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ABSTRACT 

The Interference Free Determination of Selenium in Environmental and Clinical 

Samples by ICP-MS 

Justine Clare Turner 

The determination of selenium in environmental and clinical samples by ICP-MS is 
complicated by both poor sensitivity and severe interferences resulting from both the 
sample matrix and the argon plasma. The purpose of this study was to investigate ways of 
overcoming these problems thus enabling Se to be determined both accurately and 
precisely. A novel procedure for the accurate determination of selenium in serum using 
electrothermal vaporisation inductively coupled plasma mass spectrometry (ETV-ICP-MS) 
has been developed. A simple I :20 dilution of the serum with 1% nitric acid negates the 
need for a lengthy sample digestion procedure. Several of the interferences normally 
associated with the analysis of selenium by ICP-MS are successfully eliminated. Analytical 
method characteristics include; detection limits of approximately O.lng g" 1 for 77Se and 
82Se, short and lonf: term reproducibility between 4.7% and 4.9%, and 3.2% and 3.8% 
(RSD) for 77Se and 2Se respectively, and accuracy of ±1.81% (77Se) and± 1.10% (82Se) for 
the certified reference material NIST SRM I598. 

Further development of the procedure involved the application of isotope dilution analysis 
with the measurement of the 82Se/77Se isotope ratio, following spiking with selenium 
enriched in 77Se. Accuracy (±0-2%) and precision (±I-3%) of the method is demonstrated 
with the analysis of several certified reference materials (TMRAIN-95, LGC 60 I 0, 
TMDA-54.2 and NIST I598) where all results fell within the certified limits. 

A comparison of the new ETV procedures with established ICP-MS methods involving 
hydride generation and the use of organic solvents with pneumatic nebulisation was 
performed. Full uncertainty estimates for each of the procedures investigated were 
calculated. The uncertainty estimates calculated highlight the improvements in accuracy 
and precision achievable with isotope dilution analysis, demonstrated by a 2.5 fold 
improvement in the uncertainty compared with the non-IDMS ETV procedure. 

The addition of nitrogen and helium to the different Ar gas streams of the ETV -ICP-MS 
system was performed. The introduction of both nitrogen and helium to the argon 
nebuliser and outer gas streams, resulted in a reduction in the interference from argon 
polyatomic species. Careful optimisation of plasma parameters such as RF power and gas 
flow rates using a plasma containing 50% helium in the argon outer gas stream, 
successfully gave rise to a 2-fold improvement in the detection limits for 76Se and 78Se 
compared with an argon only plasma. 

This study has resulted in the successful development of a high accuracy procedure to 
determine selenium in both environmental and clinical samples. This is of great importance 
considering the high level of interest regarding selenium and human health matters and the 
significance of accurate analytical data. 
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CHAPTER! 

Introduction 



1. Introduction 

Elemental analysis of clinical and environmental samples has for a long time been 

considered an important part of biological monitoring. Metal ions play an important role in 

the well being of humans with different elements exhibiting various different effects. 

Several elements are essential for life, others are relatively inert, i.e. show little effect 

unless present in extreme lrigh or low levels, wlrile some exhibit a high toxicity even in 

low concentrations. In addition to the well-recognised toxic metals such as AI, As, Cd, Hg, 

Se and Pb, other elements have become a focus of attention. For example, elements used in 

implants in joint-replacement surgery such as Cr, Co, Ni, and Mo 1, precious metals such as 

Pt and Rh2 present in catalytic converters, and actinides including U, Th and Pu,3 present in 

the environment from nuclear fuel processing. Recognising the significance of trace 

elements in human health and the narrow divide between the concentration at wlrich the 

element is considered deficient, optimal or toxic, it is essential that sensitive, precise and 

accurate analytical methods are available. 

1.1 Analytical Methods 

There are numerous analytical procedures available for the analysis of trace 

elements, with the method of choice dependant on the element to be determined, the matrix 

and the level at which the element is present. Traditionally atomic absorption spectrometry 

(AAS) has been used, both flame and furnace methods. Whilst this technique offers 

adequate detection limits for many applications, in the main it is limited to single element 

determinations. The growing demand for multi-element analysis has resulted in the 

comprehensive method development of inductively coupled plasma (ICP) techniques 

whose main advantage over the AAS procedures is its multi-element capability. ICP 

together with atomic emission spectrometry (ICP-AES) is readily used for the analysis of 

clinical samples4 but its use is often restricted to the analysis of elements such as sodium, 



potassium and calcium, which are present in the body at relatively high levels- there is an 

average of 94.0mmol r 1 Na in whole blood and approximately I Kg of Ca present in the 

hwnan body5
• The analysis of trace levels of metals is better performed using the more 

sensitive technique of inductively coupled plasma mass spectrometry (ICP-MS). 

1.2 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

Inductively coupled plasma mass spectrometry (ICP-MS) was first developed by the 

groups of Gray6 and Fassel7 who successfully combined the highly efficient ion source of 

an ICP with the great sensitivity of mass spectrometry. The advantages of this technique 

over other atomic spectrometry procedures such as atomic absorption or atomic emission, 

are low detection Limits, greater sensitivity, a multi-element capability, large linear 

response range and the ability to measure different isotopes of the same element. 

On it's introduction to the commercial market approximately 20 years ago, ICP-MS 

was considered to be an interference free technique. However as the use of the 

instrumentation developed, it was discovered that like most other analytical techniques, 

ICP-MS was by no means perfect and several problems soon becan1e apparent. In 

particular issues surrounding sensitivity and interference were identified which would 

require alternative analytical approaches to eliminate. 

1.2.1 Instrumentation 

An ICP-MS consists of two fundamental sections - the 1011 source and the mass 

analyser. 

1.2.1.1 Ion source 

The ion source, the inductively coupled plasma (ICP), is formed from a strean1 of 

argon gas flowing through a collection of three concentric quartz tubes called a torch. The 
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top of the torch is surrounded by a copper coil which is connected to a radio frequency (rf) 

generator. When an rf current passes through the coil a magnetic field is generated which 

induces a current in the stream of argon. The argon gas is seeded with electrons which 

accelerate in the magnetic field causing numerous collisions with the gaseous argon atoms. 

This results in the ionisation of the argon atoms, which then collide with other atoms thus 

continuing the ionisation process, and results in a self-sustaining plasma. Sample 

introduction to the plasma takes place via the central channel of the torch, and is most 

commonly in the form of an aerosol generated by a pnuematic nebuliser.8
•
9 The aerosol 

passes into a spray chamber where it is partitioned so that only the smallest droplets 

progress further into the injector tube and the plasma, with the remaining droplets passing 

to waste. This removes approximately 98% of the sample. The sample aerosol is carried in 

a stream of Ar gas into the centre of the plasma where the processes of desolvation, 

vaporisation, atomisation, excitation and ionisation take place. Once ionisation of the 

sample has occurred the ions are extracted from the plasma and transferred to the mass 

spectrometer (MS) for measurement. Due to the pressure difference between the ICP and 

the MS - the ICP operates at atmospheric pressure and the MS require a vacuum of at least 

I o-9 atm - the ions pass through a sampling interface comprising of pumped vacuum 

chambers (Figure 1.1 ). Firstly the ions travel through a sampling cone with an orifice of 

1 mm in dian1eter, into an expansion stage with a pressure of approximately 2 x 1 o-3 atm. 

Some of the ions then pass through a second cone, the skimmer into a vacuum chamber at 

less than 1 o-7 atm- the intermediate stage. A set of ion lenses then deflect the resulting ion 

beam towards the mass analyser, where the ions are separated according to their mass to 

charge ratio (m/z).10 

1.2.2 Mass analyser 

There are various different ICP-MS instruments available on the market utilising a 

variety of mass analysers. The most frequently used are the quadrupole and the magnetic 
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sector although there are alternatives currently available such as the time of flight and ion 

trap. 

1.2.2.1 Quadrupole ICP-MS 

The quadrupole mass analyser is made up of four parallel electrically conducting 

metal rods arranged in square geometry, with each pair held at equal but opposite charge. 

A variable rfldc ratio is applied to each pair of rods, creating an electric field within the 

inner region. As ions pass through the rods they experience oscillations, causing them to 

either collide with the rods or travel through and reach the detector. By adjusting the (rf) 

voltage applied on the rods it is possible to control which ions will pass through and which 

will collide. Hence it is possible to scan a mass range simply by altering the (rf) voltage to 

allow ions of an increasing mlz to pass through. The voltage can also be altered to allow 

ions of a specific mlz to pass through, rather than performing a sequential scan. This is 

called peak hopping and permits the analysis of ions with different masses to be measured, 

thereby only collecting data for the peaks of interest. Figure 1.1 shows a schematic 

diagram of a typical quadrupole ICP-MS. Advantages of the quadrupole mass analyser 

include low cost of manufacture, reliability and ease of use. However it can only be 

operated in sequential mode and is limited to single mass resolution. 
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Figure 1.1 A typical quadrupole ICP-MS instrument 

1.3 Interference Problems 

ICP-MS is the obvious method of choice for trace metal determinations due to its 

excellent sensitivity, low detection capability (2-3 orders of magnitude greater than ICP-

AES), and speed of analysis. However the technique suffers from several types of 

interference which lessen the accuracy and precision of its measurements. This may simply 

be a lack of sensitivity and ultimately poor precision due to a build-up of salt deposits on 

components such as the torch and cones, however more fundamental interference problems 

centre around the presence of ions with the same nominal m/z ratio as the isotope of 

interest. These interferences can be divided into four different areas: polyatomic, isobaric, 

matrix effects and the formation of oxides and doubly charged ions. 

1.3.1 Polyatomic interferences 

Polyatomic species form after ionisation of the sample has occurred and arise from the 

plasma gases, atmospheric gases, water, dissolution reagents and components of the 
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sample matrix. This kind of interference produces a positive bias on the isotope being 

measured. Examples include 40Ar35Cl+ on 75As, 40Ar160 + on 56Fe, 40Ar12C+ on 52Cr, 

40Ar40Ar+ on 80Se, 160 35Ct+ on 51V and 32S 160 160 + on 64Zn. Polyatomic interferences are 

mainly encountered between the mass range 12-120, with the most concentrated between 

40-80. 11
'
12 All aspects of sample preparation, ie. use of mineral acids or organic solvents, 

need to be carefully evaluated in order to minimise the interference problems. 

1.3 .2 Isobaric interferences 

Isobaric interference occurs when there is a direct isobaric overlap between isotopes of 

different elements. This can be quite a common occurrence as demonstrated with the 

example of Cd, detailed in Table 1.1. Even with 7 available isotopes only 111 Cd is free 

from any kind of isobaric interference. Fortunately, it is extremely rare for an isotope with 

a high abundance to have a severe isotopic overlap, the worst case being 40 Ar (99.6% 

abundance) on 4°Ca (96.94% abundance). 

Cd Isotope %Abundance Interference %Abundance 

106 1.25 Pd 27.33 

108 0.89 Pd 26.46 

110 12.49 Pd 11 .72 

111 12.8 - -
11 2 24.13 Sn 0.97 

113 12.22 In 4.3 

114 28.73 Sn 0.65 

Table 1.1 Isobaric interferences on the cadmium isotopes. 
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1.3.3 Matrix effects 

Matrix effects manifest themselves in two main forms. Firstly, high concentrations of 

matrix components in the sample can interfere with the plasma thereby affecting the 

ionisation efficiency of the analytes. This will cause a discrepancy in the signals obtained 

for the standards and samples. The most well know example of this type of effect is the 

introduction of high concentrations of easily ionisable elements (EIE) such as Na, Ca and 

K. The introduction of high concentrations of these elements can "cool" the plasma 

causing a reduction in the excitation temperature, thus less energy is available for the 

production of ions and a suppression in the signal of the sample containing the matrix is 

observed. Ramsey and Thompson106 studied the effect of calcium on the sensitivity of 

various analytes including Li and Cu using ICP-AES, and observed a decrease in the 

excitation temperature of approximately I OOK in the presence of a I% Ca matrix. The 

authors also noted a decrease in excitation temperature of approximately 20K with as little 

as lOOJ.I.g ml" 1 Ca present in the matrix. 

The mass transport efficiency of the analyte (amount of analyte that reaches the plasma) 

can also be effected by EIEs. This effect has been seen with the analysis of Mn in the 

presence of several EIEs 13
• The authors have reported a decrease in the mass transport 

efficiency of a I OOJ.I.g ml" 1 Mn only solution by 15% and 40% in the presence of equimolar 

concentrations (0.05M) of Na and K respectively. This is attributed to an increase in the 

overall mass loading of the solution having an effect on amongst other factors the density 

of the solution. 

1.3.4 Elemental oxides and doubly charged ions 

This type of interference occurs when there are significant amounts of another analyte 

present in the sample and either its oxide (mass + 16) or doubly charged ions (mass/2) 

cause a spectral overlap on the analyte isotope of interest. Oxide formation is particularly 

troublesome when trying to determine trace amounts of zinc in the presence of titanium. 

As shown in Table 1.2 the major Zn isotope suffers from a significant interference from 
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TiO. The other Zn isotopes are also hampered by interference from TiO but to a lesser 

extent. The formation of doubly charged ions is characteristic of elements which have a 

low second ionisation potential for example Ba (EII= 10.00eV) and Sr (EII= 11.03eV) 14
• 

Zn Isotope %Abundance TiO Interference % Abundance 

64 48.6 73.62 

66 27.9 5.39 

67 4.1 0.01 

68 18.8 0.01 

Table 1.2 Interference from TiO on the major Zn isotopes. 

1.4 Solutions to ICP-MS Interference Problems 

There are numerous different ways of overcoming the interferences described above. 

These include optimisation of the sample matrix, (i.e. choice of digestion/dilution acid), 

alteration of the plasma gas, alternative sample introduction techniques and mathematical 

corrections. 

1.4.1 ETV-ICP-MS 

The use of electrothermal vaporisation to convert a sample to the vapour state has been 

in use for a long time in atomic spectrometry in the form of graphite furnace atomic 

absorption (GFAAS). 15
.
20 The ETV unit used with an ICP-MS is very similar to that 

normally used on an atomic absorption instrument. The electrothermal vaporisation 

process involves the programmed heating of a graphite tube held between two graphite 

contacts. With careful optimisation of the heating program, the sample, which is deposited 

onto the tube, is dried, ashed and then vaporised. A stream of argon carries the vapour to 

the plasma where atomisation and ionisation take place. This method of sample 
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introduction can, with the correct combination of matrix modifier, eliminate many major 

polyatomic interferences. For example, the significant interference from 40 Ar160 on 56Fe is 

reduced due to the elimination of all of the moisture from the system. As the Fe is 

vaporised and swept into the plasma, no ArO polyatomics are formed due to the lack of 

0 2?1 Chemical modifiers are often used with electrothermal techniques to thermally 

stabilise the analyte. This allows higher ash temperatures to be used which aids the 

removal of the matrix. Hence with the appropriate chemical modifier the ETV can be used 

to selectively vaporise certain analytes before others. In the case of 75 As which suffers 

from the 40 Ar35CI+ interference, and 77Se which is hampered by interference from the 

40 Ar37 Cl+ species, the use of an optimised temperature programme together with a 

Pd(N03) 2:Ni(N03)2 modifier, successfully separated the interfering er species from the 

I f . 22 ana ytes o mterest. 

1.4.2 Hydride generation 

This form of sample introduction makes use of the fact that elements such as As, Sb, Te, 

Ge and Se form covalent gaseous hydrides on reaction with a strong reducing agent.8 The 

sample, often prepared in hydrochloric acid, mixes with a sodium borohydride solution in a 

mixing chamber and the gaseous hydrides are formed. (Equation 1.1) 

Equation 1.1 

A gas/liquid separator is used to separate the volatile hydrides from the reagents, which are 

then swept into the plasma by a stream of argon. This process separates the analyte from 

the sample matrix, thereby reducing potential sources of polyatomic molecules and 

increasing the sample transport efficiency. Hydride generation techniques are widely 

reported in the literature23
.
30 and are often used for the determination of As in seawater31 

since As determination by conventional nebulisation is hampered by the formation of 
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40 As35CI+. However with hydride generation, once the hydride (AsH3) is produced it is 

separated from the reaction reagents and transported to the plasma. Despite the high 

concentration of HCI in the sample matrix, the Cl is not in a volatile form, and so not 

transported past the gas/liquid separator and hence preventing the formation of 40 A~5CI+. 

1.4.3 Mixed gas plasmas 

The introduction of an additional gas to either the outer, intermediate or injector gas 

flow of the plasma has been shown by numerous workers to reduce spectroscopic and non­

spectroscopic interferences.32-38 Mixed gas plasmas have a greater thermal conductivity 

compared to a conventional Ar ICP due to the higher thermal conductivities of the 

individual gases (Ar has a thermal conductivity of0.0162JK1 m-1 s-1 and He has a thermal 

conductivity of0.141JK-1 m-1 s-1) and hence can improve the degree of ionisation for high 

ionisation energy elements. As well as an enhanced sensitivity, polyatomic levels, in 

particular oxides, are reduced. The most common gases used are N2, He, and 02 although 

Xe,39 CH4, C2~ 40 and CHF3 
41 have also been used. The ratio of several polyatomic ions 

(40M 5CI+, 40Ar36Ar+, 40Ar37Cl+ and 40Ar38Ar) to an In internal standard was shown by 

Evans and Ebdon37 to decrease when N2 was introduced to the carrier gas. Similar 

observations have been reported by Hill et al. 42, who added methane to the nebuliser gas 

and noted a reduction in the levels of ArC!+, ArO+, CIO+ and MO+. Despite the advantages 

achieved with mixed gas plasmas such as He and Xe they are seldom used routinely due to 

their high cost, and the considerably cheaper gases such as H2, N2 and 0 2 have practical 

issues to consider such as the need for higher gas flows and forward powers in order to 

sustain a stable plasma. 

1.4.4 Organic solvents 

The use of organic solvents for signal enhancement is documented by various 

authors.4346 The addition of small amounts of solvent can alter the physicochemical 
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properties of the sample solution, decreasing the viscosity and contributing to a smaller 

droplet size. This in turn aids the efficiency of nebulisation and improves desolvation in 

the plasma, resulting in an improved signal. However a more likely explanation for signal 

enhancement is due to an electron transfer mechanism?8 The introduction of an organic 

solvent leads to a higher population of carbon ions in the expansion chamber. The degree 

of ionisation of an analyte is improved by transfer of an electron to a carbon ion from an 

element with an ionisation energy lower than carbon (lE ll.26eV). This mechanism is 

supported by Larsen and Sturup47 who report a 3.5-4.5 fold enhancement in signal for As 

(lE 9.82eV) and Se (lE 9.75eV) in the presence of3% methanol. 

1.4.5 High resolution magnetic sector ICP-MS 

Magnetic sector instruments are more frequently being used to measure elements that 

are difficult to analyse using a quadrupole instrument.48
-
51 As with the quadrupole 

instruments described in section 1.2, ions that have been skimmed from the plasma pass 

through a mass analyser before reaching a detector. However, unlike the quadrupole mass 

analyser the magnetic sector instruments use a magnet to separate the ions. Ions exiting 

from the skimmer cone are accelerated through an electric sector which acts as an energy 

filter. The ions then pass through a magnetic field where they are deflected, with heavier 

ions being deflected to a greater extent. This arrangement of the electric and magnetic 

sectors is classed as normal geometry, however the opposite arrangement with the electric 

sector being placed after the magnetic sector also exists and is termed reverse geometry. 

The ion beam is then directed through a narrow slit and onto the detector. The narrowness 

of this slit means that a much smaller ion beam is directed to the detector compared with 

that produced by a quadrupole instrument. This results in a much greater achievable 

resolution but also leads to a loss in sensitivity due to less of the ions passing through the 

slit and onto the detector. Resolution is calculated according to equation 1.2. 
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R=~ 
8M 

Equation 1.2 

where R is resolution, M is mass (m/z) and 8M is peak width at 5% peak height. 

Quadrupoles typically operate at a resolution between 12 and 350, whereas magnetic 

sectors can run at resolutions greater than 10000. At resolutions of up to 3500 the majority 

of the common polyatomic interferences for the transition elements (masses 40-80) can be 

overcome. For example Moens et al.48 demonstrated that at resolutions of approximately 

be negated. 

1.4.6 Mathematical correction 

This type of correction involves the measurement of a second isotope of the interfering 

species and then applying a correction factor to the analytical isotope signal taking into 

account the abundances of the species involved. The advantage of this approach is that on 

some instruments this type of correction is completely automated and fully controlled by 

the instrument software. One example of this type of correction is given below in Equation 

1.2 which corrects the 94Zr isotope for isobaric interference from 94Mo by monitoring the 

95Mo isotope intensity. 52 

i( 94 Zr )= i(94)- (i(95)x (a (94 Mo ); a (95 Mo ))) Equation 1.2 

where i =intensity at the specified mass, and a= abundance of the isotope. 

By monitoring the intensity of the non-interfering isotope 95Mo, and knowing the ratio of 

naturally occurring 94Mo:95Mo, it is possible to subtract the intensity of the interfering 

isotope from the total intensity. However this form of correction is mainly applicable 

when the intensity of the interfering species is considerably smaller than that of the analyte 

isotope of interest. 
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1.4. 7 Dynamic reaction cell/ collision cell ICP-MS 

Dynamic reaction cell (DRC) or collision cell (CC) instruments involve passing the ion 

beam, through a cell pressurised with a gas or mixture of gases. The interfering species are 

then removed by collisional dissociation and/or gas phase chemical reactions. The DRC 

employs the principal ofreacting the interfering species with a gas such as NH3,
53 0 2

54 or 

C~, 55 to convert it into a new species with a m/z ratio different from the analyte of 

interest. This approach has been used by Simpson et al,54 who successfully used oxygen as 

a reaction gas to remove the oxide based interferences hampering the determination of the 

noble metals. Collision cell instruments exploit the fact that polyatomic interferents have a 

larger cross-sectional area than the mono-atomic analyte of interest and as such will 

undergo a greater number of interactions with the reaction gas, thus losing more kinetic 

energy. The difference in energy between the analyte and interference can then be used to 

separate them via an energy filter. Reyes56 and eo-workers have successfully measured Se 

in biological materials by measuring the 78Se/77Se and 80Se/77Se isotope ratios, when using 

H2 as the collision cell gas. 

1.5 The Biological Importance of Selenium 

Selenium is an essential trace element with a natural abundance of approx. 0.09ppm 

in the earth's crust, and can be found in rocks, minerals, fossil deposits and volcanic 

material. 5 Selenium levels in soil vary widely with average levels ranging from O.l-

2.0ppm. Its chemical speciation and total concentration largely determine its availability to 

plants and thus entry into the food chain. It is present as a water soluble selenate in alkali 

soil and as such is available to plants, but as an insoluble ferric selenite in acidic soil and 

therefore unavailable. 

The public perception of selenium has gone through several changes during the last 50 

years. In the 1930s it was classed as a toxic element, then as a carcinogen in the 1940s, an 

13 



essential element in the 1950s and then an anti-carcinogen in the 1960s and 1970s. As such 

this illustrates the marginal difference between essentiality and toxicity and explains the 

great interest in Se and its role in biochemistry, particularly as both an excessive and 

insufficient intake of selenium can have serious health implications. 

1.5.1 Selenium toxicity 

Selenium toxicity in its most acute form has been found to be fatal to both animals and 

humans. Several cases of "blind staggers" - lameness, damaged hooves and emaciation -

have been reported in farm animals that have consumed highly seleniferous plants. Similar 

symptoms such as hair and nail loss, tooth decay, skin lesions and, in severe cases, 

abnormalities of the nervous system have been reported in humans. An example of 

selenium toxicity was reported in the early 1960s, when inhabitants of a remote 

mountainous area in the mid-west of China suffered severe hair and nail loss, mottled 

teeth, and peripheral anaesthesia (pins and needles) and pain in the extremities.57 It was 

discovered that vegetables and grain consumed by the affected villagers contained 

extremely high concentrations of selenium compared to similar foods grown in non­

seleniferous regions. Cereals were found to contain approximately 200 times more 

selenium than some grown in a normal soil region and a difference of greater than 45000-

fold was observed between the selenium levels of green turnips grown in the area 

compared with turnips from a selenium deficient region. The diet of the local inhabitants 

was restricted mainly to plant products grown locally, which meant that the average daily 

intake of selenium was exceptionally high. This was evident in the case of one resident 

whose blood selenium level was recorded to be 7.51-!g m1" 1
, approximately 1000 times 

greater than the average level recorded for residents in a neighbouring area. The source of 

the high selenium level of the crops was found to be due to a high level of biologically 
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available selenium in the soil - 354J.lg Kg- 1 of water soluble selenium in soil from the 

affected area compared to 2.8J.lg Kg-1 in soil from a non-seleniferous area. 

1.5.2 Selenium deficiency 

Selenium as the amino acid selenocysteine, is a component of various selenoproteins 

that have important enzymic functions (Table 1.3). Recognising the role of these 

selenoproteins helps to explain why selenium deficiency is linked with so many diseases 

and health conditions such as white muscle disease (WMD), a nutritional muscular 

dystrophy primarily affecting Jambs and calves, which if the limbs of the animal are 

affected can cause stiffness and difficulty in walking, or if the heart muscles are affected 

can result in heart failure and death. A survey carried out in 1961 concluded that in New 

Zealand 20-30% of the total sheep stock at that time were at risk of developing selenium 

deficient conditions, including WMD.57 Conditions observed in humans include Keshan 

Disease - an often fatal cardiomyopathy - and Kaschin-Beck Disease - a type of 

osteoarthritis, both reported in a region of China where the soil was extremely low in 

selenium.57 Other health issues include a compromised immune system, rheumatoid 

arthritis and cirrhosis of the liver5 and more recently selenium deficiency has been 

associated with cancer. Selenium deficiency has also been linked with people relying on 

Total Parenteral Nutrition (TPN) as their main source of nutrition. TPN is a method of 

feeding nutrients through an intravenous line to patients whose digestive systems do not 

function. Severe gastroinstestinal problems such as Crohn's disease can impair selenium 

absorption resulting in selenium deficiency, hence it is important that TPN solutions 

contain selenium. Due to the links between selenium and cancer, numerous workers have 

investigated the effect of selenium supplementation at supra-nutritional levels (>200J.lg per 

day compared with "adequate" levels of 60-75J.lg per day) and whether this would afford 

greater protection. A study carried out at the New York Dental Hospital showed that 
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supplementation with Se could result in an increased production of cytotoxic T­

lymphocytes and natural killer cells, which are able to destroy tumour cells. Several other 

studies have been performed where by blood or tissue samples have been taken from a 

group of healthy individuals who are then monitored to see if they develop cancer. Such 

studies have revealed that the effectiveness of Se for cancer reduction is strongest in men 

and in relation to prostrate, lung and liver cancers. A Nutritional Prevention of Cancer 

(NPC) trial carried out in the USA, investigated if selenium supplementation could in fact 

reduce the risk of cancer. 1312 individuals with a history of non-melanoma skin cancer 

were given either placebo or 200Jlg Se per day. The findings indicated that those 

participants receiving selenium showed 50% lower total cancer mortality and 37% lower 

total cancer incidence, with the strongest benefit observed in those individuals with the 

lowest Se status at the beginning of the trial . 58 

Selenoprotein 

Glutathione peroxidase 

Iodothyronine deiodinase 

Selenoprotein P 

Selenoprotein W 

Selenoprotein N 

18 kDa selenoprotein 

Function 

Maintains cell membrane integrity by removing hydrogen 

peroxide and lipid and phospholipid hydroperoxides 

Produces and controls the level of active thyroid hormone 

Has antioxidant and transport functions. Protects cells lining 

blood vessels 

Involved in skeletal and cardiac muscle metabolism 

Linked to congenital muscular dystrophy 

Found in kidney and other organs 

Table 1.3 Functions of some of the selenoproteins. 59 
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1.5.3 Selenium dietary intake 

The UK recommended daily intakes of selenium are 75J.Lg and 60J.Lg for males and 

females respectively. The current UK average level is between 34J.Lg and 39J.Lg, 

considerably lower than the levels reported in 1974 of between 60J.Lg and 63J.Lg. 59 Food 

sources rich in selenium are brazil nuts, kidney, liver, crab and shellfish, however the 

reported reduction in UK daily intakes is mainly attributed to the reduced importation of 

North American selenium rich wheat. This was previously favoured for bread making due 

to its high protein content which aids the baking process. Currently European varieties of 

wheat are generally used, which contain much lower amounts of selenium. 

1.5.4 Selenium- isotopes and interferences 

The determination of selenium by ICP-MS is complicated for two main reasons. Firstly 

the ionisation energy is high, resulting in only 30% ionisation in the plasma and hence poor 

sensitivity.60 Secondly all of the six naturally occurring isotopes suffer from interferences 

(see Table 1.4). Both of these factors can contribute towards high background levels, poor 

detection limits and ultimately biased analytical results. Consideration of the health 

implications overviewed earlier highlights the significance of selenium in environmental 

and clinical studies, and thus how important it is that sensitive, precise and accurate 

analytical methods are available. 

Se Isotope %Abundance Interfering Species 

'
4 Se 0.89 qu ArJ4S+, J'Cl/ 

76Se 9.36 36Ar40Ar+ 38Ar38Ar+ 
' ' 

77Se 7.63 40 A~7Cl+, 40 Ar36 Ar'H+ 

78Se 23.78 38Ar4oAr+ 

so se 49.61 40Ar40Ar+ 

B2Se 8.73 1H81Bt 82Kr+ 
' 

Table 1.4 Polyatomic interferences affecting the selenium isotopes. 
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1.6 A Review of Applications of ICP-MS for the Determination of Selenium in 

Clinical and Environmental Samples 

ICP-MS with pneumatic nebulisation has been used for the determination of 

selenium in serum.43 The procedure employed dilution of serum with a mixture of reagents 

required to prevent blockage of the nebuliser. Standards containing 'blank' bovine serum 

and with butanol added were used in order to eliminate any matrix differences. A detection 

limit of 1.5Jlg r' was achieved. Several authors have documented ICP-MS detection with 

pre-concentration using ion-exchange resins. Jiang and co-workers61 used Dowex l-X8 

resin for the analysis of water samples but found the best results were obtained when using 

a standard addition procedure. Ebdon et al. 62 developed a similar for the determination of 

selenium in biological samples following microwave digestion. A flow-injection system 

was utilised for the on-line elution of analytes from an alumina column. l.Ong mr' 

detection limits were observed. 

1.6.1 ETV -ICP-MS applications 

The use ofETV-ICP-MS for the determination of As, Sb and Se in aqueous matrices is 

addressed by Fairman and Catterick.22 Complex interactions between the analyte and 

modifier are discussed, with details of the optimisation process and the resulting 

compromise conditions required for a simultaneous analysis. The procedure overcomes 

negative interferences on Se in the presence of high concentrations of HCJ. Good results 

for several reference materials are documented with detection limits of :>:0.08ng g·'. Ir 

coated graphite tubes were investigated by Pozebon and co-workers.65 Reduction of the 

blank signal and an increased sample throughput owing to the pre-treated tubes are 

discussed. An ETV-ICP-MS procedure using polyhydroxy compounds to enhance 

sensitivity is reported.66 The authors report a detection limit of O.Olng mr' for Se with 

mannitol as the matrix modifier compared with a detection limit of 0.50ng mr' in the 
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absence of a modifier. Ultrasonic slurry sampling (USS) coupled with ETV-ICP-MS for 

the determination of Se in fish samples is discussed.67 Good agreement between results 

obtained using a standard additions procedure and the certified values for two reference 

materials are shown. 

1.6.2 HG-ICP-MS applications 

Due to the enhanced sensitivity achieved with hydride generation, numerous procedures 

have been published based on this technique. Rayman et al. 23 used an adapted ICP torch 

for the introduction ofhydrides to the plasma. A lengthy sample preparation procedure was 

used for the digestion of serum samples followed by generation of the hydrides. The 

influence of Cu and Fe on the Se signal was investigated but the authors found that no 

adverse effects were observed at the levels of Cu and Fe likely to be present in serum. A 

negative bias on the materials analysed was reported. The performance of HG-ICP-MS 

was compared with GFAAS by M. Haldimann et a/.63 Both methods gave good agreement 

with acceptable results for the reference materials analysed. Quijano and co-workers24 

reported a detection limit of 35ng 1" 1 when using a flow injection-HG system. Off-line 

conversion of Se VI to Se1v is required prior to hydride formation. The linear range of the 

method was limited to 30~Jg 1" 1
• An isotope dilution method based on HG-ICP-MS has 

been documented by Ting and co-workers.25 Hydrides are formed on-line with 

measurement of the 82Se;77se and 74Se/77Se ratios. Absolute detection limits of 0.2-0.9ng 

Se are reported. The analysis of several CRMs indicated a negative bias in most cases. 

Mestek et a/. 26 compared the techniques of ICP-MS, HGAAS, ETAAS and ICP-OES for 

the analysis of whole blood. The authors concluded that ICP-OES was unsuitable for blood 

analysis due to poor sensitivity, and ET AAS was difficult to optimise with acceptable 

results only achieved when using a standard additions procedure. The ICP-MS and 

HGAAS procedures showed good agreement with the ICP-MS method being favoured due 
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to greater automation and speed of analysis. A detection limit of 0.1 Ong g·1 for Se in water 

is reported by Bowman et a/.27 The procedure involves off-line conversion of Se VI to Se1v 

and on-line formation of the hydrides using a flow injection system. The effect of the 

transition metals on the hydride generation system is investigated. Approximately 50% 

reduction of the Se signal was observed in the presence of IOOjlg g·1 Cu. Hall and 

Pelchart30 developed a HG-ICP-MS procedure for the analysis of geological samples, and 

have detailed the effect of interfering analytes such as Bi, Fe, and La on the signal. The 

spray chamber of an ICP-MS was successfully used as a gas/liquid separator by Zhang 

and co-workers.29 A limit of determination of O.Oljlg r 1 and recovery values in the region 

of 85% for SRM 1643c (Water) are reported. A continuous flow HG system was used by 

Santosa et al. 31 for the determination of Se in sea water. A detection limit of O.Sng r1 is 

reported. Enhancement of the Se signal in the presence of methanol was also observed. 

Moor64 and colleagues used a modified spray chamber as a gas/liquid separator for the 

determination of Se in bioloigcal samples. Results for the analysis of two biological 

reference materials agreed well with the certified values when using both external 

calibration and isotope dilution methodologies. 

1.6.3 Applications using mixed gas plasmas 

Evans and Ebdon37 investigated the addition of N2 to the Ar carrier gas and illustrated 

that the ratio of several polyatomic ions (40Ar35CI+, 40Ar36Ar+, 40Ar37Cl+ and 40Ar38Ar) to 

In internal standard decreased with N2 introduction. Two mechanisms for this effect are 

suggested by the authors - a reduction in the ionisation temperature of the plasma with a 

simultaneous increase in the kinetic energy, may result in a suppression of the ionisation of 

some polyatomic species and increase their breakdown, or that a competitive formation of 

ArC+, ArO+ and ArN+ occurs in the expansion chamber which would lead to a decrease in 

the formation of the interfering ions detailed above. Laborda et al. 35 introduced N2 to the 
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aerosol carrier gas and observed that the intensities of the polyatomic species ArAt, ArCl+ 

and ClO+ decreased with both an increase in the N2 concentration of the carrier gas, and an 

increase in the total carrier gas flow rate. However the intensities of the analytes decreased 

in a similar manner. The authors also investigated the effect of spray chamber temperature 

and found that an increase in the ArAr+ signal was associated with an increase in 

temperature. This observation supports the theory of several workers who suggest that a 

low spray chamber temperature (which results in a reduced aerosol water content) may 

significantly reduce oxide and doubly charged ion formation. A slight worsening of the 

detection limits for Se in food digests is reported when using a N2-Ar plasma compared 

with an Ar only plasma. A similar procedure was adopted by van der Velde-Koerts and 

de Boer36 with the multi-element analysis of environmental samples. An optimum N2 

carrier gas flow of 4-6ml min'1 was established with higher gas flows giving rise to greater 

background signals and increased levels of doubly charged ions. A reduction in the levels 

of polyatomic interferences by a factor of 1.5 to 3 is reported. 

The use of a helium ICP-MS for the determination of As and Se in urine has also 

been addressed. 68 Advantages over an Ar plasma include elimination of mass spectral 

interferences arising from Ar or species containing Ar, and more easily ionised elements 

due to the higher energy of He plasma species. The absence of spectral features above 

mass 40 mean that the determination of 80Se is possible. Analysis of NIST SRM 2670 

(urine) gave 85% recovery when using a standard addition method with internal 

standardisation. 

1.6.4 Applications using organic solvents 

The use of organic solvents for signal enhancement and interference elimination is 

widely documented. Larsen and Sturup47 report a 3.5-4.5 fold enhancement in signal for As 

and Se in the presence of 3% methanol, but observed a similar increase in the signal-to-

21 



noise ratio. Krushevska and co-workers67 have addressed the application of water soluble 

tertiary amines on As and Se signals. An enhancement in the signals together with a 

reduction in the ArC! interference was observed. The advantage of amines over additives 

such as Triton X-1 00, ethanol and glycerol are owed to their neutralisation and complexing 

properties. A lower dilution factor is needed and problems of corrosive attack of the ICP­

MS cones can be ruled out. The addition of 4% ethanol to diluted serum and urine 

samples is reported by Goossens and colleagues.44 The authors show that As and Se can be 

accurately measured in a chlorine matrix with a combination of ethanol addition and 

nebuliser gas flow-rate optimisation. Olivas et al. 28 studied the effect of several organic 

solvents on the Se signal, using both pneumatic nebulisation and HO sample introduction 

modes. Results show that several polyatomic interferences can be reduced with addition of 

alcohol to the system and that a 10-fold enhancement of the Se signal can also be achieved. 

1. 7 Aims of the work 

Although ICP-MS has fast become one of the mainstay analytical techniques in 

many areas of inorganic analytical chemistry, many problems still exist for a wide variety 

of analytes and matrices. Despite the introduction of 3rd and 4th generation quadrupole 

and high resolution magnetic sector ICP-MS instrumentation many important analyses are 

still hampered by unresolved interferences or lack of sensitivity. 

The aim of this study was to evaluate the analysis of both environmental and 

clinical samples using ICP-MS instrumentation, with the focus being the inherent 

difficulties of determining total Se in serum. A variety of sample introduction techniques 

such as ETV -ICP-MS, HG-ICP-MS, PN-ICP-MS with the addition of organic solvents and 

the use of mixed gas plasmas have been investigated, for their ability to overcome 

spectroscopic and non-spectroscopic interferences. The analysis of certified reference 
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2. Development of an Electrothermal Vaporisation (ETV) ICP-MS 

Method for the Determination of Selenium in Serum 

2.1 Introduction 

The determination of selenium in serum by ICP-MS is hampered by several 

problems. The first ionisation energy of selenium is high, resulting in an ionisation 

efficiency of only 30% in the plasma which leads to low signals and poor sensitivity. The 

majority of the selenium isotopes also suffer from spectroscopic interferences and matrix 

effects, which often result in signal suppression. 

Hydride generation (HG-ICP-MS) techniques have been used to overcome some of 

these problems. Greater sensitivity is attainable owing to the improved sample delivery 

rate and reduction of interferences is achieved due to analyte removal from the matrix. 

However, lengthy sample preparation procedures are generally required to convert the non­

hydride forming organic selenium compounds present in the sample to Se (IV), so that the 

volatile hydrogen selenide can be formed. 

An alternative and more direct method is electrothermal vaporization (ETV) 

coupled with ICP-MS detection. This technique has the advantage of using very small 

sample sizes (typically 5-SOJ.ll), an important consideration when dealing with clinical 

samples which may be of limited size, and unlike hydride generation does not require 

lengthy sample preparation procedures. Elimination of interferences is also feasible with 

this method. With careful optimisation of the temperature program it is possible to control 

the vaporization of interfering elements so that they do not arrive at the plasma at the same 

time as the analyte under investigation. 
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This chapter describes the development of an ETV-ICP-MS procedure for the 

analysis of Se in serum. Optimisation of the ETV temperature program including the 

successful elimination of several interferences, together with evaluation of the procedure 

using spiked sera and a certified reference material is described in detail. 

2.2 Electrothermal Vaporisation 

When using electrothermal vaporisation the sample is deposited into a small graphite 

tube which is electrically heated in a programmed fashion. The graphite tube is held 

between two graphite contact cylinders. On initiation of a temperature program, a current 

up to approximately 500 amps is applied to the tube. As the temperature of the tube 

increases, the processes of drying, matrix pre-treatment and thermal dissociation into free 

atoms can be separated and optimised in turn.69 During the process the interior and 

exterior of the tube are purged with argon to prevent combustion at high temperatures. The 

external gas stream flows through the contact cylinders, and around the graphite tube, 

exiting via the sample introduction hole. The internal gas stream passes through the 

graphite tube and also exits via the sample introduction hole. The external gas stream flows 

constantly, but the internal gas stream only flows during the program cycle. This flow of 

inert gases cools the tube and removes solvent and matrix vapours. During the vaporisation 

stage the sample introduction hole is sealed so that all of the gaseous sample is transferred 

to the plasma and none is able to escape. Figure 2.l{a) and (b) shows a typical unit with 

representation of the gas flows during pyrolysis and vaporisation. 
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(a) 

(b) 

To ICP ... 

ToiCP ... 

Sample 
Introduction Hole 

Graphite Furnace Tube 

Graphite Furnace Tube 

Internal Gas 
-+ Flow/Carrier Gas 

-+ External Gas Flow 

Internal Gas 
-+ Flow/Carrier Gas 

-+ External Gas Flow 

Figure 2.1 A typical ETV furnace unit showing internal and external gas flows during 

(a) pyrolysis and (b) vaporisation.69 
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2.3 Instrumentation 

An ELAN 5000A ICP-MS instrument coupled to an HGA 600MS ETV unit with 

an AS60 autosampler attachment (Perkin Elmer, Beaconsfield, UK) were used throughout 

this work. A 140cm long PTFE tubing (0.6cm id) was used to connect the furnace to the 

ICP-MS. The optimised operating conditions for the ICP-MS instrument and the ETV 

temperature program are given in Table 2.1 and Table 2.2 respectively. Optimisation of 

the ICP-MS instrument (i.e. lens settings, resolution, oxide and doubly charged 1on 

formation) was performed usmg conventional nebulisation prior to coupling the 

instrument to the ETV unit. 

ICP-
Power 
Plasma Gas 
Auxiliary Gas 
Nebuliser Gas 
Cones 
Lenses P 

B 
s 
E 

Parameter File -
Dwell Time 
Sweeps/Reading 
Readings/Rep) icate 
Points Across Peak 
Resolution 
Masses 

1150W 
15.0 1 min-1 

0.80 1 min-1 

0.95 1 min-I 
Pt 
48 
43 
45 
25 

15ms 
3 
60 
1 
Normal 
74Se 
77Se 
78Se 
szse 

Table 2. 1 ICP-MS Operating Conditions 
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Sample Volume lOJ.Ll Injection Speed 60% 
Modifier Volume lOJ.Ll Read Delay 2.5sec 

Gas l min-1 

Step Temperature fC Ramp /s Hold /s Internal External Read 
Dry1 110 10 15 0.3 
Dry2 120 10 45 0.3 
Pyrolysis 1100 10 45 0.3 
Vaporisation 2600 0.5 1 0.3 0.95 Yes 
Clean 2700 0.0 1 0.95 
Cool 20 15 1 0.95 

Table 2.2 ETV Temperature Program 

2.3.1 Reagents 

All solutions were prepared using high purity deionised water (18Mn, Elga, High 

Wycombe, Buckinghamshire, UK). Stock solutions (1000J.Lg mr1
) of Se and Te (internal 

standard) (Alfa, Johnson Mattbey, Royston, UK) were used. Working standards were 

prepared daily by dilution in 1% m/m HN03, ultrapure Ultrex II grade acid (JT Baker(UK), 

Milton Keynes, Buckinghamshire, UK). Palladium(ll)nitrate (Sigma, Poole, Dorset, UK) 

was used to prepare the chemical modifier solution. 

2.3.2 Sample Preparation 

Initial work centred on the analysis of Se standards prepared in 1% HN03. Due to the 

viscous nature and limited quantity of the serum samples, it was necessary to identify a 

suitable diluent to dilute the samples. Several workers70
•
90 have opted for diluents 

containing EDTA, mainly for the analysis of whole blood where it is required to prevent 

coagulation. Five different diluents were examined based on these previous publications, 

these were; i) 1% HN03 acid; ii) 1% NH3; iii) 0.2% NH3: 0.1% T1iton-X 1 00; iv) 0.0002M 

arnmoniumEDTA reagent (containing 0.2% NH3 and 0.1% Triton-X 100) and v) 0.002M 
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sodiumEDTA reagent (containing 0.2% NH3 and 0.1% Triton-X 100). A 1+19 dilution of 

the serum was utilised with each of the diluents. A series of lOng g·' Se standards were 

prepared in each of the diluents and the intensity of the signal for each measured. 

Examination of the Se signal from pyrolysis to vaporisation showed that the Se intensity 

was significantly reduced in the presence of both of the EDT A reagents, and to a lesser 

extent in the presence of 1% NH3 or the NH3: Triton-X-100 solution. This may be due to 

the complex make-up of the reagents 'swamping' the Se signal and resulting in signal 

suppression. The best signal was obtained for the standard prepared in 1% HN03 and this 

was therefore used as the diluent in future work. 

2.4 Choice of Matrix Modifier 

The use of matrix modifiers with electrothermal techniques is well established. In 

ETV -ICP-MS an enhancement in signal on addition of a chemical modifier is attributed to 

a more efficient transport of the vaporised analyte to the plasma.71 Matrix modification is 

also important to avoid losses of volatile analytes during the ashing stage via the formation 

of more stable analyte species. 72 It has become clear that the choice of matrix modifier is 

dependant on both the analyte under investigation and the surrounding matrix. In this study 

numerous chemical modifiers were examined including, Pd(N03)2, Pd(N03)2:Ni(N03)2, 

Pd(N03)2:Mg(N03)z, ascorbic acid and Pd(N03)2:Mg(N03)2:ascorbic acid. Ascorbic acid 

proved to be the most unsuccessful modifier examined as it resulted in total signal 

suppression. Initial work with a modifier made up of Mg(N03)2 and Pd(N03)2 both 

present at 1 Ojlg g-1
, was encouraging with a significant increase in the signal obtained for 

a 1 Ong g·' Se standard compared to that obtained with either no modifier or when using 

ascorbic acid. The concentration of both the Mg(N03) 2 and Pd(N03)2 in the combined 

modifier were both increased with little effect. On examination of each of the solutions 

separately it was observed that Mg(N03)2 alone produced very little signal where as a 
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solution of Pd(N03)2 gave rise to a signal comparable to that obtained with the combined 

modifier but with improved peak shapes. An experiment was then undertaken to establish 

the optimum concentration of this modifier. This was carried out by examination of the 

changes in signal of a 1 Ong g-1 Se standard in 1% HN03 with increasing Pd(N03)2 

concentration (see Figure 2.2). Findings indicated that 10111 of a 1001J.g g-1 Pd(N03)2 

solution was consistent with a maximum signal, i.e. approximately 4000cps for 78Se, 

approximately 2000cps for 82Se and approximately llOOcps for 77Se (blank subtracted). 

iij 
c: 
Cl c;; 
'C 
Q) -Cll ,_ 
Cl 
Q) -.5 

WOO ,-------------------------------------------~ 

4000 

3000 

2000 

1)00 

___...__ 78Se 

_._ 77Se 

_._82Se 

0+-----~--~----~----~----~--~~--~----~ 

0 1)0 '60 200 2W 300 3W 400 

Figure 2.2 Optirnisation ofPd(N03)2 matrix modifier. 
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This initial work with matrix modifiers was performed using standard pyrolytically 

coated graphite furnace tubes, however these were found to be unreliable with large 

changes in both signal intensity and peak shape from day to day. A L'vov platform 

pyrolytically coated graphite tube was therefore used for all further work. The advantages 

of this type of tube have been documented by several authors73•74 who describe the 

platform furnace tube at a stabilised "steady state" temperature. A comparison was made 

between the two types of graphite tube with the analysis of a 1 Ong g·1 Se standard at 

increasing pyrolysis temperatures. Data showed that despite an eventual decrease in signal 

with an increase in pyrolysis temperature, a more consistent signal was obtained with the 

L'Vov tube than with a non-platform graphite tube, as illustrated in Figure 2.3(a) and (b). 

This supports the work of Slavin et a/.12 who demonstrated the differences between analyte 

atomisation from the furnace wall and the platform. 

On analysing a serum CRM (NIST 1598 bovine serum), low results were initially 

obtained when using a lOO)lg g-1 Pd(N03)2 modifier and pyrolysis temperatures in excess 

of 1000°C. On monitoring the Se signal through both the pyrolysis and vaporisation 

stages, it was noted that in addition to the Se peak observed at approximately 60sec (i.e. 

during vaporisation) a smaller Se peak was seen at approximately 1 Osec corresponding to 

the pyrolysis stage. This suggests that a more volatile Se species was forming in the serum 

matrix that wasn't present in the Se standard. Numerous experiments were performed with 

different modifiers to try and overcome this problem. Ni(N03)2 was investigated but was 

unsuccessful as the initial peak was still evident. The gaseous modifier tritluromethane 

(CHF3) was examined as it had been reported75 that this gave rise to a considerable 

increase in sensitivity for the analysis of uranium and thorium by ETV-ICP-MS. 

Unfortunately no improvements in signal were noted, only a considerable build of carbon 

on the furnace tube and ETV contact cylinders. Eventually it was discovered that using the 

Pd(N03)2 modifier as discussed earlier, but at a higher concentration of 500)lg g- 1
, 

successfully overcame this problem with little effect on overall sensitivity. 
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Figure 2.3 Effect of pyrolysis temperature on the signal of a 1 Ong g-1 Se standard with (a) a 

standard pyrolytically coated graphite tube, and (b) a L'vov platform pyrolytically coated 

graphite tube. 
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2.5 Optimisation ofETV-ICP-MS Operating Parameters 

2.5.1 Pyrolysis and Vaporisation 

The main stages of any electrothennal vaporisation program are the pyrolysis (matrix 

removal) and vaporisation (dissociation of atoms) processes. Parameters at each of these 

stages, i.e. ramp rate, temperature and hold time, were evaluated to establish the optimum 

conditions. Pyrolysis and vaporisation temperatures were optimised by the repeated 

analysis of a lOng g·1 Se standard at increasing temperature settings. Temperature curves 

constructed with the data from these experiments can be seen in Figure 2.4. For the 

optimisation of the pyrolysis temperature the vaporisation temperature was set at 2600°C, 

and for the vaporisation temperature experiment, the pyrolysis temperature was set at 

1100°C. These are typical temperature settings used in many ETV programs. 

The pyrolysis curves in Figure 2.4 show a stable signal between 500°C and 1300°C, 

and a decrease in signal at temperatures above this, suggesting that a pyrolysis temperature 

within the range mentioned would be suitable. Due to the fact that the graphite tubr:: 

degrades with the number of firings, it was decided that a pyrolysis temperature midway in 

the range rather than at the higher end would be chosen, to minimise the detrimental affect 

on the lifetime of the tube. A temperature of 800°C was selected and a repeat experiment 

using a serum sample perfonned. Figure 2.5 shows the response of the 77Se, 82Se and 128Te 

(internal standard) signals with an increase in temperature in the presence of the serum 

matrix. Suppression of the Te signal and to a lesser extent the selenium signal, can be seen 

at lower temperatures, indicating that a higher temperature is required to ensure complete 

removal of the serum matrix. 

33 



~ 
40000 

Ill 
"0 c: 
CV 

~ 
30000 Cll 

UJ 
1::: 

iii ri 
c: UJ 
01 ~ --Cii 80000 20000 -c» 

"0 _,._ 78Se 
iijUJ 

c» c: - 01 CV -+- 74Se Cii .... 
01 

- nse "0 

~ 40000 1l000 .! 
-----a2se CV .... 

01 

~ 
.! 
.5 

0 0 

300 800 t300 1300 2300 2800 

Temperature (0 C) 
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Figure 2.5 Pyrolysis curve for 77Se, 82Se and 128Te. 1 OJ,.tl injection of a serum sample (with 

an approximate Se concentration of 5ng g-1
). Using 1 O)ll of a 500)lg g-1 Pd(N03) 2 modifier. 
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Serum contains high concentrations of components such as sodium, chlorine and 

bromine. Examination of these analytes alongside Se in the proposed system, gave clear 

evidence of their role as potential interferents. Na is an easily ionised element (EIE) which 

can effect the mass transport efficiency of analytes - the amount of analyte that reaches the 

plasma and ultimately the signal intensity. O'Hanlon et a/. 13 investigated the effect of 

several EIEs with a plasma emission system, demonstrating a reduction in the transport 

efficiency ofMn in the presence ofNa. Figure 2.6(a) shows the signal profiles of 77Se and 

23Na at a pyrolysis temperature of 800°C. The detector was desensitised at m/z 23 using 

the Omnirange option in the ELAN software used for this study. This enabled the Na 

signal to be plotted on the same axis as the Se in order to gain a direct comparison between 

the two signals. As can be seen the Na signal coincides directly with the Se signal, 

resulting in large amounts ofNa ions in the ETV transfer line and plasma at the same time 

as the analyte of interest. This could potentially effect the transport and ionisation 

efficiency of Se, thus causing a suppression of the signal. An increase in the pyrolysis 

temperature to 1200°C, has successfully separated the two signals, with the Na vaporising 

earlier (Figure 2.6(b)). 

Similar responses were observed with Cl and Br signals. Figure 2.7 illustrates the 

problems presented by Cl on 77Se. The formation of 40 M 7Cl+ ions in the plasma would 

enhance the signal at m/z 77, coinciding with the 77Se isotope, leading to high background 

signals, poor detection limits and biased analytical results. From Figure 2.7(a) and (b) it 

can be seen that at 800°C the Cl signal profile is overlapping with the Se signal. However 

an elevated pyrolysis temperature of 1200°C has separated the Cl from the Se resulting in 

the interference free analysis of 77Se. 
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Figure 2.6 The effect of pyrolysis temperature with respect to elimination of Na 

interference; 10111 inj ection of a serum sample in 1% HN0 3, approximate concentration 5 

ng g-1
• (a) 77Se and 23Na signal profiles, pyrolysis temperature 800°C, and (b) 77Se and 

23Na signal profiles, pyrolysis temperature 1200°C. 
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Figure 2. 7 The effect of pyrolysis temperature with respect to elimination of Cl 

interference; 1 OJ.!l injection of a serum sample in 1% HN03, approximate concentration 5 

ng g-1• (a) 77Se and 35Cl signal profiles, pyrolysis temperature 800°C, and (b) 77Se and 35Cl 

signal profiles, pyrolysis temperature 1200°C. 
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Bovine serum (used to prepare the Internal Quality Control (IQC) samples donated 

by Dr T. Delves, Southampton University and NIST 1598 discussed later in section 2.6.4) 

contain high levels of bromine. The combination of 81 Br with hydrogen produces HBr 

with a m/z of 82, coinciding with the 82Se isotope. Again at 800°C the Br sign~l overlaps 

with the Se signal (Figure 2.8(a)), but is successfully removed at the higher temperature of 

1200°C (Figure 2.8(b)). The degree of interference from HBr is further reduced by the 

elimination of water vapour. With conventional nebulisation the sample is introduced as an 

aqueous solution, resulting in a considerable amount of hydrogen and oxygen ions in the 

plasma. With the ETV the sample is introduced as a gas, hence the level of hydrogen and 

oxygen are greatly reduced. The advantage of hydrogen and oxygen reduction with ETV 

sample introduction has also been discussed by Marshall and Franks.76 

As shown in Figure 2.4, the Se signal remained fairly constant throughout the 

vaporisation temperature range examined. Using 2300°C as the vaporisation temperature, 

Figure 2.9(a) shows the signal profile for a serum sample diluted in I% HN03• A large 

analyte peak is observed at approximately 60s, but a second much smaller peak is seen 

slightly later at approximately 70s. During the temperature program (Table 2.2) the 

graphite tube is rapidly heated to 2700°C after the vaporisation stage to remove any 

residual matrix components and the overall gas flow rate drops due to a cease in the 

internal gas flow. The second peak observed approximately I Osecs later is probably Se 

vaporising as the furnace temperature increases but is seen slightly later than expected 

from the timings listed in the ETV temperature program (Table 2.2) due to the decrease in 

the overall gas flow rate. The evidence of this later peak suggests that the temperature of 

2300°C is insufficient for complete vaporisation. This is verified in Figure 2.9(b) where the 

vaporisation temperature has been increased to 2600°C. Only one peak is now observed 

indicating that all of the Se has been vaporised and transferred to the ICP-MS. 
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Figure 2 .8 The effect of pyrolysis temperature with respect to elimination of Br 

interference; lO)ll injection of a serum sample in 1% HN03, approximate concentration 5 

ng g-1
• (a) 82Se and 79Br signal profiles, pyrolysis temperature 800°C, and (b) 82Se and 

79Br signal profiles, pyrolysis temperature 1200°C. 
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2.5.2 Power and Nebuliser Gas 

Operating parameters including plasma power, nebuliser gas flow rate and lens settings 

were optimised. An increase in signal intensity for all isotopes was observed with an 

increase in plasma power, upto a maximum of 1150W. Above this the signal begins to 

decrease as illustrated in Figure 2.10. All further work was performed at 1150W, a higher 

setting than that favoured by other workers43 when using conventional nebulisation. This 

can improve the ionisation of Se, and hence the sensitivity, but on the downside also 

increases the ionisation of polyatomic species. However with the proposed system the 

interferences on 77Se and 82Se are already eliminated during the ETV process, therefore 

this improvement in ionisation produces a net increase in sensitivity. 

The effect of the argon nebuliser gas flow rate was also investigated. The Se signal 

increased steadily with an increase in gas flow rate from 0.85 I min-1
, reaching a maximum 

at 0.95 I min-1
, and decreasing at flow rates above this (Figure 2.11). It should be noted 

that the internal flow rate of Ar in the furnace is 0.30 I min-1
• This combined with the 

ICP-MS carrier gas optimum flow rate of 0.95 I min'1 leads to a total carrier gas flow 

rate of 1.25 I min'1, a similar optimum rate as reported previously.22 
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2.6 Analytical Performance 

Typical transient signal profiles for a 5ng g"1 Se standard and a serum sample with an 

approximate concentration of 5ng g"1
, are shown in Figure 2.12(a) and (b). The sensitivity 

of the system corresponds to between 200 and 6000 counts per ng g·1 of Se depending on 

the isotopic abundance. 

2.6.1 Linearity 

The linearity of the proposed system was investigated by analysing standards ranging 

from 0.10 to 1 OOng g·1 and plotting concentration vs integrated signal to construct 

calibration lines for each of the isotopes. The system was found to be linear from 0-100 ng 

g·1 for the 77, 78 and 82 isotopes but only linear from 1-100ng g·1 for 74Se. This non­

linearity below lng g·1 for 74Se may be attributed to it's low isotopic abundance (0.90%) 

and hence lack of sensitivity. 

2.6.2 Reproducibility 

Short term stability data for 10 consecutive analyses (triple firings) of a diluted serum 

sample, followed by 10 determinations over a 4hr period to give the long term stability of 

the system, for a typical analytical run are detailed in Table 2.3. Data were obtained with 

the intensity ratioed to the Te internal standard. 
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Parameter 74Se 77Se 'sse s2Se 

Detection Limit 0.85ng g·1 0.14ng g· 1 0.58ng g-1 0.13ng g-1 

Absolute Detection 
Limit 8.5pg 1.4pg 5.8pg I.3pg 

Short-term stability 
(n=IO) ±15% ±4.9% ±4.6% ±3.2% 

Long-term stability 
(n=10) ±13% ±4.7% ±5.7% ±3.8% 

Linearit 1-IOOn -I 0-IOOn -I 0-100ng ·I 0-IOOn ·I 

Table 2.3 Analytical performance characteristics for the determination of Se in serum by 

ETV-ICP-MS. 

2.6.3 Detection Limits 

Typical limits of detection (calculated as 3cr based on I 0 determinations of I% HN03 

blank) are also found in Table 2.3. These also take into account the l+I9 dilution factor 

applied to all of the serum samples. The poor detection limits of 74Se and 78Se are due to 

the low abundance and poor sensitivity of 74Se, and the substantial interference from argon 

polyatomics on 78Se. Further work to improve the detection limit of 78Se will continue, 

with the addition of nitrogen to the various Ar gas channels. This is discussed in detail 

later in Chapter 6. 

2.6.4 Accuracy 

To check on the accuracy of the method a number of IQC sera (prepared by the addition 

of Se standards to bovine serum, donated by Dr T. Delves, Southampton University) and 
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NIST SRM 1598 (bovine serum) were djluted 1+19 with 1% HN03 and analysed. Results 

can be found in Table 2.4. A linear calibration was performed utilising the blank correction 

facility in the ELAN software. Excellent agreement between the results obtained and the 

target values for 74Se, 77Se and 82Se are shown. High results were obtained with 78Se, but 

again tills is attributed to the large interference from argon adduct ions at mass 78. The 

RSD's calculated from triplicate analyses of each sample were between 3.1% and 5.7% 

for 77Se and 82Se, and 4.0% and 14.0% for 74Se and 78Se in the IQC samples, and between 

1.1% and 1.8% for NIST SRM 1598 with the exception of 74Se which gave an RSD of 

14.0%. 

IQC 1 
(54.5n ·I -I) 

74Se 48.9 ±6.9 97.9 ±7.2 146 ±5.8 37.9 ±5.2 

77Se 51.1 ±2.9 96.7 ±4.0 142 ±7.0 41.4 ±0.75 

?sse 64.1 ±9.3 109 ±7.8 146 ±8.0 55.6 ±0.72 

s2Se 50.7 ±2.2 94.3 ±4.4 138 ±4.3 40.8 ±0.45 

Table 2.4 Accuracy data from the analysis of internal quality control samples and NIST 

SRM 1598. Values are expressed as the mean and standard deviations of3 measurements. 

These data are further illustrated in Figure 2.13 and Figure 2.14, where the excellent data 

can be seen more clearly. 
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(b) IQC level 2. Error bars represent the standard deviations for 3 replicate analyses. 
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2. 7 Conclusions 

Selenium is a complicated element to analyse by ICP-MS, particularly in a biological 

matrix such as serum. The majority of existing procedures include a sample pre-treatment 

stage to digest the samples prior to ICP-MS measurement. Others use standard addition 

procedures to overcome matrix effects. Both of these approaches are lengthy and time 

consuming for the analyst. This work has centred on the development of an ETV 

procedure that would be accurate, reliable and efficient. With careful optimisation of all 

aspects of the method including the choice of matrix modifier, sample diluent and finely 

tuned temperature program, this has been successfully achieved. The ETV procedure 

developed allows the interference free analysis of two of the isotopes of selenium - 77 and 

82 - resulting in the accurate analysis of Se in serum with minimal sample pre-treatment. 
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CHAPTER3 

Development of an Isotope Dilution Method fo~ the Accurate 

Determination ofSelenium in Serum and Water 



3. Development of an Isotope Dilution Method for the Accurate 

Determination of Selenium in Serum and Water 

3.1 Introduction 

Isotope dilution mass spectrometry (IDMS) has been described as a definitive 

analytical technique that is capable of providing improved accuracy and precision over 

alternative ICP-MS methods.77 Its numerous applications are well documented in the 

literature
78

'
82 where it has been used to establish a reference value for Cu in sediment,83 and 

Cu, Mo and Se in biological reference materials.84 The technique is based on the addition 

of an isotopically enriched material, which, when present in an equilibrated form in the 

sample, acts as the perfect internal standard. Determinations involve the measurement of 

isotope ratios of the analyte in the sample, and the altered isotope ratio following the 

addition of the spike. Essential requirements for IDMS are that more than one isotope of 

the element in question occurs in nature and that the selected isotopes are free from 

interference. Providing these criteria are met or any interferences are negligible, the 

accuracy of isotope dilution determinations is dependent on the precision of the isotope 

ratio measurements. 

This chapter describes the development of a high accuracy method for the 

determination of selenium in both serum and water. By combining the established ETV­

ICP-MS procedure detailed in Chapter 2 with the technique of isotope dilution, a highly 

precise and accurate procedure has been established. Optimisation of the measurement 

parameters such as dwell time, peak measurement mode and number of replicates are 

described. The accuracy and precision of the method is demonstrated with the analysis of 

several certified reference materials. 

50 



3.2 Isotope Dilution Analysis 

With isotope dilution analysis the sample is spiked with a known amount of an 

enriched isotopic standard. The resulting isotopic ratio is then measured and from this it is 

possible to calculate the mass fraction of the element in the sample by using the following 

double IDMS equation. 

R - R' . RBe 
y B R' 

w = w ._m_r ._m_Zc . Be 
X z R 

m x m re R' .____!}£_ - R 
B R' X 

Be 

Equation 3.1 

where wx is the mass fraction of the element in the sample X, Wz is the mass fraction of the 

element in the primary standard solution Z, my is the mass of spike Y added to the sample 

X to prepare the blend B (=X+Y), mx is the mass of sample X added to the spike Y to 

prepare the blend B (=X+Y), mzc is the mass of primary standard solution Z added to the 

spike Y to make mass bias blend Be (=Y+ Z), rnrc is the mass of spike Y added to the 

primary standard solution Z to make mass bias blend Be (=Y+ Z), R '8 is the measured 

isotope amount ratio of sample blend (X+ Y), R 'ne is the measured isotope amount ratio of 

mass bias blend (Bc=Z+ Y), Roe is the gravimetric value of the isotope amount ratio of mass 

bias blend (Bc=Z + Y), Rx is the isotope amount ratio of sample X (IUP AC value), Rr is the 

isotope amount ratio of spike Y (certified value). 

Equation 3.1 encompasses the 3 mam aspects of any IDMS analysis, namely i) the 

calculation of the mass fraction of the sample (single IDMS), ii) the calculation of the mass 

fraction of the spike (reverse IDMS) and iii) correction for instrumental biases. By taking 

each of these areas in turn it is easier to see how the double IDMS equation is derived. 
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3.2.1 Single IDMS 

Once the sample has been spiked by the addition of a known amount of the enriched 

standard, and the modified isotope ratio determined, it is possible to calculate the mass 

fraction of the element in the sample providing the amount of enriched isotope added to 

the sample is known. This is calculated according to the following equation:-

Equation 3.2 

where R8 is the isotope amount ratio of sample blend B (=X+Y). 

3.2.2 Reverse IDMS 

ln order to obtain the mass fraction of the spike a reverse IDMS procedure is carried 

out. This involves combining the enriched solution with a primary standard (usually 

gravimetrically prepared from the pure metal) which has a natural isotopic composition as 

defined by IUP AC.87 The mass fraction is then detemlined according to Equation 3.3:-

Equation 3.3 

Equation 3.2 and 3.3 can then be combined to minimise the affect of the spike mass 

fraction on the final result, 

Equation 3.4 

3.2.3 Mass Bias 

Isotope ratio measurements are affected by a number of instrumental biases that need 

to be accounted for in order for the isotope ratio experiment to be carried out correctly. 

The main factor to be considered is that of mass bias, so called because of the variable 
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transmission of ions of different masses through the quadrupole, resulting in discrepancies 

between the observed and expected isotope ratios. 85 Isotopes at the low mass range are 

affected to the greatest degree and those at the mid-mass range to the least. Detector dead 

time is another important factor that needs to be taken into consideration. This describes 

the period of time when the detector is unable to detect any ions, and occurs after each 

pulse. Typically this lasts between 20 and 1 OOns and must be accounted for to prevent 

inaccuracies in the isotope ratio measurement. To be able to compensate for these biases, a 

calibration solution is prepared to characterise the instrumental response. This solution is a 

blend of the enriched isotopic spike and the gravimetrically prepared standard solution. By 

measuring the isotope amount ratio it is possible to calculate a correction factor, K, which 

compensates for the difference between the observed and expected isotope amount ratios. 

This factor is expressed by the following equation:-

K= = R Bc 
R' men111red R' nc 

Equation 3.5 

It therefore follows that the sample isotope amount ratio R8 can be determined from the 

measured isotope amount ratio of the sample blend R '8 , the gravimetric value Rnc and the 

measured isotope amount ratio of the calibration blend Be in accordance with Equation 

3.6 :-

R = RBc . R' 
n R' n 

Be 

Equation 3.6 

By combining Equations 3.4 and 3.6 the full double IDMS equation detailed in equation 

3.1 is derived. 

53 



3.3 Optimisation of Measurement Parameters 

Selenium has six naturally occurring isotopes, all of which suffer from polyatomic 

interferences (Table 1.4). When using isotope dilution analysis it is critical that all possible 

interferences, matrix, polyatomic or isobaric, are eliminated. For this work the 77Se and 

82Se isotopes were used. These are not the most abundant of the isotopes but were selected 

over the others as the interfering polyatomic species (40 Ar37CI+ and 81 Br1H) could be 

eliminated using the ETV temperature program developed previously (see Chapter 2). 

Optimisation of the scan parameters is of paramount importance to minimise errors 

in the isotope ratio measurement and achieve the highest accuracy and precision possible. 

Electrothermal vaporisers generate transient signals of short life spans, typically between 3 

and 6 seconds. It is important for the processing with this type of signal to collect enough 

readings to accurately define the signal profile. Influencing factors such as dwell time, 

points per spectral peak, peak measurement mode and number of replicates were evaluated 

and the optimum settings established, for the measurement of the 82Se/77Se isotope ratio. 

3.3.1 Dwell Time 

This defines the amount of time spent measuring each mass during a sweep. The ratio 

for a lOOng g·' Se standard was measured repeatedly at a range of dwell times, five 

injections were performed at each setting (Figure 3.1 ). From the data obtained it can be 

seen that short dwell times, between 3ms and 5ms, give rise to high % rsd values. An 

improvement in precision, demonstrated with a decrease in the % rsd values of the 

82Se/77Se isotope ratio, is observed with dwell times in excess of lOms. The optimum dwell 

time corresponding to the lowest % rsd is 15ms, which was consequently used throughout 

the work. 
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3.3.2 Points/Spectral Peak 

This parameter detennines how many mass spectral data points the instrument collects 

as it scans each isotope. As with the dwell time experiment the ratio for a 100ng g"1 Se 

standard was analysed repeatedly over a range of points, 1 -10. Again five replicates were 

perfonned for each setting. (Figure 3.2). The results obtained from this experiment are 

quite varied, however the general trend suggests that lower % rsd values are obtained with 

fewer points per mass spectral peak. Increasing the number of points has the disadvantage 

of increasing the analysis time and may also result in a loss of signal if the average taken 

across a number of points is less than the signal maximum. One point per mass spectral 

peak was used for all further work. 

3.3.3 Number of Replicates 

The aim of this work was to develop a procedure that was both highly accurate and 

precise but also practical in its use. To improve the precision of the ratio measurement a 

number of replicate injections were perfonned for each solution, to provide an averaged 

value for the isotope ratio. The number of replicates used had to strike a balance between 

total analysis time, avoiding long tenn drift and producing the desired improvements in the 

precision of the final result. The outcome of too few replicates may be a loss of precision, 

whereas too many may be construed an unnecessary consumption of time. This is a 

particularly important consideration with ETV sample introduction as the number of 

firings (which is detennined by the number of replicate injections perfonned) has a direct 

effect on the lifetime of the graphite tube. Experiments carried out using a 1 OOng g- 1 Se 

standard indicated that nine replicates for each solution provided an optimum compromise. 

The% rsd for the nine replicates was 0.72%. This equates to a relative standard deviation 

of the mean86 (sometimes referred to as standard error) for 9 such replicates of 0.24% 

relative. 
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3.3.4 Peak Measurement Mode 

Each signal profile is made up of a series of intensity data points that are processed to 

generate an intensity value that can be used in quantitative calculations. There are four 

options for signal processing available within the ELAN software used in this study, each 

of which were evaluated. Signal profile averaged calculates the average intensity of the 

points which comprise each peak; signal profile integrated calculates the integrated 

intensity of the area under the signal; signal profile counted sums the total counts for all 

readings; and signal profile maximum identifies the reading with the largest intensity. To 

evaluate each of the processing options solutions at two different concentrations (2ng g-1 

and 1 Ong g-1
) in two different matrices (1% nitric acid and serum) were analysed. The data, 

expressed as the 82Se/77Se isotope ratio, are detailed in Table 3.1 with corresponding % rsd 

values for the nine replicate injections performed. 

Solution Averaged Integrated Maximum Counted 

2ng g-1 Se 1.4054 1.4060 1.3013 1.4061 
(1 % HN03) rsd = 2.29% rsd = 2.31 % rsd = 2.15% rsd = 2.32% 

2ng g-1 1.4550 1.4553 1.3942 1.3858 
(senun) rsd = 2.14% rsd = 2.12% rsd = 2.96% rsd = 2.66% 

IOng g-1 Se 1.3624 1.3666 1.3537 1.3621 
(1% HN03) rsd = 0.21% rsd = 0.22% rsd = 1.08% rsd = 0.23% 

lOng g-1 Se 1.3676 1.3677 1.3462 1.3680 
(serum) rsd = 0.87% rsd = 0.87% rsd = 2.46% rsd = 0.87% 

Table 3.1 Effect of signal profile processing on 82Se/77Se isotope ratio and % rsd data (n 

=9). 
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From Table 3.1 it can be seen that similar % rsd values were achieved with the 

signal profile averaged, signal profile counted and signal profile integrated options. The 

signal profile maximum mode gave rise to the greatest % rsd values, which were higher 

than those obtained by any of the other procedures. Slightly higher% rsd values were also 

observed for the 2ng g-1 Se standard and serum sample compared with the I Ong g-1 

solutions. This may be due to counting statistics. Signal profile integrated was selected for 

the work as this processing mode is the preferred option in many analytical laboratories 

due to the higher number of counts this measurement mode produces which may result in 

improved measurement statistics. 

3.3.5 Effect ofCa and Zn on 82Se/77Se Ratio 

Serum has a complex matrix consisting of organic matter, and high levels of 

inorganic components such as Na, Ca and Zn. The effect ofNa on the Se signal has already 

been investigated and overcome with the optimised ETV temperature program (Chapter 2, 

Section 2.5.1 ). The potential interference from Ca and Zn in the form of polyatomic 

species such as 4°Ca37CI+ and 66Zn160+ on the 82Se/77Se, was evaluated. A series of lOng g-1 

Se standards were spiked with increasing amounts of Ca and Zn. 10 replicate injections of 

each solution were performed and the 82Se/77Se isotope ratios examined. Significance tests, 

namely F-tests and t-tests, were carried out on the data. The results from this experiment 

can be seen in Table 3.2 and the F-test and t-test equations used to calculate the 

significance values are shown in Equations 3. 7 and 3.8. 
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82Se/77Se sd %rsd 8 2 F-test t-test 

lOng g- Se 1.369 0.032 2.37 0.0010 

LOng g-1 Se/5ng g-1 Zn 1.373 0.029 2.10 0.0008 0.13 0.29 

l Ong g-1 Se/20ng g-1 Zn 1.370 0.044 3.21 0.0019 0.53 0.06 

1 Ong g-1 Se/ 1 OOng g-1 Zn 1.391 0.029 2.05 0.0008 0.13 1.60 

lOng g-1 Se/5J1g g-1 Ca 1.381 0.041 2.97 0.0017 0.59 0.72 

1 Ong g-1 Se/20J1g g-1 Ca 1.384 0.024 1.74 0.0006 0.17 1.15 

1 Ong g-1 Sell 0011g g-1 Ca 1.388 0.042 3.02 0.0018 0.56 1.11 

Table 3.2 Ratio and significance data obtained from spiking a 1 Ong g-1 Se standard with 

increasing amounts ofCa and Zn. (n= 10) 

Equation 3.7 

Where Sa and Sb represent the standard deviations of the two sets of data being 

compared. 

Equation 3.8 

Where x1 and X2 represent the mean 82Se/77Se ratio of the two variances being compared, 

s1 and s2 are the standard deviations of the two sets of data, and n is the number of 

replicates. 
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Each of the F and t significance values were compared to the Fcritical and 1critical values of 

3.23 and 2.10 respectively at the 95% confidence level. All of the values calculated are 

below these values, indicating that there is no significant difference between the 82Se/77Se 

ratio for the unspiked standard compared to the standards with added Ca or Zn. 

3.4 Accuracy and Precision of Isotope Ratio Measurements 

A typical signal profile for nine consecutive replicate injections of a serum sample 

with an approximate concentration of 1 Ong g-1 Se diluted 1 + 19 in 1% HN03 (initial 

concentration 200ng g-1
) is shown in Figure 3.3. Although the % rsd values obtained, based 

on the 77Se and 82Se isotope intensities were 6.69% and 5.84% respectively, this compares 

with 0.80%, for the 82Se/77Se isotope ratio obtained for the same nine injections. This 

illustrates that the measurement procedure has been optimised correctly and that there is 

sufficient correlation with the two signals for the precision advantages of ratio 

measurements to be realised. 
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Figure 3.3 Nine consecutive injections of a serum sample diluted m 1% HN03, 1 0~1 

injection, and approximate concentration of lOng g-1
• 
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The natural theoretical 82SePSe isotope ratio is 1.1442 based on IUPAC87 defined 

abundances of 8.73% and 7.63% for 82Se and 77Se respectively. From Table 3.1 it can be 

seen that the experimental 82SeP?Se isotope ratios for the solutions analysed differ 

considerably from this theoretical value (by approximately 20%). However, it should be 

noted that no difference in the 82Se/71Se isotope ratio is observed between the standard 

solution in 1% HN03 and the serum samples of similar concentrations. This suggests that 

the difference is due to instrumental mass discrimination and not matrix effects. A more 

marked difference is however observed between the ratios obtained for the higher 

concentration solutions than the lower concentration solutions irrespective of matrix. By 

exactly matching the mass bias solution to the sample solution with respect to 

concentration and matrix, any discrepancies will be compensated for and this problem 

negated. 

3.5 Method Validation 

The ETV temperature program used throughout this work was the same as that 

detailed in Table 2.2, Chapter 2. The ICP-MS parameter file was slightly different from 

that used to develop the non-ID MS ETV procedure and can be seen in Table 3.3. 

3.5.1 Reagents 

All solutions were prepared using high purity distilled deionised water (18MO, Elga, 

High Wycombe, Buckinghamshire, UK). The enriched standard solution (spike) was 

purchased from AEA Technology, (Didcot, Oxfordshire, UK) and the natural Se solution 

was prepared from >99.999% Se pellets (Aldrich, Poole, Dorset, UK). The isotopic 

composition of both standards is detailed in Table 3.4. Stock solutions of the two standards 

were prepared by dissolving accurately weighed quantities of the materials in concentrated 

nitric acid, Ultrex 11 ultra pure nitric acid (JT Baker, Milton Keynes, Buckinghamshire, 

UK) with final dilution to I OOml with deionised water. Gentle heating was required to aid 
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dissolution. The concentration of the 77Se enriched solution was determined by perfonning 

a reverse isotope dilution procedure (see 3.5.2). The chemical modifier solution was 

prepared from palladium (ll) nitrate (Sigma, Poole, Dorset, UK). 

ICP-
Power 
Plasma Gas 
Auxiliary Gas 
Nebuliser Gas 
Cones 
Lenses P 

B 
s 
E 

Parameter File-
Dwell Time 
Sweeps/Reading 
Readings/Replicate 
Number of Replicates 
Points Across Peak 
Resolution 
Masses 

1150W 
15.0 1 min-1 

0.80 1 min-1 

0.95 1 min-1 

Pt 
48 
43 
45 
25 

15ms 
1 
130 
9 
1 
Nonnal 
77Se 
82Se 

Table 3.3 ICP-MS operating conditions. 

74Se 76Se 77Se 

Accurate Mass 73.9225 75 .9192 76.9199 

Natural Abundance87 0.89 9.40 7.63 

Spike Abundance 0.27 2.60 68.69 

7BSe so se 

77.9173 79.9165 

23.77 49.61 

17.51 9.28 

szse 

81.9167 

8.73 

1.65 

Table 3.4 Isotopic abundance of the spike and natural selenium standards. 
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3.5.2 Preparation ofiDMS Solutions 

3.5.2.1 Natural Se Standard 

A quantity of 99.999% pure Se pellets were accurately weighed out and dissolved in 

5g of concentrated nitric acid (15.9M). Once dissolved the solution was diluted to lOOg 

with distilled de-ionised water. The actual weights taken and resulting concentration of the 

natural Se standard are detailed in Table 3.5. 

3.5.2.2 77Se Enriched Spike Solution 

The enriched spike material was accurately weighed out and again dissolved in 5g of 

concentrated nitric acid (15.9M). It was also diluted to lOOg with distilled de-ionised 

water. Table 3.5 details the accurate weights taken. 

Solution Wt of Material /g Wt of Material + Acid /g Concentration IJ.!g g-1 

Natural Se 0.61959 92.42918 6703.4025 

Spike Se 0.00911 100.5557 90.5966 

Table 3.5 Accurate weights taken for the preparation of the natural and spike Se standards. 

3.5.2.3 Characterisation of the Spike Concentration by Reverse IDMS 

The natural Se standard solution was diluted accurately with 1% HN03 to give a 

solution with a concentration of approximately 10011g g· '. The spike was mixed with the 

natural standard to give an isotope amount ratio of 1:3 (82Se:77Se). This ratio is not the best 

theoretical ratio required to minimise error propagation, as calculated by Equation 3.9, but 

was the optimum compromise for this work considering the amount of sample and spike 
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available and the ultimate dilution of serum required to take full advantage of the 

optimised ETV temperature program. 

(( 
Main spike abundance Jx( Minor sample abundance]] 
Minor spike abundance Main sample abundance 

Equation 3.9 

= ((68.69)x(7.63)J 
1.65 8.73 

= 6.03 

A reverse isotope dilution procedure was then perfonned to establish the exact 

concentration of the spike. This was achieved by measuring the ratio of the blend, and 

substituting it into Equation 3.3. The measurement process was repeated several times, 

using the previous mass fraction value to prepare the mass bias blend for the next 

measurement, following the iterative procedure detailed by Henrion.88 The mass fraction 

values for the spike solution obtained from each iteration are shown in Table 3.6. 

Measurement No. Mass fraction Jlg g-1 %Difference 

Gravimetric estimate 90.5966 

151 iteration 69.2530 23.6 

2nd iteration 71.7793 3.65 

3rd iteration 71.7660 0.02 

Table 3.6 Characterisation of the spike for IDMS analysis. 
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3.5.3 Preparation of Samples 

All samples were spiked gravimetrically with the enriched solution to give a final 

isotopic ratio of 1:3 (82Se:77Se). Typically, lg of the enriched solution was used to spike 

between 1g and 2g of each sample. The serum samples were diluted 1 + 19 with 1% m/m 

nitric acid following spiking, but no dilution was necessary with the water samples. A mass 

bias solution was prepared by spiking a natural selenium standard to match the ratio in the 

sample. For the measurement sequence a blank was analysed first, followed by the mass 

bias solution, the sample blend and then the mass bias solution again, so that each sample 

blend was bracketed by the mass bias solution. This follows the matching procedure 

detailed by Catterick et a/.89 

3.6 Analysis of CRM's 

Several certified reference materials, TMRAIN-95 (spiked rainwater), TMDA-54.2 

(spiked soft water), LGC 6010 (hard drinking water) and NIST 1598 (bovine serum) were 

analysed using both the IDMS and non-IDMS procedures. The results, which were all 

within the certified limits, can be seen in Table 3.7. The method precision, represented by 

the % rsd values obtained for triplicate analyses of each reference material, and the 

deviation from the certified level, represented by the % recovery values, are lower with the 

IDMS method than with the non-IDMS method. The result obtained for NIST 1598 bovine 

serum by the IDMS procedure was within ±4% of the certified amount. 
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CRM Certified ETV-ICP-MS ETV -ID-ICP-MS 

Level /ng g-1 Mean % Rec sd %rsd Mean % Rec sd o/orsd 

TMRAIN-95 0.74 ±0.29 0.68 92% 0.04 5.50 0.750 101% 0.006 0.80 
Spiked rainwater 

LGC 6010 9.30 ±1.60 10.9 117% 0.13 1.15 9.57 103% 0.05 0.48 
Hard drinking water 

TMDA-54.2 15.0 ±3.0 15.5 103 % 0.43 2.79 15.06 100% 0.01 0.07 
Spiked soft water 

NIST 1598 42.4 ±3 .5 40.8 96% 0.37 0.92 40.89 96% 0.02 0.06 
Bovine serum 

Table 3.7 Results for the analysis of certified reference materials TMRAIN-95 (spiked rainwater), TMDA-54.2 (spiked soft water), LGC 6010 (hard drinking 

water) and NIST 1598 (bovine serum) using ETV-ICP-MS and ETV-ID-ICP-MS ( n=3). 

66 



3.7 Conclusions 

This chapter describes the further development of the ETV-ICP-MS procedure 

detailed in Chapter 2 to encompass the technique of isotope dilution. The rigorous 

optimisation of this procedure in order to obtain results of optimum accuracy and precision 

has been described in detail. Parameters such as peak measurement mode, dwell time, 

points per spectral peak and number of replicates were evaluated. Each of these factors was 

found to contribute some way to the accuracy of the isotope ratio measurement. Several 

certified reference materials have been analysed and this analysis has successfully 

demonstrated the improvements in precision achievable with the IDMS procedure 

compared with the non-IDMS procedure. 
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CIIAPTER4 

Compa11ison ·ot: Analytical Methods for the Determination of 

Selenium 



4. Comparison of Analytical Methods for the Determination of 

Selenium 

4.1 Introduction 

As mentioned previously in Chapters 1 and 2 the determination of selenium by ICP-

MS is hampered by several factors such as poor sensitivity and severe interferences caused 

by the formation of argon polyatomic species (Table 1.4). Despite these problems there are 

numerous publications in the literature concerning the determination of Se, reporting the 

adoption of various techniques to overcome these issues. Approaches such as hydride 

generation, addition of an organic solvent to the sample solution and electrothermal 

vaporisation have been used. 

This chapter investigates two further methods for the determination of Se and 

compares them with the ETV-ICP-MS procedure already discussed. The comparison is 

based on factors such as i) sample pre-treatment requirements; ii) interference removal; 

iii) analytical performance characteristics and iv)accuracy and precision through the 

analysis of certified reference materials. 

4.2 Hydride Generation (HG-ICP-MS) 

Hydride generation (HG) coupled with either atomic absorption, atomic fluorescence 

or ICP-MS for the determination of selenium has been widely used.23
'
31 The technique 

involves generation of Se hydride through reaction with a strong reducing agent such as 

sodium borohydride. Once the hydride has been generated it is separated from the liquid 

reagents in a gas-liquid separator before being swept into the ICP by the argon carrier. This 

form of sample introduction gives rise to greater sensitivity due to the complete 

introduction of the gaseous analyte to the plasma44 and reduction of spectroscopic and non-
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spectroscopic interferences is achieved due to analyte removal from the matrix. The 

efficiency of the hydride generation step is dependent upon the experimental conditions 

and in particular the oxidation state of the analytes. Se VI is unable to form a hydride and 

therefore must be reduced to Se1v prior to hydride generation. This pre-reduction is often 

achieved by heating the sample with hydrochloric acid24.27
. Careful optimisation of the 

reagent concentration and the reaction times employed is required to ensure optimum 

response and minimal interference effects. 

4.3 HG-ICP-MS Procedure 

4.3. I Instrumentation 

All determinations were carried out using a Perkin Elmer ELAN SOOOA ICP-MS 

(Perkin Elmer, Beaconsfield, UK). The on-line reduction of Se VI to SelV was performed 

using a continuous a hydride generation system with a Perkin Elmer gas/liquid separator 

and two peristaltic pumps. One peristaltic pump was used to deliver the sample solution 

and reductant (NaB~) to the gas/liquid separator and the other peristaltic pump was 

required to divert waste away from it. The operating conditions for the ICP-MS are given 

in Table 4.1. 

Digestion of the serum samples was carried out using a Paar Physica multiwave 

microwave sample preparation system (Anton Paar GmbH, Graz, Austria) using the 

temperature program detailed in Table 4.2. A Tecam water bath fitted with a Techne TE-

8A thermoregulator (Techne (Cambridge) Ltd, Duxford, UK) was used for the pre­

reduction stage. Sample preparation and pre-reduction was performed using 25 ml sterilin 

tubes (Bib by Sterilin L TO, Staffordshire, UK). 
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ICP-
Power 
Plasma Gas 
Auxiliary Gas 
Nebuliser Gas 
Cones 
Lenses P 

B 
s 
E 

Parameter File -
Dwell Time 
Sweeps/Reading 
Readings/Replicate 
Replicates 
Points Across Peak 
Resolution 
Masses 

1080W 
15.0 I min-I 
0.80 I min-1 

1.015 I min-I 
Pt 
48 
40 
43 
27 

60ms 
100 
1 
6 
1 
Normal 
77Se 
82Se 

Table 4.1 HG-ICP-MS Operating Conditions. 

Power lW Time /min Power lW 

0 5.0 500 

500 20 500 

0 15 0 

Fan 

1 

1 

3 

Table 4.2 Microwave Temperature Program for the Digestion of Serum Samples. 
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4.3 .2 Reagents 

All solutions were prepared using high purity deionised water (18MQ, Elga, High 

Wycombe, Buckinghamshire, UK). Working standards were prepared daily by dilution of a 

1 000!-lg mr1 Se stock solution (Alfa, Johnson Matthey, Royston, UK) in 1% m/m HN03, 

ultrapure Ultrex 11 grade acid (JT Baker(UK), Milton Keynes, Buckinghamshire, UK). 

Digestion of the serum samples was carried out with concentrated nitric acid (JT Baker, 

UK) and hydrogen peroxide (Romil, Cambridge, UK) and concentrated hydrochloric acid 

(JT Baker ultra pure) was used to acidify the samples/standards for the pre-reduction step. 

Sodium borohydride 1.5% (>99.99%, Aldrich, Poole, Dorset, UK) prepared in 0.1 M 

NaOH (AR grade, BDH, Leicestershire, UK) was used for the hydride generation reaction. 

4 .3.3 Sample Preparation 

0.2g of sample (serum samples only) was mixed with 2ml HN03 and lml H202, and 

heated in accordance with the microwave program detailed in Table 4.2. Once cooled the 

digests were transferred into 25ml sterilin tubes and diluted to approximately 1 Oml with 

ultra pure water. A series of calibration standards over the concentration range 0.5- 5.0 

ng g-1 were prepared. All samples/standards were then diluted with concentrated HCl in the 

ratio l2.5g: 1 Og (san1ple:HCl) giving an acid concentration of SM, and placed in a water­

bath set at 80-85°C for 90min. Th is was to convert any Se VI to Se1v prior to hydride 

generation. Once cooled the samples/standards were transferred to the hydride generation 

system for reaction with the NaBI-Lt solution and the subsequent formation of gaseous 

selenium hydride. 
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4.3.4 Analytical Performance 

Performance characteristics such as linearity, stability and limit of detection were 

evaluated. 

4.3.4.1 Linearity 

In order to establish the linearity of the HG-ICP-MS system a number of standards 

ranging from 0.10 to 50ng g-1 were analysed and plots of concentration vs integrated signal 

were constructed. The system was found to be linear from 0 to 50ng g-1 for both 77Se and 

82Se, with correlation coefficients of 0.9992 for both isotopes as can be seen in Figure 4.1. 

300000 -,--------------- -------, 

R2 = 0.9992 

R2 = 0.9992 

0 20 30 40 50 60 

Figure 4.1 Plot of Se concentration vs integrated signal for the 77Se and 82Se isotopes. 
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4.3 .4.2 Reproducibility 

The reproducibility of the system was established from the continued analysis of a 

5ng g- 1 Se standard prepared in 1% HN03 acid. The short-term stability of the system was 

based on I 0 consecutive measurements, and the long-term stability was established from 

10 analyses performed over a 4hr period. The data from both of these experiments can be 

seen in Table 4.3. 

Short-term Stability (n=l 0) 

Long-term Stability (n=lO) 

Detection Limit (3cr) 

±4.60% 

±5.55% 

0.06ng g- 1 

±4.76% 

±5.64% 

0.07ng g- 1 

Table 4.3 Analytical perfonnance characteristics for the determination of Se by HG-ICP-

MS. 

4.3.4.3 Detection Limits 

Table 4.3 details the limits of detection achievable with this system. The values are 

calculated as 3cr of 10 determinations of a 1% HN03 acid blank. 

4.3.5 Analysis of Certified Reference Materials 

Four certified reference materials and three spiked serum samples (prepared in-house by 

adding accurate amounts of inorganic selenium standard to bovine serum) were analysed to 

evaluate the accuracy of the procedure. Each of the serum samples (NIST 1598 bovine 

serum certified reference material, and spiked serum samples LGC-S 1, LGC-S2 and LGC-
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S3) were digested following the microwave digestion procedure detailed in section 4.3.3. 

These and the aqueous certified reference materials (TMRAIN-95 spiked rainwater, 

TMDA-54.2 spiked soft water and LGC 6010 hard drinking water) were then mixed with 

concentrated HCl acid in the ratio 12.5g: 1 Og (sample:HCl) and heated for 90mins in a 

water bath prior to measurement by HG-ICP-MS. The results obtained are shown in Table 

4.4. A Linear calibration was performed utilising the blank correction facility in the ELAN 

software. 

Sample 

TMRAIN-95 

Spiked rainwater 

TMDA-54.2 

Spiked soft water 

LGC 6010 

Hard drinking water 

NIST 1598 

Bovine serum 

LGC-Sl 

Spiked bovine serum 

LGC-S2 

Spiked bovine serum 

LGC-S3 

Spiked bovine serum 

Expected 

0.74 ±0.29 

15.0 ±3.0 

9.30 ±1.9 

42.4 ±3.5 

Concentration/ng g-1 

77Se 

0.61 ±0.03 

14.3 ±0.11 

9.18 ±0.16 

37.9±10.3 

17.5±1.5 

55.2 ±2.3 

112 ±6.6 

0.62 ±0.03 

14.3 ±0.14 

9.18 ±0.15 

37.5 ±11.0 

15.4±1.6 

52.7 ±2.0 

110 ±5.9 

Table 4.4 Accuracy data from the analysis of certified reference materials and spiked 

serum samples by HG-ICP-MS. Values are expressed as the mean and standard deviations 

of three measurements. 
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From Table 4.4 it can be seen that good agreement has been achieved between the 

expected values and the results obtained for the majority of the CRMs. All of the results 

for the aqueous reference materials are within the certified limits for both of the isotopes 

and the results for NIST 1598 (serum) fall just outside the stated range. The in-house 

spiked serum samples (LGC-S 1, LGC-S2 and LGC-S3) were prepared by adding known 

quantities of a selenium standard to accurately weighed portions of bovine serum. LGC-S 1 

contains no added selenium, and therefore represents the level of Se present in the bulk 

serwn. In order to make a comparison between the results obtained for LGC-S2 and LGC-

S3 which did contain added Se, the level of Se found in LGC-S 1 was subtracted from the 

values obtained for LGC-S2 and LGC-S3 and recovery results calculated. These recovery 

results can be seen in Table 4.5. 

Sample Conc./ng g-• Cone.- biking g-• Se added/ng g-1 %Recovery 
77Se 

LGC-Sl 17.5 - - -

LGC-S2 55.2 37.7 29.2 129% 

LGC-S3 11 2 94.5 88.4 107% 

78Se 

LGC-S1 15.4 - - -
LGC-S2 52.7 37.3 29.2 128% 

LGC-S3 110 94.6 88.4 107% 

Table 4.5 Recovery results calculated from the analysis of in-house spiked serum san1ples 

analysed by HG-ICP-MS. 
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The results and hence recovery values calculated for each of the isotopes are in 

good agreement with one another, however the recovery values for LGC-S2 are 

considerably higher than those for LGC-S3. This may be attributed to an incorrectly 

determined value for the unspiked sample (LGC-S I). The possible error in the 

measurement of the low level of Se present in the unspiked sample is considerably higher 

than with the two spiked samples, hence if this value was determined incorrectly and then 

subtracted from the values obtained for the spiked samples this could result in high 

recovery values, which would be more significant for LGC-S2 than LGC-S3. 

4.4 Addition of Organic Solvents 

The role of organic solvents when used with ICP-MS to achieve enhanced sensitivity 

has been well docwnented and theorised. 28
•
37

•
43

-4
7 Improvements in analyte signal have 

been explained in a number of ways; - "firstly that the presence of the organic solvent could 

affect the droplet formation giving rise to a tiner aerosol, and ultimately leading to a 

greater nebulisation efficiency and improved desolvation in the plasma prior to ionisation. 

Tllis phenomena is supported by Olivas et al. 28 who investigated the effect of several 

organic solvents (methanol, ethanol, propanol, acetone and acetonitrile) on the signal for a 

Se standard, using both pneumatic nebulisation and hydride generation sample introduction 

approaches. A second theory is suggested by Evans and workers37 who studied the effect 

of propanol on the reduction of the polyatomic interferences affecting 75 As, 77Se and 82Se. 

The authors found that the intensity of the ArC!+ and ArAr+ species were greatly reduced 

when the sample solutions were spiked with propanol, and suggest that this is due to the 

competitive formation of polyatomic species such as ArC+ in the expansion chamber 

reducing the level of argon related interferents at the m/z of interest. One further 

explanation deals with changes in the ionisation potential of the analyte. The introduction 

of an organic solvent leads to an increase in c+ and carbon containing polyatomic ions 
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(CO+ and COW) in the plasma. The degree of ionisation of analytes is improved through 

the transfer of an electron from the analyte to the c + ions. This mechanism is possible with 

analytes that have a lower ionisation potential than carbon, i.e. selenium (9.8eV) compared 

with carbon (11.26eV) and is supported by Llorente et a/.45 who evaluated the effect of 

several organic compounds on the Se/ ArC I signal ratio. The authors found that 

improvements in sensitivity and detection limits could be acheived with both the addition 

of an organic compound and careful optimisation of the operating parameters such as RF 

power and nebuliser gas flow-rate. 

The following section covers the determination of selenium by pneumatic 

nebulisation PN-ICP-MS, and investigates the effect of butanol addition on signal 

enhancement. 

4.5 PN-ICP-MS Method 

4.5.1 Instrumentation 

An ELAN 5000 ICP-MS instrument (Perkin Elmer Ltd, Beaconsfield, Bucks., UK) 

connected to an AS90 autosampler was used. The standards and samples were introduced 

into a standard cross-flow nebuliser (gem tip) into a 'Ryton' double-pass spray chamber 

(Perkin Elmer Ltd, Beaconsfield, Bucks., UK) via a peristaltic pun1p at a flow-rate of 

l.Oml min-1
• ICP-MS operating conditions are detailed in Table 4.6. 

4.5.2 Reagents 

Ethylenediaminetetraacetic acid diarnmonium salt, (NH4 )2EDT A, djhydrogen 

anm1onium phosphate, NH4H2P04, and ammonia solution (all AR grade, Aldrich, Poole, 

Dorset, UK), butanol (HPLC grade, BDH, UK) and Triton-X-100 (Scintran grade, BDH, 

Leicestershire, UK) were used to prepare a modifier solution for the dilution of samples 

and standards. Stock solutions (l OOOpg ml' 1
) of Se and In (internal standard) (Alfa, 
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Johnson Matthey, Royston, UK) were used to prepare the working standards by daily 

dilution in 1% m/m nitric acid, ultrapure Ultrex II grade acid (JT Baker(UK), Milton 

Keynes, Buckinghamshire, UK). Bovine serum (Selbourne Biological Services, AJton, 

Hampshire, UK) was used to prepare matrix matched calibration standards. 

ICP-
Power 
Plasma gas 
Auxiliary gas 
Nebuliser gas 
Cones 
Lenses P 

B 
s 
E 

Parameter File -
Dwell Time 
Sweeps/Reading 
Readings/Replicate 
Replicates 
Points across peak 
Resolution 
Masses 

1025W 
15.0 I min-I 
0.80 I min-1 

0.90 l min-1 

Ni 
47 
42 
44 
27 

80ms 
75 
1 
4 
1 
Nom1al 
77Se 
78Se 
82Se 
11sln 

Table 4 .6 PN-ICP-MS Operating Conditions. 

4.5.3 Sample Preparation 

The procedure used for sample preparation in this work was based on a method 

published by Delves et al. 43 and involves dilution of the sample/standard with a mixture of 

reagents including butanol, Triton-X I 00, ammonia, ammonium EDTA and ammonium 

dihydrogen phosphate. The authors have reported enhanced sensitivity with the addition of 

butanol, and report the need of the other reagents to prevent blockage of the nebuliser and 

injector. A solution (called Modifier A) was prepared in the following way;- 0.65g of 

(NH4)2EDT A and 1.6g of N~H2P04 were dissolved in approximately 1 OOml of water. 
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5.6ml of Triton-X-100 and 5.6ml of NH3 were then added and the solution diluted to 

500ml with water. Modifier A was then diluted 1 0-fold with a 1.8% solution of butanol to 

give Modifier B which was used to dilute the samples and standards. Once diluted (l + 14 

with modifier B) the samples/standards were pumped through red/red tubing (internal 

diameter l.14mrn) into a mixing coil where they were combined on-line with In internal 

standard, Sng g·1 which was pumped through blklblk tubing (0.76mm internal diameter). 

This resulted in a further 1.5 fold dilution of the samples/standards and produced a solution 

with a final butanol concentration of I%, the optimum concentration required for 

maximum signal as reported by Sieniawska and workers.90 

4.5.4 Effect of Butanol on Sensitivity 

To evaluate the effect of butanol on the sensitivity of the system two sets of calibration 

standards were prepared. One set were prepared in I% nitirc acid and the other in the 

modifier B solution described earlier (section 4.6.3). Both sets of standards were measured 

using the conditions presented in Table 4.6 and plots of concentration vs integrated signal 

constructed (Figure 4.2). From Figure 4.2 it can be seen that by using the modifier 

containing I% butanol the sensitivity of the system has increased considerably. A 2-fold 

increase in signal has been achieved for the 77Se isotope, a 3-fold increase in signal for the 

82Se isotope and a 4-fold increase in signal for the 78Se isotope. 

This increase in sensitivity may be attributed to the competitive formation of ArN+, 

ArO+ and ArC+ through electron transfer mechanisms47
, resulting in the mass of the 

interfering polyatomic species being altered and therefore different to the mass of the 

isotopes of interest. The 78Se isotope suffers from the greatest interference from argon 

adducts, therefore reduction of these species through the addition of butanol will have the 

most significant effect on the signal, as observed in Figure 4.2(b). 
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Figure 4 .2 Plots of concentration vs integrated signal for standards prepared in 1% HN03 

and Modifier B (containing 1% butanol); (a) 77Se, (b/8Se and (c)82Se. 
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4.5.5 Analytical Performance 

4.5.5.1 Linearity 

A series of calibration standards ranging from 1.0 - 500ng g-1 were prepared in 1% 

HN03. These were then diluted 1+ 14 with modifier B solution, resulting in standards 

ranging from approximately 0.10 - 40.0 ng g-1
. The linearity of the PN-ICP-MS system 

was evaluated through the analysis of these standards. Plots of concentration vs integrated 

signal were constructed and the linearity derived. The system was found to be linear over 

the range investigated for each of the isotopes, with correlation coefficients of 0.9999, 

0.9998 and 0.9998 for the 77Se, 78Se and 82Se isotopes respectively (Figure 4.3). 
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Figure 4.3 Plots of concentration vs integrated signal for the 77Se, 78Se and 82Se isotopes; 

calibration standards prepared in modifier B. 
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4.5.5.2 Reproducibility 

A 25 ng g-1 Se standard prepared in I% HN03 and then diluted I + 14 with modifier 

B, was repeatedly analysed to establish the reproducibility of the system. The short-term 

stability of the system was based on I 0 consecutive measurements performed over I hour, 

and the long-term stability was calculated from I 0 analyses performed over a 4hr period. 

The data from both of these experiments can be seen in Table 4.7. 

77Se 78Se 82Se 

Short-term Stability (n=lO) ±1.22% ±2.03% ±2.68% 

Long-term Stability (n= I 0) ±4.11% ±6.15% ±4.71% 

Detection Limit (3cr) O.Ilng g- 1 0.33ng g-1 0.09ng g-1 

Table 4. 7 Analytical performance characteristics for the determination of Se by PN-ICP-

MS. 

4.5.5.3 Detection Limits 

As with the HG-ICP-MS, the detection limits of the method were calculated from the 

repeated analysis of a 1% HN03 acid blank. The values, quoted as 3cr of 10 determinations 

can be seen in Table 4.7. 
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4.5.6 Analysis of Certified Reference Materials 

Several certified reference materials and in-house spiked serum samples were analysed 

to evaluate the accuracy of the procedure. All of the CRMs were analysed following a 15 

fold dilution with modifier B. The aqueous CRMs (TMDA 54.2 and LGC 6010) were 

analysed against a calibration line constructed from standards prepared in 1% HN03 and 

then diluted with modifier B, and the serum CRM (NIST 1598) and spiked serum samples 

(LGC-S 1, LGC-S2 and LGC-S3) were analysed using matrix matched standards. Tllis 

involved mixing 500J.1l of each standard (including the standard blank) with 500J.1l of blank 

bovine serum prior to final dilution with modifier B. This follows the procedure used by 

Delves and workers43
. The results obtained are shown in Table 4 .8. 

All of the results obtained by this method are in good agreement with the expected 

values, with the exception ofNIST 1598 where the result for the 78Se isotope is just outside 

the certified limits. The results obtained for the 77Se and 82Se isotopes are unsatisfactory 

and do not fall within the stated range. Recovery values for the analysis ofNIST 1598 for 

each of the isotopes measured (77, 78 and 82) are 128%, Ill% and 121% respectively. 

Thls compares with recovery values for TMDA-54.2 of 103%, 100% and 120%, and LGC 

6010 of 103%, 106% and 115% for the 77, 78 and 82 isotopes. The serum samples LGC­

S 1, LGC-S2 and LGC-S3 were prepared by spiking bulk serum with a known quantity of 

selenium. LGC-S 1 represents the level of selenium in the bulk serum, i.e. with no added 

selenium. LGC-S2 and LGC-S3 contain enhanced levels of selenium in excess of that 

present in the bulk serum. Recovery values have been calculated for LGC-S2 and LGC-S3 

after subtraction of the amount of Se found in LGC-S 1, and are detailed in Table 4.9. 
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Concentration /ng g-1 

CRM 
Expected 77Se 78Se 82Se 

TMDA-54.2 15.0 ±3.0 15.5 ±0.36 15.0 ±0.40 18.0 ±051 
Spiked soft water 

LGC 6010 9.30 ±1.9 9.56 ±0.62 9.86 ±0.65 10.7 ±0.78 
Hard drinking water 

NIST 1598 42.4 ±3.5 54.2 ±0.07 47.1 ±1.56 51.3 ±1.27 
Bovine serum 

LGC-Sl - 37.6 ±6.8 29.7 ±5.7 43.9 ±9.7 
Spiked bovine serum 

LGC-S2 - 63.0 ±2.6 54.4 ± 1.7 68.4 ±2.1 
Spiked bovine serum 

LGC-S3 - 121 ±1.0 11 2 ±0.6 125 ±0.9 
Spiked bovine serum 

Table 4.8 Accuracy data from the analysis of certified reference materials and spiked 

serum samples by PN-ICP-MS. Values are expressed as the mean and standard deviations 

of 3 measurements. 

Sample Cone. /ng g-1 Cone.- blk /ng g-1 Se added I ng g-1 %Recovery 
77Se 
LGC-S l 37.6 - - -
LGC-S2 63 .0 25.4 29.2 87% 
LGC-S3 121 83.4 88.4 94% 
78Se 
LGC-S l 29.7 - - -
LGC-S2 54.4 24.7 29.2 85% 
LGC-S3 11 2 82.3 88.4 93% 
H:zSe 
LGC-S 1 43 .9 - - -
LGC-S2 68.4 24.5 29.2 84% 
LGC-S3 125 81.1 88.4 92% 

Table 4.9 Recovery results calculated from the analysis of in-house spiked serum samples 

analysed by PN-ICP-MS. 
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Acceptable recovery results (within ±16% of the expected amount) have been achieved 

with all of the isotopes for each of the spiked samples. The recovery values obtained for 

LGC-S3 are better than those achieved for LGC-S2. This may be due to counting statistics 

due to the higher level of selenium present in LGC-S3 compared with LGC-S2. 

4.6 Method Comparison 

All aspects of the two analytical methods discussed in this chapter have been 

compared with the procedures covered in Chapters 2 and 3 (ETV -ICP-MS and ETV -ID-

ICP-MS). A comparison has been made between factors such as interference elimination, 

sample pre-treatment, analytical time, performance statistics and accuracy and precision. 

4.6.1 Interference Elimination 

Each of the procedures exan1ined used different approaches to interference elimination, 

targeting different isotopes. The main interference effects which are alleviated by each of 

the methods examined are detailed in Table 4.10. 

Procedure Interference 

Hydride Generation 40 Ar37Cl+ 

Organic Solvent 36Ar40Ar+, 38Ar38Ar+, 38Ar40Ar+ 

Electrothermal Vaporisation 40Ar37Cl+, 1H8 1Br+ 

Isotope 
77Se 
76Se and 78Se 

82Se 

Table 4.10 Interferents and corresponding isotopes alleviated by each ofthe procedures. 
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The hydride generation method involves formation of SeH through a reaction 

between NaB~ and HCI. Despite the high population of Cl present in the reagents, the 

gas/liquid separator ensures that only the SeH passes into the plasma, hence decreasing the 

affect of 40Ar37Cl+ on 77Se. This process also means that the analyte is effectively removed 

from the original sample matrix thereby reducing the level of interference from other 

matrix components. The addition of an organic solvent to the sample matrix reduces the 

formation of ArAt adducts, due amongst other reasons to the competitive formation of 

species such as ArC+ and ArW, resulting in a shift in the rnlz ratio of the interfering 

species away from that of the analyte, ie 76Se and 78Se. Electrothermal vaporisation uses a 

different approach to interference reduction. This method eliminates the interferences on 

77Se and 82Se through careful optimisation of the temperature program. At a temperature of 

l200°C it possible to separate the signals of Cl and Br from that of Se, thereby eliminating 

any interference from 40 Ar37Cl+ on 77Se and 1H81 Br+ on 82Se. The thermal process can also 

be tailored to vaporise matrix components such as Na which could affect the transport 

efficiency of Se. 

4.6.2 Speed of Analysis 

The time required for analysis is an important factor for any commercial laboratory. All 

aspects of sample preparation, instrumental analysis time, data processing and operator 

time need to be considered when comparing different procedures for criteria such as speed 

of analysis and efficiency. Figure 4.4 illustrates the time required for both sample 

preparation and analysis for each of the procedures examined, for the analysis of a single 

aqueous sample. From the graph it can be seen that the ETV procedures, both IDMS and 

non-IDMS, have the shortest sample preparation time. This is because a simple I + 19 

dilution with I% HN03 acid is all that is required for both aqueous and clinical samples. 
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The measurement time is considerably longer. With the non-IDMS ETV method each 

cycle of the temperature program takes approximately 2.5mins. A total of 3 replicates of 

each sample (and standard) is required for each solution, therefore the total analysis time 

for a single sample including 4 calibration standards is 37.5mins. With the ETV IDMS 

procedure the sample preparation time is very similar - again the samples are diluted I + 

I9 with I% HN03 acid after spiking with the enriched material. The analytical time 

however is approximately double. This is due to the need to perform 9 replicate injections 

instead of the 3 performed with the conventional ETV method, in order to obtain sufficient 

data to realise the potential of increased accuracy and precision that this method offers. 

The sample preparation time required for the PN-ICP-MS method is slightly longer than 

that for the conventional ETV method. Both procedures require the preparation of a series 

of calibration standards, however a further dilution of standards and samples with a 

modifier solution prepared from (NH4)2EDTA, NH4H2P04, Triton-X-100, NH3 and 

butanol, which in turn is quite time consuming to prepare, is required. The analysis time 

however is faster than the conventional ETV procedure. The total time required for the 

analysis of 4 calibration standards and a single sample is 25mins, including a 2min read 

delay to allow the sample to reach the plasma and a I min wash between samples. The final 

method under investigation, the HG-ICP-MS procedure, has the longest sample preparation 

time. With this procedure each solution is acidified with cone. HCI acid prior to placement 

in a water bath for 90mins. This pre-reduction stage is essential to convert all Se VI to Se1v 

before reaction with NaB~ to produce the hydride. Once this pre-reduction has been 

completed the actual analysis time is quite short - total analysis time for a series of 

calibration standards and I sample is 15mins. As the number of samples to be analysed 

increases to I 0, the sample preparation time will have less of an impact on the overall time 

required, as can be seen in Figure 4.5. 
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Figure 4.4 Comparison of the time required for sample preparation and analysis of 1 

aqueous sample by each of the 4 methods examined. 
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Figure 4.5 Comparison of the time required for sample preparation and analysis of 10 

aqueous sample by each of the 4 methods examined. 
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4.6.3 Analytical Performance 

Performance characteristics for each of the methods incorporating the different 

sample introduction techniques, have been evaluated and are compared in Table 4.11. The 

short-term stability of the PN-ICP-MS method is better than that of the other two methods, 

however the long-term stability is very similar for all of the procedures. Over the 

concentration range investigated, the linearity of each of the systems for the isotopes 

measured is again very consistent, with both the HG and PN procedures with linear ranges 

from 0-50ng g-1 and the ETV procedure linearity from 0-100 ng g-1
• 

Method 

HG-ICP-MS PN-ICP-MS ETV-ICP-MS 

Short-term Stability (n= lO) ±4.60% ±2.03% ±4.90% 

Long-term Stability (n= lO) ±5.55% ±6. 15% ±4.70% 

Linearity 0-50 0-50 0-100 

Detection Limit 0.06ng g-1 0.33ng g-1 0.14ng g-1 

Table 4.11 Comparison of performance characteristics for each of the methods 

investigated. (HG-ICP-MS and ETV-ICP-MS = 77Se, PN-ICP-MS = 78Se). 

4.6.4 Accuracy and Precision 

The accuracy and precision of the four methods was evaluated using a range of certified 

reference materials. The results from the analysis of these CRMs can be seen in Table 4.12. 

It can be seen that good recovery values have been obtained for each of the CRMs tested 

by each of the procedures. The poorest results, ie lowest recovery values, were achieved 

for the analysis of the spiked rainwater (TMRAIN-95). This CRM has a certified level of 

0. 74 ng g-1 which is close to the detection limit of all of the methods. It was not possible to 

obtain a result for this CRM using the PN-ICP-MS method as once the sample had been 
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diluted in accordance with the method, the concentration of Se present was below the 

method detection limit of 0.33ng g-1
• Excellent results were obtained for the remaining 

aqueous CRM's for all of the procedures, with all results falling within the certified limits 

and producing recovery values from 95% to 117%. Slightly worse recovery values were 

acquired for the analysis of the bovine serum CRM, NIST 1598 by the HG-ICP-MS 

procedure. This may be due to the more complex matrix of this CRM and the need to 

carry out a microwave digestion of the sample prior to measurement. 

CRM Certified 
Level ng g-1 

Method Result ng g-1 %Recovery 

HG-ICP-MS 0.61 ±0.03 82% 

TMRAIN-95 0.74 ±0.29 PN-ICP-MS < DL -
spiked rain water ETV-ICP-MS 0.64 ±0.04 86% 

ETV-ID-ICP-MS 0.750 ±0.006 101% 

HG-ICP-MS 14.3 ±0.11 95% 

TMDA-54.2 15.0 ±3.0 PN-ICP-MS 15.0 ±0.40 100% 

Spiked soft water ETV-ICP-MS 15.5 ±0.43 103% 

ETV-ID-ICP-MS 15.06 ±0.01 lOO% 

HG-ICP-MS 9.18±0.16 99% 

LGC 6010 9.30 ±1.9 PN-ICP-MS 9.86 ±0.65 106% 

Hard drinking water ETV-ICP-MS 10.9 ±0.13 117% 

ETV -ID-ICP-MS 9.57 ±0.05 103% 

HG-ICP-MS 37.9 ±10.3 89% 

NIST 1598 42.4 ±3.5 PN-ICP-MS 47.1 ±1.56 111% 

Spiked bovine serum ETV-ICP-MS 40.8 ±0.37 96% 

ETV-ID-ICP-MS 40.89 ±0.02 96% 

Table 4.12 Comparison of data from the analysis of four certified reference materials 

obtained by 4 different methods. (HG-1CP-MS and ETV -ICP-MS = 77Se, PN-ICP-MS = 

78Se and ETV-ID-ICP-MS = 
82Se177Se ratio). 
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The results obtained for each of the CRMs have been plotted in Figure 4.5 and 

Figure 4.6 together with their corresponding error bars to illustrate more clearly the 

accuracy and precision of each of the methods. From these graphs it can be seen that with 

the exception of NIST 1598 by the HG-ICP-MS procedure, all of the results fall well 

within the certified limits for all of the CRMs. The HG-ICP-MS method involves an initial 

microwave digestion stage. The large spread of results may be an indication that this step 

has not been fully optimised, and further development is required. It can also be seen from 

these plots that the results acquired by the ETV-ID-ICP-MS procedure have the smallest 

error bars (n =3) for all of the CRMs. In most cases the precision on the measurement with 

this method is at least an order of magnitude better than with the other procedures. 
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Figure 4.6 Summary of results obtained by each of the methods investigated: (a) Spiked 

rain water TMRA.IN-95 and (b) spiked soft water TMDA-54.2. The error bars represent the 

standard deviation from triplicate analyses. The certified level and permitted range of each 

CRM are represented by the solid and dashed black lines respectively. 
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Figure 4.7 Summary of results obtained by each of the methods investigated; (a) hard 

drinking water LGC 6010 and (b) spiked bovine semrn NIST 1598. The error bars 

represent the standard deviation from triplicate analyses. The certified level and permitted 
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4. 7 Conclusions 

This chapter has covered two further methods for the determination of selenium, 

utilising different sample introduction techniques (hydride generation and pneumatic 

nebulisation) and alternative ways to overcome the interferences associated with this 

element. The two methods have been compared with the ETV procedure (both 

conventional and IDMS) developed earlier (Chapters 2 and 3) and a comparison of all 

aspects of the procedures has been made. Similar performance characteristics such as 

stability, linearity and detection limits are achievable with each of the methods, however 

there are differences with the sample preparation and analysis time. The ETV procedure 

has the simplest preparation stage and the fastest overall analysis time, whereas the HG­

ICP-MS is by far the most complicated and time consuming. A final comparison of the 

accuracy and precision of each of the methods was made, using four certified reference 

materials. All of the methods produced accurate results, however the ETV-10-ICP-MS 

procedure gave the best precision. 

94 



CHAPTERS 

Uncertainty Estimates for the Determination of Selenium by 

ICP-MS 



5. Uncertainty Estimates for the Determination of Selenium by 

ICP-MS 

5.1 Introduction 

The evaluation of the uncertainty associated with a result is often deemed an 

essential part of any quantitative analysis91 indeed an analytical result is thought 

incomplete without an indication of the uncertainty associated with it. The importance of 

measurement uncertainty is rapidly increasing in many different areas of analytical 

chemistry, and it is a requirement that analytical laboratories accredited in accordance with 

ISO Guide 2592 have an estimate of the associated measurement uncertainty. This will 

ultimately lead to improved intercomparability of analytical results. The knowledge of 

measurement uncertainty in the analytical community is often quite limited, therefore there 

is a need for the education of both analysts and customers, in the understanding of the 

measurement uncertainty of a particular result. An approach to the estimation of 

measurement uncertainty has been described in the International Standards Organisation 

(ISO) "Guide to Expression of Uncertainty in Measurement "93 (GUM) and the Eurachem 

interpretation for analytical chemistry.94 The principles of the GUM approach are that all 

sources of uncertainty, both random and systematic, are identified. For example, 

uncertainty contributions may result from the observations of repeated analysis, or from 

published data such as uncertainties for reference materials. Ultimately these individual 

contributions then give standard and expanded uncertainties. This approach differs from 

many methods currently used in analytical chemistry, which tend to use "whole method" 

performance parameters as a guide to the uncertainty of the procedure. Some applications 

of this approach to analytical chemistry have been published95
•
96 however, only a few 

uncertainty budgets have been reported.97
•
98 
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This chapter discusses the estimation of the uncertainty of the four procedures for the 

determination of selenium by ICP-MS compared in Chapter 4, i.e.; 

I. Hydride generation - HG-ICP-MS 

2. Pnuematic nebulisation with butanol addition- PN-ICP-MS 

3. Electrothermal vaporisation- ETV-ICP-MS 

4. Electrothermal vaporisation with isotope dilution- ETV-ID-ICP-MS 

The data required for the uncertainty estimates were obtained from specially designed 

experiments to include contributions from all aspects of the procedures. 

5.2 Measurement Uncertainty- Conventional Calibration ICP-MS 

The ISO definition of measurement uncertainty is:- "A parameter, associated with 

the result of a measurement, that characterises the dispersion of the values that could 

reasonably be attributed to the measureand."93 The first step in establishing the uncertainty 

of a method is to identify the sources of uncertainty through the construction of a cause and 

effect diagram.99
•
100 (Figure 5.1). The main horizontal line represents the "effect" which is 

the result of the analysis, i.e. concentration of Se in ng g·1
• Factors that control the result 

are represented by the lines protruding from this effect line and are known as the "cause" 

branches. 

The starting point in the construction of a cause and effect diagram is to write out 

the complete equation for the result (Equation 5.1) Methods 1,2,and 3 each involve the 

determination of Se concentration by direct comparison to a calibration curve, therefore all 

of these method are represented by this equation. 

CSe = C'xDx_!_ 
R 

96 
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Here C' is the concentration of the sample solution as read from the calibration 

curve, D is the dilution factor applied to the sample and R is the mean recovery. The 

parameters present in the equation make up the main cause branches of the diagram. Once 

these main cause branches are identified, any additional contributing factors to the 

uncertainty need to be recognised and added to the diagram working outwards from the 

main branches until the effects on the end result become negligible. The diagram can then 

be simplified and factors which are duplicated on different branches can be removed. Each 

of the main cause branches is discussed in detail below. 

5.2.1 Recovery, R 

The overall recovery R for a particular sample is made up of two components, Rm and 

R5 , where R = Rm x R5, where Rm is an estimate of the recovery for the entire procedure, 

including preparation of calibration standards and any dilution of the sample. Rm is ideally 

measured on a suitable reference material, or as a mean recovery over several materials. 

Both the reference value used and the measurement of the recovery on that material, will 

have uncertainties associated with them. As well as determining the variation between Rm 

and the reference value, it is important to consider differences between Rm and the 

recovery for "real" samples. Rs represents this difference between the reference and a 

particular sample. Ideally there would be no difference and Rs would therefore be equal to 

1.0. However different materials may have a different effect and this appears as an 

uncertainty in R5 • Thus u(R5) describes the variation in recovery between the different 

sample matrices and different analyte levels. Hence the uncertainty associated with R, 

u(R), has contributions from u(Rm) and u(R5). 

5.2.2 Dilution Factor, D 

With each of the methods investigated, the samples are diluted prior to analysis. For 

example - with the ETV method all samples are diluted 1 + 19 with I% HN03, and with 
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the HG method all standards and samples are diluted in the ratio 1.25: I during the pre­

reduction stage. There are two contributions to the uncertainty associated with this dilution 

factor, namely; 

1. the uncertainty about the weight of the sample taken 

2. the uncertainty about the final weight of the solution after dilution 

As both of these measurements are weights by difference, with the tare and gross weights 

performed on the same balance within a short period of time, any balance "zero bias" 

cancels. 

5.2.3 Precision, P 

The precision covers terms which contribute to the random variability of the entire 

method. Repeatability data and QC data are excellent sources of information for estimates 

of precision. In general, if an operation was repeated during the period in which the 

precision data were obtained, the run-to-run variability associated with that operation will 

be included in the overall precision estimate and a separate estimate is not required. 

5.2.4 Concentration, C' 

The uncertainty associated with the concentration of the analyte, C', has contributions 

from three major areas; 

1. f(Irer;,Crer;,Isample) - calibration function, where Crer; represents a senes of 

calibration standards and observed intensities Irer;, to the observed sample 

intensity, Isample, to obtain the interpolated concentration value for the solution. 

2. Cstock(w/w)- concentration of the Se stock solution. 

3. Cdil(w/w)- concentration of the diluted Se working solution. 

For this work, the concentration of the I 000 1-1g mr' Se stock solution has to be calculated 

in terms of weight by weight. This is achieved using the density data provided by the 
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supplier of the stock solution. The second source of uncertainty that contributes to the 

uncertainty in C' is the concentration of the dilute working standard, Cdil. from which the 

calibration solutions are prepared. This solution is prepared by diluting the stock solution 

on a weight by weight basis. Any uncertainties associated with the concentration of the 

dilute working standard (apart from run-to-run variations in preparing the standard) which 

need to be considered are the uncertainties about Cstock (w/w) and associated balance 

linearity terms. 

The uncertainty associated with the calibration function f(Ire.fi, Crefi, lsampte) needs to 

be considered. The counts for the standards and sample (l,efi and lsampte respectively) will be 

affected by the instrument performance. A fresh set of calibration standards is used to 

calibrate the instrument at the beginning of each run, thus any errors linked to the 

instrument performance will be the same for both the calibration standards and the sample 

solutions, and should cancel out. Throughout a run of samples, the instrumental drift is 

monitored by the periodical analysis of one of the calibration standards. If a drift of greater 

than 10% is observed then the instrument is recalibrated and the samples reanalysed. A 

term representing the uncertainty due to this maximum permitted drift also needs to be 

included in the budget. The contribution to the overall uncertainty from the run-to-run 

variability of the instrument performance should be included in an estimate of the overall 

precision of the method. It is not therefore necessary to obtain individual uncertainty 

estimates for the components feeding into both the Irefi and I.mmpte branches. 

5.3 Preparation of Uncertainty Solutions 

In order to evaluate the uncertainties of each of the methods, a senes of 

experiments were performed involving the analysis of a range of 'uncertainty solutions'. 

The aim of this study was to minimise the effect of each procedure by using the same 

solutions throughout the work. The solutions were prepared by serial dilution of NIST 
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3149 (Se standard) with l% nitric acid on a w/w basis - details of these dilutions can be 

seen in Table 5.1. The data obtained from the analysis of these solutions were used to 

calculate the uncertainty budget of each method. The experiments involved the repeated 

analysis of the uncertainty solutions (during individual analytical runs and over a series of 

analytical runs, to generate both repeatability and reproducibility data) along with recovery 

information, for use in the uncertainty budgets. The instrumentation, operating conditions, 

reagents, sample preparation and standard preparation used for each of the methods are the 

same as those listed in previous chapters. Details of the ETV-ICP-MS procedure can be 

found in Chapter 2, section 2.3, the ETV-ID-ICP-MS procedure is given in Chapter 3, 

section 3.5, and detai ls of the HG-ICP-MS and PN-ICP-MS procedures can be found in 

Chapter 4, sections 4.3 and 4.5 respectively. 

NIST 3149 = 9.1130 mg g- Se 

Dilution Wt ofStd (g) Wt of Std + 1% HN03 (g) Se Cone. (ng g-1
} 

1 1.1091 100.5297 100,540 

2 0.9760 100.9873 971.67 

2a (uncertainty soln 1) 0.1994 101.2213 1.9141 

2b (uncertainty soln 2) 0.4980 100.2226 4.8280 

2c (uncertainty soln 3) 1.8206 97.7369 18.0998 

Table 5.1 Preparation of ' uncertainty solutions' by serial dilution of NIST 3149 Se 
standard. 

5.4 Estimation of Uncertainty Contributions 

5.4.1 Method Recovery, Rm 

The method recovery is calculated from repeatability data (Table 5.2) - I.e. data 

obtained during one analytical run using the same calibration data. 
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Method 

Mean (CoBs) 
Std. Dev. (soBs) 

Relative s.d. 
n 

1 
HG-ICP-MS 

5.08 
5.17 
5.20 
5.22 

5.168 
0.062 
0.012 

4 

2 
PN-ICP-MS 

4.71 
4.62 
5.10 
4.78 
5.01 
5.03 

4.875 
0.197 
0.040 

6 

3 
ETV-ICP-MS 

4.39 
4.31 
4.36 
4.27 
4.31 
4.33 

4.328 
0.042 
0.009 

6 

Table 5.2 Repeatability data for the analysis of uncertainty solution two. 

This was obtained from the analysis of uncertainty solution two, prepared by 

serial dilution of NIST SRM 3149, with 1% nitric acid. The uncertainty associated with 

Rm, u(Rm), is a combination of the uncertainty associated with concentration of the 

solution u(CRM), and the uncertainty in the mean of the observations. (Equations 5.2 and 

5.3). 

Where:-

R = c obs 

m c~, 

Equation 5.2 

Equation 5.3 

Firstly the uncertainty associated with the concentration of the NIST SRM 3149 stock 

solution used to prepare solution two, needs to be determined. The concentration is 

certified as 9.97mg mr1 
±0.06. The density of the solution is quoted as 1.094g mr1 ±0.002. 

The first step is to convert the concentration of the stock solution from mg mr1 to mg i 1• 
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Ccwtw) = Ccwtv) I density= 9.97 / 1.094 = 9.113mg g-1 Equation 5.4 

The uncertainty of the concentration on a w/w basis is calculated from the uncertainty of 

the concentration on a w/v basis and the uncertainty associated with the density value used 

for the conversion. The uncertainty in the concentration of the solution is calculated by the 

supplier from the equation; 

U = (2Uc + O.OOlY + B) Equation 5.5 

A coverage factor of 2 is assumed (using 95% confidence interval), therefore the 

uncertainty value (0.06) can be divided by 2, giving a value of 0.03 to be used in the 

calculations. The uncertainty associated with the density value is given by the supplier as 

0.002 and is assumed to be a rectangular distribution, i.e. the true density value could fall 

equally anywhere between the stated range of 1.092g mr1 and 1.096g mr1
• To convert this 

to a standard uncertainty the value of0.002 can be divided by the square root of3. 

These two components are combined in the following equation to give the uncertainty of 

the concentration of the stock solution(w/w). 

u(CsTOCK(wlw) ) = (u(CsTOCK(wlv) )J
2 

+(u(STQCKdensity )J
2 

CSTOCK(wlw) CSTOCK(wlv) STQCKdensity 

Equation 5.6 

Therefore:-

u(CSTocK(wtw) ) = 9.113x (
0

'
03

)
2 

+ (O.OOll
5

)
2 

= 0.029 
9.97 1.094 

Equation 5.7 

And hence :- CsTOCK(w/w) = 9.113mg g-1 ±0.029 mg g-1 
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Each of the uncertainty solutions were prepared by serial dilution of the NIST 3149 stock 

solution. The dilution factor is defined as :-

C _ CSTOCK(w/w) X W STOCK 
OIL-

WPINAL 
Equation 5.8 

where WsrocK is the weight of the stock solution taken and W r:JNAL is the final weight of 

the dilute working standard. The precisions associated with WsrocK and WFINAL need to be 

included in the uncertainty budget. Replicate weighings of 1 g and 1 OOg calibrated weights 

gave standard deviations of 0.00006 g and 0.00024 g respectively. Combining these values 

with the uncertainty calculated for the concentration of the stock solution gives the 

following equation to calculate the uncertainty of the d ilute solution, u(C0 1L),:-

(
u(CSTOCK(w/v) )J

2 
+( u(WSTOCK)J

2 
+ (u(WFINAL )J

2 

CSTOCK(w/v) W STOCK W FINAL 

Equation 5.9 

From Table 5.1 it can be seen that two serial dilutions (dilution 1 and dilution 2) of 

the stock solution were prepared initially. Dilution 2 was further di luted to prepare the 

three uncertainty solutions - noted as dilutions 2a, 2b and 2c in Table 5.1. The uncertainty 

associated with each of these dilutions is calculated in turn. 

Dilution 1- 1. 109lg ofCsroCK(w/w) was di luted to 100.5297g with 1% HN03. 

u(C )= 100540x ( 0.029)2 +(0.0006)2 +( 0.00024 )2 Equation 5.10 
DILl 9.113 1.1091 100.5297 

Therefore:- u(CoiL ,) = 319.96 
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Dilution 2- 0.9760g ofDIL 1 was diluted to 100.9873g with 1% HN03. 

( 
319.96 )

2 
(0.0006)

2 

( 0.00024 )
2 

u(C ) = 971.67x + + 
DIL2 } 00540 0.9760 100.9873 

Equation 5.11 

Therefore:- u(ColL z) =3.0926 

Dilution 2a- 0.1994g ofDIL 2 was diluted to 101.2213g with 1% HN03. 

u C = 1.9141 x (3.0926)
2 

+ ( 0.0006)
2 

+ ( 0.00024 )
2 

( DIL2J 971.67 0.1994 101.2213 
Equation 5.12 

Therefore:- u(CmL 2a) = 0.0061 

Dilution 2b- 0.4980g ofDIL 2 was diluted to 1 00.2226g with 1% HN03. 

c 4 8280 3.0926 0.0006 0.00024 
( )2 ( )2 ( )2 

u( DrL2b )= · x 971.67 + 0.4980 + 100.2226 
Equation 5.13 

Therefore:- u(CoiL 2b) = 0.0154 

Dilution 2c - 1.8206 g ofDIL 2 was diluted to 97.7369g with 1% HN03. 

u(Co,L2J= 18.0998x ( 3.0926)2 +(0.0006)2 +(0.00024)2 Equation 5.14 
971.67 1.8206 97.7369 

Therefore:- u(CorL2c) = 0.0576 

As mentioned previously, the data acquired to calculate the method recovery was obtained 

through the repeated analysis of uncertainty solution two. Therefore the uncertainty 

associated with the concentration of this solution, u(CRM), is actually u(Co1L2b) and has a 

value of 0.0154. This and the concentration of the solution, CRM which is 4.8280ng i 1
, are 

the san1e for all methods, but the values for Co8s, s08s and n will vary. These are detailed 

in Table 5.2. This data is used to detem1ine the method recovery for each procedure in 

accordance with equations 5.2 and 5.3 in the following way:-

5.4.1.1 Method 1 - HG-ICP-MS 

R = 
5

·
168 

= 1.0704 
m 4.828 
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u(R ) = 1.0704x (0.0154)2 + 0.0622 
m 4.828 4x5.1682 

Therefore :- u(Rm) = 0.00730 

5.4.1.2 Method 2- PN-ICP-MS 

R = 
4

·
875 

= 1.0097 
Ill 4.828 

u(R )=1 .0097 x ( 0.0154)2 + 0.1972 
m 4.828 6 X 4.8752 

Therefore:- u(RM) = 0.01697 

5.4.1.3 Method 3- ETV-ICP-MS 

R = 4·
328 = 0.8965 

m 4.828 

u(R ) = 0.8965 x ( 0.0154)2 + 0.0422 
111 

4.828 6 X 4.328 2 

Therefore:- u(RM) = 0.00456 

5.4.2 Dilution Factor, D 

Equation 5.16 

Equation 5.17 

Equation 5.18 

Equation 5.19 

Equation 5.20 

With each of the methods considered, the samples are diluted prior to analysis. The 

dilution fac tor is given by:-

Equation 5.2 1 

where Ws is the weight of sample taken and W r is the final weight after djlution. As 

mentioned in section 5.3.1 replicate weighings of lg and lOg weights gave standard 

deviations of 0.000060g and 0.00024g respectively. These values can be used as estimates 

of the uncertainty of the balance used to carry out the di lutions. As different dilutions were 
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required for each of the procedures, the uncertainty estimate associated with the dilution 

factor will be calculated for each method separately. 

5.4.2.1 Method 1 - HG-ICP-MS 

12.5g of sample is mixed with 1 Og of concentrated HCl acid. 

u(D )= 4_828x (0.00024)
2 

+ (0.00024)
2 

12.5 22.5 

Therefore:- u(D)=O.OOOll 

5.4.2.2 Method 2 - PN-ICP-MS 

lg of sample is diluted to 15g with modifier B. 

u(D) ~ 4.828x ( 0 0~006 r + ( 0 0~~24 r 
Therefore:- u(D) = 0.00026 

5.4.2.3 Method 3 - ETV-ICP-MS 

0.2g of sample is diluted to 2.0g with 1% HN03. 

u(D) ~ 4.828x ( 0 000~06)' + ( 0 0~006)' 

Therefore: - u(D) = 0.00145 

5.4.3 Precision, P 

Equation 5.22 

Equation 5.23 

Equation 5.24 

This is calculated from reproducibility data, i.e. data obtained over several runs - and 

compares the relative standard deviations of the results obtained. The reproducibility data 

obtained for the three solutions can be seen in Table 5.3. To calculate the precision of the 

methods over a concentration range from approx . 2-20ng g·1 the relative standard 
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deviations of the data obtained at each concentration are pooled using the following 

equation:-

Equation 5.25 

Where n represents the number of replicate measurements made at each concentration. The 

reproducibility data obtained by each of the methods investigated (Table 5.3) wi ll be 

evaluated in turn. 

5.4.3.1 Method 1 - HG-ICP-MS 

2 x 0.057 2 + 2x 0.0052 + 2x0.1692 

RSD(POOL) = 
2 + 2+2 

Equation 5.26 

Therefore:- RSD(POOL) = 0.0989 

5.4.3.2 Method 2- PN-ICP-MS 

RSD _ 2 x 0.1302 + 2x 0.031 2 + 2x0.0222 

{POOL) - 2 + 2 + 2 Equation 5.27 

Therefore:- RSD(PoOL) = 0.0790 

5.4.3.3 Method 3- ETV-ICP-MS 

RSD _ 5 x 0.071 2 + 5x 0.0402 + 5x 0.0162 

{POOL) - 5 + 5 + 5 
Equation 5.28 

Therefore:- RSDcPOOL) = 0.0510 
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METHOD 1 2 3 
HG-ICP-MS PN-ICP-MS ETV-ICP-MS 

Solo. 1 2.11 1.34 1.76 
(1.910 ng g"1

) 2.03 1.74 1.76 
2.00 1.55 1.48 

- - 1.80 
- - 1.75 
- - 1.80 

Mean 2.05 1.543 1.73 
Std. Dev. 0.057 0.200 0.122 
Relative S.D. 0.028 0.130 0.071 
Solo. 2 5.20 4.53 4.30 
(4.828 ng g"1

) 5.22 4.28 4.51 
5.17 4.32 4.83 

- - 4.55 
- - 4.59 
- - 4.41 

Mean 5.20 4.38 4.53 
Std. Dev. 0.025 0.134 0.180 
Relative S.D. 0.005 0.031 0.040 
Solo. 3 14.9 17.7 16.7 
(18.10 ng g"1

) 12.0 17.1 16.6 
16.9 17.0 16.5 

- - 17.1 
- - 17.0 
- - 17.1 

Mean 14.6 17.3 16.8 
Std. Dev. 2.464 0.379 0.266 
Relative S.D. 0.169 0.022 0.016 

Table 5.3 Reproducibility data for the analysis of uncertainty solutions one, two and three. 

5.4.4 Concentration of the dilute working standard, Cdil(w/w) 

Each method requires the preparation of a series of calibration standards. A dilute 

working standard with a concentration of 10J..lg g-1 was prepared from a 1000J..lg g-1 stock 

solution. The uncertainty associated with the concentration of this dilute standard needs to 

be determined. This is accomplished in the same way as the uncertainty associated with the 

concentration of NIST SRM 3149 in section 5.3.1. The certificate for the stock solution 

used for this work quoted a concentration of 1 004J..lg mr1 with an uncertainty of± 0.5%, 

which is equal to 5.02J..lg mr1
. The certificate also gave a density for the solution of 1.0113 

at 23.3°C , therefore the concentration of the stock on a w/w basis is 992.8J..lg g-1
• As with 
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the concentration of NIST SRM 3149 in section 5.3.1, the uncertainty ofthe concentration 

on a w/w basis is calculated from the uncertainty associated with the density value used for 

the conversion. As before the uncertainty in the concentration of the solution as specified 

by the supplier is assumed to be a rectangular distribution, the standard uncertainty is 

therefore obtained by dividing the stated uncertainty by the square root of 3 which gives 

2.898 ~J.g mr1
• No uncertainty statement for the density was given by the supplier, therefore 

it is estimated as ±0.0001 g cm-3 (i.e., the uncertainty in the last decimal place). Again a 

rectangular distribution is assumed, so this is divided by the square root of 3 giving an 

uncertainty associated with the density of 0.000058 g cm-3 
. 

The uncertainty associated with the stock solution is obtained by combining these 2 

components according to equation 5.6 above giving:-

( ) (
2.898)

2 

( 0.000058)
2 

U CSTOCK{w!w) = 992.8x - - + = 2.866 
1004 1.0113 

Equation 5.29 

Hence:- CsTOCK(w/w) = 992.8J.1g g-1 ±2.866 J.lg g-1 

This stock solution was diluted with 1% HN03 to give the dilute working standard that was 

used to prepare the calibration standards for each method. As with NIST SRM 3149 in 

section 5.3.1, the uncertainties associated with this dilution are accounted for using 

equation 5.9. This gives:-

Working Std Prep = 1.0108g of stock diluted to 102.0025g with 1% HN03. 

u{C ) = 9.84x (2.866)
2 

+ (0.0006)
2 

+ ( 0.00024 )
2 

OIL 992.8 1.0108 102.0025 
Equation 5.30 

Therefore:- u(C01L) = 0.0284 

5.4.5 Instrument Drift 

As mentioned previously m section 5.1.5, since fresh calibration standards were 

prepared daily, any variation in day to day perfonnance of the instrument will be the same 
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for standards and samples and will therefore cancel out. Hence only the variation of the 

instrument performance within a batch of samples needs to be considered. With each of the 

procedures one of the calibration standards is re-analysed at intervals throughout the run. A 

drift of ± 10% is permitted before action is taken, i.e. instrument re-calibrated. The 

maximum permitted drift is therefore ±10%. Since there is no evidence of lower 

probability towards the extremes of the range this can be treated as a rectangular 

distribution and divided by the square root of 3 to obtain the standard uncertainty 

associated with instrument drift, (u(drift)), which is equal to 0.0577 (as a relative standard 

deviation). 

5.5 Calculation of Combined Standard Uncertainty - Conventional Calibration 

To obtain an uncertainty estimate for each method, the individual uncertainty terms 

are combined as relative standard deviations. (The uncertainty contributions and combined 

standard uncertainty are listed in Table 5.4) The combined standard uncertainty IS 

calculated from the square root of the sum ofthe squares of the indjvidual components. 

PARAMETER 1 2 3 
HG-ICP-MS PN-ICP-MS ETV-ICP-MS 

Method Recovery u(Rm) 0.0073 0.0170 0.0046 

Dilution Factor u(D) 0.00011 0.00026 0.00145 

Cone. OfDil Solution u(CmL) 0.0029 0.0029 0.0029 

Precision u(P) 0.0989 0.0790 0.0510 

Instrument Drift u(drift) 0.0577 0.0577 0.0577 

Combined Standard U(Cse) 0.554ng g-1 0.480ng g-1 0.373ng g-1 

Uncertainty 

Table 5.4 Uncertainty budget for the determination of Se by HG-ICP-MS, PN-ICP-MS 
and ETV-ICP-MS. 
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5.6 Estimation of Uncertainty- ETV-ID-ICP-MS Procedure 

The uncertainty of the ETV -ID-ICP-MS procedure is calculated differently from 

the other methods already covered. The combined uncertainty is calculated in accordance 

with the uncertainty propagation law as detailed in the Eurachem guide.94 The following 

equation is used (see Table 5.7 for notation definitions):-

R-R'·RBe 
y B R' my mZc Be 

C;r = Cz ·-·-·----.!:"--

mx mye R' . RBe -R 
B R' X 

Be 

Equation 5.31 

This equation combines factors such as the ratios of the spiked sample and mass bias 

solutions, the standard deviation of repeated ratio measurements and the instrument drift. 

An explanation of how the uncertainty associated with each of the variables present in 

equation 5.31 is calculated, is given below. 

5.6. 1 Uncertainty ofthe masses; m2c, mvc, mx, mv 

As with the determination of the uncertainty associated with the concentration of the 

dilute stock standard in section 5.3.1, the standard uncertainty of replicate weighings of a 

I g calibrated weight was previously calculated to be 0.00006g. All of the weights used in 

this work were in the range of lg, therefore their standard uncertainty is equal to 0.00006g. 

5.6.2 Uncertainty of the mass fractions of the primary natural standard and the spike 

solution; Cz and cy 

High pmity Se pellets were used to prepare the primary natural standard solution used 

for this work. The pellets were dissolved in cone. HN03 and then diluted with water to 

give a solution with a concentration of 6703.4jlg g-1
• This was further diluted to give a 
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final solution with a mass fraction of 3.9343ng g-1
• The mass fraction cz was calculated 

according to: 

Equation 5.32 

where p is the purity of the selenium dissolved, mse metal the mass of metallic Se dissolved 

into m(S1) mass of acid solution, m1, m2 and m3 are the masses of the solutions S 1. S2 and S3 

further diluted to the masses m(Sz), m(S3) and m(S4) to get solutions S2, S3 and S4. The Se 

metal had a stated purity of 0.99999, but no uncertainty estimate for this purity was given. 

The standard uncertainty was therefore estimated at 0.00010. Details of the weights taken 

and their corresponding uncertainties are given in Table 5.5. The data was used to calculate 

the combined uncertainty of Cz , from the square root of the sum of the squares of the 

variables identified in equation 5.32. This gives a combined standard uncertainty of 

0.00080ng g-1
• 

Component Value Uncertainty Concentration Uncertainty 

p 0.99999 0.00010 - -

m se metal 0.61959g 0.00006g - -

m(S1) 92.4292g 0.00024g - -

In[ 1.4959g 0.00006g - -

m(Sz) 100.5854g 0.00024g - -

n12 1.0024g 0.00006g - -
m(SJ) 101.9919g 0.00024g - -

In] 0.4038g 0.00006g - -

m(S4) 100.5619g 0.00024g - -
SI - - 6703~g g-1 0 .9240~g g-1 

s 2 - - 99.69~g g-1 0.0141 ~g g-1 

s 1 - - 979.8ng g-1 0.1486ng g-1 

S4 (= Cz) - - 3.9343ng g-1 0.0008ng g-1 

Table 5.5 Data used to calculate the uncertainty associated with the preparation of the 
natural Se standard, Cz 
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Reverse isotope dilution mass spectrometry analysis was used to detennine the mass 

fraction of the spike. This has already been discussed in Chapter 3, section 3.2.2, and is 

calculated according to the following equation:-

Equation 5.33 

The combined standard uncertainty associated with the spike was calculated in the same 

way as the uncertainty associated with the sample, i.e involved the combination of the 

standard uncertainties ofthe individual quantities present in equation 5.33. 

5.6.3 Uncertainty of the isotope ratios of the primary natural standard and the spike 

material; Rz and Rv 

The IUP AC isotopic composition table87 gives the relative abundance of each isotope 

with their corresponding uncertainties. The isotope ratios were calculated from these 

abundances by dividing the abundance of each isotope by the abundance of the 77Se 

isotope. The IUP AC uncertainties were assumed to have a rectangular distribution and 

were therefore divided by the square root of 3 to give the standard tmcertainty of each 

abundance.{Table 5.7). The uncertainty associated with the isotope ratios were detennined 

by combining the relative uncertainties of both isotopic abundances present in the ratio 

according to the following equation:-

Equation 5.34 

The isotope ratio of the spike Rr, was calculated from the isotopic composition 

stated on its certificate. The uncertainties associated with these abundances were combined 
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in the same way as for the primary standard, to give the uncertainty associated with the 

isotope ratio of the spike. These can also be seen in Table 5.6. 

Isotope Abundance Uncertainty Isotope amount ratio u(RJ 

Natural Primary Standard 

74Se 0.89 0.04 0.1166 0.0033 

76Se 9.37 0.29 1.228 0.0265 

77Se 7.63 0.10 0 

78Se 23.77 0.28 3.115 0.0432 

80Se 49.61 0.41 6.502 0.0845 

82Se 8.73 0.22 1.144 0.0216 

Enriched Spike Solution 

74Se 0.27 0.04 0.0039 0.00058 

76Se 2.60 0.30 0.0379 0.0045 

77Se 68.69 0.40 0 

78Se 17.5 1 0.30 0.2549 0.0051 

80Se 9.28 0.30 0.1351 0.0048 

82Se 1.65 0.20 0.0240 0.0030 

Table 5.6 Abundance and uncertainty data for the natural primary standard and the 

enriched spike solution taken from the IUP AC isotopic composition table87 and the 

manufacturers certificate respectively. 

5.6.4 Uncertainty of the measured isotope ratio of the sample and mass bias blends, R' 8 

and R'sc 

As discussed in Chapter 3, nine repJjcate measurements were performed for each 

solution, and each sample was analysed with a corresponding mass bias solution following 
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the bracketing method detailed by Catterick and workers.89 The standard deviation of these 

nine replicate measurements was used to calculate the uncertainty associated with the 

measurement of the isotope ratio of the sample blend. This involved dividing the standard 

deviation by the square root ofthe number of replicates, i.e. the square root of nine. 

The uncertainty associated with the mass bias blend is calculated from the standard 

deviation of the nine replicate measurements and the difference between the 2 bracketing 

mass bias blend isotope ratio measurements to compensate for drift. 

5.6.5 Uncertainty of the prepared isotope ratio of the mass bias blend, Rsc 

The prepared isotope ratio of the gravimetrically prepared mass bias blend is calculated 

from data for the natural primary standard and the enriched spike solution namely; the 

isotope ratios and the mass fractions of both solutions. The standard uncertainties 

associated with each of these components are then combined to g1ve the standard 

uncertainty associated with the preparation of the mass bias solution, R8 c, which is equal to 

0.00659. 

Due to the extent and complexity of the calculations involved in establishing the 

uncertainty of this IDMS procedure, a spreadsheet has been constructed to assist with the 

calculations. This is presented in Appendix l . Four individual blends of uncertainty 

solution two were prepared. The example given in Appendix A contains data from the 

analysis of one of these blends, however the average concentration and combined 

uncertainty for all four blends is given as the ultimate result and final uncertainty estimate 

for the method. Data from this spreadsheet is also presented in Table 5.7, showing the 

magnitude of each variable contributing to the combined uncertainty and illustrating which 

factors had the greatest influence on the fi nal uncertainty value. 

116 



Standard Relative 
Parameter Value Uncertainty Uncertainty 

Mass fraction of Se in the Cz 3.9343ng g-1 2.20x10-Jng g- 1 5.59xl04 

natural primary standard 
6.00x10-5g 3.19 x10-5 Mass of sample (sample mx 1.8807g 

blend) 
Mass of spike (sample my 1.0012g 6.00x10-5g 5.99x10-5 

blend) 
Mass of natural primary mzc 2.3075g 6.00x10-5g 2.60x 10-5 

standard (mass bias blend) 
Mass of spike (mass bias m ye 1.0094g 6.00x10-5g 5.94x10-5 

blend) 
Isotope amount ratio ofthe Ry 0.0240 3.00x10-3 0.1250 
spike 
Isotope amount ratio ofthe Rz 1.1442 0.0220 0.0192 
natural primary standard 
Prepared isotope amount Rnc 0.3312 6.59x10-3 0.0199 
ratio of the mass bias blend 
Measured isotope amount R 'n 0.3795 2.81x10-3 7.40x 1 o-3 

ratio of the sample blend 
Measured isotope amount R 'nc 0.3750 5.05x10-3 0.0135 
ratio of the mass bias blend 
Mass fraction of Se in the Cx 4.8751 ng g-1 0.11 2ng g-1 2.29% 
sample (blend I) 

Average mass fraction of - 4.8633ng g-1 0.1418ng g-1 2.92% c' 
Se in uncertainty Soln. two 

X 

Table 5.7 Summary of individual uncertainty terms and combined standard uncertainty 

values for the ETV-ID-ICP-MS methods. 

5.7 Comparison of Combined Uncertainty Estimates 

Table 5.8 shows the combined uncertainty estimates for each of the four methods 

investigated. The standard and relative uncertainties (expressed as a percentage of the 

analyte concentration) of each procedure are given. The expanded uncertainty estimate is 

also shown, which is calculated by applying a coverage factor, k, of 2 which represents a 

95% confidence level. 
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METHOD 

Standard Uc(Se) 

Relative Uc(Se) 

Expanded 
U(Cse)1 

1 
HG-ICP-MS 

0.55ng g-1 

11 .0% 

22.0% 

2 
PN-ICP-MS 

0.48ng g-1 

9.60% 

19.2% 

3 4 
ETV-ICP-MS ETV-ID-ICP-MS 

0.37ng g-1 0.1418ng g-1 

7.40% 2.92% 

14.8% 5.83% 

Table 5.8 Standard and expanded uncertainty estimates for methods 1 - 4. 

1 using the coverage factor K=2. 

From the data in Table 5.8 it can be seen that for the conventional calibration methods the 

HG-ICP-MS procedure has the largest uncertainty estimate and the ETV-ICP-MS 

procedure the smallest. By incorporating the technique of isotope dilution analysis a 2.5 

fold improvement in the uncertainty of the ETV procedure has been achieved. The main 

contributors to the uncertainty budget are precision and instrument drift for methods 1, 2, 

and 3 and the measured isotope amount ratio of the sample and mass bias blends with the 

ETV-ID-ICP-MS method. Figure 5.2 and Figure 5.3 better illustrates these parameters with 

a graphical representation of the contributing factors expressed as a percentage of the total 

uncertainty budget. 
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Figure 5.2 Contribution of the different variables to the uncertainty budget; (a) HG-ICP-

MS procedure and (b) PN-ICP-MS procedure. 
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Figure 5.3 Contribution of the different variables to the uncertainty budget; (a) ETV -ICP-

MS procedure and (b) ETV-ID-ICP-MS procedure. 
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A further comparison of the uncertainty estimates of each method is given in Figure 5.4, 

where the average concentration of uncertainty solution two as determined by each 

method, is plotted against the expected value of 4.828ng g-1• The expanded uncertainty for 

each method is represented by the error bars. The values used for the conventional 

calibration methods are the mean results from the reproducibility data detailed in Table 

5.3, and the value used for the IDMS procedure is the average of the four blends as 

detailed in Table 5.7. 
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Figure 5.4 Plot of the results obtained for uncertainty solution two by each of the methods. 
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5.8 Conclusions 

The standard uncertainties of four methods for the determination of Se have been 

evaluated, using data obtained from specially designed experiments. The resulting values 

indicate that for the conventional calibration methods the ETV-ICP-MS procedure has the 

smallest uncertainty. This is most probably due to the minimal sample pre-treatment 

required for this procedure - both the hydride generation and the conventional nebulisation 

sample introduction procedures involve additional sample preparation stages. These 

uncertainty values were based on data obtained for an in-house uncertainty solution 

prepared in I% nitric acid. The uncertainty is likely to increase with the analysis of more 

complex matrices such as sediment, blood or serum. 

Chapter 3 discussed the extension of the developed ETV-ICP-MS procedure to 

incorporate the technique of isotope dilution analysis, and data from the analysis of several 

certified reference materials highlighted the improvements in accuracy and precision 

achievable with this method. This enhancement is further emphasised here, with a 2.5 fold 

improvement in the uncertainty estimate for the ETV-ID-ICP-MS method compared with 

the conventional calibration ETV-ICP-MS procedure. 
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CHAPTER6 

Mixed Gas Plasmas 



6. Mixed Gas Plasmas 

6.1 Introduction 

ICP-MS is a powerful analytical tool which can be used to determine a large number 

of trace elements in a wide variety of matrices (i.e environmental, clinical and foodstuffs) 

both accurately and precisely. However the technique suffers from several inherent 

disadvantages, one of which is the formation of polyatomic interferences particularly 

below m/z 80. 11
•
12 This is especially problematic for the determination of Se whose first 

five isotopes with m/z below 80, all suffer from interference from polyatomic species. One 

way of reducing these interferences is via the addition of a molecular gas to one of the 

three channels of the ICP. Evans and Ebdon37
•
38 successfully reduced the interference from 

CCI+, OCI+, ArC+, ArO+, ArC!+, and ArAr+, at m/z 47, 51, 52, 56, 75, 76, 77 and 78 with 

the introduction of N2 to nebuliser gas. The suggested mechanism for this reduction is 

either the competitive formation of carbides, nitrides and oxides with Ar and Cl, or that 

greater decomposition of the polyatomic species occurs due to an increase in the kinetic 

energy as a direct result of the introduction of the molecular gas. Laborda et al35 also 

investigated the effect of an argon-nitrogen mixed gas plasma, and reported improvements 

in the measurement of 77Se amongst other analytes, in five different reference materials 

using the addition of 8% N2 to the nebuliser gas. The incorporation of nitrogen has not 

been restricted solely to introduction via the nebuliser gas. Lam and Horlick 101 introduced 

nitrogen to the outer gas flow of the plasma and reported a 5-fold improvement in the 

background equivalent concentration for 80Se. Other workers 32
"
34 have studied the effect 

of adding N2 to the outer gas, and have shown significant increases in signal to noise (SIN) 

and signal to blank ratios (S/8) for Se and other analytes in the presence of between 2% 

and 10% N2. 
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The use of helium-argon mixed gas plasmas is also well documented in the 

literature. 102
"
103 He has a higher ionisation energy than Ar, and as such is able to enhance 

the degree of ionisation of difficult to ionise elements. Also, He is monoisotopic, therefore 

the amount of high mass polyatomics experienced with Ar ICPs is automatically 

significantly reduced. 

This chapter covers an investigation taking these experiments one stage further by the 

addition of molecular gases (nitrogen, helium and trifluoromethane) to an Ar ETV-ICP-MS 

instrument, and the effect this has on the signal to blank ratio (S/B) of several of the 

selenium isotopes. 

6.2 Instrumentation 

The ELAN 5000 ICP-MS and HGA 600 ETV unit detailed in Chapter 2, section 2.3, 

along with the operating conditions listed in Chapter 2, Tables 2.1 and 2.2, were used 

throughout this study unless stated otherwise. A gas blender (series 850, Signal, 

Camberley, Surrey, UK) was used to introduce the different gases. Operation of the gas 

blender involves setting a control dial to deliver the required blend of gases. The dial 

settings are obtained from a calibration graph supplied with the equipment (see Appendix 

2). When blending gases with different specific gravities the dial settings obtained from the 

graph will not be correct. The following equation is therefore used to allow for these 

differences in specific gravity. 

Rn n=S+I 

Pn= 'LRn.Cn 
lOO.Cn n=l 

Equation 6.1 

where:- Rn = required % of stream n gas, Cn = correction factor for n gas, S = number of 

controlled streams, S+ 1 = Diluent stream and Pn = Percentage to be set for stream n to 

achieve Rn. 
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During this work nitrogen and helium were each blended with argon. The corresponding 

dial settings needed to deliver the required mixtures of each of these gases have been 

calculated in accordance with Equation 6.1 and can be found in Appendices 3 and 4. 

6.3 Reagents 

All solutions were prepared using high purity deionised water (18MO, Elga, High 

Wycombe, Buckinghamshire, UK). A stock solution (lOOOpg mr1
) of Se (Alfa, Johnson 

Matthey, Royston, UK) was used, diluted with 1% m/m HN03, ultrapure Ultrex II grade 

acid (JT Baker(UK), Milton Keynes, Buckinghamshire, UK) to give a 1 Ong g- 1 working 

standard. Palladium(II)nitrate (Sigma, Poole, Dorset, UK) was used to prepare the 

chemical modifier solution. 

During each experiment the signal intensities of a lOng g-1 Se standard and a I% HN03 

acid blank solution were monitored. The signal to blank ratio (SIB) could then be 

calculated at each stage of the experiment and plotted against the parameter being varied 

(i.e. N2 content, He content, gas flow rate etc). The signal intensities of the 76, 77, 78, 80 

and 82 selenium isotopes were monitored and the SIB calculated using the following 

equation:-

where:-

SIB = l(std)- l(btkJ 

l(btkJ 

l(std) = intensity of 1 Ong g-1 Se standard 

I(blk) = intensity of I% HN03 blk 
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6.4 Nitrogen Addition 

An evaluation of the effect of nitrogen addition on the ETV-ICP-MS system was 

performed via several different experiments. These included; i) N2 addition to nebuliser 

gas - post ETV, ii) N2 addition to nebuliser gas - pre ETV, iii) N2 addition to auxiliary 

(outer) gas, and iv) N2 addition as ETV alternative gas. The fmdings from each of these 

experiments are discussed below. 

6.4.1 Nitrogen addition to Ar nebuliser gas- post ETV 

Nitrogen was connected to the ICP-MS via the oxygen inlet tube and the nitrogen level 

regulated using the oxygen mass/flow controller. AT-piece fitted in the PTFE transfer tube 

allowed the nitrogen to mix with the argon nebuliser gas before arriving at the plasma, i.e. 

after it had passed through the ETV unit. The N2 content was increased from 0-10% in l% 

increments, with the nebuliser gas flow rate maintained at 1.0 l min'1 throughout, and the 

RF power set at 975W. This power setting is lower than the optimum level established 

during the development of the ETV procedure (see Chapter 2, section 2.5.2), but was 

chosen in an attempt to limit the formation of 38 Ar38 Ar+, 38 Ar40 Ar+ and 40 Ar40 Ar+ 

polyatomics due to the reduced ionisation of Ar gas at the lower power setting. The 

formation of these Ar polyatomic species was less important during the work detailed in 

Chapter 2 as the main isotopes of interest. 77Se and 82Se, are not affected by these 

interferences unlike the isotopes under investigation here. As the N2 content increased, the 

signal for the l% HN03 blank solution decreased for the 76, 78 and 80 selenium isotopes, 

but increased slightly for the 77 and 82 isotopes. However the signal for the I Ong g'1 

selenium standard decreased for all isotopes. It was therefore more informative to examine 

the signal to blank ratio (SIB) in order to establish the full effect of the nitrogen. Figure 6.1 

illustrates the variation in the SIB ratio as the nitrogen content increases, for the five 
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isotopes monitored. It can be seen that an increase in the SIB ratio for the 76 and 78 

isotopes is observed as the nitrogen content is increased initially, which then decreases as 

the nitrogen exceeds 5%. The optimum SIB is observed at 4% nitrogen. The plots for the 

77 and 82 isotopes show a large decrease of the S/B ratio with an increase in nitrogen 

content, and little variation in the SIB ratio of the 80Se isotope. This response is generally 

as expected, with the 76 and 78 isotopes showing the greatest beneficial effect due to the 

reduction of the Ar polyatomic interferences on these two isotopes. Despite the increase in 

the SIB ratio of the 76 and 78 isotopes with the introduction of 4% nitrogen to the 

nebuliser gas, the overall sensitivity of the system was greatly reduced - by approximately 

50%. A series of experiments were therefore performed to try and increase the sensitivity 

whilst maintaining the improved SIB ratio. 

6.4.1.1 Variation ofRF Power 

The initial experiment adding nitrogen to the nebuliser gas in the range 0-10%, was 

repeated at a higher power setting of I 075W. This was to establish i) if the overall 

sensitivity could be improved at a higher power setting, and ii) if the optimum SIB ratio 

differed at a higher power setting. Figure 6.2 shows the SIB ratio versus nitrogen content 

for the 76 and 78 isotopes at both power settings of 975W and 1075W and illustrates that 

no significant gains in sensitivity were achieved. In fact, the trends plotted are identical to 

those obtained at the lower power setting, with the optimum SIB ratio again achieved with 

4% nitrogen. 
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Figure 6.1 The effect of nitrogen addition to the argon nebuliser gas on the SIB ratio of the 

76, 77, 78, 80 and 82 selenium isotopes. 
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Figure 6.2 The effect of nitrogen addition to argon nebuliser gas on 76 and 78 selenium 

isotopes at a) 975W RF power and b) 1075W RF power. 
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6.4.1.2 Variation of Ar flow-rate 

In the previous experiment (section 6.4.1.1) the nebutiser gas flow rate was 

maintained at 1.00 1 min-1 throughout. The optimum SIB ratio was observed with the 

introduction of 4% N2 to the nebutiser gas, i.e. 0.04 I min-1
. The nitrogen flow rate was 

therefore set at 0.04 I min-1 and the Ar flow rate was systematically increased from 

0.65 I min-1 to 1.10 I min-1
, thus altering the total nebuliser gas flow rate from 0.69 I min-1 

to 1.14 I min-1
• The effect of this on the SIB ratio of the 76 and 78 isotopes can be seen in 

Figure 6.3. This graph shows that the SIB ratio for both isotopes increases as the flow rate 

is increased from 0.65 to 0.86 I min-1
, then decreases at flow rates above this. The optimum 

SIB ratio for 76Se is observed with an Ar flow rate of 0.86 I min-1
, and for 78Se at an Ar 

flow rate of 0. 76 I min-1
• This equates to a total nebuliser gas flow rate of 0.90 I min- 1 and 

0.80 I min- 1 for the 76 and 78 isotopes respectively, with nitrogen additions of 4.4% and 

5%. These optimum flow rates and nitrogen additions are very similar to those identified 

during earlier work. However there was no improvement in the overall sensitivity of the 

system. 

6.4.2 Nitrogen addition to Ar nebuliser gas- pre ETV 

Nitrogen was connected to the ETV-ICP-MS system via a gas blender, which was in 

turn connected to the instrument via the nebuliser gas inlet. The gas blender allowed the 

nitrogen to be mixed with the argon off-line and one stream of mixed gas introduced to the 

instrument. This was better than the alternative arrangement of adding the two gases 

separately and mixing them via a t-piece as in the experiment described in section 6.4.1. 

The amount of nitrogen added to the argon stream was controlled accurately following the 

procedure for calculating blender settings for different gases as detailed in section 6.2. The 

nebuliser gas flow rate was set at 1.0 I min-1
, and the nitrogen level slowly increased. As 
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the nitrogen addition reached 1.5% the plasma began to flicker and then went out. The 

flow rate was therefore lowered to 0.95 1 min-1 and the experiment repeated, but again the 

plasma could not be sustained with a nebuliser gas containing more than 1.5% nitrogen. 

The flow rate was then dropped further, to 0.80 1 min-1 at which point a stable plasma 

could be maintained. An attempt was made to establish the background signal of the 76 

and 78 isotopes through the analysis of the 1% HN03 blank, however the plasma 

extinguished as the vaporised analyte was swept into it. 

Due to the lack of success with this experiment, no further work was performed. 
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Figure 6.3 The effect of Ar nebuliser gas flow rate on 76 and 78 selenium isotopes, with 

the nitrogen flow rate set at 0.04 1 rnin-1• 
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6.4.3 Nitrogen addition to Ar outer gas 

As with the experiment detailed in section 6.1.2, the nitrogen was introduced to the 

ETV-ICP-MS system via a gas blender. This was connected to the instrument via the outer 

gas inlet. The outer gas flow rate was set at 0.80 I min'1 and the RF power at 1150W, the 

optimum settings established during the development of the ETV-ICP-MS procedure 

(Chapter 2). The nitrogen content was increased from 0 to 5% at I% increments (the 

plasma could not be maintained with a level of greater than 5% nitrogen), and the signal 

intensity for a 1 Ong g'1 Se standard and a 1% HN03 blank measured. The effect of an 

increase in nitrogen content on the SIB ratio for the 76 and 78 Se isotopes are shown in 

Figure 6.4. It can be seen that the SIB ratio for both isotopes increases initially as the 

nitrogen level increases, reaches an optimum with a nitrogen addition of2%, and decreases 

at levels above this. As found previously with the addition of nitrogen to the nebuliser gas, 

no beneficial effect was seen for the 77, 80 and 82 isotopes and these have therefore not 

been plotted. 

6.4.3.1 Variation ofRF power 

The previous experiment indicated improvements in the SIB ratio of the 76 and 78 

isotopes with the introduction of 2% nitrogen to the Ar outer gas. As found during earlier 

experiments (section 6.1.1 ), even though a net increase in the S/B ratio was achieved, the 

signal of the I Ong g'1 Se standard and the 1% HN03 blank was significantly reduced - by 

approximately 50% for 76Se and approximately 20% for 78Se. A similar response has been 

reported by Xiao and Beauchemin33
, and is most probably due to a shift in the initial 

radiation zone (IRZ) away from the sampler cone as a direct result of a decrease in the 

physical size of the plasma. To evaluate if this loss of sensitivity could be regained, an 

investigation into the effect of RF power on the signal was performed. The RF power was 
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increased from 975W to 1150W. A higher signal for both the Se standard and the blank 

solution were observed at lower RF power settings, however the optimum SIB ratio for 

both isotopes was observed at the highest power setting of 1150W (See Table 6.1 ). 
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Figure 6.4 The effect of nitrogen addition to Ar outer gas on SIB ratio for the 76 and 78 Se 

isotopes with an outer gas flow rate of 0.80 I min-1
• 
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'ase 711Se 

RF Power/W Iblk lstd SIB lblk lstd SIB 

975 66480 90380 0.36 15570 77910 4.00 

1000 67480 90570 0.34 16440 79780 3.85 

1050 59890 80600 0.35 15130 68270 3.51 

1100 47570 62460 0.31 13520 56370 3.17 

1150 34310 48340 0.41 8174 44710 4.47 

Table 6.1 Effect of RF power on the stgnals (I, m counts/s) of a I% HN03 blank, a 

I Ong g-1 Se standard and the SIB ratio, for 2% N2 in the Ar outer gas. 

6.4.4 Nitrogen addition as ETV alternative gas 

Nitrogen was connected directly to the ETV unit via the alternative gas inlet. Control of 

the gas flow was then performed using the HGA 600MS software. The flow rate of the 

nitrogen was steadily increased from I Oml min-1 to a maximum of 200ml min-1
• The 

plasma extinguished at flow rates above 200ml min-1
• As with the previous experiments 

described in sections 6.4.1 to 6.4.3, the SIB ratio of the 76, 77, 78, 80 and 82 selenium 

isotopes were calculated at each gas flow, from the intensity of a I Ong g- 1 Se standard and 

a I% HN03 blank. All isotopes followed the same trend, a decrease in both the signal of 

the blank and the lOng g-1 standard with an increase in nitrogen gas flow rate. This also 

resulted in a decrease in the SIB ratio of all of the isotopes as the nitrogen content 

increased (Figure 6.5). The experiment was carried out at a power of I 050W. Previous 

work detailed in section 6.4.3.1 showed that higher RF powers gave rise to an enhanced 

SIB ratio for the 76 and 78 isotopes. A further experiment was therefore performed to see 

if increasing the power with a fixed flow of N2 alternative gas would result in 

improvements in the SIB ratio of any of the isotopes measured. 
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6.4.4.1 Variation ofRF power 

The flow rate of the N2 alternative gas was set at lOOml min-1
, and the RF power 

varied from 900W to 1150W. As with the work described in section 6.4.3.1, the signal for 

both the blank and the I Ong g-1 Se standard decreased with an increase in RF power, with 

maximum signals obtained at the highest power setting of 1150W. However no significant 

improvements in the SIB ratios were observed for any of the isotopes. 
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Figure 6.5 The effect ofnitrogen addition as ETV alternative gas on the SIB ratio of the 

76, 77, 78, 80 and 82 selenium isotopes. 

6.5 Helium Addition 

As with the investigation into the effect of nitrogen addition in section 6.4, various 

experiments were performed to evaluate the effect of helium. These centred around the 

addition of He to both the nebuliser gas and the outer gas. The findings from each of these 

experiments are discussed below. 
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6.5.1 Helium addition to Ar nebuliser gas 

A gas blender was used to mix the He and Ar, which was connected to the ETV-ICP-

MS via the nebuliser gas inlet. The gas was initally set at 100% Ar, at a flow rate of 1.201 

min·1 and an RF power of 1150W. The He was slowly introduced into the Ar stream, from 

0.5% to 3.5%, in 0.5% increments. A decrease in the signal of both the standard and the 

blank were noted, with no improvement in the SIB ratio. The experiment was repeated with 

a maximum He content of 15% but still no improvement in the SIB ratio of any isotopes 

was observed. A final experiment was perfonned with the addition of He from 0% to 

100%. As with the initial experiments the signal intensity of both the standard and the 

blank decreased throughout with no enhancement in the SIB ratio of any of the isotopes -

see Figure 6.6. No further work involving the addition of He to the nebuliser gas was 

performed . 
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Figure 6.6 The effect of helium addition to the argon nebuliser gas on the SIB ratio ofthe 

76, 77, 78, 80 and 82 selenium isotopes. 
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6.5.2 Helium addition to AI outer gas 

As with the experiment detailed in section 6.4.3, the gas blender was connected to the 

instrument via the outer gas inlet, and He gradually introduced to a maximum of 15%. 

Despite a slight increase in SIB ratio with the addition of 5% He, no overall improvement 

was observed with the general trend being that of a gradual decrease in the SIB ratio with 

an increase in He content (see Figure 6.7). 
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Figure 6.7 The effect ofHe addition to AI outer gas on the SIB ratio of the 76, 77, 78, 80 

and 82 Se isotopes. 

Despite the decrease in the SIB ratio with the introduction of He to the outer gas stream, 

the experiment was extended to see if the plasma could be maintained with higher levels of 

He and if optimisation of other parameters could then improve the sensitivity of the 

system. The He level was gradually increased until the outer gas was made up solely of He 
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(i.e. lOO%). Further experiments were then performed to try and improve the overall 

sensitivity of the system whilst maintaining any improvements in the SIB ratio. These 

experiments concentrated on the optimisation of the RF power and the nebuliser and outer 

gas flow rates. 

6.5.2.1 Optimisation ofRF power 

Three experiments were carried out; firstly with I 00% He in the outer gas, secondly 

using 50% He:50% Ar in the outer gas, and finally with lOO% Ar in the outer gas to 

confirm that any observations seen in the first two experiments were due to changes in the 

make up of the outer gas. The nebuliser gas flow-rate was set at 1.20 I min-1 and the outer 

gas flow-rate was set at 0.80 I min-1
• As shown in Figure 6.8 and 6.9, the sensitivity and 

hence S/8 ratio of the 76 and 78 selenium isotopes responds differently to changes in RF 

power in the presence of differing amounts of He in the outer gas. For instance, lower 

power settings of 875W and 950W produced the optimum SIB ratios for 78Se and 76Se 

respectively with a I 00% He plasma, compared with an RF power between 950W and 

I 050W with a 50% He plasma. And as discussed previously (Chapter 2, section 2.4.2) and 

again illustrated here, a higher power setting of 1150W is favoured with a I 00% Ar 

plasma. 
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6.5.2.2 Optimisation of the Ar nebuliser gas flow rate 

The experiment to optimise the RF power detailed in section 6.5 .2.1, highlighted that 

lower RF power settings were required to produce the optimum SIB ratio with He plasmas 

compared with Ar only plasmas. A second experiment was therefore performed to optimise 

the nebuliser gas flow-rate. Helium was gradually added to the outer gas until a 100% He 

plasma could be maintained at a flow-rate of 0.801 min-1
• The RF power was set at 875W, 

identified as the optimum power setting required to produce the maximum SIB ratio for 

78Se with a 100% He plasma (section 6.5.2.1 ), and the nebuliser gas flow-rate was altered 

from 0.85 1 min"1 to 1.30 I min-1
• From Figure 6.10 it can be seen that for both isotopes an 

increase in nebuliser gas flow rate leads to an increase in S/8 ratio with the optimum flow 

rate represented by the maximum SIB ratio falling between 1.20 and 1.25 I min"1
• When 

combined with the ETV internal gas flow rate of 0.30 I min"1
, this results in a total 

nebuliser gas flow rate of between 1.50 and 1.55 I min"1
, a considerably higher flow rate to 

that favoured with an Ar only plasma. 

6.5.2.3 Optimisation of the outer gas flow rate 

Previous studies indicated that optimum signals for 76Se and 78Se were achieved 

under quite different operating conditions with He plasmas compared with Ar only 

plasmas. The flow rate of the Ar/He outer gas itself was therefore optimised. The He 

content of the outer gas was increased until a 50% He plasma was achieved, the RF power 

was set at 950W and the nebuliser gas flow rate was set at 1.20 I min-1
• The flow rate of the 

outer gas was steadily increased from 0.301 min"1 to 2.0 I min-1
• Figure 6.11 illustrates that 

an increase in the SIB ratio of the two isotopes studied was obtained with an increase in the 

flow rate of the outer gas. The optimum flow rate occurred at 1.20 I min-1 for 76Se and 1.30 

I min- 1 for 78Se. As with the nebuliser gas flow rate discussed in section 6.5.2.2, these 
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optimum outer gas flow rates are considerably higher than those favoured with an Ar only 

plasma. 
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Figure 6.1 0 Effect of Ar nebuliser gas flow rate on SIB ratio of 76Se and 78Se with a 

I 00% He plasma. 

2.0 -.-------------------------. 020 

-;- -;-1/) 15 0.'6 ., 1/) - ~ 0 
:0:: 0 
Ill :0:: 

0::: Ill 

~ 
0::: 

c: 
Ill 

10 0.1l ~ c: 
ii5 Ill 

ii5 
Ill 
c: Ill 
Cl c: 

en 0.5 0 .05 
Cl 

g en 
Se 

0.0 000 

0 .30 0.50 0.70 0.90 t 1J 130 150 170 190 

Aow rate (I min"1) 

Figure 6.11 Effect of outer gas flow rate on SIB ratio of 76Se and 78Se with a 50% He 

plasma. 

141 



6.5.3 Comparison of detection limits (He vs Ar) 

In order to quantify any gains made due to the addition of 50% He to the Ar outer gas 

stream, the detection limits for 76Se and 78Se were determined. These were calculated as 3 

times the standard deviation of I 0 consecutive determinations of a I% HN03 blank 

solution. Table 6.2 presents the detection limits for an Ar plasma and a 50% He plasma and 

shows that a 2-fold improvement in the detection limit for 78Se was achieved. 

76Se 78Se 

100%Ar 1 50% l-Ie IOO%Ar 50% He 

sd (n = 10) - 0.85 0.19 0.10 

Detection Limit (3a) - 2.56 0.58 0.30 

Table 6.2 Comparison of detection limits for 76Se and 78Se determined using a 100% Ar 

plasma and a 50% He plasma. 

1 The detection limits reported using a 100% Ar plasma were determined during the study 

detailed in Chapter 2. This initial work did not evaluate the 76Se isotope due to the severe 

interference from Ar polyatomic species, hence a detection limit for 76Se in the presence of 

100% Ar is unavailable. 

This successful improvement in the detection limits with 50% He:50% Ar in the 

outer gas stream compared with I 00% Ar, is most probably attributed to the fact that He 

has a larger ionisation potential than Ar which in turn results in a more ionising plasma and 

an improvement in sensitivity. However He plasmas have a lower gas kinetic temperature 

than Ar plasmas hence a the combination of both He and Ar in the gas streams is favoured. 
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6.6 Trifluoromethane Addition 

Trifluromethane (CHF3) gas has been successfully used as a chemical modifier with 

ETV-ICP-MS procedures104
•
105 where it has been shown to improve signals, reduce 

memory effects, and aid the reduction of matrix components. When CHF3 is heated it 

forms free fluroine radicals which can combine with the analyte under investigation or 

other matrix components to form more volatile fluorides. Truscott and co-workers104 

reported 10-fold and 50-fold improvements in the signal intensities of 238U and 232Th 

respectively, when CHF3 gas was introduced during the pyrolysis stage of the ETV 

temperature program. Alvarado and Erickson105 also used CHF3 as a modifier for the 

determination of uranium and thorium and again reported signal enhancements and 

significant improvements in detection limits. 

6.6.1 CHF3 addition to the Ar nebuliser gas 

Initial work using CHF3 as a gaseous modifier during the development of the ETV 

procedure (Chapter 2, section 2.3) had been unsuccessful with a large amount of carbon 

build up on the furnace tube and ETV contact cylinders, with no improvement in signal. 

The CHF3 was therefore introduced directly into the nebuliser gas stream. The plasma 

conditions were initially set up following the optimised conditions detailed in Chapter 2, 

i.e. RF power 1150W, Ar nebuliser gas at 1.201 min·1 and Ar outer gas at 0.80 I min·1
• The 

CHF3 was gradually added to the nebuliser gas stream. Initially only 0.1% CHF3 was 

added but this resulted in a complete loss of signal. The CHF3 content was then increased 

to I% and a I Ong g·1 Se standard injected, at RF powers of I I SOW and 1 OOOW, but this 

again resulted in a complete loss of signal. As with the work performed earlier, a large 

amount of carbon was deposited around the end of the injector and on the torch and cones. 
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This proved difficult to remove. Due to this lack of success no further work was 

performed. 

6. 7 Conclusions 

The work detailed in this chapter, has looked at the potential role of mixed gas 

plasmas in the determination of Se, and in particular the effect of combining nitrogen and 

helium with a conventional Ar plasma. The gases have been introduced via the nebuliser 

and outer gas streams, and as an alternative gas stream through the ETV instrumentation. 

The principal aim of this work was to reduce the Ar polyatomic interferences on the 76 and 

78 selenium isotopes. Experiments with nitrogen addition via the nebuliser, outer and ETV 

alternative gas streams were favourable with a significant decrease in the background level 

of a I% HN03 blank solution. This may be due to the competitive formation of ArN' 

resulting in a reduction in the formation of ArAr+ and hence a decrease in the background 

levels for the 76 and 78 selenium isotopes. A second explanation may be that a reduction 

in the ionisation temperature of the plasma on the introduction of nitrogen brings about a 

reduction in the intensities of the polyatornic species as they require more energy for 

ionisation than the analytes of interest. However despite the successful reduction of the 

background signals the overall sensitivity of the system was significantly compromised. 

Similar experiments were then performed with the addition of He to both the 

nebuliser and outer gas streams. The introduction of He to the nebuliser gas stream was 

unsuccessful with a significant decrease in the signal of both a I% HN03 blank solution 

and a 1 Ong g·' Se standard with no improvements in the SIB ratio of any of the isotopes 

monitored. Combination of He with the Ar outer gas stream was however more successful. 

As with the earlier experiments a decrease in both the blank and Se standard signals with 
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CHAPTER 7 

Conclusions and Future Work 



7. CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

The aim of this study was to evaluate the analysis of both environmental and clinical 

samples using ICP-MS instrumentation for the determination of total selenium. Selenium is 

an essential trace element whose presence in the body above or below an optimum level 

has been linked with numerous health implications such as heart disease, rheumatoid 

arthritis, cirrhosis of the liver and cancer. Poor sensitivity and severe interferences 

resulting from both the sample matrix and the argon plasma hamper the measurement of 

this analyte by ICP-MS making it difficult to achieve precise and accurate results. The 

purpose of this study was therefore to investigate ways of overcoming these analytical 

problems with a view to improving the methodology currently available for the 

determination of Se in both environmental and clinical samples. 

During this work a novel method for the interference free determination of selenium 

by ETV -ICP-MS has been developed. Many of the inherent problems associated with the 

measurement of this analyte by ICP-MS are eliminated with the application of the carefully 

optimised ETV temperature program and modifier system. Through the further 

development of the procedure to encompass the technique of isotope dilution analysis and 

the rigorous optimisation of each parameter to achieve the optimum isotope ratio 

measurement, results of the highest accuracy and precision have been achieved. This is 

demonstrated through the analysis of several certified reference materials where the 

significant improvements in accuracy and precision achievable with the IDMS procedure 

compared with the non-ID MS procedure are confirmed. 
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The significant advantages of the developed ETV procedure have been further 

illustrated through comparison with two established techniques (hydride generation and the 

use of organic solvents with pneumatic nebulisation) traditionally employed to overcome 

the interference issues associated with the determination of selenium. The comparison 

covered all aspects of the analytical procedures such as interference removal, sample pre-

treatment requirements, overall analysis time, analytical performance characteristics and 

uncertainty. Similar performance characteristics such as stability, linearity and detection 

limits are achievable with each of the methods. The most significant differences were with 

the sample pre-treatment requirements and speed of analysis, with the ETV procedure 

having the simplest preparation stage and the fastest total analysis time. The advantages of 

this straight forward approach are further reflected in the comparison of the uncertainty 

estimates where the uncertainty for the ETV procedure is significantly lower than the 

estimates determined for both the HG and PN sample introduction methods. 

The method comparison included an evaluation of the accuracy and precision of each 

procedure through the analysis of four certified reference materials. Good results were 

obtained with all of the methods with the majority of the results falling within the certified 

limits. The best results with the smallest uncertainty were obtained with the ETV -ID-ICP-

MS procedure illustrating the improvements in accuracy and precision that can be achieved 

with this technique. 

An investigation into the effect of combining nitrogen and helium with a 

conventional Ar plasma was also undertaken. The gases were introduced via the nebuliser 

and outer gas streams, and as an alternative gas stream through the ETV instrumentation. 

Initial experiments with nitrogen addition via the nebuliser gas were favourable with a 

significant decrease in the background level of a I% HN03 blank solution with the 

introduction of 4% N2. However closer examination of the signal obtained for a 1 Ong g·1 
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Se solution indicated that this also decreased in a similar manner. Further work involving 

N2 addition to the outer gas and ETV alternative gas streams was equally unsuccessful with 

a significant decrease in the background levels of the 76 and 78 isotopes, resulting in a 

significant compromise of the overall sensitivity of the system. 

The introduction of He to the nebuliser gas stream was also unsuccessful with no 

improvements in the S/B ratio of any of the isotopes monitored. Combination of He with 

the Ar outer gas stream was however more successful with improvements in the S/B ratios 

of both the 76 and 78 isotopes. Optimisation of the individual plasma parameters enhanced 

the SIB ratios further resulting in a 2-fold improvement in the detection limit of 78Se with 

50% He in the Ar outer gas. 

Overall this investigation demonstrated how the introduction of both N2 and He gas 

to an Ar lCP can significantly reduce the background levels of 76Se and 78Se due to 

interference from Ar polyatomic species, and how careful optimisation of the plasma 

conditions can result in improved detection limits. 

7.2 Future Work 

The use of mixed gas plasmas for the elimination of argon polyatomic interferences 

produced some encouraging results with the introduction of nitrogen to the nebuliser gas 

stream and helium to the outer gas stream. An extension of this work to investigate the 

effect of adding both of these gases to the individual gas streams simultaneously would be 

advantageous, i.e adding 4% nitrogen to the argon nebuliser gas and 50% helium to the 

outer gas. This could build on the improved detection limits already achieved with 50% 

helium in the outer gas by further reducing the intensities of the polyatomic species due to 

the lower ionisation temperature of the plasma in the presence of nitrogen. 
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An alternative approach to interference elimination would be to use a double­

focusing magnetic sector ICP-MS. This technique allows operation in much higher mass 

resolution modes than conventional quadrupole instruments, and as such permits resolution 

of the analyte of interest from the interfering species. For the determination of selenium, 

this would need to be performed in the highest resolution mode possible, as the 76, 77, 78 

and 80 isotopes require resolutions between 7000 and 9500 in order to achieve separation 

from the major argon polyatomic interferents. This could potentially allow for the 

interference free determination of the more abundant isotopes thus leading to 

improvements in detection capabilities. However sensitivity problems due to low ion 

transmittance would have to be addressed. 

The advent of the new generation of ICP-MS instruments equipped with either a 

collision cell or a reaction cell provides an alternative approach to interference elimination 

that could also be considered. Elimination of the argon polyatomic species may be 

achieved by gas phase chemical reactions and/or collisional dissociation with the 

introduction of a gas such as helium, hydrogen or methane. This provides the potential to 

analyse the most abundant selenium isotope, 80Se, which suffers from major interference 

from the 40Ar40Ar+ polyatomic species. The interference free determination of this isotope 

could lead to dramatic improvements in the detection limits provided by current 

procedures. 
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Appendix 1. Excel spreadsheet for the calculation of the mass fraction of Se in 

uncertainty solution two and the associated standard uncertainty as determined by 

method 4 (ETV-ID-ICP-MS.) 

Excel Spread Sheet to ca lculate seleniu m concentration by botopc Dilu tion 81Sc!"Sc 

I . Spreadsheet and Sample Details 

Sample ID: QC 2 
Date analys< 21105/1999 
Analyst: J. Turner 

2. Isotopic composition of the materials 

"se 76Se 
Accurate mass 73.922477 15 9t92 t4 

Natural standard ll, z ll zz 
IUPAC data /1 iZ 0 . 11 66 1.228 

standard uncertainty 0.0033 0.027 

Spike R,y lilY 
Se spike /{ i V 0.00393 0.0379 

standard uncertainty 0.00058 0.0045 

3. ICI'-MS Counts for the Sample and Mass Bias Solution 

Isotope 

•lse 
77Se 

RSD ratio 
ratio 

Mass bias 

Leading 
Mass B ias 

4927 

13214 
3.92 

0.372862 1 
0.8882337 

Sample blend ratio 

Mass bias blend ratio 

4. Concentrations 

Natural standard cL 

Spike 

standard uncertainty 

Cy 

standard uncertainty 

5. Masses used for the b lends 

mass sample m r 

standard uncertainty 

mass spike m r 

standard uncertainty 

True ratio 

Sample 

5852 

15419 
2.22 

0.37953175 

R's 0.37953 

/1' Be 0.3749604 
sl dev. drif -1 .2E-03 

3.9343 ng/g 

0.0008 
2.592 ng/g 

0.0022 

sample blend 

1.8807 g 
0.00006 g 

1.00 12 g 
0.00006 g 

0.33 t 1887 

Data set: 

Date processed on sprcadsheet : 

11Se 
76 9t991 s 

/I JZ 
I 

0 

RJY 
I 

0 

78Se so se 

77917J10 79 916522 

Ru ll sz 
3.115 6.502 

0.043 0.0 65 

R4Y Rsv 
0.2549 0. 1351 

0.005 1 0.0048 

Trail ing 
Mass Bias 

5220 

13844 
3.67 

0.3770587 
0.878348 

standart uncertainty 

standart uncertainty 

RSD. repeatability 3.92 

Check unit 1 0.0498265 nmoVg 

1.476E-05 

0.0334793 nmoVg 

2.97E-05 

mass standard m l.c 

standard uncertainty 

mass spike m re 
standard uncertainty 

standard uncertainty 0.0065927 

6. Fina l calculation of elementa l Se concent ration in the sample 

•lse At. weight 
81 916700 

R 6 z=Rz 
1. 144 78.960 
0.022 0.0 17 

R6Y 
0.0240 77.421 
0.0030 0.020 

number of runs 
9 

0.0028085 

0.005047 

Check unit used 

mass bias blend 

2.3075 g 
0.00006 g 

1.0094 g 

0.00006 g 

Concentration of Se in sample 4.875074 ng/g standard uncertainty 0. 1117049 ng/g RSD(%) 

!variable c z 
Budget(%) 0.0079 

m r 
0.000 

m, 
0.001 

IIIJc 

0.00 1 
lllzC" 

0.000 
/{ I' 

0.003 

150 

11 z 
0.003 

11 Re 

0.003 
fl' B 

23.205 

I: Rzi 

13.1056 

I: Ryi 

1.4558 

2.29 1 

// 'Be 

76.776 



Appendix 2. Graph to calculate dial settings for the Series 850 Gas Blender. 
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Appendix 3. Series 850 Gas Blender Settings- Argon: Nitrogen Blends 

Rn Cn %Ar CFAr 

0.09 1.032 99.91 0.86 
0.10 1.032 99.9 0.86 
0.20 1.032 99.8 0.86 
0.30 1.032 99.7 0.86 
0.40 1.032 99.6 0.86 
0.50 1.032 99.5 0.86 
0.60 1.032 99.4 0.86 
0.70 1.032 99.3 0.86 
0.80 1.032 99.2 0.86 
0.90 1.032 99.1 0.86 
1.00 1.032 99.0 0.86 
1.50 1.032 98.5 0.86 
2.00 1.032 98.0 0.86 
2.50 1.032 97.5 0.86 
3.00 1.032 97.0 0.86 
3.50 1.032 96.5 0.86 
4.00 1.032 96.0 0.86 
4.50 1.032 95.5 0.86 
5.00 1.032 95.0 0.86 
5.50 1.032 94.5 0.86 
6.00 1.032 94.0 0.86 
6.50 1.032 93.5 0.86 
7.00 1.032 93.0 0.86 
7.50 1.032 92.5 0.86 
8.00 1.032 92.0 0.86 
8.50 1.032 91 .5 0.86 
9.00 1.032 91 .0 0.86 
9.50 1.032 90.5 0.86 
10.00 1.032 90.0 0.86 

Rn = required % of stream n gas (N2) 

Cn =correction factor for stream n gas (N2) 

Pn = % to be set for stream n to achieve Rn 
CF Ar = correction factor for Argon 

Rn.Cn Pn Dial setting 

86.02 0.075 17.98 
86.02 0.083 17.95 
86.03 0.167 17.70 
86.05 0.250 17.52 
86.07 0.334 17.37 
86.09 0.417 17.25 
86.10 0.501 17.15 
86.12 0.584 17.07 
86.14 0.668 16.98 
86.15 0.751 16.92 
86.17 0.835 16.85 
86.26 1.254 16.55 
86.34 1.673 16.32 
86.43 2.094 16.10 
86.52 2.515 15.95 
86.60 2.937 15.73 
86.69 3.360 15.57 
86.77 3.784 15.40 
86.86 4.208 15.25 
86.95 4.634 15.10 
87.03 5.060 14.93 
87.12 5.487 14.77 
87.20 5.915 14.60 
87.29 6.344 14.47 
87.38 6.773 14.35 
87.46 7.204 14.20 
87.55 7.635 14.10 
87.63 8.067 13.95 
87.72 8.500 13.87 
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Appendix 4. Series 850 Gas Blender Settings- Argon:Helium Blends 

Rn Cn %Ar CFAr 
0.10 2.65 99.9 0.86 
0.20 2.65 99.8 0.86 
0.30 2.65 99.7 0.86 
0.40 2.65 99.6 0.86 
0.50 2.65 99.5 0.86 
0.60 2.65 99.4 0.86 
0.70 2.65 99.3 0.86 
0.80 2.65 99.2 0.86 
0.90 2.65 99.1 0.86 
1.00 2.65 99.0 0.86 
2.00 2.65 98.0 0.86 
3.00 2.65 97.0 0.86 
4.00 2.65 96.0 0.86 
5.00 2.65 95.0 0.86 
6.00 2.65 94.0 0.86 
7.00 2.65 93.0 0.86 
8.00 2.65 92.0 0.86 
9.00 2.65 91 .0 0.86 
10.0 2.65 90.0 0.86 
11.0 2.65 89.0 0.86 
12.0 2.65 88.0 0.86 
13.0 2.65 87.0 0.86 
14.0 2.65 86.0 0.86 
15.0 2.65 85.0 0.86 
16.0 2.65 84.0 0.86 
17.0 2.65 83.0 0.86 
18.0 2.65 82.0 0.86 
19.0 2.65 81 .0 0.86 
20.0 2.65 80.0 0.86 
21 .0 2.65 79.0 0.86 
22.0 2.65 78.0 0.86 
23.0 2.65 77.0 0.86 
24.0 2.65 76.0 0.86 
25.0 2.65 75.0 0.86 
30.0 2.65 70.0 0.86 
35.0 2.65 65.0 0.86 
40.0 2.65 60.0 0.86 
50.0 2.65 50.0 0.86 
60.0 2.65 40.0 0.86 
70.0 2.65 30.0 0.86 
80.0 2.65 20.0 0.86 
90.0 2.65 10.0 0.86 
100 2.65 0.0 0.86 

Rn = required % of stream n gas (He) 
Cn = correction factor for stream n gas (He) 
Pn = % to be set for stream n to achieve Rn 
CF Ar = correction factor for Argon 

Rn.Cn Pn Dial setting 
86.18 0.033 18.20 
86.36 0.065 18.02 
86.54 0.098 17.90 
86.72 0.131 17.80 
86.90 0.164 17.72 
87.07 0.197 17.62 
87.25 0.230 17.55 
87.43 0.264 17.50 
87.61 0.298 17.42 
87.79 0.331 17.37 
89.58 0.676 16.98 
91 .37 1.034 16.67 
93.16 1.406 16.50 
94.95 1.792 16.25 
96.74 2.190 16.05 
98.53 2.603 15.90 
100.3 3.029 15.70 
102.1 3.468 15.54 
103.9 3.921 15.35 
105.7 4.387 15.15 
107.5 4.867 15.00 
109.3 5.360 14.80 
11 1.1 5.867 14.60 
112.9 6.388 14.45 
114.6 6.922 14.37 
116.4 7.469 14.12 
118.2 8.030 13.97 
120.0 8.604 13.80 
121 .8 9.192 13.60 
123.6 9.794 13.45 
125.4 10.41 13.33 
127.2 11 .04 13.20 
129.0 11 .68 13.05 
130.8 12.33 12.90 
139.7 15.82 12.20 
148.7 19.63 11 .50 
157.6 23.79 10.90 
175.5 33.11 9.50 
193.4 43.79 8.50 
211 .3 55.82 7.30 
229.2 69.19 6.05 
247. 1 83.92 4.80 
265.0 100.00 <3.0 
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The use of ETV -lCP-MS for the determination of sdeniwn in serum 'I" t ~ 
Jusllnc Tutn«.9

" ~ltu.J.IIIII.• E. ll)lltl Erllns' and Bttt Fnlnn11n" .bJ!Sol 
Mtjtt1l 
Alant 
~y 

"LGC {T~dtllllf:/011 ) LJcl .. Quwns Routl Tl!dtltugton. Mtdcii~Jex UK. TIV/1 OLY 
•uutrer.\U.r of P[JmtJUih. I>ef'(irln11111 of l!nrlrt!IUIU'ntal Sciences. nmke Cirrus. P~rmouth. nemn 
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·nt(' cJc:-vtloptnculol'"' non~f prtX'\."'llurr for the areurdte d('tcm•in.ufonl)f )('rnium ill stnun usins t'k.\.:trolhcmud 
171 pori.<ation indto:liwly toupk.'ll plai111•1 llliiSS SJX'CIIIllh~t~· I loiV-ICP-~IS I isd.:!so:ribt'<l. 1~ f'WI>OS..'<Imcthl>d 
<limin.1to the rwJ li>r .1 1<-ni\lhr s.unple Jipcst ion pnX\.'\lurc 1.1 n.\juin:mcnt \\ith milnr 111\!lhods for tl~ anal}sis of 
biolol!ir.ll s.ompl-sl . ucilisin~ n simple I - 19 dilt11ioo of the ;;orum uith 1% nitric >odd. M1111) oftl>e int<>tftn:n""" 
n<)rmllll)' asoocinted "''" thcdctcnninntioo of>tfenium by ICP-MS an: stK\.'1.-.sfullydiminat<d "' ith t".ln:ful 
oplimis:wic-n of the ETV tempcrJtUR' pr<'l!mn and modifi~ srstt'll\. Al\:ll)'t~:;tl ctlar.~cteristks for ' 'Se. "'Se. "~ ~nd 
"S.: •~ n:port<-d. indu<lill! dett'\.il;>tl limits I :la blank I of apprMhnatcly 0.1 np 11- 1 for " Se ~ 11<l "Se. Sh<>rt· ;111\llon~­
t<nn reprodt~ibilil)' dnto 1>..1"·'~" n w1d ~.9% and 3.2 •nd 3.8% ( RSDl lor ''Se ond 11Sc, R'<pcOirclr. ore <M\\1\. 
Tlt~ atx1Jr:oty c-.f tlle method. \\hkh inducbllc as an internai>I;IIK~dnl. " "' dtmOl\Stmtc<l v.11h thi! anal)sis <>f thn:'< 
itucrnal quail!)• <onllul """~"" a1o.ltl.., e<rtdkd rcf<"'""" nu1~1ial NIST Sit M 1 59~ ( borin< scru1•1. ltc<ulu \\i thln 
I {f);, of the tar~t 1.1luc wcr< ·"" " ' ."'' fo1thrre ,,,. tl.., f"ur isolo.lp::. Sludied. "i lh •~ghllr wo~>~: result> for "' Se "" in~ 
ro I he- lurp: iniC'ffefCntX' rrom ar)!on H<.klu;t ions on •his i~lopc:. i>n:liminal) wo rk innlh ing ll"a: uddilion Clf nil ro~n 
h' the argon ucro!o<ll <:"-.rrkn f'lJ wu ~o su(\~iul in redu..lny IIJt: J\rAr •H~rfcrcr,;c at mf: 78. 

lnuoducllon 
Sdenium h. ;1n ~nliul l r.t« drm.:nl whruc irwolrC'm.:nt in 
hulnilll he,11lh ;md 11~11 being has b«-o tne <-vid.'fll in rcwnt 
)<~rs. Sin« the 1930s lh<' pcrccpri<>n of «.~cnium h;os yl~l< 
t1H\'U,gh u uuml>:r of dlallf\.~ n;undy frvm b...~iuy <.'ons•ckn.'d 
i t toxic tl{'llh."nt. f(\ a can.:ill\'gcn . h" un o"SS:nlial d\·n.._,.., and 
tl-.:n in tlk.· l?t.Cb au,l 19 70s lt) t.....-int! ~u.l:;idtn."ll ~n anti~ 

<.·.:trr irh."'pcn.' thus illustntin~ the Jn;u~iiMI 'HITi.TCilC\..'\ ~tWI.'\."11 
tl'k:'r...ttlCUtic Jnd toli.: cfK"Ct. Roth ;m C' \"~h\!' and insuna.-;eu t 
int..;kc t\( liCienium ..... dn hnv-t ~rious he.Jith implicati()flj. 
Sc:ltnttlnl 10:\h.:it r . seknl,sis. ll."iill be fatttl. "ilh s.~ mrtoms :mch 
:IS hair illld nail loss. tOillh &..'''~· skin ksions -.nd. in ~\'ere 
c.:~tS6. i1b11onn:1litks of the ncnuus S)Sh.'ln. Jkl"kl."tl<:'ICS htwr 
"'-'Cn linked with cor"na~ hi.•art disease. acute Hl)''-',l(,:,udl:tl 

inl~ •rrti l'h. cirrht>ii5 ,,f the lin·r1 :·md " ..... " "'-'tr of scv~ral m.:~or 
orpn ns including the: lnr~ intestine. hre~.5ol. (lvarr a nJ lun~s . 

Considering the lk"•lth imrlicntlotu dctn iled und Ilk' narmw 
di1 ido betw<-,n defic~n .. ~ und loli<:it) . it iH~SS<1llh1l tlr•t good. 
OK'\:'llfill~ and rdhtblc mctl10dJ of ;mtl} ~:, ar~ l.l\1lilabk.•. 

ICI'-MS is wid<l) u..O in man) routio"' :tnalytic:o l l•boo;l ­
h>riL-s. Ad\',uH,1£i."S ''''t'r rh ;tl t\."Chniqtk"S il'~:lud C" lo.,.. <~I!Xti('ln 

limit s ond ~J'IIt."'«l of nunlysis. ll o" t-\'i.' r no1 all <klcnuinJiivns 
;m~ saraip:hlf'\f'"'l nJ. in f'.'Uikular. llh.' dt'ttrminalion o r 
,-.,k'llium in $Ctllm is colnpli,ooted I>)· S.."lentl htclors. The 
,.,nsit ivil) achkv«l 11i lh t<>nwntional ICI'-MS is ~enerall) 
p.>ur: o1•lng to the hl!'h fit>t Ionisation cnc'l'r of sdenluon. 
on I) Jl)~{. ionha\ion I) m:-hit-\100 "tth an ;,u~on plasn1n;J 
~'-trO'SC\l('Mc interft.·Jclle"CS fitU~-d h} lht\ formnlion of aryon 
pt.'llyatomit SJX."Cit,-S, l.r .. tOAr, ~CI ,,n ~ s..-: and .,;\rJI Ar on 
15~· . k·ad w high ~tck~r,,und l\\'\! l.s. l''loO ' d~h .. octi~Jn limiu :~nd 
ullimatcl) bit1~ anulytlc~ l t<'Slllt.s: ;md the p~n« oi htgh 

tPrHtnlN 11 1 lht Ninth Bi.:tmil•l Na tioJnltl t\lo mn: Sp«"tr~'PY 
Srmpo<ium (8NASS). Both. LIK. July 11-10. I~S. 
; '.: Cop)'ri~h1 LGC 1 Trddio1slon) L1 J. 19\JS. 

IC'\ \.··b of ""..,mponents such i.U: S(l(lium and ''rgunk Ct' lnfh) tlltb. 

fl.,r imtcuu:c protdns. C:illl l1tUSC si~ual SUJ>t'fc-ssion. S(\'Cml 
1\ 0 ilC"'A 10 hnr.: us..'ll hydride pcncr"lion I<'Chniqu.:s to on:r­
cvmc $OfilC' or the probJ<-nU, ('j ft":l(C"f ~m:iti\if~ i\ Hllnin~blc 
owinp loan irnpro\'\-d n mpk- dcli \'er~ n1le. and re-duction <ll' 
sp«IIUS.:"<>pk and non·Sf'.'(Clr=opic interf•rcn<~• is arhie1i.'d 
a> ;o r<-sult of >nalyt< re1noml fhJtll the mHtri.\ """"'w 
k."gth) S3mrlc pr•par.uitm pruc<duros arc pcnct'al) rcqulr.,.j. 
IO brt"..tkdown organic st>l~lliUfll ill thr IHillfil. ;md (o r the 
(\:Jil\\~rslun of Se'1 into Se" ' prior to ~.·ne m lion of th.: h)l.lri&. 
,\ no thcr option fo>r tl>e rtoducli<)ll of int<rfcrrntes bm>ln:s the 
aJdition I)( :on orj!anic soh-cm to '"" dih>c'l\1 matril wll<.'ll 
usbtj! c0111·entioll.11 nebulis.11i<)n ICI'-MS." " althou!'fl prob­
l'rlu of t,.;,buliit"r bl<>do:a~ as<ociut<-J ,.·nh the vhmu• >crulll 
lnillliA >lill nc.'Cd to be <Jddi\'S«od . El..:trothcrmal 1al>o1is.1tion 
~ r:·rv ~ s.•mple iu lrudtK.1ion is :m ahl'f111llh'C upproa<:h. wi1h 
thi.: J)!.}Wntinl to eliminate ~Ill~ of 1hc ('01).1tDmic intcrfcreiK."CS 
~•l w.hf) n~ntionc.•d. Othtr ru..h',1nla\1,':S ('1\ t"r l"'il\'cntioual and 
h)dri<k ~~~~ration proctdur<~ indud< 5tn:tll smnpk sizes 
( .'>- 5ll 111 ). minimol S<lntpfc r rH"'alm<nl. illlpr<w.:<l stnsillll l)' 
uHI lo" ;ob>olutc lkt<-.:li<lll tionlts. 

Thi; J\'1[\:r d....-.-ibes t h~ dcl-d oront-nt of a11 ETV·ICI'·MS 
pi'OC'\.'\.Iure f..>r the tlclcnnino1tion of Se in scrum. OplimiJ..1tion 
of tl>e ETV t<tnpemture pru~ram btdudin! tl.., no«-~~ful 
rli1ninatlon of S<"\'cr~l intcrferc1n'!. ll>p.<1l>er with <">111ootiun 
" f th< pro.:cJu"' using a ccnilloett rei'-'"'"'~ matrrial. i< 
~s.:ri b..'<l In d<tall. Pr~limln• ~· liN k nilng ·'" N,-i\r n~.,<J 
rlusma £!3) lO negat~ :\rAr pt)l) ii iOilliC inh.•rfC1'ci'K\.~ b· a b:l) 
lli~\l.s..'\1. 

EXIK'fllll~nhtl 

lnslriiK111allon 

An [I.A~ :'OOOA ICI'-MS insuumcnt roupltd to an IIGA 
HIOMS ET\' unit with un ,\S-60 uuWS<1mrkr attad1m~tll 
(l'rl~in- IJm<r. llc:ICOII<Ikkl. UK 1 II'H us..'\1. A 1~0 <'111 loll~ 

J . Arn1l. At. Spt'<tnwn., IIJ99. 14.121 - IM Ill 
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TaUt I ICP-MS opto~tin& roadiliom 
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modkr. 

pk"l""C of PTFE tubins 10.6cm td ) "a~ lli('\1 to \..\ , lll h."\."1 t l~ 

furmK't!' h."' the IC Jl-MS. Opcmti11g " ' 'ndit ions rl,r th<" ICP·MS 
in s lfUI I1COI '4 1\d lh(' ETV k,n (XniiUIC rmgr.llll a h.· siH·II Ill 

Tabl~ I mtd ?. ""'f'<'~i l"el)'. Optimbmic•n c•f th~ f\P. MS 
instnuucnt (Lr .. lr:M, ii.~U in~s.. re"Sellution. o\ i di! unJ douhlr 
chm~ ion fonnatlon0 W~> r>-'ffonncJ usin~ ronvcntioo11i1 
nchullw ion prior h> '" uptin! the inmuoncnt h> the• ET'./ unit. 

H~oh 

i\11 solutions IIW~ prcparro u<ing hi~h purit r dtioniscJ \\3lcr 
118 Mn. l' lp . lli]lh 1\)mmb<-. Buct lnghamshil"ll. li i\ J. Stock 
.._,lutiur,. d OOO ~~!Inl - ' 1 or Se and To.• (intc onal st andardt 
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t Aif;r. Johnson Matthc)'. Ro)ston. UK I wcr~ uS<'<!. Wor~lnM 
stan<lards W('r< pro.'P'tr«l dail)· b)" d ilution in 1% m:m HNO,. 
ultmpure Ukr~!t 11 ~mJ• acid PT Oak or ( IJ K ). Miltun 
Kc)ncs. lluckin!lh~nl>hi~. l!K J. I'11Dudhan!ll nitrntc (Sij;rn . 
lbolc. l>ors-:1 . UK l wus used to prepare tilt chcmi..,.l onodi· 
~r .olutron. 

l'rt pUitlon ol111onpn 1111 .... tl-

(llflllkal 1104111«. t\ SOO ~H ' !oOiution 'If 1\H NO, 1, 
<onouaring 5 r r~ !! . ' Tc (intcmul swndurJ ) WWI pn:pm-e<J In 
the ro>lw\\in~ wal : 0.05 g 'If l'dt NO, o, '"" dissoh·-'<1 in 5011 
of I(Jl'. liNO, : 0.5!! " fT< sta nd•nloi.O ~sg- ' J wlls tho."'lt 
ndtkd and the soiUii<>n dilutoo to 100 1! with 1% liNO, . 

S.mplts. J\11 scrum sample< were dilu~ ( 1- 19J 11•ith lo/. 
liNO, ol~•k<rl . 

lh.~ulto; aud d ISl'ttsslon 

<"'-lal noodllltrs 

The ""' ofd1emical modifiers with cl e~: or o>thcrroal t<'<:hniqo._.,. 
is >«U cstaNisho.-.1 . loo ICP·MS an cnltmk:\:nrelll in si~11o1 1 un 
aJditlon of a chNfticnlo• rxli flcr is ntl rihut<o.llo n •• ore ;,n;<io,.t 
tnut<port of tl~ '"I'Ori"-'<1 onol)t< oo th<: plasma'' Chcoait.1l 
•• oditicatoon b also imp.>rtant tu ti\'Oid '•'SJ<'' i'f m laoile 
'"'"1)11.'< llurin~ the ashin~ ''"~ llith I he f\\rmotion of more 
st:rbk :malytc spc'("ies" In litis stuoly numerous chcmil<~ l 
ruoo.li llcrs \\er< c>aonined incl ur.lin~: 1\1( NO,),. I'd ( NO,), ­
Nil :--101 ), . l'd( NO, ),+ MgoNO, ),. :o.«:orbk ;rcid anti 
1\J i NO, ), - M~t NO,), -•"'corhic ncid. l h .' he;t l'c'Sult• wrre 
obtained \\ ith • 1\I(NO, l, only modif"'r. The optimu m ron· 
(Xfllnltion w,u c~tablished b) <.·xaminaliNl (\r th(' <:han~ in 
S... signal of o l Ong~- · 5\illldard in I~ liNO, with incrc~snt.!l 
I'd ( NO, l, c'Qnccntrnli<'ll. Findi1~ indll·ntC\J that 111 11 1 (of n 
IOO I'g!! · o Pd tNO,), solution IICr< o.'Qnsi>tcllt \\i th ct mml· 
rnu•• >i~mol. I h>Wtl <T. further work with a s.:rum :;~unplc 
sho" .. ~ t:\id\.'I").'C' of a1!lenium hlSSCi .. ltw ing the pyro)~ ,.;s J lfl!C 

al tcmpenotur<S :tbO\ "C 1000 C h..:r~rsinp tl"' modifoer 
<'11l<.'Cnlr:.iit)fl 10 ;oo ~· ~.s - • st i<.X\.~full)· o \'Crcttllk ... lhis 

pr<'bkm \\ ith litt le d Tt-:t on ,,crull "'-"lsitivit) . 

Oplloolsntloan ol t:T\" t • .,,. ...... ,.. pr"lnm 

1;,.,... pblrortn. Tl>! won. di .. u>«'\1 in th~> stud) 1nrs 
[>.'rfO nllc'<l usutg I .'V<>\" pla tf(lntl r> rolytic gra plutc CoXdcd graph· 
ite tulx-s. Tll<l ildnollaJ."S .~· this t)l'< (>f tut>c how bcal J"'"" 
""''~ru t>r ''·"'"Ill' workers""' . " '" ' haw U;-,.:ritoro the pla tfon ll 
furnat'\! I Ut).! a l a SIC:IbiliM.'d "SI C'JJ~ SI<IIC• ICillJ)CfiltUn:. ;\ 1.."\)IJI· 

l'-11ison ''11!'1 nlo1d~ b..1Wl"i:tl 1hi!i und ;, IHm·pl.:ttr(lnn tuhe \'·ilh 
th\• th:u.-rn,in.1lion .. ,r u 10 n}! -. - 1 ~ sliuldard ,u i r~'r~tsing 

l'l r<•lylis ttli jlo.'nllur,-s. DJw shom.'<l that ·~ke 1111 o.•w ntual 
Jec-rcrrs.: in signal \\ith on in.:rcase in Pl ml) •i' tempcnoturc. a 
"''"" oomist,,ll slttlal was ob~1incd 1\ilh tht· L\ ·m· tuhc th>n 
1\ ith ;r uon·rlatfo~ra F;.phit< tu re. Thi< suppo>rl> the lH lfk or 
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lnj«t~n Jpt«l60'!.~ 
Rto~d ~tlay l.S' 

llokl"• lnt.etmd 

IS 0.~ 
~; 0.3 
4 ~ Oj 

I 0.~ 
I 
I 

E~1nnul R<ud 

0.9S v .. 
O.QS 
0.95 



1!20000 .----------

o------
000 eoo 1000 

Tempem1Urei'C 

10000 

7500 

~ 
~ 

~ .. 
"' ;:_ .. 
§> 
i 
t 
.5 

fl:.l Pyrol)>i• cu,.... ror .,St. ''St aod 'Wf•. 10 ~I i•j«ticu of • 
srrum illmpk ("'i l ._ lll arprotimll~ 5.: roo"mr~mc.1 Q( 5 "11- '); 
IOul of d SOD~~~ - · PdtNO,I, modhr wtrt o....t 

Sla\'i n n Jl .. " \\ ho dernonstmed lllil diJTcrcol<'rl< ~\1\'tn 31Y.Ii)~ 
nh>miS<Ji i<ln from I he fum;occ wnll and the pl<llfonn. 

l 'yroi)-.IS uti uportsnH011. The rn;oin Slil!lel' of an) ckctrl)o 
thermal \"tlpons:Hiou 1>ro~rnm .. m: the [l)h\ly~i~ {nmHil: 

-11.1 

...... 

-
.. .. 

·-
l 
~ -i 
:!: 

10 )0 • .. .. 10 10 

.. 

10 

rcmO\'al) und vapor-1 ation (dissocbti<>n o r atOJml pr01.-cssa. 
l'<mnn.,ttrs al o!o1ch or ih~ stntl.:S. m .. "h ni nunp r:uc. l~lnpcru­
turc zlnd hold time. \\ere el'alualed to cstubh h 1hc optimw~ 
ron<litiom. f')rol)sl uud •<t(Xlfi5Ution ll.'fnperntun:s '"'"' 
oplifnis<-J by the lq>o.':tlro 311a)j>is or n 10 IIUC I Se SfUndafd 
at ioJCr<'iuln! wu~mturt set lln!!$- 'lcm~mwn: curve.; l'<.>n­
muct.-.1 wilh lhc d!la from lht'f<.' t•xpcrimcnl> c.m bt ~~ in 
Fi~ . I. For lhr <>ptirnisntion or I he pyrol)>i~ tempennurc th~ 
•-.porisalion tem~nuun: wu set a t 1600 C. and for the 
o·aJ>')ri!l;llion tetnpemlllre cxpcrimtnt . the p)·rulysl, tempcn­
IU"' \\us ><I a1 1100 C. 11., pyrol)~• currc sho11-; a ~L1ble 
signal bo:l\1<'<.'11 500 •nd 1300 C. II IKI n 0.'Cre.1!0l bz sitnnl ol 
l<nl l""'iurn above llm. "~•uns thnl u J')IOI) sb ICiliJ>Cnt· 
tu re 11i1hin tltc "'"~"' m~ntiont.-d •vould bt sui111blr. 0 11int 10 
the fact lh31 tlzc !lnlphitc tube dcgrnd~ 11i1h I he numbtr of 
flrings. it 1\UJ do: .. 'ld~ 1ha1 a r>r<>lysis tcmperulure mid\\11Y In 
the r.1nge nttlo~r than nt llle hi!!Jler end 1\ould bt chosen. h> 
tainimise the detrimental c1Ta1 on th< lifcti11e ur lhc lubt. '' 
l<mrcr.zlun: <lf SilO C w•s sclec1«1 """ • repeat e t petimcnt 
usinj! • ~nnn sample ptrfo)nned. ·n., respon.._. <>f lh< .,Se. 
"Se and ''"'Te (ink'rn•l <tandard) sillnltls with au itl.O<'Ilf<' in 
l<mpcr.uure 111 1ht p~nce of tiJC ~m matrit is shol\11 "' 
Fi~. 2. Su1•rressfnn <•f the Te signal. and '" u ll'S'Cr cx1cm the 
Se signal. ''"'' bt ~ al lower tcml:>er-•turc-s. ScrUin c.>nlaius 
hish <\lnttnlmlions ~f romt>OII(Ji ls such us sodlunL chlorine 
and bromine. E1amhmlio11 of llh.~ illl!il) h.~ ~lonph.lc s~ b1 

.. ... 
~i(; i 

I 
. i 

If 211 lO <10 "' 10 10 10 ..... . 
I (d) 

"Cl 

-· "s. 

lt :11 lO .. 10 10 10 .. ·- ---..-Br 
(8) 

-----, 

~r ~r----
-------

.. So -
·--~.-----~~~--------~~.0-=~ 

10 .. . 10 11 .. • • ,.. • 
nmol$ 

"le· .l 11~ tiT«t (\( ryrolym IC'tnJM.'flliUn' """11 '""'1''('1 IO l"lttfetUI« rtiJrunatit}ft. 10 ~ I Mtit\."tll"tW of . Sf!I\Ull wnplc In . ...... l iNO_.. IIPfUt'llnne 
CUilOJDln tion S•gJ.~ 1 (tt) -~St uDd "N• iip-c_tl profliH. P)'rolph lerarrruturt fOl (' (h) ..,Se :..l.lld :t.'N• si&nal,rofib. pyrotysi.s ltmpc .. lul~ 
1100 l~ (<) ''Stand "Cl <l_tJtal profiln. pyrolysu ltmp<mture SOO C tJ) ~So •nd "Cl llfcnal profiln. p)Toi)'fi> ltropontlart 1~00 C; (tl "S• 
amd ... 8, si$ftAI rrofil,_ pyrol)"f~ 1tln~rulurt &00 C: utKI (fi''St and ... Br :R~nal p•ofib . pyro i)'UI lttnpa'ltl~ 1:'00 c. 
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TtHe 4 t\o;oufllty d1tn frum the ua:.l~·sis or lnltnual qu1Uty cetllr"ftl saanples unci NIST SR~( 1598 (bo\int ;nura). \ ltluts ure npi'KRd td dn 
RWI) nnd SbiRdtrd dtvhilfonS or tbrH mr.uurvmcnU 

Isotope 
JQC ' 
(.54.511$ t-•, 
48.9 . 6.9 
Sl.l l l9 
61. 1 I 9.J 
50.7121 

079 •7.2 
06 7 t 4.0 
109 17.8 

OJJ 14.4 

"ilh an itorr...-Jsc m g•• llu" role from u.~S I mho 1. r~ad1in~ 
n maximum al tJ.95 l min - • . anJ cb:rea~ ntllow mlo!S ubov~ 
ll•s. it Sh1lUid be n<>lro lhul the illltfllnl flow nol~ (I( fir Ill 
I he rurn•~ is 0.30 lmin -•- This oombuo«< 1\llh the ICI'-MS 
mrrlcr ~"'" oplimutn flow nole of 0.95 I min ' k><ods 10 n 1otal 
('.J.rfit r g~L1 flO\\ r.tl t! or 1.2$1 min- I. ll Silllilttf OpliUlUIII ffil~ 

to 1tu1 Npo rt«< pre•iousl!'·"' 

f\Mlylk:ll p«fotNII<<' 

T)pi..'al injxtiun rrofo l~ for ,, 5 np g· • St sounJard >nd ,, 
S<"rum sample "ilh ! 11 appro\imnto c<>ne<:nlrrttlon of 5 1111- ~- · 
an.• sll(>\\'11 in Fog. 5. noe >ensllh it) llf I he S)'§lcm (\Jr(l"SJWn<k 
Ill betl<l'Cil 200 und 6000 c'<lunts jX'r ngg· • of Se depending 
••n t!w isolllJllr abu ndao>..". 

Une~rtty. ·n oc S)>ltrn """ found I<> b.! linear fr<>m 0 Ill 
lOO~~ - · fN 1he 77. i8 ~11<1 S1 iJoloJ'I-'S bul onl) lintm rrmn 
I to IOOng~ · · for"Sc Thisnon-11.-.:.ril) belo" In!~ - · for 
' 'Se IIIU) be atl ribull'<llo lb I m• OOIO(IIi: abUild'Jlll'C IO,q()ll,,o 
and henc-e the lack o>f ,.,,,.~il il) . 

RI'JlfO<It-.ibiiNy. Sh11n -t~nn stab~il) d.ua fo r ten <'l'IIS..\.'U il l~ 
anai)S.."< Itnrkl Oruo!!SI of~ dilmcd S<-ntm •mnrJ,•. folio"""' b) 
h.·n dctc:rminuuom ~o.''\;'r a 4 h peri<'U to gl\ .. ~ the long-term 
;(oblkl) of I he srslem. arc dm ile-d on ' I able .1. Datu "~re 
,,bc,olnrtl ''ilh the intcn>it) mli <>.'\l lo> the k inlenldl slaml,ml. 

Dt tmklo JlooNs. T! picol limil.l of dct«ll •>n (rto i< t~IIIN ,,. 
)o b.t'<.'\1 on kn ~ettrmi~>llions ,,( J•{. 11 o, "' I he blank) 
a"' a IS<> found in Tnble l ·n,e poor detC<uon limils t•f ' "Se 
;tlld "'!\(-:.re du~ u' the lo" ;tbund;.enc.:t: and poor Jtnsuhit~ ,,( 
· ·:;.,.and llll' .ub>tantial in1rrftr<1occ fo\lno :ug<~l pol).otomir> 
,,n ·•s., Furlhtr 1\orL to l111prmc t!w o.lek'<liou IMIIU <~f ··se 
nill \'\lOtilltl\!', \\i1h the at.lditiou or nitro~n h' the .lr!!OU ~IS.. 

AC<:ar-.:). To rh~k <>n 11~ acc11r~C) uf lhe mrlhoJ" number 
ol imernol ljualit) l'Ontrol ( IQC') ~'" (prrp;Hcd b) the 
"ddil i<>n ol ~ $landllfili lo bo• int serum. donate-.! b) 11. T. 
D<iw". St>uliMlllJ'tOII U11ilersil)l •ud NISI' SR~J 1)98 
il>O\Ine -.cn11n1 \\CN unal)s«<. The r-"tth s <>~I l>c fouuJ in 
Tnb~ ~. A liti<.':H c• lilln11ion was J"'rforrncd utili,.jn}lth< bi1U1k 
r<>rl'l'<:tion lacttil) llllh< ELAN son ... n·. l·.ta:lknlllfr\'tii!CIIl 
bet\\ttn the re.ult; obtalneJ • nd lh~ large~ •~lues for ''~­
" :>< onJ "Se H~ silo~ n. lticlo resulls 11ere <>btalned "kh ... ~. 
~ul dp111 lhl~ is uttribuh.~J l ~l lhc l.u~ imc-tfcrcrL'"\!' fn>en ur!!OII 
addue~ ion• <~ t IHP 78. Tl~ RSD$ calrul<~tN from loijllimtr 
am-tlrses of ~:1~h ~unplr ""t're t-cn'"'Cn J. l diH.I 5.7"{. for .,..Se 
:ond "Sr ""'I ~.0 and 1~ .0'~. fN ' 'Se :111d ' 'Se In tl" IQC 
sa rnpk.-s.und betl•tcn 1.1 anJ 1.8'Y. for NIST SRM 15')8, \lfl h 
ti~<.' '''<'CJ'loon ,.r·•s..· 11hid t ~tll<an Rso ,,r 1 4 . 1!~ •. 

;>.ltrolrn tlddllloll 

·n,~ mt wductoc•n ,,f rut rug~• to "fll''" plasma< anJ ol$ abolit) 
IO ft<llll-, i'OI)Oh'fllk: lOll fl>rlllaliollS lla\C h<'\"t <hX:UII'I<'Ill"l 
hy SC'\Cr41 '"-'fkcrs.. U.JI ,u An ., .. ,J.~nn~nl \\ili perfMnl"ll hl 

JJ6 ' 5.8 
142 . 7,0 
146 1 ! .0 
138 . 4.) 

~JSTSRM 159& 
(41A • Bnsa·•, 

Ji.9 I U 
4 1.;1. 0.75 
55.61 0.72 
40J tll4S 

illve>~ lp:t l< lh<• dT«"I of uilropen in the Pflli'OS<.'I ~)Stc lll . 
Nitrogeu \Ius \-QIIOO:Cled to I he ICI'-MS 1'/tJ lhc 0\ )g..'lt lldcl 
tube an\1 lloc nltro~\."11 l~d rq1ulated usmg lht o~rgc~o ma"Sl 
llol• romrollcr. 1\ T-pi= filled in the JYfFE tnnsfer tube 
ullo"eJ th< oitragen to mix .rith the orgon before ILITirins •• 
ohc P"""" A dccrc:uc in the bl>nl: k!\1!1 o>f '"Se "'"oh""" cd 
with an in<:rc:o.<e in nitrogen rontMt. H o,.e•er doe <igJul 
inlt11sity oh IO np g· • Se Slarund also decrta~«< in a iimil~r 
manntr. n •• r.llf or reJucrion of tilt blank and lolambn.l 
signo~ is illu•tr•leJ 111 Pig. 6, oloog \\ith doe v11.riation In tilt 
signal to blank ro tio llS the nitrogm t'Onttnl increa>oe>. From 
the groph it con be sttn 1h111 aerosol corri.,.- [>U rontainifl1! 
4'1'. nitrogen ga1-c rio.e t.> doe lal'g(St dt.-re..., ln oht blank 
le,·d Thi• <omly h•• .<IIOIHI tht obility of nilm£"n 10 reJuce 
the interferene<' at ""' 18, but Coroher " ork is •"''uired 10 
impnl\'e tht srnsuh ity u( m< S)'>tl.':ltL At JII'C<enl the nitt~n 

i< iruroduL-ed to tilt atrusul c:~ rr"'r gas after \'aporis;allon of 
the anal)ll', An ahtrname Jlrut'Odun> may bo to nux the argon 
and nilrogffi proor lo the l¥poruation sUige a111f use 1110 carry 
tloe analytc fron• doe ETV inlll the plo ma. 

('onclu~lon 

n1c pruccdurc iJ~ril>cJ ~ublcs lh< <I•'<!Uflll< deltrlllhWliOII 
\.'\f S(' in nun lO ~ p.:rfom\ed "ilh mininml i._l tnplc pr~-
11\."Jllllellt llo~ rnuiu is<u.: addres.'>«l in thi• •tuJ) \IUS one oi 
interf~m•cc c.'limht.111<>n. The proposed lilt! hod ha. sue<:cs.<full) 
a.·hi<•~d lhls <'bjocthe. allowing lhc inltrferc~ nw dttcr­
lllin•tkln c•f 11'<> "f 11.: ISOIOJ'i." of s..i<.,iuon 71 ""d 81. 
furllo.:-r r,-..l"'·tion of interf~rcnr< Oil 1>lhtr ~leniWU iSOIOJ~S 
h.,. .1lso b«n " ' "" n 1.> be possoble usin~ m~c'\l pas rJa>mas. 

flit llorl <"'Hned OUI in Jhl!l rorcr \\<tS supported h) the 
D<('onmeot of Tr<tde a11J lnJU<If! as pun M !he N•tlonal 
Me-Jsu"'""''lt S)>letll Valid Anal) tiaol M"asuremtnt 
l'ro1!111111111C. The •uthc>r> 11ooiJ •lso hkc ' " thunk Or. T"''\lf 
lkl~cs of S••uthaiiiiXlln l :nowosit) 11ho kindl) donated lh~ 
IQC sen11n sumplos usc..l in this IIMk. 

... C\f I") ... "' ~ oq 
SlSS;l!l~lbl!ll 

Ar - ~r.bO 

•11!.- 6 lht riTf'CI o ( •rtrO@"-""'n ~tddiboo to dH urpoa 11e10101 anitr SI-" 
on oh< ·•s. 51~ .. 1. 
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Accurate nm1lysis of selenium in water nml senun using 
ETV-ICP-MS with isotoJJc dilution·!· 
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A fl'~W'e for the determination of scltnium in wattr and strlml using olectrothtmtal vaporisation isoto1>e 
dilution indu~,ively coupltd pln.<ma 0\HJ spec1romeuy (ETY-10 -ICP-MS) is deseribed. The'~: 17Se isowpe 
ratio was mea;uretlthrooghout. folli>\\ing >pi~ing of the nmp\6 with a sohJti.Jn contai11ing t~ t<lti:l~<l 77St 
isoto('le. F.lintination of inh!l'ffflfw:cs w~s adlie.·C\1 with 3n optimlscd ETY tetlli>Crarure (Togrom. Porame~ers 
such as peak m<:asat"""""' ntotl<. tlwell time. points per l'{lL'<.~rn l peak and numblr of repli<'llt~ were t:\'llluattd 
to> establish optimum COttditions. 11te accurocy and preci>ion of the IIICthod ore dl!tliOIUtroloo with the analys is 
of screral ccrtifie..J reference muterialj namely TMRAJN-95 (•piktd minwater), TMDA·S4.2 (>pite..J •ofi water). 
LGC 0{)10 (llltrd drinl:in@ water) and NIST 1598 (bovint serum~ Results for all referenc., ma<trials were within 
thecenified limits. Isotope dilu<ion analysis of TMRAIN-95. TMDA-54.2.. l GC 6010 and NIST 1598 @J\'e 

'¥• RSD ' aluco (u = 3) or 0.80. 0.07. 0.48 ond 0.00'1•. teSpecti\'ely. compared ..-itll 5.50. 2.19. Ll S and 0.92'Y· 
obtained with the mnven<ional ETY-ICP-MS procedure. thus illusnating improvementS in prccsioo with tl"' 
ETV-ID·ICP.MS method. The un(~rtointies fL..- the two methods w~te cuk::ulate<l following ISO ~uidel ines. The 
un=tuinty for the ID MS pr=<lurc was 3.4 time'S smaller th~n that for tl., <:00\etUional ETY· ICP-MS method 
(2.16'!'. and 7.73'1'.. r~ti\'ely~ 

Introduction 

Elcctnxhem1al vaporisation (RTV) is an alltl'nativ~ fonn of 
sample inlr•>dt..,lion for u~ with ICP-MS dete<ii.,n.' ' The 
!ot:hniljue. which comens the sample to the \'a pour sta<e. has 
the ahility to reduce o•ide fom1a1ion h)' the elimination or 
water ,-nplur. and can tcduce the formation of pol)atomi: oons 
originating from the sample matrix.• This is parti:ularly 
adnwtagc<'US in the dtlermination of sektlium, which ;'Urf~rs 
from poor sensith·ity 3nd se\el't imerfen..,,cr from pol)atomic 
>Jl«ir• ( le • • i.uctferet>~ from ••Arlla · on 11Se and " llr111 • 
' ' " "'se) "hen determination is performed hy con~e. otional 
ncbu6satio>n ICP-lllS. In add ition. whet! dealing with clinic-• I 
samples such liS serwn. lugh le\·t ls of sodium anti orglutic 
compounds J'l'tso:flt in the matrix con caust >i~nol suppres>ion. 
ETV- ICP-MS h .. the ad,·•ntagc or using small "'m plc siJ.es 15-
50 IUJ, il'taler sensitivity anti the .:opnbility to eliminate some 
,,r the polyatomi<: intetferenc~s alread)• memior1ed b)' thennal 
pre-treatment of thesan1ple. In a pre> ious publication • ~ e have 
d~scribed the developnetH of an ETV-ICP·MS Jlroretlure l'or 
t he unu l)sio< of selooium in serum. Tbc <llL~hoJ su<x~:,sfu!ly 

\1\ ~n:'(llllCS spcctro~tropic iucrf~rences u·ith ca~ful optimisa· 
lion of tl~ tetllp<I'Jtllte llr<l¥1'31U. 

lsotui>C dihuioo ma.s p~romctry (I DMS) has llOO!n 
tldl:ribed os a delinitive analytical technique that is capabk 
of JYO\·iding intpruved aocuracy and preci>ion over a!ttntati,·e 
ICP-MS ~bod.s.10 The technique is ba"-'ll on the addition of 
an i><>tapi..-. !ly en riclte<l n1:1t<ri.ll which acu •• the perf,"<:t 
internal standard. Detailed e•planations anti applic'lltion; of 
the technique ore gil'ttl in the literature." <S For example. an 
ETV-10 -ICP·MS procedute (.,..die determination of "'lenium 
in scdin>ttus hiiS been described by l:Jm <I at.•• The pn>Cedure 
adopts an alternati\t approach to interference elimination \\ith 
the early ttlease of !>deniwn prior to the i nterfffin~ sped\.-s. 

t ·, Cupyrighl LGC (T tddiugt on) Ltd .)()00. 

Ess""tiol rcquiretnetHS for IDMS are that more than one 
i!<mt>peof the element in questioo O<-"Cats in nature and thnt the 
selected i!i<>IO~ are free from intcrl'eroot~. <XI<~ the $[tik~ has 
beon equilibmte<l in the sample. the ac.:urat')' and precision nr 
the method are moinl) dependent upon the aCC\li:IC)' of the 
isotope rutio measurement. 

Thi< [lJptr deseribes the de--e-lopmetll of a high oC\:ura<:y 
pr~ure for the dett:rmination of ;dettium. a Ullnple., 
eltrll<IH who;c beneftciul and detrimerotal effi!CIS "" our 
heakh are 11ell docun~tuted. 11 •• Selenium deficiency ha.• 
beettlinked closely \\itll heJ rt dis<"J.<e and c:~ncer. and ~=sivc 
selenium inwkeii h;n e heen associated llitlt hair loss and tooth 
decuy. The di!Ttrtoee between toxicity and dcliciency is very 
narrow and tins. h~tlttr ;dth the health implkatiort< referred 
to. emphasise ho" important it ii that aCC'llrote and p~ise 
analytical methods are a1•ailable. ll) combining the estoblishtd 
ElV-ICP-MS proctdure "ith the ttdlllique nf isotope d~ulion 
these crittria can be met. T~ accuracy and precision of the 
method is demonstrated with tht uoalysis of sew:ral cettified 
reference moteri:ols. 

h is b-.x:oming mote frcq\lcnd)' r«<gnised that • reso~t 
olnainetl from • <IUantituti"" analysis is incomplete without a 
staren~tnt of the unctnaill!y associattd 11·ith it. In fact an 
~imation (!( the m~iuremem wtcertainty i~ u requiretl\etll 
for unul}~iCII nwhods •ccrodite..J in acr:ordan<% with ISO 
C1uitle(25)."' An OJ1inulle and comparis"n of the measuremt'flt 
unoenaint)' associated with hoth the F.TV· IC P·MS an~ ETV­
ID-ICP-MS proce..Jure.< is reponoo. 

E:~:perimental 

IIISirlllllt~tlllon 

An ELAN 5000A ICP-MS im:t runtern coupl«< to an liGA 
600MS ETV uou "ilh an A Still uutosampkr atliiChU\etll 
(PerlrinElmer. Bc-•ronsliehl Buclinghom!ohire. UK lucre u..OO. 
A 140cm long PTFE tr•nsfer tuhe (O.ficm id) was u...t to 
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connect the fumace to ihe ICP-MS. P)"rol)tic gruphile coJttd 
era(lhitt tu res fintd with L'mv plotfontH wm u.oed through· 
outth~ work. 0J)'roting cundition~ for the ETV t~n~rantre 
iltll@r"Jm art the same as those lletailtd in an carl~r 

t>ubliatim! The ICP.MS optnllln~ c.-.ndilions are detailed 
in Table I. Optinis;,tioo of the ICP-MS instnam<:ru (i.t> •• lem 
itUinJ!>. resolution. oaide •nd doubl) cha~e<l ion fonnauan) 
~1u performed d ng cou, t ntion3l neb.lisati<'ll prior to 
roupling the instrunll'tll to tbt ETV unit. 

R~gents 

All olutionJ 11cre rrepan:t.l uJiog high purity dcioni>ed Yoottr 
( 18 MO, Efl!a. Hitth W)'C'OIIl~. lludinghJnnhire. U K ~ The 
c:nrichtd nundord solution !spike) wos pun:ha...t from AEA 
Technology (Didrot. O•ford•hire. UK) and the naturol Se 
.olution was prepared from > 99.'J9<1Y• Se •••lieu (Aidrich, 
Prole, Dorset. UK). Stock •olutions ofthe t\IO smldards w~re 
prcp~rtd by di>sohing >ttlltatcly 11~iehtd qoontities of the 
mo~rials in o.lncemrottd nilri: acid (Uhre~ !lull m-pure nitric 
acid. J.T. Baker. t.likon Kqnes. Duckinghanuhire. UK) with 
final dauthlllto 100 ~ \<tth detOni5t\l"ater. Ge<olle hGting "'"' 
requ1red 10 aid diswlution. Th< conc~mr•tion of the " Se 
~triclo«.. kllution was <le~<nnon«.. by perf<lfotting u "" . .,..., 
ismopo: diluuon p~dure. ThcchttntL-al modifier s<>lution \\'US 

prepared froxn paU•dium(u) n~rate (S!Ilnlil. Poole. Dnr<d. 
UK). 

2000 

8000 

0 
\.J l \ lv.J \ 

Sample pt'fjllrallon 

All samples were Sf!iktd gravin><tric:aUy wilh the ~t.richtd 
solution to gl\ea finulratio of I : 3 (~'se: 77Se). Typi:aly, I gof 
the enriched solution wu• Uitd lil spike cacb sample. The oerun• 
SOJ~nples ~<-.re diluttd_ I -I') will\ 1% mlm nitric acil fl)llo"-ins 
<r•ldng. but no diuuon ~<'Ill !leL~a() \lith the wal<f ~mplco. 
A mu ' biuo solmion was l'fevJred by Sfliking a natural 
selenium suudard 10 n'l3tdl the ratio in the sample. Thi1 wu 
then analysed before and alkr the !llmple folloiYing the 
matchioll! p~ure deuikd by Cauertek rt 11/.

14 

Optiotisation or llll'ISUII!IIItnl pauruelef 

Optimisation rl the ~cun par•meters is of paramount 
ou portance in minimising mors in the i~IXope ratio •ncasure­
memund .ctlitving the highest aocura~y and precision I>OSSib~. 
Elec:trothennal vaporisen. generatt tran<it<tt signals M short 
fife span t)·~lly between 3 ond 6 s. 11 u inportanl with this 
I)~ of •il!n•l processing to colect enough I'Oldinp to 
oa:uratdy define the signal profile. Influencing fnctllO's such 
as dwell tinte. points per ' l""'trul ~·1<. pe:tlc mcawrett"-•ll 
mode and "'""~ or reroliCllteo .. ~re cvaluato:d and the 
~timum ~ninv O$Uiblislttd. for lhe mea•unmrnt of the 
"'Se : 77Se i<otope ratio. Evaluotion of euch of the meaJUremtnt 
parametcr. "as acltit-.«1 throu@lt the repeated •nal)> is of a 
100 ng ~ 1 Se statldard. The optimum <oettings art detailed in 
Table I. 

,\ nalyliral perlor1111nr<> 

A lt'Jlical injection profile for 1) const<.'\lth-c replicate if\iection• 
af .1 ><'nlm sample \\ith an 4Jlllmximate CCltlCffitrutiilR of 
10 ngg 1 of Se diuttd in llo> liNO, is sho11 n in Fig. 1. 
Although the •,; RSD values ohlain«... based"'' the 71Se and 
o.>sc isotope inttol>iti~ were 6.69'1. a old 5.8-lo/o. rt>tJ«th•d), 
this compares "ith 0.80'/o for the "-'Se: 17Se is()(Ope ratia 
obUiined (or the an>< 9 injections. This illust111tes that the 
lll<lUUrtnlcnt pr~ure has ~ nptinli,.,d so that there is 
sufficient correlation 11ith the tllo signals for the ,,~ion 
o.J-..ruage> of ratio tneasurentenu to he r~aliscd. 

Acamo cy and precision 

The ru~tur•~ th~ret!C'.ll ·~: 71Se isotol'• rau1> is 1.1442, ba...t 
Cl<l I~PAC·' defintd abundanct< of 8.73 and 7.63"/o for •>se 
and Se. re.pccti,dy. From Table l it L-an lr l10tll that the 

\. \~ \. \.. 
1-f«. I :'\ine rooiA:Ui\~ i!'~ ions of :a strum umpV diluted hi J~. JINOJ, 10 ~I n1j«tlmt, ltlld 1pproxinme: c:onccnlnlilil., r1 JOn1 1 1 
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TaW. l ''Se: "Se uotop< mio• 1llld cor~>tlin~ % RSD .t .. o 
obtained for 9 r'fplica.tf injfctions or4 t.JifTU""tOt s.oh.Uion• 

SolutiOtl 

ln1 ! - • Se (1"4 H,_O,) 
2 nlt- 1 1....-utnl 
10 nu-• S. (1",; liNO,) 
10 ns ~- · Se ueruJn, 

' !Se: "Se nukl 

1.4060 
1.41B 
l.lM6 
1 • .1677 

RSD ('h ) 

2ll 
lll 
022 
037 

experiment•! .,Se: ~1Se botope r•tio< for the srluti.1ns 
•n•lyscd differ MMi<leubly froo1 thi• theo,..tic:31 ~•I~ (b)' 
oppro~itnatel)' liJY,). Hoo.O\·er. il should be noted 1ho1 no 
dilferencr in 1he "se : 77Se i.J01ope ratio is obstn'cd bet~<Uttthe 
standard solutioo in I'Yo liNO, and the serum •mrok:o of 
similar w nctfllmtillru. l11is sugg61s dt31 the differettcr i• d.r 
10 inSirumtmal mass discrimination ~nd o\Ot matrix tfftcts. A 
more marked tliffercnce is ho~<~•-er ob!en·ed het .....en the rot1os 
obmined for the higher eon<:ttunuion salullons and the lower 
m na.•nration sollu iom irresp«tivt "f rnuui.<. This mU)' be due 
t" dead time nnd coun1ing statistics. Dy cuctly matching the 
ma bias solution to 1he 103mplo solution uith resp«:t to 
con~ttra 1ion and marnx. uny d6crcpaou~ "ill be corn pot· 
sated fo>r ond this problem llqti~ted . 

S"'·"'al<~tified rere,.. nce materials. TMRAIN-95 (spiked 
roil\vater). TMDA·S4.2 (spiled soft wuter). LGC 601 0 (hard 
drinling wa!Cr) ami NJST IS98 tho>ioe Str\011) ~<<re anal) sal 
usins bolh <he ID MS and non-IDMS rcoe<dure>. The 1'<\uks. 
"flich we... aD 1\ilhin theceni5ed limits. are detailed in Tab~ 3. 
The method p...Osion. represented by 1he % RSD >~lues 
obl<lined fox 1ripliaue anal) .., of <~~eh roference mot<rial. and 
<he de-.·iation from the ceniflcd ltl'tl. rcp,..,.roted by 1hc •1, 
teW\ 'try \1llue>. are signillcantly lower 1\ith the IDMS mc1hod 
than 1\'ith 1he non·lDMS method. 

i\1-ur-.,nt u-.iahoty 

MtasureuiC1lt unca1ainty iJ an ompl>nant a pea of any 
analytirol mtthod und it is ofltcl co>nsidertd thot an unal)1ical 
result os 001 complete:" ilhout an indi::a1ion of the uotttttaint) 
assoc:ial<'tl uilh it. nae ISO definition of lllOaSUr~ntttlt 
uncertainty is: .. A parontcter. •s: ~>:i:ued with tht rC>Vh of • 
mea.su!\!111<111. thot characli.'fi"" th~ disrw<ion of the ''alucs 
thot roultl re.sott~bly be attributed to the mea>U rc•nJ ... " 
There ure man) facto11 that contri!Nte to the merall 
uncertainty estimate of ntrthod!. omoog "hich are precision, 
bio• and in>1rumen1 drifi. Some of these porallll!{trs greatly 
ufTcct tht fi nal ~inllte and Silmt ore insignificant. but all must 
be takro imn aocnunt. 

Unttrlalnly t1ilktolalloe t.TV-JCI'· IS mtthod. In ordtr lo 
establish an uncenainty e>tintalt. scver•l experimall' "~re 
perfonned u.<ing oolwion; JlreJllred b) serw J Rutioln of • 
NIST cet1ified refttC1>ee solutio><• (SR M 3149) with ;y, nitric 
add. The dull> obl•ined from theoe experirnMB were then used 

(a) el ..,..._ .... 
• --
0 .. -
0 oonc.oldl-

(b) 
el ~~--o 

0 I!ON~IMO 

• """" 
~lc. l Contribution a th< diiTmDt >ariiabltt 10 lht ull<tfUlinty 
buolgcs. {a) liTV-JCP-MS pn>mlurt: tbl ETV·IO.ICI'·MS pr<>mlon. 

i t the un(lltlllintycalcu.lations following lh< procetlurt de~ailed 
by llarwil.'l. e1 ul .. n whidt oullines each or the Jllrun'le!Cr5 and 
L-.plrlins in detail ltow !hey are calcwated. The main factors 
L'Ontribuling I() the Uncetlllinty ofthB procedure \IUC round to 
he on<~hod r«cwery. prtdlion. CQIICttllrotinn of the dilute 
stundanl wnd instrunu:nt drift The uncenaint ies ossocoued 
" im the melhod r"""" '" and the ooncrntmlion of the dilute 
standard ha\~ been determined from the e>perimenlal data 
obtamed and a.able both a standard and relati\'1: uncenointy 
to be cakWa<ed. The uncectain ty ouociated "'ith precision 8 
c-Jkulattd from reproducibilia) data and in,•olvei pooling 1he 
~'~:loll>< S1andard de\ itltlool§ d the data obuained: heo~ only a 
~'Clothe uncertaill) i gh·al. The ~mtilled driR of the 
onslruntenl throll@hout a run is ± Ill'/~ Sincr there is no 
0\idence of!ower prooobilit)' towards the e.\!fflucs oft he nln~ 
1his e~~n ht treated as a reclangular distri!Ntion and divided by 
th• squart rnot o>f 3. Thi~ •'1llculation @iv~ the uncertainty 
assuoa1ed 111lh tnstruntem dnfl and •• es1imated as 0.0577 
~'~:lathe un~rtainty. All oftheindilidual un~.ruint)' ternu are 
lisle\~ in Table~. The combined standard uncerlllinty. coiN· 
lwted fnmt 1he root sum of the !quares of tht iodhidual 
L-omponcms. was coll:ulated to be 0.37J Ill! tt 1

• 

IJ-rtalnl) t1i1ICIIlati011 "-"'· lD-ICl'-!\1S Dltlbod. The com· 
bined uncertaiony of the ETV-10 -ICP·MS procedure was 
L"Jk-ubted in acrordance with the uncen•inty propag.ation bw 
a< deoailed in the Eun1chcnt guide.11 The ~u~tion used in !his 
cuk:t1b1ion (<qrL (I)) is tlrtailed below (St!C Tnb~ 4 ror nolation 
definitions). The <quation •-otnbincs foetors such •• the ""'"of 
e11ch o;olutinn (spik~. natUI"dl and samplt). the isoto~ ratios of 
""' spikrd s:tmple <tnd mass hias <ulution• •ml the i!illtopic 
comtlilsition of the s.pile and narunl selenium solutions. 

(I) 

Ta W. 3 R .. utu for tht IIMI)ru of ctrtoflod r<fmnc< """"'"" TMRAII'. --91 ('!'ilt'd 01inl'attr), 'niDA-54.l t•plkld wl\ ~ •tor). LOC 6010 I bard 
drink~ '"'llrJand NIST ISI>S (bovine O<rum) usina ETV·ICP-MS und f:TV-I{).ICJ'.MS (lr•l) 

E'TV-ICP-~1 S ETV-IJ).ICI'· MS 

CIUI C<rtif.OO ln .. vn, , -• ~ltan/~ ! _, RSI> rt.t Re-.."'0\l'fY t~• 1 Mean/nu- • RSDJ"I.) Reco,~(·<~.t 

T:>t i!.,\I N-95 
Spik<d 11\inwalotr 0.14 :.029 0.6S:t0t)l S.lO 91 0 7!0 :!. 0.006 0.11) 101 
t.GC 6010 
ltrud dri~ing \Htltr q .1(1:. 160 109.!_ 01) I IS 11 7 9 S7 f O 01 0-lll 10) 
TMDi\·S-1.2 
Spil<td JOI'I ~<uttr U.Oi l .O Is.> i tJ.~l l.79 103 IHll> i O.Ol 0.07 100 
)o.ISTim 
Ro\ l~ tc:rurn .U.4 t H 40.8.I.OJ7 0.91 06 41) ~9 j_O.Ol On'> 96 
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Ta~ 4 Summary fA. indhiJual u~rtai~y tenns and ,,,mtil'k"ti st and;ud una!nainty v;1~ for both the r:T V· ICP-MS and ETV-10-ICI'· MS 
l'nl!thodJ 

Pnramth!'f 

ETV-JCP-.\1,'\ Mnlhuf 
Mcthc~t rtco\.\:1\' 
I' r«i s lon · 
Cone. o( dilut~ s~llution 
Jn.stn.llU.'tH tlrif'1 
Cnmhiretl sl;~:ntlanl unec:!rtll inty 
f.'TJ'.J().JCI'· M .'> .\lo•olk•l 
Cone. of natural ~ Atamla rd 
.\tau of sunplt 
Mass or '!'ik• add<d LO sample 
Mau of tlJtunal slundtrd 
.Ma.sil of !pike :~ddtd tn na1urul s11tmbrd 
ls..nope ra tio o( the ~ikt 
lsolll()e n.tio ofthl nottural JUimkud 
l' rtpured itcttyte ntio t"i tM m~uli bi11s bJakl 
~ea~un'tt i!OOtope r.tlio of tht ~unple hlcutl 
Mc:uural i.~utope ratio o ( the m:..;.s hilt< Mcntl 
Cnmbir:rtt shtndunt uaarutimy 

R" 
/' (.,, 
Drif1 
·~ C,J 

<, 
m, 
Ill, 

~~~~ .. ,.. 
R, 
R,. 
R,. 
~~'• 
R'u.. 
utC:o.,.) 

As with I he non-1 DMS J>nX:t'tlure. the w mbinoo unren ainl) 
wa~ calculated using data obtainet.l fmm the ana~·si~ of a 
5 Ill' g 1 Se , .,:ut ion. which "as preparC<.! b)' sc:rial dihnion or 
the NI~T rcferen'-~ soluti.m SRM 314'1 wilh 1% ni lr i<: acid. 
n,;, ""' cak ulatoo to be 0.109ngp· •. Table4 detail~ the 
in;!i\'idual vari:ob!es !hat cooHibuli: w the combinoo um:er­
tainty. the magnitude t1f e:lch iDu~tmting. which fac1ors have 
the gre-.uesr inHucncc oo the filla1 uncertaimy \·alue. 

The- main contributors h> th~ unccruint) <i the two 
proc-..'tlure. are 1 .. ecision and insuum<•n <.l rif1 "ilh •he ETV­
ICP· MS method. and thcme-dsured i!<llope rutin of the !;llliJ~e 
and ma'"' bias blerols " ith the ETV·ID-ICP·MS mcthoo. 
Figs . 2tal and (hl bctlc:r iDuMra te tht-l>! J>a r.mtctcrs 1\i th a 
grariJic'dl represen tntion of the fach1rs ex, .. ...ss<d " ' a 
~~n:entagc of lhe h)(a] ui'IIXnuim r hULige1 as ,ght."fl in 
Table ·1. The. standard uncerlainties for the ETV-IC I'· MS 
and ETV-10-ICP-MS m<tho<.ls ar< 0 .. 17.1 n~ g 1 and 
U. l09ng g 1

, respc:cth d). Tik!-s.c standard u ncr rtaintit..'!l ~.:an 
als ' b(' e.\)>ressed us a perce11tage of the analytc 4,.'(11\."t'ntrrJtion. 
\\hich in the ca se ,,f t h~ non-IDMS me1hm.l cc•rre.r;.ponJs w 
1.13'i~ :oolll ~< ith the IDII'IS method equa tes to 2.26~'~ Titis 
rcpr~..~nt s a :l.·J·ftlld impnwt.·u~nt in the un n"1' tain t)' \\ ilh the 
i><•tope <.l ilutio>n pm,:co:luro cc.npart.'tl ui th the M n-IDMS 
pw w.lure. 

Conclll!lions 

Titis paper lle~cribes the ~xtension and allapla tion ,,f an 
estahli>hL'tl En'.JCI'-MS pron'tluro to isot.Jp< dilution 
analysis. and the rigorous optimisatkm of this prl•t\.-.Jure in 
t""~rd~r tu ohtain resuhs of optimum at.'l:uracy and prcdsion. 
Significnnt improv"•tnenL~ in accur-.. u.:y and precision . ..kn11.>n· 
stra tl.!<l '"i th the anody-sis of certified t'tfercnce mat~ria l s . wct-e 
ot>..:rw<.l with the I DMS pwcedure C<'OlJlar<'tl \\ilh I he n.m­
IDMS pr()(."Cdurc. Th! Ultl.""ertainly of the t\\'tl pn'l.-cdure~ ha~ 
hffil <'llk ulatcd and1hi s fun her d..'flw n!<lmtcs the app~cabil it) 

,f 1ho ETV-10-ICP-MS prr«.'C<Iure as a dd inith c method fur 
the unal~"'\is ,~r scleniwn in "-·:ner und scrum mut rit.'O.. 

Tite worK dcs4..,;b L't.l in t h b. paper was ~uppo11 c.>t.l hy 1hc 
Depart ll1~'1\t of Trade and lndu.•Hry a~ p<u t of the Natiu nal 
Mea!oiurcment Sy~tt•m Valid ;\nod ytical Mc:.Hnrt~mt..·nt 

Progrumm~. 

746 J. Anal ,11 . . \ j wnrmu .. ~IJI.III, 15. 74 :1-746 

Value Sta lldltrd urctrtainty M dative uncaluinty 

4.8~Rc) ng !C 1 

4.5(, .x 10 1 ngg 1 

0.0154ngg- 1 

S.ffl x 10 1 

0 .0~11) 

3.19 x Ill ' ' 
0.0577 

OJ JJ ngg - • 

J.9J43 ng g' 1 

1.8&117 g 
1.1•112 ; 
2..3015 g 
UXI~g 

0.02-IIJ 

2.20 ~ 10- 1 n~ g - • 
&.lXI x Jo-·' ~ 
6.00 ~ JIJ c g 
6.00 ~ 1o· • g 
6.1Xl x 111·' ~ 
J.oo v. Jo-• 
0.0220 
b.S9 x lll - ' 

5.59 x Jo·• 
3.19 x lO'' 
5.99 x 10 5 

1 .(J() x w·• 
s .~ x w·• 
0 . 1250 
O.Oin 
0 .11199 
7.40 x 11r ·' 
0 .0131 

1.1442 
0..3312 
0.3795 
0.3750 
O. I09ngg · 1 

1.&1 )( w·-l 
.-.90 x w-, 
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lntnxiLv.:. tion 

T h(' sc-:ur31( mr:uur~menl ,l( tract 
m~rals rn clin•c•l samrks, such .. 

blood, serum ~nJ plumo, is vu oll ~· 

imp<>mnr ro nulfllional ami H•xirolosica l 
srudi" .\\<1ol iDn<. piJy • k,'). role 10 rhe 

runcuon of mlny hi .. "\flli)l«-ulc:s, u wdl :u 

oJ I"<rt<ly aiT«Iin~ 0 number of iiRp.lrllllll 
l'IIOI0£1C:tl bhlch<"nlh.":d J'rOceSS~'S . Jt i" 

iDI)'IHIJnl 1ha1 S<llShln, rr<dH onJ 

~--="'"'" ;Ulal\1r,-•l molb...J. •r• a•-.d•~k, so 
rhot Lh n•rru" <101 1Jt btrwron rht 
1.."<'0C<" IlU4tti00 Ill Whlt'h th e tncUI i'­

l"nsi<.kJ,>J Jtf>.:lau , uplimal ''' I()J(ic, c.n h< 
""'(JSUI<J Uilh «<tliJMC~. D .... ·cJOrm<1ll or 
ntcrhoJs based c•n Jsolop•: JduiJ..)n ltlllss 
'J'<CII\>m<rry (11)- ,\ IS) 1nll belr uil h rht 

ccnillcauect or relcrtnC<' m•lcrills. " tud1 are 

•ml for quniJty "~trol In rhnk:ll •nal)'!rs. 
.\tan1· rrx< m<lak arc ~nll•l for bfe, 

,•rh.n are incn and some extubu IOlKIIY ol 

1,..· roneo.'flrlllnoos H,':l•b intpl~"'llmxu' due 

w tht Jeficlo!n<-y or ll':dcny of >'llrk" ' mt~•ls 

ore ~rrem~l;- tliw~. l'i:>r exollll'l~. 1'11\>lllfY 
hton dl'><ll"'· 11r1hli11s ond renoon form• ~r 
e<~netr llrc lin~<J ,.·iJh >cl<nium J<fri<ncy. 

Lun~ :tnJ ros:'l t.";lnc(N Mvr been f'CI')MN 

Ul mdtl rdinery 11wkr~ <xpo$1'\1 10 lro:k 

kni> of mdcl >Uiphld< (>[C . In b'<llerol. 
\'.Ccupalh .. 'fla l rxposur<" to low m~nl 

c,1ncrnt ro111Jns c!lu~n n ous~a. ,.,Hulling, 

i!>lilWUIIt'>lm>l trrnat•olKy, h .. doch<"l and 
•k •n a ll <rsi••. ~lu o c >< rrou> h<a ilh 
imphrollvn< can h• c-J ustJ by lh< chrunoc 

Elenlonl Dally allowant$ Total amount n human body 

Cr 0.1 11111 6mQ 

Co 3110 lmo 
Mn 4mg 12mg 

cu 3mg 72mg 

Se O.lmg smo 

T.1ble I. Daily olk~M.lrlce values f0r sev&ral essenti.JI hace 
el'='i JJer.ts MI tl--e human tx.J:i 
''JXICII\• \,f ~'-'m<' dcmcn l~ c.g h:a ~mlt· 

h'lnl_:kal JtM+r,I<'J"'i: r~ulling lrom ~ub..t ll 

''~''11\ # t.'r lth· lu~rfl 1uu .. ·ny of f\th..,.n t ~· 
c~p.>Su~ l•l lud I."J II ou ull 10 ncul\•k>pc-•1 

orupotrrntnl on ~hoiJrcn. Owing "' rhr 

n .. ·cC~gntllo n 1ha1 mtul toJns anJ theu 

cc,nlfXJund~ .:o n mJw..x- h\'(J' efftcls.. da~ly 

olloY.-.OC<'< 11hc dlttorl u1uk~ of o gJV<n 
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.;-k-mcn1 rh:al t human m~y a._1mun1e 111 tt ~h~·) 

htwc 1"-'<'11 <l.:lin,xl. ~udt IC'\"<Is ore dtl~d<'<l 

in Tabl< I ~Y a ronge of 1111<:< rn•1>ls 

Analytk:;al meh:lds 
1 hcJ~ drr numer,1u::. :anal ync:~J 

1'''"-N ur,~ :1\'Dilabk fl~ th• an:IIJ~6 llf u a<·< 
.,l<tn<nrs rn dinorol or b11>m«lin l ""nrl..s. 



Tht method ol cho.:< ~·Ill dep<nd on lh~ 

t lmi.:DI to be Jettrlllllle\1, 1h~ sampk: n121fll( 

mu lht ltl'(l ll " hidllht dtmffil I< rr"""'ll. 
IJOi h Oamc and fUillllc.! Dlomlc •h!iorpl iM 

sp«1rommy (AAS) h•1·~ been ust.J, hut 

tbes< nl<lhods are timit«i 111 raos1 C\l~ h> 

•in!l< t lr monl d<l<rminat k>ns. Othor 
Ale! hods inl'"lw U>.IU\1n'tly NUJ'~'<l pi3SR1~' 

\lil h Jc1«:1._,n by an'flllc cmissioo >(Wtro­

>.:<lr Y (ICP·i\ES) N mo" •pcctRlmCICT 
(I Cl'-,\\.<;). ICI'-AE "U<N for I ~< oool~-.h 

ol dinll'll wnplr>, ru1 is ••lien rcstril1N 10 

elt"m.ent such 1S ~od1um , p>tunium 3nJ 

Cll idum, ~tlll'h U C pr.~nl in lh< boJ)· Ol 

rtbtiwly high ~'V<i>. IC1'-M~ IS lh< nl<lhoJ 
t>f ~htt ll't f\1r uacc mulu--cknx nt IIUI)'Sas 

onJ B, n«<>suy 11 '""•1'< Joluuc'll mal)••os 
IS Ill bt use.!. 

lndu•:1ively -: ·. ttpled JJasmo 
m.."\SS sr...e.:;b(.rrtetly (ICP-MSJ 

"Ill< oiYJUI ad1-.ontag<-s ,{ ll~s ll'('bnique 

uc. lw '"l.:'ltt:tioo hmn~, 1 mulli-<'lcme-m 

Cllp;l biiHy and 3 l•fl:• lin<-:u r.~~~ ""b"· 
t:nfonun31t i)·. therr aro aiS<> • numbrr ••I 
rr('OblciOs, \\tl1ch ar< crnueJ •round th< 

prnencC" t•f 10ns \\1 th th r ~:uru nQmJOal 
JM!i> charg< (m,z) C3IIO ~s the lw111~ of 

l liUCSI . These on t'C di,·i.JcJ 1010 three 
JifT<I'<'OI souroXS: f<>nrulln>n ,,(~lilts an.! 

J o ublv Ch>fl<< J i<>Os <.g. i:< Mrallon o f 
Nrium t)XJdt. rt«."!.{1lCt:' ('I( l"'l>'3hlm.: JM\ 

h."Sllllintt fron1 r"x·no~ l:\.•t1wtn arg\.'Cl, M\.1 
N nSIIIU<niS of lh< " mplc m•Ui~ ~.g . 

form~ 1ion nf ~uyon ,,xtJr, and 1sobau"· 
,.,·,:rlaps l'<t~'\~1 thr I.SI.tl l'P~ of JtO"trcnr 
d cmcn10 c g. ovorl•p of 11 d ond 114Sn . 
Tabl\.' ! cont:Jim, ex.!lmplet ,) ( Ut'~ rat 
polyatomlc oons • nJ Lhe <orr<SponJin~ 

oo(l))'C wilh 1\"hich tlo:)' inttrfae. 

CONTRIBUTED ART I CLES 

An:llyte Mass Po!nlomlc Mas.s Rasolullon 
lnl.rfer~ requi'lld 

"CC' i1 .94 <0Ar''C· 5UG 2316 
"Ar''O• 51.9$ 2367 
"Ar''N· 51.97 2054 

"Co 68.93 "CQI'O• 5U5 2878 
•Art'tla• 58.98 2«4 

"'HI 5G.93 OIJir>IMg• 59.95 2750 
t1f1aWCI• 50 . .96 2>1 10 

10s. 75.92 ·~AI· 75.93 7081 
ns. 78.92 "'Ar'7CI' 76.93 9182 

"Se 77.02 "'At"'Ar· 71.93 ei70 

"'Se 79.92 ltJAI*AP 71t82 11688 

"'Se 81.92 "ArGC.t· 8 1.92 19069 

TablE: :2: Po~atom1c mass spedral tntetierea:es affe-:::ting 
the measurement of the trace n·etallons c·l intetes\4 

TillS orl lrlc dcscrihes J IHtrt nt 

approachu to th< diminatiuo ,,f lh e>< 

pr(l l'l<"rl1'5 for lW\l IJ'C'dfk ~rphcalion~ Ill 
.:lin ic• l anlllySis. The t"m1 method t•f 

101erfrrence rem('O•·al •~ w chmonato the 

mauix bv I!Slllg <i<ctm loerm• l •-:~J'(lrtllllo<>n. 

rrk>r w tl.:ttumoolioo ~y qmJro('<'lc I Cl'­
.\I. . The s.oond Wmt•le US<S ~n ICI'-MS 
onSUUn1<'01 WIIJo U 'k'\.'IOr fiti.J Ill~" fihtr. 
Tht ~rtuer r<s~l.-ing r c>wrr <>f 1his 
IM IIUffiCOI , (atlliUI CS ,)e iCCII OO <'( tbl' 

l)t.'f.OI'C \ f mtercsa Y~ittwul lmrrf\'rtn\X' from 
Olhtr lOOS 

1llt onalysis ,>J .lin.:~l r.m~rlcs fT""'"' 
I hcor (OI\'0 raiiiCU Jnt rroOiciM , molnJy 

I><.'CIIU.._. o ( lht <''ffif'IC'lC nsl urr of the ..mpic 

lnl lrtX The rrncnce .. ,r sodium. l"' 'lWum 

snJ olh.:r (J5ily ioniublt dem~nts in lht 

matr~. "' wrU "' lnrg.. tiOilloL'('ules •udl a> 

prottins. c-.111 <'liV~ s1p~al ~pprnsll'll . ·nw 
Jir<cl • naiys is ol hlo<>d I• t>a n lcuially 

dlfli<"k l'l'<:Ou..: " ' '''"'ubtll•n <IT<'I:U u11hr 
~mpk mml<luctioo system, v.ttn:h l<ad w 
hkx'bgr <>f llN torth Ink'\: Ill! l nd r<">UII 11 a 
k~HfsigolJI 

Conventicn."'IIIT\U~i-elernet't 

determiration ot Cr. Co. Ni 
Jrd Pb 1n Ai·,.:.Je ijo:xl by 

se:-\j( field ICP-IvlS 

Tw,, atl'r~nches h3•'<' ~n J <-..:rib..'>.l for 

the dr l<rmonauo n of •r•n· m<tals in 

b1omeJ ka l ~>nlpl<s . T ht· h rs1 us<·s 

mon trnlls• tion " ' 1h t •umplr \\'i th 3<1d , 
fo liow~d by J i lulion onJ • nui)"' IS1. Th r 

"""'111'1 1nroln"' direa •nul)""' and '''l"""' 
.:.mplc Jolutk>n, usually wilh ammomn '" 
l)~e lh~ rtd hh>J cells. nrr.-\ 10 rrewm 
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IO» of 1hr metals by precipnau on o r 

aJw rruon and T nton X- lOll h> rt Juce 
b~><bog< of lit< ton:b lll)«:ll.lf'. 1. The lhr<ct 

analysis ol whole blood hM a number or 

tx-nel~ 

C<du~ l ion in 1h~ f'Oit nliti for 

cmliiJnBlatil'll 

r,•Jurlkn In oMlysis 1~ MJ lhercfort 

C<l'l 

malnttnilllC\' d low Nank ron;:;,ntrnli~m 
anJ Jetel1 oo •mm. 
The rrt><'.lll work dts.crib,,. th< dor~o 

onal)m ro( "hok b4o..-...J (<'C Cr, C.', ~i :md 

l'l' . compotoJ 111 I he u•c o f a sllndard 
operolil\; pr<X't'<luro im,.lvinl ociJ dogesoion 

•n a Jnicro\\'ln"~ 0\"nl . 

The •nalysi~ o r chromiunl b U) Ullly 

"~rrkJ out by mca~•rin.x th\!" isiHopc lll 

mos.s. char!;< nnio (rn zl H. btcau.., lhr 

m<•rr abund101 J$('(<!f'C Jl m~ ~2 (S\.8'•). 

>Urfrr.~ from imeofe11ng polrJII'mk '""' 
gcnrr:uod from •f&"n al!Juct< ,,f earb,>n, 

~'l."n or rut~<n (s<c T1ble 1). Obnously 

Ill<>< oohrr km MC (V<.~nt '" a ~· om~m 
In l>k'<ld. Howtwr, w11h a d.•uble focuslfl! 
(~~ tn.'Wietlc s<~:tar insmmcm, all ofth<>se 

lnlt rkl\•nc,-s can be r~l,to.J from lh< m~ or 

101eru o. lo IS not l""sibk "' •chir•·• •hi• 

'" ing 4UUdrupoir ICI'-.>,.\S (Q-ICJ'-.\\S). 
hc.:ous"' "'r a b~ Jo,1tu mn-ss rtsolutiM 
onain>ble \\11h tllo.:St UlSlrumCI'Il"' F~oUr•· I (a) 
shoW'S th( Jllll.S SpC..:-tfUnl in the regioo o( 

oVJ 51, for the anolrsis <•f chromiliBI in the 

•cid J igcstcd blood. 11 de.irl)' shows the 

prckncc of a l.rge inl<rftronu. "nicb i• 
\\CJJ res<>h'<J rrom lh< anai)1C or illle rC>I. 

l'igure I (b) l>bull"l lht r;amr mn> rtlll~e but 

lhK umc I he sruurle hos lwn ,111UIN d:"'n 
tllld QI~'II)'S<d dK<'C11y. ;\gl!Ul lh~ preo<ll\.'e of 
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o L11'1!< intttft~rnct, well r(>(!h't\1 lrom th< 

ll<"k o( intNt\1, ~~odnrly 'lho~<n. 

Thr .blo ft'f th< chromialll spit.: Cf•blt 

~) M!ows quwnnatf\'< rn:vvory usUlg both 

s;un~e rr•'JXI I'Dtlon n>cthOO. ond antl)"'b in 
n'o<\lhln> ~'>lllmtne>Jo(l~= . IIOIIW<r, 

-~liB or the Sj'tl>.'\.1 ~ il l<l>'' r&lutk.>n 

ARTICLES 

mo.tc rtnbt\1 in a •·e.y brb" t~-a.,-ry ~ t•> a 
th< urutS<JI\'<d 111t<~f<rrncr (hwMr< I (a)). 
Tht. >WtiJ olso be the cm< if tb< d'!,~ hnd 

b«n :maly'l«< U'iing Q-!CI'~\IS. 

'11-..: kr.\\'Sl hmi8 <>f drt<Ciho f~>r oil d>< 
t~1:11S ( J I D11t'l tht !IOilJotJ dt\'lli»O of tht 

blont stgnal. mulurlir J b~· th< dtlullon 

fxtoc). w.:rr foMnd 1111h th< Jirn:t m:thod. 

Anolpm •>( the r<'l:onstnut<t.l rtceu dn>N 
wh t•lc b ll><lll CIUI (:\MI 111001, 

Rdtr<Rit03leml .-\U, l.UC rt edJt nj,~GO) 
lJJ, UK) Cot CO~llt •nd lroJ U1inJ blll h 

SJ mrle preporatiun method>. sn• ~ 
ogrtffllrot wnh th< ccrtilitJ rolu<S U>tng 
mr dtum resu lution mode. llo\\·c••rt. th~ 

\'\live for chtomiu ll \\'Os hlghtr than dlt 

ccnifl<d fiJUr< U>IOII t>ot h methods . Thro 

v;:as also oorr..J by o·thcr w,nkas llilnt! 1 

simd~r ~tor lkiJ ICP-~IS tn!lnn>:m, for 

the MJI),I> or hWn.1D scrwn'. FtU'thcr \\t>rk 

to < \'SIUOI < the ponlbil it)' o r at\O iht t 

lnlt-f(~nng I Ufl :t.t nt Z ;J, U\ln~ Cr r.IIIV 

Moi)~t$ ~ill bt com.\1 '''" 

Th< ''"') nll:th•>J \lllh o Jct<ett~n Junn 
k!\1 <RI>U~ Ill J t t<rnttn< ) 0~ ~~ ntd.<J Ill 

.. -hulr hk•<•<l . was the ditel'l n1rthv<l in 

mcd1um l<"'R'IUlJ(lO ln<'df Cs10~ l\'n· 

reoolu tion tnode onJ .. nlplt J i;c">tt'll g;t\' r 

£<Nd oy«ml'Rt for ,'Ob•lr. but both tht t..~ 

nnJ "-iHl-.miwn \'\1l u~ W\!'r~ h•shtr 1tum lh\' 

Melhod Isotope Resoutton 

Olge$tlon 52 Cl' 300 
59Co 300 
eD NI 300 
208Pb 300 

OV.Ct 52 Cl' 3000 
59Co 3000 
eo NI 3000 
208Pb 3000 

Digestion li2Cf 3000 
59Co 3000 
OONI 3000 
208Pb 3000 

'' I 

Rgure 1 ~<.a1: M,1ss Sj.JEC.tnJm in the rA.gic·n of chromiLm rnlz52. 
si ov.in'J th3 u·at~:-~ fHen:-t: pre5dtl in a digested blood sample 
~·iked 1•.'ith .J ng J chrc4num 

~trolft<d \'lllurs. l'uturt \\otk will • rrlr 
IS<'tOJ'l! ~t l u tl ()n an2lysls at <ttnlca lly 

IA1J"'Itanl ('tTh:tl\lliUOI15 t\' th~ 3tll(}'SIS ()f 

U3\'e IO<Uk in whdt l>l>i>J. 

High ao:umc.y n-..:_.asLren·ent 
us1r-q isotcr..e cl~uli,:·n arta~'SI~ 

W~P-10-~ .... 18 · 

T h< tS<llo r • J tlu twn no rosurH~<nt 
.orpru:.Ch has b\.'\:1\ l.ii"C\tS)t'd 10 rr~noU\ 
\'A.\ I •n~i..- "· it ,. l>o«'\1 cfl the >Jdu~n 

to the "''"l'l• ut •n booort<-.lll' ,'ll nch•<l 
ffi>l <n> I (often rdctr<t.l li> a< the •pttt ), 

llhk:h aa• as :on tnternal >'lillt.I:JrJ. l'ro\1<l<l 
the <Oil thed i >Ot up~ is rrc•~nt Ill on 

<'QUI\-.kflt >till< M 111< n.rur<ll kctorc. it ,-.n 
""' forDtlh< role or lht U'OI ou"""'l n;tndord 

CM!br'allon 

•DLnoo-• 'RPL no gt .. 
0.9 3 0.9999 
0.03 0.1 0.\1999 
2 6 O.Q996 
0.& 2 0.1»98 

0.1 0.4 0.9Q611 
0.03 0.1 0.9996 
1 3 0.9926 
0.& 2 O.W95 

o.3 1 0.9999 
o.oa 0.3 1.0000 
8 20 O.lllm 
0.8 3 0.!1966 

>n.l """'-"111' romr<m.:nr r(lf' err!lrs •ri•mg 1 1 

211 SL"''I."l, lr•'flll3tnfit rrcr«mi~n tllroot:h 10 
dlt ftnlll U\Mrutn<nt n>.':><ur~m<nt. In <>t<l!r 

''' reahr< the rc•temt-11 ofJD--\1 '" 2dl~'\i: 
fht highr11 r»mN< <lm.l'3l'V n l'l <U<ntnt to 

•Jorr til!l>tOUS tXJ'<Illlltntal I'IOCOOUII.'1, 

1udl n tb<..,.. J <>·ct..•J"-'-1 >t LtiC11 •11 

Determination c•f &9 in 
sen.m tJ)I E1V-ICP-ID·tv~. 

'I ll< 1111o))~i> of >cl.mum in 5trum by 

ICI' -.\IS ll htntl><tr J bv the probktm 
ootiUlr J pt<•lou•l)·. The lit>l iontsot lon 

e~'Vl· or scltnllll\1 " h.\;11. 1\SuhU>J in only 
~oo;. k>lusotKtn <X'C\Irnng m t~c plauna", 

\\'hl:b le•ds w low >lJlllls 31\J fO'Y sti'ISIIilit)'. 
.'\> iUustroteJ in To !>If l, dlo! n1ak>my or lh< 

Va.lklallon 

sp~~ca no o-• CAM 1\9 0'' 

Found Vakle z SO 

&49 390 1.118 r0.09 
5.0 18.3 13.2 t 0.56 
<RPL <01.. No> 
41.9 45.8 38.3 .. 0.04 

4.85 3.29 t .98 s.0.09 
4.78 14.1 13.2 J:o..56 
4.29 <01.. Ne> 
35.0 34.5 38.3:z:0.04 

4.92 6.02 I ,1181 0.0$ 
4.64 13.11 13.2:z: 0.66 
<01.. <01.. No> 
38.8 3G.S 38.3J:0.04 

'Ill dttoction hit. di>ftnodos~x obncbm d.-.lolioocf 1ho rN~flll N.ml«>t.,..,tr.>tJonxdlotlon loctor(10'J). 'IIPL tot>Otting 111'41 dtfwwd"' tOx sbnd>td 
cloVI.llloA oltno roogtnl blonk conetttrotbn • dludon lottor (I OU 'NC: no1 e«tlllod • combllm cooflld .n. 

TaiJib 3. Summary of ft:;SU~S frx tl¥= analysis of all f,)Ur metals in sr-~ l<.ed -.: ilvle Uc..Al. 
Sarnp~;:; PI~P...11ation using ~N-· ..:htterent &1trf1ltl\.'1EI:l..11at0n lll'?tl10ojs, S\ilkinq ~:'\alwas 5 IY,J g 
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CONTRIB UTED ARTICLES 

611c ... ..... .... 

.-\t &lO' C l'ooth •igtals ronddod \\ilh th< Se 
'il!'l'ai, hur un in<re~sing m. t<lll(X'mtUT< "' 

1200' C n(\orlznri<>n •>llh< inl<rfuing 

sr<~k• 1\'aS ,'Qmp/~tC rrior IO 1bal Of tht 

!111>~1< of lnltrC>I. \Vhh this procYdurt lilt 
t ntorft~ll<'< fl\.., Mti)'SIS <ll s•l<nlllm usJng 

th< "S< and ' '& kOI\lf'"' is Jlo:JW J'OS'iblt . 

Fvnh.-r Jtvcl<'f'Ritnt <•I the merh"-' " ' 
1mpron:· I h.; 3l~Un~r and rr«i1ion, \\·as 
lmplrmrnled ~)" using th< rrocnlurc ol 
;,._.,.,.,.dilution mm <p<'<tmmo:ll~ (10-.\IS). 

........ lj 

Tho samrle IS spik«l wirh • rolution 
ronlalllin$ !he rtlttdl<d "Se i.a<>rc and the 
~zs~:ns.,· n1lll' 1s mra~ur~d ~nd u~d to 
o kultJit:- th e C(iOI."tOiriltiL•n o f ~lenium. 

T•N• ·I cunl"n' the ru ull• rrom lh< 
!lll'~"llS o/ a bovin< strum reruh,'\1 rclNffi('C 

mmri•l (:-<IH 1501!) I>~ E'!V-ICP-.\IS, 
hUib 11·11h ~nd " 'ilhour isow r e di/u1ion. 

F~e~ure 1 ib,: lv1ass spe~trum in the r.~Jbn of ci)ICmium !lV<:. 52. 
Si).),\dng the Interference pre:.>ent in a t::bcxl S<lmt:~e spi"ed 
'Nitil 5 ng g · chP:::Il liurn ancJ an.."\\ysecl using tt·re clirect metlr-::d 

)C'",:IHUnl f5~.\hlX"). sufftr fronl SJ'C'IH~'\.'rk 
inMi<Mll.'-""· anJ m; Ill~ r1Tr<1" whkh ,,.-,.., 

"~k in •I~"''' .urrrnsk.m. 

.~ .. --------------------------------------------------, 
Hydndo gc'tlmrion (IIG-ICP-.\IS) 

t.:chniqu'-"S ha\'(' b~<'n U5('d to 1)\"~r,omC' 

s~ .. lh' ofth'"'" J'1Xl~h.·mt11, (Jrc:d cr sctl5rti\~ny 

ft ~UL(JII\:l~ t" 01•in~ h• lh(• i.nprm·\.\.1 samrl<' 
Jdh'cry r.ttc an\t r<dth.1il."''t0 or inh:rh.•rtn(.'t5 

i"' adtie\'C"t.l liUC' Ill lnu lyte r.:-ml.wol honl 
rh ~,.· mat n.x. 11'-'w~'·c r . l cnyth ~· samph: 
prcJ'Jt:Hh'O rr'-'\."•.:Jurcs U (' \!t"ntr.JII )" 

r~quin . ..J w c«l\\.'n rhc.- tYJn-hydnd\!' formi.n~ 
(~-b"aalh.· ~·knium "' lll\f''Un..Js p.r<'1it01 in lhc:: 

sample ' ''~· (1 \' ) , so th3t t~ < rohuk 
hy.lmtt<n .. ~en ... k c:~ n be l~rr•td. 

An j fh:rmlllr" ttnd m\Ht Jirc~l 

m.:th•>d ts ck.:u vrhornul •·ar<>rtla lio n 

i ET\') N UpkJ Wtl. ICI'-MS dCI<.:tiilll. 

Thl'l lel.'llniquc h.s th< a<il'&lll3i;\' ol a<lnt 

w y slllilll "'mrk m,-s ( l )l'i aDr 5-50 ~I), an 
lllll"'" 'm '''nstd<r>lion wht'll dcating wtth 
d tntCJI s.omrk s vchlch n1~· t'l: ol li111i1ed 

;uc, anJ un/ik,• hyur~l< .,:ncmrnn J~""' not 

h "1)ijif< i.·n ~rh \' .. mrk rrorar3rl<'tl 
r-rf~l\."dUI'\' l. J:lunu1ativn l'l inh.'lltren('<S 1~ 

.~, k~~lc with 1h1s n~rhod. \lith careful 

l.'f"illUSJtiL'Il oj lh\.' ICflilp<'fJI\h~ Pf{l~ll;lnl lliS 

J'i'l~uh l( h• con11 o l1 ht r3rnrt1111wn 0r 
inttrfc~ an.'1l~ I;.,"\S()t h.al lh~· ,.h'I Ot"C :.rrin~ 

~r rho pbsn1a Jt ri).: u.n: ume "' lh< aiUI;1o 
un\l ~o• r in \'~,.. , ,,~a l h-'0 ~ lhu ~ r~o·Jucin~ 

t ho d<gr« ,,f mwf<rcn'"· riguro 2 (a\ anJ 

(hL t.l..:nlflll'lr:&l<" I he l't'OJP\'l l ~'r chk'lf inc 
91HI he01..'1.." cJimu1211on o ( I h'-' ,_,,-\rHCf• 

uutt·f~rcncc ,'fl ~=s<. 

Simibr r~~.-..q)l1mn WCh' ,,hstrwJ "'hen 
mf.-tiwrong rh,· ~r•>minc and ""1ium si!'l'•k. 

" "' .. .. 
Trn..'Mc 

Fi.]LU'E' 2 iet< ~~·otysis temperature of 9/..)J''C 
0 /,.;11,,,) ''' Cl ;.m~·t Se si~n.:-us 

.. ,. 

"(,t 
-.. 

.. 

•mm.,--------------------------------------------------, 

.. .. .. 

FV:Kirl:' 2 1IJ;· Pyro~r..;;is ternp;ormure of t2\X1°C. 
R"''K''fCil of Cl inte~ierence 
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Ccnoentratlon (no g•J 
Isotope Replicale 1 Repllcale2 Replicate 3 Mean so RSD % 

ETV-ICP-MS nse 42.4 40.7 41.3 41.4 0.62 1.49 
"'Se 40.4 41 .3 40.7 40.6 0.37 0.92 

ETV·ICP· ID-MS •w•se 40.85 40.89 40.111 40.S8 0.02 0.06 

Table 4 · Results fer the anatySs of hiiST 1598 bovine seru11, contnining a certified concentration 
cJ 42.4 ± 3.G t)J g · selenium 

The , ... ., procrdUl<S hov< rrodoccJ v<ry 

Stmihu f t5Uil1, ~~ lhe rrc-cisi~'O \\"ll.h lht 

ETV-ICP-10-MS mcthl\J I• an order ,,f 
ll\!'t,'l1hudc N>n~ tlun 11\at adl1~vtJ "'"h th~ 
,'\Jnl~nmnallr!Y ff<X-e<lur<. 

Ccnclusicns 

ThiS anldc has h~hgh1cJ lh< llllJ'<'f· 

IM<~ ol t r11''t mcllll analf"~ 10 chrut'l!l arrJ 
b.,Mll.'\lo...-.1 >•.'l1lo.'\', :IS \WD .1:S tJ\,Jific:ulO.S JU>l_. 
or mtiiWit menl I}[ lr:Jce ~tal' in «mpkx 
m.'llricn, •• biodmn~">lly s~ilicunl hds. 

The s.lt n ium ll'ork r<pon cJ in •his 

oni cle ....... tlrsr pr=ntcJ tn ~er form 01 

lht Euro~an \Vintcr c:.:oft r•11te on Pbsm• 

Sp<aroch<nnYrf. 1909. l'au. Fmnl't'. Th< 

anai~'SJ~ O( \\·hl\(t i'llnL..J .. "4S rre~nH~d 11\ 

r o .. CI fMm a t th< 6th lnt<rn .. tuml 

C \\Ofe-J'tlll'(' N l r lasnu Suurct .\\,us 
p«tr<>m<1ty, 19'»!. Durlum, l:K 
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