
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

1997

Random Effect Models For Repairable

System Reliability

Baker, John Nicholas

http://hdl.handle.net/10026.1/2472

http://dx.doi.org/10.24382/4247

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



Random Effect Models For Repairable 

System Reliability 

by 

John Nicholas Baker 

A thesis submitted to the University of Plymouth 

in partial fulfilment for the degree of 

DOCTOR OF PHILOSOPHY 

School of Mathematics and Statistics 

Faculty of Technology 

In Collaboration with 

Jaguar Cars Limited 

September 1997 



Uf\l1Vt1.R91W 0~ PLVIVIOU1'H . 
ligtn N~. <too 342741d. 

...,... 
Date - If DEC 1997 

Class No. h"""C.? n .l"iLJAc;2 :RA 
Contl. No. X "'7o'3boo'2..U.S 

UitmARV SERVIC:!'!G 
!::.::.-.-- ~. se o= ··a:;;:;~ 

I REFERENCE ONLY I 
LIBRARY STGR£ 



ABSTRACT 

Random Effect Models for Repairable System Reliability 

John Nicholas Baker 

The practical motivation for the work described in this thesis arose from the 
development of a new Jaguar car engine. Development tests on prototype engines led to 
multiple failure time data which are modelled as a non-homogeneous Poisson process in its 
log-linear form. 

Initial analysis of the data using failure time plots showed considerable differences 
between prototype engines and suggested the use of models incorporating random effects for 
the engine effects. These models were fitted using the method of maximum likelihood. Two 
random effects have been considered: a proportional effect and a time dependent effect. In 
each case a simulation study showed the method of maximum likelihood to produce good 
estimates of the parameters and standard errors. There is also shown to be a bias in the 
estimate of the random effect, especially in smaller samples. 

The likelihood ratio test has been shown to be valid in assessing the statistical 
significance of the random effect, and a simulation exercise has demonstrated this in practical 
terms. Applying this test to the models fitted to the Jaguar data gives the proportional 
random effect to be significant while the time dependent random effect is not found to be 
significantly different from zero. This test has also been demonstrated to be of use in 
distinguishing between the two models and again the proportional random effect model is 
found to be more suitable for the Jaguar data. Residual analysis is performed to aid model 
validation 

Covariates are included, in various forms, in the proportional random effect model and 
the inclusion of these in the time dependent model is briefly discussed. The use of these 
models is demonstrated for the Jaguar data by including the type of test an engine performed 
as a covariate. The covariate models have also been used to compare engine phases. A 
framework for extending the models for interval censored data is developed. 

Finally this thesis discusses possible extensions of the work summarised in the previous 
paragraphs. This includes work on alternative models, Bayesian methods and experimental 
design. 
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CHAPTER 1 

Introduction 

This project has been carried out in collaboration with Jaguar Cars Ltd. of Coventry, 

UK. Jaguar have developed a new engine, code named AJ26 which was released during 

September 1996 in the XK8 sports car. The aim of this study is to provide statistical 

methodology to help development for future projects. The following sections in this chapter 

describe the current engine development processes and the data yielded by them, and conclude 

by showing where statistical methods could be used to improve them. Chapter 2 gives details 

of current methodology for reliability analysis while Chapter 3 details a non-homogeneous 

Poisson Process model with a random effect and its application to engine failure data. The 

basic random effect model is then expanded in Chapter 4 to include other random effects. The 

residuals for these models are discussed in Chapter 5, and the inclusion of covariate effects is 

described in Chapter 6. In all cases the methodology is applied to the Jaguar engine data. A 

hierarchical modelling procedure for the Jaguar data, based on the models from the three 

preceding chapters, is given in Chapter 7. A model for interval censored data is described in 

Chapter 8. The conclusions that are drawn from the modelling and their implications to the 

engine testing procedures are discussed in Chapter 9 along with suggestions for further study. 
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1.1 The Design and Verification Process 

In order to secure a greater market share it has been recognised at Jaguar that the 

quality of their cars, in terms of reliability as well as performance, must be at least as good as 

their competitors. In recent years Jaguar have been working hard to improve the reliability of 

their cars and these improvements have led to increase in sales. The improvements are being 

achieved by changing the development methods for both the engine and the car as a whole. 

Traditionally, validation tests on a part were carried out only once, taking no account of the 

variation between parts. If the part passed the test then it was assumed to be suitable for use 

in the final product. The AJ26 uses a new development process, which incorporates 

statistically designed experiments to investigate problems, and Failure Mode and Effect 

Analysis (FMEA) to indicate where these problems lie. A flowchart representing this process is 

shown in Figure 1.1 (overleaf), and the explanation is as follows: 

New Design & Design Phase Engine development is carried out in phases. At the start of 

the project there will be a totally new design and the process enters the first design phase. As 

development progresses on this phase, the problems encountered will lead to changes in the 

design. Mter a certain time these changes will be incorporated into a new design and the next 

design phase will be entered. The number and timing of design phases is predetermined at the 

start of the project, although changes to the plan may occur. 

Failnre Mode and Effect Analysis (FMEA) This is a tool used to highlight where problems 

are occurring, or may occur in the future. It can therefore be used to show where efforts should 

be concentrated to improve reliability. The engine is split into a number of systems, and for 

each of these systems a list of all the possible problems (Failure Modes) and their causes is 

compiled. A failure mode can have any number of causes, and each of these has a rating, on a 

scale of 1 to 10, for the occurrence, severity and detection assigned to it. The occurrence score 

is a rating of the frequency of the problem, with 1 attributed to the rarest problems and 10 

attributed to the most common. The severity score is a rating of the seriousness of the problem 

if it occurs, where a severity of 1 has little risk to the user and a severity of 10 could be life 

threatening, for example brake failure. The severity rating remains unchanged for a failure 

2 
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mode regardless of the cause. The detection score is a rating of the ease with which the 

problem may be highlighted during testing procedures, with 1 being easiest to detect and 10 

being most difficult. These ratings are decided in a meeting attended by all people concerned 

with the relevant system, and although there are guidelines for assigning the ratings, the final 

attributes can be fairly subjective. When all the ratings have been assigned, a RPN (Risk 

Priority Number) is then found by multiplying the three ratings together. 

Priorities The priority actions for the development process can be decided by looking at 

the RPN values. The failure modes with the highest RPN's are those that require the most 

urgent action. Usually a cut-off point for the RPN's is assigned, with any failure modes that 

fall above this value being investigated. It is also recommended that any failure modes with a 

severity rating of 9 or 10 should be investigated, regardless of their RPN. 

Test Type The problems highlighted by the FMEA, or from previous testing, require 

investigation and an appropriate test needs to be carried out, either by Jaguar themselves or 

by a supplier. This may be done on a single component or on the engine as a whole. If the test 

is carried out on a component then that component is connected to a test rig, otherwise the test 

is carried out on the engine, which can be connected to a car or a test bed. When the engine is 

connected to a test bed there are a number of set simulations that can be run. These are 

computer controlled, and have been designed to simulate different driving conditions. Each of 

these simulations are accelerated from 'real-life' driving, although the acceleration factors are 

not known. 

Initially the engines perform a Run & Rate test to check that the performance is 

acceptable before testing begins; the engine speed is increased in steps and the load at each of 

these is tested (the engine coolant temperature is kept constant). The different simulations 

carried out are: Reliability, Nardo, 400 hour, 180 High Speed and Hot & Cold. These tests 

comprise cycles that are repeated over the testing procedure. Plots of the engine speed, load 

and temperature for these tests, excluding the Hot & Cold test, are given in Appendix 1. 

Engine running that is not on any of these simulations is classed as General High or General 

Low according to the severity of the testing. The seven tests can then be categorised within 
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two levels, High and Low, according to the demand on the engine. The demand is a 

combination of engine speed, load and temperature. General Low and Reliability tests are 

classed as low with all others classed as high. 

Suppliers Most of the development work is done in collaboration with the relevant part 

supplier. This is a sensible approach as the suppliers will have a better knowledge of available 

materials and processes than Jaguar. 

Design of Experiments (Do E) The AJ26 development process is making extensive use of 

statistically designed experiments for comparisons of different types of engine set-ups. Most of 

these experiments are 2• factorial types although in some experiments one or two factors have 

3 or 4 levels. 

Components/Engines When a new design phase is entered, there are plans to make a certain 

amount of new engines. Orders are placed for all the components (including spares) and after 

some delay the new parts will be delivered and the new engines built. Initially the engines are 

built by hand but as the development progresses the engine build becomes closer to the 

production process. 

Beds I Rigs I Cars All the testing that is carried out has to be done on either a test bed, a 

test rig or an actual car. A test rig uses only small parts of the engine and subjects them to 

testing whereas on a test bed the whole engine is connected to a computer and subjected to one 

of the running simulations listed above. 

Results This represents the flow of information gained from the testing procedures. 

Analysis of these results will help to decide the next actions. The results obtained will go 

forward to one or more of Design changes, Power Train Fault Report or Database. 

Power train Fault Reports (PTFR) This is a system which aims to ensure that every fault 

which occurs is noted, and appropriate action taken. For every fault a PTFR form is raised 
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and this remains in the system until any corrective action, if required, has been taken and the 

problem is shown to have been solved. All PTFR forms are entered onto the database. 

Design Changes The results from the testing may lead to a recommendation of a change 

to the design. The feasibility and cost of a number of alternative changes will be examined 

before they can go forward to the new design. 

Database All the information from the tests that have been run, and from the PTFR's, 

are entered onto a database. The data available (for each engine) is a full record of the 

engine's history to date, including how many hours the engine was run and on what test, and 

also any faults that occurred. 

Reliability Estimates Data can be extracted from the database in order to produce reliability 

estimates. At present the only estimates that have been made are the MTBF (Mean Time 

Between Failures) for each design phase. These are calculated simply by dividing the total 

number of hours run on a phase by the total number of faults recorded, for all engines taken 

together. 

1.2 Jaguar Engine Data 

The data used in this thesis have been obtained from the Powertrain section at Jaguar. 

The available data consists of engine running times and failure times from prototype test 

engines running on a test bed. For all data, the engines have been run on one of the seven 

simulations listed in Section 1.1. 

The engines can be categorised by their design phase. The data set arises from the 

first four engine phases of the development project, and these are coded as AO, Al-l, Al-2 and 

A2-l. Data from later engine phases was not available in time to be included in this study. 

Engines from a given phase should all be of a similar build specification and quality, although 
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there will always be variability due to the quality of the build. It is therefore sensible to treat 

engines from the same phase as equivalent to each other, and to pool the data and perform the 

analysis appropriately. 

The data, separated by phase, is given in Appendix 2. For each engine in a phase, 

identified by the engine number, the time of each failure is listed. These have been multiplied 

by a factor of llk (k P 0) for confidentiality reasons. The censoring code indicates whether the 

last observation represents a failure (censor takes the value of 0), or the end of the testing 

(censor takes the value of 1). The test code indicates whether the engine was run on high level 

(highly accelerated) test, when test takes the value of 1, or low level (slightly accelerated from 

normal running) test, when test takes the value of 0. The data have been classified in this way 

as on a given phase there are only one or two engines that have performed each of the tests 

listed previously. It is not possible from this to estimate the effect of each individual test, 

hence the two classifications have been made to allow some estimate of a test effect. 

At the outset the only data available, for each engine, was the total number of how·s 

run and the total number of failures occurring in that time interval, although this was initially 

inaccurate and difficult to access. Collection of the original data and transformation to its 

present, useful, form was achieved by searching through a large number of database files, the 

PTFR forms themselves and the records of running times for each engine. However, this 

proved to be an extremely time-consuming and difficult process. Before any further analysis 

could be carried out, the data originally entered had to be validated as the times were either 

not recorded on the database or did not agree with the times entered on the PTFR forms. In 

some cases the times of failures recorded were nonsensical; for example, a failure was reported 

at time x and days later a further failure would occur at time y with x > y. This necessitated 

an examination of the engine records in order to find the true running time on any given day. 

These records (each engine has its own A4 folder) contain written information on everything 

encountered by the engine and from this it was possible to calculate a reasonable estimate of 

the engine's running time. The process of validating the data (which involved spending a total 

of 7 months at Jaguar over the first 15 months of research) also required the following 

assumptions to be made: 
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1) A large number of failures were found to occur in the first 10 hours of running during the 

Run & Rate test. These have been attributed to faults in the build rather than failure of 

the components, and have been removed from the data. 

2) For a number of engines multiple failures have been recorded at the same time. In most 

cases these observations relate to the same failure, and thus have been treated as a single 

failure. 

3) A few engines in each phase have run for far longer than the others. At the suggestion of 

Jaguar engineers the data has been censored, at a coded time of 0.6, to avoid these engines 

having undue weight on the results of any analysis. 

1.3 Analysis Requirements 

The previous sections have described the development process used for the AJ26 

engine and the data it yields. It can be seen that through the Failure Mode and Effect 

Analysis, Jaguar have a tool to highlight possible problems and also to help prioritise the 

testing procedures. They have also put into place data collection and storage procedures. 

Unfortunately, these collection and storage procedures have not been carried out as accurately 

as they might have been, and a large amount of time and effort has been required to correct 

and validate the data on file. It has also led to the data being of limited use in identifying the 

important effects of the different tests. On a given engine phase there are only one or two 

examples of each test, which does not yield enough data to estimate a test effect. 

The aim of this research is to provide a methodology to model the reliability of the 

prototype engines. This will complement the other procedures already in use at Jaguar; the 

FMEA highlights possible problems, the testing and PTFR system discovers and monitors the 

problems and the reliability estimates will help to show how much more work will be required 

in order to make the engine competitive. 
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In order to estimate the reliability of the engine there are a number of factors which 

have to be taken into account. The data that is available come solely from engines running on 

a test bed, but ultimately any reliability estimate needs to be for the engine's performance in a 

car. As stated in Section 1.1, the test simulations are accelerated over normal running so any 

estimation technique should have a methodology that allows for this. At present the 

acceleration factors are not known, and this may remain the case until after the engine has 

been released into production and warranty data becomes available. The method, and its 

estimates, will still be of use however, as the warranty data will allow the test procedures to be 

correlated with actual driving conditions, and these can then be used for future development 

programmes. An updated version of the AJ26 is currently being developed and a comparison 

of its performance on tests with that of the current engine will be a valuable tool in assessing 

reliability. 
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CHAPTER 2 

An Introduction to Reliability Theory 

2.1 Introduction 

The analysis of reliability data usually entails the use of time as the response variable, 

and the aim is generally to assess how long an item, or items, may last before failing. This 

chapter gives a description of the basic statistical concepts used in the analysis of reliability 

data. Section 2.2 introduces the notation and defines censoring, and Sections 2.3 and 2.4 

describe non-parametric and parametric applications respectively. The later Sections, 2.5 to 

2.7, introduce three important areas in survival analysis, namely regression models (including 

the proportional hazards model), Bayesian reliability theory, and the analysis of repairable 

systems. 

2.2 Statistical Concepts and Notation 

2.2.1 Inference Techniques 

The notation and definitions are taken from Crowder et al. (1991). If T is the random 

time to failure for a unit under test, where T?. 0 and T is a continuous random variable then 

the probability that a unit fails before time t is given by 

F(t) = P(T<t) (2.1) 
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where F(t) is the failure distribution oft. In the parametric case, F(t) is a cumulative 

distribution function. Conversely, the probability that a unit survives up to or beyond timet is 

given by the survivor function S(t), where 

S(t) = P(T21) = 1-F(t). (2.2) 

The probability density function (pdf) of T, f(t), can be found by differentiating F(t), or the 

negative of S(t), with respect to t. This pdf can be used to find the probability of a unit failing 

at time t, or more strictly the probability of a unit failing in the interval [t,t+&) where 8t tends 

towards zero is 

P(t5T<t+8t) ""f(t)lit. 

The hazru·d of a unit at time t is defined as the rate of failure at time t, given that the 

unit has survived until time t. The hazard function h(t), is the hazard value across the entire 

time domain, and this is defined as 

(2.3) 

The hazard function is a very important concept in reliability theory, as it gives information 

about the behaviour of the failure rate of a unit over time. If the hazard function is increasing 

over time then the unit is more likely to fail as it gets older, if it is decreasing then the unit is 

less likely to fail as it gets older, and if the hazard rate is constant then the unit's failures are 

not affected by time. If the hazard is constant then the statistical methodology is easier, and 

consequently many analyses are based on this assumption. 

Integration of the hazard function gives the cumulative hazard function H(t), defined 

by 

I 

H(t)= Jh(u)du (2.4) 

0 
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If a plot of H(t) with time is linear then the failure rate is constant, and if it curves up 

or down then the failure rate is increasing or decreasing respectively. Using equation (2.4), 

and previous results, an expression for the survivor function, S(t), can be found in terms of 

H(t). 

S(t) = exp{-H(t)} (2.5) 

A proof of (2.5) is given in Mann et al. (1974). This result is useful when using non­

parametric methods of estimation, as described in Section 2.3. 

2.2.2 Censoring 

If at the end of a test the time to failure of a unit is unknown, then that unit is deemed 

to be censored at that time. If the test period was x holll's, and at the end of that period the 

unit has not failed, that is, the survival time of the unit is greater than or equal to x, then that 

unit is said to be right-censored. Similarly, if the survival time of a unit is less than or equal to 

x, then that unit is said to be left-censored. In practice the majority of censored observations 

are right-censored. There are a number of ways of obtaining censored data from an 

experiment and the most common of these are defined below. In each case the resulting data 

should be analysed according to the type of censoring present. Censored observations are 

discussed in many books on reliability, although the definitions below are taken from 

Lawless (1982) and Collett (1994). 

1) Type I censoring - Occurs if n items are placed on test, and a time Lis predetermined to be 

the length of the experiment. The experiment is then carried out for time L and at the end 

of this period any unit that has not failed becomes a right-censored (Type I) observation 

with survival time greater or equal to L. Type I censoring is also called time censoring. 

2) Type II censoring - Occurs if n items are placed on test, and the experiment is carried out 

until r items have failed, then at the end of the test there will be survival times for r units, 
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and n-r units will be right-censored (Type Il). This method has the advantage of specifying 

in advance how much data the test will yield. 

3) Random Censoring - This is the most common type of censoring. The end date of the 

experiment is predetermined but the units do not all enter the test at the same time, i.e. the 

entry to the test is a random process. Therefore, at the end of the test the number of 

censored observations will be random, and if there are n censored observations then there 

can be up to n different censoring times. 

4) Interval Censoring - In some experiments the units on test are only observed at distinct 

times, rather than continuously. The data resulting from this method of collection will then 

be interval-censored since the actual time of the failure will not be known, only that a 

failure occurred between times t1 and tz. A model allowing for this type of censoring is 

discussed in Chapter 8. 

2.3 Non-Parametric Methods of Estimation 

2.3.1 Introduction 

This section is based on the description given by Collett (1994). In the simplest case 

when there is no censoring the survivor function can be estimated by 

S(t) = Number of units surviving ~ t 
Total number of units on test 

(2.6) 

that is, the ratio of the number of units surviving at time t to the number of units starting the 

test. The survivor function is assumed to be constant over the periods between one failure and 

the next. This yields a decreasing step function. Using equations (2.2), (2.5) and (2.6), 

estimates of the failure function and the cumulative hazard function can be found. The latter 

can be used as a visual check to see whether the failure rate is constant, increasing, or 

decreasing over time. 

13 



An extension of equation (2.6), which allows for censoring, is the life-table estimate of 

the survivor function. This is calculated by dividing the data up into intervals. If there are n 

intervals then the survivor function for the k<h interval, where k ~ n, is estimated by 

(2.7) 

where 

n ~ is given by (ni · Cj /2). 

Cj is the number of censored observations in the jth interval. 

nj is the number of units at risk during the j<h interval. 

di is the number of units that fail in the j<h interval. 

The calculation for n ~ gives the average number of items on test during the jlh interval, the 

underlying assumption being that the censoring occm·s at equal periods of time over the 

interval. This estimate of the survivor function also gives a decreasing step function, with the 

probability of survival being constant over each interval. The hazard, cumulative hazard and 

failure functions can be estimated from (2. 7) through equations (2.2) to (2.4) using (2. 7) to 

estimate S(t). 

2.3.2 Kaplan-Meier Estimation of the Survivor Function 

A more general non-parametric estimator of the survivor function was introduced by 

Kaplan and Meier (1958). The Kaplan-Meier estimator, also called the product limit estimator, 

is the most widely used non-parametric estimator of the survival function. The calculation is 

very similar to that of the life-table estimator. With the Kaplan-Meier estimator, the time 

intervals are split in such a way that each interval contains only one failure. More formally, if 

there are n units on test and r failures occur at times 0 ~ tJ 5 t2 5 ... 5 t, then the first interval 

will be from 0 to t1 , the second interval will be from (h+b"ti) to t2 , and so on. The survivor 

function for the k<h interval, where k :5 r, is given by 

14 



(2.8) 

where 

nj is the number of units at risk at the start of the jth interval. 

dj is the number of units that fail in the jth interval. 

The value of dj will be 1 unless there are tied observations. If the largest observation is 

uncensored then the survivor function, S(t), will be a closed decreasing step function; that is 

P(~O) = 1 and P(~t,.) = 0, for all times T after the last failure, t,.. However, if there is a unit 

with a censored time::; t, (the last observation is censored) then S(t) is undefined after t, .. The 

standard error of the Kaplan-Meier estimator for time t where tk ::;t ::;tk+l is given by 

± dj 
. n·(n· -d·) J=l J J J 

(2.9) 

A proof of this is given by Collett (1994). 

2.4 Parametric Models 

2.4.1 Introduction 

As with all other branches of statistics, parametric models feature extensively in 

reliability analysis. Unlike the non-parametric estimators of S(t), parametric models yield a 

smooth function. Using the results from Section 2.2.1, if any one of f(t), F(t), S(t), h(t) or H(t) 

has been estimated parametrically, all the others can be found. One major difference in 

reliability analysis is that the normal distribution does not feature highly. One reason for this 

is that survival times are all positive, and the parametric models are defined accordingly, but 

the normal distribution can always take negative values. The most commonly used models are 

described in the next sections, and the latter sections show how the parameters of the fitted 

models can be estimated and indicate how to decide whether a particular model is appropriate. 
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2.4.2 The Exponential Distribution 

The simplest parametric model is the exponential model. It has one parameter to be 

estimated, and the survivor function is defined by 

S(t) = exp( -At) t> 0 

Differentiating equation (2.10) gives the corresponding pdf, f(t), where 

dS(t) 
f(t) = -- = A.exp(-A.t). 

dt 

(2.10) 

(2.11) 

Using equation (2.3), together with equations (2.10) and (2.11) gives the hazard function for an 

exponential distribution as 

h(t) =A. (2.12) 

The result in equation (2.12) shows that for the exponential model the hazard rate is 

constant over time. Referring back to the definition of the hazard function, this means that 

given a unit survives to time t, the likelihood of it failing instantaneously does not depend on 

the length of time t that it has already survived. The mean and variance of an exponential 

distribution are A.· 1 and A_-2 respectively. 

A plot of f(t), for an exponential distribution with /...=1, is given in Figure 2.1. The effect 

of changing A. is to rescale the distribution, with the shape of f(t) remaining the same. A plot of 

the hazard function for this distribution yields a straight line since h(t)=1, for /...=1. The 

exponential distribution is frequently used in reliability analysis because of its simplicity, 

although in many cases the assumption of constant failure rate is questionable. 
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Figure 2.1: f (t) for an exponential distl·ibution with A.= I. 

2.4.3 The Weibull Distribution 

This distribution, which is a two parameter extension of the exponential distribution , 

was introduced by Weibull (1951). The survivor function of a Weibull distribution is given by 

S(t) = exp{-(Ya)"} t > 0 (2. 13) 

where 

a and 'I are both positive parameters. 

a is the scale parameter . 

11 is the shape par ameter. 

E[T] = af(11·1+1). 

The Weibull distribution has the exponential dis tribution as a special case. If the shape 

parameter 11 is 1, then equation (2.13) becomes equation (2.10) with A.=ll a . The failure pdf 

and the hazar d function for the Weibull distribution are given by equations (2.14) and (2.15) 

respectively. 

(2.14) 
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(2.15) 

Plots of the pdfs and hazard functions, for Weibull distributions with u=l and 11=0.5, 2, 

4, are shown in Figures 2.2 and 2.3 respectively. These plots show the flexibility of the Weibull 

distribution. The parameters can be chosen to describe a constant, increasing or decreasing 

hazard rate. The hazard is constant for 11 = 1, decreasing for 11 < 1 and increasing for 11 > 1. 

The larger the value of the shape parameter, the steeper the slope. If 11 = 2 then the hazard is 

linear. The Weibull distribution is the most widely used distribution in the analysis of 

reliability data because of its flexibility. 

2.4.4 The Gamma Distribution 

A gamma distribution is a two parameter distribution with pdf, f(t), given by 

t>O (2.16) 

where 

A. and pare both positive parameters. 

1/A. is a scale parameter. 

pis a shape parameter. 

E[T) = p/A. Var[T] = p/A.2• 

As with the Weibull distribution, the gamma distribution has the exponential distribution as a 

special case. If p = 1 then equation (2.16) becomes equation (2.11). Gamma distributions 

result from the sum of independent and identically distributed exponential variables. It is 

generally used to model systems where redundancy occurs (where n components comprise the 

system and all n must fail to cause a system failure), although it appears to model many 

situations and can be used instead of a Weibull distribution. However, it is not as widely used 

as the Weibull because the survivor and hazard functions cannot be expressed in a closed form, 
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Figure 2.2: Pdfs for Weibull distributions with mean= 1 a nd shape 
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Figure 2.3: Hazard functions for Weibull distributions with mean= 1 and shape 

0.5( - ), 1.5(-----), 3( ._._.) . 
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and are therefore difficult to interpret . When pis an integer , the sm·vivor function is given by 

equation (2.17) 

S(t) =exp - J..t 1 +J..t +--+ ... +..:.........:'---
[ { 

( J..tl ( J..t)P-
1 
}] 

2! ( p - 1)! 
(2.17) 

Using equations (2.4) and (2.5), the hazard function when pis an integer is 

(2.18) 

For p < 1 the hazard function is decreasing, it is increasing for p > 1 and is constant for 

p = 1. The gamma distribution is right skewed, although as p increases the skewness 

decreases and the function resembles a normal distr ibution. Figure 2.4 shows gamma pdfs 

with mean = 1 and p = 0.5, 2 and 10. 
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F igure 2.4: Pdfs of gamma distributions with mean = 1 and p= 0.5( _ ), 2( .... ), 10( ._._.). 
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2.4.5 The Lognormal Distribution 

In Section 2.1.1 it was mentioned that the normal distribution is rarely used to model 

survival data because it allows the possibility of negative times. However, if Y = ln(T) can be 

assumed to be normally distributed, then this is equivalent to T having a lognormal 

distribution. As ln(t) can take any value this distribution is then valid to model failure times. 

The pdf for a lognormal distribution is given by equation (2.19). 

t > 0 (2.19) 

As for the gamma distribution, the survivor and hazard functions for a lognormal 

distribution cannot be expressed in closed form. Another problem is that the hazard functions 

initially increase and then decrease, approaching zero as t~oo. This is not a characteristic that 

many items would be expected to exhibit in practice. 

2.4.6 Parameter Estimation 

The parameters of any model can be estimated by a number of methods, but the most 

commonly used is the method of maximum likelihood. It can be used to obtain estimates for 

most reliability problems (Crowder et al. ,1991) and provides the minimum variance unbiased 

estimators. In the simplest case when no censoring occurs, the likelihood function is defined 

by the pdf of the distribution that is being fitted. If there are n units on test, with failures 

occurring at 0 S"t1 S"t2 5" ... 5"tn, and the density function is ((t:(}), where 8 is a vector of 

parameters, then the likelihood function is 

n 
L(8)=0((t;:8). (2.20) 

i=l 

The values in 8 that maximise equation (2.20) are then the estimates of the parameters 

for the pdf. If censoring occurs then the likelihood given by equation (2.20) is split into two 
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parts: the likelihood for uncensored observations and the likelihood for censored observations. 

If U denotes the set of uncensored observations and C denotes the set of censored observations, 

then the appropriate likelihoods for when right-censoring and left-censoring occur are given by 

equations (2.21) and (2.22) respectively. 

(2.21) 

(2.22) 

For interval-censored data, the likelihood for one unit is the probability that a failure 

occurs after the lower limit and before the upper limit. If there are n units on test, with 

failures occurring between lJL-tiU, l2L-t2U, ... , lnL-t,.u then the likelihood is 

11 

L(e) = f1 {F(tiu:e)- F(tiL:e)} 
i=l 

(2.23) 

Estimation of parameter values from the log-likelihood function, f(O), gives the same 

results. This is usually easier to calculate than the actual likelihood since the Jog-likelihood 

becomes a summation rather than a product. The standard errors of the estimates can be 

found by inverting the matrix of second derivatives. 

2.4.7 Goodness-of-Fit Tests 

Part of the analysis when fitting a model to a set of data should include checks to test 

for a reasonable fit, and there are a number of ways of doing this. One way is to produce a 

probability-plot which provides a graphical check of the model. For a series of k failure times 

a1<a2< ... <ak this is achieved by plotting Pi against F(ai: fi ), where 
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(2.24) 

S is from the Kaplan-Meier estimate of the survivor function and F(aj: e) is the fitted 

distribution. If the distribution provides a good fit, a plot of Pi is against F(ai: e) will be 

approximately linear (Crowder et al., 1991). 

More formal hypothesis tests can also be conducted. These include the Pearson Chi-

squared test and the likelihood ratio test. For a Chi-squared test the time scale is divided into 

n intervals, and the number of failures expected in each interval, E;, can be calculated from the 

fitted probability density. Let 0; be the number of failures observed in the ith interval then if 

the null hypothesis (that the observed data does come from the fitted distribution) is true then 

the test statistic given by equation (2.25) will follow a X 2 distribution with degrees of freedom 

equal ton -1 -number of estimated parameters. 

2 ~(0-E-/ 
x=L._; I I 

i=l E, 
(2.25) 

The goodness-of-fit test is therefore used to check for evidence that the data do not 

follow the fitted distribution. Other goodness-of-fit tests, together with probability plotting 

techniques, are given by D'Agastino and Stephens (1986). 

The likelihood ratio test is used to compare nested models. If model 2, with 

parameters 62, is nested within model1, with parameters e,, then the statistic 

(2.26) 

arising from the difference in the maximised log-likelihoods, can be compared against a X 2 

distribution with degrees of freedom equal to the difference in the number of parameters 

between the two models. This statistic looks for a significant change in the likelihood if 
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parameters are removed. The drawback with this test is that it only provides a relative test of 

which of the two models is preferable. It does not provide a test of the overall fit, and it cannot 

be used to compare non-nested models, for example the Weibull and lognormal distributions. 

One way around the latter problem is to use the generalised gamma distribution, discussed in 

Lawless (1982). This has the all the distributions mentioned above as a special case, and so a 

series of likelihood ratio tests can be conducted to compare all the different models. A test to 

compare the Weibull and lognormal distributions is given by Dumonceaux and Antle (1973). 

2.5 Regression Models 

2.5.1 Introduction 

Regression models are a very important tool in reliability analysis as they incorporate 

the effect of covariates on the failure time. The models can then be used to identify factors 

that affect the survival time of a unit. There are two main classes of regression model in 

reliability analysis, the proportional hazards model and the accelerated life model, and these 

are described in the following sections. Traditionally, the proportional hazards model has been 

used in medical areas and the accelerated life in engineering applications although there is 

now more of a crossover, and there have been a number of papers comparing the two classes of 

model, for example, Gupta and Michalek (1985), Lawless (1986) and Wei (1992). 

2.5.2 The Proportional Hazards Model 

The proportional hazards model was introduced by Cox (1972), and since then has been 

widely used in medical applications (see for example Anderson, 1991). The proportional 

hazards model is defined by equation (2.27). 

h(t;x) = 1'1J(t)'l/ r 

where h(t;x) is the hazard function under covariate values x. 

ho(t) is some baseline hazard function. 

\Vr is a positive function of x , where x denotes the covariate(s). 
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The baseline hazard function is defined as the underlying hazard if the covariate effects are 

zero, or are at their nominal values. The assumption with this model is that the covariate will 

have a proportional effect on the baseline hazard function; from equation (2.27) it can be seen 

that any change in x will produce a constant multiplicative effect on the baseline hazard over 

the whole time scale. As \jlr has to be positive, it generally takes an exponential form, and 

equation (2.27) then becomes 

(2.28) 

where 

xis a vector of covariate values. 

pis a vector of parameters. 

Equation (2.28) gives the model due to Cox (1972). If there are n observations, r of 

which are uncensored, the likelihood function for equation (2.28) is 

(2.29) 

where Ri is defined as the risk set of observation i. The risk set is then all observations, 

censored or uncensored, which have a time greater than or equal to ti. A more rigorous proof of 

this likelihood is given by Kalbfleisch and Prentice (1973). As stated in Section 2.4.6., it is 

generally easier to work with log-likelihoods. The log of equation (2.29) is 

(2.30) 

To estimate the parameters of the model, the estimates of p that maximise equation (2.30) 

have to be found. This is done by differentiating equation (2.30) with respect to p, producing 

the set of partial derivatives. These are then equated to zero and solved simultaneously to find 
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the estimates, P . The standard errors of p can be found from the second derivatives. The 

partial derivative with respect to PP is 

(2.31) 

The likelihood in equation (2.29) does not allow for ties in the survival times. There 

have been a number of approximations to the likelihood when ties are included, but the most 

frequently used is that due to Breslow (1974). This likelihood, given by equation (2.32), is an 

extension of a likelihood for paired ties suggested by Peto (1972). 

r exp(s/P) 
L(P) = n d 

•=l { L exp(x/P)} 
1 

I ER; 

(2.32) 

where 

Si is the sum of the covariates for all observations at time t;. 

d; is the number of tied observations at timet;. 

The above methodology is discussed more fully by Collett (1994), and in more detail by 

Kalbfleisch and Prentice (1980). A FORTRAN program using a NAg routine to fit proportional 

hazard models, for the likelihood with ties (equation (2.32)) is given in Appendix 3. This 

program returns the estimates of the parameters and the value of the log-likelihood at these 

points. The likelihood ratio test, Section 2.4.7, can then be used to test for significance. 

As with any statistical model a number of validation checks should be carried out in 

order to assess whether the model is appropriate. The significance of the fitted parameters, p, 

can be checked either by using a likelihood ratio test, or by using the standard error of p to 

construct a hypothesis test. There are a number of types of residuals that can be plotted, 
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including those due to Cox and Snell (1968), Schoenfeld (1982) and Themeau et al. (1990). 

Collett (1994) discusses the definitions and uses of these residuals. There are also a number of 

tests to check the validity of the proportional hazards assumption, for example 

Schoenfeld (1980) and Gill and Schumacher (1987). Struthers and Kalbfleisch (1986) have 

investigated the results of using a proportional hazards model when it is not valid, that is 

when the covariates do not have a proportional effect on the hazard. They concluded that 

although the parameter estimates would be biased, the significant factors affecting the hazard 

would still be identified. 

The interpretation of the fitted proportional hazards model is straightforward. If the 

estimates of the parameters are ~, for a given set of covariate values x the hazard function is 

exp(xT~) times the baseline. If the survivor function is required, given the covariates, it can 

be estimated from equation (2.33), where So(t) is the baseline survivor function. 

(2.33) 

It is not necessary in the analysis to specify the baseline hazard function. The model 

can be used simply as a tool to identify important factors, and to quantify their effects on the 

hazard. If however, predictions of the hazard rate or survival probabilities are required then 

the baseline hazard must be specified. The cumulative hazard is also needed for the residual 

analysis. If a parametric model has been found from a previous analysis then this can be used. 

Otherwise, the survivor function can be estimated from the data. A non-parametric method 

for doing this was introduced by Kalbfleisch and Prentice (1973), and explained in more detail 

in Kalbfleisch and Prentice (1980). For the case when no ties occur their formulation gives the 

baseline survivor function as equation (2.34). The estimate of the cumulative hazard is then 

the negative of the logarithm of the baseline survivor function, equation (2.5). 

s0(t)= Il aj (2.34) 
j:t(i)<l 
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where aj is 

a i = l-[ exp(x/~~ ] 
Lexp(xl fJ) 
leRi 

(2.35) 

If all the observations are from the same covariate level (that is there is no change in any of 

the covariates) then equation (2.34) becomes the Kaplan-Meier estimate of the survivor 

function, equation (2.8). A plot of the baseline survivor function may show a suitable 

parametric form for the model. 

2.5.3 Accelerated Life Models 

The majority of the literature on regression models for survival data is concerned with 

the proportional hazards model. However another important class of models is the accelerated 

life models. An accelerated life model is a model of the form 

S(t;x) = S0 (t'1' x) (2.36) 

where 

So(t) is a baseline survivor function. 

fllx is a positive function of x. 

The hazard function for equation (2.36) is then given by 

(2.37) 

A comparison of equation (2.37) with (2.27), and equation (2.36) with (2.33), shows the 

difference between the two types of model. Whereas the Proportional Hazard model assumes a 

multiplicative effect on the hazard, the accelerated life model assumes a multiplicative effect 

on the time scale. If exponential or Weibull models are assumed for the data then the 
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accelerated life model is equivalent to the proportional hazards model: see Kalbfleisch and 

Prentice (1980) for further details. An alternative form of the accelerated life model is 

expressed in terms of log lifetimes (Crowder et al., 1991) by 

ln(T} = -ln( 11' .} + ln(W} (2.38) 

where W is the baseline variate. The log lifetimes are then distributed as ln(W) with a location 

shift. 

2.6 Bayesian Methods in Reliability 

2.6.1 Introduction 

Up to this point fitted models have been considered from a classical viewpoint using 

maximum likelihood procedures. Over recent years Bayesian methods have been used very 

widely in most areas of applied statistics. Rapid developments in the areas of Bayesian 

computational statistics and in particular the use of Markov Chain Monte Carlo (M CM C) 

methods (See Gilks et al., 1996) have given impetus to these applications in situations where 

analytical methods are intractable. A very recent example is the work of Walker and 

Mallick (1997). A major benefit of the Bayesian approach in development projects such as the 

AJ26 is that it allows prior information to be incorporated into the analysis and it provides a 

natural way of modelling the development process as it proceeds from one stage to the next. 

In Bayesian analysis, prior information on an unknown quantity a is represented in 

terms of the prior probability density !C( 0). Having observed data x , Bayes theorem is used to 

determine the distribution of a given X , as 

lf(G1x) = !C(O)e(xiO) 
JlC(O)e(xiO)dO 

(2.39) 
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This is termed the posterior distribution of e, and is the object of all Bayesian inference. 

In the phase to phase development process the posterior distribution from one phase 

forms the prior distribution for the next and the Bayesian paradigm provides a natural way of 

modelling the sequential development process. Moreover, at the start of the development the 

prior distribution provides a mechanism for designers and development engineers to express 

their prior knowledge about the engine or its components in a formal way. Bayesian methods 

thus provide a bridge between the engineers knowledge and subsequent data. This application 

of Bayesian methods in the context of design and development was illustrated by Whitmore et 

al. (1994). This is described in the following section. 

2.6.2 A Bayesian Methodology for Technological Evolution 

Whitmore et al. (1994) describe the use of Bayesian analysis to estimate the failtU'e 

rate, or to find the probability of a certain number of failures, over a number of design updates 

in the development of a new device. The basic assumption with the method is that the failure 

rate is constant, that is the failure time follows an exponential distribution. Although the 

validity of this assumption is doubtful in practice, the analysis can be extended to allow for 

changing failure rates by using other distributions, for example the Weibull or gamma 

distributions. For the exponential case, the data required are the number of failures r that 

occurred over the whole test timet. 

Whitmore et al. (1994) consider the situation where a unit is run for time l1 and yields 

n failures, giving a failure rate of AI > 0. This is assumed to follow a Poisson distribution with 

A. equal to Ail! and the likelihood is given by 

(2.40) 
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The conjugate prior when the likelihood takes the form of a Poisson distribution is a 

gamma distribution. If the gamma prior has parameters a and 13. Ga(a,l3), then using 

equation (2.39) the posterior distribution 1t(A1I n) is 

giving 

The Posterior distribution is therefore given by 

where a' = n +a and 13' = t1 + 13. If a second unit is made which is similar to the first, and 

testing yields r2 failures in time t2, the posterior distribution for the first unit, 11(A1 In), can be 

modified to become the prior distribution for the second, n(A.2). The suggested modification is 

given by equation (2.41). 

(2.41) 

The mean and variance of this distribution are given in Section 2.4.4 as q.1 and cdcr2 

respectively, where~ and cr2 are the mean and variance of the posterior distribution for the 

first unit. The effect of c and d is therefore to re scale the distribution, where c gives the 

expected change in the mean and cd gives the expected change in the variance. Using the 

previous results the posterior distribution for the second unit, 7t(A211"2), is given by 

equation (2.42). This analysis can be extended for any number of technological evolutions from 

the original unit. 
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(2.42) 

The predictive distribution, 7r(r2l t2) can be found from equation (2.43), and is given by 

equation (2.44). This allows inferences to be made, for a given time period, about the expected 

number offailures, or the probability of obtaining x number offailures. 

"' 
1rhlt2) = J7r(r2l..l.2,t2H..t2) d..l.2 (2.43) 

0 

(2.44) 

2. 7 The Reliability of Repairable Systems 

2. 7.1 Introduction 

This section introduces repairable system reliability. The methodology discussed so far 

is used to model single failure times, whereas repairable items can have multiple failure times. 

A model for repairable system reliability, the non-homogeneous Poisson process (NHPP), is 

discussed in Section 2.7.2. An introduction to these methods is given by Crowder et al. (1991), 

and they are discussed in further detail by Ascher and Feingold (1984). 

A repairable system is defined as a system that, after a failure has occurred, can be 

restored to full working order by any means other than replacement of the whole system. In 

the analysis of repairable systems, it is the Rate of Occurrence of Failures (ROCOF), that is 

generally of interest. This is modelled by the function v(t), defined as 

v(t) = :t E{N(t)} (2.45) 
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where E{N(t)} is the expected number of failures at timet. A simple non-parametric estimator 

of u(t) is obtained by equation (2.46), where the time scale is split into a number of intervals. 

These intervals are usually chosen to highlight the main features of the data. 

v(t) =no. of failures in ( t , t + ot] 
ot 

(2.46) 

If the trend of u(t) is linear then the ROCOF is said to be constant over time, otherwise 

it is either increasing or decreasing. A graph of the fail me number against the cumulative 

failw·e time is an easy way to gain an indication of the trend. Figure 2.5 shows such a plot, for 

the failure of diesel engines on the USS Grampus (Crowder et al. (1991), page 161), from which 

it appears that the ROCOF is constant. 
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Figure 2.5 : Plot of failure number against cumulative time for USS Grampus data. 

2.7.2 Th e Non-Homogeneous Poisson Process (NHPP) 

A model for repairable systems has to be flexible to describe both increasing and 

decreasing failw·e rates, and the non-homogeneous Poisson process is able to do this. It states 

that for a repairable system with a ROCOF described by 'A(t), the number of failures over a 

time interval (t1,t2] has a Poisson distribution with mean given by 
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t, 

f-1(t)dt (2.47) 

t, 

This mean can then be used to make inferences about the data. For example, using the 

formula for a Poisson distribution, the probability of zero failures occurring in the time 

interval (t1,t2) is 

P{no failure in(t1 ,~1} = exp{-f. -1(t) dt} (2.48) 

Consider a repairable system monitored for time period 0 to to, during which n failures 

occurred at times tJ,t2 .... , ln respectively (where t. $to). The likelihood function, for a given 

failure rate A.(t), is derived from the probabilities of failures at times tJ, t2, .... ln and the 

probabilities of no failures during the time intervals (0, l1], (tJ, 12], ... ,(In, to). The likelihood 

function is therefore 

L = Pr{no failure in (O,td} x Pr{failure at td x Pr{no failure in (t1,t2 J} x 

... xPr{failure at tn} x Pr{no failure in (tn,toJ} (2.49) 

Using the results of equations (2.47) and (2.48) this becomes 

[ { 
t, }] [ { t,+&, }1,+01, ] [ { t., }] L = exp -! -1(t) dt exp - !, -1(t) dt !, J(t) dt exp -,.J<~~~(t) dt x 

... x[exp{-'"ri(l) dt}
1

"J"1(t) dt] [exp{- J -1(1) dt}] 
111 111 l 11 +b"i,. 

(2.50) 

Simplifying this gives the likelihood function as 

(2.51) 
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The likelihood can easily be extended for the case of interval-censoring; see Crowder et 

al. (1991) for further details. There are two most commonly used forms for A.(t), and these are 

given by equations (2.52) and (2.53), 

A. 1(t) = exp(Po + P1t) (2.52) 

y,o > o (2.53) 

The log-linear model, Al(t), is discussed by Cox and Lewis (1966). If p, is less than 0 

then the ROCOF is decreasing, if P• is greater than 0 then the ROCOF is increasing, and if p, 

is equal to 0 then the ROCOF is constant. 

The power law model, "A2(t), is discussed by Ascher and Feingold (1984). This is 

equivalent to equation (2.15), the hazard function for a Weibull distribution, with o substituted 

for 11 and y replacing lla". Section 2.4.3 describes how the shape of this function changes with 

different values of o. 

Once the form of "A(t) has been specified this can be substituted into equation (2.51) and 

the log-likelihood, combined with the partial derivatives, can be used in order to obtain 

estimates of the parameters. For the log-linear model the likelihood function, equation (2.51), 

becomes 

(2.54) 

and the log-likelihood of equation (2.54) is 

(2.55) 
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The partial derivatives of equation (2.55) are given by equations (2.56) and (2.57). 

oe exp(Po){exp(Ptto) -1} 
--=n-
iJPo p, 

(2.56) 

(2.57) 

By equating (2.56) to zero, exp(~o) can be expressed in terms of~~. to and nand this can 

be substituted into equation (2.57). Setting the resulting equation to zero and solving gives the 

maximum likelihood estimate of ~I. This estimate can then be used to find the maximum 

likelihood estimate of ~o. 

It is important to check the significance of the gradient parameter, specifically to test 

for evidence that the ROCOF is not linear, that is testing for evidence that~~ # 0. There are 

two ways in which this statistical test can be performed. A likelihood ratio test as described in 

Section 2.4.7 may be performed between the full model and a model with~~ removed. For the 

latter case it is not necessary to fit the model; the maximised log-likelihood is given by 

(2.58) 

A significant difference between the maximised likelihoods for the two models 

indicates that the ROCOF is not constant. Alternatively, a hypothesis test using the 

parameter estimates and their standard errors may be performed. The covariance matrix can 

be estimated by the inverse of the negative of the matrix of second derivatives, and the 

standard errors are taken from the leading diagonal. The test statistic is given by the 

parameter estimate divided by its standard error and this is compared with a normal 

distribution. 
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2.8 Summary 

This chapter has introduced the models and analyses that are most frequently used for 

reliability data. Although the different models have been discussed as separate topics, there is 

a great deal of overlap in the methodologies. For example, the proportional hazards model can 

be used to identify important covariate effects (in which case it is unnecessary to know the 

form of the baseline hazard) or it can be used as a predictive model. For the latter case the 

baseline hazard does need to be specified and may take either a parametric form (such as one 

of the models introduced in Section 2.4) or a non-parametric form. The non-parametric 

estimate of the baseline hazard uses a generalisation of the Kaplan-Meier estimate described 

in Section 2.3.3. 

In Section 2.6, a Bayesian model for failure data from an exponential distribution was 

described. This analysis can be applied to other parametric models as well as the proportional 

hazards and repairable systems models. In effect, the Bayesian methodology can be applied to 

any suitable model where sequences of data due to a technological evolution of the design of 

the item(s), or data from similar items, are available. 
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CHAPTER 3 

A Non-Homogeneous Poisson Process 

Model With Random Effect 

3.1 A Repairable System Reliability Model for Multiple Units 

The previous chapter introduced the Non-Homogeneous Poisson Process (NHPP) model 

for repairable system reliability through an example of reliability data obtained from a diesel 

engine on the USS Grampus as in Crowder et al.(l991). The Jaguar data (see Appendix 2) can 

be treated in the same way since all engines have a succession of failures, each of which is 

repaired before testing continues. In this, and the following chapters, the data from the four 

engine phases are treated separately. An alternative modelling procedure, which treats the 

phase differences as a covariate effect, is introduced in Chapter 7. 

For the USS Grampus example the NHPP model was used to estimate the Rate of 

Occurrence of Failures (ROCOF) for data from a single engine. This allowed inferences about 

the trend of failures and the expected number offailures to be made. In the Jaguar data 

failures are recorded for a number of engines all of which are the same on a given phase. For 

this case the NHPP model in Section 2.7 can be extended to allow for data from multiple 

engines (units). This extended model is described below 
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For m engines, where n; failures have occurred, at times l!i, t2;, .... t;,.;, on the i1h engine 

and when the total time is t;, the likelihood function given by equation (2.52) now becomes 

(3.1) 

A log-linear model for the ROCOF A.(t;j), equation (3.2), gives the log-likelihood function 

as equation (3.3) 

(3.2) 

(3.3) 

This function, equation (3.3), can be maximised to obtain the estimates of fJo and /31. To 

test for a constant ROCOF the maximised value of equation (3.3) can be compared with the 

maximised log-likelihood when /31 is removed, given by 

"' 
ema.r =I 

i=l 

(3.4) 

Alternatively, the standard errors can be used to construct a hypothesis test. This 

requires the matrix of second partial derivatives of e to be evaluated at the maxim urn. The 

first partial derivatives are given by 

(3.5) 
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f3tt;exp(f3o + Ni)- exp(f3o){ exp(f31t;} -1}] 

f3t2 

The second derivatives are then 

o2 ~ =I -[exp(f3o){f31t;exp(f3 1t;)(/3~;- 2) + 2exp(PJt;)- 2}] 

of3t i=l P1 

The information matrix J is the inverse of the negative of the matrix of second 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

derivatives. The standard errors are estimated by the square root of the leading diagonal of J. 

The results of fitting the log-linear model for the ROCOF given by equation (3.2), to the Jaguar 

data in Appendix 2, where phases are treated separately, are given in Table 3.1. In order to fit 

the model to these data the failure times have been multiplied scaled by a factor of 1/k (for 

some k ;r 0). This is necessary for two reasons. First to maintain the confidentiality of the data 

and second to allow the computation to be performed, else due to the log-likelihood in equation 

(3.3) containing exp(t) the numbers become too large. This is especially true for the model 

introduced in Section 3.3 where the log-likelihood contains a double exponential. 

This table shows the parameter estimates with their standard errors in brackets, the 

log-likelihood for the full and reduced model and the test statistic for a likelihood ratio test. 

The likelihood ratio test has one degree of freedom, since one parameter has been removed 

between the two models. The test statistic can be compared with 3.841 (X2I.O.o5). The results 

show that there is evidence that the ROCOF is non-linear for phases AO, Al-l and A2-1. This 

evidence is very strong for phases AO and A2-l. However, for phase Al-2 the results suggest 

40 



that a linear ROCOF is reasonable. The results of a two-tailed Z-test using the standard 

errors are shown in Table 3.2. These results show that in all cases the intercept parameter, 13o. 

is highly significant. The tests for non-linearity give the same conclusions as before, with the 

exception of phase Al-l which gives a marginally significant result on the likelihood ratio test 

and a marginally insignificant result on the Z-test. 

TABLE3.1 

Summary of Log-linear Models Fitted to Jaguar Data. 

Engine J..(t) = exp(/Jo + fJ1t) J..(t) = exp(/Jo) Likelihood 
Phase Ratio Statistic 

Po p, £max lmax 

AO 4.048 -6.401 219.76 198.60 42.32 

(0.1519) (1.1554) 

Al-l 3.683 -1.789 169.59 167.30 4.58 

(0.1855) (0.8671) 

Al-2 3.154 -1.626 91.88 90.70 2.36 

(0.2354) (1.0896) 

A2-l 3.421 -2.891 227.41 215.64 23.54 

(0.1401) (0.6375) 

TABLE3.2 

Hypothesis tests for Fitted Models. 

Engine Phase A A A A p, Significant at 5% Po /SE( Po ) fJ1/SE(fJ1) 

AO 26.649 -5.540 ./ 

Al-l 19.854 -2.063 ./ 

Al-2 13.393 -1.492 " 
A2-l 24.418 -4.3534 ./ 

Plots of the failure number against failure times for the first four engine phases, AO to 

A2-l, are shown in Figures 3.1 to 3.4 respectively. These plots show that a large amount of 
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variability exists between engines on a given phase. This would be expected since there will 

always be some variability between engines, however small, due to the differences in the 

quality of parts and the engine build process. However, the models fitted to this data have 

only estimated the mean ROCOF for each of these plots, and have taken no account of this 

variability. Clearly it would be useful to be able to estimate the variability between engines. 

This would not only give confidence levels to be placed on any predictions, but would also allow 

comparisons of the variability between phases to be made. As an engine is developed a 

decrease in the engine variability would be expected. This would be due to the identification 

and removal of failure causes and the engine design and build process becoming more robust. 

Within a suitable model a random effect is required to allow analysis of the variability between 

engines. The next section introduces a random effect model appropriate for data from 

repairable systems, and the remainder of the chapter develops the methodology for one such 

model. 

3.2 Random Effect Models for Repairable Systems 

Lawless (1995) presents a number of approaches for analysing data from recurrent 

events (repairable systems). Specifically, conditional and marginal models are discussed for 

Poisson and renewal processes. It is the Poisson process which is of interest here and this 

section presents the models in this context. Lawless (1995) also discusses the inclusion of 

covariate effects and this is presented in Chapter 6. 

A marginal analysis uses rates and means to describe the event process. As in 

Section 2.7 the rate of occurrence function is defmed as 

v(t) = dE(N(t)) 
dt 

The expected number of failures in the interval (O,to] are then 
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Figure 3.1 : Failure Time Plot for Engine Phase AO 
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Figure 3.2 : Failme Time Plot for Engine Phase Al-l 
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Figure 3.3 : Failme Time Plot for Engine Phase Al-2 
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Figure 3.4 : Failme Time Plot for Engine Phase A2-1 
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lo 

Ju(t) dt. (3.11) 
0 

Covariates can be included as a multiplicative function of the baseline rate function, p(t). For 

covariate matrix Z the model becomes 

u(t: Z) = p (t),P(Z) (3.12) 

A conditional approach uses intensity functions to describe the event process over time. 

In the case of a single subject, let H, ::: {N(s): s < t} describe the history of the process up to 

time t and let iJN(t) denote the number of events in (t, t +it). The conditional intensity A.(t; H,) 

lS 

A. t; H
1 

= un __,\~------=-'-( ) I . [P1oN(t)=1\H1)] 

a-+0 a 
(3.13) 

The probability density of n events occurring at times t1, t2, .. . , tn over interval (0, T1 is 

(3.14) 

Covariates can be included in a multiplicative form as in the marginal model. The covariate 

intensity model is specified by 

A.(t;H,) = p (t),P(Z) (3.15) 

In general the intensity function is different from the rate function, one being defined 

in terms of probability of an event at time t and the other in terms of the rate of events at time 

t. For a Poisson process, including the non-homogeneous Poisson process which is of interest 

here, the rate and intensity functions are the same. This is demonstrated by the likelihood 

function for the NHPP model with rate A.(t), equation (2.51), being directly equivalent to the 
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pdf for the conditional intensity model in equation (3.14). A application of these models which 

is of interest in this study is given by Lawless (1995) and Kalbfleisch et al. (1991). This deals 

with the cost of warranty of automobiles in service, where there is a time lag between failures 

and reported failures. 

Lawless (1995) also demonstrates the inclusion of a random effect on NHPP models of 

this form. This is an extension to the random effect model introduced by Lawless (1987). In 

both of these papers a Poisson process with an intensity of the form of a;p(t) is used, where a. is 

an unobservable random effect or 'frailty' variable for each subject. Covariate effects are also 

included in the same way as in equation (3.15). Lawless (1995, 1987) assumes the variability 

between subjects follows a gamma distribution with mean= 1 and variance = au2· For a 

gamma distribution with parameters v (shape) and 1: (scale), the mean is given by v/1: and the 

variance by v/1:2• It then follows that for the assumption of subject variability following a 

gamma distribution with mean= 1, the shape and scale parameters are restricted to taking the 

same values. Therefore as the variability between subjects changes, the shape of the 

distribution will also change. This would not be expected in a realistic situation. Ciampi et 

al. (1992) provide a program for fitting this random effect model in a parametric and semi­

parametric form. 

An alternative model was proposed by Abu-Libdeh et al. (1990) in the context of the 

occurrence of skin cancers. Again the gamma distribution was used to model the variability 

between subjects. However, in this case both the shape and scale parameters are estimated 

with no restrictions on the mean and variance. This may lead to high levels of association 

between the parameters. 

Both of these approaches use a gamma distribution to model the subject variability. 

The gamma distribution is used as it is analytically convenient, and the likelihood can be 

specified in order to obtain parameter estimates. The interpretation of these estimates 

however is not straightforward. This can be overcome by using a normal distribution for the 

random effect, which uses a single parameter to express the variability between subjects. In 

this case the likelihood cannot be expressed analytically, although computational techniques 
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such as numerical integration routines will allow a value of the likelihood to be estimated. 

Such a model is introduced in the following sections. 

3.3 Log-Linear Model with Random Effect on the Intercept 

The simplest random effect model introduces the random effect onto the intercept 

parameter fJo of the log-linear model. This random effect allows each unit to have a different 

intercept. This implies that each unit will have a different starting reliability but the ROCOF 

will change at the same rate. The rate of occurrence of failure for the i1h unit is now modelled 

by equation (3.16) 

A.;(t} = exp(Po +Pit+ c;} (3.16) 

where 

Eii is a random effect due to unit i, and 8- N(O, cr, 2 ) 

In this case the engine variation 8 is assumed to be normally distributed, with a mean 

of zero and constant variance. Placing the variance component on l3o gives the ith unit a 

proportional effect on the number of failures; that is, the change in expected number of failures 

caused by the random effect is not dependent on time. Using equation (2.47) the expected 

number of failures in time interval (a., b) are 

b 

E(failures(a.,bJI&i} = exp(Po +&;} Jexp(P1t} dt 
a 
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The estimates (p0 , p1 and a.) of the three parameters can be obtained by the method 

of maximum likelihood. Substituting equation (3.16) into equation (3.1), for m units with n; 

failures on each, gives the likelihood function conditional on the random effect E as 

(3.18) 

where 13 is the vector of parameters. 

m oo 

P(data113) =IT JP(data;le;.13)P(e;) de; (3.19) 
i=l -ao 

(3.20) 

In order to obtain the maximum likelihood estimates of the parameters, the condition 

on the random effect has to be removed. This is achieved by multiplying equation (3.18) by the 

probability density function of E and then integrating with respect toE, as in equation (3.19). 

The likelihood function is now expressed by equation (3.20). Taking logarithms of equation 

(3.20) gives the log-likelihood function, which is easier to calculate than the likelihood, but 

produces the same estimates of the parameters. Using equation (3.16) for A;(t), and the 

assumption of zero mean and constant variance (cr,2) for the random effect, we obtain the 

log-likelihood after simplification as 

"' [ ( n, ) "' [ exp(Po + e;) ] 1 { e/ } J e=Iln exp n;Po+P1 p;j Jexp n;e;- {exp(p1t;)-1} ~exp ---2 de; 
•=I J-1 -<» P1 2na 2a • 

& 

(3.21) 
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The integral in equation (3.21) cannot be evaluated analytically and must therefore be 

approximated numerically. Numerical methods of integration appropriate for estimating 

integrals of this type are discussed in Section 3.4. 

In order to obtain the information matrix, J, and hence estimates of the standard 

errors, the matrix of second order partial derivatives is required. First we define the following 

quantities: 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

2 2 
D- = &; - u, 

' 3 
(3.26) 

u, 

(3.27) 

The first order partial derivatives are now given by equations (3.28) to (3.30): 

Of. Ill 1 "' 
iJ[J = L .1. fB;z; de; 

0 1=1 ·~-«< 

(3.28) 
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(3.29) 

(3.30) 

The second partial derivatives are given by equations (3.31) to (3.36) respectively: 

l ( J2l 
? m oo oo 

_e = "-1 
d. f(H -n· +B-2 )z· de·- fn.z. de· Of 2 L.... d.2 ''"J l I l l l l l I 

PO 1=1 .-, ----<0 --«l 

(3.31) 

if-e "' 1 
[ "'!( ni J ) "' "' l ---=-....::.._ = "- d. J c.-" t +BC z. de-- JBz. de· Jc.z. de· Of Of L.... d.2 ''"i I L.... J I l l l I l l l I I 
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3.4 Numerical Approximation Methods of Integration 

This section introduces and compares a number of techniques for approximating 

integrals. As stated previously, the integral within the log-likelihood function, equation (3.21), 

cannot be evaluated analytically and must be approximated by numerical methods. The aim of 

this section is to demonstrate a method that gives estimates of the value of the log-likelihood. 

These estimates must be both accurate to a number of significant figures and also 

computationally efficient. A number of rules exist, known as Quadrature rules, for 

approximating integrals and these take the following general form: 

b b " 

Ja(x) dx = Jw(x)f(x) dx = LH/h)+E,.(f) 
j=l 

(3.37) 
0 a 

where 

G(x) is the function to be integrated which decomposes to f(x) and w(x). 

w(x) is a weight function. 

x/s are the abscissre of the quadrature rule. 

H/s are the weights. 

En({) is the error term. 

The weight function is a part of the integrand which is usually separated from f(x). 

Quadrature rules can be divided into two classes, Newton-Cotes quadrature and Gaussian 

quadrature, and these are intmduced in the following sections. For further details on these 

methods see Smith (1993) and Davis & Rabinowitz (1984). 

In order to demonstrate the quadrature rules, they have been applied to the integral 

given in equation (3.38), the integral contained within the log-likelihood function, 

equation (3.21). 

(3.38) 
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In all cases the values of the parameters, {Jo, /31 and cr., are 1 and the event times are 

given as t = 0.1, 0.3, 0.5, 0.7, 0.9, with no censoring occurring. 

3.4.1 Newton-Cotes Quadrature 

For Newton-Cotes quadrature the absciss~:e, x/s, are equally spaced over the limits of 

integration. The weight function, w(x), is always taken to be 1. The first and simplest Newton-

Cotes rule is the Trapezoidal rule. If the interval of integration, [a,b], is divided into n equally 

spaced sub-intervals of width h = (b-{1,)/n, then the Trapezoidal rule is defmed by: 

(3.39) 

The second, and more complex Newton-Cotes rule is Simpson's rule. With nand h as 

for the Trapezoidal rule, Simpson's rule is given by equation (3.40). For this rule to be 

appropriate n must be even. Simpson's rule is generally expected to be more accurate than the 

Trapezoidal rule. 

b I 
Jt(x) "'~ {f(a) +4f(a +h)+ 2f(a + 2h) + 4f(a + 3h)+ ... +2f(b- 2h) + 4f(b- h)+ f(b)} (3.40) 
a 

These two rules have been applied, with differing numbers of intervals, to the integral 

given in equation (3.38). Although this integral is defined between plus and minus infinity the 

integral has been calculated between plus and minus five standard deviations cr. which gives a 

good approximation to the true value, and the results ru·e given in Table 3.3. There are other 

higher order Newton-Cotes rules which are more complicated, for example the Romberg rule, 

although these have not been considered here. 

The results in Table 3.3 show that for larger numbers of intervals over the limits of 

integration both of these methods give the value of the integral to be the same. For integrals 

of the type given by equation (3.38) the Trapezoidal rule appears to give more consistent 

52 



approximations to the integral for smaller values of n. However, to ensure accuracy in the 

estimate, larger values of n would be used, giving no clear preference in the choice of method. 

TABLE 3.3 

Integral Approximations using Newton-Cotes Quadrature. 

Number of Newton-Cotes Quadrature Rule 

Intervals (n) Trapezoidal Simpson's 

2 40.93810 54.58413 

4 20.56124 13.76895 

6 15.67792 19.55103 

10 15.81589 16.21551 

20 15.81606 15.81612 

50 15.81607 15.81607 

100 15.81607 15.81607 

3.4.2 Gaussian Quadrature 

For Gaussian quadrature the abscissre, x/s, are not equally spaced over the region of 

integration. The weight function, m(x), varies for different Gaussian quadrature rules. The 

most common Gaussian rules, together with their weight functions and regions of integration, 

are given in Table 3.4. 

The two rules that are most applicable to the integral given by equation (3.38) are the 

Gauss-Legendre and the Gauss-Hermite. The Gauss-Legendre quad.mture rule can be applied 

to the integral without changing the form of equation (3.38), although some scaling is required 

to change the limits of integration to plus and minus one. To apply the Gauss-Hermite 

quadrature rule a factor of exp(-c2
) must be extracted from f(x) and used as the weight 

function. The quadrature rule is then applied to this revised f(x). For both of these methods 
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TABLE3.4 

GarLssian Qnadratnre Rnles. 

Gaussian Quadrature Weight Function Limits of 

Rule m(x) Integration 

Legendre 1 [-1,1] 

Chebyshev (1-x2fy, [-1,1] 

Laguerre e -X [O,oo) 

Hermite e-x' (-oo,oo) 

the abscissre and weights (x/s and H/s) can be taken from published tables (see for example 

Tables 25.4 and 25.10 in Abramowitz and Stegun (1972) respectively for the Legendre and 

Hermite methods). In both cases the integral is approximated, with the appropriate limits, by 

b n 

fm(x)f(x) dx"' IH/h) (3.41) 
n j=l 

The results of applying these rules, for values of n up to 20, are given in Table 3.5. The 

results show that the Gauss-Hermite approximation is a more consistent estintator than 

Gauss-Legendre. This would be expected since the Gauss-Hermite quadrature rule is more 

applicable to the integral of equation (3.38) due to its more specific weight function and limits 

of integration. For the values of n given, neither of these rules appear to have converged to 

approximations given by the Newton-Cotes quadrature rules, and a further investigation of 

increased number of points is required. Alternatively, instead of increasing n, the Gauss-

Legendre quadrature rule can be applied in composite form. This is achieved by dividing the 

region of integration into m equal intervals, and calculating the n-point Gauss-Legendre 

approximation for each interval. The overall value of the integral is then estimated by 

summing the m approximations. The advantage of using this method is that the error term is 

reduced by a factor of 1 I m2
" (see Ralston and Rabinowitz, 1978). The results of using this 

method for m intervals when n = 4 are given in Table 3.6. These show that a good estimate is 

provided with small values of m and that the approximation converges fairly quickly. 
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TABLE3.5 

Integral Approximations Using Gauss-Legendre and Hermite Rnles. 

Number of Points Gaussian Quadrature Rule 

n Legendre Hermite 

2 0.04199 12.39825 

3 36.38991 16.71409 

4 3.51534 15.89739 

5 23.33083 15.45319 

10 16.05028 15.87290 

20 15.81593 15.81916 

TABLE 3.6 

Results of Four Point Composite Gauss-Legendre Integration. 

Number of 

Intervals (m) 1 2 3 4 

Approximation 3.51534 15.17167 15.84944 15.84139 

Number of 

Intervals (m) 5 10 20 50 

Approximation 15.81481 15.81606 15.81607 15.81607 

Another extension to the Gauss-Legendre quadrature is the Gauss-Kronrod scheme. 

For Gauss-Legendre quadrature, if the value of n is increased the new approximation makes 

no use of the previous value. For Gauss-Kronrod, the weights and abscissre are calculated so 

that they can be combined with the previous estimate, giving more accUI"acy for less 

computation. The integrate function inS-Plus uses an automatic Gauss-Kronrod scheme 
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that increases n at each step until a convergence criteria is reached. Using this method to 

estimate the integral given by equation (3.38) gives an answer of 15.81607. 

3.4.3 Summary of Integration Results 

The preceding sections have demonstrated a number of numerical integration 

techniques that allow the log-likelihood, equation (3.21), to be estimated. For the example 

given it can be seen that the value of the integral to 5 decimal places is 15.81607, and that a 

number of the methods converge to this figure. 

8-Plus provides an integration function, using the Gauss-Kronrod method. However, 

this function is slow to produce an approximation and also uses large amounts of memory. For 

example, using a 486 dx2/66 machine takes 7.97 seconds to produce an estimate of the log­

likelihood for the Jaguar AO data in Appendix 2. Using the Composite Gauss-Legendre 

quadrature rule takes only 0.66 seconds to produce the same estimate. This rule has been 

demonstrated to estimate the integral as well as any of the other methods discussed, and 

requires smaller values of n than other methods, and for these reasons the Composite Gauss­

Legendre rule has been used, with m = 10, in all further analysis. 

3.5 Fitted Models with Random Effect on the Intercept 

The random effect log-linear model, given by equation (3.16), has been fitted to the 

Jaguar data in Appendix 2. The four phases have been treated separately, and as in 

Section 3.1 the failure times have been scaled by a factor of llk. The fitted parameters and the 

maximised log-likelihoods are given in Table 3.7. The S-Plus functions for fitting these 

models, as well as a function for calculating the nodes for Gauss-Legendre integration, are 

given in Appendix 4 and the residuals for these models are considered in Chapter 5. 
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TABLE3.7 

Parameter Estimates to Jaguar Data for Model with Random Effect on Po. 

Phase Po PI u. fmax 

AO 3.945 -5.830 0.486 222.48 

Al-l 3.622 -1.432 0.321 170.48 

Al-2 2.904 0.046 0.835 96.54 

A2-l 3.356 -2.452 0.526 230.87 

The significance of including the random effect can be tested by performing a 

likelihood ratio test between this model and the standard log-linear model, equation (3.2). The 

values of the likelihood ratio statistic for each of the four models are given in Table 3.8. These 

test statistics can be compared with 3.841 (X2I,o.os) and the results show, except for phase Al-l, 

a significant reduction in the log-likelihood function if the random effect is removed. Hence it 

can be concluded from this test that the random effect should be included in the model. 

TABLE 3.8 

Likelihood Ratio Statistic for Random Effect Models Fitted to Jaguar Data. 

Engine Phase AO Al-l Al-2 A2-l 

Likelihood Ratio 5.44 1.78 9.32 6.92 

Statistic 

The standard errors and the resulting test statistic calculated from these to compare 

the estimated parameter with zero are given in Table 3.9. For the fixed effects a two tailed 

test is required, comparing the null hypothesis of Ho : p; = 0 against the alternative Ho : p; i' 0. 

For the random effect the hypothesis is Ho : cr, = 0 against the alternative Ho : cr, > 0 since the 

standard deviation cannot take a negative value. The test statistics are compared with Z 

values of 1.64 and 1.96 for the one and two tailed tests respectively. The results show some 

agreement with the likelihood ratio test, although the random effect for phase Al-l is now 
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found to significantly different from zero at the 5% level (p = 3.8%). The use of these two tests 

for the random effect is discussed in more detail in Section 3.9. 

TABLE 3.9 

Standard Errors and Test Statistics for Random Effect Models Fitted to Jaguar Data. 

Engine Phase Po P. u, 

AO SE 0.2072 1.2417 0.1825 

Test Statistic 19.040 -4.695 2.663 

Al-l SE 0.2235 0.9612 0.1810 

Test Statistic 16.206 -1.490 1.773 

A1-2 SE 0.3888 1.3219 0.3020 

Test Statistic 7.469 0.035 2.765 

A2-l SE 0.1854 0.6999 0.1627 

Test Statistic 18.101 -3.503 3.233 

The tests for the intercept parameter Po show that the fitted values are highly 

significant (p < 0.001). The hypothesis tests for the gradient parameter 13• yield the same 

results as the model without a random effect, see Section 3.1. For phases Al-l and Al-2 there 

is no evidence to suggest that the ROCOF's are not constant over time. However, examination 

of the relevant failure time plots in Figures 3.2 and 3.3 shows that this is unlikely to be true. 

For some engines the ROCOF is increasing over time, whilst for others it is decreasing, so the 

constant ROCOF obtained could be due to a cancellation effect. These two phases also have a 

small sample size of engines (m= 9) which will have an effect on the values and accuracy of 

the fitted parameters. These small sample sizes are also unlikely to yield good estimates of the 

vm·iance component. 

It should be noted that for three of the four fitted models, the gradient parameter 13• is 

negative, the interpretation being that the ROCOF is decreasing over time. In other words, 

the reliability of an engine would be at its worst when new and would improve as time passes. 

This result is the opposite of what would be predicted, since an engine would be expected to be 
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at its most reliable at the early stages of its life and become less reliable as it gets older. As 

stated in Chapter 1, the testing procedures carried out by Jaguar on the engines are either 

simulations near to real-life engine running (the reliability test) or highly accelerated tests. 

The aim of the accelerated tests is to simulate the working lifetime of an engine over a shorter 

period of time. In practice therefore, the ROCOF should be increasing over time on these tests, 

yielding a positive estimate of the gradient parameter P1. The contrary result obtained by 

fitting the models could be attributed to a number of causes. The data are currently censored 

at 0.6 units engine running time. However it may be that the engines will have to be tested for 

longer periods before engine fatigue is achieved. The decreasing ROCOF on the tests is due to 

a large number of failures early on in the testing, and a number of these will be infant 

mortalities associated with the engine build rather than component failure. At present all 

failures in the first few hours are classed as infant mortalities and are excluded from the 

analysis, but it may be that more failures need to be excluded before a true picture of the 

component failure is reached. Alternatively, the result could be attributed to the problems of 

recording the failure times accurately, as described in Sections 1.2 and 1.3. 

The fitted models can be used to obtain predictions of the expected number of failures 

in a given time interval. Let us say that the number offailures up to 0.32 (rescaled time value) 

are of interest. Using equation (3.17) with this figure as the upper integration limit and zero 

as the lower limit, we may predict the expected number offailures in this interval. The 

random effect can be used to place an interval on the expected number of failures, allowing for 

the variation in the model. The fitted model gives the intercept parameter to be distributed 

normally with a mean of Po and variance cr, 2• A 95% Prediction Interval of the intercept 

parameter can be calculated from 

Po ± 1.96a, (3.42) 

By using the limits of this predicted interval in equation (3.17) an approximate interval 

on the expected number of failures can be obtained. The predicted number of failures for the 

fitted models on the four engine phases are given in Table 3.10. 
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TABLE 3.10 

Predicted N!Lmbers of Fail!Lres for Model with Random Effect on {Jo. 

Engine Expected Number of Failures Interval 

Phase Mean Po -1.96u. Po + 1.96u. Width 

AO 7.49 2.89 19.41 16.52 

Al-l 9.61 5.12 18.04 12.92 

Al-2 5.88 1.14 30.24 29.10 

A2-l 6.38 2.28 17.87 15.59 

These results are actually much higher than the target figure for the engine. However, 

these failm·e data are from prototype engines which would not be expected to reach the target 

figure and therefore this difference is not necessarily due to an inappropriate model. 

Examination of the failure time plots in Figures 3.1 to 3.4 and the data in Appendix 2 show 

that the mean number of failures given in Table 3.10 appears reasonable. As stated in 

Section 2.7.2, the number offailures over a time interval follow a Poisson distribution with the 

mean given by equation (3.17). Using this result the probability of the test engines achieving 

the target reliability can be found. As the acceleration factors are unknown there is no way to 

predict field reliability from test data. This is a problem that needs to be addressed before 

accurate reliability predictions can be obtained. 

Although the field reliability cannot be predicted from this test data, these estimates 

can still be used to monitor engine development. Since the engines from each phase have 

completed the same simulations under the same test conditions, comparisons can be made 

between the reliability of the development engine phases. It would be hoped that as the 

development progresses the reliability will improve and also that the variability between 

engines will decrease. A visual inspection of the results in Tables 3.7 and 3.10 show that this 

does not appear to be the case. A more rigorous approach to comparing the engine phases is 

given in Chapter 7. 
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3.6 Simulation Study on the Random Effect Model 

3.6.1 Introduction 

The previous sections have introduced the log-linear Non-Homogeneous Poisson 

Process model with a random effect on the intercept, and have given fitted models for the 

Jaguar data as well as appropriate tests of significance. These tests of significance for the 

fitted parameter values rely on the information matrix yielding good estimates of the standard 

errors. Although the true values of the standard errors are not known and so cannot be 

compared directly with the estimates, the validity of the estimates can be checked using 

simulated data. The following two sections describe how to simulate data from a log-linear 

NHPP and how this simulated data can be used to estimate the standard errors. 

3.6.2 The Inversion Method for Simulating from a Log-Linear NHPP Model 

To simulate a series of failure times from a Non-Homogeneous Poisson Process, the 

inversion method (Ripley, 1987 and Lewis & Shedler, 1976) is appropriate. This requires the 

inverse of the cumulative distribution function to be found. Random nu m hers generated from 

a standard uniform distribution can then be used with this inverse function to generate the 

event times. 

For a single unit with Rate of Occurrence of Failures described by t..(t), over the time 

interval (O,to], the number offailures follows a Poisson distribution with parameter J.l obtained 

from integrating equation (3.17) over the appropriate interval. The value of~~ given the 

random effect can be expressed as a function of 0 and to, as 

to 

,u= 11(t0 )-11(0)= Jexp(Po +P1t+ci}dt 
0 
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where A(t) is Jexp(Po +piu+ E;)du evaluated at/. The cumulative distribution function oft on 

the interval (O,to], is expressed by equation (3.44). 

F(t) = A(t)- A(O) 
A(t0 )- A(O) 

If there are N failures/events, from Poisson(J.l), in (O,to) and these occur at times 

(3.44) 

Ti, T2. ___ ,TN, then conditional on having observed n (>0) events, the Tis are distributed as order 

statistics from F(t), Ripley (1987). 

To simulate for the log-linear model with the random effect on f3o, equation (3.16), the 

method is as follows. The cumulative distribution function is given by 

F(t) = exp(Po +c;){exp(Pit) -1} I Pi = exp(PA -1 
exp(Po +c;){exp(pito) -1} I Pi exp(Pito) -1 

For P1 ot 0 invert p = F(t) to express the function in terms oft as 

(3.45) 

(3.46) 

Hence, for any value of p within the range, the corresponding event time can be found. 

So a random observation generated from a standard uniform distribution can be substituted 

for pin equation (3.46) to calculate an event time. These results can be combined as the 

following algorithm. 

For the i'h unit: 

1. Generate a random variable n;, the number of events that occur, from Poisson(~tl Ei). If n; = 

0 then no events occur on this unit, so stop. Otherwise continue. 
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u. Generate n; uniform variates and order u, s U2 5. . . s Urn. 

iii. Obtain n; event times by substituting u, , ... ,U., for pinto equation (3.46). 

3.6.3 Validation of the Standard Errors 

The previous section has shown how the inversion method can be used to simulate data 

from a given log-linear Non-Homogeneous Poisson Process model. This section details the use 

of simulation in validating the standard errors of the maximum likelihood estimates of the 

parameters. 

The method for n replications on m simulated units is as follows. For each replication, 

m series of event times, for a given time interval (O,t], are simulated from the same parameter 

values. These m series comprise the data set. The maximum likelihood estimates of the 

parameters for the fitted model to these data are obtained, leading to n estimates of each 

parameter. The mean of these estimates should be approximately the parameter value that 

the data was simulated from and their standard deviation approximates the standard errors. 

Theoretically, as n becomes very large the standard deviations of the parameter estimates 

approach the true value of the standard errors. Therefore, in order to validate the standard 

errors this method can be used to obtain approximations, for a suitable value of n, which can 

be compared to those calculated from the information matrix. 

The first step in this exercise is to decide the number of replications, n, to be performed 

and also the number of units to be simulated within each set of data. Obviously, the larger the 

value of each of these, the more accurate the simulation exercise will be. There is more data 

available from which the parameters can be estimated. However, another important 

consideration is time, and larger values of the nand m can make the length of time required 

for the simulation exercise infeasible. For this reason a number of small studies were carried 

out to determine an optimum number of units to simulate in each data set. These simulations 
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use the parameter values from the fitted model phase AO. From Table 3. 7 this gives the 

parameters for the aim ulation as fJo = 3.945, Pr = -5.830 and u, = 0.486. 

The initial studies showed that for all three model parameters, the maximum 

likelihood estimates were always below the true value, that is the true values were outside the 

distribution of the parameter estimates. The reason for this was traced to the censored 

observation. The original functions to simulate the data passed back only a matrix of event 

times without the last censored observation. However, if the data are simulated for a time 

interval (O,t] and n event times, occUl"ring at times ti, tz, ... ,tn, are generated within this 

interval, then it is also known that no events occur in the interval (t,,t] and hence time t must 

be included as a censored observation. With this extra information the error in the parameter 

estimation was corrected and the distributions of the parameter estimates became, in general, 

centred around the true parameter values. This result demonstrates the need to include all 

available data in the modelling procedure. 

These small simulation studies also highlighted a bias in the estimation of the variance 

component of the random effect. This bias can be shown to be linked to the number of units 

within the data. In general, as would be expected, the smaller the sample size the more biased 

the estimates become. Figure 3.5, overleaf, shows the density estimates for the variance 

component u,, with sample sizes of 10, 20 and 30 units, when the true value of u, is 0.486. The 

means, standard deviations and estimates of bias of the fitted parameters are shown in Table 

3.11. This shows that for the fixed effects, fJo and pi, the parameter estimates are close to the 

true values (fJo = 3.945 and pi = -5.830) and the bias is small. It can also be seen that the 

standard deviations become smaller as the sample size increases. This result is true for the 

standard deviation of u,. However, the estimates of u, are biased since the mean of the 

estimates are less than the true value although this bias appears to decrease as the sample 

size increases. The bias in the variance component is discussed further in Section 3.7. 
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Figure 3.5 : Density Estimates of u" for lOO simulations with sample size (a) 10 (b) 20 (c) 30 
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TABLE 3.11 

Mean and Standard Deviation of n = 100 Simnlations with flo=3.945,pi =-5.830 and a, =0.486. 

Sample Po Pt a, 

Size Mean SD Mean SD Mean SD 

(Bias) (Bias) (Bias) 

10 3.952 0.2541 -5.810 0.8662 0.394 0.2002 

(0.007) (-0.020) (-0.092) 

20 3.964 0.1668 ·5.832 0.5374 0.437 0.1261 

(0.019) (0.020) (-0.049) 

30 3.943 0.1437 -5.805 0.4798 0.459 0.0956 

(-0.020) (-0.025) (-0.027) 

In order to reduce the bias shown above, a further simulation has been carried out 

with a sample size of m=40 engines. This sample size is sufficiently large for the bias to be 

small, yet the computational time required for the simulation is reasonable. This simulation 

allows the accuracy of the estimates of standard errors from the information matrix. The 

simulation has again been carried out for the parameter estimates of phase AO, and n=1000 

replications have been performed. For each replication the maximum likelihood estimates of 

the parameters, and the estimates of the standard errors from the information matrix, have 

been recorded. If the information matrix yields good estimates of the standard errors then the 

mean of these standard errors (the mean of the asymptotic standard errors) and the standard 

deviation of the fitted parameters (the standard deviation of the sampling distribution) should 

be similar. 

The results from the 1000 replications are summarised in Table 3.12. This shows that 

the mean of the asymptotic standard errors are approximately the same as the standard 

deviation of the sampling distribution of parameter estimates. From this it can be concluded 

that estimates of the standard errors obtained from the information matrix are valid. The 

histograms of the estimates of the three parameters for the 1000 replications, as well as the 

normal density function with the appropriate mean and standard deviation, are shown in 
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Figure 3.6 and these appear to be normal. The distribution of the variance component cr, in 

Figure 3.6 (c) has improved with the larger sample size compared to those in Figure 3.5. The 

means of the parameters, Table 3.12, are close to the true values although u c still shows a 

small amount of bias (the mean is 0.470 compared with the true value of 0.486) even with this 

sample size. 

TABLE 3.12 

Results of n = 1000 Simulations with Po = 3.945, P1 = -5.830 and 0'8 = 0.486. 

Po PI 0'& 

True Parameter Values 3.945 -5.830 0.486 

Mean of Sampling Distribution of 3.944 -5.867 0.470 

Estimates (and Bias) (-0.001) (-0.037) (-0.016) 

Standard Deviation of Sampling 0.1185 0.4160 0.0886 

Distribution ofEstimates 

Mean of Asymptotic Standard 0.1127 0.4064 0.0841 

Errors 

3. 7 Investigating Bias in Parameter Estimates 

3.7.1 Introduction 

The simulation study performed in the previous section to validate the estimates of the 

standard errors highlighted a bias in the estimate of the random effect, and this requires 

further investigation. If the bias is very large the fitted models will give incorrect predictions 

and will be of limited use. Sections 3.7.2 and 3.7.3 introduce two methods for investigating 

bias, the Jackknife and the Bootstrap, and Section 3.7.4 gives the results of using these 

methods on both simulated data and the Jaguar data from Appendix 2. 
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Figure 3.6 : Density Plots for 1000 Replications (a) Po ' (b) Pt ' (c) a & 
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3.7.2 The Jackknife Method 

The Jackknife was first formulated by Quenouille (1949), and Tukey (1958) derived 

estimates of the Jackknife standard errors. For a brief introduction to the Jackknife, see 

Kendall and Stuart (1973) and for further details see Efron and Tibshirani (1993). The 

Jackknife is derived in the following way. For a sample size n, let B be the estimated 

parameter values on data including all the observations. If the true parameter values are 

given by the vector 8 then the bias of the estimate is given by 

bias= 8-B (3.47) 

Let B; be defined as the estimated parameter values for data excluding the ith 

observation. That is 

Letting 80 be the mean of all the parameter estimates on the reduced data, that is the 

mean of all B;, enables the Jackknife estimate of the bias to be given as 

A • • 

bias= (n -1)(8()- 8) (3.48) 

The Jackknife corrected estimate of the bias, B, can then be given as 

~ • A 

8 = 8- bias 

Therefore 

(3.49) 
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Tukey (1958) derived the Jackknife standard errors of B as 

A n-1~ • • 2 
SE= -L.../B(iJ-0(.)) 

n i=l 

(3.50) 

Efron and Tibshirani (1993) state that the Jackknife provides a simple procedure for 

estimating the bias and the standard errors of parameter estimates. However, the Jackknife is 

only valid when the statistic e is smooth, that is small changes in the data cause only small 

changes in the estimates of the parameters. 

3.7.3 The Bootstrap Method 

The Bootstrap was fu·st discussed by Efron (1977) and is detailed further by Efron and 

Tibshirani (1993). The Bootstrap algorithm, for a sample size of n, is as follows: 

1. Define a Bootstrap sample as a sample of size n drawn with replacement. 

11. Repeat this B times . 

iii. Estimate parameters, e;bJ, for each Bootstrap sample. b = 1, 2, .... B. 

The Bootstrap estimates of the standard errors are given by equation (3.51), where e~J is the 

mean of the B Bootstrap estimates. Efron and Tibshirani(1993) suggest that the number of 

Bootstrap replicates, B, can normally be taken from the range 25 to 200. 

A 

SE= 
B 

1 ~ •• •• 2 
--L..(() (bJ -B (.)) 
B -1 b=l 

(3.51) 
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The Bootstrap estimate of the bias, when the parameter estimates are 0, is given by 

equation (3.52). This estimate requires B, the number of Bootstrap replicates, to be much 

larger than when estimating only the standard errors . 

A "'* " 
bias = () (.) - B (3.52) 

3.7.4 Bias Correction 

The simu.lations used to validate the standard errors in Section 3.6 showed there is 

considerable bias in the estimate of a, and that this bias appeared to be reduced when the 

sample size increased. In this section Jackknife and Bootstrap bias corrected estimates are 

assessed for both simulated data and the Jaguar data. 

The inversion method of simulation, Section 3.6.2, has been used to simulate failure 

times for sample sizes of 10, 20, 30 for parameter values of fJo = 3.945, PI = -5.830 and 

a.= 0.486. The fitted models and standard errors for these data sets are consistent with the 

results obtained from the validation exercise in Section 3.6.3. The Jackknife and Bootstrap 

with B=500 have been used to produce corrected estimates of a., and these and the 

corresponding standard errors are given in Table 3.13. The maximum likelihood estimates 

from the simulation exercise in Section 3.6.3 are also given for comparison. It appears from 

these results that the Jackknife is effective in reducing the bias in the estimate of a,. 

The Jackknife has been used to produce bias corrected estimates for the Jaguar data. 

Efron and Tibshirani (1993) recommend that the bias on a parameter is ignored if the ratio of 

the bias to the standard error is less than 0.25. The ratios of the bias to the standard errors for 

the Jackknife on simulated data are given in Table 3.14. This table also gives estimates for the 

two fixed effects. These show that, in accordance with the results from the simulation exercise 

in Section 3.6.3 there is indeed no significant bias in the estimates of fJo and pi. However, 

there is a significant bias on the variance component. The results show that the ratio of the 

bias estimates to the standard errors are very high for the small sample sizes considered. In 
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TABLE 3.13 

Maximum Likelihood and Bias Corrected Estimates of a, for Simulated Data. 

Sample Maximum Likelihood Jackknife Bootstrap 

Size Mean SD Mean SE Mean SE 

(Bias) (Bias) (Bias) 

10 0.394 0.2002 0.406 0.2028 0.411 0.1957 

(-0.092) (-0.080) (-0.075) 

20 0.437 0.1261 0.450 0.1053 0.444 0.1187 

(-0.049) (-0.036) (-0.042) 

30 0.459 0.0956 0.468 0.0639 0.459 0.0857 

(-0.027) (-0.018) (-0.027) 

addition, both the bias and the ratio decrease as the sample size increases, as would be 

expected. For a sample size of 30 the ratio of bias to the standard error is just over 0.25 a 

further simulation shows it to be well below this figure for the sample size of 50. From this 

evidence it appears that a sample size of at least 30 is required to obtain good parameter 

estimates, and shows that the sample size of 40 used to validate the standard errors in Section 

3.6.3 was reasonable. 

TABLE 3.14 

Ratios of Bias to Standard Error for Jackknife Estimates. 

Sample Size Po P• a. 

10 0.009 0.008 0.390 

20 0.011 0.026 0.348 

30 0.041 0.079 0.281 

50 0.010 0.010 0.15 
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The preceding investigation of the bias brings into question the estimates of the 

variance components for the Jaguar data. The four engine phases contain data from 15, 9, 9 

and 21 engines respectively and all these sample sizes are much smaller than the minimum 

figure of 30 obtained from the simulated data. The Jackknife has been used to estimate the 

bias and hence produce corrected parameter estimates for the models in Section 3.5. The bias, 

standard errors and their ratios, for each of the four engine phases are given in Table 3.15. 

These show that in all cases the ratio of bias to the standard error on the variance component 

is close to or above the 0.25 threshold. For two of the phases the ratio of bias to standard error 

is high for the gradient parameter. These could be due to influential engines in the data, 

removal of which has a large effect on the parameter estimates. Influential engines are 

considered in the analysis of residuals in Chapter 5 These results agree with those from the 

simulated data in that a significant bias exists in the variance for sample sizes less than thirty. 

TABLE 3.15 

Jackknife Bias Estimates for Jaguar Data. 

Engine Phase ~0 ~~ O"a 

Bias 0.0096 -0.3211 -0.0471 

AO SE 0.2342 1.4550 0.2119 

Bias/SE 0.0410 0.2207 0.2223 

Bias -0.0120 0.0628 -0.1019 

Al-l SE 0.2071 0.9478 0.1482 

Bias/SE 0.0579 0.0663 0.6876 

Bias 0.0384 -0.3318 -0.1128 

Al-2 SE 0.3759 0.9600 0.2564 

Bias/SE 0.1022 0.3456 0.4399 

Bias -0.0044 0.0069 -0.0426 

A2-l SE 0.2477 1.2134 0.2028 

Bias/SE 0.0177 0.0057 0.2101 
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The corrected parameter estimates are given in Table 3.16. As would be expected from 

previous results, the corrected parameter estimates of the fixed effects, Po and P1, are similar to 

the maximum likelihood estimates and the estimate of the variance component, a,, is larger. 

TABLE 3.16 

Bias Corrected Estimates of Models Fitted to Jaguar Data. 

Phase Po PI CJc 

AO 3.936 -5.509 0.533 

Al-l 3.634 -1.495 0.4233 

Al-2 2.866 0.378 0.948 

A2-l 3.361 -2.44 0.568 

3.8 An Alternative Parameterisation of the Random Effect 

So far the dispersion of the random effect has been parameterised in terms of cr,. 

However the sampling distribution of u c may be positively skewed, particularly if cr, is close to 

zero. Inferences based on the approximated standard errors, which assume normality, are in 

question in this case and a confidence interval for u, may be produced with negative limits. 

This section uses the alternative parameterisation for the random effect oflog(cr.) to improve 

the asymptotic approximations. The delta method may also be used to obtain estimates of the 

standard errors on the log scale (see Crowder et al., 1991) 

3.8.1 The Model 

The log-linear NHPP model with a random effect on the intercept still takes the form 

of equation (3.16), namely 
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where 

,o;; is a random effect due to unit i, and E- N(O, a. 2 ) 

In this case the log-likelihood is parameterised in terms of <p,, such that a,= exp{QI,). 

The log-likelihood now becomes 

(3.53) 

Using the substitutions given by equations (3.54) to (3.59), the first and second partial 

derivatives are defined by the general equations for a single random effect in Appendix 5. 

[ 
"' exp{,80 + &; ) { }] 1 { c/ } z; = exp n;,80 + .81 L".tij + n;&; - exp{,81t;) -1 ~ exp { ) (3.54) 
j=I .81 2nexp(29',) 2exp 2Q1, 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

E;= (3.59) 
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3.8.2 Results 

The results from the Jaguar data, showing the difference in using a log-likelihood of 

the form of equation (3.53) are given in Table 3.17. Of course the maximum likelihood 

estimates of the parameters (and therefore the bias) are the same as before and are not shown. 

However, the standard error is now given in terms ofln(a,.) and Table 3.17 gives a confidence 

interval for a, calculated from this, and also a confidence interval for a, calculated from the 

standard errors in Table 3.9. The results show a difference in the two confidence intervals 

suggesting that the distribution of a, is positively skewed. The lower confidence limit for cr, 

from the Al-l data is also negative. These results indicate that parameterising the standard 

deviation on a logarithmic scale will improve the asymptotic approximations. 

TABLE 3.17 

Confidence Intervals of D-, for Jagnar Data from the Two Parameterisations of the Random 

Effect. 

96 % Confidence Interval Calculated From 

Phase ln(D-,) a, ln( D-,) 

AO -0.722 0.088 to 0.883 0.214 to 1.102 

(0.3757) 

Al-l -1.135 -0.122 to 0.764 0.081 to 1.1277 

(0.5632) 

Al-2 -0.180 0.051 to 1.619 0.344 to 0.913 

(0.3616) 

A2-1 -0.643 0.184 to 0.868 0.274 to 1.007 

(0.3095) 

In Section 3.6.3 a simulation was carried out to validate the parameter estin1ates and 

their standard errors. Figure 3.6 (c) shows the sampling distribution of D-, from this 
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simulation to be approximately normal, and not exhibiting a positive skew. In this case 

confidence limits based on this standard error of u e are valid. This can be demonstrated by 

comparing confidence limits calculated from both parameterisations. Table 3.18 shows the 

results for a repeat of the simulation in Section 3.6 when estimating ln(a,). A 95% confidence 

interval for ln(a,) derived from these results and re-expressed in terms of cr, is (0.317 to 0.684) 

while the results in Section 3.6.3 give the confidence interval to be (0.290 to 0.650). This shows 

that if the distribution of cr, 1s not skew then the two parameterisations give equivalent 

results. 

TABLE 3.18 

Results of n = 500 Simulations on Logarithmic Scale with fJo = 3.945, (31 = -5.830 and a,= 0.486. 

f3o (31 ln(u ,) 

True Parameter Values 3.945 -5.830 -0.722 

Mean of Sampling Distribution of 3.944 -5.817 -0.764 

Estimates (and IBiasl) (0.001) (0.013) (0.042) 

Standard Deviation of Sampling 0.1124 0.3904 0.1896 

Distribution of Estimates 

Mean of Asymptotic Standard 0.1128 0.4032 0.1807 

Errors 

In summary, this section has shown that parameterising the random effect model on a 

logarithmic scale has no effect on the parameter estimates. In the case where the distribution 

of a, is not skewed when approaching zero confidence intervals based on the two 

parameterisations give the same result. However, if the distribution of a, is skewed, as is the 

case with the Jaguar data, the asymptotic properties are improved by using a logarithmic 

scale. This parameterisation will be used in all subsequent chapters. 
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3.9 Significance Tests on the Random Effect 

As described in the previous section, the estimates of the fixed effects Po and P1 and 

their standard errors do not depend on the parameterisation of the variance component. 

Hence the tests of significance on these parameters for the Jaguar data give the same results 

as in Section 3.5. This is not true for the tests of significance of the random effect. Difficulties 

arise in this situation because the null value is not an interior point of the parameter space 

since the equivalent of the null hypothesis of a,= 0 is given by a null hypothesis of ln( a,) = -oo. 

It has, however, been established (see Cox and Hinkley, 1974,Ch 9) that, under appropriate 

conditions, the generalised likelihood ratio test is still valid asymptotically in certain special 

cases including the one presented here. The generalised likelihood ratio test can be motivated 

on the following grounds. 

Adopting a similar argument to that presented in Cox and Hinkley (1974) the practical 

concern is not with the null hypothesis Ho: cr, = 0 but with a null hypothesis of the form 

Ho: cr, $ o where o represents some small value below which the random effect is effectively 

zero. In terms of the log transformed parameter, this null hypothesis corresponds to 

Ho: log(crJ $log(&). The null value log(&) is an interior point of the parameter space and the 

generalised likelihood ratio test applies asymptotically. 

The argument so far requires the specification of o however, as o decreases the log­

likelihood ratio statistic approaches the limit obtained by taking the null model with a 

variance parameter of zero. This is illustrated for the phase AO model by fitting models with a 

range of -10<log(o)< ln(a,} and comparing them with the full model in Table 3.7. The value of 

log(o) at -10 is equivalent to a standard deviation of 4xl0·6 and is sufficiently small to allow a 

comparison with the values obtained from the Jaguar data. The likelihood ratio test statistic 

for these comparisons are shown in Figure 3.7. The solid line represents the likelihood ratio 

test statistic over the range of log(&) and the dotted line gives the likelihood ratio test when the 

random effect is removed from the model (as in Table 3.8). It can be seen that as o (and hence 

log(o)) decreases, the values of the likelihood ratio test converge to 5.44 which is the value 
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obtained previously. Thus the test for removal of the random effect is equivalent to a test 

where the null hypothesis is that the variance of the random effect is arbitrarily small and 

hence the test is valid. 

6 

----------------------------------~~~~ -~---~- - - -
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4 

3 
Likelihood Ratio 

Test Statistic 
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log(delta) 

Figure 3. 7: Likelihood Ratio Test Statistics for AO Models with -10<log(8)< ln( a c) . 

Simulations using a sample size of 40 and parameter values of f1o = 3.945, (J1 = -5.830 

a nd ac = 0.486 have been performed to demonstrate the validity of the likelihood ratio test on 

the variance parameter . For comparison, the simulations have been repeated to test the 

significance using the parameter estimate divided by its standard error. In both cases t he 

hypothesis test is H o: a<= 0 against H 1: a< > 0. 

For the case when H1 is true both tests perform satisfactorily, ou t of 100 simulations 

the null hypothesis is correctly rejected 99 and 100 times for the likelihood ratio test and ratio 

of parameter estimate to its standard error respectively. This result does not hold when the 

null hypothesis is true. As demonstrated above, the null value is outside the parameter space 

and the asymptotic normality breaks down when the variance parameter is close to zero. In 
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this case a test using the ratio of the parameter estimate to its standard error would not be 

valid and the results of the simulation exercise confum this. For 100 simulations the null 

hypothesis would be incorrectly rejected 52 times at the 5% significan ce level. In addit ion, a 

number of extreme test statistics are produced (for example, 126.19) which gives further 

evidence that a test of this type is not valid. 

It has also been demonstrated that the likelihood ratio test is valid when the variance 

is close to zero. Figure 3.8 shows the histogram of the likelihood ratio test statistics for 100 

simulations along with the corresponding xz distribution with 1 degree of freedom . From these 

results the null hypothesis was incorrectly 1·ejected once at the 5% significa nce level. Although 

this is fewer than would be expected (compared with an expected number of 5) the graph 

shows the distribution of test s tatistics follows the x2 distribution reasonably well and a 

simulation with more iterations should give a better fit. 
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0 2 3 4 

Likelihood Ratio Test Statistic 

5 

Figure 3.8: Likelihood Ratio Test Statistics when Ho: cr. = 0 is true. 

6 

In Section 3.5, the two tests of significance were shown to give different results. The 

random effect pal'ameter for phase Al-l was found to be significantly different from zero using 
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the ratio of the estimated parameter to its standard error, which contradicted the result 

obtained from the likelihood ratio test. This section has shown the likelihood ratio test to be 

the more appropriate for assessing the significance of the random effect while the test using 

standard errors gives unreliable results. Hence, the conclusions for the random effect models 

fitted to the Jaguar data should be drawn from the likelihood ratio test. 

3.10 Summary 

This chapter has described a log-linear NHPP model with a random effect on the 

intercept parameter which may be useful when there is a va1·iability in the ROCOF at time 

zero. The random effect has been assumed to follow a normal distribution, although the 

analysis can be extended for any other distribution such as the Gamma distribution used by 

Lawless (1995,1987) and Abu-Libdeh et al. (1990). 

The random effect model has been fitted to the Jaguar data and it has been shown that 

the random effect is significant; that is there is a significant variation between the initial 

ROCOF of engines on a given phase. This variability can be attributed to differences in the 

build quality and the variation between parts. As the engine phases progress it would be 

hoped that this variability would decrease as the build process and engine parts become more 

like production parts. It is also the aim to reduce the ROCOF over this period. This model 

allows the variation of engines phases to be compared. The follow-up analysis conducted on 

these models has indicated that the models are of use, although unfortunately the sample size 

of the engines on a phase is small, leading to a significant bias in the variance component. A 

method for obtaining predictions of the reliability has also been demonstrated, but the data 

and test procedures are such that the results can only be used for illustrative purposes. 

The model validation in this chapter has considered the bias in the parameter 

estimates and the estimates of the standard errors. The following chapter introduces another 

type of random effect and Chapter 5 describes the residual analysis for both of these random 

effect NHPP models. 
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CHAPTER 4 

General Log-Linear Random Effect 

Models 

4.1 Introduction 

The previous chapter introduced a log-linear random effect model that allowed the 

variance between engines to be included in the analysis. It was found that a significant 

variation existed between the ROCOF of engines on a given phase. Placing the random effect 

on the intercept parameter, l3o, yields ROCOF's that are proportional for all engines on a given 

phase. In other words, from differing starting points the ROCOF's will all increase or decrease 

at the same rate. In order to illustrate the extent to which the proportional model allows for 

differences in the ROCOF between engines, Figure 4.1 shows the mean A.(t) over the random 

effect plotted against time together with limits placed at l3o ± 1.96cr,. For each of these the 

gradient parameter is negative hence all the plots tend towards zero Thus, this model allows 

for a large engine effect at time zero and smaller differences in ROCOF's between engines as 

time progresses. However, the assumption of proportional ROCOF's between engines on a 

given phase may not be valid and it could be the case that they change at different rates. 

Examination of the plots given in Figures 3.1 to 3.4 indicates that this may be the case for the 

Jaguar data. In the extreme, some engines within the same phase appear to have an 

increasing ROCOF whilst for others the ROCOF appears to be decreasing. This effect could 
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Figure 4. 1: Mean A.(t)(-- -)and ±1.96cr.(--)against Time with Random Effect on Po. 
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Figure 4.2: Mean A.(t) (- - -)and ±1.96cr.(--)against Time with Random Effect on Pt. 
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Figure 4.3: Mean(- - -)and interval(--) A.(t) against Time with Both Random Effects. 
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lead to the conclusion for phases Al-l and A1-2 that the gradient parameter P1 is insignificant 

(due to increasing ROCOF's cancelling with those that are decreasing) although the small 

amount of data available on these two phases will also contribute to this result. 

This chapter introduces two further random effect models which allow for non­

proportional engine effects. One model introduces a random effect on the gradient parameter 

and this would be relevant when engine reliability is the same at time zero but the ROCOF's 

degrade at a different rate. A more flexible model combines both random effects to allow for a 

difference between engines at time zero and a difference in the rate of degradation. Figures 

4.2 and 4.3 show the mean A(t) and its limits for each of these respectively and illustrate the 

differences between these two models and the proportional random effect model. The model 

illustrated in Figure 4.2 allows for no difference at time zero while the model with both 

random effects illustrated in Figure 4.3 is a combination of both single random effect models. 

The next section describes the model with the random effect on the gradient. The 

variance component for this model has been parameterised on a logarithmic scale as in 

Section 3.8 to improve the asymptotic estimate of the standard error. The simulation and bias 

investigation of Chapter 3 have been extended for use with this model. A comparison is then 

made between this and the proportional random effect model, and methods to indicate which is 

more appropriate for the Jaguar data are introduced. The residuals for both these models are 

discussed in Chapter 5. A model with both random effects is described in Section 4.5. 

4.2 Log-Linear Model with Random Effect on the Gradient 

A different formulation of the random effect model ..t;(t) = exp(Po + P1t + &;) g1ven m 

equation (3.10) is to introduce the random effect onto the gradient parameter, P1, instead of the 

intercept parameter, po. This model is given by 

(4.1) 
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where 

~i is a random effect due to unit i, and ~- N(O, cr~2) 

Placing the random effect on P1 means that variation between units can change the 

shape of A(t). As has been said in extreme cases, this variation can be so large that some 

engines have an increasing while others have a decreasing ROCOF. The expected number of 

failures in the time interval (a,b] is no longer proportional between units. Instead, 

b 

E( failures(a,b]l~i) = exp(.Bo) Jexp{(.81 + ~;)t}dt (4.2) 

a 

The log-likelihood for model (4.1) follows from that of model (3.16) in Section 3.3, given 

by equation (3.21). In this case, where <p~ = ln(cr~), the log-likelihood function is 

(4.3) 

Maximisation of the likelihood given by equation (4.3) enables parameter estimates to 

be found. In order to estimate the standard errors of the parameters, the first and second 

partial derivatives are required at the maximum. These values can be obtained by 

substituting equations (4.4) to (4.9) into the general expressions of the partial derivatives for a 

single random effect model in Appendix 5. These substitutions are equivalent to those for the 

random effect on the intercept given in equations (3.54) to (3.59). A comparison of these 

substitutions and the log-likelihood function, with those for the first model, show these to be of 

the same form with Po + Ei replaced by Po. and P1 replaced by P1 + ~;. 
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(4.4) 

(4.5) 

exp(Po) [ { } ] Bi = ni - exp (PI + qi)t -1 
PI +qi 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

4.3 Simulation and Investigation of Bias in Estimates 

4.3.1 Validation of the Standard Errors 

In Section 3.6 the inversion method of simulating data from a log-linear NHPP was 

described. This method can be extended to simulate data when the random effect is placed on 

the gradient parameter. A simulation to validate the standard errors for this model has been 

performed using 500 replications on a sample size of 40. In Chapter 3 the simulations have 

been performed with the true parameter estimates the same as those from a fitted model. In 

this case the true parameter values have been taken as Po = 4, P1 = -3 and cr~=l (ln(cr~) =0). 
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These values ensure the simulated data contains a reasonable number of failure times to 

enable good parameter estimation, but still allow the computation to be completed in a feasible 

time span. The results of this simulation are summarised in Table 4.1 and the sampling 

distributions are shown in Figure 4.4. These show that for the fixed effects, Po and PI, the 

model is behaving well; the means of the sampling distribution of the parameter estimates are 

close to the true values, and the standard deviations of these sampling distributions are 

similar to the means of the asymptotic standard errors. This implies that the estimates of the 

standard errors from the information matrix are reasonable. However, the simulation exercise 

shows that the model is not providing good estimates for the random effect. Figure 4.4 (c) 

shows the sampling distribution of ln(cr~) is not centred around the true value of 0. There is a 

large bias in the estimates of the parameter and the mean of the distribution is -0.2322. The 

standard deviation is also much g~·eater than the mean of the asymptotic standard errors, so 

there can be little confidence in the estimate of the random effect or its standard en·or. 

Further evidence of this can be obtained by investigating bias of the parameter estimates, and 

this is described in the next section. 

TABLE 4.1 

Results of n =500 Simulations for a random effect on the gmdient with fJo =4, (JI = -3 and a{= 1. 

Po PI ln(a~) 

True Parameter Values 4 -3 0 

Mean of Sampling Distribution of 3.997 -2.976 -0.2322 

Estimates (and I Bias I) (0.003) (0.024) (0.2322) 

Standard Deviation of Sampling 0.0740 0.3642 0.7197 

Distribution of Estimates 

Mean of Asymptotic Standard 0.0718 0.3484 0.3841 

Errors 
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4.3.2 Investigating Bias in the Parameter Estimates 

The Jackknife and Bootstrap methods of estimating bias in parameter estimates were 

described in Sections 3.7.2 and 3.7.3 respectively. The results in Section 3.7.4 showed that 

both methods gave comparable results and concluded that the Jackknife could be used in 

preference. Using these results, the Jackknife has been used to estimate the bias for 

simulated data (with the same parameter values as the previous simulation) for sample sizes 

10, 20, 30 and 50. The Jackknife estimates of the bias, the standard errors and the ratio of the 

two are given in Table 4.2. 

TABLE4.2 

Estimates of Bias for Simulated Data from the Model with a Random Effect on the Gradient. 

Sample Size ~0 ~1 ln(cr~) 

Bias -0.0064 -0.0136 -5.8997 

10 SE 0.1837 1.4863 5.6775 

Bias/SE -0.034 -0.009 -1.047 

Bias -0.0034 -0.0177 -0.0811 

20 SE 0.1683 1.2478 0.2073 

Bias/SE -0.021 -0.014 -0.391 

Bias -0.0030 0.0238 -0.0798 

30 SE 0.0969 0.7364 0.2171 

Bias/SE -0.031 0.032 -0.367 

Bias -0.0008 -0.0053 -0.1151 

50 SE 0.0663 0.5079 0.3024 

Bias/SE -0.012 -0.010 -0.381 

A comparison of these results with those with the random effect on l3o (see Tables 3.13 

and 3.14) show that there is more bias on the variance component, especially on the smallest 
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sample size. However, in this case, except for a sample size of 10, the bias does not decrease 

over the increases of sample size. In all cases the ratio of the bias to its standard error is 

greater than 0.25 leading to the conclusion that there is a large bias in the parameter 

estimates (Efron & Tibshirani, 1993) of the variance component. For the model with the 

random effect on ~~ the sample size is required to be in excess of 50 to reduce this bias. The 

estimates of the fixed effects ~o and ~~ again show no bias. The next section shows the results 

of fitting model (4.1) to the Jaguar data, although it is clear from these results that the 

parameter estimates of cr~ will be biased. 

4.4 An Application of a NHPP Model with a Random Effect on the 

Gradient 

The model defined in Section 4.2 has been fitted to the four phases of Jaguar data to 

illustrate the methodology. The parameter estimates and the value of the maximised log­

likelihood are shown in Table 4.3. 

TABLE 4.3 

Parameter Estimates from the Jag!Lar Data for Model with Random Effect on fk 

Phase Po p, In( a~) a-~ fmax 

AO 4.074 -7.009 0.651 1.917 220.24 

Al-l 3.671 -1.686 0.1411 1.152 169.81 

Al-2 3.140 -1.524 0.982 2.670 92.81 

A2-1 3.434 -3.048 -0.188 0.829 227.73 

A test of significance for the random effect of this form can be made by performing a 

Likelihood Ratio Test between the maximised log-likelihood in Table 4.3 and those for the 

model without a random effect in Table 3.1. The test statistics for the comparison of the 
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models for the four engine phases are given in Table 4.4. These statistics can be compared 

with 3.841 (X2I.o.os) and show that in all cases the random effect on l31 is not significant. 

TABLE4.4 

Likelihood Ratio Statistic for Model with Random Effect on /]1 Fitted to Jaguar Data. 

Engine Phase AO Al-l Al-2 A2-l 

Likelihood Ratio 0.96 0.44 1.86 0.64 

Statistic 

The standard errors of the parameter estimates, and the test statistics for comparing 

the fixed effects l3o and l31 with zero, are given in Table 4.5. The pattern of significance of the 

fixed effect parameters is the same as for the first random effect model (Section 3.5), namely 

the intercept parameter 13o is always significant and the gradient parameter l31 is significant 

for phases AO and A2-l. 

TABLE4.5 

Standard Errors and Test Statistics for Model with Random Effect on /]1 Fitted to Jaguar Data. 

Engine Phase Po PI In( a-~) 

AO SE 0.1569 1.5901 0.7925 

Test Statistic 25.972 -5.408 -

Al-l SE 0.1914 1.1218 0.1411 

Test Statistic 19.180 -1.503 -

Al-2 SE 0.2525 1.7324 0.5879 

Test Statistic 12.436 -0.880 -

A2-l SE 0.1415 0.7313 0.7862 

Test Statistic 25.269 -5.168 -
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In all cases the value of the log-likelihood is higher for the model with the random 

effect on J3o, and for this model the random effect is found to be significant. Examination of the 

failure plots in Section 3.1 (Figures 3.1 to 3.4) suggests that there is variation between the 

engines. Combining this with the results of the likelihood ratio tests leads to the conclusion 

that the model with a random effect on the intercept parameter, given in equation (3.16), is 

able to incorporate the variation between engines more successfully than the model with the 

random effect on the gradient parameter, equation (4.1). This difference in the maximised 

value of the log-likelihoods is considered further in Section 4.5. 

The Jackknife has also been performed on the models from the Jaguar data. The 

sample sizes for this data are all small and from the results gained for the simulated data 

(Section 4.3.2) a large amount of bias in the estimate of the variance component would be 

expected for these models. The results from the Jackknife are given in Table 4.6. These 

indeed show a significant bias on the variance component, and also on the fixed effects for 

phase A1-2. However, for these models the standard errors of the parameter estimates have 

become much larger, hence nothing is gained from obtaining the Jackknife corrections. 

Using the models in Table 4.3 to obtain predictions for the number of failures in the 

time interval of 0 to 0.32 unit time gives the results shown in Table 4.7. As for the random 

effect on the intercept a prediction interval has been calculated using the 95% limits of cr~. The 

expected number of failures, for all engine phases, do not differ from those given in Table 3.10. 

This shows that the two models perform similarly for the mean Rate of Occurrence of Failures, 

despite differing parameter values for Po and P1. This would be expected as both functions are 

modelling the same mean ROCOF and the influence of the different random effects would be 

on the prediction interval. In this case the width of the interval obtained from the variance 

parameter changes considerably between the two models. The model with the random effect 

on p, (which was not found to be significant in the model) produces a narrower prediction 

interval. This could be due to the known bias in the estimates of the random effect. 
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TABLE4.6 

Jackknife Bias Estimates for Model with Random Effect on Pr Fitted to Jaguar Data. 

Engine Phase 13o l}t ln(cr~) 

Bias 0.0048 -0.4206 -1.0979 

AO SE 0.2345 2.3003 1.7492 

Bias/SE 0.020 -0.183 -0.746 

Bias -0.0299 0.1879 -3.1214 

Al-l SE 0.2163 1.0574 3.2953 

Bias/SE -0.138 0.178 -0.947 

Bias -0.1177 0.8127 -3.6518 

Al-2 SE 0.3866 1.3725 3.9751 

Bias/SE -0.305 0.592 -0.919 

Bias -0.0267 0.2159 -10.4322 

A2-l SE 0.2401 1.0638 6.0536 

Bias/SE -0.111 0.203 -1.723 

TABLE4.7 

Predicted Numbers of Failrtres for Model with Random Effect on Pr Fitted to Jagnar Data 

Engine Expected Number of Failures Interval 

Phase Mean p, -L96a, fJ, + 1.96a, Width 

AO 7.50 5.29 11.71 6.42 

Al-l 9.72 7.14 13.80 6.66 

Al-2 5.84 3.02 15.19 11.17 

A2-l 6.34 5.15 7.97 2.82 

A comparison of the influence of the two types of random effect can be made 

graphically. The first comparison is made by dividing the time scale into a number of 
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interva ls. The expected number of failures in each of these inter vals , as well as the 

correspondi ng prediction interval, for the models fitted to the J aguar da ta can be found using 

equations (3.17) and (4.2). Plots of the trendlines ofthe expected number offailmes and t he 

upper and lower intervals from the two models fitted to the phase AO data are given in Figures 

4.5 and 4.6, and plots for the other engine phases are given in Appendix 6. These plots also 

show the mean number of failures observed in each time inter val (represented by the dots). If 

the random effect is modelling the engine variation well, then the observed values will be 

within the prediction limits. Conversely if the random effect is not modelling the engine 

varia tion well then a number of observations would be expected outside these limits. In a ll 

cases when the random effect is placed on the intercept pa rameter, Po, the observed mean 

numbers of failures fall within or close to the upper and lower limits, whereas when the 

random effect is placed on the gTadient parameter , Pt, a number of observations fall outside 

the limits . This suggests the r andom effect on Po is more representative of the engine 

variability. 
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Figm·e 4.5 : Mean Failmes against Predicted for AO Model with Random Effect on Po. 
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Figure 4.6 : Mean Failures against Predicted for AO Model with Ra ndom Effect on P1. 

Examination of the trendlines of the prediction intervals illustrates the characteristics 

of the two random effects. The random effect on Po allows for a large difference in engines at 

time zero and h as less influence as time increases, whereas the random effect on P1 has no 

effect at time zero and allows for a difference in engines as time increases. A fmther 

comparison can be made by plotting simulated data for the two models. Data has been 

simula ted n = 15 for both models estimated from phase AO, and plots of these are given in 

Figmes 4. 7 and 4.8. If the model provides a good level of fit to the data, a fail m e time plot of a 

set of data simulated from the estimated parameters should resemble the original data. A 

comparison of these plots with tha t of the original data, Figme 3.1, shows t hat out of the two 

models, the simulated data from the model with the ra ndom effect on the intercept Tesembles 

the plot of the original data more closely. The variability between the early failme times is 

better represented by the ra ndom effect on Po. Although this result is demonstrated on only 

one set of data for each model, further analysis shows the repeatability of this r esult for all the 

en gine phases. Therefore on the evidence thus far (significance tests and graphical 
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comparisons) it would appear that a random effect on l3o is more appropriate for the Jaguar 

data. This gives evidence that the model with the random effect on the intercept is the more 

appropriate model. 

4.5 A Log-Linear NHPP Model with Two Random Effects 

4.5.1 The Double Random Effect Model 

The log-linear Non-Homogeneous Poisson Process model can also be formulated to 

include both of the random effects, and is therefore a combination of the models defined in 

Sections 3.3 and 4.2. The rate of occurrence of failure for the ith unit in this case is 

(4.10) 

where 

Ei is a random effect on l3o due to unit i, and E- N(O, cr,2) 

~i is a random effect on !31 due to unit i, and 4- N(O, cr~2) 

The random effects in this case are assumed to be independent and the effect of these 

random components is unchanged from previous models and is described in Sections 3.3 and 

4.2. Hence, equation (4.10) is modelling the situation where the ROCOF's are different at time 

zero and change at a different rate. It follows that the expected number of failures in time 

interval (a,b] is given by 

b 

E( failures(a,b]l.sAi) = exp(/Jo +&;) Jexp((P1 + 4;)t}dt (4.11) 

a 

The usefulness of this model for predictive purposes is questionable as it is essentially allowing 

for totally random data. However, it can be used to distinguish between the two other random 
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effect models. Both of the previous models, given by equations (3.16) and (4.1), are nested 

within equation (4.10). This allows a Likelihood Ratio Test, see Section 2.4.7, to be 

performed between the model of equation ( 4.10) and the two models nested within it. This 

procedure checks for a significant decrease in the likelihood if either of the random effects is 

removed and will provide evidence as to which one of the random effects is required to model 

the data. 

The parameters are estimated by the method of maximum likelihood, and the 

likelihood function can be formulated in the same way as before. However, for this model the 

likelihood is conditional on two random effects and both of these must be integrated over (as in 

equation (4.12)) to give the likelihood function, equation (4.13). 

m oo eo 

P(datal~) = rr J JP(data;IE;,q;.~)P( E;) d&; P(q;) dq; (4.12) 
i=l -oo-oo 

(4.13) 

The log-likelihood function, using equation (4.10) as the form of A;(t) and assuming zero 

mean and constant variance for each random effect, is then given by 

(4.14) 

The composite Gauss-Legendre method of integration, described in Section 3.4, can be 

applied over a double integral of this form. To do this, the weights and nodes are calculated for 

the outer integral, and for each of these the value of the inner integral is calculated using a 

second set of weights and nodes. The final value of the integral is then given by summing the 
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weights multiplied by the corresponding value of the inner integral. The weights and nodes 

are calculated as before. 

In order to estimate the standard errors of the maximum likelihood estimates, and also 

to improve computational efficiency, the first and second derivatives are required. The first 

and second partial derivatives are defined as in Appendix 5, together with the substitutions in 

equations (4.15) to (4.23). 

(4.15) 

"'"' 
f\ = f fz; d&;dq; (4.16) 

exp(Po + &i} [ {( } } ] B; = n;- exp P1 + q; t -1 
PI +q; 

(4.17) 

I~ 

C; = ~)ii (4.18) 
j=l 

&/- exp(2cp,} 
D- ~-1~ 
i- exp(2cp,} 
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(4.22) 

(4.23) 

4.5.2 Results for Jaguar Data 

The model has been fitted to the four phases of Jaguar data given in Appendix 2. The 

parameter estimates, their standard errors and the value of the maximised log-likelihood are 

given in Table 4.8. A comparison between these fitted models and those for the models with a 

single random effect (Tables 3.7 and 4.1) shows that the parameter values are the same as 

those for the models with a random effect on the intercept, with a very small value for the 

random effect on the gradient. For example, the random effect on the gradient for phase AO 

has a normal distribution with an estimated standard deviation of 0.05. The exception to this 

is the fitted model to the phase A2-1 data. This data set has a larger sample size which 

enables the two variance components to be estimated, although from Sections 3.7 and 4.3 these 

estimates are biased. 

TABLE4.8 

Parameter Estimates(Standard Errors) to Jaguar Data for Model with Both Random Effects. 

Phase Po Pt ln( a,) a, ln(a-~) a~ Rmax 

AO 3.945 -5.830 -0.722 0.486 -2.901 0.055 222.48 

(0.2072) (1.2421) (0.3757) (13.1011) 

Al-l 3.622 -1.432 -1.135 0.321 -3.854 0.021 170.48 

(0.2235) (0.9612) (0.5623) (16.7772) 

Al-2 2.904 0.046 -0.180 0.835 -5.273 0.014 96.54 

(0.3888) (1.3219) (0.3616) (17.1033) 

A2-1 3.357 -2.493 -0.595 0.552 0.029 1.029 231.67 

(0.1910) (0.8027) (0.3128) (0.8609) 
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The significance of the random effects can be tested using likelihood ratios, and as both 

the single random effect models are nested within the double random effect model this gives 

further evidence to suggest which is the appropriate model. For example, a hypothesis test for 

er~ can be constructed using the difference in the maximum log-likelihoods of the double 

random effect model (Table 4.8) and the model with the random effect on 13o (Table 3.7). 

Similarly, a hypothesis test for cr. uses the maximised log-likelihood from the model with a 

random effect on l31 (Table 4.3). Table 4.9 gives a summary of the Likelihood Ratio Test 

statistics for these models, and these values can be compared with 3.841 (X2J,o.o5). These show 

that the test statistic when the random effect on the gradient is removed is either zero (2 dp), 

or very close to it, and lead to the conclusion that there is not a significant change in the 

likelihood when this parameter is absent. Therefore this parameter should not be included in 

the model. In all but one case the test statistic when the random effect on the intercept is 

removed from the model is greater than the critical value, and hence this parameter should be 

included in the model. For phase Al-l where <po is not significant the test statistic is greater 

than when er~ is not included, and therefore er~ would be removed first. These results agree 

with the graphical checks that the model with the random effect on the intercept parameter is 

more appropriate for the Jaguar data. 

TABLE4.9 

Likelihood Ratio Statistic for Testing Significance of Random Effects. 

Random Effect Engine Phase 

Removed AO Al-l Al-2 A2-1 

er, 5.48 1.34 7.46 6.84 

er~ 0.00 0.00 0.00 0.56 

4.5.3 Simulated Likelihood Ratio Tests 

As already stated, the double random effects model, equation (4.10),can be used to 

differentiate between the two single random effects models using likelihood ratio tests. To 
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demonstrate this, simulations using 100 replications and a sample size of 40 were performed. 

In these, data is simulated from each of the two single random effect models and then all three 

models were fitted. The likelihood ratio test statistic for removing each of the random effects 

was then calculated for each replication. 

Consider first data generated from equation (3.16), that is with a random effect on the 

intercept. Figure 4.9 (a) shows the histogram of the Likelihood Ratio test statistics for 

removing e from equation (4.10), which we would not want to do, while Figure 4.9 (b) shows the 

histogram for removing~. which we would want to do. These show that most of the time there 

is a large change in the likelihood when e is incorrectly removed, but a small change when~ is 

correctly removed. In fact, in this study, comparison with 3.841 C;ei.o.o5) would lead to the 

correct inclusion of E on 99% of occasions and the correct exclusion of~ on 98% of occasions. 

Thus, for data simulated with a random effect on the intercept, the test of Ho: c not needed 

against HI: c is needed has high power (as we would wish) while the test of Ho: ~ IWt needed 

against HI: ~is needed is conservative (also as we would wish). 

The reverse of this can be observed in Figure 4.40 when data are generated from 

equation (4.1) with a random effect on the gradient. In this case, small values of the 

Likelihood Ratio test statistic result when e is correctly dropped from the model (98% of these 

in Figure 4.40 (a) are below 3.84) while large values tend to result when~ is incorrectly 

removed as shown in Figure 4.40 (b). However, the distinction is not as clear in the case of~ 

with only 42% of test statistics being significant at the 5% level. Thus, for data simulated with 

a random effect on the gradient, the test of Ho: c not needed is conservative (as we would wish) 

but the test of Ho: ~not needed has low power reflecting the inadequacy of a sample size of 40 

when dealing with the model given by equation (4.1). Overall though, these results serve to 

demonstrate that the double random effect model is a useful tool and suggest that the 

modelling process is a reasonable one. 
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4.6 Summary 

This chapter has described a log-linear NHPP model with a random effect placed on 

the gradient parameter Pt. This model has been fitted to the Jaguar data given in Appendix 2 

and the random effect of this type was found not to be significant. Anum ber of methods were 

introduced to help differentiate between this model and the model from Chapter 3. These 

methods indicated that in this case the model with the random effect on the intercept 

parameter Po is more appropriate. The residuals for these two models are considered in 

Chapter 5. 

Placing the random effect on the gradient rather than the intercept allows greater 

flexibility in the modelling, but requires more data than the previous model in order to obtain 

unbiased parameter estimates. An investigation into the bias in the parameter estimates 

showed that sample sizes much larger than those available with the Jaguar data are required 

before unbiased estimates can be obtained. This limits the practical use of this model as the 

large sample sizes required are difficult to obtain in practice. 

Due to the problems of obtaining unbiased parameter estimates, and the variance 

component of the random effect on the gradient parameter not being significant, the models 

described in the later chapters only consider the case for a random effect on the intercept 

parameter. However, using the definitions in Section 4.2 these models can be extended to 

place the random effect on the gradient parameter. 
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CHAPTER 5 

Residual Analysis 

5.1 Introduction 

The preceding chapters have introduced the random effect log-linear NHPP models, 

and fitted these to the Jaguar data given in Appendix 2. The hypothesis tests have enabled 

the significance of the fitted parameters to be assessed, and a nested model approach has given 

a comparison between the two models. The conclusion from these tests of significance leads to 

the variation between engines being modelled with a random effect on ~o. However, these 

tests give no indication of how well the models fit the actual data. In order to do this a 

residual analysis must be performed. This chapter introduces two approaches to calculating 

the residuals based on the definitions made by Lawless (1995). In this paper Lawless gives 

formulas for residuals from the marginal and conditional models defined in Section 3.2. That 

section states that for the NHPP model, the rate function for the marginal model and the 

intensity function for the conditional model are equivalent. The following sections give the 

residual analysis based on each approach. 

5.2 Residuals For A Marginal Model 

Lawless (1995) defines the residual for the ith unit from the marginal model (see 

Section 3.2) in terms of jJ(t) and 1/J(Z;,p), as 
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t, 

e;(t) = NJt)- fPru)9'J(Z;,p)du (5.1) 
0 

where i;(u) represents Pfn) and 9'J(Z;,P)in our case. This gives the residual to be the 

difference between the expected and actual number of failures in the interval (O,t]. Another 

approach is to split the time scale into a series of intervals and to define the residual for the jlh 

interval as 

(5.2) 

where n(tj.J,tj) is the number of units on test during the interval (tj.I,tj]. The residuals are then 

the differences between the actual and predicted mean number of failures. The residuals 

defined by equation (5.2) allow the model to be assessed over time rather than just using a 

residual for each unit. In general the model will be used to predict failures in a given interval 

as well as looking at failure trends and it is felt that the residuals defined by equation (5.2) are 

more appropriate for this case. 

Figure 5.1 shows three residual plots for the model with the random effect on ~o fitted 

to phase AO, and Figure 5.2 shows the corresponding plots for the random effect on ~L The 

residual plots for the other phases are given in Appendix 7. These plots all use the residuals 

defined by equation (5.2). Plot (a) gives the residual values against time to check for a time 

dependent effect. This effect is not in evidence for any of these models. Plot (b) gives a 

residual plot ofresiduals against fitted values, which will show a random scatter around zero 

if the model is appropriate. Plot (c) shows a normal probability plot of the residuals which will 

be an approximate straight line if the residuals are from a normal distribution. 

For the random effect on ~o the residual plots in Figure 5.1, and those given in 

Appendix 7, give further support to the conclusions drawn from the hypothesis tests on the 

fitted parameter values. For phases AO and A2-1 (the two phases where all the fitted 
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parameters were found to be significantly different from zero at the 5% level) the residual plots 

all appear as expected. There appears to be no residual trend over time, the residuals plotted 

against fitted values gives a random scatter, and the normal probability plots show reasonably 

straight lines. For phase AO there appears to be an unusually large residual value after 0.5 

unit time and this can be attributed to the fact that data from only one engine is available 

after this time. For phase A2-l where a number of engines ran up to the censoring time of 0.6 

this outlier is not in evidence. The plots for both phases also show that the residual value for 

the first time interval (0 to 0.05 unit time) is very high. That is there are many more failures 

in this interval than would be expected from the fitted models. This supports the view that the 

testing procedures are recording a number of infant mortalities as well as other failures. 

The hypothesis tests for phases Al-l and Al-2led to the conclusion that the estimate 

of~~ is not significantly different from zero (the ROCOF is constant over time) and should be 

removed from the model. The residual plots for these two phases reflect this; as the gradient 

parameter is small there is little range in the fitted values, especially for phase Al-2 where the 

maximum likelihood estimate of~~ is very close to zero. 

Examination of the residual plots for the two models show little difference. From the 

results in Section 4.4 this would be expected as it was stated that predictions of the number of 

failures would be similar. The exception to this is the models for phase Al-2 where the fitted 

values differ considerably. However, in both cases~~ was not found to be significantly 

different from zero and hence should be removed. This would result in constant predictions 

which would be similar for both models. As the residual plots for the random effect on ~~ are 

the same as for the random effect on ~o (with the noted exception), the interpretations of these 

plots are the same as for those above. 

The analysis of marginal residuals in this section has considered the models in terms of 

the mean ROCOF of the engines. Residual plots for each phase suggest the models fit 

reasonably well. This analysis has not given any evidence to suggest which of the random 

effect models is more appropriate as only the means are considered. The conditional residuals 
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described in the next section calculate residual values for each failure time, which does allow a 

comparison to be made. 

5.3 Residuals For A Conditional Model 

Lawless (1995) defmes a residual for a conditional model with intensity function 

J..(t;H;,) as 

t, 

e;j = p.(t; Hi,) dt (5.3) 

lu-1 

That is, the residuals for the ith unit are given by the integral of the intensity function between 

successive failure times. If the fitted model is valid, the residuals e;i will follow a standard 

exponential distribution. To demonstrate this, consider the case for one unit with intensity 

function J..(t;Ht) and with first failure at time T. From equation (5.3) it follows that the residual 

et is 

T 

e1 = JJ..(t; H1 ) dt 
0 

Let E be defined as a nominal point for the residual such that 

11( c) 

If n(e) is the function of E such that JMt; H1) dt = e then equation (5.5) becomes 
0 

llO 

(5.4) 

(5.5) 

(5.6) 



By definition time Twill be greater than n(c) if no failures occur in the interval (O,n(c)]. The 

probability of this is given as 

{ 

11(&) } 

P[T > ll( c)]= exp - r-l.(t; HI) dt 

= exp(-c) (5.7) 

Therefore the residual for time Twill come from a standard exponential distribution. Due to 

the memory less property of the exponential distribution this will also hold for any time T1 such 

that T1 > T. Hence for any time t, for multiple units and failures, the residuals will come from 

a standard exponential distribution. 

For the log-linear random effect model introduced in Chapter 3, the value of the 

coefficient of the random effect is required for the i<h unit in order to estimate the residuals 

defined by equation (5.3). Abu-Libdeh et al. (1990) and Lawless (1987) have achieved this for 

their respective models by obtaining the posterior distribution for the random effect and 

calculating the expected values. The prior distribution of the random effect is specified in the 

definition of the model, equation (3.16), namely 

For a series of times t , the posterior distribution of E is derived from Bayes' Theorem as 

P[ait,p] = P[tlc,p]P(c] 
JP[tic,P]P[c] de 

(5.8) 

(5.9) 

The denominator of equation (5.9) is the likelihood for the model as given in equation (3.20). 

The expected value of Ei, using the parameter estimates for the fitted model is then 

(5.10) 
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To illustrate the method of calculating conditional residuals consider the model with a 

random effect on Po for the phase AO engines. Equation (5.10) has been used to obtain the 

estimates of the random coefficient parameter using the parameter estimates from the fitted 

model <Po = 3.945 ' /J. = -5.830' a£ = 0.486 ). These estimates are given in Table 5.1 along 

with the total test time and total number of failures for each engine. From this and the data in 

Appendix 2 it can be noted that the most negative estimates of e; (which indicates a lower 

starting failure rate) correspond to the engines with high test times and few failures. 

Conversely, the positive estimates (which indicate a higher starting failure rate) correspond to 

those engines with a high number of failures in a short test time. These estimates are 

therefore meaningful when compared to the data and their mean (2.1x10-6) is very close to zero 

and consistent with the model specification. 

TABLE 5.1 

Estimates of the Random Coefficients for the Random Effect on f3o from Phase AO Engines 

Engine E· Total Test Time Number of Failures 
l 

I 0.159 0.193 9 

2 0.389 0.425 14 

3 0.549 0.112 10 

4 -0.161 0.069 2 

5 -0.330 0.546 5 

6 -0.495 0.388 3 

7 -0.130 0.455 7 

8 0.705 0.041 7 

9 -0.047 0.075 3 

10 -0.074 0.117 4 

11 0.071 0.144 6 

12 -0.731 0.195 0 

13 0.109 0.305 9 

14 -0.138 0.487 7 

15 0.127 0.093 5 
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The values of the random component in Table 5.1 have been used to calculate the 

conditional residuals for the fitted AO model. A quantile-quantile plot (QQ-plot) for these 

residuals is shown in Figure 5.3. A QQ-plot can be used to compare data against a 

hypothesised distribution; the quantiles for the hypothesised distribution are plotted against 

the sorted data. If the data follow the distribution the resulting QQ-plot will be a straight line. 

In Figure 5.3 (and other figmes in this chapter) the straight line represents a unit exponential 

distribution and the points are the QQ-plot for the residual values. The conclusion from this 

plot is that the re si duals do not come from a unit exponential, although the majority of values 

do form a reasonable straight line suggesting an exponential with a smaller A. (the estimate of 

A for these l'esiduals is 0.84). However the tail values do not follow a straight line suggesting 

that the exponential assumption does not hold in this region. For comparison Figure 5.4 shows 

the quantile plots of four simulated data sets. These are simulated fol' 15 units with the same 

parameter estimates as the fitted AO model. These show a similar pattern to the previous 

graph. The majority of values follow a straight line just below the unit exponential (albeit 
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Figure 5.3: Conditional Residuals from Phase AO for Model with Random Effect on Po. 
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Figu re 5.4: Conditional Residuals from Four Sets of Simulated Da ta for the Model with 

Random Effect on Po. 

closer than before) and the distribution deviates at the tail. A Kolmogorov-Smirnov goodness 

offi.t test (see Daniel, 1990) can be used to assess the null hypothesis tha t the residuals follow 

a unit exponential. With the random effect on the intercept model fitted to AO data t he test 

statistic is 0.155 with an associated p-value of 2.5%, leading to the rejection of the null 

hypothesis. A test against any exponential distribution gives a p-value of 12%. The conclusion 

is tha t although the residuals do not follow a unit exponential there is no evidence against an 

exponential distribution with some other mean . 

In Figure 5.4 it can be seen that the residuals for the simula ted data do not follow the 

unit exponential. A simulation can be performed to compru:e the Kolmogorov-Smirnov test 

statistic fi·om t he AO model wit h those for data where the model is true. Figure 5.5 shows the 

histogram of test statistics for 1000 simulated data sets. The test s tatistic for the AO model is 

in the tail of this histogr am and only one simula ted value is more extreme. The conclusion is 
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that the AO residuals, when the random effect is on the inter cept, differ from those generated 

from the hypothesised model. Thus the conditional residual analysis suggests that the model 

with a random effect on the intercept is not suitable for the AO data. 
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Figure 5.5: Histogram for simulated Kolmogorov-Smirnov Test for AO Model. 

Alternatively, it may be that the deviation in the residuals is due to an outlier engine 

having undue influence on the fitted model. The residual plots in Figmes 5.3 and 5.4 can be 

split by engine to investigate this. FigUTes 5.6 and 5.7 show these for the AO residuals and 

simula ted residuals respectively. For the simulated da ta there does not appear to be any line 

standing out from the others in any of the plots. For the AO model there is one line which 

could be considered an outlier. This is due to engine 8 which has many failures in a short 

period of time. This engine also has the most positive random coefficient. Another engine 

which would appear to be an outlier in the model is engine 12 which had no failures in 0.195 

unit time on test (this has the most negative random coefficient). Although it does not have a 

residual associated with it as no faihu·es occurred and does not therefore stand out on any of 

the plots, it could have a large influence on the fitted pal'ameters. In order to test the effects of 
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these, engines have been removed both separately and together, and the model r efitted. The 

resulting models and the value of the Kolmogorov-Smirnov test statistic for unit exponentiality 

aTe given in Table 5.2 and plots of the residuals associated with these model m:e given in 

Figw·es 5.8 to 5.10. The fitted parameters for the gradient and variance show a relatively 

large change with t he removal of these engines and the test statistic is also still very extreme 

compared to the simulated values. However, these plots compare more favomably with the 

unit exponential distribution. Hence there does appear to be an outlier effect due to these 

engines although even after their removal the residuals do not follow a standard exponential 

distribution. The conditional residuals from the AO model with the random effect on the 

intercept have also been produced for the bias couected parameter estimates in Table 3.16. 

These show no difference compared to the conditional residual plot for the original parameter 

estimates. 

TABLE 5.2 

Parameter Estinwtes for AO data with Extrem.e Engines Removed. 

Engine A Test Po PI crE 

Removed Statistic 
8 3.849 -5.524 0.389 0.174 

12 4.082 -6.132 0.328 0.155 

8 & 12 3.988 - 5.797 0.240 0.170 
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Figure 5.6: Conditional Residuals for AO data by engine. 
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Figure 5.7: Conditional Residuals for simulated AO data by engine. 
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Figure 5.8: Conditional Residuals for AO data with engine 8 removed. 
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Figure 5.9: Conditional Residuals for AO data with engine 12 removed. 
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Figure 5.10: Conditional Residuals for AO data with engine 8 and 12 removed. 
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This section has so far defined the conditional residuals and has investigated those 

produced by the random effect on the intercept model using the AO data. Figure 5.11 shows 

the QQ-plot for the corresponding residuals from the model with a random effect on the 

gradient. Appendix 8 gives the QQ-plots for conditional residuals from both models for the 

remaining engine phases. A comparison of these plots for the two different models show that 

the residuals from the random effect on the gradient model follow a unit exponential 

distribution more closely than those from the random effect on the intercept model. From the 

results of the significance tests in Chapter 4 this is the reverse of the expected result. The 

random effect parameter cr~ is not significant for any of the phases, hence the residuals when 

the random effect is on the intercept would be expected to compare more favourably with the 

unit exponential. However, the Kolmogorov-Smirnov test statistic produced from the model 

with a random effect on the gradient, for phase AO, is 0.184 which is larger than the test 

statistic for the proportional random effect model. The Kolmogorov-Smirnov test statistics and 

p-values for the engine phases are given in Table 5.3. This shows the p-value to be smaller 

when the random effect is on ~~ for all but one phase, concluding that there is less evidence 

against the null hypothesis of unit exponentiality for the proportional random effect model. 

The exception to this occurs for phase Al-l where the random effect is not significant in either 

model (the proportional random effect is significant for all other phases). 

TABLE5.3 

Kolmogorou-Sminwu Test Statistics (P-Val!Les) for Conditional Resid!Lals Compared to a Unit 

Exponential DistriblLtion. 

Random Effect On 

Phase ~0 ~I 

AO 0.155(0.033) 0.184(0.004) 

Al-l 0.092(0.582) 0.066(0.921) 

Al-2 0.133(0.327) 0.14(0.251) 

A2-1 0.09(0.267) 0.11(0.105) 
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Figu re 5.11: Conditional Residuals from Phase AO for Model with Random Effect on~~ -

It is noted from t he conditional residual plots for the random effect on~ ~ that the 

values in the tail of the distribution have been bought closer to the line of the unit exponential. 

In contrast, the conditional r esiduals from t he two models show little difference for the 

majority of values. 

5.4 Summary 

This chapter has introduced two types of residuals for model checking and comparison. 

The marginal residuals in Section 5.2 indicate the performance of the model against the mean 

ROCOF, whereas the conditional residuals in Section 5.3 provide an ana lysis aga inst the 

individual failure times. In t he latter case, the random effect is included when calcula ting the 

residual value. 
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The conclusion from the two types of residuals is that the models fit the mean number 

of failures reasonably well. The Kolmogorov-Smirnov goodness of fit test favours the 

proportional random effect model. Incorporating the results of this chapter with those in 

Chapter 4 would suggest that the model with a random effect on the intercept performs better 

with the Jaguar data. In addition, the estimate of this random effect is not subjected to the 

levels of bias in the alternative model. Subsequent chapters use these results and only a 

model with a random effect on the intercept is considered, although the analysis can be 

extended to include the random effect on the gradient as in Chapter 4. 
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CHAPTER 6 

Random Effect Models With Covariates 

6.1 Introduction 

This chapter introduces extensions to the basic log-linear model with a random effect 

on the intercept (equation (3.16)) which allow covariates to be included by means of indicator 

variables. As with the random effect itself there are a number of ways in which the covariates 

can be included, namely as a proportional effect, a time multiplicative effect or both of these. 

The interp1·etation of the proportional covariate model is that the ROCOF's of the units 

between the covariate groups are different at time zero but change at the same rate. For the 

time multiplicative covariate model, the ROCOF's between the covariate groups are the same 

at time zero but change at a different rate. It follows from this that including both types of 

covariate models leads to a situation where the ROCOF's differ at time zero and change at 

different rates. The three covariate models are described, fork covariates, in Sections 6.2, 6.3 

and 6.4 respectively. A simulation study has been conducted to compare the three covariate 

models and to assess the power of the tests on the fitted parameters. The results of this are 

given in Section 6.5. 

In Chapter 1 it was stated that the tests conducted on the engines at Jaguar can be 

classified into two groups. These indicate whether the engine was subjected to high or low 

demand on test. The failure data in Appendix 2 gives this information coded as test (0 denotes 

low, 1 denotes high). Using the test type as a covariate, each of the random effect covariate 
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models introduced in this chapter are fitted to the Jaguar data. As in previous chapters the 

engine phases have been treated separately. Examination of the data for the four engine 

phases shows that there is little data available for low level testing. For example, on phases 

Al-l and Al-2 there are only two engines where testing has been carried out at a low level. As 

a result, there can be little confidence in the estimated values of the covariate parameter. 

However, fitting the models to this data is still useful for illustrative purposes, and also as a 

formal method for assessing a covariate effect due to test type. 

Failure time plots for the data, split into low and high levels, are given in Figures 6.1 

to 6.4. The solid lines represent engines run at a high level, and the dotted lines represent 

engines run at low level. From these graphs it appears that there is no effect due to the level 

of testing. The rate of occurrence of failures for the low level tested engines does not stand out 

on the graphs as being different from those engines tested at a high level. The only exception 

to this is for the data on phase Al-2 where the low level tested engines differ from the majority 

of other engines, but with only two observations for low level this would not be expected to be a 

significant difference. 

6.2 Proportional Covariate Effects 

6.2.1 The General Model 

Fork covariates Xt,xz, ... ,Xh the model with a random effect on the intercept parameter 

18: 

(6.1) 

where 

Xii is an indicator variable for the jth covariate level of unit i. 

~2i is the covariate parameter for the jth covariate level of unit i. 

Ei is a random effect due to unit i, and E- N(O,cr.2). 
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Figure 6.1 : Failme Time Plot for Engine Phase AO at Low (----) and High (--) Levels. 

15 

10 

Failure 
number 

5 

0 0.2 0.4 

Cumulative time 

' 
' 

0.6 

Figure 6.2 : Failme Time Plot for Engine Phase Al-l at Low(----) and High (--) Levels. 
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Figure 6.3 : FailUl'e Time Plot for Engine Phase Al-2 at Low (- - - -) and High(--) Levels. 
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Figure 6.4 : Failul'e Time Plot for Engine Phase A2-1 at Low(----) and High(--) Levels. 
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This model is of the same form as the Proportional Intensity Model from 

Lawless (1987) but with a different parameterisation of the random effect. It has been further 

discussed by Ciampi et al. (1992) who describe a computer program to fit a proportional 

intensity model, and Abu-Libdeh et al. (1990) where a Power Law baseline function, equation 

(2.53), has been used. 

Expressing the model in this form gives the covariate a proportional effect on the 

expected number of failures. If all k covariate levels of unit i are 0 then the model is of the 

k 

form of equation (3.16), otherwise the intercept parameter becomes f30 + 'f.P2ixii . The 
j~l 

expected number of failures in time interval (a,b] then becomes 

E( failures(a,b]le;) = exp(f3o + i~/2jxij + ei) Jexp(/31 t)dt 
0 

(6.2) 

The log-likelihood function is derived as in Section 3.3. Assuming a mean of zero and a 

constant variance for the random effect the log-likelihood function is given by 

(6.3) 

Substituting equations (6.4) to (6.9) given below into the expressions for a single 

random effect (given in Appendix 5) gives first and second partial derivatives with respect to 

~o. ~~ and cr,. 

(6.4) 
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(6.5) 
_., 

(6.6) 

(6.7) 

n. = e/- exp(2tp,} 
1 exp(2tp,} 

(6.8) 

(6.9) 

Let ( oe ) be defined as the value of the first order partial derivative with respect to ~o 
0Po · I 

due to the ith unit, such that ~ = i:(~) . It then follows that the first and second partial 
0Po i=i 0Po ; 

derivatives with respect to ~2i (jth covariate) can be shown to take the form of equations (6.10) 

to (6.15), namely 

oe "' (oe) -=Ixij-
oP2j i=i 8Po ; 

(6.10) 

(6.11) 

ere "' ( ere J -op-~-op_2_j = ~x;j oPooPI ; (6.12) 
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(6.13) 

(6.14) 

The second partial derivative with respect to f32i and /32k (the jth and kth covariates) is 

then given by 

(6.15) 

A comparison of the log-likelihood and derivatives, given in equations (6.1) to (6.9), for 

the proportional covariate model, with those for the random effect model defined by 

k 

equation (3.16) shows them to be of the same form with {30 + 'f.f32ixii replacing Po in the 
j:\ 

latter. 

6.2.2 Simulation on Proportional Covariates 

The inversion method of simulation described in Section 3.6 is easily extended to 

include observations from a covariate model. In this section the results of a simulation 

exercise from a model with a single covariate are given to validate the estimates of the 

parameters and their standard errors. In this case, from equation (6.1) k=1 and the model now 

becomes 

(6.16) 

The simulation uses parameter values of Po = 4, P1 = -3, P2 = -1 and a,= 0.5. This is 

equivalent to simulating a number of units with either Po = 4 or Po = 3, with P1 and a, 

remaining constant. Figure 6.5 shows a plot of simulated observations from these parameter 
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values with 10 units in each covariate group, where the solid lines represent the units where 

Xi= 0. In general, the units with the covariate equal to one have a smaller rate of occm·rence 

of failure and have less failures, especially in the latter part of the time interval. Although 

there is an overlap between the two gi'Oups, this suggests that the covariate effect can be 

identified by the model. 
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Figure 6.5 : FaillU'e Plot of Simulated Proportional Covariate Data at Low (- - - -) 

and High (--) Levels. 

A simulation using the above values as the true parameters has been conducted. In 

this case a sample size of 30 has been used and 100 replications have been performed. The 

results of this simulation are summarised in Table 6.1. These show that the parameter 

estimates and theil· standard errors a re close to the true values for the fixed effects. The 

variance component is biased and the estima te of its standard error is poor. The ratio of the 

mean estimate of the covariate parameter to its standard error is 4.4 which suggests the model 

is able to identify the covariate effect. The significance of the covariate is discussed further in 

Section 6.5. 
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TABLE 6.1 

Results of Simulation Exercise With Proportional Couariate Effects. 

Po pl p2 In(u ,) 

True Parameter Values 4 -3 -1 -0.693 

Mean of Sampling Distribution 4.031 -3.033 -1.070 -0.819 

of Estimates 

Standard Deviation of Sampling 0.1797 0.4713 0.2402 0.3526 

Distribution of Estimates 

Mean of Asymptotic Standard 0.1597 0.4055 0.2174 0.2217 

Errors 

6.2.3 Proportional Covariate Model for Jaguar Data 

The model for a single proportional covariate effect, equation (6.16), has been fitted to 

the four engine phases of the Jaguar data given in Appendix 2. The parameter estimates, 

their standard errors and the maximised log-likelihood are summarised in Table 6.2. 

Examination of the difference between the two test types on the failure plots for the four 

phases, Figures 6.1 to 6.4, suggested that a covariate effect would not be significant. The 

t•esults from the fitted models support this. In all cases the estimate of ~2 (the covariate effect) 

is of the same order as, or smaller than its standard error. The conclusion from this is that the 

covariate effect is not significantly different from zero. The Likelihood ratio test can also be 

used to compare these models and those without the covariate, given in Table 3.7. There is 

little difference between the maximised log-likelihoods of the two models, and all the test 

statistics are much smaller than the critical value of 3.84 (X2t,o.o5). This means the log­

likelihood does not change significantly when the covariate is removed. In other words, the 

models in Chapter 3 would be fitted in preference to the proportional covariate effect models. 
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TABLE 6.2 

Parameter Estimates (Standard Errors) of Fitted Proportional Covariate Effect Models. 

Phase Po Pt Pz ln(&.) u, l'max 

AO 4.105 -5.768 -0.243 -0.752 0.417 222.71 

(0.3007) (1.2407) (0.3515) (0.3880) 

Al-l 3.343 -1.340 0.354 -1.216 0.324 170.90 

(0.3877) (0.9613) (0.3852) (0.5910) 

Al-2 2.129 0.250 0.961 -0.285 0.752 97.37 

(0.7361) (1.3257) (0.7423) (0.3615) 

A2-1 3.349 -2.428 0.010 -0.642 0.526 230.87 

(0.3090) (0.7075) (0.3346) (0.3099) 

6.3 Time Multiplicative Covariate Effects 

6.3.1 The General Model 

This section describes an alternative covariate model in which the effect is dependent 

upon time. Fork covariates x1,X2, .. . ,Xk the model with a random effect on the intercept 

parameter given in equation (3.16) then becomes 

where 

Xii is an indicator variable for the j<h covariate level of unit i. 

~3i is the covariate parameter for the jth covariate level of unit i. 

Ei is a random effect due to unit i, and E- N(O,cr,2). 

(6.17) 

As is the case with the random effect on~~ described in Chapter 4 where the gradient 

parameter is not fixed, the gradient parameter here depends on the level of the covariate. If 
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all the covariate levels for unit i are 0 then the gradient parameter is p,, otherwise the 

k 

gradient is P1 + "f.p3jxii . The expected number of failures in the time interval {a., b) is given by 
i=l 

(6.18) 

If we assume a mean of zero and a constant variance for the random effect, the 

log-likelihood function is given by 

(6.19) 

Substituting equations (6.20) to (6.25) given below into the expressions for a single 

random effect (given in Appendix 5) gives first and second partial derivatives with respect to 

l3o, !31 and cr •. 

{ 
2 } &· 

exp ' 
- 2exp(2q:>,) 

(6.20) 

(6.21) 

(6.22) 
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(6.23) 

D· = e/- exp(21P,) 
' exp(21P,) 

(6.24) 

(6.25) 

The first and second partial derivatives with respect to {Jaj (jth covariate) can be shown 

to take the form of equations (6.26) to (6.30): 

(6.26) 

(6.27) 

(6.28) 

(6.29) 

(6.30) 
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The second partial derivative with respect to Paj and Pak (the jth and k1h covariates) is 

then given by 

(6.31) 

As was the case with the proportional covariate model, the forms of the log-likelihood 

and partial derivatives for the time multiplicative model can be adapted from the equivalent 

functions for the model with a random effect on the intercept. These can be found by replacing 

the gradient parameter Pt by (P1 + tp3 jxij J in equations (3.53) to (3.59). 

6.3.2 Simulation on Time multiplicative Covariates 

This section gives the results of a number of simulation exercises carried out to 

validate the estimates of the parameters and standard errors for a time multiplicative 

covariate model. These simulations use a single covariate giving the model to be 

(6.32) 

The first simulation uses the same parameter values as in Section 6.2.2, namely Po = 4, 

!31 = -3, Pa = -1 and cr.= 0.5. A failure plot of a simulated data set from these parameters, with 

10 units in each covariate group, is given in Figure 6.6. This plot shows no real difference 

between the two covariate groups; the variability in the rate of occurrence of failures is 

dominated by the random effect. 

The results of a simulation based on 100 replications using the above parameter values 

on a sample size of 30 are given in Table 6.3. The estimates of the parameters and standard 

errors are close to their true values, although as with the previous models there is a bias on 

the variance component. Figure 6.6 showed that a time multiplicative covariate value of -1 
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Figure 6.6: Failure Plot of Simulated Time multiplicative Covariate Data at Low (- -- -) 

and High(--) Levels (Po = 4, P1 = -3, P3 = -1 and cr, = 0.5). 

has less impact on the r esulting ROCOF's than the variance due to the random effect. The 

covariate estimate is close to the true value, but the standard error is such that a test would 

not reject the hypothesis that Pa = 0. 

In order to obtain results from a statistically significant model, the simulation was 

repeated for a different set of parameter values. The first simulation showed that a covariate 

value of -1 is not a large enough effect for the power of the test, so the simulation has been 

carried out with P3 = -2 (all other parameter values remain the same). A failure plot for 20 

units is given in Figure 6.7. As with Figure 6.6 the ROCOF of the two covariate levels are not 

distinctly grouped. However, in this case the ROCOF when xu = 1 (the dotted lines) tend to 

level off more quickly. This suggests that the ROCOF in this case is decreasing at a faster rate 

and that the covariate effect may be identifiable. The results of 100 simula tions are 

summarised in Table 6.4. As with the previous simulation, this gives good estimates of the 
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para meters and t heir standard err ors. With the lar ger covariate effect the estimate of 13a is 

now significantly different from 

TABLE 6.3 

Results of Simulation Exercise With Time multiplicative Covariate Effects 

([Jo = 4, /31 = -3, /33 = - 1 and Uc = 0.5). 

. 
In( a c) flo flt f3a 

True Parameter Values 4 -3 - 1 - 0.693 

Mean of Sampling Distribution 4.012 - 3.033 - 1.026 -0.758 

of Estimates 

Standard Deviation of Sampling 0.1352 0.4677 0.6149 0.1917 

Distribution ofEstimates 

Mean of Asymptotic Standard 0.1220 0.4417 0.6112 0.1848 

Errors 

0.0 0.1 0.2 0.3 0 .4 0.5 

Time 

Figure 6. 7 : Fa ilw·e Plot of Simulated Time multiplicative Covariate Data at Low (- - - -) 

a nd High (--) Levels (13o = 4, !31 = -3, l3a = -2 and cr.= 0.5). 
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zero. The ratio of the parameter estimate to its standard error is approximately 2.9 which is 

greater than the corresponding critical Z·value. 

TABLE6.4 

Results of Simulation Exercise With Time mrLltiplicatiue Couariate Effects 

(flo = 4, P1 = -3, /la = -2 and u, = 0.5). 

Po pi Pa 

True Parameter Values 4 -3 -2 

Mean of Sampling Distribution 4.007 -3.050 -1.985 

of Estimates 

Standard Deviation of Sampling 0.1442 0.4514 0.6922 

Distribution of Estimates 

Mean of Asymptotic Standard 0.1219 0.4434 0.6596 

Errors 

6.3.3 Time multiplicative Covariate Model for Jaguar Data 

In(a .) 

-0.693 

-0.786 

0.1899 

0.1917 

To illustrate the use of the time multiplicative covariate effect, equation (6.32) for a 

single covariate has been fitted to the four engine phases of the Jaguar data given in 

Appendix 2. The parameter estimates, their standard errors and the maximised log-likelihood 

are summarised in Table 6.5. The results from fitting the time multiplicative models are 

similar to those obtained for the proportional model in Table 6.2. In all cases the estimate of 

the covariate effect p3 is of the same order as, or smaller than its standard error. There is also 

no significant difference between the maximised log-likelihoods of this model and the model 

without the random effect. The conclusion from this is that, as with the proportional model, 

the covariate effect is not significantly different from zero and should not be included in the 

model. 
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TABLE6.5 

Parameter Estimates (Standard Errors) of Fitted Time multiplicative Couariate Effect Models. 

Phase Po Pt Pa ln(u .) a, fmax 

AO 3.936 -3.831 -2.614 -0.726 0.484 223.10 

(0.2073) (2.0297) (2.2803) (0.3742) 

Al-l 3.599 -2.041 1.107 -1.127 0.324 170.75 

(0.2274) (1.2883) (1.5105) (0.5589) 

Al-2 2.916 0.202 -0.364 -0.179 0.836 96.55 

(0.3949) (1.6068) (2.1306) (0.3615) 

A2-1 3.356 -2.436 0.012 -0.642 0.526 230.87 

(0.1896) (0.8396) (1.1978) (0.3241) 

6.4 A Combined Covariate Model 

6.4.1 The General Model 

The models can be extended to include both proportional and time multiplicative 

covariate effects. In this case the model fork covariates becomes 

(6.33) 

In this formulation each covariate is assumed to have both a proportional and time 

multiplicative effect on the ROCOF. This model could be reparameterised such that some or 

all of the parameters have only one covariate effect, and can therefore reduce into equations 

(6.1) or (6.17). For equation (6.33), the expected number of failures in the time interval (a,b] is 

(6.34) 
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In Section 6.2.1 it was demonstrated that the log-likelihood, and the first and second 

partial derivatives for the proportional covariate model take the same form as for the model 

with a random effect on the intercept described in Chapter 3. To obtain all these expressions 

h 

for the proportional covariate model Po should be replaced by Po + 'f.p2ixii in equations (3.53) 
i•l 

to (3.59). These can then be substituted into the expressions for the first and second partial 

h 

derivatives in Appendix 5. Likewise, from Section 6.3.1, p, can be replaced by p1 + 'f.p3ixii 
i=l 

for the time multiplicative covariate model. For the combined model, in equation (6.33), both 

of these substitutions can be made to obtain the log-likelihood function, and the first and 

second partial derivatives with respect to Po. p, and cr •. The first and second derivatives with 

respect to the covariates are then obtained by applying the rules given by equations (6.10) to 

(6.15) and (6.26) to (6.31). The second partial derivative with respect top~ and p3k (the jth 

proportional covariate and the kth time multiplicative covariate) is then given by: 

(6.35) 

6.4.2 Simulation on Combined Covariate Models 

As with the other covariate models a simulation exercise has been performed for 

validation purposes. The single covariate random effect model for this exercise is given by 

(6.36) 

The simulations for the time multiplicative covariate model showed that the true value 

of P3 has to be reasonably large to enable its estimate to be significantly different from zero. In 

line with these results and those for the proportional covariate model, the true parameter 

values for the simulation on the combined model were first chosen to be Po = 4, P1 = -3, P2 = -1, 
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~a= -2 and cr.= 0.5. A failure plot of data simulated from these values with 10 units in each 

covariate level is given in Figure 6.8. This shows a cleax difference between the ROCOF's of 

the two covariate levels. The results of 100 simulations on a sample size of 30 a re given in 

Table 6.6. As would be expected from the previous simulations, this demonstrates that the 

model produces good estima tes of the para meters and their standard enors However the 

inclusion of the proportional covariate in the model has increased the standard error of ~3 to 

1.15 from its previous value of 0.69 in Section 6.3.2. The ratio of the estimate of the time 

multiplicative covariate parameter to its standard error is less than the critical Z-value . 

Hence it would be concluded that the time multiplicative cov~uiate pru:ameter is not 

significantly different from zero. 
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Figure 6.8 : Failure Plot of Simulated Combined Covru·iat e Effect Data at Low(-- --) 

and High (--) Levels (~o = 4, ~~ = -3, ~2 = -1, ~3 = -2 and cr, = 0.5). 

The simulation was repeated with the true parameter values taken to be ~o = 4, P1 = -2, 

~2 = - 1, ~3 = - 4 and cr.= 0.5. FigUl'e 6.9 gives a failure plot for a simulated data set of 20 units, 

and the results of 100 simulations on a sample size of 30 ru·e given in Table 6.7. This gives 
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good estimates of the parameters and standard errors; for this larger time multiplicative 

covariate effect the mean parameter estimate is much larger than the standard error. 

TABLE 6.6 

Results of Simnlation Exercise With Combined Covariate Effects 

(/lo = 4, (J1 = -3, fh = -1, fJa = -2 and a. = 0.5). 

flo (Jl fl2 

True Parameter Values 4 -3 -1 

fls In( a,) 

-2 -0.693 

Mean of Sampling Distribution 4.000 -2.958 -0.994 -1.928 -0.848 

of Estimates 

Standard Deviation of Sampling 0.1771 0.5076 0.3442 

Distribution of Estimates 

Mean of Asymptotic Standard 0.1656 0.4757 0.2901 

Errors 

TABLE 6.7 

Results of Simulation Exercise With Combined Covariate Effects 

(/lo = 4, (J1 = -2, fh = -1, (Js =-4 and a,= 0.5). 

flo flt fJ2 

True Parameter Values 4 -2 -1 

Mean of Sampling Distribution 3.993 -1.950 -0.964 

of Estimates 

Standard Deviation of Sampling 0.1598 0.4054 0.2627 

Distribution of Estimates 

Mean of Asymptotic Standard 0.1635 0.4169 0.2973 

Errors 
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1.1460 0.3225 

1.1126 0.2454 

fls In( u,) 

-4 -0.693 

-4.215 -0.794 

1.1743 0.2381 

1.2461 0.2199 
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Figure 6.9: Failure Plot of Simulated Combined Covariate Effect Data Low(·---) 

and High(--) Levels (Po = 4, P1 = -2, P2 = -1, Ps = -4 and a.= 0.5). 

6.4.3 Combined Covariate Effect Model for Jaguar Data 

The combined covar.iate model has been fitted to the four engine phases of the Jaguar 

data in Appendix 2. As neither covariate was found to be significant when estimated 

individually, and because of the small sample size available for low testing, these models 

would not be expected to offer an advantage over the standard model in Chapter 3. The fitted 

models are given in Table 6.8. These results show that there is not a significant reduction in 

the log-likelihood when both cova1·iates are removed from the model. It can therefore be 

concluded that, with the data available, the ROCOF does not change significantly between the 

two test type classifications. 
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TABLE6.8 

Parameter Estimates (Standard Errors) of Fitted Combined Couariate Effect Models. 

Phase Po P! p2 Ps ln(& ,) CT, fmax 

AO 3.968 -3.944 -0.049 -2.447 -0.727 0.483 223.10 

(0.3488) (2.3033) (0.4193) (2.6956) (0.3757) 

Al-l 3.383 -1.547 0.298 0.350 -1.189 0.305 170.75 

(0.4482) (1.5330) (0.5146) (2.0071) (0.5967) 

Al-2 1.713 1.848 1.607 -3.325 -0.485 0.616 96.55 

(0.7908) (1.8886) (0.8744) (2.7608) (0.4531) 

A2-1 3.348 -2.423 0.012 -0.012 -0.643 0.526 230.87 

(0.3286) (0.9401) (0.3978) (1.4267) (0.3261) 

6.5 Likelihood Ratio Tests for Covariate Effects 

6.5.1 Introduction 

This chapter has introduced three methods for incorporating covariate effects into a 

NHPP model. These have taken the form of proportional and time multiplicative effects, with 

the final model comprising a combination of the two. It can be noted that the proportional 

covariate effect model, equation (6.1), and the time multiplicative covariate effect model, 

equation (6.17), are both nested within the combined model, equation (6.33). In order to 

compare these models likelihood ratio tests can therefore be used to indicate if either of these 

covariate effects is appropriate. Simulation exercises have been performed to demonstrate and 

validate this procedure. The method of simulation is as follows: 

I) Simulate data for one of the covariate models using the inversion technique. 

II) Fit all cova1·iate models to this data. 

Ill) Use likelihood ratio tests to indicate which covariate model is appropriate. 
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Obviously it would be hoped that the likelihood ratio tests would indicate the appropriate 

covariate model to be the one corresponding to the model used to simulate the data. 

This procedure has been carried out in conjunction with the validation exercises on the 

estimates of the parameters and standard errors. The following three sections show the 

results of these simulations for each of the covariate models, based on 100 replications and a 

sample size of 30. In Section 6.5.5 the effects of increasing the sample size are examined. 

6.5.2 The Proportional Model 

The data in this section have been simulated from the same parameter values as in the 

simulation exercise on the proportional covariate model in Section 6.2.1, namely ~o = 4, ~~ = -3, 

~2 = -1 and cr, = 0.5. Each of the random effect covariate models has been fitted to this data. 

The likelihood ratio tests show a significant change in the log-likelihood when ~2 (associated 

with a proportional covariate) is removed from the combined model, and no significant change 

in the log-likelihood when ~3 (associated with a time multiplicative covariate) is removed. 

Table 6.9 gives the probabilities of concluding that each of the covariates are not significant (at 

the 5% significance level). This confirms that the likelihood ratio test is useful in identifying 

the true covariate model since, in general, the time multiplicative covariate parameter is 

correctly removed from the model, and the proportional covariate parameter has a small 

probability of being removed incorrectly. 

TABLE 6.9 

Likelihood Ratio Tests on Proportional Covariate Data. 

Parameter P(Removed from Model) 

Actual Ideal 

~2 0.08 Low 

~3 0.90 High 
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6.5.3 The Time multiplicative Model 

The validation exercises on the time multiplicative model showed that the covariate 

parameter was not significant unless it was of sufficient magnitude. For a sample size of 30 it 

appeared that a covariate value of -1 did not have a significant effect on the ROCOF, but a 

value of -2 was found to be statistically significant. Table 6.10 gives the results from 

likelihood ratio tests for three values of the covariate parameter p3, -1, -2 and -4. For the 

smallest covariate effect -1 it can be seen that although the proportional covariate is correctly 

identified as being insignificant, the probability of incorrectly removing the time multiplicative 

effect from the model is high. From the mean standard error for the parameter estimates, 

shown in Table 6.3, this result would be expected. However, as the covariate effect is 

increased the probability of incorrectly removing the time multiplicative parameter P3 reduces. 

In all cases there is a very high probability of correctly concluding that the proportional 

parameter P2 is not required in the model. For the final simulation the value of p, changed 

from -3 to -2. Without this change the covariate effect had a gradient parameter equivalent to 

-7 and this was found to produce very little failure data. 

TABLE 6.10 

Likelihood Ratio Tests on Time multiplicative Couariate Data. 

Model Parameter P(Removed from Model) 

Actual Ideal 

Po = 4, p, - -3, P2 0.96 High 

P3 = -1, cr, = 0.5 P3 0.73 Low 

Po = 4, p, = -3, P2 0.94 High 

p3 = -2, cr, = 0.5 P3 0.28 Low 

Po = 4, p, = -2, P2 0.98 High 

P3 = -4, cr, = 0.5 P3 0.01 Low 
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6.5.4 The Combined Effect Model 

The likelihood ratio tests on the combined model should indicate a significant change 

in the log-likelihood if either of the covariate parameters are removed. The results of the 

simulated likelihood ratio tests are given in Table 6.11. As with the time multiplicative model 

the probability offalsely removing the time multiplicative parameter PJ is very high when the 

covariate effect is as small as -1. However, with the inclusion of the proportional covariate 

effect the probability offalsely removing p3 still remains high when the time multiplicative 

covariate effect is changed to -2, as indicated by the magnitude of the standard error from the 

validation exercise in Section 6.3.2. When PJ is increased further however, both covariate 

effects are generally found to be significant and the probability of incorrectly removing either 

of them becomes small (0.05 and 0.02 for P2 and Pa respectively). 

TABLE 6.11 

Likelihood Ratio Tests on Combined Covariate Effect Data. 

Model Parameter P(Removed from Model) 

Actual Ideal 

Po=4, PI=-3, P2=-1 P2 0.04 Low 

PJ = -1, a,= 0.5 P3 0.89 Low 

Po=4, PI=-3, P2=-1 P2 0.11 Low 

P3 = -2, a,= 0.5 P3 0.54 Low 

Po=4, P1=-2, P2=-1 P2 0.05 Low 

Pa = -4, a,= 0.5 P3 0.02 Low 

6.5.5 Likelihood Ratio Test with Larger Samples 

The previous sections have shown the probabilities of removing the covariate 

parameters from the three models. In all cases a sample size of 30 has been used. This was 

chosen to enable reasonable estimates of the variance component to be made and also to enable 
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the simulations to be completed in a reasonable time. Table 6.12 gives the results of the 

likelihood ratio tests for all three models, with 100 replications and the sample size increased 

to 50. In this case the true parameter values are Po = 4, PI= -3, P2 = -1, Pa = -2 and cr, = 0.5, 

and these results can be compared with the results for the same models in Sections 6.5.2 to 

6.5.4. For the proportional covariate model the likelihood ratio test performed well in 

identifying the correct effect for a sample size of 30 and these corresponding results show no 

real difference. With the two models including the time multiplicative covariate there is a 

large change in the probabilities offalsely removing Pa, although this probability is still 

relatively high for the combined effect model. As is expected, increasing the sample size also 

increases the precision of the parameter estimates; the mean standard error of PJ decreases 

from 0.6922 to 0.5794 for the time multiplicative model and from 1.146 to 0.9017 for the 

combined effect model. 

TABLE 6.12 

Likelihood Ratio Tests on Large Sample Size Data. 

Model Parameter P(Removed from Model) 

Actual Ideal 

Po = 4, PI = -3, P2 0.01 Low 

P2 = -1, cr, = 0.5 Pa 0.89 High 

Po = 4, P1 = -3, P2 0.95 High 

Pa = -2, cr, = 0.5 Pa 0.13 Low 

Po =4, PI =-3, P2 =-1 P2 0.01 Low 

Pa = -2, cr, = 0.5 Pa 0.35 Low 

6.6 Summary 

This chapter has described three formulations for including covariate effects in a log­

likelihood random effect NHPP model. Through the use of simulations it has been shown that 

the method of maximum likelihood provides good estimates of the parameters and their 
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standard errors. It has also been shown that the likelihood ratio test is useful in indicating 

which of the models is appropriate. In reality, knowledge of the units under test and of the 

testing conditions will suggest which of these models should be used. The data itself should 

also provide an indication as to which model should be fitted. 

To illustrate the use of these models in a practical situation they were fitted to the 

Jaguar data in Appendix 2 but, as suggested by Figures 6.1 to 6.4, no significant covariate 

effects were found. The data for the covariate in this case indicated whether an engine has 

been tested under high or low conditions. As stated in Chapter 1 each of these conditions 

encompasses a number of different tests whose effects cannot be individually estimated (due to 

lack of data). If the effects of the tests grouped together are very different (and at present 

these effects are unknown) then the standard error of the parameter estimate will be large. 

This will obviously decrease the probability of rejecting the null hypothesis of there being no 

covariate effect. 

For the Jaguar data all engines perform a Run and Rate test in their first few hours of 

running as described in Chapter 1. It is after this time that engines are exposed to high or low 

level testing. Before this testing begins, the ROCOF's of engines at both levels of the test 

covariate should be the same. Thereafter any effect of test type will manifest itself. The high 

test type is a more demanding test and is highly accelerated over time whereas the low test is 

similar to actual engine usage. It would therefore be expected that the ROCOF's at the two 

levels of the covariate should change at a different rate, with the ROCOF's for the high level 

engines increasing faster than those for the low level engines. This suggests that the time 

multiplicative covariate effect would be the more appropriate model for the Jaguar data 

although at present it is noted that no covariate effect can be identified. 
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CHAPTER 7 

Hierarchical Covariate Models: 

A Practical Application 

7.1 Introduction 

The analysis of the Jaguar data described in the previous chapters has not made use of 

the fact that there may be a relationship between the engines from the four phases of 

development. Fitting a separate non-homogeneous Poisson process random effect model to 

each phase is allowing for a different intercept, gradient and variance in each phase. However 

this is possibly an overparameterisation. Although design changes are made for each phase, 

the majority of components remain the same. An obvious point of interest is what effect, if 

any, these component changes are having. This chapter demonstrates how effects due to the 

engine phase can be modelled. 

In Chapter 6 a number of models for including covariate effects were introduced. 

These models were used to estimate the effects of the high and low test types. Another 

approach is to treat the engine phase as a covariate and these models can then be used to 

examine differences between phases. This chapter describes a hierarchical modelling 

approach. Let the Full model be defined as that which enables estimates of the parameters 

under the assumption that there is no relationship between phases. In this case the intensity 

function for the Full model with a random effect on the intercept parameter for n phases is 
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where 

;!; is a vector containing O's and 1's to indicate the engine phase of the i•h engine 

Po , P1 are vectors of parameters for each engine phase 

& ji is the random effect of the ith engine and the jth phase. & ji -N(O,cr,;2) 

(7.1) 

For the Jaguar data n = 4 and equation (7.1) is a reparameterisation of the four 

separate models fitted in Chapter 3. The parameter estimates for the Full model will be the 

same as the parameter estimates found for each phase separately. The maximised log­

likelihood of the Full model is then the sum of the log-likelihoods of the separate models. In 

Section 7.3 various covariate models to estimate the true phase effect are investigated. These 

models are nested within the full model. In the next section the three random effect models 

described in Chapters 3 and 4 are further compared using the combined data for the engine 

phases. 

7.2 A Comparison of Random Effect Models 

The analysis in previous chapters has concluded that for the Jaguar data placing a 

random effect on the intercept parameter is more appropriate than placing it on the gradient. 

It has also been shown that the estimates of the variance component are biased, especially 

when the sample size is small. For the model with the random effect on the intercept, it has 

been demonstrated that a sample size > 30 is sufficient to overcome this but for the other 

models the sample size required to reduce the bias is considerably larger. The engine phases 

in the Jaguar data have sample sizes of 15, 9, 9 and 21 respectively, with the consequence that 

all estimates of the variance component for these are biased. The comparisons between the 

three random effect models made in Chapter 5 have used these biased estimates. 

The full model in equation (7.1) assumes that the engine phases are all different and 

that they have no values of parameter estimates in common. Let the null model be defined 
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such that the ROCOF's are identical for all phases. In this case, all the parameters in the Full 

model will be the same in the sense that for any two phases k and l, /]ok =/]o1, P1k=Pu and 

a,)z=a,J. Under this assumption the data can be combined to a single set with m = 54 engines. 

With this larger sample size the bias on the estimated variance component will be greatly 

reduced. 

The results of fitting the three random effect models, and a model with no random 

effect, to the combined data are given in Table 7.1. A comparison of the maximised log­

likelihoods for the double and single random effect models show a large change when Ei is 

removed (likelihood ratio test statistic = 23.52) and a small change when ~i is removed ( 

likelihood ratio test statistic= 0.7). These test statistics are both compared with x21,o.os (3.84) 

and this confirms the conclusion from the previous chapters that the random effect on the 

intercept is the more appropriate. This random effect model can also be compared with the 

fixed effects models. The change in the maximised log-likelihood is very large in this case and 

a likelihood ratio test is again significant when compared with x21.o.os. In other words a 

random effect model is required for the Jaguar data and this effect is best included on the 

intercept parameter. 

TABLE 7.1 

Parameter Estimates (Standard Errors) of Models Fitted to Jagu.ar Data Assuming No Phase 

Effect. 

Random Effect on Po PJ ln(u c) (j& In( a.;) 0".; fmnx 

- 3.595 -3.171 - - - - 696.54 

(0.0836) (0.4274) 

~0 3.480 -2.449 -0.573 0.564 - - 711.42 

(0.1182) (0.4781) (0.1731) 

~1 3.616 -3.484 - - 0.491 1.634 700.01 

(0.0854) (0.5737) (0.3401) 

~o, ~~ 3.485 -2.562 -0.574 0.563 -0.042 0.959 711.77 

(0.1195) (0.5464) (0.1781) (0.7176) 
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7.3 Hierarchical Models for Engine Phase Effect 

The previous section has indicated that the model containing the random effect on the 

intercept should be used for the Jaguar data. In this section a number of covariate models are 

fitted to investigate the phase effect, all containing the random effect on the intercept 

parameter. The general form of the covariate models of this type is given by 

where 

Po is the intercept parameter for the reference phase 

p1 is the gradient parameter for the reference phase 

!; is a vector of indicator variables for other phases 

(7.2) 

P2 is a vector containing the differences in the intercept parameter for other phases 

p3 is a vector containing the differences in the gradient parameter for other phases 

"Ji is the random effect of the i<h engine and the j<h phase, "Ji -N(O,cr,i) 

Let equation (7.2) define the Full model for the engine phases. This form of the Fnll 

model is a reparameterisation of equation (7.1). For the Jaguar data, which has four phases, 

the covariate effects will be given by P2 = (P21 P22 P23f and P3 = (P31 P32 P33 )T. Phase 

AO has been used as the reference phase, hence if engine i is from this phase !; = (o 0 of. 

Other covariate models to describe the phase effect can be derived by removing various terms 

from the Fu.ll model. There are a number of models containing common intercepts and/or 

gradients and/or variance components which can be fitted to the four phases. The eight 

possible combinations are defined in Table 7.2 where the blanks indicate that a common 

parameter is fitted and .!indicates the different parameters required in a model for a number 

of phase effects. 
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These models will all be nested within the Full model. Two of the models (6 and 7) are 

not appropriate for the J agu ar data. The gradient pa1·ameters differ but the intercept 

parameter will be common in both of these models which means that the starting ROCOF's 

will be the same for all phases. Clearly this is not the case when considering the difference 

between engine phases. At each phase a large number of changes are made and if they do 

affect the ROCOF the difference would not manifest itself in this way. A difference would be 

expected between the phases at time zero. Figme 7.1 gives the hierarchical structure of the 

models fitted to the Jaguar data and the interpretation of these models is given below. 

TABLE 7.2 

Parameters required for Phase Effect Models. 

Parameters Required For Phase Effect 

Model Intercept Gradient Variance 

Full ./ ./ ./ 

1 ./ ./ 

2 ./ ./ 

3 ./ 

4 ./ 

5 

---------------~--------------------------------------------
6 ./ ./ 

7 ./ 

Full Model A. ji(t) = exp{fio + ;!t ,82 + (.81 + ;!t ,83 ) t + &ji} (number of parameters = 12) 

This is defined by equation (7.2) and introduced in Section 7.1. It assumes no relationship 

between the engine phases and includes different parameters for each phase. 
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Figure 7.1: Hierarchical Structure for Modelling Engine Phase Effect 

Model I (number of parameters= 9) 

This model is parameterised for a difference in starting ROCOF and also a different gradient 

parameter for each phase. It contains both j32 and jJ3 covariates to model the phase effect. In 
- -

this case the variance of engines within phases is assumed to be constant across phases. In 

other words only one variance component is included in the model. 

Model2 (number of parameters= 9) 

This allows for a difference in the starting ROCOF between phases and also a difference in 

variation between phases. Hence, the covariate included in the model is now j32 and j = 1, 2, 

3, 4 for the random effects. 
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Model3 (number of parameters = 6) 

The covariate effects are the same as in Model 2. In this case there is assumed to be no 

difference in engine variation between phases. 

Model4 (number of parameters = 6) 

There are assumed to be no covariate effects between the engine phases. The difference 

between phases is modelled by the variance component (j = 1, 2, 3, 4). 

ModelS (number of parameters= 3) 

This model assumes there to be no phase effect and is the model fitted in Section 7.2. With 

respect to equation (7.2) /32 and {33 have been removed and there is a single random effect. 
- -

These models have been fitted to the Jaguar data and the maximised log-likelihoods of 

each are given in Table 7.3. From a visual inspection of these values Model] and the Full 

Model stand out from the others and likelihood ratio tests performed on these values confirm 

this. Following the structure in Figure 7.1 no significant difference is found between the 

maximised log-likelihoods of Models 2 to 5, but there is a difference between Models 1 and 3 

and between Models 2 and Full. The conclusion here being that the log-likelihood is 

significantly higher when covariates for the phase effect are included on both the intercept and 

gradient parameters. A comparison between Model I and the Full Model yields a likelihood 

ratio test statistic of 2.48 against a tabulated value of 7.815 (x2a.o.os). Hence the final 

conclusion to be drawn from these hierarchical models is that whilst engines on a given phase 

differ from engines in other phases in both their starting reliability and in the gradient of the 

ROCOF, the variability between engines is not affected by phase. The parameter estimates for 

the final common variance model are given in Table 7.4. 
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TABLE7.3 

Maximised Log-Likelihoods for the Covariate Models. 

Model -fmax 

Fnll A p(t) = exp(Po + ,~} P2 +(Pi+;~/ Pa} t+ Ejil 720.37 

1 
A j;(t) = exp(Po + ?i.t P2 +(Pi+ ?i.t Pa} t + E; l 719.13 

2 
A. Ji(t) = exp{Po + :~/ P2 +Pit +t." Jd 713.89 

3 
A. Ji(t) = exp{Po + !/ P2 +Pit+ cd 712.89 

4 A. Ji(t) = exp{Po +Pit+ & 1d 711.98 

5 A. Ji(t) = exp{Po +Pit+ &i) 711.42 

TABLE 7.4 

Parameter Estimates for Engine Phase Effect Modell. 

Parameter ~0 ~1 ~21 ~22 ~23 

Estimate 3.934 -5.783 -0.363 -0.912 -0.577 

Parameter ~31 ~32 ~33 er" 

Estimate 4.591 5.179 3.347 0.651 

As in Section 7.2 the estimate of the variance component is calculated from a sample 

size of 54, and hence, from the results in Section 3.7, will have negligible bias. To make a 

comparison between the separate models for each phase and the combined phase effect model, 

the predictions of the number of failures per engine in 0.32 units of time are given in Table 7.5. 

As would be expected, when these are compared with the predictions in Table 3.10 the mean 

number of failures show little difference. The differences in the prediction are for the lower 

and upper intervals due to the change in the estimate of the standard deviation. 
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TABLE 7.5 

Predicted Numbers of Failures for the Engine Phase Effect Model. 

Engine Expected Number of Failures Interval 

Ph ase Mean (Po + ~;Pz) - 1.96a c (Po + ~;P2) + 1.96a c Width 

AO 7.45 2.68 20.70 18.02 

Al-l 9.46 3.40 26.28 22.88 

Al-2 5.97 2.15 16.60 14.45 

A2-l 6.38 2.30 17.73 15.43 

With the data for the four engine phases combined, and covariates for the phase effect 

included, there is a total of 15 engines that have been run on the low test type. For the 

separate models there is very little data for each phase from the low tests, but t he combined 

data with the covariate effects is more appropriate to investigate a test effect. In Chapter 6 it 

was stated that a time multiplicative covariate effect model is the more logical model for 

incorporating test type. The final model, Model 1, can be reparameterised to include this 

coval'iate. The resulting maximised log-likelihood of this fitted model is 720.07 and the 

estimate of the parameter for the test effect is -1.096 with a standard error of 0.8005. The log­

likelihood changes very little when this extTa effect is included and the parameter estimate is 

similar in magnitude to its standard error . Hence, as in Chapter 6, it can be concluded that 

there is no evidence from this data of a change in ROCOF due to the test type. 

7.4 Summary 

This chapter has shown how the covariate models n·om Chapter 6 can be used to model 

effects due to engine phase. A hierarchical approach to fitting these covariate models, and a 

comparison with the separate models fitted in Chapter 3, has shown that there is no evidence 

of a difference in engine variation between the engine phases. Likelihood ratio tests have been 

used to compare the various models . The appropriate model has combined proportional and 
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time multiplicative covariate effects. In other words, this model gives the phases to have 

different intercept and gradient parameters but the variance component remains the same. 

The mean predictions from this model have been shown to be approximately the same as 

before. 

Using the engine phase as a covariate also increases the sample size, which 

substantially reduces the bias on the estimated standard deviation as well as giving more data 

for each of the test types. Using the covariate model with the larger sample sizes to 

investigate an effect due to test type leads to the same conclusion found in Chapter 6 that 

there is no evidence of a test effect. From the information about the test types given in 

Chapter 1 this result is unexpected, and it must be concluded that the engine testing 

procedures and the data collection techniques currently used do not allow this test effect to be 

identified. 
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CHAPTER 8 

A Log-Linear Interval Censoring Random 

Effect NHPP Model 

8.1 Introduction 

The Jaguar data used for this study, given in Appendix 2, consists of a series of failure 

times for each engine with a censoring indicator depending on whether the last observation 

indicates a failure or the end of the test. In some cases, through the nature of the testing 

procedures the data will come from a series of time intervals When an engine is undergoing a 

long test it is thoroughly checked at certain times, every two hundred hours say, and a number 

of faults may be found at this stage. These faults are obviously interval censored between this 

time and the previous check and it can be argued as to whether these failures should be 

included in the analysis. The fault is only discovered when the engine is taken apart and does 

not affect performance in any way. In our case it has not been possible to obtain data for these 

failures but such situations can arise and the following section provides a methodology to 

incorporate them into the analysis. 

8.2 Interval Censoring Models 

The likelihood function for an interval censored non-homogeneous Poisson process 

model, from Crowder et al. (1991), is given by equation (8.1) below. This is for n 
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non-overlapping intervals at times (To, Tt ], (Tt, Tz ], ... ,(T •. t, T.] with mt, mz, ... ,m, interval 

censored failures respectively. 

(8.1) 

A model of this form could be used for the Jaguar data but this would classify a 

number of failure times which are actually known as interval censored, resulting in a loss of 

information and an inc1·ease in the uncertainty of the parameter estimates. A more 

appropriate model will allow a mixture of known and interval censored observations. Consider 

such a case in its simplest form, that is when there is only one time interval. If the test is run 

from times To to T1 with n failures occurring of which d failure times are known (giving n - d 

interval censored observations) then the likelihood function becomes 

L = exp{-J'..l{t)dt}TI ..l(tk)-1 -(J..l(t)dtJ"-d 
T0 k:l (n- d)! T. 

11 

where d > 0 (8.2) 

If d = 0 (all observations are censored) equation (8.1) is appropriate and if d = n (all 

failure times are known) equation (8.2) reduces to the likeliliood function of the non-interval 

censored model given by equation (2.51). In the more general case for p time intervals at (To, 

Tt], (Tt, Tz], ... ,(Tp.J, TP ], with nj total failures and dj known failure times in the jth interval, 

the likelihood function becomes 

(8.3) 

As before, this reduces to equation (8.1) or equation (2.51) if complete or no censoring 

occur respectively. Repeating the analysis in Sections 3.1 and 3.3 allows this model to be 

extended for m units and to include a random effect. For the i•h unit let there be p; intervals at 
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times (To, T1 J, (Tt, Tz ] , .. . , (Tpi- I, Tp; ] , with n;j failmes and d ii uncensored observations in each 

interval (j = 1, 2, . . . ,pi). The likelihood function in this case is 

(8.4) 

Substituting into equation (8.4) the model with the random effect on the intercept for 

Ai(t), given by equation (3.16), a nd integrating over the random effect gives the log-likelihood 

function to be 

e = 2)n J I1 zij exp Ill [ eo [ Pi ) 1 l 
i=l -oo j= 1 J 2nexp( 2rp ,J 

£; d 
2 ) l 2exp(2rp. ) 

6
i 

(8.5) 

where 

(8.6) 

Using this and the substitutions given by equations (8. 7) to (8.13), namely 

(8.7) 

(8.8) 

(8.9) 
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(8.10) 

(8.11) 

(
n··- d ·· J [n·· -d··] 2 I) I) - 1 + I} I} E .. 

2 I} 
Bij B ij 

(8. 12) 

(8.13) 

we may obtain the first order partial derivatives 

(8.14) 

(8.15) 

(8. 16) 
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The second order partial derivatives are then given by equations (8.17) to (8.22) 

respectively. 

[f( lJ Zij)tBii~ ds;l
2}/ {f( lJ Zij)~ ds;}

2 

1,l J- 1 J- 1 1,l ;-1 

(8. 17) 

(8.18) 

tfle m { K P. ) K P. )[ P. ) K P. ) P. -a - = I n Z;j ~ d &j n zij :?: Bij Di~ d&j - n z ij :?: Bij~ d&j 

1f3orp E a=1 _.., ; =I --<>0 ;=I ;=I -«> ; =I ; =I 

(8.19) 

(8.20) 
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(8.21) 

(8.22) 

This enables the information matrix and hence the standard errors of the pa1·a meters 

to be estimated. 

8.3 Summary 

The calculations in the previous section show how the mixed interval censoring method 

can be applied to the log-linear model with a random effect on the intercept parameter . Any of 

the other random effect and covariate models demonstra ted in Chapters 4 a nd 6, and therefor e 

the hierarchical modelling procedure of Chapter 7, can also be fitted into this framework. 

Unfortunately, as s tated in Section 8. 1, there is no da ta presently available in this form a nd 

consequently the interval censored models have not been used . However , the data is likely to 

be produced in this form in the futill'e and such a model formulation will be invaluable in this 

case. 
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CHAPTER 9 

Further Developments and Conclusions 

The aims of this study, as outlined in the introductory chapter, were to provide a 

statistical methodology to aid the physical development of engines at Jaguar. In order to 

accomplish this the reliability ofthe engines must be modelled and predictions offailures 

obtained. The model must also be able to include covariate effects, such as test type and 

engine phase. 

In Chapter 2 the basic definitions of survival analysis are given, as well as a review of 

the most commonly used models. From this chapter it follows that a repairable system 

reliability model, namely the non-homogeneous Poisson process model, is appropriate to 

analyse the Jaguar failure data. Using a log-linear form of this model has provided the basis 

of the work carried out. 

Initially the model defined in Section 2.7.2 for a single engine was extended to allow 

for data from multiple engines. Failure time plots of each phase of the Jaguar failure data 

show there to be large variability between the ROCOF's of engines of the same type. This 

variability has been included into the model in the form of a random effect, and this enables 

the differences between engines to be estimated and accounted for in the predictions of 

reliability. The random effect has been incorporated into the model in three ways- on the 

intercept parameter, on the gradient parameter and on both of these. 
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The parameter estimates for all of the random effect models are obtained by the 

method of maximum likelihood, and the standard errors are estimated from the corresponding 

information matrices. For each of these, an integral is required to be estimated numerically. 

A composite form of the Gauss-Legendre technique has been demonstrated to be appropriate 

for integrals of this type. Simulation exercises have shown the estimates of the parameters 

and their standard errors to be valid, although there is a bias associated with the estimate of 

the variance parameter when the sample size is small. The results of the simulation studies 

indicate an appropriate sample size for each of the random effect models such that this bias 

becomes negligible. In the case when the random effect is placed on the gradient parameter 

this recommended sample size is very large and restricts the use of this model in practical 

terms. Such a sample size is unlikely to be available for engineering applications due to the 

high costs of prototype components and testing procedures, although other application areas 

such as medical studies may produce sufficient data. 

In the analysis of the Jaguar engine data in Chapters 3 and 4, the significance testing 

and a nested model approach to the fitted models indicated that the model with the random 

effect on the intercept parameter is more appropriate. Chapter 5 introduced marginal and 

conditional residuals (Lawless, 1995) for model checking and these also suggest the 

proportional random effect model. In these chapters the four engine phases have been treated 

as separate data sets, resulting in an estimated model for each phase. In effect this assumes 

that ROCOF's of engines from different phases are independent. However, engines from 

separate phases contain many of the same parts so this assumption is not necessarily true and 

needs to be checked. A practical issue for the engineers on the development project is to test 

for a difference between the engine phases. As development progresses the engine design is 

modified either to improve reliability or to maintain the current reliability whilst reducing 

total engine cost, and the effects of these changes need to be monitored. Modelling the phases 

separately may produce a point (and interval) estimate of the expected number of failures but 

it does not address this issue. A statistical test for differences between the phases is required 

and a hierarchical modelling approach is demonstrated in Chapter 7. This method 

incorporates the covariate modelling procedures introduced in Chapter 6. 
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The hierarchical modelling procedure performed on the Jaguar engine data concluded 

that a separate model for each engine phase is not necessary. The final model has significant 

covariate effects for phases on the intercept (proportional effect) and gradient (time 

multiplicative effect) parameters and a single variance component. The interpretation of this 

is that the ROCOF's between phases are different at time zero and also change at varying 

rates, but that the variance between engines is constant over the phases. In other words, there 

is a significant difference between the engine phases, and the expected number of failures for 

each phase show how these differences translate in real terms. A number of issues on the 

variance component arise from this final model. Firstly, the sample size of engines when the 

data sets are combined increases such that the estimate of the standard deviation will have 

negligible bias. This is in contrast to the separate models where the estimates are based on 

sample sizes as small as nine and have been shown to have a large bias. The second is a more 

practical issue. As the engine development progresses, as well as improving reliability the aim 

is to make the engines more consistent, that is to reduce the variation between them. 

Obviously, with a conclusion of constant variance between phases there is no evidence that 

this is happening. However, the data have been obtained from engines that have all been 

hand built, and part of the variance between them can be attributed to the variability of the 

build. This variability will be the same throughout the four engine phases and may be the 

dominating factor in the differences in engine reliability. If this is true then the conclusion of 

constant variance across the four phases would be expected. In subsequent phases (which 

were not available for this study) development engines are built in a manner much more like 

production engines. In this case a reduction in variability between engines would be expected 

as the phases progress towards the final manufacturing line. 

For each model an equation has been shown which gives the mean number of failures 

in time interval (a,b], and figures found for the Jaguar engines in the first 0.32 unit time of 

running. The failures in this interval follow a Poisson distribution with the consequence that 

the probability of achieving a target reliability can be found. For the Jaguar data there are 

more failures than would be expected under normal engine running conditions and this can be 

attributed to the test conditions of engines under development. First, there is a more rigorous 

inclusion of faults compared to those reported by customers. Indeed, a number of faults are 
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included of which a customer would be unaware as discussed in Chapter 8. Second, in 

Chapter 1 the development processes and the tests performed on the engines have been 

described. It was stated that the seven test types are performed on engines and these are 

accelerated to varying degrees over real driving conditions. At this stage the acceleration 

factors for each test are not known. Due to the small sample sizes on each phase there is little 

data available for each test performed, and comparisons between the tests cannot be made. In 

order to attempt a comparison between engines on different tests the simulations have 

categorised into two groups, low and high. The tests classified as low are thought to be only 

marginally accelerated over real driving conditions. In theory using only these engines for the 

modelling would allow more realistic predictions to be made. Unfortunately, apart from 

ignoring a large number of engines, there is very little data available for this grouping and it 

cannot be used with any confidence for this purpose. Indeed, as demonstrated in Chapter 6 

and Section 7 .3, the reliability of the engines on the low tests cannot be differentiated from 

those in the high test group. In order to address this issue more data would be required. 

These unknown acceleration factors would seem to restrict the usefulness of the non­

homogeneous Poisson process approach to modelling the reliability of Jaguar test engines. At 

present these models cannot be used to predict actual engine reliability. However, they can be 

used to predict the reliability of engines under test conditions and can therefore be used to 

monitor the effect of design changes. If a design change causes an improvement in test 

reliability it follows that an improvement to engine reliability has been made. Being able to 

monitor this is a valuable tool that has been previously unavailable to the design engineers at 

Jaguar. 

The non-homogeneous Poisson process random effect model may become more useful in 

future engine development projects. Mter a period of time, warranty data for the AJ26 will 

become available and estimates of actual engine reliability can then be made. This will enable 

comparisons to be made with the reliability predicted from test engines so that the acceleration 

factors can be estimated. If the assumption is made that these acceleration factors remain 

constant for different engine types (which appears reasonable) then the test reliability of 

engines under development in the future can be translated to a more realistic operational 
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reliability. However, the correlation of the test and true reliability will require a large amount 

of data if this translation is to be successful. 

This study has demonstrated the use oflog-linear random effect non-homogeneous 

Poisson process models for assessing reliability characteristics of prototype engines. The 

suitability of these models for repairable systems in other engineering applications is clear, but 

these models are not just restricted to this area. Another major application can be found in 

medicine for modelling the re-occurrence of diseases, see for example Abu-Libdeh et al. (1990). 

This final chapter has considered some practical issues relating to the modelling and 

prediction process. Further developments to the described models include: 

• Experimental Design 

Presently the design of the engine testing on each phase is mainly between engines with 

each engine performing only one type of test. One implication of the large variability 

between engines is that such experiments involving between engine comparisons are likely 

to require large numbers of engines to achieve reasonable statistical power. Within engine 

designs based on random effects models provide a very attractive alternative and these 

designs need to be investigated further. The extensive work on crossover designs in the 

literature on clinical trials is relevant here. See for example Senn (1992). 

• Warranty Data 

As stated in previously warranty data will soon be available for the AJ26 engine. Fmther 

work carried out to model and correlate this to the test data will be invaluable in future 

engine projects. It will allow the expected 'field' reliability of prototype engines to be 

predicted before being released for production. 

• Interval Censoring 

Chapter 8 introduced the mixed censoring random effect model (which can be reduced to a 

fully interval censored model). Data from the testing procedures is more likely to be in this 

form as it can be difficult to record the exact failure time. The form of the likelihood and 
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the first and second partial derivatives are given but further work is required to investigate 

their use in parameter estimation. 

• Other NHPP Models 

The work carried out has used the log-linear form of .1.(t) exclusively, and has investigated 

the addition of different covariate and random effects. There are other forms of .1.(t), such as 

the power law model of equation (2.53), and these will also be of use in some applications. 

Lawless (1987) and Abu-Libdeh (1990) have used the power law model with a random 

effect. Ascher and Feingold (1980) list some other forms for .1.(t). 

• Bayesian Analysis 

The random effects models presented in Chapters 3 and 4 are amenable to Bayesian 

analysis using MCMC in which samples of unknown parameters and random effects are 

sampled from their posterior distribution by setting up a Markov Chain which has the 

posterior distribution as its stationary distribution. These samples can be used to obtain 

summaries of posterior distributions and predictive distributions concerning future engines. 

The work on Frailty models presented in Walker and Mallick (1997) would provide a good 

starting point for further work in this direction. 

A further extension would be to try to model sequentially the different engine phases by 

setting up the random effects models in Chapters 3 and 4 within a sequential framework 

similar to that presented by Whitmore et al. (1994) and described here in Section 2.6.2. The 

posterior distribution from one engine phase can be used to form the basis of the prior 

distribution for the next engine phase. The development of a sequential Bayesian analysis 

based on the non-homogeneous Poisson process random effect models described in this 

study would form the next step in improving the methodology, and ultimately the reliability 

predictions. 

In conclusion, a methodology has been presented which allows the reliability of 

prototype engines to be modelled in terms of the number and trend of the failures. The 
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methodology also:allows:estimates to. be made ofJthe· yariabilicy between:engines;. The 

.extensions listed above•willlimprove :trusprocessfurther. In,the;present economic climate 

.customers are demandin~ more!reliable products: at reasonable iprices and, ,t() remain 

competitive;; manufacturers are reducing ,product lead times in'order ·to ininimise· development. 

costs; Underithese:conditions:it:islimportant to. make maximui:n'tise ofavailable,t:lata ih order 

that an early indication!ofaiproduct's reliabilitycan:be obtained. The:ra.ndoi:n ·effect NHPP' 

models go some way towards:achieVing this. 
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Censor: 0 not censored 1 censored. 

test: 0 low test level 1 high test level. 

Phase AO 

Engine 
Failure 1 2 3 4 5 6 7 8 

1 0.01 0.005 0.00025 0.01656 0.00253 0.003 0.05514 0.0002 
2 0.047 0.01 0.0005 0.035 0.005 0.03475 0.0636 0.0029 
3 0.07464 0.03734 0.00259 0.069 0.0108 0.15 0.17994 0.0062 
4 0.07964 0.09622 0.012 0.0638 0.38762 0.18 0.0115 
5 0.08164 0.1013 0.01592 0.5408 0.23784 0.01883 
6 0.10625 0.11547 0.018 0.54585 0.31877 0.02552 
7 0.11514 0.12074 0.029 0.34134 0.0337 
8 0.1187 0.14226 0.06159 0.45463 0.04053 
9 0.19294 0.15201 0.10918 

10 0.15774 0.11201 
11 0.212 
12 0.2625 
13 0.275 
14 0.303 
15 0.4245 

Censor 1 1 0 1 1 1 1 1 
Test 1 1 0 0 1 1 1 1 

Engine 
Failure 9 10 11 12 13 14 15 

1 0.006 0.00025 0.006 0.195 0.0005 0.008 0.01335 
2 0.00988 0.00718 0.01942 0.005 0.068 0.021 
3 0.075 0.07362 0.02605 0.05517 0.15574 0.07221 
4 0.11723 0.05497 0.07635 0.1749 0.09244 
5 0.062 0.0773 0.2478 0.09297 
6 0.142 0.07922 0.39309 
7 0.14436 0.10623 0.4836 
8 0.15 0.4876 
9 0.2246 

10 0.305 
11 
12 
13 
14 
15 

Censor 0 0 1 1 1 1 0 
Test 1 1 0 1 1 0 0 
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Phase Al-l 

Engine 
Failur·e 1 2 3 4 5 6 7 8 9 

1 0.0005 0.025 0.004 0.0181 0.01 0.012 0.00542 0.04507 0.04345 
2 0.019 0.055 0.01929 0.043 0.013 0.013 0.027 0.0612 0 .06945 
3 0.022 0.063 0.06 0.1115 0.17437 0.015 0.05067 0.06927 0.1375 
4 0.046 0.11 0.168 0.218 0.0515 0.08495 0.1825 
5 0.052 0.135 0.284 0.3 0.067 0.08847 
6 0.0705 0.16 0.335 0.351 0.085 0.09765 
7 0.09 0.207 0.37015 0.223 0.11627 
8 0.1125 0.217 0.488 0.348 
9 0.1245 0.233 0.49844 0.369 

10 0.1315 0.277 0.407 
11 0.1345 0.312 0.417 
12 0.1915 0.323 0.54 
13 0.1995 0.363 0.575 
14 0.373 0.6 
15 0.425 
16 0.4275 
17 0.43 

Censor 0 1 1 1 1 1 0 0 0 
Test 1 1 1 1 1 0 1 1 0 

Ph ase Al -2 

Engine 
Failure 1 2 3 4 5 6 7 8 9 

1 0.075 0 .0245 0.04336 0.09806 0.102 0.001 0.005 0.06189 0.181 
2 0.093 0.044 0.44893 0.111 0.195 0.016 0.056833 0.13172 0.3 
3 0.10225 0.101 0.116 0.216 0.0165 0.092 0 .25169 0.39248 
4 0.10258 0.14347 0.196 0.3 0.021 0.09275 0.2931 
5 0.25001 0 .14681 0.206 0.375 0.03355 0.1035 0 .30783 
6 0.148 0.298 0.41 0.04262 0.455 
7 0 .15619 0.418 
8 0.16068 0.458 
9 0.16221 0.58 

10 0.176 0.6 
11 0.241 

Censor 1 0 0 0 1 1 0 1 1 
Test 1 1 1 1 0 1 1 1 0 
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Phase A2-1 

Engine 
Failure 1 2 3 4 5 6 7 

1 0.005 0.007 0.001 0.002 0.018 0.037 0.01 
2 0.025 0.089 0.035 0.004 0.025 0.1871 0.028 
3 0.057 0.207 0.2 0.005 0.03 0.5281 0.072 
4 0.168 0.252 0.417 0.01 0.05675 0.5731 0.124 
5 0.191 0.368 0.011 0.6 0.14 
6 0.234 0.0335 0.214 
7 0.259 0.0515 0.305 
8 0.404 0.107 0.362 
9 0.407 0.13 0.484 

10 0.6 0.201 0.6 
11 0.305 
12 0.501 
13 0.523 
14 0.6 

Censm· 1 1 1 1 1 1 1 
Test 0 1 1 0 0 1 1 

Engine 
Failure 8 9 10 11 12 13 14 

1 0.082 0.1556 0.029 0.008 0.016 0.021 0.01 
2 0.159 0.2095 0.097 0.01 0.07 0.026 0.012 
3 0.2265 0.24 0.034 0.114 0.055 0.018 
4 0.2845 0.371 0.042 0.076 0.028 
5 0.3455 0.449 0.049 0.081 0.033 
6 0.3605 0.455 0.083 0.04 
7 0.3845 0.046 
8 0.394 
9 0.4 

10 0.451 
11 0.4565 
12 0.5165 
13 0.6 
14 

Censot· 0 1 0 0 0 0 0 
Test 0 0 1 1 1 1 1 

Engine 
Failure 15 16 17 18 19 20 21 

1 0.007 0.005 0.005 0.151 0.039 0.25 0.043 
2 0.009 0.021 0.019 0.176 0.07 0.328 0.06 
3 0.055 0.041 0.145 0.184 0.214 0.487 0.13 
4 0.06 0.09 0.147 0.232 0.326 0.597 
5 0.091 0.172 0.43 0.6 
6 0.105 0.6 
7 0.111 
8 0.189 
9 0.225 

10 0.243 
11 
12 
13 
14 

Censor 0 1 1 1 1 1 1 
Test 1 1 1 1 0 1 1 
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program hazard 

c 
c This program will calculate a proportional hazard model for 
c the inputed data. 
c 
c The data needs to be of the form: 
c 1) First column with survival/censored times. 
c 2) Second column with status code 
c 
c 
c 
c 
c 
c 

o censored 1 non-censored. 
3) next n columns containing n covariates. 
4) the data must be in ascending order. 
5) the file length and the no. of covariates must 

be specified. 

c Assign Arrays 

c 

implicit real*B (a-h,o-z) 
character*64 cin,cout 
integer istat(200),ncount,id(200) ,np(20) 
dimension time(200) ,data(200,20) ,cova(200,20) 
dimension work(1800),est(20),start(20) 
common/ar/istat,time,cova,id 
common m,ncount,n 
external fen 

ncount=O 

c Input summary information 
c 

c 

print*, 'This program will calculate a proportional Hazards model' 
print*, 'for up to 20 covariates with 1000 data rows' 
write ( *, ' (A/) ') 'Please type the input file name' 
read ( *, ' (A) ' ) cin 
write(*, '(A/)') 'Please type the output file name' 
read ( *, ' (A) ' ) cout 
print*, 'How many covariates?' 
read*,nit 
print*, 'How many Rows?' 
read*,m 

c Define the input and output files 
c 

c 

open(unit=7,file=cin,status='unknown') 
open(unit=B,file=cout,status='unknown') 

c Read in the data file 
c 

do 1,i=1,m 
read ( 7, *) time ( i) , is tat ( i) , (data ( i, j ) , j = 1, nit) 

1 continue 
c 
c calculate id array for ties 
c 

mm=m-1 
do 2,i=1,mm 
id(i)=-1 

2 continue 
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c 

id(m)=1 
do 5l,i=l,mm 
if (id(i) .ne.O) then 

id(i)=1 
if (istat(i) .eq.l) then 

ii=i+l 
do 52,j=ii,m 
if (time(i) .eq.time(j) .AND.istat(j) .eq.l) then 

id (i) =id (i) +1 
id(j)=O 

else 
goto 51 

end if 
52 continue 

end if 
end if 

51 continue 

777 print*, 'How many parameters to be removed from the data' 
read*, nremov 
if (nremov.eq.O) goto 90 
print*, 'Which covariate numbers?' 
do 91,k=1,nremov 

read*, np (k) 
91 continue 

90 nsub=O 
do 92,nrem=l,nit 

kremov=O 
do 93,ncheck=1,nremov 

if (nrem.eq.np(ncheck)) kremov=1 
93 continue 

if (kremov.eq.O) then 
do 94,nj=1,m 

cova(nj, (nrem-nsub))=data(nj,nrem) 
94 continue 

else 
nsub=nsub+1 

end if 
92 continue 

n=nit-nremov 

if (n.ne.O) then 

c Read in the initial starting values 
c 

do 3,i=1,n 
print*, 'Please type the starting value for parameter ',i 
read*,start(i) 

3 continue 
tol= sqrt(x02aaf(O.O)) 
lwa=1800 
ifail=O 
call c05nbf(fcn,n,start,est,tol,work,lwa,ifail) 

else 
start(1)=0 
do BOO,i=1,m 

cova(m,1)=data(m,1) 
BOO continue 

end if 
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vlik=O 
do 401,nrow=1,m 

if (istat(nrow) .ne.O.AND.id(nrow) .ne.O) then 
call llike(nrow,start,a,b) 
vlik=vlik+ (a-b) 

end if 
401 continue 

998 

888 

write(8,1000) 

do 998,k=1,n 
write(8,1001) k,start(k) 
continue 

write(8,1002) 

write(8,1003) vlik 
write(8,1004) nremov 
write(8,1005) 

do 888,i=1,nremov 
write(8,*) np (i) 

continue 

print*, 'Type 1 to run for different parameters' 
read*,ncheck 
if (ncheck.eq.1) goto 777 

1000 format (///,10X, 'Proportional Hazards Model Results',// 
* ,SX, 'Final Parameter Estimates',/) 

1001 format ( 2X, 'Parameter ' , i2, SX, 'Program estimate = ' , e14. 6) 
1002 format (//,SX, 'The Log-Likelihood is evaluated as:',/) 
1003 format (2X, '1 =',3x,e14.6,//) 
1004 format ('Number of Covariates removed=',5X,i2,//) 
1005 format ('The Covariates removed were:',/) 

stop 
end 

c 
************************************************************************* 
c Subroutine called from within the NAg routine to evaluate the partial 
c derivatives at the current estimates. 
c 
c n is the number of parameters/partial derivatives 
c x is the vector containing the current parameter estimates 
c fvec is the vector containing the evaluated f(x) 'son exit 
c iflag can be set to a neg value in order to exit NAg routine (not 
used) 
c 
************************************************************************* 

subroutine fcn(nn,x,fvec,iflag) 
implicit real*8 (a-h,o-z) 
integer nn,iflag,istat(200) ,m,id(200) 
dimension time(200) ,cova(200,20) ,x(nn) ,fvec(nn) 

common/ar/istat,time,cova,id 
common m,ncount,n 
ncount=ncount+1 
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c 
c This first loop defines each of the derivatives w.r.t i 
c 

c 

do 101,ii=1,nn 
fvec (ii) =0 

c This second loop goes through the rows of the covariate matrix as long 
c as the observation is non-censored 
c 

c 

do 2 o 1, j j = 1, m 
if (istat(jj) .eq.l.AND.id(jj) .ne.O) then 

call risk(ii,jj,x,nn,a,b,c) 
fvec(ii)=fvec(ii)+(a-(b/c)) 

end if 
201 continue 
101 continue 

return 
end 

************************************************************************* 
c This subroutine is called from the fen subroutine. 
c It calculates and sums the risk sets, required in the partial 
derivatives, 
c for the current observation in fen 
c 
c p gives the vector identifier for the current partial derivative 
c srow is the row identifier for the current observation in fen 
c y is the vector of current parameter estimates 
c 1 is the number of parameters/derivatives 
c On 
c 
c 
c 
c 

exit: 
s contains 
t contains 
u contains 

x(i,p) 
sum x(l,p)*exp(xl•b) 
sum exp(xl•b) 

************************************************************************* 

subroutine risk(p,srow,y,l,s,t,u) 
implicit real*B (a-h,o-z) 
integer p,srow,l 
integer istat(200) ,m,id(200) 
dimension time(200) ,cova(200,20) ,y(l) 

common/ar/istat,time,cova,id 
common m,ncount,n 

S=O 
do 302,isum=1,id(srow) 
icorr=srow+isum-1 
s=s+cova(icorr,p) 

302 continue 
t=O 
U=O 

c sum2=0 

do 102,jjj=srow,m 
sum2=0 
do 202,iii=1,l 
sum1=cova(jjj,iii)•y(iii) 
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sum2=sum2+suml 
202 continue 

u=u+exp(sum2) 
t=t+(cova(jjj,p)*exp(sum2)) 

102 continue 

t=t*id(srow) 

return 
end 

subroutine llike(nrow,param,a,b) 
implicit real*B (a-h,o-z) 
integer nrow 
integer istat(200) ,m,id(200) 
dimension time(200) ,cova(200,20),s(20) ,param(20) 

common/ar/istat,time,cova,id 
common m,ncount,n 

do 403,icount=l,n 
s(icount)=O 

403 continue 

do 404,icount=l,n 
do 405,mcount=l,id(nrow) 

itemp=nrow-l+mcount 
s(icount)=s(icount)+cova(itemp,icount) 

405 continue 
404 continue 

do 406,icount=l,n 
a=a+(s(icount)*param(icount)) 

406 continue 

do 407,mcount=nrow,m 
tcalc=l 
do 40B,icount=l,n 

tcalc=tcalc*exp(cova(mcount,icount)*param(icount)) 
408 continue 

b=b+tcalc 
407 continue 

b=id(nrow)*log(b) 

return 
end 
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Log-Likelihood for Proportional Random Effect Model 

randbO 

function(x, data, censor) 

intl <- ncol(data) 

# Define empty matrix and parameter values from x 

mlike <- matrix(nrow = intl, ncol = 1) 

bO <- x[1] 

b1 <- x[2] 

sdev <- x[3] 

# m1 is assigned the Gauss-Legendre Weights and Nodes for 5xStandard Deviations 

j <- sdev * 5 

m1 <- integ(- j, j, 20) 

# Loop to calculate values for each unit 

for(i in 1:intl) { 

ind <- censor[i] 

tdat <- c(na.omit(data[, i])) 

n <- length(tdat) 

# Calculates number of failures and sum of failures allowing for censored value 

ni <- n- ind 

v1 <- ml[, 2] * (exp((ni * m1[, 1])- (1/bl) * exp(bO + m1[, 1]) * ( 

exp(bl * tdat[n])- 1)) * dnorm(m1[, 1], mean= 0, sd = sdev)) 

x <- sum(v1) 

# The Likelihood due to the ith engine 

mlike[i, 1] <- exp(ni * bO + bl * (sum(tdat) - (ind * tdat[n]))) * x 

lmlike <- log(mlike) 

value<- -1 * sum(lmlike) 

value 

1•' and 2nd Partial Derivatives for Proportional Random Effect Model 

> randbO.hes 

function(x, data, censor) 

# provides values of 1st derivatives and the upper triangle of the hessian for input into the 

S-Plus function NLMINB 

intl <- ncol(data) 

se<- le+ lOO 

bO <- x[l) 

bl <- x[2] 
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sdev <- x[3] 

j <- sdev * 5 

j 1 <- max(l, j) 

ans <- matrix(nrow = intl, ncol = 9) 

ml <- integ(- jl, jl, 20) 

for(i in l:intl) { 

ind <- censor[i] 

tdat <- na.omit(data[. i]) 

n <- length(tdat) 

ti <- tdat[n] 

t <- sum(tdat) - (ind * tdat[n]) 

ni <- n- ind 

# Calculates number of failures and sum of failures allowing for censored value 

# See Equations (3.22) to (3.36) in Thesis 

aa <- exp(ni * bO + bl * t + ni * ml[. 1] - (1/b1) * exp(bO + m1[. 1]) 

*(exp(b1 * ti) - 1)) * dnorm(m 1[. 1]. mean= 0, sd = sdev) 

bb <- ni- (1/b1) * (exp(bO + ml[. 1]) * (exp(b1 * ti)- 1)) 

cc<- t- exp(bO + m1[. 1]) * ((exp(bl * ti) * (bl * ti- 1) + 1)/b1 "2) 

dd <- (m1[. 1]"2- sdev"2)/sdev"3 

temp <- ml[. 2] * aa 

a <- sum(temp) 

temp <- m1[, 2] * bb * aa 

b <- sum(temp) 

temp<- m1[. 2] *cc* aa 

cl <- sum(temp) 

temp<- m1[. 2] * dd * aa 

d <- sum(temp) 

temp<- m1[. 2] * ((bb- ni) + bb"2) * aa 

se1 <-(a* (sum(temp)/sc)- b * (b/sc)) 

temp<- (m1[. 2] *((cc- t) + (bb *cc))* aa) 

se2 <-a* (sum(temp)/sc)- b *(cl/se) 

temp <- (m 1[. 2] * bb * dd * aa) 

se3 <- (a * (sum(temp)/sc) - b * (d/sc)) 

temp<- (m1[. 2] * ((-1/b1"3) * exp(bO + m1[. 1]) * (b1 * ti * exp(b1 * ti) 

* (ti * b1- 2) + 2 * exp(b1 * ti)- 2) + cc"2) * aa) 

se4 <- (a * (sum(temp)/sc) - cl * (cl/se)) 

temp<- m1[. 2] *cc* dd * aa 

se5 <- (a * (sum(temp)/sc) - cl * (disc)) 

temp<- m1[. 2] * ((m1[. 1]"4- 5 * m1[. 1]"2 * sdev"2 + 2 * sdev"4)/ 

sdev"6) * aa 

se6 <- (a * (sum(temp)/sc) - d * (d/sc)) 
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vecl <- c(se 1, se2, se3, se4, se5, se6) 

vecl <- (vecll(a * (a/se))) 

vec2 <- (c(b, cl, d))la 

ans[i, ] <- c(vecl, vec2) 

infol <- -1 * (c(sum(ans[, 7]), sum(ans[, 8]), sum(ans[, 9]))) 

info2 <- -1 * (c(sum(ans[, 1]), sum(ans[, 2]), sum(ans[, 4]), sum(ans[, 3]), 

sum(ans[, 5]), sum(ans[, 6]))) 

list(gradient = info 1, hessian = info2) 

Simulation of Data from Proportional Random Effect Model 

randbO.sim 

function(x, y, sdev, t, n) 

# Provides Simulated data for n units up to time t using the inversion method 

# Generate the values of the random component and hence the resulting intercept parameter 

for each unit 

xl <- rnorm(n, mean= 0, sd = sdev) 

X<- X+ x1 

# Calculate the resulting mean failures in time t 

con <- exp(y * t) - 1 

mo <- (exp(x) * con)ly 

# Then generate a simulated number of failures using the Poisson distribution 

no<- rpois(n, mo) 

sum1 <- sum(no) 

# Set the empty matrix to store the simulated times 

data <- matrix(nrow = (max(no) + 1), ncol = n) 

censor<- matrix(l, nrow = 1, ncol = n) 

times<- matrix(nrow = (max(no) + 1), ncol = n) 

# Generate the required number of observations from a standard uniform distribution 

randno <- runif(smnl) 

count<- 1 

# Loop calculates simulated failure times for each unit 

# If no failures have been simulated for unit i then only the censored time is given 

# else the failure times are generated by the inversion method. See Section 3.6.2 

for(i in 1:n) { 

if(no[i] = 0) { 

times[l, i] <- t 

if(no[i] != 0) { 

data[1:no[i], i] <- sort(randno[count:(count- 1 + no[i])J, na.last = T) 
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count <- count+ no[i] 

times[, i] <- log( data[, i] * con + 1)/y 

times[(no[i] + 1), i] <- t 

list(dat =times, cen =censor) 

Functions for Marginal Residuals from Proportional Random Effect Model 

margres 

function(x, data, cen, model, divs = seq(O, 600, length= 13), se= 1) 

# calculate the actual number of failures in each interval 

faildat <- resd(data, cen, divs) 

mfail <- apply(faildat, 1, mean, na.rm = T) 

# calculate the expected number of failures in each interval 

# and the intervals due to the random effects 

if(model == 1) { 

efails <- expt(divs/sc, x[1], x[2], x[3]) 

if(model == 2) { 

efails <- exptl(divs/sc, x[1], x[2], x[3]) 

# calculate the mid-points of the intervals 

n <- length(divs) 

resd 

divs2 <- matrix(ncol = 1, nrow = (n - 1)) 

for(i in l:(n - 1)) { 

divs2[i, 1] <- (divs[i] + divs[i + 1])/2 

res <- mfail - efails[. 1] 

list(mid = divs2[. 1], observed= mfail, expected= efails, residual= res) 

function(x, z, y) 

# Caluates the actual number of failures in division z for the data in x and the censoring codes 

my 

t <- ncol(x) 

temp <- matrix(ncol = t, nrow = (length(y) - 1)) 

for(i in 1 :t) { 

temp1 <- na.omit(x[, i]) 
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temp 

expt 

n <- length(temp1) 

m<- temp1[n] 

if(z[i] = 1) { 

temp1[n] <- NA 

temp1 <- na.omit(temp1) 

if(length(temp 1) != 0) { 

temp2 <- hist(temp1, breaks= y, plot= F) 

temp[, i] <- temp2$counts 

n <- length(y) 

for(j in 1:(n- 1)) { 

if(yU] >m) { 

temp[j, i] <- NA 

function(x, bO, b1, sdev) 

# Calculates the expected number of failures to time t giving the mean value and± 1.96 

*the estimate of the standard deviation 

t <- length(x) 

temp <- matrix(ncol = 3, nrow = (t- 1)) 

for(i in 1:(t- 1)) { 

temp 

temp[i, 1] <- 1/b1 * exp(bO) * (exp(b1 * x[i + 1])- exp(b1 * x[i])) 

b <- bO - 1.96 * sdev 

temp[i, 2] <- 1/b1 * exp(b) * (exp(b1 * x[i + 1]) - exp(b1 * x[i])) 

b <- bO + 1.96 * sdev 

temp[i, 3] <- 1/b1 * exp(b) * (exp(b1 * x[i + 1])- exp(b1 * x[i])) 
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Estimate of Random Coefficients for Proportional Random Effect Model 

randcpbO 

function(x, data, censor) 

# Calculates estimates of the random coefficients using the posterior distribution 

# See Equations (5.9) and (5.10) 

intl <- ncol(data) 

comp <- matrix(nrow = intl, ncol = 1) 

bO <- x[1) 

b1 <- x[2) 

sdev <- x[3] 

j <- sdev * 5 

j 1 <- max(l, j) 

m1 <- integ(- j1, j 1, 20) 

for(i in l:intl) { 

ind <- censor[i] 

tdat <- c(na.omit(data[. i])) 

n <- length(tdat) 

ni <- n- ind 

v1 <- m1[. 2] * (exp((ni * m1[. 1])- (1/b1) * exp(bO + m1[, 1]) * 

(exp(b1 * tdat[n])- 1)) * dnorm(m1[. 1), mean= 0, sd = sdev)) 

x1 <- sum(v1) 

x2 <- sum(m1[. 1) * v1) 

comp[i, 1) <- x2/x1 

list(comp = comp) 

Conditional Residuals for Proportional Random Effect Model 

condrsbO 

function(x, data, censor, rcomp) 

# Uses estimates of random coefficients to calculate conditional residuals 

intl <- ncol(data) 

int2 <- nrow(data) 

resids <- matrix(nrow = int2, ncol = intl) 

bO <- x[l] 

b1 <- x[2] 

for(i in l:intl) { 

ind <- censor[i] 

tdat <- c(na.omit(data[. i])) 
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n <- length(tdat) 

ni <- n- ind 

datl <- tdat[1:ni] 

dat2 <- c(O, datl) 

bOe <- bO + rcomp[i, 1] 

if(ni >= 1) { 

for(j in 1:ni) { 

# Residual from definition in equation (5.3) 

resids[j, i] <- 1/b1 * exp(bOe) * (exp(b1 * dat2[j + 1]) 

- exp(b1 * dat2[j])) 

# Outputs Residuals by unit and also all residuals in a single column 

resids2 <- matrix(resids, ncol = 1) 

resids3 <- c(na.omit(resids2)) 

list(R1 = resids, R2 = resids3) 

Composite Gauss-Legendre Integration 

integ 

function(a, b, p) 

# Nodes and Weights for Interval -1 to 1 

pnode <- c(-0.861136311594053, -0.339981043584856, 0.339981043584856, 

0.861136311594053) 

pwei <- c(0.652145154862546, 0.347854845137454) 

ans <- matrix(nrow = (4 * p), ncol = 2) 

node <- rep(pnode, p) 

# Calculate Weights for the New Interval size 

pw <- pwei * ((b - a)/(2 * p)) 

ans[, 2] <- rep(c(pw[2], pw[1], pw[1], pw[2]), p) 

i <- O:(p - 1) 

# Calculation of nodes for the Each New Interval Size 

xl <- a + ((b - a) * i)/p 

x2 <- xl + (b - a)/p 

xla <- rep(xl, rep(4, p)) 

x2a <- rep(x2, rep(4, p)) 

y <- (x1a + x2a) + (x2a- x1a) *node 

ans[, 1) <- y/2 

ans 
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Model with a Single Random Effect 
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