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Abstract 

ABSTRACT 

Louise Jane Cleary 

Tbe potential use of (1--+3, 1--+4)-IJ-D-glucan from barley as a functional food 
ingredient for cereal foods 

The health related importance of dietary fibre as part of a balanced diet is well known. 
More recently, soluble fibres, such as (1--+3, 1--+4)-~-D-glucan (~-glucan), have been 
shown to influence glycaemic, insulin and cholesterol responses to foods. Barley is a rich 
source of ~-glucan; however, consumption of products containing barley grain or flour is 
often limited by their negative organoleptic quality. A potential solution lies in the use of 
barley as an extraction source for ~-glucan fractions. One problem with regards to this is 
the lack of clarity on the use of barley ~-glucan fractions in food systems, particularly their 
physiological and physico-chemical properties. 

The aim of this study was to determine the potential of barley ~-glucan fractions as 
functional ingredients in cereal foods. The effects of extraction treatment on fraction 
composition and physico-chemical properties were investigated. Subsequently, barley ~­
glucan fractions (from a bench-top and commercial extraction procedure and of differing 
molecular weight) were incorporated into white wheat bread and durum wheat semolina 
pasta. The effects on product quality and in vitro starch digestibility were investigated. 
Simultaneously, the effect of processing on the degradation of ~-glucan molecular weight 
was evaluated. 

Different extraction treatments may influence the composition and physico-chemical 
properties of barley ~-glucan fractions. The inclusion of barley ~-glucan fractions in bread 
and pasta resulted in a slight reduction of product quality but generally reduced the rate 
and extent of in vitro starch digestibility. Factors such as composition, water retention 
capacity, integration within the cereal food matrix and molecular weight may influence the 
behaviour of the fractions. Bread manufacture resulted in degradation of ~-glucan 
molecular weight, although only high molecular weight ~-glucans were susceptible to 
degradation. 

The results of the study have both scientific and commercial value and provide foundations 
for further development of barley ~-glucan enriched cereal products. 
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Chapter 1 Literature review 

CHAPTER 1 

LITERATURE REVIEW: THE POTENTIAL USE OF CEREAL (1--+3, 1--+4)-IJ-D-

GLUCAN FROM BARLEY AS A FUNCTIONAL FOOD INGREDIENT FOR 

CEREAL FOODS 

1.1 INTRODUCTION 

Cereals are an important economic commodity worldwide. In the United Kingdom (UK), 

the cereal harvest is dominated by wheat (15.5 million metric tonnes (MMT)), with barley 

(6 MMT) representing the second most important cereal crop, and oats (0.6 MMT) being a 

relatively minor crop (Home Grown Cereals Authority (HGCA) 1999). The (1-+3, 1-+4)-

~-D-glucan (hereafter referred to as ~-glucan) content of cereals ranges from 1% in wheat 

grains, 3-7% in oats and 5-11% in barley (Skendi et al. 2003). Thus, barley grains are a 

rich source of ~-glucan. 

~-glucans from oat and barley have received considerable attention with regard to their 

hypoglycaemic (Wood et al. 1990, 1994a) and hypocholesterolemic capacity (Braaten et 

al. 1994; Beer et al. 1995) in humans and also in relation to a reduction in the incidence of 

diabetes (Li et al. 2003a) and cardiovascular disease (CVD) (Keogh et al. 2003). In the 

UK, barley is largely used for animal feed and malt, with use for human consumption very 

limited; however, because barley is a rich source of ~-glucan, an opportunity exists to 

utilise the grain as a functional food ingredient. 

The aim of this chapter is to explore some of the applications and potential nutritional 

advantages of using ~-glucan from barley as a functional food ingredient and to provide a 

context for the research study. The chapter is divided into five main sections. The first 

section provides an introduction to the barley crop including, its current economic 
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importance, grain morphology and composition. In the second section, barley ~-glucan, its 

extraction and rheological properties are discussed. The third section evaluates the role of 

barley ~-glucan as a functional food ingredient and its physiological effects, and the fourth 

section examines the impact of barley ~-glucan on the quality of cereal food products. The 

fifth and final section evaluates the effect of food processing on the molecular, structural 

and functional properties of barley ~-glucan. The chapter closes with a conclusion 

summarising the gaps in current knowledge regarding the use of barley ~-glucan as a 

functional ingredient in cereal foods, thus, providing a rationale for the study. Specific 

aims and anticipated outcomes of the study are also identified. 

1.2 BARLEY 

Barley is a grass belonging to the family Poaceae, the tribe Triticeae and the genus 

Hordeum (Nilan and Ullrich 1993). Barley can be considered as one of the most ancient 

crop plants, with its cultivation being mentioned in the Bible. The original area of barley 

cultivation is reported to be in the Fertile Crescent of the Middle East. Archaeological 

evidence suggests that the most recent and immediate ancestor of cultivated barley is the 

two-rowed wild H vulgare spontaneum, which is found growing wild in many areas of 

South-west Asia and Northern Africa today. Other ancestors have been proposed, but 

there appears to be no evidence that six-row domesticated barley was derived from any 

ancestral form other than H. spontaneum. Cultivated barley is adapted and produced over 

a wide range of environmental conditions; it has been or is currently grown from inside the 

Artic Circle, where soil thaws to only a few inches during summer, to the tropics. 

Annual world production of barley is approximately 138 MMT. Leading barley producers 

are the European Union (EU) (52.96 MMT), the former Soviet Union (32.16 MMT) and 

Canada (12.13 MMT) (Food and Agricultural Organisation of the United Nations (FAO) 

2005). In the UK, barley is the second most cultivated crop; approximately 6 MMT was 
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produced in 2005 (Department for the Environment, Food and Rural Affairs (DEFRA) 

2005a). 

1.2.1 Barley Uses 

Barley is principally used as feed for animals, particularly pigs, in the form of barley meal 

for malting and brewing in the manufacture of beer and distilling in whisky manufacture, 

and to a small extent, human consumption. 

1.2.1.1 Feed 

Barley, one of the four major feed grains of the world (corn, barley, oats and wheat), is 

widely used as a livestock feed. In the UK, typically 40-50% of the barley crop is used for 

animal feed (HGCA 1999). The grain may be used as a major source of energy and protein 

for pigs (Newman et al. 1991) and to support egg production of laying hens. Digestible 

energy or (metabolisable energy) remains the single most important criterion in feed 

barley, particularly for monogastric animals. Although the amino acid balance and total 

protein content in barley is superior to that of corn, its feed value is less because it contains 

50-60% starch. In hulled barley, the fibre content is too high and its use is limited to only 

a small percentage of poultry rations. Work conducted on poultry has clearly illustrated 

the effect these fibre components have on reducing feed digestibility, metabolisable energy 

(Annison 1991; Jeroch and Danicke 1995; Classen 1996; Bergh et al. 1999) and the 

occurrence of other negative consequences (i.e. sticky droppings) (Choct et al. 1999). As 

such, barley cannot be used for chicks without treatment with ~-glucan degrading enzymes 

(Aimirall et al. 1995; Fuente et al. 1998; V on Wettstein et al. 2003). Similar observations 

have been made with pigs, which will not make maximum weight gain with barley as the 

feed grain (Baidoo and Liu 1998; Knudsen and Canibe 2000; Leterme et al. 2000). The 

consequence of these negative nutritional effects is the low economic value of feed barley. 
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In the last decade, the UK price of feed barley has decreased by approximately 50% 

(DEFRA 2005b). 

1.2.1.2 Mailing, brewing and distillation 

In the UK, by far the highest domestic use of barley is for malting and brewing in the 

manufacture of beer and for distilling in whisky manufacture. Both two and six-row 

barleys are suitable for malting, although the former is generally used in Europe (Kent and 

Evers 1994 ). In the UK, approximately 15 varieties are accepted by the Institute of 

Brewing (loB) as malting varieties (HGCA 2005). Much research has focused on the role 

of endosperm components in determining the malting potential of barley (Bathgate et al. 

1974; Bamforth et al. 1979; Henry and Blakeney 1986; Palmer 1987; Brennan et al. 

1996b, 1997; Molina-Cano et al. 2002; Edney and Mather 2004). Levels of~-glucan in the 

grain have long been regarded as one of the most influential characteristics in relation to 

the malting potential and brewing yield in barley, regulation of the mte of endosperm 

modification (Bacic and Stone 1980, 1981; Bourne et al. 1982; Bamforth and Martin 1983; 

Brennan et al. 1998; Edney and Mather 2004) and ultimately the viscosity of wort during 

brewing (Bourne and Pierce 1970). 

1.2.1.3 Human consumption 

The use of barley for human consumption (other than in malting and distilling) is relatively 

small in developed countries, and as a result barley is largely considered as a forgotten 

food, which is rejected as coarse grain for livestock feed. In the UK, onJy a small 

proportion of the total crop goes to the food trade. Consumption of barley is greater in the 

Far and Middle East where much of the barley is consumed as pearled grains for soup, as 

flours for flat bread and as a ground grain to be cooked and eaten as porridge (Kent and 

Evers 1994). An interesting feature of barley, which will lead to an increase its utilisation, 

is the level and range (2-11 %) of ~-glucan, a major soluble fibre component in barley. 
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Cereal ~-glucans (predominantly from oats and barley) are documented to have 

hypocholesterolemic and hypoglycaemic capacities, as reported in many human and 

animal studies (Jenkins et al. 1976; German et al. 1996; Liljeberg et al. 1996). 

1.2.2 Plant and Grain Morphology 

In the mature barley plant, kernels consist of the caryopsis only in naked barleys but which 

include the lemma, palea and the rachilla, which adheres to the caryopsis in hulled barley. 

The hull is removable only with difficulty and amounts to about 13% of the grain (by 

weight); on average the proportion ranges from 7-25% (according to type, variety, grain 

size and the latitude where barley is grown). Winter barleys have more hull than spring 

types, six-row (12.5%) more than two-row (10.4%) (Kent and Evers 1994). The 

proportion of hull increases as the latitude of cultivation approaches. Hull-less or naked 

barley has been developed in western North America for livestock feed and human food. 

In hull-less barley, unlike hulled barley, the hull is removed during harvesting. Waxy hull-

less types have also been developed especially for human use. Registered hull-less barley 

cultivars include: Bear, Shonkin, Nubet and Robust in Canada; Azhul, Waxbar, Merlin and 

an isoline of Compana, Prowashonupana in the United States (US); Waxiro in Australia; 

and Taiga in Germany (Jadhav et al. 1998). Two-rowed hull-less cultivars predominate 

because of their plump kernel, white aleurone and soft endosperm, which are all desirable 

in food and industrial applications (Bhatty 1999). 

Barley kernels are generally larger and more pointed than wheat, but they are not less 

broad (1.0-4.4 mm); they have a ventral crease, which is shallower than those of wheat and 

rye, its presence obscured by the adherent palea. Two to four aleurone layers are present, 

and cells are approximately 30 !J.m in each direction. As with most cereals the endosperm 

forms the largest tissue of the grain; the majority being the starchy endosperm in which 

(except in some mutants) two populations of starch granules, A and B, exist. Figures 1.1 a 
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and b represent a transverse and longitudal cross-sectional view of the barley caryopsis 

respectively. 

a) 

b) 

VENlRAL 

SHEAF (CONTAINING --ttt­
REMAINS Of NUCELLAR 
PROJECliON AND 
CREASE ALEURONE) 

CH ALAZA 
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Vt.NT•4l 

DORSAL 
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~~ toualf' 

DORSAL 

Figure 1.1 Diagram representing: (a) a transverse section cut at mid-grain through a barley 

caryopsis at the end of the grain filling period; and (b) a longitudal section cut to bisect the 

crease of a mature barley caryopsis (from MacGregor and Fincher 1993). 
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At harvest ripeness the moisture content of the grain is about 15%. The dry matter is made 

up of approximately 80% carbohydrate, 10% protein, 3% lipid and 2% minerals. Table 1.1 

presents a full chemical composition of typical mature barley grain. 

Table 1.1 Chemical composition of mature barley grain (from Harris ( 1962) cited by 

MacGregor and Fincher (1993)) 

Component 

Carbohydrates 

Starch 

Sucrose 

Other sugars 

Water soluble polysaccharides 

Alkali soluble polysaccharides 

Cellulose 

Lipids 

Protein 

Albumins and globulins 

Hordeins 

Glutelins 

Nucleic acids 

Minerals 

Others 

Dry weigbt (%) 

78-83 

63-65 

1-2 

1-1.5 

8-10 

4-5 

2.3 

10-12 

3.5 

3-4 

3-4 

0.2-0.3 

2 

5-6 

Comparisons between the composition of hulled and hull-less barley (data taken from two 

studies in the US and Sweden) revealed that hull-less barley generally contains more 

protein and starch, its two major components, and increased ~-glucan; this is due to 
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removal of the fibrous hull, which has a dilution effect on these components (Bhatty and 

Rossnagel 1998). Hull-less barley also contains more pentosans and total dietary fibre 

(TDF) components (Klason lignin, cellulose, enzyme resistant starch and uronic acid). 

Table 1.2 illustrates the effect of the hull-less gene on the composition of barley genotypes. 

Table 1.2 Effect of the hull-less gene on the composition of barley genotypes (from Bhatty 

1999) 

Component Hulleda Hull-lessa Hulled6 Hull-lesi 

(% dry weight) (n=IO) (n=6) (n=12) (n=24) 

Protein 12.2 15.1 15.9 16.5 

Esther extract 2.5 2.7 2.2 2.3 

Ash 2.1 1.6 2.8 2.1 

Starch 57.7 60.7 53.7 59.7 

Total p-glucan 4.8 5.7 5.2 5.6 

Soluble p-glucan 2.3 2.9 3 3.1 

Pen to sans 7.9 5.7 6.5 4.5 

Cellulose 4.8 2.9 4.1 2.0 

Klason lignin 1.3 0.7 2 0.9 

Uronic acid 0.8 0.6 

TDF 20.6 16.6 18.6 13.8 

awaxy, normal and high amylose starch barleys (Oscarsson et al. 1997). 6Isotypes of 

Betzes (CI6598) and Compana (CI5438) barleys (Xue et al. 1997). 

1.2.3 Non-Starch Polysaccharides of the Barley Grain 

The non-starch polysaccharides (NSPs) found in mature grains include, fructans, P-(1-+4)­

D-glucans (cellulose), P-glucans, arabinoxylans and glucomannans. The p-glucans are 
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linear molecules with approximately 30% P-(1---+3) and 70% P-(1---+4) linkages randomly 

dispersed and associated with firmly linked peptide sequences in the barley endosperm cell 

wall (Fieming and Kawakami 1977; Forrest and Wainwright 1977). 

Differences have been observed in the composition of cell walls of the starchy endosperm 

and the aleurone. Cell walls of the starchy endosperm consist of about 70% P-glucan and 

20% arabinoxylan, whereas the aleurone cells contain 26% p-glucan and 67% 

arabinoxylan. Both contain similar amounts of glucomannan and cellulose (i.e. 2-4% of 

each polymer) (MacGregor and Fincher 1993). Table 1.3 illustrates the typical 

composition of cell walls from barley. 

Table 1.3 Composition of cell walls from barley (from MacGregor and Fincher ( 1993)) 

Tissue Neutral Protein Phenolic Major polysaccharide 

monosaccharide (%) acids components 

composition of total (%) (%) 

polysaccharides (%) 

Ara Xyl Glx Man Gal 

Aleurone 24 47 26 2 2 16 1.2 71% Arabinoxylan 

(mature 26% P-glucan 

grain) 2% Cellulose 

2% Glucomannan 

Starchy 11 I I 75 3 0 5 0.05 75% P-glucan 

endosperm 20% Arabinoxylan 

(mature 2% Cellulose 

grain) 2% Glucomannan 
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Using fluorescence microscopy, Miller and Fulcher (1994) reported that ~-glucan was 

more uniformly distributed throughout the barley grain endosperm than in oats. In oats, ~-

glucan was concentrated in the outer or bran layers of the grain, particularly in low ~-

glucan varieties. Oscarsson et al. (1997) illustrated considerable variation in ~-glucan 

distribution among barley genotypes. Cell walls on the ventral side of the kernel and 

central endosperm in the vicinity of the crease of high ~-glucan barley were more heavily 

stained with Calcofluor than those from low ~-glucan barley. Zheng et al. (2000) observed 

that in low ~-glucan hull-less barley the ~-glucan content was in greatest abundance in the 

sub-aleurone layer and declined towards the inner layers. In high ~-glucan hull-less barley, 

more than 80% of the ~-glucan was distributed evenly through the endosperm. 

1 .2.4 Occurrence of P-Glucan in the Barley Grain 

A number of methods have been developed to estimate ~-glucan contents of the barley 

grain including, enzymatic techniques (McCleary and Glennie-Holmes 1985), use of 

Calcofluor (Wood and Weisz 1984) and Near Infrared Reflectance (Szczodrak et al. 1992). 

Total levels of ~-glucan in barley can vary dramatically between varieties, ranging from 2-

11%, but typically fall between 4-7%. A waxy hull-less barley from the US, 

Prowashonupana, has been reported to have a ~-glucan content of approximately 17% 

(Bhatty 1993). Despite their relatively small contribution to the total weight of the grain, it 

is clear that ~-glucans have a disproportionate impact on the technology, utilisation and 

nutritional value of barley grain. There have been several studies on the dependence of~-

glucan content on genetic and environmental factors (Knuckles et al. 1992; Yoon et al. 

1995; Zhang et al. 2002). There is a general agreement that the genetic background of 

barley is more important than environmental conditions as a determinant of the final ~-

glucan content of the grain (Gill et al. 1982; Henry and Blakeney 1986; Stuart et al. 1988). 

For instance, research conducted by Lehtonen and Ailasalo (1987) reported that two-row 

barley genotypes had a higher ~-glucan content than six-row barley. Studies have also 
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indicated that waxy (up to I 00% amylopectin) barley cultivars have higher levels of ~-

glucan in the endosperrn than non-waxy varieties (Ullrich et al. 1986; Yoon et al. 1995). 

Bhatty et al. (1991) observed that cell wall thickness in low (3.9%), medium (4.9%) and 

high (5.4%) ~-glucan genotypes of hulled and hull-less barley was related to ~-glucan 

concentration. ln this study, cell walls appeared thicker in the sub-aleurone layer, which 

suggested a higher concentration of ~-glucan. Conversely, Miller and Fulcher (1994) did 

not observe variations in the thickness of sub-aleurone cell walls when examining different 

barley cultivars using microspectrofluorometry. 

A major environmental factor that influences ~-glucan levels in the grain appears to be the 

availability of water during grain maturation. Dry conditions (heat stress) before harvest 

result in high ~-glucan levels (Bendelow 1975), with a positive relationship between ~-

glucan level and final grain weight (Savin and Molina-Cano 200 I); this observation agrees 

with field studies on the effect of drought conditions on ~-glucan content of the grain 

(Stuart et al. 1988; Coles et al. 1991 ), and may either be related to the fact that final grain 

fill is adversely affected in drought conditions through impairment of starch synthesis and 

deposition, or because ~-glucan synthesis may be enhanced in dry conditions (Munck et al. 

2004). Moist conditions have been reported to cause a decrease in ~-glucan levels (Stuart 

et al. 1988; Aman et al. 1989), so that increased levels of irrigation reduce ~-glucan 

content of the grain (Guler 2003). 

1.3 IJ-GLUCAN 

~-glucan is an un-branched polysaccharide composed of cellatriosyl and cellatetraosyl 

units linked by ~-(1--+3) and ~-(1--+4) linkages in a ratio of 3:7 (Woodward et al. 1983; 

Harris et al. 1984; Wood et al. 1991a; Henriksson et al. 1995). The linkage arrangement is 

not irregular but follows statistical rules (Woodward et al. 1983; Buglia et al. 1986; 
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Henriksson et al. 1995). Cellotriosyl and cellotertaosyl units constitute 90% of the 

polysaccharide, with the remaining structure containing longer consecutive ~-(1 ~4) linked 

glucopyranosyl units (Woodward et al. 1988; Wood and McCrae 1996; lzydorczyk et al. 

1998a). Literature on the fine structure of barley ~-glucan has been reviewed by 

MacGregor and Fincher (1993). The application of high performance anion-exchange 

chromatography to the separation of the oligosaccharide release by specific hydrolysis has 

aided the analysis of the fine structure of ~-glucans from different botanical sources. 

Differences have been observed between isolated ~-glucans from oats, barley and other 

cereals. In particular, the ratio between cellotriosyl and cellotetraosyl units is higher in 

barley than oats (Wood et al. 1994b; Cui et al. 2000; Tosh et al. 2004). 

The presence of ~-(1--->3) linkages gives an irregularity to the ~-glucan molecule, which 

prevents intermolecular association and makes ~-glucan partially soluble (Buglia et al. 

1986). The majority of authors agree that the cellulose-like sequences of up to 14 

consecutive ~-(1--->4) linkages have the potential to aggregate through hydrogen bonds and 

precipitate from solution (Woodward et al. 1983; Letters et al. 1985; Bamforth 1994). 

Longer blocks of contiguous cellotriosyl residues are also believed to be responsible for 

insolubility (lzawa et al. 1993). The associative abilities of ~-glucan leads to the formation 

of gelatinous precipitates, which are of great importance in brewing where their presence 

impedes proper filtration of the beer (Bohm and Kulkie 1999). Figure 1.2 illustrates the 

structure of the ~-glucan molecule. 

OH 

0·. 

OH OH 

Figure 1.2 The structure of p-glucan (from Tungland and Meyer 2002). 
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Molecular weight (MW) ranges reported for ~-glucans show variability between cereals, 

with oat ~-glucans generally having a higher upper MW (0.065-3 x I 06 g/mol) than barley 

(0.15-2.5 x 106 g/mol) (Wood et al. 1991b; Beer et al. 1997a,b; Irakli et al. 2004; 

Lazaridou et al. 2004a,b ). 

1.3.1 Barley p-Giucan Extraction Procedures 

Barley and oat ~-glucans, together with other NSPs, occur in the walls of the endosperrn 

cells, which enclose starch, matrix proteins and lipids reserves of the grain. Thus, their 

recovery is not straightforward. The study of the physico-chemical properties of isolated 

~-glucan fractions requires extraction procedures, which optimise yield, purity and 

integrity of the ~-glucan molecule. To obtain an economically viable functional food 

ingredient, these considerations have to be balanced and a compromise reached. 

Barley flours may be enriched with ~-glucan by dry milling and sieving (Knuckles et al. 

1992) or air classification and sieving (Wu et al. 1994; Knuckles and Chiu 1995; Sundberg 

et al. 1995); however, much more research has focused on the impact of wet isolation and 

purification techniques on the physico-chemical and structural properties of barley ~-

glucan (Fincher 1975; Klopfenstein and Hoseney 1987; Woodward et al. 1988; Bhatty 

1993, 1995; Temelli 1997; Burkus and Temelli 1998). 

Key extraction methodologies for barley and oat ~-glucans were developed by Wood et al. 

( 1977, 1978). These researchers assessed the effects of particle size, temperature, pH and 

ionic strength on ~-glucan yield on a laboratory scale. ln a further study, the authors 

prepared an oat gum fraction (from oat bran) on a pilot plant scale by extracting hot 75% 

ethanol-inactivated oat bran (outer starchy endosperrn and overlying aleurone and pericarp-

seed coat) with a sodium carbonate solution at pH I 0 to give a preparation containing 78% 

~-glucan (Wood et al. 1989). Although this simple extraction process was successful in 
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generating ~-glucan material from cereals, McCleary (1988) illustrated that sequential 

water extractions at 40, 65 and 95°C increased the extraction rate of barley ~-glucan to 

90%, thus, enabling an increase in overall yield. Different extractants were investigated by 

Bhatty (1993) who found that optimum recovery of barley and oat gums (with retained 

viscosity characteristics) could be obtained using I M NaOH; however, there was 

contamination of this extract with considerable amounts of starch and protein, which 

resulted in an impure product. To counteract this, Saulnier et al. (1994) used a hot water 

extraction procedure in the presence of thermostable a-amylase to minimise the 

contamination from starch and yield a more purified barley ~-glucan material. 

The cost of extraction techniques is one of the major limiting factors in the food industry 

utilisation of ~-glucans. Thus, pure preparations of ~-glucans have often been ignored as 

potential functional food ingredients; this is primarily due to the relatively inexpensive use 

of barley or oat flour fractions, which in turn has meant that the actual characteristics of 

these products in food systems are often variable due to fluctuations in protein or starch 

composition of the flour fractions. Hence, subsequent viscosity, structural and nutritional 

effects on foods have to be considered in relation to the nature of the ~-glucan extract or 

the composition of the flour material used. 

Investigation of different organic solvents as precipitants of barley ~-glucan (Beer 1996; 

Morgan and Ofrnan 1998) has shown that the extraction solvent affects the structural 

conformation, MW and solubility of the precipitated ~-glucan. To offset these potential 

negative factors, whilst endeavouring to produce a more cost effective extraction process, 

Morgan and Ofrnan ( 1998) developed a hot water extraction procedure with freezing and 

thawing for the recovery of ~-glucan from barley. The resulting product ('Giucagel™') 

contained between 89-94% ~-glucan (depending on the duration of the initial extraction). 

Glucagel™ is a ~-glucan preparation that is commercially produced for use as a functional 
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food ingredient. Currently, there is a paucity of studies that have compared the 

composition, MW and physico-chemical properties of barley ~-glucans from solvent 

precipitation and novel extraction procedures. 

The temperature and pH of the extraction process also affects the recovery of barley ~-

glucan. Temelli (1997) demonstrated that ~-glucan extraction increased with temperature. 

A further evaluation of the influence of extraction conditions on yield, composition and 

viscosity stability of barley gum was conducted by Burkus and Temelli (1998) using 

regular barley (Condor) and a waxy cultivar blend. Extraction conditions were evaluated, 

including, extmction with: no additional treatment; boiling of the extract; prior refluxing of 

flour with 70% ethanol; and treatment of the extract with thermostable a-amylase. The 

highest ~-glucan purity was achieved with a boiled Condor extract at pH 7 (81.3% yield) 

and was closely followed by refluxed waxy barley extracted at pH 8 and amylase treated 

(79.3% yield). Refluxed gums followed by purification at pH 7 exhibited the most stable 

viscosity. 

As previously mentioned, the nature of extraction procedures can have a profound affect 

on the MW of barley ~-glucan and in turn may influence its functional behaviour. Carr et 

al. (1990) observed that the use of NaOH for complete extmction resulted in partial 

depolymerisation of ~-glucan. Although Knuckles et al. (1997b) included sodium 

borohydride in an NaOH extraction at 65°C to prevent alkaline depolymerisation, the MW 

of the extracted barley ~-glucan was lower than that extracted with water at 1 00°C. Beer et 

al. (1997a) also observed that the MW of ~-glucans extracted from oats and barley with 

NaOH was lower than those extmcted with hot water. Knuckles et al. (1997b) illustrated 

that sequential extractions resulted in a decrease in extracted ~-glucan MW, and Storsley et 

al. (2003) illustrated that the tempemture used for sequential water extractions affects the 

mtio of (1-4) to (1-3) linkages and the amount of cellulosic regions on the ~-glucan 
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chain. Care must therefore be taken to optimise the yield and rheological characteristics of 

~-glucan components and avoid depolymerisation during extraction. 

~·' 

1.3./.1/njluence of endo-{J-(/-+3, 1-+4)-glucanase 

Enzymatic hydrolysis may present difficulty in the successful extraction and retention of 

barley ~-glucan with desirable physico-chemical properties. Endo-~-(1-+3, 1-+4)-

glucanase (hereafter referred to as ~-glucanase) enzymes originate from micro-organisms 

or the barley grain itself (Kanauchi and Bamforth 200 I). The mechanism by which these 

enzymes operate is by degradation of the glucan component of the cell walls, acting on 

both insoluble (hemicellulose) and soluble (gum) glucans (Kanauchi and Bamforth 2001). 

Alternative arguments propose that the initial digestion of the hemicellulosic fraction 

involves other enzymes (solubilases), and it is the action of these enzymes that represent 

the substrate for endo-~-glucanase. Suggested substances include carboxypeptidase 

(Barnforth et al. 1979; Barn forth 1981 ), phospholipase (Pal mer 1987), en do (1-+ 3) 

glucanase (Bathgate et al. 1974), endo (1-+4) glucanase (Yin and MacGregor 1988) and 

ferulic acid esterase (Moore et al. 1996). Methods commonly used for inactivating ~-

glucanase during the preparation of cell wall fractions include, autoclaving, refluxing with 

hot aqueous ethanol (Carr et al. 1990; Beer et al. 1996) and treatment with trichloroacetic 

acid (Forrest and Wainwright 1977). 

1.3.2 Flow and Gelling Behaviour of Barley IJ-Glucan 

The rheological characteristics of barley ~-glucan has obvious links to its viscosity 

behaviour (either in native form or as an extract in formulated foods) and potential effects 

on food structure, texture and nutritional properties. Like other soluble NSPs, ~-glucan 

exists in solution as random coils. The properties of these random coils in solution 

(viscosity) are largely dependent on concentration and MW (Robinson et al. 1982; Bohrn 
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and Kulkie 1999). The flow properties of ~-glucans from both oat (Autio et al. 1987; 

Doublier and Wood 1995) and barley (Bhatty 1995; Burkus and Temelli 2005) in solution 

have been investigated. The pseudoplasticity of high viscosity barley ~-glucan gums is an 

already established fact (Bhatty 1995; Burkus and Temelli 2005). Low viscosity ~-glucan 

gums and high viscosity ~-glucan gums at low concentrations have been illustrated to 

behave like Newtonian fluids (Burkus and Temelli 2005). 

In addition to the flow properties of ~-glucan, its ability to form a gel is of importance in 

terms of technological and nutritional functionality. Gelation is the association or cross-

linking of long polymer chains to form a 3-dimensional network, which traps and 

immobilises liquid to form a structure resistant to flow under pressure (Glicksman 1982, 

cited by Burkus and Temelli 1999). There are relatively limited investigations of the 

gelation properties of barley ~-glucan. Doublier and Wood (1995) reported that 

hydrolysed oat gums exhibited gel like behaviour, and that high viscosity gums did not gel. 

In the studies of Burkus and Temelli ( 1999), low viscosity barley ~-glucan was found to 

form a gel at a concentration of :::5%. Increasing concentration from 5-5.5% resulted in a 

gel that could withstand 2.5 times higher stress (determined by compression tests). A 

further increase to 6% resulted in a much lower stress increase. Lazaridou and Biliaderis 

(2004) demonstrated that the storage modulus (G') of barley ~-glucan cryogels increased 

with decreasing MW, and hence, a reduced gelation time and increased gelation rate were 

observed. Similarly, Vaikousi et al. (2004) illustrated that gelation time was decreased for 

~-glucan gels from low MW (LMW) sources, and that gels made from high MW (HMW) 

~-glucan sources exhibited increased yield stress and reduced storage modulus (G'max) 

values. Similar findings have been reported for water extractable ~-glucans from Greek 

barley cultivars (lrakli et al. 2004). Tosh et al. (2004) illustrated that differences in the 

ratio of cellotriosyl/cellotetraosyl units affected the gelation characteristics and elasticity of 

~-glucan systems. Indeed, reduced solubility of ~-glucan systems has been attributed to 
17 



Chapter 1 Literature review 

higher ratios of cellotriosyl/cellotetraosyl units (Skendi et al. 2003). Thus, because the 

viscoelastic characteristics of ~-glucan gels are related to the MW of the isolated fractions, 

differences in MW observed among ~-glucans extracted from different cultivars of barley 

(Izydorczyk et al. 1998b,c) need to be considered in relation to their potential behaviour in 

food systems. 

1.4 ROLE OF BARLEY P-GLUCAN AS A FUNCTIONAL FOOD INGREDIENT 

Much of the more recent attention with regards to ~-glucans use in food systems has 

stemmed from its role as a functional dietary fibre. The term dietary fibre is used to 

collectively describe a group of complex substances in plant material, which resist human 

digestive enzymes, including non-swellable, more or less hydrophobic components, such 

as cutins, suberins and lignins, as well as a wide range of hydrophilic compounds, such as 

soluble and insoluble polysaccharides and non-digestable oligosaccharides. The 

distinction between soluble and insoluble fibres is based on in vitro studies and chemical 

analyses of plant cell walls. Official definitions of dietary fibre have been made by the 

Dietary Fibre Technical Committee of the American Association of Cereal Chemists 

(AACC) (AACC 2000a, 2001, 2003). 

Potential health benefits of dietary fibre include: manipulation of bowel transit time 

(Feldheim and Wisker 2000); prevention of constipation and reduction in risk of colorectal 

cancer (Bingham 1990; Hill 1997; Faivre and Bonithon-kopp 1999); lowering of blood and 

serum cholesterol and regulation of blood glucose levels for diabetes management (Bomet 

et al. 1987; Gallaher et al. 1993; German et al. 1996; Frost et al. 1999); and production of 

short chain fatty acids (SCFAs) (Karppinen et al. 2000; Velasquez et al. 2000; Wisker et 

al. 2000) for the promotion of colonic health (stimulating the growth of beneficial gut 

microtlora) (Crittenden et al. 2002; Tungland 2003). 
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Research of the physiological behaviour of dietary fibre has broadly examined the effects 

of soluble and insoluble fractions as purified fibre or in naturally fibre-rich whole foods. 

High fibre foods have been related to the mo,dulation of glycaemic response on the basis of 

early studies by Jenkins et al. (1976, 1977, 1978, 1980) and more recently, Truswell 

(2002) and Tudorica et al. (2002c) using both purified fibre and naturally fibre-rich foods. 

In particular, foods high in soluble dietary fibre have been shown to have a positive impact 

on reducing hyperglycaemia and hyperinsulinaemia in relation to the control of diabetes 

(Li et al. 2003a) and the reduction of risk factors for degenerative diseases including, 

obesity (Burley et al. 1987), hyperlipidaemia (Jenkins et al. 1985; Maki et al. 2003; Yang 

et al. 2003), CVD (Keogh et al. 2003), cancer (Sier et al. 2004) and hypertension 

(Anderson 1983, 1990). 

Many attempts have been made to clarify the mechanisms by which soluble dietary fibres 

behave. With regard to the reduction of glycaemic response, proposed mechanisms 

include: the concentration and composition of fibre (Wolever 1990; Nishimune et al. 

1991 ); increased viscosity (Mourot et al. 1988); maintenance of physical integrity (O'Dea 

et al. 1980); and incomplete starch gelatinisation (Ross et al. 1987b; Brennan et al. 1996a; 

Tudorica et al. 2002c). The cholesterol lowering potential of soluble cereal fibres is 

primarily considered as a result of increased excretion of bile acids and the increased 

synthesis of bile acids at the expense of cholesterol (Bengtsson et al. 1990). 

1.4.1 Functional Foods 

Chronic diseases are now the major causes of death and disability worldwide. Non-

communicable conditions including, CVD, diabetes, obesity, cancer and respiratory 

disease account for 59% of 57 million deaths annually and 46% of the global burden of 

disease (World Health Organisation (WHO) 2003). A relatively few risk factors, which 

include high cholesterol, high blood pressure, obesity, smoking and alcohol, are 
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responsible for the majority of the chronic disease burden. Amongst other factors 

(physical activity and controlling weight, alcohol and tobacco), improving dietary habits to 

include eating more fruit, vegetables, nuts and wholegrain foods (rich in dietary fibre), 

moving from saturated animal fat to unsaturated vegetable oil fats and reducing 

consumption of foods high in fat, salt and sugar can have a significant impact upon 

reducing rates of chronic disease. 

There is widespread recognition that dietary fibre consumption plays an important role in 

the prevention of CVD, some kinds of cancer and diabetes; however, dietary fibre intakes 

in many western countries languish far below recommended levels. It is estimated that in 

some western countries daily dietary fibre intake can be as little as 2-4 g (Mathers and 

Wolever 2002) against a recommended quantity of> 18 g. Greater intake of dietary fibre 

may be encouraged if a wider choice of palatable and appealing foods that are rich in 

dietary fibre existed, and this may be achieved by increasing dietary fibre levels in popular 

food products. The potential of dietary fibre as a food component that can reduce the risk 

of disease and promote health has positioned it as an ingredient of great interest in 

functional foods (Sioan 1999). 

The history and definition of functional foods has been reviewed extensively by Katan and 

De Roos (2004) and Arvanitoyannis and van Houwelingen-Koukaliaroglou (2005). There 

is no universally accepted definition for functional foods or any legal definition of the term 

in the EU. Currently academic, scientific and regulatory organisations within the EU are 

working towards a harmonised definition and regulation of the use and marketing of 

functional foods. The key aim of such regulation is to protect consumers from misleading 

claims and give the functional foods sector more direction and clarity. Scientifically 

functional foods have been defmed as: 
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"affecting beneficially one or more target function in the body beyond adequate nutritional 
effects in a way that is relevant to either improved state of health and well-being and/or 
reduction in the risk of disease. " (Anon 1999) 

This definition can be translated into "foods with health benefits beyond nutritional value". 

The various ways in which a functional food may deliver health benefits include: 

enhancement or promotion of the intrinsic beneficial properties of a food (or drink); the 

addition of one or more functional components to a food (or drink); or removal of 

components of a food (or drink) (Anon 2004). 

The functionality of foods is derived from bioactive ingredients. Bioactive ingredients in 

functional foods may help in the prevention of chronic diseases or the enhancement of 

performance and well-being. The term 'nutraceutical' is often used interchangeably with 

functional foods; however, the scope of nutraceuticals is substantially different to that of 

functional foods. Although the prevention and treatment of disease (medical claims) are 

related to nutraceuticals, only the reduction of disease is related to functional foods. In 

contrast to nutraceuticals, including supplements as well as other types of foods, functional 

foods are expected to be in the form of ordinary foods (Arvanitoyannis and van 

Houwelingen-Koukaliaroglou 2005). 

As will be discussed in the following section of the review, p-glucans from both oat and 

barley have much potential as functional food ingredients. Such potential, together with 

the US Food and Drug Administration (FDA) acknowledgment of the relationship between 

soluble fibre from whole oats, oat bran, whole grain barley and barley containing products 

and the risk of coronary heart disease (CHD) (Anon 1997a,b, 2005a), has led to a 

considerable number of companies, both in Europe and the US, creating commercial P-

glucan preparations (the majority of which are derived from oat) for inclusion in functional 

foods (Table 1.4). 
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Table 1.4 Commercial ~-glucan (from oat and barley) preparations 

Company (Country) 

Viljava (Avena) (Finland) 

Ceba (Sweden) 

CreaNutrition-SOF (Switzerland) 

Quaker Food/Oats Rhodia (US) 

Crompton and Knowles (US) 

Immunocorp, CA (US) 

Nurture INC, PA (US) 

GTC Nutrition Golden (US) 

PolyCell (US) 

1.4.2 Physiological Effects of Barley P-Giucan 

Product 

Natureal Oat-bran 

Swedish Oat Fiber 

Oatwell Oat Bran 

Betatrim (Oat) 

Dri-Flo Healthy Oatbuds 

Norvegian Beta-Glucan (Oat) 

Nurtures OatVantage 

Nurture 1500 (Oat) 

Nutureal GI (Oat) 

Glucagel (Barley) 

The most widely documented nutritional benefit of ~-glucan consumption is the flattening 

of post-prandial blood glucose and insulin rises. Both barley (Hallfrisch et al. 2003; Li et 

al. 2003a,b) and oat ~-glucans (Wood et al. 1990, 1994a; Jenkins et al. 200 I; Kabir et al. 

2002; Poyhonen 2004) produce this response. Likewise, both barley (Delaney et al. 2003; 

Li et al. 2003a; Y ang et al. 2003; Smith et al. 2004) and oat (Braaten et al. 1994; Beer et 

al. 1995; Kang et al. 2003; Kerckhoffs et al. 2003) ~-glucans have been shown to reduce 

serum and blood cholesterol levels. 

Other notable, but less documented, nutritional benefits of ~-glucan (from both oat and 

barley) consumption include: reduced gastrointestinal enzyme activity (Schneeman and 

Gallaher 1985); diminished absorption of nutrients (Edwards et al. 1988; Lund et al. 

1989); delayed gastric emptying (Johansen et al. 1996, 1997); prolonged post-prandial 
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satiety (Anderson 1990; Bourdon et al. 1999); increased stool bulk and relief of 

constipation (Hojgaard et al. 1980; Valle-Jones 1985; Odes et al. 1993); prevention of 

colorectal cancer (Thorburn et al. 1983; Reimer et al. 2000); and immunostimulatory 

effects (Causey et al. 1998; Fulcher et al. 2000). 

1. 4. 2.1 Attenuation of glycaemic response 

On the basis of studies by Jenkins et al. (1976, 1977, 1978, 1980), high fibre foods have 

been correlated to the modulation of glycaemic response and as a consequence retarded 

and diminished insulin secretion. The importance of viscosity for this effect has been 

observed by Jenkins et al. (1978) and Wood et al. (1994a) who illustrated that rises in post-

prandial blood glucose and insulin concentrations were reduced after meals containing 

viscous polysaccharides. The hypoglycaemic effect of foods enriched with fibres is 

commonly expressed in relation to the Glycaemic Index (GI). Jenkins and eo-workers 

introduced the concept of Gl, an established physiologically based method, to classify 

foods according to their blood glucose raising potential (Jenkins et al. 1981 ). GI is defined 

as the incremental blood glucose area (0-2 hours) following 50 g available carbohydrate in 

the test product and is expressed as the percentage of the corresponding area following an 

equivalent amount of carbohydrate from a reference product (typically glucose or white 

bread). 

There is a strong consensus that the reduction of the glucose and insulin peak after 

consumption of viscous soluble fibres, such as ~-glucan, is as a result of an increase of the 

viscosity of the contents of the stomach and small intestine. This increase in viscosity 

reduces the absorption rate of digested nutrients from the small intestine by resistance of 

the convective effects of intestinal contractions (Edwards et al. 1988; Adiotomre et al. 

1990). Glucose transport in the intestinal tract wall is inhibited partly by an increase in the 

resistance of the mucosal diffusion barrier that is brought about by the greater viscosity of 
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the intestinal bolus containing the ~-glucan. The mobility of fluid layers surrounding and 

overlying the intestinal villi is also greatly reduced (Edwards et al. 1988; Lund et al. 1989). 

Mathematical correlations of blood glucose level to concentration and MW of ~-glucan 

have been illustrated by Wood et al. ( 1994a, 2000) who demonstrated an inverse linear 

relationship between log (viscosity) of oat ~-glucan in a drink model (varying MW/dose) 

and the magnitude of 50 g oral load. Although individual comparisons with controls were 

insignificant, observations from regressional analysis revealed that viscosity accounted for 

79-96% of the modifications in glucose and insulin response. Tappy et al. (1996) also 

found that inclusion of oat ~-glucan into breakfast cereals could reduce the post-prandial 

glycaemic response by up to 50%, which at low levels (below 5%) appeared to be dose 

responsive. Levels above 5% did not show any further reductions in glycaemic response, 

possibly indicating a saturation point. Jenkins et al. (2001) indicated that I g of ~-glucan 

per 50 g of ingested carbohydrates could reduce the Gl of food by four units. Information 

on the dosage necessary for hypoglycaemic effect is an important factor when considering 

appropriate levels of ~-glucan inclusion in food systems. 

Although an increase in luminal viscosity is the most likely explanation for the blood 

glucose lowering properties of soluble fibres, it has been proposed that other physical 

mechanisms are involved, especially when soluble fibres are part of a solid food matrix 

such as bread or pasta. In addition to rheological effects, soluble polysaccharides may also 

inhibit the rate of digestion of solid starch products by forming an enzyme resistant barrier 

around starch granules (Ell is et al. 1991 ). Brennan et al. ( 1996a) investigated the 

topological relationship between guar gum and starch in wheat bread and the influence of 

guar gum on the rate of in vitro hydrolysis of wheat starch by pancreatic a-amylase. 

Micro-structural studies of digesta taken 4 hours post feed from pigs revealed that guar 

gum was closely associated with the starch granules in the bread. This suggests that in 
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addition to rheological effects, soluble polysaccharides may act as a physical barrier to 

enzyme-substrate interactions and the release of nutrients from the food matrix. Results of 

the in vitro starch digestibility studies were consistent with the structural observations in 

that the hydrolysis of starch in guar gum wheat bread was reduced significantly compared 

with the control; these effects were independent of the MW of guar gum contained in the 

wheat bread. Currently, there are limited studies investigating the effect of p-glucan from 

either oat or barley on the micro-structure of cereal foods and starch digestibility. 

The hypothesis on the formation of a soluble fibre barrier around starch granules is also 

supported by the theory of 'thermodynamic incompatibility' of biopolymers (Tolstoguzov 

2003a,b). Thermodynamic incompatibility of bio-polymers implies that macro-molecules 

show a preference to be surrounded by their own type in mixed solutions. For example, 

self-association, typical for amylopectin, is intensified in the presence of other macro­

molecules, such as guar gum. Thermodynamic incompatibility was utilised to explain why 

the addition of guar gum increases the quantity of starch that resists digestion (Tolstoguzov 

2003b). According to Tolstoguzov (2003b), amylopectin is incompatible with guar gum, 

and therefore, when added to a starchy mixture, guar gum can lead to a phase separation, 

encapsulation of the starchy phase by the guar gum enriched phase and possibly prevention 

of the leaching of amylose. This phase separation is thought to increase the concentration 

of macro-molecules inside the starch granules, which consequently decreases starch 

digestion. 

A less explored mechanism for the effectiveness of soluble fibres in lowering post-prandial 

blood glucose after consumption of starchy foods, is the ability of these fibres to limit the 

rate of digestion of the starch component by inhibiting gelatinisation (i.e. competing for 

available water), as proposed by Holm et al. (1988) and Tester and Sornrnerville (2003). 
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After initial basic research, application of oat and barley ~-glucan for glycaemic control 

has been concentrated in studying the effects of cereal fractions or products and prototype 

products from these. More attention has been paid to oat products due to the higher 

viscosity given by its ~-glucan as compared to barley ~-glucan. Studies of the 

hypoglycaemic effect of native oat and oat ~-glucan products are reviewed extensively by 

Wursch and Pi-Sunyer (1997) and Malkki (2004). Research specifically examining the 

hypoglycaemic effect of barley ~-glucan additions has been conducted with promising 

results. When flat breads in which part of the conventional wholemeal barley flour was 

replaced by Prowashonupana barley (20% ~-glucan) were fed to healthy humans, the GI 

was decreased by 30 units, and the insulin response was also significantly lowered 

compared to wholeflour products (Liljeberg et al. 1996). Similarly, Pick et al. (1998) 

observed that barley breads (5 g ~-glucan/day) fed to diabetic men significantly lowered 

glycaemic response compared to a control white bread. Cavallero et al. (2002) 

incorporated barley ~-glucan rich flour and fractions into wheat bread. Four breads were 

produced: I 00% bread wheat flour (total ~-glucan 0.1%: soluble ~-glucan 0.1 %); 50% 

bread wheat flour and 50% barley flour (total ~-glucan 2.4%: soluble ~-glucan 2.0%); 50% 

bread wheat flour and 50% sieved barley fraction (total ~-glucan 4.2%: soluble ~-glucan 

2.8%); and 50% bread wheat flour and 50% water-soluble barley fraction (total ~-glucan 

6.3%: soluble ~-glucan 5.7%). Eight adults were fed test meals of each of the four breads, 

and Ols were calculated from finger prick capillary tests. A linear decrease in GI was 

associated with increasing ~-glucan concentration. The 50% wheat/barley flour bread 

showed a reduction in 01 from the control bread (Ois=85.42 and 89.49 respectively); 

however, only the bread containing the water-soluble fraction produced a significantly 

reduced 01 (01=69.67) compared to the control bread (01=89.49). The authors concluded 

that it was the ~-glucan levels in the bread (notably the increased soluble ~-glucan levels) 

that were responsible for the reduction in GI and that this did not result from impaired food 
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degradation and amylolysis but through the effect of ~-glucan on digesta viscosity and 

glucose absorption. 

Yokoyama el al. ( 1997) compared blood glucose and insulin responses of healthy 

individuals following the ingestion of control durum wheat pasta (I 00 g of available 

carbohydrate and 5 g of TDF (negligible ~-glucan)) to that of a pasta sample with added 

barley ~-glucan (100 g of available carbohydrate and 30 g ofTDF (ofwhich 12 g was~­

glucan)). Post-prandial blood glucose and insulin responses were significantly reduced 

following ingestion of the pasta enriched with barley flour. The authors attributed this 

reduction in the glycaemic response to the incorporation of ~-glucan and increased TDF 

content of the experimental pasta samples. Similar findings have been reported by 

Knuckles et al. (1997a) and Bourdon et al. (1999). lzydorczyk el al. (2005) observed 

reduced rates of in vitro starch digestibility in durum wheat pastas containing hull-less 

barley flour fractions. The authors reported that changes to product micro-structure and 

starch granule availability were responsible for the reduced rates of in vitro starch 

digestion. The exact role of ~-glucan in modulating the GI of pasta warrants further 

investigation. 

As discussed, barley ~-glucan enriched foods have potential in the modulation of the 

glycaemic response in both diabetic and non-diabetic subjects. Despite the long 

experience in the use of other pharmaceutical viscous fibre preparations (i.e. guar) for 

diabetic patients and a number of successful studies with both healthy and diabetic people 

fed food products containing viscous soluble fibre, the attitude of authorities and 

professional societies towards the use of viscous fibre containing functional foods as part 

of a low glycaemic diet remains somewhat conservative. This is reflected in a statement of 

the American Diabetes Association (ADA) (2002) which concludes the following: 

27 



Chapter I Literature review 

"with regard to the g/ycemic effects of carbohydrate, the total amount of carbohydraTe in 
meals and snacks is more important than the source or type----Although the use of low 
g/ycemic food may reduce postprandial hyperg/ycemia, there is not sufficient evidence of 
long term benefit to recommend use of low g/ycemic index diets as a primary strategy in 
food/mea/ planning for individuals with type I diabetes. 

Carbohydrate and type 2 diabetes 

It thus appears that ingestion of large amounts of fiber is necessary to confer metabolic 
benefit. It is not clear whether the palatability and gastrointestina/ side effects offiber in 
this amount would be acceptable to most people. " (ADA 2002) 

In contrast, the Dieticians Association of Australia (DAA) (Perlstein et al. 1997), the 

Canadian Diabetes Association (CDA) (CDA 2002) and the Diabetes Nutrition Study 

Group (DNSG) of the European Association for the Study of Diabetes (DNSG 2004) 

recommend high fibre, low GI foods for individuals with diabetes as a means of improving 

post-prandial glycaemia. The Nutrition Subcommittee of the Diabetes Advisory 

Committee of Diabetes UK. (Connor et al. 2003) view the GI as a broad guide to good 

carbohydrate food choices, which stratifies foods into low, medium and high GI choices; 

moreover, the latest studies that have investigated the hypoglycaemic effect of barley P-

glucan have paid attention to the known critical factors of amount, viscosity, palatability 

and compliance and are convincing enough to suffice for health claim purposes. 

I.4.2.2 Hypocholestero/emic properties 

One of the greatest scientific and public health interests on soluble dietary fibre has been 

its role in reducing blood cholesterol and the reduction of CVD. Following a review of 37 

original studies (Anon 1996) in 1997, the FDA of the US published a final ruling on the 

relationship between soluble fibre from whole oats or oat bran and the risk of CHD (Anon 

1997a,b ). It concluded that P-glucan soluble fibre is the component responsible for the 

hypocholesterolemic properties of oats when part of a diet low in saturated fat and 

cholesterol. More recently, the agency has announced that whole grain barley and barley 

containing products are allowed to claim that they reduce the risk ofCHD (Anon 2005a). 
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The principle mechanism by which ~-glucan lowers blood cholesterol is believed to be as a 

result of increased excretion of bile acids at the cost of cholesterol, which occurs through 

increased intestinal viscosity (De Schrijver et al. 1992; Jensen et al. 1993; Jonnalagadda et 

al. 1993 ). The highly viscous ~-glucan solution absorbs bile acids secreted in the 

duodenum and impedes the re-adsorption of bile acids in the small intestine (Bengtsson et 

al. 1990). Attention has also been placed upon other mechanisms. Since the 

hypoglycaemic effect of viscous soluble fibre causes a reduction of insulin secretion, this 

reduces cholesterol synthesis in the liver, insulin being an activator of a key enzyme in 

cholesterol synthesis, hydroxymethyi-CoA reductase. This enzyme is also inhibited by 

bile acids, especially deoxycholic acid, the proportion of which increases in the bile acid 

pool of people consuming oat bran based diets (Marlett et al. 1994). More recently, Yang 

et al. (2003) suggested that up-regulation in the activity of cholesterol 7 alpha-hydroxylase 

(CYP7AI), an enzyme associated with the regulation of the pathway through which 

cholesterol is converted into bile acids, was responsible for hypocholesterolemic behaviour 

of ~-glucan. The bile acid binding properties of cereal ~-glucans have been examined by 

several authors; Bowles et al. (1996) using 13C CPIMAS NMR and by Kahlon and 

Woodruff (2003) in in vitro studies. Both studies failed to show any significant evidence 

that the cholesterol-lowering properties of ~-glucans were due to binding of bile acid salt 

molecules. 

Studies of the hypocholesterolemic role of oat ~-glucan rich diets in animals and humans 

have been discussed by R.ispin et al. (1992), Kahlon and Chow (1997) and Kerckhoffs et 

al. (2003). Likewise, the hypocholesterolemic effect of barley ~-glucan rich diets has also 

been examined in numerous studies with animals (Fade I et al. 1987; Newman et al. 1991, 

1992; Oda et al. 1991, 1993; Ranhotra et al. 1991; Wang et al. 1992; Kalra and Jood 2000; 

Yang and Moon 2002; Bird et al. 2004) and humans (Newman et al. 1989; Mclntosh et al. 

1991; Lupton et al. 1994; Smith et al. 2004). 
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Attempts have been made to ascertain if the botanical source of P-glucan influences its 

cholesterol-lowering capacity. In particular, the study of Delaney et al. (2003) compared 

the cholesterol-lowering capacity of P-glucans from barley and oats using a hamster model 

system. Although the diets rich in oat or barley p-glucan significantly reduced the 

cholesterol levels of the hamsters, no significant difference was observed between the two 

experimental diets, thus, leading to a conclusion that the cholesterol-lowering potency of P-

glucan is not dependent on botanical source. A similar observation was recorded by 

Hallfrisch et al. (2003) in a comparison of the effect of barley and oat P-glucan diets on 

glucose and insulin responses in humans. 

There has been considerable interest in the level of P-glucan supplement needed to achieve 

a significant cholesterol-lowering benefit. Most studies have been on the effectiveness of 

dietary fibre or oat and barley p-glucans in relation to food labelling claims through the US 

FDA. The FDA have adopted a recommendation of 3 g per day of p-glucans (0.75 

g/serving) as having a nutritional effect; this as a component of the recommended 30-35 g 

of dietary fibre per day advised by the American Association of Dieticians (AAD) (Anon 

1997a). 

I. 4. 2. 3 Satiety and weight reduction 

Besides restriction of food intake and increased physical activity, obesity is also affected 

by consumption of dietary fibre. In a large multi-cultural study with middle-aged men, 

high fibre intake was found on a population level to affect body fat levels more effectively 

than low fat diets (Kromhout et al. 200 I). Fibre does not only affect satiety physically by 

increasing gastric distension and delaying gastric emptying but also by affecting endocrine 

and intestinal hormone secretions (Malkki 2004). In addition to insulin and glucagon, 

attention has been paid to the gut hormone cholecystokinin (CCK). Physiological 

responses to CCK released from the small intestine, include delayed gastric emptying, 
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blunted glycaemic responses and increased satiety, factors also related to consumption of 

viscous polysaccharides (Liddle et al. 1986, 1988). CCK release is stimulated by amino 

acids and fats (Holt et al. 1992), and it has been discovered that soluble fibres may also 

increase its secretions (Mossner et al. 1992). It is postulated that prolonged contact of lipid 

and amino acid with intestinal cells, due to slow digestion after a meal containing viscous 

fibre, may promote a greater release of CCK (French and Read 1994; Burton-Freeman and 

Schneeman 1996). Investigations of the satiation effects of barley p-glucan are relatively 

limited. Bourdon et al. (1999) found that consumption of barley p-glucan rich pasta 

resulted in CCK levels being increased for a longer period than after a control meal. 

1. 4. 2. 4 Anti-carcinogenic properties 

One of the many health-providing roles attributed to cereal dietary fibre is the prevention 

of colorectal cancer (Bingham 1990; Hill 1997). Mechanisms behind the anti-carcinogenic 

effect of dietary fibre remain unclear and controversial. Large-scale epidemiological 

studies do not show any or only weak correlation between fibre intake and a reduction of 

risk of colorectal cancer (Fuchs et al. 1999); however, these studies do not differentiate the 

effects of TDF and viscous soluble fibre, and to date there is still a paucity of studies that 

have examined the role of cereal P-glucans in protecting against colorectal cancer. 

The role of fibre in protecting against tumour development is believed to stem from the 

fermentation of fibre by intestinal bacteria. Proposed mechanisms include, the supply of 

the colonic epithelium with SCFAs (principally butyric, acetic and propionic) and 

suppression of microbial protein metabolism, bile acid conversion and other toxigenic 

bacterial reactions (Bingham 1990; Kritchevsky 1998; D' Argenio and Mazzacca 1999; 

Rieger et al. 1999; Dongowski et al. 2002). Butyric acid stimulates proliferation of normal 

cell lines, both in vitro and in the normal cell epithelium, but retards the growth of 

carcinoma cell lines and induces apoptosis in cultured colonic adenoma and carcinoma 
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cells (Kim et al. 1980; Hague et al. 1993); however, it appears that with soluble fibres 

(such as cereal ~-glucans), which are rapidly fermented, the protecting effect of butyric 

acid does not extend to the rectum, since it is for a greater part either used by colonic 

mucosa or absorbed (Kashtan et al. 1992). The anti-carcinogenic effect of barley fibre has 

been examined by Mclntosh et al. (1993, 1996) who investigated its role in preventing 

dimethyl hydrazine induced tumours. In these studies insoluble dietary fibre was found to 

be the active component. 

1.4.2.5 Prebiotic effect and fermentation in the large bowel 

Fennentable carbohydrates reaching the colon have been illustrated to have a prebiotic 

effect, such that on reaching the colon they provide a selective advantage for the 

proliferation of particular bacterial microtlora groups, which are of benefit to the host 

(probiotics) (Fuller 1989). Many of the carbohydrates not absorbed in the small intestine 

can support the growth of colon bacteria, but for prebiotic action the effect must be 

selective (Gibson and Roberfroid 1995). Bifidobacteria and Lactobacilli are considered 

beneficial genera within the human intestinal microtlora and are the predominantly used 

probiotics (Crittenden et al. 2002). Whilst a considerable number of studies have 

examined the prebiotic effect of oat bran and oat ~-glucan (reviewed by Malkki and 

Virtanen (2001 )), relatively few studies have examined the prebiotic effect of barley or 

barley isolates. Dongowski et al. (2002) found that barley diets containing between 7-12 g 

~-glucan/100 g increased Lactobacillus numbers in the caceum and colon of rats compared 

to a control. In the same study, SCF A production was increased compared to a control. 

1.4.2.6 Immunological effect 

Dietary components and their digestive products are m very intimate contact with the 

immune system of the gut (gut associated lymphoid tissue (GAL n), and specific nutrients 

are known to be important in the development and function of the immune system 
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(Alexander 1995). Although much less is known about the potential of dietary fibres in 

influencing immune function, several studies have demonstrated a lower incidence of 

bacterial translocation across the gut barrier on the administration of fermentable dietary 

fibre (Deitch et al. 1993; Frankel et al. 1995), thus, suggesting dietary fibre may modulate 

immunity. Although the mechanisms for the effect of fermentable dietary fibres on 

immune function in the gut have not been fully established, a number of interesting 

hypothesis have been proposed including: direct contact of lactic acid bacteria (Schiffiin et 

al. 1995) or bacterial products (cell wall or cytoplasmic components) (Tejada-Simon et al. 

1999) with immune cells in the intestine; production of SCF As from fibre fermentation 

(Bohmig et al. 1997; Jenkins et al. 1999); and modulation of mucin production (Deitch et 

al. 1993; Frankel et al. 1995). Schley and Field (2002) have extensively reviewed the 

immune enhancing effect of dietary fibre and proposed mechanisms of action. 

A vast majority of studies investigating the immunity modulating ability of ~-glucan have 

been made with (1-+3)-~-D-glucans from edible mushrooms or from fungal or yeast cell 

walls (Malkki et al. 2004). Cereal ~-glucans are long thought to be passive biological 

polymers and as such their immune enhancing effect has been subject to few studies; 

however, in recent years both immunostimulatory and immune restrictive effects have been 

investigated. The majority of these studies have been conducted with oat ~-glucan, with a 

limited number examining the immune enhancing capacity of barley ~-glucan. In human 

monocyte cell cultures, the biological activity of both highly purified oat and barley ~­

glucan was found to bind macrophage receptors and induce macrophage differentiation, the 

effect depending on origin and MW (Causey et al. 1998; Fulcher et al. 2000). A 6-fold 

increase in macrophages was observed with 100 mg/ml HMW mit ~-glucan, and a 7.5-fold 

increase was noted at an equivalent concentration of LMW oat ~-glucan. LMW barley ~­

glucan was three times stimulatorier than a polymer free basal medium. 
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1.5 IMPACT OF BARLEY JJ-GLUCAN INCLUSIONS ON THE QUALITY OF 

CEREAL FOODS 

p-glucan from barley has been incorporated into numerous cereal systems including, bread 

(Kunckles et al. 1997a; Pick et al. 1998; Cavallero et al. 2002) and pasta (Knuckles et al. 

1997a; Marconi et al. 2000). Although not discussed in this review, there are studies also 

emerging that have investigated the incorporation of barley p-glucan into non-cereal 

systems including, extruded meat products (Morin et al. 2002, 2004), yoghurt and cheese 

curds (Tudorica et al. 2002a,b) and beverages (Temelli et al. 2004). 

1.5.1 Starcb 

Mixtures of starch and NSPs can be used to modify and control food texture, improve 

moisture retention, control water mobility and improve the sensory quality of foods 

(Appelquist and Debet 1997). The inclusion of NSPs (i.e. guar gum, locust bean gum, 

xanthan gum, carrageenans and carboxymethylcelluose) in starch systems is known to 

influence starch structure, melting, gelatinisation, fragmentation and retrogradation 

(Donovan 1977, 1979; Lund 1984, Lai and Kokini, 1991; Kokini et al. 1992; Bahnassey 

and Breene 1994; Fanta and Christianson 1996). The literature on the subject of starch and 

NSP interactions is far too extensive to discuss within the confinements of this thesis but is 

thoroughly reviewed by Appelqvist and Debet (1997). Studies investigating the influence 

of P-glucans (from oat and barley) on the functional properties of starch are limited. 

Biliaderis et al. (1997) studied the interactions of oat P-glucan at I to 2% (w/w) in 

concentrated aqueous dispersions ( 40%, w/w) of maize and wheat starch. The presence of 

P-glucan did not affect the gelatinisation temperature of the maize or the wheat starch or 

the rheology of the wheat starch gel. This study cannot be viewed as a complete 

representation of the behaviour of P-glucan in starch systems as the source, structure and 

MW of the P-glucan will impact upon its physico-chemical properties and behaviour; these 
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factors were not addressed. The lack of information on the effects of barley ~-glucan in a 

starch system is a limiting factor in its use as a functional food ingredient. 

1.5.2 Bread 

In previous studies, bread has been enriched with dietary fibre including wheat bran 

(Ranhotra et al. 1990; Sidhu et al. 1999), gums and modified celluloses (Pomeranz et al. 

1977) and barley ~-glucan (Knuckles et al. 1997a; Cavallero et al. 2002; Gill et al. 2002). 

Enrichment of bread with fibre material often has a negative impact on the quality of 

dough (high water absorption, increased shortness and decreased fermentation tolerance 

(Gan et al. 1992; Park et al. 1997; Laurikainen et al. 1998)) and final product quality 

(reduced volume, height, increased firmness and impaired colour and flavour) (Pomeranz 

et al. 1977; Lai et al. 1989; Knuckles et al. 1997a)). 

There is relatively limited published information available on the impact of barley ~-glucan 

in dough and bread-making. Knuckles et al. (1997a) evaluated the effect of incorporating 

barley flour fractions in bread. Water absorption and mixing time (determined by 

farinographs) increased with level of fibre, and loaf volume decreased compared to a 

control. Reduced volumes in barley-enriched breads have also been observed by Kahlon et 

al. (1993), Cavallero et al. (2002) and Gill et al. (2002). Conversely, Dhingra and Jood 

(2001) found that wheat breads supplemented with up to 15% barley flour were of an 

acceptable organoleptic quality. Differences in barley flour composition, physico­

chemical properties and inclusion level are likely to explain some of the differences in 

bread quality observed between different studies. There are few studies investigating the 

effect of adding concentrated barley ~-glucan fractions to breads. As these fractions are a 

concentrated source of ~-glucan, they may be added at lower levels, which will possibly 

limit negative changes to product quality. 
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1.5.3 Pasta 

Many workers have investigated the effects of adding high fibre material, from sources 

other than dunun wheat, to pasta. Low glycaemic responses have been obtained with 

pastas formulated with guar (Gatti et al. 1984; Giorato et al. 1986; Carra et al. 1990). 

Addition of fibre enriched dunun bran to semolina flour resulted in a tasteful product but 

increased cooking loss and reduced firmness in the cooked pasta (Kordonowy and Youngs 

1985). Dougherty et al. (1988) incorporated oat fibres in pasta, and this resulted in 

lowered product quality. More recently, Tudorica et al. (2002c) evaluated the effects of 

adding inulin, pea and guar fibre to pasta. Pea and inulin fibre significantly increased the 

cooking loss from the pastas, and low inclusions of guar resulted in decreased cooking 

loss. 

Few studies have been conducted to assess the impact of barley ~-glucan inclusion on the 

physico-chemical properties and cooking quality of pastas. A small number of studies 

have examined the incorporation of barley ~-glucan enriched flour fractions. Knuckles et 

al. ( 1997a) evaluated the effect of adding barley flours to pasta and observed that overall 

acceptability decreased with increasing fibre content. Marconi et al. (2000) examined the 

composition and utilisation of barley pearling by-products for making pasta rich in dietary 

fibre and ~-glucan. Pastas enriched by substituting 50% standard dunun wheat semolina 

with ~-glucan enriched barley flour fractions (9.1-1 0.5% ~-glucan) had reduced but 

acceptable cooking qualities (stickiness, bulkiness, firmness, and total organic matter 

released into cooking water); however, notable differences were observed in colour (barley 

pastas being darker than the control). The popularity, versatility and convenience of pasta 

make it an ideal food for enrichment with barley ~-glucan, although like many cereal 

products, quality specifications are high. Barley ~-glucan addition to pasta certainly 

warrants further study. 
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1.6 EFFECT OF FOOD PROCESSING ON THE MOLECULAR, STRUCTURAL 

AND FUNCTIONAL PROPERTIES OF BARLEY P-GLUCAN 

Relatively little work has investigated the role of food processing on the rheological or 

nutritional characteristics of ~-glucans, and only recently is this important issue being 

addressed. The molecular (chemical structure and degree of polymerisation), structural 

(molecular intemctions) and functional properties (viscosity, water binding and solubility) 

of ~-glucans are highly unstable and subject to change under selected processing 

conditions. The degree to which these changes impact upon the sensory, physiological and 

ultimately the health benefits of ~-glucans are subject to continued debate (Yokoyama et 

al. 2002). 

The MW of ~-glucans is easily reduced by enzymatic or chemical hydrolysis, mechanical 

shear or heat treatment. These conditions are typically encountered in extraction and 

subsequent processing of ~-glucans. Loss of barley ~-glucan MW has been reported in 

extruded ready to eat barley cereals (Klamczynski et al. 2004) and during bread-making 

(Sundberg et al. I 996; Andersson et al. 2004; Trogh et al. 2004). MW degradation in 

breads is considered to occur during mixing and fermentation by endogenous enzymes 

within the flour or yeast. Despite loss in barley ~-glucan MW, Andersson et al. (2004) 

found no significant changes to cellotriosyl/cellotetraosyl ratio of barley ~-glucan 

throughout the mixing, fermentation and baking of bread dough. Relatively few studies 

have investigated whether loss of barley ~-glucan MW has an impact on its physico­

chemical and nutritional properties. Thus, there is a need to understand and manipulate 

processing in order to ensure that the possible altemtions to the structure of barley ~-glucan 

do not compromise its nutritional properties. 
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1.7 CONCLUSIONS AND RATIONALE FOR STUDY 

There is little doubt that barley ~-glucan offers many nutritional and rheological 

advantages to the food industry. An area of considerable nutritional interest is the ability 

of barley ~-glucan rich foods to attenuate the glycaemic response of both healthy and non­

diabetic subjects. The majority of studies investigating the glycaemic properties of barley 

~-glucan have been conducted with native barley grains or flours produced from them; 

however, frequent human consumption of such products is limited by a decline in product 

palatability and acceptability. A potential solution lies in using barley grain as an 

extraction source for ~-glucan fractions, which can then be incorporated into popular and 

frequently consumed foods. It is reasonable to say that there is still a lack of clarity on the 

use of barley ~-glucan rich fractions, in particular their physiological and physico-chemical 

properties. Challenges exist in developing extraction procedures for the production of 

economical and functional barley ~-glucan fractions from native grains and flours. 

Due to their popularity and frequency of consumption, cereal foods, namely bread and 

pasta, are ideal candidates for enrichment with barley ~-glucan fractions; however, quality 

specifications for these products are high, and at present there is a paucity of investigations 

examining the effects of barley ~-glucan fraction incorporation on the quality of cereal­

based food systems. Research is also required to determine the effect of process 

parameters on the MW profiles and physico-chemical behaviour of barley ~-glucan 

fractions. Such research would also broaden the understanding of how barley ~-glucan can 

affect the nutritional characteristics of foods by altering their structure, texture and 

viscosity. 
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1.7.1 Study Aims 

The overall aim of this study was to address the lack of knowledge regarding the use of~-

glucan fractions from barley as functional ingredients in cereal food products. The specific 

aims of the study were to: 

I. Investigate different extraction treatments for the isolation of ~-glucan fractions 

from barley and the effects of their inclusion in wheat starch (Chapter 2). 

2. Investigate and compare the influence of different barley ~-glucan fractions on the 

physico-chemical properties, micro-structure and in vitro starch digestibility of 

white wheat bread (Chapter 3). 

3. Investigate and compare the influence of different barley ~-glucan fractions on the 

physico-chemical properties, micro-structure and in vitro starch digestibility of 

durum wheat semolina pasta (Chapter 4). 

4. Investigate and compare the effects of differing MW barley ~-glucan fractions 

(high and low) on the physico-chemical properties, microstructure and in vitro 

starch digestibility of white wheat bread and durum wheat semolina pasta (Chapter 

5). 

5. Investigate the susceptibility of barley ~-glucan fractions to MW degradation 

during fermentation, baking and in vitro digestion (Chapter 3 and 5). 

It is anticipated that the results of these investigations will have both scientific and 

commercial value and provide foundations for further development and optimisation of 

barley ~-glucan enriched cereal products. 
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CHAPTER2 

THE EFFECT OF BARLEY IJ-GLUCAN FRACTIONS ON WHEAT STARCH 

GELATINISATION AND PASTING CHARACTERISTICS 

2.1 INTRODUCTION 

The recognition of the beneficial physiological properties (hypoglycaemic and 

hypocholesterolemic capacities) of p-glucans has led to a demand for the development of 

concentrated sources for incorporation into various food systems. Key extraction 

methodologies of p-glucans from barley and oat were developed by Wood et al. (1977, 

1978) and Bhatty (1993, 1995) who investigated the influence of different solvents on the 

recovery and viscosity of barley and oat p-glucans. More recently, Temelli (1997) and 

Burkus and Temelli (1998) have investigated the effects of concentration, temperature and 

pH on the rheological properties of p-glucan rich gums from barley. These authors 

concluded that extraction conditions have an influence upon the yield, composition and 

viscosity stability of barley P-glucan gum. At present, there are few studies that have 

investigated the effects of these p-glucan preparations on the physico-chemical properties 

of model food systems, thus, their current use as functional ingredients in food is limited. 

Starch-NSP interactions have been investigated by many workers for more than two 

decades, and such studies have examined a wide variety of NSPs, with very diverse 

chemical structures (guar gum, locust bean gum, xanthan gum, pectin, aliginate, kappa­

carrageenan, hydroxypropylmethylcellulose, arabinoxylan, konjac flour and gellan), in a 

wide spectra of cereal flours and starches (maize starch, wheat flour, waxy maize, wheat 

starch, corn, waxy corn and tapioca) (Christianson et al. 1981; Alloncle et al. 1989; 

Alloncle and Doublier 1991; Cameron et al. 1993; Bahnassey and Breene 1994; Biliaderis 
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et al. 1997; Rojas et al. 1999; Shi and BeMiller 2002; Tester and Sommerville 2003). The 

effects of these NSPs at generally low concentrations (0.1-0.2% (w/w)) on starch during 

pasting/gelatinisation have been measured by a diverse range of methods (viscometer, 

amylographic analysis, differential scanning calorimetry (DSC2
), dynamic rheometry, 

Rapid Visco Analysis (RVA2
), optical microscopy and ultra violet spectrophotometry). 

These studies have revealed that variations in starch pasting characteristics (increase or 

decrease greatly, or slightly or no effect) are dependent upon NSP, starch source, 

concentration and method of measurement. 

2.1.1 Rationale and Aim 

The food industry has the potential to be an important user of ~-glucans; however, there is 

a lack of information on the behaviour and functionality of ~-glucans in food systems, 

particularly those containing starch. Thus, the aim of this study was to investigate different 

extraction treatments for the isolation of ~-glucan fibre fractions from barley (BBG fibre 

fractions) and the effect of BBG fibre fraction inclusion in a model food system (wheat 

starch). 

2.1. J.J Objectives 

• Extract BBG fibre fractions from barley flour using four different aqueous-solvent 

based extraction treatments (water only, retluxed, purified and alkali), and compare 

fibre fraction yield and ~-glucan recovery, composition (TDF, ~-glucan, starch and 

protein) and water retention capacity (WRC). 

• Incorporate BBG fibre fractions into wheat starch and examme effects on 

gelatinisation and thermal characteristics, as determined by RVA2 and DSC2
• 
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2.2 MATERIALS AND METHODS 

2.2.1 Materials 

2. 2.1.1 Barley flour, wheat starch and reagents 

Whole kernels of Cindy, a waxy barley (5.77% ~-glucan, dry weight basis (dwb)) 

(Pertwood Cereal Partners, Salisbury, UK), were finely ground in a laboratory mill (Glen 

Creston, Stanmore, UK) to pass through a 500 llm mesh screen. Un-modified wheat starch 

(14% moisture) (S/8040/60) was used in the thermal processing experiments (Fisher 

Scientific, UK). Unless otherwise stated, all general laboratory reagents were purchased 

from Fisher Scientific (UK). 

2.2.2 Methods 

2.2. 2.1 Extraction of BBG fibre fractions 

BBG fibre fractions were prepared from barley flour using the original procedure of Wood 

et al. ( 1978) and some of the modifications used by Temelli (1997). Four extraction 

treatments were used: (I) flour and water extraction only (water fraction); (2) flour 

refluxed once with ethanol (75% v/v) for 4 hours at 85°C (refluxed fraction); (3) extract of 

refluxed flour was treated with thermostable a-amylase (Termamyl, National Centre for 

Biotechnology Education, Reading, UK) at an inclusion level of I ml enzyme per I 00 ml 

extraction buffer for I hour at 98°C to eliminate starch impurities (purified fraction); and 

( 4) flour and water extraction at pH I 0 achieved by the addition of a few ml of I M NaOH 

(alkali fraction). All treatments were performed at 55°C and pH 7, except for the alkali 

treatment, which was conducted at pH I 0. Each extraction treatment was repeated three 

times. Figure 2.1 illustrates the basic extraction process. 
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Extraction: 1:10 flour to water ratio with vigorous agitation (55°C, pH 7, 0.5 hours) 

Centrifuge 15 minutes (15,000 x g, 4°C) 

J. 

Supernatant to pH 4.5 (centrifuge, 20 minutes, 21,000 x g, 4°C) 

J. 

99% EtOH to 50% concentration (12 hours, 4°C) 

Recover precipitate (centrifuge, 10 minutes, 3000 x g) 

Homogenise with 99.9% EtOH, filter and wash (99.9% EtOH) 

J. 

Dry under constant flow (1.5 hours) 

Figure 2.1 Generalised BBG fibre fraction extraction procedure (Wood et al. 1978; 

Temelli 1997). 

2.2.2.2 Chemical composition 

Moisture, starch, protein, TDF and P-glucan contents of BBG fibre fractions were 

determined. Moisture was determined according to Approved Method 44-15A (AACC 

2000b). Total starch, TDF and p-glucan were determined using the total starch assay kit 

(Approved Method 76.13, AACC 2000b), dietary fibre assay kit (Approved Method 32-07, 

AACC 2000b) and p-glucan enzyrnatic assay kit (Approved Method 32-23, AACC 2000b) 

respectively. All assay kits were supplied by Megazyme ™ International Ireland Ltd 

(Wicklow, Ireland). Nitrogen was determined using a nitrogen analyser (Model FP-2000, 

Leco Instruments Ltd, St Joseph, Michigan, US), and protein content was estimated by 

using a conversion factor of 6.25. Results are from duplicate analysis of a composite 

43 



Chapter 2 Barley P-g/ucan extraction and inclusion in wheat starch 

sample (hereafter a composite sample is defined as a homogenous mix of three individual 

sample units produced from the same treatment) reported on a dwb. 

2.2.2.3 WRC 

The ability of a fibre to bind water has importance with regard to technological and 

physiological functionality. Binding can be determined by filtration (water holding 

capacity), centrifugation (water-binding capacity) or freeze drying (Chaplin 2003). WRC 

is defined as the amount of water retained by a known weight of fibre under the conditions 

used (Robertson et al. 2000). This definition arose from Pro-fibre, a European concerted 

action group, and is preferred to either water holding capacity or water binding capacity. 

The WRC of a fibre is related to structural and chemical composition, more specifically the 

amount of soluble and insoluble fibre within the matrix (Robertson and Eastwood 1981; 

Robertson et al. 2000). 

The WRC of the BBG fibre fractions was determined by the procedure of Robertson et al. 

(2000) with some modifications. BBG fibre fractions (1 g of each) were hydrated in pre­

weighed tubes with 30 ml of distilled water for 18 hours at room temperature. Following 

hydration samples were centrifuged (3000 x g for 20 minutes). The supematant was 

carefully decanted, and the sample was left to drain. Sample fresh weight was recorded 

before drying (120°C for 2 hours). WRC was calculated as the amount of water retained 

by the pellet (g/g dry weight) after draining. 

2. 2. 2. 4 Pasting characteristics of wheat starch 

Native starch granules are generally insoluble in cold water (below 50°C) due to strong 

hydrogen bonds holding starch polymers together (Giicksman 1969). When an aqueous 

suspension of starch is heated in water, granules begin to swell when sufficient energy is 
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present to overcome the bonding forces of starch molecules. With continued heat, a 

temperature will be reached at which the hydrogen bonding forces are sufficiently -

weakened and allow water to be absorbed by the starch granules. Subsequently the starch 

granules begin to swell tangentially and simultaneously lose their characteristic maltese 

crosses. This process is known as initial gelatinisation (Crossland and Favor 1948). 

Continued heating of the starch granules results in rupturing, disintegration and a 

dispersion of amylose, amylopectin and granule fragments and is referred to as 

gelatinisation (Moore 1984). 

The Brabender Amylograph has traditionally been used to determine the gelatinisation and 

pasting properties of starch and starch/gum dispersions during heating/stirring and 

cooling/stirring. The Rapid Visco Analyser (RV A 1) is a less widely used instrument but 

can provide similar information in a shorter time and with a smaller sample (Ross et al. 

1987a). Thus, the RVA1 can be used as a quick and convenient tool for demonstrating the 

effect ofNSPs on starch gelatinisation during a classic heat-hold-cool cooking cycle. 

Within this study, measurements were made (using an RV A 1) of three key points during 

the gelatinisation of wheat starch and BBG fibre fraction mixtures: peak viscosity (PV), 

breakdown (BD) and final viscosity (FV). PV occurs at an equilibrium point between 

swelling and polymer leaching, which causes an increase in viscosity, and rupture and 

polymer alignment, which causes a decrease. During the hold period of the test, the 

sample is subjected to a period of constant high temperature (usually 95°C) and mechanical 

shear stress. This will further disrupt the granules, and amylose molecules will generally 

leach out into solution and undergo alignment. This period is accompanied by a reduction 

in viscosity, which is called BD or shear-thinning. The rate of reduction depends on the 

temperature and degree of mixing or shear applied to the mixture and the nature of the 
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material itself. As the mixture is subsequently cooled, re-association between starch 

molecules, especially amylose, occurs to a greater or lesser degree. In sufficient 

concentration this usually causes the formation of a gel and a viscosity increase to FV. FV 

is the most commonly used parameter to defme a particular samples quality as it indicates 

the ability of the material to form a viscous paste or gel after cooking or cooling. 

PV, BD and FV development of wheat starch substituted with 1 and 5% BBG fibre 

fractions were determined using an RVA 1 (RVA-4) (Newport Scientific PTY, 

Warriewood, Australia). An RV A 1 Standard One Profile was used with heating and 

cooling rates of l2°C per minute, a temperature range of 50-95°C and a paddle speed of 

160 rpm. Samples were prepared by mixing 3.5 g in 25 m! of distilled water in an 

aluminium canister. An example RV A 1 pasting curve is illustrated in Appendix I. 

2.2.2.5 Gelatinisation characteristics of wheat starch 

The progression of starch from a semi crystalline to amorphous material when heated in 

excess water (gelatinisation) can be characterised using DSC2
• During this process that 

encompasses an onset of gelatinisation (Tonse1), gelatinisation peak temperature (T peak), 

gelatinisation end point (Tendset) and an associated enthalpy (J/g) of gelatinisation, double 

helices registered in the crystalline regions progressively unravel as hydrogen bonds break, 

which leads to dissociation of the crystalline regions, with associated hydration and 

swelling of the granules. Heating beyond T endset leads to a loss of granule form and 

gelation/solubilisation (Tester et al. 1998; Tester and Debon 2000; Tester et al. 2000; 

Tester and Sommerville 2003). 

A differential scanning calorimeter (DSC 1
) (DSC l2E, Mettler Toledo, Leicester, U.K) 

was used to measure the gelatinisation characteristics (Tonset. Tpeak. Tendset and enthalpy) of 
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wheat starch substituted with I and 5% BBG fibre fractions. Wheat starch with no fraction 

addition was used as a control, and indium was used to calibrate the instrument. The starch 

to distilled water ratio was I :4. Nominal scan rate was I 0°C/minute over a 30-1 00°C 

heating rate. An example DSC 1 trace is illustrated in Appendix II. 

2.2.2.6 Statistical analysis 

Unless otherwise stated, all results are from triplicate determinations of a composite 

sample, and mean ± standard deviation (SD) values are presented. Analysis of variance 

(ANOV A) of BBG fibre fraction yield and ~lucan recovery values only was performed 

using the Minitab 13 statistical software package (Minitab Inc., State College, 

Pennsylvania, US) followed by Tukey's test. Significance was defined as P<0.05. 

2.3 RESULTS AND DISCUSSION 

2.3.1 Effect of Extraction Treatment on the Yield of BBG Fibre Fractions and P-

Glucan Recovery 

Figure 2.2 illustrates the effect of extraction treatment on the yield of BBG fibre fractions. 

Yield of each BBG fibre fraction (weight of fraction/50 g flour) from different extraction 

treatments ranged from 2.25-5.50%. The water extraction had the highest BBG fibre 

fraction yield (5.50%), followed by the alkali extraction, which had a significantly lower 

yield of 4.16% (P<0.05). The refluxing and purification extractions resulted in a further 

lowering of yield (2.25 and 2.39% respectively) (P<0.05) (the difference between the two 

extractions was not significant (P>0.05)). Temelli (1997) reported barley gum yields from 

3.28-5.54% when investigating effects of temperature (40, 45, 55 and 50°C) and pH (7, 8 

and 10) on the extraction of ~-glucan from Condor barley. Highest yield (5.54%) was 

achieved at pH 8 and 55°C. Burkus and Temelli (1998) evaluated the effect of heat 

treatment (no heat, boiled, refluxed and purified) on the yield and composition of barley ~-

glucan gum; lowest yield was achieved from a purified treatment (3.2%). 
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Figure 2.2 Percentage BBG fibre fraction yield from water, re:fluxed, purified and alkali 

extraction treatments. SD of three independent extractions is included on the figure as 

error bars. 

Efficiency of 13----glucan extraction was determined by dividing weight (g) of !3---glucan in 

each BBG fibre fraction recovered by weight (g) of !3---glucan in 50 g flour. The extraction 

efficiency of the different treatments is illustrated in Figure 2.3. The water extraction gave 

the greatest !3---glucan recovery (65.93%) and was followed by the alkali extraction, which 

significantly lowered !3---glucan recovery efficiency to 51.04% (P<0.05). Beer et al. 

(1996), Temelli (1997) and Burkus and Temelli (1998) have also reported loss of !3---glucan 

recovery under alkali conditions. The lowest extraction efficiencies were encountered with 
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the refluxing (25.97%) and purified (30.19%) treatments (the difference between the two 

extractions was not significant (P>0.05)). These lower recovery efficiencies may be 

attributed to thermal degradation and in the case of the refluxed fraction to starch 

contamination during refluxing. Beer et al. (1996) observed lower (3-glucan yields from 

oat bran treated with 75% ethanol for 4 hour at 80°C compared with non-treated oat bran. 
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Figure 2.3 Percentage (3-glucan recovery from water, refluxed, purified and alkali 

extraction treatments. SD of three independent extractions is included on the figure as 

error bars. 

2.3.2 Effect of Extraction Treatment on the Composition of BBG Fibre Fractions 

13---glucan, TDF, protein and starch contents of BBG fibre fractions from different 

extraction treatments are compared in Table 2.1 . The results indicate that extraction 
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treatment may affect the composition of the BBG fibre fractions. The 13--glucan content of 

the fractions ranged between 65.03-73.39%. The purified fraction had the highest f3-

glucan contents (73.39%). A lower purity was achieved with the alkali (69.60%) and 

water fractions (68.62%). The refluxed fraction had the lowest f3-glucan content (65.03%). 

TDF contents of the BBG fibre fractions ranged between 78.70-91.82%. The purified 

fraction had the greatest TDF content (91.82%) and was followed by the alkali fraction, 

which had a lower TDF content of 81.97%. The lowest TDF contents were observed in the 

water and refluxed fractions (79.01 and 78.70% respectively). The results indicate that in 

addition to ~-glucan, the treatments may result in eo-extraction of other fibres. Both 

Temelli (1997) and Burkus and Temelli (1998) have reported contamination of ~-glucan 

preparations with eo-extracted fibres, predominantly pentosans, when using similar 

extraction procedures. 

Table 2.1 Composition ofBBG fibre fractions extracted at 55°C with differing treatments1 

BBG Extraction ~-glucan TDF Protein Starch 

pH (%) (%) (%) (%) 

Water 7 68.62 ± 0.40 79.01 ± 0.52 5.77 ± 0.06 12.50 ± 0.35 

Refluxed 7 65.03 ± 0.65 78.70 ± 0.45 3.16 ± 0.04 14.14 ± 0.17 

Purified 7 73.38 ± 0.77 91.82 ± 0.60 2.95 ± 0.01 1.23 ± 0.03 

Alkali 10 69.60 ± 0.44 81.97 ± 0.44 5.26 ± 0.01 9.77 ± 0.26 

Results are mean ± SD of duplicate determinations of a composite sample reported on a 

dwb. 

The starch content of the BBG fibre fractions was between 1.23-14.14%. The refluxed 

fraction had the highest level of starch contamination (14.14%) and was followed by the 
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water (12.50%) and alkali (9.77%) fractions. A similar effect of starch contamination of 

oat gums at high concentrations has been reported by Dawkins and Nnanna (1993). 

Burkus and Temelli (1998) observed that refluxing waxy barley with ethanol resulted in 

gums with a lower ~-glucan contents and higher levels of starch contamination (25%) 

compared to non-refluxed samples (59.5 vs 72.0% ~-glucan respectively). Wood et al. 

( 1978) concluded that starch gelatinisation commences above 63°C, and extraction 

treatments of 45°C were the optimum to avoid contamination. Purification of ~lucan 

preparations by starch hydrolysis with thermostable a-amylase has been used by several 

authors (Bhatty 1995; Burkus and Temelli 1998). Burkus and Temelli (1998) reported that 

the starch content of refluxed samples decreased from 25-2% upon purification treatment. 

In this study, the employment of a-amylase in the purified extraction resulted in a terminal 

starch content of 1.23%. 

The protein content of the BBG fibre fractions ranged between 2.95-5.77%. The water 

fraction had the highest protein content (5.77%) and was followed by the alkali fraction. 

Protein contamination was lowest in refluxed and purified fractions (3.16 and 2.95% 

respectively), which indicates prior refluxing of the flour may reduce protein 

contamination. 

2.3.3 Effect of Extraction Treatment on tbe WRC of BBG Fibre Fractions 

Figure 2.4 illustrates that extraction treatment may affect the WRC of the BBG fibre 

fractions. The purified fraction exhibited the highest WRC (12.31 gig dwb) and was 

followed by the alkali and refluxed fractions. The lowest WRC was exhibited by the water 

fraction (7.80 gig dwb). In this particular study, WRC of the gums may be a reflection of 

the TDF content of the fraction, a higher fibre content being related to an increased WRC 

value. From a technological perspective, the ability of the BBG fibre fractions to retain 
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water may have important functional implications, possibly modifying food texture, 

moisture retention and water mobility, which will bear an influence on the physico-

chemical properties and sensory quality of food products (Appelqvist and Debet 1997). 
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Figure 2.4 WRC of BBG fibre fractions from water, refluxed, purified and alkali 

extraction treatments. SD of triplicate determinations of a composite sample is included on 

the figure as error bars. 

2.3.4 Pasting Characteristics of Wheat Starch Substituted with 1 and 5% BBG Fibre 

Fractions 

The pasting characteristics (PV, BD and FV) of wheat starch pastes with I and 5% BBG 

fibre fraction substitutions are illustrated in Table 2.2. Values are expressed in centipoises 

(cP), and comparisons are made against the control. 
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The results indicate that substitution of wheat starch with I% BBG fibre fractions may 

result in an increase in the PV of pastes compared to the control. Conversely, the results 

indicate that substitution of wheat starch with 5% BBG fibre fractions may decrease the 

PV of pastes compared to the control. 

The results indicate that substitution of wheat starch with I%" BBG fibre fractions may 

have a minimal effect on BD values of wheat starch; however, substitution of wheat starch 

with 5% BBG fibre fractions may result in a decrease in BD compared to the control. 

Substitution of wheat starch with I% BBG fibre fractions may result in a increase in FV 

values compared to the control, whilst substitution of wheat starch with 5% BBG fibre 

fractions may result in a decrease in FV values compared to the control. 

Table 2.2 Pasting characteristics (PV, BD and FV) of wheat starch substituted with I and 

5% water, refluxed, purified and alkali BBG fibre fractions (expressed as cP1
) 

BBG fibre fraction PV BD FV 

Control 4046:!:: 9.90 II63:!:: 8.50 4623:!:: 82.70 

1% Water 4458:!:: 34.60 I046:!:: 44.50 5054:!:: 18.40 

5% Water 3753:!:: II7.40 651:!:: 39.60 4I23:!:: I70.40 

1% Retluxed 4950:!:: 0.00 1I46:!:: 0.00 5391:!:: 0.00 

5% Retluxed 3552:!:: 38.90 773 ±2.10 3883:!:: I4.80 

1% Purified 4756:!:: I42.10 1359:!:: 128.70 4980:!:: 79.90 

5% Purified 3417:!:: 50.20 767:!:: 32.50 3628:!:: 67.20 

1% Alkali 4397:!:: 33.20 I064:!:: 91.20 4947:!:: 21.20 

5% Alkali 38I8:tii5.30 695:!:: 44.50 4I98 :!:: 152.70 

Results are mean± SO of triplicate determinations of a composite sample. 
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The apparent increase in the PV and FV of wheat starch with I% BBG fibre fractions may 

be a result of the viscous effect of BBG fibre fractions within the starch system. 

The effect of NSPs on the cooking and cooling of starch systems has been reported by 

many authors (Christianson et al. 1981; Alloncle and Doublier 1991; Bahnassey and 

Breene 1994). Several theories, sometimes conflicting, have been postulated to explain the 

increase in viscosity brought about by NSP inclusion: 

• Christianson et al. ( 1981) reported that gum media in a starch hydrocolloid 

magnifies viscosity increases due to changes in granule size or shape during 

swelling. 

• Alloncle and Doublier (1991) described starch dispersions as composites where 

viscoelastic properties in the pasted and gelled states are governed primarily by the 

volume occupied by swollen particles. The dispersed phase consists primarily of 

amylopectin and accounts for two thirds of the total volume. The continuous phase 

is predominantly amylose, which makes an additional contribution due to exclusive 

viscoleastic properties. Increasing the concentration of NSP within the continuous 

phase has a role in increasing the viscosity of the composite. Starch gelation takes 

place upon cooling and is influenced by the gelation of amylose, which is modified 

by the added NSP. 

• Bahnassey and Breene (1994) proposed that the increase in PV of starch/NSP 

systems is associated with the release of amylose and low MW amylopectin and the 

subsequent formation of polymer complexes, which significantly alters the 
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viscosity of the system. A similar explanation was proposed by Shi and BeMiller 

(2002). 

The apparent reduction in wheat starch PV, BD and FV brought about by the inclusion of 

5% BBG fractions could be a result of removing starch from the system; however, it is also 

possible that any reduction may be related to the WRC of the fractions, which leads to 

water being withheld from the starch granules by the P-glucan. The reduction of available 

water in the system would reduce initial starch granule swelling and explain the lower PV 

and FV of the pastes. 

It is also plausible that the apparent reduction in the PV and FV of 5% BBG fibre fraction­

starch gel systems is a result of the interference of intermolecular associations among 

amylopectin molecules by the polysaccharide, this in accordance with the theory proposed 

by Biliaderis et al. ( 1997). 

2.3.5 Gelatinisation Characteristics of Wheat Starch Substituted with 1 and 5% BBG 

Fibre Fractions 

The gelatinisation characteristics (Tonset. Tendset. T peak and enthalpy) of wheat starch 

substituted with 1 and 5% BBG fibre fractions are illustrated in Table 2.3. The results 

suggest that incorporation of BBG fibre fractions (I or 5%) into wheat starch may not 

affect T onset, T endset or T peak compared to the control. 

Addition of 5% BBG fibre fractions may result in a decrease in the total enthalpy value of 

wheat starch compared to the value of the control. Lowest enthalpies were observed in 

wheat starch substituted with 5% water fraction (7.19 J/g) and refluxed fraction (7.36 J/g). 
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Addition of I% BBG fibre fraction may not have any affect on the enthalpy value of wheat 

starch compared to the control. 

Several authors have examined the gelatinisation of starch in the presence of p-glucan and 

have observed variable results on gelatinisation parameters (Kim et al. 1986; Kim and 

Setser 1992; Biliaderis et al. 1997). It is difficult to make direct comparisons between the 

data sets due to the variations in materials, conditions and moreover, varying outcomes of 

starch gelatinisation. 

The apparent decrease in enthalpy of wheat starch substituted with 5% BBG fibre fractions 

within this study may be a direct result of replacement of starch with BBG fibre fraction; 

however, the ability of soluble polysaccharides to immobilise water and restrict starch 

gelatinisation may also be a mechanism. The inclusion ofNSP to starch water systems has 

been reported to decrease the free volume of water and hinder molecular mobility 

(Scandola et al. 1991 ), and this in turn effects the plasticisation of amorphous regions and 

the dissociation of double helices during the gelatinisation process. Both Ferrero et al. 

(1996) and Tester and Sommerville (2003) have reported the 'anti-plasticising' effect of 

NSP in starch-water systems. 
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Table 2.3 Gelatinisation characteristics (Tonseh T peak, Tendset and enthalpy) of wheat starch 

substituted with 1 and 5% water, refluxed, purified and alkali BBG fibre fractions' 

BBG fibre fraction TonsettC} T eodset (°C) Tpeok (0 C) Entbalpy (J/g) 

Control 52.55 ±0.07 68.55 ± 0.92 59.05 ±0.07 7.80 ±0.02 

1% Water 52.40 ± 0.14 67.80 ± 0.42 58.70 ±0.00 7.89 ± 0.03 

5% Water 53.30 ±0.28 66.95 ± 0.21 59.10 ± 0.28 7.19 ± 0.06 

1% Refluxed 52.20 ± 0.14 68.20 ± 0.00 . 59.20 ± 0.00 8.01 ±0.01 

5% Refluxed 52.50 ± 0.42 67.10±0.14 58.95 ± 0.21 7.36 ±0.00 

1% Purified 52.90 ± 0.71 68.10 ± 0.41 58.65 ± 0.07 7.79±0.19 

5% Purified 52.60 ±0.42 67.55 ± 0.64 59.20±0.14 7.37 ± 0.08 

1% Alkali 51.50 ± 0.00 67.20 ± 0.35 58.75 ± 0.07 7.82 ± 0.10 

5% Alkali 53.21 ± 0.28 67.65 ± 0.78 59.05 ± 0.21 7.45 ± 0.04 

Results are mean± SD oftriplicate determinations of a composite sample. 

2.4 CONCLUSIONS 

This study illustrates that the composition and functional behaviour of barley p-glucan 

fractions may be influenced by the choice of extraction treatment. A purification treatment 

may yield a fraction with the highest P-glucan purity; however, the yield and recovery of 

p-glucan from this treatment is low and also considerably costly and hazardous when 

taking into consideration the volume of organic solvent consumed in production. 

The observations from this study may have importance in the application of BBG fibre 

fractions in foods and in human nutrition, particularly where starch is a primary ingredient 

(i.e. bread and pasta). The possible ability of BBG fibre fractions at a low level of 

inclusion to increase the viscosity of wheat starch pastes may have implications on the 

textural and eating quality of foods. The WRC exhibited by BBG fibre fractions and 
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possible reduction in gelatinisation of starch at a high level of inclusion has relevance to 

human nutrition where the degree of starch gelatinisation can affect the post-prandial sugar 

availability from food and regulation of the vitro and in vivo glyceamic response to 

carbohydrate rich diets. 

Results also indicate that in the processing of ~-glucan enriched foods, considerable 

alterations to formulations may have to be introduced. This would be particularly 

important in bread products and pasta where water absorption can significantly influence 

processing and final product quality. Further studies are warranted to investigate these 

effects. 
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CHAPTER3 

THE EFFECT OF P-GLUCAN RICH FRACTIONS FROM BARLEY ON THE 

PHYSICO-CHEMICAL PROPERTIES AND IN VITRO STARCH DIGESTIBILITY 

OF WIDTE WHEAT BREAD 

3.1 INTRODUCTION 

Bread, in its various forms, is considered to be one of the oldest and most popular 

processed cereal products consumed globally; however, in recent years the role of bread in 

the daily diet of UK adults has been scrutinised as a result of the increasing emphasis being 

placed upon the relationship between diet and health. The popularity of diet regimes such 

as Atkins (and other low-carbohydrate diets) and low-GI is believed to be partly 

responsible for the decline in household consumption of bread (Anon 2005b). In a UK 

study conducted by the Target Group Index (TGI) and British Market Research Bureau 

(BMRB) in 2004, which surveyed 25,000 UK adults, 99% of consumers were found to 

consume bread; however, a decline of approximately 5% (2002-2004) was reported in the 

number of consumers claiming to be heavy users (eating pre-packed bread more than once 

a day). Whilst bread can be considered low in fat and a source of complex carbohydrates, 

white bread, the most popular variety in the UK, is a poor source of dietary fibre (Anon 

2003). 

White wheat bread (hereafter referred to as bread) is generally considered to be a high GI 

food (Foster Powell et al. 2002); however, in some studies a strong correlation between the 

addition of soluble dietary fibre to bread and improved glycaemic control has been found. 

Pick et al. (1998) and Cavallero et al. (2002) found that barley ~lucan rich breads 

elicited lower glycaemic responses compared to a reference white bread. 
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The hypoglycaemic efficacy of native and extracted ~-glucans is in part related to dose, 

MW, fine structure and rheological characteristics (Wood et al. 1990, 1994a). There is 

also increasing evidence to suggest that the hypoglycaemic capacity of ~-glucans when in 

a cereal food matrix is partly a result of their ability to decrease the digestibility of the 

starch fraction by reducing susceptibility to amylolytic attack (Hudson et al. 1992; 

lzydorczyk et al. 2005). 

The addition of barley ~-glucan to wheat flours (typically in the form of barley flour 

addition) has been reported to have a negative impact on dough and baked bread quality 

(Knuckles et al. 1997a; Cavallero et al. 2002; Gill et al. 2002). This negative impact may 

be partly a result of the replacement of a significant proportion of conventional wheat flour 

with that of barley flour, which due to a difference in composition has reduced baking 

performance (Knuckles et al. 1997a). Incorporating smaller quantities of barley ~-glucan 

fractions may reduce the negative effect. 

The production of barley ~-glucan rich fractions requires extraction procedures that may 

result in ~-glucan with different physico-chemical properties. These extraction procedures 

may also cause different degrees of ~-glucan MW degradation (Beer et al. 1997a,b; 

Knuckles et al. 1997b ), which in turn may reduce hypoglycaemic efficacy. Food 

processing conditions, particularly bread fermentation and baking (Aman et al. 2004) and 

also the conditions of the gastrointestinal tract (Johansen et al. 1997) have been reported to 

result in the MW degradation of ~-glucan. 

3.1.1 Rationale and Aim 

Whilst a number of studies have examined the effect of barley ~-glucan rich flour inclusion 

on the physico-chemical and nutritional properties of breads, there are few studies that 
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have examined the effects of incorporating barley B-glucan fractions. As a concentrated 

source of B-glucan, these fractions can be incorporated to breads in smaller quantities than 

flours but still yield breads with high levels of B-glucan. It is acknowledged that the 

composition and physico-chemical properties of barley B-glucan fractions will vary 

depending upon the extraction procedure used in their production, thus these different 

barley B-glucan fractions are likely to have varying effects when included into a cereal 

food system, such as bread. In addition, these fractions may also differ in their 

susceptibility to MW degradation during the conditions of fermentation and baking and 

those of digestion, which may further change their physico-chemical and hypoglycaemic 

properties. 

The overall aim of this study was to investigate and compare the influence of two barley B­

glucan fractions, BBG fibre fraction (as prepared in Chapter 2) and a commercial barley B­

glucan preparation (GiucageJTM), on the physico-chemical properties and in vitro starch 

digestibility of bread and the susceptibility of these preparations to MW degradation during 

fermentation, baking and in vitro digestion. 

3.1.1.1 Objectives 

• Incorporate an aqueous-solvent extracted BBG fibre fraction (as prepared in 

Chapter 2) and a commercial barley B-glucan fraction (Giucagel™) into bread at 

different inclusion levels and investigate and compare effects on the rheological 

properties of dough (resistance to extension and extensibility) and quality of baked 

bread (height, volume, colour, appearance and firmness). 

• Examine and compare the influence of barley B-glucan fraction inclusions on the 

micro-structure of baked and in vitro digested breads. 
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• Determine and compare the influence of barley P-glucan fractions on the 

digestibility of starch in bread using a multi-enzymic in vitro digestion method. 

• Profile and compare the MW of barley P-glucan fractions during fermentation, 

baking and in vitro digestion. 

Such information will provide clarity on the suitability of different barley p-glucan 

fractions for potential inclusion as functional ingredients in bread and also highlight 

formulation and process modifications, which may need to be employed in order to make 

such breads of an acceptable quality to consumers. 

3.2 MATERIALS AND METHODS 

3.2.1 Materials 

3. 2.1.1 BBG fibre fraction 

BBG fibre fraction (approximately 69% P-glucan dwb) was prepared from Cindy barley 

flour using extraction method (a) detailed in Chapter 2 (2.2.2./). 

3.2.1.2 Glucagel™ 

Glucagel™, a gelling form of p..-glucan (approximately 75% P--glucan dwb), was supplied 

by Polycell Technologies (Crookston, Minnesota, US). 

Table 3.1 illustrates BBG fibre fraction and Glucagel™ composition (as determined using 

methods detailed in Chapter 2 (2.2.2.2)). Due to their importance in bread-making, the 

arabinose and xylose content of BBG fibre fraction and Glucagel™ were determined using 

the 'Uppsala Method' (Approved Method 32-25, AACC 2000b). Particle size (determined 
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using meshed screens), colour (visually determined) and WRC (as determined in Chapter 2 

(2.2.2.3)) ofthe two fractions are also illustrated (Table 3.1). 

Table 3.1 BBG fibre fraction and Glucagel™ composition and physical properties 

%Component (dwb) 

~-glucan 

Arabinose 

Xylose 

TDF 

Total starch 

Protein 

Physical properties 

Particle size (J.UTI) 

Colour 

WRC (g/g) 

BBG fibre fraction 

68.62 ± 0.40 

1.80 ± 0.04 

2.60 ± 0.05 

79.01 ± 0.52 

12.50 ± 0.35 

5.77 + 0.06 

<500 

Beige 

7.80 

GlucageJTM 

75.03 ± 0.20 

0.90 ± 0.08 

0.90 ± 0.02 

77.10±0.43 

16.90 ± 0.21 

4.95 ± 0.03 

<500 

Light tan 

6.25 

Results are mean ± SO of duplicate determinations of a composite sample reported on a 

dwb. 

3.2. 1.3 Bread making ingredients 

Bread wheat flour was supplied by Shipton Mill (Stroud, UK). Sugar, salt, yeast and 

vegetable fat were purchased from a local supermarket. 

3.2.1.4 Reagents 

Unless otherwise stated, all general laboratory reagents were purchased from Fisher 

Scientific (UK) or Sigma Aldrich (UK!Sweden). 
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3.2.2 Methods 

3.2.2.1 Bread making 

Effect of barley P-glucan inclusion in bread 

Breads were manufactured using a straight dough, long fermentation basic bread process. 

Bread wheat flour was substituted with BBG fibre fraction or Glucagel™ at three different 

levels (variations in the amount of BBG fibre fraction and Glucagel™ used at each level 

are a reflection of the difference in the composition of the two preparations and were 

necessary to achieve breads with similar levels of p-glucan): 

Level 1: BBG (2.5%), Glucagel™ (2.3%). 

Level 2: BBG (5%), Glucagel™ (4.6%). 

Level 3: BBG (7.5%), Glucagel™ (6.9%). 

An additional sample with no P-glucan was also prepared as a control. Table 3.2 illustrates 

the control, BBG fibre fraction and Glucagel™ bread formulations. The moisture level of 

the mixtures was adjusted on manufacture to produce visually optimum doughs that could 

be used to form pup loaves. 

Table 3.2 Control, BBG fibre fraction and Glucagel™ bread formulations 

Bread Bread wheat flour fl-glucan (g) Water(ml) 

(g)* 

Control 125 0 70 

BBG level I 121.875 3.125 70 

BBG level2 118.750 6.250 73 

BBG leve13 115.625 9.375 75 

GlucageJTM level I 122.125 2.875 70 

GlucageJTM level 2 119.250 5.750 73 

GlucageJTM level 3 116.375 8.625 75 

*yeast (6g), salt (6g), sugar (!g) and vegetable fat (6.25g) were constant for all breads. 
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All dry ingredients were mixed in a food processor (RoboCoupe R4, Robot Coupe Ltd, 

UK) for I 0 seconds to ensure complete homogeneity; water was then added, and the 

mixture was processed for 45 seconds to allow formation of dough. Doughs were 

fermented at 40°C for 2 hours. The doughs were then kneaded and divided into 70 g 

portions and placed in miniature pup loaf tins with the following dimensions: top 85 mm 

(length) by 50 mm (width); and bottom 75 mm (length) by 40 mm (length). The doughs 

were then fermented for a further 60 minutes. Following fermentation doughs were baked 

in a fan assisted oven (Zanussi Combiwave FCVMIE62, UK) at 220°C for 25 minutes. 

After baking, breads were cooled for I hour before subsequent analyses. Proximate 

composition of the breads was determined as detailed in Chapter 2 (2.2.2.2), with the 

exception of available starch, which was determined as the sum of total starch minus 

resistant starch using the resistant starch assay kit (Approved Method 32.40, AACC 2000b) 

as supplied by Megazyme™ International Ireland Ltd (Wicklow, Ireland). Table 3.3 

presents the proximate composition of the breads. 

Table 3.3 Proximate composition of control, BBG fibre fraction and Glucagel™ breads 1 

Bread Available starch Protein TDF J3-glucan 

(%) (%) (%) (%) 

Control 69.52 ± 0.25 16.09 ± 0.02 5.88 ± 0.78 0.14 ± 0.00 

BBG levell 67.15 :t0.15 15.57 ± 0.01 8.02 ± 0.34 1.69 ± 0.03 

BBG level2 64.05 ± 0.01 15.46 ± 0.04 9.99 ± 0.41 3.38±0.10 

BBG level3 62.51 ± 0.32 15.25 ± 0.01 11.80 ± 0.35 4.90:!:: 0.10 

GlucageJTM level 1 67.87 ± 0.17 15.76±0.16 7.65:!:: 0.68 1.61 ± 0.01 

GlucageJTM level 2 65.97 ± 0.21 15.56 ± 0.26 9.51 ± 0.59 3.27 ± 0.05 

GlucageJTM level 3 64.07 ± 0.82 15.43 ± 0.82 11.19 ± 0.21 4.94±0.15 

Results are mean± SD of duplicate determinations of a composite sample (dwb). 
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3.2.2.2 Dough rheology 

The final product of dough mixing is a visco-elastic mass that after appropriate proofing 

and baking produces an aerated solid called bread. Bread has a sponge like structure (the 

voids are interconnected), the structural elements being primarily gelatinised starch and 

denatured protein. The rheological characteristics of dough are primarily responsible for 

achieving the desired result (Stauffer 1998). Dough rheology is traceable to the nature of 

the matrix elements, which are in wheat dough, the gluten proteins (hydrated glutelins 

(glutenins) and prolamines (gliadins)). A great deal research of dough has measured 

rheological characteristics and correlated them with bread characteristics (Bloksma and 

Bushuk 1988; Hoseney and Rogers 1990). 

Extensibility and extensibility resistance of wheat dough are readily accessible physical 

measurable qualities, which allow good assessment of baking behaviour. Such methods 

have been established globally as AACC Standard Methods (Extensigraph (Approved 

Method 54-IO) and Alveograph (Approved Method 54-30)); however, the disadvantage of 

these methods is the substantial quantities of material required to perform the analysis, for 

example up to 300 g of flour can be required for duplicate analysis. It is this large amount 

of sample required that is the limiting factor in research applications where only a small 

quantity of test material is available. This problem has been partially remedied by other 

authors who have used a Stable Microsystems Kiefer Dough and Gluten Extensibility Rig 

in which as little as I 0 g dough can be used for six replications. It has been demonstrated 

that the results obtained in micro-extension trials can provide the same information as the 

macro-methods (Kieffer et al. 1998). 

In this study, the rheo1ogical properties (resistance to extension (expressed as mean 

maximum force g) and extensibility (when elastic limit is exceeded and sample breaks) 
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(expressed as the mean distance at maximum force mm)) of bread doughs were measured 

using a texture analyser (TA) (T A-XT2) (Stable Micro Systems, Surrey, UK) equipped 

with a Kiefer dough and extensibility rig (AIKIE) (calibrated for a load cell of 5 kg). 

Dough (15 g) was placed in an oiled teflon dough form for 20 minutes. After resting, 

dough strips were removed with the aid of a spatula and subjected to the tensile test. The 

rig extended the sample by 75 mm at a pre-test, test and post-test speed of 2, 3.3 and 10 

mm/sec respectively. The trigger force was 5 g. An example of the TA trace obtained can 

be found in Appendix Ill. 

3.2.2.3 External, internal and texture quality evaluation of bread 

The quality assessment of bread typically fits into three broad categories: external; internal; 

and texture/eating quality. Quality assessments may be measured by descriptive means; 

however, less subjective measurements can be made using instrumental techniques. In this 

study, external (height, volume and crust colour), internal (loaf appearance and crumb 

colour) and texture (firmness) qualities of the breads were quantified. 

3.2.2.3.1 Loafheight 

Loaf height was determined using calibrated callipers and reported in ems. 

3.2.2.3.2 Loafvolume 

Loaf volume was measured using 'guidelines for measurement of volume by rapeseed 

displacement' (Approved Method 10-05, AACC 2000b). 

3. 2. 2. 3. 3 Crumb firmness 

A TA (TA-XT2) (Stable Micro Systems, Surrey, UK) was used to measure bread firmness. 

An AACC 36 mm radius cylinder probe (P/36R) was used (calibrated for a load cell of 5 
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kg). The probe compressed the sample by 40% at a pre-test, test and post- test speed of 1, 

1.7 and 10 mm/sec respectively. The compression force was 100 g, and maximum peak 

force in compression was recorded as the firmness value in gram units. Measurements 

were taken from 1 cm slices, and samples were discarded after the TA test. An example of 

the TA trace obtained can be found within Appendix IV. 

3.2.2.3.4 Crust and crumb colour 

Crust and crumb colour were determined using L *a*b* colour space (also refereed to as 

CIELAB). L * indicates lightness (L: lightness, 100 = white, 0 = black), and a* and b* are 

the chromaticity co-ordinates (a: + red, - green), (b: + yellow, - blue). Values were 

obtained on a Model CR-200 Chroma Meter (Minolta, Ramsey, New Jersey, US). For 

crust colour, measurements were taken from three loaves at three different positions. For 

crumb colour, measurements were taken from three slices at three different positions. 

3. 2. 2. 3. 5 Loaf appearance 

Cross-sectional images of baked breads were taken using a digital camera (Canon Power 

Shot A400 Digital Camera, Canon INC, Japan). 

3. 2. 2. 4 In vitro digestion 

The relationship between the rate of starch digestion and or has been established by 

investigators of in vitro amylolytic hydrolysis (O'Dea et al. 1981; Jenkins et al. 1982, 

1987; Ross et al. 1987b; Heaton et al. 1988; Bomet et al. 1989; Englyst et al. 1992, 1999, 

2003; Grandfeldt et al. 1992; Brighenti et al. 1995; Araya et al. 2002; Seal et al. 2003). 

Although at present in vitro methods are certainly no substitute for in vivo evaluation, 

particularly for clinical or epidemiological purposes, in vitro methods are ideal as a 

screening tool of foods before exposure to expensive and laborious in vivo studies. 
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In this study bread samples were subjected to an in vitro digestion based upon the method 

of Brighenti et al. (I 995), slightly modified. This method is based on a multi-enzymic 

digestion confined within a dialysis tube, followed by analysis of the reducing sugars 

released into the dialysate. The use of dialysis offers certain advantages over unrestricted 

digestion. Primarily the method determines susceptibility of starch to amylolytic attack, 

but effects not directly related to starch digestion are also reflected, for example the 

appearance of digest products in the dialysate will be affected by internal viscosity of the 

digestion tubing. Although the method is less sophisticated than more recently published 

techniques aimed at predicting the GI of different foods, for example the rapidly available 

glucose measurements developed by Englyst et al. (1999, 2003), it still provides a good 

estimate of the rate of sugar release from starchy foods. When restricted in vitro digestions 

were employed by Brighenti et al. (I 995) to predict the physiological effects of dietary 

fibre, significant correlations between starch hydrolysis and in vivo GI were obtained. In 

vitro digestions have also been employed by Brennan et al. (I 996a, 2004), Hudson et al. 

( 1992), Tudorica et al. (2002c) and lzydorczyk et al. (2005) to investigate the effect of 

soluble dietary fibres on the starch digestibility of cereal foods. 

ln this study, samples of bread (equivalent to 2 g available starch) were reduced to a size of 

approx 1 cm3
, diluted with sodium phosphate buffer (pH 6.9), reduced to pH 1.5 (HCL 

acid) and digested with pepsin (from porcine stomach mucosa) (115 U/g starch) (Sigrna­

Aidrich, UK) for 30 minutes at 37°C. The pH of the mixtures was re-adjusted to pH 6.9 

(NaOH), diluted to 50 ml (sodium phosphate buffer) and porcine pancreatic a-amylase 

(110 U/g starch) (Sigma-Aidrich, UK) was added. A sample blank (with deactivated 

enzyme) was also prepared. The mixtures were transferred to prepared dialysis tubing 

(Medicell International Ltd, UK) and placed in 450 ml of sodium phosphate buffer for 5 

hours at 37°C. Tubes were agitated every 15 minutes to simulate gut movements. 
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Duplicate aliquots (1 ml) were taken every 30 minutes, replacing the volume each time 

with 1 ml fresh buffer. Dialysate was analysed for total dialysable sugars by the 3,5-

dinitrosalicylic acid method (lames 1999). 

Reducing sugars released (RSR), consisting of the dialysed fragments of digested starch, 

was expressed in maltose equivalents as a percentage of available carbohydrate present in 

the sample using the following calculation of Brighenti et al. ( 1995): 

RSR = (Asample X 500 X 0.95/Amaltose X SS) X 100 

where: Asample was the value of absorbance at 540 nm, Amaltose was the value of absorbance 

of a solution containing 1 mg of pure maltose per mVphosphate buffer, SS was the amount 

of starch (in mg) contained within the sample, 500 was the total volume and 0.95 was the 

conversion from maltose to starch. 

3.2.2.5 Micro-structure 

The ultra-structure of cereal foods, in particular the accessibility of starch to digestive 

enzymes, has a strong influence on its digestibility (Brighenti et al. 1995). Several authors 

have used microscopic techniques, such as scanning electron microscopy (SEM\ to 

examine the micro-structure of foods in relation to their digestibility and have observed 

correlations between starch granule availability and post-prandial blood glucose 

response/rate of in vitro starch digestibility (Brennan et al. 1996a; Giacco et al. 2001; 

Tudorica et al. 2002c ). 

In this study samples of baked and in vitro digested (samples taken at 300 minutes in vitro 

digestion) breads were frozen in liquid nitrogen and freeze dried. The freeze dried samples 
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were transversely fractured to expose interior surfaces, and I mm sections were mounted 

onto pre-glued stubs. All prepared specimens were sputtered coated with gold (Emitech 

K550 Sputter Coater, Ashford, UK) and examined by a scanning electron microscope 

(SEM2
) (SEM JEOL JSM6100, Oxford, UK). 

3. 2. 2. 6 Extraction and analysis of fi-glucan Calcojluor average MW (Mcf) and MW 

distribution 

The ability to measure the molecular conformation of P-glucan has enabled the elucidation 

of mechanisms of physico-chemical and physiological responses. A widely employed 

technique for determining the MW of p-glucan is high performance size exclusion 

chromatography with fluorescence detection (HPSEC-FD) (Wood et al. 199la; Suortti 

1993). Calcofluor (disodium 4,4-bis{4-anilino-6-[bis(2-hydroxyethyl)-amino ]-1 ,3,5-

triazin-2-yl}amino-2,2-stilbenedisulfonate) is specific for (l--+3, 1--+4)-P-D-glucans in 

cereal extracts (Wood et al. 1983), which cause large increases in the fluorescent intensity 

of the dye. Extracts of p-glucan are initially separated by size exclusion chromatography 

(SEC) and then mixed with Calcofluor. The P-glucan-Calcofluor complex results in an 

increase in intensity that can be detected by a fluorescence detector. The measurement is 

not affected by the presence of other polysaccharides since Calcofluor is selective for P­

glucan, thus, the technique provides a simple procedure to determine MW of P-glucan 

extracts without the need for prior purification. This particular type of SEC is highly 

precise as only elution volume and the relative detector signal are measured to determine 

MW; however, accurate measurement is dependent upon the accuracy of the calibration 

curve. Wood et al. (1991a) used pullulan standards to calibrate the columns, but this has 

been illustrated to lead to over-estimation of MW (Varum et al. 1991; Wood et al. 199la). 

An alternative approach is the use of purified P-glucan of known average MW for the 

calibration (Wood et al. 1991a; Suortti 1993). Rimsten et al. (2003) recently developed an 
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improved calibration and calculation of the average MW. In this method, a purified ~­

glucan was fractionated into narrow MW ranges and the average MW was determined 

before analysis of samples on the HPSEC-FD system. One of the limitations of HPSEC­

FD is that the detection method will exclude ~-glucans of a lower MW (<10,000) 

(Jorgensen 1988; Manzanares et al. 1993). 

In this study bread wheat flour, BBG fibre fraction, Glucagel™ and control, BBG fibre 

fraction and Glucagel™ (level 3) containing doughs (I and 3 hours fermentation) and 

baked and in vitro digested breads (samples taken at 30, 150 and 300 minutes in vitro 

digestion) were selected for ~-glucan MW characterisation. Samples with a moisture 

content of >I 0% were freeze dried prior to analysis. Enzymes in the samples were 

inactivated by boiling in 50% ethanol for 15 minutes. ~-glucans in the products (I 00 mg) 

were extracted with hot deionised water (20 ml) with added CaCh (0.28 mg/ml of water) 

and thermostable a-amylase (50 J.Ll, Megazyme International Ireland Ltd, Wicklow, 

Ireland), following the method of Rimsten et al. (2003). The mixtures were immediately 

placed in a boiling water bath for 90 minutes, with occasional mixing by vortex. After 

cooling to room temperature, tubes were centrifuged (1500 x g for 15 minutes), and 

supematants were filtered (0.45 J.Lm) before injecting into the HPSEC-FD system (set up 

according to Wood et al. l99la,b, with some modifications). 

The HPSEC-FD system consisted of two pumps (LC-1 OAD, Shimadzu, Miniato, Japan) 

coupled to a degasser (SOU 2006, Prolab, Reinach, Switzerland), one delivering the eluent 

(0.1 M NaNo3 with 0.02% NaN3) at a flow rate of 0.5 ml/min and the other one delivering 

Calcofluor solution (0.05% fluorescent brightner 28 (Sigma) in 0.1 M tris(hydroxymethyl)­

(aminomethane) (Tris) adjusted to pH 8) at a flow rate of 0.5 mUmin though a pulse 

reducer. An injector (Midas type 830, Spark, Emmen, Holland) was coupled to the system 
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before a guard column (OHpak SB-G, Shodex, Showa Denim KK, Kawasaki, Japan) and 

two columns in series (OHpak SB-806HQ and SB-804HQ, Shodex, Showa Denim KK, 

Kawasaki, Japan). Calcofluor was delivered postcolumn by a mixing loop placed together 

with the columns in an oven maintained at 60°C. For detection, a fluorescent detector 

(1100 series G 1321 A, Agilent Technologies, Germany) was used with the wave-lengths A..x 

= 415 nm and A..m = 445 nm according to Suortti (1993) at a gain setting of 8. An image of 

the HPSEC-FD system used is contained within Appendix V. 

The system was calibrated using J3-glucan fractions with narrow MW ranges. By using the 

regression line of the calibration curve, Mer could be calculated. The Mer over the 

distribution divided into n slices was defined as: 

n 
I(w;e;) 

Mer= i=l 
n 
LC; 
i=l 

where: w; is the MW at a slice i given by the calibration and c; is the corresponding 

concentration, expressed as Calcofluor response. This average includes only J3-glucan 

molecules large enough to be detected with Calcofluor. Percentiles were also calculated 

describing the MW at which I 0, 50, and 90% of the distribution fall below that value. 

Results are means of duplicate analyses. 

3.2.2. 7 Statistical analysis 

Unless otherwise stated, all determinations were made in triplicate (samples taken from 

three independent production runs), and mean ± SD values are presented. Data was 

statistically evaluated by ANOVA as detailed in Chapter 2 (2.2.2.6). Significance was 

defined as P<0.05. 

73 



Chapter 3 Effect of barley [J-glucan inclusion in bread 

3.3 RESULTS AND DISCUSSION 

3.3.1 Effect of BBG Fibre Fraction and GlucageJfM on the Rheological Properties of 

Bread Dough 

The first basic step m bread manufacture is combining water with wheat flour and 

kneading (imparting mechanical energy) to the mixture to form an elastic dough (Bushuk 

1985; Hoseney 1985). Two main contributors to bread quality, that is volume and a fine 

crumb, are dictated by certain optimum properties in the dough matrix. The two 

characteristics that define a 'good' dough are the ability to retain gas (carbon dioxide) 

generated during fermentation in the form of numerous small gas cells and a proper 

balance of viscous flow and elastic strength so that the loaf can expand adequately during 

proofing and the early stages of baking, yet retain a rounded form (Stauffer 1998). 

Table 3.4 illustrates the effect of BBG fibre fraction and Glucagel™ inclusion on the 

rheological properties of bread doughs. The resistance to extension of all BBG fibre 

fraction containing doughs was significantly higher than the control dough, the magnitude 

of resistance increasing with greater addition of BBG fibre fraction (P<0.05). Doughs 

containing Glucagel™ levels 2 and 3 exhibited significantly higher resistance to extension 

than the control (P<0.05); however, the resistance to extension of dough with Glucagel™ 

level I inclusion was not significantly different to the control (P>0.05). 

The extensibility of all doughs containing BBG fibre fraction was significantly reduced 

compared to the control, the reduction increasing with BBG fibre fraction concentration 

(P<0.05). Only wheat doughs with Glucagel™ level 2 and 3 inclusions exhibited a 

significant decrease in extensibility (P<0.05) compared to the control; however, this 

reduction was not as great as that exhibited by the BBG fibre fraction containing doughs. 
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Table 3.4 Rheological properties of control, BBG fibre fraction and Glucagel™ doughs 1 

Dough Extension (g) Distance (mm) 

Control 33.34a ± 0.65 -29.836 ± 0.47 

BBG levell 40.26c ± 2. 70 -20.62d ± 0.47 

BBG leve12 51.56b ± 3.30 -19.82d ± 0.28 

BBG leve13 66.99° ± 0.44 -15.15e ± 0.44 

Glucagefl"M level 1 38.28c.d ± 1.63 -31.65° ± 0.95 

Glucagefl"M level 2 42.15c±2.75 -24.63c ± 0. 72 

Glucagefl"M level 3 63.41 a± 2. 70 -25.98c ± 0.43 

Results are mean± SD of triplicate determinations (samples taken from three independent 

production runs). 

0 means values in the same column followed by the same letter are not significantly 

different (P>0.05). 

These results suggest that barley P-glucan fractions greatly affect the rheological behaviour 

of bread dough and possibly final product quality. Dough resistance to extension is 

thought to be an indicator of dough strength and ability to retain gas, and extensibility is 

considered as a predictor of the processing/handling characteristics of the dough (Wang et 

al. 2002). The results gathered in this investigation indicate that barley p-glucan fractions 

increase the strength and stiffness of dough and possibly gas retaining capacity. The 

decrease in extensibility suggests that barley p-glucan fractions simultaneously interfere 

with gluten structure and development, possibly limiting the free expansion of the dough 

and its ability to stretch into thin membranes during fermentation and baking. These 

results are in agreement with Gomez et al. (2003) who observed decreased extensibility of 

wheat dough supplemented with various fibres. 
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Differences in the TDF composition of BBG fibre fraction and Glucagel™ may help to 

explain the variation in the resistance to extension and reductions in extensibility observed 

amongst the doughs. The BBG fibre fraction contains a higher content of arabinose and 

xylose than Glucagel™ (Table 3.1 ), eo-extracted with ~-glucan during the extraction 

procedure, and these components have been reported to have a strong influence on the 

rheology of wheat doughs, holding approximately 9-11 times their own weight in water 

(Jelaca and Hlynka 1972). In addition to increasing water absorption, it has been 

postulated that arabinoxylans form links with gluten proteins to increase the resistance of 

doughs to extension and decrease its extensibility (Hoseney and Faubion 1981 ). 

3.3.2 Effect of BBG Fibre Fraction and GlucageJTM on Loaf Volume, Height and 

Firmness 

The inclusion of BBG fibre fraction and Glucagel™ in bread resulted in a significant 

decrease in loaf height and volume compared to the control (P<O.OS) (Table 3.5), the 

magnitude of loss increasing with fibre concentration. Glucagel™ breads exhibited greater 

losses in height and volume compared to their BBG fibre fraction counterparts. Appendix 

VI illustrates cross-sectional views of breads with BBG fibre fraction and Glucagel™ 

inclusions. There was a non-significant rise in the firmness of breads containing BBG 

fibre fraction and Glucagel™ compared to the control (P>O.OS). 

Reduced loaf height and volumes as a consequence of barley ~-glucan addition have been 

experienced by Knuckles et al. (1997a), Cavallero et al. (2002) and Gill et al. (2002). 

Deleterious effects of fibre addition on bread structure have been suggested to be due to 

dilution of the gluten network, which in turn impairs gas retention. Pomeranz et al. (1977) 

detected through microscopic examination a major difference between the crumb structure 

of control and fibre containing bread. The crumb structure of the control bread was 
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composed of thin filaments, which were essentially absent in fibre enriched bread. 

According to Gan et al. ( 1992), fibre materials in expanded dough appeared to disrupt the 

starch gluten matrix and also restrict and force gas cells to expand in a particular 

dimension, greatly distorting the gas cell structure. 

Table 3.5 Loaf height, volume and firmness of control, BBG fibre fraction and Glucagel™ 

breads' 

Bread Heigbt (cm) Volume (ml) Firmness (g) 

Control 6.18a ± 0.08 212a ± 2.00 5.4if ±0.02 

BBG level I 5.94b ± 0.04 190b ± 2.00 5.48a ± 0.13 

BBG level2 5.2lc ± 0.07 165c ± 1.15 5.54a ± 0.39 

BBG leve13 4.19. ± 0.08 123. ± 2.31 5.75a ± 0.61 

GlucageJfM level 1 5.4lc ± 0.06 170c ± 0.00 5.75a±O.l7 

GlucageJfM level 2 4.7ld±O.ll 133d ± 5.77 5.80a ± 0.23 

GlucageJfM level 3 4.09. ± 0.05 11Y±2.89 6.0la ± 0.18 

Results are mean± SD of triplicate determinations (samples taken from three independent 

production runs). 

ameans values in the same column followed by the same letter are not significantly 

different (P>0.05). 

The physico-chemical properties of barley [3-glucan fractions can also affect bread volume 

and texture indirectly. It is possible that when added to wheat flour during bread making, 

barley [3-glucan fractions retain appreciable amounts of water and make it less available for 

the development of the gluten network, which results in an underdeveloped gluten 

network, and hence, reduced loaf height and volume. Alternatively, the decreased height 

and volume may be attributed to a reduction in steam production as a result of the WRC of 
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the barley 13-glucan fractions. Jiang and Vasanthan (2000) and Gill et al. (2002) proposed 

that barley 13-glucan, due to its high water affinity, may retain water in the dough, which 

would otherwise be used in steam generation. Suppression of steam generation could 

possibly lead to a reduced loaf height and volume. 

The difference between the extent of loaf height and volume loss observed between the 

BBG fibre fraction and Glucagel™ breads may again be explained by the greater content 

of arabinose and xylose in the BBG fibre fraction. Water-soluble arabinoxylans have been 

illustrated to have important technological potential in bread making, improving baking 

quality by exerting a viscous influence on gluten-starch films, which protects gas retention 

in dough and in turn enhances bread volume (Delcour et al. 1991 ). Therefore, it is 

plausible that the presence of arabinoxylans in the BBG fibre fraction breads counteracts 

the negative effects of the barley 13-glucan, which results in breads with higher loaf height 

and volume than Glucagel™ counterparts. 

3.3.3 Effect of BBG Fibre Fraction and GlucageJTM on Bread Crust and Crumb 

Colour 

L *a*b* colour space values for control, BBG fibre fraction and Glucagel™ bread crusts 

and crumbs are presented in Table 3.6. The L * crust colour values of all BBG fibre 

fraction breads were similar to the control (P>0.05), whilst Glucagel™ breads had 

significantly darker crusts (lower L * crust colour values) than the control and BBG fibre 

fraction breads (P<0.05). The a* crust colour values of all BBG fibre fraction breads were 

significantly lower (less red) (P<0.05) than the values for the control and Glucagel™ 

breads (which were similar (P>0.05)). With the exception of bread with BBG fibre 

fraction level 2 inclusion (significantly lower (P<0.05)), the b* crust colour values 

(yellowness) of control, BBG fibre fraction and Glucagel™ breads were similar (P>0.05). 
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Table 3.6 Crust and crumb colour of control, BBG fibre fraction and GlucageiTM breads1 

Bread Crust Crumb 

~ - --
L* A* b* L* a• b* 

Control 69.20".± 2.00 13.12° ± 0.43 23.08a ± 1.68 73.11 6.± 1.34 3.65b±O.I5 - J1.56b ± 0.57 

BBG level I 70.01° ± 0.87 10.136 ± 0.81 20.43"·b:!: I. 74 72.936 ± 2.27 3.956 :!: 0.21 11.61 b :!: I. 26 

-.l 
BBG level2 70.30":!: 1.37 b 18.166 :t0.34 75 .87"·6 :!: I .63 4.99°:!: 0.24 14.58":!: 0.38 \0 8.23 ± 0.43 

BBG level3 71.06":!: 2.18 IO.Oib ± 0.20 20.54"'6 ± 2. 76 75.89"'6 ± 0.21 5.08°±0.12 14. 19" ± 0.31 

Glucageln1 level I 6l.l8b ± 1.29 14.34° :!: 0.39 22.12a.b:!: 0.91 76.92.±0.91 4.86":!: 0.14 10.81 6 ± 0.47 

Glucagel™ level 2 56.94/1:!: I .72 14.25° ± o.65 20.1 0"·6 :!: 1.59 74.35a.b:!: 0.45 5.10°±0.15 I 0.60b ± 0.03 

GlucageJTM lcvc13 57.206 ± 4.51 15 .02" :!: 1.48 21.42a,h ± 0.88 75.07a.h ± 0.30 5.18° ± 0.05 10.436 :!: 0.35 

1Results are mean± SD of triplicate dcterminations (samples taken from three independent production runs). 

"means values in the same column followed by the same letter are not significantly different (P>O.OS). 
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The L * crumb colour values of control, BBG fibre fraction and Glucagel™ breads were 

similar (P>0.05), with the exception of bread with Glucagel™ level I inclusion, which had 

a significantly higher value (P<0.05). With the exception of bread with BBG fibre fraction 

level I inclusion, BBG fibre fraction and Glucagel™ breads had significantly higher a* 

crumb colour values (more red) (P<0.05) compared to the control. Breads with BBG fibre 

fraction level 2 and 3 inclusions were significantly more yellow (higher b* crumb colour 

values) than the control, whilst breads with BBG fibre fraction level I and Glucagel™ 

inclusions had b* crumb colour values similar to that of the control (P>0.05). 

Both Knuckles et al. (1997a) and Gill et al. (2002) have evaluated the effect of barley ~­

glucan rich flour inclusions on the crust and crumb colour of wheat breads. Knuckles et al. 

( 1997a) observed that breads substituted with 5% barley flour had crumb lightness similar 

to the control, whilst increasing substitution to 20% resulted in breads with a darker crumb. 

Conversely, Gill et al. (2002) observed no change in the crumb colour of breads 

formulated with 5, I 0, and 15% native barley flour. Differences observed between the 

crust and crumb colour of BBG fibre fraction and Glucagel™ breads are most likely to be 

attributed to differences in the colour of the two fractions (Table 3.1 ). 

3.3.4 Effect of BBG Fibre Fraction and Glucage[I'M on the In Vitro Starch Digestibility 

of Bread 

Table 3.7 illustrates the effect of BBG fibre fraction and Glucagel™ inclusion on the in 

vitro starch digestibility (as measured by RSR) of bread. A graphic representation of the in 

vitro starch digestibility of control and BBG and Glucagel™ (level 3) breads is given in 

Appendix Vll to allow a visual appreciation of the differences in the rate of RSR. The 

results reveal a consistent significant decrease in RSR from breads with BBG fibre fraction 

level 2 and 3 inclusions compared to the control bread after 30 and 60 minutes in vitro 
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digestion respectively (P<0.05). No consistent significant decrease in RSR was observed 

from bread with BBG fibre fraction level 1 inclusion compared to the control (P>0.05). 

The RSR from breads with Glucagel™ levels 2 and 3 inclusions was generally 

significantly lower than the control after 120 minutes in vitro digestion (P<0.05). No 

consistent significant decrease in RSR could be found from bread with Glucagel™ level I 

inclusion compared to the control bread (P>0.05). Post 150 minutes in vitro digestion 

there was generally no difference between the RSR from BBG fibre fraction breads and 

Glucagel™ counterparts (P>0.05). 

These results indicate that ~-glucan fractions from barley have the ability to modify the 

starch digestibility of breads, which in turn may have implications for the in vivo 

regulation of sugar release from bread, a traditionally high glycaemic food. These results 

are in agreement with the studies of Pick et al. (1998) and Cavallero et al. (2002) who both 

observed significant reductions in the glycaemic responses of healthy individuals fed 

barley ~-glucan rich breads compared to white wheat controls. 

Several theories exist to explain the effect of soluble polysaccharides on the starch 

digestibility of cereal products. it is widely accepted that in vivo reductions in glycaemia 

by soluble fibre are a result of increased intestinal viscosity (Jenkins et al. 1978; Wood et 

al. 1990); however, the majority of these studies are with homogenous solutions of soluble 

fibre and glucose as opposed to foods with a solid matrix where the structure and 

interaction of fibre with other macro-molecules (starch and protein) is of importance. 

Some authors have proposed that changes to the micro-structure of cereal products in the 

presence of soluble fibre are responsible for reductions in starch digestibility (Brennan et 

al. 1996a; Tudorica et al. 2002c). Other studies indicate that the limitation of water 

availability as a consequence of soluble non-starch polysaccharide hydration can restrict 
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gelatinisation of starch and hence, reduce hydrolysis by a-amylase (Jankiewicz and 

Michniewicz 1987; Tester and Sommerville 2003). 

The attenuated in vitro starch digestibility of BBG fibre fraction and Glucagel™ breads 

may be a consequence of a limitation of available water for starch hydration due to barley 

13-glucan hydration and gelation (as observed in the starch gelatinisation investigations of 

Chapter 2), the formation of a glucan gel matrix which inhibits enzyme accessibility to 

partially gelatinised starch granules, reductions in sugar motility as a result of increased 

digesta viscosity or a combination of all these mechanisms. Further studies to characterise 

the viscous influence of the fibres may be warranted, although data from in vitro studies 

examining this effect should be viewed conservatively, since acidity, osmolatity, volume 

and concentration of sugars all contribute to the viscous effect of fibres in the intestine and 

in vitro techniques are unlikely to detect this (Brand Miller and Holt 2004). 

The ability of the BBG fibre fraction to lower RSR from bread earlier in digestion (90 

minutes) than Glucagel™ ( 150 minutes) may be attributed to differences in the degree of 

gum hydration. It is possible that the BBG fibre fraction was hydrated and incorporated 

into the bread matrix more rapidly and thoroughly than Glucagel™, resulting in an earlier 

attenuation of RSR. Differences in rate of soluble fibre (gum) hydration have been 

reported by Ell is et al. ( 1991) to be of importance in hypoglycaemic efficacy and may 

partly explain the variable responses (effect and no effect) reported in studies investigating 

the same soluble fibre but in different forms of preparation (Wursch and Pi-Sunyer 1997). 
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Table 3.7 In vitro starch digestibility (RSR, expressed in maltose equivalents as a percentage of total available carbohydrate) of control, BBG fibre fraction 

and Glucagel™ (GLU) breads1 

Bread 30 60 90 120 150 180 210 240 270 300 

m ins min!i m ins m ins m ins m ins m ins m ins m ins m ins 

Control 0.00°±0 3.36°,:t0.44 11.23"'b:!;0.68 18.84°±0.93 26.85"±1.52 35.49°±1.42 40.40° ±0.98 45.98"±0.39 51.76°±0.64 53.48°'6±0.71 

BBG 1 0.00°±0 1.99"'6±1.03 9.51 h,c±0.91 16.57"·6±1.27 26.16o,b ± 1.52 33.10°'6±1.14 38.42"·6:!: 1.43 43 .28h.c ±0.15 50.34u.b:t0.26 55.46°±0.89 

BBG2 0.00"±0 
00 

l.58b.:t0.70 8.65c±0.98 13.13b,c±l.99 22.00"d.:t1.42 27.63c,d±l.54 35.22<±1.41 42.30c:!: 1.04 48.61 b,c±0.89 50.15'.:t0. 71 
w 

BBG3 O.Oif:tO 2.22a.b ±0.43 5.76d:t0.94 10.99c±l.99 19.88d±l.29 27.33d±l.36 33.95c:t0.32 39.02d:t0.75 46.18< ±0.39 48.32<±1.22 

GLU 1 0.00°±0 3.29u.b±0.76 11.75° ±0.26 18.29"±0.26 24.25a,b.c ± 1.34 31.12h ±0.52 36.666·''±1.42 45.89"'b±0.89 48.30b·'':t0.69 53.55°'6±2.51 

GLU2 0.00"±0 3.46°±0.12 11.6SO ±0.65 17.Sif:t0.07 22.89b,c.d:t2.11 30. 92b,c± 1.53 36.74h.c±l.28 43.82b ± 1.25 48.38h.c ±0.32 52.1] 0
·
6·"±1.14 

GLU3 0.00°±0 3.28°'6±0.88 8.24<±.0.16 16.29"·b ±.0.88 21.41c,d±0.65 30.786·''±0.08 34.39"±0.40 38.04d :!:1.44 46.65<±1.92 51.4 7h.c ± 1.61 

-
1Results are mean± SD of triplicate detenninations (samples taken from three independent production runs). 

"means values in the same column followed by the same letter are not significantly different (P>0.05). 
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3.3.5 Effect of BBG Fibre Fraction and GlucageJTM on the Micro-Structure of Baked 

and In Vitro Digested Bread 

Traditional breads have a porous structure with small and highly dispersed starch granules 

that are exposed and susceptible to enzymic degradation. This susceptibility to amylase 

degradation of the starch is in part due to the gelatinisation of starch during baking, which 

in turn results in a high glycaemic response from eating bread (Giacco et al. 2001). 

SEM3 was used to evaluate the effect of BBG fibre fraction and Glucagel™ on the micro­

structure of baked and in vitro digested bread. Figure 3.1 illustrates scanning electron 

micrographs (SEMs1
) of baked and in vitro digested (300 minutes) control, BBG fibre 

fraction and Glucagel™ (level 3 inclusion, the level at which maximum attenuation in RSR 

was observed) breads. Additional SEMs 1 of all baked and in vitro digested BBG and 

Glucagel™ breads are contained in Appendix Vm. 

Figure 3 .I a illustrates the baked control bread, which exhibits a porous structure with a 

high dispersion of small starch granules. Addition of both BBG and Glucagel™ (Figures 

3.1 b and 3.1 c respectively) appears to result in a loss of porosity and starch granule 

accessibility. Particularly noticeable is the formation of a 'gummy looking' matrix (Figure 

3 .I b) in the baked BBG fibre fraction bread. The in vitro digested control bread (Figure 

3 .I d) has a very porous structure with few undigested starch granules. The presence of 

BBG fibre fraction and Glucagel™ in the in vitro digests (Figures 3.1e and 3.1f 

respectively) results in a more compact structure and a noticeable retention of small 

undigested starch granules. The changes observed in the micro-structure of the breads and 

in vitro digests does not appear to vary substantially between BBG fibre fraction and 

Glucagel™ addition. 
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c) Glucagel™ level 3 baked f) Glucagel™ level 3 in vitro digest 

Figure 3.1 SEMs1 of baked and in vitro digested (300 minutes) breads (x I 000): (a) control 

baked; (b) BBG level 3 baked; (c) Glucagel™ level 3 baked; (d) control in vitro digest; (e) 

BBG level 3 in vitro digest; and (f) Glucagel™ level 3 in vitro digest. 
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Ellis et al. (1991) illustrated that in addition to a rheological affect, guar gwn inhibited the 

rate of digestion of the starch components of wheat bread by altering the micro-structure. 

In the studies of Brennan et al. (1996a), microscopic analysis of digestas taken from pigs 4 

hours after they had been fed guar gwn containing bread revealed that the galactomannan 

component of the guar was still closely associated to the individual starch granules in the 

bread, thus, forming and enzyme-resistant barrier around the starch granules. In vitro 

digestibility studies were consistent with the structural observations in that the hydrolysis 

of starch in guar gwn wheat bread was reduced significantly compared with the control. 

Whilst in this current study it is not possible to detect if the barley ~-glucan fractions are in 

intimate contact with starch granules, the SEM 1 images clearly illustrate the way in which 

barley 13-glucan fractions integrate within a food system has an impact on the physico­

chemical properties of breads and the rate of amylolytic activity and starch hydrolysis. 

3.3.6 Effect of Fermentation, Baking and In VItro Digestion on the Mer and MW 

Distribution of P-Glucan from BBG Fibre Fraction and GlucageJI"M 

Mer and MW distribution of 13-glucan within bread wheat tlotir, BBG fibre fraction, 

Glucagel™ and control, BBG fibre fraction and Glucagel™ (level 3 inclusion) doughs, 

baked and in vitro digested breads were determined after extraction with boiling water and 

hydrolysis of starch with a thermostable a-amylase from Bacillus licheniformis. This 

method is illustrated to extract between 7-75% of the 13-glucan in cereal samples with no 

apparent depolymerisation (Rimsten et al. 2003). 

The Mer and MW distribution of 13-glucan from BBG fibre fraction and Glucagel™ were 

similar (P>0.05) (Table 3.8 and Figure 3.2 respectively), both being relatively low. The 

similarity in Mer of 13-glucan from BBG fibre fraction and Glucagel™ clarifies that MW 

was not responsible for the variance between the physico-chemical properties and in vitro 
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RSR of BBG fibre fraction and Glucagel™ containing breads. The conditions of 

fermentation and baking did not significantly change the Mer of ~-glucan in either 

preparation. The distributions in the control ~-glucan are of less importance because of the 

very low ~-glucan content compared to the breads with added ~-glucan. 

The degradation of barley ~-glucan MW during bread processing has been illustrated by 

Knuckles et al. (1997b), Andersson et al. (2004) and Trogh et al. (2004). These studies 

have clearly demonstrated an enzymatic hydrolysis of the ~-glucan most likely from 

enzymes present in the flour or in added yeast. The absence of degradation of ~-glucan in 

either BBG fibre fraction or Glucagel™ is difficult to explain; however, it is plausible that 

~-glucanases preferentially degrade HMW ~-glucan (as illustrated by the degradation of~­

glucan contained within the control) and/or there is a terminal MW at which ~-glucan is no 

longer susceptible to molecular degradation. 

The distributions in ~-glucan from the BBG fibre fraction and Glucagel™ in vitro digested 

breads do not change drastically during treatment (Figure 3.3). The slight increase in Mer 

(Table 3.9) might be explained by an increase in extractability or a reduction in bread 

components as reducing sugars are released. 
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Table 3.8 Mer and MW distribution of 13-glucan from bread wheat flour, BBG fibre 

fraction, Glucagel™ and control, BBG fibre fraction and Glucagel™ (level 3 inclusion) 

doughs ( 1 and 3 hours fermentation) and baked breads (percentiles describing MW (x 104 

g/mol) at which 10, 50 and 90% of the distribution fall below that value1
) 

Sample (Mer) cv2 Distribution 

(x 104 g/mol) 10% 50% 90% 

Bread wheat flour 70° 1.6 4.5c.d 36° 186° 

BBG 12c.d 1.8 4.3d,e 9.5d 2lc 

GlucagefTM 11 c,d 1.5 4.o•J 8.8d 21c 

Dough I hour fermentation 

Control 22b 1.7 5.3° 15b 45b 

BBG 11 c,d 1.1 4.5c,d 9.3d 19c 

Glucagel™ 11 c,d 4.3 4.2d,eJ 8.8d 20c 

Dough 3 hour fermentation 

Control 21b 1.3 3.cf 12c 46b 

BBG 10d 1.9 4.3d,eJ 8.5d 17c 

Glucagel™ 11 c,d 5.0 4.o•J 8.4d 19c 

Baked bread 

Control 20b 8.2 4.8b,c 13c 44b 

BBG 13c,d 5.5 4.9b 10c.d 23c 

Glucagel™ 11 c,d 8.5 4.1•J 8.8d 19c 

Results are mean ± SD of duplicate determinations (samples taken from independent 

production runs). 

2Coefficient of variation (CV)(%) for Mer· 

0 means values in the same column followed by the same letter are not significantly 

different (P>O.OS). 
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Figure 3.2 MW (g/mol) distribution of ~-glucan from bread wheat flour, BBG fibre 

fraction, Glucagel™ and control, BBG fibre fraction and Glucagel™ (level 3 inclusion) 

doughs (1 and 3 hours fermentation) and baked breads. Dotted lines represent I 0, 50 and 

90% percentiles and dashed line represents Mer· Results are from duplicate determinations 

(samples taken from independent production runs). 
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Figure 3.3 MW (g/mol) distribution of P-glucan from in vitro digested (30, 150 and 300 

minutes) control, BBG fibre fraction and Glucagel™ (level 3 inclusion) breads. Dotted 

lines represent 10, 50 and 90% percentiles and dashed line represents Mer· Results are 

from duplicate detenninations (samples taken from independent production runs). 
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Table 3.9 Mer and MW distribution of 13-glucan from in vitro digested (30, 150 and 300 

minutes) control, BBG fibre fraction and Glucagel™ (level 3 inclusion) breads (percentiles 

describing MW (x I 04 g/mol) at which I 0, 50 and 90% of the distribution fall below that 

value1
) 

Sample (Mer) CV Distribution 

(x 104 glmol) 10% 50% 90% 

In vitro digest 30 mins 

Control 13b,c 6.8 4. le 9.2a,b,c 25c 

BBG I3b,c 0.3 4.7° lOa 23c,d 

Glucagel™ I Id 1.1 4.4a.b,c 9.3a.b,c 20d,e 

In vitro digest 150 mins 

Control 15b 5.5 3.5d 8.9b,c 31b 

BBG 12c,d 0.4 4.5a,b 9.9a.b 22c,d,e 

Glucagel™ 11 d 0.2 4.2c 8.SC 19. 

In vitro digest 300 mins 

Control 18° 4.3 3.3d 9.2a,b,c 42° 

BBG 12c.d 0.1 4.7° 9.9a.b 22c,d,e 

Glucagel™ 11 d 0.3 4.3b,c 8.8c 19. 

Results are mean ± SD of duplicate determinations (samples taken from independent 

production runs). 

2CV (%) for Mer· 

0 means values in the same column followed by the same letter are not significantly 

different (P>0.05). 
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3.4 CONCLUSIONS 

This study illustrates that the incorporation of both BBG fibre fraction and Glucagel™ in 

breads significantly reduces the starch digestibility (rate at which reducing sugars are 

released) in an in vitro digestion model, the magnitude of reduction being dependent upon 

inclusion level and fraction type. This observation may be an indication of the potential of 

barley ~-glucan fractions to regulate in vivo sugar release from bread, a traditionally high 

glycaemic food. In order to deem these fibre enriched breads acceptable to consumers, 

negative changes in the physico-chemical properties of the doughs and baked breads must 

be overcome. It is anticipated that other ingredients (i.e. dough conditioners, such as 

oxidizing agents or emulsifiers) may be incorporated into the breads to counteract the 

negative effects encountered on baking quality (volume and height loss); however, 

incorporation of such ingredients must be thoroughly investigated to ensure that the 

nutritional properties of ~-glucans are not compromised. This study also indicates that the 

different extraction procedures employed in the preparation of BBG fibre fraction and 

Glucagel™ might result in barley ~-glucan fractions with different physico-chemical and 

compositional properties, despite containing ~-glucan with a similar MW. These 

differences result in a variation of the behaviour of the fractions when included into bread. 

The lack of ~-glucan MW degradation in either BBG fibre fraction or Glucagel™ during 

fermentation, baking and in vitro digestion suggests that at a certain MW ~-glucan is not 

readily degraded by endogenous enzymes and/or higher MW ~-glucan (present in the 

wheat flour) is preferentially degraded. Further investigations are warranted to investigate 

whether barley ~-glucan of a HMW is more readily degraded than LMW ~-glucan and 

what the physico-chemical and potential physiological implications of this are. The 

production of functional barley ~-glucan fractions that are not degraded during processing 

is of extreme importance when considering the wider application of barley ~-glucan in 

commercial food products. 
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CHAPTER4 

THE EFFECT OF JJ-GLUCAN FIBRE FRACTIONS FROM BARLEY ON THE 

PHYSICO-CHEMICAL PROPERTIES AND IN VITRO STARCH DIGESTIBILITY 

OF DURUM WHEAT SEMOLINA PASTA 

4.1 INTRODUCTION 

Traditional durum wheat semolina pasta (hereafter referred to as pasta) is a popular cereal 

commodity in European households and is favoured for its ease of cooking and nutritional 

qualities. Pastas are generally considered as low GI foods, which elicit low post-prandial 

blood glucose and insulin responses (Jenkins et al. 1983, 1988; Bornet et al. 1987; 

Wolever 1990; Bjorck et al. 2000). The low GI of pasta is a result of the progressive 

liberation of sugars from the pasta matrix during digestion. This progressive sugar release 

may be attributed to the compact structure of pasta that results from the extrusion process, 

which brings about a close protein network entrapping starch granules and thereby 

delaying amylolysis (Pagani et al. 1986; Fardet et al. 1998, 1999). 

Although a low GI food, traditional pasta is a poor source of dietary fibre. Historically, the 

nutritional improvement of pasta has mainly involved increasing protein contents and 

fortification with vitamins and minerals. The WHO and the US FDA consider pasta as a 

good vehicle for added nutrients, and as such pasta was one of the first foods for which the 

FDA permitted vitamin and iron enrichment (Marconi and Carcea 2001). 

The enrichment of pasta with fibre has been subject to an increasing number of 

investigations, with the greatest number of studies examining the use of soluble fibres such 

as ~-glucan (in the form of enriched oat/barley flour addition) (Dougherty et al. 1988; 
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Knuckles et al. 1997a; Yokoyama et al. 1997; Bourdon et al. 1999; Hallfrish and Behall 

2000; Marconi et al. 2000), guar gum (Gatti et al. 1984; Giorato et al. 1986) and 

arabinoxylans (lngelbrecht 2001). Enrichment of pasta with fibre material may have 

multiple nutritional benefits in that not only is the dietary fibre content of the pasta raised, 

but interactions of starch with fibre may further reduce the rate of starch digestion, thus, 

lowering glycaemic response (Gatti et al. 1984; Yokoyama et al. 1997). 

Whole dururn wheat semolina is employed in traditional pasta manufacture because of the 

unique rheological properties of its protein (Marconi and Carcea 200 I). Partial or 

complete substitution of dururn wheat semolina from pasta with fibre material can often 

result in negative changes in pasta quality. These negative changes are not only a direct 

result of removing a proportion of the dururn flour but also as a consequence of the 

physico-chemical properties that fibre materials impart (i.e. high water absorption) into the 

pasta. Negative changes, such as increased cooking losses and loss of firmness, have been 

encountered in the manufacture of fibre rich pasta (Kordonowy and Youngs 1985; 

Edwards et al. 1995). 

4.1.1 Rationale and Aim 

Whilst a number of studies have examined the effect of barley ~-glucan rich flour 

inclusions on the physico-chemical and nutritional properties of pasta, there is a paucity of 

studies documenting the influence of barley ~-glucan rich fractions. As these fractions are 

a more concentrated source of ~-glucan, they may be incorporated in smaller quantities 

than barley flours but still yield pasta with high ~-glucan levels, thus, possibly overcoming 

the problem of removing high proportions of dururn flour and the associated negative 

changes. As already discussed in Chapter 3, barley ~-glucan fractions have unique 

physico-chemical and compositional properties, which are strongly influenced by the 
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conditions under which they are extracted. The hypoglycaemic efficacy of these fractions 

may also be influenced by extraction conditions. 

The aim of this study was to assess the influence of the inclusion of two different barley 13--­

glucan fractions, BBG fibre fraction (as prepared in Chapter 2) and a commercial barley P­

glucan fraction (Glucagel™), on pasta cooking characteristics, structure, texture and in 

vitro starch digestibility. 

4.1.1.1 Objectives 

• Incorporate an aqueous-solvent extracted BBG fibre fraction (as prepared in 

Chapter 2) and a commercial barley p-glucan fraction (Glucagel™) into pasta at 

different inclusion levels and evaluate and compare effects on the cooking quality 

(dry matter, cooking loss and swelling index) and textural attributes (hardness and 

adhesiveness) of cooked pasta. 

• Examine and compare the influence of barley p-glucan fraction inclusions on the 

microstructure of raw, cooked and in vitro digested pastas. 

• Determine and compare the influence of barley p-glucan fraction inclusions on the 

digestibility of starch in pasta using a multi-enzyrnic in vitro digestion method. 

Such data will provide information on the suitability of different barley p-glucan fractions 

as potential functional ingredients for pastas and also highlight formulation and process 

modifications, which may need to be employed in order to make such pastas of an 

acceptable quality to the consumer. 
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4.2 MATERIALS AND METHODS 

4.2.1 Materials 

4. 2.1.1 BBG fibre fraction 

Effect of barley fJ-glucan in pasta 

BBG fibre fraction (69% ~-glucan) was prepared from Cindy barley flour using extraction 

method (a) detailed in Chapter 2 (2.2.2.1). 

4.2.1.2 Glucagel™ 

Glucagel™ was supplied as detailed in Chapter 3 (3.2./.2). 

The composition and physico-chemical properties of BBG fibre fraction and Glucagel™ 

are detailed in Chapter 3 (Table 3.1). 

4. 2.1. 3 Du rum wheat semolina 

Durum wheat semolina was supplied by ADM Milling Ltd (Exeter, UK). Moisture and 

protein contents were 14% and 13.7% respectively. 

4.2.1.4 Reagents 

Unless otherwise stated, all general laboratory reagents were purchased from Fisher 

Scientific (UK) or Sigma Aldrich (UK/Sweden). 

4.2.2 Methods 

4.2.2.1 Pasta manufacture 

Pastas were made using water and durum semolina substituted with BBG fibre fraction or 

Glucagel™ at four levels (variations in the amount of BBG fibre fraction and Glucagel™ 

used at each level are a reflection of the difference in the composition of the two fractions 

and were necessary to achieve pastas with similar levels of ~-glucan): 
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Level I: BBG (2.5%), Glucagel™ (2.3%). 

Level 2: BBG (5%), Glucagel™ (4.6%). 

Level 3: BBG (7.5%), Giucagel™ (6.9%). 

Level4: BBG (IO%), Glucagel™ (9.2%). 

Effect of barley fJ-glucan in pasta 

An additional sample with no ~-glucan was also prepared as a control. The pasta 

formulations are illustrated in Table 4.I. Moisture content of the pastas was adjusted on 

manufacture to produce visually optimum doughs prior to extrusion. 

Table 4.1 Control, BBG fibre fraction and Glucagel™ pasta formulations 

Pasta Durum wheat flour p-glucan Water 

(g) (g) (m I) 

Control IOO.O 0.0 40.0 

BBG level I 97.5 2.5 42.0 

BBG level2 95.0 5.0 47.0 

BBG level3 92.5 7.5 50.0 

BBG level4 90.0 10.0 51.0 

Glucagefl"M level 1 97.7 2.3 42.0 

Glucagefl"M level 2 95.4 4.6 47.0 

Glucagefl"M level3 93.1 6.9 50.0 

Glucagefl"M level 4 90.8 9.2 51.0 

Pasta dough was prepared in a Kitchen Aid (Kitchen Aid, St Jospeh, Michigan, US). The 

flour and fibre were mixed for I minute using the mixing blade to ensure complete 

homogeneity. Water was added, and the dough was mixed for a further 2 minutes using a 

dough hook. The dough was allowed to rest for I5 minutes and then extruded through a 

spaghetti die (2 mm diameter). The pastas were allowed to air dry for 2 days at ambient 

97 



Chapter 4 Effect of barley P-glucan in pasta 

temperature. Dried pastas were broken into 5 cm lengths, placed in sealed bags and stored 

at -18°C. Proximate composition of the cooked pastas was determined using the methods 

detailed in Chapter 2 (2.2.2.2), with the exception of available starch, which was 

determined as detailed in Chapter 3 (3.2.2. 1). Table 4.2 presents the proximate 

composition of the pastas. 

Table 4.2 Proximate composition of control, BBG fibre fraction and Glucagel™ cooked 

pastas1 

Pasta Available starch Protein TDF 13-glucan 

(%) (%) (%) (%) 

Control 77.36 ± 0.11 15.20 ± 0.02 5.06 ± 0.80 0.42 ± 0.00 

BBG level I 76.22 ± 0.17 14.88 ± 0.02 7.61 ± 0.31 1.98 ± 0.20 

BBG level2 74.93 ± 1.14 14.66 ± 0.00 8.64 ± 0.29 3.68 ± 0.04 

BBG level3 73.45 ± 0.54 14.71 ± 0.00 10.30 ± 0.83 4.95 ± 0.05 

BBG level4 71.35 ± 0.58 14.50 ± 0.03 12.00 ± 0.39 6.38 ± 0.05 

GlucageJ™ level 1 77.05 ± 0.31 15.07 ± 0.02 7.12±0.11 1.67 ± 0.03 

GlucageJ™ level 2 74.83 ± 1.33 14.98 ± 0.02 8.39 ± 0.35 3.30 ± 0.02 

GlucageJI"M level 3 72.37 ± 0.97 14.88 ± 0.07 10.35 ± 0.26 4.98 ± 0.03 

GlucageJI"M level 4 71.24± 1.14 14.75±0.11 11.60 ± 0.38 6.24 ± 0.03 

Results are mean ± SD of duplicate determinations of a composite sample ( dwb ). 

4. 2. 2. 2 Cooking quality 

Cooking performance is an important factor in consumer judgement of pasta quality. 

During cooking, pasta should maintain form without disintegration, increase in volume and 

exude minimal material to the cooking water (Cole 1991 ). In this study, the cooking 
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quality of the pastas was evaluated by determining swelling index, cooking loss and dry 

matter values. 

4. 2. 2. 2.1 Cooking I ime and procedure 

Cooking time (the time necessary to obtain complete gelatinisation of starch as shown by 

the disappearance of the white central core of the control spaghetti strand) was determined 

as 7 minutes according to the AACC 'pasta and noodle cooking quality' procedure 

(Approved Method 66-50, AACC 2000b). Thereafter, samples of pasta (25 g) were boiled 

in a beaker of 300 ml distilled water (partially covered to help reduce evaporation and 

maintain a constant temperature) for 7 minutes. After cooking, samples were rapidly 

drained into a Buchner funnel (cooking water was reserved). Samples were rinsed with a 

constant stream of distilled water (approximately 50 m! for 30 seconds). Cooking and 

rinse water were combined to determine cooking loss, and samples of pasta were reserved 

and analysed for swelling index, dry matter, textural properties, composition, micro­

structure and in vitro digestibility. 

4.2.2.2.2 Cooking loss 

Cooking loss was determined according to Approved Method 66-50 (AACC 2000b). 

Cooking and rinse water (collected from 4.2.2.2.1) were combined and quantitatively 

transferred to pre-weighed 500 ml beakers. Samples were evaporated to dryness in an air 

oven at l00°C (drying time was approximately 20 hours). Beakers were cooled in a 

desiccator and weighed. Cooking loss was reported as a proportion of the original pasta 

sample. 

4. 2. 2. 2. 3 Dry matter 

Dry matter was determined according to Approved Method 44-ISA (AACC 2000b ). 
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4.2.2.2.4 Swelling index 

The swelling index of cooked pasta (swelling index: grams of water per gram of dry pasta) 

was evaluated according to the procedure used by Fardet et al. (1998). Cooked pasta was 

dried to a constant weight at I 05°C and expressed as: ((weight of cooked product)-(weight 

of pasta after drying)/ (weight of pasta after drying)). 

4.2.2.3 Textural a/tributes (hardness and adhesiveness) 

Textural factors, such as uniformity of appearance, structural strength and integrity, 

absence of a sticky surface and 'al dente' eating properties, as characterised by high 

degrees of firmness, are predominant characteristics that define the quality of pasta 

products (Antognelli 1980; Hoseney 1986; Pomeranz 1987). Pasta firmness or hardness 

represents the degree of resistance to the first bite and can be defmed as the force required 

to penetrate pasta with the teeth and attractive forces among particles opposing 

disintegration (Kruger et al. 1996). Adhesiveness is a measurement of surface condition or 

extent of disintegration of the cooked product, which determines the extent to which 

strands adhere to each other (Kruger et al. 1996). Traditionally the textural quality of pasta 

has been determined by sensorial analysis; however, in recent years there is an increasing 

reliance on instrumental techniques to provide less subjective measurements (Cole 1991 ). 

In this study, the hardness (mean maximum force g) and adhesiveness (mean negative area 

g s) of cooked pasta strands were determined using a TA (TA.XT2) (Stable Micro 

Systems, Surrey, UK) with a 35 mm cylinder probe (P/35R) (calibrated for a load cell of 5 

kg). Force was measured in compression. Pre-test, test and post-test speeds were 2.0 

mm/s. The strain was 75%, trigger type auto I 0 g, and the data acquisition rate was 200 

pps. Results were obtained from testing six strands per sample. An example of the TA 

trace obtained can be found in Appendix IX. 
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4.2.2.4 Starch gelatinisation characteristics 

DSC2 has been used by several authors to characterise the gelatinisation events of starch in 

the presence of non-starch polysaccharides specifically in pasta (Eerlingen et al. 1996; 

Ferrero et al. 1996; Tudorica et al. 2002c; lzydorczyk et al. 2005). 

In this study, a DSC 1 was used to measure the thermal parameters (Tonseb T peak, Tendset and 

enthalpy) of raw pasta samples substituted with BBG fibre fraction and Glucagel™, in 

order to ascertain the influence of Jl-glucan on the starch fraction. Pasta with no ~-glucan 

addition was used as a control. Prior to analysis, pasta samples were freeze dried and 

milled to pass a 500 11m mesh screen. Sample preparation, DSC1 instrumentation and 

parameters are as described in Chapter 2 (2.2.2.5). 

4.2.2.5 In vitro digestion 

Cooked pasta samples were subjected to an in vitro digestion based on the method of 

Brighenti et al. (1995), slightly modified. The method is detailed in Chapter 3 (3.2.2.4). 

4. 2. 2. 6 Micro-structure 

Microscopy techniques have been previously used (Pagani et al. 1986; Fardet et al. 1998) to gain 

information about the size, shape and arrangement of particles within pasta; this can be further 

correlated with other pasta characteristics like texture, cooking behaviour and starch digestibility. 

The micro-structure of raw, cooked and in vitro digested (samples taken at 300 minutes in vitro 

digestion) pastas was determined using SEM3
. Sample preparation and analysis are detailed in 

Chapter 3 (3.2.2.5). 

4.2.2. 7 Statistical analysis 

Unless otherwise stated, all determinations were made in triplicate (samples taken from 

three independent production runs), and mean ± SD values are presented. Data was 
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statistically evaluated by ANOV A as detailed in Chapter 2 (2. 2. 2. 6). Significance was 

defined as P<0.05. 

4.3 RESULTS AND DISCUSSION 

4.3.1 Effect of BBG Fibre Fraction and Glucagefl"M on the Cooking Quality of Pasta 

Cooking loss values theoretically reflect the quantity of starch and other bio-chemical 

components that are released from the pasta protein matrix and subsequently lost to the 

cooking medium (Cole 1991 ). Likewise, dry matter contents (also known as total organic 

matter) may be a reflection of the ability of pasta to retain organic matter during cooking. 

It is agreed by several authors that the formation of a continuous protein network is of 

great importance in the entrapment of starch and good cooking quality (Pagani et al. 1986), 

a subject reviewed extensively by Feillet (1988). The continuity and strength of the 

protein matrix is dependent upon inter and intra-molecular disulphide, hydrogen and 

hydrophobic bonds. During cooking this matrix gradually disintegrates. If the protein 

matrix is disrupted, the result is a more rapid disintegration during cooking. A weak or 

discontinuous protein matrix permits greater amounts of exudates to leach during starch 

granule gelatinisation; this is reflected in the amount of solids lost to the cooking water. 

The cooking quality of pastas with BBG fibre fraction and Glucagel™ inclusions is 

illustrated in Table 4.3. The dry matter of cooked pastas with BBG fibre fraction level I 

and 2 inclusions was significantly lower than the control (P<0.05); however, there was no 

significant difference between the dry matter of pastas with BBG fibre fraction level 3 and 

4 inclusions or any of the Glucagel™ containing pastas and the control (P>0.05). With the 

exception of pasta with Glucagel™ level 4 inclusion, there was no significant difference in 

the cooking losses encountered between the ~-glucan fraction pastas and the control. 

(P>0.05). 
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In the studies of Knuckles et al. {1997a) and Marconi et al. (2000), increased cooking 

losses were observed from pastas substituted with 20-40% (4.08 and 8.59% p-glucan dwb 

respectively) and 50% (4.3-5% P-glucan dwb) barley flour fractions respectively. In these 

studies, it is likely that the substitution of large amounts of durum wheat semolina with 

barley flour resulted in a considerable decrease in gluten content. Gluten enables the 

formation of a strong protein network capable of holding starch during cooking (Marconi 

and Carcea 2001). In this current study, only a small quantity (::;1 0%) of durum flour was 

replaced, thus, there was likely to still be a sufficient quantity of gluten to form a matrix 

that encompasses and retains starch granules. The increased cooking loss value exhibited 

by pasta with Glucagel™ level 4 inclusion may be attributed to the ability of Glucagel™ at 

higher levels of inclusion to form a discrete semi-solid network that disrupts the protein­

starch matrix and facilitates leaching of organic matter from the pasta. 

The swelling index (Table 4.3) of all BBG fibre fraction pastas was significantly higher 

than the control (P<0.05). The addition of Glucagel™ to pastas did not result in any 

significant change in swelling index compared to the control (P>0.05). There are few 

studies that have examined the effect of barley p-glucan inclusion, either in the form of 

high purity fractions or enriched flours, on the swelling properties of pasta. Tudorica et al. 

(2002c) observed increased swelling in pastas substituted with guar gum. The authors 

attributed increased swelling values to the high WRC of the fibre. The slightly higher 

swelling index values exhibited by the BBG fibre fraction containing pastas may be related 

to a greater WRC of the BBG fibre fraction compared to Glucagel™, possibly caused by 

the presence ofco-extracted fibres (Chapter 3, Table 3.1). 
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Table 4.3 Cooking quality of control, BBG fibre fraction and GlucageJ'rM pasta~ 1 

Pastn Dry mutter (cooked) Cooking loss Swelling index 

(g/100 g) (g/1 00 g n1w pasta) (g water/g dry pasla) 

Control 39.os··b ± 0.21 
..---:-;· 

3.76 ±0.06 l.54b:!: 0.04 

BBG level I 35. 75d ± 0.49 4.2l"h±0.16 1.76" ± 0.06 

BBG levcl2 36.36"·d ± 1.03 4.07"'b ± 0.20 1.74":!: 0.06 

BBG level3 37.00h.c,d ± 0.05 4.03a.b:!: 0.02 1.69" ± 0.02 

BBG level4 37.0011·c.d ± 0.38 4.11"'b ± 0.18 1.71°:!: 0.03 

GlucagcJT~1 level I 40.35":!: 0.57 3.77b:!: 0.28 1.61"b:!: 0.00 

GlucageJU1 level 2 37.23b,c,d:!: J.J 0 3.83b:!: 0.14 1.67a.b ± 0.06 

GlucageJTMJcvcl3 38.51 u.b.c:!: 0.18 4.02°'b :!: 0.15 1.62"-b ± 0.04 

Glucageln1 level4 39.oo•·b ± o.84 4.32" ± 0.21 1.62"·b ± 0.11 

1Results are mean± SD of triplicate de~erminations (samples taken from three independent production runs). 

"means values in the same column followed by the same letter are not significantly different (P>0.05). 
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4.3.2 Effect of BBG Fibre Fraction and GlucagefTM on the Textural Properties of 

Pasta 

Table 4.4 illustrates that the incorporation of BBG fibre fraction in pasta caused a 

significant loss in hardness compared to the control (P<0.05). Glucagel™ inclusion 

resulted in a significant rise in pasta hardness, which increased with the level of fibre 

inclusion (P<0.05). The adhesiveness of all BBG fibre fraction pastas was not 

significantly different to the control (P>0.05) (Table 4.4). In pastas with Glucagel™ level 

I and 2 inclusions, adhesiveness was similar to the control (P>0.05); however, with level 3 

and 4 inclusions pasta adhesiveness was significantly higher than the control (P<0.05). 

Table 4.4 Textural attributes (hardness and adhesiveness) of control, BBG fibre fraction 

and Glucagel™ pastas' 

Pasta Hardness (g) Adhesiveness (g s) 

Control 701 .se± 6.40 -2.09c ± 0.20 

BBG level I 457.9d ± 6.90 -1.42c ± 0.39 

BBG level2 338.6. ± 4.80 -1.70c ± 0.10 

BBG level3 354.9. ± 4.70 -1.77c ± 0.11 

BBG leve14 368.4d,e ± 35.10 -1.29c ± 0.21 

GlucagefTM level 1 691.8c ± 69.20 -1.28c ± 0.40 

GlucagefTM level 2 794.5b ± 25.60 -2.91 c ± 1.50 

GlucagefTM level 3 819.3b ± 21.10 -4.61b ± 0.21 

GlucagefTM level 4 1136.9a ± 16.70 -13.28a ± 2.01 

Results are mean± SD of triplicate determinations (s.amples taken from three independent 

production runs). 

ameans values in the same column followed by the same letter are not significantly 

different (P>0.05). 
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The loss of pasta hardness experienced with BBG fibre fraction inclusion may be attributed 

to the higher moisture contents of the pastas as a result of increased water absorption 

during cooking. In their studies with guar gum inclusion in pasta, Tudorica et al. (2002c) 

proposed that increased water absorption impacts upon the mechanical properties of pasta, 

with water acting as a plasticiser of composite materials and increasing flow dynamics of 

the system. Since pasta firmness can be related to the hydration of starch granules during 

the cooking process and the subsequent embedding of gelatinised starch granules in a 

matrix of partially denatured protein, it is also possible that the BBG fibre fraction may 

withhold water from starch and thereby alter pasta structure and firmness. A similar 

explanation was proposed in the study ofBrennan et al. (2004) where loss of firmness was 

observed in inulin enriched pastas. The increase in pasta firmness encountered with 

Glucagel™ inclusion may be explained by the ability of Glucagel™ to form a semi-solid 

network, which contributes to the firmness of the already established protein-starch 

network. lzydorczyk et al. (2005) illustrated that the addition of hull-less barley flour 

fractions to noodles increased firmness. 

The raised adhesiveness values exhibited by Glucagel™ containing pastas may be 

attributed to the ability of Glucagel™ (at high inclusion levels) to form a semi-solid 

network. The resultant structure may be discrete from the protein-starch matrix and result 

in organic matter leaching onto the surface of the pasta, thus, increasing adhesiveness. 

4.3.3 Effect of BBG Fibre Fraction and GlucagefTM on the Gelatinisation 

Characteristics of Pasta 

The effect of BBG fibre fraction and Glucagel™ addition on the starch gelatinisation 

characteristics of raw pasta are presented in Table 4.5. The Tonset of pastas with BBG fibre 

fraction level I, 2 and 4 inclusions was not significantly different to the control (P>0.05); 
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however, a significant rise was observed in the Tonset of pasta with BBG fibre fraction level 

3 inclusion (P<0.05). The Tonset of pastas with Glucagel™ inclusions was similar to the 

control (P>0.05). There was no significant difference between the Tendset or T peak of the 

BBG fibre fraction, Glucagel™ and control pastas (P>0.05). There was a general decrease 

in the enthalpy of BBG fibre fraction pastas, although the difference from the control was 

only significant in pasta with BBG fibre fraction level 3 inclusion (P<0.05). Pastas with 

Glucagel™ exhibited a general increase in enthalpy, although the difference from the 

control was only significant in pasta with Glucagel™ level 4 inclusion (P<0.05). 

Table 4.5 Starch gelatinisation characteristics of control, BBG fibre fraction and 

Glucagel™ pastas 1 

Pasta 

Control 

BBG level I 

BBG level2 

BBG level3 

BBG leve14 

GlucageJTM level 1 

GlucageJTM level 2 

GlucageJTM level3 

GlucageJTM level 4 

Tonsel 

52.13b,c,d ± 0.81 

52.83o,b,c,d ± 0.12 

53.1 oo,b,c ± 0.30 

53.67° ± 0.62 

53.53o,b ± 0.35 

52.33o.b,c,d ± 0.61 

5!.63c,d ± 0.67 

51.5if ± 0.46 

52.13b,c,d ± 0.42 

Tendsel 

70.40° ± 1.04 

70.10° ± 0.27 

70.03° ± 0.71 

70.23° ± 0.59 

71.17° ± 0.29 

70.00° ± 0.72 

69.83° ± 0.23 

70.53° ± 0.40 

71.23° ± 1.02 

Tpeak 

60.77° ± 0.67 

60.83° ± 0.29 

60.67° ± 0.23 

61.00° ± 0.61 

61.47° ± 0.38 

60.67° ± 0.06 

60.87° ± 0.06 

61.00° ± 0.00 

61.29° ± 0.15 

Enthalpy 

(J/g) 

4.46b,c ± 0.13 

4.86o,b ± 0.15 

4.09c,d ± 0.21 

3.89d ± 0.24 

4.37c.d ± 0.20 

4.51b.c ± 0.37 

4.83o.b ± 0.21 

5.0if·b ± 0.14 

5.15° ± 0.20 

Results are mean ± SO of triplicate determinations (samples taken from three independent 

production runs). 

omeans values in the same column followed by the same letter are not significantly 

different (P>0.05). 
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Elevated starch gelatinisation onset temperatures in the presence of ~-glucan have been 

reported by Kim and Setser (1992) who proposed that amongst other mechanisms, the anti­

plasticisation properties of ~-glucan are an important factor in altering starch gelatinisation. 

Water is well established as a plasticiser of the amorphous regions of starch granules and 

in addition promotes rupture of hydrogen bonds and formation of new hydrogen bonds 

between itself and the dissociated starch chains (Lelievre 1976; Slade and Levine 1984, 

1987, 1988). When non-starch granules are present, they have the capacity to hydrate and 

consequently restrict the mobility of the plasticiser and hence, delay the initiation of the 

gelatinisation process. More recently, Tester and Sommerville (2003) illustrated that 

certain polysaccharides restrict the swelling of starch granules and consequently restrict 

starch gelatinisation through immobilisation of water, which results in an increase in 

gelatinisation temperature and a decrease in enthalpy. The results from this current study, 

although not conclusive, do indicate that BBG fibre fraction alters starch gelatinisation 

through limiting the amount of available water. The higher enthalpies illustrated by the 

Glucagel™ level 3 and 4 pastas in comparison to the lower enthalpies exhibited by BBG 

fibre fraction counterparts may be related to differences in the integration of the ~-glucan 

fractions within the protein-starch matrix. It is possible that the inclusion of Glucagel™ in 

pasta results in a disruption of the pasta matrix and hence increased availability of starch 

granules for gelatinisation. 

4.3.4 Effect of BBG Fibre Fraction and GlucageJTM on the In Vitro Starch Digestibility 

of Pasta 

The low glycaemic response of traditional pasta is attributed to a well-formed protein­

starch matrix with strong and continuous protein strands entrapping large starch granules. 

The entrapment of starch reduces accessibility to enzymic degradation and hence, reduces 

sugar liberation. Table 4.6 illustrates the effect of BBG fibre fraction and Glucagel™ on 
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the in vitro starch digestibility (as measured by RSR) of pasta. A graphic representation of 

the in vitro starch digestibility of control and BBG fibre fraction and Glucagel™ (level 3) 

pastas is given in Appendix X to allow a visual appreciation of the differences in the rate 

of RSR. There was a generally consistent significant decrease in RSR from pastas with 

BBG fibre fraction level 2 and 3 inclusions between 180-300 minutes in vitro digestion 

(P<0.05), and in pasta with BBG fibre fraction level 4 inclusion, a significant decrease in 

RSR was observed between 210-300 minutes in vitro digestion (?<0.05). The inclusion of 

Glucagel™ in pasta did not significantly reduce RSR compared to the control. Generally 

(although not consistently significant), the release of RSR from the Glucagel™ pastas was 

higher than that of the control. 

Several theories exist to explain the effect of soluble polysaccharides on the starch 

digestibility of pasta products. Work conducted by Tudorica et al. (2002c) on guar gum 

enriched pasta, using a in vitro digestion model, revealed that reduced rates of starch 

digestion were a result of the formation of a guar gum barrier around starch granules, 

which protected them from enzymatic degradation (in this study it is not possible to detect 

from the micrographs whether the ~-glucan is in intimate contact with the starch granules). 

Other authors have proposed that reductions in water available for starch granule hydration 

limits the degree of gelatinisation and hence, susceptibility to hydrolysis by a-amylase 

(Jankiewicz and Michniewicz 1987; Holm et al. 1988; Tester and Sommerville 2003). 

Giorato et al. (1986) and Leclere et al. (1994) have proposed that the lowered glycaemic 

response of soluble fibre enriched pastas is as a consequence of increased viscosity of the 

intestinal contents, which results in delayed gastric emptying and slower absorption at the 

intestinal surface rather than changes in the rate of starch digestibility. 
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Table 4.6 In vi fro starch digestibility (RSR, expressed in maltose equivalents as a percentage of total available carl>ohydrate) of control, DBG fibre fraction 

and Glucagel™ pastas1 

Pasta 30 60 90 120 150 180 210 240 270 300 

Control o.o•:t.o b" 
1.61 :!:0.52 2.43h±O.I8 4.16c.a.e ±.0.05 7.02':t0.32 I 0.80b.c ±0.42- Ii42h:c ±0.48 I7.4i:t0.56 l9.91b:t.0.09 24.17b ±0.60--

DDGl 0.00°±0 0. 94b.c ±0.19 3 .06a.b ±0.53 3.67c.d":t.O.l2 7.42h.c:t.0.50 11.60a.h :t.O .15 14.01b±0.74 17.496±.0.49 20.256±0.31 22.14c :t.O.I2 

BBG2 o.oo•:t.o 0.50'"±0.21 2.05b.:t0.36 3.44d"":t0.15 6.42'±.0.24 8. 73d,e ±0. 70 ll.90c,d±O. 76 14.38·::0.35 17.21 c:!:_0.51 20. IOd :!:0.51 

BBG3 o.oo•:to 0.12.±0.13 2.18b .:t.O. 74 2.78":t0.19 6.17c±0.55 8.37'±0.50 10. 70d±0.45 13.46.:!:0.18 16.73' ±0.06 17.71"±0.10 
0 

BBG4 o.oo•±o 0. 78b.c ;t0.3 3 2.37b±0.43 4.51 c.d±0.65 7.00<±0.63 9.32c.d.e ±0.38 11.80d:t0.64 14.47c±0.28 16.58r ±0.49 18.62. ±0.13 

GLU 1 0.00"±0 2.94.±.0.44 3.61 a.h ±0. 97 4.96b.c±0.40 9.07a.b:t0.64 11.32b:t0.87 14.036±0.49 19.11°±.0.49 20.99"'6 ±0.49 25.80°±.0.47 

1.02h.c ::0.38 6.06"'b:tl.09 I 0.13b.r.d:t.0.52 14.36°'b±0.2 18.47u.b:t0.28 I9.96b:t0.62 20.89c.d±0.27 
~ 

GLU2 0.00°±0 4.09°±0.75 9.13°±0.55 ~ 
~ -

GLU3 o.oo•±o 0.40c:t.0.44 3.38"'b:t.0.43 5.82n,b ±0.55 9.94.±.0.91 13.2if:ti.04 14.56"'b ±0.41 18.80°'b ±0.67 22.18°±0.45 24.52a.b ±Q. 75 
<Q., 

~ -
GLU4 o.oo·±o 2.63a.b ±.0.24 4.07"±0.40 6.87"±.0.30 9.52°:!:_0.65 I 0 .89h.c ±0 .51 15.74°±0.46 18.69"·6::0.84 20.24h ±0.70 23.96b:t0.81 ~ 

~ 
oQ 

1Results are mean± SD of triplicate de!erminations (samples taken from three independent production runs). -s::: 

§ 
0 means values in the same column followed by the same letter are not significantly different (1'>0.05). -. ;:s 
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The mechanism(s) behind the ability of the BBG fibre fraction to reduce starch 

digestibility in pasta is unclear, although results do indicate that the restriction of starch 

gelatinisation (as observed by DSC2
) and slight modifications to pasta structure (as 

observed by SEM3
) may be involved. The delay in consistent attenuation of RSR in pastas 

with level 2, 3 and 4 BBG fibre fraction inclusions may be attributed to a slow and/or 

uneven hydration of the polysaccharide matrix, which delays/hinders integration of the ~­

glucan within the protein-starch matrix until the later stages of digestion. In a similar 

study, Tudorica et al. (2002c) observed a delay in the attenuation of glucose release from 

guar gum containing pasta until the latter stages of in vitro digestion. In addition to 

reductions in starch granule availability, it is also plausible that as time elapses and as the 

BBG fibre fraction is thoroughly hydrated there is a cumulative leaching of ~-glucan into 

the digesta, which increases viscosity and hinders the diffusion of reducing sugars to the 

dialysate. Further studies to characterise the viscous influence of the fibres on in vitro 

digesta may be warranted; however, as discussed in Chapter 3, such data should be viewed 

conservatively since correlation with the in vivo situation is poor. 

The inability of Glucagel™ to attenuate the in vitro starch digestibility of pasta in 

comparison to BBG fibre fraction may be because of poor solubility and/or slow/partial 

hydration of the preparation. It is also possible that Glucagel™ does not incorporate 

thoroughly and forms a discrete polysaccharide network within the pasta matrix, offering 

no protection to the starch granules. This discrete polysaccharide network may also disrupt 

the protein-starch matrix of the pasta, resulting in starch granules more readily exposed for 

amylolytic attack, thus, explaining the raised RSR from the Glucagel™ pastas. Tudorica et 

al. (2002c) observed increased in vitro glucose release from pea and inulin fibre containing 

pastas compared to a control and attributed the increase to disruption and weakening of the 

protein-starch network in the overall pasta structure. 
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Authors investigating the effect of ~-glucan addition on the glycaemic response from pasta 

have reported variable outcomes. Yokoyama et al. (1997) observed that pastas produced 

from durum wheat partially substituted with barley ~-glucan enriched flour (17.5 g/1 00 g 

TDF (of which 7.7 g was ~-glucan)) significantly lowered glycaemic and insulin responses 

of healthy subjects. Conversely, when Holm et al. (1992) incorporated oat bran 

concentrate enriched with ~-glucan into fettuccini in partial replacement (29%) of durum 

wheat, despite a raise in TDF from 3-12 g/100 g (of which 5.2 g was ~-glucan), blood 

glucose and insulin responses in healthy volunteers were only marginally reduced 

compared with a reference fettuccini. Similarly, Bourdon et al. (1999) observed that 

barley ~-glucan enriched spaghetti (15. 7 g TDF/1 00 g pasta (of which 5.2 g ~-glucan)), 

manufactured by substituting 40% standard durum flour with a barley ~-glucan rich flour, 

did not significantly lower the post-prandial blood glucose responses of healthy men 

compared to a control durum pasta. Both authors attributed the lack of any significant 

reductions in glycaemic response to a reduction in pasta gluten contents and weakening of 

the protein matrix. 

4.3.5 Effect of BBG Fibre Fraction and GlucageJTM on tbe Micro-Structure of Pasta 

Figure 4.1 illustrates SEMs 1 of raw, cooked and in vitro digested (300 minute) control, 

BBG fibre fraction and Glucagel™ (level 3 inclusion) pastas. Additional SEMs 1 of all 

raw, cooked and in vitro digested BBG fibre fraction and Glucagel™ pastas are contained 

in Appendix XI. The raw control pasta (Figure 4.1 a) has a well-formed starch protein 

matrix with an abundance of protein strands entrapping large starch granules. With the 

inclusion of BBG fibre fraction and Glucagel™, there appears to be a difference in protein­

starch binding patterns, both pastas exhibiting a slight loss of profuse protein network 

(Figures 4.1b and 4.1c respectively). 
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The .cooked control pasta (Figure 4.1 d) has a developed and coagulated protein network, 

which entraps large swollen starch granules. The cooked BBG fibre fraction pasta (Figure 

4.le) exhibits a slight loss of protein network, a more compact structure and a greater 

quantity of less swollen starch granules than the control pasta. The cooked Glucagel™ 

(Figure 4.1 f) pasta exhibits a distinct loss of protein network and increased starch granule 

exposure. The in vitro digested control and Glucagel™ pastas (Figures 4.1 g and 4.1 i 

respectively) are similar in that they have webbed structures. The in vitro digested BBG 

fibre fraction pasta (Figure 4.1 h) also has a webbed structure but appears more compact in 

comparison to the in vitro digested control and Glucagel™ pastas. 

The micrographs highlight the importance of internal structure on the cooking, textural and 

in vitro starch digestibility of pasta. The decreased finnness values exhibited by the BBG 

fibre fraction pastas may be in part attributed to the slight loss of protein network and 

reduced starch granule swelling exhibited by the pasta (Figure 4.1e). The increased 

adhesiveness and slightly higher enthalpy values exhibited by the Glucagel™ pastas (level 

3 and 4 inclusions) may be explained by the loss of profuse protein network and increased 

starch granule exposure (Figure 4.1 f). Marconi and Carcea (200 I) provide a thorough 

discussion of the technologies, formulations and added ingredients available for 

counteracting negative changes in the rheological properties of pasta caused by the 

incorporation of non-durum materials. Marconi et al. (2000) illustrated that barley P­

glucan rich pastas required gluten to overcome changes in the rheology of the pasta 

systems on fibre addition. High temperature drying has also been illustrated to be a key 

factor in obtaining good quality P-glucan rich pasta. High temperature drying treatments 

promote the formation of a diffused and coagulated protein network, which contributes to 

the finnness of pasta (Resmini and Pagani 1983; Cubadda and Acquistucci 1987). 
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a) control raw d) control cooked 

b) BBG level 3 raw e) BBG level 3 cooked 

c) Glucagel™ level 3 raw f) Glucagel™ level 3 cooked 

Figure 4.1 SEMs1 of raw, cooked and in vitro digested (300 minutes) pastas (x 1000): (a) 

control raw; (b) BBG level 3 raw; (c) Glucagel™ level 3 raw; (d) control cooked; (e) BBG 

level 3 cooked; (f) Glucagel™ level 3 cooked; (g) control in vitro digest; (h) BBG level 3 

in vitro digest; and (i) Glucagel™ level 3 in vitro digest. 
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g) control in vitro digest h) BBG level 3 in vitro digest 

i) Glucagel™ level 3 in vitro digest 

Figure 4.1 SEMs 1 continued. 

4.4 CONCLUSIONS 

This study illustrates that the addition of barley ~-glucan fractions to pasta significantly 

improves nutritional qualjty by increasing dietary fibre contents and by reducing in vitro 

starch digestibility, although the latter is dependent upon the type of barley ~-glucan 

fraction added. This observation may be an indication of the potential of certain barley ~­

glucan fractions to reduce in vivo sugar release from pasta, an already low g1ycaemjc food. 

Changes to the cooking and textural qualities of the pasta were also observed with barley 

~-glucan fraction addition, the nature and magnitude of change varying with fraction type. 

115 



Chapter 4 Effect of barley P-glucan in pasta 

It is anticipated that these changes are in part a result of reduced gluten contents, disruption 

of the protein-starch matrix and the physico-chemical properties of the barley p-glucan (i.e. 

high WRC). Other researchers have shown that some of the negative changes encountered 

on non-durum material addition to pasta can be negated by changing formulations, for 

example the addition of gluten or gluten like whey proteins and/or by the use of suitable 

processing technologies, for example high temperature drying. Such treatments may 

enable the production of barley P-glucan rich pastas that are capable of retaining structure 

and shape during cooking, have an acceptable degree of stickiness and have satisfactory 

sensory properties when eaten; however, any treatment or combination of treatments 

employed must be investigated to ensure that the physico-chemical and physiological 

properties of barley p-glucan are not compromised. 

116 



Chapter 5 Effect of HMW and LMW barley {J-glucan in bread and pasta 

CHAPTERS 

THE EFFECT OF HIGH AND LOW MOLECULAR WEIGHT BARLEY P­

GLUCAN FRACTIONS ON THE PHYSICO-CHEMICAL AND IN VITRO 

STARCH DIGESTIBILITY OF BREAD AND PASTA 

5.1 INTRODUCTION 

Although barley ~-glucan enriched cereal foods have been reported to have beneficial 

nutritional properties (hypoglycaemic and hypoinsulinaemic capacities), incorporation of 

~-glucan in a cereal system, in the form of native grain or fraction, can often result in 

undesirable changes to product quality (as observed from the work conducted in Chapter 3 

and 4 of this study). For example, in bread this may be increased water absorption and 

mixing time, reductions in loaf height and volume and changes to crumb structure 

(Knuckles et al. 1997a; Cavallero et al. 2002; Gill et al. 2002). In pasta, increased cooking 

loss and loss of firmness have been observed with barley ~-glucan inclusions (Marconi et 

al. 2000). Ultimately, these negative changes may result in reduced consumer acceptance 

of barley ~-glucan enriched cereal products. It is likely that these changes are in part 

related to MW, viscosity and water retaining capacities of the ~-glucans, although few 

studies have confirmed this. 

Incorporating reduced or lower MW barley ~-glucan preparations may limit negative 

changes to cereal food quality; however, the MW of ~-glucan has an important influence 

upon hypoglycaemic and hypoinsulinaemic capacity. Mathematical correlations of blood 

glucose level to MW of ~-glucan have been illustrated by Wood et al. ( 1994a, 2000) who 

demonstrated an inverse linear relationship between log (viscosity) of oat ~-glucan in a 

drink model (varying MW/dose) and the magnitude of 50 g oral load. Similar studies with 

117 



Chapter 5 Effect of HMW and LMW barley P-glucan in bread and pasta 

solid foods, such as bread and pasta where the interaction of ~-glucan with other macro­

components (protein and starch) and rate of digestibility are of importance, are limited. In 

the studies of Ellis et al. ( 1991 ), consumption of breads with guar gum of both HMW and 

LMW resulted in a significant decrease in post-prandial plasma insulin response compared 

to a control bread. There was no significant difference observed between the two types of 

guar gum. In addition, the sensory qualities of guar gum bread were significantly 

improved by the use of LMW guar gum. 

The MW of ~-glucan may be furthered lowered by the conditions of food processing, such 

as bread making (Andersson et al. 2004), which may possibly result in loss of 

physiological activity. Frank et al. (2004) illustrated that oat breads containing HMW or 

LMW ~-glucan did not differ in their effects on blood concentrations of lipids, insulin or 

glucose in humans. The conditions of the gastrointestinal tract have also been reported to 

favour the degradation of ~-glucan and result in loss of viscous effect (Johansen et al. 

1997). Such loss of MW has been reported to be particularly marked in HMW materials 

(Bedford et al. 1991 ). 

5.1.1 Rationale and Aim 

Whilst studies have been conducted to evaluate the effects of barley ~-glucan on the 

physico-chemical and nutritional properties of cereal products, few studies have addressed 

the impact of differing MW. This study is an extension to Chapter 3 and 4 where the 

effects of incorporating relatively LMW barley ~-g1ucan fractions from different extraction 

procedures in bread and pasta were investigated. Thus, the overall aim of this study was to 

explore and compare the behaviour of HMW and LMW barley ~-glucan fractions in bread 

and pasta by examining physico-chemical changes in the products and effects on in vitro 
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starch digestibility. The susceptibility of these two barley ~-glucan fractions to 

degradation during bread baking and in vitro digestion was also investigated. 

5.1.1.1 Objectives 

• Incorporate HMW and LMW barley ~-glucan fractions into bread and pasta and 

compare effects on the physico-chemical properties of bread dough (resistance to 

extension and extensibility), baked bread (height, volume, firmness and crust and 

crumb colour) and the cooking quality (dry matter, cooking loss and swelling 

index) and textural attributes (hardness and adhesiveness) of cooked pasta. 

• Determine and compare the influence of HMW and LMW barley ~-glucan fractions 

on the digestibility of starch in bread and pasta using a multi-enzymic in vitro 

digestion method. 

• Examine and compare the influence of HMW and LMW barley ~-glucan fractions 

on the micro-structure of baked and in vitro digested bread and raw, cooked and in 

vitro digested pastas. 

• Profile and compare the MW of barley ~-glucan fractions during bread manufacture 

and in vitro digestion. 
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5.2 MATERIALS AND METHODS 

5.2.1 Materials 

5. 2.1.1 HMW and LMW barley ~glucan fractions 

HMW and LMW barley J3-glucan fractions were purchased from Megazyme™ 

International Ireland Ltd (Wicklow, Ireland). Composition, MW and viscosity (as 

specified by Megazyrne™) are detailed in Table 5.1. 

Table 5.1 Composition and physical properties of HMW and LMW barley J3-glucan 

fractions 

% Component (dwb) 

J3-glucan 

Starch 

Protein 

Moisture 

Physical properties 

MW (Daltons) 

Viscosity (eSt) 

5. 2.1. 2 Bread and pasta making materials 

HMW 

-95 

0.21 

1.5 

3.6 

510,000 

>80 

LMW 

-95 

<0.12 

<0.1 

2.0 

160,000 

10 

Bread and pasta making materials are as detailed in Chapter 3 (3.2.1.3) and Chapter 4 

(4.2.1.3). 

5.2.1.3 Reagents 

Unless otherwise stated, all general laboratory reagents were purchased from Fisher 

Scientific (UK) or Sigrna Aldrich (UK/Sweden). 
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5.2.2 Methods 

5. 2. 2. 1 Bread making 

Breads were manufactured with bread wheat flour substituted with either 5% HMW or 

LMW barley ~-glucan fraction as detailed in Chapter 3 (3.2.2. 1). Bread with no ~-glucan 

was prepared as the control. Formulations for the breads are contained in Table 5.2. 

Proximate composition of the breads was determined using the methods detailed in 

Chapter 2 (2.2.2.2), with the exception of available starch, which was determined as 

detailed in Chapter 3 (3.2.2.1). Table 5.3 presents the proximate composition of the 

breads. 

Table 5.2 Control, HMW and LMW barley ~-glucan fraction bread formulations 

Bread 

Control 

HMW 

LMW 

Wbite bread flour (g) 

125.00 

118.75 

Il8.75 

~-glucan (g) 

0.00 

6.25 

6.25 

DistiUed water (ml) 

70.00 

75.00 

75.00 

*yeast (6g), salt (6g), sugar (I g) and vegetable fat (6.25g) were constant for all breads. 

Table 5.3 Proximate composition of control, HMW and LMW barley ~-glucan fraction 

breads1 

Bread 

Control 

HMW 

LMW 

Available starcb 

(%) 

69.52 ±0.25 

64.82 ± 1.31 

64.55 ±0.26 

Protein 

(%) 

16.09 ± 0.02 

15.09 ± 0.06 

15.25 ± 0.01 

TDF 13-glucan 

(%) (%) 

5.88 ±0.78 0.14 ± 0.00 

10.56 ± 0.51 4.30 ± 0.10 

11.40 ± 0.29 4.47 ± 0.04 

Results are mean ± SD of duplicate determinations of a composite sample reported on a 

dwb. 
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5.2.2.2 Bread dough rheology 

Resistance to extension (mean maximum force g) and extensibility (mean distance at 

maximum force mm) of the bread doughs were determined as detailed in Chapter 3 

(3.2.2.2). 

5.2.2.3 External, internal and texture quality evaluation of bread 

Loaf height, volume, crumb texture (firmness) and crust and crumb colour were 

determined as detailed in Chapter 3 (3. 2. 2. 3). 

5.2.2.4 Pasta manufacture 

Pasta was manufactured with durum wheat semolina substituted with 5% HMW or LMW 

barley 13-glucan fraction as detailed in Chapter 4 (4.2.2.1). Pasta with no 13-glucan was 

prepared as the control. Formulations are contained in Table 5.4. Proximate composition 

of cooked pastas was determined as detailed in Chapter 2 (2.2.2.2), with the exception of 

available starch, which was determined as detailed in Chapter 3 (3.2.2.1). Table 5.5 

presents the proximate composition of the pastas. 

Table 5.4. Control, HMW and LMW barley 13-glucan fraction pasta formulations 

Pasta Durum wheat 13-glucan Distilled water 

flour (g) (g) (m I) 

Control 100.0 0.0 40 

HMW 95.0 5.0 50 

LMW 95.0 5.0 50 
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Table 5.5 Proximate composition of control, HMW and LMW barley ~-glucan fraction 

cooked pastas 1 

Pasta 

Control 

HMW 

LMW 

Available starch 

(%) 

77.36 ± 0.11 

73.61 ± 0.91 

73.01 ± 0.82 

Protein 

(%) 

15.20 ± 0.02 

14.56 ± 0.09 

14.54 ± 0.07 

TDF p-glucan 

(%) (%) 

5.07 ±0.80 0.42 ± 0.00 

10.14 ± 0.21 4.65 ± 0.01 

9.65 ± 0.23 4.87 ± 0.05 

Results are mean ± SO of duplicate determinations of a composite sample reported on a 

dwb. 

5. 2. 2. 5 Cooking quality and textural attributes of pasta 

Cooking time and quality and textural attributes of the pastas were determined according to 

the procedures detailed in Chapter 4 ( 4.2.2.2 and 4.2.2.3 respectively). 

5.2.2.6 Starch gelatinisation characteristics of pasta 

DSC2 was used to measure the gelatinisation characteristics of raw pasta samples 

substituted with HMW and LMW barley ~-glucan fractions, to ascertain the influence of 

J3-glucan on the starch fraction. Pasta with no ~-glucan addition was used as a control. 

Prior to analysis, pasta samples were freeze dried and milled to pass a 500 J.Lm mesh 

screen. Sample preparation and DSC 1 parameters are as described in Chapter 2 (2.2.2.5). 

5. 2. 2. 7 In vitro digestion of bread and pasta 

Bread and cooked pasta samples were subjected to an in vitro digestion based upon the 

method of Brighenti et al. (1995), slightly modified. The method is described in Chapter 3 

(3.2.2.4) 

123 



Chapter 5 Effect of HMW and LMW barley {J-glucan in bread and pasta 

5. 2. 2. 8 Micro-structure of bread and pasta 

The micro-structure of baked and in vitro digested (samples taken at 300 minutes in vitro 

digestion) bread and raw, cooked and in vitro digested (samples taken at 300 minutes in 

vitro digestion) pasta was determined as detailed in Chapter 3 (3.2.2.5). 

5.2.2.9 Extraction and analysis of fJ-glucan Mer and MW distribution 

The Mer and MW distribution of ~-glucan within bread wheat flour, HMW and LMW 

barley ~-glucan fractions, and baked and in vitro digested (samples taken at 30, 150 and 

300 minutes in vitro digestion) control, HMW and LMW barley ~-glucan fraction breads 

were determined using the procedure detailed in Chapter 3 (3.2.2.6). 

5.2.2.10 Statistical analysis 

Unless otherwise stated, all determinations were made in triplicate (samples taken from 

three independent production runs), and mean ± SO values are presented. Data was 

statistically evaluated by ANOVA as detailed in Chapter 2 (2.2.2.6). Significance was 

defmed as P<0.05. 

5.3 RESULTS AND DISCUSSION 

5.3.1 Effect of HMW and LMW Barley fJ-Giucan Fractions on the Rheological 

Properties of Bread Dough 

Table 5.6 illustrates the effect of HMW and LMW barley ~-glucan fraction inclusions on 

the rheological properties of bread dough. The resistance to extension of dough containing 

both types of barley ~-glucan fraction was significantly higher than the control dough 

(P<0.05). The extensibility of doughs containing the HMW and LMW weight barley ~­

glucan fractions was also significantly reduced compared to the control dough (P<0.05). 

In particular, the dough with HMW barley ~-glucan fraction inclusion yielded the greatest 
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resistance to extension and also the lowest extensibility of the samples (P<0.05). These 

results illustrate that barley ~-glucan fractions of both high and low MW significantly alter 

the rheology of bread dough. The production of doughs with greater resistance to 

extension may be attributed to the viscous influence of the ~-glucan. A proportion of 

dough viscosity can be attributed to the concentration of macro-molecules in the aqueous 

phase, which in turn is strongly dependent upon MW (Stauffer 1998). Thus, the combined 

MW of gluten and ~-glucan may be higher than that of gluten alone, which results in a 

greater viscous effect within the dough matrix; this might explain the highest resistance to 

extension exhibited by the HMW barley ~-glucan fraction containing dough. Loss of 

dough extensibility may be caused by the excessive retention of water by the ~-glucans, 

which in turn leads to an impaired gluten network. If this is the mechanism, it suggests 

that the HMW barley ~-glucan fraction has the greatest WRC and results in the greatest 

loss in dough extensibility. In a similar study, Courtin and Delcour (1998) observed that 

wheat doughs prepared with HMW arabinoxylan had a greater water absorption than wheat 

doughs prepared with LMW arabinoxylan. 

Table 5.6 Control, HMW and LMW barley ~-glucan fraction dough rheology and baked 

bread evaluation 1 

Dough/Bread Extension Distance Height Volume Firmness 

(g) (mm) (cm) (ml) (g) 

Control 33.34c ± 0.65 -29.83a ± 0.47 6.18a± 0.08 2l2a±2.0 5.406 ± 0.02 

HMW 74.28a ± 1.03 -22.30c ± 0.69 3.65c± 0.11 IOOC ± 0.0 5.44a•6 ± 0.21 

LMW 49.186 ± 2.98 -23.756 ± 0.32 4.036 ±0.13 1186 ± 2.89 6.0r± oAo 

Results are mean± SO of triplicate determinations (samples taken from three independent 

production runs). ameans values in the same column followed by the same letter are not 

significantly different (P>O.OS). 
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5.3.2 Effect of HMW and LMW Barley J3-Glucan Fractions on Baked Bread Quality 

The inclusion of HMW and LMW barley J3-glucan fractions in bread resulted in a 

significant decrease in loaf volume and height (Table 5.6). The reduction in height and 

volume was greatest in the HMW barley J3-glucan fraction bread (P<0.05). In comparison 

to the control sample, breads containing HMW and LMW barley ~-glucan fractions 

exhibited higher values in compression force measurements; however, the difference was 

only significant between the control and LMW barley ~-glucan fraction bread (P<0.05). 

As reported by a number of authors, incorporation of barley ~-glucan in wheat bread 

results in loss of height, volume and increased firmness (Knuckles et al. 1997a; Cavallero 

et al. 2002; Gill et al. 2002). As discussed in Chapter 3 (3.3.2), loss of height and volume 

may be a result of disruption to the starch-gluten matrix and distortion of the gas cell 

structure, excessive retention of water by ~-glucan, which leads to an underdeveloped 

gluten network and/or a reduction in steam production. These results indicate that the 

HMW barley ~-glucan fraction may have the greatest starch-gluten disrupting and/or 

WRC, which results in the greatest loss of bread quality. The higher compression value 

exhibited by the LMW barley ~-glucan fraction bread is difficult to explain but may be 

related to the differing viscoelastic characteristics of the ~-glucan fractions (Vaikousi et al. 

2004). 

Figures 5.1 a and 5.1 b illustrate the effect of HMW and LMW barley ~-glucan fractions on 

the crust and crumb colour of bread respectively. The L * crust colour values of HMW and 

LMW barley ~-glucan fraction breads were significantly lower than the control (darker) 

(P<0.05). The a* crust colour values of the HMW and LMW barley ~-glucan fraction 

breads were significantly higher than the control (more red) (P<0.05); however, the b* 

crust colour values of the breads were similar to the control (P>0.05). 
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The L * and b* crumb colour values of the HMW and LMW barley ~-glucan fraction 

breads were similar to the control; however, a* crumb colour values of the barley ~-glucan 

fraction breads were significantly higher than the control (more red) (P<0.05). There was 

no significant difference between the L *a*b* crust and colour values of the HMW and 

LMW barley ~-glucan fraction breads (P>0.05). 
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Figure 5.1 (a) Crust colour and (b) crumb colour of control, HMW and LMW barley 

glucan fraction breads. Results are mean of triplicate determinations (samples taken from 

three independent production runs). SD is presented as error bars. 

5.3.3 Effect of HMW and LMW Barley ~-Glucan Fractions on the Cooking Quality 

and Textural Attributes of Pasta 

Table 5.7 illustrates the cooking qualities of control, HMW and LMW barley ~-glucan 

fraction pastas. The dry matter contents of the cooked control and HMW barley J3-glucan 

fraction pastas was similar (P>0.05); however, a significantly lower dry matter contents 

was observed in the LMW barley J3-glucan fraction pasta (P<0.05). Despite a small rise in 
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the cooking loss from the LMW barley p-glucan fraction pasta, the value was similar to the 

control (P>O.OS). A significantly lower cooking loss was observed from the HMW barley 

p-glucan fraction pasta compared to the control and LMW barley P-glucan fraction pastas 

(P<O.OS). Swelling index of the control and HMW barley P-glucan fraction pastas was 

similar (P>O.OS); however, a significantly increased swelling index was observed with the 

LMW barley p-glucan fraction pasta (P<O.OS). 

Table 5.7 Cooking quality of control, HMW and LMW barley p-glucan fraction pastas1 

Pasta 

Control 

HMW 

LMW 

Dry matter 

(g/100 g) 

39.05°:!:: 0.21 

38.88°:!:: 0.01 

37.17b:!:: 0.47 

Cooking loss Swelling index 

(g/100 g raw pasta) (g water/g dry pasta) 

3.76°±0.06 1.546 ± 0.04 

3.28b:!:: 0.13 1.59b ± 0.03 

3.96°± 0.27 1.73°± 0.08 

Results are mean± SO of triplicate determinations (samples taken from three independent 

production runs). 

0 means values in the same column followed by the same letter are not significantly 

different (P>O.OS). 

These results indicate that pasta made with LMW barley P-glucan fraction has reduced 

cooking tolerance and swells excessively during cooking in comparison to the control and 

HMW barley p-glucan fraction pastas. It is plausible that the LMW barley p-glucan 

fraction increases starch granule availability and swelling due to the formation of a weak 

polysaccharide gel/network, which disrupts the protein network and entrapment of starch. 

Simultaneously, this disrupted network may permit greater amounts of exudate to leach to 

the cooking medium (as observed by the decreased dry matter contents and increased 

cooking loss values). 
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The increased cooking tolerance exhibited by the HMW barley ~-glucan fraction pasta 

may be attributed to the swelling of HMW barley ~-glucan fraction particles and the 

formation of a viscous network that restricts the excessive swelling and movement of 

starch polymers and subsequent leaching into the cooking medium. A similar explanation 

has been postulated by Tudorica et al. (2002c) and Izydorczyk et al. (2005) examining the 

effects of soluble fibres in pasta. 

Table 5.8 illustrates the textural attributes of control, HMW and LMW barley ~-glucan 

fraction pastas. The hardness of HMW and LMW barley ~-glucan fraction pastas was 

significantly lower than the control, the LMW barley ~-glucan fraction pasta exhibiting the 

greatness loss of hardness (P<0.05). Adhesiveness of the control and LMW barley ~­

glucan fraction pastas was similar (P>0.05); however a significantly higher adhesiveness 

value was observed from the HMW barley ~-glucan fraction pasta (P<0.05). 

Table 5.8 Textural attributes (hardness and adhesiveness) of control, HMW and LMW 

barley ~-glucan fraction pastas1 

Pasta 

Control 

HMW 

LMW 

Hardness 

(g) 

70 1.5a ± 6.39 

500b ± 19.44 

408.2c ± 6.04 

Adhesiveness 

(g s) 

-2.096 ± 0.20 

-4.85a ± 0. 72 

-1.63b ± 0.23 

Results are mean± SD of triplicate determinations (samples taken from three independent 

production runs). 

ameans values in the same column followed by the same letter are not significantly 

different (P>0.05). 
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The loss of firmness exhibited by the HMW and LMW barley ~-glucan fraction pastas may 

be attributed to a loss in gluten contents and disruption to the protein-starch network, 

which has been illustrated by other authors to be of extreme importance in dictating the 

firmness of pastas (Marconi et al. 2000). The increased adhesiveness of the HMW barley 

~-glucan fraction pasta may be explained by a leaching of viscous ~-glucan material onto 

the pasta surface. 

5.3.4 Effect of HMW and LMW Barley ~-Giucan Fractions on tbe Gelatinisation 

Characteristics of Pasta 

The inclusion of HMW and LMW barley ~-glucan fractions in pasta did not have any 

significant effect on starch gelatinisation characteristics in comparison to the control 

(P>0.05) (Table 5.9). This suggests that no interaction between starch granules and ~­

glucans occurs within the pasta matrix. 

Table 5.9 Starch gelatinisation characteristics of control, HMW and LMW barley ~-glucan 

fraction pastas1 

Pasta Tooset\C) Teodset \C) Tpeak \C) Entbalpy (J/g) 

Control 52.13a± 0.81 70.40a ± 1.04 60.77a ± 0.67 4.46a ± 0.13 

HMW 52.17a ± 0.74 70.13a ± 0. 78 60.87a ± 0.06 4.43a±O.l0 

LMW 53.40a ± 1.22 70.33a ± 0.15 61.23a ± 0.23 4.48a± 0.08 

Results are mean± SD of triplicate determinations (samples taken from three independent 

production runs). 

ameans values in the same column followed by the same letter are not significantly 

different (?>0.05). 

130 



Chapter 5 Effect of HMW and LMW barley {3-glucan in bread and pasta 

5.3.5 Effect of HMW and LMW Barley P-Glucan Fractions on the In Vitro Starch 

Digestibility of Bread and Pasta 

5.3.5.1 Bread 

Figure 5.2. illustrates the effect of HMW and LMW barley J3-glucan fraction inclusion on 

the RSR from the bread matrix during an in vitro digestion process. The results reveal a 

significant decrease in RSR from both breads (LMW 90-300 minutes in vitro digestion and 

HMW 120-300 minutes in vitro digestion) compared to the control (P<0.05). Generally, 

there was no significant difference between the RSR values from HMW and LMW barley 

J3-glucan fraction breads (P>0.05). 
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Figure 5.2 In vitro starch digestibility (RSR, expressed in maltose equivalents as a 

percentage of total available carbohydrate) of control, HMW and LMW barley p-glucan 

fraction breads. Results are mean of triplicate determinations (samples taken from three 

independent production runs). SD is presented as error bars. 
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The general similarity of RSR from the HMW and LMW barley ~-glucan fraction breads is 

surprising since the relationship between MW, viscosity and reductions in sugar diffusion 

has been illustrated by other workers (Wood et al. 1994a, 2000); however, the majority of 

these studies are with homogenous solutions of soluble fibre and glucose as opposed to 

foods with a solid matrix where other macro-components, such as starch and protein, exist. 

The similarity and ability of both the HMW and LMW barley ~-glucan fractions to reduce 

RSR might be explained by a different mechanism of action of ~-glucan in solid foods than 

in liquids, with MW and viscosity having a lesser role in a solid matrix (as observed and 

discussed in 5.3.6.1). Brennan et al. (1996a) illustrated that guar gum (physico-chemically 

similar to ~-glucan) had the ability to modify the micro-structure of wheat breads, which 

resulted in a significant reduction in starch hydrolysis compared with the control; this 

effect was independent of the MW of guar gum contained in the wheat bread. The ability 

of soluble fibres to reduce starch granule hydrolysis regardless of MW may partly explain 

why wheat bread containing guar gum of a LMW reduced post-prandial glycaemia and 

plasma insulin concentrations in diabetic (Gatenby et al. 1996) and non diabetic (EIIis et 

al. 1991) human subjects. It is also possible that the decreased RSR from the HMW and 

LMW barley ~-glucan breads is a result of increased digesta viscosity and attenuated sugar 

diffusion to the dialysate. The similarity in RSR from the ~-glucan breads may be 

explained by the MW degradation of the HMW barley ~-glucan fraction, which may have 

resulted in a reduction in viscous effect similar to that of LMW barley ~-glucan fraction. 

5.3.5.2 Pasta 

Figure 5.3 illustrates the effect of HMW and LMW barley ~-glucan fractions on the RSR 

from the pasta matrix during an in vitro digestion process. There was no consistent 

significant reduction in the RSR from HMW and LMW barley ~-glucan fraction pastas 

compared to the control (P>0.05). 
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Between 120-210 minutes in vitro digestion, the HMW barley P-glucan fraction pasta 

exhibited a significantly higher RSR compared to the control (P<O.OS), thereafter there was 

no difference between the RSR from the control and the HMW barley p-glucan fraction 

pasta (P>O.OS). The LMW barley p-glucan fraction pasta exhibited a continuously higher 

RSR compared to the control pasta (P<O.OS). The RSR from the HMW and LMW barley 

P-glucan fraction pastas were similar 60-240 minutes in vitro digestion (P>O.OS), thereafter 

the LMW barley P-glucan pasta exhibited a significantly higher RSR than the HMW 

barley P- glucan fraction pasta (P<O.OS) . 
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Figure 5.3 In vitro starch digestibility (RSR, expressed in maltose equivalents as a 

percentage of total available carbohydrate) of control, HMW and LMW barley p-glucan 

fraction pastas. Results are mean of triplicate determinations (samples taken from three 

independent production runs). SD is presented as error bars. 
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The increased RSR exhibited by the LMW barley ~-glucan fraction pasta may be attributed 

to the formation of a weak gel, which disrupts the pasta protein-starch matrix and results in 

increased exposure of starch granules for amylolysis. Tudorica et al. (2002c) reported 

disruption to the pasta protein-starch matrix and increased sugar release (in vitro) on 

addition of inulin and pea fibre. Disruption of the protein-starch matrix may not appear as 

such a likely explanation for the lack of RSR attenuation from the HMW barley ~-glucan 

fraction pasta since cooking loss was lower than the control; however, it may be 

hypothesised that the HMW barley ~-glucan fraction forms a viscous polysaccharide 

matrix that prevents leaching of starch molecules from a disrupted protein-network but 

does not encapsulate them, thus, offering no protective effect from amylolytic attack. 

5.3.6 Effect of HMW and LMW Barley ~-Giucan Fractions on tbe Micro-Structure of 

Baked and In Vitro Digested Bread and Raw, Cooked and In Vitro Digested Pasta 

5. 3. 6. 1 Bread 

Figure 5.4 contains SEMs1 of baked and in vitro digested (300 minutes) control, HMW and 

LMW barley ~-glucan fraction breads. Figure 5.4a, the baked control bread, has an even 

structure with the presence of relatively exposed large and small starch granules. The 

baked HMW and LMW barley ~-glucan fraction breads (Figures 5.4b and 5.4c 

respectively) have a more compact and uneven structure with fewer starch granules 

exposed. Figure 5.4d, the in vitro digested control bread (300 minutes), has a very porous 

appearance with relatively few undigested starch granules. The in vitro digested HMW 

and LMW barley ~-glucan fraction breads (Figures 5.4e and 5.4f respectively) have a more 

compact appearance and retention of undigested starch granules. 
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c) LMWbaked f) LMW in vitro digest 

Figure 5.4 SEMs1 of baked and in vitro digested (300 minutes) breads (x 1000): (a) control 

baked; (b) HMW baked; (c) LMW baked; (d) control digest; (e) HMW digest; and (f) 

LMW digest. 
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This study clearly illustrates that the inclusion of barley ~-glucan fractions of both high 

and low MW within bread has an impact upon structure, which in turn may change the 

physico-chemical properties of breads and the rate of arnylolytic activity and starch 

hydrolysis. The change in bread structure does not appear to vary with the MW of the 

barley ~-glucan fractions, this consistent with the findings of Brennan et al. (1996a). 

5.3.6.2 Pasta 

Figure 5.5. illustrates SEMs1 of raw, cooked and in vitro digested pastas. The raw control 

pasta (Figure 5.5a) has a well-formed protein-starch matrix with an abundance of protein 

strands entrapping large starch granules. With HMW and LMW barley ~-glucan fraction 

incorporation (Figures 5.5b and 5.5c respectively) there appears to be a difference in 

protein-starch binding patterns and a loss of profuse protein network within the raw pastas. 

The cooked control pasta (Figure 5.5d) has a developed and coagulated protein network 

that entraps swollen starch granules. The cooked HMW barley ~-glucan fraction pasta 

(Figure 5.5e) appears to have higher quantity of less swollen starch granules than the 

control, these granules embedded in a weak protein network. The cooked LMW barley ~­

glucan fraction pasta (Figure 5.5f) has a definite loss of protein network and what appears 

like a webbed network. The in vitro digested control, HMW and LMW barley ~-glucan 

fraction pastas (Figures 5.5h, 5.5i, and 5.5g respectively) are all similar in having webbed 

structures with an absence of visible starch granules. 

The images gathered in this study might help to explain the significant losses in pasta 

firmness and lack of RSR attenuation exhibited by the HMW and LMW barley ~-glucan 

fraction pastas. As discussed in Chapter 4, the loss of rich protein matrix on fraction 

inclusion may be completely or partially remedied by changes to formulation or processing 

conditions (i.e. addition of vital gluten/high temperature drying treatments). 
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a) control raw d) control cooked 

b)HMWraw e) HMW cooked 

c) LMW raw f) LMW cooked 

Figure 5.5 SEMs1 of raw, cooked and in vitro digested (300 minutes) pastas (x 1000): (a) 

control raw; (b) HMW raw; (c) LMW raw; (d) control cooked; (e) HMW cooked; (f) 

LMW cooked; (g) control digest; (h) HMW digest; and (i) LMW digest. 
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g) control in vitro digest 

i) LMW in vitro digest 

Figure 5.5 SEMs 1 continued. 

h) HMW in vitro digest 

5.3. 7 Effect of Baking and In Vitro Digestion on the Mer and MW Distribution of 

HMW and LMW Barley P-Glucan 

Mer and MW distribution of the P-glucans within the wheat flour, barley P-glucan fractions 

and baked and in vitro digested (30, 150 and 300 minutes) control, HMW and LMW barley 

P-glucan fraction breads were determined. The Mer at which 10, 50 and 90% of the 

distribution fall below are illustrated in Table 5.10 and 5.11. The effects of bread 

manufacture on the MW distributions differ between the HMW and LMW barley p-glucan 

fractions (Figure 5.6). The Mer of P-glucan from the HMW fraction decreased from 64 x 

1 04 
to 31 x 1 04 g/rnol during bread manufacture; this observation is consistent with those 

of Knuckles et al. ( 1997b ), Andersson et al. (2004) and Trogh et al. (2004 ). 
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These studies clearly demonstrate hydrolysis of the p-glucan most likely from enzymes 

present in the flour or in added yeast. The fact that the MW of p-glucan from the LMW 

fraction doesn't change at all during fermentation and baking is interesting but difficult to 

explain; however, it does support the observations of Chapter 3 that HMW p-glucans are 

more readily degraded by P-glucanases than those with a LMW. The distributions in the 

control are of less importance because of the very low P-glucan content compared to the 

breads with added p-glucan; however, they do illustrate degradation ofHMW p-glucan. 

Table 5.10 Mer and MW distribution of p-glucans from bread wheat flour, HMW and 

LMW barley P-glucan fractions and baked control, HMW and LMW barley p-glucan 

fraction breads (percentiles describing MW (x 104 g/mol) at which I 0, 50 and 90% of the 

distribution fall below that value 1
) 

Sample (Mer) Distribution 

( x I 04 glmol) cv2 10% 50% 90% 

Wheat flour 70" 2 4.5a 36 186" 

Fractions 

HMW 64b 0.4 1r 59" II8b 

LMW 2Id 1.4 7.2b,c 17d 40d 

Baked bread 

Control 20d 8.2 4.9d 13e 44d 

HMW 3Jc 2.5 7.6b 23c 64c 

LMW 20d 1.5 1.0c 16d 38d 

All measurements are mean values of duplicate determinations (samples taken from 

independent production runs). 2CV (%)for Mer· 

ameans values in the same column followed by the same letter are not significantly 

different (?>0.05). 
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Control HMW LMW 
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Figure 5.6 MW (g/mol) distribution of ~-glucan from bread wheat flour, HMW and LMW 

barley ~-glucan fractions and baked control, HMW and LMW barley 13-glucan fraction 

breads. Dotted lines represent 10, 50 and 90% percentiles and dashed line represents Mer· 

Results are from duplicate determinations (samples taken from independent production 

runs). 

The distributions in the in vitro digests do not change drastically during treatment (Figure 

5.7), and this is probably because the enzymes responsible for ~-glucan degradation were 

inactivated during baking. The slight increase in Mer (Table 5.11) might be explained by 

an increase in extractability or a reduction in bread components as reducing sugars are 

released. 
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Table 5.11 Mer and MW distribution of p-glucans from in vitro digested (30, !50 and 300 

minutes) control, HMW and LMW barley p-glucan fraction breads (percentiles describing 

MW (x 104 g/mol) at which 10, 50 and 90% of the distribution fall below that value1
) 

Sample (Mer) Distribution 

(x 104 glmol) cv2 10% 50% 90% 

30 minutes 

Control n• 6.8 4.lc 9.3c 25e 

HMW 26b 4.2 5.4b 17b 58° 

LMW 2Jc 1.6 6.8° 16b 40b.c 

150 minutes 

Control J5e 5.5 3.SC 8.9c 31d 

HMW 30° 0.8 6.9° 21° 62° 

LMW 20c.d 0.0 6.6° 166 38b.c 

300 minutes 

Control 18d 4.3 3.3c 9.2c 42b 

HMW 30° 1.0 7.1° 21° 61° 

LMW 20c,d 2.3 6.6° 166 37c 

All measurements are mean values of duplicate determinations (samples taken from 

independent production runs). 

2CV (%)for Mcr-

omeans values in the same column followed by the same letter are not significantly 

different (P>0.05). 
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Figure 5. 7 MW (g/mol) distribution of ~-glucan from in vitro digested (30, 150 and 300 

minutes) control, HMW and LMW barley ~-glucan fraction breads. Dotted lines represent 

10, 50 and 90% percentiles and dashed line represents Mcf· Results are from duplicate 

determinations (samples taken from independent production runs). 

5.4 CONCLUSIONS 

This study clearly illustrates that the behaviour of HMW and LMW barley ~-glucan 

fractions varies in different cereal systems, and the behaviour of barley ~-glucan fractions 

within a cereal food system varies with MW. Both HMW and LMW barley ~-glucan 

fractions improve the nutritional quality of white breads by attenuating in vitro starch 

digestibility, which in turn may have potential in the regulation of in vivo sugar release 

from white bread, a traditionally high glycaemic food. The results illustrate that loss of 
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dough and bread quality is related to MW, with the HMW barley p-glucan fraction 

bringing about the greatest changes to dough and bread characteristics. HMW barley P­

glucan appears to be more susceptible to MW degradation during bread processing than 

LMW P-glucan. Collectively, these results suggest that it may be technologically easier to 

incorporate LMW barley P-glucan fractions to breads, which may make barley p-glucan 

more appealing to the food industry. 

With regard to pasta, neither the HMW nor LMW barley p-glucan fraction reduced the in 

vitro starch digestibility of pasta This is surprising when taking into consideration the 

attenuated RSR from pasta with BBG fibre fraction, as observed in Chapter 4. This study 

suggests that the lack of effect is a result of the poor integration of the HMW and LMW 

barley P-glucan fractions in the pasta matrix and disruption to the protein-starch network, 

with the greatest disruption occurring in LMW barley p-glucan fraction pasta. Loss .of 

cooking quality was greatest in the LMW barley p-glucan fraction pasta, and it is 

hypothesised that this is due to the formation of a weak gel, which disrupts the protein­

starch network. HMW barley p-glucan fraction pastas had increased cooking tolerance, 

and it is postulated that although there is a disruption of the protein-starch network, 

organic matter within the pasta is withheld in a viscous network rather than leaching to the 

cooking medium. It is possible that with modifications to pasta formula and changes to 

processing the loss in protein-starch matrix quality may be greatly improved, thus, 

reducing loss in cooking quality; however, this must be confirmed by further studies, 

which simultaneously evaluate whether such treatments improve the ability of these barley 

P-glucan fractions to attenuate in vitro starch digestibility. 
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CHAPTER6 

CONCLUDING DISCUSSION 

6.1 REVIEW OF STUDY RATIONALE AND AIMS 

Chronic diseases are now the major causes of death and disability worldwide. Relatively 

few risk factors are responsible for the majority of the chronic disease burden. Improving 

dietary habits (increasing intakes of fruit, vegetables, nuts and wholegrain foods) can have 

a significant impact upon reducing the rates of chronic disease. In western countries, daily 

consumption of wholegrain foods is far from the desired quantities, and dietary fibre 

intakes are also significantly lower than those recommended by national and international 

health authorities (Mathers and Wolever 2002). Wholegrain foods, rich in dietary fibre, 

are often rejected due to a consumer preference for more refined products; this is 

exemplified by the heavy consumption of white breads and pasta in European countries 

(Bjorck et al. 2000). A potential solution to low dietary fibre intakes lie in the enrichment 

of popular cereal foods with concentrated sources of dietary fibre. 

~-glucans from barley (and oat) are soluble dietary fibres widely known for their 

hypoglycaemic (Wood et al. 1990, 1994a) and hypocholesterolemic capacity (Braaten et 

al. 1994; Beer et al. 1995). These soluble fibres have also been shown to have satiation 

(Bourdon et al. 1999), prebiotic (Dongowski et al. 2002) and immunostimulatory (Causey 

et al. 1998; Fulcher et al. 2000) effects. 

The incorporation of barley ~-glucan in cereal foods (bread and pasta) is relatively limited 

to the use of enriched flours from the barley grain (Table 6.1 ). The inclusion of such flours 

often compromises the organoleptic properties of the products (Knuckles et al. 1997a; 
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Marconi et al. 2000), thus, reducing consumer appeal and consumption. There is potential 

to use barley as an extraction source for P-glucan fractions and to subsequently incorporate 

these fractions into cereal foods. As these fractions are a concentrated source of p-glucan, 

they may be incorporated into foods in lower quantities than barley flours, which may 

reduce negative effects on product quality. At present, there has been little work 

conducted on the physico-chemical and nutritional effects of barley P-glucan fractions in 

cereal foods, and such a lack of information has prevented the food industry use of barley 

~-glucan as a functional food ingredient. 

Table 6.1 Examples of barley p-glucan material used in cereal products 

Barley ~-glucan material 

Prowashonupana barley flour (18% ~­

glucan dwb) 

Milled and sieved fractions from 

Wax bar barley flour (20.11% ~-glucan 

dwb) 

Whole, sieved and water fractions 

from Zacinto barley flour (4.6, 8.5 and 

33.2% p-glucan dwb respectively) 

Fractions from commercial Italian and 

English barley (9.1 and 10.5% ~­

glucan dwb respectively) 

Roller milled fractions produced from 

SR9315 and CDC-92-55-06 barley 

(22.02 and 22.14% ~-glucan dwb 

respectively) 
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Bread Liljeberg et al. (1996) 

Pasta Yokoyama et al. ( 1997) 

Bread Cavallero et al. (2002) 

Pasta Marconi et al. (2000) 

Pasta 1zydorczyk et al. (2005) 
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In an attempt to address this lack of information, this study investigated the potential of 

barley ~-glucan fractions as functional food ingredients for use in cereal foods, with 

particular emphasis on how the composition, physico-chemical properties and MW of 

barley ~-glucan fractions affects behaviour in cereal food systems. Specific aims of the 

study were to: 

I. Investigate different extraction treatments for the isolation of ~-glucan fractions 

from barley and the effects of their inclusion in wheat starch (Chapter 2). 

2. Investigate and compare the influence of different barley ~-glucan fractions on the 

physico-chemical properties, micro-structure and in vitro starch digestibility of 

white wheat bread (Chapter 3). 

3. Investigate and compare the influence of different barley ~-glucan fractions on the 

physico-chemical properties, micro-structure and in vitro starch digestibility of 

dururn wheat semolina pasta (Chapter 4). 

4. Investigate and compare the effects of differing MW barley ~-glucan fractions 

(high and low) on the physico-chemical properties, microstructure and in vitro 

starch digestibility of white wheat bread and dururn wheat semolina pasta (Chapter 

5). 

5. Investigate the susceptibility of barley ~-glucan fractions to MW degradation 

during fermentation, baking and in vitro digestion (Chapter 3 and 5). 
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The essentially commercial nature of this study has required a highly practical and applied 

interdisciplinary approach to research where not only has the behaviour of barley ~-glucan 

fractions been investigated in very different food systems, but where certain individual 

physico-chemical properties of barley ~-glucan fractions have also been examined. In 

addition to answering the main question proposed at the outset of the study, that is "the 

potential of barley ~-glucan as a functional food ingredient for cereal foods", other 

questions for discussion have also been generated. Whilst this thesis has aimed to address 

most of these questions, it is acknowledged that further in depth research is justified to 

provide clarity. Thus, in this conclusion key findings of the research are summarised 

alongside indication and suggestions for where further research is required. 

6.2 STUDY OUTCOMES 

In the first stage of the study, BBG fibre fractions from four different aqueous-solvent 

based extraction treatments (water only, refluxed, purified and alkali) were evaluated in 

terms of yield and ~-glucan recovery, WRC and composition. The subsequent effects of 

these fractions on wheat starch gelatinisation and pasting properties (as determined by 

DSC2 and RVA2
) were also investigated (Aim 1). Chapter 2 details the results of these 

experiments. 

The investigation supported the observations of other workers indicating that the 

composition and functional behaviour of barley ~-glucan fractions may be influenced by 

choice of extraction treatment (Beer et al. 1996; Temelli 1997; Burkus and Temelli 1998). 

The study also indicates that substitution of wheat starch with BBG fibre fractions may 

result in a change to gelatinisation characteristics and pasting properties. At a low level of 

inclusion (I%), all fractions appear to raise the PV and FV of wheat starch pastes. At a 

higher concentration ofBBG fibre fraction (5%), there appears to be a decrease in the PV, 
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BD, and FV of wheat starch pastes. At 5% inclusion, there appears to be an associated 

reduction in the enthalpy of gelatinisation. Mechanisms behind the behaviour of the BBG 

fibre fractions in the starch system are unconfirmed. It is plausible that the apparent 

increase in paste viscosity at low BBG fibre fraction concentrations (I%) is a result of 

changes to the viscosity of the continuous phase of the starch dispersions and/or the 

formation of polymer complexes, as reported by Alloncle and Doublier (1991) and 

Bahnassey and Breene (1994) in their studies of NSP and starch interactions. Whilst it is 

acknowledged that the apparent reduction in viscosity and enthalpy of starch pastes with a 

higher BBG fibre fraction concentration (5%) may be a result of starch replacement, it is 

also possible that the reduction is a result of the 'anti-plasticisation' capacity of BBG fibre 

fractions, that is the ability in a starch-water system to decrease the free volume of water 

and hinder mobility, which in turn effects the plasticisation of amorphous regions and the 

dissociation of double helices during the gelatinisation process, thus reducing starch 

gelatinisation. Further studies are justified to clarify the behaviour of barley ~-glucan 

fractions in starch pastes and to further characterise the hydration and water holding 

properties of barley ~-glucan. 

The observations from this study make a contribution to the current knowledge on the 

effects of barley ~-glucan in starch systems, which as reported in Chapter I is relatively 

limited, despite the plethora of data existing on the effects of other NSPs in starch systems. 

The information gathered in this study has both technological and nutritional value, for 

example the possible ability of low BBG fibre fraction concentrations to increase viscosity 

may be of importance in technological applications, such as use as thickening and 

stabilising ingredients, whilst the possible ability of high BBG fibre fraction concentrations 

to reduce gelatinisation of starch may result in a reduced rate of starch digestion, both in 

vitro and in vivo, and this has relevance to human nutrition in the regulation of in vivo 
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glycaemic response in carbohydrate rich diets where the degree of starch gelatinisation can 

affect the post-prandial sugar availability from foods. 

In the second stage of the study, a BBG fibre fraction (as produced in Chapter 2) and a 

commercial barley ~-glucan fraction, Glucagel™, were incorporated into bread at different 

levels of inclusion. Changes to the physico-chemical properties, in vitro starch 

digestibility and micro-structure of breads were evaluated, and comparisons were drawn 

between the effects of the two fractions (Aim 2). The results of this investigation are 

documented in Chapter 3. 

The rheological properties of bread doughs and baked bread quality were significantly 

affected by BBG fibre fraction and Glucagel™ inclusions, the nature and magnitude of 

change dependent upon the level of inclusion and fraction type. The results are in 

agreement with other authors observing significant changes to dough rheology and baking 

performance with concentrated dietary fibre inclusions (Wang et al. 2002; Gomez et al. 

2003). Whilst BBG fibre fraction inclusions resulted in the greatest change to the 

rheological properties of doughs, Glucagel™ inclusions resulted in the greatest loss of 

baking performance. It is thought that this difference in behaviour might be a result of 

contamination of the BBG fibre fraction with eo-extracted fibres (arabinose and xylose), 

which have been shown to have a significant impact on the quality of bread dough and 

baking performance (Hoseney and Faubion 1981; Delcour et al. 1991). It has been 

postulated that the viscous nature (Cawley 1964), strong water holding capacity 

(Michniewicz et al. 1991, 1992), gelling capacity (Neukom and Markwalder 1978) and 

hydrogen bonding capacity (Patil et al. 1975) of arabinoxylans may contribute to the 

enhanced volume of breads. There is growing interest amongst the scientific community 

regarding the combined use of ~-glucan and arabinoxylans, particularly those from barley, 
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in cereal products, not only in relation to their effect on product quality but with regard to 

their nutritional properties (Trogh et al. 2004). This study indicates that further 

investigation of a possible 'synergistic effect' between barley ~-glucan and arabinoxylan is 

justified. 

The results of this study also illustrate that even at relatively low levels of inclusion 

(:::;7.5%), barley ~-glucan fractions still negatively affect dough and bread quality, the 

results being comparable to the studies of Knuckles et al. (1997a), Cavallero et al. (2002), 

and Gill et al. (2002) where significant changes to bread dough rheology and loss of bread 

height and volume were observed with barley ~-glucan rich flour inclusions of up to 50%. 

The results of this study suggest that the physico-chemical properties (i.e. WRC) of the 

barley ~-glucan within the fractions might be of greater/equal importance to dilution of the 

gluten network, which is more significant when a large quantity of wheat flour is 

substituted. Further investigations may be warranted to further characterise the WRC 

properties of barley ~-glucan fractions in relation to their impact upon the sensory quality 

of bread. 

Changes in both the rheological properties of the dough and the loss of baking quality on 

barley ~-glucan fraction inclusion may be partially negated by optimisation of the bread 

recipes (i.e. farinographic determination of water absorption and mixing time), which may 

counteract the negative changes caused by the WRC of the fractions; however, it remains 

unclear whether the changes to gluten structure and function that these fractions bring 

about can be negated. Changes to formulations, for example the use of dough conditioners 

(i.e. emulsifiers, which enhance dough extensibility and loaf volume) may improve dough 

and bread quality. Further investigations are necessary to evaluate the optimisation of the 

bread recipes and the employment of recipe modifications on product quality, whilst 
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simultaneously ensuring that such treatments do not compromise the physico-chemical and 

physiological functionality of the barley P-glucan. 

The in vitro starch digestibility (as measured by RSR) of bread was significantly attenuated 

by the inclusion of BBG fibre fraction and Glucagel™, the magnitude of reduction 

dependent upon level of inclusion and fraction type. The results are in agreement with 

Pick et al. (1998) and Cavallero et al. (2002) who observed reductions in post-prandial 

glycaemia after consumption of barley P-glucan rich breads. The reductions are most 

likely as a result of a combination of changes to bread matrix structure and starch granule 

availability (as observed by SEM3
) and reductions in starch granule hydration and 

gelatinisation. It is also possible that the reductions are in part a result of increased digesta 

viscosity and reduced sugar diffusion to the dialysate. This study did not directly examine 

the effects of the fractions on digesta viscosity, thus, further studies both in vitro and in 

vivo may be necessary to characterise the viscous influence of the fractions. 

The ability of the BBG fibre fraction to attenuate RSR from the breads earlier in in vitro 

digestion than Glucagel™ may be due to a difference in the rate of fraction hydration and 

incorporation within the bread matrix. As reported in Chapter 3, differences in the rate of 

soluble fibre (gum) hydration have been reported by Ell is et al. (1991) to be importance of 

in hypoglycaemic efficacy and may partly explain the variable responses (effect and no 

effect) reported in studies investigating the same soluble fibre but in different forms of 

preparation (Wursch and Pi-Sunyer 1997). Thus, further studies may be warranted to 

examine the hydration characteristics of the two barley P-glucan fractions and factors, for 

example temperature and p-glucan concentration, which may impact upon rate and degree 

of hydration. 
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This study has made a significant contribution to the current knowledge on the effects of 

barley ~-glucan fractions in bread, an area only recently being explored. The study 

illustrates that barley ~-glucan fractions from different extraction procedures not only have 

different effects on the physico-chemical properties of doughs and breads but also the in 

vitro starch digestibility. It is anticipated that with further recipe optimisation these barley 

~-glucan fractions may be used as functional food ingredients and offer a potential solution 

for the nutritional improvement of bread by increasing overall dietary fibre content and 

potentially attenuating the in vivo glycaemic response of a traditionally high GI product. 

In the third stage of the study, BBG fibre fraction from barley (as produced in Chapter 2) 

and a commercial barley ~-glucan fraction, Glucagel™, were incorporated into another 

popular cereal food, pasta. Changes to the physico-chemical properties of the pasta, in 

vitro starch digestibility and micro-structure were evaluated, and comparisons were drawn 

between the effects of the two fractions (Aim 3). The results of this investigation are 

documented in Chapter 4. 

The inclusion of both BBG fibre fraction and Glucagel™ resulted in significant changes to 

the cooking and textural qualities of pasta, the nature and magnitude of change being 

dependent upon level of inclusion and fraction type. The results are consistent with the 

observations of other authors investigating the effect of concentrated fibre sources on the 

pasta matrix (Tudorica et al. 2002c; Brennan et al. 2004). The increased swelling index 

and reductions in firmness ofBBG fibre fraction pastas were attributed to the high WRC of 

the BBG fibre fraction. The increased firmness and cooking loss (at high levels of 

inclusion only) exhibited by the Glucagel™ pastas is possibly a result of the ability of 

Glucagel™ to form a semi-solid gel. 
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Only BBG fibre fraction inclusions resulted in a significant decrease in the in vitro starch 

digestibility (as measured by RSR) of pasta, with Glucagel™ having no reducing effect 

and a tendency to increase RSR compared to the control pasta. Results suggest that 

restriction of starch gelatinisation (as observed by DSC2
) and slight modifications to pasta 

structure (as detected via SEM 1
) are the mechanisms behind the ability of the BBG fibre 

fraction to attenuate RSR, mechanisms also experienced by lzydorczyk et al. (2005) 

studying the effect of hull-less barley fractions in pasta. The lack of reducing effect 

observed with Glucagel™ inclusions is attributed to disruption of the protein-starch matrix, 

which leads to greater starch granule exposure and increased amylolytic attack, as 

experienced by Tudorica et al. (2002c) examining the effects of soluble fibre on the in 

vitro starch digestibility of pasta. 

This study has made a significant contribution to the current knowledge on the use of 

barley ~-glucan fractions within pasta, clearly illustrating that choice of fraction has an 

influence upon not only physico-chemical qualities but also the in vitro starch digestibility 

of pasta. From this investigation it appears that BBG fibre fraction would be more suitable 

for use as a functional food ingredient in pasta than Glucagel™. The ability of BBG fibre 

fraction to decrease the in vitro starch digestibility of pasta may be an indication of the 

potential of BBG fibre fraction to further lower the in vivo glycaemic response to pasta, an 

already low GI food. Further studies are justified to examine the effect of changes in 

formulation and novel treatments on the quality of ~-glucan enriched pastas. Such studies 

should simultaneously ensure that the physico-chemical and physiological properties of the 

barley ~-glucan are retained. 
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In the fourth stage of the study, the effects of high and low MW barley p-glucan fractions 

on the physico-chemical and in vitro starch digestibility of bread and pasta were examined 

and compared (Aim 4). The results of this investigation are documented in Chapter 5. 

Both HMW and LMW barley p-glucan fractions brought about negative changes to dough 

and bread quality. The HMW barley p-glucan fraction brought about the greatest changes 

to dough and bread characteristics, and this was thought to be a result of the greater 

viscous effect and higher WRC of the HMW p-glucan fraction. Both HMW and LMW 

barley p-glucan fractions attenuated in vitro starch digestibility (as measured by RSR) of 

bread, with generally no difference observed between the two fractions. It is possible that 

the similarity between the behaviour of the two fractions is a result of the ability of barley 

p-glucan fractions, regardless of MW, to alter the micro-structure of the bread matrix (as 

observed by SEM3
) and reduce starch granule availability for amylolysis. Similar 

observations have been made by Ellis et al. (1991) and Brennan et al. (1996a) in their 

studies with guar gum. It is also accepted that the reductions in RSR may be a result of 

increased digesta viscosity and reduced sugar diffusion to the dialysate, the similarity 

between the fractions a result of the degradation of HMW fraction and loss of viscous 

capacity. Further investigations are necessary to evaluate and compare the effect of the 

fractions on the viscosity of digesta. 

Inclusion of HMW and LMW barley p-glucan fractions to pasta did not reduce the in vitro 

starch digestibility (as measured by RSR), this is in contrast to the attenuated starch 

digestibility of pastas with BBG fibre fraction (Chapter 4). The lack of effect was 

attributed to poor hydration/integration of the HMWILMW barley p-glucan fractions in the 

pasta matrix and subsequent disruption to the protein-starch network (as detected from 

SEM\ which increased starch granule exposure for amylolysis. The greatest disruption 
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occurred with LMW barley ~-glucan fraction addition to pasta, which also resulted in a 

greater loss of cooking quality. Pastas with HMW barley ~-glucan fraction had increased 

cooking tolerance, and it is postulated that although there is a disruption of the protein­

starch network, organic matter within the pasta is withheld in a viscous network rather than 

leaching to the cooking medium. Further studies to investigate the effect of pre-gum 

hydration, modifications to pasta formula and changes to processing on negating protein­

starch matrix disruption are necessary; however, such investigations must simultaneously 

evaluate whether these treatments improve the ability of either the high or low MW barley 

~-glucan fractions to attenuate in vitro starch digestibility. 

The results from the study indicate that the MW of barley ~-glucan fractions has a 

significant impact upon physico-chemical behaviour in cereal foods; however, MW does 

not impact greatly upon in vitro starch digestibility. The study has illustrated that the 

behaviour of ~-glucans in a solid food matrix is different to that of a homogenous solution 

where MW and high viscosity are of extreme importance. Integration of barley ~-glucan 

within the cereal food matrix and interaction with macro-components (starch and protein) 

appears to be of greater importance than MW in controlling rates of in vitro starch 

digestibility. 

In the final stage of the study, the susceptibility of ~-glucan (from BBG fibre fraction, 

Glucagel™ and HMW and LMW barley ~-glucan fractions) to MW degradation during the 

conditions of bread fermentation, baking and in vitro digestion was evaluated (Aim 5). 

The results of this investigation are documented in Chapters 3 and 5. 

The investigations revealed that the MW of barley ~-glucan is degraded during bread 

processing (most likely from endogenous enzymes within wheat flour or added yeast), 
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thus, supporting the observations of Knuckles et al. ( 1997b ), Andersson et al. (2004) and 

Trogh et al. (2004); however, the study also revealed that barley ~-glucan with a HMW is 

more susceptible to MW degradation during bread processing than that with a LMW, and 

that LMW barley ~-glucan is not readily degraded by endogenous enzymes. Thus, this 

study suggests it may be technologically easier (and more economical) to incorporate 

barley ~-glucan with a lower MW into bread. The study also revealed that in vitro 

digestion does not degrade the MW of barley ~-glucan. 

6.2.1 Summary of Key Findings 

This study illustrates: 

• Different extraction treatments may affect the composition and physico-chemical 

properties of barley ~-glucan fractions, these different properties may result in 

differences in behaviour when incorporated into a model cereal food system. 

• The inclusion of barley ~-glucan fractions in bread and pasta results in significant 

changes to product quality, the nature and magnitude of change dependent upon 

inclusion level and fraction type. Factors such as composition, WRC, integration 

within the cereal food matrix and MW may be of importance in dictating the 

behaviour of these fractions. 

• The inclusion of barley ~-glucan fractions in bread and pasta results in significant 

changes to in vitro starch digestibility, the nature and magnitude of change 

dependent upon inclusion level and fraction type. Factors such as composition, 

WRC and integration within the cereal food matrix may influence the behaviour of 
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the fractions. MW appears to have a lesser importance on the ability of barley P­

glucan fractions to attenuate the in vitro starch digestibility of bread and pasta. 

• The conditions of bread manufacture result in degradation of barley P-glucan MW, 

although only HMW barley p-glucan is susceptible to degradation. This 

degradation does not result in loss of ability to attenuate RSR from the bread 

matrix. There is no significant degradation of barley P-glucan MW during in vitro 

digestion. 

6.3 STRENGHS AND WEAKNESSES OF STUDY 

One of the major limiting factors in this study has been the restriction of investigations to a 

micro-scale and in vitro. Whilst Glucagel™ is commercially produced, BBG fibre 

fractions had to be manufactured on a laboratory scale, which involved a great deal of time 

and ethanol consumption, thus, amounts produced had to be restricted. At present, there 

are no bulk commercial HMW and LMW barley p-glucan fractions available, therefore, 

these fractions had to be purchased as chemicals, and their relative expense limited the 

amount available. Ideally in Chapter 3 and 5 evaluations of baking performance 

(farinographic determinations of water absorption and mixing time) and recipe 

optimisation would have been performed, and in Chapter 3, 4, and 5 starch digestibility 

investigations in vivo would have been performed as well as sensory analysis to judge the 

organoleptic properties and acceptance of the barley p-glucan fraction enriched products. 

It is acknowledged that the analysis and discussions regarding the influence of 

arabinoxylans contained within the barley P-glucan fractions on dough, bread and pasta 

quality (Chapters 3 and 4) is very limited; however, due to technical limitations, analyses 

had to be conducted (with the generosity of Professor Roger Andersson) in Sweden 
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(Department of Food Science, Uppsala). Financial and time limitations meant that the 

depth of the investigations had to be limited; however, it is hoped that in further studies, 

arabinoxylans contained within the barley ~-glucan fractions will be characterised (i.e. 

MW analysis) and their exact role within bread and pasta evaluated. 

As emphasised earlier in the discussion, the nature of this study has required a multi­

dimensional research approach, that is a balance of investigations, which collectively 

evaluated the physico-chemical and physiological functionality of barley ~-glucan 

fractions in cereal products, as well investigation of appropriate levels of barley ~-glucan 

fraction inclusion required to have nutritional significance. Such an approach has meant 

that it has not been possible to conduct in depth investigations required to provide 

affirmative answers to a number of questions generated (in addition to the main research 

question) during the study; however, it is hoped that with further research (see 

recommendations in section 6.4) these questions will be fully answered. 

Despite its limitations, this study has made a significant contribution to knowledge on the 

potential of barley ~-glucan fractions as functional food ingredients and has provided a 

foundation for further development and optimisation of barley ~-glucan enriched cereal 

foods. Therefore, this study has contributed to the development of practical and realistic 

measures to increase human dietary fibre intakes, which may potentially contribute to a 

reduction in the global chronic disease burden. 

6.4 RECOMMENDATIONS FOR FUTURE WORK 

The use of barley ~-glucan fibre fractions as functional food ingredients definitely warrants 

further research. This study has generated a number of areas to which further study is 

justified: 
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• It is suggested that further studies aim to examine the extent of starch granule 

swelling and retrogradation, gelation behaviour and hydration kinetics of starch­

barley P-glucan pastes. Such research would clarifY the mechanisms behind the 

behaviour of barley P-glucan in starch systems. 

• Further studies are required to evaluate the WRC of barley P-glucan fractions, in 

relation to their impact on macro-components (i.e. starch and protein) within cereal 

food matrices and the sensory properties of products. 

• An investigation of the optimisation of barley P-glucan fraction bread and pasta 

recipes (i.e. farinographic determinations of water absorption and mixing time) and 

formula/processing modifications may allow for further development of barley P-

glucan fractions as functional ingredients in cereal foods. Simultaneous 

investigations must examine the effect of such treatments on product quality and 

the physico-chemical properties and MW of barley p-glucan fractions. 

• Investigations of the effect of barley p-glucan fractions on the viscosity of both in 

vitro and in vivo digesta may enable a greater understanding of the mechanisms 

behind the behaviour of the fractions during digestion. 

• The study identified a possible relationship between barley p-glucan and eo­

extracted fibres (i.e. arabinoxylans) in bread, the eo-extracted fibres possibly 

counteracting some of the negative effects of barley p-glucan inclusion. Thus, 

further studies may be justified to investigate the potential of exploiting this 

interaction. 
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APPENDIXII 
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Figure AII.l Example DSC 1 trace. 
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Figure ATII.l Example TA trace (dough resistance to extension and extensibility). 
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Figure AIV.l Example TA trace (crumb firmness). 
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APPENDIX V 

Figure A V.l Internal view of a HPSEC-FD system. 
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APPENDIX VI 

a) From left to right: Control, BBG level 1, 2 and 3 breads. 

b) From left to right: Control, Glucagel™ level 1, 2 and 3 breads. 

Figure A VI.l Cross sectional views of a) BBG fibre fraction and b) Glucagel™ breads. 
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Glucagel™ (level 3) breads. 
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APPENDIXVID 

b) BBG level 1 baked d) BBG level3 baked 

Figure A Vlll.l SEMs1 (x 1 000) of baked control and BBG fibre fraction breads. 
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b) Glucagel™ levell baked d) Glucagel™ level 3 baked 

Figure A Vlll.2 SEMs1 (x 1000) of baked control and Glucagel™ breads. 
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b) BBG level 1 in vitro digest d) BBG level 3 in vitro digest 

Figure A VIII.3 SEMs 1 (x 1 000) of in vitro digested control and BBG fibre fraction breads. 
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b) Glucagel™ level 1 in vitro digest d) Glucagel™ level 3 in vitro digest 

Figure A VIII.4 SEMs1 (x 1000) of in vitro digested control and Glucagel™ breads. 
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Figure AX.l In vitro starch digestibility (RSR) of control, BBG fibre fraction and 
Glucagel™ (level 3) pastas. 
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a) control raw 

b) Glucagel™ level 1 raw d) Glucagel™ level 3 raw 

c) Glucagel™ level 2 raw e) Glucagel™ level4 raw 

Figure AXI.2 SEMs1 (x 1000) of raw control and Glucagel™ pastas. 
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a) control cooked 

b) BBG level 1 cooked d) BBG level 3 cooked 

c) BBG level 2 cooked e) BBG level 4 cooked 

Figure AXI.3 SEMs1 (x 1000) of cooked control and BBG fibre fraction pastas. 

175 



Appendices Appendix xi 

b) Glucagel™ level 1 cooked d) Glucagel™ level 3 cooked 

c) Glucagel™ level2 cooked e) Glucagel™ level4 cooked 

Figure AXI.4 SEMs 1 (x 1 000) of cooked control and Glucagel™ pastas. 
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a) control in vitro digest 

d) BBG level 3 in vitro digest 

c) BBG level 2 in vitro digest e) BBG level 4 in vitro digest 

Figure AXI.S SEMs 1 (x 1 000) of in vitro digested control and BBG fibre fraction pastas. 
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a) control in vitro digest 

• #, 
b) Glucagel™ level 1 in vitro digest d) Glucagel™ level 3 in vitro digest 

c) Glucagel™ level 2 in vitro digest e) Glucagel™ level 4 in vitro digest 

Figure AXI.6 SEMs 1 (x 1 000) of in vitro digested control and Glucagel™ pastas. 
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Abstract 

The health-related importance of dietary fibre. as part of a balanced diet. has been recognised for decade . More recently, soluble fibre such 
as (I -+ 3.1 -+ 4)-B-o-glucan (referred to as B-glucan). has been shown to have effects on the glycaemic. insulin. and cholesterol responses to 
foods. Cereals (such a barley and oats) are good source for these functional ingredients. with studies clearly demonstrating their potential 
nutritional benefits. At the same rime research has indicated that the efficacy of B-glucans may be related to extraction procedure . and factors 
such as dose, molecular weight and fine structure. and rheological characteristics of extracted and native B-glucans. Concurrently. research 
has focussed on the inclusion of B-glucans into both cereal and dairy-based food systems. illustrating their potential as ingredients to 
manipulate food structure and texture. Thus. B-glucans (from barley, oat. and other cereals) should be regarded as important functional 
ingredients for the cereal foods industry. 
© 2005 Elsevier Ltd. All rights re erved. 
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1. Introduction 

Cereals are an important economic commodity worldwide. 
ln the UK, the cereal harvest is predominated by wheat 

( 15 million tonnes) , with barley (7.8 million tonnes) 
representing the second most important cereal crop, and oats 

(0.6 million tonnes) being a relatively minor crop (HGCA, 
1999). The (I-+ 3, I -+ 4)-13-o-glucan, commonly referred to 
as 13-glucan, content of cereals ranges from I% in wheat 
grains, to 3-7% in oats, and 5-11 % in barley (Skendi et al. , 

2003). Thus, barley grains are a rich source of 13-glucans. 
Barley belongs to the genus Hordeum and can be 

considered as one of the most ancient crop plants, with its 

Abbre••iations: DP. degree of polymerisation : FDA. US Food and Drug 
Administration: Gl. glycaemic index: 13-glucan. ( 1 ..... 3.1 -4)-(3-o-glucan: 
HDL. high density lipoprotein: HWM. high molecular weight; LDL. low 
density lipoprotein: LWM. low molecular weight; MW. molecular weight. 
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c ulti vation being mentioned in the Bible. Archaeological 
s tudies have revealed two-rowed barley c ulti vation by about 
8000 BC in Iran, with six-rowed barley appearing at 
approximately 6000 BC (Bothmer and Jacobsen. 1985). 
World production of barley in 200012003 was approxi­
mately 134 million metric tonnes. By far the leading barley 
producer is the EU (51.659 million tonnes) followed by the 
Russian Federation (25.0 13 million tonnes), and Canada 
( 13.172 million tonnes). 

The principal u es of barley are as feed for animals, in the 
form of barley meal , and as grain for malting and brewing in 
the manufacture of beer and whisky. Much research has 
focussed on the role of endosperm components in 
determining the mailing potential of barley (Bamforth 
et al.. 1979; Bathgate et al., 1974; Brennan et al., l996a, 
1997; Edney and Mather, 2004; Henry and Blakeney, 1986; 
Molina-Cano et al., 2002; Palmer, 1987). However, the 
barley crop may be considered relatively under-utilised with 
regard to its potential use as an ingredient in processed 
human foods. Recent attention has focussed on the potential 
use of 13-glucan from barley and other cereals as a functional 
food ingredient (Malkki, 2004; Trepel , 2004). 

Oats (genus Avena), are generally regarded as a minor 
cereal crop when considered in terms of grain produced 
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annually, or areas sown for production. Traditionally, most 
of the crop has .been used as animal feed. However, UK 
figures on the usage of oats (HGCA, 1999) sees slightly 
more of the crop (44%) going towards human and industrial 
uses, compared to the animal feed sector (38%). Oats have 
been linked to the health claims attributed to the use of 
!3-glucans (Weightman et al., 2002, 2004) and are a valuable 
source of !3-glucans. 

The purpose of this review is to explore some of the 
applications, and potential nutritional advantages, of using 
cereal !3-glucans (predominately those in barley grain) as 
functional food ingredients. 

2. Occurrence of 13-glucans in barley and oat grain 

!3-Glucans (( I--+ 3, I --+4)-13-o-glucans) are the predomi­
nant components of cell walls of cereal grains such as barley 
and oats (Bacic and Stone, 1981 a ,b; Beresford and Stone, 
1983; Buckeridge et al., 2004; Wood et al., 1983; Wood, 
1993). Traditionally there have been concerns with the use 
of barley in animal feeds due to the negative effect that 
!3-glucans, in conjunction with other non-starch polysac­
charides, have on nutrient uptake and body weight gain. 
Work conducted on poultry has clearly illustrated the effect 
these components have on reducing feed digestibility, 
metabolisable energy (Annison, 1991 ; Bergh et al. , 1999; 
Classen, 1996; Jeroch and Danicke, 1995), and the 
occurrence of other negative consequences such as sticky 
droppings (Choct et al. , 1999). However, most of these 
problems can be alleviated by the use of (I --+ 3, l--+ 4)-!3-o­
glucan hydrolysing enzymes in poultry feed (Aimirall et al. , 
1995; Fuente et al., 1998; Von Wettstein et al., 2003). 
Similar observations have been made in relation to the 
digestibility of cereal feeds in the pig (Baidoo and Liu, 
1998; Knudsen and Canibe, 2000; Leterme et al. , 2000; 
More! et al., 2003). Thus the perceived anti-nutritional 
aspects of !3-glucans in feed material can be minimised by 
the addition of specific enzymes to diet formulations. 

Additionally, levels of !3-glucan have long been regarded 
as one of the most influential characteristics in relation to 
mailing potential and brewing yield in barley, regulating the 
rate of endosperrn modification (Bacic and Stone, 1980, 
1981 a,b; Bamforth and Martin, 1983; Boume et al., 1982; 
Brennan et al. , 1998; Edney and Mather, 2004) and 
ultimately the viscosity of wort during brewing (Boume 
and Pierce, 1970). Levels of !3-glucan can vary dramatically 
between varieties, but usually range from 2 to 6% dry 
weight (Bamforth, 1981; Zhang et al., 2002). Despite their 
relatively small contribution to the total weight of the grain, 
it is clear that 13-glucans have a disproportionate impact on 
the technology of barley utilisation and on the nutritional 
value of the grain. 

Genetic and environmental factors impact on !3-glucan 
content of barley grain (Knuckles et al., 1992; Savin et al., 
1997; Yoon et al. , 1995; Zhang et al. , 2002). Although 

the relative contributions of these factors cannot be 
precisely quantified, there is a general agreement that the 
genetic background of the barley is more important than 
environmental conditions as a determinant of the final 
!3-glucan content of the grain (Gill et al. , 1982; Henry and 
Blakeney, 1986; Morgan et al., 1983; Stuart et al., 1988). 
For instance, Lehtonen and Ailasalo ( 1987) reported that 
two-row barley genotypes had higher !3-glucan content than 
six-row barley. Studies have also indicated that waxy barley 
cultivars, with up to I 00% amylopectin, have higher levels 
of !3-glucans in their endosperrn than non-waxy varieties 
(Uirich et al., 1986; Yoon et al. , 1995). 

One of the major environmental factors that influence 
!3-glucan levels appears to be the availability of water during 
grain maturation. Dry conditions (heat stress) before harvest 
have been shown to result in high !3-glucan levels 
(Bendelow, 1975), with a positive relationship between 
!3-glucan content and final grain weight (Savin and 
Molina-Cano, 200 I). However, other experiments show a 
reduction in grain !3-glucans related to heat stress within the 
plant during grain fill (Savin et al., 1997; Savin and Nicolas, 
1996). This observation agrees with field studies. on the 
effect of drought conditions on !3-glucan content of the grain 
(Cotes et al. , 1991 ; Stuart et al. , 1988). Conversely, moist 
conditions have been reported to cause a decrease in 
!3-glucan levels (Aman et al., 1989; Stuart et al., 1988), so 
that increased levels of irrigation reduce !3-glucan content of 
the grain (Guler, 2003). This may either be related to the fact 
that final grain fill is adversely affected in drought 
conditions through impairment of starch synthesis and 
deposition, or because !3-glucan synthesis may be enhanced 
in dry conditions (Munck et al. , 2004). 

More recent research by Weightman et al. (2004) 
concentrated on the effect of nitrogen fertiliser treatments 
on the levels of !3-glucan in oats. A positive correlation 
between protem and 13-glucan content of the grain suggested 
that !3-glucan deposition was associated with protein 
accumulation. Doehlert et al. (2001) examined the geno­
typic and environmental effects of grain yield, and 
composition, of oat lines grown in North Dakota over a 3 
year period. In this case the authors found that although a 
positive correlation was established between starch content 
and !3-glucan levels within the grain , correlations between 
13-glucan and protein content of the grain were not 
homogenous across genotypes. A negative interaction was 
found between 13-glucan levels in oats and both crop yield 
and test weight of the grain. Peterson et al. ( 1995), 
examining the agronomic quality of a number of oat lines, 
found that many of the correlations between !3-glucan 
content and agronomic quality characteristics of the grain, 
were inconsistent between the different oat lines. As such, 
the relationship between !3-glucan levels in cereal grains and 
grain quality, or yield parameters, appear to vary greatly 
depending upon genetic. background of the cereal line being 
examined. 
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3. Characteristics of cereal (1 --+ 3, 1 --+ 4)-13-o-glucans 

The non-starch polysaccharides found in mature barley 
grain include the cell wall ( I --+ 4)-P-o-glucan (cellulose) 
( 1--+3, 1--+ 4)-P-o-glucan, arabinoxylan and glucomannan 
and the cytoplasmic fructans (lzydorczyk et al., 2003). The 
endosperm cell wall P-glucan compone nts are linear 
molecules with approximately 30% (I --+ 3)- and 70% 
( 1--+ 4)-linkages (Bacic and Stone, 198 l a; Fincher, 1975; 
Forre t and Wainwright, 1977). The compo ition of the 
walls of the starchy endosperm and the aleurone, both 
endosperm ti ssue , are qualitatively similar, but quantitat­
ively di fferent. Thus, walls of the tarchy endosperm of 
barley consi t of about 70% f3-glucan and 20% arabinoxylan 
whereas the a leurone walls contain 26% P-glucan and 67% 
arabinoxylan, both .have similar amounts o f glucomannan 
and cellulose (Bacic and Stone, 198 1 a,b: Wood et al., 1983; 
Woodward et al. , 1983, 1988). 

ln the linear P-glucan chain the ( I -+ 3)-linkages occur 
singly whereas the ( 1--+4)-linkages are found mo tly in 
equences of 2 or 3 (Skendi et al., 2003), but equences of 

up to I --+4 have been reported (Cui et al. , 2000). Hence the 
molecule may be regarded as being compo. ed of ( 13)-P­
linked cellotriosyl and cellotetraosyl. units (Wood, 200 I). 
The application of high perfo rmance anion-exchange 
chromatography to the separation of the oligo accharide 
release by spec ific hydrolysis has aided the analysis of the 
fine structure of ,6-glucans from different botanical sources. 
Such differences have been seen between isolated 13-glucan 
oligosaccharides from oats, barley and other cereals. In 
particular, the ratio between cellotrio yl and cellotetraosyl 
units is higher in barley than oats (Cui e t al. , 2000; Tosh 
et al., 2004a: Wood et al. , 1994b). Molecular weight (MW) 
ranges reported for P-glucans al o show variability between 
cereals, with oat P-glucans generall y hav ing a higher 
upper MW (0.065-3 X I 06 g/mol) compared to barley 
(0. 15-2.5 X 106 g/mol) (Beer et al., 1997a,b; lrakli et al. , 
2004; Lazaridou et al., 2003, 2004; Wood et al., 199 1 ). The 
rheological properties of appear to depend on a number of 
factors inc luding the ability of 13-glucan chains to associate, 
determined by the proportion of cellotriosyllcellotetraosyl 
units and their arrangement (Cui and Wood, 2000; lzawa 
et al., 1993; To h et al., 2004a,b) and by the degree of 
polymerisation (DP) and hence the MW of the 13-glucan 
(Tosh et a l. , 2004b: Wood, 2001). 

Factors which affect the rheological characteri tic of 
P-glucans have obvious li nks to their viscosity behaviour 
(either as native forms or as extracts in formulated foods), 
and their potenti al effects on food tructure, texture and 
nutritional properties. For instance, Tosh e t al. (2004a) 
showed that differences in the ratio of cellotriosyll 
cellotetraosyl un its affected the gelation characteristics 
and e lasticity of P-g lucan systems. Indeed. reduced 
olubility of 13-glucans has been attributed higher ratios of 

cellotrio y l/cellotetraosyl units (Skendi et al., 2003). 

Lazaridou and Biliaderis (2004) demon !rated that the 
storage modulus (G') of P-glucan cryogels increa ed with 
decreasing MW, and hence a reduced gelation time and 
increased gelation rate were observed (Lazaridou et al., 
2003 and 2004a). Similarly, Vaikousi e t al. (2004) 
investigated the solution flow behaviour and gelling 
properties o f barley P-glucans. Their work on low molecular 
weight (LWM) P-glucans illustrated that gelation time was 
decreased for 13-glucan gels from LMW source , and that gels 
made from high molecular weight (HMW) P-glucan sources 
exhibited increased yie ld stress and reduced storage modulus 
(G' ma>J values. Similar findings have been reported for 
water-extractable P-glucans from Greek barley culti vars 
(Irakli et al., 2004). Thu . because the viscoelastic charac­
teristics of P-glucan gel are related to the MW of the i olated 
fractions, differences in MW observed between barley and 
oat P-g lucans, and among P-glucans extracted from di fferent 
culti vars of barley (lzydorczyk et al.. 1998a,b) and oats 
(Autio et a l. , 1992; Skendi et al., 2003) need to be considered 
in re lation to their potential behaviour in food systems. 

4. Extraction procedures 

Barley and oat P-glucans, together with other non-starch 
polysaccharides, occur in the walls of the endosperm cells 
which enclo e starch, matrix prote in and lipid reserves of 
the grain . Thus their recovery is not straightforward. The 
study of the physicochemical properties of isolated P-glucan 
fractions require extraction procedure which optimi e 
y ie ld, purity and retained integrity of the P-glucan molecule. 
In ex traction procedures to obtain a potential food 
ingredient these considerations have to be balanced and a 
compromi e reached. For instance, the MW profile of 
13-glucan can be innuenced by the method of extraction 
used (Tosh et al., 2003; Wang e t al. , 2003). 

Muc h research has foc ussed on the effects o f 
isolation and purification technique on the tructural, 
physiochemical and physiological properties of barley 
13-glucan (Bhatty. 1993, 1995; Burkus and Temelli , 1998; 
Fincher, 1975; Klopfen tein and Hoseney, 1987; Temelli, 
1997; Woodward et al., 1983. 1988). 

The extraction of P-glucans from cereal g rains generally 
involves three ba ic tep : ( I) inactivation of endogenous 
enzymes, (2) extraction of the P-glucan , (3) precipitation of 
the P-glucan . 

Endogenou P-glL•canases, need to be inactivated ince 
they are responsible for P-glucan degradation leading to a 
decrease in the molecular weight, and thereby the functional 
properties of the extracted 13-glucan (Irakli et al.. 2004 ). 
Inacti vation i usually achieved by refluxing the barley with 
aqueous ethanol or treating the barley flour with dilute 
aqueous ethanol at temperatures above 60 °C. Additionally, 
as starch po lymers can be eo-extracted with the P-glucan 
when the temperature of extraction rises above 60 °C 
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(gelatinisation temperature), care must therefo re be taken to 
remove starch components from the extracts. 

Key ex traction methodologies for barley and oat 
13-glucans were developed by Wood et al. ( 1977). The 
researchers assessed the effects o f particle size, temperature, 
pH and ionic strength on 13-glucan yield on the laboratory 
scale, and prepared an oat gum fraction (from oat bran) on a 
pilot plant scale by extracting hot 75% ethanol-inactivated 
oat bran (outer starchy endosperm and overly ing a leurone 
and pericarp- eed coat) with a sodium carbonate solution at 
pH I 0 to give a preparation containing 78% 13-glucan 
(Wood e t al. , 1989). Although this simple extraction proces 
was ucce sful in generating 13-glucan material from cereals, 
McCleary ( 1988) showed that sequential water extractions 
at 40, 65, and 95 °C, increased the extraction rate o f barley 
13-glucans to 90%, thus enabling an increase in overall yield. 
Different extractants were investigated by Bhatty ( 1993) 
who showed that optimum recovery barley and oat gums 
with retention of viscosity characteristics could be obtained 
using I M NaOH. However the extract was contaminated 
wi th considerable amounts of starch and prote in, resulting in 
an impure product. To counteract th is, Saulnier et al. ( 1994) 
used a hot water extraction procedure in the presence of 
thermostable alpha-amylase to minimi e the contamination 
from larch, and to optimise the puri fication of the 13-glucan 
materi al. 

One of the major limiting factors to the industrial 
utilisation of these extraction techniques by the food 
industry i their cost. Thus. pure preparations of 13-glucans 
have often been ignored as potential functional food 
ingredients, mainly due to the re lati vely inexpensive use 
of barley or oat flour fractions. This in turn has meant that 
the actual characteristics of these products in food systems 
are often variable due to fluctuations in protein o r starch 
composition of the flour fractions. Hence subsequent 
viscosity, structura l and nutritional effects on foods have 
to be considered in relation to the nature of the 13-glucan 
extract, or the composition of the flour material used . 

Jn vestigation of different organic solvents as precipitants 
of 13-glucans (Beer et al., 1996; Morgan and Ofman, 1998) 
has hown that the structural conformation, MW, and hence 
solubility , of the precipitated 13-glucan is affected by the 
extraction solvent. To offset these potential negati ve factor , 
whilst endeavouring to produce a more co t effective 
extraction process, M organ and Ofman ( 1998) developed 
a hot water extraction procedure with recovery of the 
13-glucan by freezing and thawing of the ex tract. The 
resulting product ('Giucagel"'" ) comained be tween 89 and 
94% 13-glucan, depending on the duration of the initial 
extraction and is one 13-glucan preparation commercially 
available as a food ingredient. 

The temperature and pH of the extraction process also 
affects the recovery of 13-glucans. Temelli ( 1997) demon­
strated that 13-glucan extraction increa ed with temperature. 
A further evaluation of the effect of extraction conditions on 
yield, composition and viscosity stability o f barley gum wa 

conducted by Burkus and Temelli ( 1998) using regular 
barley (Condor) and a waxy cultivar blend. Extraction 
conditions were evaluated including an extraction wi th no 
additional treatment, boiling of the extract prior refluxing of 
flour with 70% ethanol, and treatment of extract with 
thermostable alpha-amylase. The highest 13-glucan purity 
was achieved with a boiled Condor extract at pH 7 (8 1.3% 
yie ld), closely fo llowed by refluxed waxy barley extracted 
at pH 8 and amylase treated (79.3% yield). Refluxed gums 
followed by puri fication at pH 7, had the most stable 
viscosity. Symons and Brennan (2004a) also compared 
extraction procedures showing that extraction with thermo­
stable alpha-amyla e yie lded the purest 13-glucan fraction. 

A previously mentioned, the nature of the extraction 
procedure can have a profound effect on the molecular 
weight, which in turn affects its functional behaviour. 
Carr et al. ( 1990) observed that the use of NaOH for 
complete extraction resulted in partial depo lymerisation of 
the 13-glucan. Although Knuckles et al. ( 1997a) included 
sodium borohydride in NaOH extraction at 65 °C to prevent 
a lkaline depolymeri sation, the MW o f the ex tracted 
13-glucan wa lower than with water at 100 °C. Beer et al. 
( 1997a) also ob erved that the MW of 13-glucan ex tracted 
from oats and barley with NaOH was lower than that 
extracted with hot water. Knuckles et al. ( 1997a) also 
demonstrated that sequential extractions resulted in a 
decrease in the molecular weight of the 13-glucan in the 
extract. However, the temperature used for equential water 
extractions has also been shown to affect MW. the ratio of 
( 1-+4) to ( 1-+3) linkages, and the amount of cellulosic 
regions on the 13-glucan chain (Stor ley et al., 2003). Care 
must therefore be taken to optimise the yield and rheological 
characteri stics and avoid depolymersiation during extrac­
tion of 13-glucan components. 

5. The role of 13-glucans as components of dietary fibre 

Much of the more recent interest in the use of 13-glucans 
in food system ha stemmed from their use as a functional 
dietary fibre. The term dietary fibre is used to collectively 
describe a group of substances in plant materi al , which res ist 
human digesti ve enzymes. Official definitions of d ietary 
fibre have been made by the Dietary Fibre Technical 
Committee of the American Association of Cereal Chemists 
AACC (2000, 200 I, 2003). 

Potential hea lth benefits of d ietary fibre include, 
reduction of bowel transit time (Feldheim and Wisker, 
2000), prevention of constipation, reduction in risk of 
colorectal cancer (Bingham, 1990; Faivre and Bonithon­
Kopp, 1999; Hill , 1997), lowering of blood chole terol and 
regulation of blood glucose levels for diabete management 
(Bornet et al., 1987: Frost et al., 1999: Gallagher et al. , 
1993; German e t al.. 1996), production of hort chain fauy 
acid (Karppinen et al., 2000: Yela quez et al., 2000; 
Wisker e t al.. 2000), promotion of the growth of beneficial 
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gut microflora (i.e. as a prebiotic) (Critlenden et al., 2002; 
Tungland, 2003). 

Research into dietary fibre has broadly examined the 
effects of soluble and insoluble fractions as purified fibre, or 
in naturally fibre-rich whole foods. High fibre foods have 
been related to the modulation of glycaemic response, on 
the basis of studies by Jenkins et al. ( 1976-1978) using both 
purified fibre , and naturally fibre-rich foods (Jenkins et al., 
1980; Tru well, 2002; Tudorica et al., 2002). In particular, 
foods high in soluble dietary fibre have been hown to have 
a positive effect on reducing hyperglycaemia and hyper­
insulinaemia, in relation to the control of diabetes (Brennan 
and Tudorica, 2003; Li et al., 2003a) and the reduction of 
risk factors for degenerative diseases, such a obe ity 
(Burley et al., 1987), hyperlipidaemia (Jenkins et al., 1985; 
Maki et al. , 2003;Yang et al., 2003), cardiovascular disease 
(Keogh et al., 2003), cancer (Sier et al., 2004) and 
hyperten ion (Anderson, 1983, 1990). 

Many attempts have been made to clarify the mechan­
isms by which dietary fibre and ~-glucans have these effects. 
The potential reduction of glycaemic response fo llowing 
ingestion of dietary fibre has led to proposals which 
implicate: the amount and quality of fibre (Nishimune 
et al., 1991 ; Wolever, 1990); increased intrin ic vi co ity of 
the food in combination with fluids (Mourot et al., 1988) and 
hence the gastrointe tinal environment; maintenance of 
physical integrity of the food material (O'Dea et al., 1980) 
and incomplete starch gelatini ation (Brennan et al. , 1996b; 
Ross et al., 1987; Tudorica et al., 2002). The cholesterol­
lowering potential of cereal fibre i con idered to result from 
effects manifest in the upper ga trointestinaltract. These in 
turn may be related to the ability of cereal fibre to fonn a 
gel-like network and alter gastrointestinal visco. ity (Rei mer 
et al. , 2000; Thorbum et al.. 1983). 

6. Physiological effects of 13-glucan enrichment 
in cereal food 

A small number of studies have indicated that ~-glucans 
may have a preventative role in the aetiology of colorectal 
cancer. Part of this response may be due to effects of 
~-glucan in increasing caecal and colon mass through 
increasing the resistance of starch to digestion, and hence 
altering the amount of fennentable material reaching the 
cecum. Higher levels of fermentable material in the caecum 
will in turn lead to increa ed short chain fatty acid (SCFA) 
levels in the caecal contents (Dongowski et al.. 2002). Thi 
' bulking' effect of dietary fibre may be a consequence of 
increa ed water holding capacity of fibre rich foods. The 
effect of ~-glucans. in the form of oat bran and gum. in 
promoting gastric emptying due to the rheological charac­
teri tics of the ~-glucan (Johansen et al., 1996, 1997) may 
help explain some of these event . Other notable, but 
less well documented effects of ~-glucans include 
the dimini hed ab orption of nutrients (Edwards et al.. 

1988; Lund et al., 1989), prolonged postprandjal satiety 
(Anderson, 1990; Bourdon et al., 1999) and increased stool 
bulk and relief of constipation (Hojgaard et al., 1980; Odes 
et al., 1993; Valle-Jones, 1985). 

The most widely documented nutritional benefit of 
~-glucan in foods is the flattening of the po !prandial blood 
glucose and insuJjn ri es. Both barley (Hallfrisch et al., 2003; 
Li et al., 2003a,b) and oat ~-glucans (Poyhonen, 2004; Jenk.ins 
et al.. 2002; Wood et al., 1990, 1994a) produce this response. 
Likewise, both barley (Delaney et al., 2003; Li et al., 2003a; 
Smith et al., 2004; Y ang et al., 2003), and oat (Beer et al., 1995; 
Braaten et al., 1994; Kang et al., 2003; Kerckholfs et al. , 2003) 
~-gl ucans have been hown to reduce erum cholesterol level . 
Attempts have been made to ascertain if the botanical ource 
of the f3-glucan affects its cholesterol lowering capacity. In 
particular, the study of Delaney et al. (2003) compared the 
cholesterol lowering effect of ~-glucans from barley and 
oats using a hamster model sy tern. Although the diets rich in 
oat or barley ~-glucan significantly reduced the chole terol 
levels of the hamsters, no significant difference was 
observed between the two experimental diets. leading to a 
conclusion that the cholesterol-lowering potency of ~-glucan 
is not dependent on botanical source. Similar ob ervations 
were recorded by Hallfrisch et al. (2003) in a comparison of the 
effect of barley and oat ~-glucan diets on glucose and insulin 
responses in humans. 

In part, these physiological properties appear to be 
related to the rheological characteristics of ~-glucan. Wood 
et al. ( 1994a), investigating the effect of varying dose and 
MW of oat ~-glucan administered in a beverage, demon­
strated an inverse relationship between the vi cosity of the 
beverage and the magnitude of both blood glucose or blood 
insulin levels. Variations in viscosity accounted for 79-96% 
of the modifications in glucose and insulin responses. Thus, 
physiological response -probably through effects on gut 
content vi cosity-appear to be affected by solution 
concentration and the molecular weight of ~-glucan . 
Further tudies by W ood et al. (1994b) indicated that the 
glycaemic response of fibre-rich food was inversely related 
to visco ity (dependant on concentration and molecular 
weight). Tappy et al. ( 1996) al o found that inclusion of oat 
~-glucan into breakfast cereals could reduce the postpran­
dial glycaemic response by up to 50%. and that at low levels 
(below 5%) this appeared to be dose responsive. Level 
above 5% did not show large reductions in the glycaemic 
response. possibly indicating a saturation point. This may be 
an important when considering the appropriate levels of 
~-glucan inclu ion in food systems. 

However, the effect of ~-glucan on the structure of the 
food hould not be overlooked. It i possible that the 
~-glucan can modify the tructure of foods in a simj lar way 
to other soluble dietary fibre (Brennan et al. , 1996b; 
Tudorica et al. , 2002). This in turn could affect the rate of 
food degradation and the susceptibility of the Larch 
component of the food to amylolysis. Thus it is likely that 
a combination of viscosity altering and structure altering 
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properties of 13-glucans are involved in the neutraceutical 
effects of 13-glucan rich foods. 

There has been considerable interest on the level of 
13-glucan supplement needed to affect a significant nutri­
tional benefit. Most studies have been on the effectiveness of 
dietary fibre or oat 13-glucan in re lation to food labelling 
claims through the US Food and Drug Administration 
(FDA). Accordingly. the FDA has acknowledged nutritional 
claims that the use of dietary fibres (i ncluding oat 13-glucan 
material) reduces the glycaemic and cholesterol responses 
of individuals. Current recommendations suggest an intake 
of 20-40 g of dietary fibre per day (DeVries, 200 1). More 
specifically, Behall et al. ( 1997) reported that 2. 1 g of 
13-glucan per day reduced total cholesterol levels by 9.5%. 
whilst Jenkins et al. (2002) indicate that l g of 13-glucan per 
50 g of ingested carbohydrates can reduce the glycaemic 
index of food by 4 units. The FDA have adopted a 
recommendation of 3 g per day of 13-glucan as having a 
nutritional affect, this as a component of the recommended 
30-35 g of dietary fibre per day as advised by the American 
Association of Dieticians (FDA. 1997). 

7. Potential use of 13-glucaos in cereal food products 

The potential nutritional benefits of 13-glucans in food 
systems have been illustrated by studies using a number of 
cereal food commodities. Hallfrisch and Behall ( 1997) 
reported that an oat 13-glucan concentrate ('Oattrim "'") 
reduced glycaemic responses in men and women. More 
recent studies by Hallfrisch et al. (2003) have evaluated the 
use of 13-glucans isolated from barley ('NutrimX"") and 
oats, and their corresponding effects upon plasma glucose 
and insulin responses in non-diabetic adults, concluding that 
barley 13-glucans were more effective in the regulation of 
glucose and insulin responses compared to oat 13-glucans. 

Pasta is one food product to which 13-glucans have been 
successfully included as a functional ingredient. Yokoyama 
et al. ( 1997) compared blood glucose and insulin responses 
of healthy individuals following the ingestion of a control 
durum wheat pasta ( l 00 g of available carbohydrate and 5 g 
of total dietary fibre) to that of a pasta sample with added 
barley 13-glucan ( l 00 g available carbohydrate, 30 g of 
dietary fibre and 12 g of 13-glucan). Postprandia l blood 
glucose and insulin responses were significantly reduced 
following ingestion of the pasta enriched with barley flour 
added to durum wheat flour. The authors attributed this 
reduction in the glycaemic response to the incorporation of 
13-glucan. Similar findings have been reported by Knuckles 
et al. ( l 997b). It is probable that the reduction in glycaemic 
response is associated with both the higher 13-glucan. and 
increased total dietary fibre content of the experimental 
pasta samples. However, the exact role of 13-glucan in pasta 
may need further investigation. 

13-Glucans have also been u ed in other cereal 
based food systems such as bread. Cavallero et al. 

(2002) incorporated barley 13-glucan rich fractions into 
wheat bread. Four breads were produced with 100% 
bread wheat (total 13-glucan 0 .1: soluble 13-glucan 0.1), 
50% bread wheat flour and 50% barley flour (total 
13-glucan 2.4: soluble 13-glucan 2.0), 50% bread wheat 
flour and 50% sieved barley fraction (total 13-glucan 4.2: 
soluble 13-glucan 2.8), and 50% bread wheat flour and 
50% water-soluble barley fraction (total 13-glucan 6.3: 
soluble 13-glucan 5.7). Eight adults were fed test meals 
of each of the four breads and glycaemic indexes 
calculated from finger prick capillary tests. A linear 
decrease in glycaemic index was assoc iated with 
increasing 13-glucan concentrations. The addition of the 
50% barley flour in the bread showed a reduction of 
glycaemic index from the control bread (Gls = 85.42 
and 89.49, respecti vely). However, only the bread 
containing the water soluble fraction produced a 
significantly reduced g lycaemic index (GT = 69 .67) 
compared to the control breads flour (GI = 89.49). The 
authors concluded that it was the 13-glucan level in the 
bread (notably the increased oluble 13-glucan level) 
that were respon ible for the reduction in glycaemic 
index, and that thi s did not a result from impaired 
food degradation and amy lolysis, but through the 
effect of 13-glucan on digesta viscosity and glucose 
absorption. 

More recently, Symons and Brennan (2004b) enriched 
breads using purified barley 13-glucan fractions (at 2.5 and 
5% replacement leve ls). and subjected these to an in vitro 
digestion process. Significant reductions in Larch degra­
dation and sugar re lea e were demonstrated proportional to 
the amount of 13-glucan incorporated into the breads. Since 
this procedure was not reliant on glucose absorption, it 
would appear that the glycaemic reducing effect of 13-glucan 
may also be related to the way the 13-glucan is incorporated 
into the structure of the bread and may impede starch 
swelling and ubsequent susceptibility to enzymic 
degradation. 

The abi lity of 13-glucans to influence the rate of starch 
degradation and hence the glycaemic index of foods has 
obvious benefits with regard to obesity and diabetes. 
Jenkins et al. (2002) observed the depress ion of 
glycaemic index by high levels of 13-glucan fibre in 
two functional foods tested in type 2 diabetic outpatients. 
Volunteers were randomly given 50 g portions of white 
bread , commercial oat bran breakfast cereal (4.4% 
13-glucans) a prototype 13-glucan enriched breakfast cereal 
and a 13-glucan breakfast bar (8. 1 and 6 .5% 13-glucan, 
respectively). The glycaemic indices of those fed the 
prototype 13-glucan enriched cereal (GI =52) and bar 
(Gl = 43) were significantly lower than the indice of 
those fed commercial oat bran breakfast cereal (Gl = 80) 
and white bread (GI = I 00). Thus, blood glucose levels of 
diabetic and pre-diabe tic individuals can be moderated by 
using 13-glucan rich foods. 
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8. Hypocholesterolemic properties of [3-glucans 

In addition to the documented effect of 13-glucans on the 
glycaemic index of foods, considerable research effort has 
focussed on the potential benefit of 13-glucan as a cholesterol 
reducing agent. Kerckhoffs et al. (2003) investigated the 
effects of 13-glucans from oat bran added to bread and 
cookies and orange juice, consumed by mildly hypercho­
lesterolaemic subjects. De pite consumption of the 13-glucan 
enriched bread and cookies (daily intake 13-glucan 5.9 g) 
there was no s ignificant change in LDL cholesterol. In 
contrast, consumption of the orange juice containing 5 g 
re ulted in decreases in LDL cholesterol by 6.7% and in the 
ratio of total to HDL cholesterol by 5.4% compared with 
other drinks. In contrast to the previously discussed studie 
(Beer et al., 1995; Braaten et al ., 1994; Delaney et al., 2003; 
Kang et al., 2003; Kerckhoffs et al., 2003; Li et al., 2003a: 
Smith et al., 2004; Yang et al., 2003) and an investigation by 
Keogh et al. (2003) failed to show a significant serum 
cholesterol lowering response to a high 13-glucan barley 
supplement. Such variability in response may in part be due 
to a reduction in the efficacy of the 13-glucan following 
processing. Thus, the mechanisms by which 13-glucans 
lower cholesterol are still not clearly defined (Kritchevsky, 
1997) although the role of viscosity alteration in digesta is 
important (Jensen et al., 1993) in that increases in intestinal 
vi eo ity may decrease the absorption of cholesterol and the 
reabsorption of bile acids. 

As mentioned previously, the studies investigating the 
hypocholesterolaemic effects of barley 13-glucans have 
tended to be conducted in animal models. For example, 
tudies of the effects of waxy hull-les barley in chicks by 

Fade! et al. ( 1987). Martinez et al. ( 1991), Newman et al. 
( 1991 , 1992) and Wang et al. ( 1992), all reported reduction 
in HDL or LDL cholesterol. Similarly, Ranhotra et al. ( 1991 ) 
found significantly lower serum cholesterol in rat fed diet 
containing bran or ftour from hull-less waxy barley with the 
magnitude of the reductions being related to the amount of 
soluble fibre in each fraction. More recently Yang et al. 
(2003) suggested a molecular basis for the hypocholester­
olaemic effects of 13-glucans. Using a rat model, refined 
13-glucan and waxy barley were incorporated into a diet for a 
2 week period. Both total cholesterol and LDL-cholesterol 
were reduced in the 13-glucan diets compared to a control 
group, which was as ociated with up-regulation in the 
activity of cholesterol 7 alpha-hydroxylase (CYP7 A I ), an 
enzyme a sociated with the regulation of the pathway 
through which chole terol i converted into bile acid . 
More research i required to elucidate the effect of 13-g lucan 
on enzyme and immuno-regulation. 

9. Potential use of [3-glucans in dairy food products 

The increa ed interest in the u e of in foods i. not solely 
related to beneficial nutritional properties, but also to 

optimisation of processing of foods containing added 
13-glucan. A good example of the latter is the u e of 
13-glucans in the dairy industry. Recent research ha 
focussed on the use of soluble dietary fibre, and in particular 
13-glucans, in the manufacture of low-fat ice creams and 
yoghurts (Brennan et al.. 2002). Incorporation of 13-glucans, 
with other so luble dietary fibre, into low fat dairy products 
can make their mouthfeel , scoopability and sensory proper­
tie resemble those of full-fat products. Similarly, 13-glucan 
incorporation into low fat cheese curds has beneficial effects 
on their gelation and rheological characteri tics (Tudorica 
et al., 2004). The addition of 13-glucan solutions to milk 
modifies curd formation, including reducing curd cutting 
time and increasing curd yields (Tudorica et al.. 2004). 
These effects appear to be related to the gelling capacity of 
13-glucan and their abi lity to form a highly structured and 
elastic ea ein-protein-glucan matrix. 

However, when 13-glucan are incorporated into a 
manufactured cheese system, the texture and mouthfeel of 
the cheese may be altered deleteriously. Konuklar et al. 
(2004) demonstrated that the incorporation of the 13-glucan-
tarch-rich material (in the fom1 of 'Nutrim..,. ') ignificantly 

reduced the firmness of cheddar cheeses. re ulting in a 
starchy and paste-like product. This reduction in cheese 
hardness may be related to the decreased melt time observed 
for the 'Nutrim '" ' rich cheese , and may in part be related to 
negative effects on the casein matrix of the cheese. Whether 
this is related to the starch or the 13-glucan component of the 
ingredient is unclear. A similar ob ervation was made for 
soft brined cheeses (Volikakis et al. , 2004). The incorpor­
ation of 13-glucan also altered the appearance and flavour of 
low-fat white-brined cheese when compared to a full fat 
control ample. However, in this case the oat 13-glucans 
concentrate used (22.5% 13-glucan in the ingredient) reduced 
the hardne of a low fat chee e when added at 0.7 and 1.4% 
ingredient levels. This had the effect of making the low fat 
cheese more clo. ely re emble the full fat cheese control , 
similar to the ob ervation of Tudorica et al. (2004) on low 
fat curd rheology. Thus, the choice of dairy sy tern and the 
purity of 13-glucan additive is of great importance. 

10. Effect of processing on nutritional and rheological 
characteristics of [3-glucans 

Relatively little work has been repo11ed that the effects of 
food processing on the rheolog ical or nutritional character­
istics of 13-glucans. Processing may affect the molecular 
(chemical structure and degree of polymeri ation), struc­
tural (molecular interactions) and functional properties 
(viscosity, water binding capacity and solubi lity) which, in 
tum. could affect the sensory, physiological and ultimately 
the health benefits of 13-g lucans. Changes in the propertie · of 
13-glucans may ari se from shearing damage due to 
mechanical processing (Wood et al. , 1989). or by excessive 
heat treatment of food products. Unfavourable structural 
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changes may al so occur during commercial purification, 
such as the depo!ymeri sation of the linear structure (Wursch 
and Pi-Sunyer, I 997), resulting in decreased molecular 
weight and reduced viscosity. Furthermore, mild extraction 
conditions (50-60 °C) may not deacti vate endogenous 
~-glucanases, which in turn may lead to inc reased 
depolymerisation o f the ~-glucans (Fastnaught, 200 I ; 
McCJeary, 2001 ). 

Inc lusion of barley ~-glucans into breads showed that 
increased mixing and fermentation times resulted in a 
decrease in the ir MW, altho ugh the cellotriosyl!cellotetrao­
syl ratio was unaffected by these processes (Andersson 
et al., 2004). No signi ficant di fference was observed 
between doug h samples and baked breads, indicating that 
the baking process did not affect the MW of the ~-glucan in 
the dough. There is a need to understand and manipulate 
processing in order to ensure the possible alterations to the 
structure of ~-glucans do not compromise the nutritional, or 
sensory quality of foods to which they are added. 

11. Conclusions 

Although there is li ttle doubt that ~-gl ucans offer many 
nutritional and rheological advantages to the food industry, 
it i reasonable to say that when unpurified extracts are used 
there is still a Jac k of clarity as to the specific components 
responsible for such effects. For instance the work 
conducted on barley or oat fl our, and/or ~-glucan enriched 
cerea l fl ours, may not be directl y comparable to the use o f 
purified ~-gluca n fractions. This also leads to pote ntial 
problems whe n incorpora ting these agents into food 
system , in terms of predicting exact processing parameters. 

The challenge now ex ists to optimise ex traction 
procedu res so as to produce consistent raw mate rial. 
Investigations are also needed on the potential effects o f 
incorporating ~-glucan into both dairy and cerea l-based 
food systems. Specifically investigations are required to 
determine the effect of process parameter on the rheolo­
gical characteristics and MW pro files of ~-glucan extracts, 
and dete rmine if processing affects the . e ffi cacy of 
incorporated ~-glucan . Such research would broaden our 
understanding o f how ~-glucans can affect the nutritional 
characteristics o f foods by altering their structure, texture 
and viscosity. 

References 

AACC. 2000. AACC Board holds midyear meeti ng. Cereal Foods World 
45. 325. 

AA CC. 200 I . AACC Dietary Fibre Technical Committee. The defi nition of 
dietary fibre. Cereal Foods World 46. 112. 

AACC. 2003. AACC Dietary Fibre Technical Committee. All dietary fibre 
is fundamentally functional. Cereal Foods World 48. 128-131. 

Almirall. M.. Francesch. M.. Perezvendrell. A.M.. Brufau. J .. 
Estevegarcia. E .. 1995. The differences in intestinal viscosity produced 

by barley and ~-glucanase alter digesta enzyme-activities and ileal 
nutrient dig.estibilities more in broiler chicks than in cocks. Journal of 
Nutrition 125. 947-955. 

Aman. P .. Graham. H., Tilly. A.C., 1989. Content and solubility of mixed 
(1->3) (I-4H3-o-glucan in barley and oats during kernel develop­
ment and storage. Journal of Cereal Science I 0. 45-50. 

Anderson. J.W .. 1983. Plant fibre and blood pressure. Annals of Internal 
Medicine 98. 842-846. 

Anderson. J.W .. 1990. Dietary fibre and human health. Horticultural 
Science 25. 1488-1495. 

Andersson. A.A.M .. Artno. E., Grangeon. E. . Fredriksson. H .. 
Andersson. R .. Aman. P .. 2004. Molecular weight and structure of 
( 1->3) ( 1-4)-~-o-g.lucans in dough and bread made from hull-less 
barley milling fractions. Journal of Cereal Science 40. 195-204. 

Annison. G .. 1991. Relationship between the levels of soluble nonstarch 
polysaccharides and the apparent metabolizable energy of wheats 
assayed in broiler chickens. Journal of Agricultural and Food Chemistry 
39. 1252-1256. 

Autio. K .. Myllymaki. 0 .. Suorui. T. , Saastamoinen. M .. Poutanen. K .. 
1992. Physical properties of (I- 3). ( I -> 4)-~-o-glucan preparations 

isolated from Finnish oat varieties. Food Hydrocolloid~ 5. 513-522. 
Bacic. A .. Stone. B .. 1980. A (1-> 3)-linked and ( I ->4}-linked ~-o-glucan 

in the endosperm cell-walls of wheat. Carbohydrate Research 82. 
372- 377. 

Bacic. A .. Stone. B.A .. 198 1a. Isolation and ultrastructure of aleurone cell 
walls from wheat and barley. Australian Journal of Plant Physiology 8. 
453-474. 

Bacic. A .. Stone. B.A., 1981 b. Chemistry and organisation of aleurone cell 
wall components from wheat and barley. Australian Journal of Plant 
Physiology 8. 475-495. 

Baidoo. S.K .. Liu. Y.G .. 1998. Hull-less barley for swine: ileal and faecal 
digestibility of proximate nutrients. amino acids and non-starch 
polysaccharides. Journal of the Science of Food and Agriculture 76. 
397-403. 

Bamforth. C.W .. 1981. The estimation of 13-glucan in barley. Journal of the 
Institute of Brewing 87. 276. 

Barn forth. C.W .. Man in. H.L.. 1983. The degradation ofbeta-glucan during 
malting and mashing-the role of beta-glucanase. Journal of the 
Institute of Brewing 89. 303-307. 

Bamforth. C.W.. Martin. H.L.. Wainwright. T .. 1979. A role for 
carboxypeptidase in the solubilisation of barley 13-glucan. Journal of 
the Institute of Brewing 89. 34-37. 

Bathgate. G.N .. Palmer. G.N .. Wilson. G .. 1974. The action of endo-13-
glucanases on barley and mall ~-glucans. Journal of the Institute of 
Brewing 80. 278-285. 

Beer. M.U .. Arrigoni . E .. Amado. R .. 1995. Effect of oat gum on blood 
cholesterol levels in healthy young men. European Journal of Clinical 

Nutrit ion 49. 5 17-522. 
Beer. M.U .. Arrigoni. E .. Amado, R .. 1996. Extraction of oat gum from oat 

bran: effects of process on yie ld. molecular weight distribution. 
viscosity and ( 1->3) (1-4}-~-o-glucan content of gum. Cereal 
Chemistry 73. 58-62. 

Beer. M.U .. Wood. P.J .. Weisz. J .. 1997a. Molecular weight distribution 
and ( I- 3) ( I ->4)-~-o-glucan content of consecutive extracts of 
various oat and barley cultivars. Cereal Chemistry 74. 476-480. 

Beer, M.U .. Wood. P.J .. Weisz. J.. Fill ion. N .. 1997b. Effect of cooking and 
storage on the amount and molecular weight of ( 1->3) (1->4)-13-o­
glucan extracted from oat producL~ by an in vitro digestion system. 
Cereal Chemistry 74 . 705-709. 

Behall, K.M .. Schotield. D.J .. Hallfrisch. J .. 1997. Effect of beta glucan 
level in oat fibre extracts on blood lipids in men and women. Journal of 
the American College of Nutrition 16. 46-5 1. 

Bendelow. V.M .. 1975. Determination of non-starchy polysaccharides in 
barley breeding programs. Journal of rhe lnsti!Ute of Brewing 8 1. 
127-130. 

Beresford. G .. Stone. B.A .. 1983. ( 1-> 3). ( 1->4)-13-o-glucan content of 
TriTicum grains. Journal of Cereal Sc ience I. l l l- 114. 



C.S. Brennan. LJ. C/enry I Joumal of Cereal Science 42 (2005) 1- 13 9 

Bergh. M.O., Razdan. A .. Aman. P .. 1999. Nutritional influence of broiler 
chicken diets based on covered normal. waxy and high amylose barleys 

with or without e nzyme supplementation. Animal Feed Science and 
Technology 78. 2 15-226. 

Bhatty. R.S., 1993. Extraction and enrichment of ( 1->3) (1-4)-13-o­

g lucan from barley and oat brans. Cereal Chemistry 70. 73-77. 
Bhatty. R.S .. 1995. Laboratory and pilo t plant extraction and purification of 

13-glucans from hull-less barley and oat bran. Journal of Cereal Science 
22. 163-170. 

Bingham. S.A .. 1990. Mechanisms experimental and epidemiological 

evidence relating dietary fibre (non-starch polysaccharides) and starch 
to protection against large bowel cancer. Proceedings of the Nutrition 

Society 49. 153-171 . 

Bornet. F.R.J.. Costagliola. D., Rizkalla. S.W.. Blayo. A .. 
Fontvieille. A.M .. Haardt. M.J .. Letanoux. M .. Tchobroutsky. G .. 

Slama. G .. 1987. lnsulinemic and glycaemic indexes of s ix starch rich 

foods taken alone and in a mixed meal by type 2 diabetics. American 
Journal of Clinical Nutrition 45. 588-595. 

Bothmer. R.V .. Jacobsen, N .. 1985. Origin. taxonomy and related species. 
In: Rasmusson. D.C. (Ed.). Barley. American Society of Agronomy. 

Madison. WI. pp. 19-56. 

Bourdon. 1.. Yokoyama. W .. Davis. P .. Hudson. C.. Backus. R .. Richter. D .. 
Knuckles. B .. Schneeman. B.O .. 1999. Postprandial lipid. glucose. 
insulin. and cholecystokinin responses in men fed barley pasta enriched 

with 13-glucan. American Journal of Clinical Nutrition 69. 55-63. 
Bourne. D.T .. Pierce. J.S .. 1970. Beta-g lucan and beta-glucanase in 

brewing. Journal of the ln. titute of Brewing 76. 328. 

Bourne. D.T .. Powlesland. T .. Wheeler. R.E .. 1982. The relationship 
between total beta-glucan of malt and mall quality. Journal of the 

Institute of Brewing 88. 37 1-375. 
Braaten. J.T .. Wood. P.J .. Scott. F.W .. Wolynetz. M.S .. Lowe. M.K .. 

Bradleywhite. P .. Collins. M.W .. 1994. Oat 1)-glucan reduces blood 

cholesterol concentrJtion in hypercholesterolemic subjects. European 
Journal of Clinical Nutrition 48, 465-474. 

Brennan. C.S .. Tudorica. C. M .. 2003. The role of carbohydrates and non­

starch polysaccharides in the regulation of postprandial g lucose and 
insulin responses in cereal foods. Journal of Nutraceuticals. Functional 

and Medical Foods 4. 49-55. 

Brennan. C.S., Harris. N .. Smith. D .. Shewry. P.R .. 1996a. Structural 
d ifferences in the mature endosperms of good and poor mailing barley 

c ultivars. Journal of Cereal Science 24. 171- 178. 
Brennan. C.S .. Blake, D.E .. Ell is. P.R .. Schofield. J.D .. 1996b. Effects of 

guar galactomannan on wheat bread microstructure and on the in vitro 

and in vivo digestibility of starch in bread. Journal of Cereal Science 24. 
15 1-160. 

Brennan. C.S .. Amor. M.A .. Harris. N .. Smith. D .. Cantrell. !.. Griggs. D .. 

Shewry. P.R .. 1997. Cultivar differences in modification patterns of 
protein and carbohydrate reserves during mailing of barley. Journal of 

Cereal Science 26. 83-93. 
Bre nnan. C.S .. Smith. D.B .. Harris. N .. Shewry. P.R .. 1998. The production 

and characterisation of Hor 3 null lines of barley provides new 

information on the relationship of D hordein to malting performance. 

Journal of Cereal Science 28. 29 1-301. 
Bre nnan. C.S .. Tudorica. C.M .. Kuri. V .. 2002. Soluble and inso luble 

dietary fibres (non-starch polysaccharides) and their effects on food 

structure and nutritio n. Food Industry Journal 5. 261-272. 
Buckeridge. M.S .. Rayon. C .. Urbanowicz. B .. Tine. M.A.S .. Carpita. N.C .. 

2004. Mixed linkage ( I ..... 3). ( 1- 4 )-13-o-glucans of grasses. Cereal 
Chemistry 8 1. I 15- 127. 

Burkus. Z .. Temelli . F .. 1998. Effect of ex traction conditions on yield. 

composition . and viscosity stability of barley 13-glucan gum. Cereal 
Chemistry 75. 805-809. 

Burley. V.J .. Leeds. A.R .. Bundell. J.E .. 1987. The effec t of high and low 
fibre breakfast in hunger satiety. and food intake in a subsequent meal. 
International Journal of Obesity 11 (Suppl. I). 87-93. 

Carr. J.M .. Glatter. J.L.. Jeraci. J.L .. Lewis. B.A.. 1990. Enzymic 
determination of 1)-glucan in cereal-based food products. Cereal 
Chemistry 67. 226-229. 

Cavallero. A .. Empilli. S .. Brighenti. F .. Stanca. A.M .. 2002. High ( 1- 3) 
( I-+ 4)-13-o-glucan fractions in bread making and their effect on human 

glycaemic response. Journal of Cereal Science 36. 59-66. 
Choct. M .. Hughes. R.J .. Annison, G .. 1999. Apparent metabolisable 

energy and che mical composition of Australian wheat in relation to 
environmental factors. Australian Journal of Agricultura l Research 50. 
447-45 1. 

Classen. H.L.. 1996. Cereal grain starch and exogenous enzymes in poultry 
diets. Animal Feed Science and Technology 62. 2 1-27. 

Coles. G .D .. Jamieson. P.D .. Haslemore. R.M., 1991. Effect of moisture 

stress on mailing quality in triumph barley. Journal of Cereal Science 
14. 161-177. 

Crittenden. R .. Karppinen. S .. Ojanen. S .. Tenkanen. M .. Fagerstrom. R., 
Mano. J.. Saarela. M .. Matiila-Sandholm. T .. Poutanen. K .. 2002. In 
vitro fern1e ntation of cereal dietary carbohydrates by probiotic and 
intestinal bacteria. Journal of the Science of Food and Agriculture 82. 
78 1-789. 

Cui. W .. Wood. P.J .. 2000. Relationships between structural features. 
molecular weight and rheological properties of cereal 13-o-glucans. In: 
Nishinari . K. (Ed.). Hydrocolloids Physical Chemistry and Industrial 
Applicat ions of Gels. Polysaccharides and Proteins. vol. I. Elsevier. 
Amsterdam. pp. 159-168. 

Cui. W .. Wood. P.J .. Blackwell . B .. Nikiforuk. J.. 2000. Physicochemical 
properties and ; tructural characterization by two dimensional NMR 

spectroscopy of wheat 13-o-glucan-comparison with other cereal 13-o­
glucans. Carbohydrate Polymers 41. 249- 258. 

Delaney. B .. Nicolosi. R.J .. Wilson. T.A .. Carlson. T .. Frazer. S .. 
Zheng. G. H .. Hess. R .. Ostergren. K .. Haworth. J.. Knutson. N .. 2003. 
Beta-glucan fractions from barley and oats are si milarly antiatherogenic 
in hypercholesterolemic Syrian golden hamsters. Journal of Nutrition 

133.468-475. 
De Vries. J.W .. 200 1. Analytical issues regarding the regulatory aspects of 

dietary fibre nutrition labelling. In: McCieary. B. V .. Prosky. L. (Eds.). 
Advanced Dietary Fibre Technology. Blackwell Science. London. 
pp. 315-327. 

Doehlert. D.C .. Mc Mullen. M.S .. Hammond. J.J .. 2001. Genotypic and 
environmental effects on grain yield and quality of oat grown in North 
Dakota. Crop Science 4!. I 066-1072. 

Dongowski. G .. Huth. M .. Gebhardt. E .. Flamme. W .. 2002. Dietary fiber­
rich barley products beneficially affect the intestinal tract of rats. 
Journal of Nutrition 132. 3704-3714. 

Edney. M.J.. Mather. D.E.. 2004. Quantitative trait loci affecting 
germination traits and mall friability in a two-rowed by six-rowed 

barley cross. Journal of Cereal Science 39. 283-290. 
Edwards. C.A .. Johnson. I.T .. Read. N.W .. 1988. Do viscous polysacchar­

ides slow absorption by inhibiting diffus ion o r convection? European 
Jo urnal of Clinical Nutrition 42. 307- 3 12. 

Fade!. J.G.. ewman. R.K.. Newman. C.W.. Barnes. A.E.. 1987. 
Hypocholestrolemic effects of beta glucans in different barley diets 

fed to broiler chic ks. Nutrition Reports International 35. 1049-1058. 
Faivre. J.. Bonithon-Kopp. C.. 1999. Diets, fibres and colon cancer. 

Advanced Experiments in Medical Biology 472. 199-206. 
Fastnaught. C .. 2001. Barley fibre. In: Cho. S.S .. Drecher. M.L. (Eds.). 

Handbook of Dietary Fibre. Marcel Dekker. New York. pp. 519-542. 
FDA. 1997. Final rule for food labelling: Health claims: Oats and coronary 

heart disease. Federal Regulations 62. 3584-368 1. 
Feldheim. W .. Wisker. E .. 2000. Studies on the improvement of dietary 

fibre intake. Deut,che Lebensmittel-Rundschau 96. 327-330. 
Fincher. G.B .. 1975. Morphology and chemical compo>ition of barley 

endospern1 ce ll walls. Journal of the Inst itute of Brewing 82. 347-349. 
Forrest. J.S .. Wainwright. T .. 1977. The mode of binding of 13-glucans and 

pentosans in barley endospem1 cell walls. Journal of the Institute of 

Brewing 83. 279-286. 



10 C.S. Brennan, LJ. C/eary I Jo11mal of Cereal Science 42 (2005) 1- 13 

Frost. G .. Leeds. A.A .. Dore. C.J.. Maderios, S .. Brading. S., Dornhurst, A .. 
1999. Glycaemic index as a determinant of serum. cholesterol 
concentration. Lancet 353. I 045-1048. 

Fuente. J.M .. De Ayala. P.P .. Flares. A .. Villamide. M.J.. 1998. Effect of 
storage time and dietary enzyme on the metabolizable energy and 
digesta viscosity of barley-based dieL~ for poultry. Poultry Science 77. 
90-97. 

Gallagher. D.D .. Hassel. C.A.. Lee. K.J .. Gallagher. C.M .. 1993. Viscosity 
and fermentability as anributes of dietary fibre responsible for 
hypocholestrolemic effects in hamsters. Journal of Nutrition 123. 
244-252. 

German. J.B .. Xu. R., Walzem. R., Kinsella. J.E.. Knuckles, B .. 

Nakamura. M .. Yokoyama. W.H .. 1996. Effect on dietary fats and 
barley fibre on total cholesterol and lipoprotein cholesterol distribution 
in plasmas of hamsters. Nutrition Research 16. 1239-12-19. 

Gill . A.A .. Morgan, A.G .. Smith. D.B .. 1982. Total 13-glucan content of 
some barley cultivars. Journal of the Institute of Brewing 88. 3 17-319. 

Guler. M .. 2003. Barley grain beta-glucan content as affected by nitrogen 
and irrigation. Field Crops Research 84. 335-340. 

Ha llfrisch. J.. Behal l. K.M .. 1997. Evaluation of foods and physiological 
responses to menus in which fat content was lowered by replacement 
with Oatrim. Cereal Foods World 43. 100-103. 

Hallfrisch. J.. Schofield. D.J .. Behall. K.M .. 2003. Physiological responses 
of men and women to barley and oat extracts (NutrimX). 11. 
Comparison of glucose and insulin responses. Cereal Chemistry 80. 
80-83. 

Henry. R.J .. Blakeney. A.B .. 1986. Determination of total l3-glucan in mall. 
Journal of the Institute of Brewing 9-l . 354-356. 

HGCA. I999.Anon .. 1999. Cereal Variety Handbook. Home Grown 
Cereals Association. London. 

Hill. M.J .. 1997. Cereals. cereal fibre and colorectal cancer risk: a review of 

the epidemiological literature. European Journal of Cancer Prevention 
6, 219-225. 

Hoj gaard. L .. Balslov. S .. Krag. E .. 1980. The effecu. of oat bran on the 
intestinal transit time. faecal output and the output of faecal bile ac ids in 
healthy volunteers: a double blind investigation. Ugeskrift for La:ger 
142. 2625-2626. 

lrakli. M .. Biliaderis. C.G .. lzydorczyk. M.S .. Papadoyannis. l.N .. 2004. 
Isolation. structural features and rheological properties of water­
extractable beta-glucans from different Greek barley cultivars. Journal 
of the Science of Food and Agriculture 84. 11 70-11 78. 

lzawa, M .. Kano. Y .. Koshino. S .. 1993. Relationship between structure and 
solubility of ( I ~3) (1-4)-13-o-glucan from barley. Journal of the 
American Society of Brewing Chemi~L~ 5 1. 123-127. 

lzydorczyk. M.S .. Macri . L.J.. MacGregor. A.W .. 1998a. Structure and 
physicochemical propertie.\ of barley non-starch polysaccharides. l. 
Water-extractable 13-glucans and aribinoxylans. Carbohydrate Po lymers 
35. 249-258. 

lzydorczyk. M.S .. Macri. L.J .. MacGregor. A.W .. I998b. Structure and 
physicochemical properties of barley non-starch polysaccbarides. 11. 

Alkali-extractable 13-glucans and aribinoxylans. Carbohydrate Poly­
mers 35. 259-269. 

lzydorczyk. M.S.. Jacobs. M.. Dexter. J.E .. 2003. Distribution and 
structural variation o f non-starch polysaccharides in milling fractions 

of hull-less barley with variable amylase content. Cereal Chemistry 80. 
6445-6653. 

Jenkins. D.J.A .. Geoff. D.V .. Leeds. A.R .. Wolever. T.M .S .. Gassull. M .A.. 
Hockaday. T.D.R .. 1976. Unabsorbable carbohydrates and diabetes: 
decrea~ed postprandial hyperglycaemia. Lancet I. 172-174. 

Jenkin>. D.J .A .. Leeds. R .. Gassul. M.A .. Cachet. R .. Alberti . K.G.M.M .. 
1977. Decreased post pr.mdial insulin and glucose concentration by 
guar and pectin. Annals of Internal Medicine 86. 20-23. 

Jenkins. D.J.A .. Goff. D.V .. Leeds. G.M.A .. Haisman. P .. Dilawari. J.. 
Goff. D.V .. Metz. G.L.. Alberti . K.G.M.M .. 1978. Dietary fibres. fibre 
analogues. and glucose tolerance: importance of viscosity. British 
Medical Journal I. 1392-1394. 

Jenkins. D.J.A .. Wolever. T.M.S .. Taylor. R.H .. Barker. H.M .. Fielden. H .. 
1980. Exceptionally low blood glucose response to dried beans: 

comparison with other carbohydrate foods. British Medical Journa1 28 1. 
570-578. 

Jenkins. D.J.A .. Wolever. T .M.S .. Kalmusky. J.. Giudici. S .. Giordano. C .. 

Wong. G.S .. Bird. J.N .. Patten. R .. Hall. M .. Buckley. G .. Linle. J.A .. 
1985. Low glycaemic index carbohydrate foods in the management of 

hyperlipidaemia. American Journal of Clinical Nutrition 42. 604-617. 
Jenkins. A.L.. Jenkins. D.J.A .. Zdravkovic. U .. Wursch. P .. Vuksan. V .. 

2002. Depression of the glycaemic index by high levels of beta-glucan 
fibre in two functional foods tes ted in type 2 diabetes. European Journal 
of Clinical Nutrition 56. 622-628. 

Jensen. C.D., Spiller. G.A .. Gates. J .E .. Miller. A.F .. Whiuam, J.H .. 1993. 
The effect of acacia gum and a water soluble dietary fibre mix on blood 

lipids in humans. Journal of American College of Nutrition 12. 
147- 154. 

Jeroch. H .. Danicke. S .. 1995. Barley in poultry feeding: a review. World's 
Poultry Sc ience Journal 5 1. 27 1-29 1. 

Johansen. H.N .. Bach Knudsen. K.E .. Sandstrom. B .. Skjoth. F .. 1996. 

Effect> of varying content of soluble dietary fibre from wheat flour and 
oat milling fractions on gastric emptying in pigs. British Journal of 

utrition 75. 339-35 1. 
Johansen. H.N .. Bach Knudsen. K.E .. Wood. P.J .. Fulcher. R.G., 1997. 

Physicochemical properties and the degradation of oat bran poly­

saccharides in the gut of pigs. Journal of the Science of Food and 
Agriculture 73. 8 1-92. 

Kang. S.A.. Jang. K.H .. Hong, K .. Choi. W.A .. Lee. l.Y .. 2003. Effects of 
dietary beta-glucan on serum Iipids and leptin levels in the diet-induced 

obese rats. FASEB Journal 17. All41. 

Karppinen. S .. Liukkonen. K .. Aura. A.M., Forsell. P .. Poutanen. K .. 2000. 
In vitro fern1entation of polysaccharides of rye. wheat and oat brans and 

inulin by human faecal bacteria. Journal of the Science Food 

Agriculture 80. 1469-1476. 
Keogh. G.F. , Cooper. G.J.S .. Mulvey. T.B .. McArdle. B.H .. Cotes. G.D .. 

Monro. J.A .. Poppin. S.D .. 2003. Randomised controlled crossover 
study of the effect of a highly (3-glucan enriched barley on 

cardiovascular disease risk factor> in mildly hypercholesterolemic 
men. American Journal of Clinical Nutrition 78. 711-718. 

Kerckhoffs. D.A.J.M .. Hornstra. G .. Mensink. R.P .. 2003. Cholesterol­

lowering effect of 13-glucan from oat bran in mildly hypercholerster­
olemic subjects may decrease when 13-glucan is incorporated into bread 

and cookies. American Journal of Clinical Nutrition 78. 221-227. 
Klopfenstein. C. F .. Hoseney. R.C .. 1987. Cholesterol lowering effect of 13-

glucan enriched bread. utrition Reports lnternational 36. 1091- 1098. 

Knuckles. B.E .. Chiu. M.M .. Betschart. A.A.. 1992. 13-Giucan enriched 
fractions from laboratory dry scale milling and sieving of barley and 
oats. Cereal Chemistry 69. 198-202. 

Knuckles. B.E .. Yokoyama. W.H .. Chiu. M.M.. 1997a. Molecular 

characterisation o f barley 13-glucan by size exclusion chromatography 
with multiple angle laser light scauering and other detectors. Cereal 
Chemistry 74. 599-604. 

Knuckles. B.E .. Hudson. C.A .. Chiu. M.M .. 1997b. Effect of beta glucan 

barley frac tions in high fibre bread and pasta. Cereal Foods World 42. 
94-99. 

Knudsen. K.E.B .. Canibe. N .. 2000. Breakdown of plant carbohydrates in 

the digestive tmct of pigs fed on wheat- or oat-based rolls. Journal of the 
Science of Food and Agriculture 80. 1253-1261. 

Konuklar. G .. lnglell . G.E .. Warner. K .. Carriere. C.J .. 2004. Use of a beta­
glucan hydrocolloidal suspension in the manufacture of low-fat cheddar 
cheeses: textura l properties by instrumental methods and sensory 

panels. Food Hydrocolloid~ 18. 535-545. 
Kritchevsky. D .. 1997. Cereal fibre and lipidemia. Cereal Foods World .12. 

81-85. 
Lazaridou. A .. Biliaderis. C.G .. 200-1. Cryogelation of cereal beta-glucam.: 

structure and molecular size effects. Food Hydrocolloids I 8. 933-947. 



C.S. Bremum, LJ. Cleary• I Journal of Cereal Science 42 (2005) 1- 13 11 

Lazaridou. A .. Biliaderis. C.G .. lzydorczyk. M.S .. 2003. Molecular size 

effects on rheological properties of oat beta-glucans in solution and 
gels. Food Hydrocolloids 17. 693-712. 

Lazaridou. A .. Biliaderis. C.G .. Micha-Screuas. M .. Steele. B.R .. 2004. A 
comparative study on structure-function relations of mixed-linkage 
( 1-+3). ( 1-+4) linea·r beta-o-glucans. Food Hydrocolloids 18. 

837-855. 

Lehtonen. M .. Ailasalo. R .. 1987. 13-Giucan in two- and six-rowed barley. 
Cereal Chemistry 64. 191-193. 

Leterme. P .. Souffram. W.B .. Thewis. A .. 2000. Effect of barley fibres and 
barley intake on the ileal endogenous nitrogen losses in piglets. Journal 
of Cereal Science 3 1. 229-239. 

Li . J.. Kaneko. T .. Qin. L.Q .. Wang. J .. Wang. Y .. 2003a. Effect~ of barley 
intake on glucose tolerance. lipid metabolism. and bowel function in 

women. Nutrition 19. 11-12. 

Li . J.. Kaneko. T .. Qin. L.Q .. Wang. J.. Wang. Y .. Sato. A .. 2003b. Long­
ternl effects of high density fiber intake on glucose tolerance and lipid 

metabolism in GK rats: comparison among barley. rice and cornstarch. 

Metabolism: Clinical !!-nd Experimental 52. 1206--12 10. 
Lund. E.K .. Gee. J.M .• Brown. J.C.. Wood. P.J .. Johnson.l.T.. 1989. Effect 

of oat gum on the physical properties of the gastrointestinal contents o n 

the uptake of o-galactose and cholesterol by rat ~mall intes tine in vitro. 
British Journal of Nutrition 62, 91-101. 

Maki. K.C .. Davidson. M.H .. lngram. K.A .. Veith. P.E.. Bell. M .. 
Gugger. E .. 2003. Lipid responses to consumption of a beta-glucan 
containing ready-to-eat cereal in chi ldren and adolescents with mild-to· 

moderate primary hypercholesterolemia. Nutrition Research 23. 
1527-1535. 

Malkki. Y .. 2~. Trends in dietary fibre research and development. Acta 

Alimentaria 33. 39-62. 
Martinez. V.M .. Newman. R.K.. ewman. C.W .. 1991. Barley diets with 

different fat sources have hypocholesterolemic effect~ in chicks. Journal 
of utrition 122. 1070-1076. 

McCieary. B.V .. 1988. Methods in Enzymology .. In: Wood. W.A .. 

Kellogg. S.T. (Eds.) .. Academic Press. San Diego. CA. pp. 511-5 14. 
McCieary. B.V .. 2001. Measurement of dietary fibre components: the 

importance of enzyme purity. acti vity and specifity. ln: McCleary. B.V .. 

Prosky. L. (Eds.). Advanced Dietary Fibre Technology. Blackwell 

Science. Lo ndon. pp. 89- 105. 
Mo lina-Cano. J-L.. Sopena. A .. Polo. J.P .. Bergareche. C.. Mordlejo. M.A .. 

Swanston. J.S .. Glidewell. S.M .. 2002. Relationship between barley 
horde ins and mailing quality in a mutant of cv. Triumph 11. Genetic and 

environmental effect~ of water uptake. Journal of Cereal Science 36. 

39-50. 
Morel. P.C.H .. Padilla. R.M .. Ravindran. G .. 2003. Effect of non-starch 

polysaccharides on mucin secretion and endogenous amino acid losses 

in pigs. Asian-Australasian Journal of Animal Sciences 16. 1332-1338. 
Morgan. K.R .. Ofman. D.J .. 1998. Glucagel. a gelling 13-glucan from barley. 

Cereal Chemistry 75. 879-88 1. 

Morgan. A.G .. Gill. A.A .. Smith. D.B .. 1983. Some barley grain and green 
malt properties and their influence on malt hot water extract. I. 
13-Glucan solubilase and endo-13-glucanase. Journal of the Institute of 
Brewing 89. 283-291. 

Mourot. J .. Thouvenot. P .. Couet. C.. Antoine. J.M.. Krobicka. A .. 

Debry. G .. 1988. The relationship between the rate of gastric emptying 
and glucose and insulin responses to Marchy foods in healthy young 
adults. American Journal of Clinical Nutrition 48. 1035- 1040 . 

Munck. L.. Miiller. B .. Jacobsen. S .. S0ndergaard. 1.. 2004 . Near infrared 
spectra indicate specitic mutant endosperm genes and reveal a new 

mechanism for , ubstituting 'larch with ( 1-3.1-+4)-13-glucan in 
barley. Journal of Cereal Science 40. 213-222. 

ewman. R.K.. ewman. C.W .. Hofer. P.J .. Barne~. A.E .. 1991. Growth 

and lipid metaboli~m as affected by feeding of hull-le~s barleys with and 
without ~upplemented 13-glucana~e. Plant Foods and Human Nutrition 

4 I. 37 1-380. 

Newrnan, R.K.. Klopfenstein. C.F.. Newman. C.W.. Guritno. N .. 
Hofer. P.J .. 1992. Comparison of the cholesterol lowering properties 

of whole barley. oat bran and wheat red dog in chicks and mts. Cereal 
Chemistry 69. 240-244. 

Nishimune. T.. Yakushiji. T ., Sumimoto. T., Taguchi. S .. Konchi. Y .. 

Nakahara. S .. lchikawa. T .. Kunita. N .. 1991. Glycaemic response and 
fibre contents of some foods. American Journal of Clinical Nutrition 54. 
414-419. 

O'Dea. K.. estel. P.J.. Antonoff. L .. 1980. Physical factors influencing 
postprandial glucose and insulin responses to starch. American Journal 

of Clinical Nutrition 33. 760-765. 

Odes. H.S .. Lazovski. H .. Stem. 1.. Madar. Z .. 1993. Double blind trial of 
high dietary fibre. mixed grdin cereal in patients with chronic 

constipation and hyperlipidaemia. Nutrition Research 13. 979-985. 
Palmer. G.H .. 1987. Influence of cell wall structure on enzyme breakdown 

of the endospenn of germinated barley. Journal of the Institute of 
Brewing 93. 105-107. 

Peterson. D.M .. W~enberg. D.M .. Burrup. D.E .. 1995. 13-Giucan content 

and its relationship to agronomic characteristics in elite oat germplasm. 
Crop Science 35. 965-970. 

Poyhonen. U.L.. 2004. Control of blood glucose through oat soluble fibre 

beta-glucan. Agro-Food-lndustry Hi-Tech 15. I 0-11. 
Ranhotra. G.S .. Gelroth. J.A .. Astroth. K .. Bhauy. R.S .. 1991. Relati ve 

lipidemic responses in rats fed barley and oat meals and their fractions. 

Cereal Chemistry 68. 548-55 1. 
Re imer. A.R .. Thomson. A.B.R .. Rajotte. R.V .. Basu. T.K .. Ooraikul. B .. 

McBurney. M.!.. 2000. Proglucagon messenger ribonucleic ac id and 

intestinal glucose uptake are modulated by fern1entable fibre and food 
intake in diabetic rats. Nutrition Research 20. 85 1-864. 

Ross. S.W .. Brand. J.C .. Thorburn. A.W .. Truswell . A.S .. 1987. Glycaemic 
index of processed wheat products. American Journal of Clinical 

utrition 46. 631-635. 

Saulnier. L.. Gevaudan. S .. Thibault. J.F .. 1994. Extraction and partial 
chamcterisation of ~glucan from the endospenns of two barley 
cultivars. Journal of Cereal Science 19. 171-178. 

Savin. R .. Molina-Cano. J.L.. 2001. Changes in maiLing quality and its 
determinants in response to abiotic stresses. In: Lafer. G.A .. Molina­

Cano. J.L., Savin. R .. Araus. J.L.. Romagossa. I. (Eds.). Barley Science: 

Recent Advances from Molecular Biology to Agronomy of Yield and 
Quality. Haworth Press. London. pp. 523-544. 

Savin. R .. Nicolas. M.E .. 1996. Effects of short period~ of drought and high 
temperdture on grain growth and starch accumulation of two mailing 
barley cultivars. Austmlian Journal of Plant Physiology 23. 201-210. 

Savin. R .. Stone. P.J .. Nicolas. M.E .. Wardlaw. l.F.. 1997. Gmin growth and 
malting quality of barley. I. Effects of heat stress and moderately high 
tempemture. Australian Journal of Agricultuml Research 48. 615-624. 

Sier. C.F.M .. Geldern1an. K.A .. Prim •. F.A .. Goner. A .. 2004. Beta-glucan 
enhanced killing of renal cell carcinoma micrometastases by mono­
clonal antibody C250 d irected complement activation. International 

Journal of Cancer I 09. 900-908. 
Skendi. A.. Biliaderis. C.G.. Lazaridou. A .. lzydorczyk. M.S .. 2003. 

Structure and rheological properties of water soluble ~glucans from oat 

cultivars of Avena sativa and Al'ena bysamina. Journal of Cereal 
Science 38. 15-3 1. 

Smith. K.N .. Queenan. K .. Thomas. W .. Fulcher. G .. Slavin. J.. 2~. 
Cholesterol-lowering effect of barley beta-glucan in hypercholester­
olemic subjects. FASEB Journal 18. A 149. 

Storsley. J.M .. Izydorczyk. M.S .. You. S .. Biliaderis. C.G .. Rossnagel. B .. 
2003. Structure and physicochemical properties of beta-glucans and 

arabinoxylans isolated from hull-les' barley. Food Hydrocolloids 17. 
83 1-8-W. 

Stuart. I.M .. Loi. L.. Fincher. G.B .. 1988. Varietal and environmental 
variation in (1-+ 3) (1-+4)-(3-glucan levels and (1-3) (1~4)-13· 

glucana.~e potential in barley: relationships to mailing quality. Journal 

of Cereal Science 7. 61-71. 



12 C.S. Bremwn, LJ. Cleary I Journal of Cereal Science 42 (2005) 1-13 

Symons. L.J .. Brennan. C.S .. 2004a. The effect of barley 13-glucan fibre 
fractions on starch gelatinisation and pasting characteristics. Journal of 

Food Science 69. 257-261. 
Symons. L.J .. Brennan. C.S .. 2004b. The physicochemical and nutri­

tional evaluation of wheat breads supplemented with ( I -+ 3) ( I -4 )-

13-o-glucan rich fractions from barley. Journal of Food Science 69. 
463-467 . 

Tappy. L .. Gugolz. E .. Wursch. P .. 1996. Effects of breakfast cereals 
containing various amount~ of beta glucans fibres on plasma gl ucose 

and insulin responses in NIDDM subjects. Diabetes Care 19. 
83 1-834. 

Temelli . F .. 1997. ExtrJction and functional properties of barley 13-glucan 
as affected by temperature and pH. Journal of Food Science 62. 

11 92-1201. 
Thorbum. A .. Muir. J.. Proieuo. J.. 1983. Carbohydrate fem1enration 

decrease hepatic glucose output in healthy subjects. Metabolism 42. 

780-785. 
Tosh. S.M .. Wood. P.J .. Wang. Q .. 2003 . Gelat ion characteristics of acid­

hydrolyzed oat beta-glucan solutions solubilized at a range of 
temperatures. Food Hydrocolloids 17. 523-527. 

Tosh. S.M .. Brummer. Y .. Wood. P.J .. Wang. Q .. Weisz. J.. 2004a. 

Evaluation of structure in the fom1ation of gels by structurally diverse 
(1-3) ( I ~4)-beta-o-glucans from four cereal and one lichen species. 

Carbohydrate Polymers 57. 249-259. 
Tosh. S.M.. Wood. P.J.. Wang. Q.. Weisz. J.. 2004b. Structural 

characteristics and rheological properties of panially hydrolyzed oat 
beta-glucan: effects of molecular weight and hydrolysis method. 

Carbohydrate Polymers SS. 425-B6. 

Trepel. F.. 2004. Dietary fibre : more than a mauer of dietetica. I. 
Compounds. properties. physiological effects. Wiener · klinische 
Wochenschrift 116. 465-476. 

Truswell. A.S .. 2002. Cereal grains and coronary heart disease. European 
Journal of Clinical Nutrition 56. 1-14. 

Tudorica. C.M .. Kuri. V .. Brennan. C.S .. 2002. Nutritional and physico­
chemical characteristics of dietary fiber enriched pasta. Journal of 

Agricultural and Food Chemistry SO. 34 7-356. 

Tudorica. C.M .. Jones. E .. Kuri . V., Brennan. C.S .. 2004. The effects of 
refined barley 13-glucan on the physico-structural properties of low-fat 

dairy products: curd yield. microstructure. texture and rheology. Journal 
of Science of Food and Agriculture 84. I I 59- 11 69. 

Tungland. B.C.. 2003. Fructooligosaccharides and other fructans: 

structures and occurrence. production. regulatory aspects. food 
applications. and nutritional health significance. ACS Symposium 

Series 849 . 135-152. 
Ulrich. S.E .. Clancy. J.A.. Eslick. R.F .. Lance. R.C.M .. 1986. 13-Giucan 

content and viscosity of extracts from waxy barley. Journal of Cereal 

Sc ience 4. 11- 18. 
Vaikousi. H .. Biliaderis. C.G .. lzydorczyk . M.S .. 2004. Solution flow 

behaviour and gelling properties of water-soluble barley ( I-+ 3) 

( 1-+4)-beta-glucans varying in molecular size. Journal of Cereal 
Science 39. 119-137. 

Valle-Jones. J.C .. I 985. An open study of oat bran meal biscuits (Lejifibre) 

in the treatment of constipation in the elderly. Current Medical 

Research and Opinion 9. 716-720. 
Velasquez. M .. Davies. C .. Marret . R .. Slavin. J.L.. Feirtag. J.M .. 2000. 

Effect of oligosaccharides and fibre substitutes on short chain fatty acid 
production by human microftora. Anaerobe 6. 87-92. 

Volikakis. P .. Biliaderis. C. G .. Vamakas. C .. Zerfiridias. C.K .. 2004. Effects 
of a commercial oat-beta-glucan concentrate on the chemical. physico­

chemical and sensory attributes of a low-fat white brined cheese 
product. Food Research International 37. 83-94. 

Von Wettslein. D .. Warner. J.. Kannangara. C.G .. 2003. Supplements of 

transgenic malt or grain containing ( I ~ 3- 1- 4)-beta-glucanase 
increa~e the nutritive value of barley-based broiler diets to that of 

maize. British Poultry Science 44. 438-449. 

Wang, L.. Newman. R.K .. Newman. C.W .. Hofer. PJ_ 1992. Barley 13-
glucan alters intestinal viscosity and reduce plasma cholesterol 
concentrations in chicks. Journal of Nutrition l22. 2292-2297. 

Wang. Q .. Wood. P.J .. Huang. X .. Cui. W .• 2003. Preparation and 
characterisation of molecular weight standards of low polydispersity 
from oat and barley ( 1-3) (1-+4)-beta-o-glucan. Food Hydrocollo ids 

17. 845-853. 
Weightman. R.M .. Laverick. R.M .. Maunsel l. c_zooz. Oatec: oats as an 

industrial crop phase 11. Final Report to the UK Department for 
Environment. Food and Rural Affairs on the Oatec Marches 5b Project 
2002. . 

Weightman. R.M .. Heywood. C .. Wade. A .. South. J.B_ 2004. Relationship 
between grain ( )-+ 3) (1 ..... 4)-beta-o-glucan concentration and the 

response of winter-sown oats to contrast ing forms of applied nitrogen. 

Journal of Cereal Science 40. 81-86. 
Wisker. E., Daniel. M .. Rave. G .. Feldeim. W .. 2000. Short chain fatty acids 

produced in vitro from fibre residues obtained from mixed diets 
containing different breads and in human faeces during ingestion of 

diets. British Journal of Nutrition 84. 31-37. 
Wolever. T .M.S .. 1990. Relationship between dietary fibre content and 

composition in foods and the glycaemic inde:\. American Journal of 
Clinical urrition 51. 72-75. 

Wood. P.J.. 1993. Physicochemical characteristics and physiological 
properties of oat ( I-+ 3) ( I ~4)-13-o-glucan . In: Wood. P.J. (Ed. ). Oat 

Bran. AOAC. St Paul. MN. pp. 83-112. 

Wood. P.J .. 200 1. Cereal l3-g lucans: wucture. properties and heali.h claims. 
Ln: McCJeary. B.V.. Prosky. L. (Eds.). Advanced Dietary Fibre 
Technology. Blackwell Science, London. pp. 3 15-327. 

Wood. P.J .. Paton. D .. Siddiqui . I.R .. 1977. Determination of 13-glucan in 
oars and barley. Cereal Chemistry 54. 524-533. 

Wood. P.J.. Fulcher. R.G .. Stone. B.A. . 1983. Studies on the specificity of 
interaction of cereal cell wall components with Congo Red and 
Calcoftour: specific detection and histochemistry of ( I- 3) ( I -+4)-13-

o-glucan. Journal of Cereal Science I. 95-11 0. 
Wood. P.J .. Weisz. J.. Fedec. P .. Burrows. V.D .. 1989. Large scale 

preparation and properties of oat fract ions enriched in ( I ...., 3) ( I -4 )-

13-o-glucan. Cereal Chemistry 66. 97-103. 
Wood. P.J .. Braaten. J.T .. Fraser. W.S .. Riedel. D .. Poslel. M .. 1990. 

Comparisons of viscous properties of oat and guar gum and effects of 
these and oat bran on glycaemic index. Journal of Agricultural and Food 

Chemistry 38. 753-757. 
Wood. P.J .. Weisz. J .. Mahn. W .. 1991 . Molecular characterisation of cereal 

13-glucans. 11. Size-exclusion chromatography for comparison of 

molecular weight. Cereal Chemistry 68. 530-536. 

Wood. P.J .. Braaten. J.T .. Scou. F.W .. Riedel. K.D .. Wolynetz. M.S .. 
Coll ins. M.W .. 1994a. Effect of dose and modification of viscous 

properties of oat gum on plasma glucose and insulin following an oral 

glucose load. British Journal of Nutrition 72. 73 1-743. 
Wood. P.J .. Weisz. J.. Blackwell. B.A .. 1994b. StructurJI studies of 

( I_, 3) ( I -> .t)-~-o-glucans by 13C-NMR by rapid analysis of 
cellulose-l ike regions using high-performance anion-exchange chro­

matography of oligosaccharide~ released by lichenase. Cereal 

Chemistry 7 1. 301-307. 
Woodward. J.R .. Fincher. G.B .. Scone. B.A.. 1983. Water soluble ( 1-+ 3) 

( 1-+4)-13-o-glucan from barley (Hordeum ••ulgare) endosperm. 11. Fine 

structure. Carbohydrate Polymers 3. 207- 225. 
Woodward. J.R .. Philips. D.R.. Fincher. G.B .. 1988. Water soluble ( I - 3) 

( I ->4)-13-o-glucan from barley (Hordeum vulgare) endosperrn. IV. 
Comparison of 40 •c and 65 •c soluble fractions. Carbohydrate 

Po lymers 8. 85-97. 
Wursch. P .. Pi-Sunyer. F.X .. 1997. The role of viscous soluble fibre in the 

metabolic control of diabetes-a review with special emphasis o n 

cereals rich in beta-glucan. Diabetes Care 20. 1774-1780. 
Yang. J.L .. Kim. Y.H .. Lee. H.S .. Lee. M.S .. Moon. Y.K .. 2003. Barley 

beta-glucan lowers serum chole~terol based on the up-regulation of 



C.S. Bmman, LJ. Cleary I Journal of Cereal Science 42. (2005) 1-13 13 

cholesterol 7 alpha-hydroxylase activity and mRNA abundance in 
cholesterol fed rats. Journal of Nutritional Science and Vitaminology 
49. 38 1-387. 

Yokoyama. W .H .. Hudson. C.A.. Knuckles. B.E .. Chiu, M.M .. Sayre. R.N .. 
Tumland.J.R., Schneeman. B.O .. 1997. Effect ofbarley (3-glucan in durum 
wheat pasta on human glycaemic response. Cereal Chemistry 74.293-2%. 

Yoon. S.H., Berglund. P.T .. Fastnaught. C. E .. 1995. Evaluation of selected 
barley cuhivars and their fract ions for 13-g lucan enrichment and 
viscosity. Cereal Chemistry 72. 187-190. 

Zhang. G .. Chen. 1.. Wang. 1.. 2002. Variation in barley endosperm 
13-glucan comem in three barley cultivars as a function of spike number 
and within spike. Journal of Cereal Science 35.99-101. 





Preparation of electronic illustrations 
Submitting your artwork in an electronic format is recommended, 
as it helps us to produce your work to the best possible 
standards, ensuring accuracy, clarity and a high level of detail. 

General points 

• Always supply high-quality printouts of your artwork, in case 
conversion of the electronic artwork is problematic. 

• Make sure you use uniform lettering and sizing of your 
original artwork. 

• Save text in illustrations as "graphics" or enclose the font. 
• Only use the following fonts in your illustrations: Arial, 

Courier, Helvetica, Times, Symbol. 
• Number the illustrations according to their sequence in the text. 
• Use a logical naming convention for your artwork files, and 

supply a separate listing of the files and the software used. 
• Provide all illustrations as separate files and as hardcopy 

printouts on separate sheets. 
• Provide captions to illustrations separately. 
• Produce images near to the desired size of the printed version. 

Files can be stored on ~inch diskette, ZIP-disk or CD (either 
MS-DOS or Macintosh). This journal offers electronic submission 
services and graphic files can be uploaded via the Author 
Gateway page of this journal via http://authors.elsevier.com. 

A detailed guide on electronic artwork is available on our website: 
http://authors.elsevier.com/artwork 

You are urged to visit this site. 

Illustrations - General Guidelines (only if not submitting 
electronically via the Author Gateway) 

All illustrations should be provided in camera-ready form, suitable 
for reproduction (which may include reduction) without retouching. 

Line drawings: Good quality printouts on white paper produced in 
black ink are required. All lettering, graph lines and points on 
graphs should be sufficiently large and bold to permit reproduc­
tion when the diagram has been reduced to a size suitable for 
inclusion in the journal. Dye-line prints or photocopies are not 
suitable for reproduction. Do not use any type of shading on 
computer-generated illustrations. TIFF, JPEG or EPS files are 
preferred for electronic graphic files. Graphics made in Word or 
WordPerfect generally have too low a resolution to be repro­
duced in print. Suggested packages to use include Adobe 
Illustrator (version 3 or above), Freehand and Corel Draw. 

Photographs: Original photographs must be supplied as they are 
to be reproduced (e.g. black and white or colour). If necessary, a 
scale should be marked on the photograph. Please note that 
photocopies of photographs are not acceptable. 

Colour. Submit colour illustrations as original photographs, high­
quality computer prints or transparencies, close to the size 
expected in publication, or as 35 mm slides. Polaroid colour prints 
are not suitable 

submit the material in electronic format together with the article and 
supply a concise and descriptive caption for each file. For more 
detailed instructions please visit our Author Gateway at 
http://authors.elsevier.com. 

Proofs 
When your manuscript is received at the Publisher it is considered 
to be in its final form. Proofs are not to be regarded as 'drafts'. One 
set of page proofs in PDF format will be sent by e-mail to the 
corresponding author, to be checked for typesetting/editing. No 
changes in, or additions to, the accepted (and subsequently edited) 
manuscript will be allowed at this stage. Proofreading is solely your 
responsility. A form with queries from the copy editor may 
accompany your proofs. Please answer all queries and make any 
corrections or additions required. The Publisher reserves the right 
to proceed with publication if corrections are not communicated. 
Return corrections within two working days of receipt of the proofs. 
Should there be no corrections, please confirm this. Elsevier will do 
everything possible to get your article corrected and published as 
quickly and accurately as possible. In order to do this we need your 
help. When you receive the (PDF) proof of your article for correction, 
it is important to ensure that all of your corrections are sent back to 
us in one communication. Subsequent corrections will not be 
possible, so please ensure your first sending is complete. Note that 
this does not mean you have any less time to make your corrections, 
just that only one set of corrections will be accepted. Proofs are to be 
returned to the Log-in Department, Elsevier Ltd., Bampfylde Street, 
Exeter EX1 2AH, UK, tax +44 1392 425370. 

Offprints 
Twenty-five offprints will be supplied free of charge. If colour has 
been paid for within the article, 100 extra offprints will be supplied 
free of charge. Additional offprints and copies of the issue can be 
ordered at a specially reduced rate using the order form sent to 
the corresponding author after the manuscript has been 
accepted. Orders for reprints (produced after publication of an 
article) will incur a 50% surcharge. 

Please note: Papers published in the Journal of Cereal Science 
do not incur page charges or any manuscript processing fee. 

Copyright 

Upon acceptance of an article, authors will be asked to transfer 
copyright (for more information on copyright see http://authors. 
elsevier.com). This transfer will ensure the widest possible 
dissemination of information. A letter will be sent to the correspond­
ing author confirming receipt of the manuscript. A form facilitating 
transfer of copyright will be provided. If excerpts from other 
copyrighted works are included, the author(s) must obtain written 
permission from the copyright owners and credit the source(s) in the 
article. Elsevier has preprinted forms for use by authors in these 
cases: contact Elsevier Ltd., Global Rights Department, The 
Boulevard, Langford Lane, Oxford, OXS 1GB, UK; phone: (+44) 
1865 843830, tax: (+44) 1865 853333, e-mail: permissions@ 
elsevier.com 

Preparation of supplementary data. Elsevier now accepts elec- Author Enquiries 
Ironic supplementary material to support and enhance your 
scientific research. Supplementary files offer the author additional Authors can keep track of the progress of their accepted article, 
possibilities to publish supporting applications, movies, animation and set up e-mail alerts informing them of changes to their 
sequences, high-resolution images, background datasets, sound manuscript's status, by using the "Track a Paper'' feature of 
clips and more. Supplementary files supplied will be published Elsevier's Author Gateway. Other questions or queries will also 
online alongside the electronic version of your article in Elsevier web be dealt with via the website http://authors.elsevier.com. Contact 
products, including ScienceDirect. In order to ensure that your details for questions arising after acceptance of an article, 
submitted material is directly usable, please ensure that data is especially those relating to proofs, are provided when an article is 
provided in one of our recommended fi le formats. A"uthors s~o.§!c! - ·~ ·: ~aG~.~ .!A~p_vblication . 



Journal of Cereal Science www.elsevier.com/locate/jcs 

CONTENTS Volume 42 Issue 1 

Review 

The potential use of cereal (1-3,1-4)-~n-glucans as functional food ingredients 
C.S. Brennan and LJ. C/eary 

Research Papers 

Technological quality of transgenic wheat expressing an increased amount of a HMW 
glutenin subunit 
M. Rakszegi, F. Bikes, L Lting, L Tamas, P.R. Shewry and Z Bedo 15 

The effect of heat stress and cadmium ions on the expression of a small hsp gene in barley 
and maize 
M. Gulli, P. Rampino, E. Lupotto, N. Manniroli and C. Perrotta 25 

Effects of endosperm texture and cooking conditions on the in vitro starch digestibility 
of sorghum and maize flours 
Ll. Ezeogu, K.G. Duodu and J.R.N. Taylor 33 

Shear and extensional properties of bread doughs affected by their minor components 
J. Rouille, G.Della Val/e, J. Lefebvre, E. Sliwinski and T. vanVliet 45 

Effect of simple shear on the physical properties of glutenin macro polymer (GMP) 
S.H. Peighambardoust, A.J. van der Goot, R.J. Hamer and R.M. Boom 59 

Heat stress and genotype affect the glutenin particles of the glutenin macropolymer-gel 
fraction 
C. Don, G. Lookhart, H. Naeem, F. MacRitchie and R.J. Hamer 69 

Intrinsic influence of various plasticizers on functional properties and reactivity of 
wheat gluten thermoplastic materials 
M. Pommet, A. Red/, S. Guilbert and M. -H. Morel 81 

Effect of microbial transglutamina~ on the rbeological and thermal properties of insect 
damaged wheat flour 
P.A. Caballero, A. Boner, C.M. Rosel/ and M. G6mez 93 

Effect of different breadmaking methods on thiamine, riboflavin and pyridoxine contents 
of wheat bread 
F. Batifoulier, M. -A. Vemy, E. Chanliaud, C. Remesy and C. Demigne 101 

Food allergy to wheat: differences in immunoglobulin E-binding proteins as a function 
of age or symptoms 
F. Battais, P. Courcou.x. Y. Popineau, G. Kanny, D.A. Moneret-Vautrin and S. Denery-Papini 109 

Structural variability of arabinoxylans from wheat flour. Comparison of water-extractable 
and xylanase-extractable arabinoxylans 
J.J. Ordaz-Ortiz and L Saulnier 119 

Determining the spirit yield of wheat varieties and variety mixtures 
J.S. Swanston, A.C. Newton, J.M. Brosnan, A. Fotheringham and E. Glasgow 127 

Book Review 

Speciality grains for food and feed 
P.J. Frazier 

Calendar 

135 

I 

Papers published in the Journal of Cereal Science do not incur page charges or any manuscript processing fee. 
In addition, 25 reprints of papers published in the journal are supplied free of charge. 

111111111111111111111111111111111111111 
0733-5210(200507)42:1;1-I 

Printed in France by Jouve 


