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Joaquin Martinez Martinez Molecular Ecology of Marine Algal Viruses 

I Abstract 

In this study phytoplankton viruses were investigated from a point of view of their 

genotypic richness, ecology and role in controlling two microalgae species: Emiliania 

huxleyi and Phaeocystis pouchetii. 

Host specificity determined for Emiliania huxleyi-virus (Eh V) isolates revealed a highly 

variable host range suggesting a relation between virus specificity and genetic or 

phenotypic variations within E. huxleyi strains and Eh Vs. Subsequently the dynamics and 

genetic richness of Emiliania huxleyi and Eh Vs were monitored in mesocosm experiments 

and during the progression of a natural bloom in the sea. The results confirmed the role of 

virus infection in regulating the intraspecific succession of E. huxleyi in the ocean. 

Furthermore, they revealed significant differences in genotypic composition and dynamics 

among blooms. The mesocosm setup appeared to be a very robust experimental system, 

which allowed reproducibility. The most important factor determining the development of 

the blooms in the enclosures was the experimental manipulation (i.e. nutrient addition), 

whereas the effect of filling of the enclosures, delay in nutrient addition and position in the 

raft were of minor importance. 

Further laboratory experiments revealed differences in the genomic content of different 

Eh Vs. Eh V isolates from the English Channel carry a putative phosphate permease gene 

( ehv I 17) while the only available Eh V from a Norwegian fjord has replaced ehv 11 7 with a 

putative endonuclease, suggesting different propagation strategies among closely related 

Eh Vs. Culture studies using one of the English Channel isolates and E. huxleyi CCMP 

1516 showed that the lack of phosphate (P) reduced the growth rate of the host and 

inhibited the production of viral particles. Furthermore, P availability was shown to have 

an effect on the level of ehv 117 expression. 

In addition, other mesocosm studies revealed that specific viruses (Pp Vs) play a significant 

role in the termination of induced Phaeoc:vstis pouchetii blooms. However, the role of 

Pp Vs may be significant only for the flagellated stage of P. pouchetii. Phenotypic 

characteristics ofPpVs isolated during these studies indicate that they are probably 

members of the Phycodnaviridae family. 
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1Introdudion 



11. Introduction 

The work described in this thesis focuses on investigating the diversity and ecology of 

marine viruses, and their role in controlling two important planktonic algal species: 

Emiliania huxleyi and Phaeocystis pouchetii. In this chapter, attention will be drawn to the 

need to improve our understanding of the relationships between organisms, food web 

structure, biodiversity and biogeochemical cycles in the oceanic microbial food web. The 

importance and current knowledge ofphytoplankton and virus activities in the marine 

pelagic ecosystem will be summarized. Finally the factors affecting viral control of host, 

host defence mechanisms and the fate of viruses in the water will be reviewed. Special 

attention will be given to the E. huxleyi and P. pouchetii host-vims systems. 

1.1. Oceanic biogeochemistry 

Biogeochemical processes in the ocean control the Earth's climate and absorb the impact 

of human perturbations on the environment. At the core of biogeochemistry is the carbon 

cycle and its interconnections with the cycles of other elements involved in life processes, 

such as nitrogen, oxygen, phosphoms and metals. Carbon cycling is tied to biological 

productivity in the oceans. Carbon dioxide (C02) is sequestered from the atmosphere into 

the oceans by physical processes, and by the surface ocean biological pump, which draws 

carbon into organic matter. Therefore, in order to understand the changes in oceanic 

biogeochemistry we must first understand the behaviour of the marine biotic system and 

changes in plankton productivity. 

The exchange of C02 between the oceans and the atmosphere is influenced by the ratio of 

carbon uptake to calcite production in the surface of the ocean and the subsequent calcite 

flux by particles sinking out. The particle ratio depends on the composition of the plankton 

communities and the degree to which these communities are composed of carbonate or 



non-carbonate producers. In addition, given that viruses cause a significant amount of 

marine microbial mortality, viral lysis of cells also plays an important role in marine 

geochemical cycles. In surface waters viruses accelerate the transformation of particulate 

organic carbon (POC) into dissolved pools resulting in an increase of community 

respiration and decrease of carbon transfer efficiency to higher trophic levels (Suttle 2005). 

Similarly viruses has an effect on availability and cycling of nutrients other than carbon, 

e.g. nitrogen, phosphorus and iron, which are also released by viral lysis (Gobler et al. 

1997). The accumulation of C02 in the atmosphere and its potential impact on global 

warming has generated interest in understanding the global carbon cycle. However, the 

carbon cycle within the ocean environment is not fully understood, but clearly 

microorganisms will profoundly influence it (Bratbak et al. 1992, Thingstad et al. 1993, 

Middelboe & Lyck 2002, Teira et al. 2003). lt has been estimated that a marine virus 

contains about 0.2 fg of carbon, this translates into 200Mt of carbon in marine viruses 

(Suttle 2005). 

1.2. Phytoplankton dynamics 

Many of the recent episodes of ecological change in coastal and open-ocean waters are 

related directly or indirectly to phytoplankton species. These include anoxia and associated 

mortality of fish and shellfish (Rosenberg et al. 1990, Honjo 1993), the doubling of 

biomass and community shifts in invertebrates (Beukema 1991 ), and the accumulation of 

thick foam on beaches (Pieters et al. 1980, Batje & Michaelis 1986). Therefore, the study 

of species composition, abundance, and production rate of the phytoplankton is central to 

understand some important environmental changes in the oceans. 

Phytoplankton are defined as free-floating unicells and colonies that grow 

photoautotrophically in aquatic environments (Vaulot 200 I). They are at the base of the 

pelagic food web and microbial loop in the oceanic ecosystem (Azam et al. 1983, Bratbak 
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et al. 1994, Wommack & Col well 2000). All phytoplankton species are capable of 

photosynthesis, and often phytoplanktonic primary production represents the main source 

of organic carbon in certain environments (Jassby et al. 1993). The marine phytoplankton 

comprises some 5000 species (Hallegraeff 1993 ), including a broad range of cell sizes, 

morphologies, physiologies and biochemical compositions (Margalef 1978). Population 

dynamics of the phytoplankton are the result of changes in biomass, composition and 

spatial distribution. The variables that affect those processes can be physical (e.g. light 

availability, turbulent mixing in the water column), chemical (e.g. nutrients), and 

biological (e.g. life cycle) (Cloem 1996). Until recently, grazing by zooplankton and 

sinking were considered the main cell loss factors. Selective feeding ofzooplankton 

depending on algal size and abundance influences the phytoplankton species succession 

(Kleppel 1993 ). On the other hand, although all microalgal species are subject to sinking, 

the sinking rate varies depending on size, life-cycle, physiological status and motility with 

a subsequent impact on species succession. 

Frequently, the primary productivity is balanced by the phytoplankton losses, resulting in a 

population growth rate close to zero (Evans & Parslow 1985). Yet, many microalgae 

species dynamics include episodic rapid population increases known as "blooms". During 

a bloom the primary productivity temporarily exceeds the losses resulting in exceptionally 

high biomass (Paerl 1988). Usually, during a bloom episode the species composition of the 

phytoplankton community changes rapidly. Blooms occur in response to optimum physical 

and chemical conditions. Their magnitude is determined by the initial nutrient 

concentrations, currents and water turbulence, grazing pressure and climatic conditions 

(Paerl 1988). 

The fluctuations in phytoplankton populations are closely linked to ocean biogeochemistry 

and will have subsequent ecological implications in trophic dynamics. Phytoplankton 
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transform inorganic substrates into organic matter, which becomes available to 

heterotrophs through direct consumption of live algae or by assimilation of excreted 

dissolved organic matter (DOM). The connection between microalgal metabolites and 

bacterial production is now well documented (Riemann et al. 1990, Norrman et al. 1995, 

Bratbak et al. 1998a, Teira et al. 2003). However, the bacterial response to phytoplankton 

primary productivity is not always observed due to losses ofbacterioplankton by grazing 

or viral lysis (Bratbak et al. 1990). 

Phytoplankton are also grazed by zooplankton. The population growth rate of copepods 

such as Calanus pacific us and Acartia sp., not capable of storing big food reserves, is 

sensitive to fluctuations in phytoplankton biomass. Their rate of egg production is highly 

determined by the abundance and composition of the phytoplankton (Beckman & Peterson 

1986, Shin et al. 2003, Ask 2004). Phytoplankton dynamics are also coupled to higher 

levels of the marine food web through predation on either zooplankton or directly on 

phytoplankton (Townsend 1984, Starr et al. 1991, Ruiz et al. 1992, Powell et al. 1995). 

Phytoplankton also affect the concentrations of dissolved inorganic nutrients (Horrigan et 

al. 1990), play important roles in the cycling of some trace elements (Sanders & Riedel 

1993, Fuhrman 1999) and the release oftrace gases to the atmosphere (Dacey & Wakeham 

1986, Belviso et al. 1990, Malin & Kirst 1997). An example is dimethyl sulfide (DMS), 

which is produced by certain phytoplankton species such as Emiliania huxleyi and 

Phaeocystis sp. DMS has an effect on global climate as it is believed to be the dominant 

precursor of cloud condensation nuclei in the marine atmosphere (for reviews see Malin et 

al. ( 1994) and Sim6 (2001 )). All these processes occur continuously and are ecologically 

and biogeochemically significant particularly during blooms, when phytoplankton 

production and loses are imbalanced. 
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1.3. Detection and discrimination of phytoplankton groups 

Phytoplankton blooms are usually attributable to single species. Therefore, it is necessary 

to discriminate phytoplankton at the group or species level for the characterization of the 

blooms. Traditionally, this has been done by light microscopy and additionally, in the case 

of harmful algal blooms, by analysis for toxins. These techniques are, however, difficult 

and time consuming. Another issue is that, frequently, phenotypic attributes such as 

morphology or pigment composition are not enough to distinguish between species. 

New molecular tools have proven useful for characterization, phylogeny and diversity 

studies of several phytoplankton species. These techniques include random amplified 

polymorphic DNA (RAPD), denaturing gradient gel electrophoresis, fluorescence in situ 

hybridization and sequencing; and the development of genetic markers that target unique 

DNA or RNA features (see review by de Bruin et al. (2003)). The use of these genetic 

markers allows quick detection and discrimination ofphytoplankton species or even 

strains. In addition, these molecular tools are normally more accurate than microscopic 

analysis and allow detection of cells occurring even in low concentration. The utilization of 

molecular probes for real-time PCR will allow simultaneous identification and 

quantification of phytoplankton species. In real-time PCR the process of amplification is 

monitored in real time by using fluorescence techniques (Heid et al. 1996, Nazarenko et al. 

1997). The information obtained, as amplification curves, can be used to quantify the 

initial amount of template molecules with high precision. 

1.4. Phytoplankton species studied in the thesis 

The E. huxleyi and P. pouchetii host-virus systems were selected as models in this thesis 

for a number of reasons. These two species of the class Prymnesiophyceae are ubiquitous, 

form intense blooms and play an important role in the biogeochemistry of the ocean by 

significantly influencing the carbon and sulphur cycles, which in turn affect global climate. 
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1.4.1. Emiliania lluxleyi 

E. huxleyi (Lohmann) Hay and Mohler has existed for the past 270,000 years, since it 

differentiated from Gephyrocapsa Kamptner (Thierstein et al. 1977) and is the most 

numerous coccolithophore in the ocean today. Its cells have a diameter of 3 to 8 11m and 

are covered by calcium carbonate plates (coccoliths), built ofmicrocrystals with different 

forms and sizes. 

The coccoliths are produced in an intracellular vesicle with the reticular body supplying 

constituents, and then they are extruded upon completion (Corstjens et al. 1998). E. huxleyi 

has a complex life cycle with at least four kinds of cell: coccolith forming, naked, scaly 

and amoeboid (for review see Paasche (2002)). There is considerable intraspecific 

differentiation among E. huxleyi isolates with respect to coccolith morphology, 

physiological properties and immunological properties of the polysaccharide associated 

with coccoliths. Based on these differences, E. huxleyi is currently separated into four 

morphotypes, A and 8 being the most extensively characterised (Paasche 1964, van 

Bleijswijk et al. 1991, Young & Westbroek 1991 ). E. huxleyi cell morphotypes A and B 

clearly differ in morphological features and growth parameters. Morphotype A coccoliths 

have smaller height:width ratio and thicker shield elements than morphotype 8 coccoliths, 

and are usually smaller than morphotype 8 coccoliths. The coccolith 's central area 

elements are curved fluted rods in morphotype A and straight irregular lamellae in 8 (van 

Bleijswijk et al. 1991 ). Within morphotype A there is a more subtle differentiation that 

separates between Scandinavian and Atlantic A-isolates (Batvik et al. 1997). Morphotype 

8 cells contain more calcite carbon and more organic carbon than morphotype A cells (van 

Bleijswijk et al. 1994). There is also ample evidence of genetic diversity, even between 

clones from the same bloom (Medlin et al. 1996, lglesias-Rodriguez et al. 2002). 

Schroeder et al. (2005) showed that a gene encoding a protein with calcium-binding motifs 

(designated GPA), thought to be involved in regulating coccolith morphology (Corstjens et 
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al. 1998), could be used as a genetic marker to definitively resolve differences that could 

be attributed to different E. huxleyi genotypes within the A and B morphotypes kept in 

culture. 

An overview by Westbroek et al. (1993) advocated E. huxleyi as a global model organism. 

A factor that also favours study on this species is the facility to grow it in laboratory 

culture. Much of the interest in E. huxleyi is derived from its ability to form vast blooms 

during spring and summer in offshore, coastal and oceanic waters at mid-latitudes (45 to 

55° N) (Ackleson et al. 1988). Indeed, coccolithophore blooms are seasonally predictable 

in certain areas including the North Sea (Holligan et al. 1983), and Norwegian fjords 

(Bratbak et al. 1993). These blooms significantly affect the Earth's climate system through: 

(I) the production of coccoliths which is accompanied by outputs of C02 (Holligan et al. 

1993), (2) emissions of DMS to the atmosphere (for review see Sim6 (200 I)), and (3) 

affecting the heat exchange between the ocean and the atmosphere by influencing the 

optical properties of the water (Ho! ligan et al. 1993, Stramska & Dickey 1993). 

E. huxleyi blooms are visible from satellites due to the increase of the sea surface 

reflectance caused especially when the coccoliths are released from dying cells (Holligan 

et al. 1983 ). This property is of great interest to provide real-time information on the 

position of these blooms to support research vessels that can provide a detailed assessment 

of physicochemical and biological parameters (Holligan et al. 1983, Holligan et al. 1993, 

van der Wal et al. 1995). 

Since E. huxleyi was reported to contain viral particles approximately 200 nm in diameter 

(Manton & Leadbeater 1974), many researchers have investigated different aspects of this 

host-virus system (see Section 1.5 onwards). 
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1.4.2. Pllaeocystis pouclletii 

P. pouchetii (Hariot) Lagerheim has a complex life cycle that involves solitary cells and 

colonies, usually coexisting during a bloom (Rousseau et al. 1994). Most Phaeocystis 

colonies have a membrane or integument; others consist of mucus aggregates of cells with 

no true membrane (Zingone et al. 1999). With respect to grazing by zooplankton and 

benthic filter feeders, single cells and colonies function as different phytoplankton 

functional groups. For instance, solitary cells are grazed mainly by microzooplankton and 

colonial morphs by mesozooplankton (Weisse et al. 1994, Hamm 2000), producing major 

shifts in trophic pathways. 

Dense, nearly monospecific blooms of Phaeocystis are frequent in nutrient-rich areas. ln 

the last few decades, intense blooms of Phaeocystis have increased in North European 

waters in relation to increased nutrient input in these areas (Lancelot et al. 1994). 

P. pouchetii has been shown in mesocosms to be more successful when phosphate 

concentration is high (Egge & Heimdal 1994). This genus is a predominant component of 

the phytoplankton in northern Norwegian fjords (Sargent et al. 1985) in addition to many 

other environments( Garrison et al. 1983, Wassman et al. 1990), where they are thought to 

play key roles in trophic-dynamic and biogeochemical ecology (Keller et al. 1989, 

Thingstad & Billen 1994, Weisse et al. 1994, Veldhuis & Wassman 2005). 

One characteristic of Phaeocystis blooms is significant input of organic matter to the 

pelagic environment (Thingstad & Bill en 1994), mainly due to the production of mucoid 

colonial material which may represent up to 90% of total algal biomass (Rousseau et al. 

1990). Despite the nutritive value of Phaeocystis (Ciaustre et al. 1990), diverse negative 

effects of their blooms have been known for a long time: inhibition of bacterial growth 

(Sieburth 1960), clogging of mussel gills (Pieters et al. 1980), clogging of fishing nets 

(Hardy 1926), and production of fish toxins (Aanesen et al. 1998). 
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As with many other phytoplankton from all major classes, Phaeocystis have been found to 

be susceptible to viral infection. Norwegian researchers isolated and characterised a 

species-specific virus for P. pouchetii (Jacobsen et al. 1996), and investigated its relation to 

host cell growth (Bratbak et al. 1998b). They found evidence that indicates that solitary 

cells are infected but colonial forms are not, and suggested that the gelatinous matrix of 

P. pouchetii colonies may protect against infection. Another hypothesis is that colony 

membranes have pores too small to allow viral particles to enter (Whipple et al. 2005). 

Therefore, life-cycle stages may influence the chances of survival and bloom formation. 

Also important is the dimethylsulfoniopropionate (DMSP) produced by Phaeocystis, 

among other phytoplankton species. DMSP can be cleaved to form DMS and acrylic acid 

(AA) (Davidson & Marchant 1992, Liss et al. 1994), thus the importance of Phaeocystis in 

global change research. Experiments have shown a substantial release of DMS and DMSP 

as a consequence of viral lysis of cultures of P. pouchetii (Mal in et al. 1998). 

1.5. The origins of marine virology 

A virus is a non-cellular genetic element surrounded by a protein shell that lacks intrinsic 

metabolism. Viruses take over the reproductive machinery of a suitable host for their own 

reproduction, this can happen basically in three ways: (I) Lytic infection: the virus nucleic 

acid is introduced into the host cell, directing the host to produce progeny viruses, and then 

these are released by bursting the cell, (2) Chronic infection: the host cell releases the 

progeny viruses by extrusion; this type of infection is non-lethal, (3) Lysogeny: the viral 

nucleic acid is incorporated into the host genome, where it reproduces as genetic material 

in the host cell line. Certain events, such as stress, can induce a switch to lytic infection. 

Viral particles include a large range of shapes and sizes (Flint et al. 2000), usually between 

20 and 200 nm long. A given type of virus usually has a restricted range of hosts. Some 

infect only a single species or even just a subspecies whilst others may infect more than 

one related species or a genus. 
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Knowledge of the existence of marine viruses or 'virioplankton' has existed for some time 

(Kriss & Rukina 1947). Initially, most studies were focused on bacterioplankton, 

characterising isolates based on morphology, host range and adaptation to environmental 

conditions (Spencer 1960, Hidaka 1971, Zachary 1976). Yet, marine virioplankton are 

composed of both pro- and eukaryotic viruses and, in theory, all cellular organisms are 

susceptible to infection. However, the concentration of viruses in natural unpolluted waters 

was in general believed to be low and without significant ecological importance until high 

viral abundance was shown by direct counts using host-independent methods such as 

transmission electron microscopy (TEM) (Sieburth et al. 1988, Bergh et al. 1989, Proctor 

& Fuhnnan 1990). Viruses are the most abundant and genetically diverse biological 

entities in the sea (Bergh et al. 1989, Wommack et al. 1992, Cochlan et al. 1993, Paul et al. 

1993, Noble & Fuhnnan 1998). 

After recognition of microbes' importance in aquatic ecology (Azam et al. 1983), the 

potential significance of high numbers of active viruses in the ocean, up to I 07 and I 08 mr 1 

(Bergh et al. 1989) became evident and added a new dimension to our understanding of 

biological oceanographic processes. The biogeochemical and ecological effects of viruses 

in the ocean are nowadays generally accepted although still many aspects still remain 

unknown. Virus infection is important in controlling the structure and diversity of 

microbial and phytoplankton communities through their roles in succession dynamics 

( Cottrell & Suttle 1991 a, Suttle & Chan 1993, Castberg et al. 200 I, Larsen et al. 200 I , 

Weinbauer & Rassoulzadegan 2004) and play important roles in nutrients (Wilhelm & 

Suttle 1999) and biochemical cycling (Fuhnnan 1999) (Figure 1.1 ). 
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Fig. 1.1 . Simplified diagram of the microbial food web. There is a net effect of converting organic matter into 

di ssolved inorganic nutrients. Viruses cause cell lysis and di vert the particulate production of their host into 

N and P rich, dissolved organic matter (DOM) (Adapted from Fuhrman ( 1999) and Brussaard (2004)). 

1.6. Algal viruses 

Although most viruses in seawater are associated with heterotrophic bacterioplankton 

(Wilcox & Fuhrrnan 1994), a significant prop011ion infects oceanic primary producers 

(Suttle et al. 1990, Suttle 1992). Virus-like particles (VLPs) have been observed in several 

algal classes (Manton & Leadbeater 1974, Pienaar 1976, Dodds 1979, van Etten et al. 

1991 ). Abundant literature indicates that viruses can serve as important mortality agents 

for phytoplankton (Mayer & Taylor 1979, Bratbak et al. 1993, Bratbak et al. 1996b, 

Brussaard et al. 1996b, Castberg et al. 2001 , Larsen et al. 2001, Wilson et al. 2002a, 

Wilson et al. 2002b). 

The first algal virus was isolated in 1979 against the marine eukaryotic algae species 

Micromonas pusilla (Mayer & Taylor 1979). These researchers noted that M. pusilla cells 

isolated during a study of nanoplankton in British Columbia disappeared rapidly in culture. 

Addition of :filtrates generated from the medium of these cultures produced the lysis of 
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healthy M. pusilfa cells. TEM analysis of the lysate revealed polyhedral VLPs of 130-135 

run in diameter. The initial reports on M. pusilla viruses were followed by the isolation and 

characterisation of a number of other marine eukaryotic algae viruses (Table 1.1 ). 

The position ofphytoplankton at the base of the pelagic food web and the potential risks 

for human health (Hallegraeff 1993) and aquaculture (Nagasaki et al. 1999) derived from 

toxic phytoplankton blooms, placed great interest on understanding processes in algal virus 

ecology. In most cases, viruses that infect phytoplankton are host specific, infecting just 

one species or even just a single host strain. On the other hand, more than one type of viral 

particle may occur in an algal cell (Brussaard et al. 1996b, Baudoux & Brussaard 2005, 

Lawrence & Suttle 2005). However, little is still known of the biology of these systems. 

Understanding the factors that determine when and how a particular virus can and cannot 

infect an algal host under natural conditions is of great interest, due to the different 

ecological and biogeochemical implications. 

The isolation and characterisation of a virus that infects a Chlorelfa-like species led to the 

formation ofthe Phycodnaviridae family (Meints et al. 1986, van Etten 1995, van Etten & 

Meints 1999b). This new, distinct family of viruses are specific to freshwater and marine 

phytoplankton and macroalgae (van Etten et al. 2002, Wilson et al. 2005b). 

Phycodnaviruses are found in nature in a broad range of environments and conditions and 

have been isolated from distant geographical locations (Meints et al. 1986, Cottrell & 

Suttle 1991 b, Jacobsen et al. 1996, Nagasaki & Yamaguchi 1997, Lawrence et al. 200 I, 

Castberg et al. 2002, Wilson et al. 2002b, Ortmann & Suttle 2005). They are polyhedral, 

lack an obvious tail, are I 00-220 run in diameter and contain I 00 to 560 kbp dsDNA 

genomes. 

Apart from the variability in terms of particle and genome size, the known members within 

this family also differ in burst size, latent period and infection rate among other 
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characteristics (Table 1.1 ). Molecular approaches have proven vital for the study of 

phylogenetic relationships among Phycodnaviridae viruses. Chen & Suttle ( 1996) showed 

the great potential of the highly conserved DNA polymerase (pot) gene for phylogenetic 

analysis using specific algal-virus primers to establish evolutionary relationships among 

this family. Short & Suttle ( 1999) also used these primers to study diversity in natural virus 

communities. Analyses based on this and other genes have shown the existence of several 

clades within the Phycodnaviridae depending on the specific host infected (Chen & Suttle 

1995, 1996, Schroeder et al. 2002) (Figure 1.2). Despite the proven potential of the DNA 

pol gene, the designed degenerate set of primers gave negative results when used on a 

dsDNA virus infecting Pyramimonas orientalis (Sandaa et al. 200 I). 

Schroeder et al. (2002) found that viruses isolated from E. huxleyi, based on phylogenic 

analysis of the DNApol genes, belong to a new genus within the Phycodnaviridae family. 

They proposed to name the new genus Coccolithovirus. Differences between members of 

the genus were elucidated by host range analysis and sequence analysis of a gene fragment 

encoding part of their putative Major Capsid Protein (MCP). 

Currently, the Phycodnaviridae family consists of six genera: Cocco/ithovirus, 

Ch/orovirus, Prasinovirus, Prymnesiovirus, Phaeovirus and Raphidovirus (Wilson et al. 

2005b) (Figure 1.2). 
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Phycodllaviridae 
Coccolitlro••irus 

Fig. 1.2. Phylogenctic tree of DNA polymerase gene fragments from members of the family 

Phycodnaviridae and other large dsDNA viruses generated using protein parsimony analysis of the I 00 

bootstrapped data sets (Phylip). The numbers at the branches are the bootstrap values indicating the relative 

strengths of those branches. Abbreviations are: Phycodnaviridae: Ha V, Heterosigma akashilm virus; CbV­

xx, viruses that infect Chrysochromu/ina brevifilum: PgV -I 02P, Phaeocys1is globosa vims I 02 (Plymouth); 

FsV, Feldmannia sp. vi rus: EsV - I, Ectocarp11s si/iculosus virus I; Eh V-xx, viruses that infect Emiliania 

huxleyi; Mp V-xx, viruses that infect Micromonas pus ilia; PBCV -I and PBCV -NY2A, viruses that infect 

Ch/01·el/a NC64A; He1pesviridae: EHV - I, Equine herpesvirus I ; EHV -4, Equine herpesvirus 4: BoHV -4. 

Bovine herpesvirus 4: AI HV-1 , A/ce/aphine herpesvims I; Poxviridae: VACV, Vaccinia virus; MOCV, 

MollllsCI/111 contagiosum virus: FWPV, Fowl poxvirus; CLEV, Clwris toneura biennis entornopoxvirus; 

Bacu/oviridae: AcMNPV, Arttographa ca/ifornica nucleopolyhcdrovirus; BrnNPV, Bombyx mori 

nucleopolyhedrovirus: HzSNPV, He/icol'erpa zea nucleopolyhedrovirus; LdM PV, Lymantria dispar 

nucleopolyhedrovirus: lridoviridae: IIV-6, Invertebrate iridescent vi rus 6 (Wilson et al. 2005b). 

Some of these vimses are host specific and only infect single isolates or species of algae. 

For example, chlorovimses only attach to cell walls of certain unicellular, eukaryotic, 

chlorella-like green algae. Yims attachment is followed by dissolution of the host wall at 

the point of attachment and entry of the viral DNA and associated proteins (glycoproteins, 

myristylated proteins and several phosphoproteins) into the cell, leaving an empty capsid 
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on the host surface. Beginning -2-4 h post-infection, progeny virions are assembled in the 

cytoplasm of the host. Infectious virions can be detected inside the cell-30-40 min prior 

to virus release; virus release occurs by cell lysis. Coccolithoviruses, pryrnnesioviruses 

and raphidoviruses have wider host ranges, where individual viruses can infect a range of 

host isolates within specific algal species; however they do not cross the species barrier. 

Infection of the prasinoviruses occurs when virions adhere to the wall-less host cell 

surface, followed by fusion of adjacent host and particle surfaces. Empty particles remain 

on the cell surface following the release of core contents. An eel ipse period of 

approximately 3 h follows the attachment stage. The virus growth cycle is complete after 

approximately 14 h. During the replication cycle, particles appear in the cytoplasm and are 

associated with the production of cytoplasmic fibrils (-5-8 nm in diameter) and clusters of 

membrane bound vesicles that are absent in healthy cells. Particles are released into the 

medium via localized ruptures in the cell membrane; ruptures often appear at several 

locations on the same cell. 

Less is known about the replication of coccolithoviruses, prymnesioviruses and 

raphidoviruses. Virus fom1ation is observed in the cytoplasm and the nucleus remains 

intact and separate from the viroplasm that consists of a fibrillar matrix. Ultimately, viral 

production results in the disruption oforganelles, lysis ofthe cell and release of the virus 

particles. 

The phaeoviruses infect the wall-less spore or gamete stage of filamentous brown algae. 

These viruses appear as virus particles in sporangia! or gametangia) cells of the host. 

Depending on the virus, viral particles are formed in unilocular and plurilocular sporangia, 

or gametangia (EsV -I) others only fom1 in unilocular sporangia (Feldmannia species 
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virus). A few of these viruses can infect more than one species of brown algae (for review 

on the Phycodnaviridae family see Wilson et al. 2005b) 

Hosts for some of the chloroviruses and coccolithoviruses can easily be grown in the 

laboratory and the viruses can be plaque-assayed. The hosts for some of the other viruses 

are either cultured axenically (e.g., prymnesiovirus hosts, P. globosa) or non-axenically in 

uni-alga cultures (e.g. hosts for the prasinoviruses and raphidoviruses). The brown algal 

viruses, which only appear in mature gametangia or sporangia cells of their hosts, can also 

be grown in the laboratory. 

In addition to the Phycodnaviridae family that has dsDNA genomes, ssRNA viruses have 

been reported to infect the two toxic harmful algal bloom species Heterosigma akashiwo 

(Raphidophyceae) (Tai et al. 2003) and Heterocapsa circularisquama (Dinophyceae) 

(Nagasaki et al. 2005). The recently completed genomic sequence of the ssRNA 

H. akashiwo virus led to the creation of the Marnaviridae family (Lang et al. 2004). Also, 

a dsRNA virus of the family Reoviridae (Fields et al. 1996) has been found to infect 

M. pusi//a (Prasinophyceae) (Brussaard et al. 2004a) (Table 1.1 ). 

The difficulty to cultivate susceptible hosts to propagate viruses in the laboratory limits our 

knowledge about marine viral diversity. An additional complication is the lack of a single 

genetic element shared by all viruses (Rohwer & Edwards 2002). However, all viruses 

from certain taxonomic groups share conserved genes that can be used to study diversity 

within those viral groups. For example, some studies of diversity of phages that infect 

cyanobacteria have been based on sequences of structural proteins (Fuller et al. 1998, 

Zhong et al. 2002, Miihling et al. 2005, Short & Suttle 2005) and diversity of algal viruses 

has been mainly studied by sequencing DNA pal genes (Chen & Suttle 1995, 1996, Chen 
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et al. 1996). A few other genetic markers are available, such as those based on the MCP 

gene of E. huxleyi-specitic viruses (Eh V) (Schroeder et al. 2002). 

Sequencing of shotgun I ibraries from environmental microbial communities, or 

metagenomics, has emerged as a powerful tool that enables the discovery of completely 

novel groups of microbes regardless of their ability to be cultured in the laboratory 

(Rondon et al. 2000). Metagenomics could therefore unlock the massive uncultured 

microbial diversity present in the environment to provide new molecules for therapeutic 

and biotechnological applications. Metagenomic data from coastal waters and sediments 

has revealed incredibly high genetic richness in marine viral communities. In addition, 

these results suggest that the majority of environmental viruses are still uncharacterized 

since 75% of the sequences produced did not match any known genes (Breitbart et al. 

2002, Breitbart et al. 2004, Breitbart & Rohwer 2005). Furthermore, metagenomics 

analyses provide important insights into biogeographical distribution and community 

structure (i.e. the number of genotypes and relative abundances). 
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Host class Prymnesiophyceae Chrysophyceae Prasinophyceae Prymnesiophyceae 

Host species Phaeocystis Aureococcus Pyramimonas Phaeocystis globosa 
pouchetii anophagefferens oriental is 

Virus family Phycodnaviridae Phycodnaviridae Phycodnaviridae Phycodnaviridae 

Virus genus n.d. n.d. n.d. Prymnesiovims 

Genome type d DNA dsDNA dsDNA dsDNA 

Genome size (kbp) - 460 n.d. 560 n.d. 

Diameter (nm) 130-160 140- 160 180-220 I 00-170 

Latent period (h) 12- 18 24 14-19 10- 16 

Burst size(# celr1
) 350-600 n.d. 800-1000 n.d. 

References (Jacobsen et al. (Gastrich et al. (Sandaa et al. 200 I) (Brussaard et al. 
1996, Larsen et al. 1998) 2004a) 
2004 

Host class Prymnesiophyceae Prymnesiophyceae Dinophyceae Dinophyceae 
Host species Ch!JI.Wchromulina Ch1ysochromulina Heterocapsa Heterocapsa 

brevifilum ericina circularisquama circularisquama 
Vir us family Phycodnaviridae Phycodnaviridae Phycodnaviridae n.d. 

Vir us genus Prymnesiovirus n.d. n.d. n.d. 

Genome type dsDNA dsDNA dsDNA ssRNA 

Genome size (kbp) n.d. 5 10 n.d. 4.4 

Diameter (nm) 145- 170 160 180-210 30 

Latent period (h) n.d. 14-19 24-48 24-48 

Burst size (# celr1
) Several thousand 1800-4 100 n.d. 7000-43000 

References (Suttle & Chan (Sandaa et al. 200 I) (Tarutani et al. Tomaru, unp. data 
1995) 2001) 

Host class Prymnesiophyceae Chlorophyceae Prasinophyceae Prasinophyceae 

Host species Emiliania huxleyi Chlorella-Jike alga Micromonas pusilla Micromonas pusilla 

Virus family Phycodnaviridae Phycodnaviridae Phycodnaviridae Reoviridae 

Virus gen us Coccolithovirus Chlorovims Prasinovims n.d. 

Genome type dsDNA dsDNA dsDNA dsRNA 

Genome size (kbp) - 410-415 330-380 77-110 25.5 

Diameter (nm) 150-200 190 11 5-135 65-80 

Latent period (h) 12- 14 3-4 7- 14 36 

Burst size(# celr1
) 400-1000 200-350 72 460-520 

References (Wilson et al. (Meints et al. 1986) (Waters & Chan Brussaard, unp. data 
2005b) 1982); (Cottrell & 

Suttle 1991 a) 

Host class Raphidophyceae Raphidophyceae 
Host species Heterosigma Heterosigma 

akashiwo akashiwo 
Virus family Phycodnaviridae n.d. 

Virus genus Raphidovirus n.d. 

Genome type dsDNA ss RNA 

Genome size (kbp) n.d . 9.1 

Diameter (nm) 180-220 25 

Latent period (h) 30-33 24 

Burst size(# celr 1
) 770 100000 

References (Nagasaki et al. (Tai et al. 2003 ); 
1994 ); (Nagasaki et (Lawrence et al. 
al. 1999) 200 1) 

Table 1.1. Main characteristics of marine cukaryotic phy1oplankton viruses in culture (adapted from 

(Brussaa rd 2004)). n.d. denotes not determined. 

18 



1.7. Role of phytoplankton viruses 

Viral abundances in the sea are variable over geo~:,rraphical and temporal scales (Bratbak et 

al. 1996a). This may be an indication of corresponding host-virus interactions and fast 

degradation of a large percentage of viruses released into the water (Fuhrman 1999). The 

importance ofphytoplankton viruses as active agents in the ocean has been demonstrated 

by numerous studies. The infection by lytic virus of unicellular phytoplankton results, 

inevitably, in cell death, and directly affects population abundance. However, the 

implications of viral infection are more than mortality alone. 

1.7.1. Viral-mediated mortality: impact on abundance, structure and community 

dynamics. 

Addition of a native virus concentrate to a field sea water sample led to reduction of the 

phytoplankton primary productivity by as much as 78 %, indicating that viruses are a 

possible regulating factor ofphytoplankton community structure (Suttle et al. 1990, Suttle 

1992). 

Preventative viral control can limit the size of the host populations, maintaining them at 

non-blooming level (Suttle & Chan 1994, Bratbak et al. 1996a, Suttle 2000b, Larsen et al. 

200 I). Such stable host-virus coexistence has been observed in the M pusil/a-virus system, 

where viral infection keeps the algal biomass below bloom abundance (Zingone et al. 

1999). During a mesocosm experiment, Evans et al. (2003) estimated a virally induced 

turnover rate of Micromonas sp. between 9 and 25 % d· 1
• Total cell lysis rates of natural 

phytoplankton populations are highly variable both temporally and spatially (Brussaard et 

al. 1996a, Brussaard et al. 1996b, Agusti & Duarte 2000, Riegman et al. 2002). The most 

evident viral activity is the significant contribution to the decline of many phytoplankton 

blooms. 
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Mesocosm and field studies of E. hw:leyi blooms showed that the collapse of these blooms 

is accompanied by a concurrent increase in the abundance of viral particles identified as E. 

huxleyi-specific viruses. Bratbak et al. ( 1993) reported that viruses were responsible for up 

to I 00 %of the net mortality of the E. huxleyi, while Brussaard et al. ( 1996b) showed that 

as many as 50% of cells were visibly infected during the decay of a bloom. Further 

observations show a dynamic relationship of viruses infecting E. huxleyi with their host, 

and an intimate link to the rest of the microbial community, possibly acting as a driving 

force in bloom success ions (Castberg et al. 200 I, Jacquet et al. 2002, Wilson et al. 2002a). 

Several studies have investigated the role of viruses in controlling, among others, the 

bloom fonning species P. pouchetii and have found similar results to those described 

above (Billen & Fontigny 1987, Bratbak et al. 1998a, Bratbak et al. 1998b, Jacobsen 2000, 

Larsen et al. 2004). Viruses have, as a result, a great influence in regulating interspecies 

competition and succession. As described by Thingstad (2000) in his 'kill the winner' 

model, coexistence of competing phytoplankton species is ensured by host-specific viruses 

that prevent the best competitors from building up a high biomass. 

We are also aware of morphological and genetic heterogeneity within a specific 

geographical population of one phytoplankton species (see review by Medlin et al. (2000)) 

and within the virus group that infect them (e.g. Cottrell & Suttle 1995b, Chen et al. 1996, 

Fuller et al. 1998, Schroeder et al. 2002, Schroeder et al. 2003 ). One can thus expect 

viruses to affect phytoplankton diversity and structuring also at intraspecies level. 

Ultimately, viruses serve as vectors for the transfer of genetic material (transduction) 

between phytoplankton communities (Jiang & Paul 1998a). Phages often carry in their 

genomes inserted genes that may come from other phages or hosts (Juhala et al. 2000). The 

acquisition of ecologically important genes is a way of adaptation to new environments. 
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For example, genes involved in phosphate metabolism have been found in many marine 

phages (Rohwer et al. 2000, Chen & Lu 2002). Also, cyanophages that infect 

Synechococcus and Proch/orococcus have acquired photosynthetic genes (Mann et al. 

2003). This phenomenon may be a beneficial trait to the viruses or their photosynthetic 

cyanobacterial hosts, or may represent an untapped pool of genes involved in the formation 

of the photosynthetic apparatus that are prone to lateral gene transfer (Zeidner et al. 2005). 

Phages carrying such genes between environments contribute to local and global lateral 

gene transfer (Breitbart & Rohwer 2005). Yet, genetic exchange is probably the most 

understudied aspect of marine viruses. 

1.7.2. Biogeochemical and ecological implications 

Suttle et al.( 1990) showed that viruses were able to inhibit primary production of 

phytoplankton. Therefore, the existence of algal viruses in the ocean may explain 

difficulties in balancing rates of primary production with loss rates for phytoplankton and 

sinks for organic carbon. Phytoplankton photosynthesis is responsible for the main input of 

primary production of carbon in the ocean (Duck low & Carlson 1992). Thus, death of a 

variety of phytoplankton by viruses affects the flow of organic carbon and energy in the 

oceanic food web (Wilhelm & Suttle 1999) (Figure I). Moreover, viral-induced 

phytoplankton cells lysis means an important release of proteins, carbohydrates, nucleic 

acids, and organic nitrogen and phosphorus compounds into the environment. This 

constitutes a significant supply of nutrients to support other photosynthetic and 

heterotrophic microorganisms (Middelboe et al. 1996, Gobler et al. 1997). Therefore by 

promoting recycling of organic matter viruses can fuel plankton production. 

Bacterial production and respiration are also tightly related to the supply of biodegradable 

organic matter by phytoplankton lysis (Brussaard et al. 1996a, Bratbak et al. 1998a, 

Fuhrman 1999, Middelboe & Lyck 2002). The inclusion of viruses into a food web model 
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demonstrated that lysis due to viruses recycled up to 26 % of the photosynthetically fixed 

organic carbon back to dissolved organic matter (Wilhelm & Suttle 1999). In turn, this has 

more implications than just the structuring and functioning of aquatic food webs. Global 

changes in the carbon budget of the planet affect temperature, and therefore, ocean 

circulation. The event of El Niiio is a clear example of how changes in the circulation of 

the ocean drastically affect climate (Wilhelm & Suttle 1999). 

Many phytoplankton species produce DMSP, including P. pouchetii, E. huxleyi and M. 

pusilla (Hill et al. 1998, Malin et al. 1998, Wilson et al. 2002b ). The discovery of viruses 

able to infect phytoplankton led Malin et al. (1992) to propose that algal viruses could also 

be important for global climate due to their effect inducing the release of DMS to the 

atmosphere. Phytoplankton release DMSP via excretion, autolysis, zooplankton grazing 

and viral lysis. During these processes DMSP may be cleaved to DMS and acrylic acid 

(AA) by the algallyases and/or by the lyases of other organisms, mainly heterotrophic 

prokaryotes. Whether substantial DMS is tluxed to the atmosphere, or whether it is 

degraded by microbes depend on complex interactions within the food web. In grazing, a 

fraction of the algal DMSP is assimilated by the grazer. For instance, it has been suggested 

that low DMS concentrations are produced when copepods graze natural phytoplanktonic 

populations, as the DMSP ingested remains stored in various parts of the body of the 

copepods and is compacted into faecal pellets (Kwint & Kramcr 1995, Kwint et al. 1996). 

In addition, several studies have shown that under most circumstances DMS is a minor 

product ofDMSP metabolism and a large percentage ofDMSP is utilized through a 

second deb'Tadation pathway that does not produce DMS (Kiene 1996, van Duyl et al. 

1998). In addition to degrading DMSP, certain bacteria may use DMS as a substrate (Kelly 

& Smith 1990, Visscher & Vangemerden 1991 ). During incubation experiments conducted 

in the eastern tropical Pacific it was shown that DMS was removed 3 to 430 times faster by 

biological activity than by ventilation to the atmosphere (Kiene & Bates 1990). Hence, it 
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is important to study the processes and interactions between viruses, zooplankton grazers 

and protists in order to predict the extent of oceanic DMS output to the atmosphere 

compared to its deb,Tfadation in the water (for review see Simo (200 I)). 

1.8. Factors that influence viral infection and replication 

In order to fully understand the impact of viruses on phytoplankton populations, it is vital 

to identify factors which control viral infection and replication. Although abundant in the 

environment, not all viruses observed are infectious. The number of infectious viruses or 

titer can be estimated by plaque assay (Cottrell & Suttle 1995a, Bratbak et al. 1996a, 

Schroeder et al. 2002, Wilson et al. 2002b, Wilson et al. 2005a) or serial endpoint dilution 

(Flint et al. 2000). Plaque assay experiments require the host to grow on agar plates, this 

method is not suitable for the majority ofpelagic phytoplankton species and so the 

endpoint dilutions method is more frequently used. 

Since the virus reproduction depends on the metabolism of the host cell, it seems evident 

that healthy phytoplankton will ensure virus success. Hence, environmental variables, such 

as light, temperature and nutrient availability that affect the host's physiology ultimately 

affect viral replication. Yet, van Etten et al. (1983) found that viruses that infect Ch/orella 

could replicate in the dark since they did not depend on host photosynthesis. P. pouchetii 

and H. akashiwo viruses' infectivity and the length of the lytic cycle were not affected by 

light limitation (Bratbak et al. 1998b, Juneau et al. 2003). However, burst size was reduced 

in the Chlorella and P. pouchetii viruses. On the other hand, light was shown to be 

important for virus production in Pyramimonas orientalis (Thyrhaug et al. 2002). These 

researchers showed that cultures infected at the onset of the light period lysed during the 

dark phase, possibly avoiding long exposure to light and so loss of infectivity due to UV 

radiation. The production of viruses was up to 8 times lower when infection was at the 

beginning of the dark phase. 
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The effect of temperature on virus infectivity varies among different virus-host systems 

(van Etten et al. 1991, Cottrell & Suttle 1995a, Suttle 2000a, Nagasaki 200 I). For example, 

Chlorella viruses kept infectivity for more than one year if stored at 4°C (van Etten et al. 

1991 ). However, the adsorption rate was 50 % higher at 25 oc than at 4 oc (Meints et al. 

1984). 

Several studies of eukaryotic phytoplankton have shown the negative effect of nutrient 

limitation on viral infection processes. For example, P. pouchetii and E. huxleyi exhibit a 

reduced burst size under phosphate depleted, as compared to phosphate-replete conditions 

(Bratbak et al. 1993 ). Jacquet et al. (2002) reported a delay in E. hux/eyi-specific virus 

production in nitrogen-depleted enclosures during a mesocosm experiment designed to 

monitor an E. huxleyi bloom. However, Schroeder et al. (2003) did not find any effect on 

the succession dynamics of E. hux/eyi-specific virus genotypes due to nutrient depletion 

during the same mesocosm study. 

1 .9. Host resistance to viral infection 

Host strain resistance to viral attack has been reported for most eukaryotic viruses in 

culture (Cottrell & Suttle 1991 a, Nagasaki & Yamaguchi 1998, Zingone et al. 1999, 

Tarutani et al. 200 I), and it is an important assumption in models that describe the effect of 

viruses in regulating diversity in the oceans (Thingstad & Lignell 1997). Theory suggests 

that resistance has a high physiological cost for the host cells, and it may mean losing 

competition against susceptible hosts, even when viruses are present (Levin et al. 1977). 

However, resistance at low or no-cost is also possible (Lenski 1988). Several strategies for 

how hosts avoid viral attack have been described or suggested. 

Viruses travel by passive diffusion, and therefore the encounter rate with a suitable host is 

random and depends on both host and virus abundance in the environment, as well as on 
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host cell size and motility (Murray & Jackson 1992). The bigger the host cell, the more 

likely it is for a virus to reach its surface. But due to the higher concentrations of small 

particles in the sea, any given virus has more probability of contacting a small particle. 

Motion of host cells enhances transport rates and so the chance of encounter. Hence, large 

and non-motile phytoplankton cells might be less susceptible to viral infection than small 

and mobile ones. In addition, other characteristics ofphytoplankton morphotypes may be 

important adaptations to escape viral infection. For example, during E. huxleyi blooms the 

rate of infection was higher on flagellated scale-bearing cells relative to lithed cells 

(Bratbak et al. 1995, Brussaard et al. 1996b). 

It has recently been suggested that when the host cells are lysed they may release an 

inhibitor that lessens the infection rate in the phytoplankton population. Thyrhaug et al. 

(2003) observed that populations of E. hruleyi, P. pouchetii, Pyramimonas orientalis, and 

Chrysochromulina ericina were able to recover from viral infection, which led them to 

suggest the possibility of a viral resistance mechanism. They incubated cultures of these 

phytoplankton species with virus-free lysate (obtained by 0.02 J.tm filtration of stock virus 

lysate) for I 0 m in before viral addition. The results showed a reduction of the rate and 

extent of cell lysis, which was most pronounced in E. huxleyi. 

Another study on E. huxleyi also showed important biological and ecological differences 

among the studied E. huxleyi-virus isolates (Eh Vs) regarding infectivity. All I 0 virus 

isolates which were the subject of the study only infected E. huxleyi strains that had 

previously been shown to exhibit low DMSP-lyase activity, while the ones with high 

DMSP-lyase activity were resistant to infection (Schroeder et al. 2002). 

Apoptosis or self-destruction in phytoplankton is usually a response to nutrient limitation 

or other physiological stressors (for review see Sidle and Falkowski (2004)). Recently, it 
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has also been found that apoptosis may begin in response to biogeochemical alterations 

upon viral infection in H. akashiwo (Lawrence et al. 200 I), P. globosa (Brussaard and 

Berges, unpublished data), and E. huxleyi (Bidle et al. 2005). This finding points at 

apoptosis as a possible defence mechanism ofphytoplankton populations. Death of 

infected individuals may stop production of new viral progeny and thus prevent infection 

of other members of the phytoplankton population (Brussaard 2004 ). In contrast, the 

discovery in an EhV of genes involved in the formation ofceramide, an intracellular signal 

for apoptosis, led to the theory that this Eh V 'encodes a mechanism for inducing apoptosis 

as a strategy for killing the host cell and disseminating progeny virions' (Wilson et al. 

2005a). 

Finally, lysogeny has been suggested as a strategy to avoid degradation and to ensure virus 

survival when the host is at low densities or in nutrient limited conditions. In addition, 

lysogeny may confer benefits to the host, such as immunity against related viruses and the 

acquisition of new functions encoded by the viral genome (Lenski 1988, Jiang & Paul 

1998a). Studies of lysogeny have mainly focused on heterotrophic bacteria (Steward & 

Levin 1984, Wilcox & Fuhrman 1994, Jiang & Paul 1998b), yet there is evidence of 

lysogeny in isolates and populations of the marine cyanobacteria Syneclwcoccus spp 

(Wilson et al. 1996, Sode et al. 1997, Wilson & Mann 1997, Wilson et al. 1998). However, 

there is no conclusive evidence of lysogeny occurring in eukaryotic phytoplankton. A 

reason for this can be simply the difficulty of working with lysogenic host-virus systems 

and the lack of known natural lysogeny-inducing agents. Interestingly, lysogeny has been 

observed for members of the Phycodnaviridae family that infect the macroalgae 

Ectocarpus siliculosus Dillwyn. These viruses only infect the free-swimming spores or 

gametes (zoids) of the algae; vegetative cells are resistant to infection probably due to the 

lack of suitable receptors for the virus, or the protection given by their cell walls (Muller et 

al. 2000). Upon infection the vimses remain lysogenic, integrated in the host genome 
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(Delaroque et al. 1999) and are transmitted to every cell within the host through mitosis as 

the spore develops. Release of virus particles occurs synchronised with that of zoids from 

the reproductive cells of the host (Muller 1991 ). 

1.10. Viral decay 

The tenn 'decay' refers to the reduction over time of countable, infectious viral particles. 

Heldal & Bratbak ( 1991) pointed out that when measuring decay in whole viral 

communities, new virus production must be stopped. Several studies revealed a wide range 

of viral turnover times, from less than one hour up to a few days (Heldal & Bratbak 1991, 

Suttle & Chen 1992, Noble & Fuhrman 1997). An important consideration when 

estimating viral decay is the fact that a virus might lose its infectivity, and therefore the 

ability to kill the host before it cannot be detected by measuring techniques (Wommack et 

al. 1996). 

Many biological and abiological factors, such as sunlight, grazing by protozoa, adsorption 

to a host cell or other particles, and hydrolytic enzymes, have an effect on viral decay in 

the sea. Sunlight has been reported as the main single decay factor, as it results in genome 

damage and the loss oftranscription (Suttle & Chen 1992, Wilhelm et al. 1998, Suttle 

2000b, 2000a). Sunlight-induced damage is greater at the ocean surface, where the viruses 

cannot escape solar radiation, than in the deep sea. The susceptibility to damage rrom light 

varies among different viruses, and some degree of adaptation has been observed 

depending on the environmental conditions. For instance, in sunny regions viruses show 

more resistance to light (Noble & Fuhrman 1997). Although light is responsible for viral 

decay, it has also been implicated in mechanisms in the host that can repair damaged viral 

DNA and restore infectivity to high proportions of viruses. Restoration rates of sunlight­

damaged viruses are higher in oceanic waters compared to coastal or estuarine 

environments (Weinbauer et al. 1997, Wilhelm et al. 1998, Weinbauer et al. 1999). Suttle 
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& Chen ( 1992) found significant protozoan grazing on viruses and suggested that selective 

grazing on larger members of the virioplankton may be the major factor contrail ing the 

size structure of marine viruses. 

Viruses can sink out of the photic zone by adsorption to aggregates and particles. This may 

have a significant contribution to viral decay in coastal waters with high concentration of 

colloidal and particulate matter (Proctor & Fuhrman 1991 ). However, the effect of 

adsorption can yield mixed results. Irreversible binding to particulate material means loss 

of viruses, while reversible adsorption to particles such as clay may protect the viruses 

from other forms of degradation (Proctor & Fuhrrnan 1991 ). Kapuscinski & Mitchell 

( 1980) hypothesized that viruses adsorbed to clay sink on low water-mixing days, but are 

resuspended due to mixing currents, still capable of producing infection. Indeed, sediments 

have been recorded as reservoirs of algal viruses (Suttle 2000a, Lawrence et al. 2002). The 

theory of sinking as a defence mechanism of viruses might also be supported by the fact 

that the viruses themselves stimulate the size of aggregates fanned during algal blooms 

(Peduzzi & Weinbauer 1993). 

Although no studies on viral losses have focussed specifically on phytoplankton viruses, it 

is likely that the response to decay mechanisms will be similar to that of total virus 

communities or bacteriophages investigated. 

1.11. Aims ofthe project 

This thesis is concerned with the study of the molecular ecology of marine algal viruses. 

During this study host and virus population dynamics during a bloom of P. puuchetii was 

investigated. In addition, viruses were isolated and basic characterisation was conducted. 

However, the main focus of this project was on the E. huxfeyi-virus system. Blooms of 

both phytoplankton species can be induced in marine mesocosms by adding nutrients 
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(Bratbak et al. 1993, Jacobsen et al. 1995). Furthermore, their periodicity and easy 

detection by satellite images, in the case of E. huxleyi, facilitate their study. 

The primary aims were to study the microbial community dynamics during the progression 

of E. huxleyi blooms, and to determine the genotypic diversity of both, E. huxleyi and their 

specific viruses in the sea based on GPA and MCP markers (Schroeder et al. 2002, 

Schroeder et al. 2003, Schroeder et al. 2005). The bulk of this thesis focused on a series of 

mesocosm studies in a Norwegian fjord, and data collected during cruises in the North Sea 

and the English Channel between 1999 and 2003. The field work allowed the study of 

these processes in the context of semi- and completely natural conditions. Additionally, it 

provided a unique set of data to check for geographical differences in the genotypic 

composition of the blooms on a temporal scale. To understand the role played by 

E. huxleyi in the global cycles of carbon and sulphur and in climate regulation it is 

important to study the biogeography and intraspecific composition of such blooms because 

they may differ in their physiology and ecology. 

Further laboratory experiments were conducted to investigate the role of nutrient 

availability in virus propagation and gene expression. A broad collection of E. hux/eyi 

strains, from several different locations of the northern and southern hemispheres, and 

virus isolates available (Schroeder et al. 2002, Wilson et al. 2002b), made possible the 

study of these processes in culture. In addition, host range experiments were carried out by 

inoculating the host cultures with fresh viral lysates. 

29 



CHAPT1ERTWO 

Materials and methods· 



12. Materials and methods 

2.1. Materials 

2.1.1. Chemicals, reagents and laboratory consumables 

General laboratory chemicals (analytical grade or higher) and consumables were obtained 

from Fisher-Scientific (Leicester, UK), Promega (Southampton, UK), lnvitrogen (Paisley, 

UK) or Sigma-Aldrich (Poole, UK). All other reagents and consumable suppliers are listed 

in the text where. appropriate. Ultrapure 18 M Ohm water was obtained from a Synergy 185 

water purification unit (Millipore, Watford, UK). 

2.1.2. Commonly used solutions 

Solution 

SM buffer 

10 X TBE 

10 X TAE 

GTE buffer 

TE I 0: I buffer pH 8.0 

DNA loading buffer 

I X PBS pH 7.2 

Components 

0.1 M NaCI; 8 mM MgS04·7H20; 

50 mM Tris/HCI; 0.005 % (w/v) glycerine 

0.89 M Tris-borate; 20 mM EDT A, pH 8.0 

400 mM Tris-acetate; I 0 mM EDT A pH 8.0 

50 mM glucose; 25 mM Tris HCI; 

10 mM EDTA pH 8.0 

10 mM-Tris HCI; I mM EDTA pH 8.0 

0.05 % (w/v) Bromophenol blue; 

50 % (w/v) Sucrose; I 0 mM EDT A pH 8.0 

137 mM NaCI; 2.7 mM KCI; 4.3 mM Na2HP04; 

1.47 mM KH 2P04 

Table 2.1. Composition of commonly used solutions 
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2.1.3. Growth media 

Medium 

f/2 medium 

Luria-Bertani (LB) broth 

medium (per litre) 

Luria-Bertani (LB) broth­

agar medium (per litre) 

SOC medium (per litre) 

Components 

884J.LM NaN03; 36J.LM NaH2P04·H20 

11.7 J.LM Fe EDTA6H20; 0.9 J.LM MnCI2-4H20; 

12 J.LM Na2EDT A·2H20; 0.04 J.LM CuS04·5H20; 

0.03 J.LM Na2Mo04·2H20; 0.08 J.LM ZnS04·7H20; 

0.05J.LM CoCb·6H20; 0.37 nM vitamin B12; 

2 nM biotin; 0.3 J.LM thiamine HCI 

I 0 g Tryptone; 5 g Yeast extract; I 0 g NaCI; 

10 gTryptone; 5 gYeast extract; 10 gNaCI; 

15 g Agar 

20 g Tryptone; 5 g Yeast extract; 0.5 g NaCI; . 

10 mll M MgCb; 10 mll M MgS04; 

2 ml 20% (w/v) Glucose 

Table 2.2 Composition of used growth media 

f/2 seawater medium (Guillard 1975) (Table 2.2) was made from 30 kD filtered and 

autoclaved sea water collected from a coastal station (Sta. L4: 50°15 'N, 4" 13 'W) which lies 

approximately I 0 km off Plymouth in the English Channel or altematively from 

Raunefjorden, at the Marine Biological Field Station (Norway). Seawater collected at the 

latter location was diluted with 20 % volume of distilled water to reduce the salinity. 

2.1.4. Virus isolates 

Emiliania huxleyi-virus (Eh V) strain isolates were obtained from the Plymouth Virus 

Collection (UK). Viruses were originally isolated from seawater samples collected at 

different stations and depths during the latter stages of natural E. lwxleyi blooms in and 

from an E. huxleyi-induced bloom (Schroeder et al. 2002, Wilson et al. 2002b). 

P. pouchetii-virus (Pp V) strains isolated during induced blooms were obtained from the 

Virus Collection at the University of Bergen, Department of Biology (www.uib.no) 

(Jacobsen et al. 1996) (Table 2.3). 
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Isolate Date Area 1 Latitude/ GenBank accession 

Longitude numbers (MCP fragment)3 

EhV-84 26/7/1999 EC2 50°IS'N; 4°13 'W AF453849 

EhV-86 30/7/1999 EC 50°13.79'N; 4"9.59'W AF453848* 

EhV-88 26/7/1999 EC2 50°15'N; 4°13'W AF453850 

EhV-163 20/7/2000 RN 60°16' N; 5°14' E AF453851 

EhV-201 27/7/2001 EC 49°56.21 'N; 4°19.97'W AF453857 

EhV-202 27/7/2001 EC 50°00.36'N; 4°18.87'W AF453856 

EhV-203 27/7/2001 EC 50"00.36'N; 4°18.87'W AF453855 

EhV-205 27/7/2001 EC 49°56.21 'N; 4°19.97'W AF453854 

EhV-207 01/8/2001 EC2 50°15'N; 4°13'W AF453853 

EhV-208 0 I /8/200 I EC2 50°15'N; 4°13'W AF453852 

PpV-AJ96 1996 RN 60°16' N; 5°14' E NIA 

PpV-AL02 2002 RN 60°16' N; 5°14' E NIA 

Table 2.3. Isolation details of Eh V and Pp V isolates used in this thesis and GenBank references for their 

sequence data. 1 Western English Channel, off the coast of Plymouth, UK (EC). Raunefjorden, Western 

Norway during a mesocosm experiment (RN). 2Station L4. 3271 bp-284 bp fragments (*716 bp) from a gene 

encoding the putative major capsid protein in Eh V. N/A: not applicable 

2.1.5. Phytoplankton strains 

Non-axenic clonal strains of Emiliania huxleyi (Lohmann) Hay and Mohler were obtained 

from the Provasoli-Guillard Center for the Cultivation of Marine Phytoplankton (CCMP, 

Maine, USA; http://ccmp.bigelow.org/) and from the Plymouth Culture Collection (Marine 

Biological Association, UK; http://www.mba.ac.ukl). The axenic and clonal culture of 

E. huxleyi strain CCMP 1516 was obtained from Michael Steinke (University of East 

Anglia, UK) (Table 2.4). Cultures of Phaeocystis pouchetii strain AJO I, Micromonas 

pusilla, Chrysochromulina ericina, Pyramimonas orientalis, Nephroselmis rotunda, 

/socluysis galvana and Synechococcus spp. were obtained from the Culture Collection at 

the University of Bergen, Department of Biology (www.uib.no). P. pouchetii strain AJO I 

was originally isolated from the Norwegian coast (60°16'N, 5° 7'E) by Anita Jacobsen in 

spring 1994. 
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Clone Isolation O ther names Origin Cell CMM Accession Lit h s DMSP R efer e nee/Source 
desi~nat ion date T~~ ~roul! n u mber activit~ 

92A 1950/57 CCMP 379, Englis h ? I A Y 629 172 No Hig h (Steinke et a l. 1998) 
UTEX 10 16, C h a nne l 
CCA P 920/ IA 

920 1975 E nglis h B 11 AY629177 Some ? (Young a nd W estbroe k 
C h a nne l 1991 ; Green et a l. 1996; 

M edlin et a 1. 1996 
92 E 1992 E nghs h A I A Y 629 178 Y es ? P CC 

C h ann e l lV A Y750878 
92F 1992 E n g lis h ? N o ? 

C h a nne l 
Bloom 2 15 2002 E n g lis h A A Y 629179 ? ? P CC 

Bloom E n g lis h ? ? ? 
Channel 

CCMP 1516 199 1 North A Ill A Y 629 166 Yes Low ( Ste inke et a I. 1998) 
Pacifi:: IV AY629167 

CCMP 1516 rv A Y629167 No '? P CC 

b * 
Van 556 1984 N o rth ? No ? 

Pacifi:: 
EH2 1990 South ? Yes ? 

Pacifi:: 
Ch25/90 1990 Texel B , C h 25 N o rth B I I AY62918t Yes ? (Green et al. 1996; M e dlin 

Atlantic et al. 1996; van Bleij sw ij k. 
1996) 

C h 24/90 1990 North A Y es ? ( Young a nd Westbr oek. 
Atlantic I 991; v a n Ble ij swij k. 1996) 

5 90 25b 1990 ? A Y 629 t 76 Ye s ? P CC - -

Gt779Ga 1989 ? Yes ? 
Atlantic 

DWN6 1/3/2 199 1 North ? Y es ? 
Atlantic 

Table continues in next page 
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C lo n e Isolat io n Ot he r names O r igin Ce ll CMM Accessio n Liths D MSP R efer ence/Sou rce 
dcsi~~;nat ion date Tv~ ~~;rou~ numbe r activit l:; 
BOF92 1990 North ? ? Ye s ? 

Atlantic 
CCMP 88E 1988 Gulf of ? ? Y es ? 

CCMP 374 1989 89E, CCMP ? I A Y 629 170 Low (Ste inke et a l. 1998) 
1949 Maine IV AY629L7 1 

F61 1970 Oslo ? ? No ? 
r·ord 

CCMP 370 1959 451 B, F451 Oslo ? A Y629 168 N o Low (Ste inke et a l. 1998) 
f · o r d 

L 1959/68/ LN. Lsc . Ln. Oslo A I AY629173 No Low (Young and W estbroe k, 
go s fjord Ill AY629 174 1991 ; Medlin et a I. 1996; 

van Bleij sw i j ~ 1996l 
CCMP 373 1960 BT6. CSIRO- Sargasso A AY629169 No Hig h ( M edlin et a l., 1996; 

CS-57 Sea Stein ke et al. 1998l 
CCMP IAI 1987 CCMP 372 Sargasso A IV AY629 175 Yes ? P CC 

Sea 
CCMP 12- 1 1987 CCM P 37 1 Sargasso ? ? Yes ? 

Sea 
CCMP 1967 CCMP 375 Sargasso ? ? Y es ? 
M HI ea 
South 1983 Indian ? '? Ye s ? 
Africa Ocean 
N Z EH 1992 C AWPO 6 New ? ? Y es ? 

a la nd 

Table 2.4. Emiliania huxleyi isolates used in this study. CCM group: allelic genotype or Coccolith Morphology Motif. Accession number: GcnBank number corresponding to a putative 

calcium binding protein gene sequence fragment. PCC: Plymouth Culture Collection.? symbol : not known. • symbol : CCMP 1516 (b) is a non-calcifying strain closely related to the 

ca lcifying CCM P 1516 strain (a change in calcification state has occurred during culturing since the original isolation of the strain) 

34 



2.1.6. Oligonucleotides 

Oligomers designed to the calcium-binding protein (GPA) cDNA of E. hux/eyi strain Land 

to the Major Capsid Protein (MCP) of EhV-86 were used to assess genetic richness of E. 

huxleyi and Eh Vs in natural communities. M 13 oligomers were used to amplify DNA 

fragments ligated into pGEM®-T Easy Vectors (Promega, Southampton, UK). Phos-FI 

and Phos-RI oligomers were designed to the putative phosphate permease gene (ehvll7) 

of Eh V -86. TaqMan primers and probe for real-time reverse-transcription PCR reactions 

were also designed to the nucleotide sequence of the ehv 117 gene of Eh V -86. 

Oligomer Sequence Reference 

GPA-FI 5'-GAG GAG GAG AAG CCG AGC CT-3' Schroeder et al. (2005) 

GPA-F2 5' -CAG GCG CTC TTC GGG CTG GG-3' This study 

GP A-RI 5'-Crr GAA TCC TCT GTG CTG AGC GAG-3' Schroeder et al. (2005) 

MCP-Fl 5'-GTC HC GTA CCA GAA GCA CTC GCT-3' Schroeder et al. (2002) 

MCP-RI 5 '-ACG CCT CGG TOT ACG CAC CCT CA-3' Schroeder et al. (2002) 

MCP-F2 5'-CGC CCG GGG CGC GCC CCG GGC GGG GCG GGG Schroeder et al. (2003) 

GCA CGG GGG GTT CGC GCT CGA GTC GAT C-3' 

I\1CP-R2 5'-GAC CTT TAG GCC AGG GAG-3' Schroeder et al. (2003) 

1\113-F 5'-GTA AAA CGA CGG CCA GT-3' Hoffmann et a I. (200 I) 

1\113-R 5'-CAG GAA ACA GCT ATG AC-3' Hoffmann et al. (200 I) 

Phos-FI 5'-TAG Trr ACC AAA CGG AGC -3' This study 

Phos-RI 5'-HA AGA TGT HC ATT AAA CA -3' This study 

qPCR-F 5'-ACA CCA AGTCGT GGT GTTTGT ATT-3' This study 

qPCR-R 5'-TGA TAA CGG AATCCC CAT ATA GCT-3' This study 

qPCR-probe 5'-AGC HG GTT CCG CGG TTG TAA TTA TCA CC-3' This study 

Table 2.5. Oligonucleotides and their sequences used in this study. F and R denote forward and reverse 

primer respectively. Sequence underlined in MCP-F2 is the GC-clamp added to the 5' end of the 

oligonucleotide and necessary for DGGE analysis. The 'q' prefix denotes the primers and probe used for 

real-time PCR assays (Section 2.14). 
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2.2. General methods 

2.2.1. Concentration and storage of sea water samples and virallysatcs 

When required, sea water and lysate samples were concentrated 25-1 00 fold by means of 

tangential flow filtration {TFF) through a I 00,000 molecular weight cut off (MWCO) 

polyethersulfone membrane (Vivaflow 200, Vivascience) according to the manufacturer's 

protocol. Typically, samples were pre-filtered through 0.8 Jlm and then 0.45 Jlm or 0.2 Jlm 

pore size Supor-450 47 mm diameter filters (PALL Corp), prior the concentration step. 

The concentrates were stored at 4 oc until further processing. 

2.2.2. Maintenance of phytoplankton cultures 

Cultures were maintained at exponential growth phase by periodically transferring 5-l 0% 

(v/v) cultures in fresh f/2 seawater medium (Guillard 1975) {Table 2.2). Light was supplied 

by fluorescence tubes at I 00 Jlmol photons m·2 s· 1 under a light-dark cycle of 16:8h. P. 

pouchetii cultures were kept at 8 oc; all other phytoplankton species were grown at 15 oc. 

2.2.3. Isolation of new viruses 

Isolation of viruses from seawater samples was conducted by adding filtered seawater sub­

samples to exponentially growing phytoplankton cultures or alternatively by enrichment 

cultures method. When lysates were produced virus clones were obtained by further plaque 

assay purification. The experiments were carried out under the culturing conditions 

described in Section 2.2.2. 

2.2.3.1. Inoculation of phytoplankton-host cultures 

Aliquots (0.5 ml) of concentrated seawater samples were inoculated into 20 ml of 

exponentially growing phytoplankton cultures(~ 1-2 x 106 cells ml" 1
). The cultures were 

inspected daily for lysis. Lysis was determined by colour comparison to 20 ml of 

uninfected host cultures and by analytical flow cytometry (AFC) (Section 2.2.5). 
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2.2.3.2. Enrichment cultures 

Aliquots of exponentially growing phytoplankton cultures were transferred to f/2 medium 

(Guillard 1975) (I 0% v/v) prepared from natural untreated sea water filtered through a 

0.45 Jlm pore size Supor-450 47 mm diameter filters (PALL Corp). Additionally, aliquots 

of the same phytoplankton species were transferred to sterile f/2 medium to serve as 

negative controls. The growth of the cultures in the natural seawater f/2 medium was 

monitored daily. When cultures lysed AFC was employed to confirm whether or not lysis 

had been caused by specific viruses. 

2.2.3.3. Plaque assay 

Virus clones were obtained by plaque assay purification as described by Schroeder et al. 

(2002). A detailed protocol for this method is given below: bottom 1.5 % (w/v) 

electophoresis grade agarose plates were prepared by mixing sterile 7.5 % agarose in 

distilled water to 30 kD filtered autoclaved sea water while both solutions were at about 

70 °C. The combined 1.5 % agarose sea water mixture was left to cool to 55 oc, after which 

the necessary nutrients for f/2 medium were added and the solution was poured and 

allowed to set at room temperature in Petri dishes. 

Exponentially growing phytoplankton cells were harvested by centrifugation at 5,000 g for 

5 min at 4 oc and re-suspended in f/2 medium (50 x concentration). The re-suspended cells 

were then mixed with I 00 j.tl dilution (I o·2
, 10-4, 10-6 and 10-8

) of the virus stocks in sterile 

f/2 medium and incubated, at the appropriate temperature for each phytoplankton species, 

under constant illumination for 2 h to allow viruses to absorb. The virus-host suspension 

was mixed with 3 ml of molten 0.4% (w/v) electrophoresis grade agarose (40 °C), made 

with f/2 medium, and poured onto the bottom 1.5 % (w/v) agarose plates. The plates were 

then kept in plastic bags and transferred to the incubator at the appropriate temperature and 

light conditions (Section 2.2.2). The plates were monitored daily until clear plaques were 
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visible. Single plaques were lifted from the plate using sterile pipette tips, re-suspended in 

0.5 ml f/2 medium and used for subsequent inoculations after overnight incubation at 4 oc. 

2.2.4. Host range determination 

For host range determination, fresh working solutions of virus lysates were obtained from 

stock lysates stored at 4 °C. Briefly, I ml of each lysate was added to I 00 ml of 

exponentially growing cultures of the host strain originally used for their isolation. Once 

clearing of the host culture was observed, the lysate was passed through a 0.2 Jlm syringe 

filter (Gelman) and the filtrate containing virus was stored at 4 °C. The host range for each 

virus strain was determined by adding 500 Jll of each fresh virus lysate to 20 ml of several 

exponentially growing phytoplankton cultures. The inoculated cultures were occasionally 

agitated to encourage virus adsorption. Growth of the host cultures was monitored daily 

over a 14 day period. Lysis was determined by colour comparison to 20 ml of uninfected 

cultures and by AFC (see Section 2.2.6). Cultures that were not lysed 14 days after the viral 

inoculation were considered to be non-susceptible to the virus strain. The experiment was 

repeated once more in order to verify the results. 

2.2.5. Cell photosynthetic capacity (CPC) 

CPC was measured using the photosynthetic inhibitor 3 '-(3,4-dichlorophenyl)-1 ',I'­

dimethyl urea (DCMU) method. Analysis was performed in triplicate on approximately 3 

ml sub-samples of a I 0 ml sample. Prior to measurement samples were dark adapted by 

incubation at 15 oc for 30 min. Fluorescence was measured on a 10-AU Turner Designs 

fluorometer before and 60 s after the addition of 50 Jll of 3 mM DCMU in ethanol. 

Variable fluorescence expressed as Fv/FM was calculated according to the following 

equation: Fv/FM =(FM- Fo)/FM. Where Fo is the minimum fluorescence, obtained after the 

period of dark adaptation, FM is the maximum fluorescence, obtained after the addition of 
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DCMU closing all the reaction centres in the photosystem 11 and reducing the probability 

of photochemistry to zero, and Fv is the difference between FM and F0. 

2.2.6. Analytical flow cytometry (AFC) 

AFC analyses were performed with FACSCalibur or FACScan flow cytometers (Becton 

Dickinson, Franklin Lakes, USA), both equipped with an air-cooled laser providing 15 

mW at 488 nm and with standard filter set-up. Typically, algal counts were obtained from 

fresh samples at high flow rate (average 97J.!I min- 1
). Alternatively, I ml seawater samples 

for phytoplankton counts were fixed with P+G (I% paraformaldehyde + 0.05% 

glutaraldehyde final concentration) for I 0 min at room temperature in the dark, then snap 

frozen in liquid nitrogen and stored at -80 °C until analysed (Marie et al. 1997). The 

trigger was set on red fluorescence and the samples were run on the cytometer for 300 s for 

natural samples or 120 s for counts on culture samples. Discrimination of the algal groups 

in field samples was based on groups observed in scatter plots of side-scatter signal (SS C) 

and pigment autofluorescence (chlorophyll and phycoerythrin for Synechococcus sp. and 

cryptophyte populations). The most common fluorescing pigments are chlorophyll and 

phycoerythrin, which give red and orange fluorescence respectively. Some algal groups 

contain only chlorophyll, while others contain both pigments. Phytoplankton group 

identification was supported by comparison with pure cultures AFC signatures and 

previous studies (Castberg et al. 200 I, Larsen et al. 200 I, Li & Dickie 200 I, Jacquet et al. 

2002). 

Virus and bacteria enumeration was performed on fixed samples. I ml samples were fixed 

with 20 J.ll of 25 %glutaraldehyde (0.5 %final concentration) for 30 m in at 4 °C, then 

frozen in liquid nitrogen and stored at -80 °C until analysed (Marie et al. 1999b ). Prior to 

analysis the samples were thawed at 37 °C, diluted in TE I 0: I buffer (Table 2.1) and 

stained with SYBR Green I (Molecular Probes Inc., Eugene, USA) in a water-bath at 80 °C 
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for I 0 m in (Marie et al. 1999a). Natural samples were typically diluted 50 to 200 times, 

while culture samples were diluted I 00 to I 0000 times. The commercial stock solution of 

SYBR Green I was diluted to a final dilution 1.0 xI o-'~. Virus and bacteria analysis was 

performed at medium flow rate (average 48 J.Ll min- 1
). The samples were analysed for 

I m in at an event rate between I 00 and I 000 s-1
• The discrimination of virus and bacteria 

groups was based on groups observed in scatter plots of SSC signal versus green DNA-dye 

(SYBR Green) fluorescence. Fluorescence beads (Molecular Probes Inc., Eugene, USA) 

with a diameter of 0.95 J.Lm were added to each sample analysed as an internal reference. 

Listmode files were analysed using CYTOWIN (Vaulot 1989, available through 

http://www.sb-roscoff.fr/Phyto/cyto.html#cytowin, and EcoFlow v 1.0.5, available from the 

authors). 

2.2.7 Enumeration ofphytoplankton cells and colonies by light microscopy 

Phytoplankton cells (live samples) were counted on a Leitz Dialux-20 light microscope 

with phase contrast at 4QOx magnification using a Fuchs Rosenthal haematocytometer with 

a counting error of± I 0% (Lund et al. 1958). Phytoplankton colonies were counted in I ml 

samples in a Sedgwick-Rafter chamber. 

2.2.8. Transmission Electron Microscopy (TEM) 

Aliquots of virus lysates (2 ml) were pi petted into centrifuge tubes with plastic-molded flat 

bottoms covered by cellulose nitrate filters (Sartorius). Electron microscope nickel grids 

with carbon-coated Formvar film were then dropped through the water column onto the 

filters. The viral particles in the samples were collected on the grids by ultracentrifugation 

in a swing-out rotor as described in (Bratbak & Heldal 1993). The supematant was 

discarded and the grids were left to air-dry. 
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The grids were stained with 2 % uranyl acetate and viewed at 30,000 to 50,000 times 

magnification in a JEOL lOOS transmission electron microscope. When necessary, the 

lysate was diluted in sterile 30 kD filtered sea water to ensure an even distribution of the 

viral particles on the grid and facilitate the analysis of the images produced. 

2.2.9. Dialysis of virus lysates for removal of excess nutrients 

Fragments (12 cm length) of transparent, seamless regenerated cellulose dialysis tubing (33 

mm diameter) (Fisher-Scientific, Leicester, UK) were pre-treated to ensure a uniform pore 

size and removal of heavy metals. The pre-treatment consisted of boiling the tubing for I 0 

m in in a 2 % NaHC03 and 0.05 % EDT A solution. Then the solution was discarded and 

the tubing boiled twice for I 0 min in distilled water. Once cooled the tubing was stored at 

4 oc in a 20 % (v/v) solution. Prior to use, the dialysis tubing was rinsed thoroughly with 

distilled water. One end of the tubing was sealed, then the virus lysate (approximately I 00 

ml) was poured inside and the other end of the tubing sealed. The filled tubing was then 

placed in 2 L of oligotrophic, 30 kD filtered, autoclaved seawater at 4 °C and agitated 

gently with a magnetic bar and stirrer motor. The dialysis tubing containing the virus lysate 

was left to reach equilibrium for 3 h. The oligotrophic water was replaced and the process 

repeated two more times. 

2.2.10. Pulse field gel electrophoresis (PFGE) 

PFGE analysis was performed according to the optimised protocol described by Larsen et 

al. (200 I). Briefly, concentrated sea water samples and culture lysates ( 40 ml) were 

clarified by centrifuging in a swing-out centrifuge (Beckman J2-HS) at 7500 rpm for 30 

min at 4 oc. Viruses in the supematant were subsequently concentrated by 

ultracentrifugation (Beckman L8-M with SW-28 rotor) for 2 hat 35,000 x gat 10 oc. The 

viral pellet was re-suspended in 400 111 SM buffer (Wommack et al. 1999) (Table 2.1) and 

incubated ovemight at 4 oc. Equal volumes of viral concentrate and molten 1.5 % lnCert 
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agarose (FMC, Rockland, Maine) were mixed and dispensed into plug moulds. After the 

gel had solidified the plugs were punched out from the moulds into a small volume of 

buffer (250 mM EDTA, I% SDS) containing I mg mr1 Proteinase K. The plugs were 

incubated in the dark at 30°C overnight. The Proteinase K buffer was decanted and the 

plugs were washed 3 times, for 30 m in each time, in TE I 0: I buffer (Table 2.1 ). When the 

virus agarose plugs were not immediately analysed they were stored at 4 oc in TE 20:50. 

The viral plugs were loaded into the wells of a I % SeaKem GTG agarose (FMC, 

Rock land, Maine) gel in I x TBE gel buffer (Table 2.1) alongside plugs containing phage 

lambda concatamers (BioRad, Richmond, CA) that served as molecular weight markers. 

The plugs were sealed in the wells with an overlay of molten I % agarose. Samples were 

electrophoresed using a Bio-Rad DR-11 CHEF Cell (Bio-Rad, UK) electrophoresis unit 

operating at 6 V cm- 1 with pulse ramps from 20 to 45 sat 14 °C for 23 h in 0.5 x TBE tank 

buffer (Table 2.1 ). Following electrophoresis, the gels were stained for 30 m in in SYBR 

green I (Molecular Probes Inc., Eugene, USA) according to the manufacturer's instructions 

and digitally scanned for fluorescence using a laser fluoroimager (Fuji Film, FLA 2000). 

2.2.11. Nucleic acid isolation and quantification 

2.2.11.1. Hexadecyltrimcthyl ammonium bromide (CT AB) method for DNA 

extraction from virus lysates 

Concentration of the virus fraction was a necessary step prior to DNA purification: 58.4 g 

NaCI were added to 0.5 L lysate and gently dissolved. The solution was let stand at 4 oc 

for at least I hand then centrifuged for I 0 min at 5,000 x gin a swing-out centrifuge 

(Eppendorf 581 OR). PEG 6000 (Fisher-Scientific, Leicester, UK) was added to the 

supematant (I 0% final percentage) and gently dissolved, followed by an overnight 

incubation at 4 oc. The solution was then centrifuged at 6,000 g for 25 min at 4 uc, the 

supematant was carefully discarded and the tubes were left to dry upside down on paper 

towels for a few minutes at room temperature. For DNA isolation, the virus pellet was re-
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suspended in 0.5 ml pre-wanned lysis buffer (0.5 % SOS, 20 jlg mr 1 proteinase K) by 

briefly vortexing, followed by 30 min incubation at 55 oc with constant and gentle 

shaking. Then, 80 111 5 M NaCI and I 00 111 pre-wanned I 0% CT AB solution in 0. 7 M 

NaCI were added and the mixture was incubated at 65 °C for I 0 m in, after which the DNA 

was extracted with 500 111 of chloroform:isoamyl alcohol (24: I). Following centrifugation 

(5 min, 20,000 x g) the top phase was discarded and the DNA was precipitated with 

addition of0.6 volumes of isopropanol. DNA was pelleted after 10 min room temperature 

incubation by centrifugation at 20,000 x g for I 0 min. Finally, the pellet was washed in 

500 111 cold 70% ethanol, air dried and re-suspended in 35 111 TE I 0: I buffer (Table 2.1 ). 

2.2.1 1.2. Phenol/chloroform DNA extraction 

Typically environmental samples were collected for DNA extraction by filtering seawater 

samples onto 0.45 11m pore size Supor-450 47 mm diameter filters (PALL Corp). Total 

genomic DNA was recovered from the cellular fraction retained on the filters using an 

adapted protocol of the phenol/chloroform method previously described by Schroeder et al. 

(2002) with the following modifications: the filter was cut into small ( -5-I 0 mm2
) easily 

dissolvable pieces and placed into a 2 ml Eppendorf tube with 800 111 GTE buffer (Table 

2.1) containing lysozyme (I 0 mg mr 1
) and I 00 111 0.5 M EDT A. The samples were 

incubated for 1-2 h at room temperature whilst being gently shaken. 200 111 I 0% SOS 

(w/v) was added to disrupt cellular membranes and the tubes were incubated for another I 0 

min at room temperature. Phenol (0.8 x volume) was added to the samples to dissolve the 

filter paper. The aqueous layer was separated from the phenol layer by I 0 m in 

centrifugation (this and the successive centrifugation steps were done at 20,000 x g) and 

the phenol phase was disposed of. After this DNA was extracted with an equal volume of 

chlorofonn:isoamyl alcohol (24: I). The mixture was centrifuged (I 0 min) and the top 

aqueous layer transferred to a clean 2 ml Eppendorftube. Then, 0.5 x volume 7.5 M 

NH4Ac, pH 7.5 was added and, after 30 m in incubation at room temperature, the solution 

43 



was centrifuged (20,000 g, 15 min). The supematant was successively transferred to a 

clean tube and the DNA was precipitated with the addition of 2.5 x volume ice-cold I 00% 

ethanol. Samples were incubated overnight at 4 oc to increase the recovery yield. 

Following a 30 min centrifugation at 20,000 x g, the DNA pellet was washed in 500 Jll ice­

cold 70% ethanol, followed by a 5 min centrifugation (20,000 x g). The ethanol was then 

discarded and the pellet left to air-dry. Finally, DNA was re-suspended in 50 Jll TE buffer, 

quantified via a BioPhotometer spectrophotometer (Eppendorf, Cambridge, UK) and 

stored at 4 oc or -20 oc until further processing. 

The phenol/chloroform method was used on virus Iysates with the following modifications: 

0.5 ml 50-fold concentrated virus lysate (Section 2.2.1) were place in a 1.5 ml Eppendorf 

tube and heated at 80-90 oc for I m in, then transferred to ice for another minute. The 

process was repeated 3 times. The sample was then treated with proteinase K (final 

concentration 50 11g/ml) in a lysis buffer containing 20 mM EDT A, pH 8.0 and 0.5 % SDS 

(w/v) at 65 °C for I h. Phenol (0.1 x volume) was added to the samples, and the DNA was 

extracted and precipitated as described above. 

2.2.11.3. Isolation of total RNA from infected and uninfected cells 

Cultures (250 ml) were filtered through 0.45 11m pore size Supor-450 47 mm diameter 

filters (PALL Corp ). Cells from each filter were resuspended in 2 ml of I x Phosphate 

buffered saline (PBS) ( diethylpyrocarbonate treated (Ill 000) for 15 m in, then autoclaved) 

(Table 2.1 ), centrifuged (20,000 x g, 5 m in), resuspended (by vortexing) in 2 ml 

RNAiater™ RNA Stabilization Reagent (Qiagen) and stored at -20°C until ready for 

processing (samples were process within 24 h after storing). RNA extraction was 

performed using an RNeasy Midi Kit (Qiagen). Samples were centrifuged (20,000 x g, 5 

min) and the pellet resuspended in 2 ml RL T (+ 20 111 p mercapto-ethanol). Following 

vigorous vortexing (I min, in 5 second bursts), the samples were spun (20,000 x g, 5 min) 
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and the supernatant transferred to a I 5 ml Falcon tube containing 2 ml 70 %ethanol. 

Following vigorous mixing the samples were applied to a Qiagen MidiPrep column, 

centrifuged (3,200 x g, 5 min) and the flow-through discarded. Columns were washed once 

with 4 ml RWI buffer (3,200 x g, 5 min) and twice with 2.5 ml RPE buffer (3,200 x g, 5 

m in) and transferred to a new Falcon tube. RNase free water (250 11l) was added, the 

samples incubated (room temperature, I min) and the RNA eluted by centrifugation 

(3,200 x g, 5 min). RNA solutions were precipitated with 0.5 x volumes of7.5 M NH4Ac 

and 2 volumes of I 00 % ethanol at -80 oc overnight. Following centrifugation (20,000 x g, 

30 min), the pellet was washed twice with 70% ethanol (20,000 x g, 5 min). The pellet 

was air-dried, resuspended in SO 111 RNase-free water and stored at -80 °C. 

2.2.1 1.4. DNase treatment of RNA samples 

RNA samples were treated with RNase free Turbo DNaseTM (Ambion) to remove traces of 

DNA contamination, according to the manufacturer's recommendations. 

2.2.11.5. Nucleic acid quantification 

Genomic DNA concentrations were determined by absorbance at 260 nm using a 

Biophotometer spectrophotometer (Eppendorf, Cambridge, UK). RNA quantity and quality 

was assessed using RNA 6000 Pico LabChip'i<l kit (Agilent Technologies) on an Agilent 

Bioanalyzer 2100 system (www.agilent.com). 

2.2.12. Amplification of DNA fragments by polymerase chain reaction (PCR) 

All PCR reactions were conducted in a PTC-200 Peltier Thermal cycler (MJ Research) in 

25 111 final volume reactions. The PCR reactions were set up as follows: I 0-100 ng DNA 

(alternatively I 111 virus lysate) template was added to a reaction mixture containing I U 

Taq DNA polymerase (Promega), I x PCR reaction buffer (Promega), 0.25 mM dNTPs, 

2-3 mM MgCb, I 0 pmol of each primer and molecular biology grade water (Sigma-
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Aldrich) up to a volume of25 Jll. PCR reactions were performed with an initial denaturing 

step of 95 oc for 5 m in, followed by 35 cycles of denaturing at 95 oc for 60 s, annealing at 

50-60 oc ( optimised for each pair of primers) for 60 s, and extension at 72 oc for 60 s 

respectively. The reactions finished with final cycle of denaturing at 95 oc for 30 s, 

annealing at 60 oc for 300 s, and extension at 72 °C for 300 s. Finally, the reactions were 

cooled down to 15 oc. PCR products were resolved by electrophoresis of 5 Jll aliquots 

(Section 2.2.13). For increasing amplification specificity nested (two stages) PCR reactions 

were perfonned using 2.5 Jll of the first stage PCR products as template. 

2.2. 13. Agarose gel electrophoresis 

Ultrapure agarose (SeaKem GTM) at a concentration of 1.2 % (w/v) was dissolved in an 

appropriate volume of I x T AE buffer (Table 2.1) by heating to boiling point in a 

microwave oven. The solution was cooled down to approximately 60 °C and ethidium 

bromide was added to a final concentration of 0.5 Jlg mr 1
• The solution was then poured 

into a gel former and allowed to solidify at room temperature. Samples were loaded in the 

gel with I x bromophenol blue loading buffer (Table 2.1 ). Electrophoresis was performed 

in I x T AE buffer at 90-120 volts for 30-60 min. The gels were visualized on a UV 

transilluminator, and photographed with a Gel Doe 2000 system (Bio-Rad). Band sizes 

were estimated using I 00 bp or A.-Hindlll size markers (Promega) nm alongside the 

samples. 

2.2.14. Denaturing gradient gel electrophoresis (DGGE) 

DGGE was conducted in 30 to 50% linear denaturing gradient 8% polyacrylamide gels 

where I 00 % denaturant is a mixture of 7 M urea and 40 % de ionised formamide. PCR 

products were treated with Mung Bean nuclease (Promega) according to the 

manufacturer's instructions to degrade single-stranded DNA ends (5Jll PCR product, 2 ~tl 

I: I 0 diluted enzyme and 3 Jll molecular biology brrade water (Sigma-Aidrich) were 
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incubated at 3 7 oc for I 0 min). The resultant I 0 111 samples were loaded into wells with 

4 IJI 6 x gel loading buffer (Table 2.1 ). Electrophoresis was carried out for 3.5 h in 

I x T AE (Table 2.1) at 200V at a constant temperature of 60 oc using the D-code 

electrophoresis system (Bio-Rad). Gels were stained in 0.1 x SYBR00 Gold (Molecular 

probes) solution for 30 min and bands visualized and photographed as described previously 

in Section 2.2.13. 

Typically, single bands were excised and incubated in 50 ~tl of molecular biology grade 

water (Sigma-Aldrich) at 4 oc overnight. Following incubation at 95 oc for 5 min, 2 111 

aliquots were used as template for PCR reaction using the appropriate pair of primers. The 

products run on a DGGE gel as described previously to check for single band purity. 

2.2.15. Automated DNA sequencing 

Prior to sequencing of PCR products, unincorporated dNTPs and primers were removed by 

means of a clean up step with ExoSAP-IT (USB Corporation) following the 

manufacturer's recommendations. PCR product (2.5 IJI) and I 111 ExoSAP-IT were mixed 

and incubated at 37 oc for 15 min, and then the ExoSAP-IT was inactivated by heating to 

80 oc for 15 min. These steps were done in a thermal cycler. 

The sequencing reactions (final volume 20 Ill) were prepared using a BigDye Terminator 

v3.1 cycle sequencing kit (Applied Biosystems, UK) according to the manufacturer's 

instructions in a PTC-200 Peltier Thermal cycler (MJ Research). Subsequently, the DNA 

was cleaned up using genCLEAN 96 Well Dye Terminator Removal plates (Genetix, 

Hampshire, UK) following the manufacturer's recommendations. Alternatively the DNA 

was recovered by ethanol precipitation as follows: 5 111 125 mM EDT A and 60 111 I 00% 

ethanol were added to each sample and gently mixed. The mixture was then incubated at 

room temperature for 15 min in the dark. The tubes were then centrifuged at 3,000 x g for 

30 m in at 4 oc. The supernatant was discarded and the pellet was washed in 60 ~tl 70% 
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ethanol at 1650 x g for 15 min. Finally, the air dried pellet was re-suspended in 15 ~I HiDi 

formamide (Applied Biosystems, UK). The re-suspended DNA was denatured by heating 

at 94 oc for 3 m in prior to sequencing. Sequencing was carried out on an ABI 3100 

capillary sequencer (Applied Biosystems, UK) in accordance with the manufacturer's 

instructions. The data for each fragment was analysed using DNAStar software 

(Lasergene) and aligned using ClustalW (http://www.ebi.ac.uklclustalw/). 

2.2.16. Molecular cloning 

PCR products were ligated into cloning vectors using the pGEM®-T Easy Vector System 

(Promega) in accordance with the manufacturer's instructions. The ligation products were 

then transforn1ed using Subcloning EfficiencyTM DH5-a Competent Cells (lnvitrogen) 

according to the manufacturer's recommendations and plated onto LB-agar (Table 2.2) 

plates containing I 00 ~g mr 1 ampicillin (Sigma-Aidrich). Prior to plating, X-Gal (20 ~I of 

50 mg ml" 1
) was spread over the surface of each plate and allowed to absorb for 30 minutes 

at 3 7 °C. Plates were then incubated overnight at 3 7 °C to allow b'Towth of colonies. 

2.2.17. Isolation ofrecombinant plasmid DNA 

Selected cloned colonies (Section 2.2.16) were transferred into 3 ml of LB broth medium 

(Table 2.2) and grown overnight at 37 oc. The next morning, the 3 ml cultures were 

centrifuged at 20,000 g for approximately 20 s and the supernatant was removed. Plasmids 

were isolated using the GenEiute Plasmid MiniPrep Kit (Sigma-Aldrich) according to the 

manufacturer's recommendations. 

2.2.18. Reverse-transcription reactions 

2.2.18.1. Production of RNA transcripts from DNA fragments 

RNA transcripts were produced using an AmpliScribeTM T7 Transcription kit (Cambio, 

UK) according to the manufacturer's recommendations. DNA template was prepared as 
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follows: PCR reactions (Section 2.2.12) with M 13 primers (Table 2.5) were performed 

using plasmid DNA template (Section 2.2.17). The PCR products were blunt ended with 

Mung Bean nuclease (Promega) according to the manufacturer's recommendations and 

then run on an agarose gel (Section 2.2.13 ). DNA was extracted from the gels using 

Wizard® SV Gel and PCR Clean-Up System (Promega) as instructed by the manufacturer. 

Untranscribed DNA template was removed with DNase (Section 2.2.11.4). 

2.2.18.2. Synthesis of cDNA from total RNA 

Synthesis of cDNA from RNA samples was done using random hexamers and TaqMan 

Reverse Transcription reagents using MultiScriben1 Reverse Transcriptase (Applied 

Biosystems, UK) following the manufacturer's guidelines. The reverse transcription 

thermal cycling consisted of an initial incubation step (25 °C for I 0 m in) followed by a 30 

min cycle at 48 °C, and finally a reverse transcriptase inactivation step at 95 °C for 5 min. 

2.2.19. Real-time PCR 

Real-time PCR assay on cDNA samples was carried out in optical-grade 96-well plates in 

an ABI PRISM®7000 Sequence Detection System (Applied Biosystems, UK). The thermal 

cycling conditions were as follows: an initial cycle of95 °C for I 0 m in followed by 40 

cycles of 95 °C for 15 s and 60 °C for I min. 

2.2.19.1. Detection of fluorescence contaminants 

To check for the presence of fluorescence contaminants in the heat block of the thennal 

cycler (that may cause false positives) new background components must be run prior to a 

real-time PCR assay according to the manufacturer's recommendations. Once confirmed 

that the block is free of fluorescence contaminants it is necessary to rule out the presence 

of such contaminants in the sample by including three No Amplification Controls (NACs) 

and three No Template Controls (NTCs) in the assay. NAC includes all the reverse-
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transcriptase PCR reagents except the transcriptase; for NTC, the reverse-transcription 

PCR does not include the RNA template. No product should be amplified for any of the 

controls; if a product is amplified, it indicates that one or more of the PCR reagents is 

contaminated with DNA which may be the amplicon. NACs and NTCs were included in 

each set of measurements. 

2.2.19.2. Primers and probe design and optimisation 

TaqMan primers and probe (Table 2.5) for the real-time PCR assay were designed to 

nucleotide sequences using the Primer Express'!il software (Applied Biosystems, UK). The 

probe was labelled at the 5' end with the reported dye 6-carboxyfluorescein (6-FAM) and 

at the 3' end with the quencher dye 6-carboxytetramethylrodamine (T AMRA) (Applied 

Biosystems, UK). Prior to any further analysis, the optimum concentrations for primers 

and probe were determined according to the manufacturer's recommendations. 

2.2.19.3. PCR reaction mix 

The real-time PCR reactions were set up as follows: I 0 111 cDNA template was added to a 

reaction mixture which contained 25 ~tl TaqMan® Universal MasterMix (Applied 

Biosystems, UK), 300 nM of each primer (forward and reverse), 125 nM probe and 

molecular biology grade water (Sigma-Aidrich) up to a volume of 50 111. All reactions were 

prepared in triplicate to control pi petting errors; a standard deviation of Cr (threshold) 

value> 0.16 indicates inaccurate pipetting (TaqMan® Universal PCR MasterMix Protocol, 

Applied Biosystems, UK) and therefore the inaccurate replicate should be removed from 

the analysis. 

2.2.19.4. Construction of calibration curve 

A calibration curve was employed to enable an accurate quantification of the target gene's 

expression. To construct the calibration curve, serially diluted RNA standard template (I 00 
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pg, I 0 pg, I pg, 0.1 pg and 0.0 I pg) was employed (in triplicate for each concentration) in 

reverse-transcription and real-time PCR reactions. The RNA template for the calibration 

curve reaction was obtained as described in Section 2.2.18.1. Synthesis of cDNA from 

RNA samples was done by reverse-transcription of RNA with random hexamers (Section 

2.2.18.2). Samples for the construction of the calibration curve were loaded in the same 

plate as the RNA samples to be quantified. A new calibration curve was generated for each 

set of measurements since small shifts in the fluorescence signal occur from experiment to 

experiment. 

The calibration curve was generated automatically by the ABI PRISM® 7000 Sequence 

Detection System (Applied Biosystems, UK) by plotting the logarithm of each standard 

concentration against the cycle number at which the fluorescence signal increased above 

the background or threshold value (Cr). Using the calibration curve, the ABI PRISM® 

7000 SOS software calculated the target gene expression from the Cr value obtained for 

each of the samples with unknown concentration. In this study, gene expression was 

estimated as initial amount of target gene RNA contained in I 000 pg total RNA template 

added to the real-time reverse-transcriptase PCR reactions. The slope of the calibration 

curve was used in the following equation to determine the reaction efficiency (E): 

E = I o-Jislope -I. According to this, E = I means a doubling of the product in each cycle. 

2.2.20. Mesocosm experiments 

2.2.20.1. Set up 

Mesocosm experiments were designed to monitor the progression ofphytoplankton­

induced blooms. These experiments consisted of transparent polyethylene enclosures (4.5 

m deep, 2 m diameter, ea. 11 m3
, 90 % light penetration of the photosynthetic active 

radiation) purchased from ANI-TEX (Notodden, Norway) mounted on floating frames 

moored along the south side of a raft (for details see Egge and Aksnes (1992)) in the 
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middle of the bay in Raunefjorden at the Norwegian National Mesocosm Center, Marine 

Biological Station, University of Bergen in Western Norway (60° 16 ' N, 05° 14' E). Figure 

2.1 shows the mesocosm design. Details of the s ite and facility are at 

http://www.bio.uib.no/lsf/inst2 .html. The enclosures were filled in situ with unfiltered fjord 

water from an adjacent point to the raft at 2 m depth using a submersible centrifugal pump 

(!TT Flycht NS, Oslo Norway, model 3085-182), designed to minimize plankton damage, 

at a flow rate of ea. 1.5 m3 per minute. Mixing was accomplished by an airlift-system 

(Figure 2.1 B) which re-circulated the entire volume ea. 5 times per day(- 40 L min 1) for 

the duration of each experiment (Jacobsen et al. 1995). 

A 

B 

J-

4m 

1---?m ~-· 

Fig. 2.1. (A) The floating rafi with the sea enclosures (www.ifm.uib.nolbatmare/facilitics.html) . (B) Detail of 

one of the enclosures showing airlift system. (Diagram adapted from Egge & Aksnes, ( 1992)). 

52 



2.2.20.2. Sampling procedure and analysis of environmental parameters 

Surface seawater samples for analysis of physical and biological parameters were collected 

in 30 L carboys. Because the mescosms were fully mixed, it was not necessary to analyze 

depth-profiled samples for these parameters. 

Nutrient concentrations were measured using standard methods (Strickland & Parsons 

1972) adapted to an autoanalyser (Foyn et al. 1981) equipped with autosampling, detection 

and computing units from SANplus Segmented Flow Analyser (Skalar Analytic). 

Chlorophyll a analysis was conducted according to the method of Parsons et al. (1984). 

Seawater samples were filtered onto GF/Fs (Whatman, Maidstone, UK) or alternatively 

onto 25 mm 0.45 1-1m cellulose-acetate filters (Sartorius AG, Germany) and extracted in 

90% acetone overnight at 4 ac prior to fluorometric analysis using a Turner Designs I 0-

AU fluorometer. 

Temperature, salinity and oxygen concentration profiles in each mesocosm were 

determined using a multi parameter water quality monitor OTS, Isi Model 85 and a SD204 

CTD (SAIV NS, Bergen Norway) (data not shown). Solar irradiance was measured every 

I 0-15 min using a LI-COR 190 quanta-sensor (LI-COR, Lincoln, NE, USA) and stored 

using aLl-COR 1400 data logger. Additionally, global radiation data was obtained from 

the continuous monitoring programme at the Department of Geophysics, University of 

Bergen, located approximately 20 km from the mesocosm site. In situ light profiles from 

surface to the bottom of the mesocosms were occasionally obtained using a horizontally 

mounted underwater LI-192 underwater quantum sensor. 
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3. Intraspecies host specificity of Emiliania huxleyi-virus isolates 

3.1. Introduction 

In most cases, phytoplankton viruses are host specific and infect just one species or even 

just a single host strain (Nagasaki & Yamaguchi 1998, Wilson et al. 2005b). For instance, 

individual coccolithoviruses, i.e. viruses specific to Emiliania hux/eyi (Eh Vs), are able to 

infect several host strain isolates (Schroeder et al. 2002). However, little is still known of 

the biology of these systems. 

It is clear that viral infection plays a role in natural communities' diversity, structuring, 

competition and succession at interspecies level (Castberg et al. 200 I, Larsen et al. 200 I). 

Additionally, morphological and genetic heterogeneity observed within a specific 

geographical population of one phytoplankton species (Barker et al. 1994, Rynearson & 

Ambrust 2000, Schroeder et al. 2005), and within the virus group that infect them (Cottrell 

& Suttle 1995b, Chen et al. 1996, Fuller et al. 1998, Schroeder et al. 2002, Schroeder et al. 

2003), suggest that viruses also affect phytoplankton diversity, structuring, competition 

and succession at intraspecies level (Miihling et al. 2005). However, host strain resistance 

to viral attack has been reported for most eukaryotic viruses in culture (Cottrell & Suttle 

1991 a, Nagasaki & Yamaguchi 1998, Zingone et al. 1999, Tarutani et al. 200 l ), and it is an 

important assumption in models that describe the effect of viruses in regulating diversity in 

the oceans (Thingstad & Lignell 1997). 

Understanding the factors that determine when and how a particular vints can and cannot 

infect an algal host under natural conditions is of great interest, due to the different 

ecological and biogeochemical implications. The difficulty in cultivating susceptible hosts 

to propagate vimses in the laboratory limits our knowledge about marine viral diversity 

and specificity. However, that is not the case for E. hux/eyi, which can easily be grown in 

the laboratory and their specific viruses can be plaque-assayed. 
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Bratbak et al. (1996b) first reported the isolation of an E. huxleyi-specific virus (Eh V) by 

plaque assay, however they were unable to propagate it further for characterization. Wilson 

et al. (2002b) went one step further and isolated two viruses from an E. hu.xleyi bloom in 

the Western English Channel. Basic characterization by these workers revealed they were 

lytic viruses of approximately 170 nm-190 nm in diameter with an icosahedral symmetry. 

Schroeder et al. (2002) extended the research conducted by Wilson et al. (2002b) 

characterising E. hu.xleyi viruses originally isolated from the English Channel and a 

Norwegian fjord. ln addition to the elucidation of the classic phenotypic characteristics of 

the isolates, i.e. genome type and size, virion shape and size and host range, they also 

determined the evolutionary relationship of those virus isolates to other members of 

Phycodnaviridae. They concluded that those viruses belong to a new genus they named 

Coccolithovirus. Differences within members of the Coccolithovirus were elucidated by 

host range and sequence analysis of a gene fragment encoding part of their putative major 

capsid protein. 

In this chapter I will present the results from a more extended host range experiment than 

the one performed by Schroeder et al. (2002). Host specificity of the I 0 Eh V isolates used 

by Schroeder et al. (2002) were tested against the same E. hu.xleyi strains used in that study 

plus 19 extra new E. hu.xleyi strains available in culture. The E. huxleyi strains were 

originally isolated from the same geographical locations as the viruses as well as from 

other distant areas in different years. The purpose of this experiment was to examine the 

diversity of both virus and algal strains in terms of infectivity and susceptibility as well as 

to investigate whether or not susceptibility may be explained by known common features 

shared by the hosts; such as location, number ofliths or DMSP-Iyase activity. 

A host range study is a simple, yet crucial first step to help set the scene in the analysis of 

virus/host diversity. Hence, it was decided to make this a short focused chapter. 
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3.2. Materials and methods 

3.2.1. Virus isolates and E. lruxleyi cultures 

The ten clonal Eh V strains used in this experiment (Table 2.3) were obtained from the 

Plymouth Virus Collection. Viruses were originally isolated from seawater samples 

collected during the latter stages of E. huxleyi blooms in Western English Channel, during 

July 1999 and 200 I, and from an E. huxleyi-induced bloom in a Western Norwegian fjord 

in June 2000 (Schroeder et al. 2002, Wilson et al. 2002b). Further information about the 

virus strains is described in Section 2.1.4. 

E. huxleyi strains were obtained from the Provasoli-Guillard Center for the Cultivation of 

Marine Phytoplankton (http://ccmp.bigelow.org/) and the Plymouth Culture Collection 

(http://www.mba.ac.ukl). Full details are summarized in Table 2.4. 

3.2.2. Host range determination 

Host range determination was conducted, as described in Section 2.2.4, on 26 different 

cultures of E. huxleyi strains (Table 2.4, except BOF92) and using I 0 different Eh V isolates 

(see Table 2.3). 
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3.3. Results 

Nine of the E. huxleyi strains showed no evidence oflysis by any of the Eh Vs tested (Table 

3.1 ). Four of those strains (92A//CCMP 379, 920, 92E and Bloom E. hux 215) came from 

the English Channel; Van 556 was isolated from the North Pacific; NZ EH from the South 

Pacific; CCMP 3 73 from the Sargasso Sea; CH 25/90 from the North Sea; and F61 from 

Oslo Fjord. Three other E. huxleyi strains, 92F (English Channel), Bloom E. hux (English 

Channel) and CCMP 374 (Gulf of Maine) were good hosts for all of the Eh Vs. The 

remaining E.huxleyi isolates showed variable susceptibility to infection as they were lysed 

by I to 9 of the Eh V strains. 

No pattern was observed in terms of possession or lack ofliths. Four out of seven naked­

cell E. huxleyi strains were resistant to infection (92A//CCMP 379, Van 556, CCMP 373 

and F61 ). In addition, another naked strain, CCMP 3 70, was susceptible only to Eh V -163 

and it lysed at low speed. 

The two E. huxleyi strains known to have high OMSP-lyase activity (92A//CCMP379 and 

CCMP 373) were not susceptible to infection, whereas the four previously reported E. 

huxleyi strains with comparatively low OMSP-lyse activity (CCMP 370, CCMP 1516, L 

and CCMP 374) (Steinke et al. 1998) were lysed by at least one EhV. We lack information 

regarding OMSP-Iyase activity for the rest of the E. huxleyi strains tested. 

The only two E. huxleyi strains with B-morphotype cells, 920 (English Channel) and 

CH25/90 (North Atlantic) were also non-susceptible to infection. 

Looking at the results from the point of view of virus specificity rather than host 

susceptibility we see that all of the Eh Vs were infectious to 6-15 of the 26 E. huxleyi 

strains tested. Although all the 10 EhVs were shown to have similar host ranges (Table 

3.1), there were some marked differences. Two ofthe EhV strains (EhV-201 and EhV-207) 
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that were isolated in 2001 from the English Channel showed identical host range. They 

lysed cultures of 14 different E. huxleyi strains from all the geographical locations. EhV-

202 also had the same host range, although showed slow lysis (two weeks for complete 

lysis) of E. huxleyi strain EH2. EhV-208 was able to lyse the same 14 host cultures plus 

CCMP 88E (Gulf of Maine), hence EhV-208 has the broadest host range. The rest of the 

Eh V strains differ in their host range, each one showing a unique infection profile. 

The results presented here confirm the observations described by Schroeder et al. (2002), 

for the common E. huxleyi strains tested, apart from a single difference. While Schroeder 

et al. (2002) found CCMP 370 to be resistant to infection by all of the tested Eh V strains, a 

positive result (slow lysis) for CCMP 3 70 when inoculated with Eh V -163 was observed in 

this study (Table 3.1 ). It is possible that Schroeder et al. (2002) did not observe lysis 

because their incubation times were shorter (7 days). 

Host range observed for CCMP 1516 was as previously described by Schroeder et al. 

(2002). Additionally, in this study CCMP 1516b was tested, an extra E. huxleyi strain that 

originated from CCMP 1516. Despite the common origin of both cultures they revealed 

different host ranges. CCMP 1516 was resistant to Eh V -203 while CCMP 1516b showed 

resistance to EhV-163 (Table 3.1). 

The addition of viruses to exponentially growing E. huxleyi cultures usually resulted in the 

collapse of the culture 3-4 days post inoculation. However, individual cross reactions 

between Eh Vs and E. huxleyi strains were highly diverse and some of the Eh V isolates 

took up to 2 weeks to completely lyse some oftheir hosts (labelled as +2 in Table 3.1). 

Despite the slow lysis, when compared to the other lysed cultures, proliferation of 

surviving cells was not observed and the result was complete lysis of the E. huxleyi culture. 
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Table 3.1. Host range study of the Emiliania huxleyi virus (Eh V) isolates with E. huxleyi host strains kept in culture .• culture lyisis; D no evidence of culture 

lysis; - slow lysis when compared to the other lysed cultures. The white gaps denote information not available. 
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3.4. Discussion 

The results presented in this chapter indicate that Eh Vs and E. huxleyi strains are 

phenotypically and/or genotypically diverse based on host specificity and susceptibility 

respectively. Actually, most of the Eh V strains tested can be distinguished from each other 

just based on their unique host ranges. Genotypic diversity was previously reported within 

Eh Vs (Schroeder et al. 2002, Schroeder et al. 2003) and E. huxleyi strains (Schroeder et al. 

2005) based on the nucleotide composition of fragments of the major capsid protein, gene 

which is involved in infection processes (Girod et al. 2002, Chen & Icenogle 2004) and the 

calcium-binding protein gene, thought to be involved in regulating coccolith morphology 

(Corstjens et al. 1998), respectively. 

No obvious relationship, in terms of susceptibility, was found between the geographical 

locations from where both Eh Vs and E. huxleyi strains were originally isolated. Individual 

viruses are infectious to E. huxleyi from very distant oceanic regions. One might think that 

E. huxleyi strains isolated from the same area as the viruses would have been more suitable 

as a host for those virus isolates than the E. huxleyi strains isolated from distant oceanic 

regions. However, 5 of the E. huxleyi strains that showed resistance to all the 

Eh Vs tested came originally from the English Channel, as did 9 of the Eh Vs (EhV-84, 

EhV-86, EhV-88, EhV-201, EhV-202, EhV-203, EhV-205, EhV-207 and EhV208). 

Several studies have shown that phytoplankton cells are highly sensitive to viral infection 

in the late log growth phase and become less susceptible in the stationary phase. It has also 

been observed that a reduction in burst size occurs when the host cells are in stationary 

phase (van Etten et al. 1991, Bratbak et al. 1998b, Nagasaki et al. 2003). These 

observations suggest that the host susceptibility to viral infection and viral proliferation 

vary depending on the physiological conditions of the host. Since DNA vimses utilize the 

biosynthetic function of the host, it is likely that hosts with high biosynthesis activity are 
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the most suitable for viral replication. In this experiment all the host cultures were 

inoculated with the Eh Vs during the log phase, cell concentration and virus to host ratio 

was also identical in all cases as well as light and temperature conditions. Therefore, it is 

possible to conclude that the differences observed in host ranges are due to intrinsic 

biological characteristics of the E. lwxleyi strains and/or the Eh Vs. Furthermore, those 

characteristics may explain the variable lysis speed of individual E. huxleyi strains when 

inoculated with different Eh Vs. 

So, what do Eh V specificity and E. huxleyi strain susceptibility depend on? The next step 

in order to try to establish a pattern that determines susceptibility or resistance to viral 

infection was to look at some of the known biological characteristics of the hosts, such as 

existence or lack of liths, DMS production or cell morphotype. Previous studies have 

reported that during E. huxleyi blooms the rate of infection was higher on flagellated scale­

bearing cells relative to tithed cells (Bratbak et al. 1995, Brussaard et al. 1996b). Because 

of these results it had been argued that coccoliths had a defensive function against viral 

infection. However, the results presented in this chapter do not support this idea as most of 

the naked-celled E. huxleyi strains tested were not lysed while most of the tithed strains 

were susceptible to infection. 

The two strains previously reported to exhibit high DMSP-lyase activity (92A//CCMP379 

and CCMP373) (Steinke et al. 1998) were resistant to infection, while those with known 

relatively low DMSP-lyase activity were infected. Based on the same observations 

Schroeder et al. (2002) suggested that high DMSP-lyase activity in E. huxleyi might be 

linked to some sort of anti-viral mechanism. DMSP-lyase activity per cell in E. huxleyi is 

independent of cell growth stage (Wolfe & Steinke 1996), therefore our results were not 

biased by the physiological conditions of the cultures. However, with the lack of DMSP­

Iyase activity measurements for most of the£. lwxleyi strains used in this experiment it is 
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impossible to argue positively or negatively for this hypothesis. Further investigation is 

required in this aspect. 

Both E. hu.xleyi B-morphotype strains utilized during this experiment were not susceptible 

to infection by any of the Eh Vs tested. However, this is not indicative of resistance to 

infection determined by the cell morphotype since several of the A-morphotype strains also 

showed resistance. lt is likely that this result is just a consequence of lacking more cultures 

ofB-morphotype strains and EhVs isolates to perfonn a more extensive host range assay. 

Motility of E. huxleyi cells has also been reported as a factor that may increase infectivity 

rates (Bratbak et al. 1995). Viruses travel by passive diffusion and therefore the encounter 

rate with a suitable host is random and depend on both host and virus abundance in the 

environment, as well as on host cell size and motility (Murray & Jackson 1992). Motion of 

host cells enhance transport rates and so the chance of encounter. Hence, non-motile 

phytoplankton cells might be less susceptible to viral infection than motile ones. This idea 

can, however, not be examined during small scale laboratory experiments due to the high 

concentrations of host used, that ensures encounter with the virus particles. 

It is interesting to point out the different host range observed for CCMP 1516 and 

CCMP 1516b. CCMP 1516b is a non-calcifying strain closely related to the calcifying 

CCMP 1516 strain (a change in calcification state has occurred during culturing since the 

strain was first isolated in 1991 (http://ccmp.bigelow.org/)) (Table 2.4). It is intriguing to 

postulate that this host range difference could be a direct, or indirect, effect of the 

calcification state of the host. Schroeder et al (2005) found that both E. huxleyi strains 

differ, at least, in the allelic composition of their calcium-binding protein (GPA) gene. 

CCMP 1516b presents a single allele for the GP A gene, identical to one of the two alleles 

in CCMP 1516. Host range mutations of viruses and of host cells in laboratory culture has 
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also been observed for Micromonas pusilla-specific viruses (Waters & Chan 1982). 

Considering the high diversity among both host and virus strains, this may be an important 

factor in sustaining their coexistence in natural environments. These observations raise the 

following question: does the GPA gene detennine, at least in part, susceptibility? It is 

thought that GP A is involved in nucleating the calcium carbonate crystals during coccolith 

development or delivery of calcium to the coccolith vesicle (Corstjens et al. 1998). 

Therefore, the GPA gene may encode significant differences that could be attributed to 

different E. huxleyi strains, which may detennine differences in chemical signals or 

receptors that affect viral specificity. 
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3.5. Conclusions 

Determining host range as part of algal virus characterization is a necessary step towards 

understanding their ecological role in the marine environment. The highly variable host 

range shown in this study indicates a complex interaction between Eh Vs and E. huxleyi 

strains in nature in terms of specificity and susceptibility. Considering the huge diversity 

among both Eh V and E. huxleyi strains in the ocean, the genotypical and phenotypical 

differences that may determine host range specificity could be important factors in 

sustaining their coexistence in natural environments. 

Intraspecies host specificity of Eh Vs is important in terms of ecological implications in the 

aquatic environment and for designing screening tests for viruses present in natural 

systems. Natural blooms of E. huxleyi can be formed by a broad diversity of strains and 

several different Eh Vs have been detected during the progression of these blooms in the 

sea (see Chapters 5 and 6). Host range determines which E. huxleyi strains survive and 

therefore it has implications for local ecology, climate and biogeochemistry cycling and 

production of compounds such as DMS, calcite and carbon dioxide. 

The results suggest that specificity is likely to be related to specific genetic or phenotypic 

variations within E. hux/eyi strains and the Eh Vs, which do not depend on adaptations to 

the abiotic environment, as those observed between E. huxleyi strains CCMP 1516 and 

CCMP 1516b. Further molecular investigations looking at specific genes are required in 

order to find the genetic features that determine infectivity in this host/virus system. 
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4. Diversity and succession of microbial populations during Emiliania 

hux/eyi-dominated blooms in seawater enclosures 

4.1. Introduction 

Several laboratory, field and mesocosm studies have shown the importance of viral control 

in the demise of E. huxleyi blooms and succession of the associated microbial populations 

(Bratbak et al. 1993, Bratbak et al. 1996b, Brussaard et al. 1996b, Castberg et al. 200 I, 

Jacquet et al. 2002, Wilson et al. 2002a). It is thus likely that viruses ultimately influence 

E. huxleyi's production of calcium carbonate coccoliths and its role in C02 cycling and 

dimethylsulphide (DMS), processes that make E. huxleyi such an important species for 

global ecology. 

To compensate for the limited realism oflaboratory experiments and to avoid the 

difficulties entailed in field work, large enclosures filled with natural seawater (i.e. 

mesocosm experiments) have been used in plankton ecology research since early last 

century when the first landbased systems were developed (Petterson et al. 1939). 

Mesocosm studies were afterwards improved by the use of transparent enclosures situated 

in a natural body of water, which have been claimed to have a higher degree of realism 

than land constructions (Egge 1993). These systems have been employed in marine 

phytoplankton studies since early 1960's (McAllister et al. 1961, Anti a et al. 1963 ). 

Irradiance and temperature in such enclosures follow natural fluctuations, and the 

phytoplankton succession resembles an accelerated version of what is typically found in 

marine environments (Davis 1982). The controlled water masses in a mesocosm render 

budget studies (Riemann et al. 1990) and model verifications possible (Andersen et al. 

1987, Keller & Riebesell 1989), making the experiments well suited for studying effects of 

chemical, physical and biological manipulations on natural plankton communities. 

However, costs and working load when putting up such systems are not insignificant. 
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Wishes to manipulate several parameters, or investigating gradients of one single 

parameter, combined with the high degree of repeatability of experiments demonstrated 

over the years (Egge 1993), therefore often result in a solution where limited number of 

replicate enclosures are used when the experimental set-ups is designed. One consequence 

of this is that the reproducibility, and thereby the scientific value ofthe results produced 

are frequently questioned. Crucial for both conceptual and numerical modelling of such 

experiments is whether all or parts of, the pelagic food web can be considered to be in 

steady state in the natural system upon enclosure, and whether this steady state remains 

undisturbed by the filling and enclosing operations. Should this not be the case, the 

observed dynamics will not be a function only of the perturbation applied, but mixed with 

the transient effects of the unbalances in the particular state of the initial food web, as well 

as the transient responses to the perturbation exerted by the filling procedures. 

A mesocosm experiment carried out in Norway in June 2003 was designed to closely 

monitor an E. huxleyi bloom and its termination by viral infection, as well as the influence 

of such events on the rest of the microbial community. In order to do so it was an essential 

part of the study to accurately predict the virus induced crash of the bloom. Therefore, 

nitrate and phosphate (at a N: P ratio of 15: I) were added at three different starting regimes 

with a one-day stagger between regimes. The expectation was that the probrression of the 

consequent E. huxleyi blooms would result in a similar one-day stagger between each 

regime. This design also provided us with a unique possibility to investigate the validity of 

the three main assumptions associated with mesocosm experiments: (I) steady state of the 

microbial part of the food web, (2) no perturbation due to the filling of the bags and (3) 

light is not a limiting effect (Thingstad et al. in press). The consequence of these 

assumptions being valid would be identical dynamic responses in all the enclosures, only 

delayed by the difference in onset of nutrient addition between the three treatment groups. 
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To describe the microbial food web dynamics we employed analytical flow cytometry 

(AFC), allowing us to monitor changes in abundances. This technique, which measures 

light scattering and fluorescence characteristics from individual particles, has the 

advantage oflarge sample throughput and good counting statistics (Vives-Rego et al. 

2000), providing data of a quality well suited for the between-treatments comparisons 

needed in this study. 
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4.2. Materials and methods 

4.2.1. Experimental design 

The mesocosm experiment was carried out in Raunefjorden, western Norway, from the 3rd 

of June until the 15th of June 2003. Ten mesocosm bags were moored along the south side 

of a raft in the middle of the bay (for details see Section 2.2.20) . The bags were munbered 

# I to # I 0 in the east-west direction (Figure 4.1 ). The enclosures were filled on 2"d June 

with unfiltered seawater. 
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Fig. 4.1. Diagram of the floating raft and the sea enclosures, indicating their number and which Treatment Group 

(TG) each enclosure represented: A nutrient addition on 3'd June; B nutrient addition on 41
h June and C nutrient 

addition on 5'h June (sec Section 4.2.2). 

4.2.2. Nutrient and copepod treatments 

The 10 bags were divided in 4 treatment groups, allowing triplication of 3 of them: 

Treatment Group A (TGA) (bags # I , #4 and #7), TGB (bags #2, #5, and #8), TGC (bags 

#3, #6, and #9) and TGD (bag # I 0) (Figure 4. I A). Inorganic nutrients were added daily at 

10:00h in a N:P ratio of 15 :1 (1.5 J..lM NaN03 and O.l J..tM KH2P04) to TGA (starting 3rd 

June), TGB and TGD (starting 4th June) and TGC (starting 51h June). Additionally, on 5th 

June copepods concentration was increased in TGD (bag # 10) from 0.7 L-1 to 4.7 L-1
, i.e. 

approximately 6-fold increase. The added copepods were collected from the fjord at 4.5 m 

depth using a plankton net 25 cm diameter with a 35 J..lm mesh. 
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4.2.3. Analytical flow cytometry (AFC) 

For daily flow cytometric counts of microalgae, virus and bacteria population samples 

were collected at 09:00 h by filling a small plastic bottle from the surface of each enclosure 

and from the fjord (from a point adjacent to enclosure #I 0). All AFC analyses were 

performed with a FACSCalibur flow cytometer (Becton Dickinson, Franklin Lakes, USA) 

as described in Section 2.2.6. The phytoplankton counts were done from fresh samples 

whereas virus and bacteria enumeration was performed on glutaraldehyde-fixed samples. 

4.2.4. Statistical analysis 

A variance partitioning and a discriminant analysis (McLachlan 1992) (Statistica 6.1, 

StatSoft, Tulsa, USA) of the data set were performed for comparing the biological 

variation with reproducibility between enclosures and for investigating the validity of the 

ideal set of assumptions described above (Section 4.1 ). The abundance of virus population 

V4 (see Section 4.3.1) was initially undetectable and for these time points we used an 

estimated detection limit of I x I 06 virus mr 1 (the lowest counted number was 1.2 x I 06
). 

The subsequent analysis was not very sensitive to this choice. For the statistical analysis all 

population abundances were replaced by their logarithms and each variable normalized 

(i.e. algal populations AI-A6, bacteria 8 and virus populations VI-V4, see Section 4.3.1) 

to have zero mean and standard deviation of I. In addition, each observation vector (the n­

dimensional vector describing one enclosure at a given time point) was described by three 

grouping variables: I) TG: the delay before initial nutrient addition (TGA: no delay, TGB 

I day delay and TGC: 2 days delay). 2) DAN: days after start of nutrient addition ( -2 to 12 

days) and 3) POS: the position of the enclosure at the raft (East, Mid and West). The 

differences between the observation vectors were calculated as Mahalanobis distances. 

Data from bag #10 (TGD) and the fjord were not included in the statistical analysis since 

they were not done in triplicates. The statistical analysis was performed by Svein Norland. 

4.2.5. Light irradiance 
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Global radiation data was obtained from the continuous monitoring programme at the 

Department of Geophysics, University of Bergen, located approximately 20 km from the 

mesocosm site (Section 2.2.20.2). 

4.2.6. Virus isolation 

One litre water samples collected from bag #I on 5'\ 71
h and 91

h June were filtered and 

concentrated (see Section 2.2.1 ). E. lwxleyi-specific viruses were isolated from those 

samples using cultures of E. huxleyi strains (Table 2.4) as described in Section 2.2.3.1. 

When lysates were produced, PCR amplification (Section 2.2.12) of virus MCP gene was 

conducted in two stages using two pairs of MCP specific oligomers (Table 2.5). DGGE 

analysis of second-stage nested PCR product was conducted as described in Section 2.2.14 

to reveal the number of different virus strains in the lysate. Plaque assays (Section 2.2.3.3) 

were then performed in order to produce clonal isolates of the different virus strains. 

DGGE was used to verify whether the new Iysates were clonal. 

Isolation of other algal viruses was achieved using enrichment cultures method (Section 

2.2.3.2). For this purpose, one litre 0.45 J.lm-filtered sea water sample from bag #I 

(collected at the end of the bloom) was divided into 20 ml aliquots and used to prepare f/2 

medium for culturing Phaeocystis pouchetii, Micromonas pusilla, Chrysochromu/ina 

ericina, Pyramimonas m·ientalis, Nephroselmis rotunda, lsocluysis galvana and 

Synechococcus sp. AFC signature of the lysates produced were compared with those of the 

virus groups detected in the enclosures between 3rd and 151
h June. 

4.3. Results 
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4.3.1. Diversity and succession of the microbial populations 

Four major groups of primary producers (E. huxleyi, Synechococcus sp., picoeukaryotes 

and nanoeukaryotes) were observed in all the analysed samples from the 10 different 

enclosures as well as from the samples collected from the fjord daily (Figure 4.2). The 

AFC images also revealed two minor algal groups (unknown and cryptophytes) found in 

relatively low numbers. 
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Fig. 4.2. Representative biparametric flow cytometry plots showing populations of taxonomic groups of 

primary producers. (A) Synechococcus sp., picoeukaryotes, nanoeukaryotes (including E. huxley i) , 

cryptophytes and an unknown group were discriminated using a combination of red and orange fluorescence 

signals; (B) E. hu.xleyi (with coccoliths) were separated from other nanoeukaryotes and E. lncdeyi cells 

without coccoliths using a combination of red fluorescence and side scatter (for simplicity labelled"£. 

lwxleyi" and "nanoeukaryotes" in the plot). 

Description of each phytoplank:ton group: 

E. huxleyi: this group was characterised by high side scatter (SSC) and red fluorescence 

(RFL) values and low orange fluorescence (OFL) values- characteristics resembling those 

of pure cultures of Emiliania huxleyi. 

Syneclrococcus sp.: had the lowest RFL and SSC signals but the highest value for OFL out 

of the four major algal groups. The high OFL signals and low SSC and RFL signals are 

properties consistent with that of Synechococcus sp. 
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Picoeukaryotes: relatively low RFL and SSC compare to group E. huxleyi but higher than 

those values for group Synechococcus sp. The size and pigmentation of the algae in this 

population indicate that this group consisted of one or more species of picoeukaryotes with 

size and pigments similar to M pusilla (Castberg et al. 200 I, Larsen et al. 200 I, Jacquet et 

al. 2002). 

Nanoeukaryotes: similar RFL and OFL values as E. huxleyi but lower SSC values. The 

comparison with the signals of pure cultures of naked E. huxleyi (personal observation) 

might lead to conclude that this cluster includes naked E. huxleyi. As the group seemed to 

consist of more than one population it is preferable to be less specific and according to its 

characteristics can be referred to as nanoeukaryotes (one or several species). 

Unknown: RFL signal slightly lower than RFL ofnanoeukaryotes but approximately the 

same value of SSC, nevertheless the OFL signal is more similar to the OFL signal for 

Synechococcus sp. This group will be referred to as 'Unknown· hereafter since it did not 

resemble the AFC signature of any of the phytoplankton cultures available for comparison. 

Cryptophytes: the high RFL, OFL and SSC values of this group indicate that the 

population was most likely consisting of cryptophytes -found in previous analogous 

mesocosm experiments in the same area, always in low numbers (Bratbak et al. 1993). 

This population has been also detected previously by flow cytometry (Larsen et al. 200 I). 

Temporal progression ofphytoplankton groups: 

The comparison of the primary producer populations' temporal progression showed that 

the replicates in each treatment group of enclosures followed similar pattems, although 

there were some differences in levels and timing ofpeaks of cell abundances (Figure 4.3). 
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Fig. 4.3. Time series development of the 6 primary producer populations as determined by flow cy1ometry. 

(• ) TGA. (o ) TGB, {T ) TGC, (t.} Bag 10. (• ) fjord. ForTGA, TGB and TGC lines indicate mean values for 

the 3 mesocosm bags in each Treatment Group (TG), and the error bars indicate standard deviation. 

Synechococcus sp. and picoeukaryotes numerically dominated the microalgae community 

in all the enclosures at the start of the study between 3rd -6th June with abundances around 

2. 7 X I 04 cells mr ' for Synechococcus sp. and 3. 7 X I 04 cells mr ' for picoeukaryotes on the 

first sampling day. Synechococcus sp. abundance peaked concurrently in all the enclosures 

between the Yd and 4th June fo llowed by a 5-6 days period with steady decrease. 

Synechococcus sp. concentrations increased again fo llowing the collapse of the Emiliania 

huxleyi population, again numericall y dominating the community together with 
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picoeukaryotes towards the end of the experimental period. Towards the end of the study 

Synechococcus sp. abundance diverged between the four treatment groups. 

For picoeukaryote abundance, a clear difference between TGA, and TGB and TGC was 

observed at the start of the study (Figure 4.3 ). In TGA an initial increase in picoeukaryote 

abundance was observed, prior to a sharp decline from 4.1 x I 04 to 1.4 x I 04 cells m1" 1• In 

contrast, in TGB and TGC where nutrient addition started one and two days later, 

respectively, picoeukaryote abundance decreased sharply with no initial increase. In 

addition, picoeukaryotes in TGB and TGC recovered sooner compared to TGA. On 12'h 

June, picoeukaryotes in TGA eventually recovered with a fast growth rate from 1.4 x I 04 

to 3.2 x I 0
4 

cells ml"
1 

over 3 days. The picoeukaryote development in TGD was similar to 

TGB and TGC; however it experienced an initial increase in abundance as TGA. Towards 

the end of the study this group decreased again in TGB, TGC and TGD. 

E. huxleyi experienced an increase in all the bags from the first day (3'd June). Growth rate 

was notably higher from days 4 and 5 with maximal rates between 1.3 and- 3 division d. 1 

in all the bags. Maximum E. huxleyi--cell abundances were reached on 1 o•h June in TGA 

and TGD and on ll'h June in TGB and TGC. After reaching maximum abundances, E. 

hw:leyi concentrations fell rapidly down to approximately the same cell numbers as before 

initiation of the bloom. E. huxleyi accounted for only 2-2.9% of the phytoplankton 

community at the beginning of the study period, but clearly dominated it when it reached 

its highest abundance (values ranged between 46.6 % in bag #5 to 62.2% in bags# I and 

#2). Throughout the entire period of study E. huxleyi population was not significant in the 

fjord. 

In the four treatment ~:,rroups, nanoeukaryote abundances increased slowly during the first 

half of the mesocosm experiment until the collapse of E. huxleyi populations, whereupon 
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nanoeukaryote growth rates increased rapidly. Maximwn nanoeukaryote abundances were 

reached on 11 th June in TGA and TGD, 131
h June in TGB and 151

h June in TGC. Ln TGA, 

TGB and TGD a decline in nanoeukaryote abundance was observed over the last few days 

of the experiment. The other two algal groups, referred to as cryptophytes and unknown, 

remained stable at low numbers or had low growth rate until the crash of E. huxleyi. Only 

on the last few days both populations experienced a significant increase. However, 

compared to the rest of the groups they did not seem to play an important role in tem1s of 

abundance in the community (maximum concentrations of 2-3 x 103 cells mr1 for the 

unknown group and 5-6 x I 02 cells mr 1 for the cryptophytes). The 6 phytoplankton groups 

remained at relatively low abundances in the fjord throughout the entire experiment and 

not one of them experienced any significant fluctuations in their abundance. 

AFC analysis of samples diluted in TE buffer and stained with DNA dye SYBR Green I 

revealed the presence of heterotrophic bacteria, Emiliania huxleyi- specific viruses (EhV, 

V4) and 3 other different groups of viruses (referred to as VI, Y2 and V3) (Figure 4.4). 
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Fig. 4.4. Representative biparametric flow cytometry plot showing populations of viruses and bacteria. 

Heterotrophic bacteria, £. huxleyi-spccitic viruses (V4) and different groups of viruses (V I, V2 and V3) were 

discriminated on the basis of the green DNA dye complex nuorescence versus side scatter signal. 
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Description of each group: 

Bacteria: this group was characterised by both high SSC and green fluorescence (GFL) 

values, which made it easily discernible from the virus populations (with lower SSC and 

GFL signals). The bacteria in the enclosures were grouped and counted as one big group, 

though the AFC signature suggests that more than one type of bacterium were present. 

Vl: had higher GFL values than the other virus populations. 

V2: GFL values between those of VI and V3. 

V3: among the four distinct virus groups V3 is the one with the lowest fluorescence values. 

V4: had substantially higher SSC values than the other virus groups and GFL values 

between those for V2 and V3. The increase in V4 numbers was followed by a sudden 

decrease in the algal group A I (E. huxleyi). This relation together with the characteristic 

signature of V 4 in the flow cytometer (Castberg et al. 200 I, Wilson et al. 2002a) indicates 

that V4 correspond to E. huxlc:l'i-specific viruses, and therefore we will refer to it as Eh V. 

Temporal progression of bacteria and viruses: 

Bacterial abundances were stable during the first half of the experiment 111 all the 

mesocosm bags and the fjord, remaining at approximately 2 x I 06 cells mr 1 in the bags and 

I X I 0
6 

cells mr
1 

in the fjord until 91h June (Figure 4.5). Bacterial abundances then 

increased rapidly, coinciding with the E. huxlc:Fi bloom crash, leading to maximum 

abundances on 12'h June in all the bags (maximum concentrations of approximately 7-10 x 

I 0
6 

cells mr
1
). The peak in abundance was reached one day earlier in the fjord (3.6 x I 06 

cells mr
1
). Afterwards, bacteria slowly declined. A second bacterial increase could be 

observed in the fjord during the last two days of study. 
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All four virus groups VI-V4 (EhV) remained in relatively low numbers and with low 

increase in abundance in the I 0 bags during most of the study period. Then, subsequently 

to the culmination of the E. huxleyi bloom they increased more markedly. For V3 and V4 

(EhV), rapid increase in abundance started on 81h June, and for V2 it started on 91h June, 

coinciding with the collapse of the E.huxleyi bloom and the increase in bacterial 

abundances. The period with rapid increase in V I abundance came after 11th June. 

V 4 (Eh V) was not observed in any of the enclosures during the first half of the mesocosm 

experiment. If these Eh Vs were already present in the water, their numbers were very low 

rendering their signature impossible to dissociate from the background. From 91h June Eh V 

appeared as a clear group in TGA and TGD (first enclosures to receive nutrients) and from 

IO'h June it was observed as a discernible population in TGB and TGC. Eh V abundances 

peaked first on 12
1
h June in TGA, TGB and TGD and then two days later in bags TGC. On 

l4
1
h June a second minor peak was observed for TGA, TGB and TGD. Different peak 

levels of abundance were registered for the four treatment groups being 

TGC<TGB<TG D<TGA ( 12 X 106
, 22 X 1 06

, 24 X I 06 and 3 I X I 06 virus mr I respective) y). 

Throughout the entire period of study the Eh V group was not measurable in samples 

collected from the fjord. 
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Fig. 4.5. Time seri es development of virus and bacteria populations as determined by flow cytometry. (•) 

TGA, (o ) T GB, ( ~ ) TGC. W ) Bag 10, (•) fjord . Fo rTGA, TG B and TGC lines indicate mean values for the 

3 mesocosm bags in each Treatment Group, and the error bars indica te standard deviation. 

The data above was also plotted relative to days after start of nutrient addition (DAN) to 

facilitate the subsequent interpretation of the statistical analysis, for which the observation 

vectors were grouped according to DAN. Figures 4 .6 and 4.7 show how most populations 

responded to nutrient addition with the same time Jag, and the ir graphs largely overlap 

when the time series are plotted relative to DAN. The Synechococcus and the 

picoeukaryote populations declined 1-3 days after the experiment started and did not 

respond to the initial nutrie nt addition, and these graphs are staggered in Fi gure 4 .6. 

Growth of bacteria is also staggered (Figure 4. 7). 
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Fig. 4.6. Time series development of the 6 primary producers populations as determined by flo w cy1ometry. 

The number on the x-axis corresponds to the number of days before or after the first nutri ent addition (DAN), 

i.e. 0 is the day the first nutrient addition took place. Lines indicate mean values for the 3 enclosures in each 

Treatment Group. ( • ) TGA, ( o) TGB, ( T ) TGC. The error bars indicate standard deviation. 
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Fig. 4. 7. Time series development of viruses ami bacteria populations as determined by now cytometry. The 

number on the horizontal axis corresponds to the number of days before or after the first nutrient addition 

(DAN), i.e. 0 is the day the first nutrient addition took place. Lines indicate mean values for the 3 enclosures 

in each Treatment Group. ( • ) TGA, ( o ) TGB, ( ~ ) TGC. The error bars indicate standard deviation. 

4.3.2. Statistical analysis: variability in microbial population dynamics between 

similarly perturbed mesocoms 

Variance partitioning showed that the contribution to total variation of the time of start of 

the nutrient perturbation was small. The dominating fraction, 80 %, of the total variance 

could be attributed to among means variation of DAN (days after nutrient addition). 

Among means variation for TG accounted for not more than 3 %, and the among means 

variation of POS (position of the enclosure at the raft) for only I %. 
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Discriminant analyses showed that there was a significant difference (measured as 

Mahalanobis distances) between all mean vectors of DAN (time after initial nutrient 

addition) (p<0.0035), except for the following combinations: DAN -2 vs. DAN -1; DAN -2 

vs. DAN 0; DAN -1 vs. DAN 0 and DAN 11 vs. DAN 12. The first linear discriminant axis 

(LDJ) explained 62% and the second (LD2) 32% ofthe dispersion ofmeans (Figure 4.8). 
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Fig. 4.8. Plot of the two first axes based on a discriminant analysis using DAN as grouping variable. The two 

axes account for 61 and 30 percent of the total dispersion, respectivel y. The projection of the 6 most 

important original axes is included. A I represents E. lwxleyi, A2 represents Synechococcus sp. and Y4 

represents Eh V. Each symbol represents the canonica l value for one dataset (i.e. data from one enclosure at a 

specific day): Circles, squares, triangles and diamonds represent DAN -2 - I, 2 - 5, 6 - 9 and I 0 - 12 

respectively. Red, yellow, green and blue symbols represent DAN -2, 2, 6 and I 0; -I , 3, 7 and I I ; 0, 4, 8 and 

12; and I, 5. and 9 respectively. Numbers are DAN and are plot1ed at the mean position for each day. 

There was also a significant difference between all three mean vectors ofTG (delay before 

initial nutrient addition) (p<0.00003) while for the mean vectors of POS there was only a 

significant difference between POS=east and POS=west, the two on each end of the raft 

(p<0.0002). 
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Based on the canonical scores we computed the mean variance around each group mean 

vector for DAN. The mean witrun group variance increased throughout the entire 

F'ig. 4.9. The mean within-group variance (grouped by DAN) plotted versus DAN. 

After the initial nutrient addition, all enclosures underwent a very similar development 

over time and most of this development cou ld be attributed to DAN, which accounted for 

80 % of the total variance. At the end of the experiment successions were slower and there 

was thus no significant difference between DAN 11 and 12. 

There was a statistical significant difference between the bags when grouped by TO but in 

absolute terms the difference was small and accounted only for 3% of the total variance. 

The enclosures placed fut1hest apart were statistically significantly different but again in 

absolute terms the difference was small and accounted only for I % of the total variance. 

Thus, by far the most important factor determining the development in the enclosures is the 

experimental manipulation (i.e. nutrient addition). The filling of the bags, the delay, and 

their position at the raft were of minor importance. 

In the experimental period, there were fairly large day-to-day variations in natural light 

conditions (Figure 4.1 0). DAN 0 coincided with excellent light conditions for T02 (4111 

June), but very poor conditions for TO I and T03 (3rd and 5'11 June, respectively). 
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Fig. 4.10 Global radiation integrated for each day during the experiment. Data from Geophysical Institute, 

University of Bergen ea. 20 km from the experimental site. 

4.3.3. Virus isolation 

DOGE analysis of PCR products from the lysates produced by inoculation of the E. huxleyi 

strains with water samples from the enclosures showed the presence of two different Eh V 

viruses (Fig. 4. 11 A). Both Eh Vs were successfully made clonal by plaque assay, as 

revealed by DOGE analysis (Figure 4.11B). 

A 2345678 8 2 3 4 5 6 7 8 

Fig. 4. 11 Representative DGGE gels of PCR fragments amplified with MCP primers for analysis of Eh V 

compo ition in the mesocosm samples. (A) Lanes 1-8 correspond to PCR products from lysates of Eh BOF92 

inoculated with water samples collected from enclosure I on different dates. Bands with different migration 

rates indicate different Eh V . (B) Lanes 1-8 correspond to PCR products from single Eh V plaques produced 

by plaque assay on one of the above Eh BOF92 lysates. 
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Only two of the phytoplankton species used for the 'enrichment cultures' experiment, 

Micromonas pusilla and Ch1ysochromulina ericina, lysed after approximately one week. 

AFC analysis of the lysates showed signatures with similar characteristics of those referred 

to previously as V I, V2 and Y3 (Figure 4.12). The C. ericina population includes two 

different groups of viruses as revealed by AFC. 
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Fig. 4. 12. Biparametric now cytometry plots showing populations of M. pusilla viruses (MpV) (A) and C. 

ericina viruses (CeV) (B). Heterotrophic bacteria and different groups of viruses were discriminated on the 

basis of the green DNA dye complex nuorescence versus side scatter signal. 
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4.4. Discussion 

4.4.1. Development of the E. 1111xleyi blooms. Effects of nutrient and zooplankton 

manipulation 

Nutrient enrichment of the seawater enclosures resulted in induced phytoplankton blooms. 

Correlation of cell numbers and phytoplankton biomass ( chl a) values show that E. huxleyi 

dominated the phytoplankton community and had a greater impact on the production than 

the other algal species present in the enclosures (data not shown). The same response to 

nutrient addition has been previously reported during a number of similar mesocosm 

studies (Bratbak et al. 1993, Egge & Heimdal 1994, Castberg et al. 2001, Jacquet et al. 

2002). This is likely a consequence of the high competitive ability of E. huxleyi under high 

light irradiance and excess of nutrients, mainly phosphate, conditions. E. huxleyi has the 

highest affinity for inorganic phosphate ever measured among a wide range of 

phytoplankton species and therefore, it has the ability to out-compete other phytoplankton 

species such as Synechococcus sp. and picoeukaryotes; especially when P is at levels on 

the nM range (Riegman et al. 2000). The growth rate of E. huxleyi during this study was 

higher than previously observed during analogous induced blooms of E. huxleyi in the 

same area (Bratbak et al. 1993, Castberg et al. 200 I, Jacquet et al. 2002). E. huxleyi grew 

at, possibly, its maximal rate, i.e. between 1.3 and 3 division d" 1 (Paasche & Klaveness 

1970, Brand 1981, Brand 1982, Paasche et al. 1996). First of all, the reproduction rates 

depend on the environmental regime and on genetic adaptations. It seems possible 

therefore that E. lncdeyi could owe its success in Norwegian coastal waters to the presence 

of resident populations genetically adapted to local conditions. The optimal combination of 

salinity, temperature and light intensity during the period the mesocosm experiment was 

run might have led to this very high growth rate. 

The concurrent rapid multiplication of Eh V particles as the E. huxleyi bloom declined 

indicates lytic viral infection was the main cause of bloom termination (Figures 4.3 and 
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4.5). Viral-induced collapse of E. huxleyi populations has been inferred from a number of 

studies both in the open ocean (Brussaard et al. 1996b, Wilson et al. 2002a) and in 

mesocosms (Bratbak et al. 1993, Egge & Heimdal 1994, Castberg et al. 200 I, Jacquet et al. 

2002). Jacquet et al. (2002) monitored by AFC the development of E. huxleyi populations 

and their viruses during a similar mesocosm study. They observed how as viral particles 

accumulated, die! patterns of E. huxleyi physiological properties were lost, which is a 

characteristic of vi rally infected phytoplankton cells (Brussaard et al. 1999). During 

another mesocosm study of E. huxleyi, Castberg et al. (200 I) isolated viruses that could be 

propagated on cultures of E. huxleyi. It was observed that they exhibited identical genome 

and particle size and AFC signature to the viruses that multiplied during the crash of the 

E. huxleyi bloom. We also isolated viruses during this mesocosm study infectious to 

several E. huxleyi strain cultures and with same AFC characteristics as the viruses referred 

to as Eh V (V4). 

During this mesocosm experiment Claire Evans measured E. huxleyi cell viability, using 

SYTOX staining, and detected high abundances of compromised cells during the decline 

of the bloom. Additionally, cell photosynthetic capacity (CPC) decreased concurrently 

with the decrease of the bloom (CPC was measured by Gill Malin). The appearance of 

compromised cells was concurrent with a rapid increase of the Eh V group adding further 

suppor1 to the idea of viral termination of the bloom. Laboratory experiments show high 

numbers of nonviable E. huxleyi cells during viral infection (up to 60% of the total 

population), whilst during apoptosis or programmed cell death, probably induced by 

nutrient limitation, only approximately 2 %of the total population is nonviable (Evans 

2004). Although rates of grazing were not determined during this study, the lack of 

significant differences in bloom development and tem1ination in TGD, subjected to 

zooplankton enrichment, suggests a low contribution of grazing on E. huxleyi as a factor in 

the decline of the bloom. 

86 



After maximum numbers of Eh V particles were reached, this virus group experienced a 

sudden decrease followed by a second minor peak in abundance (Figure 4.5). The demise 

of the E. huxleyi bloom would result in higher rates of viral decay due to attachment to 

particles and host cells debris, consumption by protozoan grazers and digestion by 

bacterial enzymes (Kapuscinski & Mitchell 1980, Suttle & Chen 1992, Murray 1995, 

Noble & Fuhrman 1997). However, the second peak in Eh V abundance for TGA, TGB and 

TGD might be explained by a new cycle of infection due to absorption of released Eh Vs to 

remaining E. huxleyi cells. The reason why this second increase in Eh V numbers was not 

observed in TGC could just probably be a consequence of time limitation. 

The low numbers of E. huxleyi cells in the fjord would explain that the Eh V group was not 

distinguishable in the fjord samples throughout the period of study since infection has been 

shown to be density dependent (Murray & Jackson 1992). 

Eh V appeared as a clear group during AFC analysis first in the samples from TGA and 

TGD (81
h-9th June), which were the first group to receive nutrient addition and the one 

subjected to copepod enhancement respectively, and one day after in TGB and TGC. Yet, 

the abundance of E. huxleyi in enclosures TGB and TGC on 91
h June was comparable to 

TGA and TGD. Additionally, the bloom crash occurred one day earlier in TGD than in any 

of the bags that received the same nutrient treatment, i.e. TGB. These observations suggest 

that the rate of progression of viral infection through the bloom was increased by an earlier 

nutrient addition as well as by enriching the copepods biomass. 

Microzooplankton graze preferably on certain prey types (Hansen et al. 1996). For 

instance, it has been found that infected cells of E. huxleyi are preferentially grazed by 

microzooplankton (Ciaire Evans, unpublished data). This may be the case during this 

mesocosm study, that could explain how the reduction in microzooplankton abundance, by 
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copepods grazing, would lead to the earlier production of more viruses as a higher 

percentage of infected cells would complete the lytic cycle. 

4.4.2. Influence of the E. huxleyi demise on the rest of the microbial community 

The results in this study suggest a close link between the dynamics of the microbial 

populations and are comparable to other analogous experiments in the same area in terms 

ofphytoplankton, bacteria and virus numbers and composition (Castberg et al. 2001, 

Jacquet et al. 2002). 

Only after the collapse of the E. huxleyi population did other phytoplankton groups 

experience an increase in abundance. Yet, the groups referred to as unknown and 

cryptophytes did not seem to play a very important role in the total community production 

since both populations represented a very low percentage of cell numbers throughout the 

period of study (below 2% for the unknown group and less than I %for cryptophytes). 

Copepods enrichment in bag# I 0 (TGD) did not significantly alter the succession of micro­

algae species and the progression of the bloom when compared with TGA, TGB and TGC. 

As observed in the other enclosures, E. huxleyi developed and crashed concurrently with 

an increase in Eh V numbers. As a result of the E. huxleyi demise bacteria numbers 

increased along with the concentration of other phytoplankton groups. 

Both the bloom of E. huxleyi and its viral termination also had a considerable impact on 

the bacterial community. At the time the coccolithophorid began its decrease the bacterial 

group experienced a sudden increment. During phytoplankton lysis a large proportion of 

the algal biomass is converted into dissolved organic carbon (DOC), which becomes 

available this way to the heterotrophic bacteria population (Bratbak et al. 1998a, 

Middelboe et al. 2002). Similar enhancements in bacterial numbers after a sharp decrease 
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of dominating algae have earlier been observed in mesocosm (Levasseur et al. 1996, 

Castberg et al. 200 I) and field studies (Bratbak et al. 1990). 

Also the virus groups V I, V2 and V3 increased more markedly in abundance towards the 

end of the study period subsequently to the termination of the E. huxleyi bloom. The 

increase in numbers of these virus groups coincides with an increase in some of the other 

microalgal groups. It should be noted that virus concentrations for V I and V2 are an order 

of magnitude less than V3 and V4 (Eh V); this is consistent with lower concentrations of 

some of the microalgal groups. Isolation of M. pusi/la and C. ericina-specific viruses with 

similar flow cytometry characteristics of those viruses referred to as VI and V2 in this 

study reveals that they were in the enclosures during the mesocosm experiment and were 

part of the V I and V2 groups. V3 correlates very closely to bacteria increase both in the 

enclosures and in the fjord. However, the numbers of V3 are within the range of other algal 

virus abundances (Figure 4.5). If group V3 were bacteriophages one might expect higher 

numbers for this group since in marine heterotrophic bacteria, burst size can typically reach 

>500 viruses produced per lysed cell (Borsheim 1993). Analogous experiments (Larsen et 

al. 2001, Larsen et al. 2004) tend to interpret the viruses with the highest abundance, i.e. 

those with the lower green fluorescence values (GFL), as bacteriophages since among the 

potential host organisms, bacterioplankton was found in higher concentrations than 

phytoplankton. In this study, the virus group with the lowest GFL values has nevertheless 

been obviated since its signature could not be dissociated from the flow cytometer noise 

and the back!:,rround signal caused by other small particles (impurities in solution) to form a 

discrete group. However, AFC data give a relatively coarse classification of the viral 

populations as they are based on only two parameters (SSC and GFL) what renders 

difficult to assure which virus types are exactly V I, V2 and V3. 
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4.4.3. Validity and reproducibility of mesocosm studies 

The validity ofmesocosm studies must be considered in order to discuss their accuracy as 

representations of the microbial community development under natural conditions. The 

water mass and the community inside the enclosures follow the natural fluctuations in 

irradiance and temperature (Egge 1993). A number of studies have previously shown that 

the development of the phytoplankton community inside the enclosures resembles that of 

the community in the surrounding water (Takahashi et al. 1975, Kuiper 1977, Davis 1982). 

The controlled water mass in a mesocosm is suitable for budget studies (Riemann et al. 

1990) and for verification of simulation models (Andersen et al. 1987, Keller & Riebesell 

1989). 

AFC analysis in this study revealed the development of the same microbial community 

both inside the mesocosm bags and in the fjord. However, addition of nutrients to the 

seawater in the enclosures enhanced the conditions for phytoplankton growth. As a result, 

E. huxleyi, in this case the most successfully competitive component within the 

phytoplankton community, rapidly multiplied leading to what others have reported as an 

accelerated version of community succession commonly found in the environment (Davis 

1982, Egge 1993). During this mesocosm experiment the concentration of E. huxleyi cells 

(- I 04 cells mr 1
) was in the range of what has been typically observed before during 

similar studies (Bratbak et al. 1993, Castberg et al. 200 I, Jacquet et al. 2002) and during 

natural blooms of this species in coastal water and Norwegian fjords (1-lolligan et al. 1983, 

Ackleson et al. 1988, 1-leimdal et al. 1994). 

From this study we conclude that the mesocosm set up appears to be a very robust 

experimental system that gives a reproducible response in the microbial development and 

succession when subjected to the same nutrient manipulations. The E. huxleyi population 

pro!,'Tessed sequentially in line in the three enclosure groups with the staggered nutrient 
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additions. The differences in cell numbers and timing of peaks of abundance were probably 

due to slightly different airflow in the enclosures, differences in initial cell numbers and 

the different placing of the bags at the raft, so that light and water movements outside the 

bags might be different. 

In the ideal situation discussed in the introduction, the dynamic patterns of abundance 

variations should not vary more between treatment groups than within treatment groups. 

Our analysis show that there is not statistically significant development in the bags before 

the first nutrient addition, which means that filling the enclosures and leaving them for 1-2 

days before the initial nutrient addition did not affect the system significantly. The 

statistical differences between the bags when grouped by treatment group (TG) and by 

their position at the raft (POS) were also small in absolute terms (only 3% and I %of the 

total variance respectively). Grouping the enclosures according to their east-west position 

at the raft (POS) potentially reveals whether the slight differences in light exposure had 

significant effects. 

The magnitude of the E. huxleyi bloom was higher in the TGB enclosures in (Figure 4.3). 

This effect could be attributed to natural light conditions, which are a recognized important 

factor for the development of E. huxleyi blooms (Nanninga & Tyrrell 1996). In the 

experimental period, there were large day-to-day variations in natural light conditions 

(Figure 4.1 0). Notably, the first day of nutrient addition (DAN 0) coincided with excellent 

light conditions for TG 8 ( 41
h June), but very poor conditions for TGA and TGC (3'd and 51

h 

June, respectively). In principle, such day-to-day variations in light conditions may have 

interacted differently with food webs being in different phases of succession in the three 

treatment groups. With our design, these light effects could however not be separated from 

other among-group sources of variance. However, since among-group variance was minor; 

such effects of variable light conditions must have been small. 
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For the construction of dynamic models of this experiment, our results thus support the 

validity of a set of strongly simplifying and constraining assumptions. Assuming light to be 

available in excess and the filling manipulations have no perturbing effects will remove 

many assumptions concerning mechanisms and parameters. More important, however, are 

the strong constraints to model structure and parameter values implicit in the assumption of 

an initial system approximately in steady state. When this is true, the model should both 

have a steady state representing well the initial state, and a transient response reproducing 

the observed population dynamics. Earlier work has suggested that this approach may be 

valid, with the fast dynamics of the microbial part of the food web allowing this part to 

remain close to a steady state driven by the two variables: nutrient content of the system 

and predatory losses to mesozooplankton (Thingstad et al. 1999a, Thingstad et al. 1999b ). 
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4.5. Conclusions 

The reduction in cell photosynthetic capacity and the concomitant increase in Eh V 

particles indicated that the collapse of the E. hu.xleyi bloom was caused by lytic viral 

infection. The significance of viral lysis in the bloom decline increased with the reduction 

in abundance of microzooplankton, which preferentially graze on infected E. huxleyi cells. 

The E. huxleyi bloom and in particular its termination by viruses affected both diversity 

and dynamics of the rest of the microbial community, algae, bacteria and viruses. 

The results in this study can be added to a number of studies concluding the importance of 

viruses controlling the maintainable densities of algal and bacterial populations in the 

environment (Cottrell & Suttle 1991 a, Suttle & Chan 1995, Tarutani et al. 2000, Castberg 

et al. 200 I, Larsen et al. 200 I, Jacquet et al. 2002). 

The mesocosm setup appears to be a robust experimental system that gives a reproducible 

response when subjected to (nutrient) manipulations initiating a sizable succession. For the 

construction of dynamic models of this experiment, our results thus support the validity of 

a set of strongly simplifying and constraining assumptions (steady state). 
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5. Molecular dynamics of Emiliania lruxleyi and eo-occurring viruses 

during two separate mesocosm studies 

5.1. Introduction 

There is a huge diversity of viruses in the ocean (Suttle 2005) and this fact alone makes 

them incredibly difficult to study as a single entity. Therefore it has become necessary to 

study specific groups of viruses to try and make sense of their propagation strategy and 

molecular dynamics. 

Previous studies using mesocosm systems have investigated the effects of dissolved 

nutrient composition on the community dynamics of E. luu:leyi dominated systems and the 

role viruses have in structuring different microbial components (Bratbak et al. 1993, 

Wilson et al. 1998, Jacquet et al. 2002). It is clear from these studies that viruses are 

instrumental in the demise of E. huxleyi blooms and allow succession of different micro 

algae following rapid bacterial remineralisation of organic matter (Castberg et al. 200 I, 

Larsen et al. 200 I). As the E. huxleyi bloom crashes there is a rapid increase in large virus 

particles, easily discriminated by analytical flow cytometry (AFC) (Jacquet et al. 2002, 

Wilson et al. 2002a). 

These large virus particles can be isolated with relative ease by adding filtered sea water to 

cultures of E. huxleyi (Castberg et al. 2002, Wilson et al. 2002b). Characterization of these 

large E. luLrlt:vi-specific viruses (Eh Vs) revealed that they belong to the family of algal 

viruses Phycodnaviridae, based on analysis of their DNA polymerase (pol) gene 

(Schroeder et al. 2002). The genome of one strain of Eh V isolated from the English 

Channel was recently sequenced revealing a 407 kbp genome, the largest algal virus 

sequenced to date (Wilson et al. 2005a). 
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lt is already recognized that there can be a broad genotypic variety within populations of E. 

huxleyi (Medlin et al. 1996, lglesias-Rodriguez et al. 2002) and Eh Vs (Schroeder et al. 

2003) during E. huxleyi-dominated blooms, although these tools have never been used 

together to assess the virus/host molecular dynamics. lt is necessary to develop appropriate 

tools before such an assessment can be made. Thus, for the analysis of E. hw:leyi 

Schroeder et al. (2005) showed that a gene encoding a protein with calcium-binding motifs 

(designated GPA), thought to be involved in regulating coccolith morphology (Corstjens et 

al. 1998), could be used as a genetic marker to definitively resolve differences that could 

be attributed to different E. hliXIeyi genotypes within the A and B morphotypes kept in 

culture. E. huxleyi is currently separated into five morphotypes based mainly on coccolith 

morphology, physiological properties and immunological properties of the polysaccharide 

associated with coccoliths. Morphotypes A and Bare the best characterised. 

For Eh V analysis Schroeder et al. (2002) exploited variations in the Major Capsid Protein 

(MCP) gene to assess the genetic diversity ofEhVs. Schroeder et al. (2003) used the MCP 

marker to reveal genetic richness of free-floating viruses during an E. huxleyi bloom in a 

mesocosm experiment in Norway in 2000. The DNA polymerase gene, more commonly 

used to resolve genetic variation among other algal viruses (Chen & Suttle 1995, Short & 

Suttle 2002) is not variable enough to differentiate Eh Vs. 

In the current study we extend the research of Schroeder et al. (2003) by using a 

combination of GPA and MCP molecular markers to check the dynamics and genetic 

richness of E. huxleyi and their eo-occurring viruses during the same mesocosm 

experiment (from June 2000). Additionally, we analyzed samples from a second mesocosm 

experiment at the same site 3 years later (June 2003). The aim of this study was two-fold; 

first to assess the molecular dynamics of the host/virus system in situ; and second, to 

detennine the genetic stability/variability of E. huxlevi and their eo-occurring viruses over 
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time (i.e. after a 3-year gap), particularly since E. huxleyi blooms occur annually in May 

through July in Norwegian coastal waters and fjords (Bratbak et al. 1993 ). In addition to 

the genotypic analysis, AFC was used to count the E. huxleyi and virus populations in 

mesocosm samples. 
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5.2. Materials and methods 

5.2.1. Experimental design 

Two mesocosm experiments designed to monitor the progression of a coccolithophore­

induced bloom were carried out in Raunefjorden, westem Norway, at the Marine 

Biological Field Station, Espeland 20 km south of Bergen, in June 2000 and June 2003. 

The experimental design and the AFC analysis of E. huxleyi and its natural viral 

communities for the 2000 mesocosm are as described by Jacquet et al. (2002). The setup, 

experimental design and AFC for the 2003 mesocosm are as described in Sections 2.2.20 

and 4.2 in this thesis, respectively. 

5.2.2. DNA isolation 

For total genomic DNA preparations I L sea water samples from enclosure #I for the 2000 

mesocosm experiment and from enclosures# I, #4, #7 and #I 0 for the 2003 mesocosm 

experiment were filtered daily onto 0.45 11m pore size Supor-450 47 mm diameter filters 

(PALL Corp). Genomic DNA was isolated using an adapted phenol/chloroform method 

(Section 2.2.11.2). 

5.2.3. Polymerase Chain Reaction (PCR) amplification and DGGE 

E. huxleyi genotypic richness was studied using a nested PCR on the total genomic DNA 

preparations. Three oligomers were designed to the GPA gene of E. huxleyi strain L (Table 

2.5). Two-stage PCR reactions (firstly with primers GPA-Fl/GPA-Rl and secondly with 

GPA-F2/GPA-R I) were conducted to amplify the variable region within the GPA gene that 

separates the alleles into genotypes (Schroeder et al. 2005). The PCR reactions were 

performed as described in Section 2.2.12. 

Viral diversity studies were also conducted by two stage PCR reactions (Section 2.2.12). 

Amp I ification of virus MCP gene was conducted using two pairs of MCP speci fie 
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oligomers coupled as MCP-Fl/MCP-RI and MCP-F2/MCP-R2 (Table 2.5). DGGE 

analysis of second-stage, host and viral, PCR products was conducted as described in 

Schroeder et al. (2003) with some minor adjustments (see Section 2.2.14). 

5.2.4 DNA sequencing and sequence analysis 

Single bands excised from the DGGE gels were re-amplified. PCR products were 

subsequently sequenced and the data for each fragment analysed (Section 2.2.15). The 

GPA sequences produced were aligned together with GPA sequences obtained from 15 

E. lwxleyi isolates kept in culture (Schroeder et al. 2005). The produced MCP sequence 

data was aligned with corresponding MCP sequences of9 clonal Eh Vs isolated between 

1999 and 200 I from the English Charmel (Schroeder et al. 2002, Wilson et al. 2002b) and 

I clonal virus isolated during the 2000 mesocosm experiment in Raunefjorden (Schroeder 

et al. 2002) (see Tables 2.3 and 2.4 for GenBank accession numbers). 
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5.3. Results 

For the 2003 mesocosm experiment only graphs and images obtained for samples from 

enclosure #7 will be presented since they are representative of the results obtained from 

four enclosures in the study. In fact , enclosures# 1, #4 and #7 were replicates of each other 

since they were subjected to the same nutrient manipulation. Enclosure #I 0 received the 

same nutrient treatment as # I, but was additionally enriched with copepod biomass (see 

Section 4.2.2). 

5.3.1. PCR amplifi cation 

E. huxley i GPA gene fragments were amplified, yielding products of 500 bp in the first­

stage PCRs (not revealed by agarose gel electrophoresis analysis) and - 285 bp in the 

second-stage PCRs (Figure 5.1 A). PCR reactions using the specific MCP primers for 

EhY's amplified 284 bp fragments (not revealed by agarose gel electrophoresis analysis) in 

the first-stage reactions and 175 bp in the second-stage reactions (Figure 5.1 B) 

A 2 3 4 5 6 7 8 9 10 tt 12 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 

2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 18 19 20 21 22 23 24 25 2627 28 29 
8 

Fig. 5.1. Representative images of agarose gel electrophoresis of PCR fragments amplified in second-stage 

PCR from total genomic DNA extracted from a number of samples collected during the 2003 mesocosm. (A) 

Lane 2-28, E.lncdeyi GPA gene fragments. (B)Lanes 2-28, EhV MCP gene fragments. In both gels: lane I, 

DNA molecular weight marker (I 00 bp ladder): lane 29, no DNA (negative control). 
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5.3.2. Flow cytometry analysis 

AFC was used to monitor the total abundance of E. huxleyi and Eh Vs during the blooms in 

2000 (Jacquet et al. 2002) (Figure 5.2) and 2003 (Figure 5.3). During the 2000 mesocosm 

E. huxleyi numbers increased by 2 orders of magnitude, from 103 to I 05 cells mr 1, between 

the beginning of the experiment and the peak of the bloom. E. hiLI:leyi numbers returned to 

pre-bloom levels of 3 X I 03 cells mr I at the end of the study (Figure 5.2A). An increase of 

-2 orders of magnitude was also observed in Eh V abundances, from 4.7 xJ05 to 3.5 xJ07 

virus mr 1 during the collapse of the E. huxleyi bloom, revealing a classic lytic virus 

response to a susceptible host population (Figure 5.28). 

During the 2003 mesocosm a similar pattern in virus-host dynamics was observed 

compared to the 2000 mesocosm (Figure 5.3). E. huxleyi numbers increased by I order of 

magnitude, from- 1.5 xI 03 to- 4 x I 04 cells mr 1
, over the 7 days prior to the bloom 

crash. At this point, E. lwxleyi numbers fell rapidly and returned to approximately the same 

cell numbers as before the initiation ofthe bloom, 1.5 x 103 cells mr 1 (Figure 5.3A). EhV 

numbers increased by- 2 orders of magnitude, from 4.3 x I 05 to 3 x I 07 virus mr 1 

following the sudden demise of E. huxleyi (Figure 5.38). 

5.3.3. E. hux/eyi DGGE gels 

DGGE analysis of the PCR products using the GPA specific primers revealed a stable E. 

huxleyi community during the bloom progression in both mesocosm studies, 2000 (Figure 

5.2A) and 2003 (Figure 5.3A). Since E. huxleyi strains can contain more than one allele 

(Schroeder et al. 2005), the number of bands revealed in this study is just an indication of 

the number of different alleles and does not show, quantitatively, diversity of E. huxleyi 

strains. The gels showed at least 6 distinguishable bands throughout both periods of study 

(Figure 5.3A). Not one of the alleles seemed to be dominant before, during or after the 

blooms (Figures 5.2A and 5.3A). 
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Fig. 5.2 DGGE gels ofPCR fragments ampli fied from the mcsocosm samples in 2000. The graphs depict the 

progression of£. hux/eyi (A) and E.lwx/eyi-speci fie virus (B) populations during the bloom determined by 

now cytomctry. Symbols indicate the bands excised for sequencing, identical symbols indicating identical 

nucleotide sequence (sec Table 5. 1 ). Standards (S), MCP-PCR fragments amplified from known£. lwxleyi-

specific vi rus strai ns isolated from the English Channel and Raunefjorden (Norway) (Schroeder et al. 2002, 

Wilson et al. 2002b). 
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flow cytometry. Symbols indicate the bands excised for sequcncing, identical symbols indicating identical 

nucleotide sequence (see Table 5. 1 ). Standards (S). same as Fig. 5.2. 
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All the alleles corresponded to E. lwxleyi morphotype A, genotype CMM I (Schroeder et 

al. 2005) (Figure 5.4). The authenticity of the DGGE bands was confirmed by excising a 

total of34 single bands (between both gels), verifying their purity by PCR and re-DGGE 

(data not shown) and sequencing. The migration rate on DGGE gels and sequence 

alignment revealed that multiple bands on an individual sampling day were different; 

whilst bands from different days that migrated at the same rate had identical nucleotide 

sequence (Figure 5.4). Table 5.1 summarizes the data and Gen8ank accession numbers of 

each fragment sequenced. The alleles present in 2000 were identical to the ones from the 

2003 mesocosm study (Schroeder et al. 2005) (Table 5.1 ). 

5.3.4. Virus DGGE gels 

The 2000 mesocosm DGGE gel showed a diverse band pattern prior to the onset of E. 

huxleyi bloom (Figure 5.28). At least 6 bands were distinguishable in the pre-bloom 

profile (ehvOTU9-)), ehvOTU3.l., ehvOTUIO*, ehvOTU5o, ehvOTU7o and 

ehvOTU2 ~ ). A shift in bands present was observed during the bloom, where ehvOTU7o 

and ehv0TU2 ~ disappeared and two new bands ( ehvOTU I+ and ehv0TU4•) became 

visible. During post-bloom ehvOTU3 .l., ehvOTU I+ and ehvOTU4• dominated; 

ehvOTU3 .l. was detected before, during and after the E. huxleyi bloom. 

The DGGE profile for the 2003 mesocosm (Figure 5.38) also revealed a change in 

abundance of virus groups, with the appearance/disappearance of bands. In the 4 days prior 

to the onset of the bloom four bands were distinguishable (ehvOTU3 .l., ehvOTU5o, 

ehvOTU4• and ehvOTU 16t!l). During the bloom and post-bloom periods a shift in the 

bands was observed where ehv0TU5o, ehv0TU4• and ehvOTU 16t!l bands disappeared 

and they were replaced by ehvOTU 11• and ehvOTU 1+. Incredibly, the same two bands 

dominated during the bloom/post-bloom period in both 2000 and 2003 mesocosms 

103 



( ehvOTU3 .A. and ehvOTU I+); and the same band shift from ehvOTUSo to ehvOTU I+ 

was observed from the onset of the bloom between the 2 years. 

E. huxleyi 

Year DGGE GP A sequence Genotype GenBank 

band CMM group accession number 

2000/2003 • ehuxOTUI DQ085072 

2000/2003 ~ ehux0TU2 DQ085073 

2000/2003 • ehuxOTU3 DQ085074 

2000/2003 a ehuxOTU6 DQ085075 

2000/2003 0 ehuxOTU4 DQ085076 

2000/2003 - ehux0TU5 DQ085077 

E. hw:/eyi-specific viruses (Eh Vs) 

Year DGGE MCP sequence2 Genotype GenBank 

band MCP group accession number 

2000 1.)- ehv0TU9 I DQ084392 

2000/2003 ... ehv0TU3 Il AYI443763 

2000 ... ehvOTU 10 Ill DQ084393 

2000/2003 • ehvOTUI IV A Yl443743 

2000/2003 D ehv0TU5 V AYI443783 

2000 0 ehv0TU7 VI A Yl443803 

2000/2003 • ehvOTU4 vu AYI4437i 

2000 .. ehv0TU2 VIII A Yl443753 

2003 • ehvOTUII IX DQ084394 

2003 1!!1 ehv0TUI6 X DQ084399 

Table 5.1. List of£. Jwxleyi and £. Jwxleyi-virus genotypes found in this study and GenBank references for 

their sequence data. 1284-287 bp fragments from the GPA gene encoding a protein with calcium-binding 

motifs. 199 bp fragments from a gene encoding the putative major capsid protein. 3Gen8ank accession 

numbers published previously to this study. The same DGGE bands and their corresponding sequences were 

also detected by Schroeder et al. (2003). 
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TTTCGGGCTGGGACATGCACGTTTCGGCAGGAGAGCGCGTCGGGGGGGGG-CTCATCTTGCAGCGCTGCGGCCTGGCCGGCAGTCTCTCGAC 
TTTCGGGCTGGGACATGCACGTGTCGGCAGGAGAGCGCGTCGGGGGGGGG-CTCATCTTGCAGCGCTGCGGCCTGGCCGGCAGTCTCTCGAC 
TTTCGGGCTGGGACATGCACGTGTCGGCAGGAGAGCGCGTCGGGGGGGGG-CTCATCTTGCAGCGCTGCGGCCTGGCCGGCAGTCTCTCGAC 
CTTCGGGCTGGGACATGCACGTGTCGGCAGGAGAGCGCGTCGGGGGGGGGGCTCATCTTGCAGCGCTGCGGCCTGGCCGGCAGTCTCTCGAC 
CTTCGGGCTGGGACATGCACGTGTCGGCAGGAGAGCGCGTCGGGGGGGGG-CTCATCTTGCAGCGCTGCGGCCTGGCCGGCAGTCTCTCGAC 
CTTCGGGCTGGGACATGCACGTGTCGGCAGGAGAGCGCGTCGGGGGGGGG-CTCATCTTGCAGCGCTGCGGCCTGGCCGGCAGTCTCTCGAC 
CTTCGGGCTGGGACATGCACGTGTCGGCAGGAGAGCGCGTCGGGGGGGGG-CTCATCTTGCAGCGCTGCGGCCTGGCCGGCAGTCTCTCGAC 
CTTCGGGCTGGGACATGCACGTGTCGGCAGGAGAGCGCGTCGGGGGGGGG-CTCATCTTGCAGCGCTGCGGCCTGGCCGGCAGTCTCTCGAC 
CTTCGGGCTGGGACATGCACGTGTCGGCAGGAGAGCGCGTCGGGGGGGGG-CTCATCTTGCAGCGCTGCGGCCTGGCCGGCAGTCTCTCGAC 
CTTCGGGCTGGGACATGCACGTGTCGGCAGGAGAGCGCGTCGGGGGGGGG-CTCATCTTGCAGCGCTGCGGCCTGGCCGGCAGTCTCTCGAC 
CTTCGGGCTGGGACATGCACGTGTCGGCAGGAGAGCGCGTCGGGGGGGGG-CTCATCTTGCAGCGCTGCGGCCTGGCCGGCAGTCTCTCGAC 
CTTCGGGCTGGGACATGCACGTGTCGGCAGGAGAGCGCGTCGGGGGGGGG-CTCATCTTGCAGCGATGCGGCCTGGCCGGCAGTCTCTCGAC 
CTTCGGGCTGGGACATGCACGTGTCGGCAGGAGAGCGCGTCGGGGGGGGGGCTCATCTTGCAGCGCTGCGGCCTGGCCGGCAGTCTCTCGAC 
CTTCGGGCTGGGACATGCACGTGTCGGCAGGAGAGCGCGTCGGGGGGGGGGCTCATCTTGCAGCGCTGCGGCCTGGCCGGCAGTCTCTCGAC 
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CTTCGGGCTGGGACATGCACGTGTCGGCAGGAGAGCGCGTCGGGGGGGGGGCTCATCTTGCAGCGCTGCGGCCTGGCCGGCAGTCTCTCGAC 
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Fig. 5.4. Clustal alignment of£. lwxleyi DGGE band sequences produced from the two mesocosm studies 

(designated ' ehuxOTUs') (Table 5. 1) and from isolates in culture (Schroeder et al. 2005). The box indicates 

the region within the sequences that allows differentiati ng between genotypes (CMMs). A or 8 indicates 

CM M morphotype (Schrocder et al. 2005) Variati ons in sequence composition are highlighted in bold. 
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Excision, sequencing and alignment using Clusta!W confinned the diversity of bands 

(Figure 5.5) and revealed that single bands with different migration rates corresponded to 

different E. huxleyi-specific virus genotypes. 

MCP sequence data and GenBank accession numbers of the Eh V genotypes found in this 

study are summarized in Table 5.1. Four out of the 8 genotypes from the 2000 mesocosm, 

ehvOTU 1+, ehvOTU3 •, ehvOTU4• and ehv0TU5o, were also detected in the 2003 

mesocosm studies. The rest of the genotypes were detected only during the 2000 

(ehv0TU2 ~, ehv0TU7o, ehvOTU9-l:)-and ehvOTUIO*) or the 2003 (ehvOTUII• and 

ehvOTUI61.!1) mesocosms (Table 5.1). Genotype ehvOTUI+ was identical to the sequence 

obtained from the Eh V -163 strain, which was isolated during the mesocosm experiment in 

2000 (Schroeder et al. 2002). In addition, two of the genotypes detected only during the 

2000 mesocosm, ehv0TU9-l:)- and ehvOTU I 0*, had the same MCP sequence as the Eh V-

203 and EhV-207 isolates from the English Channel (Schroeder et al. 2002) respectively 

(Figure 5.5). 

DGGEs, conducted in triplicate, produced the same band pattern of E. hzcdeyi and E. 

huxleyi-specific viruses among the replicate enclosures (results not shown). The results 

presented here are representative of all the enclosures in the experiment. 
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EhV-84 

EhV-88 

EhV-86 

GACGATCTTGAGGTACATCCACGATAGCAAATCGCCTTGGCGATTTACGGTAATATGCGACTCAGCACCGAACTGAACCTGAGTTGTGAATGGCTGGTT 

---- ----- --------------------------------A---------------------------- -- ----------------- ---- --- ---
---- -- --- ---------------------------------------------------- -----C--A-- ---------G-----------------

ehvOTU4 ( • ) ---R-- --- --------------- -- -------------A--G--G--------------------C--A-----------G--------------A-­

ehvOTU11(• ) - --A-- - -- ------------- --- --------------A-----G----- -- -------------C--A-------- ---G-- ----- --- ----A--

~L~ .~. 1£ 1 ---A- - ---- ---------------------- ----- --A-- - ------------------ ---- -C--A--- -- - --- --G- -------------A--

EhV-163 ---A----- ------------------------------A-----G--------------------C--A-----------G-----------------

ehvOTU1 (+ ) ---A----- ------------------------------A-----G--------------------C--A-----------G----------------­

ehvOTU7 (o) ---R-- - --R--------------------G--------C----CG--------------------C--A-----------R--------------A-Y 

ehvOTUS (0) ---A--- -- ---------------A--A-GG--------C-T---G--------------------C--A-----------G--------------A-­

ehvOTU16(. ) ---A--- -- ---- -- ---------A--A-AG--------C-T---G--------------------C--A-----------G--------------A-­

e hvOTU2 (T ) ---- ----- ---------------------G--------C-T---G-----------------G--C--A-----------G----- - --------A--

EhV-207 ---- -----A- - - --- ----------- - --G--------C-T-- - G- --------- --------- - - - -A--------------------------A--

ehvOTU10( * ) ---- -----A---- - ---------------G--------C-T---G-----------------------A--------------------------A--

EhV-202 ---- -----A--------------------G--------C-T---G---------------A-------A--------------------------A--

EhV-208 ---- -- ---A--------------------G--------C-T---G-------C---------------A--------------------------A--

EhV-201 ---- -- ---A--------------A--A-GG-- ---- --C-T- --C--A------------ --G-----------------G------G-C--------

EhV-205 --- -- - ---A--------- -----A- -A-GG--------C-T- --C--A--------------G-----------------G------- - C--------
r--------. 

EhV-203 ---- -----A-----------------A-GG--A--C--T- T---C--A--------------G-----------------G--------C--------

ehvOTU9 (o ) --- - -- - - -A-- - --- ------- - ---A-GG--A--C--T-T---C--A--------------G-----------------G--------C--------

Fig. 5.5. Clustal alignment showing E. huxleyi-specific virus genotype richness ('ehvOTUs ' ) during both mesocosm experiments based on the 

amplified MCP (sec Table 5.1 ). Sequences from the known £. huxley i-specific vi rus iso lates used as DGGE standards arc a lso included 

(Schrocdcr et al. 2002). fdentical sequences are grouped together with boxes. Conserved bases are identified as a dash underneath the 

corresponding base from EhV84. 
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5.4. Discussion 

This study examined and compared the succession and termination of two analogous 

induced blooms of E. huxleyi separated in time by 3 years. The use of the molecular 

markers GP A and MCP (Schroeder et al. 2002, Schroeder et al. 2003, Schroeder et al. 

2005) allowed the resolution of genetic variation among E. huxleyi and Eh Vs respectively. 

The results from this investigation revealed not only a genetically rich E. huxleyi and Eh V 

community, but also identical E. huxleyi genotypic composition and the same shift in Eh V 

genotypes during the bloom and post-bloom periods in the 2000 and 2003 mesocosm 

studies. AFC data gave an overview of the progression in numbers of E. huxleyi and Eh V 

populations (Figures 5.2 and 5.3). The increase in virus numbers as more hosts lysed 

revealed a typical lytic propagation strategy for this virus, and confirms what we already 

know from laboratory studies (Schroeder et al. 2002, Wilson et al. 2002b). 

Only alleles correlated with E. huxleyi morphotype A were detected during both mesocosm 

experiments. This is in accordance with what previously reported by Batvik et al. ( 1997) 

and Young (1994) who recorded only morphotype A coccoliths on samples collected from 

enclosures during similar mesocosm experiments in the same area between 1991 and 1994. 

The development of the same E. huxleyi community and the same succession of the 

dominant virus genotypes in both years, despite some differences in bloom dynamics (i.e. 

cell numbers and duration of the Jag, exponential and termination phases), is not likely to 

be a bias of the nutrient addition in the enclosures. Schroeder et al. (2003) observed that 

during the 2000 mesocosm the same viruses were responsible for the termination of the 

bloom also in enclosures that were either P- or N-depleted. Although they could not 

determine the genotypic composition of the E. huxleyi community in those enclosures, 

host-range specificity indicated the same viruses dominated despite the nutrient regime. 
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It is clear from the DGGE profiles produced prior to the onset of the bloom that a range of 

virus genotypes was present in the water column. It is likely that those viruses are remnants 

ofprevious bloom-lysis events. Detection of a diverse population ofremnant viruses prior 

to the onset of the bloom indicates that they can remain in the water column long after their 

specific host(s) has 'disappeared'. However, our detection methods do not necessarily 

mean that they are still viable (Wommack et al. 1996).lfa virus that is able to infect the 

dominant E. huxleyi genotype(s) is present during a bloom event, a very large part of the 

host assemblage could be infected and 'removed'. This would allow other E. hw:leyi 

genotypes not susceptible to the, now, dominant viruses to occupy the niche, and therefore 

would determine the succession of different host genotypes and the subsequent production 

of new viral genotypes in the fjord, as described in the 'kill the winner' model (Thingstad 

2000). Similar patterns in genetic succession were described in the Gulf of Aqaba, Red 

Sea. Changes in abundance and genetic diversity of the marine picophytoplankton 

Synechococcus, over an annual cycle, were determined by interactions with eo-occurring 

cyanophages (Miihling et al. 2005) proving that virus infection can play an important role 

in detern1ining the succession of Synechococcus genotypes. 

The fact that we observed 'identical' events in 2000 and 2003 at the same time of the year 

indicates a periodical annual succession of identical E. huxleyi genotypes, which in turn 

would determine the viral genotypic succession. Our DGGE results did not show variation 

of dominant E. huxleyi genotypes throughout each mesocosm experiment. This suggests a 

genetically stable E. huxleyi population exists in this fjordic system and these dominant 

strains have an efficient survival strategy between blooms. The stability of E. huxleyi 

populations in 2000 and 2003 was reflected by the identical population shifts of the 

dominant virus genotypes between the two studies (Figures 5.2 and 5.3). This was despite 

two different genotypic virus profiles prior to the onset of the bloom. 
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Metaphorically, viruses seemed to be jostling for position until the appropriate host 

E. huxleyi strains started to increase in numbers. The fact that diverse populations of Eh Vs 

are present in the water column poses two questions: how do the same viruses persist and 

remain viable in the marine environment throughout the years even at times when the host 

numbers are low? And what E. huxleyi strains do they infect? For the first question, one 

hypothesis is that they sink out into deep water layers or sediments, where they can escape 

destruction by solar radiation (Suttle & Chen 1992, Weinbauer et al. 1999). Yet the 

ecological weight of algal virus reservoirs in sediments and deep waters and the 

importance of mixing in transferring viruses to surface water layers are currently subject to 

speculation. Another hypothesis could be that if E. huxleyi numbers do not completely 

disappear in the fjord, a low virus production could be maintained all year around. Miihling 

et al. (2005) observed that Synechococcus numbers always exceeded the density required 

for persistence of the phages that infect them (Suttle & Chan 1994, Mann 2003) in the Gulf 

of Aqaba. The second question could probably be answered after a much more 

comprehensive study comprising temporal and spatial sampling regimes to determine if 

more diverse E. huxleyi populations are indeed present. We know from culture studies that 

a broad genotypic diversity of E. huxleyi exists (Medlin et al. 1996, lglesias-Rodriguez et 

al. 2002, Schroeder et al. 2005). In Chapter 6 the E. huxleyi/EhV dynamics in the North 

Sea were investigated and revealed a broad range of E. huxleyi genotypes and genotypic 

shifts were observed in that Lagrangian study. 

Finally, it is noteworthy that ehv0TU9-l) and ehvOTU I 0* had identical MCP sequences 

to Eh V strains EhV-203 and EhV-207 respectively (Figure 5.5), both of which were 

isolated in the English Channel in 200 I (Schroeder et al. 2002). 
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5.5. Conclusions 

In summary, this study indicates, for the first time, the effectiveness of the GPA gene 

(Schroeder et al. 2005) as a molecular marker to differentiate E. hw:leyi genotypes within 

the A and 8 morphotypes in natural communities. 

Our findings also provide new insights of the progression and structuring, at a molecular 

level, of natural blooms of the key species E. huxleyi. Results suggest that E. huxleyi 

blooms may occur every year at the study site in a highly conserved manner with the same 

E. huxleyi and Eh V genotypes probably re-occurring in annual cycles. 
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6. Dynamics and genotypic composition of Emiliania huxleyi and their 

eo-occurring viruses during a phytoplankton bloom in the North Sea 

6.1. Introduction 

Vast E. huxleyi blooms occur during spring and summer in offshore, coastal and oceanic 

waters at mid-latitudes (45 to 55 "N) (Ackleson et al. 1988). Indeed, coccolithophore 

blooms are seasonally predictable in certain areas including the North Sea (Holligan et al. 

1983). The study of natural blooms is indispensable for determining biodiversity 

(Widdicombe et al. 2002), to clarify the importance of viruses as mortality agents 

(Brussaard et al. 1996b ), to determine community dynamics through vertical profiles 

(Wilson et al. 2002b) and to quantify the processes that influence the biogeochemical 

cycling in surface waters (Turner et al. 1988, Holligan et al. 1993, Malin et al. 1993) 

during the progression of an E. huxleyi bloom. 

An extraordinary opportunity to investigate all the aspects above, among others, was given 

during a multidisciplinary cruise that followed the progression of a developing E. huxleyi­

rich phytoplankton bloom in a programme called 'Dimethyl Sulphide biogeochemistry 

within a COccolithophore bloom (DISCO)', in the northern North Sea in June 1999. The 

study comprised analyses of the biological, optical and physical properties of the patch of 

water containing the bloom as well as studies of sulphur compounds, nutrients, and other 

chemical compounds cycling. In addition, the role of viruses, bacteria, phytoplankton and 

zooplankton, the dynamics of primary production, plankton respiration, grazing and 

sedimentation were investigated in relation to the biogeochemical cycling of dimethyl 

sulphide (DMS) (for an overview see Burkill et al. (2002)). 

Between the !8'h and 23'd June (la!,rrangian period of the study) the water column could be 

divided into 3 layers (surface, subsurface and bottom) based on the I 0.5 oc and 8.5 oc 
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isotherms. A patch of warmer, lower salinity surface water entered the sampling area from 

the 2Yd June, forming a new surface layer above the 11.5 oc isothem1 (Figure 6.1) (Wilson 

et al. 2002a). The new patch of fresher water originated from the direction of the 

Norwegian coast. Further details of the physical structure of the study site were described 

by Burkill et al. (2002). 
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--- _, 
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Date In June 1999 

Fig. 6.1. Contour plot oftemperature throughout the period of study. Warm surface, surface, subsurface and 

deep thermal layers are defined according to the 11.5 °C, I 0 °C and 8.5 oc isotherms respectively. (Wilson et 

al. 2002a). 

As part of the DISCO cruise Wilson et al. (2002a) investigated the E. huxleyi and E. 

huxleyi-specific virus (Eh V) dynamics by examining their concentrations through vertical 

profi les by analytical flow cytometry (AFC) (Figure 6.2). Their aim was to obtain high-

intensity sampling data of E. huxleyi and Eh Vs to gain information on the temporal and 

spatial dynamics in an open-water site. They could easily discriminate E. huxleyi and Eh V 

populations from other phytoplankton and virus groups respectively due to their 

characteristic AFC signatures (Wi lson et al. 2002a). Wilson et al. (2002a) found that E. 

huxleyi numbers were higher in surface water, becoming undetectable below 
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approximately 40-45 m depth, which corresponded to the 8.5 oc isotherm. Through out the 

lagrangian survey there was first an increase in E. hzL1:leyi numbers (181h to 21 51 June), and 

then a decrease towards the end of this first part of the study (Figure 6.2A). The highest 

concentrations were observed in surface water immediately after the influx of the warmer 

patch of water on the 241h June then gradually decreased between the 271h and 291h June 

(Figure 6.2A). During those last 3 days E. huxleyi concentrations increased at depths of 

between 30-40 m. Concurrently with the increase of E. huxleyi during the lagrangian 

period there was a net decrease in Eh V concentrations in the surface. Following the influx 

of warmer surface waters (23'd June) the vims group reached maximum concentrations 

(24-25'h June) then decreased towards the end ofthe study (Figure 6.2B). There was no 

apparent change in Eh V concentrations in the sub-surface (30-40 m) peak of E. huxleyi 

from 27-29 June. 

In the current study we have gone a step further in the investigation of the E. huxleyi and 

their eo-occurring vims dynamics by assessing changes in their genotypic composition 

during the bloom progression using specific primers. We have exploited the variations 

found in a gene encoding a protein with calcium-binding motifs (GPA) in E. huxleyi 

(Schroeder et al. 2005) and in the major capsid protein gene (MCP) of the E. hliXIeyi­

specific vimses (Schroeder et al. 2002, Schroeder et al. 2003) to analyze samples taken 

during the cmise using denaturing gradient gel electrophoresis and sequencing analysis. 
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Fig. 6.2. Contour plot of E hw:leyi concentrations (cells mr 1
) (A) and Eh V concentrations (virus particles 

mr1
) (B), as determjned by AFC, throughout the course of the study. Crosses indicate the depth at wru ch 

amples were collected. (Wilson et al. 2002a). 
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6.2. Material and methods 

6.2.1. Study site 

The samples were collected during a research cruise aboard the RRS-Discovery, between 

the 5th and 29th of June 1999, that followed a coccolithophore bloom originally located at 

59 oN 0 I 0 E in the North Sea. The experimental design and the AFC analysis are as 

described by Wilson et al. (2002a). Briefly, the cruise was split into three parts, an initial 

box survey to identify the bloom combining satellite imagery and measurements of 

E. huxleyi concentrations by AFC; a lagrangian time-series study was then conducted 

between the 18th and 23'd of June, when the selected patch of water was traced with sulphur 

hexafluoride (SF6) using methods described previously (Law et al. 1998); and a final 

survey of the bloom between the 24th and 29th of June. 

6.2.2. Sample collection 

Sea water was collected daily from a depth profile, down to approximately I 00 m, typically 

just after midnight and midday, using a stainless-steel CTD sampler system equipped with 

12 Niskin bottles (30 L). Sampling for total genomic DNA preparations was conducted by 

William H. Wilson. One litre ofseawater from each depth samples was filtered onto 0.45 

f.!m pore size Supor-450 47 mm diameter filters (PALL Corp). The focus ofthe study was 

to look at viruses in infected cells which will be held on a 0.45 f.!m filter; however, the 

chances are that the filters would also retain some free-floating viruses upon clogging of 

the filter pores and viruses attached to other particles in the water column. The filters were 

transferred to 2 ml cryotubes, snap frozen in liquid nitrogen and stored at -20 oc until 

further processing (sampling was conducted by William H. Wilson). For virus and host 

enumeration using AFC, sub-samples were also collected from each depth sample as 

described by Wilson et al. (2002a). 
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6.2.3. DNA isolation 

Genomic DNA was isolated from the particulate matter retained on the SUPOR filters 

using an adapted phenol/chloroform method (Section 2.2.11.2). 

6.2.4. Polymerase Chain Reaction (PCR) amplification, DGGE and DNA sequencing 

E. huxleyi and E. hux/eyi-specific virus genotypic richness during this phytoplankton 

bloom were determined by nested PCR, DOGE and sequencing analysis as described in 

Chapter 5, Sections 5.2.3 and 5.2.4. GPA and MCP sequences from the North Sea were 

aligned together with the GPA and MCP sequences indicated in Chapter 5 (see Tables 2.3, 

2.4 and 5.2 for GenBank accession numbers). 
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6.3. Results 

6.3.1. Eh V richness 

DGGE analysis of virus MCP fragments revealed a diverse and dynamic Eh V community 

throughout the period of study (Figure 6.3). Most of the DNA preparations from filtered 

seawater amplified good clean EhV-specific MCP products by PCR (results not shown) 

and bands on DGGE gels were easily defined. MCP bands represent different genotypes, 

each genotype represents a different virus (Schroeder et al. 2002, Schroeder et al. 2003). 

The symbols, abbreviations and GenBank accession numbers of the MCP bands and their 

sequences are summarised in Table 6.1. 

DGGE gels showed a stable Eh V community composition at all depths between the 181
h-

23'd June (Figure 6.3). During this period 2 bands (ehv0TU3 (a) and ehvOTUI (b)) were 

dominant in samples from all depths. The intensity of these 2 bands increased towards the 

21 ' 1 June in the upper 40 m and then decreased on following days. Low intensity bands 

during the same period had a more variable pattern and were not always easily visualised 

on the gels. An example ofthis is ehv0TU20 (d). 

With the entrance of the new surface patch of water from midnight on the 23'd June, a clear 

change in the genotypic composition of the Eh V community was observed, which 

developed into a broader range of higher intensity bands. The first obvious change after the 

influx of the warm water patch was the domination of new single band ehvOTU21 (e) in 

the upper 60 m of the water column (Figure 6.3; 23'd June- midnight) which prevailed 

almost to the end of the study ( ehvOTU21 (e) was not detectable between 5 and 24 m on 

the last sampling day- 291
h June). Notably, the bands that previously dominated, ehvOTU3 

(a) and ehvOTUI (b), no longer predominated in the surface 20 m from the midnight of 

the 23'd through to the 241
h June; but reappeared back in the surface on the 251

h June. 
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Fig. 6.3. DGGE gels of PCR fragments amplified with MCP primers for analysi of Eh V richness. Different bands represent different genotypes. Date (in year 1999) and 

depth (in meters) of sample collection are indicated at the top and the bottom of the gel images respectively. Letters indicate the bands excised for sequencing, same letters 

indicate identical nucleotide equencc (sec table 2). Standards (S), bands of known Eh V isolates. 
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E. hu.:deyi-specific viruses 

DGGE MCP Genotype GenBank accession 

band sequence1 MCP group number 

a ehv0TU3 n AY I44376L 

b ehvOTUl rv AY1443742 

c ehvOTUS V AY1443782 

d ehv0TU20 XJ DQ084403 

e ehv0TU21 Xll DQ084404 

f ehvOTU22 xm DQ084406 

g Not available undetermined -

E. huxleyi 

DGGE GPA Genotype GenBank accession 

band sequence3 CMM group number 

A ehux0TU7 m DQ084407 

B ehuxOTU8 IV DQ084408 

c ehuxOTU9 IV DQ084409 

D ebuxOTU l O III DQ084410 

E ehuxOTU l l IV DQ0844ll 

F ehuxOTU I2 IV DQ084412 

G ehuxOTU\3 n DQ084413 

H ehux0TU14 IV DQ084414 

I ehuxOTUIS V DQ084415 

J ebuxOTU17 I DQ084417 

K ehuxOTU18 Ill DQ08441 8 

L ehuxOTU16 1 DQ0844 16 

Table 6. 1. List of E. huxleyi and E. huxleyi-virus genotypes found in this study and GenBank references for 

their sequence data. 199 bp fragments from a gene encoding the putati ve major capsid protein. 2GenBank 

accession numbers published previously to this study. The same DGGE bands and their corresponding 

sequences were also detected by Schrocder et al. (2003). 3284-287 bp fragments from the GPA gene 

encoding a protein with calcium-binding motifs. 

From the 251
h June, at least 6 bands had higher intensity: ehv0TU3 (a) and ehvOTUI (b) 

which were detected from surface to bottom layers; ehvOTU21 (e) which became 

dominant after the 23rd June; ehv (g) (MCP sequence not avai lable), which was only 
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detected in samples collected below 50 m; ehvOTU5 (c), which was typically found in the 

surface 50 m; and ehv0TU22 (f), which followed a more irregular distribution pattern 

(Figure 6.3). 

The alignment of virus sequences from DGGE bands (Figure 6.4) showed that 5 out of the 

6 Eh V genotypes detected during the bloom were identical in the amplified region to some 

of the viruses from English Channel isolates (Schroeder et al. 2002, Wilson et al. 2002b) 

and from a Norwegian mesocosm study (Schroeder et al. 2003): ehvOTU21 (e) was 

identical to EhV-84; ehv0TU22 (f) was identical to EhV-86; and ehvOTUI (b), ehv0TU3 

(a) and ehvOTU5 (c) were detected in this study and in the samples from the Norwegian 

mesocosm studies. The genotype ehvOTUI (b) was the same as EhV-163. Genotype 

ehv0TU20 (d) had not match with any of the viruses from previous studies. 

6.3.2. E. huxleyi richness 

DGGE analysis of PCR products amplified with the specific primers for the GPA gene 

revealed a broad variety of E. lucdeyi bands (Figure 6.5 and 6.6). Changes in 

presence/absence of bands were observed both in time and depth. Sequencing of those 

bands showed that they represent different alleles (Figure 6.7). Since E. huxleyi strains can 

contain more than one allele (Schroeder et al. 2005) the number of different bands or 

genotypes revealed in this study indicates the number of different alleles present instead of 

quantitative richness of E. huxleyi strains. Table 6.1 summarizes the symbols, 

abbreviations and GenBank accession numbers given to each of the GPA bands excised 

from the DGGE gels. The time/depth temporal profile for E. huxleyi allelic richness was 

partial since we were not able to amplify the GPA gene from all the depth samples. 

To facilitate the interpretation of the DGGE gels we divided the samples into two layers, 

from surface to 35 m depth (Figure 6.6A 'surface') and from 38 m to I 00 m depth (Figure 

6.68 'deep'). The 35 m depth threshold is just above the 8.5 oc isotherm (Figure 6.1) and 
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at this depth E. hu:o;/eyi is just starting to reach the limit of detection by AFC analysis, 

indicative of very low cell concentrations in the deep layer. 

In general, a similar profile of E. huxleyi alleles were observed throughout the water 

column during the initial period of the study from 18th- 26th June, with a few alleles being 

more or less abundant in certain samples (Figures 6.5 and 6.6A). This level of variation is 

to be expected since only 2 out of the 17 samples analysed were taken at the same depth. 

Through out this period, in the deep layer, DGGE profiles were most similar to those 

observed in the surface layer on the 24th June (Figure 6.6), specifically the noticeable 

common encircled bands in Figure 6.6. The E. huxleyi community composition changed 

significantly from 27'11 June (Figure 6.5). In the surface layer, a more irregular band profile 

was observed during the 27th_2gth June period (Figure 6.6A). The combination ofDGGE 

(Figure 6.5) and sequencing analysis (Figure 6.7) of excised bands revealed the presence of 

at least 12 different E. huxleyi alleles between the 27th and 29th June. The alignment of 

GPA-DGGE bands (Figure 6.7) revealed that the E. hux/eyi community during this bloom 

contained alleles that could be separated into five different genotypes of the A and BE. 

huxleyi morphotypes. Four of those genotypes (CMM I to IV) were previously 

characterised by Schroeder et al. (2005). We were not able to determine whether CMM V 

belonged to A or B E. huxleyi morphotype. 
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EhV-84 GACGATCTTGAGGTACATCCACGATAGCAAATCGCCTTGGCGATTTACGGTAATATGCGACTCAGCACCGAACTGAACCTGAGTTGTGAATGGCTGGTT 
ehvOTU21 (e) 

EhV-88 ---------------------------------- ----- --A---------------------------------------------------------
--------------------- -------- -------------------------------------C--A-----------G-----------------

(f) ------------------------------------------------------------------C--A-----------G-----------------
ehvOTU3 (a) ---A------------------------ ---- -------A--------------------------C--A-----------G--------------A--

---A------------------------------ -----A-----G--------------------C--A-----------G-----------------
(b) ---A--------------------------- --------A-----G------------ --------C--A------- ----G-----------------

ehvOTU4 ---A-----------------------------------A--G--G--------------------C--A-----------G--------------A--
ehvOTU20 (d) ---A--------------------------G--------A-----G--------------------C--A-----------G--------------A--
ehvOTU7 ---R-----R------------------ --G--------C-----G-------------- -- ----C--A-----------R--------------A-Y 
ehvOTUS (c) ---A-- ------------------A--A-GG------- -C-T- --G--- ---------- -- -----C--A-----------G--------------A--
ehvOTU16 ---A--------------------A--A--G--------C-T---G--------------------C--A- ----------G--------------A--
ehv0TU2 ------------------------------G--------C-T---G--- --- -----------G--C--A-----------G--------------A--
EhV-207 ---------A--------------------G--------C-T---G-----------------------A--------------------------A--
EhV-202 -------- -A- ---- ---------------G--- -----C-T---G---------------A-------A--------------------------A--
EhV-208 ---------A--------------------G---- --- -C-T---G-------c-------------- -A- --- ----- --------- ------- -A--
EhV-201 ---------A--------------A--A-GG--------C-T---C--A--------------G-----------------G------G-C--------
EhV-205 ---------A--------------A--A-GG--------C-T---C--A--------------G-----------------G--------C--------
EhV-203 ---------A-----------------A-GG--A--C--T-T---C--A--------------G-----------------G--------C--------

Fig. 6.4. Multiple sequence alignment of the EhV-MCP fragments produced in this study (ehvOTUs). The letters next to the ehuxOTU label correspond to the band letters in 

Fig. 6.3. Conserved bases arc identified as a dash underneath the corresponding base from EhV84. Sequences from the mesocosm experiments (ehvOTUs) and known Eh V 

isolates used as DGGE standards arc a lso included. Identical sequences are grouped together with boxes. ehvOTU I, ehv0TU3 and chv0TU5 were detected during both 

mesocosm experiments and this study. 
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Fig. 6.5. DGGE gels of PCR fragments amplified with GPA primers for analysis of E. huxleyi diversity. Different bands represent different al leles. Date (in year 1999) and 

depth (in meters) of sample collection are indicated on top of the gels images. Letters indicate the bands excised for sequencing, same letters indicate identical nucleotide 

sequence (see table 6.2). 
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ehuxOTU16 (L) CCTCGAGGA 
e huxOTU17 (J ) CCTCGAGGA 

'CGAG-----GCCTGACGGGTGGTGG-------GCGGCG< 
'CGAG-----GCCTGACGGGTGGTGG-------GCGGCG< 

ehuxOTU2 
L_original 
370 
374 bottom 
L bottom 
5 90 25b 
ch24 90 
379 
92A 
ehuxOTU4 
373 
ehuxOTU6 
ehuxOTU1 
ehuxOTU5 
ehuxOTU3 
bloom 
92E bottom 
92D bottom 
ch25 90 

CGAG-----GCCTGACGGGTGGTGG-------GCGGCG< 
'CGAG-----GCCTGACGGGTGGTGG-------GCGGCG< 

CCTCGAGGA 
CCTCGAGGA 
CCTCGAGGA 
CCTCGAGGA 
CCTCGAGGA 
CCTCGAGGA 
CCTCGAGGA 
CCTCGAGGA 
CCTCGAGGA 
CCTCGAGGA 
CCTCGAGGA 
CCTCGAGGA 
CCTCGAGGA 
CCTCGAGGA 
CCTCGAGGA 
CCTCGAGGA 
CCTCGAGGA 
CCTCGAGGA 
CCTCGAGGA 

CGAG-----GCCTGACGGGTGGTGG-------GCGGCG< 
'CGAG- ----GCCTGACGGGTGGTGG-------GCGGCG< 

CGAG-----GCCTGACGGGTGGTGG-------GCGGCG< 
CGAG-----GCCTGACGGGTGGTGG-------GCGGCG< 

'CGAG-----GCCTGACGGGTGGTGG-------GCGGCG< 
'CGAG-----GCCTGACGGGTGGTGG-------GCGGCG< 

CGAG-----GCCTGACGGGTGGTGG------ -GCGGCG< 
'CGAG-----GCCTGACGGGTGGTGG-------GCGGCG< 
'CGAG-----GCCTGACGGGTGGTGG-------GCGGCG< 
'CGAG-----GCCTGACGGGTGGTGG-------GCGGCG< 

CGAG-----GCCTGACGGGTGGTGG-------GCGGCG< 
'CGAG-----GCCTGACGGGTGGTGG-------GCGGCG< 
'CGAG -----GCCTGACGGGTGGTGG-------GCGGCG< 
'CGAG-----GCCTGACGGGTGGTGG-------GCGGCG< 
'CGAG-----GCCTGACGGGTGGTGG-------GCGGCG< 

CGAG-----GCCTGACGGGTGG----------GCGCGG< 
'CGAG-----GCCTGACGGGTGG----------GCGCGG< 
'CGAG-----GCCTGACGGGTGG----------GCGCGG< ehuxOTU13 (G) CCTCGAGGA 

ehuxOTU18 (K) CCTCGAGGA 
ehuxOTUlO (D) CCTCGAGGA 
L_top CCTCGAGGA 
ehuxOTU7 (A) CCTCGAGGA 
1516 bottom CCTCGAGGA 
ehuxOTU9 (C) CCTCGAGGA 
ehuxOTU12 (F ) CCTCGAGGA 
374_top CCTCGAGGA 
ehuxOTU14 (H ) CCTCGAGGA 
ehuxOTUll (E ) CCTCGAGGA 
ehuxOTU8 (B) CCTCGAGGA 

CGAG--- AGGCCTGACGGGTGG----------GCGGCG< 
'CGAG--- AGGCCTGACGGGTGG----------GCGGCG< 

CGAG---AGGCCTGACGGGTGG----------GCGGCG< 
CGAG---AGGCCTGACGGGTGG----------GCGGCG 

'CGAG---AGGCCTGACGGGTGG----------GCGGCG< 
GGGATCGAGGCCTGACGGGTGG----------GCG--G< 
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Fig. 6.7. Clusta l alignment of partia l E. huxleyi sequences produced from excised DGGE bands from both mesoeosms (ehuxOTUs) and from isolates in culture (Schroeder et 

a l. 2005). Letters next to the ehuxOTlJ label indicate the band in Figure 6.3. The box indicates the region within the sequences that allows differentiating between genotypes 

(CMMs). A or B indicates CMM morphotype. Variations in sequence composition are highlighted in bold 
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6.4. Discussion 

In their original report on virus-host dynamics of this study site in the North Sea, Wilson et 

al. (2002a) suggested that large viruses (Eh Vs) were actively infecting hosts. However, 

Eh V concentrations were lower than expected, grazing rates were relatively high (Archer 

et al. 2002) and viruses showed no evidence of influencing DMS/DMSP production 

(Wilson et al. 2002a) hence, the implication was that viruses played a minor role in the 

dynamics of this coccolithophore-dominated phytoplankton bloom. Molecular data 

presented here, from samples collected during the same bloom, reveal extremely active 

virus-host dynamics concealed by what appears to be relatively uninteresting numerical 

population data. The sensitivity ofPCR has allowed us to explore these dynamics in much 

greater detail, essentially revealing changing populations of viruses and their hosts beyond 

the limits of detection for AFC. This is the first time such a comprehensive temporal and 

spatial analysis of E. huxleyi and their corresponding viruses (or indeed any host-virus 

system) has been presented at the molecular level and during the progression of a natural 

coccolithophore bloom. 

Sea water samples collected during this study provided an ideal opportunity to examine the 

host and virus dynamics during the progression of a natural E. huxleyi-rich phytoplankton 

bloom. AFC data (Figure 6.2) provided numerical population progression of E. huxleyi and 

their eo-occurring viruses (Eh Vs), whilst the use of the molecular markers GPA and MCP 

revealed temporal and spatial variability of E. huxleyi and Eh V genotypes respectively 

during the course of this naturally occurring bloom in the North Sea (Figures 6.3 and 6.5). 

We exploited heterogeneity in GPA and MCP using DOGE and sequencing analysis. 

While the flow cytometric analysis only detected E. htL\"Ieyi cells up to 45 m deep, DOGE 

revealed the presence of different E. huxleyi alleles as deep as I OOm. 
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The results indicate that during the study period the dominating E. huxleyi genotypic 

profile changed significantly at least three times. The combination of DGGE and AFC 

(Wilson et al. 2002a) data showed the progression and termination of a diverse dominating 

genotypic E. huxleyi community in the surface layer between 181h and 23'd June (Figures 

6.5 and 6.6A). The concurrent decrease followed by an increase in Eh V concentrations in 

the surface during the same period suggests an active infection control process of 

E. huxleyi followed by the release of Eh V progeny (Figure 6.2). Subsequent DGGE 

analysis of this Eh V population showed that during this period the same two dominant 

Eh V genotypes dominated until the entrance of the patch of warm surface water (23'd June) 

(Figures 6.3 and 6.4) indicating that those were the genotypes that controlled the initial 

dominating E. huxleyi community (Figure 6.5). lt is, however, important to point out the 

qualitative nature of PCR amplification and limitations in DGGE resolution. Truly 

quantitative information using molecular methods can only be obtained if DNA extraction 

efficiency and biases in the PCR step are under experimental control. This is not feasible 

when analysing environmental samples containing an unknown amount of cells and virus 

particles as well as inhibitors. Yet, the variations in band intensity of a particular genotype 

compared to another from day to day or between depths may well suggest changes in 

relative abundance of certain genotypes in the water samples as the bloom developed 

rather than differences in DNA extraction efficiency or preferential amplification of some 

genotypes over anothers. Further investigations would benefit from the use of internal 

standards in the DNA extraction, PCR and DGGE steps to allow describing, at least more 

reliably, relative changes in abundance and diversity among samples, as described by 

Petersen and Dahi!Of (2005). 

Intriguingly, the remnants of the declining genotypic E. lno.:leyi community, i.e. similar E. 

lwxleyi alleles, could be seen in the deep layer between the 24'h and 26'h June (Figure 6.68) 

suggesting that E. huxleyi cells sink to deeper water as the bloom declines. In addition, we 
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hypothesize that the E. huxleyi allele revealed by DOGE on 18th -19th June at depths below 

40 m (marked by an oval in Figure 6.68) revealed the presence of remnant E. hu.xleyi 

genotypes from a previous bloom event. The presence of the same band at the surface on 

24th June (Figure 6.6) can be explained by either the mixing caused by the warm surface 

water influx or entry of E. huxleyi strains with similar genotypes with the warm water. A 

combination of both scenarios is more plausible as the overall E. lwxleyi genotypic profile 

remained static throughout this mixing period, while the entry of the warm surface water 

brought an additional dominant EhV genotype (ehvOTU21, Figure 6.3). Since the E. 

huxleyi genotypes were either senescent or actively being infected by a variety of 

dominating Eh Vs (24th- 26th June, Figure 6.3), this community disappeared quite rapidly 

(deep layer, 25th & 26th June, Figure 6.6). 

Infection and 'removal' of a large part ofthe dominant E. huxleyi assemblage in the 

surface layers was followed by the development of a new E. huxleyi community (27th -28th 

midnight, June). If not entirely, we sum1ise that the now dominant E. huxleyi alleles will 

have been brought in by the patch of warmer surface water but were either resistant to or 

too few in number to be controlled by the Eh V genotypes that killed the earlier two 

communities. However, as this E. huxleyi community was starting to develop it in turn was 

being controlled by a different Eh V community (28th -29th June, Figure 6.3). This sinking 

out or removal of surface E. huxleyi genotypes is especially evident here due to the 

additional sequence data collected for this period. For example, alleles ehuxOTU9 (C) and 

ehuxOTUI6 (L) were first detected in the 30 m surface layer on the 28th and 27th June, 

respectively, and again later in the 80 m deep layer on the 29th June. 

The added insight given by this molecular analysis of DISCO samples revealed that the 

high concentrations of E. hux/eyi found towards the end of the study between 30 to 40 m 

depth (Figure 6.2) were most probably the consequence of accumulation above the 8.5 oc 
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isothenn of already infected E. hw:leyi cells pushed down by the wann surface water 

influx. The wann patch of water moved the I 0.5 oc isothenn down to 30 m depth between 

271h and 291h June. Additionally, the DGGE profile showed at these depths the same alleles 

found in surface before, supporting the idea of the concentration of the previous 

community above the 8.5 oc isothenn. 

DGGE revealed 6 intense virus MCP bands during the wann surface water influx that 

probably controlled the E. huxleyi community in this patch. Virus ehv0TU21 (e) (Figure 

6.3) came into the study site with the patch of wann surface water, probably among some 

other less dominant ones. However, the persistence in the water column of ehvOTU3 (a) 

and ehvOTU I (b) until the last day of study (Figure 6.3) seems to indicate that the 

remaining viruses from previous lysis events also infected and controlled the incoming 

E. huxleyi community. 

Low impact of E. huxleyi and Eh Vs on DMSP production was recorded during the DISCO 

study (Archer et al. 2002). However, Steinke et al. (2002) measured maximum DMSP 

lyase activity at approximately 50 m depth on 22"ct June, 40 m on 23rd June and 35 m on 

241h June, concurrently with the lowest cell numbers recorded for the E. hw:leyi community 

that developed during the lagrangian study, suggesting the production of DMSP by dying 

E. huxleyi cells. Yet, the low impact of E. huxleyi and Eh Vs in DMSP production could be 

explained first by the fact that coccolithophores accounted for less than 30% of the 

phytoplankton biomass (Widdicombe et al. 2002). Secondly, different E. huxleyi strains are 

known to have different DMS production rates (Steinke et al. 1998). It might be possible 

that the dominant strains during the main E. huxleyi bloom were not high DMS producers. 

It may be that the E. huxleyi contribution to the standing stocks of DMSP and the 

importance of Eh Vs as agents of DMS production were higher after the influx ofwann 

surface water (241h-291h June) when new E. huxleyi and EhV communities developed. 
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However, DMSP and DMS measurements are lacking for this period. We hypothesized 

that further investigation might allow to establish links between the molecular results 

presented in this study and sulphur biogeochemical cycles in the sea. 

Wilson et al. (2002a) suggested that, since no relationship between viruses and DMSP 

production was observed during this study in the North Sea, viruses did not play a major 

role in the developing bloom. However, the use of molecular tools has revealed the 

importance of viral infection for intraspecific succession of E. huxleyi in this environment. 

On three occasions during this study period, the changing dominating E. huxleyi 

community could be directly correlated with abundance and diversity of E. huxleyi specific 

viruses. Miihling et al. (2005) described similar patterns in genetic succession of the 

marine picophytoplankton Synechococcus in the Gulf of Aqaba, Red Sea. Changes in 

abundance and genetic diversity, over an annual cycle, were detem1ined by interactions 

with eo-occurring cyanophages (Miihling et al. 2005) proving that virus infection can play 

an important role in determining the succession of Synechococcus genotypes. 

Finally, it is remarkable that 5 of the 6 different Eh V bands sequenced had identical MCP 

sequence to some of the sequences from the English Channel isolates from 1999 and 200 I 

(Schroeder et al. 2002, Wilson et al. 2002b) or the Norwegian samples from 2000 and 2003 

(Schroeder et al. 2003, Chapter 5) used as a reference. Viruses that have the same MCP 

sequence are likely to be the same strain (Schroeder et al. 2002), therefore the findings 

presented here support the idea of a wide geographical distribution of some Eh V strains 

(Chapter 5). Indeed, host-range experiments showed that several virus isolates from the 

English Channel and a Norwegian fjord (Schroeder et al. 2002, Wilson et al. 2002b) could 

infect a range of cultured E. huxleyi strains from very distant areas (data not shown). 
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6.5. Conclusions 

In summary, DGGE and sequencing analysis of E. huxleyi and Eh V groups provided extra 

information about the dynamics of E. huxleyi blooms in open waters. Depth profiles 

showed 'past, present and future' of the progression and structuring within a natural 

coccolithophore-dominated bloom. The results from this study revealed a highly dynamic 

system with a broad E. huxleyi and eo-occurring virus genotypic community closely 

linked; while blooms of the same species have been reported to occur every year in a 

highly conserved manner in a Norwegian fjord, where the same E. huxleyi and Eh V 

genotypes re-occurred in annual cycles (Chapter 5). We can conclude that not all the 

E. huxleyi blooms are comprised of the same genotypic communities. Therefore, if 

separated blooms are different they might have different implications in local ecology, 

climate and biogeochemistry cycling and production of compounds such as DMS, calcite 

and carbon. The use of molecular tools, as the ones employed in this study, may be the key 

to answer unknown questions regarding the processes above. 
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7. Differential expression of a putative phosphate permease gene during 

the infection cycle of an Emiliania huxleyi-virus in response to phosphate 

availability 

7.1. Introduction 

Phosphoms (P) is an essential mineral nutrient for phytoplankton growth and development. 

P serves a variety of functions that are fundamental to biology; it is a major component of 

nucleic acids, phospholipids and glycolytic intermediates, it is a constituent of energy 

transfer reactions and it is a regulator in many signal transduction cascades. Phytoplankton 

have evolved the ability to utilize P from diverse sources to cope with low nutrient 

availability in environments such as oligotrophic oceans (Cembella et al. 1984, Antia et al. 

1991 ). Membrane transport proteins are used for nutrient uptake and waste export. Such 

transporters catalyse the translocation of solutes across the cell membrane, and are 

essential for the cell's growth and metabolism. However, some aspects regarding the 

mechanisms of P uptake, transport and utilization by phytoplankton are still uncertain and 

constitute and ongoing area of study for biological oceanographers. 

In the case ofthe coccolithophorid Emiliania huxleyi, P availability can affect the 

formation and development of blooms (Lessard et al. 2005). Competition experiments in 

continuous cultures (Riegman et al. 2000) and mesocosm studies (Egge & Heimdal 1994) 

have shown E. huxleyi to become dominant exclusively in communities that were under P 

control. In fact, Rie~:,rman et al. (2000) reported that E. huxleyi has the highest affinity of 

the P-uptake system ever recorded for a phytoplankton species. Under P starvation in 

culture, E. huxleyi responds inducing several phosphate-regulated protein encoding genes 

involved in P metabolism (Dyhrman & Palenik 2003, Dyhrman et al. 2006) and increasing 

phosphate uptake rate and alkaline phosphatase activity (Riegman et al. 2000). 
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There are indications that an unbalanced nutrient regime, particularly low P concentrations, 

also has an effect on coccolith morphology and size in E. huxleyi morphotype A (Young & 

Westbroek 1991, Young 1994, Batvik et al. 1997). A link between phosphorus limitation 

and calcification has been documented in mesocosm and laboratory culture experiments of 

calcifying E. huxleyi cells. For example, P starvation typically increases calcification rates 

relative to photosynthesis (Paasche 2002). 

Previous studies have also investigated the role of nutrients and nutrient limitation in 

processes of viral infection and control over phytoplankton populations. Bratbak et al. 

( 1993) demonstrated during a mesocosm study that the lack of P inhibited the development 

of viruses in E. huxleyi (Eh Vs). They suggested that viruses may be particularly sensitive 

to P limitation since viruses have a high nucleic acid to protein ratio. Wilson et al. ( 1996) 

demonstrated in laboratory experiments that only 9.3% of virus-infected cells of 

Synechococcus sp. WH7803 grown under P-depleted conditions lysed, while I 00% of 

virus-infected cells lysed under P-replete growing conditions. During the study of a 

Synechococcus spp bloom in a mesocosm enclosure with simulated P-depleted conditions 

Wilson et al. (1998) found that virus numbers increased substantially following P addition 

shortly before the collapse of the Synechococcus bloom. Based on these observations it 

was suggested that lysogeny could be established in response toP-depleted growth of the 

host cells and that temperate viruses were induced after the P addition, supporting the 

hypothesis that nutrient availability may be responsible for the switch between lysogeny 

and lytic production. 

Sequencing has revealed the presence of a putative phosphate-repressible phosphate 

permease in E. hw:leyi strain CCMP 1516 (GenBank Accession Number AF334403) 

(Corstjens et al. 2003). In addition, a similar predicted gene (coding sequence; CDS) was 

found in the genome of E. huxleyi-specific virus EhV-86 (ehvll7 gene, GenBank 
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Accession Number NC_007346) (Wilson et al. 2005a). EhV-86 is the type species of the 

genus Cocco/ithovirus within the family Phycodnaviridae (Schroeder et al. 2002). These 

findings raise the following questions: (I) what is the relationship between these two 

similar genes carried by the virus and the host? (2) do those genes have the same function? 

(3) is the ehvll7 gene present in all Eh Vs? (4) what conditions determine the expression of 

this gene in the virus? 

The scarcity of genome sequences and transcriptome analysis for members of the 

Phycodnaviridae family limits our knowledge of the biology and ecology of this important 

group of algal viruses. Gene expression analysis will provide crucial understanding of 

Phycodnaviridae genomes functioning in the ocean. In this study, ten different Eh Vs were 

screened for the presence of the putative phosphate permease by polymerase chain reaction 

(PCR) amplification using non-degenerate primers designed to the putative phosphate 

permease gene ofEhV-86. Real-time reverse-transcription quantitative PCR was also 

performed to investigate differential expression of the EhV-86 phosphate permease gene 

during infection of axenic cultures of E. huxleyi strain CCMP 1516 grown in F/2 medium 

(phosphate-replete) and phosphate-depleted modified F/2 medium. 
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7.2. Materials and methods 

7.2.1. Virus and host strains 

Ten clonal Eh V strains (Table 2.3) and two clonal strains of E. huxleyi (axenic CCMP 

1516 and CCMP 374, Table 2.4) were employed in this study. EhV-84, EhV-86 and EhV-

88 were isolated in 1999 (English Channel); EhV-201, EhV-202, EhV-203, EhV-205, 

EhV-207 and EhV-208 were isolated in 2001 (English Channel); and EhV- 163 was 

isolated in 2000 (Norwegian fjord). 

7.2.2. Screening of Eh V strains for presence/absence of the ehvll7 gene 

Genomic DNA (gDNA) was isolated from exponentially growing cultures of the E. huxleyi 

strains and from concentrated Eh V lysates using the phenol/chloroform method described 

in Section 2.2.11.2. PCR reactions (Section 2.2.12) were performed on I 00 ng gDNA 

template using a pair of oligomers designed to the ehv 117 gene of Eh V -86 (Phos-F 1/Phos­

R I, Table 2.5). PCR products were subsequently sequenced and the sequences aligned as 

described in Section 2.2.15. 

7 .2.3. Determination of culture conditions for induction of P-Iimitation 

Batch cultures (250 ml) of E. huxleyi CCMP 1516 were grown in P-replete standard F/2 

medium and in modified F/2 media containing 50%, 10% and I %final concentration 

Po/· relative to standard F/2 medium. These culture medium conditions are referred to as 

P-replete, 50% P, I 0% P and I % P respectively (see section 2.2.2, for details on culture 

conditions and media preparation). The I % P culture was done in duplicate. 

Initial cell abundances were approximately 3 x I 03 cells mr1 for all the conditions. 

Cultures growth was monitored by AFC (Section 2.2.6) and by cell photosynthetic 

capacitiy (CPC) measurements (Section 2.2.5). Eh V -86 was inoculated into the 50%, 

10 % and one of the two I % P cultures during stationary growth phase of the I % P 
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cultures in a host:virus ratio of I :3. Inoculations were done during cell division phase 

during the dark incubation period. The P-replete and the second I % P cultures served as 

virus-free controls. From this time point, in addition to the measurements above, EhV-86 

abundances were determined by AFC (Section 2.2.6). 

Fresh EhV-86 lysate stocks used for inoculations (see Section 2.2.4) were dialysed 3 times 

against 30 kD autoclaved oligotrophic seawater to reduce addition of extra P04
3-to the 

cultures (Section 2.2.9). 

7.2.4. Differential expression of the ehvl17 gene in EhV-86 

7.2.4.1. Experimental design 

To determine the expression profile of ehv 117 in Eh V -86, 8 L volume cultures of E. 

huxleyi CCMP 1516 were grown in P-replete F/2 medium and 6 L volume cultures were 

grown in I % P conditions (initial cell concentrations- 1.5 x I 05 cells mr 1
). The growth of 

the cultures was monitored daily for 17 days by AFC counts (Section 2.2.6). At the onset 

of the stationary phase the cultures were divided in 3 x 2 L volume batches and they were 

inoculated with dialysed axenic EhV-86 (host:virus ratio of I :3), allowing triplication of 

each nutrient treatment. The remaining 2 L P-replete culture were not inoculated to serve 

as a free-virus control. EhV-86 production was monitored by AFC (Section 2.2.6). 

7.2.4.2. Isolation and quantification of total RNA 

Total RNA was isolated from E. huxleyi CCMP 1516 cultures immediately prior to 

infection with EhV-86 (to) and 4 h, 12 hand 24 h post-inoculation (4, t 12 and t24 

respectively) (Section 2.2.11.3). RNA was then treated with DNase (Section 2.2.11.4), 

quantified (Section 2.2.11.5) and stored at -80 oc prior further use. One microlitre RNA 

sub-samples were used as template on a PCR reaction (Section 2.2.12) with Phos-Fl /Phos­

R I (Table 2.5), to check for any potential DNA contamination after the DNase treatment. 
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7.2.4.3. Gene expression quantification by real-time reverse-transcription PCR 

Real-time reverse-trancription PCR reactions with TaqMan primers and probe designed to 

the nucleotide sequence of the ehv 117 gene of Eh V -86 were performed as described in 

Sections 2.2.18 and 2.2.19. The reactions were done using I 000 pg total RNA template 

samples (Section 7.2.4.2) from the P-replete and I %PE. huxleyi cultures. 

A calibration curve was constructed (Section 2.2.19.4) using EhV-86 Phos-Fl/Phos-RI 

PCR plasmid DNA fragments that were first transcribed into RNA (Section 2.2.18.1) and 

then into cDNA (Section 2.2.18.2). Gene expression was estimated as initial amount of 

target gene (ehvll7) RNA contained in the 1000 pg total RNA template. 

To determine if fluorescence contaminants or DNA contaminants were present in the 

reactions, three No Template Controls (NTC) and three No Amplification Controls (NAC) 

were included in the real-time reverse-transcription PCR (Section 2.2.19.1 ). Additionally, 

three of the culture RNA samples (I % P r3-t0, I % P r3-t 12 and P-replete rl-t24) were 

chosen randomly and included in the reaction without addition of reverse transcriptase in 

order to verify the lack of carry over DNA contamination that might have not been 

detected by standard PCR amplification using Phos-Fl/Phos-R I primers (Section 7.2.4.2). 
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7.3. Results 

7.3.1. Comparison of ehvll7 and putative phosphate-repressible phosphate permease 

in£. huxleyi strain CCMP 1516 

The alignment of the nucleotide sequences (Figure 7.1) and the amino acid sequences (data 

not shown) of ehv 1 1 7 from Eh V -86 and the putative phosphate-repressible phosphate 

pennease gene from CCMP 1516 reveals that both genes share conserved regions. In fact , 

blast searches at the nucleotide and amino acid levels (www.ncbi.nln.nlh.gov) with each of 

these gene sequences give top matches to the other gene. However, there are enough 

mismatches between both sequences to allow the design of primers specific to Eh V -86, 

which theoretically would not amplify the phosphate pennease in CCMP 1516. 

ehvll7 CAATTCTCATGTATGGTAATTTGTGCGTCATTGGGGCAGTTGGTATGTGGTTACTTGTGGCAACAAAGTTTGAAATGCCAGT 
CCMP1516 CGATCCTGATGTACGGCAACCTCTGCGTCGTCGGCGCGGTCGGCATTTGGCTCCTCATCGCCACCAAGTTCGAGATGCCCGT 

* ** ** ***** ** ** * ****** * ** ** ** ** ** *** * ** * ** ** ***** ** ***** ** 

e hvll7 TTCGACTACGCATTCTTGTGTTGGTGGTCTCGTTGGTATGACAATTGCAGCAAAAGGCGCTGATTGCGTTGTTTGGTACAAA 
CCMP1516 CTCGACCACCCACTCCTGCGTCGGCGGCCTCGTCGGCATGGCCATCGCCTCCAAGGGCCCCGCCTGCGTCACGTGGTACAAG 

**** * * * * * ** ** * * •• ** ***** * * ** * * * * ** * ** * * * * * ***** ******** 

ehvll7 GAAATTGATATCGATAGCGGCAAATACCTACCAGGAGGCATTGTTGGTATTGTATTGTCATGGGTATTCTCACCATTACTAT 
CCMP1516 GACCCCGACCCGGACAGCGCTAAGTACCTCCCGGGCGGCATCACCGGCATCGTGCTGTCGTGGATCTTCTCGCCCCTCCTCT 

** ** ** **** ** ***** ** ** ***** ** ** ** **** *** * ***** ** • ** * 

ehvll7 CTGGGATAGTTGCAGTGCTTTTATTCTTGAGTATAAGAACATTTGTATTGCGCAGTGCTCAGCCATTTATTAGATCTATTCG 
CCMP1516 CGGGCCTCTTCGCCGTCGCCCTCTTCGCCGTCGTCCGCTGCGTCGTCCTCCG-GTCGCAGAACTCCTTCATGCGTGCAATCA 

* ** * * ** ** • *** * * * ** • ** * * * * * * ** 

ehvll7 CGCG-TATCCATTTCTTGTATGGGGGGCAGTTACAATCAACTCATTTTTCATTATATCCAAGGGGGTATCCAAAAAAATCTG 
CCMP1516 AGTTCTACCCCGTCCTCATCTGGCTCGCCATCTGGATCAACACCTTCTTCATCATCTCCAAGGGCGTCAGCAAGAAGGTCTG 

* ** ** * ** • * ** * * * ****** * ** * * ** * ** * ******* ** *** ** **** 

ehvll7 TCCATCGAAATACAACATCTGGATATGCCAAGGATGGGACGCTAGTTT----------ACCAAACGGAGCG------GAAGT 
CCMP1516 CCCGAGCAAGACGAACATCTGGATCTGCTCCGGCTACGACTCCGACCTCAAGGAGGGCGCCGAGAAGGACGCCGCCGGCGGG 

** ****'******* *** •• * *** * ** * * ** * 

ehvll7 AA------CAAAAGCGATTGCACCAGGTAAAGTAAATGCAGGAATTGCATTTGGATTATCTGCTGGGTTTGGTGTTGTTGCT 
CCMP1516 AAGCTCTCCAAGGACGACTAC-CCCGGCAAGGTCAACGGCTGGGTCGCCTTGGGCTTCTCGTGCGGCGTCGGCCTCTTCTTC 

** *** *** * * ** ** ** ** ** * * * ** ** ** ** ** ** • ** * 

ehvll7 GCTATTGCATTAATTCCACTTTATAAATATATTCACCGCACTACACTAGATACATTTTCAAAACCAAAACAAATAGA-- --­
CCMP1516 GCCGTCGCCCTCATCCCGCTCTACCT-CGCGATCAAGAAGCGCGTCGAGGCGGAGTTTGCGGACAAGGACACCGAGGCCGGC 

** * ** * ** ** ** ** *** * ** * *** ** * ** 

ehvll7 - ----AAATAAAGCCGAAAATATAGAAAAACCA--- ---- -- -- ---AAAAATATATTA--GCAAAGAC- -AGCAAGAA- - ­
CCMP1516 GAGGCGGAGGAGGCCAAGGAGGAGGCCAAGCCGCCCCCGGAGCCGCCGACGACCTTCTGCGGCAAGGCCCTGGCGGCTATCT 

* * *** * * * ** ** * * * **** * * ** * 

ehvll7 - -AATTGTTCGATAGAGATATTCATG----CAATAACT- -GTTACAGACGAGAAAGTGTCGGTTATTCATAATAATGCAGAA 
CCMP1516 CTACTCGATCAACCGCGACGTGCACGACGTCAAGAAGGAGGAGACGGACGGCGTCATCACGGCGATCCACGACAACGCCGAG 

* * * ** * * ** * ** • *** ** * ** **** • *** ** ** * ** ** ** 

ehvll7 CAATTTGATGAAAAAGCAGAATATGTGTTCAAATATATTCAAATATTTTCAGCAATTTTCGATTCGTTTGCCCACGGGGCGA 
CCMP1516 AAGTTCGACCCGAAGACGGAGGCCGTCTTCAAGTACATCCAGATCTTCACCGCCATCTGCGACTCGTTCGCGCACGGCGCCA 

* ** ** ** * ** ** ***** ** ** ** ** ** * ** ** * *** ***** ** ***** ** * 

e hvl l 7 ATGATGTCGCAAACGCAATGGGTCCATTTATGACAATATGGGTAATATG---GAAGGCGGAAGGAGAAGCAATTGGTGGGAG 
CCMP1516 CGGACGTGGCCAATGCGATGGGCCCCTTCATGTCCATCTGGACAATCTACACGAACATCGACACCTTCGAGTTCGGCAAGGG 

** ** ** * * ** ***** ** ** *** * ** *** *** * *** ** * * ** * * 
Figure continues in next page 
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ehvll7 T------AAAACAGATATTGGAGAT---GATTCATATTGGATACTTGCAATTGGAGGTATTGGTATTGGAATCGGTTTACTA 
CCMP1516 CGCCCAGAAGACGGACCTCGAGAACAACGACCAGTACTGGATCCTCGCCCTCGGCGGCGTCGGCATCGGTCTCGGCCTCCTC 

** •• ** * * * ** ** ***** ** ** * ** ** * ** ** ** **** * ** 

ehvll7 TTATATGGATACAAGATCATGCAGGAAATTGGTGTAAAACTTGCAGTAATTACACCAAGTCGTGGTGTTTGTATTGAGCTTG 
CCMP1516 CTCTACGGCTACCAGATCATCCAGGCGATCGGCGTCAAGCTCGCCGTCATCACGCCGTCGCGCGGGTTCGCCATCGAGCTCG 

* ** ** *** ******* **** ** ** ** ** ** ** •• ** ** ** ** ** * ** ***** * 

ehvll7 GTTCCGCGGTTGTAATTATCACCGGAAGCTATATGGGGATTCCGTTATCAACGACTCATGCACAAGTTGGAGCAACAGTGGG 
CCMP1516 GCGCCGCCATCGTCATCATCATCGGGTCGTACCTCGGCATCCCGCTCTCGACCACCCACTGCCAGGTCGGCGCCACCACCGG 

**** * ** ** **** *** ** * ** ** *** * •• ** ** ** •••• ** ** ** ** 

ehvll7 TGTTGCACTACTCGAAGGTAAAAAAGGAATCAATACAAAAGTGTTGAGTAAAGCAGGATTTGGTGGATAGTAACACTAATTG 
CCMP1516 CGTCGCGCTCCTCGAGGGCGGCCGCGGCGTCAACAAGTGGGTCCTCGGCAAGACCGCCTTCGGTGGATCATCACCCTCATCA 

•• ** ** ***** ** ** * ** * * ** ******* * ** ** ** 

ehvll7 TGGCTGGGTTGTTAGCAGGATTGCTTACTTCCCAGGGGATATATTCTCCTATTAATGAA--TATGCATTTAATTCGGCAATC 
CCMP1516 TCGCCGGCATCCTCGCCGGCATCCTCACCGGCCAGGGCATCCGCGCGCCCCTCGGCGGCGCCATCAACATCGCCGGCTGCTC 

* ** ** * ** ** * ** ** 

ehvll7 CGTGTTTAATGAAACATCTTAA 
CCMP1516 CGCCCAAAGTGTGGACCGACGA 

* ** 

•••••••• * •• * * ** * * * 

Fig. 7.1. Clustal alignment of ehv 11 7 from Eh V -86 and the putative phosphate-repressible phosphate 

permease in E .huxleyi strain CCMP 15 16. Conserved bases are identified by an asterisk underneath the 

correspond ing base. Highlighted nucleotide regions denote the sequence fragments to which the Phos-

** 

FI /Phos-RI where designed. Arrows indicate the 5'-3' orientation of the primers. 5' 265 bp o f ehv ll 7 and 3' 

352 bp of CCMP 15 16 have been removed from this alignment. 

7.3.2. Presence/absence of the ehv117 gene in Eh V strains 

Eh V 's ehv 117 gene fragments were amplified using the pair of primers Phos-F l/Phos-RI. 

Products (- 900 bp) were obtained for the English Channel Eh V strains; however, these 

primers failed to amplify a product of the expected size for the Norwegian EhV strain 

(EhV-1 63). Phos-Fl /Phos-RI are specific to EhV's ehvll 7 and not to the putative 

phosphate permease in E. huxleyi strains CCMP 1516 and CCMP 374 since no 

amplification was produced from gDNA extracted from those host cultures (Figure 7.2). 

2 3 4 5 6 7 8 9 tO It 12 13 14 

Fig. 7.2. Agarose gel electrophoresis o f PCR products for the ehv 11 7 gene fro m total gDNA extracted from 

EhVs and E. 1111xleyi strains. Lanes 1- 10: EhV-84, EhV-86, EhV-88, EhV- 163, EhV-201 , EhV-202, EhV-

203, EhV-205, EhV-207 and EhV-208 respectively. Lanes 11 and 12: E. huxleyi strains CCMP 15 16 and 

CCMP 374 respectively. Lane 13: negative control PC R reaction (no DNA template). Lane 14: DNA 

molecular weig ht marker ( I 00 bp ladder). 
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Direct sequencing of the purified PCR amplified fragments revealed that ehv 117 is highly 

conserved, at the nucleotide level, among the Eh Vs originated from the English Channel. 

In fact, only 2 different types of ehvll7 gene fragment sequences were obtained for these 

Eh Vs. One sequence common to all of the 1999 isolates (EhV-84, EhV-86, EhV-88) and 

another sequence shared by the 200 I isolates (Eh V -20 I, Eh V -203, Eh V -205, Eh V -207, 

EhV-208) (Figure 7.3). 

The approximately 200 bp product from EhV-163 seemed to be the result ofunspecific 

amplification; its nucleotide sequence did not show significant homology with any 

sequences from the GenBank (data not shown) and therefore was not included in the 

alignment. 
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GGTAAAGTAAATGCAGG ATTGCATTTGGATTATCTGCTGGGT TGGTGT 'GTTGCTGCTATTGCATT ATTCCACTTTATAAATATATTCACCGCACTACACTAGATACATTTTCAAAA 120 
GGTAAAGTAAATGCAGGGATTGCATTTGGATTATCTGCTGGGT TGGTGT 'GTTGCTGCTATTGCATT ATTCCACTTTATAAATATATTCACCGCACTACACTAGATACATTTTCAAAA 120 
GGTAAAGTAAATGCAGGGATTGCATTTGGATTATCTGCTGGGT- TGGTGT 'GTTGCTGCTATTGCATT ATTCCACTTTATAAATATATTCACCGCACTACACTAGATACATTTTCAAAA 120 
GGTAAAGTAAATGCAGGGATTGCATTTGGATTATCTGCTGGGTr TGGTGT 'GTTGCTGCTATTGCATT ATTCCACTTTATAAATATATTCACCGCACTACACTAGATACATTTTCAAAA 120 
GGTAAAGTAAATGCAGGGATTGCATTTGGATTATCTGCTGGGT~TGGTGT 'GTTGCTGCTATTGCATT -ATTCCACTTTATAAATATATTCACCGCACTACACTAGATACATTTTCAAAA 120 
GGTAAAGTAAATGCAGGAATTGCATTTGGATTATCTGCTGGGTTTGGTGTTGTTGCTGCTATTGCATTAATTCCACTTTATAAATATATTCACCGCACTACACTAGATACATTTTCAAAA 120 
GGTAAAGTAAATGCAGGAATTGCATTTGGATTATCTGCTGGGTTTGGTGTTGTTGCTGCTATTGCATTAATTCCACTTTATAAATATATTCACCGCACTACACTAGATACATTTTCAAAA 120 
GGTAAAGTAAATGCAGGAATTGCATTTGGATTATCTGCTGGGTTTGGTGTTGTTGCTGCTATTGCATTAATTCCACTTTATAAATATATTCACCGCACTACACTAGATACATTTTCAAAA 120 
***************** ************************* ****** ***************** *************************************************** 

CCAAAACAAATAGAAAATAAAGCCGAAvATATAGAAAAACCAAAAAATATATTAGCAAAGACAGCAAG AAATTGTTCGATA~AGATATTCATGCAATAACTGTTACAGACGAGAAAGTG 240 
CCAAAACAAATAGAAAATAAAGCCGAAGATATAGAAAAACCAAAAAATATATTAGCAAAGACAGCAAG~AAATTGTTCGATATAGATATTCATGCAATAACTGTTACAGACGAGAAAGTG 240 
CCAAAACAAATAGAAAATAAAGCCGAAGATATAGAAAAACCAAAAAATATATTAGCAAAGACAGCAAG AAATTGTTCGATATAGATATTCATGCAATAACTGTTACAGACGAGAAAGTG 240 
CCAAAACAAATAGAAAATAAAGCCGAAGATATAGAAAAACCAAAAAATATATTAGCAAAGACAGCAAGr AAATTGTTCGATATAGATATTCATGCAATAACTGTTACAGACGAGAAAGTG 240 
CCAAAACAAATAGAAAATAAAGCCGAA~ATATAGAAAAACCAAAAAATATATTAGCAAAGACAGCAAG~AAATTGTTCGATA~AGATATTCATGCAATAACTGTTACAGACGAGAAAGTG 240 
CCAAAACAAATAGAAAATAAAGCCGAAAATATAGAAAAACCAAAAAATATATTAGCAAAGACAGCAAGAAAATTGTTCGATAGAGATATTCATGCAATAACTGTTACAGACGAGAAAGTG 240 
CCAAAACAAATAGAAAATAAAGCCGAAAATATAGAAAAACCAAAAAATATATTAGCAAAGACAGCAAGAAAATTGTTCGATAGAGATATTCATGCAATAACTGTTACAGACGAGAAAGTG 240 
CCAAAACAAATAGAAAATAAAGCCGAAAATATAGAAAAACCAAAAAATATATTAGCAAAGACAGCAAGAAAATTGTTCGATAGAGATATTCATGCAATAACTGTTACAGACGAGAAAGTG 240 
*************************** **************************************** ************* ************************************* 

TCGGTTATT~ATAATAATGCAGAACA~TTTGATGAAAAAGCAGAATATGTGTTCAAATATATTCAAATATTTTCAGCAATTTTCGATTCGTTTGCCCACGGGGCGAATGATGTCGCAAAC 360 
TCGGTTATTTATAATAATGCAGAACA~TTTGATGAAAAAGCAGAATATGTGTTCAAATATATTCAAATATTTTCAGCAATTTTCGATTCGTTTGCCCACGGGGCGAATGATGTCGCAAAC 360 
TCGGTTATTTATAATAATGCAGAACA~TTTGATGAAAAAGCAGAATATGTGTTCAAATATATTCAAATATTTTCAGCAATTTTCGATTCGTTTGCCCACGGGGCGAATGATGTCGCAAAC 360 
TCGGTTATT~ATAATAATGCAGAACA~TTTGATGAAAAAGCAGAATATGTGTTCAAATATATTCAAATATTTTCAGCAATTTTCGATTCGTTTGCCCACGGGGCGAATGATGTCGCAAAC 360 
TCGGTTATT ATAATAATGCAGAACA~TTTGATGAAAAAGCAGAATATGTGTTCAAATATATTCAAATATTTTCAGCAATTTTCGATTCGTTTGCCCACGGGGCGAATGATGTCGCAAAC 360 
TCGGTTATTCATAATAATGCAGAACAATTTGATGAAAAAGCAGAATATGTGTTCAAATATATTCAAATATTTTCAGCAATTTTCGATTCGTTTGCCCACGGGGCGAATGATGTCGCAAAC 360 
TCGGTTATTCATAATAATGCAGAACAATTTGATGAAAAAGCAGAATATGTGTTCAAATATATTCAAATATTTTCAGCAATTTTCGATTCGTTTGCCCACGGGGCGAATGATGTCGCAAAC 360 
TCGGTTATTCATAATAATGCAGAACAATTTGATGAAAAAGCAGAATATGTGTTCAAATATATTCAAATATTTTCAGCAATTTTCGATTCGTTTGCCCACGGGGCGAATGATGTCGCAAAC 360 
********* **************** ********************************************************************************************* 

GCAATGGGTCCATTTATGACAATATGGGTAATATGGAAGGCGGAAGGAGGAGCAATTGGTGGGAGTAAAACAGATATTGGAGATGATTCATATTGGATACTTGCAATTGGAGGTATTGGC 480 
GCAATGGGTCCATTTATGACAATATGGGTAATATGGAAGGCGGAAGGAGGAGCAATTGGTGGGAGTAAAACAGATATTGGAGATGATTCATATTGGATACTTGCAATTGGAGGTATTGGC 480 
GCAATGGGTCCATTTATGACAATATGGGTAATATGGAAGGCGGAAGGAGGAGCAATTGGTGGGAGTAAAACAGATATTGGAGATGATTCATATTGGATACTTGCAATTGGAGGTATTGGC 480 
GCAATGGGTCCATTTATGACAATATGGGTAATATGGAAGGCGGAAGGAGGAGCAATTGGTGGGAGTAAAACAGATATTGGAGATGATTCATATTGGATACTTGCAATTGGAGGTATTGGC 480 
GCAATGGGTCCATTTATGACAATATGGGTAATATGGAAGGCGGAAGGAGGAGCAATTGGTGGGAGTAAAACAGATATTGGAGATGATTCATATTGGATACTTGCAATTGGAGGTATTGGC 480 
GCAATGGGTCCATTTATGACAATATGGGTAATATGGAAGGCGGAAGGAGAAGCAATTGGTGGGAGTAAAACAGATATTGGAGATGATTCATATTGGATACTTGCAATTGGAGGTATTGGT 480 
GCAATGGGTCCATTTATGACAATATGGGTAATATGGAAGGCGGAAGGAGAAGCAATTGGTGGGAGTAAAACAGATATTGGAGATGATTCATATTGGATACTTGCAATTGGAGGTATTGGT 480 
GCAATGGGTCCATTTATGACAATATGGGTAATATGGAAGGCGGAAGGAGAAGCAATTGGTGGGAGTAAAACAGATATTGGAGATGATTCATATTGGATACTTGCAATTGGAGGTATTGGT 480 
************************************************* ********************************************************************* 

Figure continues in next page 
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ATTGGAATCGGTTTACTATTATATGGATACAATATCATGCAGGCAATTGGTGTAAAACTTGCAGTAATTACACCAAGTCGTGGTGTTTGTATTGAGCTTGGTTCCGCGGTT TAATTATT 600 
ATTGGAATCGGTTTACTATTATATGGATACAA~ATCATGCAGGCAATTGGTGTAAAACTTGCAGTAATTACACCAAGTCGTGGTGTTTGTATTGAGCTTGGTTCCGCGGTTqTAATTATT 60 0 
ATTGGAATCGGTTTACTATTATATGGATACAA~ATCATGCAGGCAATTGGTGTAAAACTTGCAGTAATTACACCAAGTCGTGGTGTTTGTATTGAGCTTGGTTCCGCGGTTATAATTATT 60 0 
ATTGGAATCGGTTTACTATTATATGGATACAATATCATGCAGGCAATTGGTGTAAAACTTGCAGTAATTACACCAAGTCGTGGTGTTTGTATTGAGCTTGGTTCCGCGGTT. TAATTATT 600 
ATTGGAATCGGTTTACTATTATATGGATACAA~ATCATGCAGG~AATTGGTGTAAAACTTGCAGTAATTACACCAAGTCGTGGTGTTTGTATTGAGCTTGGTTCCGCGGTT TAATTATT 600 
ATTGGAATCGGTTTACTATTATATGGATACAAGATCATGCAGGAAATTGGTGTAAAACTTGCAGTAATTACACCAAGTCGTGGTGTTTGTATTGAGCTTGGTTCCGCGGTTGTAATTATC 60 0 
ATTGGAATCGGTTTACTATTATATGGATACAAGATCATGCAGGAAATTGGTGTAAAACTTGCAGTAATTACACCAAGTCGTGGTGTTTGTATTGAGCTTGGTTCCGCGGTTGTAATTATC 60 0 
ATTGGAATCGGTTTACTATTATATGGATACAAGATCATGCAGGAAATTGGTGTAAAACTTGCAGTAATTACACCAAGTCGTGGTGTTTGTATTGAGCTTGGTTCCGCGGTTGTAATTATC 6 00 
******************************** ********** ******************************************************************* ******* 

TCGGAAGTTATATGGGTATTCCATTATCGACGAC\ CATGCACAAGTTGGAGCAACAGTGGGTGTTGCACTACTCGAAGGTAAAAAAGGAATCAATACAAAAGTGTTGAGTAAAGCAGGA 720 
~TCGGAAG~TATATGGG~ATTC~.TTATCGACGACrCATGCACAAGTTGGAGCAACAGTGGGTGTTGCACTACTCGAAGGTAAAAAAGGAATCAATACAAAAGTGTTGAGTAAAGCAGGA 720 
TCGGAAG~TATATGGG~ATTCCATTATCGACGAC~CATGCACAAGTTGGAGCAACAGTGGGTGTTGCACTACTCGAAGGTAAAAAAGGAATCAATACAAAAGTGTTGAGTAAAGCAGGA 720 

~TCGGAAG-TATATGGG-ATTCC<TTATC~ACGAC-CATGCACAAGTTGGAGCAACAGTGGGTGTTGCACTACTCGAAGGTAAAAAAGGAATCAATACAAAAGTGTTGAGTAAAGCAGGA 720 
~TCGGAAGTTATATGGGTATTC~.TTATCGACGAC~CATGCACAAGTTGGAGCAACAGTGGGTGTTGCACTACTCGAAGGTAAAAAAGGAATCAATACAAAAGTGTTGAGTAAAGCAGGA 720 
ACCGGAAGCTATATGGGGATTCCGTTATCAACGACTCATGCACAAGTTGGAGCAACAGTGGGTGTTGCACTACTCGAAGGTAAAAAAGGAATCAATACAAAAGTGTTGAGTAAAGCAGGA 720 
ACCGGAAGCTATATGGGGATTCCGTTATCAACGACTCATGCACAAGTTGGAGCAACAGTGGGTGTTGCACTACTCGAAGGTAAAAAAGGAATCAATACAAAAGTGTTGAGTAAAGCAGGA 72 0 
ACCGGAAGCTATATGGGGATTCCGTTATCAACGACTCATGCACAAGTTGGAGCAACAGTGGGTGTTGCACTACTCGAAGGTAAAAAAGGAATCAATACAAAAGTGTTGAGTAAAGCAGGA 720 

****** ******** ***** ***** ***** ************************************************************************************ 

TTTGG TGGATA· TAACACTAATTGTGGCTGGGTTGTTAGCAGGATTACTTACT -CCCAGGGTATTTATTCTCCTATTAAT 801 
TTTGG- TGGATAATAACACTAATTGTGGCTGGGTTGTTAGCAGGATTACTTACT ,CCCAGGGTATTTATTCTCCTATTAAT 801 
TTTGG~TGGATAJTAACACTAATTGTGGCTGGGTTGTTAGCAGGATTACTTACTGCCCAGGG-ATTTATTCTCCTATTAAT 801 
TTTGG~TGGATA TAACACTAATTGTGGCTGGGTTGTTAGCAGGATTACTTACTGCCCAGGG- ATTTATTCTCCTATTAAT 801 
TTTGG- TGGATJVTAACACTAATTGTGGCTGGGTTGTTAGCAGGATTACTTACT CCCAGGG- ATTTATTCTCCTATTAAT 801 
TTTGGGTGGATAGTAACACTAATTGTGGCTGGGTTGTTAGCAGGATTGCTTACTTCCCAGGGGATATATTCTCCTATTAAT 801 
TTTGGGTGGATAGTAACACTAATTGTGGCTGGGTTGTTAGCAGGATTGCTTACTTCCCAGGGGATATATTCTCCTATTAAT 801 
TTTGGGTGGATAGTAACACTAATTGTGGCTGGGTTGTTAGCAGGATTGCTTACTTCCCAGGGGATATATTCTCCTATTAAT 801 
***** ****** ********************************** ****** ******* ** *************** 

Fig. 7.3. Clustal alignment of the Engli sh Channel EhV's ehv ll7 sequences (produced from the purified Phos_F 1/Phos_R I PCR amplified fragments). Conserved bases are 

identi tied by an asterisk underneath the corresponding base. Nucleotide differences between the 1999 and 200 I isolates are highlighted in blue and red respectively. 
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7.3.3. Effect of P limitation on E. huxleyi growth and EhV-86 production 

The growth of E. huxleyi CCMP 1516 cultures that had received different dissolved 

inorganic phosphate additions was followed. Two of the cultures (P-replete and one I % P 

controls) were maintained virus-free, the rest were inoculated with Eh V -86 (host:virus 

ratio approximately I :3 ). The aim of this test was to detect which conditions may lead to P 

starvation based on the host growth and the effect on virus production. 

Growth curves for each condition are presented in Figure 7 .3. Under P-replete conditions 

the abundance of CCMP 1516 cells had logarithmic increase for 13 days before reaching 

the stationary phase (Figure 7.4 A). The growth rate of cells in the I % P control culture 

(Figure 7.4 B) decreased significantly after day 4 compared to the other of phosphate 

conditions. E. huxleyi cells in the I % P control culture were at stationary growth phase 

from day 9 until the end of the experimental period. Until day 11, the growth ofCCMP 

1516 cells in the culture with 50 % P addition did not deviate significantly from cells 

growth in the P-replete control culture (Figure 7.4 C). After this day, cell abundance 

decreased steadily concomitant with a high accumulation of Eh V -86 particles in the culture 

medium. ln the 10% P culture E. huxleyi cells (Figure 7.4 D) followed a similar 

progression and growth rate to the P-replete and 50% P cultures until day 9. This day 

CCMP 1516 had reached the stationary phase in the 10 % P culture. The maximum E. 

huxleyi cell abundance was, in this case, approximately one third lower than in the 50 % P; 

although Eh V particles production did not differ in numbers from the 50% P culture. 

However, the collapse of the E. hux/eyi culture and sudden increase ofEhV numbers was 

delayed by I day in the 10 % P culture compared to the 50 % P condition. In both I % P 

cultures (with and without virus addition) the maximum CCMP 1516 cell abundances were 

approximately 4.6 and 3.2 times lower than in 50% and 10% P respectively. 

144 



30 

25 
~ 
E2Q 
!!1 
Qi 
() 15 

"' 0 
~ 

10 

5 

~---------------------.--------------------~ 

A 
30 P-fe!)ete contrd 

25 

B 
1%Pcontrd 

~ 
E2Q 
!!1 
Qi 
() 15 

"' 0 
~ 

10 

2 4 6 8 10 12 14 2 4 6 8 10 12 14 

Day Day 

30 

25 
~ 

20 E 
!!1 
Qi 

15 () 

10 

5 

0 

"' 0 
~ 

2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14 

Day Day Day 

Fig. 7.4. Growth curves of E. huxleyi strain CCMP 151 6 (fi lled triangles) and Eh V -86 production (empty 
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circles) as detemuned by flow cy1ometry counts. (A) Phosphate-replete control culture uninoculated; (B) I % 

added-phosphate control cul ture uninoculated ; (C) 50% added-phosphate culture inoculated with Eh V -86; 

(0 ) 10 % added-phosphate cul ture inoculated with EhV-86; (E) I % added phosphate culture inoculated with 

EhV-86. Graphs are plotted as E. Jwxleyi cell and Eh V abundances versus day in culture. Arrows denote 

inoculation of cultures with EhV-86. 

The 1 % P culture inoculated with EhV-86 (Figure 7.4 E) only differed slightly from the 

1 % P control culture after the virus addition. While the I % P control culture remained at 

stationary phase, a small decrease in cell numbers was observed in the former I % P 

culture during the last three days, concurrently with the accumulation of virus particles in 

the culture medium. However, EhV-86 abundances in the I% P cultures were significantly 

lower than the abundances recorded in the 50 % and 10 % P cultures. 
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CPC of the different cultures, as estimated by relative fluorescence measurements, is 

shown in Figure 7.5. CPC in the P-replete control culture remained stable and above 0.5 

units of relative fluorescence (R. U.) throughout the entire period of study. In the P-

depleted culh tres CPC decreased slightly on the first few days (days 1 to 4), then CPC 

increased to the same levels than those for the P-replete culture. However, despite the 

initial CPC decrease in the P-depleted cultures, the cells grown under such conctitions 

maintained their photosynthetic capacity until day l 0 (R. U.> 0.5). Then from day 11 , CPC 

declined sharply in the 50% P, 10 % P and I %P infected cultures as lysis occurred. After 

this day no sign of photosynthetic act ivity was detected in those cultures and measuring of 

relative fluorescence was not continued. In the P-replete control culture cell growth 

continued after day 11 (Figure 7.4) indicating that cells still had photosynthetic activity. 

No measurements are available for the 1 % P control culture. 
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Fig. 7.5. E. huxleyi cell photosynthetic capacity as determined by the DCMU method, expressed as units of 

relative fluorescence. t,. P-replete control culture, • 50 % P culture, o I 0 % P culture, "' I % P culture. The 

arrow denotes inoculation into the 50 %, I 0 % and I % P cultures with Eh V -86. 

Based on these results a similar experiment was performed in triplicate to compare the 

development of2 L batch cultures of E. hu.xleyi CCMP 15 16 inoculated with EhV-86 

during stationary growth phase (host:vims ratio approximately I :3) and grown under P-

replete and I % P conditions. These cultures were sampled at different time points for total 

RNA extraction (Section 2.2 .11 .3). 
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Additionally, one 2 L P-replete uninoculated culture was set up to serve as a negative 

control (Figure 7.6). 
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Fig. 7.6. Growth curve of E. huxleyi strain CCMP 1516 as detenruned by now cytometry counts under P-

replete phosphate culture conditions with no virus addition (control). Graph is plot1ed as£. huxleyi cell 

abundance versus day in culture. 

Despite differences in numbers, the results obtained in this experiment under P-replete and 

I % P-modified F/2 medium culture conditions are comparable to what previously 

observed under 50 % and 1 % P-modified F/2 medium culture conditions respectively 

(Figure 7.7). 

The P-replete cultures of E. hux leyi CCMP 151 6 (Figure 7.7 A, B, C) had hi gher growth 

rate and reached cell abundances approximately 3.5 times higher than the cultures that 

grew with just I % P addition (Figure 7.7 D, E, F). Complete lysis ofP-replete cultures 

occurred within 4 days post-inoculation and was accompanied by an intense Eh V -86 

production. On the other hand, E. huxleyi cell numbers in the I % P cultures decreased 

slowly after infection as EhV-86 particles accumulated in the culture medium. 
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Cultures that had received the same nutrient treatment were good repl icates of each other. 

The only obvious difference was in treatment I % P replicate 3 (Figure 7.7 F), where the 

abundance of Eh V -86 during the last 5 days of study was lower than in 1 % P replicates I 

and 2 (Figure 7 .7 D, E). However, in terms of population development they did not differ 

significantly. 
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Fig. 7. 7. Growth curves of E. huxleyi strain CCMP 15 16 (fi lled triangles) and Eh V -86 production (empty 

ci rcles) as determined by flow cytometry counts. Graphs (A), (B) and (C) correspond to triplicate cultures 

under P-replete conditions. (D), (E) and (F) correspond to replicates grown in I % P-modified F/2 medium. 

Graphs are plotted as E. huxleyi cell and Eh V abundances versus day in culture. r I, r2 and r3 denote 

rep licates I, 2 and 3 respectively. Arrows denote inoculation o f cultures with EhV-86. 

7.3.4. Isolation and quantification of total RNA from the infected cultures 

Isolation and DNase methods yielded relatively low concentrations (250-8000 pg , .. tl-1
) of 

total RNA. Low RNA yields may be a consequence of the DNase treatment, which may 

activate any RNases present in the sample, hence the loss of RNA. However, the RNA 

samples were of good quality and carried no DNA contam ination as revealed by the lack of 
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product amplification by PCR using Phos-Fl/Phos-R l primers and by real-time PCR 

(without reverse transcriptase) reactions. 

7 .3.5. Differential expression of the ehv117 gene in Eh V -86 

The initial tests performed to establish the optimum conditions for the real-time PCR assay 

indicated that the suitable concentration of primers and probe were 300 nM and 125 nM 

respectively. Under the set PCR conditions, the calibration curve obtained from serial 

di lutions of known amount of ehv 11 7 cDNA was log-linear and it had a correlation 

coefficient (R2
) of0.98 (Figure 7.8). The efficiency (E) ofthe PCR reaction was 0.75 . 
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Fig. 7.8. Calibration curve for the real-time PC R amplification of known amounts of EhV-86 putative 

phosphate-repressible phosphate permease cON A. Shown is a plot of cycle number (CT) versus logarithm of 

known amounts of purified EhV-86 putative phosphate-repressible phosphate permease cDNA (log CO). 

No product was amplified from the NTCs and the NACs indicating the absence of 

fluorescence or DNA contaminants in the instruments and/or the samples; although, one of 

the NAC produced some minor fluorescence signal after 38 cycles (data not shown). 

However, this late amplification should be interpreted as unspecific amplification rather 

than contamination (Contact Support, Applied Biosystems, UK, personal communication). 

Real-time reverse-transcription PCRs were performed with 1000 pg sub-samples of total 

RNA isolated from the E. huxleyi CCMP 1516 cu ltures and the fluorescence emitted was 
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monitored throughout the reaction as an indicator of amplicon production during each PeR 

cycle. The progression curves of relative fluorescence, for both nutrient treatments, are 

shown in Figure 7.9 (for simplicity, only one replicate for each treatment is shown). In the 

reactions with RNA samples from P-replete cultures the recorded fluorescence signal 

exceeded the fluorescence threshold (eT) at 27 cycles for t24 samples, at 31 cycles for t 12 

samples, at 37 cycles for f4 and at 39 cycles to samples (Figure 7.9 A). With RNA isolated 

from the I % P cultures, eT values of 33 and 34 were obtained for t24 and t12 samples 

respectively; no amplification was produced for the t4 and to samples indicating that 

ehvll7 mRNA was not present in those samples (Figure 7.9 B). The initial amount of the 

ehv 11 7 mRNA contained in the reactions was calculated, using those eT values, as an 

indication of gene expression in Eh V -86 at each sampling point. The estimated initial 

amounts of mRNA were averaged for each nutrient treatment and time (relative to Eh V -86 

inoculation) and the results are shown in Table 7.1 . 
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Fig. 7.9. Representative progress curves for the real-time reverse-transcriptase PCR amplification of Eh V -86 

putative phosphate-repressible phosphate pennease cDNA during infection of E. huxleyi CCMP 1516 

cultures grown in P-replete (A) and I % P (B) F/2 media. Shown are plots of increase in fluorescence signal 

versus PCR cycle number; t24• t12, t4 and t0 indicate the amplification curves (in triplicate) with total RNA 

samples extracted 24 h, 12 h, 4 h after inoculation and before inoculation of the cultures with Eh V -86 

respectively. The green bars indicate the fluorescence threshold that determines the CT for each sample. 
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1 % P Initial amount of P-replete Initial amount of 
treatment m RNA (pg per 1000 pg treatment m RNA (pg per I 000 pg 

oftotal RNA) oftotal RNA) 
to Not detected to 5.35 X 104 

t4 Not detected 4 1.12 x 1 o·.l 

t l2 6.05 x 1 o·J tl 2 3.30 X w·L 

t24 1.28 x w·l t24 4.02 x 1 o·l 

Table. 7.1. Initial amounts of Eh V -86 ehv I 17 m RNA in the I 000 pg of total RNA template in the real-time 

reverse-transcriptase PCR reactions. The results indicate the average amount in samples isolated before and 4 

h, 12 hand 24 h after (t0, t4, t12 and t24 respectively) inoculation with Eh V -86 from cultures of E. hux /eyi 

CCMP 1516 grown in I % P and P-replete F/2 media. 

The amount of target ehv 11 7 mRNA in the cultures increased in time after infection in 

both nuttient treatments. When comparing the two nutrient conditions at each sampling 

point, the amount of ehv 117 mRNA was significantly higher in cultures that grew in P-

replete conditions. 
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7.4. Discussion 

The present study has mainly focussed on the role of phosphate availability over infection 

of the marine coccolithophore E. huxleyi. Previous studies have revealed the presence of a 

putative phosphate permease gene both in E. huxleyi strain CCMP 1516 and in Eh V -86, 

which is the type species of the virus group specific to these phytoplankton species. Based 

on this knowledge the specific aims of the current experiments included first to determine 

whether or not the phosphate permease gene is commonly carried in the genome of all Eh V 

strains and then to investigate the expression profile under P-replete and P-depleted 

conditions. 

7.4.1. Presence/absence of the ehvll7 gene in E. lruxleyi viruses 

PCR screening often Eh V isolates available in culture indicated that nine of those Eh Vs, 

originally isolated from the English Channel, carry the ehvl17 gene. Intriguingly, the 

sequences obtained allow differentiation among Eh Vs isolated in different years but do not 

differentiate isolates obtained in the same year. The ehvll7 fragment was not amplified 

from Eh V -163, the only isolate that originated from a geographically distant location 

(Raunefjorden, Norway), suggesting the absence of the gene in this virus strain. Since the 

primers employed in this study had been designed to the ehv 117 sequence of one of the 

English Cha1mel isolates (EhV-86) it would be possible that the PCR amplification was 

biased towards phylogenetically closely related Eh Vs and the failure to amplify the 

expected gene fragment from Eh V -163 would mean that the sequence of a putative 

phosphate permease from Eh V -163 differs significantly from that of the English Channel 

Eh Vs. However, all further attempts to amplify this gene from Eh V -163 by PCR with 

several sets of primers have also failed (data not shown). In addition, two recent studies, a 

small scale sequencing project on Eh V -163 (Alien et al. 2006b) and an Eh V -86 based 

microarray assay (Alien et al. submitted) also failed to detect the ehv 117 in Eh V -163, and 
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have shown that a recombination event has occurred in Eh V -163 causing a 5' partial 

deletion ofehvll7 and the insertion of a putative nuclease (designated ehvll7a) 

7.4.2. Effect of phosphate availability on infected cultures of E. lluxleyi 

To investigate the effect ofP limitation on the development of batch cultures of infected 

E. huxleyi and the subsequent release of viruses the model system formed by E. lnu-leyi 

CCMP IS 16 and Eh V -86 was used as a case study. 

Manipulation of the dissolved inorganic P concentrations in batch cultures of E. huxleyi 

CCMP 1516 indicated that when P addition to the cultures was reduced down to I % (0.36 

J1M), relative to normal P addition for f/2 medium, a significant negative effect was 

induced on cell growth and virus production (Figure 7.4). A study by Shiraiwa (2003) also 

indicated the suppression of cell growth in coccolithophorids when availability of 

nutrients such as P is limited. The observations here presented are also in accordance with 

that previously reported for mesocosm experiments, where the lack of P inhibited virus 

production in E. huxleyi (Bratbak et al. 1993). However, despite the reduction in growth, 

the results in this experiment revealed that P limitation did not affect cell photosynthetic 

capacity. Cells grown at low P concentrations were equally healthy as those at P-replete 

conditions in terms of photosynthetic activity, which was shut down only as a consequence 

of viral lysis. Photosynthesis has also been found to continue until a late stage of viral 

infection in other phytoplankton species (Benson & Martin 1981, Suttle & Chan 1993, 

Brussaard et al. 1999). 

7.4.3. Differential expression of the ehvl17 gene induced by P regime 

Genomic research with marine phytoplankton and their specific viruses is rapidly 

advancing our understanding of how they function and interact in the marine environment. 
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Many aspects of virus ecology such as survival, infectivity and specificity are most likely 

reflected in variations at the genomic level and altered patterns of gene expression. 

Based on the observations on cell growth and virus production, P-replete and I % P culture 

conditions were selected as the optimum conditions to investigate potential differences in 

the level of expression of the ehv 117 gene of Eh V -86 during infection. Eh V -86 were added 

into all the cultures during stationary growth phase. This was done in order to standardise 

the infection process and to eliminate possible differences in gene expression due to the 

growth phase of the host instead ofP availability. 

Dyhrman et al. (2006) reported that nutrient availability conditioned gene expression in 

E. huxleyi CCMP 1516; in particular they observed an increase in the expression of the 

host putative phosphate-repressible phosphate permease under P limitation. However, to 

my knowledge, these are the first transcriptome analyses of P starvation for a member of 

the Phycodnaviridae family. 

So far, previous transcriptomic analysis using microarray assays had failed to detect the 

presence of any transcript for the ehv 117 during the course of the Eh V -86 infection cycle 

(Alien et al. 2006a). However, the findings from the present study employing real-time 

reverse-transcription PCR, a more sensitive and reliable approach to quantify gene 

expression (Bustin 2000, Walker 2002, Quinn et al. 2006), indicate the expression of the 

ehv 117 gene of Eh V -86 during the infection process of both, P-replete and P-depleted 

cultures. In the I% P cultures, mRNA was first detected 12 h after inoculation ofthe virus 

in the host culture. However, in P-replete cultures the fluorescence signal recorded was 

over the threshold after 3 7 and 39 cycles for 4 and t0 samples. This result should be 

interpreted as unspecific amplification and not as transcription of the ehv 117 gene; first 

because this late amplification is comparable to the result from one of the NACs (data not 
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shown) and second because at to there were no viruses in the samples, therefore viral 

mRNA could not be detected at this sampling point. 

In contrast to what has been reported for E. huxleyi CCMP 1516, i.e. higher expression of 

the phosphate permease gene under P-limiting conditions, low concentrations ofP induced 

a decrease in the level of ehv I I 7 expression in Eh V -86 as indicated by the lower amount 

ofmRNA quantified from those cultures. A possible explanation for this observation could 

be that when excess of P is available in the culture medium, E. huxleyi CCMP 1516 does 

not need to transcribe (or does it at low levels) the phosphate permease gene (Dyhrman et 

al. 2006). Then during infection of E. huxleyi CCMP 1516, EhV-86 may start expressing 

its own putative phosphate permease ( ehv 117) to maintain the uptake of P, which is a 

major component of nucleic acids. As suggested by Bratbak et al. (1993), viral replication 

is highly dependant on P availability due to their high nucleic acid to protein ratio. On the 

other hand, as reported by Dyhrman et al. (2006), P starvation induces up-regulation of the 

phosphate permease in E. hw:leyi CCMP 1516 over fourfold compared to P excess. Thus 

during the infection cycle of P-limited cultures, Eh V -86 may not require the expression of 

its ehvll7 gene ifthe host's phosphate pennease is transcribed ensuring the acquisition of 

the required P. 

7.4.4. Biological inferences 

The results in this and in other studies (Alien et al. 2006b, Alien et al. submitted) reveal 

variation at the genomic level among several Eh V isolates. Such variations imply most 

likely significant differences in the biology and ecology among the members of this algal 

v1rus group. 

In chapter 3 in this thesis the results from an extensive host range experiment, under P­

replete culture conditions, showed that all the Eh V strains screened in the current 

155 



experiment for the presence of the putative phosphate permease ( ehv 117) were capable of 

infecting many of the same host strains. However, some remarkable differences in host 

range were also detected and it was suggested the need for further investigation focused on 

specific genes in order to find the genetic features that determine these phenotypic 

differences in this host/virus system. The most significant difference in terms of infectivity 

was observed in the case of Eh V -163. This virus strain could infect E. hu.xleyi CCMP 1516 

but failed to infect the closely related non-calcifying strain CCMP 1516b. Both of these 

strains originated from the same E. huxleyi isolate; however, CCMP 1516b changed its 

calcification state during culturing since the original isolation of the strain. Alien et al. 

(submitted) have recently found, using an EhV-86 based microarray, that all the Eh V 

strains capable of infecting E. huxleyi CCMP 1516b (Table 3.1 in chapter 3) share 14 

protein coding sequences (CDSs) that are absent or highly variable in EhV-163. 

Interestingly, one of those CDSs is the one encoding the putative phosphate permease, 

which in this chapter has been proven to be transcribed during the EhV-86 infection cycle. 

In place of ehv 117 in Eh V -163 there is a 600 bp region that contains a 75 bp 3' remnant of 

ehvll7 and a 435 bp putative CDS that encodes a putative endonuclease (ehvll7a), 

indicating a gene replacement (Alien et al. 2006b). The functional relevance of this gene 

replacement is yet to be determined, but it seems to indicate the existence of significant 

differences in the infection process among Eh V strains. Quinn et al. (2006) have recently 

reported that the putative phosphate-repressible phosphate permease appear to be 

expressed in response to calcification rather than phosphate starvation. Therefore, if the 

phosphate-repressible phosphate permease gene is not expressed in the non-calcifying E. 

hux/eyi CCMP 1516b, the lack of an orthologue in Eh V -163 would prevent infection of 

this host strain. This suggestion is in accordance with the hypothesis that ehv 117 in Eh V-

86 is expressed to compensate for low expression of the host putative phosphate permease 

gene and therefore to warrant a successful replication. 
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Finally, it is worth noting the role of viruses as vectors for the transfer of genetic material 

(transduction) between communities (Jiang & Paul 1998a). Phages, for instance, often 

carry in their genomes inserted genes that may come from other phages or hosts (Juhala et 

al. 2000). Phages may acquire ecologically important genes to adapt to new environments. 

For example, genes involved in phosphate metabolism have been found in many marine 

phages (Rohwer et al. 2000, Chen & Lu 2002). The similarity between the sequences of the 

putative phosphate-repressible phosphate permease gene in the host and ehv 117 in the 

virus (Figure 7 .I) indicates that both genes share a common ancestor. However, the degree 

of mismatches at the nucleotide level seems to suggest that these genes have been in their 

genomes long enough to allow differentiation. lt is thus tempting to suggest that some 

Eh Vs may have acquired from E. huxleyi genes such as the phosphate permease, which 

make of this phytoplankton species a successful competitor in parts of the ocean where P is 

a major limiting nutrient. 
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7.5. Conclusions 

To summarise, in the current investigation it was found that out of the ten Eh V isolates 

included in the study, the nine that originated from the English Channel carry a putative 

phosphate permease gene (ehvll7), while the only isolate obtained from a distant area 

(Eh V -163) do not have this gene in its genome. Instead, Eh V -163 has replaced ehv I I 7 

with a putative endonuclease. 

The lack ofP available in the culture medium reduces the growth rate of E. huxleyi CCMP 

15 I 6 and inhibits the production of EhV-86 particles. However, P availability does not 

have an effect on the cells photosynthetic capacity. 

A novel finding from the present study is that, unlike other methods, the use of real-time 

reverse-transcription PCR has proven to be an accurate and sensitive technique that 

revealed the expression of the putative phosphate permease of Eh V -86 during an infection 

cycle. Furthermore, to my knowledge this is the first study that investigates differences 

induced by different P regimes in transcriptomic levels of an algal virus during the course 

of an infection cycle. The results indicate an increase in gene expression levels under P­

replete conditions compared to P-depleted culture conditions. 

These results suggest that gene transfer may have provided some members of the algal 

virus genus Coccolithovirus with important ecological advantages that determine the 

existence of different propagation strategies among closely related Eh V strains. 
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8. Phytoplankton community succession and role of viruses during 

Phaeocystis pouchetii blooms: a mesocosm study 

8.1. Introduction 

The genus Phaeocystis play a significant role in global biogeochemistry (Smith Jr et al. 

1991, Lance lot et al. 1994, 2005). Several species within the genus Phaeucystis have been 

documented to supply significant portions ofthe global DMS stocks (Gabric et al. 1999, 

Ayers & Gillett 2000) and play a key role in ecosystem structure (Verity & Smetacek 

1996, Becquevort et al. 1998, Schoemann et al. 2005). 

An interesting aspect of Phaeocystis is its ability to transform between the well-known 

colonial stage and the less studied flagellated solitary stage, which function as dual 

functional groups (Weisse et al. 1994, Hamm et al. 1999, Jacobsen 2000, Verity 2000, 

Tang 2003). Phaeocystis typically produces almost monospecific, vast blooms of 

gelatinous colonies (Stefansson & Olafsson 1991, Lancelot et al. 1994, Becquevort et al. 

1998). However, in some cases the solitary cell stage can dominate (Wassmann et al. 

2005). PhaeO(TSiis colonies may be preferred when nitrogen is present as nitrate whereas 

solitary cells better assimilate ammonium (Riegman & van Boekel 1996, Hamm et al. 

1999). Jacobsen (2000) also indicated that the colonial phase of P. pouchetii dominated 

when nutrients were in excess and incident iiTadiance was below 20 mol m·2 d- 1
. (Peperzak 

et al. 2000) indicated that a low phosphate concentration and a reduction in daily irradiance 

triggered the transition of non-motile colony cells to flagellated cells in P. globosa. 

The complex life cycle of Phaeocystis is a key to understanding its role in the surrounding 

ecosystem, but the transition mechanisms between both stages and their ecological benefits 

are poorly known. It has been proposed that the colonial stage confers protection against 

predation (Whipple et al. in press) or viral attack (Bratbak et al. 1998b, Jacobsen 2002, 
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Brussaard et al. 2004b) while the solitary life form enables higher growth efficiency (see 

review by Schoemann et al. (2005)). It has been hypothesised that since colony formation 

may defend the alga against predation, bacterial and viral attacks, this may result in trophic 

sequestration of nutrients and energy into fonns not easily accessible to planktonic grazing 

and regenerating communities. 

A mesocosm experiment with two fertilised and one unfertilised enclosures was conducted 

in spring 2003 (27'" February-3'd April) in western Norway to follow the progression of a 

Phaeocystis pouchetii bloom. The main aim of the mesocosm study was to investigate the 

significance of the P. pouchetii bloom for the plankton community development and the 

trophic transfer (Nejstgaard et al. 2006). Several experiments were also conducted in order 

to fill perceived gaps in our understanding of P. pouchetii life cycle. Other colleagues 

working on this mesocosm study conducted a set of experiments that showed that while 

solitary flagellated cells were lysed within two to three days, colonies and detached 

colonial cells seemed to be non infectable (unpublished data). In addition, during the 

mesocosm study total P. pouchetii cells (solitary and non-motile single cells associated 

with colonies), P. pouchetii colony concentrations, other phytoplankton, microzooplankton 

and mesozooplankton in the enclosures were identified and enumerated by different means 

(Nejstgaard et al. 2006). 

This chapter is a brief overview of collected data that shows evidence of the presence and 

potential implications in the plankton community of P. pouchetii-specific viruses during 

the development of the induced bloom. The majority of the data here presented has been 

used in the production of 3 different manuscripts (Nejstgaard et al. 2006, Whipple et al. in 

press, Jacobsen et al. submitted). This study was restricted by time limitation, however 

samples were collected that will allow future work to examine the molecular richness and 

dynamics of P. pouchetii and their eo-occurring viruses. 
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8.2. Material and methods 

8.2.1. Mesocosm initiation 

Three polyethylene enclosures were filled in situ (in alternating thirds, such that filling was 

staggered, to minimize variability among them) with unfiltered fjord water (Section 

2.2.20). From 27th February to 20th March I 0 % of the water in each mesocosm was 

renewed daily with fjord water to allow the introduction of new species, avoid substantial 

pH changes, and replace sampled water over the course of the experiment (see discussions 

by Egge ( 1993) and Williams & Egge ( 1998)). 

Two of the enclosures were amended with nitrate (NaN03) and phosphate (KH2P04) 

(replicates NP (a) and NP (b)) corresponding to an initial enrichment of I6J1M nitrate and 

I JlM phosphate by the addition of 100 m! each of stock solutions ofNaN03 (1.76 M) and 

KH2P04 (0.11 M). Nutrients removed by the I 0 % water renewal were replaced daily. The 

third enclosure was left unamended and served as a control treatment (NP (c)). Further 

details about nutrient treatment and sampling procedures are as described by Nejstgaard et 

al. (2006). 

8.2.2. Enumeration of phytoplankton and viral populations 

Phytoplankton and viral abundances were estimated by analytical flow cytometry (AFC) as 

described in Section 2.2.6. In addition, flagellated cells, colonial cells and colonies of 

P. pouchetii were enumerated on a light microscope by Anita Jacobsen as described in 

Section 2.2. 7. Colonies were heavily shaken in order to detach the cells from the mucus. 

8.2.3. Virus isolation 

P. pouchetii-specific viruses (PpVs) were isolated from seawater samples collected from 

the 3 enclosures as described in Sections 2.2.3.1 and 2.2.3.3. 
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8.2.4. Pulse field gel electrophoresis (PFGE) 

PFGE was carried out on seawater samples collected from the NP (c) and the NP (b) 

enclosures according to the protocol described in section 2.2.1 0. Samples from two 

previously isolated Pp Vs (Pp V AJ96 and Pp V AL02) (Table 2.3) were run alongside the 

isolates obtained in this study for size comparison. 

8.2.5. Transmission electron microscopy (TEM) 

The Pp V lysates produced in this study were inspected by TEM as described in Section 

2.2.8. Briefly, lysate samples were harvested onto electron microscope nickel grids by 

ultracentrifugation. The grids were then stained with 2% uranyl acetate and viewed in a 

J EOL I DOS transmission electron microscope. 
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8.3. Results 

8.3.1. Diversity and succession of the phytoplankton populations 

T hree major groups of primary producers (Synechococcus sp., picoeukaryotes and 

nanoeukaryotes) and one minor group (cryptophytes) were observed on all the samples 

analysed by AFC from the 3 different enclosures and the fjord daily (Figure 8.1 ). 
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Fig. 8.1. Repre entative hi parametric flow cytometry plots howing populations of algae. Synechococcus sp., 

picoeukaryotes, nanoeukaryotes, and cryptophytes were discriminated using both a combination of red and 

orange fluorescence signals (A), and a combination of red fluorescence and side scatter (8). 

Description of each phytoplankton group: 

Syneclrococcus sp.: had the lowest red fluorescence (RFL) and side scatter (SSC) signals 

but the highest value for orange fluorescence (OFL) out of the three major algal groups. 

The high OFL signals and low SSC and RFL signals are properties consistent with that of 

Synechococcus sp. (Larsen et al. 200 I, Li & Dickie 200 I, Jacquet et al. 2002). 

Picoeukaryotes: relatively low RFL and SSC compared to nanoeukaryotes but higher than 

those values for Synechococcus sp. The size and pigmentation of the algae in thjs 

population, as indicated by AFC scatter and fluorescence signals, resembled that of pure 
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cultures of Micromonas pusilla, which indicate that this group consisted of one or more 

species ofpicoeukaryotes with size and pigments similar to M. pusil/a (Castberg et al. 

200 I, Larsen et al. 2001, Jacquet et al. 2002). 

Nanoeukaryotes: similar RFL values as cryptophytes but lower OFL and SSC values. The 

comparison with the signals of pure cultures of P. pouchetii (personal observation) might 

lead to conclude that this cluster includes P. pouchetii. As the group seemed to consist of 

more than one population it is preferable to be less specific and according to its 

characteristics can be referred to as nanoeukaryotes (one or several species). 

Cryptophytes: the high RFL, OFL and SSC values of this group indicate that the 

population was most likely consisting of cryptophytes (see section 4.3.1 in this thesis). 

Temporal progression ofphvtoplankton groups: 

AFC data showed different temporal progression in abundance of the phytoplankton 

groups present during the period of study. Fjord water samples were collected only from 

I ih March until the last sampling day (3'd April) (Figure 8.2). 

Picoeukaryotes numerically dominated the microalgae community in all the enclosures at 

the start of the sampling period (3'd March) with abundances around 25 x I 03 cells mr 1
• 

This group experienced a quick and steady decrease from the beginning and reached their 

lowest abundance on the 201
h March, from this day onwards it remained relatively stable at 

low numbers until the end of the period of study. Abundance and temporal progression of 

picoeukaryotes was identical in the three enclosures and also in the fjord. Inversely, the 

nanoeukaryotes increased in abundance from the first day. 
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Fig. 8.2. Time series development of the 4 microalgal populations as determined by Oow cytometry. (• ) 

Control enclosure, (o ) NP (a) enclosure, (T) NP (b) enclosure, (\7) fjord. 

Nanoeukaryotes abundances increased more markedly from the l?'h March in the nutrient 

amended enclosures reaching approximately 36 x I 03 and 47 x I 03 cell mr1 in NP (a) and 

NP (b) on 23rd and 26th March, respectively. In the control enclosure the maximum 

abundance for this group was significantly lower ( ~ 11 x 103 cell mr1
). Nanoeukaryotes in 

the fjord followed similar progression to the one in the control enclosure, however, the 

maximum abundance was lower(- 5.2 x 103 cell mr1
). After peaking, the nanoeukaryotes 

decreased sharply towards the end of the study, but increased again on the last two 

sampling days both in the enclosures and the fjord. Synechococcus sp. followed sin1ilar 

progression to that of the picoeukaryotes in all three enclosures but the abundances were 

one order of magnitude lower. Between l?'h and 26th March Synechococcus sp. 

concentrations were double in the fjord compared to the enclosures. 
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The other microalgal group, referred to as cryptophytes, remained stable at low numbers or 

had low growth rate throughout the entire period of study. Compared to the rest of the 

groups they did not seem to play an important role in terms of abundance in the community 

(maximum concentrations of 3 x 102 cells mr1
). 

In addition to AFC, light microscopy counts were performed to specifically detennine the 

abundances of solitary fl agellated and colonial P. pouchetii cells as well as the number of 

colonies per millilitre present in each ofthe enclosures. The abundances of each ofthe 

three forms of P. pouchetii are shown in Figure 8.3. 
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Fig. 8.3. Time seri es development of the 3 different forms of P. pouchetii as dctem1ined by light microscopy. 
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The flagellated cells followed a similar progression profile in the two fertilised enclosures. 

After a Jag period with low abundances (75 ± 60 ml" 1
) flagellated cell showed small peaks 

in enclosures NP (a) and NP (b) on 201
h March; then a decrease was followed by a second 

more intense increase in numbers that lead to maximum abundances of 26 x 102 and 

18 x I 02 cells mr 1
, respectively, on 261

h March. After a subsequent decrease they increased 

one final time. In the control (unfertilised) enclosure the flagellated cells remained at low 

numbers until 241
h March. From this date onwards P. pouchetii flagellated cells increased 

steadily until I 51 April (last day counts were done for this enclosure) reaching the highest 

abundances (28 x I 02 cells ml" 1
) among the 3 enclosures. 

Phaeocystis colonies were present in very low abundance (approximately 6 colonies ml" 1
) 

at the start of the experiment. In all three enclosures they increased from 141
h March. This 

increase was most pronounced in the two fertilized enclosures. On 23'd March Phaeocystis 

colony abundances peaked in NP (a) before a sharp decrease was observed. Colony 

numbers in enclosure NP (b) increased until the 291
h March before decreasing. Both 

fertilised enclosures reached colony abundances of~ 93 colonies m1" 1 while the maximum 

colony concentration in the unfertilized enclosure was 19 colonies mr 1 (20111 March). 

The numbers of non-motile P. pouchetii colonial cells were lower than ~ I 00 cells ml" 1 

between 51
h and 141

h March, and then a sharp increase was observed in the fertilised 

enclosures. Maximum abundances of 42 x I 03 and 49 x I 03 cells m1" 1 were recorded for 

the NP (a) and NP (b) enclosures, respectively, 3 days before the highest colony 

abundances for each of those enclosures. Therefore, the highest non-motile colonial cell 

numbers did not mean an increase in colony numbers but in number of cells per colony. 

The numbers of non-motile P. pouchetii colonial cells were significantly lower in the 

control enclosure(< 9 x 103 cells ml" 1
) than in the fertilized ones. This is in accordance 

with the (remarkably) low colony numbers reached in the absence of nutrient enrichment. 
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8.3.2. Diversity and succession of bacterial and viral populations 

AFC analysis of samples diluted in TE buffer and stained with DNA dye SYBR Green I 

revealed the presence of heterotrophic bacteria, P. pouchetii-virus (Pp V) like particles and 

other groups of viruses (Figure 8.4). These groups were easily discriminated based on their 

side scatter (SSC) and green fluorescence (GFL) characteristics. 

The PpV-like group appeared to be composed of two subpopulations with s lightly different 

GFL values. The PpV-like groups were identified by their GFL, which is substantially 

higher than for the other virus groups present, and by comparison to the AFC signature of 

PpV-AJ96 and PpV-AL02 lysates (see Section 8.3 .3). The rest of virus populations are 

most probably specific to other algal species and bacteriophages (Larsen et al. 200 I , 

Larsen et al. 2004). However, since this study is focused on P. pouchetii and their viruses, 

the counts for bacteria and other virus abundances are not included in this chapter. 
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Fig . 8.4. Representati ve biparametric flow cytometry plot showing populations o f P. pouchetii- pecific 

viruses (Pp Vs), other viruses and bacteria detected in the sea water sample collected from the mesocosm 

enclosures. 
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PpV-Iike abundances (Figure 8.5) increased slightly in the 3 enclosures at the beginning of 

the experiment period until 17'h March. Between 181h and 291h March they remained at 

relatively low concentrations, before a rapid increase took place in all three enclosures. In 

enclosure NP (a) PpV-Iike peaked on 151 Apri l (- 7.3 x 105 virus mr1
) before decreasing 

again the last 2 days of the experiment. The increase in numbers in enclosure NP (b) 

continued until the last sampling day (3rd April) on which it reached abundances of 

approximately 13 x 105 virus mr ' . In the control (NP (c)) enclosure PpV-like abundances 

also increased from 291
h March, but the last sample for virus counts from this enclosure 

was (unfortunately) taken on 3151 March. In the fjord PpV-like particles remained at low 

concentrations in during the whole experimental period. 
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Fig. 8.5. Time series development of P. pouchetii-specific virus populations as determined by now 

cytometry. (• ) NP (c) enclosure. (o ) NP (a) enclosure, ( ~ ) NP (b) enclosure. {'V) fjord. 

8.3.3. Virus isolation 

Only inoculations with concentrated samples collected from the contro l enclosure (N P (c)) 

on 141
h and 261

h March, from the NP (a) enclosure on 261
h March and fro m the NP (b) 

enclosure on 201
h and 261

h March resulted in lysis of P. pouchetii strain AJO 1. AFC 
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analysis of those lysates showed signatures with similar characteristics to those of Pp V 

strains AJ96 and AL02 (Figure 8.6). Therefore, PpV-l ike wi ll be called Pp V from now on. 

Clonal isolates were successfully obtained by 3 rounds of plaque assay purification of the 

Pp V lysates. The clone viruses were stored at 4 oc in the dark. They were maintained 

infectious by periodically propagating an aliquot on cultures of P. pouchetii strain AJO I . 
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Fig. 8.6. Representative hi parametric flow cytometry plots showing populations of Pp lysate originated in 

this study (A), Pp V strain AJ96 (B) and Pp V strain AL02 (C). 

8.3.4. PFGE analysis 

PFGE analysis of the new Pp V isolates showed that they have identical genome size to the 

previously isolated Pp Vs from the same location(- 460 kbp) (Figure 8.7) (Larsen et al. 

2004). However, PFGE analysis of concentrate seawater samples from the enclosures (data 

not shown) did not reveal the presence ofbands of the expected size for PpVs. For a 

typical sea water sample , at least I 09 virus m1" 1 or 50 ng of viral DNA are required to obtain 

a single fingerprint on PFGE (Steward 2001 ), but after the concentrating step by tangential 

flow filtration for the preparation ofthe plugs, estimated final concentrations were in the 

order of I 07 Pp V m1" 1 (estimated by AFC, data not shown). 
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2 4 'i 1 I 1 ?_ A 

Fig.8.7. PFGE profi les from analysis of lysatcs obtained from P. pouchetii cultures inoculated with mesocosm 

sea water samples_ The outennost lanes on each side of each image(/...) contain DNA size marker phage lambda 

concatamers from 48.5 kbp to approximately 600 kbp. Lane description (date and enclosure from where 

lysates were produced): 1. 14'h March control enclosure: 2, 20'h March NP (b) enclosure; 3, 26'h March 

control enclosure; 4, 26'h March NP (a) enclosure; 5, 26'h March NP (b) enclosure. Ll &L2: isolates Pp V 

AJ96 and Pp V AL02, respectively. 

8.3.5. TEM analysis 

Electron micrographs of lysed P. pouchetii-cells (strain AJO I) inoculated with 

concentrated seawater samples from the mesocosm enclosures showed free viral particles 

of 140- 170 run in diameter (Figure 8.8). These particles lack a tai l structure or other 

distinctive appendages and have a hexagonal outline suggesting icosahedral symmetry. 

The Pp V virions have a distinct capsid that surrounds a heavi ly stained internal region, 

which appear to be open and less stained in the centre. The observations in this study are in 

accordance with what previously described for Pp V isolates by Jacobsen et al. ( 1996). 
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Fig.8.8. Transmission electron micrographs of free P. pouchetii-viral particles (examples marked by arrows) 

produced after inoculation of healthy P. pouchetii strain AJO I cultures with filt ered and concentrated water 

amples coll ected from the mesocosm enclosure NP (b) on 201
h March. Micrograph C show viral particles 

entrapped in muci lage (star-like shaped filament ) produced by P. pouchetii. Note the different scales in the 

images. 
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8.4. Discussion 

8.4.1. P. pouchetii bloom and its effect on the rest of the microbial community 

The comparison of the AFC results and microscopy counts of P. pouchetii cells allows one 

to suggest that the group identified as nanoeukaryotes by AFC is composed mainly of P. 

pouchetii. Fixation and freezing of the samples result in dissociation of colonial cells 

which makes it possible to count them in the flow cytometer. It is therefore reasonable to 

assume that the different sub-groups that formed the nanoeukaryotes population may be in 

fact P. pouchetii cells in their different life stages. The differences in abundance as 

determined by AFC and microscopy, slightly lower counts by AFC, could be explained by 

losses due to the fixation and storing of the samples prior analysis (Vaulot et al. 2005). 

In the present mesocosm study, the majority of total P. pouchetii cells at the peak of the 

bloom were contained within colonies. Non-motile colonial cells were more than 20 times 

more abundant than flagellated cells. This was probably due the addition of nutrients to 

those enclosures as the presence of nitrogen as nitrate is known to favour the formation of 

colonies of P. p011chetii over single cells, which in turn are better at assimilating 

ammonium (Riegman & van Boekel 1996, Hamm et al. 1999). However, Phaeocystis 

blooms are not necessarily mainly formed of colonial cells. In north Norwegian fjords and 

elsewhere in the northeast North Atlantic, single flagellated cells may outnumber eo­

occurring non-motile cells within colonies (Wassmann et al. 2005). In the absence of 

nutrient addition (control enclosure) the number of colonies was very low, and the 

abundance of non-motile cells was only approximately 3 times higher that the abundance 

of flagellated cells. Yet, even in the unfertilised enclosure the estimated biomass of 

colonial cells was about 14 times higher than the average biomass of single cells in the 

same enclosure (Whipple et al. in press). 
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The development of the different groups in the phytoplankton community seemed to be 

linked to the development ofthe P. pO!tchetii bloom. AsP. pouchetii abundances increased 

the other two major populations ofphytoplankton detected by AFC, picoeukaryotes and 

Synechococcus sp., decreased steadily. The competitive ability of P. pouchetii cells 

depends on a number of factors like temperature, light conditions, nutrients, mixing and 

grazing. In Norwegian coastal waters blooms of P. pouchetii occur, mainly as colonies, 

either prior to, during, or just after the annual bloom of diatoms. P. pouchetii may take 

over the dominance during a spring bloom situation if the diatoms become silicate limited 

and there is surplus of nitrate and phosphate (Jacobsen 2000). Colonies of P. pouchetii are 

also adapted to low irradiance and temperature; under such conditions Weisse ( 1994) and 

Moisan & Mitchell ( 1999) measured photosynthetic parameters up to one order of 

magnitude higher than diatoms, indicating a potential for out-competing other 

phytoplankton species at low irradiance and temperature. In nature, P. pouchetii has an 

advantage over diatoms in turbulent environments (Lancelot et al. 1994), and also 

buoyancy of P. pouchetii may represent and advantage in relation to interspecific 

competition and dispersal strategies (Skreslet 1988). Resistance to grazing due to 

protection by the colony matrix (Weisse et al. 1994) and the role of infochemicals, which 

can act as a grazing repellent factor (Dutz et al. 2005), have also been reported to play and 

important role in controlling the abundance and competitive ability of P. pouchetii versus 

other phytoplankton species. However, the literature on Phaeocystis grazing rates is ample 

but reaches different conclusions (see review by Schoemann et al. (2005)). 

In addition, during this study Nejstgaard et al. (2006) observed low biomass of ciliates and 

mesozooplankton despite the large production of P. pouchetii colonies. This suggests that 

Phaeocystis may be capable oflimiting system complexity by sequestering nutrients and 

energy into forms not easily accessible to planktonic grazing. This observation supports the 
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fact that Phaeocystis may be a suboptimal food that does not support strong zooplankton 

production (Cotonnec et al. 200 I, Tang et al. 200 I). 

8.4.2. Bloom termination 

The senescence of Phaeocystis colonies has been observed under natural, mesocosm, and 

laboratory conditions (Veldhuis et al. 1986, Davidson & Marchant 1992, Lancelot et al. 

1994, Rousseau et al. 1994). In this study, microscopy analysis, carried out by eo-workers, 

confirmed that towards the bloom termination, cells within colonies had become motile 

and were released from senescent colonies as observed elsewhere (Verity et al. 1988, 

Rousseau et al. 1994). However, there is little detailed understanding of general colony­

senescence and bloom termination processes in Phaeocystis. 

Several studies point to a potentially important role of consumer organisms in controlling 

the Plweocystis life cycle. Nejstgaard et al. (2006) showed that in the present mesocosm 

study the P. pouchetii bloom did not seem to be significantly grazed or support any 

significant production of mesozooplankton. Therefore, grazing by itself cannot be pointed 

out as the main cause for the bloom crash. 

P. pouchetii blooms, both during mesocosm and environmental studies, in Norwegian 

fjords have been suspected to be terminated by specific virus infection (Jacobsen 2000, 

Larsen et al. 2004). In the current mesocosm study, the eo-variation observed between 

bacteria and virus abundances led Nejstgaard et al. (2006) to suggest that the virus 

community was dominated by bacteriophages and that viral lysis did not contribute to re­

proportioning biomass associated with P. pouchetii during the course of these experiments. 

Based on nutrient measurements, which revealed a decrease in nitrate and phosphate 

concentrations prior the crash of the bloom, these researchers suggested a relation between 

nutrient availability and the decrease in P. pouchetii cell abundances. However, evidence 
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for the presence of Pp Vs in the three enclosures and in the fjord is revealed in this chapter. 

Furthennore, the Pp Vs present in the enclosures during this mesocosm experiment were 

actively infectious and clearly linked to the demise of the P. pouchetii bloom as suggested 

by their rapid increase in abundance as the number of P. pouchetii cells suddenly 

decreased. In addition, another indicator of their infectivity was the fact that they were 

readily isolated and made clonal by inoculating exponentially growing cultures of the 

flagellated P. pouchetii strain AJO I with sea water samples collected from the enclosures. 

Nevertheless, given a burst size for P. pouchetii of 350-600 virus cell" 1 (Jacobsen et al. 

1996), one might expect Pp V abundances in the order of 15-25 x I 06 virus mr 1 if non­

motile P. pouchetii cells within colonies would have been infected during this experiment. 

However, maximum Pp V abundances in this study were within the range of 8-13 x I 05 

virus ml" 1 making thus tempting to think that only infected flagellated P. pouchetii cells 

(18-28 x I 02 cells ml" 1
) were responsible for the production of new Pp V particles. A 

speculated mechanism for lack of virus infection of Phaeoq,stis spp. colonies was a colony 

integument pore size too small to admit virus particles (Hamm et al. 1999, Jacobsen 2002). 

Other studies also indicated that only solitary flagellated cells of another Phaeocystis 

species, P. globosa, were susceptible to viral lysis (Hamm et al. 1999, Brussaard et al. 

2004b, Brussaard et al. 2005). However, in one set of experiments, Baudoux & Brussaard 

(2005) showed that available cultures of non-flagellated P. globosa cells originated from 

colonies can be infected by viruses. 

The results here presented seem to indicate the following prob'Tession: the decrease in 

P. pouchetii colony numbers in the enclosures was accompanied by a decrease in non­

motile colonial cells. Microscopy analysis confinned that cells within colonies had become 

motile and were released, possibly triggered by nutrient limitation, which explains the 

observed increase of free flagellated cells. Then free flagellated cells, susceptible to viral 

176 



infection, were lysed, making of Pp Vs, together with nutrient deprivation, the ultimate 

responsible for the bloom disappearance. 

Yet, if it is generally true that only flagellated cells may be infected, it would imply several 

important ecological implications such as the formation of fewer colonies that could have 

been produced if viruses were not present and therefore not removing flagellated cells, 

which are potential colony formers. If Phaeocystis is prevented from producing colonies it 

could be more susceptible to viral mortality and grazing what in turn would influence the 

effect of Phaeocystis spp. on trophic transfer in the planktonic food web. 

8.4.3. P. pouclletii- specific viruses 

Viruses infecting cultures of P. pouchetii strain AJO I were propagated during this study 

from water samples collected from the mesocosm enclosures. However, despite the 

presence ofPpVs throughout the entire period of study, successful isolation only occur 

from samples collected from the enclosures between the 16'h and 261h March when Pp V 

abundances were relatively low but not from the last sampling days when Pp V reached 

maximum abundances in the water. From the knowledge on other algae/virus systems such 

as Emiliania huxleyi and their specific viruses (see Chapters 5 and 6) it is likely that the 

P. pouchetii bloom in this study was possibly fonned by more than one P. pouchetii and 

Pp V strains. We also know that some phytoplankton viruses are strain specific (see 

Chapter 3). It might, therefore, be possible that the Pp V population was initially formed by 

several strains, among which one or more were specific toP. pouchetii strain AJ96, used 

for virus isolation. However, different PpV(s) might have been responsible for the demise 

of the flagellated P. pouchetii strain(s) that dominated the community in the enclosures. 

AFC dotplots revealed that the Pp V group are composed of at least two sub-groups with 

slightly different green fluorescence (GFL) (Figure 8.4). Baudoux and Brussaard (2005) 

also reported the co-existence of P. globosa-specific viruses that differed in their GFL 
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values and had different host ranges. However, there is not clear evidence in the current 

study to assess that both virus subpopulations are in fact different Pp Vs. A broader 

P. pouchetii strains culture collection might have increase the chances of isolating different 

Pp Vs towards the end of the bloom. 

Based on phenotypic characteristics, all the Pp V isolates in this study seem to belong to the 

virus family Phycodnaviridae: they are infectious to an eukaryotic microalgae, are 

polyhedral in shape, lack a tail structure, are large in diameter ( 140-170 nm) and contain 

large genomes (~ 460 Kbp). Additionally, Jacobsen et al. ( 1996) revealed that a similar 

Pp V isolate (Pp V AJ96) originated from the exact same area, several years before, had 

dsDNA genetic nature. However, phylogenetic information on their DNA polymerase 

genes is necessary in order to unequivocally assign this group of viruses as a separate 

genus or within one of the six defined genera in the family Phycodnaviridae. 

Finally, it is worth mentioning that although this study indicates a clear effect ofPpVs on 

the community dynamics of the ecologically important P. pouchetii species, there is little 

knowledge of their biology and ecological implications in the ocean. The study of these 

viruses' large genome sequence and transcriptomic analyses would certainly provide us 

with clues for a better understanding of the functioning ofPpVs in the sea. In the past few 

years the genome of three members of the Phycodnaviridae family have been fully 

sequenced: a virus that infects the marine brown alga Ectocarpus siliculosus (EsV-1) 

(Delaroque et al. 200 I), a virus that infects a chlorella-like algal symbiont of the freshwater 

protozoa, Paramecium bursaria (PBCV -I) (van Etten & Meints 1999a), and the E. 

huxl~vi-specitic virus EhV-86 (Wilson et al. 2005a). The analysis of those genome 

sequences has revealed the presence of components of a surprisingly complex signal 

transduction system as well as genes with functions more commonly observed in animal 

and plant cells (Wilson et al. 2005a). 
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8.5. Conclusions 

P. pouchetii blooms composed of flagellated single cells and colonies were fom1ed in 

nutrient-amended mesocosms. As the blooms occurred the rest ofphytoplankton species 

that composed the community were out-competed. 

This study reveals the presence of a group of large genome (- 460 Kbp) viruses that 

actively infect P. pouchetii. In fact, AFC analysis suggests that the virus group may be 

formed by two distinctive sub-groups. 

Phenotypic characteristics ofPpVs isolated from the water in the mesocosm enclosures 

indicate that they are probably members of the Phycodnaviridae family. 

Overall, the results show evidence that as previously suspected blooms of P. pouchetii can 

be terminated by specific virus infection. However, since Phaeocystis colonies appear to 

protect the cells against viral infection, the role of Pp Vs may be significant only for the 

flagellated stage. 
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19. Summary and future work 

Reports of marine viruses exist from long ago (Kriss & Rukina 1947); however, the 

concentration of viruses in natural waters was in general considered to be low and with no 

significant impact in marine ecology. Since viruses were first isolated against the marine 

phytoplankton species Micromonas pusilla (Mayer & Taylor 1979), a growing literature 

has reported the isolation and characterisation of other marine eukaryotic algae viruses 

(Table 1.1) revealing a broad genetic diversity. Other studies have shown the importance 

of viruses as mortality agents and controlling the structure and diversity ofphytoplankton 

communities (e.g. Cottrell & Suttle 1991, Bratbak et al. 1993, Brussaard et al. 1996b, 

Wilson et al. 2001a). The biogeochemical and ecological effects of viruses in the sea are 

nowadays generally accepted. Yet, still many aspects of the biology ofphytoplankton-virus 

systems remain unknown or uncertain. Understanding the factors that determine when and 

how a particular virus can and cannot infect an algal host under natural conditions is of 

hrreat interest, due to potential differences in the ecological and biogeochemical 

imp I ications. 

The work carried out during this PhD project is mainly concerned with the study of the 

molecular ecology of marine phytoplankton viruses. In particular, this thesis focused on 

E. huxleyi and P. pouchetii host-virus systems. The use of new available microbiological 

and molecular approaches have granted several important findings that improve our 

understanding of the relationships between microalgae hosts and viruses, food web 

structure, biodiversity and biogeochemical cycles in the ocean. 

9.1. lntraspecies host specificity of E. huxleyi-viruses 

The host range experiment undertaken in this study (Chapter 3) suggests a link between 

host specificity and the phenotypic and/or genotypic variations within Eh Vs and E. huxleyi 
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strains, which do not depend on adaptations to the environment. Moreover, the highly 

variable host range shown in this study indicates complex interactions between E. huxleyi 

strains and their viruses in nature. The phenotypic and genotypic differences upon which 

host range specificity may depend could be important factors in sustaining the coexistence 

of E. huxleyi and Eh Vs in the sea. In addition, instraspecies host specificity of Eh Vs has 

important ecological implications as it determines which E. huxleyi strains may survive 

and form blooms, and therefore has and effect on local ecology, climate and 

biogeochemistry. For instance, different£. huxleyi strains are known to differ in: (I) their 

contribution to calcite reservoirs in the sea due to their variable production of coccoliths, 

which is also accompanied by outputs of C02 (Holligan et al. 1993), and (2) emissions of 

DMS to the atmosphere (Steinke et al. 1998). 

In conclusion, determining the host range of E. huxleyi strains is not just needed as part of 

algal virus characterisation but it is also a necessary step towards a comprehensive 

understanding of their ecological role in the marine environment. In order to reach this 

understanding, further molecular investigations are required to find the genetic features 

that determine infectivity in this algal/virus system. 

9.2. Validity of mesocosm experiments 

Mesocosm experiments are important for studies of the pelagic ecosystem and render 

budget studies (Riemann et al. 1990) and model verifications possible (Andersen et al. 

1987, Thingstad et al. 1999a, Thingstad et al. 1999b ). Egge ( 1993) demonstrated that 

transparent enclosures situated in a natural body of water have higher repeatability and 

degree of realism than land constructions. However, constructing and operating marine 

mesocosm systems has a high cost in tem1s of money and manpower. Therefore, often a 

limited number of replicate enclosures are used in the experimental set up. One 
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consequence is that the reproducibility, and thereby the scientific value of the results may 

be questioned. 

The design of the 2003 E. huxleyi mesocosm (Chapter 4) (triplication of 3 different 

nutrient treatments) provided a unique opportunity for comparing the reproducibility of 

these systems and for investigating the validity of the main assumptions associated to 

mesocosm experiments (i.e. the microbial part of the food web in the water filled into the 

bags is in steady state, the filling of the bags does not perturb the system, and light is in 

excess, making the cycling of nutrients the main responsible of the dynamics). 

AFC was employed in this study to describe and compare the microbial community 

dynamics, in terms of changes in abundance. The results revealed the development of the 

same microbial community both inside the mesocosm enclosures and in the fjord, and 

therefore the validity of mesocosm studies as representations of the natural environment. 

However, addition of nutrients to the seawater in the enclosures enhanced the conditions 

for phytoplankton growth leading to an accelerated version of the community succession. 

Variance partitioning and discriminant analysis of the AFC data set revealed that there is 

not statistically significant development in the bags before the first nutrient addition, which 

means that filling the enclosures and leaving them for 1-2 days before the initial nutrient 

addition did not have and important effect in the system. The statistical analysis showed 

that 80% of the variance was ascribed to the population dynamics initiated by nutrient 

addition; only 3% could be attributed to the difference in time of nutrient amendment and 

just I %to the position at the raft. It is possible to conclude that the mesocosm set up is a 

robust and well suited experimental system that allows investigating the response of the 

microbial community to manipulations of several parameters. In addition, the results 
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obtained from this study support the validity of a set of strongly simplifying and 

constraining assumptions for the construction of numerical models of microbial dynamics. 

9.3. Influence of viruses on the microbial community dynamics 

From the study of the microbial community development employing mesocosm enclosures 

is it also possible to draw important conclusions about the impact that viruses have on the 

community dynamics (Chapters 4 and 8). 

Nutrient manipulations of enclosed water masses led to the development of P. pouchetii 

and E. huxleyi-dominated blooms in spring and summer 2003, respectively. As these two 

phytoplankton species increased in abundance, they out-competed other co-existent 

phytoplankton species. The results from these investigations suggested that the demise of 

blooms of both species, P. pouchetii and E. lncdeyi, were ultimately the consequence of 

lytic viral infections. The significance of viral lysis in the decline of the E. huxleyi bloom 

was higher in the enclosure with lower abundance ofmicrozooplankton, which 

preferentially graze on infected cells (Claire Evans, unpublished data). ln the case of P. 

pouchetii, since viruses may infect only single flagellated cells, their effect in the bloom 

termination might be significant only after the cells within colonies had become motile and 

were released, possibly triggered by nutrient limitation. During the E. huxleyi experiment it 

was observed that only after the collapse of the dominant E. hu.xleyi populations did other 

phytoplankton groups experience an increase in abundance. Additionally, the conversion of 

algal biomass into DOC as the phytoplankton cells were lysed enhanced bacterial growth. 

These findings revealed a close link among the dynamics of the microbial populations. 

Blooms of E. hwdeyi and P. pouchetii and in particular their termination by viruses had a 

great influence in the diversity and dynamics of the rest of the microbial community, 

phytoplankton, bacteria and viruses. 
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However, the experiments conducted during the P. pouchetii mesocosm study (Chapter 8) 

were not designed to elucidate the specific viral infection mechanisms, and further 

investigation is needed to confirm our observations and to investigate possible mechanisms 

of lysis resistance. The findings reported might also indicate the existence of a genetically 

diverse Pp V community and point out the need for developing specific molecular probes 

for the analysis of the P. pouchetii and Pp V communities. The use of molecular probes can 

provide further insights of the progression and structuring of natural blooms of this key 

species as well as a more detailed knowledge of the ecological role ofPpVs in the 

environment. 

9.4. Molecular dynamics of E. lruxleyi and Eh Vs during bloom events 

Molecular techniques using the genetic markers GPA and MCP (Schroeder et al. 2002, 

Schroeder et al. 2003, Schroeder et al. 2005) allowed resolution of genetic variation among 

E. huxleyi and Eh Vs, respectively, during the progression of induced and natural 

phytoplankton blooms (Chapters 5 and 6). In fact, these studies proved for the first time the 

effectiveness of the GPA gene as a molecular marker to determine morphological and 

allelic richness of E. huxleyi in natural communities. 

While AFC provided numerical population progression of E. huxleyi and their eo-occurring 

Eh Vs, the sensitivity of techniques such as PCR, DGGE and sequencing (Chapter 2) have 

allowed exploration of population dynamics in much greater detail revealing temporal and 

spatial variability of both host and virus genotypes in the sea. A major outcome of these 

investigations is that different E. huxleyi blooms are comprised of different genotypic 

communities. The results showed that blooms of this species seems to occur every year in a 

conserved nature at the study site in a Norwegian fjord, where the same E. huxleyi and 

Eh V genotypes re-occurred in annual cycles (Chapter 5). Conversely, the naturally 

occurring bloom in the North Sea (Chapter 6) was a highly dynamic system comprised of a 
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broad genotypic community of E. hw.:leyi and closely linked Eh Vs. Furthermore, depth 

profiles of the bloom in open waters revealed 'past, present and future' of the progression 

and structuring of the bloom. 

If separate blooms differ in their genotypic composition they might have different 

ecological implications in terms of calcite production, outputs of C02, or DMS emissions. 

Further investigation using molecular tools, as those employed in this study, might allow 

establishing connections between specific phytoplankton and virus genotypes and the 

processes above, which may be the key to a better understanding ofbiogeochemical cycles 

in the sea. 

9.5. Differences in the genome content and gene expression among Eh Vs 

Variations in the genome and gene expression among virus and host strains are the most 

likely factors to explain many aspects related to virus ecology, such as survival and host 

specificity. Detailed transcriptomic analysis will surely provide crucial understanding of 

Phycodnaviridae genomes functioning in the ocean. 

In the current investigation it was found that out of the ten Eh V isolates tested, Eh V -163 

was the only coccolithovirus that did not carry a putative phosphate permease gene 

( ehv 117). A recombination event seems to have occurred in Eh V -163 causing a 5' partial 

deletion of ehv 117 and its replacement with a putative endonuclease (designated ehv 117a) 

(Alien et al. 2006c ). Also remarkable is the fact that the presence of a putative phosphate 

permease gene has been reported for E. huxleyi CCMP 1516 (the main host strain used in 

this study). Both phosphate permease genes, in the virus and the host, have similar 

sequences (Chapter 7) indicating a shared common ancestor. 
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Real-time reverse-transcription PCR was then performed to investigate the expression of 

ehv 117 in Eh V -86 during the infection cycle of axenic cultures of E. huxleyi CCMP 1516 

under different phosphate (P) regimes (Chapter 7). Other transcriptomic analysis using 

microarray assays had not detected the presence of transcripts for ehvll7 during the course 

of the EhV-86 infection (Alien et al. 2006a). However, this study has proven real-time 

reverse-transcription PCR to be an accurate and sensitive technique that revealed that 

ehv 117 is expressed during an infection cycle. Additionally, the results indicate differential 

gene expression depending on P availability. In contrast to what was reported for E. 

huxleyi CCMP 1516, i.e. higher expression of its phosphate pennease gene under P­

limiting conditions, ehv 117 expression levels increased under P-replete conditions 

compared to P-depleted culture conditions. A possible explanation to this observation is 

that ehv 117 is only expressed by the virus to compensate for low expression of the 

orthologue in E. huxleyi CCMP 1516. 

Furthermore, it is tempting to suggest that the presence or absence of ehv 11 7 in the viral 

genome may determine the success or failure of different Eh Vs to infect some E. hux/eyi 

strains. It could be that gene transfer may have provided some Eh Vs but not others with 

important ecological advantages that determine the existence of different propagation 

strategies among closely related strains. Of particular interest is the lack of infection by 

Eh V -163 of CCMP 1516b, a non-calcifying strain closely related to the calcifying CCMP 

1516. It is intriguing to postulate that this difference in host range could be an effect of the 

calcification state of the host. Expression of the putative phosphate permease gene in E. 

hlLI:Ieyi has been reported to be related to calcification rather than to phosphate starvation 

(Quinn et al. 2006). Therefore, if the putative phosphate permease gene is not expressed in 

CCMP 1516b, the lack of an orthologue in Eh V -163 would prevent infection of this host 

strain. This clearly warrants further investigation. The obvious following step would be 

first to determine whether or not E. lwxleyi CCMP 1516b carries the putative phosphate 
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permease gene and the levels of expression under different culture conditions. Then 

perform an analogous experiment to the one described in Chapter 7 comparing the levels of 

expression of ehv 117 in EhV-86 during infection of both E. huxleyi strains, CCMP 1516 

and CCMPI516b. Additionally, the use of multiplex real-time PCR to amplify multiple 

specific targets simultaneously from the same sample (Bustin 2000) would provide extra 

information on other viral genes expressed during infection, which may possibly be the key 

to explain host specificity. 

In order to investigate the functional relevance of the ehv 117 replacement in Eh V -163, it 

would also be of great interest to use real-time PCR to investigate the level of expression 

of ehv117a during infection cycles under different P conditions. 

9.6. P. pouclletii-specific viruses 

As revealed in this study (Chapter 8), Pp Vs have phenotypic characteristics suggesting that 

they belong to the family Phycodnaviridae. However, taxonomic assignment cannot be 

confirmed until phylogenetic information of their DNA polymerase genes becomes 

available. Further characterisation may assign them either as a separate genus or fall within 

one of the six genera already described in the family Phycodnaviridae. It is known and it 

has been shown in this thesis the fact that Pp Vs may play and ecological important role in 

the ocean through their control over the important phytoplankton species P. pouchetii; 

however, our knowledge is constrained by the scarce infonnation of their genomes. It is 

likely that Pp Vs genome will reveal interesting aspects associated with their interesting 

• 
ecology. 
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