and thus falls into 

the qualitative category. In truth, this current approach might more properly be termed "causal 

networking", since the process serves simply to provide the components of a block scheme of 

causal factors for further analysis rather than to ultimately produce some probablistic numerical 

output. 

By way of illustration, the event tree arising from the case illustrated in the extract form MAIB 

Summary oflnvestigations No. 1/94 (Section 6.2.1 ), in combination with additional data on the 

same event, derived from other sources, is:reproduced in Figure 6.6.1. 



COLLISION BETWEEN F.V. ACTIVE AND F.V. SUPREME, 13/10/92. 

ACTIVE completes her part in 
pair trawliong operation 

ACTIVE' s autopilot known 
to be prone to malfunction 

Skipper turns vessel away from 
partner and sets engine at full speed 

~ 

Skipper engages autopilot and turns all of his 
attention to planning the next trawling track 

H· 

Autopilot malfunctions and ACTIVE changes heading 
and asumes collision course with SUPREME 

Weather and visibility H 

both good. Daylight. ACTIVE' s skipper does not detect collision 
course and does not react to critical situation 

SUPREME' s skipper does not 

I 
react to critical situation 

SUPREME' s skipper is assessing amount and quality 
I of fish in catch while also carryng on a radiotelephone 

SUPREME lies conversation and communicating with crew 
stationary, 
hampered by 
fishing gear 

..... : 
ACTIVE collides with 
SUPREME. Supreme 
sinks first, followed by 
ACTIVE. Both crews 
rescued by helicopter 

...... : 

Fagure 6.6.1 Event tree for losses offishmg vessels Active and Supreme. 
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6.7 Network reliability 

There is a possibility that any attempt to link the known circumstances surrounding a vessel's 

loss may be open to interpretive variability. To counteract this and ensure the reliability of the 

process, three independent interraters were used, operating with the single criterion that only 

information present in the three data sources should be drawn upon, thus limiting both the 

historical and peripheral extent of the network. A reliability coefficient based upon mean 

Pearson product moment correlation was produced for number of factors identified in each 

case at a significance level ofp < 0.05, (Figures 6.7.la., 6.7.1b and 6.7. le). 
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6 . 7 . 1a )correlation coefficient 6 . 7 .lb)corr e l ation coefficient 6 . 7 . l .c)correlation coefficient 
= 0 . 8837 = 0 . 8656 = 0 . 8873 

Figures 6.7.la., 6.7.lb, 6.7.lc. Correlations of number of factors identified by three independent 
interraters for study sample. 

This was deemed to fall within acceptable limits for the purposes of this study, at 0.88 since it 

compares favourably with the value achieved by WAGENAAR & GROENEWEG (1987), who 

in a similar validation exercise, achieved a correlation value of0.84 for number of causes. 

6.8 Block Scheme and Causal grouping 

When the contributory factors in each of the 34 fishing vessel traffic losses in the data set had 

been identified and set in causal networks, they were subsequently allocated to one of three type 

groupings~ human, technical, environmental .. 
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It was anticipated that this allocation might, in some instances, prove problematic where a 

particular causal factor appears to span the division between one group and another. In the 

event however, there was surprisingly strong agreement between the group allocations of three 

independent competent experts. 

environmental factors number of 
oc:currences 

daylight 18 
twilight 5 
darkness 11 
good visibility 9 
moderate visibility 3 
poor visibility 3 
strong winds 6 
heavy swell/ship motion 5 
calm conditions 5 
inadequate/misleading coastal marks/lights 2 
close proximity of navigational hazard 12 
approaching unfamiliar port 3 
dense traffic l 
moderate traffic L 
other ship on collision course 6 
other ship does not react to critical situation 5 
other ship's speed excessive in circumstances 2 

TOTAL 97 

Table 6.8.1. Environmental factors group with number of factor occurrences. 

Pearson moment correlation applied to numbers of factors grouped by type gave a mean 

coefficient value of 0.82 (p < 0.05). Any dispute with regard to the appropriate group for 

particular factors was resolved by discussion and eventual concensus. The grouped factors listed 

in Tables 6.8.1, 6.8.2, and 6.8.3 were drawn from the event trees compiled and the block 

scheme shown in Figure 6.8.4. was drawn-up on the basis of this allocation. 
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technical factors .number of 
~ occunences 

steering system malfunction 3 
propulsion system failure 6 
mooring system failure 4 
poorly maintained engines/hydraulics 2 
fouled propeller 3 
internal communications failure 2 
badly arranged navigational equipment l 
poor visibility from wheelhouse l 
undermanning 4 
unattended wheelhouse 9 
poorly maintained wheelhouse equipment 3 
no clearly defined watchkeeping system 7 

TOTAL 45 

Table 6.8.2 Technical factors group with number of factor occurrences. 

human factors number of 
occurrences 

watchkeeper fatigued 8 
watchkeeper asleep 4 
wilful risk taking 5 
lack of visual observation 10 
watchkeeper leaves wheelhouse unattended 4 
no reaction to critical situation 12 
clear over-reliance upon specific equipment 2 
inadequate/incorrect noting of depth soundings 5 
watchkeeper overloaded, unaware of hazard 14 
watchkeeper underloaded, unaware of hazard 9 
watchkeeper distracted by non-routine event 6 
watchkeeper absorbed in secondary task 9 
watchkeeper unaware of correct procedure 9 
incorrect interpretation of radar display 3 
incorrect interpretation of position fixing information 2 
poor communications procedure 4 
inappropriate manoeuvre 8 
inexperienced watchkeeper 4 
untrained watchkeeper 3 
inadequate briefing at handover of watch 3 

TOTAL 124 

Table 6.8.3. Human factors group with number of factor occurrences. 



natural environment 
navigational environment 

-- --- --
chronic conditions 

competence/training 

1 watd\keepcr distraaed I 
by noo-routine event 

inex>rT«t interpretation of 
position fixing information 

I watdWq>er lmaware I 
of OOI1'ett procedure 

1 in0011'ett intespnutioo I 
of radar display 

poor oommunication 
procedure 

watd\keeper unfamiliar 
with vessel 

acute conditions 

human capacity I 
I watch.keeper underioaded; I 

WlaWare ofbazard 
watchkeeper overloaded; 

unaware ofhamrd lw=~~~~ I watchkeeper f.ltigued I I HUMAN I FACTORS 

errant behaviour 

I wlldUceeper drunk I 
I wilful risk taking I 

laclc of visual 
observation 

I watchkeeper asleep I 

1 wheelhouse U!Uittalded 1 

no reac1ion to 
critical situation 

watd\keeping systan 
~mclearli~ored 

inadequatelincon-ed. noting 
of depth SOWlCiingll 

I_ 
Fi2ure 6.8.4. Block scheme of causal factors 
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The event trees compiled for each of the 34 losses in the sample led to the identification of 

49 factors which, between then occurred 266 times. The greatest number of factors were 

isolated in the human factors grouping, followed by environmental and then technical groups 

(Table 6.8.4). 

groups • eiWironmental factors · 
no. factors 17 
%oftotal 34.7 
no.~ 1 97 

%of total 36.5 

human (actors 
20 

40.8 
124 
46.6 

Table 6.8.4. Numbers offactors identified and numbers of occurrences by main factor groups. 

Factor occurrences were also strongly biased towards the human factors group, with 46.6% of 

the total followed by environmental factors, with technical factors accounting for a modest 

16.~/o. Table 6.8.5, gives a breakdown of numbers offactors and factor occurrences by sub-

groups. 

groups • 
SlJb.,groups 

110. factors 

%of1ofal 

environmental factors technical factors 
:.. ~ ~;.;::.:;.:· ~...,--dlrmlc..::;.;;.;:~=;: aabandiioos 

invirmmErt mvinnnai. andjlicms 

6 6 

.24.4 
25 
9.6 

20 
7.7 

41 
15.8 

Table 6.8.5. Numbers of factors and numbers of occurrences by factor sub-groups. 

6.9 Weighting categories 

53 
19.9 

KOSTILAINEN and TUOVINEN (1981) evaluate each factor in a causal analysis exercise on 

merchant shipping casualties in the Baltic Sea in accordance with the degree of influence, or 

"effect level", that factor is deemed to have had upon the casualty. They use a system which 

provides four possible levels of weighting for each factor (Table 6.9.1). 
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CATEGORY DEFINITION 
ESSENTIAL FACfORS Absence of the factor or its replacemart with a oorredly functialing ooe would have 

had a .9- I.Oprobabilityof the casuah.y 

PARTFACfORS Absence of the factor er its replacemart will a oorrectly fundialing ooe would na. 
alooe have prevented the casualty. Prevmtioo would require the dfed. of at leali two 
partfa<1a"S 

CONTRIBl.ITING FACfORS The factor has an effect. oo the O<X:llJTinO': of the casuaky but its eJiminatiaJ, alooe er 
with ciher fa<10111 would na. have~ the casually_ 

INDEFINITE FACfORS Causal reJati<nship to the oocumnoe of the casualty is iosi~ificant. 

Table 6.9.1. Categorisation of factors used by KOSTALAINEN & TUOVINEN (1981). 

PARK (unpublished 1994) used an alternative list of five categories in analysing shipping 

casualties in Korean waters (Table 6.9.2). 

CATEGORY DEFINITION MAX. WEIGHT 
COEFFICIENT 

ESSENTIAL faaor.; which had a dear and ~ etfed. oo the ~ leading to the 1.0 
e\'ellt 

LIKELY factors likelyto have affected the ciro.ursanas leading to the evm1. 0.75 
POSSIBLE fa<1aS judgW to have less~ in oootribtting to the evmt 0.5 

CONDUCING factors which had a little influmoe oo developing the ewll. er wbtre the si~canoe 0.25 
of the factor is diflirult to judge 

INDEFINITE factors whid! have an indefinite er in.si~canl. causal relaticruhip with the eYtYrt. 0 

Table 6.9.2. Categorisation of factors and effect level weightings used by PARK (unpublished 
1994). 

Both these studies involved the analysis of large numbers of casualties, (not only loss events) 

where comprehensive data was available. KOSTILAINEN & TUOVINEN were furnished with 

data on 707 casualties from the Swedish/Finnish National Boards of Navigation, while PARK 

had information on 3 81 casualties through the published verdicts of the Korean Central Marine 

Accident Inquiry Agency. In view of the difficulty in acquiring comparably comprehensive 

information in respect of UK fishing fleet, it was decided to adopt only three weighting 

categories in the present study - essential, contributing, and indefinite. Limiting the analysis to 



these three categories also made the arduous task of categorisation much easier since, this 

being an arbitary process, it reduced the likelihood of 'borderline' decisions occUrring. 

'fhe criteria used for categorisation in this study are as follows: 
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essential factor - the absence of the factor would in all probability have prevented the loss of the 

vessel; weighted. up to I. 0, An· example of an· essential factor would be where the watchkeeper 

falls asleep. Note however that since there is clearly no absolute guarantee that the same 

watchkeeper would have taken action to avert the top event had he been wide awake it is rare 

for the maximum weighting to be fully implemented. 

contributing factor - the factor contributed to the loss of the vessel, though it is uncertain 

whether the absence of the factor would have prevented the casualty; weighted up to 0.5. An 

example might be a·bad arrangement of navigational equipment in thewheelhouse. 

indefinite factor - the relationship between the factor and the loss. of the vessel is of no apparent 

significance; weighting always 0. An example of a zero weighted factor would be daylight in the 

event tree relating to·a particular loss, since it is unlikely that this would have any significance. 

Three experts with experience in the operation of different types of fishing boats were called 

upon to arrive at mutually agreed weighting coefficients for factors in each individual loss 

scenario in the sample, following study and discussion. Although all of the events in the sample 

were assessed, the level of agreement between experts in five events which were chosen at 

random was determined. It was necessary to limit thisto five because of the vast amount of time 

that correlating for every last factor weighting decision would have consumed. The mean 
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correlation coefficient (p < 0.05) was 0.84, indicating good general agreement between 

assessors. 

Only 46% of the losses studied included factors which fell into the essential category. It is 

worthy of further note that in the majority of these, the essential factors occur towards the end 

of the chain of causality. The environmental grouping paradoxically contained both the greatest 

number of essential and the greatest number of indefinite factors. This is due to the inclusion of 

both natural environment (fog, rain, snow, etc.) and navigational environment (proximity of 

reefs, traffic density, etc.) under the same umbrella title for the sake of expediency. 

The degree of influence perceived by the expert analysts as pertaining to each of the three causal 

groups can be crudely compared by calculation of the mean value of the weightings applied to 

the grouped factors. For the sample of vessel losses used in this study, the mean weight 

coefficients of grouped factors are shown in Table 6.9.2. From this, it is clear that human 

factors are easily the most commonly implicated agent in the pathogenesis of fishing vessel 

collision and grounding loss events. 

groups. enviroqmental factors technical factors human factors 
mean weighting9 0.26 0.42 0~63 

~ nlll.ural oaYipimal cbrm.ie «W: a:acliliCIIa hwnan ~ cmR 
mvirmmml .::.....~ <XJ1ditims L ~ f bdlaviour r- ----

mean weigbtin~ 0.12 0.43 0.18 0.61 0.65 0.22 0.58 

Table 6.9.2. Mean weightings attributed by expert analysts to factor groups and sub-groups. 

6.10 Effect Level of Causal Groups 

A more refined and sophisticated reflection of the relative importance of the factor groups is 

obtained from the effect level calculations since this relates the strength of the weighting to both 

the frequency of the occurrence offactors and the number of casualties in the analysis. 
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Calculation of the effect level of causal groups, in relative terms, is done using the equation 

exemplified by PARK (1994) (equation 1). 

m 

effectlevelofgroup (~) 
m n 

equation 1 

Where the weight coefficient of factor, i in a given vessel loss incident, j is w lf, the number of 

factors included in the analysis is n, and the number of casualties in the study sample is m. 

The percentage effect levels of the three groups and seven sub-groups are outlined in Table 

6.1 0.1 which lucidly ranks human factors, in particular human capacity, as being the most 

significant followed by technical factors. Environmental factors, markedly the natural 

environment as defined in this study, are shown to have by far the least effect in fishing vessel 

groundings and collisions. 

gmupl. 
environmental factors human facton 

effect level 16% 53% 
subo@OUPS natural ~ dumic lKUe cmdlims human ~ errant 

enviraunln. cnvN!mfat ~ oij>ac!.y ti_1INig bd!aviour ..... --
effect level 4% l:ZO/o 11% 2?0/o 8% 18% 

Table 6.10.1. Percentage effect levels offactor groups and sub-groups. 

6.11 Discussion 

With adequate information being available for only thirty-four relevant fishing vessel losses, it 

would perhaps be ambitious to expect a causal analysis, however thorough, to offer a totally 
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comprehensive overview of the situation. Notwithstanding this relatively small sample size 

certain basic yet important conclusions may be drawn from the results. 

Of these, probably the most important is the unequivocal agreement with anecdote, that human 

factors bear the greatest share of the blame for the loss of fishing vessels in collision and 

grounding events. This agrees with the findings of Park's (PARK, 1994) study of all types of 

vessels (Table 6.11.1), and with Aldwinckle's (ALDWINCKLE, 1990) general comment that 

marine underwriters estimate some 70% - 80% of marine insurance claims to arise from human 

failure. 

collisions - groundings 

environmental fact~rs J 0.35 . 

tedinicat factors 0.02 

0.63 

Table 6.11.1. Relative importance of factor groups derived by PARK (1994). 

To counter this, the finding is out of line with Tuovinen's (TUOVINEN et at 1983) results 

(Table 6.11.2) in which environmental conditions are more heavily implicated in collisions and 

roughly equate with human factors in groundings. 

environmental factors 

technical factors 

human factors 

coUisions 

0.77 

0.07 .. 

0.16 

0.11 

0.45 

Table 6.11.2. Relative importance of factor groups derived by TUOVINEN et al. {1983). 
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The difference in these two studies is that in the former, there were 145 fishing vessel casualties 

included m the sample of 381, while in the latter, only merchant vessel casualties were 

considered. This may offer an indication that fishing vessel watchkeepers are relatively more 

prone to error than those on merchant vessels. 

With fewer than 50% oflosses in this study being attributable to essential factors, it is clear that 

combinations of factors give rise to the catastrophe in most cases. Even where there were 

unequivocal essential factors, these were usually located near the end of a chain of events. In a 

sense, this tends to undermine the categorisation process outlined above since it is open to 

question whether it is actually possible to fulfil the essential criterion - ie. elimination of the 

essential factor would have prevented the loss - or whether loss of the vessel is the inevitable 

crescendo of a precursory symphony of events. Where essential factors appear in the human 

error group, the factor, "watchkeeper overloaded" also appears in around 80% of cases. This 

provides evidence that the developing situation leads to overloading of the watchkeeper to the 

extent that he· is operating beyond his capacity, the consequence of which is his making a fatal 

error which is easily isolated in a retrospective analysis. This feature suggests that some analysis 

of the workload of the watchkeeper, including identification of the limits of capacity and the 

times during the fishing trip where these are exceeded through both work overload and 

underload, also a prolific feature in the analysis may provide useful baseline information for 

future safety studies. 

6.12 Chapter summary 

o A total of 49 causal factors are identified for the study sample, which between them occur 

266 times. 
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• The greatest number of factors, 46.6% of the total, was identified in the human factors 

group. 36.5% offactorswere environmental and only 16.9% were technical 

• Within the environmental factors group, sub-factors pertaining to the natural environment 

made up 24.4% of the total but these were in many cases deemed by the Expert Panel to 

have had little influence on the casualty. 

• Only 46% of losses under scrutiny were perceived by the Expert Panel to include essential 

factors (i.e. factors which, if absent, would probably have prevented the loss). Where these 

did occur in the event tree, it was often in the later stages of the chain of causation. 

• The envirornilental factors group proved paradoxical since it contained both the greatest 

number of essential yet also the greatest number ofindefinite factors. This was probably a 

feature of the grouping criteria used. 

• The Expert Panel assigned the heaviest mean weighting to human factors, with particular 

significance being attached to human capacity and errant behaviour sub-groups. 

• Normalisation of the causal analysis by calculation of the effect levels shows that human 

factors are the most serious agent in fishing vessel colision and grounding losses, followed by 

technical and lastly, environmental factors. 
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• The small number of losses being directly attributable to essential factors implies that 

combinations offactors are usual in this type ofloss event 

• The substantial effect level attributed to the human capacity sub-group suggests that this 

may be a fiuitful area for further research. 
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Chapter 7 

WATCHKEEPING OBSERVATIONS AND ANALYSIS 

7.0 Introduction 

"Oh wad some pow 'r the giftie gie us, 
Tae see oorsels as ithers see us, 
lt wad .frae mony a blunder free us, 
And foolish notion". 

Robert Bums 1759-1796 
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Although the work outlined in Chapter Five clearly implicates human error as being the 

prime cause of collision and grounding losses, it has also been demonstrated that only 

rarely does one discrete factor lead to a loss event. As indicated in Chapter Five, it is usual 

for a chain of events to occur in a given set of circumstances. Clearly, it was realised in 

advance that it would mercifully be unlikely that such a chain of events leading to the loss 

of a vessel would actually be observed during the course of this work. It is possible 

however, to examine the human factors situation that prevails during the watchkeeping 

process on fishing boats - aspects such as the way in which attention is allocated, workload 

at different stages of the fishing cycle and whether boredom has a part to play. 

Although the scientific ideal of being able to change input variables, observe what happens 

then repeat until reliability is established is extremely difficult to attain in a study involving 

working fishermen and their vessels, the environment in this "real" situation could never be 

realistically simulated in laboratory studies. In the laboratory, the risks are low, the 

objective of the subject's task usually very well defined and very ofen the subject is actually 

controlled by the task rather than the other way round as happens in the wheelhouse of a 

fishing vessel. Thus it is proposed that the value of the data generated in this part of the 

study lies in its reality, in that is comes from normal procedures observed during ordinary 

working days on board fishing boats. 
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T AYLOR ( 1991), talking of merchant vessels, suggests that visual inspection of the 

horizon and radar screen is the basic and most common activity of the watchkeeper 

although other tasks and long periods of inactivity interrupt this from time to time. He also 

asserts that interruptions of visual inspection vary considerably in length with longer 

intervals occurring less frequently than shorter ones. ~he problem with this treatment of 

watchkeeping as a stochastic process is that it is only feasible where the watchkeeper is 

regarded at any given moment as being either unequivocally devoted to visual inspection or 

not, with involvement in all other tasks being grouped together in the latter category. For 

fishing vessels, although this approach could be applied at certain times during the fishing 

trip, its inherent simplicity means that it cannot provide for a general analysis of 

watchkeeping behaviour. While merchant vessels are usually engaged in making safe and 

speedy passage from point A to point 8, fishing boats must, in addition to pursuing this 

same objective, address a number of additional requirements. WITTY, ( 1984) identified 

three navigational tasks facing fishermen; 

i) guiding the craft safely and by the most direct route between port and the fishing 

grmmds 

ii) shooting, towing and hauling fishing gear in a manner that prevents it being 

damaged or becoming fastened on any seabed obstntctions 

iii) searching for aggregations of commercial species and by the use of fishing gears, 

to capturing viable quantities of these 

KNOX ( 1994) reinforces this notion of complexity in the role of the fishing watchkeeper 

by stating that when fishing operations commence, the skipper is usually on his own in the 

wheelhouse and his responsibilities involve surface and seabed navigation, hunting of 

elusive fish, ship to ship and ship to shore communications and administrative work 
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including compliance with the vast amount of fisheries regulations. Because of the 

convoluted nature of the fishing watchkeeper's duties, the observation programme in the 

present study was designed to record the circumstances that prevail during the 

watchkeeping process rather than to highlight individuals making specific errors that might 

contribute to the loss of the vessel. Acts and omissions which might have led to the 

creation of an unsafe situation were·however noted and are discussed. 

Collection of data was much simplified by having a clear idea of type of baseline 

information that might be derived from a programme of observation and used in a model of 

the watchkeeping process on board fishing boats. This was founded upon earlier 

identification of human factors as the dominant pathogen in collision and grounding events 

in causal analysis (Chapter 6), the circumstances of relevant loss events (Chapter 5), and 

also drawing on the first hand experience of the author as a fishing skipper. 

Ultimately, the aim of this part of the study was to derive some of the most important 

constituents of a human factors model of fishing vessel watchkeeping, using recognised 

techniques and observed data from the real operational environment. This approach was 

not intended simply to provide a repository for information whose usefulness is judgeable 

only by its quantity, but to contribute to a multi-dimensional assemblage of validated 

information on critical aspects of fishing vessel watchkeeping systems. 

It was anticipated that the observation programme would go some way towards providing 

answers to fundamental questions relating to attention allocation, workload, boredom and 

complacency amongst watchkeepers, all of which figure prominently though usually 

without substantiation in both official and anecdotal comment upon the circumstances of 

fishing vessel losses (e.g. MAIB Summaries of Investigations; Pers. Comm. various fishing 
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skippers, 1994-1997). The ideal observation programme is one which totally excludes all 

subjectivity. However, given that this study was carried out in the operatonal setting, in 

somewhat arduous conditions and with resources limited both by the bounds of 

practicality and the current state of human knowledge regarding human factors 

investigations, it is an accepted criticism that this ideal has not been wholly satisfied. To 

mitigate this potenial weakness, a concurrent validation approach has been employed, 

where the results of each measuring device used are correlated with those of another that is 

accepted in the scientific literature as broadly testing the same features. 

Five measures were employed in the observation programme on board fishing boats. These 

were; time a/location, time line analysis, the Stroop Task, self-reported boredom and 

time estimation. Each of these is introduced individually, the results presented and then 

analysed in a brief discussion in discrete sections. These are drawn together in a General 

Discussion with a Chapter Summary at the end of the chapter. With the exception of time 

allocation (which is an essential precursor to time line analysis) each of the measures not 

only provides information in itself but also acts to validate one of the others. This system is 

illustrated in figure 7. 0 .1. 

I time allocation j 

I 
l time line analysis 

I Stroop task 

I self-reported boredom Llf------. 

I time estimation 114-------' 

Figure 7.0.1. The validation system used in this study. 



187 

The term, "human error'' carries with it connotations of deficiency on the part of the person 

responsible and consequent blame for the result of the error. It is quite natural therefore 

that individuals will show antipathy towards the prospect of being observed in a 

performance situation where there exists the possibility of making a recognisable error. 

While HUNNS (1982) reports that this type of reluctance is impossible to overcome in 

many workplaces, the author generally found that his subjects were compliant and over 

time became largely ambivalent towards his presence in the wheelhouse during 

observations. 

7.1 Notes on general criteria applied 

The wheelhouse of a fishing vessel is not a vacuum. Numerous biotic and abiotic factors 

are liable to intrude upon the watchkeeper's approach to his work and influence his 

performance. The aim of any empirical study, such as this one, must be to generate findings 

which are applicable, in a general sense, to situations other than the exact ones in which 

they were observed with the object of fostering what CHAP ANIS (1988) calls, 

"generalisability". To this end a concerted effort was made to as far as possible 

standardise the prevailing circumstances by carrying out observations on the various vessels 

only when certain criteria had been met. This pre-condition therefore demands that the 

qualification, "in ideal conditions" should accompany the accumulated data and results. 

This does not prejudice the quality of the final analysis which is aimed at producing baseline 

information. 

The following simple criteria were satisfied before observations began: 

• wind strength < Beaufort force 5 

o visibility no worse than moderate to good 

o no serious equipment defects that would radically alter the usualwatchkeeping system 
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It was also very important that the behaviour of subjects under observation was in accord 

with that which they would display in normal conditions. To this end, subjects were never 

informed whether the procedures they were following were either "good" or "bad". Their 

behaviours and activities were simply accepted. Subjects were not told of the results of 

any individual observations until after the fishing trip had ended. 

Before it began, the work was approved by the University of Plymouth, Science Faculty 

Research Ethics Committee, who were satisfied that subjects were ethically protected and 

that adequate measures had been put in place to ensure that the safety of the vessel was not 

being compromised in any way. Further to this, as O'DONNELL & EGGMEIER (1986) 

strongly recommend, all subjects were instructed, both verbally and in writing that the safe 

navigation ofthe vessel and the safety of the crew while engaged in fishing operations took 

absolute priority over the observation, particularly where secondary task measures were 

being employed. A copy of the consent form signed by all participants is included in 

Appendix 6. 

7.2 The "Time Machine" computer program 

Many of the observations carried out relied upon the unobtrusive and non-interventional 

timing of certain activities carried out by the watchkeeper in the course of his duties. 

Extensive scanning of available software listings in search of a suitable timing system for 

the work in this part of the project proved fruitless. It was therefore necessary to create an 

application with the required attributes. ''Time Machine" (Plate 6.3 .I) is a computer 

program which was written by the author using Microsoft® Visual Basic programming 

language. By accessing and making use of the inherent timing function of the 

microcomputer, Time Machine is capable of recording the cumulative amount ofattention 
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devoted to up to ten different tasks over any given block of time, even when these tasks are 

being pursued simultaneously. The respective timers can be attributed according to the 

user's preference and are activated and subsequently stopped either by the use of a pointing 

device (mouse, trackball, etc) or more effectively, by simple keystrokes. With practise, the 

observer can start and stop the timers without looking at the keyboard and can thus focus 

his attention on the subject being observed. At the end of the time block, the recorded 

cumulative times were downloaded to a database also built into the programme. Samples of 

database recordings are shown in Appendix 3. 

Plate 7.2. 1 Portable computer running the Time Machine programme. 

7.3 Vessels used in this study 

Observations were made on board three three British fishing boats, the essential details of 

which are shown in Table 7.3.1. These boats were each pursuing a different method of 

fishing and between them, these methods account for about 80% of the fishing activity of 

the UK fleet. 

The vessels all had a broadly similar rotational system for the allocation of watchkeeping 

duty with only minor variations. The skippers were not included in the rota since they kept 

watch when the vessel was leaving and entering port, during deployment and recovery of 
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the fishing gear and for much of the time during which the fishing gear was being towed 

across the seabed, especially while the crew were cleaning and gutting the catch on deck. 

Steaming and fishing watches were nominally of two hours duration but for a variety of 

reasons, some logical and others arcane, they were frequently curtailed or extended. 

Although the fishermen themselves viewed this watchkeeping regime as being ordered and 

logical, an outsider might regard it as haphazard, particularly when compared to the 

standard merchant navy four-hour watch system. 

\ 'CSSel 1 n'SSCI 2 \'fSSt'l 3 

beam trawler otter trawler pair seiner 

length 18 metres 22 metres 24 metres 

date and type 1982, steel 1974, steel 1989, wood 

of construction 

engmepower 460 hp Kw 500hp Kw 670 hp Kw 

area of operation Scottish west coast Northern North Sea Central North Sea 

(area 5) (area 1) (area 2) 

complement 5 men at sea, 1 man 5 men 6 men plus part-

ashore time ship's husband 

(rotation system) ashore 

skipper details Class 2 fishing ticket Class I fishing ticket Class I fishing ticket 

held for 19 years held for 9 years held for 26 years 

mate details Class 2 fishing ticket Class 2 fishing ticket Class I fishing ticket 

held for I year held for l year held for 5 years 

crew details no other relevant no other relevant I x class 2 fishing 

(watchkeepcrs only) qualifications qualifications ticket (18 years) 

l x class 2 fishing 

engineer ticket 

length of 4 days 3days 6days 

observation trip (first half of trip) (first halfoftrip) (whole trip) 

Table 7.3 .1. Details of the vessels used in observations at sea. 
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This system is fairly typical of that used in much of the UK fishing fleet, save for some of 

the larger beam trawlers which operate a rota allowing for each member of the crew to 

have six hours unbroken rest during each day. On all three vessels, watchkeepers were on 

duty alone. Questionnaire data indicated that 63% of watches on British fishing boats are 

taken by lone watchkeepers but responses to the same question in interviews suggest that 

this figure may in fact be 80% or more. Not every member of these three crews were 

active watchkeepers; the cooks on both of the larger vessels did not take navigational 

watches although they did temporarily relieve whoever was on watch during mealtimes. On 

the mid-sized vessel, the skipper and mate shared the bulk of the watchkeeping duty while 

the vessel was fishing. 

The range of seagoing experience among crews was wide, from 4 months to 49 years and 

although the majority had been fishermen for all of their working lives, a number had spent 

time in employment other than fishing at some time. All three vessels were well found and 

carried more than the mininum required safety equipment. By agreement with all involved, 

including the owners, skippers and crews, neither the boats nor the experimental subjects 

are referred to by name in the study. 

7.4 Allocation of Attention 

A study of safety on Dutch beam trawlers by VEENSTRA & STOOP (1992) includes 

cursory mention of the frequency of observation and/or operation of wheelhouse 

equipment. No details of how the data were acquired are provided but these authors 

suggest, in agreement with common anecdote, that navigation related tasks, particularly the 

keeping of a good lookout, are progressively neglected as the fishing-related workload 

m creases. 
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As stated in Section 7,3. the vast majority of UK fishing vessels operate with only one 

person on watch at any time. A specific system for paired watches aboard UK fishing boats 

is actually very rare and exists mainly on the larger (over 24 metres) vessels with more 

crew available and where it is often necessary to have extra personnel for fishing related 

tasks such as sonar monitoring while searching for fish shoals. It is therefore of interest to 

consider how the lone watchkeeper allocates his attention during the different phases of the 

fishing trip and to attempt to assess whether there are significant differences between 

skippers, mates and crewmen in this respect. 

HEINRICH (1988) attempted to observe the behaviour of watchkeepers aboard a Dutch 

beam trawler and noted a number of problems that arose. 

• observing in darkness was difficult 

• fatigue and seasickness experienced by the observer affected the quality of observations 

• watchkeeper behaviour can be changed by the knowledge that he-is being observed 

• some items of equipment are monitored peripherally and can be difficult to perceive 

when this is happening 

• groups of instruments may be observed in a "sweeping" action 

Some of Heinrich's points are extremely difficult to overcome in any programme of work 

involving watchkeepers in their real working environment but the insidious effects of most 

can be mitigated by judicious selection of vessels used and careful consideration being 

given to experimental design. The most notable problem that was faced in the present work 

corresponds with the last in Heinrich's list where the watchkeeper made a visual sweep of 

the wheelhouse equipment displays. Dealing with this called for some degree of subjective 

analysis on the part of the observer in allocating equal proportions of time spent sweeping 

to each of the items of equipment that could be viewed during the sweep. 
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Another problem arose in deciding when the watchkeeper was not, in fact doing anything, 

that is to say, he was not allocating any attention to any of the listed navigational tasks and 

equipment. Some "distraction" activities such as reading a book or newspaper were 

straightforward and easy for the observer to discern. Others, for example simply staring at 

the wheelhouse floor, were more difficult to perceive and relied on extreme concentration 

on the part of the observer. It is clear however that even where the observer's quality of 

judgement and concentration were applied at optimum level, it would be difficult to argue 

that the results could be any more than approximate. To palliate this lack of precision it 

must be borne in mind that the results presented in this section are derived from 112 blocks 

of observation taken over three fishing trips aboard three different vessels, so it is proposed 

that this repetition in different circumstances greatly enhances the reliability of the results. 

Much of the watchkeeping task aboard fishing vessels involves passive monitoring; of 

position indicating displays, radar screens, depth/fishfinding displays, systems control and 

monitoring displays and of the traffic situation outside. In these circumstances, where not 

all actions are overt, measurement of the allocation of attention is not an easy proposition. 

The fact that this study was pursued 'in the field', also meant that it was necessary to be as 

unobtrusive as possible so that firstly and most importantly, the safety of the vessel was not 

compromised in any way and secondly to try and get around the problem of the 

watchkeeper diverging from what would be his normal behaviour simply because he is 

under observation. llhe tendency for workers to show improvements in efficiency simply 

as a result of receiving the experimenter's attention is well known and has become known 

as the ''Hawthorne Effect" (ROETHLISBERGER & DICKSON, 1939; cited in HOCKEY, 

1983) - after the manufacturing plant where the phenomenon was first noted. 
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Thus while the intention was to gain some notion of the way in which the watchkeeper's 

attention is distributed during the different stages of the fishing trip, using the kinds of 

sophisticated human factors monitoring equipment often cited in the ergonomics literature 

for use in accurately recording indicative variables such as eye fixation or evoked brain 

potential, had to be discounted. Instead, Time Machine was used along with visual 

observation of the watchkeeper's allocation of attention. 

7.4.1 Method 

It was anticipated that there would be three phases in the fishing cycle where the level of 

the watchkeeper's attention devoted to navigational tasks would be most likely to vary -

during steaming to and from port and between fishing grounds; while actually fishing, and 

during shooting and hauling of .fishing gear. This was confirmed by the fishermen 

themselves who, during interview, frequently referred to their varied approaches to 

watchkeeping at these different stages of the fishing cycle, as described in Chapter Four. 

These phases were treated in the present study as being discrete and their definition is 

regarded as being axiomatic. Mean observed percentage allocation of attention by 

watchkeepers on the three vessels was recorded during each of these phases. 

Each of the vessels used in the study had been specially chosen from an available pool of 

vessels because its wheelhouse layout was such that it was readily apparent when the 

watchkeeper was directing his attention to certain important individual components of the 

navigation and fishing systems. For example, because times spent monitoring or dealing 

with the navigation system (GPS and/or Decca receivers) and the track plotter (video or 

paper) were recorded separately, these had to be physically sited far enough apart in the 

wheelhouse that it would be obvious which of the two was being scrutinised at any time. 
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At the start of the observation programme, watchkeepers were briefed in respect of the 

purpose of the work and it was explained that all data were confidential, with no names 

being attached to any of the database recordings. Subjects were also told that the observer 

would be very busy with his own activities and would not be able to engage in 

conversation, or to assist or take any part in the watchkeeping process in any wily. They 

were not informed that the observer was himself an experienced Fishing Skipper. 

Because of the intensity of concentration that was demanded of the observer in the 

observation process, the recordings were made in blocks lasting five minutes. Blocks 

would be recorded during a watch whenever it was practicable, so long as the general 

criteria set out in Section 7.1 had been met. 

'!:he observation would proceed as follows; the observer would site himself in one of the 

rear corners of the wheelhouse where he was usually to the side of and slightly behind the 

watchkeeper. The observer would then spend some time getting used to the watchkeeper's 

general approach, noting any behavioural idiosyncracies and asking questions where 

necessary to assist in differentiating between various activities. When the observer was 

satisfied that the watchkeeper was pursuing the watch as he normally would, five minute 

blocks of observation would be carried out. The watchkeeper was not told when the block 

had either started or when it had ended, On the few occassions where a watchkeeper 

suddenly became aware that an observation block was in progress, and instituted a marked 

and obvious change in behaviour, that block was discounted from the final data set. During 

the hours of darkness, it was usually possible to note the activity of the watchkeeper in the 

light that was shed from the range of video screens (echosounder, plotter, radar, navigation 

system, sonar) in the wheelhouse. Indeed, observation was actually much easier at night. 
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7.4.2 Results 

The stored information held in the Time Machine database was transferred to the 

Microsoft® Excel spreadsheet computer program and segregated into recordings for 

skippers, mates and crewmen with sub-divisions for when the watch pertained to either 

steaming, fishing or shooting/hauling. The relevant blocks were then integrated and related 

to the total amount of time covered and expressed as percentages of time for which 

attention had been allocated by watchkeeper rank and operational status. The results are 

shown in composite form in Table 7.4.1. To clarify the information in this table; while the 

vessel is steaming the skipper, for example will, on average, allocate 12.56% of his 

attention to the echo sounder. 

SKIPPERS MATES CREWMEN 

steaming fishing shoot/haul steaming fishing steaming fishing 

echO!!Ounder 12.56 28.95 24.04 18.83 9.96 5.88 5.31 

windows 7.79 10.03 35.52 11.45 14.95 9.25 7.53 

extemJII 0 18.93 17.2 0 2.81 0 0 
communication 

video plotter 6.21 9.49 23.88 16.78 18.07 20.64 23 .23 

oavication system 10.28 10.33 15.67 6.48 3.11 0.20 0 

control system 4.97 2.35 23.62 1.79 3.56 5.08 4.32 

administ:mtion 0 13.03 5.38 4.04 1.23 1.0 3.04 
I other duties 

internal 0 0 25.72 0 0 1.21 3.79 
communication 

radar 6.74 7.01 7.39 13.25 7.08 8.16 6.69 

absent 3.87 0 6.02 1.72 0 0 0 
or lncapadtated 

Table 7.4.1. Comparison of percentage allocation of attention between watchkeeper ranks 
during phases of the fishing cycle. 
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While statistical techniques such as the t-test will test the significance of different levels of 

attention allocation between each phase of the fishing trip, a histogram display of results is 

more effective in illustrating the patterns displayed by the different ranks. The reader's 

attention is however drawn to the differences in the y-axis scales between each of the 

displays. 

Skippers 

When skippers were on watch while the vessel was steaming, they showed a tendency to 

spend relatively large amounts of time giving attention to the displays of information from 

the vessel's acoustic systems - echosounder and sonar, where these were fitted and in 

operation ~igure 7.4. 1 ). All of the skippers observed seemed from time to time to also 

become preoccupied with the navigation system and "fiddled around" with the signal 

receiver and display quite frequently, although this must be qualified by saying that some of 

the observations were made when the skipper had recently taken over from a previous 

watchkeeper and the vessel was soon to begin fishing. When the vessel was fishing, the 

Skippers spent considerable more time engaged in external communications, mostly with 

other fishing vessels (Figure 7.4.2) though they had allocated no time at all to this activity 

during steaming. 

Looking out of the windows was the most frequent activity during shooting and hauling of 

fishing gear (Figure 7.4.3) although this was not directly a navigational activity since the 

skipper was preoccupied with the deployment and recovery of the fishing gear rather than 

looking out for other traffic or navigational hazards. As might also be expected, the 

allocation of attention to vessel control systems during shooting and hauling was also 

exagerrated. The level of attention to the radar display was roughly even regardless of the 

vessel status. 
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Figure 7.4.1. Mean time allocation to navigational tasks by Skippers while on watch during 
steaming periods. 
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Figure 7.4.2. Mean time allocation to navigational tasks by Skippers while on watch during 
fishing. 
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Figure 7.4.3. Mean time allocation to navigational tasks by Skippers during shooting and 
hauling of fishing gear. 
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Figure 7.4.4 offers a comparision of percentage allocation of Skippers' time during the 

different phases of the fishing trip. 

40 

35 

c 30 
0 

1i 25 
~ 
'li 20 
• E 15 
~ 

# 10 

•stearmg 

Otowilggear 

[J hauling and 
shooting gear 

5 

Q~LB~~~~~--~~--~~~--~~--~JR~_.~-

task 

Figure 7.4.4. Comparison ofmean time allocation to navigational tasks by Skippers during 
different stages of the fishing cycle. 

Mates 

No observations were made of mates during shooting and hauling operations. This was 

because, during the fishing trips on the vessels concerned, the skipper was on watch during 

this phase on every occassion that observations could feasibly have been pursued. 

The pattern of attention allocation to the echosounder and sonar exhibited by the three 

mates observed was puzzling in that they spent more time watching these displays while the 

vessel was steaming than while it was fishing (Figure 7.4.7). They spent almost twice as 

much of their time looking out of the wheelhouse windows during steaming watches as the 

skippers, and three times as much as the crewmen (Figure 7.4.5 cfFigures 7.4.1 and 7.4.8.) 

There was however little difference betwen the three when it came to proportions of time 

allocated to the radar display during the steaming phase. Mates allocated the greatest 

proportion of their time to the plotter during fishing watches (Figure 7.4.6). Comparison 

of percentage attention allocation by Mates during different phases is offered in Figure 

7.4.7. 
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Figure 7.4.5. Mean time allocation to navigational tasks by Mates while on watch during 
steaming periods. 
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Figure 7.4.6. Mean time allocation to navigational tasks by Mates while on watch during 
fishing. 

c: 
0 

20 -

~ 15 
~ 
ii 
11 10 
~ 
~ 

5 

0 
ndar \Ytndowa: nav.sys adminloth.. ablllncap. cont.ays eomm,.•t commjnt 

task 

Figure 7.4.7. Comparison of mean time allocation to navigational tasks by Mates during 
different stages of the trip. 

Crewmen 

As with mates, there were no observations of crewmen during shooting and hauling of the 

fishing gear since the skippers were invariably in the wheelhouse during this time. 
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Crewmen were observed to pay very little direct attention to the navigational positioning 

system while the vessel was steaming (Figure 7.4.8) and virtually none at all while fishing 

(Figure 7.4.9). They showed notable devotion to the video plotter screen during both types 

of watch. 

25 

20 
c: 
0 .., 

15 
~ 
ftj 
41 10 E 
·~ 

;/!. 

5 

0 
plotter nn.-y• comm.exl 

task 

Figure 7.4.8. Mean time allocation to navigational tasks by crewwen while on watch 
during steaming periods. 
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Figure 7.4.9. Mean time allocation to navigational tasks by crewwen while on watch 
during fishing. 

Comparison of percentage attention allocation by crewmen during steaming and fishing 

watches is given in Figure 7.4.10. 
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Figure 7.4 .1 0. Comparison of mean time allocation to navigational tasks by crewmen 
during different stages of the trip. 

The significance of differences in allocation of attention to navigational equipment at the 

various stages of the fishing trip was examined using the related t-test statistic. The results, 

on the basis of a one-tailed hypothesis are shown in Table 7.4.2. Data for skippers show 

significant differenc.es between each of the three possible states with the greatest difference 

in allocation of attention occurring between the periods when they were on watch during 

steaming and while the fishing gear was being deployed and recovered. Mates and crewmen 

showed no significant difference in the way they distributed their attention while on watch 

during either steaming or fishing. 

I' · t 

skippers mates crew 
~ -

0.461 0.345 

n/o n/o 
-

nlo n/o 

Table 7.4.2. Results of one-tailed t -test to assess significance of differences in allocation 
of attention to navigational equipment at different stages of the fishing cycle. (n/o = not 
observed) 
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7.4~3 Section discussion 

The proportions of attention allocated to the echosounderlsonar by skippers and mates 

both while fishing and steaming are notable (15% I 26% and 18% I 18% respectively). 

This is perhaps to be expected while the vessel is fishing but is less easily explained during 

steaming. Although not apparent in the figures presented, which depict mean percentage 

allocations over the entire trip, the extra attention to the acoustics displays was more 

pronounced on the way to and between fishing grounds than it was during the homeward 

voyage. When subjects were asked at the end of the trip why they gave so much attention 

to the echosounder, the unanimous response was that they were always on the lookout for 

"fish marks", i.e. evidence of fish aggregations. Given that the echosounders on all three 

vessels had coloured displays one might conclude that they were preoccupied with the 

search for a pot of gold at the bottom of the rainbow! It would appear that giving attention 

to fishfinding systems is a matter of habituation amongst skippers and mates and that this 

may even represent an incursion of the fishing task into attention capacity which might 

otherwise be available for navigation. This is more fully explored in Section 7.5 of this 

chapter, on "workload". 

Moreover a point of interest arises here. It has already been shown in Chapter Five that 

more fishing vessels are lost in groundings towards the end of the week, when a high 

proportion are returning to port. Given that most fishfinding echosounders also indicate 

depth changes, it may be that the extra attention allocated when proceeding to the fishing 

grounds reduces the likelihood of grounding, and vice versa. 

Probably the most notable and disquieting overall feature of this part of the research was 

the disproportionate amount of attention allocated to the video plotter by crewmen. MSA 
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Shipping Notice No. M.l649 (MSA, 1996) notes .that, "MAJB investigations have shown 

over-reliance oti the video plotter to be a factor in several collisions and groundings" and 

makes the point that assessments and assumptions based on the plotter are dangerous and 

unreliable. The M. Notice adds, "it (the video plotter) may aid navigation, but cannot 

replace the fundamental need to maintain a good visuallookouf'. The apparent devotion 

to the video plotter that was observed is interesting because in questionnaire responses, 

very few fishermen gave this impression when asked how their vessels were navigated. In a 

questionnaire responses from a representative sample of 171 UK fishermen, only 27% 

admitted to navigating using the video plotter . 

Although testing the degree of actual reliance on any one piece of equipment did not 

directly form part of this research, it might reasonably be inferred that crewmen in 

particular and mates to an extent, were heavily, perhaps even over-reliant upon the video 

plotter display. 

When asked at the end of the fishing trip, why they gave so much attention to the plotter 

both mates and crewmen tended to respond with the comment that they had been told to, 

"keep her on the line". Both groups were subsequently asked how they knew if the display 

showing on the plotter was actually the correct one for the position the vessel was in. The 

mates said that they did periodically cross check the plotter display with information from 

the navigation system (GPS) and added that they would in any case ')ust know" if things 

were not right, particularly they said, while fishing. Crewmen however, mainly expressed 

what might best be described as blind faith in the video plotter. 

HEINRICH (1988) noted that watchkeepers aboard the single vessel used in his study paid 

particular attention to the autopilot in an effort to ensure that the vessel did not stray from 
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pre-plotted tracks on the track plotter. There was some evidence of this happening in the 

present programme of observation when crewmen were on watch during fishing, but this 

was not so pronounced as to be worthy of comment as in Heinrich's study. Indeed 

skippers tended to allocate more attention to vessel control systems than did either mates 

or crewmen in all three observed phases of the fishing trip. Heinrich also found no 

significant difference in the way in which wheelhouse instruments were used when the 

single vessel in his study was in different phases of the fishing cycle. The results of the 

present work agree with his finding in respect of mates and crewmen but not so far as 

skippers are concerned. The statistically significant difference in the manner by which 

attention was allocated by this latter group suggests that they were taking a completely 

different approach to management of the navigation system at different phases of the 

fishing cycle. 

The sequence in which attention is allocated to various navigational tasks was not recorded 

in this research. lihis is something that would undoubtedly warrant attention in any future 

work in this area since it may have some bearing on how fishing vessel wheelhouses should 

be laid out. Iffor example it was noted that during fishing, the track plotter was repeatedly 

monitored immediately after the echosounder, then it might be concluded that the 

watch keeper was building a mental picture of the fishing track in at least two dimensions. 

One might then conclude that it would be ergonomically sensible to site these two displays 

next to one another or possibly even to integrate the information from the two units into 

one display. 

SHUFFEL et al. ( 1989} consider the navigation of a vessel as being a "hierarchical control 

task" in which three approach levels; planning, monitoring and handling can be 

distinguished. The results of the attention allocation observations show that this principle 
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may have some relevance to the respective approaches of fishing watchkeepers. At the 

highest level, the skipper plans the passage to and from the grounds and the track to be 

taken while fishing. His attention while on watch is allocated in apparently random fashion 

as he constantly evaluates alternative fishing strategies often through radio comunication 

with other skippers. The mate, operating the the intermediate level of monitoring, cross 

references the skipper's planned track with information from the acoustic fish-finding 

equipment and the navigation system. At the lowest level, the crewman on watch simply 

performs a compensatory tracking task in keeping the virtual vessel shown on the video 

plotter on it's virtual track, even though there is no guarantee that this is a true 

representation of the actual situation. 

Each of the tasks that comprise the system of navigating a fishing vessel may be 

interpreted as being individual "functions" in the context of Laughery and Laughery's 

statement; 

"A function can be viewed as a logical unit of behaviour of a human or machine 

component that is necessary to accomplish the mission of the system", 

(LAUGHERY & LAUGHERY, 1987). 

The skippers, and to a lesser extent, the mates who took part in this study were 

experienced and highly motivated and this is likely to generally be the case throughout the 

UK fishing fleet. They appeared to have a fairly solid conceptual picture of the navigating 

system, including the respective roles of the various items of navigational equipment and 

were for the most part operating on a logical, task-by-task basis in fulfilling the 

watchkeeping mission. Crewman on the other hand, especially those with no formal 

training although they may have had substantial experience, seemed to view items of 

equipment in isolation and were therefore faced with a random selection of tasks that had 

little logical connection. Their answer to this situation was to narrow their attention to the 
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track plotter and reduce the watchkeeping brief to a simple tracking function, augmented 

though not necessarily supported by some scanning for vessels which might pose a threat 

by looking out of the windows and occassional viewing of the radar display. 

Although a tempting prospect, it would probably be unwise to attempt to predict the safety 

of a watchkeeping system on the basis of observed allocation of attention since the quality 

of the attention may be a significant factor. HOP KIN ( 1990) offers the useful analogy of 

most car drivers having had the disconcerting experience of driving for some distance 

before suddenly realising that they had not been concentrating on the driving task. In this 

situation, the lack of concentration may not affect the driving performance enough for a 

passenger in the car to notice, even though the safety of the car may be seriously 

compromised. 

7.5 The watchkeeper's mental workload: Time Une Analysis and the Stroop Task 

The observations outlined in section 7.4, which gives an account of how attention is 

allocated during watches, also provide for a nominal analysis of the mental workload 

experienced by watchkeepers at the different stages of the fishing cycle. 

Human attention is a limited resource. It is widely recognised that where it becomes 

necessary to address several tasks simultaneously, or where individual tasks become 

particularly demanding, the watchkeeper may become "overloaded" and unable to deal 

effectively with any exigency that might arise (e.g. WICKENS, 1992; MORAY, 1989; 

O'DONNELL & EGGEMEIER, 1986; GOPHER & DONCHIN, 1986; WIERWILLE & 

WILLIGES, 1979). SHUFFEL et al. ( 1989) comment on the other extreme - a situation 

of"underload" where the watchkeeper may be in a poor state of readiness to react quickly 

when this is required and where his attitude to the job will be negatively affected. 



208 

Modem fishing vessel wheelhouses have become complex control centres with a 

proliferation of increasingly sophisticated fishing, communications, propulsion and 

navigational components. Nonetheless, no research appears to have been focused upon 

whether the fishing watchkeeper, who usually works alone, can effectively perform all of 

the tasks the system demands of him. 

While physical workload is not difficult to measure, mental workload is a different matter. 

As a concept, the latter is nebulous, pervading every aspect of the performance of a given 

task by drawing upon features that are not easy to measure empirically. llhe term, "mental 

workload" itself is is readily understood, but difficult to precisely define, (KANTOWlTZ 

& CASPER, 1988; GOPHER & DONCHIN, 1986). In the present study, the term, 

"workload" is proposed as a convenient term to describe the synthesis of all of the mental 

task demands that are being placed upon the watchkeeper at any one time. Measuring the 

workload of the watchkeeper is considered a worthy objective not only because of its clear 

and direct implication for the .safety of the vessel, but also because it could be used to 

evaluate the effects of crew sizes and ofthe introduction of new technology and ergonomic 

measures. 

The measurement of mental workload has been the subject of considerable discussion in the 

scientific literature and has evoked such controversy that GOPHER and DONCHIN (1986) 

propose that it is in fact a hypothetical construct comprising elements that are actually 

beyond evaluation. Reviews of the methods of mental workload assessment are provided 

by KANTOWITZ (1987), O'DONNELL & EGGMEIER, (1986) and EGGMEIER and 

WILSON (1991). In the present study, the mental workload of watchkeepers has been 
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measured and mapped using an established technique, the results·of which are validated by 

another accepted means of testing for reserve mental capacity. 

7.5.1 Time Line Analysis 

The aim of this part of the research was to establish the average extent of the workload 

imposed upon the watchkeeper at various points during the fishing trip. Using the time 

allocation data gathered in observation trips at sea it was possible to pursue a technique 

known as Time Line Analysis (TLA). This gives a composite picture of the duration of 

individual tasks and from this, more importantly, it establishes a relationship between these 

tasks and time itself The TLA concept then illuminates the existence of any time-critical 

sequences that are inherent in the watchkeeping system. PARKS ( 1979) credits the 

founding of the technique to SMITH ( 1975) who applied it in aviation and found that, at 

workloads in excess of 80%, pilots began to neglect what they considered .to be "non

critical" tasks. Smith also showed that, at very low workload levels, pilots voluntarily 

added extra tasks such as more instrument scanning and cross-checking. 

The rationale for TLA lies in acceptance of the principle that workload is proportional to 

the ratio of time occupied in performing tasks to total time available, (PARKS & 

BOUCEK, 1989). Since the basic technique is essentially descriptive, reliability and validity 

are high and because time itself, although an abstract concept, is an objective dimension, 

the results must be fundamentally "real". 

7.5.2 Method 

As in the data collection method expounded in section 7.4, the Time Machine computer 

programme was used with a notebook computer in the observation programme aboard 

three British fishing boats. The reader is referred to Sections 7.2, 7.5 and 7. 5.1 for a 
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comprehensive description of the method, including vessels and the essential criteria that 

had to be satisfied before data recording could proceed, The data recorded in the Time 

Machine database in the form shown in Appendix 3 was later entered into the Microsoft® 

Excel spreadsheet package for processing. 

The workload estimate was calculated using equation 2, (PARKS & BOUCEK, 1989); 

% WORKLOAD= Rt/T a 
equation 2 

where; R t = time used 
T a = time available 

The estimates can then be used to give a mean workload level for each phase of the fishing 

cycle or plotted over the duration of the watch to produce a time history of the workload in 

the form of a "timeline". 

7.5.3 Results 

The results of this part of the work are presented as timelines for each of the three ranks in 

different phases of the fishing cycle. 

Skippers 

The three skippers in this study were observed in all phases of the fishing cycle - steaming; 

shooting and hauling the gear; towing the fishing gear. This allowed for the construction of 

the timeline in Figure 7.5.1 which shows how the mean workload level changes during 

these phases. The skippers usually took over the watch at around a half hour prior to the 

deployment of the fishing gear. From this point, their workload increased, reaching a first 

peak during the shooting of the gear. Where the skipper stayed on watch during the fishing 

phase, the workload level was fairly even, ranging from 50 to 100% before a second, much 

higher workload peak occurred when the gear was being hauled. The mean level of 
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184.44% recorded at this stage was by far the highest at any stage of the cycle, and for any 

of the three ranks. 
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Figure 7.5.1. Typical distribution and degree of mean workload level in fishing Skippers 
over one complete fishing haul. 

Only two complete observations of the skipper on watch during steaming were made. 

Because of the resultant paucity of data, no tirneline has been constructed for skippers 

during this phase. 

Mates 

Observations were recorded for mates during both steaming and fishing watches, although 

it should be noted that the timeline for fishing is based on only three complete observations. 

The timelines in Figures 7.5.2 and 7.5.3 show that on average, mates' workload level rose 

towards the end of the watch in both steaming and fishing conditions. 
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Figure 7.5.2. Mean observed workload level for Mates as steaming watches progress. 
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The timeline for mates while on watch during the fishing phase (Figure 7.5.3) suggests a 

gradual increase in workload but the low number of observations giving fairly scant data, 

may mask a less regular pattern over the period. None of the mates was on watch during 

hauling or shooting of the fishing gear so no record of their workload level at this time is 

noted. 
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Figure 7.5.3. Mean observed workload level for Mates as fishing watches progress, (based 
upon three observations onJy). 

Crewmen 

Observational data allowed for compilation of timelines for crewmen during steaming 

watches and fishing watches, but not during shooting and hauling of gear since onJy 

skippers were on watch during this phase. During steaming watches, crewmen displayed a 

fairly rapid decline in workload within the first 20 minutes of the watch. This was followed 

by most of the watch being spent at relatively low levels before a slight rise prior to their 

being relieved (Figure 7.5.4). The average workload attributed to crewmen over steaming 

watches was the lowest out of all ranks, in all phases of the fishing cycle (Table 7.5.1). 
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Figure 7.5.4. Mean observed workload level for crewmen as steaming watches progress. 

Crewmen's average workload during fishing watches was marginally higher than that 

exhibited during steaming, but only by 2.5% (Table 7.5.1). This statistic must however be 

considered in the light of the fairly acute drop in work1oad where fishing watches lasted 

more than one and a half hours (Figure 7.5.5). The timeline in this figure shows that while 

workload in this situation is more or less steady between 60 and 70%, where a crewmen is 

on duty in a fishing watch lasting almost three hours, mean workload drops to around 20%. 
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Figure 7.5.5. Mean observed workload level for crewmen as fishing watches progress. 

Table 7.5.1 shows that for skippers, a workload gradient exists with steaming at the lower 

end and shooting I hauling at the other. In mates this effect is reversed, while in crewmen 

the difference between the two conditions is negligible. 
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Crewmen 
52.42% 51.41% 
100.11% 53 .91% 

sh.o • h uli j 184.44% not observed ----:;n...:..o-=rt-=ob..:..s.;:_e_rv_ed ___ _ 

Table 7.5.1. Comparison of mean workload levels for different ranks at various stages of 
the fishing trip. 

7.5.4 The Stroop Task 

In an early paper on the mental demands of car driving, BROWN (1962) said that a "good" 

driver is, "one who maintains sufficient spare capacity to deal with an unexpected but 

possible evenf'. The same probably holds true for watchkeepers on fishing vessels and 

given the variation in workload observed at different stages of the fishing cycle, it is of 

interest to know how much "spare capacity" is available at these times. 

The Stroop Task (STROOP, 1935) is a means of measuring in terms of time, the 

perceptual "cost" of processing information. This was selected for use in the programme 

of observations as a "secondary task" (WICKENS, 1992; OGDEN et al, 1919; ROLFE, 

1973) which would measure the residual information processsing capacity of the 

watchkeeper, beyond that which was being directed at the primary task of navigating and 

controlling the vessel and where appropriate, managing the fishing operation. It was 

anticipated that the results of administering the task would contribute to identification of 

the periods of work underload and work overload during the fishing cycle and thus as well 

as giving useful information in its own right, would validate and augment the results of 

TLA. 

The Stroop Task is based upon inducing a form of confusion, referred to by ERIKSEN & 

ERIKSEN, (1974) as "response conflict" in the subject. The confusion is attributable to 

the difficulty experienced in separating the semantic characteristics of a word displayed in a 

coloured font from the colour of the ink in which the word is printed. Reponse conflict 
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arises in this case because of the similarity of the stimulus properties of text and colour 

when they are displayed in a common location. WICKENS (1992) offers a validation of the 

properties of the task in that, while colour words displayed in different coloured fonts 

clearly interfere with the subject's ability to report the font colour, colour-related words, 

like "sky" or "grass", give some though reduced interference and colour-neutral words, 

such as "will" or "five" produce very little interference. 

BLAOK 
BLACK 

Figure 7.5.6. Cards used used to administer the Stroop task. Full size cards are plastic 
laminated and measure 25cm x 1 Ocm each. 
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7 .5.5 Method 

At the start of the fishing trip, personnel were briefed in respect of the Stroop Task and 

later asked, in private, whether they would be willing to participate in this section of the 

work. The purpose of doing this was to allow anyone who lacked skills in literacy to 

withdraw without being caused embarassment. Clearly, this form of the Stroop task cannot 

give meaningful data if the subject does not possess the ability to read with competence. 

As early in the trip as possible, each participating subject was shown ten different 25cm x 

1 Ocm Stroop cards as illustrated in Figure 7.5.6. Using the Time Machine timing 

programme (Section 7.2), the time for each correct response was noted and the mean 

response time over the ten attempts provided a "Stroop baseline" for that subject. Each 

time the task was administered thereafter the response time, plus or minus relative to the 

subject' s baseline, was recorded. 

7.5.6 Results of the Stroop task 

The results of administering the Stroop task are displayed on standardised figures which 

show the range of responses at different times during the watch, with the mean response 

time above or below the baseline plotted as a line. The longest response time amongst all 

subjects was 4 seconds over baseline (+4) and the shortest was 1 second under (-1). 

3 

0-20 21-40 41 -60 61 -80 81 -100 101 -120 121 -140 141 -160 161-180 

minutes into watch 

Figure 7.5.7. Mean Stroop response times for all fishing vessel watchkeepers during all 
types of watches. 



217 

When a general view of the results is taken (Figure 7. 5. 7), it can be seen that the trend is 

for a slight improvement in spare cognitive capacity over the first hour or so, followed by a 

decline then, where watches extend beyond about two hours, another improvement. 
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Figure 7.5.8. Mean Stroop response times for all fishermen during steaming watches. 

Splitting the general situation into steaming and fishing watches (Figures 7.5.8 and 7.5.9) 

shows that while the pattern of cognitive loading seems to be reasonably even during the 

former, it is much less so during the latter. 

0-20 21-40 41-60 61-80 81-100 101-120 121-140 141-160 

minutes into watch 

Figure 7.5.9. Mean Stroop response times for all fishermen during fishing watches. 
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The related t-test applied to mean Stroop responses for steaming and fishing (Figure 

7. 5.1 0) showed that the difference in results between the two conditions was not significant 

(P (T<=t) = 0.72). 
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Figure 7. 5. 1 0. Comparison of mean Stroop response time patterns recorded for all 
watchkeepers between steaming watches and fishing watches. 

Figure 7.5 .11 reviews the Stroop response times for skippers on their own. The reader 

should note that the Stroop task data for skippers where the watch extends beyond the two 

hour mark does not include any recordings taken during hauling of the fishing gear. 

Skippers' mean Stroop response time during shooting of the fishing gear on trawlers was a 

relatively lengthy 2.05 seconds. On a number of occassions when Skippers were asked to 

respond to the Stroop cards at this stage of the fishing cycle, they would look at the card 

and quite clearly struggle to differentiate between the wording and the colour, although this 

did not always happen. 
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Figure 7. 5 .11 . Mean Stroop response times for fishing skippers while watchkeeping. 
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The response times for mates ranged from almost a second over baseline in the early stages 

of watches to near enough a second under, after an hour and a half on duty (Figure 705012)0 

The mates on whom the Stroop test was administered in this study seemed to enjoy being 

faced with the task during their watches and it may be that the validity of the results are 

compromised to some extent by their efforts to be seen to 'perform efficiently' in the task. 
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Crewmen's average response times varied least across the duration of watches, ranging 

between baseline and one second over, throughout. Responding to the Stroop cards took 

them slightly longer during the first hour of the watch but the degree of dispersion around 

the mean response times shown in Figure 7. 5.13 suggests that in some instances very little 

spare cognitive processing capacity was available up to this point. Most crewmen' s 

watches lasted under two hours (during steaming usually only one hour) so the small 

number of times the Stroop task could be administered beyond this undermines the 

reliability of the data over the 120 minute mark on the x-axis. 

Figure 7. 5. 1 4 compares the pattern of mean response times for skippers mates and 

crewmen. It can be seen that the amount of spare mental capacity available to skippers 

fluctuates, while that available to crewmen remains quite stable. Mates appear to have a 

gradually increasing level of spare capacity as the watch progresses. 
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Figure 7.5.14. Comparison of mean Stroop response time patterns between Skippers, 
Mates and crewmen on fishing vessels. 

7.5.7 Validation and section discussion 

Because of the limitations imposed by availability of data, it was not possible to investigate 

the relationship between Stroop test results and percentage workload for all possible 

combinations of watchkeeper rank and vessel condition, for example the time during which 
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Skippers were on watch while steaming, or when Mates and crewmen were on watch while 

fishing. 

Plotting workload levels against mean Stroop task results where this was possible shows 

that the two appear to move together, (Figures 7.5.15; 7.5.16 and 7.5.17) and the statistical 

significance of the correlations between the two, for both skippers and crewmen, tends to 

confirm the intuitive expectation that higher levels of workload are accompanied by a 

reduction in the watchkeeper's reserve mental capacity (Table 7.5.2). The correlation for 

mates was not significant but this may be a function of having too few observations rather 

than there being no relationship in existence. In the light of these results, it is proposed 

that the observation-based method used to calculate workload is valid and that the results 

could contribute to a fishing vessel watchkeeping model. 
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Figure 7.5.15. Skippers' mean observed percentage workload levels correlated with mean 
Stroop test results during fishing watches. 

The correlation of workload with Stroop test results for skippers is of particular interest. 

In Figure 7.5.15, the polynomial trend line which most appropriately fitted this correlation 
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indicates a disproportionate mcrease m the mental cost of processing information as 

workload rises. 
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Figure 7.5.16. Crew's mean observed workload levels correlated with mean Stroop test 
results during steaming watches. 
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Figure 7.5.17. Mates' mean observed workload level correlated with mean Stroop test 
results during steaming watches. 
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_ _,.____ 

correlation coetracieot 
-

number of pain in sample 9 8 
... - -~ 

significant at p<0.05? _ yes yes 

Table 7.5.2. Results ofPearson's product moment correlations between Stroop test results 
and % workload. 

The question that begs to be addressed here is that of deciding where on the timeline 

horizontal lines representing "overload" and "underload" could be superimposed? 

The times when fishing gear was being deployed and recovered were periods of peak 

workload and these correspond with the greatest reductions in spare cognitive capacity 

(mean Stroop response of +2.05 seconds I mean workload level 184.44%). During the 

observation programme, the skippers were invariably on watch during these periods and in 

spite of their training and expertise, were so loaded with tasks that their ability to deal with 

additional activities demanding attention and requiring some calculated response would 

clearly have been diminished. Where Stroop responses were correlated with workload and 

a polynomial trendline fitted to the resulting data points, the curve begins to flatten out 

when Stroop responses exceed one second over the baseline level. It is therefore proposed 

that this is an identified point of overload since beyond this, workload no longer increases 

but the time taken for cognitive processing does. This implies that wherever the timeline 

rises above 140%, the skipper on watch is in a state of mental overload. Figure 7.5.18 

shows that this level was broached during both shooting and hauling of gear. 
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Figure 7.5.18. Stages in during fishing watches where skippers are overloaded. 
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While the discussion above centres on data for skippers, because of their superior training 

and experience it is unlikely that the same overload threshold will be directly transferrable 

to mates and crewmen. Fitting the same type of polynomial trendtine to the correlation 

between Stroop response and workload for crewmen during steaming watches, for example 

failed to identify any levelling-off point although admittedly only one datapoint occurs at 

workload level of over 100% (Figure 7.5.16). It is probable that crewmen and mates will 

have their own thresholds but the data in this study does not allow for identifying these. 

Determining the underload threshold is an even more fraught matter. Both skippers and 

crewmen showed what might be termed a "sixty minute effect". In the case of crewmen, 

although the workload level appeared to be fairly stable, at around 50%, about one hour 

into steaming watches, their Stroop Task response times rose markedly above their baseline 

levels. Skippers showed broadly the same effect during fishing watches. In crewmen, the 

underlying mechanism for this may be disaffection with the simple tracking task they 

perceive watchkeeping to be, and in skippers of vessels used in this study, this seemed to be 

rather an "uninteresting" phase of the watch during which their skills are not being 

challenged. While it may be that this effect signifies the onset of boredom and monotony, 
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the trigger for which is mental underload, the data gathered in this study does not provide 

adequate support for this theory. It has therefore not been possible to reliably identify a 

level of workload that corresponds with a state of mental underload in fishing 

watchkeepers even though this threshold probably does exist. 

Although there were only three observations of mates during fishing watches, they on 

average showed a rise in their workload towards the end of both steaming and fishing 

watches. This end-spurt is something that was also observed, though not explained in road 

safety studies by MCDONALD (1984) in truck drivers. The effect is reversed in Skippers 

and crewmen who show a decline in workload towards the end of lengthy steaming and 

fishing watches. During the observations, mates were clearly observed to make a conscious 

effort to increase their subjective workload at a given point in the watch, in many cases by 

finding things to do (e.g. making rope strops for deck work, reviewing net plans, doing 

fishing gear calculations, etc.) and noticably investing extra time and effort into routine 

watchkeeping tasks. This agrees with the idea that where a professional ethic exists or has 

been entrained, subjects will voluntarily add tasks when their current mental workload is 

low (SMITH, \975). Being generally recently trained, the mates in this study reacted 

positively to the onset of boredom and lethargy in this way because the accompanying 

feeling ofunderactivity arouses inner feelings of guilt and lack of professionalism. 

The degree of dispersion around the mean results of the Stroop task suggest that while the 

average level of workload experienced by the watchkeeper during a given time period can 

be reviewed using the TLA method, the instantaneous level of reserve mental capacity at 

any given point during a watch may vary quite markedly. For the purpose of TLA in the 

present work, it has been convenient to assume that the individuals observed were similar in 

their ability to respond to given sets of task demands. Clearly, this may not actually be the 
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case and the the question of individual differences in ability to receive, process and act 

upon information between subjects must be considered. Furthennore, WICKENS (1992) 

expounds the axiom that workload is a multidimensional construct and therefore while two 

shared but easy tasks may not exceed 100%, two shared difficult tasks might. Thus if in any 

future work in this area, TLA is to reach beyond the fairly simple mapping of temporal 

relationships attempted here, some moderation of the time quantity would have to be 

achieved. This could be done by assigning numerical weightings to the cognitive dimension 

of each observed task, perhaps based broadly upon the "Cognitive Workload Component 

Scale, proposed by ALDRICH et al. (1989) shown in Table 7.5 .. 3. 

wei ht 
1.0 
1.2 
3.7 
4.6 
5.3 
6.8 
7.0 estimation, calculation, conversion 

Table 7.5 .. 3 From Workload Component Scales for the UH60A mission/task/workload 
analysis (Source; ALDRICH et al, 1989). 

7.6 The watcbkeeper' s mental state: Subjective boredom scores and time estimation 

Throughout the twentieth century, the term, "boredom" has proved very difficult for 

researchers to define. J.E. Bannack, one of the early workers in this area suggests that 

boredom is: 

"A phenomenon of conflict between the tendency to continue and the tendency 

to get away from a situation which has become unpleasant, principally because 

one is responding, or may respond, to it with inadequate physiological 

adjustments, caused in turn by inadequate motivation" 

(BARMACK, 1937) 
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More recently, a less pedantic approach has become fashionable with boredom being more 

simply described as, "an individual's emotional response to an environment that is 

perceived to be monotonous" (DA VIES et al., 1983). WELFORD (1965) suggested that 

the state of boredom might be equated with a situation of underload in the person 

concerned. More recently, BRADBY et al. (1993) note that while boredom is not entirely 

synonymous with underload, the possibility of a link between the two does provide a basis 

for research in this area. In aviation research, BOEHM-DA VIS et al. , (1983) showed that 

the boredom and complacency arising from work underload led to undesirable responses in 

pilots, such as failing to stay abreast of the current status of an ongoing flight. 

DAVIES et al. (1972), (reported in DAVIES & PARASURAMAN, 1982) showed 

significant negative correlations between boredom and concentration, and between 

boredom and perceived expenditure of effort where individuals were faced with a problem-

solving task. This basic principle is summarised in Figure 7.6.1. 

boredom 

effort 

Figure 7.6.1. Davies et al.'s proposed relationship between boredom and perceived 
expenditure of effort. Source: DA VIES and P ARASURAMAN, 1982. 

HILL & PERKINS (1985) suggest that feelings of boredom have both affective and 

cognitive components, the latter being derived from the perception that the tasks in hand 
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lack challenge and demand minimal activity while the former comes from the way in which 

tasks are actually interpreted and executed. There has been considerable debate on 

whether boredom is physiologically correlated with the psychological concept of arousal 

(HEBB, 1955; BERL YNE, 1960; GEIWITZ, 1966; LONDON et a/, 1972). As recently 

as 1993, BRADBY et al. were equivocal with their findings in this respect, stating that 

while laboratory-based experiments show decreased arousal to be linked to subjective 

boredom, this may not be the case with airline pilots whose "professional ethic" may induce 

the opposite effect. While the present work makes no express attempt to address these 

fraught issues.they nevertheless have some bearing on the findings and are briefly discussed 

in respect of their relevance to fishing vessel watchkeeping. 

This section of the present study is not directed at producing any definitive answer to the 

question of whether an increase in boredom necessarily leads to a decrease in the quality of 

the watchkeeper's performance with consequently increased likelihood of a navigational 

error - far too many eminent psychologists have already argued around variations on this 

general theme without agreement. The results nevertheless allow for inferences to be 

drawn. The primary aim was to find out whether watchkeepers actually felt bored, whether 

this subjective feeling was measurable in an objective way, at what stage of the watch the 

onset of boredom ocurred, and whether this overlapped with other measurable changes 

that could indicate a watchkeeping performance decrement. It was also proposed to 

explore whether any sub-group of watchkeepers was more or less susceptible to feelings of 

boredom than others and if so to explore possible reasons why this might be. 

7.6.1 Method 

By virtue of the rather nebulous character of the term, any research work directed at the 

measurment ofboredom is bound to be open to criticism on methodological grounds. The 
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simplest approach possible was employed in this study because it was felt that this would 

be least intrusive and hence produce the most accurate result with fishing boat 

watchkeepers. A "Likert scale" with a 10cm bar separating the wording, "very bored" from 

"not bored at all" was reproduced on slips of paper (Figure 7.6.2). 

very bored not bored at all 

(10 cm) 

Figure 7.6.2. Likert scale slip used to record self-reported boredom level. 

At various stages in the duration of the watch, the watchkeeper was handed a clipboard 

with one of these slips attached, and a pencil and asked to mark the line at a place 

appropriate to how they felt at that moment in time. By measuring left to right using a 1 0 

centimetre ruler where the mark occurred on the line, it was possible to attribute a self

reported boredom score on a scale of 1 to 10 for that point in the watch; i.e. where the line 

was marked 3 cm from the left end, this gave a score of 3, corresponding with quite a 

strong feeling ofboredom in the subject. 

7 .6.2 Results 

When all the self-reports were taken together and related to the stage of the watch during 

which they were recorded, a pattern of increasing , decreasing then increasing boredom, 

with a wide response range, can be seen (Figure 7.6.3). 
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Figure 7.6.3. Mean self reported levels and response range of boredom at different stages 
of the watchkeeping duration for all ranks of fishing vessel crews. 

It is more informative however to look at the results for skippers, mates and crewmen 

individually. Crewmen report slowly increasing levels of boredom more or less throughout 

the watch (Figure 7.6.4). There is a noticable reduction in boredom in crewmen when the 

watch extends beyond two hours, although it must be borne in mind that only a proportion 

of the crewmen in the sample group were on watch for this long and these tended to be 

older and relatively experienced. 

0-20 21-40 41-60 61-60 81-100 101-120 121-140 141-100 161-180 

m In uta a Into watch 

Figure 7. 6.4. Mean self reported levels and response range of boredom at different stages 
of the watchkeeping duration for fishing vessel crewmen. 

The mates contributing to this part of the study also showed an increase in boredom level 

over the first one and a half hours of the watch (Figure 7.6.5) with a more pronounced 

reduction as their relief time drew closer. 
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Figure 7.6.5. Mean self reported levels and response range of boredom at different stages 
of the watchkeeping duration for fishing vessel Mates. 
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Figure 7. 6. 6. Mean self reported levels and response range of boredom at different stages 
of the watchkeeping duration for fishing vessel Skippers. 

Skippers also reported gradually increasing levels of boredom throughout the watch 

(Figure 7.6.6), but unlike their colleagues, there was no reduction as the end of the watch 

came to hand. They reported much lower levels of boredom at respective stages of the 

watch than mates who in turn reported lower levels than crewmen. 

7.6.3 Time Estimation 

HART (1975) showed that when subjects were asked to estimate retrospectively a time 

interval of given duration, they tended to overestimate that interval when they were 

preoccupied with some task and underestimate when they had little to occupy them 

mentally. This, as WICKENS (1992) says, simply confirms the adage that "time flies when 
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you're keeping busy". He goes on to plausibly suggest that high .levels of workload interfere 

with the internal mechanism responsible for monitoring the passage of time. 

This secondary task was selected as a validatory measure for correlation with data on self

reported boredom and Stroop task responses. The measure was deemed suitable for use 

with fishing vessel watchkeepers because it is ostensibly unobtrusive, does not demand the 

processing of stimuli, and requires a minimal response on the part of the subject. It should 

be noted however that DA VIES & TUNE (1970) found no connection between the ability 

to estimate the passing of time and quality of vigilance, thus care has been taken not to 

infer any direct relationship of this kind purely from the results of time estimating. 

6.7.4 Method 

As soon as possible during the fishing trip, subjects were briefed with regard to the details 

of the time estimation task. At irregularly spaced junctures during watches, the subject was 

asked with as little formality as possible to say when one minute had elapsed, starting from 

a point in time when the author said the word, "now!"- The Time Machine timing 

programme, loaded on notebook computer, was used to record, in seconds, the time that 

elapsed up until the point when the subject indicated that, in his opinion, one minute had 

passed. The number of seconds over or under 60 was noted. Subjects were not informed 

of the accuracy of their estimates until the end of the programme of observation aboard 

that vessel so that reinforcing or inhibitory effects would be avoided. 

7.6.5 Results 

A simple explanation of the regime employed in compiling the following figures may aid the 

reader's clearer understanding of the results. Where subjects on .average, underestimated 

the passing of one minute, this is recorded as a negative datapoint. At a superficial level at 
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least, this would suggest that the subjects were under-occupied mentally. Conversely, 

where a positive data point is recorded, this indicates an overestimate of the passage of 

time and hence one might conclude that the subjects were mentally "busy". 

Figure 7.6. 7 illustrates the general pattern of time estimation for all watchkeepers over both 

steaming and fishing watches. A trend towards underestimating is evident during the first 

hour of the watch, reaching an extreme in the period between 60 and 100 minutes into the 

sessiOn. 

minulea into walch 

Figure 7.6.7. Pattern of over/under estimating of one minute passing while on watch, for 
all watchkeepers during all types of watch. 

During steaming watches, crewmen showed variable abilities to accurately estimate the 

passing of one minute but throughout observations they were never off the mark by more 

than five seconds either way. Mates showed more variation in their accuracy on this task 

with a range of over 14 seconds betweeen the largest average over and under estimates. 

None of the skippers was observed on watch for longer than one hour while the vessel was 

steaming and this is reflected in the trendline for time estimating . Figure 7.6.8 shows the 

pattern of estimates for each rank with smoothed lines fitted to the data. 
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Figure 7.6.8. Individual patterns in time estimates for skippers, mates and crewmen during 
steaming watches. 

During fishing, crewmen seemed to be unable to accurately assess the passing of one 

minute at any stage of the watch and on average, gave underestimates at every stage except 

during the first 20 minutes on duty (Figure 7.6.9). Skippers and mates however produced 

remarkably similar patterns of average time estimation while fishing. The largest mean 

underestimates made by these latter two groups were 1.6 and 2.3 seconds respectively and 

notably, both of these occurred around one hour into the watch (Figure 7.6.9). 
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Figure 7.6.9. Individual patterns in time estimates for skippers, mates and crewmen during 
fishing watches. 

7.6.6 Validation and Section Discussion 

During steaming watches, both crewmen and mates showed a positive correlation between 

the means of their ability to estimate the passing of time and self-reported levels of 
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boredom, i.e. a notion of time dragging corresponds with feeling bored, (Figures 7.6.10 

and 7.6.11). 
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Figure 7.6.1 0 Time estimates correlated with self-reported boredom level for crewmen 
during steaming watches. 
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Figure 7.6.11. Time estimates correlated with self-reported boredom level for mates during 
steaming watches. 
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Figure 7.6.12. Time estimates correlated with self-reported boredom level for skippers 
during steaming watches. 
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In each case, these relationships were significant at the 5% level when tested using the 

Pearson's product moment correlation (Table 7.6.1). Relating time estimating ability to 

boredom for skippers on watch while the vessel was steaming resulted in a slightly negative 

trend (Figure 7.6.12) but the correlation was not significant (Table 7.6.1). 

Table 7.6.1. Results of Pearson' s product moment correlations between self-reported 
boredom level and time estimates during steaming watches. 

A similar situation pervades when time estimation was related to boredom during fishing 

watches in that both crewmen and mates provided positive relationships (Figures 7.6.13 

and 7.6.14) which were also significantly correlated at the 5% level using Pearson's 

product moment (Table 7.6.2). A polynomial trendline gave the best fit to the scatterplot 

for skippers but this suggested that the feeling of time passing quickly was accompanied by 

an increased feeling of boredom. This is unlikely to occur and as in the case of steaming 

watches, the result of this correlation for skippers while the vessel was fishing was found to 

be not statistically significant. It may be that skippers, because of the long hours they 

spend on watch while the vessel is fishing, have acclimated to boredom and it does not 

therefore interfere so much with their ability to internally monitor the passing of time 
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Figure 7.6.13. Time estimates correlated with self-reported boredom level for crewmen 
during fishing watches. 
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Figure 7.6.14. Time estimates correlated with self-reported boredom level for mates during 
fishing watches. 
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Figure 7.6.15. Time estimates correlated with self-reported boredom level for skippers 
during fishing watches. 
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Table 7.6.2. Results of Pearson's product moment correlations between self-reported 
boredom and time estimates during fishing watches. 

The significant correlations between boredom and time estimates for mates and crewmen 

in both steaming and fishing conditions suggests that for these groups, self reported levels 

of boredom are valid and thus underestimating of elapsed time can be taken as a surrogate 

for boredom in these cases. The negative relationship between the two variables in the case 

of skippers, both when steaming and fishing, is puzzling and the lack of significance in this 

correlation undermines the usefulness of the self-reporting techniques so far as they only 

are concerned. 

7. 7 Mental workload and boredom in fishing watchkeepers 

In a study of vigilance, MACKIE et al. (1987) highlighted boredom as one of the factors 

that has the most significant deleterious effect among a range of variables. Although not 

manifest in the data presented, a number of the subjects in this study who gave relatively 

low self-reported levels of boredom appeared to engage in subsidiary behaviours that were 

not really relevant to their watchkeeping duties. Examples of this range from making rope 

strops and beckets that were not for immediate use, to spotting sea mammals and playing 

computer games. Identifying other fishing vessels that were in sight was also a popular 

distraction, particularly with Skippers and Mates. 



239 

WELFORD (1965) first expressed the now widely accepted view that "typically boring 

situations" are those in which attention is required but little information is conveyed. This 

is highly pertinent to the watchkeeping situation and helps to separate boredom from 

fatigue and anxiety. 

Drawing on information presented in Sections 7.5 and 7.6 allows for examination of the 

relationship that might exist between mental workload and boredom in fishing 

watchkeepers. 

Table 7.7.1 indicates that significant correlations exist between boredom and workload in 

all ranks while they are watchkeeping on fishing boats. The relationship between these two 

variables in both skippers and crewmen corresponds to that which might be expected in 

that they exhibit reduced levels of boredom as their workload increases (Figures 7. 7.1 and 

7. 7.2). This effect falls in line with DA VIES et al.'s proposed relationship between 

boredom and perceived expenditure of effort (DA VIES et al. (1972) - see figure 7.6.1 ). 

skippers ' crewmen 

J ·o.76. 

number of pai~Jn sample --9 

Table 7.7.1. Results of Pearson' s product moment correlations between self reported 
boredom levels and% workload. 
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Figure 7. 7. 1. Workload correlated with self-reported boredom level for crewmen. 
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Figure 7.7.2. Workload correlated with self-reported boredom level for Skippers. 
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The equivalent relationship for the mates on the three vessels used in this study was totally 

contrary and paradoxically indicated an increase in boredom level as workload increased. 

This inversion of the anticipated relationship could be related to the tendency for mates to 

voluntarily increase their workload when feelings of boredom occur, as noted in section 

7.5.7. When they begin to feel bored, mates seem to increase the amount of time they 

allocate to watchkeeping tasks, either to stave off the feeling, or because of the guilt it 

induces or both. The results of this research suggest that the success of this tactic may be 

questionable since even though the workload goes up, the feelings of boredom seem to 
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linger on. The critical point is whether the induced increase in attention to navigational 

tasks increases the efficiency of the watchkeeping system in terms of safety. 
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Fig 7.7.3 . Workload correlated with self-reported boredom level for mates. 

7.9 Chapter Discussion 

SHUFFEL et a/ (1988) suggest that optimisation of safety and efficiency in ship control is 

not primarily a case of providing better equipment. In their view, allocation of tasks 

between men and automated equipment is the critical exercise. 

The hypothesis proposed in Section 7.5.3 regarding the focus of attention on the video 

plotter by crewmen may have its explanation in what has become known as Rasmussen' s 

"S.RK framework of task performance" (RASMUSSEN, 1986). This model has three 

distinct levels of task performance, skill based, rule based and knowledge based - each 

relating to a given level of familiarity with the task and the environment in which it must be 

accomplished (Figure 7.9.1). The lowest level, skill based performance, is based upon pre-

programmed instructions. This would appear to be the level at which crewmen were 

operating when they were '1'ollowing the line" on the video plotter. REASON (1990) in 

discussing his "Generic Error Modelling System" (GEMS), which is in turn based upon the 
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SRK framework, says that most errors at the skill based level are attributable to monitoring 

failures. Omitting to perform checks on the system at critical points can lead to a number of 

end states, which in the watchkeeping scenario could include grounding or collision. At 

the intermediate level, rule based performance, the mates tackled familiar situations using 

stored rules of the type, "if P then Q" as well as operating at the skill-based level. The 

skippers, in addition to these first two levels also operated at the knowledge based level, 

planning their actions "on line", using conscious analytical processes combined with stored 

knowledge. 

Figure 7.9.1. Schematic model ofthree diferent levels ofhuman information processing. 
(Based on RASMUSSEN, 1986) 

These differences in conceptual approach to the watchkeeping task feed into attribution of 

utility to the various sources of navigational information with the result that the skippers 

were using a completely different set of criteria to decide whether the vessel was in a "safe" 

situation or not. The general implication of this is that even where the cause of a fishing 

vessel loss can be squarely attributed to human error, modelling these individual failures 

cannot usefully be pursued in the absence of a dedicated decision theory model. 
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The period during deployment and recovery of the fishing gear has been identified as a 

critical period during which a lone watchkeeper, in the case of this study invariably the 

skipper, is operating in a state-of cognitive overload and is unlikely to be giving the amount 

of attention that might be desirable to the task of safe navigation. This was probably not 

however the time during which the vessels (two trawlers and seine-netter) used in this 

study were most vulnerable since firstly, they were operating some distance from the 

shoreline and other navigational obstacles, secondly they were not usually moving very fast 

and thirdly, other vessels could readily see the fishing gear being streamed from the stern 

and thus knew to keep clear. Certain other types of vessels that compose the UK fishing 

fleet do tend to operate near navigational hazrds - crabbers for example, operating around 

rocky headlands - and the findings with regard to skippers' workload and capacity could 

have serious implications for these. In the future, it would be desirable to replicate this part 

of the research on board a greater range of fishing boats in different operating 

circumstances. 

An estimate of the cognitive overload threshhold for skippers is presented in section 7.5.7, 

but this may not be suitable for generalising to the other groups of watchkeepers. If the 

three groups of watchkeepers are approaching the task at different levels it must be 

accepted that they will have different overload (and underload) thresholds. Beyond this, 

individuals differ considerably in their subjective reactions to vigilance situations and the 

attitudes they develop towards the task may well exert some effect upon their performance, 

(DA VIES & P ARASURAMAN, 1982} It is possible that personality influences the kind 

of attitudes that are developed towards the watchkeeping task although to date, this 

appears to have received little or no consideration. Other factors that might affect the 

positioning of overload and underload thresholds are tiredness and the physical 
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environment - heat/cold, noise, vibration, motion, etc. The influence of these could be 

assessed by compiling timelines for each day of trip to assess whether the pattern changes 

as the trip progresses and also perhaps, whether a significant difference in pattern occurs 

when a recognised environmental stressor is introduced into the wheelhouse. The ideal 

would be to devise some flexible system of watch scheduling that would smooth the peaks 

and troughs in workload, though undoubtedly this laudable aim would be extremely 

difficult to achieve in practice. 

In 1937, BARMACK's seminal work showed that individuals who experienced the 

greatest increase in self-reported boredom showed corresponding increases in error rate 

and a decrease in work output. Many studies have since been pursued with the aim of 

linking boredom with an increase in the likelihood of human error (BRAD BY et a/, 1993; 

QUINN & FREEMAN, 1983; DAVIS et a/, 1983; ENDO & KOGI, 1975). While 

testing the quality of vigilance and assessing the potential for error has not been directly 

addressed in this study, the fact that mates seem to react positively using compensatory 

behaviours, to the onset of boredom may be a contributory factor to the lower incidence of 

traffic losses that occur when they are on watch. Only 8% of fishing vessel traffic loss 

events occurred while the mate of the vessel was on watch compared to 47% and 30% 

while skippers and crewmen were on watch respectively (Chapter 5,). Even when these 

statistics are normalised to allow for the proportions of watches taken by the respective 

ranks, fishing vessels still appear to be relatively safer in the hands of the mate than with 

either the skipper or crewmen. There must nevertheless be limits to this compensatory 

effort and it could be that a particularly profound decline in performance would follow the 

breaching of this limit. 
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The data presented in this chapter suggest that attention allocation, boredom and workload 

are all factors which may have some bearing in fishing vessel collision. and grounding events 

but.that it is probably vacuous to refer to these in umbrella terms as is so frequently done in 

both official and anecdotal reports. The way in which skippers, mates and crewmen are 

affected by these and the strategies they employ are varied and may rely on features that are 

difficult to monitor, such as the individual's conceptual approach to the watchkeepingtask. 

7.10Chapter summary 

o The pattern of attention allocation while on watch varied between groups of 

watchkeepers; crewmen allocated their attention in the same way whether the vessel was 

steaming or fishing while skippers made significant changes in approach. 

o Skippers and mates gave disproportionate amounts of attention to the echosounder, 

mainly looking for fish aggregations. 

o Crewmen may be over-reliant on the video plotter, both during fishing watches and 

steaming watches. 

o Different ranks appear to have different concepts of how the vessel's navigation system 

functions as an entity; this may have bearing on training regimes. 

o The results of attention allocation studies can contribute to ergonomic wheelhouse 

design. 
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o Mental overload levels can be determined for fishing watchkeepers but underload 

thresholds are difficult to identify. 

• The period during which the fishing gear is being deployed and recovered, the 

watchkeeper is likely to be operating in a condition of mental overload. 

o While on watch, skippers and crewmen exhibit a "sixty minute effect" at which time, 

although mental workload is not excessive, cognitive processing seems to slow down. 

• A professional ethic seems to pervade amongst mates and manifests itself in conscious 

attempts to increase workload when this falls below a certain level. However there is no 

evidence to suggest that this leads to better quality watchkeeping. 

• The positive response to the onset of boredom shown by mates may be contribute to the 

lower incidence of fishing vessel traffic losses while they are on watch. 

• The workload analysis in this study could be improved by attaching weightings to 

different components of the watchkeepirig task. 

• A statistically significant correlation exists between workload and boredom m 

watch keepers of all ranks. 

• An ideal watchkeeping system would be flexible and smooth the workload peaks and 

troughs. 
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Chapter 8 

CONCLUDING DISCUSSION AND RECOMMENDATU:lNS 

8.0 Introduction 

"Break, break, break, 
On thy co/dgray stones, 0 Sea! 
And I would that my words could utter, 
The thm1ghts that arise in me. " 

Alfred Lord Tennyson 1809-1·892 
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The basis of a doctoral thesis is that its contents should represent an addition to human 

knowledge in the subject area. The development of a theoretical orientation of research into 

fishing vessel collision and grounding losses relies on a number of different avenues of 

research but historically, normative research describing the nature and extent of the 

watchkeeping 'problem' on fishing boats has been rudimentary and fragmented. The work 

outlined in this thesis lays new foundations for a coherent approach to addressing some, 

though by no means all aspects of the problem. 

Chapters Three and Four provide a previously unattempted collation of necessary 

information on the working conditions on board British fishing boats.and offers insight into 

the organisation of, and constraints upon watchkeeping routines. Chapter Five presents a 

broad analysis of the circumstances in which collision and grounding losses have occurred 

in the recent past a feature that also does not appear to have been addressed elsewhere but 

will be fundamental to future work in this area. Chapter Six describes the adaptation of a 

technique used in other spheres of safety research and applies this for the first time to 

fishing vessel losses to isolate human factors as the most profoundly influential factor group 

in fishing vessel collision and grounding losses. Chapter Seven, with its attendant sections, 

is devoted to providing previously unknown data on the cognitive state of fishing 

watchkeepers in actual operating conditions, by the use of new and adapted scientific 
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techniques. 1hese can be used in the development of measures of watchkeeping 

performance which are related to critical aspects of the human element in the system, such 

as allocation of attention, cognitive overload and underload, and compensation for 

boredom. 

This final Chapter sets out to draw upon the topics covered earlier in the thesis to 

formulate a concluding discussion, culminating in a series of recommendations. 

8.1 Fishing boat safety in a dynamic environment 

In Chapter Two of this work it was shown that the size and structure of the UK fishing 

fleet are dynamic features, having changed markedly over the period since 1975. With 

severe pressure now being applied by the EU to align the catching capacity of the fleet with 

the available fish resources, more change is probably inevitable. There are indications from 

trends in recent data on the size distribution of vessels in the fleet that the future will herald 

a smaller British fishing fleet, composed of larger vessels, more efficient in fishing terms 

and more sophisticated navigationally. However, it is equally likely, particularly if overall 

European fisheries management policy veers towards regional management, that significant 

numbers of small vessels will continue to constitute a substantial component of the fleet. 

Whichever scenario develops, it is important that the implications of fisheries management 

policy for fishing boat safety are fully considered at the inception stage. This consideration 

should not be based on anecdote but on science and rational discourse, and should be the 

remit of an impartial authority with no vested interest in the fishing industry. 

Before leaving the subject of linking fisheries management with safety management, it is 

worth considering that although the data on losses gathered for this study have been 

normalised to the number of vessels "at risk" to give a more realistic view of the relative 
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pattern of vessel losses than is available from official sources, even this is not completely 

satisfactory. Inter-annual variations in the weather pattern could significantly alter the 

number of days fishing vessels put to sea in the various sea areas in certain years but the 

information necessary to retrospectively incorporate this into analysis is not available. 'fhis 

could be easily overcome by harbour control systems in the various fishing ports and 

fisheries managers both using a PC based recording system, downloading information to a 

central database. 'fhis arrangement may in itself come to pass for fisheries management 

reasons, particularly if a "days at sea" effort control system is implemented in the UK. It 

would be desirable however for the database to be available to safety researchers and for it 

to be appropriately arranged for safety analyses as well as for fisheries management. 

8.2 Economic factors affecting fishing vessel safety 

No overall connection was found in Chapter Two, between numbers of fishing vessels lost 

and the availability of money for vessel improvements. This suggests that financial 

resources allocated by the SFIA in vessel improvement grants might usefully be spent in 

other areas. In retrospect however, the analysis presented in Section 2.6 could be validated 

by correlating numbers of vessels lost, with the uptake of SFIA vessel improvement grants, 

rather than using a notion of the general availability of money available for borrowing. 

Philosophically speaking, pursuing a programme of work to recommend ways of reducing 

fishing vessel traffic losses is actually quite illogical. After all, the loss of a fishing vessel 

may involve injury or loss of life, immediate financial loss and loss of possible future 

earnings, and may even lead to criminal prosecution. What more compelling incentives 

could be added to this list that would make watchkeepers more attendant to their duties? 

If one is to accept that increasing the likelihood of any of these penalties will act as an 
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incentive to better the quality of watchkeeping, then the corollary - that decreasing their 

likelihood will impinge on the·quality ofwatchkeeping- should also be considered. 

The possibility of the watchkeeper promoting death or injury to himself through lack of 

care and attention quite probably does have a constant positive effect on his performance, 

as do the recent high profile punishments meted out by British courts to negligent and 

reckless fishing watchkeepers (see for example FISHING NEWS, 1996). Transferring the 

cost of groundings and collisions away from the owners of fishing vessels, who are in a 

great many cases the skippers, through the medium of marine insurance on the other hand 

radically reduces the financial cost of involvement in these events. Although no direct 

evidence has been presented in this thesis and this hypothesised effect has not to the 

Author's knowledge been quantified elsewhere, it would clearly not be rational for a vessel 

owner who felt that his watchkeeping regime was infallible to "waste" money on insurance 

to cover collision and grounding risk. It would be an impractical but nevertheless 

academically interesting proposition to test whether the numbers of fishing traffic losses 

would decline with marked effect if insurance provision for these risks were suddenly 

withdrawn from every vessel in the fleet. What does flow from this theorising is that the 

fishing vessel insurance companies are clearly an under-utilised means of exerting pressure 

on fishing vessel owners and skippers to tighten-up watchkeeping regimes and ensure that 

the performance of individual watchkeepers is up to scratch. 

8.3 The need for a comparitive research approach 

In Chapter Five the disproportionately high number of collisions and groundings that have 

occurred in the Central North Sea area was discussed and though some reasons for the 

collision rate were proposed in the Chapter Discussion, these were somewhat tentative. 

The following Chapter outlined a causal analysis that established human factors as the most 
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important causal group by far in these types of losses. Logic would therefore dictate that 

finding a reason for the relatively high number of traffic losses in the Central North Sea 

could best be pursued through study of the prevailing watchkeeping systems and the 

behaviour and mental state of watchkeepers who operate in that area that might predispose 

them to invovlement in these events. 

When it became apparent during the course of this research that the Central North Sea had 

a higher than expected traffic loss rate, the Author proposed to further examine MAIB 

records of collision and grounding losses that have happened there, to see if any common 

features, particularly one that are human factors related, could be identified. Unfortunately, 

for administrative reasons, access to these records was denied. One of the vessels taking 

part in the observation programme was operating in the Central North Sea but insufficient 

data was accrued to make any authoritive comparisons between the watchkeeping system 

and watchkeeper behaviour on board it and the same features on board the two vessels 

operating in other areas. Further research directed specifically at a compartitive study of 

watchkeeping practise in different areas would clearly contribute to better understanding of 

this situation. 

8.4 Risk homeostasis in the UK fishing neet 

Historically, the bodies charged with working to reduce the numbers of fishing vessel losses 

have focused on technical solutions. The result is that ''fishing vessel safety" has typically 

been reduced to specification of minimum acceptable standards of design, equipment and 

lifesaving apparatus. Until quite recently, little attention has been directed at improving the 

reliability of the human component of the system. It is therefore ironic that foundering and 

flooding losses, normally associated with technical and equipment failures, have shown an 



256 

increase in number while traffic losses, shown in this Chapter Six of the present study to 

flow mostly from human error, have decreased over the last twenty years. 

WILDE (I 982) proposed a theory of "risk homeostasis" which states that wherever 

technological improvements are made to a system that increase its inherent safety level, the 

users of that system simply adjust their behaviour to return risk to its earlier setting. The 

theory has provoked considerable controversy amongst eminent writers on road traffic 

safety, (for example, GRAHAM, 1982; McKENNA, 1982; EV ANS, 1986) but no reference 

to its application in marine situations could be found in the literature. This theory, which 

draws on both engineering and motivational factors, is worthy of consideration in relation 

to the data on fishing boat losses. 

Risk homeostasis appears plausible with respect to fishing vessel losses when only 

foundering and flooding losses are reviewed. In Chapter Two, these were shown to 

increase by 10% over the study period in spite of the implementation of numerous 

measures aimed at their mitigation. Proponents of the risk homeostasis theory would 

contend that highly visible and much vaunted technical measures introduced over the last 

20 years will have incited fishermen to "drive their boats harder", for example by travelling 

further, making longer trips and working in worse weather conditions than before. There 

were however, also great advances in navigation technology over the same period yet there 

was a concomitant 14% reduction in collision and grounding losses. This clearly 

undermines the theory, although it could be argued that the fitting of a watertight 

shelterdeck is more likely to induce a fishermen to work in bad weather than the latest 

chromoscopic radar system is likely to induce him to reduce his assessment of the closest 

acceptable point of approach to other vessels. 
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Central to the risk homeostasis theory is the idea that those in control of fishing boats will 

in some way attempt to maximise the ''utility" offered by a known safety advance on their 

vessel. A compelling argument against risk homeostasis in fishing vessel watchkeeping is 

that the level of risk will change with regard to collision and grounding during the course of 

any given fishing trip. Both collision and grounding risk for example will increase 

considerably when a vessel approaches a busy fishing port in a craggy, reef-strewn bay but 

it is difficult to see what action a watchkeeper could take at these times to equalise the risk 

per unit of time here with that existing when the vessel is steaming in uncrowded waters far 

from shore. So far as collision and grounding is concerned, the Author has for the moment 

at least, joined the ranks of those sceptical of the risk homeostasis theory but there is 

clearly room for more detailed testing of its application in fishing boat safety. 

8.5 Watchkeeper behaviour 

It was conceded in Chapter Four that a VQ system is probably the most suitable medium 

for watchkeeper training in the UK fishing fleet. As the VQ regime gradually subsumes the 

old ticket system, it may bring forth an improvement in watchkeeper performance-since this 

is what is tested in the VQ assessment regime, but it will not necessarily change 

watchkeeper behaviour. 

SANDERS & McCORMICK comprehensively reviewed human factors in engineering and 

design (SANDERS & McCORMICK, 1992) and concluded that the efficiency with which 

information on hazards and the best way to avoid them (for example, good watchkeeping 

practice and adherence to the Collision Regulations) is communicated can modulate the 

level of safety in many industrial situations. In a number of cases of fishing vessel collision 

and grounding loss events however, the person on watch understood and usually observed 

the principles of good watchkeeping but failed to apply these at a critical time. Inefficient 



258 

communication cannot account for this group of incidents so it is important to consider 

some of the other, less obvious factors that might be responsible. 

'f.he first of these was exemplified in Chapter Four where it was established that the 

fishermen's subjective assessment of collision and grounding risks and their actual status 

are not necessarily linearity related and that their perceptions are prone to influence by 

awareness of recent events. In the course of observing watchkeeping behaviour in the 

working environment, it was noted that watchkeepers who although too tired to perform 

effectively, would rather risk an unlikely yet possibly catastrophic collision occurring while 

they had fallen asleep on watch than the mild vilification they might suffer at the hands of 

their crewmates if they declared their lack of fitness for duty. This concurs with earlier 

research findings using data relating to marine accidents where merchant ship crews 

disregarded rules in a way that tended to minimize what they perceived to be mildly 

unpleasant, high-probability events at risk of accepting highly unpleasant though low 

probability events (ZEITLIN, 1975). 

SLOVIC (1978) suggested that the perception of control increases the willingness to 

assume riskand STARR (1969) argues that an individual's propensity to take risks is not 

based on a differential assessment of the possible outcomes but on the level of utility that 

comes from accepting the risk. Buring observations on board the vessels taking part in this 

study, there were a number of occassions where the watchkeepers decided that although 

contrary to good practice, their perceived degree of control was adequate for them to leave 

the wheelhouse unattended for short periods and the utility of a fresh cup of tea or visit to 

the toilet over-rode the risk inherent in having no-one in the wheelhouse. 
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The data gathered for this study seem to support earlier substantive arguments for 

accepting that human behaviour is not determined by objective risk but by subjective 

estimates of it (e.g. HOWARTH, 1987). It would therefore seem fitting that any 

watchkeeper training programme should include measures to make risk assessment more 

objective. Research into fishing vessel traffic safety should also take account of both 

subjective assessment of risk and of the way in which watchkeepers respond to this. 

One of the key outcomes of this research is the finding in Chapter Seven that keeping 

watch is a task that different ranks - skipper; mate; crewmen - appear to approach in 

different ways and furthermore that the same ranks approach the task differently according 

to the phase of the fishing cycle. The significant divergence in the patterns of attention 

allocation, exhibited by both mates and skippers.between fishing and steaming phases of the 

fishing trip, suggests that they integrate the roles oflookout and helmsman with their other 

respective watchkeeping responsibilities quite differently. 

Appraising potential solutions to collision and grounding loss of fishing vessels presents 

special problems since analytical assessment requires predictive models of human 

performance and these do not seem to be particularly well developed. Modern manne 

electronic equipment has allowed, both technically and economically, for the development 

of complex control systems which have meant that, even on small fishing boats, many of 

the well formulated tasks are commonly automated. The observation programme outlined 

in Chapter Seven showed that the level and recency of training seems to affect the way in 

which information from the equipment forming the navigation system as a whole is drawn 

and assimilated by fishermen. The implication for assembling the watchkeeping and 

navigating systems on fishing vessels is that designers should aim to produce a clearly 

defined field within which the operator may adopt effective strategies which can only be 
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generalised, not specified, at the design stage. Advanced technology provides system 

designers with the power to select both the appropriate information for display and the 

most suitable means of offering it to the watchkeeper and some research has been done in 

this area (MILLS, 1996; SHUFFEL et a/, 1989). These works have not however been 

accompanied by complementary analysis of the cognitive and mental approach of 

watchkeepers, so the recommendations may be inadequate and in many cases leave the 

watchkeeper no better off than if1ess sophisticated technological aids were in place. 

An informed decision needs to be made about whether this situation is best tackled through 

changes in "liveware" (training and education) or "hardware" (more suitable design and 

layout of equipment), or both. This would require dedicated research to be directed at the 

earliest possible juncture towards investigation of how trained and untrained fishermen 

perceive the individual components of the navigation system and how these complement 

and interact with each other. Such research could be pursued using a suitably equipped 

navigation simulator but would need to be validated by observations in the operational 

setting along the lines of those illustrated in the present study. With appropriate input from 

psychologists this approach may offer insight into how best to design training regimes to 

improve understanding, particularly by untrained crewmen, of increasingly sophisticated 

systems. 

At-this.point,in the thesis, a general rule ofscientific writing- that of not introducing "new" 

material in the final discussion - is about to be broken. This is because the discussion moves 

to a sensitive area for which the evidence is nebulous but which might or might not be a 

factor of contemporary importance in fishing vessel collisions and groundings. It has been 

established beyond all reasonable doubt that using alcohol increases the risk of a driver 

crashing his car (MOSK0WITZ & ROBINSON, 1987) and this doctrine probably applies 
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equally to the lone watchkeeper on a fishing boat. Comparitively little of a specific nature is 

known of the effect of drugs, particularly illegal ones, on driving (SIMPSON, 1987) but the 

canon of rational discourse dictates that the prospect of drug use among watchkeepers is 

also a matter of concern. In the course of research for this thesis, the Author did not 

witness the use of alcohol or illegal drugs on board any of the vessels on which he sailed. 

This is not to say that the use of these substances is not a feature on board some British 

fishing boats but it is the Author's opinion that these problems are grossly exaggerated in 

anecdotal comment. 

Far fewer fishing boats carry bonded stores now than used to in the heyday of the distant 

water fishing fleet in the middle part of the century, and the crews of those that do are 

motivated more by access to cheap cigarettes than to beer and spirits (Pers. Comm. with 

numerous fishermen, 1996/97). In fact most liquor is not consumed at sea but hidden from 

customs officers when the vessel docks, to be divided up among crews and illegally taken 

home. The paperwork involved and the ritual of having to wait for the arrival of customs 

personnel to perform their sealing duties at the end of each trip is more trouble for most 

present day skippers than it is worth (Pers. Comm. Mr Alan Mutch, General Manager, 

Fraserburgh Inshore Fishermen Ltd., 1997). There is still the problem of a vessel setting 

sail with some of the crew inebriate from drinking ashore and while this was certainly a 

problem in the heyday of the distant water fishing fleet in the 1950's and 60's, it is difficult 

to guage the importance of this as a factor in collisions and groundings in the present day 

fleet. 

The potential problem attached to the increasing use of illegal drugs in the UK in general, 

particularly deserves comment in this study for if drugs have also found its way onto fishing 

boats, their effect on the short term behaviour and long term mental and physical wellbeing 
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of watchkeepers could develop into an important factor in collisions and groundings. 

Talking to fishennen around the UK about the issue of drugs on fishing boats raised 

comments ranging from "its an epidemic" to "there isn't a problem". The concensus of 

opinion seemed to be that wherever a skipper becomes known to tolerate the use of drugs, 

this will attract local drug using fishennen whenever crewing vacancies arise. This seems to 

lead to the creation of extremely isolated instances where vessels which have become 

known in the fishing communities of North-East Scotland, for example, as "hash packets" -

for obvious reasons. There is probably a very strong case for research to be directed in the 

very near future towards establishing the extent and type of drug and alcohol misuse on 

fishing boats, but gathering infonnation that is truly reliable will require a very subtle 

approach. 

8.6 The mental state of fishing watchkeepers 

Researching the human element of fishing systems, in the the real working environment is a 

new area of work and although a relatively small sample has been used in this seminal study 

of the watchkeeping system, a number of important factors relating to the cognitive state of 

fishing watchkeepers have been investigated. 

Since its first appearance in the UK fishing fleet in l984,the video track plotter has become 

one of the most widely adopted items of electronic equipment in fishing boat wheelhouses. 

Its attraction to fishennen was obvious, superseding its mechanical predecessor which 

relied on clumsy rolls of plastic film which quickly became messy and inoperative because 

of tears in the traction holes at the sides, with a disc infonnation storage system which 

holds large amounts of seabed infonnation in easily copied fonn for transfer between 

skippers. Unfortunately, largely because of its readily understandable display, the video 

plotter has since become incorporated into common use as a navigational aid, a purpose for 
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which it was not really intended. The results of the analysis of attention allocation in 

Chapter Seven show that fishermen, unqualified crewmen in particular, narrow the focus 

of their attention while on watch to the plotter display to the extent that other important 

watchkeeping functions are neglected. 

Reliance on the video plotter has not been directly tested in this research but given that it is 

the focus of attention for many watchkeepers, it is probably safe to declare that certain 

groups of fishermen are indeed "reliant" upon video plotter displays. This is something that 

has become well known, indeed the MSA issued an M.Notice (MSA, 1996) warning of 

their limitations, but prior to this research no attempt had ever been made to test the actual 

extent of this reliance. There is little doubt that this is a problem that requires to be urgently 

addressed, though whether the issue of an M. Notice will have any measurable effect is open 

to question. As HA WKINS ( 1987) points out; 

"in attempting to reduce human error, that is, to modify human behaviour, on a 

long term basis, exhortation alone is of little value". 

Pragmatically speaking, there are two options for dealing with the plotter reliance scenario; 

change the machine or change the man. The first of these would involve the development 

of a video display which overlays a range of other congruous information on to the simple 

track display. It is technologically feasible to include radar targets, depth display, 

fishfinding information and systems monitoring data on the same screen, and such systems 

are available but these are very costly items and there is no guarantee that the video plotter 

devotee would actually draw a more complete concept of his operating environment than 

he does at present. He may still direct his cognitive powers toward simply "keeping the dot 

on the line". The second options seems far more expedient and would be considerably 

cheaper. It could be achieved by including in even the most basic training courses, some 
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coverage of the ways in which navigational tasks - tracking using the video plotter, cross-

checking with position fixing means, analysing the radar display, even looking out of the 

window, complement each other as components of an integrated system. This would help 

to foster more awareness and familiarity with the tasks involved in watchkeeping and lessen 

the tendency for narrowing of attention to the plotter screen. 

The narrowing of the focus of attention in crewmen may be a contributory factor to their 

proclivity to feel bored more readily than either mates or skippers. By validating self

reported boredom using time estimation, it is possible to conclude that crewmen really are 

feeling the effects of monotony. At the same time, the research shows that crewmen 

consistently had the lowest workload level while keeping watch. 

Mates on the other hand also felt bored but appeared to respond by voluntarily increasing 

their workload. This did not seem to reduce their feelings of boredom particularly well, but 

the critical question is whether their level of vigilance was raised by this tactic. The results 

of the Stroop Task, administered to mates at the same time, show improved response times 

as the watch progressed although because of the small sample size, the correlation between 

Stroop results and workload were not statistically significant. In Section 4.8, it was shown 

that mates were on watch at the time of only 8% of fishing vessel collision and grounding 

losses, while crewmen were on watch at the time of 30% .of these. Thus, while this 

research has not provided direct evidence, there is nevertheless a very strong circumstancial 

case for accepting that watchkeepers who "find things to do" when they feel bored are 

safer than those who do not. The logical conclusion is therefore that skippers should 

consider giving crewmen extra tasks, not necessarily related to navigation, to pursue while 

they are on watch, particularly when the vessel is steaming. 
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Motivation is a human factor that has not been directly considered in this study although 

the results of the various sections in Chapter Seven allow some related comments to be 

made. SENDERS (1977) proposed that motivation controls the fraction of capacity that is 

devoted to any given task; i.e. that high motivation induces the use of a high fraction of 

capacity and improves performance while low motivation limits capacity and consequently 

causes a situation of overload at low levels of task demand. 

It is highly likely that the skippers, invariably also part-owners, who took part in this study 

were because of their responsibilities for overall safety of their vessels and making sure that 

enough fish were caught to make the trip viable, more highly motivated than the crewmen. 

Senders' hypothesis is borne out in the results of the correlation of Stroop task results (a 

measure. of capacity) with workload, as it is defined in this study. At a workload of 80%, 

the mean Stroop response for crewmen was almost 0.5 seconds over baseline but skippers 

were, on average, responding well under ( -0.2 seconds) their baseline at the same workload 

level. It may therefore be hypothesised that for fishing watchkeepers, the true amount of 

cognitive capacity available at any given time (Ca) for application to watchkeeping tasks is 

actually the product of the maximum amount of cognitive capacity that particular 

watchkeeper could possibly give (C) and a motivation factor (M) valued somewhere 

between·O and 1 (equation 3). 

1.e. 

Ca (M. CJ 

Equation 3 

The implication is that it would be possible to improve the performance and presumably 

therefore safety of watchkeepers by increasing their level of motivation, particularly where 

the watchkeeper is operating at a low workload level. There are ways in which this could 
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be achieved, for example by increasing the level of involvement of crewmen; whose 

workload levels during watchkeeping are lowest, in formulating a watchkeeping policy for 

the vessel they sail on. This idea is developed later in this chapter. 

The Time Line Analyses reported in Chapter 7 provide a plausible guide to the levels of 

workload experienced by the skippers and crewmen on the vessels used in the study though 

much larger samples would be required to offer definitive TLAs. Correlating workload with 

cognitive capacity is a credible means of determining the overload threshold but again, 

much larger samples would be needed to provide a truly meaningful analysis. By virtue of 

this study being carried out in the field, it has not been possible to test whether, at the 

proposed overload levels, the watchkeeper had actually broken down as a functioning 

component of the navigation system. Laboratory experiments, using simulators could be 

designed to test this aspect by contriving a similar set of extended Stroop responses and 

presenting the watchkeeper with a critical navigational situation. This would also provide 

information on the extent of individual differences in overload tolerances. 

It has long been recognised that man's performance of tasks requiring him to detect 

infrequent events over long periods is poor. In 1943, the Royal Air Force commissioned 

laboratory tests to determine the optimum watch length for radar operators on anti

submarine patrols. The results highlighted a phenomenon which became known as the 

"vigilance effect" (MACKWORTH, 1950). This was a marked deterioration in the 

performance of observers that consistently appeared after about thirty minutes. Since then, 

many other industrial studies have revealed a similar effect, although this is usually task

dependent and modified by differences between individual subjects. It has also been shown 

that experience and practice are not effective in eliminating the vigilance effect (DA VIES & 

PARASURAMAN, 1982). It was postulated in Section 6.6.7 that the skippers and 
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crewmen observed in the present study exhibited a "sixty minute effect" where although the 

workload appeared relatively stable, extended Stroop Task responses indicated a marked 

increase in the time taken to process information. 

The "quality" of vigilance was not directly tested in the.present research so it is not possible 

to say whether this was compromised in accord with the onset of this extension in 

information processing time. It is also true to say that cognitive capacity did appear to 

improve as the watch breached the two hour mark, however this may have been due to 

subjects getting better at doing the Stroop Task rather than their undergoing an information 

processing renaissance. If this effect is intimating the existence of a sigmoid relationship 

between time and vigilance effectiveness, the implications for vessels operating watch 

durations in excess of two hours are obvious. The data presented in Chapter Four show 

that watchkeepers on fishing vessels operating in the waters around the southern half of the 

UK in particular, are regularly spending up to six hours on duty alone at one time, both 

while fishing and steaming. There do not appear to exist any UK guidelines regarding the 

length of watches on fishing boats but given the questions raised by this study, further 

dedicated research to provide these would clearly be desirable from a fleet safety point of 

VIew. 

lihe astute reader may by now have begun to wonder why this research has not yet 

included some overt attempt to assess the role of fatigue in fishing vessel collisions and 

groundings. While it may indeed be a factor in this type of event, fatigue is an abstract 

concept that is almost impossible to define, let alone test in a rigorous scientific experiment. 

Feeling 'tired' may be common among fishing crews but does not necessarily correlate with 

degradation of watchkeeping performance. In a famous experiment in 1955, CHILES 

(reported in HOCKEY, 1983) had subjects perform continuously in an aircraft simulator 
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for as long as 56 hours without rest, with the exception that they were periodically required 

to be tested on a tracking task. Towards the end of the experiment, some of the subjects 

were so exhausted that they had to be carried from the simulator but their tracking scores 

were nevertheless well within normal limits. Strenuous physical activity has also not been 

conclusively shown to have detrimental effects on performance in vigilance tasks similar to 

fishing vessel watchkeeping (DICKINSON, MEDHURST & WHITTINGHAM, 1979). 

As long ago as 1921, it was argued that the concept of fatigue should be abandoned 

(MUSCIO, 1921) and it is the Author's contention that so far as fishing watchkeepers are 

concerned, fatigue is not a factor in itself; rather a synthesis of other factors, some very 

obvious such as lack of adequate rest and some cryptic like cognitive underload and 

boredom. Studies such as this one, which examinine the constituents of fatigue may 

therefore be the .only profitable way of moving forward in attempting to assess its influence 

on watchkeeping performance. 

8. 7 Risk-based and systems approaches 

The term, "safety" has been starkly defined by the British courts as, "the elimination of 

danger' (Latimer -v- AEC Ltd., 1953); "danger" being intended to embrace both the 

probability of an undesireable event and its possible consequences. More recently, the 

International Standards Organisation (ISO) has pursued a more considered definition of the 

same term in the wording; " a state of freedom from the unacceptable risk of harm" 

(FIDO & WOOD, 1989). Implicit in this second definition is some attempt to assess the 

level of risk being linked to empathy for operational circumstances. Adjusting the level of 

collision and grounding safety among fishing boats therefore requires manipulation of this 

"state" by making watchkeeping systems and their component parts perform in a more 

predictable manner but with due.respect for the inherent constraints of commercial fishing. 
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Although it is seldom admitted publicly, major, high-profile loss events have frequently 

provided the impetus for action by regulatory authorities in respect of maritime safety 

(LANDMAN, 1995). Unfortunately, while this tends to calm immediate concerns there is 

often a knock-on effect of those in the industry being affected by the hefty financial cost of 

preventing a future event that in reality has only a slim chance of occuring. An alternative 

to this traditional, prescriptive approach is one that is "risk-based", taking a holistic 

approach and including the human component as part of the system. Recent UK legislation 

in other spheres of industrial safety have tended towards this latter approach with greater 

use of systems concepts such as "risk management" and "risk assessment", for example the 

Control of Major Accident Hazards Regulations, 1984 (CIMAH) and the Control of 

Substances Hazardous to Health Regulations, 1988 (COSHH). The application of systems 

management, risk-based decision making in particular, certainly warrants consideration in 

relation to fishing vessel watchkeeping safety. 

A clear starting point for the risk-based approach in terms of targeting action to reduce 

collision and grounding losses in the fleet as a whole would be to identify the type of 

vessels that are most vulnerable and in what circumstances they become so. The results of 

the research outlined in Chapter Four can be used to create "typical" event scenarios for 

collisions and groundings, either of which lead to the loss of a British fishing boat. 

Typical collision scenario 

A vessel lost in a collision event is most likely to be over 24 metres long but of no specific 

age. The collision will probably have occurred while the vessel was steaming on a Thursday 

or a Sunday, sometime between May and October. The most likely venue for the event 

would be the central North Sea and the skipper will have been on watch if the visibility was 
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reduced. If the visibility was good, then a crewman was most likely to have been the 

watchkeeper. 

Typical grounding scenario 

The "typical" fishing vessel to be lost as a result of grounding will be between 12 and 24 

metres in length and will be likely to be over 20 years old. She may have run aground at 

any time of year but it will probably have happened at the weekend, quite possibly on a 

Saturday when there was very little other fishing traffic around. The grounding will most 

likely have taken place either between Rattray Head and The Wash on the East coast of the 

UK mainland, or off the Scottish West coast. It is most probable that the skipper will have 

been on watch in fairly good visibility although where the visibility is poor, a crewman may 

have:been on duty. In neither scenario was the mate likely to have been on watch. 

With information similar to the above, made more comprehensive by analysing a larger data 

set which would probably need to include serious casualties and near misses, it would be 

possible to begin to consider interventions, for example in the human element, which would 

act as a mitigating features in the identified situations where the highest level of inherent 

risk prevails. This approach offers a starting point from which safety could be increased 

without necessarily saddling fishing boat operators with heavy financial costs. 

The !MO Maritime Safety Committee (MSC) has recently endorsed the application of what 

is termed, "Formal Safety Assessment" (FSA) (CANTER, 1997) for use in the field of 

merchant shipping. This is a risk-based approach to maritime safety which proceeds in five 

identifiable steps. Much of the data presented in this thesis could contribute to FSA for 

fishing vessel safety in general and of course, particularly for the traffic safety of fishing 
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boats. The research methods used also have potential for future use in FSA. The relevant 

aspects of this study are related to the FSA process in Figure 8.7.1 

There is also considerable scope for the implemtation of the systems concept at the level of 

individual vessels. There does not seem to be any reason why vessel owners should not be 

requested to produce a "Statement of Watchkeeping Policy" (SWP), based on the 

completion of a standard form, which reflects a commitment to safety and would also 

support the control of the watchkeeping system. The SWP would set clear guidelines for 

the way in which watchkeepers should interact with task-offioading aids; such as the 

autopilot, radar alarm, video plotter, etc. and could form part of the programme of periodic 

assessments presently carried out by MSA surveyors to see whether a fishing boat meets 

the requirements of the Fishing Vessels Safety Rules, 1975. 

The SWP would take implicit account of factors such as boredom and tiredness to ensure 

that workload and system performance are maintained at a level which is not necessarily 

optimum; but acceptable in the specific operational circumstances of each vessel. Such a 

feature would represent a proactive rather than reactive control on the human element 

which is both consultative and achievable at minimal cost to vessel owners. A SWP flow 

model is shown in Figure 8.7.2. The components of this model could provide a basis for 

the development of a pro forma which would be completed by the vessel operator at 

regular intervals. Doing so would force both owner and crew to consider the watchkeeping 

system and become involved in maintaining and improving its quality. Following an 

extensive survey, a Confederation of British Industry (CBI) report in 1990 highlighted the 

need for all workers in an organisation - in this case, the whole crew of a fishing vessel - to 

participate in solving safety problems, in formulating safe working procedures and m 

developing a "safety culture" (CBI, 1990). This report observed that in practice, safety 
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Figure 8. 7. 1. Aspects of the present research (red text) that could contribute to a risk
based approach to reducing collision and grounding losses in the UK fishing fleet. 
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standards can only be upheld where the people involved in carrying out responsible tasks 

do so with an explicit interest. 

8.8 A strategic approach 

The results of the causal analysis in Chapter Six show that so far as collisions and 

groundings are concerned, removing or substantially reducing the instance of human error 

is probably the most effective route to reducing losses. While it is true that some national 

steps have been taken in attempt to reduce the instance of human error in watchkeeping 

(publishing ofMAIB Investigation Summaries and highlighting of the need to maintain an 

effective lookout in M. Notices, as examples} their effect is not directly measurable and 

they seem to have been released on an ad hoc basis. On the training side there is the 

planned implementation of a national VQ system but this does not appear to form part of 

any overarching strategic approach by the UK authorities, emanating rather from external 

international initiatives such as the STCW-F. 

A more positive approach has been taken in the USA, where the Office of Marine Safety 

and Environmental Protection and the Office ofNavigation Safety and Waterway Services 

chartered what became known as the "Prevention Through People", Quality Action Team 

(QAT) to develop a long term strategy specifically aimed at preventing casualties caused by 

human error (SAFETY AT SEA, 1996). The QAT's report examined the extent of human 

error in marine transport, including fishing boats, and attempted to find out why it persists. 

Based upon its findings in these important respects, the QAT developed a strategy to focus 

effort on preventing human error and recommended an implementation plan which was 

both participatory and systematic. 
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The strategy revolves around four key elements; 

• national and international collaboration between interested bodies to address human 

e"or from a systems perspective 

• using risk management methods to arrive at cost-effective preventative measures 

• including human error assessments as part of standard safety inspections 

• improving the collection and analysis of data 

The "participatory" element of the initiative is based on close liaison with industry which 

includes testing and validation of the research methods employed on board working 

vessels. Another key feature is that establishing the level of risk from human error is to be 

pursued regionally as well as nationally because in the USA, as the present study has shown 

in Chapter Five to be the case for the UK, this varies from region to region for different 

types of risk. 

Other than cost there seems to be no reason why a similar scheme, even in a dilute form, 

could not be put in place in the UK. In fact, if the potential savings from losses prevented 

were reckonable in a cost/benefit analysis, it may be that such a scheme could easily pay for 

itself. After all, with a new 30 metre demersal trawler costing as much as £2 million and a 

new pelagic tank ship costing up to £12 million, very few of these types of vessels would 

need to be preserved 
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8.9 Principal conclusions 

1. The implications of fisheries management measures for the safety of the fishing fleet 

should be considered at the inception stage. Any future database that is to be set up 

for fisheries management purposes shouldalso be capable of supplying information for 

safety studies. Safety researchers should therefore be involved in the early stages of the 

development of such a database so that information can be drawn from it in a format 

that lends itself to their work. 

2. Marine insurers are a presently under-used means of encouraging fishermen to adopt a 

more safety oriented approach to watchkeeping management. 

3. A comparitive study of the human element in watchkeeping ~ystems may offer insight 

into why the Central North Sea exhibits a higher than expected rate of fishing vessel 

collision and grounding loss. 

4. Research should be instigated to further assess the applicability of the 'risk 

homeostasis' theory to fishing vessel collision and grounding losses. Knowledge of 

how subjective assessment of risk affects behavioural feedback could provide valuable 

information to safety legislators and training authorities. 

5. Fishermen's training schemes should include material designed to help fishermen make 

more objective assessments of risk with regard to navigational safety. 

6. Designers of fishing vessel wheelhouses and those responsible for compiling training 

material should be made aware that there may be a number of different levels of 



277 

conceptual understanding of navigation systems among fishermen. Wheelhm1se 

equipment should be selected and laid out in a way that allows the least qualified and 

experienced watchkeeper to understand how the navigation system 'fits together'. 

More importantly, training schemes must aim to foster understanding of how to use the 

various high-,tech (particularly the video plotter) and low-tech components (such as 

looking out of the windows) of the navigation system to achieve a -complete and 

validated picture of the navigational environment. 

7. Research should be commissioned to establish whether alcohol and dmg abuse is 

prevalent on board fishing vessels and if it is, to what extent. 

8. Consideration should be given by skippers to allocating extra duties to watchkeepers, 

particularly crewmen during steaming watches, in order to suppress reductions in 

cognition resulting from boredom. 

9. Experiments using navigation simulators should be commissioned to confirm that 

overload and underload thresholds exist for fishing watchkeepers. Thses experiments 

should also be designed to ascertain whether the overloaded or underloaded 

watchkeeper has actually 'broken down ' as a functioning component of the navigation 

system. 

10. The results of the present study indicating thatthere may exist a vigilance decrement in 

fishing watchkeepers should be used as a foundation for further work in this area. This 

could yield information on which guidance on the maximum duration of watches on 

fishing boats could be based 
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1 J.Systems concepts such as 'risk assessment' and 'risk management' should be 

considered for use both in defining appropriate approaches to overall fishing fleet 

traffic safety and for arriving at suitable safety strategies for individual vessels. 

1 2.A mandatory requirement to produce a 'Statement of Watchkeeping Policy' (SWP), 

based on individual risk assessment, should be introduced into the UK fishing fleet. 

The SWP should be drawn up by the owners in consultation with skipper and crew; this 

will give a sense of involvement, increasing motivation and fostering the development 

of a 'safety culture'. This could represent a meaningful contribution to marine traffic 

safety at minimal cost to fishing vessel owners and could be actively promoted by 

fishing boat insurers to guarantee its rapid acceptance. 

13.An overarching fishing vessel safety strategy to combat human error urgently needs to 

be developed by government for the UK fishing fleet, along the lines of the US 

Coastguard 'Quality Action Team' (QAI) initiative. Given the first cost of modern 

fishing vessels, this could prove to be a cost effective arrangement. 

8.10 Epilogue 

In theory at least, it should be possible at any time to take a cross-sectional view of the 

watchkeeping situation on a vessel and forecast a range of possible future states by 

predicting the actions and effects of system and watchkeeper and also influences from 

outwith the system. Compiling a system that takes account of as many of these factors as 

possible, however improbable they may seem will clearly lessen the chances of a 

catastrophic collision or grounding, provided that all of the system components proceed to 

function properly. Unfortunately, even the most thorough system will be a short term 

feature since the longer the period over which the forecast is applied, the greater the 



279 

number of possible navigational circumstances and consequently the broader the range of 

potentially hazardous situations becomes. The maritime environment is dynamic and thus 

good navigational practice must also be dynamic and able to respond to change. 

While in Chapter One, the set of factors leading to the loss of a fishing vessel in a traffic 

event were described as a "pathogenesis", such a medical analogy may not, in retrospect be 

particularly helpful. To liken collisions and groundings to diseases invites speculation that 

there may be some miraculous preventative measure waiting to be discovered, as there was 

for smallpox. The health of the fishing fleet in truth depends upon the deep involvement of 

those whose lives and livelihoods are at stake - the fishermen themselves. It is to they that 

the principles of this research must be conveyed. 

"Not only will men of science have to grapple with the sciences that deal with man but 
-and this is. afar more difficult matter- they will have to persuade the world to listen to 
what they have discovered" 

Bertrand Russell (1872-1970) 
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Appendix 1. Main fishing methods and vessel types in the UK fishing fleet 
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Figure A 1.3 Diagrammatic illustration of demersal seining. 

Figure AI.4 Diagrammatic illustration of beam trawling. 

Figure Al.S Diagrammatic illustration of purse-seining. 

Figure Al.6 Diagrammatic illustration of potting (lobsters and crabs). 

Figure Al. 7 Diagrammatic illustration of longlining. 

Figure Al.8 Silhouettes of typical vessels likely to be operating in UK waters .. 
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100-140ft Beam Trawler 38 ft Small Fast Inshore Netter/Potter 

40 - 50 ft Inshore Crabber-Netter 200 ft Purser 
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Figure A 1.8 Silhouettes of vessel types operating In UK waters. 
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Questionnaire I 



FISHING VESSEL SAFETY RESEARCH 
University of Plymouth, Institute of Marine Studies. 

Please complete the following questionnaire by marking or filling in the 
appropriate boxes. Your help in this research project is much appreciated. 

You are not required to put your name anywhere on this questionnaire so 
that you may answer honestly, without fear of any repercussions. The data 
from the completed questionnaires will only be used collectively- i.e. no one 
response will be singled out. 

1. Which of the following would you consider to be the most common cause 
of fishing vessel losses? 

a) fire a 

b) stranding a 

c) flooding a 

d) collision a 

e) heavy weather a 

2. Rank the following causes of fishing vessel loss according to how much 
concern they cause you. (Most worrying = 1, least worrying = 5) 

heavy weather collision grounding foundering/flooding fire 

0 0 0 0 0 
3. When at sea, how frequently would you estimate that your vessel 
encounters a potentially dangerous close-quarters situation with another 
vessel? 

a) once every 6 months a 

b) once a month a 

c) once a week a 

d) once a day a 

e) more than once a day a 



4. During your time at sea, how often 'NOUid you estimate that your vessel 
has encountered a situation where you feel that there was a real possibility of 
running aground? 

a) once every 6 months Q 

b) once a month Q 

c) once a week Q 

d) once a day Q 

e) more than once a day Q 

5. With regard to collision risk. Rank the following types of vessels in order 
of which you feel are the most likely to collide with fishing vessels? 
(1 =most likely; 6 = least likely) 

oil tankers coastal trade vessels (coasters) deep sea cargo vessels 

0 0 0 
other fishing vessels recreational vessels oil/gas industry related vessels 

0 0 0 

6. When steaming to, from and between fishing grounds, does whoever is on 
watch on your vessel navigate using? 

a) GPS fixes and Admiralty charts Q 

b) video plotter at all times Q 

c) landmarks when within sight of 
land and video plotter on the open sea Q 

d) electronic charts Q 

e) Graphic GPS receiver Q 

f) other means. Please specify below Q 



7. Regarding collision and grounding incidents involving.fishing vessels in 
general. Assess the factors below according to how often you consider they 
would appear as·major causes? 

Reduced visibility (fog, snow, rain, etc.) 
never Cl rarely Cl sometimes Cl frequently Cl in most cases Cl 

strong currents/tidal streams (especially in fairways, narrow passages, etc.) 
never Cl rarely Cl sometimes Cl frequently Cl in most cases Cl 

poor visibility from wheelhouse (whaleback/shelter too high, cluttered 
wheelhouse,etc,) 
never Cl rarely Cl sometimes Cl frequently Cl in most cases Cl 

mechanical/electronic failure (engine breakdown, steering gear failure, radar 
failure, etc.) 
never Cl rarely Cl sometimes Cl frequently Cl in most cases Cl 

poor navigational aids (boats navigation lights/shapes, buoys, lights) 
never Cl rarely Cl sometimes Cl frequently Cl in most cases Cl 

human error (incompetence, ignorance of Rules of Road, neglect, 
recklessness) 
never Cl rarely Cl sometimes Cl frequently Cl in most cases Cl 

congestion (dense concentration of fishing vessels, heavy merchant traffic, 
etc.) 
never Cl rarely Cl sometimes Cl frequently Cl in most cases Cl 

please note below, any other factors that you feel may commonly contribute 
to fishing vessel groundings and collisions, but are missing from the above 
list. 

8. Would you consider that the safety of your vessel, while steaming to, from 
and between fishing grounds has been improved by the installation of any of 
the following? 

a) GPS navigation system very much Cl a bit Cl not much Cl 

b) Automatic Radar Plotting Aid (ARPA) very much Cl a bit Cl not much Cl 

c) Adjustable alarm ring on radar very much Cl a bit Cl not much Cl 



9. When your vessel is steaming to, from and between fishing grounds, Volhat 
is the most common situation? 

a) one man to be on watch Q 

b) watches to be taken in pairs Q 

c) the skipper takes all watches Q 

d) the skipper and Mate take 
all the watches between them Cl 

If your answer is b), is it usual for a less experienced/qualified crew member 
to be paired'With a more experienced/qualified one? 

yes Q no Q 

1 0. Thinking back over your years at sea. Have you been in situations 'Nhere 
you were on watch (i.e. in charge of the vessel) and faced a situation Volhere 
you were unclear about the appropriate course of action? 

(Examples might be; encountering a tug towing a barge at some distance and 
being unsure Volhich way to alter course, or being faced with a large vessel 
'Nhich should give way but shows no signs of doing so, leaving you to make a 
decision) 

Never Q seldom Q sometimes Q often Q very often Q 

11. When watchkeeping in conditions of impaired visibility -fog, heavy rain, 
snow, etc. - do you think that watchkeeping on fishing boats would be made 
easier if you could identify radar targets as being of a certain size ( e.g, over 
1 Oat; over 1 OOOt; over 10 OOOt; etc.); or type (merchant vessel steaming; 
fishing vessel engaged in fishing; sailing craft; etc.)? 

a) size would be most useful Cl 

b) type would be most useful Q 

c) having size/type displayed would 
not be any more useful than simply 
having a good standard target display Q 



12. Try to think back to when you kept your very first watch on your own, did 
you feel? 

a) very apprehensive and not very confident Q 

b) slightly nervous but fairly confident Q 

c) neither nervous nor confident Q 

d) totally confident and composed Q 

13. At the time of taking that very first watch on your own, what previous 
training in navigation and in particular, in the "Rules of the Road at sea" had 
you received? 

a) none at all 

b) no training, but had previously been on 
watch with an experienced hand 

c) some instruction "on the job" from the Skipper 
or Mate but no formal training 

d) some training ashore and "on the job" instruction 
from an experienced hand 

e) substantial training ashore, including 
familiarisation with the Rules of the Road at Sea, 
and initial supervision by the Skipper or Mate Q 

14. How old were you when you kept your first watch on a fishing vessel? 

a) under 18 years old Q 

b) 18-21 years old Q 

c) over 21 years old Q 



15. Do you think that the:possession of a Certificate of Competence makes a 
fisherman a better watch keeper? 

a) always 0 

b) in most cases 0 

c) seldom 0 

d) never 0 

If you have answered a) or b) to question 15, briefly say why; 

··························································································································· 

If you have answered c) or d) to question 15, briefly say why; 

··························································································································· 

16. Have you ever been aboard a fishing vessel when it has been involved in 
a collision, or has run aground? 

Yes 0 no 0 

17. On what type of vessel have you spent most of your time as a fisherman? 

purse seiners (or single pelagic trawlers) 0 

demersal trawlers (single boat) 

beam trawlers 

crab/lobster boats 

0 

0 

0 

pair trawlers (pelagic or demersal) 0 

demersal seine netterslpair seiners 0 

static netters/longliners 

other (specify below) 

0 

0 

18. How many years have you spent at sea, aboard fishing boats? 
(Do not include part - time fishing) 

..................... years 



19. In which areas would you say you have spent most of your time working 
on fishing boats? (Mark more than one box if appropriate) 

area 1 
0 

area 2 
0 

area 3 
0 

Area 5 

Area4 

area 4 
0 

area 5 distant waters 
0 0 

• Areal 

Area2 

20. Can you think of any legislative measures (i.e. rules and regulations) that 
could be taken to significantly reduce the risk of fishing boats being involved 
in collisions and groundings? 

21 . Can you think of any technical measures (i.e. equipment) that could be 
used to reduce the risk of fishing vessels running aground and being involved 
in collisions? 

22. Do you have any ideas regarding the operation of fishing boats( i.e. 
system of watchkeeping, "wheelhouse behaviour'', etc.) that could reduce the 
risk of collision and running aground? 

thank you for your time and valued co-operation 



QUESTIONNAIRE BESTINATIONS (Questionnaire I) 

Subsequent to prior agreement over the telephone, batches of questionnaires with ,pre-paid return envelopes 
were sent to the following who very kindly distributed, collected and returned questionnaires. 

Name/addre&<; N salt o. No <turned 
MR'LEYS 20 10 
ABERDEEN INSHORE FISHSEUJNG 
154 NORTH ESPLANADE EAST 
ABERDEEN 
AB I' lOO 
KARENWARD 20 8 
WESTSIDE FISHERMEN L TD 
BLACKSNESSS PIER 
SCALLOWAY 
SHETLAND 
ZEIOTO 
MRPDONALD 20 2 
ARBROATH FISHERMAN'S ASSOCIATION 
2 MARKETGATE 
ARBROATI-I 
ANGUS 
DDIIAY 
MRS McKELBIE 20 9 
EASTERN SEA FISHERIES JOINT COMMITTEE 
UNIT6 
NGRTI-I'L YNN BUSINESS VILLAGE 
BERGENWAY 
KING'SLYNN 
NORFOLK 
PE30 2JG 
MRMacNEIL 10 2 
ALEMAR HOUSE 
BREVIC 
CASTLEBAY 
ISLE OF BARRA 
OUTER IIEBRIDES 
CARRADALE FISHERMEN L TD 20 9 
OLD QUAY 
CAMPBLETOWN 
ARGYLL 
PA28 6ED 
MR GEORGE WALKER 20 13 
F.MA EYEMOUTI-I LTD 
SAMPSON'S YARD 
HARBOUR ROAD 
EYEMOUTii 
BERWJCKSIURE 
TDI4 5JA 
MARK KING 20 16 
TOM SLEIGHT (FS) L TD 
RENO VI A· BUILDING 
FARJNGDON ROAD 
FISH DOCK 
GRJMSBY 
DNll lTE 
ALAN MliTCil 20 19 
FRASERBURGJ-1 INSHORE FISHERMEN L TD 
SllORE STREET 
FRASERBURGil 
ABERDEENSHIRE 
SCOTLAND 
AB45EB 
MR ERJC MOORE 20 3 
ISLE OF MAN FISHERMEN'S ASSOCIATION 
STATION PLACE 
PEEL 
ISI:.E OF MAN 
UK 
JILLNEAL 30 23 
PETERlffiAD FISHERMEN LTD 
SUITE ll-16 
FISilMARKET BUILDINGS 
GREENJflLL 
PETERI-IEAD 
ABERDEENSillRE 
AB4 6ZY 



MARTIN HEARNE 20 7 
FISHERIES OFFICE 
S.HAMILTON TERRACE 
MILFORD HAVEN 
DYFED 
WAI:.ES 

, 

SA7l. 2AL 
MR TERRY REID 20 6 
CALEY FISHERIES LTD 
TANNER'S BANK 
NORTH SHEILDS 
TYNE&WEAR 
NEJO IJJ 
JANETSMITH 20 15 
LOWESTOFT FISHING VESSEL OWNERS ASSOCIATION L TD 
STAR DUJLDINGS 
BEACH ROAD 
LOWESTOFT 
SUFFOLK 
NRJ21DS 
LESLEY SniDHOLME 10 I 
MARYPORT& SOLWAY FISHING CO-OP 
FISHERMEN'S WHARF 
WEST QUAY 
MARYPORT 
CUMBRIA 
MR GARY POSTON 10 5 
LINTELS 
DILSHIMROAD 
YAPTON 
NrARUNDEL 
SUSSEX 
BNI8 OJB 
MRCOUNMcRAE 20 13 
UNI1ED FISHSELUNG L TD 
S2 LOW STREET 
BUCKlE 
BANFFSHIRE 
SUPERINTENDENT DA VID MANN 20 6 
ROYAL NATIONAL MISSION TO DEEP SEA FISHERMEN 
CULAGPARK 
LOCHINVER 
SUTHERLAND 
SCOTLAND 
IV274LE 
SUPERINTENDENT NEIL McGREGOR 20 20 
ROYAL NATIONAL MISSiON TO DEEP SEA FISHERMEN 
'FISH•PIER 
KINLOCHBERVIE 
SUTHERLAND 
SCOTLAND 
IV27 4RR 
SUPERINTENDENT GEORGE SHAW 20 9 
ROYAL NATIONAL MISSION TO DEEP SEA FISHERMEN 
SCRABSTER 
CAfrnNESS 
SCOTLAND 
HELEN HARRON 10 7 
TiiE HARBOUR 
(OFF PRINCESS ROAD) 
PORTAVOGIE 
NEWTONARDS 
NORTiiERN IRELAND 
BT22 lEA 
KEITHBOWER 20 16 
DEVON SEA FISHERIES COMMITTEE 
OFFICEN09 
FISH MARKET 
TilE QUAY 
BRIXHAM 
DEVON 
TQS8AW 
JIMTAIT 
NAtmCAL STIJDIES DEPT 

20 20 
BANFF & BUCHAN COllEGE OF EDUCATION 
HENDERSON ROAD 
FRASERBURGH 
ABERDEENSHIRE 
SCOTLAND 

TOTALS 420 239 
RETIJRN RATE~ 57% 



• 

Appendix Figure A2. 1. Distribution of fishing ports from where responses to 
Questionnaire I were drawn. 



Questionnaire n 



WATCHKEEPING PROCEDURE ON YOUR VESSEL 

Please mark boxes as appropriate. You are not required to put your name anywhere on this form so you 
can answer honestly witltout fear of any comeback. The information from tltese questionnaires will only be 
used collectively, no one answer will be singled out. 

Thank you very much for your time and co-operation. 

l. Which area does your boat operate in? 
(Tick more than one box if appropriate. 

AreaS 

Area4 

area 1 0 area 2 0 area 3 0 

• Areal 

Area2 

area4 0 area 5 0 distant waters 0 

If you have ticked more than one box, give a rough idea of how many months of tlte year in each area? 

area1CJ area 3D area4 D area sO 
2. What is tlte length of your boat? 

under 12 metres (40ft) 0 12-24 metres (40-80ft) 0 over 24 metres (80ft) 0 

3. How old is your boat? 

under 5 years 0 5-20 years 0 over 20 years 0 

4. Which of the following items of equipment does your boat have? 

GPS 
Decca 

oilier electronic position fixing system 
Sonar 

More than one VHF radio 
autopilot 

autopilot alarm 
gyro compass 

ARPA 

a 
a 
a 
a 
a 
a 
a 
a 
a 

5. What is the duration of watches on your boat? 

a) when steaming 

video track plotter 
paperechosounder 
video ecbosounder 

video ecbosounder witlt digital deptlt display 
colour echosounder 

stabilised radar 
radar range ring alarm 

magnetic compass 

b) when fishing (iftltis is done) 

a 
a 
a 
a 
a 
a 
a 
a 



6. Who keeps a watch on your boat? 

a) when sleaming b) when fishing 

Skipper only 

Mate and Skipper only 

rota syslem; experienced crew only 

rota system; whole crew 

7. On your boat, are there clear guidelines to watchkeepers regarding the folllowing? 

taking over the watch yesD noD 

using navigational equipment yesD noD 

keeping an effective lookout yesD noQ 

when to call the skipper yesD noQ 

using the autopilot yesQ noD 

using the engine controls yesQ noD 

what to do in the event of reduced visibility yesD noQ 

what to do in the event of an emergency yesD noD 

8. If yes to any of the above, how are these guidelines communicaled? 

word of mouth D written notices Q 

9. Is the watchkeeper informed of any malfunctioning equipment when he takes over? 
yesD noD 

10. Does.the watchkeeper have any duties other than keeping a lookout and attending to navigation? 
(Examples might be; cooking, gear repairing, dealing with the catch.) yes D noD 

11. Is there at least one VHF radio tuned to Channel 16 at all times in your vessel's wheelhouse? 
(fhis·rnay be done using a 'dual watch' function.) yes D noD 

12. Is a 'Listening Watch' kepi during official 'Silence Periods' on your vessel? 
yesD noD 

13. When you are on watch, do you; 
a) take bearings of approaching vessels? yesD noD 

b) take bearings of landmarks that are in sight? yesD noD 

14. If your boal has an autopilot, is the autopilot alarm always in operation while slearning? 

yesD noD 

15. Is the autopilot alarm always-in operation while fishing? 
yesD noD 



16. Are.the watch arrangements on your vessel altered'in any way in conditions of poor visibility? 
)'es·I:J no I:J 

17. lfwatchkeeping on.your vessel is organised on a rota basis, is the first watchkeeper allowed 
to. rest prior to going on duty? 

yes I:J no I:J 

18, When the watchkeeper on your boat leaves the wheelhouse, for example to go to the toilet 
or to make a hot drink, is the wheelhouse temporarily left unmanned? 

yes I:J no I:J 

19. On your boat is there a·means.by which a watchkeeper can summon the skipper 
(or anyone else) without having to leave the wheelhouse? 

yes I:J no I:J 

20. Does any watchkeeping training of any kind take place aboard your boat? 
yes I:J no I:J 

21. Please try to answer this question honestly .... if your boat has a whaleback or 
shclterdeck, can you easily see over it from the wheelhouse? 

yes I:J no I:J 

22. If yes, was the whalebacklshelterdeck fitted after the boat was built? 
yes I:J no I:J 

23. On your boat, is the daytime fishing signal (basket or cone) taken down when fishing ceases? 
yes I:J no I:J 

24. Roughly how many weekends per year does your boat spend at sea? 
none I:J; less than 5 I:J; 5-10 I:J; over 10 a 

25. Please mark the days on which your boat is most often steaming to and from fishing grounds; 

Monday I:J; Tuesday I:J; Wednesday I:J; Thursday I:J; Friday I:J; Saturday I:J; Sunday I:J 

Thank you for your help. 



QUESTIONNAIRE DESTINATIONS (Questionnaire Il) 

Subsequent to prior agreement over the telephone, batches of questionnaires with pre-paid return envelopes 
were sent to the following who very kindly distributed questionnaires to skippers and subsequently 
collected and returned them. 

Name/address No sent No Wlmed 
MRLEYS 10 4 
ABERDEEN INSHORE FISHSElliNG 
154 NORTH ESPLANADE EAST 
ABERDEEN 
ABI2QO 
KARENWARD 10 2 
WESTSIDE FISHERMEN LTD 
BLACKSNESSS PIER 
SCAU.OWAY 
SHETLAND 
ZEI OTQ 
MRPOONALD 10 2 
ARBROATH FISHERMAN'S ASSOCIATION 
2 MARKETGATE 
ARBROATH 
ANGUS 
DD I IAY 
MRS McKELBIE 10 3 
EASTERN SEA FISHERIES JOINT COMMllTEE 
UNIT6 
NORTII L YNN BUSINESS VILLAGE 
BERGEN WAY 
KING'S LYNN 
NORFOLK 
PE30 2JG 
MR MacNEIL 10 0 
ALEMAR HOUSE 
BREVIC 
CAS1LEBAY 
ISLE OF BARRA 
OUTER HEBRIDES 
CARRADALE FISHERMEN LTD 10 4 
OLD QUAY 
CAMPBLETOWN 
ARGYLL 
PA286ED 
MR GEORGE WALKER 10 5 
F. MA EYEMOUTH LTD 
SAMPSON'S YARD 
HARBOUR ROAD 
EYEMOUTH 
BERWICKSIURE 
TD145JA 
MARK. KING 10 8 
TOM SLEIGHT (FS) L TD 
RENO VIA BUILDING 
FARINOOON ROAD 
FISH DOCK 
GRIMSBY 
DN313TE 
ALANMUTCH 20 12 
FRASERBURGH INSHORE FISHERMEN LTD 
SHORE STREET 
FRAS.ERBURGH 
ABERDEENSinRE 
SCOTLAND 
AB4SEB 
MR ERIC MOORE 10 3 
ISLE OF MAN FISHERMEN'S ASSOCIATION 
STATION PLACE 
PEEL 
ISLE OF MAN 
UK 
JILLNEAL 20 9 
PETERHEAD FISHERMEN LTD 
SUITE 13-16 
FISHMARKET BUILDINGS 
GREENHILL 
PETERHEAD 
ABERDEENSlnRE 
AB4 6ZY 



MARTIN HEARNE 20 7 
FISHERIES OFFICE 
S HAMILTON TERRACE 
MILFORD HAVEN 
DYFED 
WALES 
SA73 2AL 
MR TERRY REID 20 6 
CALEY FISHERIES LID 
TANNER'S BANK 
NORTH SHEILDS 
TYNE&WEAR 
NE30 lJJ 
JANETSMlTH 10 6 
WWESTOIT FISHING VESSEL OWNERS ASSOCIATION LID 
STAR BUILDINGS 
BEACH ROAD 
LOWESTOfT 
SUFFOLK 
NR32lDS 
LESLEY STUDHOLME 10 1 
MARYPORT & SOLWAY FISHING CO-OP 
FISHERMEN' S WHARF 
WEST QUAY 
MARYPORT 
CUMBRIA 
MR GARY POSTON 10 5 
LINTELS 
BILSHIM ROAD 
YAPTON 
NrARUNDEL 
SUSSEX 
BNI8 OJB 
MR COLIN McRAE 10 4 
UNITED FISHSELLING LID 
52WWSTREET 
BUCKlE 
BANFFSHIRE 
SUPERINTENDENT DA VID MANN 20 14 
ROYAL NATIONAL MISSION TO DEEP SEA FISHERMEN 
CULAGPARK 
LOCHINVER 
SU1HERLAND 
SCOTLAND 
IV274LE 
SUPERINTENDENT NEIL McGREGOR 20 7 
ROYAL NATIONAL MISSION TO DEEP SEA FISHERMEN 
FISH PIER 
KINLOCHBERVIE 
SU1HERLAND 
SCOTLAND 
IV274RR 
SUPERINTENDENT GEORGE SHA W 10 9 
ROYAL NATIONAL MISSION TO DEEP SEA FISHERMEN 
SCRABSTER 
CAITIINESS 
SCOTLAND 
HELEN HARRON 10 4 
THE HARBOUR 
(OFF PRINCESS ROAD) 
PORTAVOGffi 
NEWTONARDS 
NORTHERN lRELAND 
BT22 lEA 
KEITHBOWER 20 14 
DEVON SEA FISHERIES COMMITTEE 
OFFlCEN09 
FISH MARKET 
THE QUAY 
BRIXHAM 
DEVON 
TQ58AW 
JIMTAIT 10 10 
NAUTICAL STUDIES DEPT 
BANFF & BUCHAN COllEGE OF EDUCATION 
HENDERSON ROAD 
FRASERBURGH 
ABERDEENSHIRE 
SCOTLAND 

TOTALS 300 139 
RETURN RATE = 46e;o 



• 

Appendix Figure A2. 2. Distribution of fishing ports from where responses to 
Questionnaire II were drawn. 



Appendix 3. 

Contents 

Sample.data recordings from the Time Machine computer program 



Sample data recordings from "Time Machine" computer program 

Comments 

Task 

scan outside 
radar 
echo sounder 
plotter 
nav. systems 
V/L control 
comm. ext. 
comm. int. 
admin. 
abs. asleep 

5 minutes t+5 minutes 
Skipper on watch 

shooting gear 

Time (secs) 

19.07 
62.84 
37.95 

86.78 
29.34 
37.63 
160.01 

daylight; good visibility; wind force 3/4 
light traffic 

Comments 

Task 

windows 
radar 
echo/sona-r 
comm. int 
comm.ext 
control sys. 
plotter 
nav. systems 
admin. 
sleep 

Time (secs) 

75.63 
17.47 
47.79 
85.4 6 
29.61 
206.52 
60.63 
60.20 
48.50 
43.62 

5 minutes t+180mins 
Skipper on watch 
hauling gear 
darkness; light traffic; wind force 2/3 
stroop; +3 



Appendix 4. Supplementary information· on the operational macro-environment of 
UK fishing boats. 

Contents 

Figure 4.1 Regional analysis of percentage proportion of fishermen experiencing potential 
running aground situations at various frequencies 

Figure 4.2 Regional analysis of percentage proportion of fishermen experiencing very 
close quarters situations with other vessels at various frequencies 

Table 4.1 Summary of macro-environmental information relating to five fishing areas 
around the UK 
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Appendix Figure 4. 1. Percentage proportion of fishermen experiencing potential running aground situations at various frequencies. 
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Appendix Figure 4.2. Percentage proportion of fishermen experiencing very close quarters situations with other vessels. 
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Appendix Table 4.1. Summary of macro-environmental information relating to five fishing areas around the UK. 



Appendix 5. Consent document 
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Consent form completed by all subjects used in observations at sea 



UNIVERSITY OF PLYMOUTH 
INSTITUTE OF MARINE STUDIES 

Fishing Vessel Watchkeeping Research 

CONSENT FORM 

This consent form relates to PhDresearch project work being undertaken by Malcolm 
Findlay. The aim of the project is to describe watchkeeping practices on various types of 
UK fishing vessels and to assess levels of workload, boredom and fatigue experienced by 
fishing vessel watchkeepers. 

Subject's name'(please print) ..................................................................... . 

Vessel (include port registration) ............................................................... . 

Please tick the boxes below: 

I understand the aims and objectives of the research project 0 

I understand that I may temporarily withdraw from the project if 

at any stage I consider that the safety of the vessel is being compromised 0 

I understand that I may permanently withdraw from the research 

project at any time and arrange for my data to be destroyed 

I accept that the investigator has, so far as is possible, taken all 
foreseeable action to avoid compromising the safety of my vessel, 

and also my personal safety 

I understand that my data is confidential and will not be made 

available or shown to anyone except the research team 

0 

0 

0 

Under the circumstances outlined above, I agree to participate in the research project 

signed, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . date, ........... , ............... . 



COPYRIGHT 

This copy of the thesis has been supplied on condition that anyone who consults it is 
understood to recognise that its copyrightrests with its author and that no quotation from 
the thesis and no information·derived from it may be published without the author's prior 

written consent. 

Signedffi'~ ... 
Date 

Malcolm Findlay 

lnstitute of Marine Studies 
University ofPlymouth 
Drake Circus 
Plymouth 
PL4 8AA 


