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Abstract 

Strains of Vitreoscil/a stercoraria were isolated from the environment and 

characterised . Cell width, motility and requirement of each strain for sodium 

chloride were investigated. Two strains were selected for further study and the 

effect of monensin and FCCP on growth of the strains was investigated. One 

strain of Vitreoscil/a (l813) was chosen for further study, cells from strain LB 13 

were found to be 1.38 J..lm ± 0.041 (± 1 SEM, n=1 0) wide, were motile by gliding 

and had an optimum requirement for sodium chloride for growth of 43 mM. The 

organism was grown in batch culture and respiratory membranes were isolated. 

Cytochrome bo was extracted from the respiratory membranes and further 

purification was achieved using column chromatography. A yield of 6.71 % was 

achieved with a purification factor of 18.5. The light sensitivity of Vitreoscil/a 

stercoraria was investigated. Two strains of Vitreoscil/a (LB13 and C1) were 

shown to be highly sensitive to UV-A (320-400 nm) with an LD50 of less than 

20 kJm-2
. Superoxide dismutase and catalase were shown to provide protection 

from the effect of UV-A during exposure, either separately of together, indicating 

an involvement of reactive oxygen species. A photo-insensitive strain (LB 13A) 

was isolated during an exposure experiment and originated from a culture of LB13. 

The possible sodium pumping activity of cytochrome bo from two strains of 

Vitreoscil/a (LB13 and C1) was investigated . The Vmax of decylubiquinol oxidation 

by respiratory membranes from LB 13 and C 1 were calculated and found to be 

0.96 nmol s-1 mg-1 and 13.33 nmol s-1 mg-1 respectively. The Km of decylubiquinol 

oxidation by LB13 membranes was found to be 9.8 ~M . Quinol oxidation activity 

was tested for dependence on sodium chloride in both respiratory membranes and 

in the purified enzyme. No stimulation of activity was shown with either strain 

IV 



using decylubiquinol, duroquinol or menadiol as substrates. Given the lack of 

sodium sensitivity it is unlikely that the enzyme pumps sodium. 
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Chapter one 

Introduction 



1.1 Vitreoscilla 

1.1.1 Classification 

The family Vitreoscil/aceae was first described in 1949, and contained the genus 

Vitreoscilla along with other colourless, gliding bacteria (Pringsheim, 1949). In 

1951 Pringsheim characterised the genus Vitreoscil/a in more detail. He proposed 

a new family, the Vitreoscil/aceae, characterised by their colourless, gliding 

trichomes. Pringsheim proposed two genera, Vitreoscil/a and Microscilla and 

seven species were described (three Vitreoscil/a, two Microscil/a and two others) 

(Pringsheim, 1951). Like some other gliding bacteria, for example Myxobacteria, 

Vitreoscilla produce chains of cells called trichomes. In Vitreoscilla filiformis and 

Vitreoscilla beggiatoides trichomes the cells are in close contact over a large area; 

this differs from chains found in other bacteria such as Bacillus which maintain 

contact in only a small area. Vitreoscil/a stercoraria trichomes resemble other 

bacterial chains in that contact is made over a small area. Electron micrographs of 

Vitreoscil/a stercoraria show separate cells joined together by electron dense 

material (Strohl, Schmidt et al. , 1986). Vitreoscilla trichomes are more 

pronounced than those produced by Myxobacteria. Another definitive 

characteristic of Myxobacteria is the formation of microcysts. Microcysts form in 

response to harsh or challenging environmental conditions and provide a survival 

strategy for the organism. The bacterial cell wall thickens with cellulose and the 

bacteria remain in this dormant state until conditions become more favourable. 

Unlike the Myxobacteria, Vitreoscil/a have not been shown to produce microcysts. 

Pringsheim detailed seven species of Vitreoscil/a based on colony morphology 

and cell dimensions (Pringsheim, 1951). Today three species of Vitreoscil/a are 

recognised, V. beggiatoides and V. filiformis isolated from fresh water sediments 

and V. stercoraria isolated from cow dung. (Holt, Krieg et al. , 1994). 
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Historically Vitreoscilla were classified as non-sulfide-oxidising members of the 

family Beggiatoaceae (Holt, Krieg, Sneath, Stanley, and Williams, 1994;Nelson, 

1981 ). In cell morphology and habitat V. beggiatoides and V. filiformis do 

resemble the Beggiatoaceae (Holt, Krieg , Sneath, Stanley, and Williams, 

1994;Nelson, 1981 ). However, V. stercoraria differs in cell shape, habitat and 

nutritional requirements (Mayfield and Kester, 1975;Nelson, 1981 ). V. stercoraria 

is the only strain of Vitreoscil/a that has been kept in pure culture from 

Pringsheim's original isolation (ATCC 15218) and is the most well characterised of 

the genus (Brzin, 1966;Costerton, Murray et al. , 1961 ;Mayfield and Kester, 

1972;Mayfield and Kester, 1975;Pringsheim, 1951). In 1984 Woese and 

colleagues carried out 16S ribosomal RNA (oligonucleotide) sequencing on 

V. stercoraria and found it to be closely related to the purple photosynthetic 

bacteria. V. stercoraria was therefore classified in the beta subdivision of the 

purple bacteria close to species of Pseudomonas, Rhodospirillum, Alcaligenes, 

Aquaspirillum, Thiobacillus and Chromobacterium (Woese, Weisburg et al. , 1984). 

The grouping of non-photosynthetic bacteria amongst the purple bacteria suggests 

that a photosynthetic ancestral phenotype gave rise to the greater purple bacterial 

unit. At various times non-photosynthetic offshoots of the photosynthetic 

phenotypes arose and it was from one of these that Vitreoscil/a stercoraria 

originated (Woese, Weisburg, Paster, Hahn, Tanner, Krieg, Koops, Harms, and 

Stackebrandt, 1984 ). 

1.1.2 Physiology 

In 1972 Mayfield and Kester carried out physiological studies on V. stercoraria and 

investigated a number of characteristics including pH optimum, growth rate, and 

number of cells per trichome (Mayfield and Kester, 1972). They found that 

cultures of the organism reached a maximum optical density at 48 hours and 
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showed no lag phase. There was a marked difference between the number of 

colony forming units measured by plate count and the optical density measured on 

a spectrophotometer. This is because long chains of bacterial cells behaved as 

single colony forming units giving an artificially low count compared to cell 

numbers indicated by the optical density of the culture. After 15 hours Mayfield & 

Kester found that the increase in biomass of the culture was because of an 

increase in trichome length rather than number of trichomes and so the number of 

colony forming units was no longer rising. The optimum pH for growth of 

Vitreoscil/a stercoraria was found to be between 7.5 and 7.7; complete inhibition of 

the organism was noted below 6.7. 

1.1 .3 Nutrition 

The nutritional requirements of Vitreoscil/a stercoraria are complex (Mayfield and 

Kester, 1975). The organism has been shown to require several carbon 

compounds at substrate levels as carbon and energy sources (Mayfield and 

Kester, 1975). For example, a requirement for specific amino acids, e.g. tyrosine, 

has been demonstrated. Potential precursors for these amino acids, e.g. malate, 

fumarate and succinate, could not substitute for them (Mayfield and Kester, 1975). 

lt was also reported that the organism required acetate in culture media 

(Costerton, Murray, and Robinow, 1961). 

1 .1.4 Habitat 

Vitreoscilla stercoraria occurs in cow dung (Holt, Krieg, Sneath, Stanley, and 

Williams, 1994;Reichenbach, 1981). Although isolated from cow dung it is thought 

that the organism enters the dung from the soil and does not form part of the 

bovine gut flora (Pengelly and Moody, unpublished observation). lt is probable 

that decomposing material in which ammonification occurs provides the slightly 
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alkaline pH required by the organism (pH optimum 7.5-7.7) (Mayfield and Kester, 

1972). Mayfield and Kester suggest that complex nutritional requirements of 

V. stercoraria may account for its low numbers in soil but they did not take into 

account that low isolation numbers do not prove low soil numbers. 

1.1 .5 Motility 

All Vitreoscil/a display gliding motility. This is a trait that they have in common with 

the Myxobacteria and many other bacteria. Studies into the mechanisms involved 

in gliding motility have been carried out with a number of micro-organisms that use 

this form of locomotion and various mechanisms have been suggested. None of 

these studies however have shown conclusively the mechanism involved. lt is 

probable that a number of different mechanisms are used to produce gliding 

motility and it has been suggested that different mechanisms could even be used 

by the same organism (Spormann, 1999). 

Although many studies into gliding motility have been carried only Costerton et a/ 

(Costerton, Murray, and Robinow, 1961) looked specifically at Vitreoscilla . They 

studied two strains of Vitreoscil/a, both isolated from cow dung, showed that these 

organisms displayed gliding motility on surfaces but were immobile in fluid 

suspension. The trichomes were made up of individually motile cells and 

movement did not arise from a specialised terminal cell or group of cells. Cells 

could be seen grouping together into longer chains that appeared to move faster 

than shorter chains (Costerton, Murray, and Robinow, 1961 ). Costerton et al. 

exposed cells to specific immune serum (antibodies raised against antigens on the 

cell surface) and observed a cessation of movement suggesting that a superficial 

structure may be responsible for locomotion. Electron micrographs and various 

staining techniques have failed to reveal any such surface structures. During 
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observations of cultures growing on agar Costerton et al. reported that trichomes 

would change direction in order to follow the slime layer left by another trichome 

and would consequently travel faster than before. They proposed that the slime 

layer may function as a lubricant to aid in overcoming the forces of surface tension 

and friction or that it may be necessary for the function of an undiscovered organ 

of locomotion. 

When observed growing on agar it is possible to see the trichomes of Vitreoscilla 

gliding, leaving in their wake a trail of slime that they exude as they move. In 1977 

Ridgway proposed that slime extrusion may be the mechanism responsible for 

gliding in Flexibacter polymorphus (Ridgway, 1977). Recently this idea has been 

given new weight. Hoiczk and Baumeister looked at two species of cyanobacteria 

using electron microscopy and found pore complexes at the cross walls of the 

filaments. The pores seem to be involved in slime secretion (Hoiczyk and 

Baumeister, 1998). There is no evidence that Vitreoscil/a filament walls contain 

pores. Although many gliding bacteria produce slime it is still not certain whether 

slime production is the result or cause of gliding motility. 

Costerton et a/ reported that the dense outer layer of the cell wall of Vitreoscil/a 

included peculiar folding which could also be found in other gliding bacteria 

including Myxococcus xanthus, Leucothrix and Beggiatoa. They hypothesised that 

motility could be caused by orderly waves of contraction in the elastic outer layer 

of the cell wall. This hypothesis would account for gliding motility; the apparent 

inability of Vitreoscil/a to swim in fluids; and for the rebound of cells from surfaces 

that was observed when the cells were grown in liquid media. In 1985 Waterbury 

and colleagues reported the isolation of strains of cyanobacteria which could swim 

rapidly in liquid media but lacked flagella (Waterbury, Willey et al. , 1985). A 
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mechanism was proposed in 1996 by Ehlers et al that involved the movement of 

waves across the surface of the bacterium (Ehlers, Samuel et al. , 1996). A wave 

mechanism could be responsible for the movement of both the cyanobacteria in 

liquid and gliding bacteria on surfaces but it is unclear as to why this mechanism 

would allow the cyanobacteria to move in liquid media whilst surface gliding 

bacteria cannot. When gliding on solid surfaces the bacteria would also have to 

overcome the problem of adhesion. 

The issue of adhesion was touched upon by Keller in 1983 when he looked into a 

possible mechanism of gliding in Myxobacteria involving surface tension (Keller, 

Grady et al. , 1983). Keller proposed that the production of a surfactant at one end 

of the bacteria is used to propel the glider up a surface tension gradient. lt was 

postulated by Dworkin in 1983 that the addition of a surfactant such as 0.5 % 

bovine serum albumin would overcome the gradient and prevent gliding (Dworkin, 

Keller et al. , 1983). This was tested by Burchard when he looked at the effect of 

surface free energy on gliding by several species of bacteria (Burchard, 1986). 

Only Oscillatoria princeps was unaffected by the addition of a surfactant. 

Burchard found that the mechanism of gliding was not affected by surfactants but 

that the explanation for the inability of gliders to move on a surface with low 

surface free energy is a problem with adhesion. Further evidence for the 

importance of adhesion came from observations on species of Cytophaga, 

Flexibacter, Microscil/a and Myxococcus (Burchard, Rittschof et al., 1990). The 

observation that the bacteria adhered more tenaciously to hydrophobic surfaces 

than hydrophilic ones suggested that the bacterial component that makes contact 

with the surface is relatively hydrophobic. Adhesion may be mediated by a water 

exclusion mechanism. On surfaces that are very hydrophobic water may be so 

successfully excluded that the level of adhesion is such that the bacteria are 
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unable to move. On hydrophilic substrata water exclusion is poor and close 

contact may be prevented, again accounting for limited movement. The necessity 

for adhesion may also explain why specific immune antiserum prevents gliding 

motility. lt may interfere with the cells' adhesion to the surface rather than by 

blocking a specific locomotion organ as Costerton et a/ suggested. 

The effect of nutrient levels on colony morphology of gliding bacteria has been 

studied in a number of bacteria. The formation of spreading colonies of gliding 

bacteria has been shown to be favoured by low nutrient concentrations; when high 

nutrient levels were used colonies tended to be raised and smooth-edged 

(Burchard, 1981 ;Duxbury, Humphery et al., 1980;Wolkins and Pate, 1984). In 

1993 Gorski et al. looked at the inhibition of gliding motility of Cytophaga 

johnsonae by sugars. Gorski et al. found that sugars with a common structure 

inhibited the motility of the organism. They found that if any of the substituents on 

carbons 3, 4, 5, or 6 of a glucoside were altered then the compound had little or no 

effect on gliding. The effect was found to be completely reversible and Gorski et a/ 

considered it possible that the sugars were binding to an enzyme or regulatory 

protein on the cell surface that is involved in the control of motility. lt is possible 

however that the sugars affected the hydrophobicity of the surface and so, as 

Burchard suggested, affect the ability of the organism to adhere to the surface. 

The effect of sugars on gliding motility was used by Xianzhen Li and Feng Chen to 

improve isolation methods for cellulolytic gliding bacteria (Li and Chen, 1998). 

They found that the elimination of soluble sugars from media not only inhibited 

contaminating fungi but also stimulated gliding making the gliding bacteria easier 

to isolate from other miroorganisms. 
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Several studies of gliding motility have involved the attachment of beads to the 

surface of the organism and then observing the movement of the beads. Lapidus 

and Berg attached beads to the surface of a Cytophaga and observed their 

movement (Lapidus and Berg, 1982). They found that the beads moved around 

with or against the direction of movement of the cell and that movement of both 

the beads and the cell stopped as oxygen became depleted. Beatson and 

Marshal! used this approach and proposed a helical mechanism of gliding motion 

based on observations of spheres that they attached to the surface of a typical 

species of Cytophaga and two unclassified gliding bacteria (Beatson and Marshal!, 

1993). Microscopic spheres attached to the bacteria moved in helical paths 

around them. The mechanism is proposed to be oriented helically on the cell 

surface and acts on a substratum via an adhesive polymer network. Spormann 

and Kaiserused a similar technique on Myxococcus xanthus (Spormann and 

Kaiser, 1995). They found that beads may move forwards and backwards whilst 

the cell is moving forwards and that the beads can move whilst the cell is 

stationary. lt was also noted that two beads on the same cell could move in 

opposite directions at the same time. Beads tended to become trapped at the 

ends of the cell. Similar studies on Flexibacter polymorphus and Flexibacter 

johnsoni have shown bead movement of a similar type (Gorski, Leadbetter et al. , 

1991 ;Ridgway and Lewin, 1988). In all bacteria so far examined the speed of 

bead movement was similar to gliding speed suggesting that the movement of the 

beads is produced by the same mechanism. 

None of the proposed mechanisms to explain the movement of gliding bacteria so 

far have been conclusively proved. lt seems likely that elements of each proposal 

will prove to be relevant. Different mechanisms may be employed by different 

organisms. Some bacteria may even employ more than one system in common 
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with the myxobacteria, which have been shown to employ two different systems of 

locomotion. 

1.2 Electron transport chains 

1.2.1 Types of carrier 

In the course of the oxidation of highly reduced organic compounds electrons are 

removed and passed along a chain of carrier molecules termed the electron 

transport chain. The final electron acceptor is usually oxygen, although some 

microorganisms use an organic compound such as fumarate or an inorganic 

compound such as nitrate. Passing electrons along a chain of carriers releases 

energy which is conserved and used to synthesise ATP. 

Electron transport chains in all organisms show many similarities. Mitochondria 

possess a relatively simple electron transport chain with electrons passing to 

ubiquniol via complex I, 11 or electron transferring flavoprotein but from this point 

the chain is linear, with only one terminal oxidase. This contrasts with many 

bacterial chains, which are branched and may possess two or more terminal 

acceptors. In mitochondria electrons are transported down the respiratory chain 

through a redox potential span of 1.14 volts, from the NAD+/NADH couple to the 

02/2H20 couple (Nicholls and Ferguson, 1992). 

In mitochondria the main components of the electron transport chain are present 

as four membrane bound complexes and two mobile carriers, coenzyme Q and 

cytochrome C. Electron carrying molecules within mitochondria can be divided 

into six main types: NAD+/NADH, flavins, non haem iron (iron-sulphur centers), 

quinones, protein-bound copper and haem iron. The active part of NAD+ is the 

nicotinamide (or pyridine) residue, which can accept another hydrogen atom at 

position 4 on its ring . Nicotinamide is the vitamin niacin. NAD+ and NADH both 
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absorb ultraviolet light at 260 nm; this is because of their purine ring structure. 

NADH has an absorbance peak at 340 nm while NAD+ does not absorb at this 

wavelength ; this can be used to monitor reactions catalysed by pyridine

nucleotide-linked dehydrogenases or reactions that can be linked to these 

dehydrogenases. The disappearance or appearance of NADH can be monitored 

spectrophotometrically (Nicholls and Ferguson, 1992). 

Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are prosthetic 

groups contained in flavoproteins that are also oxidoreductases. There are four 

main flavoproteins bound to the mitochondirial inner membrane and involved in 

electron transport. NADH dehydrogenase which contains FMN, succinate 

dehydrogenase which contains FAD, glycerol-3-phosphate dehydrogenase 

containing FAD and electron transferring flavoprotein (ETF) which contains FAD. 

All these proteins (except ETF) contain non-haem iron associated with acid-labile 

sulphur (yields H2S when treated with acid). Unlike NAD+ in pyridine-nucleotide

linked dehydrogenases FAD and FMN in the flavin-linked dehydrogenases are 

tightly bound to the protein part of the enzyme. Oxidation and reduction in 

flavoproteins takes place in the isoalloxazine ring system, which is capable of 

accepting 2 hydrogens from the substrate. FAD is derived from vitamin 82 

(riboflavin) and as with NAD+ its oxidation/reduction can be monitored 

spectrophotometrically because FAD has an absorption peak at 450 nm, which 

disappears on reduction to FADH2 (Nicholls and Ferguson, 1992). 

Iron- sulphur centres consist of iron atoms covalently bound to proteins by cysteine 

sulphurs and to other atoms by sulphur bridges. There are 1 0 iron-sulphur centres 

associated with mitochondria. Oxidation and reduction is between Fe(ll) and 

Fe(lll). Fe centres may contain two or four Fe atoms; despite this each centre only 
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acts as a one-electron carrier. Iron-sulphur proteins are widely distributed 

amongst electron transport chains and have widely different redox midpoint 

potentials. Quinones are lipid soluble hydrogen carriers in the membrane. They 

have substituted benzoquinone with a polyisoprene side chain. This chain can 

contain between 0 and 10 isoprene units; ubiquinone found in mitochondria has 

10. Oxidation/reduction occurs in the benzoquinone nucleus, an absorbance band 

with a maximum at 275 nm disappears when the molecule is reduced. 

Haem iron is a carrier that is a prosthetic group in cytchromes. The basis of haem 

is porphyrin, which consists of four pyrrole rings linked in a cyclic manner by 

methane bridges. Various groups are attached to the porphin nucleus to give 

porphyrins. The most common porthyrin in biological systems is 

protoporphyrin IX. Haem is a porphyrin ring in which the four pyrrole nitrogens are 

coordinated to a iron atom forming a square planar complex. Positions 5 and 6 of 

the irons 6 coordination positions, which are perpendicular to the plane of the 

porphyrin ring, are occupied by sidechains of specific amino acids from the 

protein. 

Cytochromes were originally classified according to the position of the alpha 

absorption band of their haems. Haems are classified into three types a, b and c 

according to substituents bound to the porthyrin. Type a cytochromes contain 

haem A. Type b contain protohaem and type c contain haem C covalently bound 

to the protein. When oxidised, cytochromes have two peaks in the visible range 

and when reduced they have three (a, p and y) . Absolute spectra however are of 

limited use because of non-specific absorption and light scattering. Therefore the 

oxidised spectrum is subtracted from the reduced spectrum to give the difference 

spectrum. Individual cytochromes are most easily resolved using the a-absorption 
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bands in the 550-610 nm region. Room temperature spectroscopy can only 

distinguish between single a-, b- and c-type cytochromes. However each type can 

be further subdivided into two spectrally distinct components. Type a cytochromes 

can be divided into a and a3. These two subtypes can be distinguished using CO, 

which binds specifically with a3. a and a3 are identical but are bound in different 

environments. The type b cytochromes consist of two components with different 

Em values (high bh and low b1) . The two subtypes reflect the presence on one 

polypeptide chain of two b-type haems; the different local environments provided 

by the polypeptide chain account for the differences in spectral and redox 

properties. Low temperature spectroscopy can resolve the two c type 

cytochromes (cyt c and cyt c1). Cyt c1 is an intergral protein within complex Ill 

while cyt c is a peripheral protein on the positive side of the membrane to which 

protons are pumped and links complex Ill with cytochrome c oxidase (Nicholls and 

Ferguson, 1992). 

Copper is also utilised in the components of the electron transport chain. The 

mammalian mitochondrial cytochrome c oxidase contains haems a and a3 together 

with at least two copper atoms termed CuA and Cu8 . Electrons from cyt c are 

initially transferred to CuA. The other redox components (Cu8 and haem a3) are 

located close to each other and form a binuclear centre located towards the 

negative side of the membrane (Nicholls and Ferguson, 1992). 

Electron carrying molecules within the mitochondria are organised into four 

complexes and two mobile carriers (see Figure 1.1 Page 15). Complex I 

(NADH -UQ oxidoreductase) contains more than thirty polypeptides. The complex 

catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that 

is associated with proton translocation across the membrane. Apart from one 
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molecule of the flavin FMN the redox centres of complex I are iron sulphur centres 

and the complex contains up to seven of them. lt is possible to inhibit complex I 

with either rotenone or piericidin A 
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Figure 1. 1 An overview of the mitochondrial respiratory chain 
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There are three other redox pathways which feed into ubiquinol: Complex 11, 

electron transfering flavoprotein and sn-glycerophosphate dehydrogenase. 

Electron transfering flavoprotein transfers electrons from the flavoprotein-linked 

step of fatty acid P-oxidation and like complex 11 is located on the matrix face of the 

membrane. Complex 11 transfers electrons from succinate and consists of several 

polypeptides. The two largest polypeptides constitute succinate dehydrogenase, 

with the largest containing a covalently bound FAD and two Fe/S centres. The 

other polypeptide contains another Fe/S centre. Complex 11 also contains a 

haem b of unknown function that is associated with the smaller polypeptides. 

Complex Ill is also termed cyt bc1 or ubiquinol-cytochrome c oxidoreductase and 

transfers electrons from ubiquinol to cyt c as well as translocating protons across 

the membrane. This complex is also found in many bacteria and is similar to the 

plastoquinol-plastocyanin oxidoreductase (cyt bf complex) of thylakoids. 

Cytochrome bc1 complexes contain three polypeptide chains that carry the redox 

groups: an iron-sulphur protein, cyt c1 and cyt b. The iron-sulphur protein contains 

a 2Fe/2S cluster attached to the polypeptide by chelation of one Fe to two 

cysteines and the other to two histidine residues. The iron-sulphur protein is 

anchored to the membrane by a hydrophobic N-terminus. Cytochrome c1 has a 

similar structure to the iron-sulphur protein except it is the C-terminus which 

provides the hydrophobic anchor. The cyt b subunit binds two haem groups which 

have axial histidine ligands. 

Complex Ill transfers electrons to cytochrome c. Cytochrome c is a peripheral 

protein located on the outer face of the mitochondrial membrane and is easily 

solubilised from intact mitochondria. The haem is located in a largely hydrophobic 

crevice with only one edge exposed to solvent. 
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1.2.2 Bacterial electron transport 

Bacteria use many different sources and acceptors of electrons. Components of 

the electron transport chain differ not only between different organisms but also in 

the same organism depending on growth conditions. Bacterial electron transport 

chains are generally more branched than mitochondrial chains. There can be 

several dehydrogenases, which feed into the chain, and two or three terminal 

oxidases, which can each, reduce molecular oxygen to water. The ratio of 

terminal oxidases is determined by growth conditions. 

The soil organism Paracoccus denitrificans has an electron transport chain whose 

components are similar to the components of the mitochondrial system. There is 

however a difference in the number of polypeptide chains that complexes 11 , Ill and 

IV contain. The P. denitrificans counterpart to complex I has not yet been isolated 

although antibody cross-reactivity and some gene sequence data indicate that it is 

closely related to the mitochondrial comple I (Xu, Matsuno-Yagi et al. , 1991 ). 

Cytochrome csso from P. denitrificans is closely related to mitochondrial 

cytochrome c in terms of both structure and redox potential. lt would therefore be 

logical to presume that Csso shuttles between proteins which correspond to the bc1 

and aa3 complexes; however a membrane bound c552 may instead carry out this 

role. Deletion of the gene for cytochrome c550 does not stop electron transfer to 

cytochrome aa3. (Nicholls and Ferguson, 1992). In P. denitrificans cytochrome aa3 

does not provide the only route to oxygen; there is an alternative that bypasses 

both bc1 and aa3 and probably a third oxidase that can accept electrons from c

type cytochromes. P. denitrificans is also able to utilise terminal acceptors other 

than oxygen. For example H20 2 which is commonly found in soil can be used. 
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The reduction of H20 2 is catalysed by a periplasmic cytochrome-c peroxidase 

which is a dihaem c-type cytochrome (Nicholls and Ferguson, 1992). 

The aerobic electron transport chain of E. coli varies considerably from 

mammalian mitochondria or Paracoccus denitrificans. E. coli does not possess 

c-type cytochromes or a bc1 complex (see Figure 1.2 Page 19). Evidence for the 

lack of a bc1 complex comes from the insensitivity of electron transport between 

ubiquinol and oxygen to antimycin and myxothiazol, which are inhibitors of the bc1 

complex (Nicholls and Ferguson, 1992). E. coli possesses two oxidases 

(cytochromes bo and bd) that directly oxidise ubiquinol. 
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Figure 1. 2 The respiratory chain of Escherichia coli 
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Cytochrome bo from E. coli is a four subunit haem-copper oxidase that catalyses 

the four electron reduction of 0 2 to water and is also a proton pump (Puustinen, 

Fine I et al. , 1991 ). All of the redox centres are located in subunit I which is the 

largest of the subunits. A low spin protohaem (haem b) acts as the electron donor 

to a binuclear centre that is composed of an 0-type haem (haem 03) and a copper 

ion (Cub). Subunits I, 11 and Ill of ubiquinol oxidase are the same as the 

corresponding subunits in the aa3-type cytochrome c oxidases whilst subunit IV 

has little sequence homology with other oxidases and its function is unknown. 

Unlike cytochrome-c oxidases, subunit 11 of ubiquinol oxidase has no CuA centre 

(Puustinen, Finel, Haltia, Gennis, and Wikstrom, 1991 ), nor does it have a 

cytochrome c binding site (Lemieux, Calhoun et al. , 1992;Nicholls and Ferguson, 

1992). The haem b receives electrons directly from a membrane solubilised 

ubiquinol molecule and the resulting protons are released on the positive side of 

the membrane (Puustinen, Finel, Haltia, Gennis, and Wikstrom, 1991). 

Cytochrome bd is the only well characterised bacterial terminal oxidase, that is 

unrelated to the haem-copper oxidase superfamily. lt has been suggested that in 

E. coli and other enteric bacteria, cytochrome bd serves as a high affinity oxidase 

to support energy-requiring processes under microaerophilic conditions and to 

protect anaerobic processes from inhibition from oxygen (Junemann, 

1997;Lemieux, Calhoun, Thomas, lngledew, and Gennis, 1992). Loss of bd in 

E. coli leads to a lowered ability of the organism to cope with oxidative stress 

(Junemann, 1997;Lemieux, Calhoun, Thomas, lngledew, and Gennis, 1992). 

Cytochrome bd is made up of two polypeptide chains and contains two B-type 

haems as well as the distinctive porphyrin ring of the D-type haem, the site of 

oxygen reduction. 
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1.2.3 Electron transport in Vitreoscil/a 

In common with E. coli, Vitreoscil/a contains both cytochrome bo and bd terminal 

oxidases in its electron transport chain and quinol is the direct electron donor to 

the terminal oxidase (Georgiou and Webster, 1987a;Georgiou and Webster, 

1987b). Cytochrome bo from Vitreoscilla has been purified and partially 

characterised and has been found to be structurally and functionally similar to 

cytochrome bo from E. coli (Georgiou, Cokic et al. , 1988). Both enzymes have 

four subunits of similar corresponding weights and both contain haem type b and 

Cu2
+ prosthetic groups. The enzymes also have similar optical spectra and are 

inhibited by KCN and sodium azide. Both also exhibit ubiquinol-1 oxidase activity 

(Georgiou, Cokic, Carter, Webster, and Gennis, 1988). 

Vitreoscilla differs from E. coli in that Vitreoscil/a produces high levels of 

haemoglobin (VHb) in its cytoplasm under hypoxic conditions. Although several 

bacteria and yeast produce a related protein , termed flavohemoprotein, Vitreoscil/a 

is the only bacterium known to produce this form of haemoglobin. Vitreoscil/a 

haemoglobin is thought to capture oxygen and feed it into the terminal oxidase 

under oxygen limiting conditions (Wakabayashi, Matsubara et al. , 1986); an 

increase of the haem content in the cell has been observed when the oxygen 

concentration in the growth medium fell (Boerman and Webster, 1982). The gene 

encoding for VHb (vgb) has been identified, cloned and expressed in E. coli. The 

resulting strain of E. coli grew better than the E. coli controls under microaerobic 

conditions (Khosla and Bailey, 1989) (Dikshit, Dikshit et al. , 1990). 

lt was originally thought that VHb was a soluble terminal oxidase (cytochrome o). 

This was because VHb is more autoxidisable than other haemoglobins, 

cytochrome o and VHb are spectroscopically similar (the difference between the 
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principle Soret bands in the CO difference spectrum is only 3 nm) and the 

oxidation-reduction turnover of VHb is very slow in the presence of NADH-metHb 

reductase (Webster and Liu, 1974) (Tyree and Webster, 1978). However, the true 

nature of this molecule became apparent when the gene was sequenced and 

homology with eukaryotic haemoglobins was discovered (Wakabayashi, 

Matsubara, and Webster, 1986). Other properties of VHb also pointed to its 

similarity with eukaryotic haemoglobin. Firstly VHb was isolated from the soluble 

fraction of the cell , and secondly the infrared spectrum of the oxygenated form of 

VHb is similar to those of oxymyoglobins and oxyhaemoglobins (Choc, Webster et 

al., 1982). Vitreoscil/a VHb is a homodimeric protein with a molecular mass of 

32,783 Da. Each subunit has one protohaem IX (Tyree and Webster, 1978), 

(Webster and Orii , 1985),(Wakabayashi, Matsubara, and Webster, 1986). If the 

ferrous form of VHb is bound to CO and 0 2 it forms compounds which are optically 

very similar to those of myoglobin and haemoglobin (Webster and Liu , 1974). 

Rapid kinetic studies of the binding of CO and 0 2 to VHb have shown it to have a 

relatively open haem pocket. Orii and Webster propose that this may explain why 

VHb is more autooxidisable than other oxyhaemoglobins (Webster and Orii, 1985). 

1.2.4 Sodium pumps 

According to the chemiosmotic hypothesis (Mitchell , 1961) energy for ATP 

synthesis is harnessed by the establishment of a proton gradient across an 

energy-transducing membrane. This is accomplished by the use of proton pumps 

that are coupled to the electron transport chain and hydrogen gradient driven ATP 

synthetase. However, in 1981 Tokuda and Unemoto showed that the marine 

bacterium Vibrio alginolyticus (V. alginolyticus) possesses a primary Na+ pump 

that is directly coupled to its respiratory chain (Tokuda and Unemoto, 1981). They 

later found that the NADH dehydrogenase activity of V. alginolyticus required Na+ 
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for maximum activity and that activity of a mutant that lacked the Na + pump was 

not stimulated by Na+ (Tokuda and Unemoto, 1984). V. alginolyticus is not the 

only marine bacterium to have been found to contain a primary Na+ pump. Other 

marine bacteria that have proved to pump Na+ include a halotolerant Ba1 (Ken

Dror, Preger et al. , 1986), the halotolerant marine bacterium Alcaligenes strain 201 

(Oh, Kogure et al. , 1991), Vibrio parahaemolyticus (Tsuchiya and Shinoda, 1985) 

and Vibrio costicola (Udagawa, Unemoto et al., 1986). A similar pump has also 

been detected in Klebsiella pneumoniae (Dimroth and Thomer, 1989). All the 

above sodium pumping bacteria extrude Na+ at the NADH:quinone oxidoreductase 

segment in the respiratory chain. All also require Na+ for maximum activity and 

can be inhibited by the addition of 2-heptyl-4-hydroxyquinoline N-oxide. 

The most well studied example of a primary sodium pump from a marine 

bacterium is that of V. alginolyticus. Two NADH:ubiquinone oxidoreductases have 

been found in the membrane of V. alginolyticus (hayashi and Unemoto 1987, 

Hayashi et al 1992). One of these is of the non-energy conserving type whereas 

the other is believed to be coupled to Na+ ion pumping. This enzyme is induced 

during aerobic growth at alkaline pH and may have the physiological advantage of 

keeping the cytoplasmic pH near neutrality while pumping cations (Na+) into an 

alkaline environment (Tokuda and Unemoto, 1981). Analysis of the Na+ pump has 

revealed FAD but no FMN, non-haem iron, an acid labile sulphur cluster and 

tightly bound ubiquinone-8 (Pfenningerli, Albracht et al. , 1996). The participation 

of an iron-sulphur cluster of the 2Fe-2s type in electron translocation was 

demonstrated by Pfenninger Li. 

When Na + is not present the path of electrons ends with the reduction of 

ubiquinone-1 to the semiquinone derivative which, in the presence of oxygen, 
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becomes reoxidised with accompanying formation of superoxide radicals. With 

Na+ present these oxygen radicals are not formed and the semiquinone is further 

reduced to the quinal derivative, indicating that the Na+ dependant step catalysed 

by NADH:ubiquninone oxidoreductase is the reduction of ubisemiquinone to 

ubiquinol (Pfenningerli, Albracht, van Belzen, and Dimroth, 1996). Pfenninger et 

a/ also reconstituted the enzyme into liposomes and showed that NADH oxidation 

by ubiqunone-1 was coupled to Na+ transport with a stoichiometry of 0.5 Na+ per 

NADH oxidised. With the use of inhibitors he also showed that Na+ transport is a 

primary event and does not involve the intermediate formation of a proton 

gradient. 

Sodium ion coupled oxidative phosphorylation has been demonstrated in 

V. a/ginolyticus (Dibrov, Lazarova et al. , 1986). lt had been shown that the sodium 

gradient produced can be used for all three types of membrane-linked work. 

Dibrov et al. demonstrated chemical work in the form of ATP synthesis (Dibrov, 

Lazarova, Skulachev, and Verkhovskaya, 1986). Dibrov et a/ also showed that the 

gradient could be used for mechanical work when he showed that it is used to 

drive the rotation of flagellum (Dibrov, Kostyrko et al., 1986). Tokuda & Unemoto 

showed the use of the sodium gradient to drive osmotic work by demonstrating the 

uphill import of metabolites (Tokuda and Unemoto, 1982). 

The strict aerobes Propionigenium modestum and Veil/one/la a/calescens have 

both been shown to utilise a sodium pumping methylmalonyi-CoA decarboxylase 

(Hilpert, Schink et al. , 1984; Hilpert and Dimroth, 1982). Both organisms ferment 

succinate to propinate and C02 via succinyi-CoA, (R) and (S)-methylmalonyi-CoA 

and propionyi-CoA. Only one reaction in this pathway (decarboxylation of (S)

methylmalonyi-CoA to propionyi-CoA) generates sufficient energy for energy 
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conservation (Hilpert, Schink, and Dimroth, 1984). The enzyme is membrane 

bound and biotin-containing and is coupled to the electrogenic extrusion of two 

Na+ per reaction (Hilpert, Schink, and Dimroth, 1984; Hilpert and Dimroth, 1984; 

Dimroth, 1987). P. modestum has been shown to utilise the Na+ gradient created 

by its Na+ pumping methylmalonyi-CoA decarboxylase with a Na+ dependant 

ATPase (Hilpert, Schink, and Dimroth, 1984). 

There have been reports that alkotolerant/halotolerant strain of Bacillus 

(Semeykina, Skulachev et al., 1989) and E. coli grown at alkaline pH (Avetisyan, 

Dibrov et al., 1989) utilise a sodium pumping terminal oxidase. Neither report 

identified the enzyme responsible and have to date not been expanded upon. 

Vitreoscilla is therefore the only bacterium that has been reported to possess a 

sodium pumping terminal oxidase that has been identified and partially 

characterised (Bassey, Efiok et al., 1990; Bassey, Efiok et al., 1992; Bassey, 

Efiok, and Webster, 1990; Park, Moon et al., 1996). In 1990 Bassey et a/ first 

reported the generation of a sodium gradient by the respiratory chain of 

Vitreoscilla (Bassey, Efiok, and Webster, 1990). Bassey et at demonstrated that 

the formation of ~4J was directly coupled to respiratory-driven Na+ extrusion by 

putting forward the following experimental evidence: there was a correlation 

between the kinetics of respiratory-driven Na+ extrusion and ~4J formation; 

monensin caused the collapse of ~4J; the protonophore 3,5-di-tert-butyl-4-

hydroxybenzaldehyde (DTHB) caused a transient collapse followed by the 

stimulation of Na+ extrusion and recovery of the ~lj.l. and there was no correlation 

between ~4J and H+ fluxes (Bassey, Efiok, and Webster, 1990). 

Further studies of the respiratory chain of Vitreoscilla by Bassey et al. revealed 

that the terminal oxidase was responsible for the sodium pumping (Bassey, Efiok, 
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and Webster, 1990). Bassey et a/ initially looked at two possible candidates for 

the sodium pump, an NADH dehydrogenase as found in the marine bacteria or 

cytochrome bo (the terminal oxidase). They found that although the NADH 

oxidase activity of the membranes was enhanced more by Na+ than u+ the quinal 

oxidase activity was only enhanced by Na+. When the cytochrome was initially 

reconstituted into liposomes derived from E. coli phospholipids movement of Na+ 

both in and out of the liposomes (depending on Na+ concentration inside and 

outside) was detected, and the enzyme catalysed a net uptake 

of 22Na+ when the liposomes were energised with ascorbate/ 

N,N,N',N'-tetramethyl-1 A-phenylenediamine (TMPD) thus adding to the evidence 

that the terminal oxidase from Vitreosci/la is responsible for pumping sodium 

(Bassey, Efiok, and Webster, 1990). Further studies by Park et a/ in which the 

enzyme was incorporated into liposomes made from Vitreoscilla phospholipids 

saw an increase in extrusion of Na+ compared with the E. coli liposomes (Park, 

Moon, Cokic, and Webster, 1996). They found an efficiency of 3.93 Na+ pumped 

per 02 consumed when ascorbate/TMPD was used as the substrate. 

In 1991 Bassey looked at the synthesis of ATP by Vitreosci/la and reported the 

use of a sodium gradient to generate ATP (Bassey, Efiok, and Webster, 1992). 

They showed that the amount of ATP generated was dependent on the magnitude 

of the Na+ gradient imposed and that anaerobic cells which had been equilibrated 

with Na+ were able to synthesise sufficient ATP to double the intracellular 

concentration when they were exposed to 02. From this evidence Bassey et a/ 

reported that under normal growth conditions Na+ is probably the main coupling 

ion for ATP synthesis in Vitreosci/la. 
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1.3 Initial aims and objectives 

1.3.1 Aims 

1. Isolation of Vitreoscilla from the environment. 

2. Extraction of membranes containing cytochrome bo from Vitreoscil/a. 

3. Purification of cytochrome bo from membranes. 

4. Reconstitution of the purified enzyme into phospholipid vesicles with defined 

sidedness, i.e. where the orientation of the enzymes in the artificial membrane 

is known and is as uniform as possible. 

5. Unequivocal determination of the ion-pumping capacity of the enzyme. 

6. Development of methods for the deconvolution of the contributions of enzyme 

intermedeates to the electronic absorption spectrum during turnover. 

7. Development of a kinetic scheme that links these enzyme intermediates and 

that incorporates the effects of pH and the concentration of sodium. 

8. Identification of further examples of bacteria with sodium-pumping oxidises. 
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1.3.2 Objectives 

1. Establishment of preparative methods: medium-scale growth of bacteria that 

require high aeration levels; isolation of bacterial membranes;purification of 

cytochromes bo from Vitreoscilla and E. coli RG145 using methods that are as 

similar as possible; and initial reconstitution studies. 

2. Measurement of enzyme-induced Na+ and H+ fluxes using both ion-selective 

electrodes and spectrophotometric methods, with the H+ pumping cytochrome 

bo from RG145 as a control. 

3. Characterisation of the electronic absorbance spectra of intermediates in the 

turnover of Vitreoscil/a cytochrome bo. 

4. Determination of the population of the enzyme intermediates during turnover 

and of the effects of pH and Na+ concentration. 

5. Screening of sediment and water column samples taken from marine, 

estuarine and ruminant faecal sources for Na+ dependant growth. 

6. Identification and medium-scale growth of isolates; preparation of bacterial 

membranes; and preliminary screening using electronic absorbance 

spectroscopy to determine their cytochrome complement. 

7. Characterisation of the respiratory chains of promising isolates and preliminary 

purification of enzymes of interest at least as far as solubilisation. 
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Chapter 2 

The isolation, purification and characterisation of Vitreoscil/a 
stercoraria strains from the environment 



2.1 Introduction 

Vitreoscil/a have been found in cow dung, fresh water sediments, rotting 

vegetation and stagnant ponds (Pringsheim, 1951) (Costerton, Murray et al., 

1961). Webster's original strain that was proposed to pump Na+ was isolated from 

cow dung (Bassey, Efiok et al., 1990). lt is therefore probable that it was a strain 

of Vitreoscilla stercoraria (the only species reportedly isolated from cow dung) 

(Halt, Krieg et al., 1994). Cow dung was therefore sampled for a strain of 

Vitreoscilla stercoraria that might also possess a sodium pumping terminal 

oxidase. The ease of sampling and straight forward recovery techniques also 

made sampling from cow dung the preferred option. Other dung samples (sheep 

and horse) were also taken and some qualitative comparisons made of numbers 

of possible Vitreoscilla strains isolated from each type of dung. Dartmoor was 

chosen as the sample site because of its proximity to the university. Dartmoor 

also has good access and numerous cattle graze freely on the moor in the 

summer. 

Pringsheim described a method for the isolation of Vitreoscil/a from cow dung in 

which a small quantity of dung is placed on the centre of an agar plate. Gliding 

bacteria will move away from the central inoculation and it is then possible to pick 

them off the plate (Pringsheim, 1951). Costerton et a/ used a similar method but 

streaked the dung onto the plate (Costerton, Murray, and Robinow, 1961). 

The aims of the work presented in this chapter were to isolate, purify and 

characterise Vitreoscil/a strains from the environment. At the outset of the study 

Dr Dale Webster had supplied a strain of Vitreoscil/a from his laboratory (Dr D 

Webster Illinois Institute of Technology, Chicago, Illinois, 60616). This was the 
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strain that had been reported to possess a sodium dependent terminal oxidase 

(Bassey, Efiok, and Webster, 1990;Bassey, Efiok et al., 1992). Instructions were 

supplied for the growth of the organism including a recipe for agar based on yeast 

extract, peptone and salt free acid digest of casein. Instructions were also 

received concerning frequency of subculture of the organism from the stock. In Dr 

Webster's lab the organism was kept on agar slopes at 4°C and subcultured onto 

fresh agar every few months. Dr Webster did not mention how often the organism 

was retrieved from an original stock. When this strain was recovered from storage 

and grown on agar the bacteria no longer displayed gliding motility. lt is probable 

that repeated subculture in Dr Webster's laboratory had resulted in changes to 

some of the characteristics of the organism. The organism had been grown on 

agar that did not contain any added sodium ions and so it is possible that the 

sodium-dependent trait could have been lost. Initial papers on the organism also 

reported that it required acetate to grow (Costerton, Murray, and Robinow, 1961 ); 

there was no acetate in the recipe received from Dr Webster and later papers 

make no mention of the requirement. As it was not possible to determine the 

extent to which the bacteria had changed, it was thought prudent not to use it in 

the study. lt was therefore decided to isolate a Vitreoscilla strain directly from the 

environment. 

The bacteria isolated from dung were characterised. Characteristics such as cell 

width, motility, the affinity of the organism for sodium chloride and the effect of 

potassium on growth were investigated. The effect of monensin, a Na+ specific 

ionophore that catalyses Na+/H+ exchange across membranes and FCCP, an 

uncoupler of oxidative phosphorylation were also investigated. 
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2.2 Materials and methods 

2.2 .1 Reagents 

Agar technical number 3, Tryptone (L42), and yeast extract (L21) were supplied by 

Oxoid. (Basingstoke, Hampshire) All other reagents were supplied by Sigma 

(Poole, Dorset) unless otherwise stated. 

2.2.2 Isolation 

Vitreoscilla were isolated on a modified tryptone, yeast (MTY) agar with added 

sodium chloride. This consisted of 12 gr1 of agar, 10 gr1 yeast extract, 10 gr1 of 

tryptone and 2.5 gr1 of sodium chloride. The pH was adjusted to 7.8 with sodium 

hydroxide. Liquid cultures were grown in MTY broth. The broth contained the 

same ingredients as the agar but without the agar. 

Samples of cow dung (both fresh and older deposits) along with horse and sheep 

droppings were collected from a site near Cadover Bridge on Dartmoor, Devon 

(grid reference 5555 6465). A pea-sized quantity of each sample was placed in 

the centre of five agar plates. The plates were incubated at 25° for 12 hours and 

then examined for growth under a low powered microscope. Bacteria that had 

moved away from the central inoculum were picked off and streaked onto fresh 

plates. The plates were incubated for a further 12 hours and then re-examined. 

Bacteria moving away from the central inoculation were again picked off and 

streaked onto fresh plates. 

2.2.3 Purification of cultures 

Two loops of contaminated bacteria were added to 1 ml of phosphate buffered 

saline (Fisher Scientific Ltd, Loughborough, Leicestershire) containing 0.005 gr1 
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lysozyme (from chicken egg white). The saline suspension was shaken for 10 

seconds, left for 15 minutes at room temperature then shaken again for 10 

seconds. A loop of the suspension was streaked onto MTY agar and the plates 

were incubated for 12 hours at 25°C. The single colonies suspected of being 

Vitreoscil/a were picked off under a low powered microscope with a flattened loop 

and streaked onto MTY agar. 

2.2.4 Culture conditions 

Unless otherwise stated Vitreoscil/a were grown on MTY agar or in MTY broth. 

Agar plates were streaked or spread on the day they were poured without drying. 

An overnight culture is defined as a single colony from an agar plate, inoculated 

into broth and incubated for 48 hours at 25 oc without shaking. 
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2.3 Results 

2.3.1 Isolation 

Three trips were made to Dartmoor to collect dung samples. As well as cow dung, 

sheep and horse dung samples were also collected. Six isolates were recovered 

during the first visit on the 25/2/98; none of these proved to be species of 

Vitreoscil/a. The second visit (21/8/98) yielded 10 possible Vitreoscilla strains of 

which 6 were confirmed. The final visit was on the 16/10/98 and two isolates were 

retained, neither of these proved to be Vitreoscilla species. Figure 2.1 (Page 41) 

shows an isolation plate with gliding bacteria moving away from the central 

inoculation of dung. Table 2.1 (Page 42) shows the details of the bacteria isolated 

from various sources. The results of the Gram stain, gliding observation and 

whether or not the cells grew in chains are all shown. This information was used 

to identify possible strains of Vitreoscilla for further work. 
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Figure 2.1 An isolation plate showing the central inoculum and the gliding bacteria moving away 
from the centre. A pea sized quantity of dung was placed in the centre of an MTY agar plate which 
was incubated at 25°C for 24 hours. Organisms displaying gliding motility that had moved away 
from the central inoculation were picked off and investigated as possible Vitreoscilla strains. 
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Table 2.1 Isolates of bacteria from various sources of dung. Possible Vitreoscilla were identified 
using to cell dimension, colony morphology, type of movement and growth in chains. 

Isolate Source Gram Motile by Cells in Possible 
Stain Gliding? Chains? Vitreoscilla ? 

LB1 Cow Neg. Yes No No 
LB2 Cow Pos. No No No 
LB3 Cow Neg. Yes No No 
LB4 Cow Neg. No No No 
LB5 Cow Pos. No No No 
LB6 Cow Neg. No No No 
LB7 Cow Neg. Yes Yes Yes 
LB8 Cow Neg. Yes Yes Yes 
LB9 Cow Neg. Yes Yes Yes 
LB10 Fresh cow Pos. No No No 
LB11 Old cow Neg. No No No 
LB12 Old cow Neg. Yes Yes Yes 
LB13 Old cow Neg. Yes Yes Yes 
LB14 Sheep Neg. No Yes No 
LB15 Horse Neg. Yes Yes Yes 
LB16 Horse Pos. No Yes No 
LB17 Cow Neg. No Yes No 
LB18 Cow Neg. No Yes No 
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2.3.2 Purification of cultures 

Plating techniques were developed to optimise the recovery of gliding bacteria and 

were initially based on published work (Pringsheim, 1951 ). After isolation it was 

necessary to obtain a pure culture; this would usually be achieved by streaking the 

organism onto a fresh plate. lt was not possible to purify the Vitreosci/la isolates in 

this manner since mucous produced by the cells trapped contaminating bacteria 

and single colonies were not formed. A new method using lysozyme was 

developed to overcome this problem. The mucus produced by Vitreoscilla is made 

up of polysaccharides (Youderian, 1998). As lysozyme hydrolyses some 

polysaccharides it was tested for its ability to hydrolyse the polysaccharides in the 

mucous produced by Vitreoscil/a and aid purification of the strains isolated. 

Cells were treated as described in the Materials and Methods section (Page 38). 

After repeated trials the purification protocol was successful on two of the isolates 

(L813 and L89) producing colonies which were derived from single trichomes 

without the contaminating organisms. Attempts at purification of the other isolates 

were not successful. 

2.3.3 Examination of colony morphology and cell width 

Characterisation and confirmation that the isolates were Vitreoscil/a species began 

with an examination of the colony morphology of pure cultures and measurement 

of the width of individual cells. Vitreoscilla forms distinctive colonies with individual 

filaments gliding away from the original point of inoculation. Under low 

magnification (x1 00) it is possible to see the trail of mucus left behind by the 

organism. The widths of cells were also measured to give an indication of which 

species of Vitreosci/la had been isolated. The width of individual cells was 
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measured using a microscope fitted with an eyepiece graticule (Olympus, Tokyo), 

calibrated with a stage graticule (Pyser, Kent). A selection of 10 cells grown on a 

slide on MTY agar were measured and an average calculated. The average width 

of the LB9 cells was found to be 1.33 J.Lm ±0.067 SEM and the average width of 

LB13 was found to be 1.38 J.Lm ± 0.041.SEM. 

2.3.4 Movement of isolate LB13 

A closer examination of the movement of one of the isolates was made. A small 

quantity of sterile molten MTY agar number was dropped onto a sterile slide and 

allowed to set. An inoculation of LB13 was made on the agar and the slide was 

incubated at 25. C in a Petri dish with a damp piece of filter paper. After 24 hours 

incubation the slide was observed for gliding movement. Observation of LB13 on 

thin agar slides showed the organism moving across the agar, chains of cells were 

seen moving in spirals and leaving behind a visible trail. 

2.3.5 The effect of sodium chloride concentration on the growth of LB9 and LB13 

If the terminal oxidase of Vitreoscilla is a sodium ion pump then the organism must 

require sodium ions for this enzyme to function. lt was therefore important to 

determine at what concentration the isolates required sodium, if at all. lt was also 

desirable to determine the concentration of sodium ions and pH in their natural 

environment. 

A flame photometer (Corning 480, Halstead Essex) was used to determine the 

concentration of sodium chloride in sample of cow dung. One gram of dry dung 

was made up to 20 ml in double distilled water. The sample was left at room 

temperature for 1 hour and was then filtered. The sample was then run through 

the flame photometer. Indicator paper was used to determine the pH of wet cow 
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dung. The concentration of sodium ions tested in cow dung was found to be 8 mM 

this equates to 0.148% of the wet weight. The pH of the dung was found to be 

7.3. 

The effect of sodium chloride on the growth of isolates LB9 and LB13 was tested 

in MTY agar. Agar was prepared with 0, 0.5, 1, and 1.5 % added sodium chloride. 

The individual ingredients of the agar and broth also contained a small quantity of 

sodium. This means that the actual concentration was slightly higher than the 

percentage stated (Table 2.2 Page 46). The isolates were grown for 48 hours on 

MTY agar; approximately 0.1 grams of each organism was then added to 1 ml of 

170 mM potassium chloride solution. The samples were mixed and diluted to 10"5
, 

10-s, and 10·7 with 170 mM potassium chloride solution. Each dilution (0.1 ml) was 

spread onto three replicate plates at each sodium chloride concentration. The 

plates were incubated at 25•c for 24 hours and the colonies were counted. 

Vitreoscil/a colonies had to be counted after only 24 hours before the colonies had 

merged. After 48 hours the plates were re-examined as there appeared to be a 

variation in the colony sizes on the different plates and so at this point colony size 

was measured. 
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Table 2.2 Total concentrations of sodium chloride in the agar and broth, calculated from the 
content of sodium chloride in the individual ingredients. 

Sodium chloride added Total sodium chloride concentration (gr') 
(gr1) Agar Broth 
10 10.8 10.7 
7.5 8.3 8.2 
5 5.8 5.7 
2.5 3.3 3.2 
0 0.8 0.7 
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Figure 2.2 (Page 48) shows the colony counts for LB9 and LB13 versus sodium 

chloride concentration. LB9 grew well at concentrations up to and including 1% 

added sodium chloride. Above 1% added sodium chloride the number of colony 

forming units started to decline. LB 13 grew well at 0% added sodium chloride. 

The general trend was down, at 1.5% added sodium chloride no growth was 

detected for either organism at the lowest dilution plated (10-5
). 
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Figure 2.2 The effect of sodium chloride concentration on the growth of isolate LB9 o and LB13 • . 
Cultures were grown on agar containing 0, 0.5, 1, 1.5 % added sodium chloride at 25°C for 24 
hours. The average of three replicates is shown ± 1 standard deviation. At 1.5 % added sodium 
chloride no colonies of either organism were present giving a count of< 106

. 
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Figures 2.3 and 2.4 (Page 50) show a representative plate from each sodium 

chloride concentration; the differences in colony morphology at the different 

concentrations can clearly be seen. Figure 2.5 (Page 51) shows the effect of 

sodium chloride concentration on colony diameter for the two Vitreoscil/a strains. 

When no extra sodium chloride was added to the media both isolates had colony 

sizes of between 3 and 4.5 mm. With 0.5% added sodium chloride LB13 had 

colonies of between 5 and 7.5 mm whilst LB9 colonies varied between 2 and 

4.5 mm. At 1% added sodium chloride both isolates had similar sized colonies of 

between 1 and 2 mm. 
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Figure 2.3 Plates showing LB9 growth at three sodium chloride concentrations, 0, 0.5 and 1% 
added sodium chloride. 

Figure 2.4 Plates showing LB13 growth at three sodium chloride concentrations, 0, 0.5 and 1% 
added sodium chloride. 
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Figure 2.5 The size of Vitreoscilla colonies on agar containing 0, 0.5, and 1 % added sodium 
chloride. The plates were incubated at 25° C for 48 hours. Each bar represents the average of 9 
colonies chosen at random measured at the widest point plus or minus one standard error. 
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The effect of sodium chloride concentration on the growth of LB13 in MTY broth 

was also tested. Broths were made with 0, 0.25, 0.75, and 1 % added sodium 

chloride (see Table 2.2 Page 46 for total concentration). One ml of overnight 

culture was added to three replicate 50 ml batches of broth at each sodium 

chloride concentration. These broths were then incubated at 25. C in a shaking 

water bath at 50 rpm. Optical density was measured at 590 nm at 17 hours, 48 

hours and 51 hours. 

Figure 2.6 (Page 53) shows the optical density of the cultures after inoculation. At 

all times measured the optimum sodium chloride percentage was 0.25 % with this 

culture reaching an optical density twice as high as the next highest (0.5 %). 

Either side of 0.25 % the optical densities of the cultures were lower with 1 % 

added sodium chloride showing the lowest density. 
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Figure 2.6 The effect of sodium concentration on the growth of isolate LB13 in broth. LB13 was 
grown in broth containing 0, 0.25, 0.5, 0.75, and 1% added sodium chloride. The flasks were 
incubated at 25° C in a shaking water bath at 50 rpm. The optical density was measured at 17, 48, 
and 51 hours. 
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2.3.6 The effect of FCCP and monensin on the growth of isolates LB13 

The effects of monensin and FCCP on the organism were tested. Monensin is a 

Na+ specific ionophore that catalyses Na+/H+ exchange across membranes 

(Sandeaux, Sandeaux et al., 1982) and FCCP is an H+ -specific protonophore 

(Benz and Mclaughlin, 1983). Monensin should cause the collapse of a Na+ 

gradient that was created by a primary sodium pump (Skulachev, 1987). Whereas 

an organism utilising a primary sodium pump would be only transiently affected by 

a H+-specific protonophore (Efiok and Webster, 1992). 

Isolate LB13 was grown on MTY agar containing 10 JlM FCCP (Sigma), 10 J.!M 

monensin (Sigma, sodium salt) and both 10 J.!M FCCP and 10 J.!M monensin. 

FCCP and/or monensin were filter sterilised and added just before the agar was 

poured. An overnight culture of LB13 was diluted to 10-3
, 10-4and 10-5; 0.1 ml of 

each dilution was spread onto three replicate plates of each test agar. The plates 

were incubated at 25° C for 24 hours and then the colonies were counted. 

Figure 2.7 (Page 55) shows the colony counts for LB13 grown on agar containing 

FCCP and/or monensin. There was no difference between the growth of LB13 on 

agar containing monensin and/or FCCP, and the control. 
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Figure 2.7 The effect of FCCP and monensin on the growth of LB13. Each bar represents Colony 
forming units plus or minus 1 standard error. LB13 was grown on agar containing 10 IJM FCCP or 
10 !JM monensin or 10 IJM of both monensin and FCCP dissolved in ethanol, control plates 
contained ethanol. The plates were incubated at 25° C for 24 hours. 
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LB13 was also grown in broth containing 10 J.!M FCCP, 10 J.!M monensin and both 

1 0 J.!M FCCP and 10 J.!M monensin to determine whether they would have an 

effect of growth of the organism in a liquid medium. Overnight culture of LB13 

(1 ml) was added to three replicates of each 50 ml test broth and incubated at 

25' C in a shaking water bath at 50 rpm. At 17, 24, 41, and 46 hours the optical 

density of each broth was measured at 590 nm. Figure 2.8 (Page 57) shows the 

optical density of the broths at 17, 24 and 41 hours after inoculation. After 41 

hours there was a slight reduction in the growth of LB13 in all three test broths 

compared to the control. Table 2.3 (Page 58) shows the P values from the 

analysis of variance carried out on each pair of results. The critical value is 0.05 at 

95 % confidence. At both 17 hours and 24 hours both broths containing FCCP are 

significantly different from the control whilst the monensin broths are not. At 41 

hours none of the results are significantly different. 
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Figure 2.8 The effect of FCCP and/or monensin on the growth of LB13 in broth. LB13 was grown 
in broth containing 10 IJM FCCP and/or 101JM monensin. The broths were incubated at 25° C in a 
shaking water bath at 50 rpm. At 17, 24 and 41 hours the optical densities of the broths were 
measured. 
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Table 2.3 P values for the analysis of variance between the absorbance at 590 nm of control and 
experimental broths after 17, 24 and 41 hours of growth with FCCP and/or monensin. At 95 % 
confidence, critical value is 0.05. *indicates results significantly different from the control. 

P values 
Treatment 17 hours 24 hours 41 hours 
FCCP 0.0357* 0.0021* 0.1665 
FCCP and Monensin 0.0487* 0.0008* 0.0918 
Monensin 0.8379 0.2736 0.3782 
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2.3.7 The effect of potassium chloride on the growth of isolate LB13 

lt has been reported that moderate concentrations of potassium ions are lethal to 

Vitreoscilla (Efiok and Webster, 1990) and so the effect of potassium chloride 

concentration on growth was determined. Isolate LB13 was grown in broth 

containing 5, 10, 25, 50, and 100 mM potassium chloride. One ml of overnight 

culture was inoculated into each of three replicate 50 ml broths at each potassium 

chloride concentration. The flasks were incubated at 25·c in a shaking water bath 

at 50rpm. At 24 and 48 hours the optical density at 590 nm of each broth was 

measured. No difference was observed between the control and test broths after 

24 hours. 
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2.4 Discussion 

2.4.1 Isolation 

The absence of Vitreoscil/a in the excrement of other grazing animals may be due 

to variation in the pH of the dung (although only the pH of cow dung was tested). 

lt may also be the case that nutritional requirements that are met by the cow dung 

are absent in the other dungs. Most likely, however, it is because cow dung has a 

different consistency than sheep or horse dung. A crust is often formed over the 

surface whilst the interior remains moist; this provides a wet environment long 

after sheep and horse dung has become desiccated. 

Three trips were made to the moor to collect samples. Six isolates were 

recovered during the first visit on the 25/2/98; none of these isolates proved to be 

Vitreoscilla. The second visit took place on the 21/8/98 and yielded 1 0 possible 

Vitreoscil/a of which 6 were confirmed. The final visit was on the 16/10/98 and two 

isolates were retained, neither of which proved to be Vitreoscil/a. The apparent 

seasonality of the presence of Vitreoscilla could be due to temperature. The 

sampling site is approximately 200 meters above sea level (grid reference 5555 

6465) and experiences on average a temperature 2 oc below that at sea level. 

The absence of Vitreoscil/a in the winter samples raises the question, where are 

the organisms in the winter? Vitreoscilla is not known to produce a resting stage 

and so it is unlikely that they over winter as spores. Further investigation would be 

needed to determine why the organism is not culturable from dung samples in the 

colder months. 

The method of isolation proved effective, yielding a number of Vitreoscil/a on 

which to carry out further work but improvements could have been made. The 
60 



mode of movement of the Vitreoscilla is such that they require a surface to glide 

on. As a result, when fungi are present the Vitreoscilla will use the fungal hyphae 

as a substrata on which to glide, making isolating them from the agar impossible. 

lt would be possible to add antifungal agents such as amphotericin B or an azole 

based antifungal to the agar to reduce the fungal growth. Amphotericin B is a 

polyene antibiotic that binds to membrane sterols and affects the permeability of 

the fungal membrane (Ghannoum and Rice, 1999). Prokaryote membranes do 

not contain sterols and so polyene antibiotics do not affect them, it is therefore 

unlikely that Vitreoscilla would be affected by the use of this antibiotic. Azole 

based antibiotics such as fluconazole block the production of ergosterol resulting 

in a plasma membrane with altered structure and function. Unlike polyene 

antibiotics azole based antibiotics do affect some bacteria and so experimentation 

would be necessary (Ghannoum and Rice, 1999). 

On many plates Gram positive bacteria such as Bacillus species overran the 

plates and any Vitreoscil/a growing on them. This problem could possibly be 

solved by the addition of gram positive specific antibiotics such as the macrolides 

erythromycin or clarithromycin. As with antifungals the effect of this addition on 

Vitreoscilla would need to be investigated. The macrolide antibiotics prevent 

protein synthesis and are mainly effective against gram positive bacteria although 

some gram negative organisms are susceptible (Russell, 1998). 

2.4.2 Purification 

Difficulties were experienced in purifying environmental isolates. Repeated 

streaking failed to produce a pure culture. Contaminating bacteria were found to 

adhere to the mucous layer of the Vitreoscilla and were carried with them during 

streaking. lt was therefore necessary to develop a new method. Lysozyme was 
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tested to determine whether it would break down the mucous layer that surrounds 

the bacteria and traps contaminating bacteria. The mucous produced by 

Vitreosci/la is made up of polysaccharides (Youderian, 1998), which can be broken 

down by the addition of lysozyme. Single colonies were achieved for 2 of the 

isolates but not the other 4. As only one isolate was required for the study no 

further time was spent refining the procedure. A higher concentration of lysozyme 

or a longer exposure time may have proved successful in purifying the remaining 

cultures but a balance would need to be struck between obtaining single colonies 

and lysing the organism. 

2.4.3 Problems with the enumeration of Vitreosci/la cultures 

During the initial characterisation of the Vitreosci/la isolates it became apparent 

that problems would occur in quantifying the cell density. Broth cultures can be 

quantified in one of two ways. The culture can be diluted and spread on to agar 

for a direct count or the optical density of the culture can be measured to give a 

comparison with other cultures. Both these methods proved problematic with 

Vitreosci/la because of its mode of growth. The formation of trichomes and 

associated mucus means that above a certain density the bacteria begin to 

flocculate in broth culture giving an artificially low and erratic optical density 

reading. Plate counts are also prone to error for the same reason with one colony 

forming unit arising from a highly variable number of cells in a trichome. Plate 

counts are also difficult because of the gliding motility of the organism, which 

means that the colonies overrun each other. They must be counted when the 

colonies are still very small and individual at which point they are difficult to see. 

To a certain extent these problems were overcome. The problem of flocculation 

can be reduced with vigorous shaking of the culture prior to sampling. This, 
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however, slows the growth of the organism and can therefore not be used on 

ongoing cultures. Sampling of broth cultures must be done in a way to minimise 

the effects of removing a sample with a large "lump" of cells in it and thus giving an 

artificially high count. The only sure way of eliminating this form of inaccuracy is to 

stop broth cultures before the point at which they begin to flocculate. In order to 

reduce problems with plate counts it is also necessary to employ vigorous shaking 

when performing the dilution steps. 

Despite these precautions it must be noted that plate counts and an optical density 

readings may give artificially low results, with a tendency to become more variable 

at high cell densities. 

2.4.4 Identification 

Group 15 of Bergey's Determinative bacteriology (Halt, Krieg, Sneath, Stanley, 

and Williams, 1994) are the nonphotosynthetic, nonfruiting gliding bacteria. Of 

these only the genus Vitreoscilla contains bacteria that are rod shaped, form 

multicellular filaments not enclosed in a sheath and do not produce pigments (Holt, 

Krieg, Sneath, Stanley, and Williams, 1994). Both LB9 and LB13 fit this 

description and were therefore identified as species of Vitreoscil/a. 

Cell width along with habitat and growth on nutrient media are distinguishing 

features of the three Vitreoscil/a species that are currently recognised (see 

Chapter one Page 2). Only Vitreoscil/a stercoraria has been isolated from cow 

dung and will grow on nutrient agar. The other two species originate from fresh 

water habitats. Vitreoscilla stercoraria can also be distinguished from Vitreoscil/a 

beggiatoides and Vitreoscilla filiformis by the width of its cells and by trichome 

morphology (Strohl, Schmidt et al., 1986). V. stercoraria cells measure 1 IJm in 
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diameter while V. filiformis cells measure between 1 and 1.5 IJm. V. beggiatoides 

has the largest cell width with cells measuring 2.5 to 3 1-1m in diameter (Halt, Krieg, 

Sneath, Stanley, and Williams, 1994 ). Isolates LB9 and LB 13 had cells with a 

width of 1.33 1-1m and 1.38 IJm respectively, were both isolated from cow dung and 

grew on nutrient agar. The cell widths were slightly larger than those published for 

V. stercoraria, however the other observations make it probable that both isolates 

can be identified as V. stercoraria. 

2.4.5 The effect of sodium chloride on growth 

In order to determine whether the two isolates had a requirement for sodium 

chloride the organisms were grown in media containing different concentrations. 

Both grew well on agar containing no added sodium chloride; this medium did 

however contain a small amount of sodium in its constituents. Above 1 % added 

sodium chloride LB9 numbers started to drop and above 0.5 % LB13 began to 

decline in numbers. A requirement for sodium chloride was not proved because it 

could not be completely removed from the media but both organisms showed 

some ability to tolerate added sodium chloride in agar. None of the previous 

studies of Vitreoscil/a's terminal oxidase or nutritional requirements looked at the 

requirement of sodium for growth. 

An interesting effect of the sodium chloride on the gliding of the organisms was 

noted. The bacteria growing on the no added sodium chloride plates produced 

colonies that did not spread (Figures 2.3 and 2.4 Page 50). This could be 

explained by the amount of moisture available on the plate, at the time the 

experiment was conducted the effect of moisture on the gliding behaviour of the 

organism was not known. On very dry plates Vitreoscil/a colonies tend to be 

smaller with less gliding taking place. This observation was tested by a student 
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and it was not found possible to recreate the previous results. This is probably 

because the wetness of the plate is important in determining how much Vitreoscilla 

will glide. lt is possible that the differences in surface moisture levels on the 

original plates is responsible for the differences in colony morphology observed. 

Isolate LB13 was tested further in broth because initial cultures showed that it 

grew more successfully in liquid culture than LB9. Isolate LB13 showed a 

requirement for sodium chloride in liquid culture with an optimum of 0.25 %. The 

broth culture containing 0.25 % added sodium chloride produced twice the density 

of the no added sodium chloride broth 

2.4.6 The effect of FCCP and monensin on growth 

Neither FCCP nor monensin affected the growth of LB13 on agar (Figure. 2.7 

Page 55). However, FCCP, but not monensin inhibited growth of LB13 in liquid 

culture (Figure. 2.8 Page 57). This suggests that the organism is not using a 

primary sodium pump. lt is predicted that FCCP would have no effect on an 

organism using a pump while monensin is predicted to inhibit. 

At 17 hours and 24 hours the FCCP did have a significant effect on the growth of 

LB 13 and monensin did not but at 41 hours the effect of variation in the control 

made the result statistically insignificant. 

2.4.7 The effect of potassium on growth 

Potassium did not have an effect on the growth of isolate LB13. Efiok and 

Webster quoted unpublished results in their 1990 paper (Efiok and Webster, 1990) 

claiming that Vitreoscilla is extremely sensitive to moderate concentrations of 
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potassium. In later papers this is not mentioned and no evidence is produced to 

support this claim. 
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Chapter 3 

Purification of cytochrome bo from Vitreoscilla strains LB 13 and C 1 



3.1 Introduction 

The first step in the purification of a membrane protein is to release the membrane 

from the cell. This can be achieved in a number of ways depending on the type of 

cell and the amount of force required to break it open, the cells can be 

homogenised, passed through a French press, placed in a blender, or subjected to 

ultrasound. Hypo-osmotic lysis can be used if the cell walls are not particularly 

robust but for stronger cells such as gram positive bacteria, lysozyme will need to 

be added to aid disruption. Once released from normal cellular environments 

proteins must be protected from denaturation. The pH and osmolarity of the 

media must be controlled, all manipulations must be carried out on ice and 

protease inhibitors must be added, for example Ca2
• chelators to inhibit calcium 

dependent proteases, PMSF (phenylmethylsulfonyl fluoride) a serine protease 

inhibitor, and leupeptin, a thiol protease inhibitor. Once the membranes have 

been released (and isolated from other cell debris using centrifugation) the protein 

can be removed from the membrane using detergent, for example: Triton X-1 00 or 

deoxycholate (Findlay, 1990). 

Once the protein has been solubilised further purification can be achieved using 

column chromatography. Ion exchange, reverse phase/hydrophobic interaction or 

gel filtration can be used to achieve an increase in the purity of the protein. A final 

polish of the purification can be achieved using gel filtration or affinity 

chromatography. 

Isolation and purification of cytochrome bo from Vitreoscil/a has been described by 

Geogiou and Webster (Georgiou and Webster, 1987). First, spheroplasts of the 

membranes were isolated using buffer containing lysozyme and sucrose. The 

recovered spheroplasts were frozen overnight and then resuspended in buffer 
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containing DNAase I and 11 as well as RNAase A. The recovered membranes 

were then solubilised using a complicated bile salt membrane fractionation 

method. A series of dialysis steps were then employed before the enzyme was 

concentrated using ultrafiltration. A Sephadex G-200 superfine column was the 

final step in the purification procedure. 

As a French press was not available a method to isolate cytochrome bo from 

Vitreoscilla was devised based upon the method that Moody and Rich had used to 

isolate bo from E. coli. Most papers dealing with Purified cytochrome bo from E. 

coli follow the protocol of Matsushita et a/ (Matusuhita, Patel et al., 1986). In this 

procedure the cells are grown to log phase then harvested by centrifugation. The 

cells were then passed through a French press and PMSF and leupeptin were 

added. This procedure was altered slightly by Moody et a/ who added DNAase to 

the cells prior to passing them through the French press (Moody, Rumbley et al., 

1993) and by Moody and Rich who replaced the use of a French press with a 

Bead Beater to disrupt the cells (Moody and Rich, 1994). In all cases the 

membranes were recovered using centrifugation. 

Purification of the enzyme is also detailed by Matsushita et a/ and starts with 

treatment of the membranes with urea and cholate. The enzyme is then extracted 

from the membrane using octylglucoside. The extracted enzyme is passed down 

a DEAE Sepharose CL-6B column followed by a w-aminohexyl agarose column. 

The purified enzyme is then concentrated by ultrafiltration. 

Growth conditions for the isolated strain of Vitreoscil/a were optimised for sodium 

chloride concentration and aeration. 
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RG145 is a strain of E coli that over produces cytochrome bo five fold and does 

not produce cytochrome bd (Au and Gennis, 1987). RG145 was used to develop 

the method for the isolation of respiratory membranes with the intention of 

comparing cytochrome bo from RG145 with that of Vitreoscil/a. The initial protocol 

for the isolation and purification of cytochrome bo from RG145 came from a 

published method (Cheesman, Watmough et al., 1993;Moody and Rich, 1994). 

This protocol was developed for use on Vitreoscilla. 

The membranes were washed prior to extraction with urea and chelate, without 

this step the enzyme failed to adhere to the DEAE column. In order to determine 

whether the urea and chelate denatured the bo, membranes were incubated in 

urea and/or chelate at the concentration used for the wash and the amount of bo 

was monitored spectrophotometrically. 

Purification of the extracted enzyme began with ion exchange chromatography on 

a DEAE-Sepharose CL-68 column. The enzyme was purified further using· a 

hydrophobic interaction column. 
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3.2 Materials and methods 

Centrifugation steps were carried out in an MSE Europa 24 (MSE Scientific 

Instruments, Crawley, UK) unless otherwise stated. All spectrophotometer 

readings were measured on a Perkin Elmer spectrophotometer (Perkin Elmer 

Lambda Bio 20 dual beam, Wellesley, Massachusetts). All measurements made 

of cytochrome bo using the extinction coefficient 20.5mM-1cm-1l!.sso-saonm also 

include cytochrome bd. Protein measurements were made using a commercially 

available kit according to the manufacturer's instructions (Kit number 690-A, 

Sigma, Poole, Dorset). The membranes and purified enzyme were stored at 

-80°C. 

3.2.1 Overview of the purification process 

Figure 3.1 (Page 73) shows a flow diagram of the purification process starting with 

the scale up of growth of Vitreoscil/a. The diagram will be referred to in the 

materials and methods section as each step is detailed. 
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Step 1 
Scale up 
of growth 

Step 2 
Disruption of cells and 
recovery of respiratory 

membranes 

Step 3 
Urea cholate wash 

Step4 
Detergent extraction of 

enzyme 

Step 5 
DEAE column 

Step 6 
Hydrophobic interaction 

column 

Figure 3.1 Flow diagram of the six main steps in the purification of cytochrome bo from Vitreoscil/a 
stercoraria. The detail of each step is given in the Materials and Methods section. 
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3.2.2 Optimisation of growth conditions and scale up of growth 

The optimum NaCI concentration for growth of Vitreoscilla LB13 was determined 

during the initial characterisation of the Vitreosci/la isolates (see Chapter 2 Page 

40). 

Step 1 (see Figure 3.1 Page 73) in the purification of cytochrome bo from 

Vitreosci/la was the scale up of growth from small 250 ml flasks holding 50 ml of 

broth to 2000 ml flasks containing 700 ml of broth. Aeration conditions were 

tested by growing the organism in 2 litre flasks containing 700 ml of MTY broth 

(see Chapter 2 Page 39) and varying the aeration conditions between the flasks. 

Air that was pumped into the flasks was passed through Whatman Hepa-Vents 

(pore size 0.3 1Jm; supplied by Merck Eurolab Ltd, Poole, UK) before entering the 

culture vessel. The silicone bungs had an air inlet and an air outlet. The flasks 

were incubated for 48 hours at 25 oc and the cells were then harvested by 

centrifugation at 9000 gav and the pellet weights measured. 

After analysis of the results from the aeration experiment the final method for 

growth of Vitreosci/la was as follows. The organism was streaked from liquid 

nitrogen storage onto MTY agar (see Chapter 2 Page 39) and incubated at 25 °C 

for 48 hours. A colony of the bacteria was removed from the plate with a loop and 

transferred into a 250 ml conical flask containing 50 ml of MTY broth. The flask 

was incubated at 25 °C for 48 hours. Pre culture (1 0 ml) was then inoculated into 

6, 2 litre flasks containing 700 ml of MTY broth. The flasks were incubated at 

25 °C in a model G25 orbital shaking incubator (New Brunswick Scientific, Edison, 

New Jersey) at 50 rpm for 48 hours. Air was pumped into the flasks through a 

Hepa-vent directly into the broth at a rate of 200 ml min-1
. Waste air was expelled 

from the flasks through Hepa-vents. Cells were harvested using by centrifugation 
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at 9000 gav and were washed twice in buffer A (see Appendix A Page 181). The 

washed cells were resuspended in buffer A and stored at -80 oc until needed. 

3.2.3 Isolation of membranes: method development with Escherichia coli RG145 

Step 2 in the purification process (see Figure 3.1 Page 73) was the disruption of 

the cells followed by recovery of the respiratory membranes. For reasons detailed 

in the introduction Escherichia coli RG145 was used to develop this procedure. 

Escherichia coli RG145 was grown in 2 litre baffled flasks in 700 ml of broth 

containing 10 gr1 tryptone, 5 gr1 yeast extract, 5 gr1 NaCI, 6.8 gr1 KH2P04, 

10 gr1 and glycerol (BDH) 270 1-1M ampicillin, 10 1-1M CuS04, 200 1-1r1antifoam 

(BDH) adjusted to pH 7.4 with 30 % NaOH. After a chance observation that it 

increased yield 0.25 gr1 MgS04 was added to the medium. The flasks were 

incubated at 37 oc for 16 hours, in a New Brunswick scientific orbital shaking 

incubator model G25 at 300 rpm and air was pumped into each flask through a 

Hepa-vent at a rate of 200 ml min-1
. 

RG145 (50-100g wet weight) was added to the chamber of a Bead Beater (75 ml; 

Biospec Products, Bartlesville, OK). Glass beads (80 g of 1 mm diameter, BDH, 

Poole, UK) were added and the remaining volume was filled with buffer B (see 

Appendix A Page 181). The Bead Beater was turned on for 20x15 second bursts 

with 45 seconds cooling time allowed between bursts and PMSF (0.2 ml of 200 

mM), 0.2 ml of 2 mM leupeptin and 0.2 ml of 2 mM pepstatin were added to the 

chamber. The mixture was centrifuged at 3000 g3v for 10 m in to remove any 

unbroken cells. The supernatant was centrifuged for 30 min at 35 000 gav- The 

pellet was resuspended in buffer Band made up to 10 ml. A difference spectrum 

was measured and the quantity of cytochrome bo was determined using an 

extinction coefficient of 20.5 mM-1 cm·\~~s6o-saonm-
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Once the yield was sufficiently high the protocol was adapted for Vitreoscilla. The 

final protocol was as follows. Stored Vitreoscilla cells (30-50 g) were added to the 

bead beater chamber together with 0.2 g lysozyme (Sigma L6876 from chicken 

egg white), 0.05 g DNAase I (Sigma DN25 from bovine pancreas), MgS04 (200 IJI 

of 10 mM),and 80 g of glass beads (1 mm diameter). The remaining volume was 

filled with buffer A. The chamber was incubated at 25°C for 15 min. The cells 

were disrupted with 20x15 second bursts with 45 s of cooling time between bursts. 

Half a tablet of Complete inhibitor (Roche Molecular Bioproducts, 'Complete' 

tablets contain serine, cysteine and metallo- protease inhibitors) was added to the 

chamber. The mixture was centrifuged at 3000 gav for 10 m in to remove any 

unbroken cells. The supernatant was centrifuged for 30 min at 35000 gav for 

30 min. The pellet was resuspended in buffer B and made up to 10 ml. A 

difference spectrum was measured and the quantity of cytochrome bo (and bd) 

was determined using the extinction coefficient 20.5mM-1cm-1 b.560_58onm (Moody 

and Rich, 1994). 

3.2.4 Urea cholate wash 

The urea cholate wash was step 3 in the purification procedure (see Figure 3.1 

Page 73). Stored membranes were thawed and diluted to 50 ml in buffer B. Urea 

(50 ml of 10 M) was added. The mixture was then centrifuged at 35000 gav for 

2 hours in a Beckmann L755 ultracentrifuge and the pellet resuspended to 45 ml 

with buffer B. 20 ml of 20% sodium chelate was added. The mixture was 

centrifuged at 35000 gav for 2 hours and the pellet was resuspended up to 80 ml in 

buffer B. The mixture was then centrifuged again at 35000 gav for 2 hours and the 

pellet was resuspended up to 10 ml in buffer C (see Appendix A Page 181). 
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3.2.5 Detergent extraction of the cytochrome bo 

Step 4 of the purification was the extraction of cytochrome bo from the membrane 

using octylglucoside. The octylglucoside concentration was tested at 0.15 %, 

0.25 %, 0.5 %, 1.0 %, 1.5 %, and 2.0 %. All concentrations were tested in 

duplicate. The detergent was added to 800 1-11 of double distilled water in a 2000 1-11 

Eppendorf tube and 200 1-11 of membranes were added. The tubes were incubated 

at 4°C for 30 mins. The tubes were then centrifuged in a microcentrifuge (Sanyo 

Gallenkamp PLC, Laughborough Leics) at 13000 gav for 15 mins. The size of the 

pellet was measured using a ruler. A difference spectrum of the supernatant was 

measured on a Perkin Elmer spectrophotometer and the quantity of cytochrome 

bo was determined. 

A second trial was conducted using the protein concentration of the membrane 

sample to determine the detergent concentration. The protein content of the 

membrane solution was measured. Detergent to protein ratios of 1:1, 1:4, 1:6, 1:8, 

1:9, and 1:10 were tested. All concentrations were tested in triplicate. The 

detergent was added to 600 1-11 of double distilled water in a 2000 IJI Eppendorf 

tube; 400 1-11 of thawed membranes were added. The tubes were incubated for 

30 min at 4°C and then centrifuged at 13000 gav for 15 min. The pellets were 

measured using a ruler, difference spectra of the supernatants were measured 

and the quantity of cytochrome bo was determined. 

After analysis of the results the final method for the extraction of the enzyme was 

as follows; octylglucoside was added to the membrane solution at a ratio of 0. 75 % 

detergent to protein. This was mixed and allowed to incubate at 4°C for 30 min. 
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The mixture was then centrifuged at 13000 gav for 15 min. and the supernatant 

retained. A difference spectrum of the supernatant was measured and the quantity 

of cytochrome bo was determined. 

3.2.6 Inhibition of extracted cytochrome bo by KCN 

Extracted enzyme (1.5 1-11 of 1.9 IJM), 1 1-11 of purified enzyme (3 1JM) or 1 1-11 of 

membranes (2.3 1JM) was incubated in 250 1-11 of buffer A with either 1 1-11 of 

100 mM KCN or 1 1-11 of water. The reaction was started by the addition of 1 1-11 of 

2.6 mM decylubiquinol. The change in absorbance at 262 nm was monitored. An 

exponential rise to maximum was fitted to the data and the initial rate was used to 

determine inhibition level. 

3.2.7 Preparation of DEAE Sepharose column CL-68 column 

Step 5 (see Figure 3.1 Page 73) in the purification was the DEAE column. The 

DEAE Sepharose column 1.5 cm x 30 cm (ID x length) bed volume 53 ml (Sigma, 

Poole Dorset) was equilibrated with 3 column volumes of buffer C. The sample 

was applied at a rate of 15 mlh(1 and the column was washed with one column 

volume of buffer C at the same flow rate. The cytochrome was eluted with a 

150 ml linear gradient (50-350 mM potassium phosphate) at a flow rate of 

15 mlh(1
. Fractions were collected every 8 min (2 ml). 

All fractions with an absorbance at 407nm of 0.009 or greater were pooled and 

concentrated to 2 ml in a Centricon concentrator (Amicon, Inc., Beverly, MA). The 

pooled fractions were dialysed overnight against 3 changes of buffer E (see 

Appendix A Page 181). The resulting sample was stored in liquid nitrogen. 
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3.2.8 Hydrophobic interaction column co-amino-hexyl-agarose. 

Step 6 (see Figure 3.1 Page 73) was the final step in the purification and used a 

hydrophobic interaction column. The co-amino-hexyl-agarose column 

1.5 cm x 10 cm (ID x length) bed volume 18 ml ml (Sigma, Poole Dorset), was 

equilibrated with 3 column volumes of buffer E. The sample was applied at a rate 

of 15 mlhr"1
. The sample was eluted with a 60 ml linear gradient (0-250mM 

K2S04) at a flow rate of 15 mlhr"1
. All fractions with an absorbance at 407nm of 

0.05 or greater were pooled and concentrated to 2 ml in a Centricon concentrator. 

The sample was split into 500 IJI aliquots and stored in liquid nitrogen. 
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3.3 Results and discussion 

3.3.1 Optimisation of growth conditions and scale up of growth 

Vitreoscil/a produce a bacterial haemoglobin; the function of this haemoglobin is 

not fully understood but it would seem to play a role in enabling the organism to 

tolerate low oxygen environments as the production of haemoglobin is increased 

when the organism is grown under low oxygen conditions (Boerman and Webster, 

1982;Lamba and Webster, 1980). Vitreoscil/a also produce cytochrome bd and 

under low oxygen conditions the production of bd is also increased (Georgiou and 

Webster, 1987). lt was important to provide sufficient oxygen during growth of the 

organism to limit the production of these components of the respiratory chain. 

Vitreoscilla prefers to grow on a solid surface. The organism will grow to a higher 

density if allowed to adhere to the inside surface of the flask in which it is growing. 

This means that shaking vigorously is not a good option for aeration of the culture; 

it prevents the bacteria from forming clumps in liquid media and from growing on 

the surface of the vessel. The first step in the purification of cytochrome bo (see 

Figure 3.1 Page 73) from Vitreoscilla was to optimise the large scale growth of the 

organism. Various aeration options were therefore explored (see Table 3.1 Page 

81 ). 
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Table 3.1 Aeration conditions of flasks containing Vitreoscilla stercoraria strain LB13, for details 
see Materials and Methods section Page 74 

Flask Conditions Yield gl"' 
1 Still with cotton wool in neck 1.03 
2 Shaking with cotton wool in neck 2.63 
3 Still with air pumped into flask through bung 5.56 
4 Shaking with air pumped into flask through bung 5.47 
5 Still with air pumped into broth through bung 7.32 
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The flask that was not shaken and had a bung made from non-absorbent cotton 

wool produced the lowest yield (1.03 gl"1
). The flask that was not shaken and had 

air pumped directly into the broth through a silicone bung produced the highest 

yield (7.32 gr\ 

Although the highest yield was produced by a flask that was not shaken it was 

decided that some movement of the flasks was desirable to prevent the production 

of cytochrome bd and also bacterial haemoglobin. lt was for this reason that the 

final chosen protocol for the growth of Vitreoscil/a includes shaking the culture at 

50 rpm. 

Wet weight was used to quantify the yield of each growth condition. The weight 

could be affected by mucus produced by the organism. lt is possible that under 

different growth conditions, different amounts of mucus are produced, complicating 

the interpretation of results. Other methods of enumeration are also problematic 

for Vitreoscil/a; wet weight was the quickest and most straightforward method 

available. 

3.3.2 Isolation of respiratory membranes 

Once optimum growth conditions had been established the next step in the 

purification was to isolate the respiratory membranes from Vitreoscil/a (see Figure 

3.1 Page 73). In order to develop the protocol for the isolation of cytochrome bo 

Escherichia coli RG145 was used. This organism is not only easier to grow than 

Vitreoscilla but over produces cytochrome bo five fold. RG145 also does not 

produce cytochrome bd making it easier to develop the isolation and purification 

method. The first trial in which simple disruption of the cells in a Bead Beater was 

tried (see Materials and Methods section Page 75) produced very little respiratory 
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membranes that were impossible to quantify because of light scattering and so 

modifications were made. The protocol was rerun and the slightly coloured 

supernatant from the centrifugation step was recentrifuged at 35000 gav for two 

hours. This would determine whether the membranes had fragmented into pieces 

too small to be sedimented in the first slower spin. The second centrifugation 

produced 11.16 nmoles of bo and so it was presumed that the bulk of the bo did 

not remain in the supernatant after the first centrifugation. lt was decided that the 

cells were insufficiently broken to release the membranes and so 0.1 g of 

lysozyme was added to the chamber during the next trial to aid the disruption of 

the cells. The resulting membrane suspension although darker (suggesting a 

higher oxidase concentration) contained a large amount of DNA and it was not 

possible to pipette the suspension. The oxidase concentration was not 

determined, as it was not possible to accurately dilute the sample. To overcome 

this 0.05 g of DNAase 11 was added to the chamber at the start of the next trial. 

This trial was unsuccessful. DNAase 11 cuts the 5' end of the DNA strand and is 

therefore not as efficient at shortening DNA as DNAase I which cuts at the ends 

and in the middle of the strands. For the second trial of DNAase, DNAase I was 

added to the chamber. DNAase requires the presence of a divalent cation in order 

to function (Sigma-aldrich, 2003) and so EDTA was omitted from the buffer for the 

next trial and 1 mM MgS04 was added to supplement the available divalent 

cations. 

When the yield was adequate the method was applied to Vitreoscilla LB13. As the 

cells were harder to grow than Escherichia cofiRG145 only 35 g were added to the 

chamber for the first trial. The final trial of RG145 cells produced a yield of 

0.091 IJmoles of membranous cytochrome bo 100 g-1cells. A yield of 

0.27 1-1moles 100g-1cells was obtained from the first Vitreoscil/a trial. The increase 
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in yield when the technique was applied to Vitreoscilla could be the result of 

reducing the quantity of cells added from 100 g to 35 g and therefore increasing 

the relative concentrations of lysozyme and DNAase. Familiarisation with the 

technique may also have increased the yield. There was a tendency to over 

estimate the concentration of bo present in the Vitreoscilla membranes because of 

changes in light scattering that caused the difference spectrum to slant. Also 

Escherichia coli RG145 does not produce cytochrome bd while Vitreoscilla does. 

The figure obtained for bo concentration in Vitreoscil/a membranes would include 

cytochrome bd. 

3.3.3 Urea/cholate wash 

During the first run of the purification protocol (see Figure 3.1 Page 73) the urea 

chelate wash was omitted. lt was thought that omitting this step might save time 

and avoid loss of product. When the product from this trial was applied to the 

DEAE column it failed to bind. Clearly the detergent extraction step had not 

successfully solubilised the membrane. This prevented the product from binding 

to the column. lt was therefore necessary to include the urea cholate step in the 

protocol. 

The purpose of the urea/cholate wash was to remove unwanted protein and leave 

the bo behind in the membranous fraction. During the first trial of the urea/cholate 

wash the quantity of cytochrome bo present fell by 67 %. The centrifugation steps 

were investigated to make sure that cytochrome bo was not being lost in the 

supernatant. The concentration of bo in the supernatants were measured, 

2.43 nmoles were detected in the supernatant from the urea wash and 9 nmoles in 

the supernatant from the cholate wash. This alone does not account for the 

0.1281-Jmole loss over the whole manipulation. Overestimation of the bo present 
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in the membrane samples would account for some of the loss but it would appear 

that the enzyme was being degraded by a step in the protocol. Problems had 

been encountered with the centrifugation step. lt was not possible to run the MSE 

24 centrifuge at the correct speed and temperature because of problems cooling 

the rotor. For the second trial an ultracentrifuge was used (Beckmann L755) in the 

hope that a constant 4 oc would limit the loss. The second trial of the urea/chelate 

prewash produced similar results to the first (see Table 3. 2 Page 92) despite the 

loss in product the urea chelate wash still produced an increase in purity of the 

product. 
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Table 3 2 yield of cytochrome from the urea/chelate wash 

Stage Apparent Protein mg Specific %Yield Degree of 
Cytochrome content cytochrome bo purification 
bo 11mol (nmolmg"1

) 

Initial 
quantities 

0.243 1000 0.243 100 1 

Supernatant 0.0144 312.5 0.05 5.9 0.21 
from 
urea/chelate 
wash 

Pellet from 0.057 96 0.6 23.5 2.47 
urea/chelate 
wash 
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Only 5.9 % of the product was found in the supernatant but the pellet itself only 

contained 23 % of the original content. Therefore nearly 71 % of the product was 

lost during this procedure. The protein content of the product also dropped 

considerably during the wash and was not present in the supernatant. lt was not 

possible to determine the cause of the loss of cytochrome. An experiment was 

conducted in which the enzyme was incubated in the presence of urea/cholate at 

concentrations used in the wash. The membranes were incubated for one hour in 

buffer, 5 M urea or 6.15 % cholate, the concentration of cytochrome bo was 

measured spectrophotometrically as previously described (see Materials and 

Methods Page 75). Little difference was seen between the membranes incubated 

in buffer and those incubated in urea or cholate. 

3.3.4 Detergent extraction trials 

Once respiratory membranes had been isolated the next step in the purification 

was to remove the enzyme from the membranes using a detergent (see Figure 3.1 

Page 73). In order to maximise yield and minimise detergent used trials were run 

to determine the optimal concentration of detergent to use to extract the enzyme. 
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Table 3.3 Yield of cytochrome bo from detergent concentrations from 0.15 % to 2.00 % of final 
volume Details of this experiment can be found in the Materials and Methods section Page 77 

Organism Detergent% Detergent Pellet [bo]. (~M) 
(mg) diameter (mm) 

Vitreoscil/a 0.15 1.5 3 0.29 
Vitreoscil/a 0.25 2.5 3 0.50 
Vitreoscil/a 0.50 5.0 3 0.63 
Vitreoscil/a 1.00 10 3 0.24 
Vitreoscil/a 1.50 15 2.5 0.49 
Vitreoscilla 2.00 20 2.5 0.50 
E. coli 0.15 1.5 11 Lost sample 
E. coli 0.25 2.5 12 0.56 
E. coli 0.50 5.0 12 0.75 
E. coli 1.00 10 11 2.51 
E. coli 1.50 15 7 2.15 
E. coli 2.00 20 5 2.50 
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For the Vitreoscilla there was no significant increase in yield above 1.5 % 

detergent. The RG145 results showed no increase after 1 %. The detergent 

concentration was also varied according to protein concentration of the samples 

(Table 3.4 Page 90). 
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Table 3.4 Yield of cytochrome bo from detergent extraction trial, protein to detergent 
concentrations from a ratio of 1:1 up to 1:10. Details of this experiment can be found in the 
Materials and Methods section Page 77. 

Organism Detergent Detergent Pellet [bo). (IJM) 
ratio (mg) diameter (mm) 

Vitreoscil/a 1:1 7.52 4 01.11 
Vitreoscil/a 1:4 1.88 6 00.36 
Vitreoscil/a 1:6 1.24 6 00.31 
Vitreoscilla 1:8 0.94 6 00.28 
Vitreoscil/a 1:9 0.83 6 00.28 
Vitreoscil/a 1:10 0.75 6 00.26 
E. coli 1:1 28.6 7.17 11.67 
E. coli 1:4 7.14 14 04.04 
E. coli 1:6 4.71 13 02.51 
E. coli 1:8 3.57 14 01.29 
E. coli 1:9 3.15 16 01.51 
E. coli 1:10 2.85 16 01.26 
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The quantity of bo recovered from Vitreoscilla was similar for all ratios except 1:1 

where the amount of bo extracted was considerably higher than the next highest 

detergent to protein ratio. The trial was rerun using just Vitreoscilla and including 

1 higher detergent to protein ratio. Above a ratio of 1:1 there was no increase in 

the quantity of cytochrome extracted. 
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Figure 3.2 Cytochrome bo extracted from Vitreoscil/a membranes at increasing detergent to 
protein ratios. A difference spectrum was measured and the extinction coefficient 20.5mM-'cm·• 
~560-saonm was used to determine the quantity of bo extracted. 

92 



A detergent to protein ratio of 0.75 was chosen. This would both reduce the 

quantity of expensive detergent needed for each preparation and it was hoped 

would reduce the possibility of removing unwanted elements from the membranes 

such as flavoproteins. As octylglucoside was successful in extracting the enzyme 

from the membranes it was not thought necessary to trial any other detergents. 

3.3.5 Quinal oxidation activity in the presence of KCN 

Inhibition of the quinal oxidation activity of the membranes from LB13 by KCN was 

around 70 %. This indicates that 30 % of the activity measured is KCN insensitive 

and therefore likely to be caused by cytochrome bd. The extracted enzyme 

showed 100 % inhibition and so it can be assumed that the detergent either had 

not solubilised the bd and it was removed in the centrifugation step or that the 

octylglucoside inhibited the bd. If the bd were simply being inhibited by the 

detergent this might pose problems once the octylglucoside has been exchanged 

for Triton X-100 on the DEAE column. lt was therefore necessary to test the 

purified enzyme for KCN sensitivity. The purified sample showed 100 % inhibition 

with KCN and so it is presumed that the purification process had successfully 

removed the bd. 

3.3.6 DEAE Sepharose column 

After extraction of the enzyme from the respiratory membrane further purification 

was achieved using a DEAE Sepharose column (see Figure 3.1 Page 73). The 

absorbance at 407 nm of each fraction was measured (see Figure 3.3 Page 94) 

and a difference spectrum of fractions 9, 22, 32, 41, 50 and 65 was taken. 

Fractions 24 to 61 were pooled. The quantity of bo in the sample was found to be 

0.02 !Jmoles and the protein content was 11.5 mg. 
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Figure 3.3 Elution profile from the DEAE Sepharose column. 8 min (2 ml) fractions were collected 
and the absorbance at 407 nm was measured (see Materials and Methods for details). 
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3.3.7 Hydrophobic interaction column 

The final step in the purification was a hydrophobic interaction column (see Figure 

3.1 Page 73). When the wash was run through the column the sample ran straight 

through. The sample was found to contain 0.005 iJmoles of bo and 2.7 mg of 

protein after concentration to 1.5 ml. Although sample had been lost on the 

hydrophobic interaction column some purification had taken place. The loss of bo 

was considered too great compared to the purification gained and so in future 

preparations the hydrophobic column was omitted. 

3.3.8 Overview of the purification process 

Table 3.5 (Page 96) shows the quantities of cytochrome bo and protein at each 

stage of the purification process. The urea chelate wash step caused the largest 

loss in product, 77 % was lost at this stage whilst the purity was only improved 2.5 

fold. The detergent extraction step provided the good increase in purity (2 fold) 

whilst only losing 10 % of the product. The DEAE column caused the loss of half 

the product but improved the purity 4 fold. Overall only 7 % of the cytochrome bo 

measured in the membranes was recovered by the end of the preparation. 

However it should be noted that the initial measurement of cytochrome bo includes 

cytochrome bd. Only 7 % of the cytochrome bo present at the beginning of the 

preparation was recovered. Georgiou et a/ purified cytochrome bo from E. coli 

RG145 and recovered 23 .3 % of the product from membranes (Georgiou, Cokic 

et al., 1988). E. coli RG145 over expresses cytochrome bo five fold and does not 

produce cytochrome bd (Au and Gennis, 1987), therefore the initial concentrations 

of heme b quoted do not contain a measurement of cytochrome bd. 
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Table 3.5 Changes in cytochrome bo quantities and purity over the whole purification process. The 
steps for the purification are described in Materials and Methods Page 75. 

Stage Apparent Protein Specific %Yield Degree of 
Cytochrome mg content cytochrome purification 
bo J.lmoles nmoles bo 

mg·1 
Membrane 
fraction 0.243 1000 0.243 100 1 
After urea 
chelate wash 0.0572 96 0.6 23.54 2.5 
After 
detergent 0.0342 30.4 1.125 14.07 4.6 
extraction 
AfterDEAE 
column 0.0163 3.6 4.5 6.71 18.5 
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The hydrophobic interaction column had to be removed from the purification 

procedure because too much product was lost in this step, purity had to be 

sacrificed in order to obtain sufficient product. Had more product been recovered 

from the previous stages of the purification this may not have been a problem. 

The biggest loss was in the urea cholate step where 70 % of the cytochrome bo/bd 

was lost. If this problem could have been overcome then the overall yield would 

have been greatly improved. Unfortunately it was not possible to determine where 

in this step the product was being lost. 

Overall the purification was successful; sufficient product was recovered to 

perform measurements of activity although had the study gone on to include 

insertion of the enzyme into vesicles then the process may have needed to be 

refined to obtain more product. 
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Chapter 4 

The effect of UV-A on the growth of Vitreoscilla 



4.1 Introduction 

Of the radiation emitted by the sun 3% is of a wavelength less than 390 nm (the 

UV region of the spectrum). Because of absorption by the Earth's atmosphere 

only a fraction of this harmful radiation reaches the surface of the planet. 

Ultraviolet light is classified into three bands according to its effects. Short 

wavelengths between 100 and 280 nm are termed UV-C. These short 

wavelengths are not naturally seen at the surface of the earth because they are 

quickly absorbed within a few hundred meters of the atmosphere (Gascon, Oubina 

et al., 1995). Therefore, bacteria and other organisms do not normally encounter 

this form of ultraviolet light. Having not evolved a defence mechanism, bacteria 

are very susceptible to damage by UV-C and it is therefore commonly used as an 

antimicrobial agent to sterilise air and water (Liltved and Landfald, 2000). 

Ultraviolet light of wavelengths between 280 and 315 nm is termed UV-8. 

Although most UV-B is absorbed by the atmosphere, some still reaches the 

Earth's surface and is responsible for much of the cellular damage associated with 

sunlight. Absorption of UV-B causes direct damage to DNA. The most common 

reaction is the formation of cyclobutlythymine dimers between adjacent thymine 

residues on the DNA strand (Setlow and Setlow, 1962). The repair mechanism 

used by many bacteria to combat the effects of UV-B is prone to error and is the 

cause of many of the UV induced mutations (Prescott, Harley et al., 1990). 

The majority of solar UV radiation reaching the Earth's surface is of wavelengths 

between 315 and 400 nm and is termed UV-A. Many cellular components absorb 

UV-A, and reactive oxygen intermediates such as singlet oxygen, superoxide, and 

peroxyl/hydroxyl radicals may be generated as a result. These reactive oxygen 

species can cause damage to DNA, proteins and membrane lipids and can 
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ultimately cause the death of the cell (Jagger, 1983). Aerobic bacteria have 

evolved enzymes to combat this oxidative damage, for example superoxide 

dismutase and catalase, as well as enzymes which repair damage caused to DNA 

(Halliwell and Gutteridge, 1999). 

Research into the susceptibility of bacteria to UV damage has concentrated mainly 

on species that would naturally be exposed to higher levels of UV, for example 

organisms which inhabit surfaces or surface water. These organisms would be 

expected to have some resistance to UV. Examination of the effect of different UV 

wavelengths on the survival rates of Staphylococcus aureus (mainly associated 

with the skin of warm blooded vertebrates) showed that the bacterium is fully 

resistant to UV-A. Over a 4 hour period of exposure to UV-A the S. aureus 

showed no drop in viability. However when exposed to a broad band UV-8 lamp 

filtered by Perspex to remove UV-C for 3 hours a 99% reduction in viability was 

observed Although the exposure was not quantitated. (Eiadhami, Daly et al., 

1994). 

Although these bacteria have evolved to overcome the problems associated with 

UV light the addition of an extra stress can have an effect on their ability to survive 

UV damage. Martin et al. compared the ability of two saltern bacteria, a moderate 

halophile (Halomonas elongata) and an extreme halophile (Halobacterium 

salinarum) to withstand UV exposure at increasing sodium chloride concentrations 

(Martin, Reinhardt et al., 2000). The moderate halophile was resistant to UV-A 

and 8 at 0.05 M sodium chloride but at 4.3 M sodium chloride showed a 10 000 

fold decrease in colony forming units after 120 min of exposure to UV-A and UV-8 

(19.6 kJm.2
). In contrast the extreme halophile showed no drop in viability at 0.05 

or 4.3 M sodium chloride. 
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Few studies have looked at the ability of bacteria that are not usually exposed to 

UV-A to withstand exposure. Fernandez & Pizarro looked at Pseudomonas 

aeruginosa (a soil associated organism) and found a survival rate of only 20 % 

when the organism was exposed to 120 kJm"2 of UV-A over an hour (Fernandez 

and Pizarro, 1996). Fernandez & Pizarro compared the sensitivity of the 

Pseudomonas with a strain of Escherichia coli (a gut associated organism). They 

found that the E. coli was able to withstand a level of UV-A which caused severe 

damage to the Pseudomonas but that a lag in growth was observed post 

irradiation. The elimination of oxygen during exposure to UV-A prevented the 

bacteria from being damaged, indicating that oxidative stress was indeed 

responsible for UV-A lethality. 

During routine culture, broths inoculated with Vitreoscil/a that were exposed to 

diffuse light failed to grow; significant growth was only observed if cultures were 

set up in the evening. E. coli cultures grown under the same conditions on the 

window bench grew normally, reaching maximum density in the expected time and 

displaying no inhibition. Further investigation suggested that the organism is light 

sensitive. Possible causes of the light sensitivity were investigated and the role of 

reactive oxygen species was explored. The involvement of the electron transport 

chain and/or cytoplasmic haemoglobin (which Vitreoscil/a stercoraria is known to 

contain high levels of ) (Dikshit and Webster, 1988) in the generation of reactive 

oxygen species was explored. Most of this work has been published and a reprint 

can be found in the appendix. 
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4.2 Materials and methods 

All microbiological media were obtained from Oxoid Ltd (Basingstoke, UK). All 

reagents were obtained from Sigma (Poole, UK) unless otherwise stated. 

4.2.1 Bacterial strains and culture conditions 

Escherichia coli K12 (ATCC 23716) was used as a control organism. Vitreoscil/a 

stercoraria strain LB13 was isolated directly from the environment (as described in 

Chapter 2, Page 38). Vitreoscilla stercoraria strain LB13A was isolated during a 

light exposure experiment (see Materials and Methods Page 104) and originated 

from a culture of LB 13. Vitreoscilla stercoraria strain C 1 (ATCC 13981) was kindly 

donated by Dr Dale Webster (Illinois Institute of Technology). 

General culture maintenance conditions for Vitreoscil/a are described in Chapter 2, 

Page 39. Bacterial cells were incubated 25°C with vigorous shaking for C1 and 

E. coli K12, and no shaking for LB13 and LB13A, in modified tryptone yeast (MTY) 

broth. MTY broth contained 10 gl"1 tryptone (Oxoid L42); 10 gl"1 yeast extract 

(Oxoid L21); and 2.5 gl"1 NaCI. The pH was adjusted to pH 7.8 with NaOH. All 

cultures were grown in the dark except LB13A, which was grown under a low level 

of full spectrum natural light in a Fisons Fitotron 600 growth cabinet (Fisons, 

Loughbourough, UK). 

4.2.2 Cell irradiation procedure 

All manipulations were performed under low light conditions. Cultures of 

Vitreoscilla were grown for two days before exposure and E. coli K12 was grown 

overnight. The cultures were centrifuged at 2000 9av in an MSE Super Minor, 

bench top centrifuge for 30 min. The supernatant was removed and the weight of 
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the pellet determined. The cells were resuspended to 0.1 gmr1 in cool 

physiological saline solution (NaCI, 9 gr\ dilutions were made by trial and error in 

order to achieve an initial count of 5 x 107 cfumr1
. Ten millilitres of each 

appropriately diluted bacterial suspension was placed in a tissue culture vessel 

(80 cm2 Nunclon flasks, Nalge Nunc International, Denmark or 25 cm2 Falcon 

flasks, Becton Dickinson Europe, Meylan Cedex, France). The bacterial 

suspensions were exposed to UV-A with a long wavelength (365 nm) UV lamp 

(model UVLS-28, UVP Inc., Upland, California), positioned 0.2 m above the 

samples. The intensity of UV-A and dosage received by the samples during the 

experiment was measured using an SR991 0 spectroradiometer (Macam 

Photometries Ltd, Livingston, UK). The flasks were kept on ice whilst under the 

lamp and were shaken at 100 rpm. Samples were removed after every hour and a 

viable count was performed on these. The position of the culture vessels under 

the UV lamp was changed after every hour. 

4.2.3 Isolation of respiratory membranes and a cytosolic extract containing 
bacterial haemoglobin from LB13 and LB13A 

Large scale growth of Vitreoscilla and isolation of respiratory membranes is 

described in Chapter 3 Page 74 and 75 respectively Bacterial haemoglobin was 

isolated by retaining the supernatant from the respiratory membrane isolation. 
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4.3 Results 

4.3.1 Initial light sensitivity experiment 

Vitreoscil/a strain LB13 was grown on MTY agar for 48 hours and then inoculated 

into MTY broth. The culture was grown for a further 48 hours and then 1 00 ~I was 

inoculated into each of 123 universal bottles containing 10 ml of MTY broth. The 

universal bottles were incubated at 25 oc in a plant growth cabinet (Sanyo MLR-

350 HT; Sanyo Gallenkamp plc, Loughborough, UK) under one of four lighUdark 

regimes: (1) light, running with 12 x 40 W fluorescent lamps, for 96 hours; (2) dark 

for 96 hours; (3) light for the first 24 hours, then dark; and (4) dark for the first 24 

hours, then light. At intervals bottles were removed and the absorbance of the 

culture at 590 nm was measured. A viable count was performed on each bottle 

every 24 hours from 24 hours up to 96 hours. A sample (1 00 ~I) of the culture was 

removed and diluted with fresh MTY broth. The diluted bacteria (1 00 ~I) were 

spread onto MTY agar plates and were incubated at 25°C for 48 hours under the 

light conditions under which they had been growing. The number of colonies was 

then counted. 

Cultures grown in the light for the length of the experiment showed no growth 

measurable by optical density Figure 4.1 Page 1 07. Cultures grown without light 

for the length of the experiment grew following a normal growth curve, reaching a 

maximum measurable density after 40-60 hours. Vitreoscil/a cultures reaching a 

certain density naturally begin to flocculate, making optical density measurements 

unreliable. Cultures that were kept dark for 24 hours then moved to the light 

showed an initial increase in optical density (whilst dark), a lag and then a fall after 
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Figure 4.1The effect of light on the growth of Vitreoscil/a strain LB 13. Each point represents the 
average absorbance of cultures from 3 bottles. 0 Light for 96 hours • Dark for 96 hours T dark for 
24 hours then light. Cells were grown in universal bottles in 10 ml of broth at 25°C in a Sanyo plant 
growth cabinet. At times indicated 3 bottles from each light regime were removed and the 
absorbance measured. 
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they were moved to the light. These cultures did, however, recover; after 20 hours 

in the light the optical density once again began to rise and after 100 hours had 

reached a similar density to the cultures that had been kept in the dark. The 

cultures that were kept light for 24 hours and then changed to dark showed a very 

slight rise in optical density after 70 hours but did not reach a density comparable 

with the cultures that had been kept dark throughout. 

Only the plates from the bottles that had been kept dark and the bottles moved 

from dark to light produced countable numbers of colonies. The counts were 

variable with numbers ranging from 35 x 106 to 260 x 106 CFU ml"1 for plates at 48 

hours for the dark cultures and 34 x 106 to 270 x 1 06 CFU mr1 at 48 hours for the 

cultures that were moved from dark into light. Variation in the viable counts of the 

cultures was consistent with the variation in optical densities for those cultures. At 

48 hours, on the plates from the cultures incubated in the light throughout two 

colonies were detected that appeared to be light resistant. On examination the 

bacteria resembled (size, shape and colony morphology) Vitreoscil/a LB13 and 

were not thought to be contamination. One of these colonies was removed and 

restreaked onto fresh agar. The new strain was named LB 13A and stored for 

further work. 

4.3.2 Exposure of two strains of Vitreoscilla and one strain of E. coli to UV-A 

Although the above experiment demonstrated the sensitivity of Vitreoscilla it was 

desirable to narrow the wavelength range to which the organism was exposed in 

order to determine which part of the spectrum was responsible for the damage. A 

lamp was available that emitted UV-A and so this was used for the next 

experiment. A wild type strain of E. coli (K12) was tested along side the three 

available strains of Vitreoscilla (LB13, LB13A and C1) for comparison. The 
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organisms were exposed to UV-A as described in the Materials & Methods section 

(Page 104). Samples were removed from the flasks every hour and viable counts 

were performed. Figure 4.2 Page 110 shows the resulting viable count versus 

dose for this experiment. A lag in response was seen for the first hour of exposure 

but after 2 hours the two wild type strains of Vitreoscilla had a fivefold reduction in 

viability whilst the E. coli strain and the newly isolated LB13A showed no drop in 

viability. The LD50 for LB13 and C1 were similar at about 15 kJ m·2 whilst both E. 

coli K12 and LB13A were not sensitive to UV-A. The viability of the two wild type 

strains continued to drop although not as sharply as during the second hour of 

exposure. E. coli and LB13A once again showed no drop in viability. 
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Figure 4.2 The effect of UV-A irradiation at 91 Jcm-2 hou(1 on the number of colony forming units 
per ml of a strain of E.coli and three strains of Vitreoscil/a (as indicated). Cells were exposed for 
three hours whilst gently shaking on ice; samples were taken every hour diluted and plated onto 
agar at which time the samples positions under the light were changed. Each point represents the 
average count from three flasks plus or minus one standard deviation. 
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4.3.3 UV-A exposure in the absence of 02 

lt was postulated that reactive oxygen species were responsible for damage 

caused by UV-A and ultimately the light sensitivity of Vitreoscilla. In order to verify 

this LB13 samples were exposed to UV-A in the presence and absence of 02. 

The experiment was conducted essentially as described above (see also Materials 

& Methods, Page 104). To eliminate 02 the culture flasks were flushed with 

nitrogen for 1 min before exposure (oxygen free, BOC, Guildford, Surrey). When 

samples were removed for plate counts the flasks were once again flushed with 

nitrogen. Figure 4.3 Page 112 shows % survival versus UV-A dose. In both the 

presence and absence of 0 2 a drop in viability after a dose of 91 Jcm·2 was seen. 

At dosages greater than 91 Jcm·2 the viability of samples that had been deprived 

of oxygen stabilised. However, in the presence of oxygen viability continued to 

decline at dosages greater than 91 Jcm·2 This experiment was repeated a number 

of times but was difficult to reproduce, probably because of variation in the 

available oxygen between experiments and also the experimental conditions were 

unfavourable to the organism (see Discussion, Page 120). 
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Figure 4.3 The effect of UV-A irradiation at 91Jcm-2hou( 1on LB13 in the presence and absence of 
oxygen. The oxygen free samples were gassed with nitrogen for one min. before exposure. Every 
hour a sample was taken out and the cells were gassed again . The samples were diluted and 
plated and a viable count was performed. 
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4.3.4 Protection from UV-A damage by superoxide dismutase and/or catalase 

If reactive oxygen species are responsible for the UV-A sensitivity of Vitreosci//a 

then it might be possible to protect the bacteria by the addition of superoxide 

dismutase and/or catalase. Therefore Vitreoscilla were exposed to UV-A in the 

presence of superoxide dismutase (SOD) and/ or catalase to determine whether or 

not any protection was apparent. Exposure was conducted as described in 

Materials and Methods section Page 1 04. Superoxide dismutase (750 units 

Sigma) and/or catalase (1 IJg in 1 OOiJI Sigma C4o 2000-5000 units ml"1 protein) was 

added to the flasks prior to illumination. Figure 4.4 Page 114 shows the % survival 

compared to the light flasks for each treatment. The addition of superoxide 

dismutase or catalase provided a marked protection. The addition of both cat. and 

SOD provided almost full protection from the effects of UV-A. 
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Figure 4.4 The effect of the addition of superoxide dismutase and/or catalase on the light 
sensitivity of Vitreoscil/a LB13. Exposure was conducted as described in the methods (Page 1 04) 
Superoxide dismutase (750 units Sigma S 4636) and/or catalase (1 J.Jg in 1 OOIJI sigma C40 2000-
5000 units mr1protein) was added to the flasks prior to illumination. Each bar represents the 
average of three experiments with three flasks for each condition. 
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4.3.5 Comparison of respiratory membranes and cytosolic extracts from LB13 
and LB13A 

lt was possible that the chromophore responsible for the light sensitivity of 

Vitreoscil/a could be identified by comparison of the chromophore content of LB 13 

with that of LB 13A, the photo sensitive strain derived from it. The assumption was 

that exposure of LB 13 to light had selected for a mutant that lacked the ability to 

produce this chromophore. Respiratory membranes from two strains were 

isolated and compared for differences and the two strains were tested for both 

haemoglobin production and the presence or absence of complex I. 

4.3.5.1 Examination of respiratory membranes by difference spectroscopy 

Membranes were isolated as described in Chapter 3 Material and Methods section 

Page 75. Absorbance was measured from 400 nm to 700 nm for both the reduced 

and oxidised membranes from each strain, and the oxidised specrum was 

subtracted from the reduced to produce a difference spectrum Figure 4.5 Page 

116. Membranes from both strains showed evidence of the presence of both 

terminal oxidases bo and bd as indicated by the haems b alpha absorption band at 

560 nm and by small absorption features between 600 and 700 nm (Georgiou and 

Webster, 1987). Initial experiments looked promising showing a difference in 

flavin content between the two strains. The presence of flavins in LB 13 is 

indicated by the minimum in the spectrum at 460 nm. This result, however could 

not be reproduced. 
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Figure 4.5 Difference spectra of membranes from LB13 and LB13A partially solubilised with 
octylqlucoside at a ratio of 0. 75 detergent to protein. Membranes were partially solubilised with 
octylglucoside (n-octyl p-D-glucopyranoside; Alexis Biochemicals, San Diego CA) at a ratio of 0.75 
detergent to protein (by weight). The supematant, i.e. the cytosolic extract, containing the bacterial 
haemoglobin was retained. Membranes (100 ~I} were added to potassium phosphate buffer pH 
7.5 (400 ~I) difference spectra were recorded. Potassium dithionite was used as the electron 
donor. Spectra were normalised using the difference between the absorbance at 560 nm minus 
the absorbance at 580 nm. 
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4.3.5.2 Comparison of cytosolic extracts 

Vitreoscil/a are known to produce bacterial haemoglobin (Wakabayashi, 

Matsubara et al., 1986). lt is possible that a difference in the production of this 

haemoglobin could be responsible for the difference in sensitivity to UV-A of the 

two strains. The quantity of haemoglobin in the cytosolic extracts from each strain 

was therefore measured. The cytosolic extract was isolated as described in the 

Material and Methods section Page 105. Neat extract was reduced using 

dithionite and CO was bubbled through it for I min. The spectra of both the 

reduced and CO bound extracts were taken and the difference calculated (Figure 

4.6 Page 118 shows the resulting spectra). The quantity of haemoglobin in the 

extract from each strain was calculated using the extinction coefficient £419-436 

nm = 27 4 mM -1 cm-1 (Dikshit and Webster, 1988). The first preparations of 

cytosolic extract produced samples with different concentrations of haemoglobin. 

LB13 contained 93 nmoles of haemoglobin per gram of protein and LB13A 

contained 50 nmoles of haemoglobin per gram of protein. Aeration rates for these 

preparations could have been improved; there was possibly an uneven delivery of 

air to the flasks. This is problematic when measuring the relative concentrations of 

haemoglobin in the cytosol of the strains as it has been reported that the 

production of haemoglobin is stimulated by low oxygen conditions (Joshi and 

Dikshit, 1994) Therefore the preparation was repeated. The new extract was 

centrifuged at 100 000 gav for 1 hour in a Beckman TL-100 benchtop 

ultracentrifuge in order to remove any membrane vesicles and so improve the 

quality of the spectra. The content of haemoglobin was found to be 57.22 nmoles 

per gram of protein for LB13 and 40.33 nmoles per gram of protein for LB13A. lt 

is clear, therefore, despite the variations, that both strains produce haemoglobin. 
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Figure 4. 6 The Co binding spectra of cytosolic extracts from L813 and LB13A. The 
cytosolic extract was isolated as described in the Material and Methods section 
Page 101 . Neat extract was reduced using dithionite and CO was bubbled through 
it for I min 
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4.3.5.3 Presence or absence of complex 1 

As the concentration of haemoglobin was found to be similar and at this time the 

difference specta had shown a difference in flavin content between the two strains, 

flavoprotein was examined as a possible source of UV-A sensitivity. The 

membranes of the two strains were examined for the presence of Complex 1. 

NADH oxidation by membranes from both LB 13 and LB 13A was tested for 

sensitivity to rotenone in order to determine the presence or absence of Complex 

I. Membranes (2 1-11 or 5 IJI) from LB13 or LB13A, respectively, were added to 

500 1-11 of potassium phosphate buffer pH 7.5. To the cuvette was added 5 1-11 of 

1 mgmr1 rotenone in ethanol, 5 1-11 of ethanol or 5 IJI of water. The reaction was 

started by the addition of 5 1-11 of 16 mM NADH and the rate of decrease in 

absorbance at 340 nm was monitored. A straight line was fitted to the first two min 

of each time course and the slope of the line used to determine the rate of 

oxidation. 

The membranes from LB13 showed 65 % ±10.77 (± SEM, n = 3) inhibition from 

rotenone whilst the LB13A membranes showed only 40% ±14.29 (± SEM, n = 3). 

However there was a lot of variation between replicates and a single factor 

analysis of variance showed no significant difference between the two sets of 

results, either way it is clear that both strains possess Complex I. 
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4.4 Discussion 

4.4.1 Photosensitive growth of Vitreoscil/a LB 13 

This work began with the observation that cultures of Vitreoscilla strain LB 13 failed 

to grow when they were incubated close to an external window. This 

photosensitive growth was demonstrated in a first experiment in which the 

organism was exposed to UV together with visible light in a plant growth cabinet. lt 

was not possible to define the exact dose of each component that the cultures 

received in this experiment. 

As expected, growth in the cultures kept in the dark was normal (Figure 4.1 Page 

1 07), but there was no growth in those kept in the light (not shown on figure). The 

principal interest is in the behaviour of the cultures kept under the dark/light 

regime. Growth in the 'dark/light' cultures was normal in the dark, but in the light, 

after a lag of about 8 h, cell density began to decrease. Hence, the light did not 

simply have a bacteriostatic effect. However, after about 40 h in the light growth 

recovered showing that the photosensitivity of Vitreoscilla LB 13 can be selected 

out by growth of the organism under light. This was further confirmed as follows. 

At 48 h when 0.1 ml of a 1 o-5 dilution (in fresh MTY broth) of culture that had been 

kept in the dark was spread onto MTY agar and incubated for 24 h in the dark at 

25 °C, 121 ± 70 (± SEM, n = 3) colonies were detected. This is equivalent to 

121 ± 70 x 106 colony-forming units per millilitre (cfumr1
). In contrast, for the 

culture that had been exposed to light a total of only two colonies were detected 

when 0.1 ml of neat culture was spread in triplicate onto MTY agar and incubated 

under the same conditions in the light. This is equivalent to only 7 ± 7 cfumr1 

(± SEM, n = 3). One of these two photo-insensitive strains was retained and 

designated LB13A. 
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Figure 4.2 (Page 11 0) shows the percentage survival of each of the four strains 

against UV-A dose. Vitreoscil/a LB 13 is clearly UV-A sensitive with an LDso of 

about 15 kJ m·2. Vitreoscil/a C1 behaved in a similar way, but both E. coli K12 and 

Vitreoscil/a LB13A were UV-A insensitive, as expected. Both Vitreoscilla LB13 

and C1 showed a threshold at about 9 kJ m-2 below which they were insensitive to 

UV-A, at least under the conditions of this experiment. 

4.4.2 Protection of Vitreoscil/a LB13 against photodamage by UV-A 

While DNA absorbs, and hence can be directly damaged by exposure to UV-C, 

and to a lesser extent UV-8 (Jagger, 1983) this is not the case for UV-A. Hence, 

the observation that Vitreoscilla LB13 is sensitive to UV-A suggests an indirect 

mechanism for the photodamage. One possibility is that this could involve reactive 

oxygen species such as the superoxide anion (02.) and hydrogen peroxide (H202). 

generated through the reaction of an excited chromophore with molecular oxygen. 

This was investigated by supplementation with the enzymes superoxide dismutase 

(SOD) and catalase (cat.), during the exposure of Vitreoscilla LB13 to UV-A. 

Figure 4.3 (Page 112) shows that both SOD and Cat., separately or in 

combination, provided significant protection to the organism against damage by 

UV-A. 

4.4.3 Comparison of the bacterial haemoglobin content of Vitreoscilla LB13 and 
LB13A 

Once the sensitivity of Vitreoscilla LB13 to UV-A was established the possibility 

arose that the chromophore responsible could be identified by comparison of the 

chromophore content of LB 13 with that of LB 13A, the photo-insensitive strain 

derived from it. A characteristic of Vitreoscilla is the presence of high levels of 

bacterial haemoglobin in the cytosol (Dikshit and Webster, 1988). GO-binding 
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spectra for cytosolic extracts from both LB 13 and LB 13A indicated the presence of 

haemoglobin (Figure 4.4, Page 114). In both cases bacterial haemoglobin is 

clearly present, hence eliminating the possibility that the absence this 

chromophore accounts for the photo-insensitivity of LB13A. The levels of 

haemoglobin observed here (0.6-0.8 nmol/g wet weight) are somewhat lower than 

those reported for Vitreoscilla C1 (e.g. 30 nmol/g wet weight); (Dikshit and 

Webster, 1988). However, complete extraction of the haemoglobin is unlikely to 

be achieved with the method used here, and in any case the yield of haemoglobin 

is known to be highly dependent on growth conditions, a 20-40 fold higher yield 

being obtained after growth under hypoxic conditions (Boerman and Webster, 

1982). 

4.4.4 Comparison of the redox-active chromophore content of membranes from 
Vitreoscilla LB13 and LB13A 

No major difference in the redox-active haem-chromophore content of the 

membranes was detected by difference spectroscopy (Figure 4.5 Page 116). 

When the difference spectra are normalised and one subtracted from the other, 

the difference below about 520 nm is dominated by a feature consistent with the 

bleaching on reduction of a flavin (Figure 4.5 Page 116). Note that the smaller 

feature (with a maximum at about 438 nm) superimposed on this is probably an 

artefact of the normalisation caused by a slight difference in the ratio of 

cytochrome bo to cytochrome bd in the two membrane preparations; their ratio is 

likely to be sensitive to slight differences in growth conditions (Kita, Konishi et al., 

1986). 

4.4.5 Flavins as chromophores 

The potential role of flavins as chromophores involved in the lethal and sub-lethal 

effects of near-UV on bacteria has been discussed before (Jagger, 1983). 
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Oxidized riboflavin, for example, has an absorption maximum (375 nm) that 

closely matches the UV-A used here (365 nm). The absorption of UV-A by a flavin 

could lead to its photoreduction (Salet, Land et al., 1981; Traber, Kramer et al., 

1982), which could in turn could cause direct damage by abstraction of electrons 

from components in its immediate environment. Alternatively this could cause 

indirect damage via the generation of superoxide (by donation of an electron to 02) 

(Vaish and Toll in, 1971 ), which appears to be the case here. Flavins are common 

components of electron transfer complexes. One possibility here is the 

proton-pumping NADH:Q oxidoreductase (NQR-1), which contains FMN. 

However, membranes from LB13A showed NADH oxidase activity that was partly 

sensitive to rotenone indicating that NQR-1 was still present in this photo

insensitive strain. 

4.4.6 Comparison of Vitreosci/la sensitivity with that of other bacteria 

There has been a brief report of the photoinhibition of respiration in Vitreoscilla 

stercoraria (Ninnemann, 1972). In this work the rates of oxygen consumption by 

starved cells were measured after exposure of these to blue light (400 nm). A 

dose-dependent decrease in rate was observed, with 150 of about 1000 kJ m-2 

(i.e. 10 minutes at 1.8x1 06 erg cm-2 s-1
). lt was implied in this work that the 

terminal oxidase cytochrome bo was the target for the photoinhibition, but no 

evidence for this was presented. The work presented here shows that cytochrome 

bo is unlikely to be the chromophore involved, but it could be a target for indirect 

damage. Whether or not the photoinhibition of respiration can in itself account for 

the killing effect of UV-A seen here (Figure 4.2 Page 110) remains to be seen. 
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Direct comparisons between the sensitivity of Vitreoscilla and other bacteria are 

difficult to make because of the different irradiation regimes that have been used. 

Joux et a/looked at responses of marine bacteria to UV-8 and found that with an 

LDso of about 100 kJm-2 Vibrio natriegens was the most sensitive (Joux, Jeffrey et 

al., 1999). Degiorgi et a/looked at three bacteria and found that the most sensitive 

to UV-8 was Pseudomonas aeruginosa with an LD50 of about 20 kJm-2 (Degiorgi, 

Fernandez et al., 1996). The amount of UV-A that bacteria can survive is likely to 

be higher than UV-8 because UV-A does not cause direct DNA damage. Tyrell 

reported LD5a values (for E. coli) of 50 kJm-2
, 250 kJm-2 and 1200 kJm-2 for 

wavelengths of 313 nm, 334 nm and 365 nm respectively (Tyrell, 1985). The 

LD50 for Vitreoscilla stercoraria UV-A exposure was found to be 15 kJm-2 making 

it particularly sensitive compared to other bacteria. 
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Chapter 5 

The effect of sodium ions on the activity of cytochrome bo and bd in 
respiratory membranes and purified cytochrome bo from Vitreoscilla 

isolates LB 13 and C 1 



5.1 Introduction 

There have been reports that an alkotolerant/halotolerant strain of Bacillus 

(Semeykina, Skulachev et al., 1989) and E. coli grown at alkaline pH (Avetisyan, 

Dibrov et al., 1989) utilise a sodium pumping terminal oxidase. Neither of the 

enzymes responsible were identified. Vitreoscilla is therefore the only bacterium that 

has been reported to possess a sodium pumping terminal oxidase that has been 

identified and partially characterised (Bassey, Efiok et al., 1990a; Bassey, Efiok et al., 

1992; Bassey, Efiok et al., 1990b; Park, Moon et al., 1996). In 1990 Bassey et at first 

reported the generation of a sodium gradient by the respiratory chain of Vitreoscilla 

(Bassey, Efiok, and Webster, 1990b). Bassey et at demonstrated that the formation 

of ~\V was directly coupled to respiratory-driven Na+ extrusion using the following 

experimental evidence: there was a correlation between the kinetics of respiratory-

driven Na+ extrusion and ~\V formation; monensin (a sodium/hydrogen ionophore) 

caused the collapse of ~\V; and the protonophore 3,5-di-tert-butyl-4-

hydroxybenzaldehyde (DTHB) caused a transient collapse of the gradient followed by 

the stimulation of Na+ extrusion and recovery of the ~\V- There was no correlation 

between ~\V and H+ fluxes (Bassey, Efiok, and Webster, 1990b). 

Further studies on the respiratory chain of Vitreoscil/a by Bassey et al. revealed that a 

terminal oxidase was responsible for the sodium pumping (Bassey, Efiok, and 

Webster, 1990a). Vitreoscil/a possesses two terminal oxidases, a bd type and a bo 

type. As in E. coli (JOnemann, 1997) the concentration of bd oxidase is likely to 

increase under conditions of low oxygen (Boerman and Webster, 1982). Both the bo 

and bd type oxidases are quinal oxidases (Georgiou and Webster, 1987b;Georgiou 

and Webster, 1987a). Bassey et a/ initially looked at two possible candidates for the 
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sodium pump, an NADH dehydrogenase as found in the marine bacteria or the bo 

type oxidase. Although the NADH oxidase activity of the membranes was enhanced 

more by Na+ than u+ they found that the quinal oxidase activity was only enhanced by 

Na+. When the cytochrome was initially reconstituted into liposomes derived from E. 

coli phospholipids movement of Na+ both in and out of the liposomes (depending on 

the Na+ concentration inside and outside) was detected, and the enzyme catalysed a 

net uptake of 22Na+ when the liposomes were energised with ascorbate/N,N,N',N'

tetramethyl-1 ,4-phenylenediamine (TMPD), thus adding to the evidence that the 

terminal oxidase from Vitreoscil/a is responsible for pumping sodium (Bassey, Efiok, 

and Webster, 1990a). Further studies by Park et a/ in which the enzyme was 

incorporated into liposomes made from Vitreoscil/a phospholipids saw an increase in 

extrusion of Na+ compared with the E. coli liposomes (Park, Moon, Cokic, and 

Webster, 1996). They found an efficiency of 3.93 Na+ pumped per 0 2 consumed 

when ascorbate/TMPD was used as the substrata 

In 1991 Bassey et a/looked at the synthesis of ATP by Vitreoscilla and reported the 

use of a sodium gradient to generate ATP (Bassey, Efiok, and Webster, 1992). They 

showed that the amount of ATP generated was dependent on the magnitude of the 

Na+ gradient imposed and that anaerobic cells which had been equilibrated with Na+ 

were able to synthesise sufficient ATP to double the intracellular concentration when 

they were exposed to 02. From this evidence Bassey et a/ reported that under 

normal growth conditions Na+ is probably the main coupling ion for ATP synthesis in 

Vitreoscilla. 
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All the sodium pumps so far identified have shown a requirement for sodium for 

maximum activity. Tokuda and Unemoto looked at the sodium pumping NADH 

oxidase from Vibrio alginolyticus and found that at alkaline pH sodium stimulated the 

generation of membrane potential and rates of oxygen consumption (Tokuda and 

Unemoto, 1982). Other studies of the sodium pumping NADH oxidase from Vibrio 

alginolyticus and Klebsiella pneumoniae have shown that the enzymes require 

sodium for maximum activity (Tokuda and Unemoto, 1984; Dibrov, Kostyrko et al., 

1986;Dibrov, Lazarova et al., 1989; Dimroth and Thomer, 1989). Like other sodium 

pumping enzymes the sodium pumping terminal oxidase from Vitreoscilla has been 

shown to require sodium for maximum activity (Bassey, Efiok, and Webster, 

1990a;Bassey, Efiok, and Webster, 1992;Efiok and Webster, 1990b;Park, Moon, 

Cokic, and Webster, 1996). The requirement of sodium pumping enzymes for sodium 

has been used to screen bacteria for sodium pumps. Oh et a/ looked at the 

correlation between possession of a sodium pump with requirement of sodium for 

growth in marine bacteria. They found that all the bacteria they tested that failed to 

grow without sodium possessed a sodium pump and that all the bacteria that had no 

primary sodium pump grew without sodium. Therefore when screening for 

possession of a sodium pump a good starting point is the organisms requirement for 

sodium in the growth media. 

One of the aims of the project was to independently verify the sodium pumping action 

of the cytochrome bo from Vitreoscil/a. Therefore an initial objective was to 

demonstrate that the activity of the cytochrome bo from Vitreoscil/a could be 

stimulated by the addition of sodium. Unless sodium dependence could be shown 

there would be little point in looking for the sodium pump directly. In their 1990 paper 
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Webster and Bassey showed an increase in activity of both membrane bound and 

purified enzyme in the presence of sodium chloride. They also showed that this was 

not an ionic strength effect as lithium did not produce a similar enhancement in 

activity (Bassey, Efiok, and Webster, 1990a). 
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5.2 Materials and methods 

5.2.1 Reagents 

All reagents were purchased from Sigma (Poole, Dorset) unless otherwise stated. 

5.2.2 Choice of quinol 

In their investigations into the sodium dependent nature of Cytochrome bo from 

Vitreoscilla, Webster's group used menadiol as the quinol substrata (Bassey, Efiok, 

and Webster, 1990a;Bassey, Efiok, and Webster, 1990b;Bassey, Efiok, and Webster, 

1992;Efiok and Webster, 1990a;Efiok and Webster, 1992;Kim, Chi et al., 2000;Park, 

Moon, Cokic, and Webster, 1996;Webster, Park et al., 1995;Park, Moon, Cokic, and 

Webster, 1996). 

5.2.3 Preparation of quinols from quinones 

Quinols were produced from appropriate quinone as follows (Rich, 1981). All 

solutions and air spaces were flushed with oxygen free nitrogen (boc Guildford, 

Surrey) prior to use. The quinone (0.25 g) was dissolved in 50 ml of diethyl ether in a 

separating funnel. An equal volume of dithionite buffer was added (1 M potassium 

phosphate pH 7 containing 1 g of sodium dithionite). The funnel was shaken 

vigorously and the dithionite buffer layer poured off. The ethereal layer was then 

shaken with a second volume of dithionite buffer to ensure complete reduction. The 

dithionite buffer layer was poured off and the ethereal layer was passed through 30 g 

of anhydrous sodium sulphate in a sintered glass funnel to remove any remaining 

water. The diethyl ether was then driven off in a rotary evaporator (with the exception 
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of menadiol). To prevent reoxidation the diethyl ether was driven off the menadiol 

using nitrogen blown across the solution. Quinols were stored at room temperature in 

the dark. Solutions were made up in 96% ethanol containing 10 mM HCI and stored 

at -20 °C. Concentration of stock decylubiquinol was determined using the extinction 

coefficient 8 mM-1cm·1 
t.272(axidised)-247(reduced) (Zheng, Shoffner et al., 1990) and was 

found to be 26 mM. 

5.2.4 Isolation of respiratory membranes and purification of enzyme 

Respiratory membranes were prepared and cytochrome bo isolated from them as 

described in Chapter 3 Page 75. 

5.2.5 Measurement of oxidase activity 

Quinone undergoes a 2H+ + 2e- reduction to form ubiquinol. The reduced and 

oxidised forms of ubiquinol have different absorption spectra and so can be 

distinguished spectroscopically. lt is therefore possible to monitor the appearance of 

ubiquinone due to the action of a quinal oxidase. The absorbance spectra of the 

reduced and oxidised quinal were compared and a wavelength was chosen where 

there was a difference in absorbance between the two spectra. The absorbance at 

this wavelength was then monitored during ubiquinol oxidase reactions to give an 

indication of the appearance of the oxidised form of the substrata. 

5.2.6 Assay procedure 

Each assay was performed in a 1 ml quartz cuvette. The total assay volume was 

500 IJI. Buffer B (see appendix A Page 181) was added to the cuvette followed by the 
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desired volume of sodium, lithium or potassium chloride solution. The membranes 

were added and the reaction was started by the addition of quinol. The reaction was 

monitored at the appropriate wavelength for 3 min (see Results Page 135). 

5.2.7 Spectroscopy 

All measurements of enzyme reactions were carried out in a Perkin Elmer Lambda 

bio 20 dual beam spectrophotometer (Wellesley, Massachusetts), fitted with a 

circulating water bath set at 25 °C. The resulting time courses of quinol oxidation 

were exported into Sigma Plot and appropriate curves were fitted. The initial rate was 

calculated by dividing the span times the rate constant (from the fitted curve) with the 

appropriate extinction coefficient giving the initial rate in mMs-1
. The resulting rate 

was multiplied by 1 000 to give J.!MS-1 and divided by 2 to take into account the volunie 

in the cuvette (500 J.!l) giving the rate in nmol mr1s-1
. An extinction coefficient for 

menadiol could not be found and so concentration is quoted as volume of stock 

added. 
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5.3 Results 

5.3.1 Choice of wavelength and quantification of quinal stock solutions 

The wavelengths used for activity measurements and for the measurement of quinol 

concentration were determined spectroscopically using Vitreoscil/a membranes to 

oxidise the reduced quinal. Figure 5.1 Page 136 shows the reduced and oxidised 

spectrums of decylubiquinol. The wavelength chosen for the activity measurements 

using decylubiquinol was 278 nm at this wavelength there was a good difference 

between the two spectra. For duroquinol a wavelength of 288 nm was used and for 

menadiol 262 nm was used. The concentration of decylubiquinol was determined 

using the appropriate extinction coefficient. 
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Figure 5.1 Reduced and oxidised decvlubiguinol (- reduced, - oxidised). Decylubiquinol was 
produced as described in the materials and methods section. 0.5 1-11 of stock decylubiquinol was added 
to 500 1-11 of buffer and the absorbance was measured from 200 to 400 nm. The decylubiquinol was 
oxidised with the addition of 1 iJl of 841JQI"1membranes (measured by protein content) from Vitreoscil/a 
the absorbance between 200 and 400 nm was measured every 23 seconds until oxidation was 
complete. 
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5.3.2 The oxidation of duroquinol by respiratory membranes from Vitreoscilla strain 
LB13 

The first quinal tested was duroquinol. The quinal was prepared from duroquinone 

and assays carried out as described on Page 132. The wavelength used to monitor 

duroquinol oxidation was 288 nm. Assays with duroquinol were repeated three times. 

Figure 5.2 Page 138 shows the resulting plot of initial rate of quinal oxidation versus 

increasing duroquinol concentration. lt can clearly be seen that above 160 IJM the 

measurements of activity of the membranes became variable and it was not possible 

to accurately saturate the enzyme. 
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Figure 5.2 The effect of substrate concentration on the rate of oxidation of duroguinol by respiratory 
membranes from Vitreoscilla LB13. Final volume of 0.5ml contained 22.5 mM potassium phosphate 
buffer pH 7.6, 50 JJI of 4.2gl"'membranes (measured by protein content). Oxidation was measured at 
288 nm for 3 minutes. 
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5.3.3 The oxidation of decylubiquinol by respiratory membranes from Vitreoscil/a 
strain LB13 

The rates of activity at higher levels of duroquinol were found to be variable and so a 

different quinal was tried. Decylubiquinol was produced as described in the Materials 

and Methods section Page 132. Figure 5.2 (Page 138) shows the initial rate of 

oxidation for each concentration of decylubiquinol. Unlike the duroquinol the quinal 

oxidation activity was successfully saturated by the higher concentrations. From the 

data in Figure 5.3 the Km of the quinal oxidase activity for this substrate was 

estimated. The Km and Vmax were calculated by fitting a rectangular hyperbola to the 

data and were found to be 9.8 1-1M and 40.5 nmol s-1
, respectively. 
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Figure 5.3 The effect of substrate concentration on the rate of oxidation of decylubiguinol by 
respiratory membranes from Vitreoscilla LB13. Each point represents the average of three replicates± 
1 standard deviation. Final volume of O.Sml contained 22.5mM potassium phosphate pH 7.6, 5 ~I of 
4.2gr1membranes (measured by protein content). Oxidation was measured at 278 nm for 3 minutes. 
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5.3.4 The effect of sodium, lithium and potassium chlorides on the rate of quinal 
oxidation by Vitreoscil/a LB13 respiratory membranes 

The quinal oxidase activity in Vitreoscil/a LB13 membranes was tested for sensitivity 

to sodium, lithium and potassium ions. The experiment was conducted as above (at 

substrate concentrations either equivalent to the Km. or sufficient to nearly saturate 

the enzyme, i.e. ten times Km ) but between 0 and 500 mM of each ion was added to 

the buffer prior to addition of the membranes. Figure 5.3 and 5.4 (Pages 140 and 

142, respectively) show the % quinal oxidase activity of the membranes (relative to 

the control) against ion concentration at 0.5 Vmax and Vmax respectively. At both 

0.5 Vmax and Vmax the addition sodium chloride caused a similar decrease in activity, 

this trend continued as the sodium ion concentration was increased and 500 mM 

sodium chloride caused a reduction in activity of around 54 %. At no point was a 

stimulation of activity observed. The addition of lithium and potassium ions also 

caused a drop in activity but to differing extents. 
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Figure 5.4 The effect of sodium chloride (e) potassium chloride (.~ l and lithium chloride l•l on the 
rate of decylubiguinol oxidation by respiratory membranes from Vitreoscilla strain LB13 at 0.5 Vmax of 
the enzyme activity. Final volume of 0.5ml contained between 0 and 500mM sodium, potassium or 
lithium chloride, 5 IJI of 4.2gr1membranes (measured by protein content), 9.8 JlM decylubiquinol, 
volume was made up to 0.5ml with potassium phosphate buffer pH 7.6. Oxidation was monitored at 
278 nm at 27°C for 3 minutes. Each point represents the average of three replicates, +/- 1 standard 
error. 
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Figure 5.5 The effect of sodium chloride (e). potassium chloride ( .& l and lithium chloride f•l on the 
rate of decylubiguinol oxidation by respiratory membranes from Vitreoscilla strain LB13 close to the 
Vmax of the enzyme. Final volume of 0.5ml contained between 0 and 500mM sodium, potassium or 
lithium chloride, 5 ~I of 4.2gl"1membranes (measured by protein content), 51 J.iM decylubiquinol, 
volume was made up to 0.5ml with potassium phosphate buffer pH 7.6. Oxidation was monitored at 
278 nm at 27°C for 3 minutes. Each point represents the average of three replicates, +/- 1 standard 
error. 
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5.3.5 The effect of sodium chloride and monensin and/or FCCP on the rate of 
decylubiquinol oxidation by Vitreosci/la LB13 respiratory membranes 

The quinal oxidase activities measured in the experiments in the previous sections 

were obtained using enzyme that was contained in respiratory membranes. lt is 

assumed that these membranes had spontaneously formed vesicles in aqueous 

suspension. As the enzyme was operating in a closed system it is possible that the 

activity of the enzyme was affected by build up of membrane potential (and to a 

lesser extent ion gradient). The build up of membrane potential across the vesicle 

membrane could have resulted in a reduction of activity of the enzyme (if it is a 

sodium pump) particularly if the enzyme were predominantly right oriented i.e. the 

same orientation as is found in the bacterium. lt is also possible that the enzyme 

would be insensitive to sodium ion if the dependent part of the enzyme were facing 

inwards. For these reasons the sodium activity experiments were repeated with the 

addition of monensin, a Na+ specific ionophore that catalyses Na+/H+ exchange 

across membranes (Sandeaux, Sandeaux et al., 1982), and carbonyl cyanide 4-

trifluoromethoxyphenylhydrazone (FCCP), a protonophore. 
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Figure 5.6 The proposed effect of ionophores on the respiratory membrane vesicles used in activity 
experiments. Monensin would allow sodium ions to pass through the membranes in exchange for 
hydrogen ions. A rise or drop in pH (depending on orientation of the enzyme) is predicted in the 
vesicles when treated with monensin alone. An H+ ionophore would prevent a build up of membrane 
potential and hence prevent respiratory control from reducing the pumping of sodium ions by the 
enzyme. The addition of FCCP allows the flow of hydrogen ions to equilibrate over the membrane and 
prevents a build up of membrane potential. 
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The monensin would allow sodium ions to pass through the membranes in exchange 

for hydrogen ions. As can be seen in Figure 5.6 panel A and B (Page 145) a rise or 

drop in pH (depending on orientation of the enzyme) is predicted in the vesicles when 

treated with monensin. An H+ ionophore was added to the reaction to exchange H+ 

ions and prevent a build up of membrane potential and hence prevent respiratory 

control from reducing the pumping of sodium ions by the enzyme. As can be seen in 

Figure 5.6 panel C and D (Page 145) the addition of FCCP allows the flow of 

hydrogen ions to equilibrate over the membrane and prevents a build up of 

membrane potential. This combination of ionophores would cause the sodium pump 

to be released from respiratory control. The experiment was conducted as described 

for the sodium chloride experiment with the exception that either 1 0 IJI of water or 

10 IJI of monensin, and/or 10 IJM FCCP (both at 10 1JM) or 10 IJI of ethanol were 

added to the buffer prior to the addition of the membranes. 

Figure 5.6 (Page 145) shows the effect of both ionophores on the effect of sodium 

chloride on the rate of quinal oxidation by respiratory membranes. No difference was 

observed between the test activities and the control. The rate of oxidation fell as the 

sodium chloride concentration increased. Experiments conducted using either 

monensin or FCCP also showed no difference in the effect of sodium chloride on the 

activity of the enzyme. 
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Figure 5.7 The effect of sodium chloride, FCCP and monensin on the rate of decylubiguinol oxidation 
by respiratory membranes from Vitreoscil/a strain LB13 approaching the calculated Vmax of the enzyme. 
• Without FCCP or monensin 0 With 0.21JM FCCP and monensin 0.21JM. Final volume of O.Sml 
contained between 0 and SOOmM sodium chloride, 5 IJI of 4.2gr1membranes (measured by protein 
content), 51 llM decylubiquinol, 10 IJI of 10 IJM FCCP and 101..11 of 10 IJM monensin. The volume was 
made up to O.Sml with potassium phosphate buffer pH 7.6. Oxidation was monitored at 278 nm at 
27°C for 3 minutes. Each point represents the average of three replicates, +/- 1 standard error. 
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5.3.6 The effect of substrate concentration on the rate of oxidation of menadiol by 
respiratory membranes from Vitreoscilla LB 13 

As none of the activity experiments with decylubiquinol showed enhancement with 

sodium chloride another quinal was tested. Menadiol was used because it is the 

quinal used by Webster and eo-workers in their activity experiments (Bassey, Efiok, 

and Webster, 1990a). Menadiol proved more difficult than either duroquinol or 

decylubiquinol to produce. The procedure was followed as previously described 

(Page 132). The first production of menadiol turned purple when being evaporated to 

dryness, a second batch was produced but this time the quinal was dried using 

oxygen free nitrogen (Boc, Guildford, Surrey). The resulting menadiol powder was 

dissolved in 5 ml of acidified ethanol and stored at -20 °C. The stock solution was 

diluted 10 fold in acidified ethanol before use. 

The enzyme was not successfully saturated with this substrate and therefore the Km 

and Vmax were not calculated; nevertheless the substrate was used for further activity 

experiments. 
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5.3.7 The effect of sodium chloride on the rate of oxidation of menadiol by 
respiratory membranes from Vitreoscilla LB13 

The sodium chloride experiment was repeated using menadiol as the substrate. The 

experiment was conducted as before with the exception that 5 1.11 of menadiol (as 

prepared) was used to start the reaction that was monitored at 262 nm for 3 minutes. 

Figure 5.8 Page 150 shows the activity against concentration of sodium chloride. At 

100 mM sodium chloride a drop in activity compared to the control of 20 % was 

observed. The activity continued to drop as the concentration of sodium chloride 

increased reaching 53 % of the control at 500 mM sodium chloride. 
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Figure 5.8 The effect of sodium chloride on the rate of oxidation of menadiol by respiratory 
membranes from Vitreoscilla strain LB13. Final volume of 0.5ml contained between 0 and 500mM 
sodium chloride, 5 IJI of 4.2gr'membranes (measured by protein content), 5 IJI of menadiol (as 
prepared) volume was made up to 0.5ml with potassium phosphate buffer pH 7.6. Oxidation was 
monitored at 262 nm at 27°C for 3 minutes, +/- 1 standard error. 
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5.3.8 The effect of substrata concentration on the rate of oxidation of decylubiquinol 
by respiratory membranes from Vitreoscilla C 1 

At this point a new strain of Vitreoscilla was obtained from Dr. Dale Webster. This 

strain, C1, was claimed to be the strain from which the sodium-pumping bo-type 

oxidase had previously been isolated and characterised, and so it was tested for 

sodium sensitivity in the same way strain LB13 had been tested. Decylubiquinol was 

tested first and the effect of the concentration of this substrata on the oxidation 

activity of the respiratory membranes was examined. Membranes were isolated as 

described in Chapter 3 Page 75. The experiment was conducted as described for 

LB 13 respiratory membranes. The resulting data were treated as described for LB 13 

membranes. Figure 5.9 Page 152 shows the initial rate for each concentration of 

decylubiquinol the fitted curve is not a good fit for the data indicating that more than 

one oxidase is acting on the substrata. From this plot the Km and Vmax for this 

substrata were calculated and were found to be 12.3 J.lM and 152 nmol s-1
, 

respectively. Further experiments were conducted using the concentration of 

substrata that gave 0.5 Vmax· When related to the total protein present the Vmax of 

Vitreoscil/a strain C1 is 13.33 nmols-1mg-1
. This compares to only 0.96 nmols-1mg-1 

for Vitreoscilla strain LB 13. The c1 strain has a far higher activity than LB 13. 
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Figure 5.9 The effect of substrate concentration on the rate of oxidation of decylubiguinol by 
respiratory membranes from Vitreoscilla C 1. Each point represents the average of three replicates ± 1 
SEM. Final volume of 0.5ml contained 22.5mM potassium phosphate pH 7.6, 5 f.ll of 1.14 gr1 

membranes (measured by protein content). Oxidation was measured at 278 nm for 3 minutes. 
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5.3.9 The effect of sodium chloride on the rate of oxidation of decylubiquinol and 
menadiol by respiratory membranes from Vitreoscil/a strain C1. 

Once the Km for decylubiquinol had been established the oxidation of decylubiquinol 

and menadiol was tested for sensitivity to sodium chloride. The experiment was 

conducted as described for LB 13 membranes with the exception that 12.3 11M 

decylubiquinol or 5 iJI of menadiol (1 in 10 dilution of stock) was added to start the 

reaction Figure 5.10 Page 154 shows the activity (as percentage of the control 

activity) of the membranes at each sodium chloride concentration for both substrates. 

Using decylubiquinol, at 500 mM sodium chloride there was a reduction in activity of 

81 %. The oxidation of menadiol was also inhibited by the addition of sodium chloride 

with 500 mM causing an inhibition of 39 %. 

153 



120 

100 

0 80 ..... .... 
c: 
0 
0 -0 

00 :.S!. 0 

~ ·:; 
·.;::; 

40 0 
<( 

20 

0 
0 100 200 300 400 500 600 

Scx:!ium Olloride rrM 

Figure 5.10 The effect of sodium chloride on the rate of decylubiguinol (.&)and menadiol (•)oxidation 
by respiratory membranes from Vitreoscilla strain C1 at 0.5 Vmax of the enzyme. Final volume of 0.5ml 
contained between 0 and 500mM sodium chloride, 5 1-11 of 1.14 gl"1 (measured by protein content), 12.3 
1-1M decylubiquinol or 5 IJI of menadiol (1 in 10 dilution) volume was made up to 0.5ml with potassium 
phosphate buffer pH 7.6. Oxidation was monitored at 278 nm at 27°C for 3 minutes. Each point 
represents the average of three replicates, +/- 1 standard error. 
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5.3.1 0 The effect of sodium chloride, monensin and FCCP on the rate of 
decylubiquinol oxidation by respiratory membranes from Vitreoscilla strain C1 

As with the LB 13 membranes the possibility existed that the C 1 membranes had 

formed vesicles with the enzyme predominantly right oriented. In order to ensure the 

release of respiratory control, the activity of the enzyme was measured at increasing 

sodium chloride concentrations in the presence of monensin and FCCP. The 

experiment was conducted as described previously with the exception that either 

0.2 IJM monensin and 0.2 IJM FCCP or 10 IJI of water and 10 IJI of ethanol were 

added prior to addition of the membranes. Figure 5.11 Page 156 shows the activity of 

the membranes at increasing sodium chloride concentrations with or without 

monensin and FCCP. Little difference was observed between the two sets of results 

with inhibition at 500 mM sodium chloride reaching 88 % with FCCP and monensin 

and 81 % for the control. 
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Figure 5.11 The effect of sodium chloride, monensin and FCCP on the rate of decylubiguinol oxidation 
by respiratory membranes from Vitreoscilla strain C1 at the calculated Km of the enzyme. • With 
monensin and FCCP 0 Control. Final volume of O.Sml contained between 0 and 500mM sodium 
chloride, 5 Ill of 1.14 gr1 (measured by protein content), 12.3 J.!M decylubiquinol, 0.2 IJM monensin and 
0.2 iJM FCCP. The volume was made up to O.Sml with potassium phosphate buffer pH 7.6. Oxidation 
was monitored at 278 nm at 27°C for 3 minutes, +/- 1 standard error. 
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5.3.11 Inhibition of decylubiquinol oxidation by potassium cyanide 

Respiratory membranes had been used for all the previous measurements of activity. 

As Vitreoscil/a produces two terminal oxidases (a bo type and a bd type) it was 

necessary to determine what proportion of the activity measured so far was caused 

by bd contained in the membranes. The bd in the membranes could have been 

masking any effect the sodium ions were having on the bo. The activity experiments 

were therefore repeated with extracted enzyme, that is enzyme that had been treated 

with octylglucoside, a detergent that bd from E. coli does not function in (Lorence, 

Miller et al., 1984). To ensure that bd in these samples was either absent or inhibited 

the oxidation was monitored in the presence of potassium cyanide. Cytochrome bd is 

relatively insensitive to KCN whilst cytochrome bo is not (Pudek and Bragg, 1974). 

Samples of extracted enzyme, membranes and purified bo were tested for their 

sensitivity to KCN. 
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Table 5.1 Inhibition of cytochrome bolbd with KCN. Membranes, extracted membranes or purified 
enzyme were added to 1 ml of potassium phosphate buffer with either 200 IJI of 100 mM KCN or 200 IJI 
water. The reaction was started by the addition of 5 IJI of decylubiquinol (1 in 10 dilution of stock) and 
oxidation was monitored at 278 nm for 3 minutes. Each figure represents the average of three 
replicates± 1 Standard deviation. 

State of enzyme % inhibition by KCN 
Contained in membrane 53% ±6.74 

Treated with octylglucoside No detectable activity 

Purified No detectable activity 
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Table 5.1 shows the % inhibition for each sample compared to the control. The whole 

membranes showed 53 % inhibition by KCN while both the octylglucoside treated 

membranes and the purified enzyme were inhibited to the point that no activity was 

detectable. 

5.3.12 The effects of sodium, potassium and lithium chlorides on the rate of 
decylubiquinol and menadiol oxidation by respiratory membranes from 
Vitreoscilla LB 13 treated with octylglucoside. 

Some of the activity experiments were repeated with membranes that had been 

treated with octylglucoside to determine the contribution that cytochrome bd had 

made to the previous activity measurements. The first experiments were conducted 

as described previously with the exception that treated membranes were used in 

place of whole membranes. Table 5.1 Page 158 shows the resulting activity 

measurements for each ion at 500 mM. Inhibition of the activity was observed in the 

presence of sodium and lithium chloride whilst potassium chloride had little effect. 
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Table 5.2 The effect of sodium lithium and potassium chloride on the rate of decylubiquinol oxidation 
by respiratory membranes from Vitreoscil/a strain LB13 treated with octylglucoside at 0.5 Vmax of the 
enzyme. Final volume of 1 ml contained between 0 and 500mM sodium, lithium or potassium chloride 
(results for 500 mM shown), 0.002 IJM bo (measured by difference spectroscopy), 9 ~M of 
decylubiquinol. The volume was made up to 1ml with potassium phosphate buffer pH 7.6. Oxidation 
was monitored at 278 nm at 27°C for 3 minutes. Each percentage represents the average of three 
replicates, +/- 1 standard error. 

Activity % of control ±1 SEM n=3 
Ion (500 mM) Treated Untreated 
Sodium 57 ±1 46 ±10 
Lithium 43 ±12 24±6 
Potassium 99 ±7 87 ±9 
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The treated membranes were then tested with menadiol and sodium chloride. The 

experiment was conducted as previously described with the exception that treated 

membranes were added in place of whole membranes. Figure 5.12 Page 162 shows 

the activity of the membranes at increasing sodium chloride concentrations. Addition 

of 100 mM sodium chloride caused a reduction in activity of 25 %. The activity 

continued to decrease with the addition of increased concentrations of sodium 

chloride reaching 52% at 500 mM. 
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Figure 5.12 The effect of sodium chloride on the rate of menadiol oxidation by respiratory membranes 
from Vitreoscilla strain LB13 treated with octylglucoside. • Membranes treated with octylglucoside . .& 
Untreated membranes. Final volume of 1 ml contained between 0 and 500mM sodium chloride, 0.002 
IJM bo (measured by difference spectroscopy), 0.5 IJI of menadiol (as prepared). The volume was 
made up to 1 ml with potassium phosphate buffer pH 7.6. Oxidation was monitored at 262 nm at 27°C 
for 3 minutes. Each point represents the average of three replicates, +/- 1 standard error. 
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5.4 Discussion 

At the outset of the project it was important to establish whether the activity of 

cytochrome bo could be enhanced by the addition of sodium chloride. Webster and 

his group have shown that activity of the enzyme is increased by the addition of 

sodium chloride and that lithium and potassium cannot substitute (Bassey, Efiok, and 

Webster, 1990b;Bassey, Efiok, and Webster, 1990a). Although two different quinols 

and two different strains of Vitreoscil/a were tried, stimulation of quinal oxidase activity 

by sodium ion was not observed; in fact an inhibition of activity by both sodium and 

lithium ions was noted. 

As it was not thought that choice of substrata would affect the activity of the enzyme 

the first quinal tested was duroquinol not menadiol as Webster et al had used. The 

activity measurements with this substrata became variable at high substrata 

concentrations and so decylquinol was tried. lt was possible to saturate the enzyme 

with this substrata, allowing the calculation of the Km of the enzyme (within 

membranes) from both LB13 and C1 (the strain reported to possess a sodium 

pumping terminal oxidase by Webster's group). Activity measurements using LB13 

membranes with this substrata showed that both lithium chloride and sodium chloride 

inhibited activity at both 0.5 Vmax and close to Vmax whilst potassium chloride had little 

effect. A greater inhibition of activity by sodium chloride was seen in the C1 

respiratory membranes. The explanation for the lack of effect of potassium on the 

LB 13 membranes could lie in the fact that potassium was used in the buffer during 

the activity measurements and so the enzyme was already exposed to this ion. 

Lithium chloride proved to be more inhibitory than sodium chloride. There was also a 

difference in the effect of lithium at Vmax and 0.5 Vmax· The maximum inhibition of 
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oxidation activity occurred at a lower concentration of lithium at V max than at 0.5 Vmax 

indicating that the Km of the enzyme (or enzymes) had decreased, i.e. that the affinity 

of the enzyme for the substrate had increased. The inhibition of the enzyme activity 

by sodium chloride was similar for both the Vmax and 0.5 Vmax indicating that the effect 

was on the V max of the enzyme (or enzymes). In later experiments using membranes 

treated with octylglucoside to inhibit the bd component of the membranes lithium and 

sodium chloride had a similar inhibitory effect, suggesting that the difference in the 

first experiments was due to an effect on bd rather that bo. 

Enhancement of activity with sodium chloride had clearly not been shown with the 

initial activity experiments with either strain of Vitreoscilla. Therefore possible 

explanations for the lack of enhancement were investigated. The enzyme used in the 

initial experiments was contained in respiratory membranes that had probably formed 

vesicles. The possibility that the enzyme was being affected by respiratory control 

due to a build up of ions and/or charge on one side of the vesicles needed to be 

investigated and so the activity measurements were repeated on membranes from 

both LB13 and C1 and ionophores FCCP and monensin were added. Even with 

ionophores present there was still no enhancement of activity with sodium chloride 

with both the treated and untreated membranes behaving in a similar way. 

Respiratory control was not therefore found to be affecting the enzyme activity. 

With the possibility that the enzyme was being affected by respiratory control ruled 

out other explanations for the lack of enhancement were investigated. In their activity 

measurements on cytochrome bo from Vitreoscilla Bassey et al used menadiol as the 

substrate (Bassey, Efiok, and Webster, 1990a). An initial attempt to reduce 
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menadione for use in activity experiments proved unsuccessful and so decylubiquinol 

was used. When it became clear that the activity of the enzyme was reduced by 

sodium chloride when using decylubiquinol a second, successful attempt was made 

to produce menadiol for use in activity experiments. As with the decylubiquinol as 

substrata sodium chloride caused a reduction in the rate of quinal oxidation in both 

LB13 and C1 membranes. The level of inhibition was consistent with the results 

obtained using decylubiquinol; the choice substrata was therefore not thought to be 

responsible for the lack of enhancement of activity with sodium. 

At this stage it was again possible that the activity of bd in the membranes was 

masking any enhancement by sodium chloride. The activity experiments were 

therefore repeated using membranes from LB13 that had been treated with 

octylglucoside. Certain detergents inhibit cytochrome bd (Lorence, Miller, Borochov, 

Faiman-Weinberg, and Gennis, 1984). Membranes treated with octylglucoside 

showed almost 1 00 % inhibition by cyanide indicating that after treatment with 

octylglucoside bo was responsible for all the quinal oxidation activity. 

Once again decylubiquinol was used as this substrata was the easiest to produce and 

provided the best saturation curve. No difference was seen between the activity rate 

of the treated and the untreated membranes. Inhibition by sodium chloride is similar 

in both cases. The sodium chloride therefore must be inhibiting both enzymes. 

To complete the picture menadiol was also tested and again no enhancement of 

activity was seen. There was no difference between the treated and untreated 
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membrane activities. As with decylubiquinol the removal of the bd activity had little 

effect on the inhibition by sodium chloride. 

Although there was no difference between the results for potassium and sodium the 

lithium did show a difference. The inhibition of the untreated membranes with lithium 

was almost twice that of the treated. The treated membranes showed a similar 

inhibition to the sodium treated and untreated membranes. Lithium ions therefore 

must be having an inhibitory effect on the bd component of the membranes. lt is 

unlikely that the lithium is having an effect on the quinal binding site of bd. The site is 

in the hydrophobic part of the membrane and would not be accessible to lithium. lt 

has also been suggested that cytochrome bds resistance to ionic haem ligands may 

be caused by a hydrophobic environment at the oxygen binding site (Junemann, 

1997), making this site an unlikely target for inhibition by lithium. The effect is 

probably more general, the lithium may interfere with some aspect of proton uptake 

by the enzyme. 

The activity experiments show that the terminal oxidase from Vitreoscil/a is not 

sodium dependent and is therefore not likely to be a sodium pump. Evidence from 

bacteria that do possess sodium pumps suggests that very specific environmental 

conditions favour the use of a sodium pump over a hydrogen pump. The question 

remains; does Vitreosci/la live in conditions where this would be true? Padan and his 

colleagues found that bacteria living in alkaline conditions had an intracellular pH that 

is lower than the surrounding pH (Padan, Zilberstein et al., 1976). Pumping H+ from 

the cytoplasm into a higher pH results in the generation of a ~IJI which is 

counterbalanced by the 11pH of the opposite direction. Therefore, I1J.!H+ is too low to 

166 



sustain functions of the cytoplasmic membrane that require energy (Krulwich, 1983). 

The organism can resolve this problem by substituting ~JlNa+ generators for ~JlH+ 

generators as in the case of Vibrio a/ginolyticus (Tokuda and Unemoto, 1982). 

A possible explanation for the lack of evidence for sodium pumping in the terminal 

oxidase of the two strains of Vitreoscilla tested is the pH at which the organism was 

grown. Vitreoscil/a strains used in this study were grown at a pH of 7.8. The 

NADH:quinone oxidoreductase from Vibrio a/ginolyticus has been shown to have an 

optimum pH of 8.5 for sodium pumping in whole cells and a minimum at pH of 6.00 to 

6.5 (Tokuda and Unemoto, 1984). Webster's group, who reported that the terminal 

oxidase from Vitreoscilla pumps sodium, grew their strains at a pH of 8 having found 

that the optimum pH for sodium pumping was 8.5. At a pH of 7.8 Webster et a/ found 

about 86 % of the sodium pumping activity that they found at the optimum pH of 8.5 

(Webster, Park, and Moon, 1995). lt is therefore not likely that the pH at which the 

organism was grown was responsible for the lack of evidence of sodium pumping in 

the two strains of Vitreoscilla tested. 

Vitreoscil/a stercoraria has only been isolated from cow dung. The pH of cow dung 

was investigated (see Chapter 2 Page 39) and found to be 7.3; this compares with 

around 8.2 for seawater (Dring, 1982). Although the cow dung is slightly alkaline this 

may not be enough to provide a situation where utilisation of a primary sodium pump 

would be an advantage. The sodium content of cow dung was found to be 0.148 % 

of the wet weight; this is far lower than seawater (2.6 % by weight). Skulachev states 

that ~JlNa+ can only support the performance of work if the Na• concentration outside 

the cell is greater than that inside (Skulachev, 1987). The combination of very slightly 
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alkaline pH and low sodium content in the tested dung make this a habitat where 

organisms are unlikely to use a primary sodium pump. 
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Chapter 6 

Summary of findings and prospects for future work 



6.1 Selection of strain of Vitreoscil/a stercoraria for use in the study 

Although a strain of Vitreoscil/a was supplied by Dr Dale Webster, for various reasons 

outlined in chapter 2 it was necessary to isolate a strain directly from the environment. 

Problems were encountered purifying the isolated strains because of contaminating 

bacteria that adhered to the mucus layer of the Vitreoscil/a. A novel protocol was 

developed to purify the isolates using lysozyme. This was successful for two of the 

isolates and they were then screened for their affinity for sodium ions. 

Strain LB 13 was chosen for further work and the small scale (50 ml) growth was 

scaled up to 2 I flask. Shaking the flasks produced a low yield because the bacterial 

were unable to adhere to the surfaces; after some experimentation an aeration 

method was developed that involved pumping air straight into the broth. This method 

enabled the aeration of the flasks to take place with minimum agitation to the broth. 

6.2 Growth of Vitreoscilla stercoraria 

Although some work was carried out on optimising the growth condition for 

Vitreoscil/a it is likely that an improvement could be made to the yield by employing a 

solid matrix such as glass beads to provide a greater surface for the bacteria to grow 

upon. The beads could be packed into glass tubes and the media dripped onto them; 

this would provide the aeration that the organism requires while providing an 

increased surface area for growth. The bacteria could then be removed form the 

beads by agitation and washing. 
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6.3 Disruption of cells 

Once large scale growth was established, cells were harvested for isolation of 

respiratory membranes. Problems were encountered breaking the bacteria open with 

the Bead Beater and so lysozyme was added. Large quantities of DNA were 

released from the cells when they were broken. This made it impossible to pipette 

the solution and so DNAase was added to break down the DNA. This was not 

immediately successful and so EDTA was left out of the extraction buffer and MgS04 

was added to the bead beater to provide a divalent cation for the DNAase. 

Development of this protocol took a number of months but eventually respiratory 

membranes were isolated that were of a quality suitable for use in the measurement 

of oxidase activity. 

6.4 Quinol oxidase activity 

The effect of sodium, lithium and potassium chloride on the quinal oxidase activity of 

the isolated membranes was tested using a number of different quinal substrates. At 

no point was the quinal oxidase activity of the membranes stimulated by the addition 

of sodium ions. Vitreoscil/a respiratory membranes contain two quinal oxidases 

(Georgiou and Webster, 1987) and so the possibility existed that the activity of one 

was masking the increase in activity of the other. To test this, the experiments were 

repeated using membranes that had been treated with octylglucoside. The bd 

oxidase from Escherichia coli is inhibited by octylglucoside and, (Lorence, Miller et al., 

1984) to determine that the bd from Vitreoscilla had been inhibited by octylglucoside 

quinal oxidase activities were carried out in the presence of cyanide which inhibits 

cytochrome bo but not bd (Pudek and Bragg, 1974). Again, during the quinal oxidase 

activity measurements no stimulation of quinal oxidase activity was observed. 
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Whilst the membrane quinal oxidase activity experiments were underway the 

development of a protocol for the purification of the terminal oxidase was also being 

developed, this was based on a method used to isolate cytochrome bo from E. coli 

RG145 (see Chapter 3, Figure 3.1 Page 73). An initial attempt to purify the enzyme 

by extracting with octylglucoside and then applying directly to an ion exchange 

column and therefore omitting the urea/chelate wash was unsuccessful because the 

enzyme failed to adhere to the column. The omitted urea chelate and 

ultracentrifugation step was therefore replaced and a second attempt proved 

successful. However the resulting yield was low. The next step was to run the 

enzyme through a hydrophobic interaction column. However, the low yield from the 

ion exchange column made this impractical, after the hydrophobic interaction column 

the yield was too low to be any use. The hydrophobic interaction column was 

therefore removed from the protocol and the enzyme was used as prepared after the 

ion exchange column. 

Again quinal oxidase activity measurements were made and the effects of the 

addition of sodium, lithium and potassium chloride were tested. Once again no 

stimulation of activity was observed for any of the ions tested with any of the 

substrates tested. 

6.5 Photosensitivity 

During routine growth in the laboratory it was noted that cultures of Vitreoscilla LB 13 

inoculated in the evening grew well overnight whilst cultures inoculated in the morning 

failed to grow. This observation led to the discovery that Vitreoscil/a is sensitive to 
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light. During an early experiment into the nature of this sensitivity a strain was 

isolated that showed resistance to the effect of UV. This strain (termed LB 13a) was 

used as a comparison in later experimentation. Another strain of Vitreoscil/a were 

tested and also found to be extremely sensitive to light. The light sensitive and 

insensitive strains of Vitreoscil/a were compared to E. coli K12 for UV sensitivity. The 

insensitive strain showed a similar response to the E. coli whilst the sensitive strain 

viability was affected by the level of UV used. 

lt was probable that the strain of Vitreosci/la that was insensitive to the light had lost 

something that the other possessed. lt is unlikely that a spontaneous mutation would 

produce a repair system or some other compound that would impart resistance. A 

possible candidate was an element of the electron transport chain where oxygen 

radicals may be produced and so the respiratory membranes of both the strains were 

compared. 

Although differences were seen between the first set of membranes prepared, on 

subsequent preparations no difference was noted. The first preparation showed 

differences consistent with the presence of a flavoprotein in the membranes from the 

sensitive strain that was not present in the membranes from the resistant strain. 

Vitreosci/la contain components that are regulated by oxygen availability such as 

cytochrome bd in the respiratory membranes and a bacterial haemoglobin that is 

contained in the cytosol. lt is possible that differences in aeration between the two 

cultures caused a difference in the ratio of components in the respiratory membranes 

of the two strains. 
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6.6 Sodium pumping 

Vitreoscil/a is the only bacterium that has been reported to possess a sodium 

pumping terminal oxidase that has been identified and partially characterised see 

Chapter 1 , Page 22 (Bassey, Efiok et al., 1990; Bassey, Efiok et al., 1992; Bassey, 

Efiok, and Webster, 1990; Park, Moon et al., 1996). 

The measurements of activity show that the terminal oxidase from Vitreoscil/a is not 

sodium dependent and is therefore not likely to be a sodium pump, no evidence of 

sodium pumping was found in either LB13 or C1 (the strain reported to possess a 

sodium pumping terminal oxidase) 

6.7 Interesting questions leading to further work 

6.7.1 Gliding 

Some interesting questions remain about the nature of gliding motility in general and 

in Vitreoscil/a specifically. lt was noted early in the study that Vitreoscil/a strains 

repeatedly subcultured into broth lost the ability to glide when returned to solid media. 

Does this indicate that the ability to glide may be coded on a plasmid that can be lost 

without selection pressure or that the organism is simply switching off the gene when 

it is not needed ? The isolation method used may select for strains that were in 

trichomes, it has been reported that other species of gliding bacteria for example 

Myxococcus xanthus move quicker in chains than they do as single cells (Spormann 

and Kaiser, 1995) . Do the trichomes form from dividing bacteria or do the individual 

cells join to form them? Costerton et a/ reported that the individual cells may join to 

form chains but they may be simply following the mucous layer from the cell in front 
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(Costerton, Murray et al., 1961). If the cells do join up to form trichomes, do 

individuals from different strains join? If different stains do not join what is the 

mechanism that prevents this from happening? These questions could be answered 

with the use of fluorescence in situ hybridisation (FISH). This is a technique used to 

detect DNA or RNA sequences in cells, tissues or turners (for a review of the method 

see Bouvier and del Giorgio, 2003). The technique allows the localisation of specific 

DNA sequences within the cell. Fluorescence labeled probes are designed against a 

specific target sequence in the DNA or RNA of the organism under examination, 

these target sequences can then be located using fluorescence microscopy(Nath and 

Johnson, 2000). 

FISH could be used to investigate the gliding motility of Vitreoscil/a. A strain of 

Vitreoscil/a would be engineered that had a target sequence inserted. A deletion 

could also be distinguished from the wild type but in this case the wild type would be 

probed for. lt would be preferable to produce two mutants from the same strain 

carrying a different target sequence so that each could be tagged with a probe that 

fluoresces at a different wavelength and could be visualised and distinguished. 

Alternatively fluorescent reporter genes such as green fluorescent protein (GFP) and 

yellow fluorescent protein (YFP) could be inserted. As a selection pressure is 

necessary to keep the reporter gene present in the genome of the organism it would 

be preferable to add the gene by recombination rather than using a plasmid vector; 

this would mean that the gene would be relatively permanent. The strains of 

Vitreoscilla could then be grown together on solid media, slides would be prepared 

from this mixed culture and trichomes could be examined to see if they were mixed. 

This would answer the question of whether the cells divide into trichomes or join to 
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form them. If all the trichomes were the same colour then the cells must have divided 

from a parent cell but if the trichomes contain cells tagged with different colours then 

they must have joined. The question of whether different strains join could then be 

answered using the same approach. 

6.7.2 Light sensitivity 

Further investigation is needed into the mechanism responsible for the extreme UV-A 

sensitivity of Vitreoscilla. A molecular approach could be used to identify the gene or 

genes responsible. Transposable genetic element mutation (transposon mutation) 

could be employed to identify the responsible gene. Transposons are small 

sequences of DNA that can move to any position in a cell's genome. The gene into 

which the transposon inserts is usually inactivated (Turner, Mclennan et al., 1997). 

Vitreoscilla would be mutated using a transposon and the resulting mutants screened 

for light sensitivity. Any mutants no longer sensitive to light could be presumed to 

have a transposon inserted into the gene responsible for the light sensitivity. The 

genome of the resulting mutant would then be digested and separated using gel 

electrophoresis, the gel would be probed for the transposon and this would be 

amplified and inserted into a known plasmid. The resulting plasmid would be cloned 

into E coli and grown up in bulk. The plasmid could then be recovered and mapped 

and the gene sequenced. The sequence of the gene responsible for light sensitivity 

would now be known and a search of a data base of known gene sequences could be 

used to compare this sequence with those of other genes. This would give an 

indication of the protein coded by this sequence. Software is also available that 

would provide an indication of the structure of the protein (Evenden, 2003). For 

example a membrane protein might be identifiable because of the characteristic 
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hydropathy plots that they give i.e. hydrophobic regions (corresponding to 

transmembrane alpha helices) interspersed with relatively hydrophilic loops. 

Once sequenced it would be possible to clone the gene into a host bacteria such as 

Escherichia coli and determine whether the resulting clone was rendered light 

sensitive by the gene. This would confirm that the gene was responsible for the light 

sensitivity in Vitreoscil/a (Evenden, 2003). 

Some transposons insert into more than one position in the genome, it would be 

preferable to use one that is self regulating and will only insert once into the genome, 

ensuring that the sequence amplified would be that of the desired gene. If more than 

one gene is responsible, then more than one type of mutant might be produced, 

examination of a number of mutants would determine whether one or more gene was 

responsible (Evenden, 2003). 
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Appendix A 

A. 50 mM potassium phosphate pH, 7.5 with KOH 

B. 50 mM potassium phosphate, 1mM EDTA, pH 7.5 with KOH 

C. 50 mM potassium phosphate, 0.1 mM EDTA, 0.1% triton X100, pH 7.5 with 

KOH 

D. 350 mM potassium phosphate, 0.1 mM EDTA, 0.1% triton X100, pH 7.5 with 

KOH 

E. 25 mM tris.S04, 0.1 mM EDTA, 0.1% triton X100, pH 7.2 

25 mM tris.S04, 250 mM K2S04, 0.1 mM EDTA, 0.1% triton X 100, pH 7.2 
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Abstract 

Stra ins of the fil amento us gliding bacterium Vitreoscilla, LB 13 and C I, a re shown to be highly sensi tive to U V-A (32~00 nm). with an 
LD50 of less than 20 kJ m 2. Vitreoscilla LB 13 can be protected from U V-A by including superoxide dismutase and cata lase, eparately or 
in combina tion. during the exposure. indicating an involvement of reactive oxygen species. LB 13A, a pho to-insensitive stra in derived from 
LB 13. is described . 
© 2003 Federat io n of European Micro bio logical Societies. Published by Elsevier Science B. V. All rights reserved . 

Ke.•·•roulf.· Vitreuscil/a; Gliding bacterium: Reactive oxygen species: UV-A; Pho tosensi tivity 

I. Introduction 

Bacteria of the genus Vitreoscilla are Gra m-negati ve 
chemoorga notrophic fila mento us organisms tha t move by 
gliding (1]. Virreoscilla have been clas ilied in the past as 
colo urless cyanobacteria [2] but they a re not cyanobacte
ria . and are currently cla sified in the p purple bacteria [3]. 

either a re they strictly colourless, since they have a res
pirato ry cha in that has both haemoprotein and navopro
tein components (4]. In addition, they express high levels 
o f bacteria l haemoglo bin in their cyto ol (5]. 

The wo rk described here was prompted by a chance 
o bserva tio n that a Vitreoscilla stercoraria isolate fa iled to 
grow when placed close to a n externa l window, but not in 
direct sunlight, illumination conditio ns tha t had no notice
able effect on other organisms commo nly being cultured in 
the same la bo ra tory. e.g. Escherichia coli. Hence, it a p
peared that Virreoscil/a was pa rticula rly photo ensitive, 
most proba bly to the UV component of sunlight. The 
a im o f the wo rk presented here was to inve tigate the 
photosensiti vity of V. stercoraria. We show that the o r
ga nism is sensitive to U V-A at low do es (LDso < 20 kJ 

• Corre~ponding author. Fax : +<4 ( 1752) 232970. 
£-mail address: jmoody(ll)plymouth.ac.uk (A.J. Moody). 

Abbre••iotions: UV-A. ultraviolet rad ia tion. wavelength range 320-400 
nm: UV-B. ullra, iolet radiaLion. wavelength range 286-320 nm 

m - 2), placing it a mong the most UV- ensitive bacteria yet 
described . The bacteriocida l effect of UV-A o n V. srer
cOI·aria a ppea rs to involve UV-A-induced production of 
reactive oxygen specie . 

2. Materials and methods 

Microbiological media came from Oxoid (Basingsto ke. 
UK). Reagents came fro m Sigma (Poolc, UK) unless o th
erwise ta ted . 

Modified tryptone yeast (MTY) agar conta ined per 
litre : 12 g agar (technica l agar number 3). I 0 g yeast ex
tract (L21), 10 g trypto nc (L42) a nd 2.5 g sodium chloride. 
The pH was adjusted to 7.8 with sodium hydroxide. MTY 
broth conta ined the same components, except fo r the agar. 

Virreosci/la LBI3 was i o la ted from cow dung on MTY 
agar. The dung wa obtained from a ite on Da rtmoor 
(Devon , UK ). LB 13 was identified as a strain of V. ster
coraria from its cell and colo ny morphology, including the 
presence of isolated motile trichomes and of mucus tra ils 
behind these trichomes [ 1] . 

To purify the o rganism, culture was dispersed in phos
phate-buffered saline (Oxoid BR 14a) conta ining 5 mg 
m! - t lysozyme (Sigma, L6876). After shaking fo r I 0 
the suspension was incuba ted a t 20°C for 15 min , a nd 
then shaken for I 0 s. Loops of this suspensio n were 
streaked onto frc h MTY agar, which was incubated at 
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25°C for 24 h, after which colonies derived from single 
trichomcs could be identified. Pre-treatment with lysozyme 
breaks up mucus that Vitreoscil/a produce in their gliding 
motility, increasing the likelihood of obtaining isolated 
single colonies. 

The light-in ensitive strain LD 13A arose from LD 13 
during a preliminary experiment in which the light sensi
tivity of LB 13 wa being investigated. Cultures of LB I 3 in 
MTY broth were being illuminated in universal bottles in 
a plant growth cabinet (MLR-350 HT; Sanyo Gallenkamp 
plc, Loughborough, UK; running with three banks of 
3X40-W lamps ; UV-A irradiance < 0.22 W m- 2). 

LB I 3A was isolated from a spread plate prepared from 
one of these broth cultures. Note that the spread plate was 
incubated under the same illumination, conditions under 
which LBI3 does not grow. Strains LB L3 and LBI3A have 
the same cell and colony morphology; they appear LO 

differ only in light sensitivity. 
Vitreoscil/a C I (ATCC I 3981) was a gift from Dr Dale 

Webster (Illinois Institute of Technology). E. coli Kl2 
(ATCC 23716) was used as a control organism. 

To prepare pre-cultures/cultures bacterial trains were 
streaked from liquid nitrogen storage onto MTY agar 
and incubated at 25°C for 48 h. Loops of culture were 
then transferred into 250-ml conical flasks containing 
50 ml of MTY broth, and the flasks were incubated at 
25°C for 48 h. Incubations were in the da rk except for 
LB 13A where the illumination conditions described above 
were used. 

For irradiation of organisms with UV-A, all procedures 
were carried out on ice and samples were proce sed under 
low light conditions. Cells were harvested from pre-cul
tures (see above) by centrifugation (500 Xg"' · for I 0 min) 
and re-suspended in 0.9% NaCI. Ten millilitres of each 
suspension containing about 5 X 107 cfu ml - 1 were placed 
in polystyrene tissue culture flasks (80-cm2 unclon flasks, 
Nalge Nunc International , Denmark, experiment shown in 
Fig. I : 25-cm2 Falcon flasks, Becton Dickinson Europe, 
Meylan, France, experiment shown in Fig. 2) and exposed 
to a UV-A source (Model UVLS-28, UVP, Upland, CA, 
USA: peak output at 365 nm). The unweighted irradiance 
was determined using a n SR991 0 spectroradiometer (Mac
am Photometries. Livingston. U K) by placing the detector 
at a distance from the source equivalent to the surface of 
the bacterial cultures. A flat piece of poly tyrene cut from 
a culture flask was placed on top of the detector. The 
irradiance was essentially uniform over the surface that 
the flasks were placed on. Also, the flasks were rearranged 
randomly on this surface after every hour of exposure. 
Although the UV-A source used a lso produced a low level 
of UV-B this was filtered by the polystyrene culture flasks: 
UV-B irradiance (286-320 nm) expressed as a percentage 
of UV-A irradiance (320-400 nm) was 0.019% without and 
0.003% with the polystyrene. After exposure to UV-A 
samples of cell suspension (50 f..ll) were removed and seri
ally diluted with MTY broth in I O-f old steps for determi-

nation of the number of colony-forming units remaining. 
At each step diluted cell suspension (I 00 f..ll) was spread 
onto MTY agar plates (in triplicate). These were then in
cubated in the dark at 25°C for 24-48 h after which the 
colon ies were counted . 

For the medium-scale growth of Vitreoscil/a LB 13 and 
LB 13A pre-cultures were prepared a described above. 
Two-litre flask containing 700 ml of MTY broth were 
each inoculated with I 0 ml of pre-culture, and the flask 
incubated at 25°C in a model G25 orbital shaking incuba
tor ( ew Brunswick Scientific, Edison, J, USA) at 
50 rpm for 48 h. Air was pumped into the flasks through 
Whatman Hepa-Vents (pore ize 0.3 Jlm ; supplied by 
Merck Eurolab. Poole, UK) directly into the broth at a 
rate of 200 ml min - 1• Cells were harvested by centrifuga
tion at 9000 X gav. for 20 min at 4°C in an MSE 24B high
speed centrifuge (MSE Scientific Instruments, Crawley, 
UK}, and wa bed by re-su pension to the original volume 
with 50 mM potassium phosphate buffer, pH 7.5, followed 
by re-centrifugation. 

Cytosolic extracts and cell membranes from LB 13 and 
LB I 3A were prepared as follows. Cells (I 0 g wet weight) 
were placed in the chamber (75 mJ) of a bead beater (Bio
spec Products, Bartlesville, OK, USA) with 0.2 g lyso
zyme, 50 mg D ase I (Sigma DN25) and 67 Jll of 
10 mM MgS04• Glass bead (27 g of acid-washed, 425-
600 Jllll diameter) were then added and the chamber was 
filled with 50 mM potassium phospha te, pH 7.5. The 
chamber wa incubated at 25°C for 15 min , and then 
placed on ice for I 0 min. The cells were then disrupted 
using 20 X 15-s bursts of the bead beater, with 45 s cooling 
between bursts. After disruption half a 'Complete' mixed 
protease inhibitor tablet (Roche Molecular Biochemicals, 
Lewes, UK) was added. The suspension was centrifuged at 
3000 Xg,,. , at 4°C for I 0 m in to remove unbroken cells. To 
isolate the membra nes the supernatant was centrifuged at 
35 000 X g ... . at 4°C for 30 min. The pellet was re-sus
pended with 50 mM potassium phosphate, pH 7.5. con
taining I mM potassium EDT A. Both the membrane sus
pension and the supernatant , i.e. the cytosolic extract, 
were stored at -80°C. Protein contents were determined 
by the Lowry method (Sigma kit P5656). 

3. Results and discussion 

3.1. The effect of UV-A on sul'l'il'lil of Vitreoscilla LBJJ 

Vitreoscil/a LB 13 was exposed to UV -A under defined 
conditions as described in Section 2, and its survival was 
compared with that of the photo-insensitive strain LB I 3A 
(derived from LBI3 during a preliminary experiment: see 
Section 2), together with Vitreoscilla strain C I (ATCC 
13981) and E. coli K 12 (A TCC 23716). After irradiation 
samples were taken and the number of colony-forming 
units determined by plate count. Fig. I shows the percent-
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Fig. I. Effects of UV-A o n the survival of £ . coli and three strains of 
Vitreoscilla (as indica ted). Cell suspensio ns were kept o n ice during the 
irradia tio n. Irradiance was 2.45 W m- 2. Percentage survival was deter

mined based o n the number of colony-fo rming units befo re and after ir
radiatio n. Mean data for three replicates± S.E.M. a rc shown. 

age urvival of each of the stra ins against UV-A dose. 
LB 13 was UY-A-sensitive with an LDso of about 15 kJ 
m- 2. C l behaved in a simi lar way, but both E. coli Kl2 
and LB 13A were UV-A-insensitive. Both Vitreosci//a 
LBI3 and C l showed a thre bold a t abo ut 9 kJ m- 2 below 
which they were in ensitive to UY-A under the conditions 
of thi experiment. 

3.2. Protection of Yitreoscilla LBI3 against photodamage 
by UV-A 

D A absorb and hence can be directly damaged by 
expo ure to UY-C, and to a lesser extent UV-B [6]. but 
this is not the case for UV-A [7]. Hence, the observation 
that Vitreosci//a LB 13 i sensitive to UV -A suggests indi
rect damage. This could involve reactive oxygen species 
such as the superoxide anion (0 2- ) and hydrogen peroxide 
(H 20 2), generated through the reaction of an excited chro
mophore with molecu lar oxygen [7]. This was investigated 
by including the enzymes superoxide dismutase and cata
lase during the exposure of Vitreosci//a LB 13 to UV -A. 
Fig. 2 shows that superoxide dismutase and catalase, sep
arately or in combination, provided significant protection 
to the organism against damage by UY-A. ata lase ab
sorb UV-A tro ngly, so direct absorption could explain 
the protective effect. However, the mean transmission of 
UV-A by catalase at the concentration used was found to 
be 98.8% (pathlength = 4 mm), with a minimum of 97.8% 
and a maximum of 99.0%. Hence, direct absorption of 
UV-A by catalase could have had little protective effect. 

The results with either superoxide dismutase or cata lase 
separately are consistent with only partia l protection by 

these enzymes against UY -A. This suggests that both 
superoxide and hydrogen peroxide contribute to the 
UV-A-induced damage. However, superoxide seems to 
be more potent than hydrogen peroxide since superoxide 
dismutase provides protection despite one of the products 
of the dismutation of uperoxide being hydrogen peroxide. 
Since ex terna lly added superoxide dismutase a nd catalase 
provided protectio n this perhaps implies that the site of 
their productio n a a result o f UV-A exposure is on the 
'surface' of the cells. However, both superoxide (in it 
protonated form, as the hydroperoxyl radical) and hydro
gen peroxide can cross membrane [8], so equally the 
source could be internal. 

3.3. Comparison of the chromophore content of Yitreoscilla 
LBJ3 and LB13A 

Once the ensitivity of Vitreosci//a LB13 to UV-A wa 
established the possibility aro e that the chromophore re
sponsible could be identified by comparison of the ch ro
mophore content of LB 13 with that o f LB 13A, the photo
insensitive strain derived from it. The assumption was tha t 
exposure of LB 13 to light had selected for a mutant that 
lacked the ability to produce thi chromophore. 
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Fig. 2. Effects o f superoxide dismutasc ( OD) and catalase (Cat.) on the 

survival of Vitreascilla LB1 3 after exposure to UV-A. Cell suspensions 
were kept on ice du ri ng the irradiation. Percentage survival was deter

mined based on the number of colony-forming units befo re and after ir
radia tio n. Irradiance was 0.57 W m-~: dose was 6.2 kJ m-~. Superoxidc 
dismutase and catalase were present. as indicated. a t 75 U ml 1 and 
100 U m!- 1• re~pectivc ly. Mean data fo r independent replicate experi

men ts ± S.E.M. are shown. One and two asterisks indica te significant 
diiTercnccs a t the 90% and 95% confidence levels, respectively, rela tive 
to V-A exposure in the absence of supcroxide dismutasc o r catalase 
(Student's H est). In all cases 11 = 3. except for no UV-A exposure. where 

11= 2. 
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A characteristic of Vitreoscil/a is high levels of bacterial 
haemoglobin in tbe cytosol [5]. Bacteria l haemoglobin can 
be detected by using the change in the absorption spec
trum induced by binding of carbon monoxide to the deoxy 
form of the protein. CO-binding spectra for cytosolic ex
tracts from both LB 13 and LB 13A clearly show the pres
ence of bacterial haemoglobin (data not shown); the spe
cific contents were 57 and 40 nmol g- 1 of protein for 
extracts from LB 13 and LB 13A, respectively (using 
t419 4J6nm = 274 mM - 1 cm- 1 [5]). Hence the absence of 
this chromophore could not account for the photo-insen
sitivity of LBI3A . 

The dithionite-reduced minus air-oxidised difference 
spectra of both cytosolic extracts (data no t shown) and 
membranes (data not shown) isolated from LB 13 and 
LB 13A were also examined. These bowed no obvious 
qualitative difference in chromophore content. Membranes 
from both strains showed evidence of the presence of the 
terminal oxidases cy1ochromes bo and bd as indicated by 
the haem b a absorption band at 560 nm and by small 
ab orption features between 600 and 700 nm [4]. Cytosol ic 
extract and membranes from both strains also contained 
fiavins. 

3.4. The idenliry of rhe chromophore? 

The potential role of fiavins as chromophores involved 
in the lethal and sub-lethal effects of near-UY on bacteria 
has been discussed before [7]. Oxidised riboflavin, for ex
ample, has an ab orption maximum (375 nm) that closely 
matches the UV-A used here (365 nm). The absorption of 
UY-A by a flavin could lead to its photoreduction [9]. 
which could, in turn, cause direct damage by abstraction 
of electrons from components in its immediate environ
ment. Alternatively this could cause indirect damage via 
the generation of superoxide (by donation of an electron 
to 0 2 [10]), which appears to be the ea e here. 

In a brief report of the photoinhibition of re piration in 
V. srercoraria [11], the rates of oxygen consumption by 
starved cells were measured after exposure of the e to 
blue light ( ~ 400 nm). A dose-dependent decrease in 
rate was observed, with an /50 of about 1000 kJ m- 2 

(i.e. 10 min at 1.8X 106 erg cm- 2 s- 1). It was implied 
that the terminal oxidase cytochrome bo was the target 
for this photoinhibition, but no evidence was presented . 
Whether photoinhibition of respiration in Vilreosci/la can 
account for the killing effect of UV-A (Fig. I) remains to 
be seen. 

3.5. Ho11· sensirive is V. tcrcoraria lo UV-A? 

It is difficult to make absolute comparisons of the sen
sitivity of bacteria to UV radiation because of the different 
irradiation regimes used. However. there is certainly a 
range of sensitivity. Diverse responses to UV -8 from a 
range of marine bacteria l isolates have been found [12]. 

the most sensitive being Vihrio narriegens with an LD5o 
value of about 100 kJ m- 2. Of three bacteria te ted by 
Degiorgi et al. [ 13], Pseudomonas aerugino.1·a was the 
most sensitive to UV-8 (LD50 about 20 kJ m- 2) . Bacter
iocidal doses of UV-A arc likely to be higher. For exam
ple, Tyrell [14] reported data for E. coli consi tent with 
approximate LD50 values of 50 kJ m- 2, 250 kJ m- 2, and 
1200 kJ m- 2 after expo ure to UV with wavelengths of 
313 nm. 334 nm and 365 nm. respectively. In conclusion, 
with an LD50 of 15 kJ m- 2, it eems that V. srercoraria is 
particularly sensitive to UV-A compared to other bacteria. 
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