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EFFECTS OF HYPERBARIC OXYGEN ON OXIDATIVE STRESS, 
ANGIOGENESIS FACTORS, AND ENDOTHELIAL CELL INJURY 

Jianfeng Yuan 

Abstract 

Hyperbaric oxygen (HBO) therapy is the administration of 100% oxygen at more than 

one atmosphere. It greatly improves tissue oxygenation and facilitates mechanisms of 

wound healing, which in turn benefits some patients with chronic wounds. A prominent 

fact in therapeutic HBO is the acceleration of neoangiogenesis during granulation tissue 

formation. Angiogenesis is a highly orchestrated event, a diverse range of cells and 

angiogenesis factors are involved in the process. The formation of reactive oxidative 

species (ROS) during HBO has been controversially considered as signalling regulator for 

angiogenic factors, as well as harmful originator for oxidative stress-induced cyto- and 

geno-toxicity in cells. This thesis contributes to this interesting while challenging topic. 

The project starts with investigation the direct HBO effects on blood vessel in vitro 

under physiological conditions and pathological conditions. The data clearly show that a 

single HBO treatment does not induce oxidative stress and cell damage under 

physiological conditions. Nevertheless, under pathological conditions, HBO induces 

oxidative stress with more ROS formation and cell damage. Interestingly, no evidence has 

been shown that HBO alone or synergically promotes nitric oxide and vascular endothelial 

growth factor production in either condition. The response of blood vessel to HBO 

treatment is not explained by autocrine release of angiogenesis factors locally in the blood 

vessel. 

Next, HBO-induced intracellular calcium (Ca2+) changes and DNA damage were 

investigated using cultured human umbilical vein endothelial cells. A single HBO 

treatment significantly elevates intracellular Ca2
+ level without inducing cell damage. 

Furthermore, HBO treatment has small but significant effect on DNA migration when 

evaluated by comet assay (e.g. 6.8 ± 0.8 % comparing to 4.6 ± 0.2 % DNA in tail of air 

treatment). However, this effect is totally reversible after 24h recovery. Importantly, HBO 

treatment protects endothelial cells against subsequent oxidati ve stress attack, and an 

increased antioxidant capacity was found as reflected in higher ratio of GSH to GSSG. The 

findings suggest that the beneficial effect of HBO is possibly via HBO-induced adaptation 

in cellular redox status. However, the details of Ca2+ signalling and roles of antioxidants in 

HBO treatment are areas for further research. 

Keywords: Hyperbaric Oxygen, Oxidative Stress, Vascular Endothelial Growth Factor, 

Nitric Oxide, Endothelial Cells, Calcium, DNA Damage 
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I.I Introduction 

Chapter 1 

Background Review: Effects of 

Hyperbaric Oxygen Therapy on 

Angiogenesis in Chronic Wound Healing 

1.1 Introduction 

This chapter reviews the existing scientific and clinical evidence on the effects and 

proposed mechanisms on angiogenesis regulation in chronic wound healing during 

hyperbaric oxygen therapy. It starts with an introduction to the scientific background of 

wound healing, angiogenesis, followed by an overview on the clinical application of HBO 

therapy that stresses on chronic wound healing. Secondly, the role of oxygen in the wound 

healing process and in the regulation of angiogenesis is described in detail. Thirdly, the 

proposed mechanisms of HBO treatment facilitating angiogenesis are addressed and 

attention is focused on the angiogenesis factors such as vascular endothelial growth factor, 

nitric oxide and their interactions with reactive oxygen species. Finally, the summary is 

given in 1.7. The study described in Chapter 3 and 4 is mainly inspired by this review, and 

additional relevant research background emerging during the progress of the project is 

surveyed in the subsequent chapters wherever appropriate, mainly in the Introductions. 



1.2 Wound Healing Process 

1.2 Wound Healing Process 

Wound healing is a dynamic and highly structured process, which has been artificially 

divided into three phases: the inflammatory, proliferative, and remodelling phases. This 

coordinated process involves the appearance of specific cell types in the wound 

environment in a specific order: platelets, neutrophils, macrophages, lymphocytes and then 

fibroblasts and new blood vessels (Bates et al., 2003). 

1.2.1. The Inflammatory Phase 

The inflammation phase includes hemostasis and inflammation, and is a period of 

preparation of the wound environment for healing. Hemostasis starts immediately after the 

insult and may continue for a few days. The bleeding after blood vessel disruption initiates 

vasoconstriction via physical action and potent vasoconstrictors secretion (e.g. 

thromboxane A2 and prostaglandin 2u). During constriction, platelets are activated. They 

adhere to damaged endothelium and discharge adenosine diphosphate (ADP), which 

promotes thrombocyte clumping to dam the wound. In addition, to initiate blood clotting, 

platelets also secrete several mediators such as platelet-derived growth factor (PDGF), 

transforming growth factor beta (TGF-p), epidermal growth factor (EGF), insulin growth 

factor-) (IGF-1 ), fibronectin, von Willebrand factor (vWF) etc (see Jurk and Kehrel, 2005 

for review). These factors help stabilise the wound through clot formation and many of 

them are chemitactic for inflammatory cells, keratinocytes, fibroblasts, and endothelial 

cells (ECs). For example, platelet degranulation activates the complement cascade, 

specifically C5., which is a potent chemoattractant for neutrophils. In addition, the 

fibronectin/fibrin-rich clot provides a provisional matrix for cell migration. 
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1.2 Wound Healing Process 

After a brief period of constriction (5-10 min), these same vessels dilate and the 

permeability of capillaries increases local histamine release, allowing plasma, blood 

components, and inflammatory cells into the injured area. The early inflammatory phase 

happens within the first 6-8 hours and is characterized by the influx of neutrophils. 

Neutrophils are responsible for debris scavenging, complement-mediated opsonization of 

bacteria, and bacteria destruction via the oxidative burst mechanisms (i.e. superoxide and 

hydrogen peroxide formation). The timeline for inflammatory cell migration in a normal 

wound healing process is predictable. When the polymorphonuclear leukocytes (PMNs) 

engorge the wound, the inflammation process is underway. The PMNs attain their maximal 

numbers in 24-48 hours and commence their departure by hour 72. 

About 24 hours after arrival of the PMNs, a larger and less specific type of phagocytic 

cell, called the macrophage, enters the wound area and remains for an extended period. 

This type of cell is vital for the initiation of granulation tissue fonnation. A wound may 

heal in the absence of PMNs, but it can not heal in the absence of macrophages. During 

days 3-4, the macrophages phagocytose microorganisms and wound debris, and meanwhile 

manufacture many biological factors such as collagenases, interleukins, tumour necrosis 

factor (TNF), TGF-~, VEGF and PDGF that stimulate epithelial cell growth, angiogenesis, 

and attraction of fibroblasts. 

1.2.2. The Proliferative Phase 

The proliferative phase constitutes fibroplasia, matrix deposition, angiogenesis, and 

epithelialization (Cho, 1998). As early as 24 to 48 hours after injury, fibroblasts and 

vascular ECs begin proliferating to form a specialised soft, pink granular tissue known as 

granulation tissue. This is a fragile tissue that bleeds easily due to its numerous newly 

developed capillary buds, and it forms the foundation for scar tissue development. 
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1.2 Wound Healing Process 

Collagen synthesis by fibroblasts and capillary proliferation occur simultaneously: the 

growth of new blood vessels is required to provide oxygen for collagen production; and 

collagen secreted from fibroblasts is required to form a supportive matrix for new capillary 

growth. 

Fibroblasts are connective tissue cells that actively synthesize and secrete extracellular 

matrix proteins (MMPs) such as glycosaminoglycans (GAGs), fibronectin and new 

collagen of subtypes I and W. Collagen synthesis reaches a peak within 5-7 days and 

continues for several weeks, depending on wound size. Fibroblasts also produce a family 

of growth factors that are already present within the wound bed to enforce the induction of 

angiogenesis and endothelial cell proliferation and migration. Keratinocyte growth factor 

(KGF), which is unique to fibroblasts, acts specifically to stimulate keratinocyte migration 

and proliferation (Wener, 1998). The fibroblast is a source of proteinases and protease 

inhibitors, which aid in the process of endothelial cell migration and matrix reorganisation. 

Angiogenesis is the product of parent vessel offshoots. The formation of new 

vasculature requires extracellular matrix (ECM) and basement membrane degradation 

followed by migration, mitosis and maturation of ECs. The new capillaries deliver 

nutrients to the wound and help maintain the granulation tissue bed. The migration of 

capillaries into the wound bed is critical for proper wound healing (Folkman, 1997). 

Wounds that heal by secondary intention have more necrotic debris and exudate to remove, 

so they involve larger amounts of granulation tissue (King, 200 I). The newly formed blood 

vessels in granulation tissue are leaky, which allows plasma proteins and white blood cells 

to infiltrate into the surrounding tissue (Mercandetti, 2002). The angiogenesis is regulated 

by various angiogenesis factors, which is a hot topic in wound management field as well as 

in cancer research. 

4 



1.2 Wound Healing Process 

Re-epithelization begins with the cell migration during the inflammatory phase and is 

completes during the proliferative phase. If the basement membrane remains intact, the 

epithelial cells migrate upward in the normal pattern and are restored in 2-3 days. This is 

equivalent to a first-degree skin bum. If the basement membrane has been destroyed, 

similar to a second- or third-degree bum, the wound is re-epithelialized from the normal 

cells in the periphery and from the skin appendages between the scab and the underlying 

viable tissue. When a significant portion of the wound has been covered with epithelial 

tissue, the scab lifts off, which is important for the restoration of the nonnal skin barrier 

function and prevention of wound infection. 

1.2.3. The Remodelling Phase 

The final phase of wound healing is remodelling phase, or maturational phase. It 

begins about 3 weeks after injury and can continue for 6 months to 2 years, depending on 

extent of the wound. Collagen is degraded and deposited in an equilibrium-producing 

fashion, and the wound undergoes contraction, ultimately resulting in a smaller amount of 

apparent scar tissue. Apoptosis removes differentiated myofibroblasts from the wound bed, 

and blood vessels regress (Gabbiani, 1996; Savill, 1997). The extracellular matrix changes 

from a provisional wound matrix composed predominantly of fibronectin and nonsulfated 

glycosaminoglycans to that of a dermal matrix composed of thickened collagen bundles 

and sulfated proteoglycans. During this phase, the epidermis becomes thinner and the 

nonnal pattern of differentiation is restored, but most wounds do not gain the full tensile 

strength as undamaged skin even after healing is completed. The best ultimate resultant 

scar has only 80% of the tensile strength of the original skin (Mutsaers et al., 1997). 

The main tissue events and cellular responses in the three phases of normal wound 

healing process are summarised in Table 1.1. 

5 
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Table 1. I Normal wound healing process. 

Phases Duration Stage Description Cells Factor Released 
Involved 

lnnamatory From Influx ofneutrophils; Platelet; PDGF; 
immediately Clot formation; PMNs; VEGF; 
after the injury 

Secret soluble mediators; Macrophage; TGF-a; TGF-~; 
to a few days 

Phagocytization of micro- Lymphocyte; bFGF; 
organisms and wound debris; IGF-1; EGF; 
Initiation of granulation tissue C3a; Csa; 
formation; 

IL-l; TNF; etc 
Re-epithelialization begins; 

Proliferative From days 3-7 Influx of and interaction among Fibroblasts; KGF; 
to 4 weeks or fibrolasts, endothelial cell, and Endothelial proteinases; 
longer keratinocytes; cell; proteinase 

Wound contraction; Epithelial cell inhibitors; 
ECM production; GAGs; 
Angiogenesis; plasminogen 
Re-epithelialization complete; activator; 

Wound closed and healed; collagenase; ctc 

Remodelling From the third Normal pattern of differentiation Myofibroblasts Growth factors 
week to years restored; Proteinase. 

Apoptosis happen; 

ECM changes from provisional 
wound matrix to a dermal matrix 

Summarized from Bennett and Scbultz, 1993a, 1993b; Mutsaers, 1997; Singer, 1999; Staiano-Coico, 2000. 

1.3 Angiogenesis in Wound Healing 

Angiogenesis consists of local disruption of blood vessel basement membrane, 

migration into the local interstitial stroma, cell proliferation, new vessel formation, 

stabilization, and eventually involution of the newly formed vascular bed (Madri and Marx, 

1992). Although angiogenesis is an important phenomenon that occurs during the 

proliferative phase, many signals and regulatory mediators for angiogenesis occur or are 

secreted in the inflammatory phase. 

Microvascular endothelial cells are the principal parenchyma] cells involved in wound 

angiogenesis (Madri et al., 1996). Upon injury, angiogenic growth factors (proteins) 

produced or released from injured tissues bind to their specific receptors located on the 

ECs to activate the ECs. Sprout formation during the initial steps of the angiogenic process, 
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is commonly preceded by strong and persistent vasodilation and increased vascular 

permeability (Morbidelli et al., 2003). Vascular endothelial growth factor (VEGF) is a 

major player in angiogenesis initiation based on its ability to induce vascular relaxation via 

endothelial NO production and increase ECs' permeability, which is a prerequisite for ECs 

to enter the angiogenic cascade, and morphologic changes in ECs decrease the confluence 

status to make them susceptible to mitogens (Ziche et al., 1997; Folkman, 1997). 

The activated ECs of existing blood vessels must degrade the underlying basement 

membrane and invade into the stroma of the neighbouring tissue. Invasion and migration of 

ECs requires the cooperative activity of proteolytic enzymes such as serine proteases and 

matrix metalloproteinases (MMPs), which are produced by surrounding cells as well as 

ECs themselves. The urokinse-type plasminogen activator (uPA) and tissue plasminogen 

activator (tPA) are serine proteases that catalyse the conversion of plasminogen into 

plasmin. The fibrinolytic activity in blood is mainly regulated by tPA, whereas the 

activation of plasminogen in tissues is regulated by uP A (Mignatti and Rifkin, 1996). 

Plasmin has broad substrate specificity and degrades several extracellular matrix (ECM) 

components, including fibrin, fibronectin, laminin, and the protein core of proteoglycans 

(Mignatti and Rifkin, 1996). In addition, plasmin may activate several MMPs such as 

MMP-1, MMP-3, and MMP-9. Matrix metalloproteinases (MMPs) are a large family of 

enzymes that degrade the extracellular matrix. MMPs have been classified according to 

their domain structure or substrate specificity. For example, MMP-2 and MMP-9, also 

called type IV collagenases or gelatinases, are related enzymes that break down type IV 

collagen which is the main structure protein of basement membrane (Hostikka and 

Tryggvason, 1988; Liotta, et al., 1980). The expression of uP A, uPAR and MMPs of ECs 

and fibroblast is upregulated by angiogenic growth factors such as bFGF (Giuliani, et al. 

1999), VEGF (Mandriota and Pepper, 1997), TGF-~ I (Uria, et al. 1998) and cytokines 
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(van Hinsbergh, et al. I 990). It should be noted that PAs and MMPs are secreted together 

with and regulated by their inhibitors PAls and TIMPs, ensuring a stringent control of local 

proteolytic activity, and the activity of plasmin is also regulated by a2-antiplasimin. A tight 

control of proteolysis is necessary for nonnal angiogenesis in order to preserve nonnal 

tissue structure (see Liekens, et al., 200 I for review). 

Following proteolytic degradation of the ECM, 'leader' ECs start to penetrate the 

basement membrane. These are followed by proliferating ECs, whose growth has been 

stimulated in part by soluble factors released by hypoxic tissue and partly by growth 

factors released from the degraded ECM. Specific cell adhesion molecules serve as 

"grappling hooks" to pull the sprouting new blood vessels forward towards the hypoxia site. 

Cell adhesion molecules can be classified into four families depending on their 

biochemical and structural characteristics. These families include the selectins, the 

immunoglobulin supergene family, the cadherins, and the integrins. ECs express several 

distinct integrins, which allows the attachment to a wide variety of ECM proteins and also 

mediates the EC-ECM interaction (Eliceiri and Cheresh, 1999). lntegrin av~J, is a receptor 

for a number of proteins with an exposed Arg-Giy-Asp sequence (e.g. fibronectin, 

vitronectin, laminin, vWF, fibrinogen, and denatured collagen), has been found to be 

particularly important during angiogenesis. It is nearly undetectable on quiescent 

endothelium, but is highly up-regulated during cytokine-induced angiogenesis. Other cell 

adhesion molecules such as intercellular adhesion molecule-! (!CAM-I), and vascular cell 

adhesion molecule-) (VCAM-1), members of the immunoglobulin supergene family are all 

expressed on the ECs' surface and involved into endothelial cell-cell adhesion to partly 

modulate ECs' migration and signalling (Aibelda and Buck, 1990). 

Sprouting ECs roll up to form a blood vessel tube and then individual blood vessel 

tubes connect to fonn vascular loops. Finally, newly fonned blood vessel tubes are 
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1.3 Angiogenesis in Wound Healing 

stabilised by specialised muscle cells (smooth muscle cells and pericytes) that provide 

structural support. ECs' interaction with ECM and mesenchymal cells is a prerequisite to 

form a stable vasculature and angiopoietins and cytokines mediate this interaction 

(Griffioen and Molema., 2000). Angiopoietins receptor tyrosine kinase Tiel and Tie2 play 

critical roles in these stages of angiogenesis by establishing stable cellular and biochemical 

interactions with the surrounding mesenchyme (Maisonpierre et al., 1997). Tie I function is 

related to endothelial cell differentiation and the establishment of blood vessel integrity 

(Puri et al., 1995) and Tie2 is particularly important for vascular network formation (Sato et 

al., 1995). Both angiopoietin-1 and angiopoietin-2 are Tie2-specific ligands, but only the 

binding of angiopoietin-1 results in signal transduction and regulation of blood vessel 

maturation (Suri, et al. 1996). Angiopoietin-2 antagonizes agiopoietin-1 in the vasculature 

in vivo and may act as a check on agiopoietin-l/Tie2-mediated angiogenesis to prevent 

excessive branching and sprouting of blood vessels (Maisonpierre, et al., 1997). In addition, 

angiopoietin-2 renders endothelium sensitive to angiogenic factors such as VEGF via 

induction of smooth muscle cell/pericyte loss and hence destabilizes the neovasculature 

(Maisonpierre et al., 1997; Asahara et al., 1998). 

Every stage of angiogenesis is highly regulated by signals from both the serum and the 

surrounding specialized extracellular matrix (Risau, 1997). The healthy body normally 

maintains a perfect balance of angiogenesis modulators. The 'angiogenic switch' is 'off 

when the effect of pro-angiogenic molecules is balanced by that of anti-angiogenic 

molecules, and is 'on' when the net balance is tipped in favour of angiogenesis. In normal 

wound healing process, the 'switch on' of angiogenesis is successfully regulation by 

growth factors. The main molecules in wound healing and how they affect ECs in 

angiogenesis are summarised in Table 1.2. 
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Table 1. 2 Main regulators in angiogenesis and wound healing and process. 

Stimulators Major sourse in Target cells and major effects in Effects on endothelial cells and angiogenesis 
wound healing wound healing Prolifera- Migration Differentia- Others 

tion tion 

VEGF epidermal cells, angiogenesis, yes yes yes (+)permeability 

(Vascular macrophages, increased vascular permeability (+)uP A/PAI-l production 

endothelial endothelial cells (-) apoptosis 
growth factor) platelets 

bFGF macrophages, angiogenesis, yes yes yes (+)uP A/protease production 

(Fibroblast endothelial cells fibroblast proliferation (+)tube formation 
growth factor) 

PDGF platelets, fibroblast proliferation and yes yes yes (+)chords formation in vitro 

(Platelet-derived macrophages, chemoattraction; ( +) recruitment of smooth muscle cells 

growth factor) epidermal cells macrophage chemoattraction and and pericytes 
activation 

TGF-a macrophages, mitogenesis for keratinocytes and yes yes yes (+)angiogenesis in vivo 
(Transforming keratinocytes fibroblasts; 
growth factor a) keratinocyte migration 

TGF-p platelets, keratinocytes mobility; Inhibition no yes (+)in vivo angiogenesis in presence of 
(Transforming macrophages chemotaxias of macrophages and inflammatory response 
growth factor Pl fibroblasts; Produce net antiproteolytic activity 

ECM syothesis and remodelling (i) vessel wall stability 

Ang-1 endothelial cells Angiogenesis no yes yes (+)in vitro sprout formation 
(angiopoietin-1) mesenchymal (i) girth and stability of endothelium 

cells 

Summarised from Mutsaers, et al., 1997; Staiano-coico, et al., 2000; Reenstra-Buras, 2003; Papetti and Herman, 2001; Liekens, et al., 2001; Griffioen and 
Molema., 2000. 
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1.4 Chronic Wound and Hypoxia 

Normal wound healing is a highly orchestrated process of events and the biologically 

phases are coordinated to allow a wound to heal without delay. However, wound healing 

process may be disrupted and delayed by many factors such as malnutrition; impaired 

blood flow and oxygen delivery; impaired inflammatory and immune responses; wound 

contamination and infection; age effects etc (Stevens, 2000). A wound that does not heal 

within three months is considered chronic, and impaired wound healing mostly affects 

people over the age of 60 with an incidence of 0.78% (Mustoe, 2004). As the population 

ages, the number of chronic wounds is expected to rise. The vast majority of chronic 

wounds can be classified into three categories: venous ulcers, diabetic ulcers, and pressure 

ulcers. A small number of wounds that do not fall into these categories may be due to 

causes such as radiation poisoning or ischemia (Mustoe, 2004). 

The predominant pathophysiological manifestation of chronic wound includes 

ischemia/hypoxia, infection and impaired production of growth factors and proteolytic 

enzymes. Although a transient ischemia and hypoxia in vasoconstriction during the 

inflammatory phase is essential to initiate the wound healing cascades, persistent hypoxia 

and blood flow deficiency will cause defective leukocyte killing, impaired neoangiogenesis, 

and defective macrophage and fibroblast function (for details, see 1.5). A wound partial 

pressure of oxygen less than 30 to 40 mm Hg is associated with decreased or deficient 

cellular activity and clinically has been shown to result in poor wound healing (Wu, 1995). 

Neutrophils and other leukocytes consume oxygen to produce reactive oxidative species 

(ROS) and inflammatory cytokines to fight pathogens, which when overwhelmed also 

jeopardise cells and prevent cell proliferation and wound closure by damaging DNA, lipids, 

proteins, the ECM, and cytokines that speed healing at the same time (Mustoe, 2004, 
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Snyder et al., 2005; Alleva et al., 2005). The repetitive infections in chronic wounds keep 

neutrophils stay longer and attract more neutrophils, which contribute to further hypoxia 

and higher levels of inflammatory cytokines and ROS (Taylor et al., 2005). In addtion, 

chronic wounds seem to have a higher concentration of proteolytic enzymes such as 

elastase and MMPs in their fluids (Schiinfelder et al., 2005), and the oxygen-related growth 

factors such as PDGF, VEGF, KGF etc are lower in chronic wound sites (Edwards et al., 

2004). Growth factors are imperative for timely wound healing, especially in promoting 

new vascular formation to resume oxygen supply. However, in chronic wounds, the 

formation and release of growth factors may be prevented or degraded in excess by cellular 

or bacterial proteases (Crovetti et al., 2004). Together, the three syndromes in chronic 

wound tie up and interact to aggravate the status of wound. The injured tissue has an 

increased metabolic demand for oxygen utilisation to initiate and support wound healing, 

while the disrupted capillary network fails to reconstruct on time due to impaired factors in 

the chronic wound site; therefore, hyperbaric oxygen therapy that convert the persistant 

hypoxia condition will make a principal contribution for facilliating chronic wound healing. 

1.5 Hyperbaric Oxygen Therapy 

1.5.1. Introduction 

Compressed air has been used as a therapeutic tool since medieval times with variable 

success and without any knowledge of what may cause of its beneficial effect on disease. 

Hyperbaric oxygen therapy (HBOT) has been used clinically as early as mid 1800s. It is 

not until 1930s that HBOT has been used safely to help deep-sea divers with 

decompression sickness. Clinical trials in the 1950s uncovered a number of beneficial 

outcomes from exposure to hyperbaric oxygen (HBO). These experiments were the 
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forerunners of contemporary applications of HBOT in the clinical setting. HBOT was first 

used to assist wound healing when it was noted in 1965 that burns of the victims of a coal 

mine explosion, treated with HBO for their carbon monoxide poisoning, healed faster. 

Today, the Undersea & Hyperbaric Medical Society through its Committee on Hyperbaric 

Oxygen Therapy continually reviews and evaluates current and potential indications for 

hyperbaric oxygen therapy. Recommendations are made in its "Hyperbaric Oxygen 

Therapy Committee Report" (UHMS, 2002). 

(A) HBOT is currently indicated as the primary mode of therapy for: air or gas 

embolism, decompression sickness and carbon monoxide poisoning. 

(B) HBOT is currently indicated as an important adjunctive therapy for: radiation 

tissue damage, clostridial myonecrosis, compromised skin grafts and flaps, crush injury, 

compartment syndrome, acute traumatic ischemias, necrotizing soft tissue infections, and 

problem non-healing wounds. 

1.5.2. Application of Hyperbaric Oxygen Therapy to Chronic Wound 

The Earth's atmosphere normally exerts 14.7 pounds per square inch of pressure (760 

mmHg) at sea level. That is equivalent to one atmosphere absolute (abbreviated as I ATA). 

Hyperbaric Oxygen Therapy (HBOT) is defined as a treatment mode in which the patient 

is entirely enclosed in a pressure chamber breathing 100% pure oxygen at a pressure 

greater than I AT A. However, breathing I 00% oxygen at I ATA or applying oxygen 

outside a pressurised chamber is not considered hyperbaric oxygenation. 

As a comparison, an average person breathes in about 6 pounds of oxygen a day, 

while by giving high concentrations of oxygen under increased pressure (2.0- 2.4 AT A), a 

person will take in about 2.4 pounds of oxygen in a single hour of HBOT. The partial 

oxygen pressure in normobaric air is about 160 mm Hg, which decreases to 1-3 mm Hg in 
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mitochondria as the oxygen is delivered to cell and tissue by blood through cardiovascular 

system. Normally, most of the oxygen in blood is carried by haemoglobin, with minimal 

additional oxygen dissolved in the plasma. During HBOT, the dissolved oxygen in the 

blood can make a more than 30% significantly increase in oxygen-carrying capacity. This 

increase saturates the tissues with oxygen, and reverses any areas in hypoxia. By 

comparing partial oxygen pressure (p02) or transcutaneous oxygen pressure (tcp02) values 

under different oxygen and pressure conditions, we can see the powerful effects of HBOT 

on oxygen delivery and tissue oxygenation (see Table 1.3). 

Table I. 3 p01 or tcp01 at different oxygen and pressure conditions (adapted from Sheffield, 1998). 

Oxygen 21% Oxygen (Air) 100% Oxygen 100% Oxygen 

Atmosphere Pressure (AT A) 1.0 1.0 2.4 

Air p02 (mm Hg) 159 760 1824 

Alveolar p02 (mm Hg) 104 673 1737 
Arterial p02 (mm Hg) 100 660 1700 

Venous p02 (mm Hg) 36 60 1650 

Muscle p02 (mm Hg) 29 59 250 

Subcutaneous p02 (mm Hg) 40 200-300 250-500 
Chest tcp02 (mm Hg) 67 450 1312 

Foot tcp02 (mm Hg) 63 280 919 
Chronic Wound p02 (mm Hg) 15 200-400 660 

The clinical HBOT regimen for chronic wounds is dependent on the severity of the 

situation. In the absence of infection, HBO once per day at 2.0--2.4 AT A for 90-120 

minutes is sufficient to stimulate wound healing. In the presence of infection or a high risk 

of limb loss, treatment twice per day is recommended (Stone and Cianci, 1997). Even 

though treatment sessions are relatively brief, oxygen tensions may remain elevated in 

subcutaneous tissue for several hours after exposure (Thorn, 1989). HBOT is considered 

unnecessary for simple, well-perfused wounds, but has helped many hypoxic or ischemic 

wounds to recovery successfully (Zamboni, et al. 2003; Stone and Cianci., 2003). The 

beneficial effect of HBOT for chronic wound includes vasoconstriction to reduce oedema 
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and promote oxygen diffusion rate; hyperoxygenation of tissue to provide oxygen needed 

to stimulate and support wound healing; and favourably influence important cytokines and 

growth factors (Wright, 2001). 

Although there have been decades of reported beneficial clinical trails of HBOT on 

chronic wound healing, there are still failed cases reported (Davis, 1987; Ciaravino et al., 

1996). it seems that not all patients with chronic wound respond to HBOT and an index is 

needed to predict HBOT outcome and response. Transcutaneous oxygen tension (TcPOz) 

has been proved suitable to evaluate tissue hypoxia, wound healing potential, patient 

selection for HBOT, and to monitor progress during therapy. As early as 1988, Wyss et al 

reported that in postoperative patients, at sea-level air TcP02 readings < 20 mm Hg with 

poor healing, 20 - 40 mm Hg with intermediate healing, and > 40 mm Hg with good 

healing. This was supported by the finding that wound partial pressure of oxygen less than 

30 to 40 mm Hg is associated with decreased or deficient cellular activity and clinically 

has been shown to result in poor wound healing (Wu, 1995). In 2002, Fife et al 

retrospectively analysed TcP02 values of 1144 lower extremity wound patients to 

determine the reliability of TcP02 in predicting outcomes of HBO therapy. TcP02 data 

were provided under breathing air, breathing oxygen at sea level, and breathing oxygen in 

the pressure chamber. Patients with baseline air TcP02 greater than 40 mm Hg were 

generally excluded from HBOT. The failure rate was only 35% for the 629 hyperbaric 

patients, and 48% of them had a baseline TcP02 below 20mm Hg. This may suggest the 

TcP02 of baseline sea-level air only identified the degree of tissue hypoxia and whether the 

wound is likely to heal spontaneously, but had little statistical relationship with outcome 

prediction because some patients healed after HBOT despite very low pre-hyperbaric 

TcP02 values. TcP02 value of breathing oxygen at sea level was 68% reliable for 

predicting success but unreliable for predicting failure after HBOT. The patients with 35 
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mm Hg or greater sea-level oxygen TcP02 were likely to benefit from HBOT. This result 

was consistent with the finding of Sheffield (2001) that a minimum 50% increase or a 

minimum floor (35 mm Hg) of sea-level oxygen TcP02 for predicting successful HBOT. 

The in-chamber TcP02 was originally described by Wattel et al (1991) to use as a 

predicative tool, and Fife et al (2002) agreed that in-chamber TcP02 provided the best 

single discriminator between success and failure of HBOT, and set forward a cutoff score 

of 200 mmHg. When a sea-level air TcP02 < IS mmHg is combined with an in-chamber 

TcP02 < 400 mmHg, a better predictive result is achieved with reliability of 75.8% on 

predicting failure HBOT and 73.3% on predicting positive HBOT, respectively. Therefore, 

oxygen level is the key factor for wound healing and a good response to oxygen is needed 

for a successful HBO treatment in chronic wound. 

1.5.3. Role of Oxygen and HBOT in Chronic Wound Healing 

Oxygen is a critical nutritional substrate for healing tissue and the oxygen tension is a 

major controlling factor in bacterial killing, resistance to infection, collagen synthesis, 

angiogenesis, and epithelization. The clinical evidence and scientific research on HBO 

treatment of chronic wound have all shown promising benefits. 

Wound healing commences with blood coagulation followed by infiltration of 

neutrophils and macrophages, which release reactive oxygen species (ROS) by an oxygen

consuming respiratory burst (Sen et al., 2002). The oxidants in this early stage serve 

mainly to kill bacteria and prevent wound infection (Babior et al., 1973). A local P02 of 30 

mm Hg or higher is needed for phagocytes to kill bacteria effectively (Knighton et al., 

1984) and Alien et al (1997) demonstrated that the ability ofneutrophils to produce oxygen 

radicals and to kill bacteria via oxidative mechanisms is directly proportional to local 

oxygen tension; the half-maximal oxidant production of neutrophils occurred in the range 
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of 45 to 80 mm Hg P02, and maximal at P02 higher than 300 mm Hg. The oxygen tension 

of non-healing wounds ranges from 5 to 20 mm Hg, which limits the leukocyte's function. 

Thus, polymicrobial infection and impaired immune cell function are one of the 

predominant characters of chronic wound (Sapico, et al., 1984; Millington and Norris, 

2000). HBOT not only increases the host antimicrobial defenses via provision of more 

oxygen for leukocytes, and also has a direct bacteriostatic effect on anaerobic 

microorganisms although this is rather limited - only seen in restricted media at high AT A 

(Knighton et al., 1984, 1986; Mader et al., 1987, 1989). 

Fibroblasts require oxygen for collagen synthesis and deposition, which is a 

fundamental step in wound healing to provide the matrix for angiogenesis and tissue 

remodelling. All the key enzymes in collagen synthesis such as prolyl hydroxylase, lysyl 

hydroxylase and lysyl oxidase require molecular oxygen as a cofactor to perform their 

functions.) A P02 of 20 mmHg was the critical level for new collagen formation and 

accumulation, and maximal collagen synthesis occurred at levels approaching 250 mmHg 

(Myllyla, et al. 1977; Niinikoski, 1980), and the hypoxia in chronic wound compromises 

collagen synthesis by fibroblasts (Niinikoski, 1972; Hunt et al, 1972, 1974; Siddiqui et al., 

1996;). Lennan et al (2003) reported that adult diabetic mouse fibroblasts exhibited a 75% 

reduction in migration compared to normal fibroblasts and were not significantly 

stimulated by hypoxia (I% 0 2), whereas wild-type fibroblast migration was up-regulated 

nearly two fold in hypoxic conditions; this might suggest why diabetics have a high 

incidence of chronic wounds. Oxygen supplement increases wound oxygenation and 

improves collagen deposition and tensile strength (Niinikoski, 1970; Stephens and Hunt, 

1971; Hunt and Pai, 1972; Gordillo et al., 2003). Tompach et al (1997) reported increased 

fibroblast proliferation after 120 min exposure to HBO and this stimulation lasted 72 h 

after exposure. The HBO effect varies according to treatment pressure and time; prolonged 

17 

---------



1.5 Hyperbaric Oxygen Therapy 

expose to high concentration of oxygen and expose to high pressure may cause damage. 

Dimitrijevich et al. (1999) demonstrated increased human fibroblast proliferation from 2 to 

5 days at I, 2, 2.5 and 3 ATA HBO treatments; the most stimulatory effect appeared at I 

ATA after 2 days of treatment. They also confirmed that prolonged hyperoxia (12 h of 

HBO at 2 AT A to 3 ATA) caused adverse effects ranging from morphological changes to 

cytotoxicity and suppression of collagen synthesis was seen after day 5 at 3 AT A. Similar 

finding were reported by Conconi et a! (2003), at I AT A, all HBO exposure (15, 30, 60 or 

120 m in) increased the proliferation rate of cultured fibroblasts; whereas at 2.5 AT A, only 

30 and 60 min exposures raised the proliferation rate; 120 min exposure exerted a marked 

pro-apoptotic effect. 

The beneficial effects of HBO treatment on endothelial cell proliferation and function 

are confirmed mostly by in vitro studies. Endothelial cells mediate the local inflammatory 

response through modulation of vascular tone and local blood flow, change in vascular 

permeability, induction of a prothrombotic surface as well as stimulation and direction of 

extravasation in granulation tissue formation (Ranby, 1982). As little as 15 min HBO 

exposure at 2.4 AT A significantly increased the 3H-Iabeled thymidine incoporation level of 

endothelial cells, and a maximal level was reached after 60 min exposure. However, longer 

HBO treatment (up to 120 min) or a second exposure on the same day resulted in little or 

no additional proliferation increase (Tompach et al., 1997). Endothelial cells produce tissue 

plasminogen activator (t-PA) and plasminogen activator inhibitor type I (PAI-l), which 

plays essential antagonising roles in the fibrinolytic system (van Hinsbergh, 1988). HBO 

affects endothelial cell function and their fibrinolytic response. Tjamstrom et al ( 1999 and 

200 I) suggested that HBO treatment (2.5 AT A) increased gene expression for both t-PA 

and PAI-l in endothelium and has a swift influence on the release oft-PA and PAI-l from 

endothelium. They found that both t-PA and PAI-l levels in medium showed significant 
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higher than control group immediate post HBO treatment, but at 6 h post treatment only 

PAI-l kept at high level while the t-PA level did not. There might be a synergistic effect on 

the secretion of PAI-l ofHBO by raising ambient pressure and partial pressure of02• They 

furthered their study to investigate the effect of HBO treatment on fibrinolytic factors of 

cultured endothelial cells in a simulated ischaemia-reperfusion model in 2001. Endothelial 

cells were subjected to anoxia for 8 h, followed by reperfusion with either HBO or 

normobaric air for 1.5 h. Anoxia appeared to stimulate the endothelial cells to produce and 

secrete t-PA, PAI-l and uP A, and this effect was then augmented after reoxygenation with 

HBO, but was not seen after reoxygenation with normobaric air. Immediately after 8 h 

anoxia and reoxygenation with HBO for 1.5 h, the concentrations of t-PA, PAI-l and uP A 

were significantly increased in the medium. The increase persisted throughout the 

experiment at 1.5 h, 6 hand 24 h post anoxia. This indicated that HBO did not decrease the 

secretion by endothelial cells and on the contrary that HBO reoxygenation sustained the 

increased secretion of fibrolytic proteins of hypoxic endothelial cells. Buras et a! (2000) 

reported that hypoxia/hypoglycaemia increased !CAM-I expression and adhesion of 

polymorphonuclear leukocytes (PMN) to endothelial cells; HBO treatment reduced these 

increases to control levels through induction of the synthesis of endothelial cell nitric oxide 

synthase (eNOS). Lin et al (2002) also reported that nitric oxide signalling pathway was 

required for HBO induced Ang2 expression in endothelial cells. 

The evidence that HBO treatment promotes angiogenesis m chronic wound is 

provided mostly via in vivo studies. Sheffield (1988) has demonstrated improvement in 

capillaries and in blood flow over the first 3 weeks of HBO by measuring transcutaneous 

oxygen over healing tissue in the diabetic foot. Similar positive vascularity was observed 

in ischemic irradiated tissue (Marx, 1990) and muscle flaps (Bayati et al., 1998). Mechine 

et al ( 1999) presents significant higher vascular density and height of the granulation tissue 
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bud after 7 days HBO treatment. In recent years, Muhonen et al (2004) reported that HBO 

induced a markedly increase of angiogenic response histomorhometrically in radiotherapy

disturbed mandibular distraction bone formation of rabbits, and Sheikh et al (2005) used 

laser Doppler imaging to measure wound bed perfusion of mice full-thickness dorsal 

dermal wounds as an indication for wound angiogenesis and demonstrated a significant 

increase of blood flow from day 7 of HBO treatment (90 min at 2.1 ATA for 7 days); and a 

significant 20% higher wound blood flow on day I 0 in the HBO group. 

Although clinical experience and scientific studies have provided abundant evidence 

for the beneficial effects of HBO treatment on angiogenesis in chronic wound healing, and 

studies on its pathophysiological mechanisms have been carried out throughout the history 

of HBOT, because of the complexity of human body and the limitation of technology, the 

mechanism of how HBOT facilitates wound angiogenesis is still far from understood. On 

the other hand, the application of 100% pure oxygen under pressure leads to hyperoxic 

reoxygenation as shown in Table 1.3. Studies on the HBO therapy suggested that HBO 

strategies should be purposely selected to minimize possible adverse effects and guarantee 

clinical benefits. 

1.5.4. Hyperbaric Oxygen Therapy and Oxidative Stress 

Hyperoxia or hyperoxic environment implies one in which the partial pressure of 

oxygen is above the normally seen by the particular animal organ or organelle. Exposing to 

hyperoxia may cause hyperoxic toxicity (Jamieson et al., 1986). Animals exposed to HBO 

over 2 AT A experience abnormal motor activity such as shivering, jerks, and "wet-dog" 

shakes, which may progress to tonic-clonic seizures and death if the HBO exposure is 

prolonged (Balentine, 1973). Further investigation suggested that the animal death may 

due to the hyperoxia-induced pulmonary damage characterized by such macroscopic 
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changes as pulmonary edema and alveolar hemorrhage (Jamieson et al., 1986). HBO toxic 

effects in human have been described such as visual changes, nausea, muscle twitching, 

irritability, dizziness, and/or convulsions (Gabb and Robin, 1987). The toxic effects of 

HBO nonnally happened at high pressure and prolonged duration, which are believed to 

due to the production of reactive oxygen species at a rate in excess of the capacity of the 

cellular antioxidant defence mechanisms (Fridovich, 1978). 

1.5.4.1. Reactive Oxidative Species and Antioxidants 

ROS are characterised by their high chemical reactivity, and which include both free 

radicals (that is, species with one or more unpaired electrons, such as superoxide (Oz.~) and 

hydroxyl radicals ("OH)), and non-radical species such as hydrogen peroxide (HzOz) (Shah 

and Channon, 2004). 

Under normal condition, molecular oxygen (Oz) is stable, but when it is reduced by 

the stepwise addition of electrons, for example during electron transfer in mitochondria, 

two free radicals (HOz·, ·oH) are formed (Eq.I.l and Eq.l.4), together with HzOz (Eq.1.3). 

At a physiological pH value of7.4 the hydroperoxyl radicals (HOz) dissociate to give the 

superoxide anion radical (Oz.-) (Eq.I.2) (Gutteridge, 1994). 

0 2 + e + H" --+ Ho; hydroperoxyl radical 

Ho; --+ H + + o;- superoxide radical 

o;- + 2H+ + e--+ H 20 2 hydrogen peroxide 

H20 2 + e--+ OW + "OH hydroxyl radical 

"OH+ e+ H+--+ H20 

Eq.I. I 

Eq.l. 2 

Eq.I. 3 

Eq.I. 4 

Eq.I. 5 

Besides the mitochondrial electron transfer reaction, iron salts and hydrogen peroxide react 

to produce hydroxyl radical and hydroperoxyl radical, which is known as 'Fenton 

reaction'(Eq.l.6). 

Fe2
" + H 20 2 

--+ Fe3+ +OH- + "OH 

Fe3+ + H
2
0

2 
--+ Fe2+ + HO; + H+ 
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In addition, nitric oxide (NO) can react with another endogenous free radical, 

superoxide, to produce a reactive intermediate peroxynitrite (ONOO-)(Eq.l. 7)(Saran and 

Bors, 1990). 

NO' + o;- ~ ONoo

ONOO- + W ~ 'OH+ No; 

Eq.l. 7 

At pH 7.4, little H02" can presented by quickly reduced to superoxide. Superoxide is a 

relatively weak oxidant that is able to oxidise ascorbic acid, and thiols. In mammal cells, 

superoxide rapidly dismutates to hydrogen peroxide and oxygen by superoxide dismutase 

(SOD)(Eq.l.8). 

2o;- +2W /SOD Eq.l. 8 

Hydrogen peroxide is a relatively stable weak oxidant in the absence of transition 

metal ions. The molecule H202 has an uncharged covalent structure and readily mixes with 

water, and is treated as a water molecule by the body, rapidly diffusing across cell 

membranes (Gutteridge, 1994). Hydrogen peroxide is detoxified by the action of enzymes 

mainly catalase (CAT), glutathione peroxidase (GPx, selenium containing). 

The hydroxyl radical (OH) is an extremely aggressive oxidant that attacks most 

biological molecules at an almost diffusion-controlled rate. Peroxynitrite is a powerful 

oxidant too, which is able to oxidise many biological molecules and can also decompose to 

release hydroxyl radicals independent of metal catalysis (Eq.1.7). 

The generation of ROS is an inevitable consequence of life in an aerobic environment. 

During the generation of A TP in mitochondria, although most of the transferred electrons 

go into the formation of water, about 1-4% of the passing electrons leak onto the oxygen 

molecules and are converted to superoxide. Other potential ROS sources include xanthine 

oxidase, cytochrome P450 based enzymes, NADPH oxidases, and infiltrating inflammatory 

cells (Muller et al., 2005). Consequently, life has necessitated the evolution of specialised 
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antioxidants to protect against the toxic properties of oxygen. The antioxidants are defined 

by Gutteridge (1994) as 'any substance that when present at low concentrations, compared 

to those of oxidizable substrate, significantly delays, or inhibits oxidation of that substrate'. 

Enzymes such as SOD, catalase, glutathione peroxidase and molecular scavengers such as 

reduced glutathione (GSH), vitamin E (a-tocopherol), vitamin C (ascorbic acid), and metal 

chelators are all considered to be biological antioxidants. GSH plays important roles in 

antioxidant defense as an antioxidant substrate for enzymes such as glutathione 

peroxidases, and it is also involved in the regulation of the cell cycle and gene expression 

(Ziegler, 1985; Arrigo, 1999). Ascorbic acid is well known for its ability to scavenge 

superoxide, hydroxyl radical and singlet oxygen (Narkowicz et al., 1993). And the fat

soluble a-tocopherol is extremely effective when incorporated into cell membranes and 

acts as a chain-breaking antioxidant to protect them from lipid peroxidation (Kagan et al., 

1990). Antioxidants act at several different levels to protect cells from oxidative damage. 

They can prevent the formation of radicals; intercept radicals; repair oxidative damage and 

increase elimination of damaged molecules; and they also recognize excessively non

repaired damaged molecules in order to prevent mutations occur (Gutteridge, 1994). 

1.5.4.2. HBO Therapy and Oxidative Stress 

Oxidative stress is the redox imbalance caused by increased reactive oxygen species 

(ROS) production and/or reduced antioxidant reserve, which enhances susceptibility of 

lipid, protein and DNA oxidation by ROS, and subsequently damages cells. 

The damaging effects of hyperoxia on lung tissue with increased rate of superoxide, 

hydrogen peroxide and lipid peroxide formation has been well described (see Jamieson et 

al., 1986) and increased oxidative damage and lipid peroxides was also found in rodents 

brain and erythrocytes (Harabin et al., 1990; Etlik et al., 1997). Narkowicz and his 

colleagues (1993) using electron spin resonance (ESR) spectroscopy, which allows the 
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direct measurement of free radical levels, detected a free radical signal in blood samples 

from persons undergoing HBO exposure (95% oxygen at 2. 7 AT A for a total 3 x 20 

minute period as used therapeutically), but this signal diminished within I 0 minutes of 

cessation of HBO exposure. Due to the transient nature of oxygen radicals, it is difficult to 

obtain direct measurement of sample ROS levels, and as the antioxidant system act to 

reduce ROS, the redox balance (the balance of oxidant to antioxidant) has been widely 

used to reflect and explain the status of oxidative stress and the antioxidant defence 

efficiency. The effects of HBO treatment on antioxidants are controversial amongst studies. 

Benedetti et al (2004) reported that when twelve patients with chronic wounds were 

exposed to 15 consecutive HBO treatments at 2.5 AT A for 2 x 30 min periods, the 

repeated exposures to HBO led to a significant accumulation of plasma reactive oxygen 

metabolites (ROM) and malondialdehyde (MDA). After 15 HBO sessions, no differences 

were detected for GSH and a-tocopherol plasma levels; however, a significant decrease in 

erythrocyte SOD and CAT activity was observed when compared to the I st HBO exposure; 

glutathione peroxidase (GPx) activity remained almost unchanged. The results implied that 

prolonged HBO treatment leads to a condition of oxidative stress that seems to affect in 

particular the response of the enzymatic antioxidant defence system. However, Ozden et al 

(2004) found that HBO treatment improved liver regeneration in rats by benefiting redox 

state after exposure to HBO (at 2.5 AT A for 80 m in, 4 times on I ' 1 day, 3 times on 2"d- 4th 

day and 2 times 51
h- 7th day) and decreased MDA production and increased SOD activity, 

GSH and Zn levels were also reported. Kudchodkar et al (2006) reported daily HBO 

treatment (at 2.4 AT A for 90 min, and once a day) for I 0 weeks had an atheroprotective 

effect and elicited an antioxidant response in apoE KO mice. They found significant 

reductions of oxidative modified LDL (low density lipoprotein) in plasma, and TBARS 

(thiobarbituric acid reactive substances) and oxidized glutathione (GSSG) in liver; and 
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significant increase of the levels of GSH, glutathione reductase (GR), transferase, Se

dependent GPx and CAT in liver and aorta tissues. Muth et al (2004) investigated the 

effects of oral SOD supplement on HBO-induced DNA damage and antioxidant changes of 

twenty healthy volunteers (exposing to 100% oxygen at 2.5 ATA for a total of 60 min). 

Neither SOD and CAT, nor GSH and GSSG were significantly affected by the SOD intake 

or HBO exposure. In contrast, blood GPx activity was significantly lower in the SOD

group before and after HBO exposure. Another study (Eken et al., 2005) investigated blood 

samples from fifteen patients with various hypoxia pathologies after exposure to HBO 

treatment (at 2.5 ATA for 3 x 20 m in period at the end of the I st, I Oth and 20th HBO 

sessions), and no changes in erythrocyte antioxidant capacity and lipid peroxidation were 

observed as erythrocyte SOD, selenium-dependent GPx and MDA levels showed no 

differences at the end of the I st HBO therapy and the prolonged HBO exposure compared 

to before HBO treatment. In this study, although Vitamin E and Vitamin C were given 

daily to the patients, the antioxidant supplement effects were not considered. 

From the research outlined above, it seems that although HBO treatment increases 

ROS generation, due to the reaction of antioxidant systems, it may paradoxically be a 

trigger that leads to protection from oxidative stress. Clinical applications have proved that 

controlled HBO therapy can be used successfully for a variety of pathological conditions. 

Recent discoveries have shown that at high concentrations reactive oxygen species (ROS) 

overwhelm the antioxidant defence system and trigger indiscriminate tissue damage 

thereby delaying healing (Watanabe et al., 1998; Steiling et al., 1999). However, in 

moderate concentrations, ROS may act as a signalling mediator that modulates a wide 

variety of cellular responses which are involved in protecting the cells from oxidative 

damage and facilitating production of growth factors involved in angiogenesis regulation 

(Sen, 2002a and 2002b ). 
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1.6 Regulation of Wound Angiogenesis during HBO 

Treatment 

1.6.1. Mechanisms ofHBO-ioduced Angiogenesis 

The mechanism by which HBO therapy facilitates wound angiogenesis is under 

investigation and so far two hypotheses have been proposed. The oxygen gradient theory 

was put forth by Remensnyder in 1968, and supported by Knighton et al (1981 ). It states 

that an oxygen gradient exists between the central and the peripheral of the wound; the 

hypoxia in wound centre stimulates the initiation of angiogenesis, and peripheral wound 

hyperoxia drives the process to completion, which obliterates the oxygen gradient. HBO 

therapy increases the oxygen gradient, thereby promoting wound angiogenesis (Gimbel 

and Hunt, 2003). Another consonant theory advocated by Mustoe et al (1997) reasons that 

molecular oxygen, when delivered at high pressure, can function both as a respiratory 

metabolite and as a signal transducer. This was supported by the increased production of 

ROS during HBO and the fact that ROS regulates production of vascular endothelial 

growth factor (VEGF) and other growth factors. In addition, Hunt and his colleagues 

furthered this idea with the finding that high concentration of lactate in wound sites is 

involved in oxygen-related regulation of angiogenesis (Ghani et al. 2003; Jensen and Hunt, 

1986; Hussain et al., 1989). 
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1.6.2. HBO Treatment and VEGF Regulation in Wound Healing 

1.6.2.1. Origination and Biological Activity of VEGF 

Vascular endothelial growth factor (VEGF) gene family plays a fundamental role in 

the growth and differentiation of vascular as well as lymphatic endothelial cells (Ferrara, 

200 I). The broad tenn 'VEGF' includes several members including VEGF-A, placenta 

growth factor (PIGF), VEGF-8, VEGF-C and VEGF-0. All members of the VEGF family 

stimulate cellular responses by binding to a family of receptor tyrosine kinase (the 

VEGFRs) on the cell surface, causing them to dimerize and become activated through 

transphosphorylation. The VEGF receptors have an extracellular portion consisting of 7 

immunoglobulin-like domains, a single transmembrane spanning region and an 

intracellular portion containing a split tyrosine-kinase domain. 

In this thesis, VEGF-A is simply referred to as VEGF throughout, which is a major 

regulator of nonnal and abnonnal angiogenesis (Ferrara, 200 I). By alternative exon 

splicing of a single gene consisting of eight exons, five human VEGF isofonns were 

described by their amino acid number: VEGFI21, VEGFI45, VEGFI65, VEGFI89, and 

VEGF206. Mouse and rat VEGF isofonns are shorter by one amino acid per variant 

(Ferrara and Davis-Smyth, 1997). The cellular effects of VEGF-A (VEGF) are mediated 

via binding to VEGFR-1 (Fit-1) and VEGFR-2 (KDR/Flk-1). Most functional VEGF-A 

signalling described today is mediated via VEGFR-2 or strongly suspected to involve 

VEGFR-2 (Kiiche and Waltenberger, 2001). After binding to the receptor, VEGF activates 

several signalling cascades in endothelial cells (Fig 1.1 ): activation of phospholipase C-y 

leads to increased activity of protein kinase C (PKC) and the mobilization of intracellular 

calcium via the production of Ins( I ,4,5)P3 (IP3); activation of phosphoinositide 3-kinase 

(Pi]K)-dependent Akt/protein kinase 8 (PKB) pathway; and inducing activation of the 
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MAPK cascade v1a Ras/Raf stimulation. Through these signaling pathways, VEGF 

regulates several endothelial cell functions, including proliferation, differentiation, 

permeability, vascular tone, the production of vasoactive molecules and modulates gene 

expression (Waltenberger et al., 1994; Kroll and Waltenberger, 1999; Zachary and Gliki, 

2001; Kroll and Waltenberger, 1998). VEGF is a potent mitogen for micro- and 

macrovascular endothelial cells derived from arteries, veins, and lymphatics (Ferrara and 

Davis-Smyth, 1997). VEGF has been shown to induce confluent microvascular endothelial 

cells to invade collagen gels and form capillary-like structures in a tridimensional in vitro 

model (Pepper et al., 1992). Also VEGF induced sprouting from rat aortic rings embedded 

in a collagen gel (Nicosia et al., 1994). In vivo, VEGF produced strong angiogenic 

responses in chick chorioallantoic membrane (Leung et al., 1989), rabbit cornea (Phillips et 

al., 1995), and the primate iris (Tolentino et al., 1996). VEGF stimulates extracellular 

matrix (ECM) degradation by increasing the expression of uP A and tPA, PAI-l, and the 

metalloproteinase interstitial collagenase (e.g. MMPs) (Pepper et al., 1991; Unemori et al., 

1992). The eo-induction of PAs and collagenase by VEGF is consistent with a 

prodegradative environment that facilitates migration and sprouting of endothelial cells; 

and PAI-l provides a negative regulatory step that serves to balance the proteolytic process 

(Pepper and Montesano., 1990). In vivo, VEGF has been shown to regulate vascular 

permeability, which is a crucial step for the initiation of angiogenesis in wounds (Senger et 

al., 1983; Dvorak et al., 1986). 

VEGFR-1 has been reported to mediate monocyte migration (Barleon et al., 1996; 

Clauss et al., 1996) and function as a negative regulator of VEGFR-2 (Hiratsuka et al., 

1998). VEGF-C and VEGF-D, but not VEGF-A, are ligands for a third receptor (VEGFR-

3), which mediates lyrnphoangiogenesis. 
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Fig 1. 1 VEGF signaling pathway in endothelial ceU. Ligation of VEGF to its receptor (VEGF-R2) 
leads to phosphorylation of the receptor tyrosines, which allows the receptor to associate with and 
activate a range of signaling molecules. VEGF receptor activation can induce activation of the MAPK 
cascade via Ras!Raf/MEK leading to gene expression and cell proliferation, activation of PI3K leading 
to PKB activation and cell survival, activation of PLC-y leading to cell proliferation, vasopermeability. 
All these activation are related with angiogenesis (revised from 

http://www .sigmaaldrich.com/ Area_ of _I nlerest/Life _Science/Cell_ Signaling/Key _Resources/Pathway_ 
Slides_ Charts/Signaling_ Pathways _.htmJ) 

1.6.2.2. Role of VEGF in Neoangiogenesis of Wound Healing Process 

Jn wound sites, platelets, fibroblasts, endothelial cells, vascular smooth muscle cells 

and keratinocytes, have all documented to be able to produce VEGF (Berse et al. , 1992). 

29 



1.6 Regulation of Wound Angiogenesis during HBO Treatment 

VEGF may be crucial for angiogenesis during the proliferation phase of granular tissue 

formation during wound repair (Nissen et al., 1998). After mechanical denudation injury of 

the vascular wall, VEGF was infused into rat carotid arteries within 3 minutes immediately 

after injury and increased endothelial cell proliferation for up to 30 hours (Burke et al. 

1995). Another examples are that adding the neutralizing anti-VEGF antibody to a healing 

wound strongly inhibited wound granulation tissue fonnation (Howdieshell et al., 200 I) 

and that a single local injection of plasmid cDNA encoding recombinant human VEGF to 

an esophageal ulcer significantly enhanced angiogenesis and accelerated oesophageal ulcer 

healing (Baatar et al., 2002). 

Importantly, VEGF is shown to play a consistent and prolonged angiogenic function 

during wound healing in several experimental in vivo wounds. In a full-thickness incision 

on dorsal skin of mice, expression of bFGF was detected in the nuclei of epidermal cells 

and fibroblasts in the early 0.5 h to I h phases and the late 24 h to 144 h phases. Expression 

of VEGF was detected in the cytoplasm of epidermal cells in the 24 h to 144 h phases 

(Takamiya, 2002). In maxillofacial blast injury rabbit model, the content of VEGF in 

wound fluid increased steadily from the 1st day post-injury and reached a peak value at the 

7th day; whilst bFGF reached peak value at 6 h after injury, declined close to the serum 

level 3-5 days after injury, and then increased slightly on 7th day (Zhang et al., 2001). 

Surgical wound fluid samples (n = 70) were collected daily for up to 7 postoperative days 

from 14 patients undergoing mastectomy or neck dissection. VEGF levels in surgical 

wound fluid were lowest on postoperative day 0, approximating to serum values, but 

increased steadily through postoperative day 7. An opposite pattern was noted for bFGF, 

which exhibited highest levels at postoperative day 0, declining to near serum levels by 

postoperative day 3. Surgical wound fluid from all time points stimulated marked 

endothelial cell chemotaxis and induced a brisk neovascular response in the rat corneal 

30 



1.6 Regulation of Wound Angiogenesis during HBO Treatment 

micropocket angiogenesis assay. In addition, antibody neutralization of VEGF did not 

affect the chemotactic or angiogenic activity of early wound samples from postoperative 

day 0. In contrast, VEGF neutralization significantly attenuated both chemotactic activity 

and angiogenic of later wound samples of postoperative day 3 and 6 (Nissen et al., 1998). 

These results suggest that for wound angiogenesis, the initial angiogenic stimulus seem to 

be supplied by bFGF, followed by a subsequent and more prolonged angiogenic stimulus 

mediated by VEGF; bFGF may be an endogeneous inducer for VEGF. Furthermore, Corral 

et al ( 1999) reported the outcomes of applying VEGF 121 and bFGF on dennal ulcers in 

normal and ischemic rabbits' ears. They found that VEGF improved granulation tissue 

formation especially in ischemic wounds while bFGF had no significant effect on either 

the normal or the ischemic wound. 

As VEGF plays an important role in stimulating and sustaining the angiogenesis in 

normal wound healing process, it is not surprised to find that a defect in VEGF regulation 

delays the healing process and is related to chronic wound healing. Frank et al (1995) 

compared the time course of VEGF mRNA expression during wound healing between 

healthy mice and genetically diabetic db/db mice that are characterized by impaired wound 

healing. In normal mice, elevated VEGF mRNA levels occur during the period of 

granulation tissue formation. In db/db mice, VEGF m RNA levels even declined during this 

period. Altavilla et al (2001) confirmed these findings in their study on diabetic mice. 

VEGF mRNA levels, after a slight initial increase (day 3), were significantly lower in 

diabetic mice than in normal littermates; the latter had a strong induction between day 3 

and day 6 after injury. The exudates from non-healing venous ulcers patient have also been 

shown to have lower levels of VEGF, and these exudates inhibited experimental 

angiogenesis (Drinkwater et al., 2002). 
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Clinical application ofVEGF for therapeutic angiogenesis has been used successfully. 

A replication-deficient recombinant adenovirus vector carrying the human VEGF 16s gene 

was topically applied on excision wounds of streptozotocin-induced diabetic mice; this 

significantly accelerated wound closure (Romano Di Peppe, et al. 2002). In another study 

naked plasmid DNA encoding human phVEGF 165 was directly administered (im.) into the 

ischemic limb area for patients with critical limb ischemia or thromboangiitis obliterans. 

Newly formed collateral blood vessels were visualised by angiography and ischemic ulcers 

markedly improved or healed, resulting in successful limb salvage (Baumgartner et al., 

1998; Isner et al., 1998). Therefore, these preliminary studies show that VEGF levels in 

wound is important in mediating wound angiogenesis and deficient VEGF production may 

be one reason for non-healing wounds. Hence, more knowledge about VEGF regulation 

will be very helpful in promoting therapeutic angiogenesis. 

1.6.2.3. Regulation of VEGF Production in Wound Healing Process 

Intracellular oxygen concentration is controlled within a narrow range to meet the 

requirements of oxidative phosphorylation, in order to generate sufficient ATP. It is known 

that either decreased oxygen supply (hypoxia) or excess oxygen supply (hyperoxia) is a 

risk factor for metabolic damage. For this reason, considerable efforts have been 

undertaken to understand how cells sense and respond to changes in oxygen partial 

pressure. Hypoxia has been shown to induce VEGF production by a wide variety of cells 

involved in tissue repair, such as fibroblasts, endothelial cells, vascular smooth muscle 

cells and macrophages (Minchenko et al., 1994; Shweiki et al., 1992; Brogi et al., 1994; 

Detmar et al., 1997; Steinbrech et al., 1999). Hypoxia also increases VEGF gene 

transcription, its mRNA stability and up-regulates its translation (Forsythe et al., 1996; 

Levy et al., 1996; Stein et al., 1995 and 1998). 
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Forsythe et al (1996) presented direct evidence that hypoxia inducible factor-! (HIF-1) 

is implicated in the activation of the VEGF gene transcription during hypoxia. HIF-1 is a 

heterodimer composed of one of three alpha subunits (HIF-la, HIF-2a and HIF-3a), and 

the 91-94kDa HIF-IP subunits (Wang et al., 1995). HIF-IP is constitutively expressed. 

HIF-1 a expression is low, often undetectable under normoxia but is induced, accumulated 

and translocated into nucleus where it binds to HIF-1 P forming HIF-1 in a hypoxic 

environment. HIF-1 binds to eo-activators CBP/p300 and is then activated. The HIF-1 

heterodimer recognizes and binds to specific cis-elements in the promoters of specific 

genes that promote glycolysis, angiogenesis and cell proliferation. HIF-1 is the first 

ubiquitously expressed transcription factor known to be activated within the physiological 

range of 0 2 concentrations, and mediates gene transcription in response to reduced cellular 

0 2 tension in order to maintain oxygen homeostasis. HIF-1 a protein levels and HIF-1 

DNA binding activity increased exponentially upon exposure to decreased 0 2 

concentrations. Half-maximal induction was found between 1.5% and 2% Oz, and maximal 

response was at 0.5% 0 2. Below 0.5% 0 2, HIF-1 protein levels decreased again (the 

normoxia 0 2 concentration in kidney and liver tissue is approximately 3 to 5%)(Jiang et al., 

1996). HIF-1 acts as a master transcription switch for the regulation of over 40 genes that 

are specifically involved in oxygen homeostasis such as VEGF, iNOS, lactate 

dehydrogenase (LDH), IGF-2, etc (Wenger and Gassmann, 1997). Several studies have 

indicated that HIF -I expression is up-regulated during the wound healing process. Albina 

et al (2001) found that HIF-la mRNA was maximally expressed in wound cells 6 h after 

injury and HIF-1 protein was detectable in wound cells I and 5 days after injury. Data 

from transgenic mice expressing constitutively active HIF-Ia in epidennis displayed a 

66% increase in dermal capillaries and 13-fold elevation of total VEGF expression (Elson 

et al., 2000). Mazure et al (1997, 2003) showed involvement of a Ras/phosphatidylinositol 
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3-kinase/Akt (Ras-PI3-K-Akt) signalling pathway in hypoxia-dependent induction of 

VEGF in Ha-ras-transfonned cells and identified a hypoxia-response element (HRE) as a 

specific site for HIF-1 binding. 

Besides hypoxia-induced VEGF expression, further examination of VEGF in wounds 

has suggested that there seem to alternative pathways of in VEGF production. Using punch 

biopsy wounds in rats, Haroon et al (2000) found that hypoxia was absent on day I in the 

provisional fibrin matrix, a time when angiogenesis and maximal expression of VEGF, 

TGF-2 were observed in wounds. Hypoxia peaked in the granulation tissue stage at day 4 

and correlated with peak cellular proliferation. From day 4, hypoxia started to decrease, a 

time when wound cellularity decreased and wound contraction occurred. These results 

suggest that hypoxia probably does not play a role in the initial onset of cytokine 

expression that occurs at I day after wounding; alternate pathways may exist that mimic 

hypoxia conditions to initiate tissue repair and angiogenesis during the early stage of 

wound healing. Howdieshell et al (1998) demonstrated that wound VEGF levels remain 

notably high despite the fact that P02 in the wounds continuously approached the level of 

arterial blood. Clinical and experimental evidence demonstrate that increasing the oxygen 

concentration in severely ischemic and/or hypoxic wounds results in accelerated healing in 

the form of increased blood vessel growth. Sheikh et al (2000) administered HBO therapy 

for 90 minutes, twice daily at 2.1 ATA for 7 days after injury of rats. Wound oxygen rose 

from nearly 0 mm Hg to as high as 600 mm Hg. The peak level occurred at the end of the 

90-minute treatment, and hyperoxia persisted for approximately I hour. The VEGF levels 

significantly increased with HBO by approximately 40% 5 days following wounding and 

decreased to control levels 3 days after exposures are stopped. Gimbel and Hunt ( 1999) 

also showed that cultured macrophages increased production of VEGF when exposed to 

oxygen at high tensions of about 300 mm Hg. Kang et al (2004) found the VEGF level in 
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propagated human dermal fibroblasts slightly increased on day one of HBO treatment, 

while Lin (2002) reported exposing HUVECs to HBO showed no effects on VEGF 

expression. 

The question of how hyperoxia influence VEGF level and angiogenesis is not resolved 

yet. Current literature shows that some chemicals (e.g. ROS, lactate) could mimic hypoxia 

and hence stimulate VEGF secretion. In 1967, Hunt and his colleagues first reported that 

healing wounds produce and accwnulate large concentrations (I 0-15 mM) of lactate. 

Ongoing research found that disruption of microcirculation, inflammation and rapid cell 

growth, and subsequently increased oxygen consumption led to the production of lactate 

(Ghani et al., 2003). Furthennore, high concentrations of lactate ( 15 mM) show the same 

effect as hypoxia in eliciting collagen synthesis by cultured fibroblasts (Green and 

Goldberg, 1964), and stimulate VEGF production by macrophages (Knighton et al., 1983; 

Jensen et al., 1986). These actions of lactate were hypothesized to be mediated by the 

ADPR/pADPR system (Hunt and Hussain, 1992). ADPR/pADPR (mono/poly ADP

ribosylation) is a post-translational modification of proteins in which molecules of ADP

ribose are added successively on to acceptor proteins to fonn branched polymers, thereby 

altering the acceptor proteins' structure and function (D 'Amours et al., 1999). ADP

ribosylation is not only involved with DNA repair, but also represents a link between cell 

energy status and cell phenotype because of the requirement of NAD+ as its precursor or 

immediate substrate (Loetscher et al., 1987). Accumulation of high concentrations of 

lactate forces lactic dehydrogenase-catalyzed conversion of NAD+ to NADH. The decline 

in the NAD+ pool subsequently reduces the ADPR/pADPR level, which in turn alters the 

function of some transcription factors involved in collagen synthetic enzymes and VEGF 

regulation. Zebel et at (1996) reported that cultured macrophages in 15 mM lactate showed 

40% lower NAD+ and 40% less pADPR synthesis than that in 0 mM lactate solution. 
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Subsequently, Constant et al (1996) measured VEGF levels in media conditioned by 

macrophages grown in normoxia, hypoxia, 15 mM lactate, or hypoxia and lactate together. 

Both hypoxia and lactate alone stimulated increased VEGF levels and the highest 

concentration occurred with the combination of lactate and hypoxia. Later Constant et al 

(2000) reported that hypoxia, lactate, and nicotinamide elicited significantly increased 

levels of VEGF m RNA and VEGF protein in the conditioned media, and these levels were 

paralleled by their angiogenic activity. They also proposed that redox changes 

(NAD+/NADH) associated with the alteration of cellular ADPR/pADPR level could be 

involved in lactate-mediated VEGF expression. Lactate levels remain elevated in healing 

wounds even when oxygen tensions in the wounds were increased (Hunt et al., 1978). With 

HBO treatment, the VEGF levels were elevated while the lactate level remained 

unchanged in wound exudates (Sheikh et al., 2000). 

Recent discoveries have illuminated that in moderate concentrations, ROS may act as 

a signalling mediator that modulates a wide variety of cellular responses involved in 

angiogenesis regulation (Sen, 2002a,b). This seems, in part, to explain the different effects 

of HBO on wound healing and cell function. The wound site is rich in both oxygen- and 

nitrogen-centred reactive species along with their derivatives, mostly contributed by the 

respiratory burst of neutrophils and macrophages. The concentration of 0 2 necessary to 

achieve half maximal ROS production (the Km) is in the range of 45 to 80 mm Hg, with 

maximal ROS production seen when p02 > 300 mm Hg (Alien et al., 1997). Hyperbaric 

oxygen has been shown to stimulate respiratory burst activity to produce more ROS 

(Conconi et al., 2003; Mader et al., 1980). Among the various forms of ROS, H20 2 is 

relatively stable, membrane-permeable, and therefore a good candidate to serve as a 

cellular messenger (Baeuerle et al., 1996). Cho et al (200 I) discovered that H20z increased 

macrophage VEGF production through an oxidant induction of the VEGF promoter, and 
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this oxidant stimulation could be mediated by activated neutrophils. ROS eliciting VEGF 

release has also been seen in vascular smooth muscle cells (Ruef et al., 1997). Sen et al 

(2002) demonstrated that at f!M concentrations oxidant induces VEGF expression and that 

oxidant-induced VEGF expression is independent of HIF-1 and dependent on Sp I 

activation. Richard et al (2000) found that ROS played an essential role in activate HIF-1 

gene of vascular smooth muscle cells during induction of VEGF mRNA expression by 

thrombin, PDGF and angiotensin 11, and they suggest that while hypoxia remains the 

undisputed ubiquitous inducer of HIF -I, other factors could also modulate increases in 

HIF-Ia protein levels in a cell-specific manner. As demonstrated by Richard, the non

hypoxia induction of the HIF-1 transcription factor via vasoactive hormones is triggered by 

a dual mechanism. One is a diacylglycerol-sensitive protein kinase C (PKC) -mediated 

increase in HIF-1 a transcription and the other is ROS -dependent activation of Pl3-kinase 

(PI3K) that increases the translation of HIF-1 a by acting on the 5' -untranslated region. 

HIF-1 then binds a specific hypoxia-response element sequence and increases the 

expression of VEGF. The role of ROS in induction of VEGF gene is described in Fig 1.2. 
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Fig 1. 2 Role of ROS in induction of VEGF production under hypoxialhyperoxia. Hypoxia stabilizes 
HIF-1 gene and then permits transcription of VEGF gene. The ROS generated from either hypoxic or 
hyperoxic condition may increase the transcription of HIF-1 gene by stimulate PKC. The HlF-1 
mRNA is then translated by increased activation of the PI3K pathway, which resulls in the increased 
HIF-1. Exogenerous ROS and hyperoxia can also stimulate VEGF production via HIF-1 independent 
ways. 

1.6.3. HBO treatment and Nitric Oxide 

1.6.3.1. Nitric Oxide in Wound Healing 

Nitric oxide (NO) has an unpaired electron and is thus a free radical capable of rapid 

reaction with other molecules. NO, continuously produced at nanomolar (nM) 

concentration, is responsible for a wide range of physiological functions such as 

vasodilatation, promoting smooth muscle relaxation and preventing platelet adhesion and 

aggregation. NO is produced by nitric oxide synthase (NOS) which catalyses a five-

electron oxidation of the guanidine nitrogen of arginine into citrulline with consumption of 

NADPH and oxygen (Eq.l.9) (Marletta, 1993; and Knowles, 1994). 

L-Arginine + NADPH + 0 2 Nos > L-Citralline + NADP + NO Eq.l. 9 

There are three subtypes of NOS: neuronal NOS (nNOS), inducible NOS (iNOS), and 

endothelial NOS (eNOS). nNOS is mainly expressed in neuronal cells which exist in large 
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numbers in brain, spinal cord, sympathetic ganglia, and kidney (Murakami et al., 1998); 

here the NO produced functions as a neurotransmitter. eNOS is mainly found in 

endothelial cells and plays an important role in vasodilation (Pollock et al., 1993). eNOS is 

constitutively produced and may be up-regulated by the shear force of flow and hyperoxia, 

which requires the presence of intracellular calcium and calmodulin (Nishida et al., 1992; 

North et al., 1996; Malek et al., 1999). nNOS and eNOS bind calmodulin in a reversible 

and calcium-dependent fashion. iNOS is usually induced during inflammation by certain 

inflammatory cytokines and/or bacterial products. iNOS function is calcium- and 

calmodulin-independent because calmodulin is tightly bound to this isoform in a 

noncovalent manner and trace levels of intracellular calcium are able to maintain its 

activity. iNOS protein levels are either very low or undetectable in most cells, while 

stimulation leads to increased transcription of the iNOS gene, with subsequent production 

of high concentrations of NO. As a result, the production of NO by iN OS lasts longer and 

is much higher than from the other isoforms (Lirk et al., 2002). 

Elevated levels of nitrite and citrulline, end products of NOS-mediated reaction, 

appear in wound fluid during the first 3 days of wound healing until the second week, 

confirming that NO is produced during wound repair (Albina et al., 1990; Schaffer et al., 

1996). A number of cells involved in wound repair are capable of producing NO using 

either eNOS or iNOS. These include macrophages (iNOS) (Reichner et al., 1999), 

keratinocytes (eNOS and iNOS) (Heck et al., 1992; Arany et al., 1996), endothelial cells 

(eNOS and iNOS) (Hood et al., 1998; van der Zee et al., 1997), and fibroblastes (eNOS 

and iNOS) (van der Zee et al., 1997; Wang et al., 1997). 

In wound healing, NO plays important roles throughout the inflammatory phase right 

through scar remodelling. Diabetic rats had decreased nitrite/nitrate (the metabolite oxides 

of nitrogen used as indicators of NO production) in wound fluid as well as impaired 
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breaking strength and decreased collagen content of healing wounds (Schaffer et al. 1997a). 

In a three week wound healing experiment, Amadeu and Costa (2006) investigated the 

effects of NO synthesis on rat cutaneous wound healing by blocking the NO synthesis with 

N(G)-nitro-L-arginine methyl ester (L-NAME), a non-selective inhibitor of NO synthases. 

L-NAME-treated animals presented delayed wound contraction, alterations in collagen 

organization and neoepidermis thickness with decreased volume density and smaller 

surface density of vessels. 

1.6.3.2. Roles of iN OS and eN OS in Wound Healing Process 

The investigations on the changes of NO production and NOS suggested that iN OS 

and eNOS are highly co-ordinated to provide NO for normal wound repair. Schaffer et al 

( 1997b) found increased nitrite/nitrate level until the second week post wounding and 

demonstrated that iNOS expression in macrophages was the major source of wound nitric 

oxide. Consistent with this study, using a five-week healing wound model, Lee et al (200 I) 

showed that nitrite/nitrate levels in wound fluid increased steadily from day I to day 14 

after wounding indicated a sustained production of NO and NOS activity up to 10 days in 

the wound with the iNOS gene expression paralleled NOS biochemical activity. And the 

peak NOS activity was at 24 h after wounding, macrophages appeared to be a source of 

nitric oxide production in this early phase of wound healing. 

NO has been shown to increase angiogenesis in ischemic limb (Murohara et al., 1998), 

and eNOS inhibitors impair angiogenesis in granulation tissue (Konturek et al., 1993). Ma 

and Wallace (2000) investigated the relative effects of eNOS and iNOS on gastric ulcer 

healing in rats, and they found that iNOS mRNA was expressed in inflammatory cells in 

the ulcer bed and only detected in ulcerated tissue (maximal at day 3), whereas eNOS 

mRNA was found in endothelium and in some mucosal cells in both normal and ulcerated 

tissue and increased during the ulcer healing process; moreover, angiogenesis change was 
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in parallel with eNOS expression. They suggested that eNOS plays a significant role in 

endothelial cell-induced angiogenesis and that iN OS made a great contribution in the early 

stage of gastric ulcer healing process. Lee and his colleagues ( 1999) confirmed the 

requirement of eNOS for wound angiogenesis by using eNOS gene knockout mice (KO 

mice). Capillary ingrowth into subcutaneously implanted Matrigel plugs was significantly 

reduced in eNDS-deficient mice and in vitro endothelial cell sprouting assays 

demonstrated that eNOS is required for proper endothelial cell migration, proliferation, and 

differentiation. 

NO production by NOS was also shown the ability to facilitating wound angiogenesis 

by regulating angiogenic growth factors. Akimoto et al (2000) measured the concentration 

of VEGF, NO and endothelin-1 (ET -I) of biopsy samples from 61 gastric ulcer patients in 

active stage (15 cases), 23 were healing stage (23 cases), or scarring stage (23 cases). 

Nitrite/nitrate showed highest concentration in early mucosal repair stage (active stage), all 

three factors showed high levels in healing stage, and significant lower concentration were 

found in scarring stage. Interestingly, the distribution of ET- and iN OS-positive cells 

differed according to the ulcer stage. In particular, ET- and iN OS-positive cells were 

primarily endothelial cells during active and healing stages and during scarring stage were 

mainly vascular smooth muscle cells in the vascular wall. Howdieshell et al (2003) 

presented that iNOS inhibition resulted in reductions of wound VEGF expression and 

granulation tissue formation. Therefore, NO produced via iNOS of macrophages and 

endothelial cells at the early stage might be the original signal to active endothelial cells 

and to stimulate secretion of other growth factors such as VEGF to initiate and sustain 

wound repair and angiogenesis; and at the late stage the effects of NO produced via eN OS 

and iNOS might involve in regulating the proliferation of smooth muscles and other cells 

related to vascular remodelling. 
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1.6.3.3. Evidence of NO as An Mediator in Angiogenesis 

Nitric oxide has been implied to be regulated by a variety of growth factors as well as 

cytokines such as VEGF, including platelet-activating factor (PAF), bFGF, IL-2, TNF-u, 

IL-l a (Dulak and Jozkowicz., 2003). Based on the accumulated evidences that NO could 

induce or be induced by VEGF, nitric oxide is expected to serve as both an upstream and 

downstream modulator ofVEGF-mediated angiogenesis. 

Van der Zee et al (1997) found that VEGF produced a dose-dependent rise in NO 

concentration from vascular segments of rabbit thoracic aorta, pulmonary artery, and 

inferior vena cava. Comparison to stimulation with acetylcholine, the onset of increased 

(NO) after administration of VEGF was slower, reaching a maximum value after 8 min. 

Preincubation of the aortic segments with L-arginine raised by twofold both baseline (NO) 

and (NO) stimulated by addition of 2.5 J.lg/mL VEGF. Removal of calcium from the Krebs 

solution, disruption of the endothelium, and administration of NG-monomethyl-L-arginine 

(L-NMMA, inhibits eN OS) abrogated the stimulatory effect of VEGF (I 0 J.lg/mL). The 

authors also documented a similar finding with an NO-specific polarographic electrode to 

measure NO released from cultured HUVECs. 

When HUVECs were incubated with VEGF, NO was produced in both acute (I h) and 

chronic (>24 h) ways, and the NO generation was confinned to be VEGF-elicited and 

dose-dependent. The lone-tenn exposure to VEGF increased eNOS protein level, and 

short-tenn stimulation with VEGF promoted NO release through mechanisms involving 

tyrosine and PI-3K (Papapetropoulos et al., 1997). VEGF-stimulated NO production 

required activation of tyrosine kinases and increases in intracellular calciwn, since tyrosine 

kinase inhibitor and calcium chelator attenuated VEGF-induced NO release (Hood et al., 

1998; Papapetropoulos et al., 1997). A consistent effect was demonstrated by Bouloumie et 

al (1999) that VEGF165 enhances the expression of eNOS in cultured (HUVECs) and 
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native (rat aorta ring) endothelial cells, and that this can be abolished by tyrosine kinase 

inhibitors. Kroll and Waltenberger (1998) found that stimulating HUVEC with VEGF for 

24 hours induces both iNOS and eNOS expression and protein levels. They also used 

porcine aortic endothelial cells over-expressing either VEGF receptor-2 (PAE/KDR cells) 

or VEGF receptor-1 (PAE/Fit-1 cells) to study the regulation of iNOS and eNOS 

expression in response to VEGF stimulation. The activation of VEGF receptor-2 led to an 

upregulation of both eNOS and iN OS protein, while stimulation of VEGF receptor-1 did 

not generate such a signal. Therefore, VEGF augmented NO release mediated by binding 

to VEGF receptor-2 of endothelial cells to stimulate expression and production of eN OS 

and iNOS protein. 

Other evidence has shown that NO could alternatively regulate VEGF production. 

During cutaneous wound repairs, VEGF expression increased concomitantly with iNOS 

expression in keratinocytes (Frank et al., 1999), and in macrophges (Xiong et al., 1998). In 

vascular smooth muscle cells, the expression ofVEGF mRNA and protein synthesis can be 

enhanced both by low doses of NO (such as those generated by eNOS) and by high 

amounts of NO derived from iNOS or NO donors. Dulak et al (2000) found VEGF 

expression and protein synthesis was upregulated after either IL-l p induced iN OS 

expression or NOS transfected to increase NO generation of rat vascular smooth muscle 

cells, and inhibition of NO generation by L-NAME decreased VEGF synthesis in both the 

models. Jozkowica et al (2001) showed a similar increase in VEGF protein production by 

exposing rat and human vascular smooth muscle cells to exogenous NO donors (2-fold), or 

to genetic augmentation of eNOS or iNOS by transfection (3-fold), which was reversed 

after treatment with the NOS antagonist L-NAME. In addition, the VEGF protein produced 

by NOS-transfected VSMC was biologically active and capable of increasing endothelial 

cell proliferation. Although the mechanism of NO activating VEGF production is unknown, 
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studies have indicated that hypoxia and NO may use similar components, pathways and/or 

modifications to evoke HIF- l a accumulation as exposure of various cells to NO under 

normoxic conditions induced HIF- la accumulation and HIF-1-DNA binding (Kimura et al. 

2000; 2001), which may then activate the downstream target gene expression (e.g. VEGF) 

(Brune and Zhou, 2003). The reciprocal regulation between NO and VEGF is summarized 

in Fig 1.3. 
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Fig 1. 3 Reciprocal relationship between VEGF and NO. In smooth muscle cells or macrophages, 
VEGF is enhanced by NO generated by eNOS, iNOS or NO donors, which may be mediated by HTF-1 
pathway. In endotheli al cells, VEGF binds to VEGF receptor-2 and induces NO synthesis through the 
CaM-Akt or the PT3K-Akt pathways. 

1.6.3.4. HBO Treatment Regulates NO Production 

Oxygen and hyperbaric oxygen therapy are known to affect the NO production and 

the expression of both eNOS and iNOS. The first evidence of HBO influencing NO 

generation came from a report that NO might be an important mediator in oxygen toxicity 

(6 ATA) in central nervous system (Oury et a l., 1992). The study of Wang et al (1998) 
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suggested that the increased NO production as well as neuronal intracellular Ca2
+ overload 

during HBO (5 AT A) exposure was responsible for HBO-induced seizures, and Chavko et 

a! (2001) reported significantly higher activity of calcium-dependent NOS and protein 

expression of nNOS at I and 2 days after HBO-induced seizures (5 AT A), while calcium

independent NOS activity and protein expression of eN OS and iN OS were not changed. A 

protective effect against HBO-induced seizures was achieved by the nNOS-specific 

inhibitor 7-nitroindazole (7-NI). Using NOS-deficient mice, Demchenko et a! (2003) 

demonstrated the same effect of nNOS-catalysed NO mediated HBO (5 AT A) toxic effects 

by reaction with superoxide to generate peroxynitrite; and they also found an eNDS

dependent NO production to induce cerebral vasoconstriction and related with the 

development of hyperoxic hyperaemia. The close relationship of increased cerebral blood 

flow (CBF) and upregulated NO concentration during HBO treatment was supposed to be 

the reason for hyperaemia under HBO (5 ATA) exposure (Sa to et al., 200 I; Hagioka et al., 

2005). However the regulation of NO production in HBO treatment is not that simple, 

Zhiliaev et a! (2002) reported a reduced cerebral blood flow under hyperbaric oxygen (4 

AT A) due to inactivation of NO by superoxide anions, and another study from the same 

research team reported that oxygen at a pressure of 4 AT A induced cerebral 

vasoconstriction and decreased blood flow by 11-18% during 60 min exposure to 

hyperbaric oxygenation. Paroxysmal electroencephalography (EEG) activity and oxygen 

convulsions did not occur in rats at 4 AT A of 0 2, while at 5 AT A, convulsive activity 

appeared on the EEG at 41 ± 1.9 min, and blood flow decreased significantly during the 

first 20 min; and then blood flow increased by 23 ± 9% before the appearance of 

convulsions on the EEG. Prior inhibition of nNOS and eNOS with L-NAME or inhibition 

only of NOS I with 7-nitroindazole (7-NI) prevented the development of hyperoxic 

hyperaemia and paroxysmal spikes on the EEG during hyperbaric oxygenation at 5 AT A. 
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These results show that hyperbaric oxygen induces changes in cerebral blood flow which 

modulate its neurotoxic action via nitric oxide synthesized both in neurons and in cerebral 

vessels (Moskvin et al., 2003). Zhang et al (1995) exposed rats to HBO at 3 AT A for 15 

min and found that although HBO significantly increased the brain 0 2 tension but not CBF, 

and inhibition of NOS with L-NAME did not change either brain 0 2 tension or CBF. 

HBO-induced nNOS-mediated NO production contributes to oxygen toxicity of the 

central nervous system at above 5 ATA, and inhibition of NOS significantly protects 

animals from hyperbaric oxygen (HBO)-mediated convulsions. At lower pressure such as 4 

AT A and 3 ATA, the oxygen toxicity was limited, possibly by reduced NO production. In 

addition, NOS isoforms might react differently to HBO stimulation and that could be the 

basis of an explanation of the HBO beneficial effects at treatment pressure. 

Exposure of mice to HBO or hyperbaric air treatment significantly reduced the 

cytostatic activity, peroxynitrite synthesis and transcription of iNOS mRNA of their 

macrophages stimulated with lipopolysaccharide (LPS) and interferon-gamma (Kurata et 

al., 1995). LPS is an endotoxin and is able to induce a strong response from normal animal 

immune systems. Intravenous administration of LPS to rats significantly increased 

nitrite/nitrate concentration in plasma was after 5-6 h after injection; and HBO treatment at 

3 ATA for 90 min significantly depressed nitrite/nitrate production I h after LPS injection 

(Sunakawa and Yusa, 1997). Recently, H 80 treatment also reported to attenuate LPS

induced and sepsis-induced acute lung injury by decreasing NO production and iNOS 

protein expression in rats (Huang et al., 2005; Chu et al., 2006; Chang et al., 2006). 

Zymosan, a cell wall component of the yeast Saccharomyces cerevisiae, induces 

inflammation by causing the production of various cytokines and pro-inflammatory 

mediators. The administration of zymosan to rats represents a new experimental shock 

model by inducing acute peritonitis, severe hypotension, and signs of systemic illness 
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characterized by ruffled fur, lethargy, conjunctivitis, diarrhoea, and a significant loss of 

body weight. Zymosan led a time-dependent increase of nitrite/nitrate in peritoneal and 

plasma. HBO treatment (at 2 AT A) significantly attenuated morbidity of zymosan-shocked 

rats with a great reduction of either peritoneal leukocytes and exudates, or plasma and 

peritoneal nitrite/nitrate concentrations (Luongo et al., 1998). Imperatore and colleagues 

(2004) observed that HBO therapy (at 2 ATA) attenuated zymosan-induced vasoplegic 

response and improved vascular alteration by increased contraction (induced by 

norepinephrine and endothelin-1) as well as acetylcholine (ACh)-induced dilation in rat 

aorta rings. At the same time, HBO therapy also attenuated the increase of MDA levels in 

the aorta and protein level of nitrotyrosine and iNOS in tissue sections obtained from 

zymosan-treated rats. 

Exposing rats with colitis to HBO ( 100% oxygen at 2.4 AT A for one hour twice on 

the day of colitis induction and once daily thereafter) for seven days effectively decreases 

colitis induced by acetic acid and trinitrobenzenesulphonic acid (TNB) and the markedly 

decreased activity of NOS and myeloperoxidase and prostaglandin E2 generation 

(Rachmilewitz et al., 1998). Yuan et al (2004) demonstrated that HBO treatment 

suppressed the iNOS expression and apoptosis of chondrocytes, and hence protected 

cartilage from injury. Applying HBOT twice a day during early wound healing 

significantly ameliorated the negative effects of psychological stress on wound healing 

(iNOS expression increased 205% in stressed mice day I post-wounding) by reducing 

iNOS expression (62.6%). Interestingly, no significant effect on wound healing and iNOS 

expression was shown in control animals without stress (Gajendrareddy et al., 2005). 

The beneficial effects of therapeutic HBO treatment on variable pathophysiological 

conditions have been widely studied, and the reduction of NO generation via iNOS may be 

among the mechanisms responsible for the anti-inflammatory effect of HBO therapy. On 
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the other hand, it is known that HBO increases nitric oxide levels in perivascular tissues 

via stimulation of nitric oxide synthase (NOS). North et al. (1996) reported that increased 

oxygen tension at normobaric pressure (exposing to P02 ISO mmHg for 48 h) led to an 

induction of 2.7-fold greater eNOS mRNA and protein expression up to 24 hours in early 

passage ovine fetal pulmonary artery endothelial cells (PAEC). Buras et al (2000) 

demonstrated that hyperbaric oxygen induced the synthesis of eNOS in human umbilical 

vein endothelial cells (HUVECs) and bovine aortic endothelial cells (BAECs) and reduced 

the expression of !CAM-I to control levels. Adhesion of PMNs to BAECs was increased 

following hypoxialhypoglycemia exposure (3.4-fold) and was reduced to control levels 

with exposure to HBO. The NOS inhibitor L-NAME attenuated HBO-mediated inhibition 

of I CAM-I expression. Hink et al (2006) found that exposure rat aorta rings to HBO at 2.8 

AT A in vitro decreased ACh relaxation. This effect remained unchanged, despite treatment 

with SOD-polyethylene glycol and catalase-polyethylene glycol, suggesting that the 

reduction in endothelium-derived NO bioavailability was independent of superoxide 

production. In vitro HBO induced contraction of resting aortic rings with and without 

endothelium, and these contractions were reduced by the NOS inhibitor N(omega)-nitro-1-

arginine. In addition, in vitro HBO attenuated the vascular contraction produced by 

norepinephrine, and this effect was reversed by N(omega)-nitro-1-arginine, but not by 

endothelial denudation. These indicated stimulation of extraendothelial NO production 

during HBO exposure. Catalytic activity of eNOS in cell homogenates of rat aortic 

endothelial cells was not decreased by HBO, and in vivo HBO exposure to 2.8 AT A was 

without effect on eNOS activity and/or vascular NO bioavailability in vitro. HBO reduced 

endothelium-derived NO bioavailability and increased the resting tone of rat aortic rings 

and attenuated the contractile response to norepinephrine by endothelium-independent 

mechanisms that involve extraendothelial NO production. Another study showed HBO 
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increases bone marrow NO as a physiological trigger for morbilisation in vivo thereby 

increasing release of endothelial progenitor cells (EPC) into circulation; mobilization of 

EPC is associated with increased lower limb spontaneous circulatory recovery after 

femoral ligation and enhanced closure of ischemic wounds. Both the effects were inhibited 

by NOS inhibitor L-NAME (Goldstein et al., 2006). 

Given the fact that VEGF is actively involved in regulating endothelial function and 

vascular tone in chronic wounds and ROS such as NO and hydrogen peroxide have been 

affected by HBO treatment, it is more likely that the interaction and regulatory mechanism 

of these factors are greatly responsible for better understanding of HBO effects. 

1.7 Summary 

The world-wide rapidly agemg society with multiple concomitant pathological 

conditions such as diabetes and cancer presents an increasing population of patients with 

nonhealing and problem wounds. Application of hyperbaric oxygen therapy to problem 

wound healing has been recommended by the UHMS and approved to accelerate wound 

closure and improve cell function in multiple ways. Angiogenesis in wounds plays a 

critical role in granulation tissue formation during the wound healing process. A number of 

studies have demonstrated that hyperbaric oxygen therapy promotes new vessel formation 

as well as enhancing endothelial cells migration, proliferation and tube formation. 

However, the cellular and molecular effects of hyperbaric oxygen therapy on angiogenesis 

in chronic wound are still not clearly defined. Wound angiogenesis is a physical process, 

which is highly regulated by growth factors, cytokines and other factors. Vascular 

endothelial growth factor (VEGF) is believed to be the most powerful angiogenesis growth 

factor identified so far, and its expression is highly regulated by oxygen tension. Defective 

VEGF regulation is associated with chronic wound healing. VEGF expression is up-
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regulated in both hypoxia (e.g. in a normal wound site) and hyperoxia (e.g. during 

hyperbaric oxygen treatment). On the other hand, HBO treatment is capable of regulating 

ROS and NO production which may depend on HBO strategies and pathological condition. 

In addition, recent studies have suggested that ROS such as hydrogen peroxide, and njtric 

oxide; or high level of lactate are involved in VEGF regulation in chronic wound. The 

effects of hyperbaric oxygen therapy on YEGF, nitric oxide and hydrogen peroxide levels 

are controversial but promising; the changes of these factors are tightly related to oxygen 

supply (Fig 1.4). However, there have not been studies to investigate the response and 

interaction of these factors to hyperbaric oxygen treatment. We believe that studies on tills 

aspect will contribute to our knowledge of the role of hyperbaric medicine and help to 

clarify the mechanisms underlying the magical effect of oxygen, and ultimately provide a 

better basis for the application of hyperbaric oxygen therapy. 

HBO 

VEGF 

Fig 1. 4 Possible mechanisms of HBO on wound heaJing process. 
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2.1 Rat Aorta Segment in vitro Model 

Chapter 2 

Methods Development 

In the work described in this chapter, we successfully established an in vitro blood 

vessel model of HBO treatment, which was verified using tests of tissue viability and 

histological examination, and set up the appropriate biochemical methods to quantify the 

level of hydrogen peroxide, nitric oxide, glutathione, lactate and vascular endothelial 

growth factor (VEGF) for our specific model. These assay protocols and in vitro model are 

mainly used in Chapter 3 and Chapter 4. All the chemicals and reagents used except 

mentioned were obtained from Sigma (Poole, UK). 

2.1 Rat Aorta Segment in Vitro Model 

Isolated blood vessels, especially rat aorta provide an ideal in vitro model to 

investigate the vascular responsiveness as well as behaviour of endothelial cells or smooth 

muscle cells to all sorts of mechanical, physical or chemical stimuli and treatments. The 

aorta layers from intermost to outermost are endothelial cell layer, vascular smooth muscle 

cell layer and adventitia consists of fibroblasts, extracellular connective tissue, small blood 

vessels and others. The endothelial and smooth muscle cells interact, making isolated 

blood vessels a more realistic in vitro model than either cell type on their own. The 

structural advantages and convenient availability have the in vitro rat aorta model 

extensively used in research into the mechanisms and influencing factors in hypertension, 

atherosclerosis, diabetes and other vascular-related diseases (Lorok et al., 2006; Loomis et 

al., 2005; Jen et al., 2000; Agren and Arnquist, 1981; Kulchai et al., 1978). Moreover, it 
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2.1 Rat Aorta Segment in vitro Model 

also has been used as a quantitative assay for the study of angiogenesis and for the 

identification of potential angiogenic agents and screening for pharmacological inhibitors 

by embedding rat aorta rings in gels of fibrin or collagen and optimized culture medium to 

generate branching microvessels (Nicosia and Ottinetti., 1990; Blacher et al., 200 I). 

Angiogenesis in wound healing involves the generation and interaction of angiogenesis 

factors such as ROS, nitric oxide, VEGF and lactate in wound sites. The effects of HBO 

treatment on the generation of those factors from blood cells, macrophages, fibroblasts 

have been investigated and are considered significantly important in regulating wound 

angiogenesis and the wound healing process (See 1.6 for review). Neovascular formation 

in granulation tissue is initiated from the existing blood vessels, but to our knowledge there 

are no studies that investigate the direct effect of HBO treatment on those angiogenesis 

factors of blood vessel. For this purpose, the rat aorta provides an ideal model to 

investigate the effects of HBO treatment on production of reactive oxygen species, nitric 

oxide, lactate and VEGF in physiological and pathological conditions in vitro. 

2.1.1. Animals and Aorta Preparations 

Male Sprague Dawley rats (350 - 400 g) were purchased from Harlan UK Ltd (Shaw's 

Farm Blackthorn, Bicester, UK). They were kept in a 12 h dark: 12 h light cycle and had 

free to access food and water before collection the tissue. Experiments were conducted in 

accordance with ethical approval. 

Rats were euthanized with intraperitoneal injection of Sagatal (90 mg kg- I body wt, 

Rhone Merieux Limited, Harlow, Essex, UK). The abdominal cavity was dissected, then 

visceral organs and abdominal fat were removed, the aorta was firstly located in the 

retroperitoneum distal to the kidneys by spreading the retroperitoneal fat. Once the aorta 

was found, the abdominal aorta was dissected distally until the branching site of the iliac 
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2.1 Rat Aorta Segment in vitro Model 

arteries. To dissect the thoracic aorta, the diaphragm was cut and dissection continued 

through where the aorta passed the diaphragm and reached the aorta arch. The aorta arch 

derives from the heart and is fixed by surrounding connective tissues and arteries, so the 

surrounding fat and connective tissue was cleaned and the intercostal, left subclavian and 

left carotid arteries were dissected to free the aorta from the retroperitoneum. The aorta 

was then dissected from the arch down to the iliac bifurcation. The vessel was bathed with 

ice cold phosphate buffered saline (PBS at pH 7.4) throughout dissection. 

Once the aorta (8 -10 cm) was removed, it was washed in 250 m! of ice-cold PBS and 

then spread in a culture dish with 10 m! of modified Krebs-Ringer solution (composition in 

mM: NaCI118.6, KCI4.7, CaCI2 2.5, MgS04 1.2, KH2P04 1.2, NaHC03 25.1, Hepes 10, 

glucose 10, pH 7.4) to carefully remove any remaining fat from the exterior of the blood 

vessel. The aorta was sectioned into 1 cm segments, and then placed in wells of Nunclon 

Delta SI 6-well tissue culture plates (Nunc, InterMed, Denmark) containing 6 m! of Krebs

Ringer solution. The plate was transferred to a 37 oc incubator with air supply for up to 8 

hours, and tissue and medium samples (10 aorta segments from 2 rats) were collected at 

0.5 h and 8 h post incubation for histological and tissue toxic examination. 

2.1.2. Histology Examination 

2.1.2.1. Rat Aorta Segment Routine Histological Protocol 

Aorta segments were first fixed with 15 m! of Bouin's solution for 24 hours. Bouin's 

solution is an alternative to formaldehyde-based fixative and contains 75 ml of 1% 

saturated aqueous picric acid, 25 ml of 10% Formalin and 5 ml of glacial acetic acid. 

Fixation preserves the tissue structure and chemical composition in a state as close as 

possible to the living condition and the right fixative and proper fixation time are important 

for a good histological section. Secondly, fixed aorta segments were diffused in graded 
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alcohol to remove excess water (70% x 2, 90% x I and I 00% x 2 for 2 h each). Since 

alcohol and paraffin are immiscible, an intermediate step, clearing through solution that is 

freely miscible with both is needed. The aorta segments were placed in three changes of 

xylene for I h, 0.5 h and 0.5 h, respectively, to displace alcohol and also leave tissue 

transparent ready for paraffin infiltration. Subsequently, the aorta segments were infiltrated 

with liquid paraffin in the paraffin oven (58 - 60°C) for 2 x 2 h to ensure the tissue was 

free of xylene and fully permeated with the paraffin. And then, aorta segment was carefully 

placed to the proper section angle in a molten paraffin-filled embedding mould. The 

paraffin blocks were then cooled and hardened overnight. The solidified paraffin was 

within and around aorta segment, and aorta segment was enclosed in a solid mass. These 

tissue paraffin blocks were cut in transverse sections of 8 J.lm and mounted on slides. All 

slides were stained with Mellory's trichrome, and mounted with clear coverslips for the 

following histological examination. 

2.1-2.2. Light Microscopy 

Slides were stained with Mellory's trichrome, and sections were examined and 

photographed using a Nikon E990 digital camera at magnifications with a Leica DM I RB 

light microscope. Histology of the aortic preparations showed a thin intima and a thick 

media in all specimens, some adventitial tissue in most specimens, but minimal amounts of 

fat. The aorta wall transverse sections showed intact structure and nonnal histology at 

either 0.5 h (control) or after 8 h incubation in air (Fig 2.1 ). 
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2.1 Rat Aorta Segment in vitro Model 

Fig 2. I Rat aorta after exposure to normobaric air for O.Sh (control) or 8h, respectively. Tunica intima 
(Intima) composed of endothelial cells (arrows), tunica media (Media), tunica adventitia (a). Matlory's 
trichrome stain x 400. 

2.1.3. Tissue Damage 

2.1.3.1. Measurement of LDH Activity 

Lactate dehydrogenase (LDI-1) is released from the cells when tissue damage occurs. 

So by monitoring LDH release in the medium, tissue damage was evaluated. LDH activity 

was tested using method described by Plum mer ( 1987). Briefly, 0.1 ml of 21 mM sodium 

pyruvate solution was rapidly added into a 4 ml cuvette which already contained a mixture 

of 0.3 ml medium sample, 2.5 ml phosphate buffer (0.1 M, pH 7.4) and 0.1 ml of 3.5 mM 

nicotinamide adenine dinucleotide (NADH). The latter mixture had been equilibrated in a 

37°C thennostatically heated cell housing in the ultraviolet spectrophotometer (PERKIN 

ELMER, UV/VIS, Bio 20). The changes in absorbance at 340 run were recorded for 3 min. 

Enzyme activities are calculated dividing by the molar extinction coefficient of NADH at 

340 nrn (6.3 mM-1 cm.1) and converting to enzyme units (unit definition: one unit will 

reduce 1.0 J.UllOI of pyruvate to L-lactate per min at pH 7.5 at 37 °C). 
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2.1 Rat Aorta Segment in vitro Model 

The cumulative LDH activity in 6 ml medium at 0.5 h and 8 h post incubation was 

0.01 ± 0.01 U mg·1 tissue weight (tw) and 0.02 ± 0.02 U mg· 1 tissue weight (tw) (means± 

SO of three replicates) respectively. 

2.1.3.2.Total LDH Content in Aorta Segments 

In theory, the maximal LDH release is the sum of LDH left in the tissue and the LDH 

released in the medium. By calculating the percentage of the LDH in medium relative to 

maximal LDH release, cell damage can be estimated and expressed quantitatively. 

In our experiment, the maximal LDH release from the aorta segment was estimated by 

measuring the total LDH content in aorta segment tissue. At first, we tried to lyse the fresh 

dissected aorta segment with different concentrations of Triton X-100, but low and 

variable results implied insufficient solubilisation of membranes with Triton X-1 00 lysis 

only (Fig 2.2). The insufficient membrane breakdown may due to the tight connection of 

smooth muscle cells in the aorta segments; therefore instead we mechanically 

homogenized the aorta segment using a TD20 rotor of CAT-XS 20 D homogenizer at 

16,000 rpm for 3 x 10 seconds. The LDH content in rat aorta homogenate was more than 

three-fold of the value obtained with only Triton X-1 00 treatment. Further treatment of the 

tissue homogenate with Triton X-100 slightly improved the LDH value, and best results 

were shown in homogenate treated with 0.3% ofTriton X-lOO solution (0.38 ± 0.05, n = 3), 

which was only 2.7% higher than only tissue homogenate LDH measurement (0.37 ± 0.05, 

n = 3) (Fig 2.3). Since further Triton X-100 treatment had no significant effect on LDH 

release from the samples, it seems that high speed homogenization was sufficient to release 

nearly all the LDH content from aorta segments. Therefore, the maximal LDH content in 

our rat aorta tissue homogenate was 0.19 ± 0.02 U mg· 1 tw (means ± SEM of six 

replicates). Comparing with the maximum LDH level, although LDH release in the 
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medium increased over incubation, the LDH released was still less than I 0% of the total 

LDH content up to 8 h incubation. 
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Fig 2. 2 Measurable LDI-1 level of aorta segment and tissue homogenate after Triton X-1 00 lysis. Data 
are re11resented of means± SO of three replicates, respectively. 

2.1.4. Conclusion 

Histological examination confirmed that the aorta wall kept intact and all the cells 

showed normal histological structure, which means that aorta segment preparation and 

culture did not damage the tissues. And further evidence of less than I 0% LDH re lease 

supported thjs conclusion biochemically. Therefore, rat aorta segment can be healthy 

cultured in modified Krebs-Ringers solution in air at 37 oc for up to 8 hours. 

2.2 Detection of Reactive Metabolites of Oxygen and 

Nitrogen 

Elevated concentrations or production rates of reactive oxygen and njtrogen species 

are known to medjate cytotoxicity through a lterations in protein, lipid, and nucleic acid 
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structure and function, with resultant disruption of cellular homeostatic mechanisms. 

However, small molecular weight ROS such as nitric oxide and hydrogen peroxide may 

also critically impact cellular homeostasis to play physiological roles in initiating 

signalling cascades. Thus, sensitive, specific, and reliable methods for detecting changes in 

these substances are essential to understand their roles in both physiological and 

pathological states. 

2.2.1. Hydrogen Peroxide Detection 

Horseradish peroxidase (HRP)-linked assays have been reported to detect H202 

generation in several experimental conditions (Eq.2. 1 ). The principle of this assay is that 

in the presence of H20 2, hydrogen donors (AH2) are oxidized by HRP, and the amount of 

H20 2 is estimated by following the fluorescence changes of initial flurogenic probes such 

as scopoletin (7-hydroxy-6-methoxy-coumarin), hornovanillic acid (3-methoxy-4-

hydroxyphenylacetic acid), and other types of hydrogen donors (Tarpey et al., 2004). 

HRP + HzOz ~ HRP-HzOz [Compound I] 

HRP-HzOz +AHz ~ HRP + 2Hz0 +A 
Eq.2. 1 

The oxidation of homovanillic acid (HVA) to give a highly fluorescent dimer is quite 

efficient. One unit of HRP per ml and I 00 ~ HV A were found to give completion of the 

reaction with H20 2 in less than 5 m in and produced a linear relationship over the test range 

of 0.1 - 10 nanomoles H20 2 (r = 0.999) without affecting cell viability; in addition the 

fluorescence of the product remained constant for at least 2 h at room temperature (Ruch et 

al., 1983). These properties made HV A the most suitable fluoregenic hydrogen donor for 

our specific samples. The analytical conditions, the concentrations of HV A and standard 

calculation curve were optimized and validated for the determination of the H202 release 

by aorta segments. 
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2.2.1.1. Conditions for the H20 2 Assay 

When measuring cellular or subcellular H20 2 accumulation, accuracy of the assay can 

be improved by separation of the incubation media from cellular components before 

addition of the detection system, thus limiting confounding interactions of the detection 

system with cellular e lements (Staniek and Nohl, 2002). Therefore, at first, we set up the 

standard reaction by adding different amounts of H20 2 to a reaction mixture consisting of 2 

ml modified Krebs-Ringers solution, 1 00 J.LM HV A and 5 U mr1 of HRP. Fluorescence 

measurements were performed using a Perkin Elmer luminescence spectrometer (LS50B) 

at 700V PMT voltages. Excitation and emission wavelengths were 3 12 and 420 nrn, 

respectively, with 2.5 run slit widths for both excitation and emission. Over the test range 

of 2 - 20 nmol H20 2 (1 - 10 J.LM), and the correlation coefficient of the quadratic analysis 

was calculated at 0.999 (Fig 2.3). 
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Fig 2. 3 Fluorescence intensity changes upon 0 - 20 nmol of B 20 2 (1 - 10 J1M). Graded amounts of H20 1 

were added to a reaction mixture of 2 ml modified Krebs-Ringers solution containing 100 uM BVA 
and 5 U mf1 of HRP. The fluorescence intensity values were corrected by subtracting the background 
fluorescence intensity value (5.75). The curve was obtained by quadratic fitting analysis using 
Sigmaplot 10.0 software. 
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2.2.1.2. Conditions for Aorta Segment H20 2 Accumulation Measurement 

When medium samples were added to the reaction system, unfortunately, there was no 

signal that showed the presence of H20 2. It is always difficult to measure in situ H202 

accumulation in live cells and tissue because of its relatively short half-life (seconds) and 

the efficient antioxidant scavenging systems, so any detection assay must be sensitive 

enough to effectively compete with these antioxidant scavengers. It was therefore 

necessary to add the reaction reagents directly to the culture medium for detection of H202 

accumulation. In our experiments, due to the possible interactions of the detection system 

with cellular elements and oxygen exposure, investigations on the detection sensitivity of 

different concentration of HRP and the influences of hyperbaric oxygen (HBO) on the 

standard curve were performed in the absence or presence of aorta segments. 

Thoracic aorta segments (I cm) were placed in culture wells containing 6 ml Krebs

Ringer solution with different concentration ofHRP (IU, 5U, IOU and 20U ml"1
) and 100 

J.!M HV A. Another matching culture well of the same plate containing the same buffer was 

used as a blank control. Samples were exposed to I 00% oxygen at 2.2 AT A for 90 m in, 1.5 

ml medium was collected from both the sample well and corresponding control well at 

prior to treatment (Pre), immediately after 90 min treatment (Post), and 4 h after treatment 

(4h). Initial H20 2 levels were measured immediately after collection of each time point, 

and followed by adding different concentration of H20 2 to the reaction system to measure 

the H20 2-dependent response. Fluorescent density was measured using a Perkin Elmer 

luminescence spectrometer (LS50B) at 700 V PMT voltages, and 2.5 nm slit widths both 

for excitation and emission. Excitation and emission wavelengths were 312 and 420 nm, 

respectively. There were clearly measurable H20 2 accumulations in medium containing 

aorta segments (Fig 2.48), which were much higher than the corresponding control values 

(see Fig 2.4A). The oxygen treatment and prolonged incubation time also increased the 
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baseline fluorescence level (Fig 2.4A). Although I U ml"1 of HRP gave lower levels of 

fluorescence, increasing the HRP concentration from 5 U mr' to 20 U mr1
, did not show a 

HRP concentration dependent increase in assay sensitivity (Fig 2.4). It looks like that 5U 

mr1 HRP would be sufficient to measure the level of H20 2 in our specific medium. 
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Fig 2. 4 Influence of HRP concentration and HBO treatment on flurescence intensity changes. 6 ml of 
Krebs-Ringer solution containing RV A (1 00 JIM) and HRP of I , 5, 10 and 20 U per ml, respectively, 
were exposed to HBO at 2.2 AT A for 90 min. Three replicates were used and the results were 
expressed as means ± SD for each case. Fluorescence intensity was measured with 1.5 ml of reaction 
reagent-containing culture medium at p re, immediate post and 4h post HBO. (A) the corresponding 
blank values in the absence of aorta tissue; and (B) the accumulated fluorescent intensity value with 
aorta tissue in culture medium. 

For further detecting the effects of HBO treatment on standard curve in experimental 

reaction system, l-h02 ( 1 nmol and 2 nrnol, respectively) were added to reaction system 

containing I 00 11M of HV A and 5U mr1 of HRP. A nearly linear fluorescence changes 

were found in the blank control medium at all three time points (Fig 2.5A). In tissue-

containing medium, a linear fluorescence changes was only found at pre-treatment, but 

neither at immediately post treatment nor at 4h post treatment (Fig 2.58). In addition, the 

samples of tissue-containing medium showed much less fluorescence change than that of 

blank medium when H20 2 was added, and significant differences were shown at 4h after 

exposure (P<0.05, unpaired t-test). These may because that the increase of H20 2 level with 

HBO treatment conswned the reaction reagents, and that limited the sensitivity of reaction 

system to H20 2. Therefore, when calculating H20 2 concentration in sample medium, it 
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should be converted from the calibration curve generated from corresponding blank 

medium but not from the sample medium itself. 
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Fig 2. 5 HBO treatment affects the standard curve of 0 20 2 relative fluorescence changes upon the 
addition of 0 20 2• 6 ml of Krebs-Ringer solution containing HVA (lOO JIM) and HRP (5 U mr') were 
exposed to HBO at 2.2 AT A for 90 min and fluorescence values were collected at pre, immediate post 
and 4h post HBO. At each time-point, fluorescence changes were measured from 1.5 ml of blank 
control medium, and tissue-containing medium, respectively. Then, 0 20 2 was added to medium and 
H20 2-dependent relative fluorescence changes were obtained by subtracting the corresponding initial 
fluorescence value. (A) is the corresponding values in blank control medium in the absence of aorta 
tissue after l or 2 omol of 0 20 2 were added, respectively; (B) is the accumulated fluorescent value with 
aorta tissue after 1 or 2 nmol of H20 2 were added, respectively. The results are expressed as means ± 
SO of three replicates. 

2.2.1.3. Protocol Summary 

As H20 2 production by cultured aorta segments could only be achieved when the 

reaction reagents were added to tbe culture medium, we compared the effects of HRP 

concentration on assay sensitivity and HBO exposure to H20 r dependent standard curves 

in our specific model. Tbe sensitivity of H20 2 measurement was not totally dependent on 

the concentration of HRP, and that 5 U mr1 of HRP and 100 !lM of HV A were sufficient 

for determination of relatively large amounts of H20 2; in addition, HBO treatment affect 

tbe I-h02-dependent fluorescent response in tissue containing medium, so it was necessary 

to set up a corresponding control blank well containing the same volume of Krebs-Ringer 

solution and the same concentrations of reagents but without aorta tissue, and the 

calculation of H20 2 concentration in sample medium should be calculated from the 
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calibration curve generated from corresponding blank control medium to avoid 

overestimate H20 2 concentrations .. 

To be cautious about those reaction reagents (HRP and HV A) that may cause aorta 

tissue damage during incubation, LDH level was measured from the sample medium. And 

the LDH level at 4h after exposure from these preparations (0.028 ± 0.008 U mg·1 tw) were 

not higher than a control group without these reagents (0.026 ± 0.009 U mg·1 tw) (P = 0.57, 

means± SEM, n = 3, unpaired t-test). 

For the first time, we presented here a protocol to measure in situ H20 2 accumulation 

m blood vessels by optimizing and validating HRP-Iinked H202 assay by using 

homovanillic acid as a hydrogen donor in our studies. In studies of Chapter 3 and 4, a 

separate series of experiments was done by adding the reagents directly to the culture wells 

which allowed us to focus only on H20 2 production. Briefly, a thoracic aorta was sectioned 

into 3 x I cm segments, and then placed in culture wells containing 6 ml respective culture 

medium with 5U ml" 1 of HRP and I 00 JlM of HV A. Matching culture wells of the same 

plate containing the same buffer was used as a blank. The plates were exposed to required 

treatments, prior to exposure, immediately after treatment, and 4 h after treatment, I. 7 ml 

of medium was collected from each sample well and control blank well, and kept on ice 

until analysed for H20 2• The H20 2 level was measured immediately after collection of each 

time point by transferring 1.5 ml of medium to a fluorescence cuvette. Fluorescence 

intensity was measured using a Perkin El mer luminescence spectrometer (LSSOB) at 700 V 

PMT voltages, and 2.5 nm slit widths both for excitation and emission. Excitation and 

emission wavelengths were 312 and 420 nm respectively. The fluorescence of sample 

medium (FI) and blank control medium (F2) were measured. Actual fluorescence intensity 

was obtained by subtracting the blank fluorescence from the tissue sample data (FI-F2). 

Cumulative H20 2 concentration in sample medium was obtained by converting from the 
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calibration curve, which was generated by adding known levels of H20 2 into the blank 

medium. 

2.2.2. Nitric Oxide Measurement 

2.2.2.1. Nitric Oxide Detection Methods 

The measurement of nitric oxide (NO) is rather difficult since NO reacts rapidly with 

free oxygen, oxygen radicals, redox metals, sulphydryls, disulfides and oxygenated 

haemoglobin (Stamler et al., 1992). Direct NO measurements have been reported using 

electron paramagnetic resonance (EPR) spectroscopy with nitroso- or haemoglobin spin 

traps (Arroyo and Kohno, 1991) or a NO-selective microelectrode to measure NO 

concentration through amperometric signals (Malinski et al., 1996a. b). However, the 

requirement for expensive instruments and specific training restricts the popularization of 

these techniques for most labs. Therefore, several commonly used methods for NO 

detection have been developed such as the oxyhemoglobin reaction assay, Griess reaction 

assay and fluorescence assays. 

In vivo, most of the endogenously formed NO reacts with oxyhaemoglobin 

(l-lbFe(ll)02) to produce methaemoglobin (MetHb, HbFe(III)) and nitrate in red blood cells 

(Wennmalm et al., 1993). The rates of NO binding and release for Fe(Il)-haemoglobin are 

5-6 fold greater than that of 0 2, and NO metabolism has been shown to depend upon the 

oxygenation of red cell haemoglobin (Wennmalm et al., 1992). In contrast to nitrite, nitrate 

is biologically completely inactive, therefore oxidation of NO in erythrocytes to nitrate by 

oxyhaemoglobin in vivo is the most effective and definite inactivating metabolic fate for 

NO (Tsikas, 2006). The oxyhemoglobin reaction assay uses this principle to measure the 

shift of the optical absorption spectra when oxyhemoglobin Fe (II) reacts with NO to form 

methemoglobin Fe (Ill) (Feelisch and Noack., 1987). However, in this reaction, oxidation 
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products can lead to overestimated results particularly in the presence of cells, so in order 

to obtain coherent calibration results, one must work under very strict conditions of time, 

pH, and temperature because even small changes in these parameters can greatly influence 

the haemoglobin reaction. Besides, L-arginine and L-NMMA were also found to induce 

variations in the absorbance ratio (Privat et al., 1997). 

In the aqueous phase, free of biological material, NO exclusively autoxidizes to nitrite, 

in which incorporation of 0 from H20 into NO seems to take place during hydrolysis of an 

intennediate, such as N20 3 (Pogrebnaya et al., 1975; Pires et al., 1994; Goldstein and 

Czapski., 1995). The half-life of NO in aqueous phosphate-buffered solution of pH 7.4 was 

estimated to be 130 s (Ford et al., 1993). The most frequently used method of detecting 

nitrite is based on a purple azo dye found more than I 00 years ago by Griess ( 1897), which 

can be easily applied in the lab without a large and expensive experimental set up. Griess 

reaction is a two-step diazotization reaction in which an NO-derived N-nitrosating agent 

(e.g. N20 3), generated from the acid-catalyzed fonnation of nitrous acid from nitrite (or the 

interaction of NO with oxygen), reacts with sulphanilamide to produce a diazonium ion 

that is then coupled to N-(1-napthyl) ethylenediamine (NEDA) to fonn a chromophoric azo 

product that absorbs strongly at 543 nm (Grisham et al., 1996). The Griess reaction itself is 

a simple, rapid, and inexpensive assay and has a practical sensitivity in the micromolar 

range. Van der Zee et al ( 1997) demonstrated that the nitrite level as measured by the 

Griess reaction method may give a clear indication of NO production by vessel segments 

(in this specific condition as no haemoglobin is present in the experimental system). 

However, this method has limitations regarding both sensitivity and its inability to detect 

nitrate. Consequently, total NOx (nitrate+nitrite, N03-+N02) measurement has been 

developed, which first requires reduction of nitrate to nitrite, and then nitrite is detennined 

by Griess reaction. The reduction of nitrate to nitrite can be achieved by bacterial nitrate 
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reductase or reducing metals such as cadmium (Green et al., 1982; Granger et al., 1995). 

Nowadays, a variety of methods have been developed to measure total NOx as an indirect 

indication of NO generation in physiological fluid such as blood serum, urine and cell or 

tissue culture media. Privat et al ( 1997) investigated NOx accumulation in the cultured 

medium of human umbilical vein endothelial cells (HUVECs) with NOx method and found 

a cumulative basal production of nitrite plus nitrate even over a relatively short incubation 

time (5 min), and the basal production was I 0 times higher when NOx instead of nitrites 

were measured. 

Fluorescence assays like the diaminonaphthalene (DAN) assay offer the additional 

sensitivity compared to the Griess reaction assay, and is capable of detecting NO 

production at the nanomolar level. In the DAN assay the nonfluorescent DAN reacts 

rapidly with the NO-derived N-nitrosating agent (N20 3) generated from the interaction of 

NO with oxygen or from the acid-catalyzed fonnation of nitrous acid from nitrite to yield 

the highly fluorescent product 2,3-naphthotriazole (NAT) (Miles et al., 1996). 

2.2.2.2. Nitrate Measurement Using Nitrate Reductase and Griess Reaction 

Initially, we applied the NOx method described by Schmidt and Kelm (1996). Nitrite 

measurement produced a stable linear standard curve ranging from 0.5 to 2.5 !JM; however, 

this method failed to produce a linear calculation curve of nitrate in our hands as an 

absorbance drop was obtained above 1.5 IJM of nitrate (Fig 2.6). In the Schmidt's method, 

0.1 U ml"1 purified Aspergillus niger nitrate reductase (NR) and 0.03 mM of NADPH 

(nicotinamide adenine dinucleotide phosphate-oxidase) were used to reduce nitrate to 

nitrite, which may not be sufficient to complete the reduction of nitrate to nitrite. Another 

drawback of Schmidt's method is that it involves sample transfer and incubations at 

different temperature, which is inconvenient when handling large number of samples. 
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Fig 2. 6 Standard curve for detection of nitrite (•) and NOx (o) using method described by Schmidt 
and Kelm (1996). Nitrite (NaN02) and nitrate (NaN03) standards (0.5 to 2.5 JJM) were prepared in 
H20. Values are means ± range of two observations, respectively. 

Therefore, a modified NOx method has been developed, and the assay protocol is 

described as below. Assay mixture was prepared by mixing (per ml) 0.72 ml of 50 mM 

sodium phosphate buffer (pH 7.4), 0.08 ml (1.6 U/ml NR from Aspergillus niger in buffer), 

and 0.2 ml of 1 mM NADPH. 50 Ill of nitrate standard (up to 20 ~M) or samples were 

mixed with 50 Ill assay mixture to give a fina l concentration of 0.1 Ulml NR and 0.2 mM 

NADPH in wells of a 96-well plate. And then the plate was incubated for 30 min at 20 oc 

to allow completely reduction of nitrate to nitrite. The diazotization reaction was started by 

adding lOO Ill ofsulphanilamide (1% [w/v] in I M HCl), followed by 100 Ill ofO.l % NED 

30- 90 s later. Absorbance at 550 nrn was measured a few minutes later in a Dynatech 

Laboratories MRX plate reader (Billingshurst, UK). 

This modified assay is not only robust with perfectly reproducible calibration curves 

for both nitrite and nitrate measurements, but also save a lot of handling time as all the 

reactions are accomplished at room temperature within a well of 96-well plate. The 

detection range is between 2.5 to 50 ~M, and the standard curves derived from nitrite and 
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2.3 Glutathione Measurement 

nitrate were similar which means that nitrate has been reduced to nitrite completely (Fig 

2. 7). The nitrate concentrations of our experimental samples were measured at 3 - 20 !!M, 

which fitted into the testing range of our modified assay. The nitrite concentrations of our 

sample ranged 0.1 - L.5 !!M, which was much less than that of nitrate. 
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Fig 2. 7 Standard curves for the detection of nitrite and nitrate using our modified NOx assy. Nitrite 
(NaN02) and nitrate (NaN03) standards (0.5 to 50 JlM) were prepared in H20 . Curves were obtained 
by linear regression. 

2.3 Glutathione Measurement 

2.3.1. Glutahione Pool: Indicator of Oxidative Stress in Vivo 

50 

Glutathione (GSH) is a tripeptide characterized by a y-glutamyl peptide linkage a 

reactive thiol group (Kosower, 1978). As the predominant non-protein thiol (-SH) in cells, 

GSH plays important roles ranging from antioxidant defence to modulation cell 

proliferation. As shown in Fig 2.8, GSH is among the most important antioxidants in cells, 

being used in enzymatic reactions to eliminate peroxides and in nonenzymatic reactions to 

maintain ascorbate and a-tocopherol in their reduced and functional forms, in which GSH 

is converted to its disulfide form, GSSG (Jones, 2002). Glutathione disulfide, often 

referred to as oxidized glutathione, can be reduced to GSH by NADPH through the 

glutathione reductase (GR) reaction while NADPH levels are maintained by the pentose 
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2.3 Glutathione Measurement 

phosphate shunt. The activity of the reductase increases in response to an increase in 

concentration of GSSG, so the increases in GSSG during oxidative stress are generally 

transient as reduction by GR is relatively rapid. Furthermore, an ATP-dependent transport 

mechanism can also decrease the intracellular content of GSSG through active export 

(Sharma et al., 1990). In addition, products of lipid peroxidation such as cyclopentanones 

or aldehydes and other xenobiotic products can react with GSH to form conjugates 

nonenzymatically or through the action of glutathione S-transferases (GST). Formation of 

conjugates can also result in depletion of GSH, thus once formed they are transported 

outside the cell through membrane transporters (Eaton and Bammler, 1999). The steady

state ratio of GSH to GSSG is important for maintaining cell function and membrane 

integrity, for example, GSSG is normally maintained at a range of 1% - 10% of total 

glutathione (Reeve et al., 200 I). In cases of oxidative stress, oxidative free radicals and 

other deleterious compounds consume GSH, so changes in GSH content are typical of a 

cell's response to stress. In the process of GSH reactions to protect the cell by removing or 

altering the stress factors, more GSSG or mixed disulfides (GSX) are produced, which are 

transported outside the cell to maintain the redox balances inside the cell. This temporary 

depletion must be reversed through either enzymatic reduction of a disulfide or by de novo 

synthesis to restore baseline levels of GSH or cell damage even cell death will occur. 

Therefore, measurement of the kinetic changes in glutathione can be used as an indicator 

of oxidative stress. 
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2.3 Glutathione Measurement 

~ 

Fig 2. 8 Diagram illustrating the use of GSH (modified from Dickinson et al., 2003). Glutathione 
peroxidases (GPx) use GSH as a reductant in peroxidase reactions with various hydroperoxides 
(ROOH), and lipid peroxides (not shown) to form the corresponding alcohol (ROH) and glutathione 
disulfide (GSSG). GSSG can then either be reduced by glutathione reductase (GR) at the expense of 
NADPH to regenerate GSH, or can be exported from the cell via the transmembrane multi-drug 
resistance protein GSX transporter. Glutathione S-transferases (GST) use GSH in conjugation 
reactions with various xenobiotic compounds (X) to yield mixed disulfides (GSX}, which are exported 
from the cell through the GSX transport protein. GSH can also be exported out of the cell through the 
transmembrane GSH transporter. Once outside the cell, GSH, GSSG and GSX are partiaUy degraded 
to join the GSH synthesis pathway. Pathways showing transport are dashed; metabolic pathways are 
depicted by solid lines. 

2.3.2. Analysis of Glutathione 

The usual procedure for GSH analysis in a biological sample involves homogenization 

(when necessary), deproteinization, and non-specific or specific measurement of thiol 

content, the latter being used for cases in whjch precise knowledge of the GSH content is 

required (Kosovor. , 1978). The thiol group analysis is based on the use of 5,5-dithiobis-2-

nitrobenzoic acid (DTNB) (EIIman, 1959). The Glutathione assay is an enzymatic 
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2.3 Glutathione Measurement 

recycling procedure in which GSSG is reduced to GSH by NADPH in the presence of GR 

(Eq.2. 2); and the total GSH is sequentially oxidized by DTNB (Eq.2. 3, where DTNB is 

written as ArSSAr). The rate of 2-nitro-5-thiobenzoic acid (ArSH) formation is monitored 

at 412 nm. The product GSSAr is cleaved either nonenzymically with GSH or enzymically 

to yield ArSH and GSSG or ArSH and GSH according to one of the following equations 

(Eq.2. 4 and Eq.2. 5). lt is probable that GSH completes the reduction of ArSSG (Eq.2. 4) 

and relatively unlikely that ArSSG acts as a substrate for enzymic reduction (Eq.2. 5). 

Thus the GSH is regenerated and, with excess of NADPH and constant amount of enzyme, 

the rate of colour production is proportional to the total glutathione, including GSH, GSSG, 

and possibly, glutathione in disulfide linkage with other soluble thiols (Owens and Belcher., 

1965; Griffith., 1980). Finally, the glutathione present is evaluated by comparison with a 

standard curve generated using known concentrations ofGSH. 

GSSG + NADPH2 GR 2GSH + NADP+ 

GSH + ArSSAr ~ GSSAr + ArSH 

ArSSG + GSH ~ GSSG + ArSH 

ArSSG + NADPH2 ~ GSH + ArSH + NADP+ 

Eq.2. 2 

Eq.2. 3 

Eq.2. 4 

Eq.2. 5 

2.3.3. Defined Glutathione Assay for Total Glutathione Measurement 

In our experiments, culture medium was exposed to oxygen for a couple of hours to 

investigate the time and treatment effects, so it was impossible and unnecessary to specifY 

the glutathione measurements in terms of GSH or GSSG. Therefore, the total level of 

glutathione in culture medium was detennined by the glutathione reductase enzyme 

recycling method as described by A dams et al ( 1983). The reagents volumes and 

concentrations have been optimised to conduct this assay on a 96-well plate, which saves 

time and effort when processing large number of samples. 
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2.4 Lactate Measurement 

The reaction buffer was prepared by mixing 16 U of glutathione reductase (GR) to 26 

ml of assay buffer (lOO mM potassium phosphate and 5 mM potassium EDTA, pH 7.5). 20 

J..!l of sample or GSH standard solution (up to I 0 J..!M) was mixed with 20 J..!l of buffe red 

DTNB ( I 0 mM DTNB in Assay buffer). After equilibration for I m in start the reaction by 

adding 20 ul of 3.63 mM NADPH, and absorbance at 412 nm (A412) was measured for 5 

min. The rate of A41 2 changes were calculated using OPTimax tunable kinetic microplate 

reader (Molecular Device, Sunnyvale, CA, USA). A linear standard curve was obtained 

over a range of0.5 - 10 J..lM of glutathione and the correlation efficient is 0.999 (Fig 2.9). 
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Fig 2. 9 Standard curve of modified total glutathione assay. GSH standards (0 to 10 1-1M) were 
prepared in H20 . The cun•e was obtained by linear regression. 

2.4 Lactate Measurement 

The cell energy supply mostly depends on the oxidation of glucose. Under aerobic 

conditions, glucose is oxidized to pyruvate that is further metabolized to C02 and H20. 

When oxygen is depleted, for example reduction of blood supply in tissue injury, pyruvate 

is converted to lactate by the enzyme lactate dehydrogenase (LDH). Lactate is an 

intermediate product of anaerobic glycolysis, and reflects the balance between level of 

hypoxia and energy metabolism in tissues and cells. 
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2.4 Lactate Measurement 

T he Lactate measurement is based on the formation of NADH from the oxidation of 

lactate in alkaline conditions in the presence of LDH (Eq.2. 6). NADH absorbs light with a 

wavelength of 340 nm whereas NAD+ does not. Hence, the reaction is quantified by 

measuring the NADH formed from the increase in absorbance at 340 nm; this gives an 

indirect measurement of the lactate in the sample. 

Lactate + j]-NAD+ LDfl ) Pyruvate hydrazone + NADH + HJO+ Eq.2. 6 

The reagent volumes and concentrations have been optimised to conduct this assay on a 

96-well plate. Briefly, assay mixture contains 0.43 M of glycine, 0.34 M of hydrazine, 3. 1 

mM P-NAD+ and 19 U/ml of LDH. 30 fll of sample or lactate standard solution (up to 2 

mM) was mixed with 300 ~tl of assay mixture, and then incubate at 37 cc for 30 min to 

complete reaction. Absorbance at 340 run was measured in a Dynatech Laboratories MRX 

plate reader (Billingshurst, UK). Lactate standard curve in a range of 0 - 2 mM was 

generated (Fig 2. 1 0). 
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Fig 2. 10 Standard curve of modified lactate assay. Lactate standards (0 to 2 mM) were prepared in 
H20 . The curve was obtained by linear regression. 
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2.5 VEGF ELISA Application 

2.5 VEGF ELISA Application 

2.5.1. Enzyme Linked ImmunoSorbent Assay 

Enzyme Linked lmmunoSorbent Assay (ELISA) was first described by Engvall and 

Per! man (1971 ), and soon became a popular technique for detecting and quantifying 

substances such as peptides, proteins, antibodies and hormones. The principle of ELISA is 

immobilizing the antigen of interest to a solid surface (commonly a 96-well polystyrene 

plate) and an enzyme-linked antibody is then bound to the antigen (commonly used 

enzymes are horseradish peroxidase and alkaline phosphatase); and finally a substrate for 

the enzyme antibody conjugate is added to produce a product detectable by 

spectrophotometer, fluorometer or luminometer. The most crucial requirement in this 

technique is a highly specific antibody-antigen interaction. 

Mouse VEGF (VEGF-A) is the product of a single gene containing eight exons. By 

alternative splicing, three isoforms of mature VEGF containing 120, 164 and 188 amino 

acid (aa) residues that differ in their heparin binding ability exist. The 164 aa isoform of 

mouse VEGF shares 98% and 82% aa sequence identity with its rat and human homologs, 

respectively. Among VEGF family members, VEGF also shares 35%, 37% and 37% aa 

sequence identity with mouse VEGF-B, -C and -D, respectively. The Quantikine mouse 

VEGF Immunoassay is a 4.5 hour solid phase ELJSA designed to measure mouse VEGF in 

cell culture supemates, tissue homogenates, mouse serum and plasma. This assay 

recognizes both the 164 and 120 amino acid residue forms of mouse VEGF. It is calibrated 

against a highly purified Sf 21-expressed recombinant mouse VEGF produced at R&D 

Systems and this disulfide-linked homodimeric glycosylated recombinant mouse VEGF 

contains two 164 amino acid residue subunits. This immunoassay shows no significant 

cross-reactivity or interference was observed with VEGF-8/C/D. This mouse ELISA kit 
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2.5 VEGF ELISA Application 

(R&D system, MMVOO) has been confirmed for cross-reactivity with rat species and is 

able to measure the rat VEGF accurately (http://www.mdsystems.com/pdflnunvOO.pdt). 

2.5.2. VEGF ELISA Measurement of Rat Aorta Segment Samples 

Tissue crude homogenate was obtained by homogenizing about 15 mg of rat aorta 

tissue in 0.6 ml hypotonic Tris buffer (pH 7.4, 20 mM Tris, I mM EDTA) in the presence 

of protease inhibitors (Sigrna P-2714, according to recommended usage). Tissues were 

then homogenized on ice using a TD20 rotor ofCAT-X5 20 D homogenizer at 16,000 rpm 

and using 3 xI 0 second bursts to avoid frictional heating in the samples. 

VEGF levels in tissue homogenate and medium were measured using the 

commercially available mouse VEGF immunoassay kit (R&D system, MMVOO). Because 

the kit has not been used before for blood vessel homogenates; we optimised and validated 

sample volume and first binding incubation time at 50 Jll for 2 h at 25 oc for rat aorta 

homogenates. Assays were performed in duplicate and optical density was determined 

using an OPTJmax tunable microplate reader set to 450 nm. Absorbance at 540 nm (A54o) 

was also measured at the same time, and subtract readings at 540 nm from the reading at 

450 nm was done as kit manual suggested to correct the optical imperfections in the plate. 

The quantities of VEGF in samples were detennined by comparison with a standard curve 

generated each time the ELl SA was performed (Fig 2.11 ). 
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Fig 2. 11 Standard Curve of VEGF ELISA assay. VEGF standards (0 to 500 pg/ml) were prepared as 
described in the kit manual. The curve was obtained by linear regression, and the correlation 
coefficient is 0.993. 

2.5.3. Protein Content Measurement 

A semi-microplate method for protein measurement has been developed based on the 

Hartree (1972) modification of the Lowry protein assay. This assay has been used to 

monitor perfusate protein levels in perfused rat hearts and fish intestine preparations in our 

lab, and here works well with rat aorta tissue homogenates. 

First, I ml of protein standard solution (up to 200 pg/ml), or diluted sample (25 Jll of 

homogenate from 2.5.2 needs to be diluted with I m! distilled water) was mixed with 0.9 

ml of solution A (mixing 0.2 g potassium sodium tartrate, I Og Na2C03 and 50 ml of I M 

NaOH for per 100 ml) incubate at 50 oc for 10 min. Secondly, 0.1 m! of solution B 

(mixing 0.2g potassium sodium tartrate, 0.1 g CuS04 and 1 ml of !M NaOH for per 10 m!) 

was added at room temperature and incubated for another 10 min. Thirdly, 3 ml of 6.25% 

[v/v] of fresh made Folin Ciocalteau reagent was added and incubated at 50 oc for 15 min. 
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2.6 Summary 

Finally, 300 J.d of reaction sample was dispensed in to a wel l of 96-well microtitre plate 

and absorbance at 630 run was measured in a Dynatech Laboratories MRX plate reader 

(Billingshurst, UK). Protein concentrations were converted to pg/ml against standard curve 

in the range 0-200 pg/ml (Fig 2.12). 
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Fig 2. 12 Standard curve of modified protein assay. Bovine serum albumin standard solutions (0 to 200 
pg/ml) were prepared in H20 . The curve was obtained by linear regression, and the correlation 
coefficient is 0.997. 

2.6 Summary 

In this chapter, an in vitro rat aorta segment model was set up. The tissues were 

demonstrated intact and healthy for up to 8 h exposure to normobaric a ir at 37 oc through 

LDH re lease measurement and histological examination. 

Next, we presented a modified fl uorescence method for in situ H20 2 measurement in 

2.2.1 and a modified NOx assay using Aspergillus niger nitrate reductase and Griess 

reaction in 2.2.2. As reactive species, H20 2 and NO are known difficult to evaluate; 

however, both of our modified assays work well with our samples, which made the time 

and effort well worth spending on optimization and validation of the assays to suit our 

specific research interests and aims. 
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2.6 Summary 

Another important biological marker, glutathione (GSH) is discussed in 2.3.1 as an 

indicator for oxidative stress. The principle and protocol of total glutathione measurement 

are subsequently addressed in 2.3.2 and 2.3.3, respectively. The lactate assay is a relatively 

easy adopted assay, and its detailed procedure is described in 2.4. Finally, the ELISA 

VEGF assay is presented, which includes the tissue homogenisation, protein content assay 

and optimization ofVEGF measurements for rat aorta tissue homogenates in 2.5. 

All the assays we have presented gave linear standard curves covering the range of 

concentrations present in our sample and applied for the investigation in Chapter 3 and 

Chapter 4. 
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3.1 Introduction 

Chapter 3 

Effect of Hyperbaric Oxygen on Blood 

Vessel in Vitro 

3.1 Introduction 

Normal wound healing is a highly regulated process, which may be disrupted and 

delayed by diverse factors and develops to chronic wound. Hyperbaric oxygen (HBO) 

therapy promotes new vessel formation in granulation tissue, which in turn facilitates 

chronic wound healing. However, the underlying mechanisms of how HBO exert its effects 

are far from elucidation. On the other hand, toxic effects of HBO have been described in 

some cases. Although the mechanisms responsible for the toxicity are still not fully 

understood, increased formation of reactive oxygen species (ROS) especially at some 

extreme high pressure (e.g. 5 ATA) was suggested to be implicated in HBO-induced 

toxicity (Piantadosi and Tatro 1990; Elayan et al., 2000). Therefore, therapeutic HBO 

strategies (e.g. pressure and duration) for human exposure should be purposely selected to 

minimize possible adverse effects and guarantee clinical benefits. Paradoxically, at 

moderate level ROS may also exert as a signal to modulate diverse physiological processes 

including regulation of angiogenesis factors such as vascular endothelial growth factor 

(VEGF). VEGF is the most important growth factors known so far in regulating 

angiogenesis and endothelial cell function. Nevertheless, controversial results of HBO-
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3.2 Material and Methods 

induced VEGF production have been presented by in vitro cellular studies and in vivo 

wound studies. 

The angiogenesis is initiated from the existing blood vessel, but to our knowledge 

there are no studies that investigate the direct effect of HBO on the blood vessel in vitro. 

Thus, the aim of this study is to investigate the response of oxidative stress, reactive 

oxygen species and VEGF of blood vessels to a single HBO treatment. 

3.2 Material and Methods 

3.2.1. Animals and Tissue Preparations 

Male Sprague Dawley rats (350 - 400 g; n = 20) were purchased from Harlan UK Ltd. 

Experiments were conducted in accordance with ethical approval. Aorta was obtained as 

described in 2.2.1, and sectioned into 7 segments (I cm long), and then randomly placed in 

individual wells of Nunclon Delta SI 6-well tissue culture plates (Nunc, InterMed, 

Denmark) containing 6 ml Krebs-Ringer solution (composition in mM: NaCI 118.6, KCI 

4.7, CaCI2 2.5, MgS04 1.2, KH 2P04 1.2, NaHC03 25.1, Hepes I 0, glucose 10, pH 7.4). 

3.2.2. Experimental Design 

After incubation in the above Krebs-Ringer solution for 30 m in, one segment of aorta 

and medium were collected as a pre-treatment control. The other 6 aorta segments were 

randomly divided into 3 different treatment groups. The air groups (Air) remained exposed 

to room air at ambient pressure (I AT A); the oxygen only groups exposed to I 00% oxygen 

at I ATA (NBO) and hyperbaric oxygen treatment groups (HBO) were treated with 100% 

oxygen at 2.2 AT A. Treatment lasted for 90 m in, and then culture dishes of all groups were 

left in air at I AT A to follow a 4 h recovery from treatment. Tissue and medium samples 

from each group were collected immediate after treatment and after a further 4 h 
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3.2 Material and Methods 

incubation. All experiments were conducted at 37 °C. All tissue and medium samples were 

snap-frozen in liquid nitrogen, and stored at -80 °C until used for analysis. 

One series of experiments were also performed to monitor the generation of hydrogen 

peroxide, using the protocol above, with the method described in 2.2.1 to enable the 

measurement of low levels of hydrogen peroxide generation in sit11. 

3.2.3. Biochemical Analysis 

Several biochemical parameters were measured during the study. Lactate 

dehydrogenase (LDH) release to the medium was used as a routine marker of tissue 

leakiness or injury, whilst lactate accumulation in the medium was used to assess anaerobic 

metabolism. The possibility of oxidative stress during oxygen exposure was monitored by 

following hydrogen peroxide (H20 2) concentration and total glutathione levels in medium. 

Total content of nitrite and nitrate in the medium was measured as a surrogate for NO 

production by the tissue. Since NO, H20 2 and lactate are potential stimulatory factors for 

VEGF production, the level of VEGF in both the medium and the tissue were tested. The 

optimization and validation of all the biochemical assays have been described in Chapter 2. 

3.2.4. Histological Examination 

Partial of tissue samples (2- 3 mm) were sectioned for histological examination using 

the method described in 2.1.2. For each specimen, at least 3 representative images were 

taken using N ikon E990 digital camera at a magnification of x400 with Leica OM I RB 

light microscope, and the thickness of the tunica intima and tunica media were then 

determined in triplicate using Image J software (Image processing and analysis in Java). 

The endothelium index was calculated as: 

thickness of tunica intima 
Endothelium index= ---------------

thickness of tunica intima+ tunica media 
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3.3 Results 

3.2.5. Statistics 

All biochemical results are normalized by tissue fresh weight (tw) and are presented 

as the means± S.E.M of the replicates (n = 8- 10). Statistical analysis was performed by 

one-way ANOV A followed by Tukey-Kramer multiple comparisons test or unpaired t-test 

for time and treatment differences. And the Pearson correlation test was performed among 

the biochemical indexes measured. The significant difference was accepted at P <0.05. 

3.3 Results 

3.3.1. Histological Examination of Aorta 

In Fig 3.1, high power (x400) showed the details of layers in the walls of rat aorta. 

The wall of rat aorta consists of three basic layers: tunica intima (innermost layer) 

composed of an endothelial cell lining, tunica media (middle layer) containing largely of 

smooth muscle cells and tunica adventitia (outer layer in blue colour) composed mainly of 

connective tissue. All the three layers remained structurally intact and cell morphology was 

normal over the experiment. There was no evidence of tissue damage such as oedema, 

haemorrhage, epithelial lifting or necrosis from the histology examination. 

82 

----- -- -----



83 

3.3 Results 

Fig 3. 1 Histological images of aorta segments 
during experiments (Mallory's trichrome stain 
X400). Pre, Post and 4h are before, immediate 
and 4h after exposing to 90 min of air, 100% 
oxygen (NBO) and hyperbaric oxygen (HBO) 
treatments. Aorta wall is composed of tunica 
intima (1), media (M) and adventitia (a). 
Tunica intima is composed of endothelial cells 
(ECs, arrows). The endothelium index was 
calculated by the thickness ratio of I : (I+M). 



3.3 Results 

The endothelimn index is presented in Table 3.1. Although there is a tiny diversity of 

the results, no significant differences were observed between treatment groups. 

Table 3. 1 The endothelimn index of aorta segment 

Immediate post exposure 

4 h post exposure 

Air 

2.97± 0.31 % 

2.86±0.19% 

NBO 

2.59 ± 0.27% 

2.36± 0.22% 

HBO 

2.45 ± 0.31 % 

2.46± 0.37% 

Note: T he endothelium index was calculated by the ratio of thickness of tunica intima to the total 
thickness of tunica intima and tunica media (%). The pre-treatment endothelium index was 2.83 ± 
0.24%. Values are means ± SEM of five rats. No statistical differences were observed (P = 0.31 , One
way ANOVA). 

3.3.2. LDH Release 

Overall, ti ssues showed low levels of LDH leak into the medium over time compared 

to the maximal LDH content in tissue (190 ± 20 Us i 1 tw of six replicates) (Fig 3.2). The 

pre-treatment baseline level of LDH was 10.3 ± 2.3 Us g·1 tw, LDH level in the media at 

immediate and 4h post Air, NBO and HBO treatment showed no treatment-dependent nor 

time-dependent effects (P = 0.26, One-way ANOVA). 
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Fig 3. 2 LDH release from aorta segment tissue into the medium in Air (white bars), NBO (grey bars) 
and H 80 (dark grey bars) groups on pre, post and 4h after treatment. Pre is at the start of the 
experiment after tissue allowed resting for 30 min; Post is immediately after 90 min t reatment and 4h 
is at the end of 4h incubation after treatment. Data expressed as means± SEM LDH units of per gram 
tissue of nine rats. One-way Ai"'JOV A test showed that P = 0.26. 
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3.3 Results 

3.3.3. Lactate Release 

Lactate level increased over time within groups in Fig 3.3 (P<O.OO l, Tukey-Kramer 

multiple comparisons test), but no significant difference was found between Air, NBO and 

HBO treatment throughout the experiment. There was a trend of decreased lactate 

production in HBO treatment. Immediate after treatment, lactate concentration was 4.32 ± 

0.42 ~ mg·' tw and 3.52 ± 0.49 1-tM mg· ' tw in Air and HBO group. After 4 h incubation, 

the lactate concentration in HBO group was 11.32 ± 1. 12 ~M mg·' tw, and was 15.72 ± 

2.34 and 14. 17 ± 1. 11 ~ mg·' tw in Air and NBO group, respectively (P = 0.16, one-way 

ANOVA). 

* 

* 
20 

* 
c=J Air - c=J NBO 

.r:. -HBO Cl ·a; 15 
~ 
Q) 
::I 
Ill 
Ill .. .... 10 I 

Cl 
E * :::!: 
::t * 
Q) -,fl 
u 5 

"' ..J 

Pre Post 4h 

Fig 3. 3 Lactate concentration in the medium in Air (white bars), NBO (grey bars) and HBO (dark 
grey bars) groups on pre, post and 4h after treatment. Pre is at the start of the experiment after tissue 
allowed resting for 30 min; Post is immediately after 90 min treatment and 4h is at the end of 4h 
incubation after treatment. Data expressed as means ± SEM JJM lactate per mg tissue of nine rats and 
the pre-treatment baseline level of lactate in medium is 0.25 ± 0.15 JJM mg·• tw. * P<O. OS (Tukey
Kramer multiple comparisons test) showed significant differences. 

85 



3.3 Results 

3.3.4. Hydrogen Peroxide in Medium 

Hydrogen peroxide (H20 2) concentrations in the medium are shown in Fig 3.4. Before 

the treatments, the levels of lh02 in the media were at picomolar levels. H20 2 production 

showed significant increase to 0.24 ± 0.06, 0.20 ± 0.04 and 0.19 ± 0.04 nmoles mg·' tw 

immediate after 90 min of Air, NBO and HBO treatments (P<O.Ol, Tukey-Kramer multiple 

comparisons test). At the end of 4b incubation, H20 2 level was 0.13 ± 0.03, 0.10 ± 0.03 and 

0.12 ± 0.03 nmoles mg·' tw, respectively (P<0.05, Tukey-Kramer multiple comparisons 

test when compare to pre-treatment levels). But no treatment difference was found among 

Air, NBO or HBO treatments throughout the experiment (P = 0.71 and 0.83 at immediate 

post and 4h post exposure, respectively, One-way ANOVA). 
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Fig 3. 4 Hydrogen peroxide levels in the medium in Air (white bars), NBO (grey bars) and HBO (dark 
grey bars) groups on pre, post and 4h after treatment. Pre is at the start of the experiment after tissue 
allowed resting for 30 min; Post is immediately after 90 min treatment and 4h is at the end of 4h 
incubation after treatment. Data expressed as means ± SEM nM H20 2 per mg tissue of eight rats. ** 
P<O.Ol, * P<O. OS (Tukey-Kramer multiple comparisons test) showed significant difference. 
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3.3 Results 

3.3.5. Total Glutathione Levels in Medium 

There were low and stable levels of total glutathione release in the medium as showed 

in Fig 3.5. The pre-treatment baseline level of glutathione in medium was about 13.3 ± 1.3 

nM mi1 tw. Exposure to Air, NBO or HBO did not affect the glutathione level in the 

medium. At immediate after exposure, the glutatbjone level in the medium was 14.4 ± 1.4, 

15.5 ± 1.8, and 15.7 ± 2.1 mg-1 tw of Air, NBO and HBO groups, respectively (P = 0.87, 

One-way ANOV A). Further incubation in air did not shown any changes of glutathione 

levels of Air, NBO and HBO groups (15.5 ± 1.9, 15.4 ± 1.1 and 16.0 ± 1.7 mg-1 tw, 

respectively, P = 0.95, One-way ANOVA). 
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Fig 3. 5 Total glutathtione concentration in the medium in Air (white bars}, NBO (grey bars) and HBO 
(dark grey bars) groups on pre, post and 4h after treatment. Pre is at the start of the experiment after 
tissue allowed resting for 30 ruin; Post is immediately after 90 min treatment and 4h is at the end of 4h 
incubation after treatment. Data expressed as means± SEM glutathione nM per mg tissue of nine rats. 
One-way ANOV A analysis presented a P value at 0.92. 
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3.3 Results 

3.3.6. Nitric Oxide Production of Aorta segment 

Nitric oxide production of aorta segment tissue was evaluated by its direct oxidative 

products nitrite and nitrate concentration in the media (Fig 3.6). In Fig 3.6A, the baseline 

level of NOx was 0.19 ± 0.04 J.1M mg- 1 tw, HBO exposure demonstrated the highest NOx 

concentration of the three treatments at each timepoints: 0.21 ± 0.04 IJM mg·1 tw at 

immediate post (P = 0.48, unpaired t-test), and a significant 37% increase at 4h post 

exposure (0.26 ± 0.05 J.1M mg·1 tw, P = 0.02, unpaired t-test). However, there was no 

treatment effects were found ofNOx levels between Air, NBO and HBO exposure. Unlike 

NOx, nitrite level in media remained quite stable throughout the experiments ranged 

between 0.035 ± 0.01 (pre-treatment) and 0.044 ± 0.01 (4h post HBO) 1-1M mg· 1 tw, and 

neither time nor treatments affects on the nitrite level were observed throughout the 

experiment (P = 0.93, One-way ANOVA). Interestingly, the media contained much more 

nitrate than nitrite, and the ratio of nitrite to nitrate is shown in Fig 3.6C. The pre-treatment 

baseline of the ratio was 31.6 ± 6.4%. Immediate after air exposure, the ratio was 38.6 ± 

8.1% of Air groups and then returned to 32.1 ± 4.0 % at 4h after incubation. In NBO 

groups, the ratio kept at 32% during and after exposure. Whereas, the ratio was 32.8 ± 7.0 

% immediate post HBO treatment and then 25.1 ± 4.0 % after 4h air recovery. Like the 

nitrite level, the ratio of nitrite to nitrate showed neither time nor treatments affects 

throughout the experiment (P = 0.88, One-way ANOV A). 
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Fig 3. 6 NOx changes in the medium in Air (white bars), NBO (grey bars) and HBO (dark grey bars) 
groups on pre, post and 4h after treatment. Pre, Post and 4h are at the start, immediately after 90 min 
treatment and at the end of 4h incubation. (A) total nitrite and nitrate level (NOx ); (B) nitrite level; 
and (C) nitrite/(NOx-nitrite)%. Data expressed as means ± SEM ~tM per mg tissue or percentage ratio 
of nine rats. * P<O.OS (unpaired t-test) showed significant difference. 
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3.3 Results 

3.3.7. VEGF Production 

Vascular endothelial growth factor (VEGF) concentration in both medium and tissue 

were measured. VEGF concentration was at or below the detectable limit (3 pg mr1
) in the 

media, while it was easily detected in the tissue homogenates. A time dependent significant 

increase in VEGF was evident in tissue homogenates, but there was no treatment

dependent effect (Fig 3.7). The pre-treatment baseline level of VEGF in aorta segment 

homogenate was 0.27 ± 0.08 ng mg- 1 protein. And VEGF content were 0.43 ± 0.15 ng mg- 1 

protein, 0.36 ± 0.08 ng mg-1 protein and 0.45 ± 0.11 ng mg" 1 protein at immediate after Air, 

NBO and HBO exposure, respectively. After 4 h incubation, VEGF content attained the 

highest values at 0.82 ± 0.09 ng mg- 1 protein (Air), 0.89 ± 0.08 ng mg- 1 protein (NBO) and 

0.88 ± 0.19 ng mg· 1 protein (HBO) which all showed significant difference to the pre level 

(P<O.O I, Tukey-Kramer multiple comparisons test) and to immediate post-treatment levels 

(P<0.05, unpaired t-test). However, no significant difference was seen between Air, NBO 

and HBO treatments either at immediate post (P = 0.83, One-way ANOV A) or 4 h after 

treatment (P = 0.92, One-way ANOVA). 
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3.3 Results 

Fig 3. 7 VEGF content in aorta tissue homogenates in Air (white bars), NBO (grey bars) and HBO 
(dark grey bars) groups on pre, post a nd 4b aft er t reatment. Pre is at the start of the experi ment after 
tissue allowed resting for 30 min; Post is immediately after 90 min treatment a nd 4h is at the end of 4h 
incubation after treatment. Data expressed as means ± SEM VEGF ng per mg protein of eight rats. * 
P<O. 0 I (Tukey-Kramer multiple comparisons test) showed significant difference; and # P<O. 05 
(unpaired t-test) showed significant difference. 

3.3.8. Correlation Test 

Pearson correlation tests were performed among the biochemical indexes measured in 

this experiment (Table 3.2). The lactate concentration in the medium showed to be the 

most relevant factor to cellular VEGF content (P < 0.00 I), nitrite concentration also 

showed a very significant correlation with VEGF content (P = 0.004), and cwnulative 

I-h02 level showed a significant correlation with VEGF content (P = 0.04). The factors 

correlated with LDH release included total glutathione in the medium (P = 0.00 I), cellular 

VEGF content (P = 0.022), and lactate in the medium (P = 0.036). Interestingly, besides 

related with LDH release level, total glutathione level showed significant correlation with 

both NOx (P = 0.001) and nitrite (P = 0.046). 
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3.4 Discussion 

Table 3. 2 The correlation test results 

~ 
VEGF Lac- H202 NOx Nitrite N02: LDH Gluta-

tate N03 thione X 

VEGF r 1 .639 -.265* .197 .379** .210 .305* .191 
p .000 .048 .145 .004 .121 .022 .159 

n 56 56 56 56 56 56 56 56 

Lactate r .639 1 -.175 .152 .215 .065 .265* .066 
p .000 .197 .235 .090 .612 .036 .605 

n 56 63 56 63 63 63 63 63 

H202 r -.265* -.175 1 -.049 -.165 -.091 -.091 -.012 
p .048 .197 .718 .224 .504 .506 .928 

n 56 56 56 56 56 56 56 56 

NOx r .197 .152 -.049 1 .526** -.196 -.117 .363** 
p .145 .235 .718 .000 .124 .361 .003 

n 56 63 56 63 63 63 63 63 

Nitrite r .379** .215 -.165 .526** 1 .687** .135 .252* 
p .004 .090 .224 .000 .000 .292 .046 

n 56 63 56 63 63 63 63 63 

N02/N03 r .210 .065 -.091 -.196 .687** 1 .238 -.022 
p .121 .612 .504 .124 .000 .061 .864 

n 56 63 56 63 63 63 63 63 

LDH r .305* .265* -.091 -.117 .135 .238 1 .402** 

p .022 .036 .506 .361 .292 .061 .001 

n 56 63 56 63 63 63 63 63 

Glutathione r .191 .066 -.012 .363** .252* -.022 .402** 1 
p .159 .605 .928 .003 .046 .864 .001 

n 56 63 56 63 63 63 63 63 

Note: Pearson's correlation tests were performed between each two biochemical indexes using SPSS 
11.0 for Windows software (SPSS lnc, Chicago, Illinois, USA). r represents correlation coefficient and 
ranges from -1 to 1. When r = Zero means that the two variables do not vary together at all; r = 
positive fraction means that the two variables tend to increase or decrease together; r = negative 
fraction means that one variable increases as the other decreases; r = 1.0 (or -1.0) means tbat the two 
variables are perfect (negative or inverse) correlation. P value represents the level (2-tailed) of 
significance and if the P value is small (as P < 0.05), then the correlation is not a coincidence and more 
than 95% of the true population r lies within the confidence interval range. n represents the total 
number of points have been calculated in this statistic analysis.** Correlation is significant at the 0.01 
level (2-tailed) and * Correlation is significant at the 0.05 level (2-tailed). 

3.4 Discussion 

In this study, we present evidence that the tissue is not overtly injured by a single 

treatment of HBO and there is no evidence to show that HBO treatment induces oxidative 

stress. Furthermore, a single HBO treatment has no effect on nitric oxide and VEGF 

production of blood vessel tissues. 
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3.4 Discussion 

3.4.1. The Viability of Aorta Segments during HBO Treatment 

Once cell damage occurs, cell membrane is not intact any more. The LDH assay, 

trypan blue uptake assay and other cell survival assay are all based on this principle. The 

LDH assay measured the leakage of the enzyme into the medium; while the trypan blue 

assay distinguish cell survival as that living cell excludes typan blue dye and dead cell 

uptake this dye. For our model, we need to evaluate the injury of blood vessel tissue. Thus, 

LDH assay is better for this purpose. The LDH level was at low percentage (less than 20%) 

compared to maximum LDH content in the tissue throughout the experiments (Fig 3.2). In 

addition, histological examination of rat aorta showed intact tissue structure and normal 

cell morphology (Fig 3.1 ). Therefore, neither pure oxygen treatment nor the HBO 

treatment had adverse effects on aorta segments. 

3.4.2. Oxidative Stress and HBO Treatment 

HBO treatment, as expose to high concentration of oxygen, will arguably produce 

more reactive oxidative species (ROS), and excessive ROS may induce oxidative stress 

which damage cells or tissue. For example, when vascular smooth muscle cells from rats 

thoracic aorta were exposed to a series of concentrations of Hz02 (0.2-0.6 mM) for 6 h, 

there was severe leakage of intracellular LDH with apparent incremental cell death in a 

dose-dependent pattern, with 50 % cell viability at 0.5 mM Hz02 (Zhang et al., 2002). 

Ram & Hiebert (2001) also reported a 50% viability of porcine aortic endothelium 

occurred at I mM of H20 2 incubation, and 50% viability of bovine aorta endothelium 

whiles incubated with more than 6 mM of H20 2. Those studies have confirmed that at high 

concentration (in mM), ROS are toxic and lead to a remarkable cell damage which was 

indicated by survival rate and LDH leakage. In our model, although there was an increase 

in H20 2 production occurred after treatments, the extracellular concentrations of H20 2 
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3.4 Discussion 

were very low and only at nM levels (Fig 3.4). On the other side, LDH level and tissue 

histology showed no evidence of cell or tissue damage occurred during experiment. 

A variety of vascular cells, including endothelial cells, smooth muscle cells, and 

fibroblasts, have demonstrated the ability to produce superoxide anion and H202. Studies 

have shown that superoxide anion, generated through the membrane-associated NAD(P)H 

oxidase(s), directly attenuates the biological activity of endothelium-derived nitric oxide 

(NO), and the net balance between superoxide and NO results in vasoconstriction or 

vasodilation (Mohazzab et al., 1994; Griendling et al., 1994; Rajagopalan et al., 1996). But 

on the other hand, the short half-life and radius of diffusion of superoxide drastically limit 

the role of this ROS as an important paracrine hormone in vascular biology. In contrast, the 

superoxide metabolite, 1-120 2, has been increasingly viewed as an important cellular 

signalling agent in its own right, capable of modulating both contractile and growth

promoting pathways with more far-reaching effects (Griendling et al., 2000; Sen, 2002; 

Ardanaz and Patrick., 2006). Yasuda et at (1999) found that the maximum rate of the tube 

formation of angiogenesis in cultured bovine thoracic aorta endothelial cells was seen 

when cells were incubated with I 1-1M H20 2 for 30 min; and at micromolar level (0.1 and I 

1-1M), H20 2 was able to stimulate endothelium proliferation and migration. Comparing with 

the previous studies, the concentration of H202 in our medium is far less than associated 

with normal ROS signalling in cells; it seems that a single 90 min exposure to hyperoxia 

may not be sufficient to evoke the blood vessel tissues to produce a signalling level of ROS. 

GSH is oxidised to GSSG when H202 is presented, and GSSG is then reduced back to 

GSH in cell to maintain the intracellular redox condition. The glutathione redox cycle is an 

important antioxidant system in cells, and its balance is critical for cell integrity and 

function. Under oxidative stress, excessive GSSG are transported outside the cell 

temporally to keep redox balance of intracellular glutathione pool. But when the cell is 
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3.4 Discussion 

challenged with large amount of ROS and oxidative stress is overwhelming, cell damage or 

cell death will occur, and the glutathione and other intracellular enzymes will release from 

damaged cells. This explains the significant positive correlation of total glutathione level 

and LDH release in the medium existed in our study (Table 3.2). The total glutathione in 

medium is derived from the efflux of glutathione from the cells, which reflects the 

oxidized status in cell or tissue as well as the level of cell damages. The total glutathione 

concentration in medium remained quite stable at nM level throughout the experiment with 

no time and treatment differences (Fig 3.5). These results are consistent with the H20 2 

results. Overall, there is no evidence to show that a single 90 min HBO treatment at 2.2 

ATA induce oxidative stress in aorta segment. The clinical application of HBOT never 

exceeds 3 ATA and usually does not last longer than 90 min, which keeps the ROS 

generation at safe level and lets the adaptive antioxidant system work efficiently to 

minimize oxidative stress. 

3.4.3. Response of Lactate in Aorta Metabolism of HBO Treatment 

Cellular energy supply mostly depends on the oxidation of glucose. Only when 

oxygen supply is limited, for example during an instant reduction of blood supplying in 

tissue injury, cells will rely on anaerobic glycolysis to produce ATP. Therefore, lactate 

level reflects a consequence of hypoxia level and energy metabolism in tissue and cell. 

That is why lactate in the medium increased throughout the experiments and showed 

correlation with LDH level in the medium (P = 0.04). Notably, there is a very significant 

correlation of lactate level in the medium and VEGF level in tissue (P <0.00 I), which may 

suggest that lactate could be involved in the VEGF regulation in blood vessel tissue. 

Healing wounds were found to produce and accumulate large concentrations (I 0-15 

mM) of lactate (Hunt et al., 1978). The lactate at the wound site is mainly produced by 
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leukocytes as a by-product of the "oxidative burst" for eliminating foreign invaders such as 

bacteria (Alien et al., 1997). Upon phagocytosis, the NAD(P)H-Iinked oxidase of 

leukocytes is activated to consume as much as 50- to lOO-fold more oxygen than at rest 

and almost all oxygen is converted to superoxide anion. The energy of the initial 

conversion comes from anaerobic glycolysis and thus leukocytes actively maintain the 

high lactate (I 0 - 25 mM) at wounds (Hunt et al., 1985; Irn & Hoopes, 1970). Thus, when 

oxygen concentration rises, lactate production rises as well in the phagocytic environment. 

That is part of the mechanisms that HBO treatment benefits chronic wound with severe 

infections. Studies demonstrated that high concentration of lactate in wound site (10-15 

mM) is important to initiate angiogenesis via ADPr/pADPr system (Trabold et al., 2003). 

ADPr/pADPr is a post-translational modification of protein during which the adenosine 

diphosphoribose (ADRP) moiety form NAD+ is enzyrnatically transferred onto acceptor 

proteins and modifies their structures and functions. Lactate is relevant to mono/polyADP 

ribosylation (ADPr/pADPr) process in cells due to its ability of regulating NAD+ pool. The 

initiation role of lactate in angiogenesis may be performed through the induction of VEGF 

production. Sheikh et al (2000) found that HBO did not affect the high concentration of 

lactate (range 2.0-10.5 mM) in wound site as VEGF levels significantly increase with HBO 

by approximately 40% 5 days following wounding and decrease to control levels 3 days 

after exposures are stopped. Furthers study by Constant et al (2000) showed that increased 

VEGF production by exposing macrophages to hypoxia and/or lactate, each alone and 

more so together (at least an additive effect). These studies may help partially explain the 

role of lactate in the regulation of VEGF and wound healing. We believe that further 

studies to investigate the synergetic effect of HBO and high lactate concentration on aorta 

tissue will help to explain this phenomenon in vascular tissue. 
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3.4.4. Nitric Oxide, VEGF and HBO Treatment 

NO is continuously produced at nanomoles (nM) concentration and is responsible for 

a wide range of physiological functions. In our study, we investigate the changes of nitrite 

and nitrate, which are the oxidizing products of NO. In aerobic aqueous solution, NO is 

rapidly and spontaneously autooxidize to nitrite (Eq.3. 2 - Eq.3. 4) and it has been 

definitively demonstrated that the only stable product formed by the spontaneous 

autoxidation of NO in oxygenated solutions is nitrite (N02.)(Pogrebnaya et al., 1975; Pires 

et al., 1994; Goldstein and Czapski, 1995). However, when there is certain 

oxyhemoproteins (P-Fe2+02) such as oxyhemoglobin or oxymyoglobin, nitrite derived 

from NO autooxidation is rapidly converted to nitrate (N03.)(Eq.3. 5) (Ignarro et al., 1993). 

The rate law for NO autooxidation is second order with respect to NO and fust order with 

respect to molecular oxygen, with a rate constant of approximately 8 x I 06 M·2• s· 1 (Ford et 

al., 1993). On the other hand, the reaction of nitrite with hemoproteins is quite slow, 

requiring 2-3 h (Ignarro et al., 1993) 

2NO + 0 2 ~ 2N02 

2NO + 2N02 ~ 2N20 3 

2N20 3 + 2H 20 ~ 4NO; + 4W 

4P-Fe2+02 + 4NO; + 4W ~ 

4P-Fe3+ + 4NO; + 0 2 + 2Hp 

Eq.3. 2 

Eq.3. 3 

Eq.3. 4 

Eq.3. 5 

The proportion of nitrite in the medium was less than 40% compared to nitrate in our 

study, which was similar to the report from Privat et al (1997). They investigated NOx 

accumulation in cultured medium of HUVECs and indicated a nitrite plus nitrate 

cumulated basal production even for a relatively short incubation time (5 min); and the 

basal production was 10 times higher when nitrates instead of nitrites were measured. 

Although HBO treatment did not increase NO release from blood vessels in our study 

(Fig 3.6), HBO modulated NO production has been shown in other investigations. HBO 
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increases nNOS-mediated NO production, which may contribute to oxygen toxicity in the 

central nerve system (Oury et al., 1992; Wang et al., 1998; Chavko et al., 2001; 

Demchenko et al., 2003). On the other hand, therapeutic HBO treatment has shown to 

reduce iNOS-mediated NO production induced by zymosan, lipopolysaccharide or in other 

pathological conditions (Kurata et al., 1995; Luongo et al., 1998; lmperatore et al., 2004; 

Huang et al., 2005; Chu et al., 2006; Chang et al., 2006). In the vascular system, NO plays 

important roles in regulating vascular tone and endothelial functions. North et a! (1996) 

noted that increased oxygen tension in normobaric pressure (exposing to P02 150 mmHg 

for 48 h) lead to an induction of 2.7-fold greater eN OS mRNA and protein expression for 

up to 24 hours in early passage of ovine fatal intrapulmonary artery endothelial cells 

(P AEC). Buras et a! (2000) also showed that HBO induced the synthesis of eN OS in 

HUVECs and bovine aortic endothelial cells. But Hink et al (2006) used contractile and 

vasodilatory responses in rat aortic rings as an indirect measure of vascular NO 

production/release and reported that in vitro HBO expose decreased endothelial NO 

bioavailability, but activated non-endothelial vascular NO production. 

VEGF is considered to play a consistent and prolonged angiogenic function during 

wound healing due to its ability to stimulate all the required steps in angiogenesis. In our 

study, the VEGF concentration rise with time, but this increase is unaffected by treatments. 

Therefore, the VEGF increase was unmodified by a single HBO treatment. It is known that 

hypoxia induces VEGF production, and also increases VEGF gene transcription and up

regulates its translation (Stein et al., 1995 and 1998). Direct evidence has shown that 

hypoxia inducible factor-! (HIF-1) is implicated in the activation of the VEGF gene 

transcription during hypoxia (Forsythe et al., 1996). HIF-1 acts as a master transcription 

switch known to be activated within the physiological range of oxygen concentration, and 

mediates gene transcription in response to reduced cellular oxygen tension in order to 
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maintain oxygen homeostasis. Interestingly, studies have found that higher oxygen 

concentration (hyperoxia) may also regulate VEGF production. Cultured macrophages 

increase production of VEGF when exposed to oxygen at high tensions of about 300 mm 

Hg (Gimbel and Hunt, 1999). Sheikh et al (2000) administered HBO therapy for 90 

minutes, twice daily at 2.1 ATA for 7 days after the rats' injury. Wound oxygen increased 

from nearly 0 mm Hg to as high as 600 mm Hg. The peak level occurs at the end of the 90 

min treatment, and hyperoxia persists for approximately I hour. The VEGF levels 

significantly increase with HBO by approximately 40% 5 days following wounding and 

decrease to control levels 3 days after the exposures were stopped. Kang et al (2004) found 

VEGF levels in propagated human dermal fibroblasts slightly increased on day I of HBO 

treatment. While Lin (2002) investigated in vitro human umbilical vein endothelial cells 

exposed to HBO showed no effect of HBO on VEGF expression. Therefore, it seems that 

both hypoxia and hyperoxia regulate VEGF production. Further investigation suggested 

that the reactive oxidative species (ROS) generated during hypoxia/hyperoxia may be 

involved in this regulation. H20 2 increasing VEGF production has been found m 

macrophages and vascular smooth muscle cell (Ruef et al., 1997; Cho et al., 2001). 

Richard et al (2000) demonstrated that the non-hypoxia induction of the HIF-1 

transcription factor is triggered by a dual mechanism: one is a PKC-mediated increase in 

HIF-Ia transcription and the other is ROS -dependent activation of PI3K that increases the 

translation of HlF-1 a. Sen et al (2002) demonstrated that at 11M concentrations oxidant 

induces VEGF expression and that oxidant-induced VEGF expression is independent of 

HIF-1 and dependent on Spl activation. In addition, studies have indicated that NO may 

use similar components, pathways and/or modifications to evoke HIF-Ia accumulation as 

exposure of various cells to NO under normoxic conditions induced HIF -I a accumulation 

and HIF-1-DNA binding (Kimura et al. 2000; 2001), which may then activate the 
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downstream target gene expression (e.g. VEGF) (Brune and Zhou, 2003). On the other 

hand, lactate also showed the ability to induce VEGF production under normoxic 

conditions (as described above). So while hypoxia remains the undisputed ubiquitous 

inducer of HIF-1 and VEGF, other factors could also modulate VEGF increases under 

normoxic even hyperoxic conditions, which could be dependent/independent of HIF-1. 

Correlation tests showed that VEGF content in the tissues were significantly related to 

lactate and LDH level in the medium. As the lactate and LDH levels are both biochemical 

indicator for cell stress, this correlation with VEGF may represents an adaptive changes in 

cell for damaging. 

3.5 Summary 

In this chapter, we exposed an in vitro model of rat aorta segment to nonnobaric air, 

normobaric I 00% oxygen and hyperbaric oxygen at 2.2 AT A for 90 m in, and investigated 

the treatments effect at immediate post exposure and 4h post exposure. Overall, we find 

that the tissue is not injured by a single treatment of either oxygen or HBO. Meanwhile 

there is no oxidative stress induced by a single HBO treatment as measure the total 

glutathione and hydrogen peroxide production in the media. And there is no evidence to 

show that HBO treatment induces NO and VEGF productions and VEGF content in the 

tissue showed a positive correlation with the lactate and LDH level in the media, which 

may represents that VEGF production is a cell adaptation to stress. 
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Chapter 4 

Effects of HBO on Blood Vessel under 

Pathological Condition or with Arginine 

Supplement in Vitro 

4.1 Introduction 

In Chapter 3, we demonstrated that a single exposure of rat aorta segment to 

normobaric oxygen (NBO) or hyperbaric oxygen (HBO at 2.2 AT A) for 90 m in did not 

damage the tissues of aorta segment, and in addition, there was no evidence of oxygen

induced oxidative stress when compared to normobaric air exposure (Air). Furthermore, 

time effects were observed on angiogenesis factors such as lactate, NOx and VEGF 

production, especially in HBO-exposed group, but no treatment differences were seen 

throughout the experiment among Air, NBO and HBO exposures. Interestingly, statistic 

tests suggested that the VEGF content in the tissue had a positive correlation with the 

lactate, nitrite, LDH and H202 level in the medium. 

In our study of Chapter 3, the aorta segments were incubated with modified Krebs

Ringer solution, which is a physiological salt solution commonly used in vascular research. 

This solution provides the essential physiological environment for blood vessel, and our 

study has successfully provided evidence on the changes and responses of oxidative stress 

and angiogenic factors of blood vessel to Air, Oxygen or HBO exposure under 
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physiological conditions. But in reality, HBO therapy is only applied to patients with 

clinical problems. Most of the chronic wound patients who benefit from HBO therapy are 

characterised by impaired oxygen supply, high levels of blood lactate, and combined with 

severe infection (Niinikoski, 200 I; Zamboni et al., 2003). With such pathophysiological 

changes, HBO treatment may induce very different reactions in the vascular system when 

considering oxidative stress levels and the response to angiogenesis factors. It would 

therefore be worth testing the reactions of blood vessel under pathological condition, and 

so some experiments perfonned in Chapter 3 are repeated here, but with high lactate 

concentrations in the medium to reflect those found in a wound. In addition the Krebs

Ringer solution used in Chapter 3 did not contain L-arginine. The relative low and 

unresponsive nitric oxide production observed in Chapter 3 may due to the deprivation of 

L-arginine supply in Krebs-Ringer solution, while in contrast, blood would normally 

contains micromoles level of L-arginine which serves as a physiological precursor for NO 

formation in blood vessels (Kirk et al., 1993; Abbott and Schachter, 1994; Tsuchida et al., 

1995). HBO treatment may require some L-arginine as a substrate to induce NO 

production in our system. In this Chapter, we add L-arginine as well as lactate to Krebs

Ringer solution, which mimics one aspect of chronic wound status, and the supplement of 

L-arginine will help to explain the NO regulation in physiological as well as pathological 

environment. 

4.2 Material and Methods 

4.2.1. Experimental Protocol 

Male Sprague Dawley rats (350 - 400 g; n = 40) were purchased from Harlan UK Ltd. 

Experiments were conducted in accordance with ethical approval. Aorta was obtained as 
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described in 2.2.1, and sectioned into 7 segments (I cm), and then randomly placed in 

individual wells of Nunclon Delta SI 6-well tissue culture plates (Nunc, lnterMed, 

Denmark) containing 6 ml of Krebs-Ringer solution in the presence of either I 00 J.lM L

arginine (Arg), or 15 mM sodium L-lactate (Lac), or both (Arg +Lac). The composition of 

Krebs-Ringer solution (KRS) was (in mM): NaCI 118.6, KCI 4.7, CaCh 2.5, MgS04 1.2, 

KH2P04 1.2, NaHC03 25.1, Hepes 10, glucose 10, and pH 7.4. 

Segments of aorta from one rat were used for each medium, and three rats were used 

simultaneously to incubate in Arg, Lac or Arg+Lac medium, respectively, in each trial. 

The treatment protocol is the same as in 3.2.2. Briefly, aorta segments were allowed to 

equilibrate in individual medium for 30 min before exposure. And then aorta segments 

were randomly exposed to air at 1 ATA (Air), 100% oxygen at I ATA (NBO) or 100% 

oxygen at 2.2 ATA (HBO). After 90 min exposure, a four hour recovery in normobaric air 

was introduced. All experiments were conducted at 37 °C. Tissue and medium samples 

were collected at the end of 30 min equilibration, immediate post 90 min exposure and 4h 

recovery as pre-treatment control, immediate post-treatment and 4h post-treatment 

respectively. All tissue and medium samples were snap-frozen in liquid nitrogen, and 

stored at -80 °C until used for analysis. 

One series of experiments were performed to monitor the generation of hydrogen 

peroxide, using the protocol above, with the method described in 2.2.1 to enable the 

measurement of low levels of hydrogen peroxide generation in situ. 

4.2.2. Biochemical Analysis 

Cumulative lactate dehydrogenase (LDH) release into the medium was measured as a 

routine marker of tissue injury, and expressed as LDH Units g"1 tissue weight (tw). The 

oxidative stress levels were monitored by following cumulative hydrogen peroxide (H20 2) 
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level and the total glutathione concentration in the media, and expressed as Hz02 nmoles 

mg-1 tw and glutathione nM mg·1 tw, respectively. Concentration of NOx (nitrite+ nitrate), 

nitrite in the medium was measured as !lM mg-1 tw, whilst the ratio of nitrite to nitrate was 

calculated as [nitrite]: ([NOx]-[nitrite]). The level of VEGF and protein content in the 

tissue homogenate was analysed, and expressed as VEGF pg mg-1 tissue protein (tp). A 

twenty-time dilution was required when measuring the lactate level in the Lac and 

Arg+Lac medium. The lactate production was expressed as !lM mg·1 tw for the results of 

Arg medium, and for the Lac and Arg+Lac groups, after subtracting the background level 

of added lactate in the medium (15 mM) before normalized with tissue weight. All the 

biochemical assays have been described in Chapter 2, and the data obtained were 

normalized with fresh tissue weight. 

4.2.3. Statistic Analysis 

For each medium, nine replicated experiments were done, and all biochemical results 

are presented as the means± S.E.M of the replicates. Statistical analysis was performed by 

one-way ANOVA for time, treatment and chemical supplement differences. If P value 

achieved less than 0.05, Tukey-Kramer multiple comparisons test or unpaired Hest was 

used subsequently for further analysis. Correlation test were performed with Pearson 

correlation test among the interested biochemical indexes. For all the tests, the significant 

difference level was accepted at P <0.05. 

104 



4.3 Results 

4.3 Results 

4.3.1. LDH Release 

In control Krebs-Ringer solution (KRS), LDH release remained at low level 

throughout the experiment, and there were no difference between Air, NBO and HBO 

treatment at either immediate or 4h post treatment. Supplement of L-arginine (Arg) and/or 

sodium L-lactate (Lac) to the KRS affect LDH release, but the effects showed differences 

within treatments. When exposure to norrnobaric air (Air), it was until 4h post treatment 

that LDH level increased in Arg and Arg+Lac media (P<O.OI and P<0.05 compared to 

KRS, respectively, Turkey-Kramer multiple test) but not in Lac medium. The NBO and 

HBO exposures caused significant increase of LDH release at immediate post-treatment in 

all three specific media (P<O.OI compared to KRS, respectively, Turkey-Kramer multiple 

test). After 4h incubation, the HBO-treated groups showed significant increase of LDH in 

all three specific media compared to control KRS (P<O.O I, Turkey-Kramer multiple test), 

and NBO-treated groups showed increase in both Arg and Arg+Lac media (P<0.05, 

Turkey-Kramer multiple test), but not in Lac medium. 

The LDH release from aorta segments into all Arg, Lac and Arg+Lac media tended to 

increase throughout the experiments (in Fig 4.1 ). The pre-treatment LDH level was 15.0 ± 

3.3, 12.3 ± 2.0 and 14.5 ± 3.2 Units g· 1 tw in Arg, Lac and Arg+Lac media, respectively (P 

= 0.78, One-way ANOVA). Time effects were observed mainly in NBO and HBO treated 

groups at both immediate and 4h post treatments in all three media ((P < 0.00 I, Turkey

Kramer multiple test) when compared with their pre-treatment levels. For Air treatment, 

LDH level increases were only seen at 4h post treatment in Arg and Arg+Lac media (P < 

0.05, Turkey-Kramer multiple test). In Arg medium, NBO and HBO treatments induced 

nearly a 2-fold increase in LDH release compared to that of Air treatment (51.9 ± 8.5, 
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104.3 ± 16.1 and 97.1 ± 15.5 Units g-1 tw of Air, NBO and HBO treated medium samples, 

respectively, P<0.05, Turkey-Kramer multiple test). But during 4h recovery, only HBO

treated samples showed higher level than that of Air-treated samples (P = 0.04, unpaired t

test) (74.5 ± 11.1, I 05.1 ± 17.2 and 115.0 ± 14.9 Units g- 1 tw of Air, NBO and HBO 

treated Arg media, respectively). Similar oxygen effects were seen in Lac and Arg+Lac 

media. Interestingly, LDH level of the Air-treated group in Lac medium (42.5 ± 6.1 Units g· 

1 tw) was significantly less than that of Arg medium (74.5 ± 11.1 Units g-1 tw, P = 0.02, 

unpaired t test) after 4h recovery. Throughout the experiment, NBO and HBO treatments 

showed no diffrences on inducing LDH release in Arg and/or Lac media. 
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Fig 4. I Cumulative LDR release from segments of aorta into specific media under normobaric air 
(Air, white bar}, normobaric 100% oxygen (NBO, grey bar) or hyperbaric 100% oxygen (RBO, dark 
grey bar) at Pre-treatment (Pre), Immediate post 90 min treatment (Post); and 4h after treatment (4h). 
Tissue was kept in Krebs-Ringer buffer in the presence of 100 JJM L-Arginine (Arg), 15 mM sodium L
lactate (Lac) or both (Arg+Lac). Data are expressed as means ± SEM of nine rats. One-way ANOV A 
test was performed, and followed by Tukey-Kramer multiple test or unpaired t-test. Brackets indicates 
significant difference (P < 0.05) between observations; * P < 0.05 significant difference vs. LDH pre
treatment level. # P < 0.05 significant difference vs. LDH level in Arg medium. 
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4.3.2. H20 2 Production and Total Glutathione Level in the Media 

4.3.2.1. Cumulative H20 2 Level in the Media 

In KRS, l-120 2 production increased during treatments, which tended to decline to 

level ranging of 0.10 to 0.13 nmoles mg- 1 tw at the end of experiments. Although the pre

treatment H20 2 levels in KRS, Arg, Lac and Arg+Lac media showed no differences, Arg 

or/and Lac supplement increased 1-120 2 levels during and after treatments when comparing 

with that in KRS. 

In Arg media, the l-120 2 levels were higher than that in KRS at the same timepoint 

with NBO and HBO treatments but not with Air treatment. At immediately post-treatments, 

the l-120 2 levels were 0.61 ± 0.05 (P<O.OI vs 0.20 ± 0.04 in KRS) and 0.46 ± 0.05 (P<0.05 

vs 0.19 ± 0.04 in KRS) nmoles mg·' twin NBO and HBO-treated groups, respectively; and 

0.58 ± 0.07 of Air-treated group (P>0.05 vs 0.24 ± 0.06 in KRS). After 4h recovery, the 

1-120 2 level remained at high level of 0.77 ± 0.13 nmoles mg-1 tw ofNBO- and 0.61 ± 0.06 

nmoles mg-1 tw of 1-lBO-treated groups, which showed significant differences to that in 

KRS at the same timepoints (P<O.O I vs 0.10 ± 0.02 and 0.12 ± 0.03 in KRS of NBO and 

HBO treatment, respectively, Turkey-Kramer multiple test), whereas no difference was 

seen of Air-treated groups between Arg and KRS (0.44 ± 0.10 vs 0.13 ± 0.03 nmoles mg· 1 

tw, P >0.05, Turkey-Kramer multiple test). In Lac containing media (Lac and Arg+Lac 

media), increased l-1 20 2 level were observed throughout the experiment in all three 

treatment groups (P<O.O I or P <0.00 I vs conresponding l-1 20 2 level in KRB, Turkey

Km mer multiple test). 

In Fig 4.2, the 1-120 2 levels generated in Arg, Lac and Arg+Lac media were shown. 

The background levels of l-120 2 (pre-treatment levels) in the three specific media were less 

than 0.1 nmoles mg-1 tw in all trails (P = 0. 90, One-way ANOV A). Significant time effects 

were seen in all runs, such that l-120 2 level increased significantly (P < 0.001 compared to 
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pre-treatment level, One-way ANOV A) in the media during Air, NBO or HBO exposure 

and a further increasing trend of H20 2 were seen in oxygen-treated groups but not in Air

treated group during the following 4h recovery. But overall, no treatment differences were 

found between Air, NBO and HBO exposure (P = 0.32, One-way ANOV A). Thus, Air, 

NBO or HBO treatment equally induced H202 generation from aorta segments in these 

three specific media. 
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Fig 4. 2 H20 2 generation of aorta segments in specific media under normobaric air (Air, white bar), 
normobaric 100% oxygen (NBO, grey bar) or hyperbaric 100% oxygen (HBO, dark grey bar) at Pre
treatment (Pre), Immediate post 90 min treatment (Post); and 4h after treatment (4h). Tissue was kept 
in Krebs-Ringer buffer in the presence of lOO f.1M L-Arginine (A), 15 mM sodium L-lactate (B) or both 
(C). Data are expressed as means ± SEM of eight to ten replicates. One-way ANOV A test was 
performed, and followed by Turkey-Kramer multiple test or unpaired t-test. * P < 0.05 significant 
difference vs. pre-treatment level. 
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4.3.2.2. Total Glutathione Level in the Media 

In KRS, there was no difference between Air, NBO and HBO treatment throught the 

experiment. However, in Arg, Lac and Arg+Lac media, oxygen treatments (both NBO and 

HBO) showed higher glutathione levels when comparing to control KRS with regard to the 

same timepoints; whilst normobaric air (Air) treatment showed less effect that only in 

Arg+Lac media at immediate post-Air treatment, the glutathione level was significant 

higher than that in KRS {P<0.05, Tukey-Kramer multiple comparisons test). On the other 

hand, the NBO treatment increased the glutathione level of 113% (P<O.O I), 66% (P<0.05), 

and 86% (P<0.05) at immediate post treatment; and 120% (P<O.OO I), 86% (P<O.O I), and 

80% (P<0.05) at 4h post treatment when aorta segment was incubated in Arg, Lac and 

Arg+Lac media than that in KRS (15.4 nM mg· 1 tw), respectively. The HBO treatment 

showed the most significant increase in the three specific media that the glutathione levels 

were more than 2-fold than that in KRS at both immediate (P = 0.003, One-way ANOVA 

and then P<O.OI, respectively, Tukey-Kramer multiple comparisons test) and 4h post 

treatment (P <0.00 I, One-way ANOV A and then P<O.OO I, respectively, Tukey-Kramer 

multiple comparisons test). 

In Arg media of Fig 4.3, NBO (32.0 ± 5.1 nM mg·1 tw, P = 0.04, unpaired t-test) and 

HBO (33.6 ± 3.8 nM mg· 1 tw, P = 0.005, unpaired !-test) treatments induced distinct 

increases of glutathione levels when comparing with Air treatment (20.2 ± 1.5 nM mg· 1 tw). 

The oxygen effects remained until the end of 4h recovery, when the glutathione level was 

33.3 ± 4.1 nM mg· 1 tw of NBO-treated group (P = 0.15, unpaired t-test) and 38.0 ± 4.2 nM 

mg·1 tw of HBO-treated group (P = 0.03, unpaired t-test) when comparing with 26.0 ± 2.6 

nM mg·1 tw of the Air-treated group. There was no differences found between NBO and 

HBO treatment in Arg media (P = 0.81 and P = 0.43 at immediate and 4h post-treatment 

respectively, unpaired t-test). 
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In Lac media of Fig 4.3, the HBO treatment induced notably more glutathione release 

into the media than either NBO or Air treatment. The glutathione level of HBO-treated 

groups (33.9 ± 3.7 nM mg·' tw) were 65% (P = 0.006, unpaired t-test) and 33% (P = 0.045, 

unpaired t-test) higher than that of Air- and NBO-treated groups (20.5 ± 2.2 and 25.5 ± 1.3 

nM mg·' tw, respectively) at immediate post-treatment. And after 4h recovery, the 

glutathione level of HBO-treated groups ( 40.9 ± 3. 7 nM mg·' tw) were 60% (P = 0.0 15, 

unpaired t-test) and 43% (P = 0.019, unpaired t-test) higher than that of Air- and NBO

treated groups, respectively (25.5 ± 4.3 and 28.6 ± 3.0 nM mg·' tw). No difference was 

shown between Air- and NBO-treated groups throughout experiment in Lac medium. 

In Arg+Lac media of Fig 4.3, although no treatment differences were found at 

immediate post-treatment (24.6 ± 3.4, 28.6 ± 3.8 and 33.2 ± 2.5 nM mg·' tw of Air, NBO 

and HBO-treated groups respectively, P = 0.20, One-way ANOVA), HBO-treated groups 

(36.7 ± 2.8 nM mg·' tw) showed a significantly higher level of glutathione than that of 

either Air-treated (27.4 ± 3.4 nM mg·' tw, P = 0.049, unpaired t-test) or NBO-treated (27.2 

± 1.0 nM mg·' tw, P = 0.005, unpaired Hest) groups after 4h recovery. 
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Fig 4. 3 Total Glutathione concentration released from aorta segments into specific media under 
normobaric air (Air, white bar), normobaric 100% oxygen (NBO, grey bar) or hyperbaric 100% 
oxygen (HBO, dark grey bar) at Pre-treatment (Pre}, Immediate post 90 min treatment (Post); and 4h 
after treatment (4h). Tissue was kept in Krebs-Ringer buffer in the presence of 100 J.IM L-Arginine (A), 
15 mM sodium L-lactate (B) or both (C). Data are expressed as means ± SEM of nine rats. One-way 
ANOV A test was performed, and followed by Tukey-Kramer multiple test or unpaired t-test. * P < 
0.05 significant difference vs. pre-treatment level. Brackets indicate significant difference (P < 0.05) 
between observations. 
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4.3.3. Nitric Oxide Production 

When comparing with the values ofNOx (nitrite+ nitrate) (0.16 ± 0.01 j.tM mg·1 tw), 

nitrite (0.035 ± 0.005 j.tM mg·1 tw) and their ratio (31.6 ± 6.4%) in KRS, supplement of 

Arg or/and Lac to KRS affected NO production. The NOx in the three specific media were 

significantly higher when compared to control KRS with respect treatments and timepoints 

(P <0.05, unpaired t-test), whilst the nitrite levels and the ratio of nitrite to nitrate in three 

specific media were much less than that in KRS with respect treatments and timepoints (P 

< 0.00 I, Tukey-Kramer multiple comparison test). 

In the three specific media, the NOx concentration varied slightly and no time effects 

were shown. However, the nitrite concentration and ratio of nitrite to nitrate increased 

during and after Air, NBO and HBO treatments in some of the groups (Fig 4.4). 

In Arg medium, the NOx concentration at pre-treatment was 0.47 ± 0.08 11M mg· 1 tw, 

which remained at the same level in all treatments throughout experiments (0.30 ± 0.03 

and 0.45 ± 0.10, 0.45 ± 0.09 and 0.40 ± 0.08, 0.43 ± 0.07 and 0.43 ± 0.05 of Air-, NBO

and HBO-treated groups at immediate post and 4h post treatment, respectively). The nitrite 

level in Arg medium showed a increasing trend till the 4h post treatment with Air-treated 

group showed significance to its pre-treatment level and NBO-treated group showed 

significance to its immediate post-treatment level (P = 0.046, unpaired t-test). The ratio of 

nitrite to nitrate changed similarly as nitrite. No treatment effects were seen with NOx, 

nitrite and their ratio. 

In Lac medium, the NOx level showed neither time nor treatment differences during 

and after the experiment. Time effects of nitrite levels were seen in NBO and HBO groups 

until 4h post treatment which were higher than pre-treatment and their immediate post

treatment levels (P < 0.05, Tukey-Kramer multiple comparison test). In addition, the ratio 

of nitrite to nitrate presented time effect in Air-treated group at immediate post-treatment 
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and in all three treatments groups at 4h post-treatment (P < 0.05, Tukey-Kramer multiple 

comparison test). Treatment effect was shown at immediate post-treatment that the ratio of 

Air-treated group was higher than that of both oxygen-treated groups. The ratio of nitrite to 

nitrate during treatments was 2.1 ± 0.2% of Air-treated group, which was 233% (0.9 ± 

0.3%) and 263% (0.8 ± 0.3%) of that of NBO- and HBO-treated groups respectively (P 

<0.05 and P < 0.01, Tukey-Kramer multiple comparison test). After 4h recovery, the ratios 

were 4.1 ± 0.5%, 3.0 ± 0.6% and 3.5 ± 0.4% of Air, NBO and HBO groups, and no 

difference were found (P = 0.35, One-way ANOV A). 

In Arg+Lac medium, the NOx levels showed no time and treatment effects. 

Significant higher nitrite than pre-treatment level was found in Air-treated groups at both 

immediate and 4h post treatment. At4h post treatment, oxygen-treated groups also showed 

higher level of nitrite than pre-treatment level and their immediate post-treatment level (P 

< 0.0 I, Tukey-Kramer multiple comparison test). Treatment effects were found at 

immediate post-treatment. The Air treatment induced 0.008 ± 0.00 I f.lM mg·1 tw of 

medium nitrite, which was 2-fold higher than the 0.004 ± 0.001 f.lM mg·1 tw measured in 

the NBO- and HBO-treated groups (P < 0.05, Tukey-Kramer multiple comparison test). 

But this Air effect disappeared after 4h recovery when the medium nitrite level was 0.013 

± 0.003, 0.014 ± 0.002 and 0.017 ± 0.003 f.tM mg· 1 tw of Air, NBO and HBO groups in 

Arg+Lac medium, respectively (P = 0.59, One-way ANOVA). Consequently, the ratio of 

nitrite to nitrate during treatments was 3.0 ± 0.5% for the Air-treated group, which was 

176% (1.7 ± 0.5%, P = 0.08, unpaired Hest) and 263% (I. I± 0.4%, P = 0.01, unpaired t

test) of that in NBO- and HBO-treated groups respectively. After 4h recovery, the air 

effects diminished when the ratio of nitrite to nitrate increased to 4.3 ± 0.5%, 4. I ± 0.4% 

and 4.4 ± 0.6% of Air, NBO and HBO groups (P = 0.89, One-way ANOV A). 
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Incubation of aorta segments in Arg media generated more nitrite and nitrate (0.47 ± 

0.08 and 0.008 ± 0.002 j.lM mg·' tw of pre-treatment NOx and nitrite levels), which were 

significant higher than that in Lac media (0.27 ± 0.03 and 0.002 ± 0.00 I J.IM mg·' tw, P = 

0.03, unpaired Hest, respectively) but not than that in Arg+Lac media (0.32 ± 0.03 J.IM mg· 

1 tw ofNOx, P = 0.07, unpaired t-test; and 0.003 ± 0.001 j.lM mg·' tw of nitrite, P = 0.05, 

unpaired t-test). The ratio of nitrite to nitrate of Arg medium was not different from Lac or 

Arg+Lac media at pre-treatment (1.8 ± 0.5%, 0.9 ± 0.5% and 1.1 ± 0.4%, P = 0.35, One

way ANOVA). 
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Fig 4. 4 Concentration of NOx and Nitrite, and their ratio in specific media under normobaric air (Air, 
white bar), normobaric 100% oxygen (NBO, pink bar) or hyperbaric 100% oxygen (HBO, blue bar) at 
Pre-treatment (Pre}, Immediate post 90 min treatment (Posl); and 4h after treatment (4h). Tissue was 
kept in Krebs-Ringer buffer in the presence of 100 J.1M L-Arginine, 15 mM sodium L-lactate or both. 
Data are expressed as means ± SEM, nine rats were used for groups in Arg and Arg+Lac mediums, 
eight rats were used for groups in Lac medium. NOx (blank columns) and nitrite (diagonal columns) 
level were plotted into the left figures with left and right Y axis corresponding to the level of NOx and 
nitrite in J.1M mg·• fresh tw, and the ratio of nitrite to nitrate were plotted into the right figures. 
Statistic analysis was performed with One-way ANOVA test followed by Tukey-Kramer multiple 
comparison test or unpaired t-test. * P < 0.05 significan t difference vs. pre-treatment level; # P < 0.05 
significant difference vs. level of group in Arg medium; and brackets indicate significant difference (P 
< 0.05) between observations. 
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4.3 Results 

4.3.4. Angiogenic Factor: VEGF Changes in Tissue Homogenates 

The supplement of Arg or/and Lac to KRS showed a trend to decrease VEGF 

production of aorta segments. During treatment, the VEGF level in specific media were not 

significant difference from that in KRS (P = 0.67, 0.88 and 0.23 of Air, NBO and HBO 

treatment respectively, One-way ANOVA). But at the end of 4h recovery, the VEGF level 

in NBO- and HBO-treated group in specific media were significant lower than that in 

Krebs-Ringer solution (P = 0.04 and 0.02 of NBO and HBO treatment respectively, One

way ANOV A). Further investigation found that VEGF content of NBO-treated samples in 

Arg, Lac and Arg+Lac medium was only 72% (P = 0.03, unpaired t-test), 73% (P = 0.12, 

unpaired t-test) and 63% (P = 0.004, unpaired t-test) of that of NBO-treated samples in 

KRS (0.88 ± 0.08 ng mg- 1 tp, n = 8). In addition, the HBO-treated samples in Arg, Lac and 

Arg+Lac medium was only 72% (P = 0.21, unpaired t-test), 57% (P = 0.05, unpaired Hest) 

and 51% (P = 0.036, unpaired t-test) of that of HBO-treated samples in Krebs-Ringer 

solution (0.88 ± 0.19 ng mg-1 tp, n = 8). 

In Arg and/or Lac media, VEGF level of aorta segments increased over time. After 4h 

recovery, VEGF level showed statistically significant differences when comparing with 

either the pre-treatment level or their post-treatment values in all runs (Fig 4.5). The pre

treated VEGF level in aorta segments in Arg, Lac and Arg+Lac medium was 0.25 ± 0.05, 

0.30 ± 0.04 and 0.28 ± 0.04 ng mg-1 tp, respectively. In Arg medium, Air, NBO and HBO 

treatment induced similar levels of VEGF production (0.40 ± 0.05, 0.38 ± 0.04 and 0.36 ± 

0.04 ng mg-1 tp respectively, P = 0.88, One-way ANOVA), and after 4h recovery, their 

VEGF levels were 0.72 ± 0.08, 0.63 ± 0.07 and 0.63 ± 0.06 ng mg-1 tp, respectively (P = 

0.59, One-way ANOV A). And at 4h post-treatment, the VEGF levels in all three treatment 

groups were higher than that of pre-treatment levels and their post-treatment levels (P<0.05, 

unpaired !-tests). But there were no differences of VEGF levels among Air, NBO or HBO 
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Fig 4. 5 VEGF content of aorta segment homogenate in specific media under normobaric air (Air, 
white bar), normobaric 100% oxygen (NBO, grey bar) or hyperbaric 100% oxygen (HBO, dark grey 
bar) at Pre-treatment (Pre), Immediate post 90 min treatment (Post); and 4h after treatment (4h). 
Tissue was kept in Krebs-Ringer buffer in the presence of 100 llM L-Arginine (A), IS mM sodium L
lactate (B) or both (C). Data are expressed as means ± SEM ng mg·• protein of nine rats. One-way 
ANOVA test was performed, and followed by Tukey-Kramer multiple test or unpaired t-test. * P < 
0.05 significant difference vs. pre-treatment level, # P < 0.05 significant difference vs. level in Arg 
medium, and brackets indicate significant difference (P < 0.05) between obserntions. 
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4.3.5. Lactate Level in the Media 

Supplement of Arg significantly increased the lactate levels when comparing with that 

in Krebs-Ringer solution (P < 0.000 I, One-way ANOV A). The lactate concentration in 

Arg media showed a significant time effect throughout the experiments (Fig 4.6-Arg). The 

lactate pre-treatment level in Arg media was 1.0 ± 0.2 JlM mg· 1 tw, which had a distinct 6-

fold increase during treatments (6.8 ± 1.1, 6.3 ± 1.0 and 5.5 ± 0.6 11M mg· 1 tw of immediate 

after Air, NBO and HBO treatment respectively), and a further significant increase was 

seen in all treated groups during 4h recovery to 26.0 ± 2.5, 19.5 ± 1.6 and 16.7 ± 1.5 11M 

mg· 1 tw respectively. Treatment effects were not seen at immediate after treatment, but at 

4h after treatment, when NBO-treated groups showed 25% (P = 0.04, unpaired Hest) and 

HBO-treated groups showed 36% (P < 0.0 I, unpaired t-test) less lactate level than that of 

the Air-treated groups. 

Supplement of Lac into the media significantly increased lactate concentration 

compared to the Arg media. Although neither time nor treatment differences were seen (P 

= 0.30, One-way ANOV A), the lactate level in all groups was significant higher than that 

of corresponding level in Arg media (P < 0.0001, One-way AN OVA) (Fig 4.6-Lac). The 

lactate level in Arg+Lac media were significantly higher than that in either Arg or Lac 

media (P < 0.000 I, One-way ANOV A), but no treatment difference was seen (Fig 4.6-

Arg+Lac). The pre-treatment lactate level in Arg+Lac media was 42.7 ± 9.7 11M mg· 1 tw, 

which became 50.0 ± 6.6, 46.2 ± 10.6 and 60.5 ± 9.3 J1M mg·1 tw at immediate after Air, 

NBO and HBO treatment respectively, and increased during 4h recovery to 70.9 ± 10.0, 

68.6 ± 10.4 and 85.4 ± 15.9 11M mg"1 tw, respectively. 
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Fig 4. 6 Lactate concentration in specific media of aorta segments under normobaric air (Air, white 
bar), normobaric 100% oxygen (NBO, grey bar) or hyperbaric 100% oxygen (HBO, dark grey bar) at 
Pre-treatment (Pre), Immediate post 90 min treatment (Post); and 4h after treatment (4h). Tissue was 
kept in Krebs-Ringer buffer in the presence of I 00 J1M L-Arginine (A), 15 mM sodium L-lactate (B) or 
both (C). Data of (A) are expressed as means ± SEM JIM mg·• tw of nine rats and data of (B) and (C) 
have been subtracted added lactate (IS mM) before normalized by tissue weight. One-way ANOVA 
test was performed, and followed by Tukey-Kramer multiple test or unpaired t-test. * P < 0.05 
significant difference vs. pre-treatment level. # P < 0.05 significant difference vs. Arg medium, and - P 
< 0.05 significant difference vs. Lac medium. Brackets indicate significant difference (P < 0.05) 
between observations. 
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4.4 Discussion 

In this study, we investigated the effects of 1-180 on oxidative stress and angiogenetic 

factors in aorta segments incubated in specific media which either mimic pathological 

condition or offset the possible limitation in nonnal physiological saline. First of all, 

supplement of L-arginine or/and sodium L-lactate to Krebs-Ringer solution significantly 

increased the release of LDI-1, 1-1 20 2 and glutathione in N80 and 1-180 treatment groups 

than that in KRS only, which indicates synergic effects of oxygen and supplement 

ingredients in inducing oxidative stress and cell damage. Secondly, L-arginine and sodium 

L-lactate supplements increase NO production as more nitrite and nitrate were observed in 

Arg!Lac media than that in KRS; but no evidence has shown that 1-180 induce more NO 

production in either Arg or Lac media. Finally, unlike other parameters, there is no 

evidence shown that Arg!Lac supplement induce more VEGF production than that in KRS 

throughout experiments. On the contrary, after 4h recovery, less VEGF levels were 

observed in N80 or/and 1-180 treatments in Arg!Lac media than that in KRS, which may 

due to the high levels of cell damages and oxidative stress. 

4.4.1. L-arginine Supplement and HBO Treatment 

NO is produced continuously at nanomolar concentrations by nitric oxide synthase 

(NOS) in the human body, this enzyme catalyses the conversion of L-arginine into 

citrulline and NO with consumption of NADPH and oxygen. The fact that NO is 

responsible for vasodilatation has make NO an important factor in angiogenesis research. 

And in addition, NO is also widely involved in natural immune defences and the regulation 

of growth factors (Akimoto et al., 2000; Arany et al., 1996; Droge, 2002; Dulak, 2003). 

More and more studies have confirmed that 1-180 treatment affect NO production as well 
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as NOS expression. When applying HBO at high pressure (over 5 ATA), increased NO 

production and NOS expression in the central nervous system has been suggested to be 

relevant to oxygen toxicity (Oury et al., 1992; Wang et al., 1998 and Chavko et al.,200 I). 

But at lower pressure (less than 4 ATA), limited or no oxygen toxicity were seen in several 

studies (Zhang et al., 1995; Zhiliaev et al., 2002; and Moskvin et al., 2003). Studies on the 

immune cells have demonstrated that HBO at treatment pressure is able to decrease NO 

production induced by pathogenic factors such as lipopolysaccharide (Kurata et al., 1995; 

Sunakawa and Yusa, 1997; Huang et al., 2005; Chu et al., 2006; Chang et al., 2006) and 

zymosan (Luongo et al., 1998; lmperatore et al., 2004). Furthennore, HBO helps to control 

some syndromes of chronic wound by suppressing expression and activity of NOS 

(Rachmilewitz et al., 1998; Yuan et al., 2004; Gajendrareddy et al., 2005). The 

complicated NO regulation during HBO treatment therefore reflects the multi-function 

nature of NO as well as the complexity of organisms. L-arginine is a natural physiological 

precursor in the NO synthesis pathway and there was about I 00 ~-tM of L-arginine found in 

rat plasma (Osowska et al., 2004), but the Krebs-Ringer solution contained no L-arginine 

in our previous study. L-arginine has been proven to play a central role in NO synthesis of 

cultured endothelial cells which depend upon the L-arginine content of the media (Pal mer 

et al., 1988). NO synthesis is also blocked by L-arginine analogues (Gross, et al., 1990) 

and supplemental L-arginine improves endothelial function (Chin-Dusting et al., 1996). ln 

our previous study, a low and unchanged NO level was shown with HBO treatment when 

aorta segment was incubated in physiological salt solution without L-arginine (Fig 3.5). 

The depletion of L-arginine could be a reason why low NO level was found, and at such 

low levels it is hard to show any treatment-related changes. 

In the current chapter, L-arginine (I 00 !!M) was added to Krebs-Ringer solution and 

increased NO production was found as both nitrate and nitrite levels were higher when 
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corn paring with the Krebs-Ringer solution used in Chapter 3. And interestingly, in Arg 

medium, nitrate was the dominant NO end product as the nitrite to nitrate ratio ranged 

between I - 5%, whilst in the Krebs-Ringer medium this ratio ranged between 25 - 40%. 

It is believed that in aqueous phase, when free of biological material, NO exclusively 

autoxidizes to nitrite (Pogrebnaya et al., 1975; Pires et al., 1994; Goldstein and Czapski., 

1995). However, NO also contains an unpaired electron and is paramagnetic, it rapidly 

reacts with superoxide (02.) to form peroxynitrite anion (ONoo·) in high yield when 

oxygen and nitrogen species co-exist in the same aqueous solution (Slough and Zafiriou., 

1985). The ONOO- can either spontaneously rearrange to form nitrate (N03") or undergo 

cleavage to generate hydroxyl (OH·)-Iike radicals and nitrite (N02"). The peroxynitrite has 

a pKa of 7.49 ± 0.06 at 37 "C and rapidly decomposes once protonated with a half-life of 

1.9 sec at pH 7.4 (Beckrnan et al., 1990) (Eq 4.1 ). The peroxynitrite generation and its 

metabolism may explain the nitrate in the medium. 

o; + NO·~ ONoo- +W ~ ONOOH 

ONOOH ~HO·+ NO; ~NO;+ H+ 

Eq.4. I 

Although superoxide anion (02") levels were not measured in our study, hydrogen 

peroxide (H202) as the direct dismutation product of superoxide increased in the oxygen-

treated group in Arg medium than that in KRS. The supplement of L-arginine into the 

medium increased NO production from aorta segment and meanwhile oxygen treatment 

promoted generation of oxygen and nitrogen radicals. Therefore, the production of 

peroxynitrite could be facilitated and nitrate became the dominant NO end-product in Arg 

medium. In these terms, the value of nitrite to nitrate ratio may lead to new insights 

regarding the oxidative environment when studying cell damage caused by the interactions 

of NO with other active molecules (Marzinzig et al., 1997). 
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Among the reactive oxidative species, the OH· are considered the major toxic radical 

form. In biological systems, the formation of OH' and OH·-Iike radicals are often 

considered to originate from the interaction of iron with enzymatically and/or non-

enzymatically generated superoxide (Haber-Weiss reaction) and/or hydrogen peroxide 

(Fen ton reaction) (Eq 4.2), and via peroxynitrite reaction (Eq 4.1 ). 

o; + H202 Iron 02 +oH-+ HO· 

Fe2• + Hp2 ~ Fe3
+ +OH-+ HO· 

Haber-Weiss reaction 

Fenton reaction 

Eq.4. 2 

1t is noteworthy that Fenton and Haber-Weiss reactions require the presence of H20 2 as 

well as iron to produce OH·, but there is not much iron existed in our reaction system. So if 

the production of peroxynitrite increased, more OH·-Iike radicals will be produced 

simultaneously. Previous studies have shown that increased OH·-Iike radicals and 

enhanced cell damage occur at the same time as a sharp drop in intracellular GSH content 

(Shu et al., 1997). LDH, a common indicator for cell or tissue damage, showed higher 

levels in oxygen-treated groups than air groups in Arg media. This suggests synergic effect 

of oxygen and arginine on cell damage, or at least LDH leak. Another line of evidence to 

support the notion of oxidative stress is the simultaneous appearance of high level of total 

glutathione released into the Arg medium in oxygen-treated groups. 

The lactate level in Arg medium was higher than that in Krebs-Ringer solution. The 

oxygen treatments reduced the lactate level in Arg medium as well as in Krebs-Ringer 

solution as expected, which confirmed that less anaerobic glycolysis but more aerobic 

oxidation to supply ATP in hyperoxia conditions (e.g. NBO and HBO treatments). There is 

no evidence shown that Arg supplement along or synergically with HBO treatment 

promotes VEGF production from aorta segments in any of the treatments in spite the fact 

that VEGF increased over time during experiments in Arg medium. 
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4.4.2. Sodium L-lactate Supplement and HBO Treatment 

Lactate is produced from pyruvate in a reaction catalysed by lactate dehydrogenase 

under anaerobic conditions in all tissues (Eq. 4.3). This reaction is rapid so that pyruvate 

and lactate are always in an equilibrium situation and the ratio of lactate to pyruvate is I 0 

to I in cells. The balance between lactate and pyruvate determines the ratio [NADH] to 

[NAD+] and this ratio is also used to denote the redox state within the cytoplasm (Kruse 

and Carlson., 1987). 

Pyruvate+ NADH + H+ LDH Lactate+ NAD+ Eq.4. 3 

Chronic wounds suffer from insufficient oxygen supply, which cause large 

concentrations of lactate (I 0-25 mM) accumulated at the wound sites (Hunt et al., 1985; lm 

& Hoopes, 1970). Interestingly, lactate is also present in well-oxygenated wounds because 

of accumulation of leukocytes, fibroblasts. Relatively lacking mitochondria, all these cells 

rely on anaerobic glycolysis for energy recruitment. As a consequence, lactate levels 

increase in wounds under normoxic conditions as well (Tandara and Mustoe, 2004). This 

high level of lactate not only represents the anaerobic glycolysis energy supply in wound 

sites for cells, but also serves as an angiogenesis initiator to regulate the production of 

growth factors such as VEGF (Jensen et al., 1985; Zabel et al., 1996; Constant et al., 2000). 

HBO treatment did not affect the high concentration of lactate as there were no 

differences found between Air, NBO and HBO treatments throughout the experiment in 

Lac-added media. Sheikh et al (2000) also showed a similar finding that lactate (range 2.0-

I 0.5 mM) in wound site was not affected by HBO treatment. But higher level of LDH, 

H20 2 and glutathione were found in oxygen-treated groups of Lac media than that in KRS. 

The stress and cell damage may due to the change of cell redox status induced by the high 

level of lactate via affecting the ratio of [NADH] to [NAD+]. In Lac media, the nitrate level 

were lower than that in Arg media but higher than that in Krebs-Ringer solution, it seems 
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that high level of lactate also promote nitric oxide production. Hein et al (2006) exposed 

retinal arterioles to lactate in vitro and found that the vessels dilated in a dose-dependent 

manner in response to neutralized L-lactate (0.01-10 mM) and blockade of 

monocarboxylate transporters, nitric oxide synthase, soluble guanylyl cyclase, and ATP

sensitive potassium channels nearly abolished lactate-induced vasodilation. They 

suggested that uptake of lactate by vascular cells via monocarboxylate transporters caused 

retinal arteriolar dilation predominantly via stimulation of nitric oxide synthase and 

subsequent activation of guanylyl cyclase. Even with this evidence, the relationship of 

lactate, nitric oxide and HBO treatment needs further investigation to establish the possible 

signalling pathway. 

Several studies have shown that high concentration of lactate facilitated VEGF 

production in macrophages (Zabel et al. 1996; Constant et al., 2000), and HBO treatment 

increased VEGF production in wound with high concentration of lactate (Sheikh et al., 

2000). However, capillary endothelial cells and fibroblasts did not show increasing 

secretion of this angiogenesis factor when cultured under hypoxic conditions or in high 

concentrations of lactate (Jensen et al., 1986). In our study, neither the high lactate 

supplement nor HBO treatment increased VEGF level; there was no evidence of any 

synergic effect of HBO and lactate on VEGF production in aorta segment. Therefore, 

Lactate-induced VEGF production may be specific to macrophages. 

4.4.3. L-Arginine, Sodium L-lactate Supplement and HBO Treatment 

The same as Arg and Lac media, oxygen (NBO and HBO) treatments induced more 

damage and oxidative stress of aorta segments in Arg+Lac media as similar high level of 

LDH, HzOz and glutathione were observed. The NOx, nitrite level in Arg+Lac medium 

was not increased when compared with Arg or Lac medium, which implies that there is no 
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synergic effects of L-arginine and sodium L-lactate supplements on NO production. VEGF 

of NBO- and HBO-treated group in Arg+Lac media were less than that in KRS after 4h 

recovery, which indicates that no synergic effects of lactate, NO and HBO on promoting 

VEGF production, and on the contrary, reduces endogenous VEGF production from 

vascular tissues. 

In Krebs-Ringer solution, the aorta segment was incubated in physiological saline, 

which showed the ability to maintain its redox balance under either normobaric oxygen or 

hyperbaric oxygen treatments. However, the Arginine supplement facilitated NO 

generation and the Lactate supplement changed the redox status, so the incubation 

environment had changed. Under these unfavorable circumstances, oxygen treatments 

especially HBO treatment induced more ROS, which may overcome the protection of 

antioxidant defence system in cells and induce cell damage. Our results supported this 

hypothesis. Comparing to that in KRS, oxygen treatments (NBO and HBO) induced higher 

level of oxidative stress and more cell damage in Arg or/and Lac supplemented media 

reflexed as higher release levels of LDH, hydrogen peroxide and total glutathione in the 

media. The mechanisms of the synergic results of Arg/Lac and oxygen were not clear, it 

could possible via the formation of peroxynitrite and hydroxyl (OH·)-Iike radicals and 

nitrite (N02") or unbalance the ratio of [NADH] to [NAD+]. Thus, further investigation is 

needed. On the other hand, no synergic effects were found on promoting NO and VEGF 

production of Arg/Lac and oxygen. Under oxidative condation, NO is presented in the 

form of nitrate other than nitrite, so the nitrite to nitrate ratio is somehow reflecting the 

oxidative environment. Interestingly, recent study suggests that in situ VEGF production 

may related with the cell redox status as well. Sreekumar et al (2006) found significant 

induction of secretion and expression of VEGF and its receptors in human retinal pigment 

epithelial cells under conditions of oxidative stress induced by glutathione (GSH) depletion. 
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And Grasselli et al (2005) also indicated that a 'pro-oxidant' state was possibly involved in 

the stimulation of VEGF production to induce angiogenesis. But in our study, VEGF level 

in NBO or HBO-treated groups was decreased in Arg/Lac media after 4h recovery, which 

may due to the high level of cell damage interfered the cell autocrine function to generate 

more VEGF. The high cell damage level may represent the fact that HBO treatment helps 

to eliminate the wounded tissue and cells and at the same time to deliver signals to 

surrounding cells to generate growth factors to promote cell grow and wound healing. This 

hypothesis will need more experiments to support and verify. 
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Chapter 5 

Oxygen Regulates [Ca2+]i in Human 

Umbilical Vein Endothelial Cells 

5.1 Abstract 

Cytosolic free calcium is a ubiquitous intracellular signal responsible for many 

endothelial cell functions. In this study; intracellular Ca2+ changes of human umbilical vein 

endothelial cells (HUVECs) under different oxygen conditions were investigated. The 

HUVECs were loaded with Fura-2 AM ester, and then exposed to 95% air+ 5% C02 (air), 

95% N2 + 5% C02 (hypoxia), 95% 0 2 + 5% C02 (hyperoxia), or 100% Oz at 2.2 AT A for 

90 m ins. The levels of [Ca2+]i were recorded at pre-treatment, and up to I h continuely post

treatment. All the treatments increased [Ca2+]; than their pre-treatment levels, whilst HBO 

treatment evoked higher level of [Ca2+]; than that of air treatment. [Ca2+]; showed no 

diffemces either among air, hypoxia and hyperoxia treatments; or among hypoxia, 

hyperoxia and HBO treatments. No evidence has been shown that HBO treatment caused 

cell injury, which may indicate that HBO-induced [Ca2l; increases are likely to serve as a 

signalling messenger for hyperbaric oxygen treatment. 

5.2 Introduction 

Cell proliferation is a complex process, tightly regulated by a set of diffusible factors 

including honnones, peptidic growth factors, lipidic compounds, and other molecules 
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(Munaron, 2002). These factors act via autocrine and/or paracrine mechanisms and exert 

their effects interacting with high affinity receptors located in the plasma-membrane, 

triggering a cascade of intracellular reactions, fmally leading to DNA synthesis and cell 

duplication (Schlessinger, 2000). Researches have suggested that change of intracellular 

free calcium concentration ([Ca2+];) is a ubiquitous intracellular signal responsible for 

controlling numerous cellular processes (Errnak and Davies, 200 I; Bootman et al., 2002; 

Dawson et al., 2006). The Ca2
+ signalling network has been described as four functional 

units by Berridge et al (2000): First, stimuli bind to variety of cell-surface receptors 

including G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs), 

which triggers Ca2
' -mobilizing signals e.g. inositol-] ,4,5-trisphosphate (lnsP3), cyclic 

ADP ribose (cADPR), nicotinic acid-adenine dinucleotide phosphate (NAADP), and 

sphingosine ]-phosphate (SIP). And then the Ca2+ -mobilizing signals activate Ca2+ 

channels to feed Ca2 
f into the cytoplasm. The net Ca2+ influx are through plasma 

membrane Ca2
+ channels, and intracellular Ca2+ -channels on the membrane of endoplasmic 

reticulum (ER) that includes the lnsP3 receptor, ryanodine receptor (RyR), NAADP 

receptor, and sphingolipid Ca2+ release-mediating protein. Thirdly, Ca2
+ activates different 

Ca2+ sensors, which augment a wide range of Ca2+-sensitive processes such as contraction, 

proliferation, crosstalk with other signalling pathway, enzyme secretion, ATP synthesis, 

apoptosis and etc, which depending on cell type and context. Finally, the OFF mechanisms 

pump Ca2+ out of the cytoplasm: the Na +/Ca2
+ exchanger and the PMCA pumps Ca2

+ out 

of the cell and the SERCA pumps it back into the ER/SR to restore resting state of Ca2+ 

concentration. The free cytosolic calcium increases are due either to release from the finite 

internal store, the endoplasmic reticulum (ER) or the equivalent organelle, sarcoplasmic 

reticulum (SR) of muscular cell, or to the influx from the infinite supply of extracellular 

medium through the opening of calcium-permeable channels (Berridge 1997). These two 
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pathways are not exclusive and can coexist in response to the stimulation with the same 

agonist. Mitochondrion is another important component of the calcium signalling system in 

that it sequesters Ca2
+ rapidly during the development of the Ca2

+ signal and then releases 

it back slowly during the recovery phase. Both intracellular and extracellular sources are 

triggered by a multitude of stimuli including signalling molecules, pH, calcium-induced 

calcium release, voltage, oxygen tension and mechanical stress. Given the complexity of 

the regulation of cellular Ca2
+ and Ca2

• -signa ling processes, it is not surprising that 

disruption of these control mechanisms has been linked to the pathogenesis of diseases and 

cytotoxic events (Kass and Orrenius, 1999). Actually, works from several laboratories have 

showed that a perturbation of Ca2
+ homeostasis is a common and final event responsible 

for drug-induced cell death. The cytotoxic chemicals or their metabolites can inhibit Ca2
• 

transport mechanisms (e.g. the PMCAs and SERCAs); and the cells are exposed to a 

prolonged elevation of [CaH]. Increased [Ca2+] activates several catabolic processes 

catalyzed by Ca2+-activated proteases (calpains), phospholipases, and endonucleases, 

which in turn lead to cell death (Kass et al., 1996; Jewell et al., 1982; Nicotera et al., 1986; 

Orrenius et al., 1992; Trump and Berezesky, 1996). 

Various transmitters, such as acetylcholine, histamine, kinins (bradykinin), 

angiotensin, ATP, ADP, the coagulation factor thrombin, growth factors, and mechanical 

stimuli (e.g. shear stress) have been used as stimuli to increase [Ca2+]; of endothelial cells 

(Nilius and Droogmans, 200 I). And as non-excitable cells, Ca21 homeostasis in endothelial 

cells involves uptake and release of Ca2
+ into intracellular organelles (particularly ER) as 

well as controlled influx from the extracellular environment (Putney et al., 200 I; Bootman 

et al., 2002). The Ca2+ signalling system plays important roles for most of endothelial 

cells' vital functions as diverse as coagulation, inflammation, vessel penneability, 

angiogenesis, and vascular tone (Tran et al., 2000; Adam and Hill, 2004). For example, the 

133 



5.2 Introduction 

synthesis and/or release of vasoactive compounds (e.g. nitric oxide, prostacyclin, PAF, or 

tPA, PAI-l) is generally believed to be depends on or can be modulated by changes in 

[Ca2+]; (Busse et al., 1991; Miller and Vanhoutte, 1992; Carter and Pearson, 1992; Peiretti 

et al., 1997; Emeis et al., 1997). 

Particullarly in relation to this thesis, intracellular calcium signalling is also invoked 

as a result of VEGF activation in endothelial cells, which is a key event in the initiation of 

vasolidation, hypermeability, and angiogenesis. In the vascular endothelium, VEGF is 

capable of binding to the extracellula domain of two receptor tyrosin kinases, namely 

VEGFR-1 and VEGFR-2. But most studies have pointed out that the role of VEGF in 

promoting endothelial cell proliferation and vascular hyperpermeability is mediated 

primarily by the VEGFR-2/tlk-1/KDR receptor (Ferrara and Smyth, 1997). Ligation of 

VEGF to the VEGFR2 receptor leads to receptor dimerization and phosphorylation of the 

tyrosine kinase receptor, and associates with the recruitment of src-homology (SH)-2 

domain-containing proteins (Guo et al., 1995). Phospholipase Cy I (PLCy I) is one of 

several SH2-containing proteins and is capable of binding to VEGFR-2 after receptor 

autophosphorylation (He et al., 1999). Activation of PLC 7 I by VEGF leads to the 

production of diacylglycerol (DAG) and inositol I ,4,5 triphosphate (IP3), an important 

regulator of calcium channels in the endoplasmic reticulum (ER) membrane. IP3 opens 

ligand-operated channels in the ER, and subsequently empty intracellular calcium stores 

into the cytosol (Otun et al., 1996). IP3 and its breakdown products may also contribute to 

extracellular calcium influx through IP3 receptor channels in the plasma membrane as well 

(Vaca and Kunze., 1995). Faehling et al (2002) found that VEGF induced a biphasic 

[Ca2+]; signal and also increased the level of intracellular inositol I ,4,5-trisphosphate (IP3), 

which suggests that VEGF-A releases Ca2
+ from IP3-sensitive stores and induces store

operated calcium influx. Reduction of either extracellular or intracellular free Ca2+ 
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inhibited VEGF-induced proliferation. Dawson et al (2006) found that VEGF 165 elicited a 

rapid rise in cytosolic calcium followed by a slower decline toward control values in 

HUVECs. The VEGF165-mediated (Ca2
]; rise is eliminated by inhibitors of VEGFR-2, 

tyrosine kinase, src kinase, inositol-1 ,4,5 triphosphate-operated calcium channels; and 

inhibition of plasmalemmal calcium channels also diminished the magnitude and duration 

of the calcium spike. They suggested that the calcium extracellular calcium influx, 

secondary to stores release, is a significant component of the calcium spike; and the 

VEGFR-2/src kinase/PLCyi/IP3 axis plays a critical role in governing endothelial calcium 

response to VEGF. Although VEGF may enhance eNOS activity via PI3K/Akt/PKB 

pathway, the elevated [Ca2+]; is the primary stimulus for NO production and calcium

dependent NO formation may represent a link between calcium signalling and proliferation. 

Kohn et al (I 995) found that CAI, a blocker of ligand-stimulated Ca2
+ influx, inhibits EC 

proliferation, adhesion, and invasion into the basement membrane of EC. Jobin et al (2003) 

reported that VEGF promotes rapid mobilization of intracellular calcium throughout the 

regions of the cell in which eNOS was distributed, and this distribution parallels the 

localization of agonist-induced intracellular calcium changes. 

It is notable that hypoxic and ischemic conditions mediate [Ca2+]; levels of endothelial 

cells. Arnould et al (I 992) reported that HUVECs showed a decrease in ATP content and 

then an increase in [Ca2+]; during 2 h of severe hypoxia. And Hu and Ziegelstein (2000) 

presented similar [Ca2+]; increase of human aortic endothelial cells in hypoxic condition. 

The [Ca2+]; increase under hypoxia may be mediated via extracellular calcium entry and 

calcium release from calcium-sensitive intracellular stores (Berna et al., 2002; Peers et al., 

2006). During hypoxia, reactive oxidative species (ROS) seem to be involved in calcium 

regulation. lkeda et al (1997) pointed out that anoxia induced elevation of [Ci+]; in the 

brain capillary endothelial cells and the elevation depends on superoxide and peroxynitrite 
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generation. Peers et al (2006) found that hypoxia can evoke Ca2+ release from intracellular 

stores of human saphenous vein endothelial cells via a mechanism involving ROS 

generation from mitochondria. In addition, Aley et al (2005) defined two distinct pathways 

by which hypoxia regulate Ca2+ release from the ER. First is the mitochondrial pathway in 

which hypoxia evokes an increased production of ROS at the mitochondrion to trigger 

release of Ca2
+ from the ER via RyRs, and second is the oxidase pathway, in which 

substrate limited reduction of ROS levels during hypoxia relieves tonic inhibitory 

influences of NADPH oxidase-derived ROS on IP3-dependent Ca2
+ release from the ER. 

There is also cross-talk between these two regulatory pathways; specifically, hypoxia

induced mitochondrial ROS production augments agonist-evoked Ca2
+ release via 

mitochondrial, and oxidase regulation. 

Mitochondria serve as the main source for ATP via oxidative phosphorylation and a 

consequence of this process is the production of ROS. Mitochondria are important 

containers of intracellular Ca2
+ in endothelial cells, accounting for the remaining 25% of 

the cell's Ca2
+ reserve (Tran et al., 2000; Wood et al., 1998). More evidence have shown 

that mitochondria were not simply a high-capacity, low-affinity Ca2
+ storage pools that 

serve in states of Ca2
+ overload as a life-rescuing mechanism by taking up the amount of 

Ca2+ that would otherwise overburden the ER (Gunter and Pfeiffer, 1990), they also 

excitable, capable of generating and conveying electrical and Ca2
+ signals (lchas et al., 

1997). Ca2
+ mobilizing stimulus generates mitochondrial ROS, which, in turn, facilitate 

[Ca2+] signals. Similar to hypoxia, hyperoxia conditions such as anoxia/reoxygenation, 

nonnobaric high oxygen concentration or even HBO are able to produce ROS, so it is not 

surprising to see [Ca2+]; increases under hyperoxia conditions. Tirosh et al (2006) showed 

that acute nonnoxia increases [Ca2
']; and NO production in hypoxia-maintained fetal 

pulmonary artery endothelial cells via entry of extracellular calcium and subsequent Ca2+-
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induced calcium release from intracellular stores. Brueckl et al (2006) reported that expose 

of lung capillary endothelial cells to normobaric 70% oxygen increased ROS and [Ca2+];, 

and the ROS formation was initially originated from the mitochondrial electron transport 

chain, but subsequently involves activation of NAD(P)H oxidase by endothelial [Ca2+]; 

signa ling and Rac I activation. Wang et al (1998) found that HBO exposure at 0.5 MPa (5 

ATA) increased the intrasynaptosomal [Ca2+]; by two or three folds, and suggested that 

neuronal Ca2
+ overload during HBO exposure is a major factor in the pathogenesis of 

central nervous system 0 2 toxicity. Liu et al (1999) observed biphasic changes of[Ca2+]; in 

endothelial cells and smooth muscle cells during 0.2 MPa (2 AT A) and 0.3 MPa (3 ATA) 

HBO exposure, which first increased within 5 min, and then decreased throughout the 

exposures. It seems that both hypoxia and hyperoxia affect the homeostasis of [Ca2+]; and 

the oscillation is quite possibly coupled with ROS generation. This may suggest that 

calcium as an oxygen detector or at least as a second messenger involved in oxygen

induced responses during HBO treatment. Most of the previous studies are concerned on 

one aspect of [Ca2l;, changes at either hypoxia or hyperoxia condition and also there is 

lack of evidence on post-treatment changes. In this study, we aim to compare the real-time 

[Ca2+]; oscillation of non- or HBO-treated single endothelial cell in different oxygen 

environment, which was achieved by perfusion cells with hypoxic or hyperoxic buffers. 

Furthermore to back up the single cell measurement, we compare the [Ca2+]; changes in 

normobaric, hypoxic, hyperbaric and HBO conditions by using populations of HUVECs. 

And [Ca2+]; monitoring was continued for an hour to investigate the post-treatment effects. 

Moreover, cell viability test was perfumed to exclude the possibility of any cell injury. 

Changes in calcium concentration are often monitored using fluorescence probes, 

which are notably very sensitive to any change in ion concentration and are relatively non 

invasive; and can detect sudden changes in ion concentration. Depending on the 
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experimental requirements the same techniques can be used with different detector systems 

to obtain information on the time course of events, or the spatial localisation of events. 

Fura-2 and its acetoxymethyl (AM) ester derivatives are high affinity, intracellular calcium 

indicators that are ratiometric and UV light-excitable, which let them widely used in 

calcium detection for a wide variety of cells (Takahashi et al., 1999). The probe works by 

absorbing a short wavelength (ultra-violet) photon with high energy and then re-emitting a 

photon of lower energy. Binding of a calcium ion to the probe causes a change in the 

efficiency of the photon absorption, resulting in a higher rate of emission of photons. At 

low concentration of the indicator, use of the 340/380 nm excitation ratio allows accurate 

measurements of the [Ca2
;]; and this ratio measurement considerably reduces the effects of 

uneven dye loading, leakage of dye, and photobleaching, as well as problems associated 

with measuring Ca2
+ in cells of unequal thickness (Tsien et al., 1984). 

5.3 Material and Methods 

5.3.1. Chemicals and Reagents 

The reagents used are all cell culture grade. Nutrient mixture Hams F-12, L-glutamine, 

gentamycin, heparin, and endothelial cell growth supplement from bovine neural 

tissue (ECGS), Pluronic F-127 and DMSO (Dimethyl Sulfoxide for molecular biology) 

were obtained from Sigma-Aldrich (Poole, UK); foetal bovine serum, 0.25% trypsin, 

Dulbecco's phosphate buffered saline (D-PBS) and Hanks' balanced salt solution contains 

1.25 mM of Ca2
+ (HBSS) were obtained from lnvitrogen (Paisley, UK). And Fura-2 

acetoxymethyl ester (Fura-2) was purchased from Molecular Probes (Eugene, OR, USA). 
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5.3.2. HUVECs Culture Protocol 

The human umbilical vein endothelial cells (HUVECs) were kindly provided by Dr. 

Jackie Whatmore and her team, Cell and Molecular Biology, Pennisula Medical School, 

University of Plymouth and Exeter. Two solutions were used for routine HUVECs culture: 

(I) Standard Ham's solution: Ham's F-12 contains 0.68 mM of L-Giutamine and 50 ~g m!' 

1 of gentamycin; and (2) Complete Ham's solution: 40 ml of Foetal bovine serum and 4 ml 

of ECGS standard Ham's solution containing I mg ml'1 of ECGS and 4.5 mg ml' 1 of 

Heparin were added into 156 ml standard Ham's solution to make a total volume of 200 ml 

complete Ham's solution. 

HUVECs culture protocol was optimised from Jaffe et al (1974). Briefly, HUVECs 

were seeded in 25 cm2 culture flask (Fisher, UK), and covered with 6 ml of complete 

Ham's solution. The flasks were placed in sealed cylinder gassed with air containing 5% 

carbon dioxide (C02) and incubated in a 37 "C incubator. The complete Ham's solution 

was changed every second day. Once reaching confluence, cells were first rinsed twice 

with 5 ml of 0-PBS, and then 0.5 ml of 0.25% trypsin was added to detach cells from 

culture surface. Finally, 6 ml of complete Ham's solution were added to deactivate trypsin 

and cell suspensions were transferred into three new flasks. Cells in 70 - 80% confluence 

in passages 3 to 5 were used for calcium experiments. 

5.3.3. In Situ Recording of Ca2
+ Changes in Single HUVEC 

5.3.3.1 Apparatus for (Ca 2+(1 Measurement 

The recording chamber is composed of a rhombus-shaped Perspex block (I 0 mm x 5 

mm in diameter, Warner Instruments heated bath RS22) and a glass coverslip. The glass 

coverslip was attached to the underside of the block using epoxy resin, which formed the 

base of the bath to hold the cell suspension on the stage. A drop of cell suspension was 

139 



5.3 Material and Methods 

placed at the bottom of the bath, and allowed to adhere to the coverslip for up to 30 min. 

The initial perfusion pump flow rate was set at 0.5 ml min' 1 through the bath, and only cells 

that had attached finnly and stayed immobile under microscope were used. When the 

solution level and flow was stable, and just reached below the upper edge of the bath, a 

size-fitted coverslip was place to cover the upper open surface of the Perspex block in 

order to prevent oxygen exchange during experiment. The maximal bath volume was about 

0.5 ml and it took approximately I - 2 min for a fully solution replacement. 

The recording chamber was mounted on the stage of a Nikon Diaphot Eclipse inverted 

microscope and the cells were viewed using a x40 oil immersion lens (Nikon Plan Flour 

X40 DLL). There was a stage heater to keep the stage at about 37 °C during experiments. 

In experiments, [Ca2
']; was measured using a Cairn microspectrofluorimeter as previously 

described (Handy et al., 1996) using a spinning wheel filter (excitation/emission 340/380 

nm) and a dichroic mirror with a 500 nm cut-off for emitted light (Cairn Research, 

Faversham, Kent). The average [Ca2+] within the visual field containing the cell was 

indicated by the ratio of the 340/380 nm signal. Light emitted from areas of the field of 

view not occupied by the cell was reduced using a variable rectangular window on the 

side-port of the microscope. All imaging and data collection was observed and controlled 

by the Acquisition Engine software (Cairn Research, Faversham, Kent). The fluorescence 

intensity at wavelengths 340 nm and 380 nm were recorded every 4 seconds, and the 

intensity ratio of 340 to 380 nm was calculated as indication of [Ca2j; changes. 

5.3.3.2 Cell Preparation and Fura-2 Loading 

When HUVECs achieved 70% - 80% confluences, cells were harvested by 

trypsination and resuspended in complete Ham's solution to obtain cell suspension at 

concentration of2 x 105 cells mr 1 (as outlined above). Fura-2 acetoxymethyl ester (Fura-2) 

was dissolved in 5% pluronic in DMSO solution to get I mM of final concentration. For 
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loading with Fura-2, 2 J.il of I mM Fura-2 solution was added to I ml of cell suspension, 

then cells were incubated for I hat 37 oc in dark with culture medium and Fura-2 at a final 

concentration of 2 J!M. 

5.3.3.3 Experimental Protocol 

The aim of this experiment was to test the responsiveness of cells to hypoxia or 

hyperoxia following HBO treatment. Cells that had not been treated with HBO were used 

as controls. After loading with Fura-2, cells were placed on the stage and the [Ca2+]; of a 

single HUVEC was initially recorded during perfusion with HBSS (gassed with 95% air+ 

5% C02) for half an hour as a control to demonstrate that each cell had a stable 

intracellular [Ca2']; in normal saline. The next stage was to investigate the effect of 

hypoxia or hyperoxia on each cell. This was achieved by first recording cell with control 

perfusion and then switched to perfusate of hypoxic or hyperoxic HBSS solution as 

appropriate. Solutions were made hypoxic or hyperoxic by continuous bubbling with 95% 

N2 + 5% C02 or 95% 0 2 + 5% C02 for at least 30 min prior to perfusion of cells, and 

during the appropriate part of the perfusions, respectively. For each series of calcium 

recordings, the same batch of Fura-2 loaded cells was exposed to HBO treatment at 2.2 

ATA for 90 min at 37 °C. Immediate after HBO exposure, the [Ca2+]; was recorded as 

outlined above. Identical batches of cells from the same culture plates were used as the 

non-HBO treated controls, and similarly subject to either hypoxia or hyperoxia perfusions. 

p02 (partial oxygen pressure) was measured in the solution before it applied to the 

perfusion system using a ML Tll20 Micro-Oxygen Electrode (ADlnstruments Ltd, 

Oxfordshire, UK). For each procedure, 4 - 6 cells were recorded. The recording process 

was performed at 37 °C. In our experiment, calcium signal recording was terminated when 

the cell shape start to change (if at all) to ensure functional responses were recorded. 
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5.3.4. 1Ca2+]i Measurement Using Fluorescence Plate Reader 

5.3.4.1. Experiment Protocol 

In addition to recordings [Ca2l; changes from single cells, some experiments were 

also performed using population of cells in microplates, and the fluorescence recorded on a 

plate reader instead. Briefly, confluent HUVECs monolayer (70%- 80%) were trypsinised 

and resuspended in 6 ml of fresh complete Ham's culture medium. Two thirds of cell 

suspension (4 ml) was loaded with Fura-2 at a final concentration of 2 f!M. For loading 

with Fura-2, cells were incubated for I h at 37 °C in dark in a humidified atmosphere 

gassed with air and 5% C02. The one third of cell suspension (2 ml) was not loaded with 

Fura-2 and served as a blank control. After incubation, cells were washed to remove excess 

dye by centrifugation for I 0 m in at I ,000 rpm and resuspended in HBSS to give a final 

concentration of 2.0 x 105 cells mr 1
• And then 0.2 ml of control and the Fura-2 loaded cell 

suspension was added in triplicate into wells of 96-well cell culture plates at 4.0 x I 04 cells 

per well. The plate was again incubated at 37 °C in a humidified atmosphere gassed with 

air and 5% C02 for I hour to let all the cells attach to the plate bottom. 

The plates containing the same batch of cells were exposed to normobaric air + 5% 

C02 (Control), nonnobaric 95% N2 + 5% C02 (Hypoxia), nonnobaric 95% 02 + 5% C02 

(Hyperoxia) and 100% 0 2 at 2.2 ATA (HBO) for 90 min at 37 °C. [Ca2l; measurement 

was performed at 30 min and 0 min prior to exposures to show the pre-treatment [Ca2+]; 

levels; treatment and post-treatments effects were observed at immediate post exposures 

and at 5, I 0, 30 and 60 m in post exposures, respectively. [Ca2+]; measurement of 1-lUVECs 

was done using a PerSeptive Biosystems CytoFiuor1mii Fluorometer (GM!, Ramsey, MN, 

U.S.A.) equipped with dual injectors. The excitation filters were setting at 320/20 run and 

380/20 nm, when gain was set to 80% and 60% respectively of resting baseline intensity to 

ensure consistency between wells after calibration. The emission filter was setting at 
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508/20 nm. The fluorescence intensity ratio at 340nrn and 380nm was calculated to 

represent intracellular calcium concentration. 

5.3.4.2. Neutral Red Retention Assay for HUVECs 

The [Ca2+]; is believed to be relevant to cell damage, so cell viability was tested with 

the neutral red retention assay, which was adapted from Mori and Wakabayashi (2000). To 

exclude the possible effect of Fura-2 loading on cells neutral red intake, Fura-2 loaded 

cells were performed neutral red retention assay along with non-loaded cells (as blank 

control cells) for each experiment before expose to treatment. To investigate the treatment 

effects on neutral red intake of cells, the neutral red retention assay was performed after the 

last reading, which was at the end of 60 m in incubation after different oxygen exposure. 

Briefly, cells were washed twice with D-PBS, and 0.2 ml phenol red-free HBSS solution 

containing I 0 flg ml' 1 neutral red was added to each well. Then the plates were incubated at 

37 °C to allow cells to uptake neutral red for 3 hours. After incubation, the cells were fixed 

with I% fonnal saline (containing I% CaCb) for 5 m in to enhance cell attachment to the 

substrate. Finally, the neutral red dye was extracted by adding 0.2 ml of 1% acetic acid in 

50% ethanol to each well and read the plate at 540nm using a spectra-photometric 

microplate reader (Optimax, Sunnyvale, USA). The neutral red intake content in Fura-2 

loaded untreated cells and Fura-2 loaded treated cells was expressed as percentage to blank 

control cells from the same batch. 

5.3.4.3. (Ca2+1; Calibration in Plate Reader Measurement 

The fluorescence intensity ratio of 340nrn to 380nm need to be converted to [Ca2+];, 

which was achieved by creating a calibration curve from graded concentration of free 

calcium buffers with the same measurement condition as outlined above. The calcium 

buffers used to produce low stabilised concentrations of Ca2
+ were made by mix equal 
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volume of serials concentration of CaCI2 with 4 mM of ethylene glycol his (/J-aminoethyl 

ether)-N,N'-tetraacetate (EGTA) at pH 7.4. 

The free calcium concentrations in these Ca-EGT A buffers were calculated via "Free 

calcium calculator" (http://entropy.bmeurosci.org/cgi-binlegta) and assumed that no 

magnesium were added to the buffer solution (Table 5.1 ). 

Table 5. I Free calcium concentration calculation of Ca-EGT A buffers 

Total [Ca2+ I (M) Total EGT A (M) Free [Ca2+ I (M) 

2.4 x 1 o-3 2.0 x 1 o-3 3.99 )( 104 

2.2 )( 10-3 2.0 )( 10-3 1.99 )( 104 

2.1 )( 10-3 2.0 x 1 o-3 9.93 x 1 o-s 
2.0 x 1 o-3 2.0 )( 10-3 8.16 )( 10-6 

1.6 x 1 o-3 2.0 )( 10-3 1.34 )( 10-7 

1.2 )( 10-3 2.0 x 1 o-3 5.02 )( 10-6 

0.8 x 1 o-3 2.0 x 1 o-3 2.23 )( 10-6 

0.4 x 1 o-3 2.0 )( 10-3 8.37 )( 10-9 

5.4 Results 

5.4.1. Intracellular Calcium Changes of Single HUVEC 

5.4.1.1 Single HUVEC Locating and Recording 

When cells settled on to the bottom of the bath, we were able to observe and locate 

single HUVEC. The healthy cell varied in size and appeared round in shape (typical of a 

healthy cell just removed from a culture flask). The nucleus was centrally located, and 

organelles and cytoplasm looked evenly distributed around the nucleus inside the cell. The 

cell membrane appeared to be smooth and intact. The cells showed good contrast with the 

background, which made it easy to locate recording area for a single cell (Fig 5.1 A). As 
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some of the experiments continued, some cells started to change shape and blebs appeared 

on cell surface, although at first cells still maintain their size (Fig 5.1B), and then the cell 

became swollen and irregular shape (Fig 5.1 C). Finally, the cell membrane broke with cell 

content releasing from the cell and cell death occurs (Fig 5.1 D). The HUVECs were 

generally round at the start of the perfusion, and only good cells were selected for 

recordings. However, even healthy cells eventually showed membrane blebs after 1-2 

hours in the bright UV light of the microscope/vibration of flowing solution. But this was 

not a problem for experiments, because most recordings were made in 30 min or less. 

Fig 5. 1 Photomicrographes of Fura-2 loaded HUVECs during perfusion (x400). The cells are attached 
to the bath bottom and perfuse with HBSS gassed with air+ 5% C02• Cells show different morphology 
during perfusion: at the beginning, all cells are in round shape with an intact and distinct cell 
membrane (A); when perfusion persists for more than 2 hours, cells show variety of morphological 
changes such as (B) blebs appeared on surface but cell size and intact membrane was maintained; (C) 
bigger and more obvious blebs, cell swelling; and (D) cell membrane break and cell contents released 
from the cell. Calcium measurement of single cell was performed by recording only the setting area: 
the dashed rectangular area in (A) and (B). When the cell was observed start change shape as in (B), 
recordings were terminated. 
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5.4.1.2 Intracellular Calcium Measurements in non-HBO-treated Single HUVEC 

during Perfusion with Solutions of Different Oxygen Content 

The intracellular calcium level of non-HBO treated HUVEC was kept stable 

throughout the 30 min of control perfusion (HBSS gassed with 95% air + 5% C0 2). The 

fluorescence intensity ratio of 340 to 380 run ranged between 0.35 - 0.55, which gave an 

average value of 0.45 ± 0.05 (means ± SD) of five cells from different batches (Fig 5.2). 

The p02 of HBSS bubbled with 95% air + 5% C02 was at about 150 - 200 mm Hg. 
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Fig 5. 2 Fluorescence intensity ratio at 340nm to 380nm of HUVEC perfusion with control solution 
(HBSS gassed with air + 5% C02). Five cells from different batches have been recorded for half hour 
respectively. 

When cells were perfused with control solution, it varied between a couple of minutes 

to about 10 minutes to get clear stable recordings, and any cell that was not stable was 

discarded. Once a stable recording was observed, hypoxic solution was applied to the cells. 

In Fig 5.3, seven cells from different batch were recorded for a total at least 20 min. There 

was only one cell (Cell I) that showed a slight decrease in fluorescence ratio after 
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switching to the hypoxic solution, the other six cells remained at the same level when 

considering the fluorescent intensity ratio of 340 to 380 nm. The p02 of HBSS bubbled 

with 95% N 2 + 5% C02 was at about I 0 - 25 mm Hg. 
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Fig 5. 3 Ratio of fluorescence intensity at 340nm to 380nm of HUVEC perfuslon with control solution 
and then switched to hypoxia solution (HBSS gassed with 95% N2 + 5% C02). The hypoxic solution 
switch happened after 5 min control perfusion for CeU 1 and 2; 10 min for Cell3 and 4; and 15 min for 
CellS to 7. 
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In Fig 5.4, five cells from different batches were recorded in control + hyperoxia 

perfusate. Two cells showed a slow decrease in fluorescence ratio and then it retuned to its 

control perfusion level in 10 m in during hyperoxic solution perfusion (Cell 1 and Cell 5); 

whilst one cell showed a sharp increase in fluorescence ratio and then returned to its 

control perfuston level in less than 3 min after switch (Cell 3); the fluorescence ratio of the 

other two cells (Cell 2 and 4) remained unchanged from control perfusion level. All the 

five cells remained intact morphology during the experiments and the p02 of HBSS 

bubbled with 95% 02 + 5% C02 was ranged at 600 - 800 mm Hg. 
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Fig 5. 4 Ratio of fluorescence intensity at 340nm to 380nm of HUVEC perfusion with control solution 
and then switched to hyperoxia solution (HBSS gassed with 95% 0 2 + 5% C02). The hyperoxic 
solution switch happened after 5 min control perfusion for Cell I and 2; 10 min for Cell 3 and 4; and 4 
min fo r Cell 5. 
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5.4.1.3 Intracellular Calcium Measurement of HBO-treated HUVEC during 

Perfusion with Solutions of Different Oxygen Content 

The fluorescence intensity ratio of HBO-treated cells varies greatly. ln Fig 5.5, at 

immediate after loading HBO-treated cells, the highest ratio recorded was 1.2 (Cell 1 ), 

whilst the lowest ratio was 0.55 (Cell 6), which gave an average of 0.74 ± 0.27 (means± 

SO) of six cells from different batches and was 64% higher than that of control non-HBO 

treated cells. When perfusion with control solution, the HBO-treated cells start to release 

intracellular calcium as the fluorescence intensity ratio decreased as each perfusion 

persisted. The decrease was different among the cells, with some cell showing a rapid fall 

in fluorescence ratio, especially the cells with high fluorescence intensity ratios at the start. 

Other cells showed slower decreases of fluorescence intensity ratio. But at the end of each 

trial, all the cells maintained a similar fluorescence ratio with an average of 0.51 ± 0.04 

(means ± SD) of six cells from different batches, which was 32% less than that of 

immediate post-HBO value in the same cells. 

The background variation of the fluorescence ratio in HBO-treated cells, and the lack 

effect of hypoxia or hyperoxic perfusion on non-HBO treated cells, suggested that any 

effect of hyperoxia/hypoxia on an already low fluorescence ratio in the HBO-treated cells 

would not be detected. Observations on two HBO-treated cells with either hypoxia (Fig 5.6) 

or hyperoxja (Fig 5.7) solution showed a slight decrease of fluorescence ratio but no 

different effects were seen from the control solution recording, so it seems unnecessary to 

further investigate the response of HBO-treated cells to hypoxia or hyperoxia solution as 

original planed. 
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Fig 5. 5 Fluorescence intensity ratio of 340nm to 380nm of HBO-treated HUVEC perfusion with 
control solution (HBSS gassed with air+ 5% C02}. Six cells from different batches have been recorded 
for up to 35 min respectively. 
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Fig 5. 6 Ratio of fluorescence intensity at 340nm to 380nm of HBO-treated HUYEC perfusion with 
hypoxia solution (HBSS gassed with 95% N2 + 5% C02). 
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Fig 5. 7 Ratio of fluorescence intensity at 340nm to 380nm of HBO-treated HUVEC perfusion with 
byperox:ia solution (HBSS gassed with 95% 0 2 + 5% C02). 
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5.4 Results 

5.4.2. Oxygen Effects on [Ca2li in Population of HUVECs 

ln addition to recording the rea l-time [Ca2+]i changes of single HUVEC with or 

without HBO treatment to different concentration of oxygen perfusates, we also 

investigated the (Ca2ji response in population of cells to different concentration of oxygen. 

5.4.2.1 Oxygen Effects on IntraceUular Calcium of HUVECs 

The cells were allowed to rest in a microplate for 1 hour to attach to the microplate 

and achieving a stable reading of [Ca2ji prior to treatments. [Ca2ji measurements were 

taken at 30 min and 0 min before treatment, and the fluorescent intensity ratio remained 

stable and there was no difference between treatment groups. The per-treatment level of 

average ratio ranged of 0.30 ~ 0.32 as shown in Fig 5 .8. 
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Fig 5. 8 Fluorescence intensity ratio at 340nrnl380nm of population of HUVECs at 30 min and 0 min 
prior to treatments. Data were presented as means± SEM of at least 8 replicates. Recordings are from 
populations of cells made on a plate reader. 

Once a stable pre-treatment (Ca2+]i level had reached, the plates were exposed to 

control Air, Hypoxia, Hyperoxia or HBO treatment for 90 min at 37 oc as described. 

Interestingly, all the four kinds of exposures increased the fluorescence intensity ratio 

significantly in the population of HUVECs, and the ratio remained at relatively higher 

levels for up to 60 min post-treatment. However, the [Ca2+]i of HUVECs showed a slightly 

different response to each treatment. Exposure of HUVECs to the control Air (95% air + 
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5% C02) increased the ratio value to 0.58 ± 0.06 (n = 7) at immediate post exposure, which 

showed a slight shift during 60 min incubation and gave a value of 0.51 ± 0.03 (n = 9) at 

the end of incubation (Fig 5.9). When population of HUVECs exposed to hypoxic 

environment (95% N2 + 5% C02), a higher fluorescence intensity ratio was shown than 

that of Air exposure. The immediate post-treatment level was 0.68 ± 0.06 (n = 9), which 

decreased slowly throughout 60 min incubation to 0.63 ± 0.04 (n = 8) (Fig 5.9A). Although 

the ratio level in the hypoxic group was kept higher than that of air group, there was no 

significant differences seen (P = 0.23, One-way ANOV A). The fluorescence intensity ratio 

increases of HUVECs during high concentration of oxygen were bigger than either control 

air or hypoxic exposure. The normobaric 95% 0 2 + 5% C02 exposure increased the ratio to 

0.74 ± 0.07 (n = 8), which is 27% higher than that of Air group (P = 0.11, unpaired Hest). 

The ratio in hyperoxic group decreased relatively quickly especially in the last 20 min of 

observed incubation time and it was 0.61 ± 0.05 (n = 7) at the end of incubation (Fig 5.98). 

Although a total P = 0.02 (One-way ANOV A) was shown when comparing the value of 

hyperoxia groups to air groups, there was no significant difference was found at each 

corresponding time-points. HBO treatment presented the highest level of fluorescence 

intensity ratio among the four treatments (Fig 5.9C). At immediate post-treatment, the ratio 

was 0.75 ± 0.05 (n = 8), which is similar to that of hyperoxia group, but 29% higher than 

that of Air group (P = 0.04, unpaired t-test). Unlike hyperoxia group, the ratio decreased 

very slowly and a nearly even line was observed during 60 min incubation and was 0.69 ± 

0.06 (n = 7) at the end of the incubation. This change was similar to that observed in 

hypoxia group. The ratio in the HBO group remained significant higher than that of control 

air group and a P < 0.05 (unpaired Hest) was seen at each corresponding time-points. 

However, there was no statistic difference shown between hypoxia, hyperoxia or HBO 

treatments, nor within each group of the post-treatment changes. 
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5.4 Results 

Fig 5. 9 Changes of fluorescence intensity ratio at 340nm to 380nm of HUVECs during 60 mi n post 
treatment. HUVECs were exposed to normobaric 95% air + 5% C02 (Air) as control, normobaric 
95% N2 + 5% C02 (Hypoxia) in (A), normobaric 95% 0 2 + 5% C02 (Hyperox.ia) in (B) and 100% 0 2 

at 2.2 A TA (HBO) in (C) for 90 min at 37 •c. IntraceUular calcium measurement were performed at 
immediate, 5min, lOmin, 20min, 30min, 40min and 60min post treatments. Data were presented as 
means± SEM of at least 7 replicates. And * P < 0.05, ** P < 0.01 (unpaired t-test) when compared with 
control level in Air treatment group. 
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5.4.2.2 CeU Viability in Different Oxygen Treatments 

ln order to flnd out if calcium disturbances induced more cell damage, the neutra l red 

assay was performed (healthy cells uptake more neutral red dye than damaged cells). 

HUVECs loading with Fura-2 AM showed a sl ight less neutral red uptake as 82 ± 8% (n = 

5) than that of blank control cells without Fura-2. None of the treatments affect the neutral 

red uptake percentage when measured at the end of each experiment, which presented as 

84 ± 11 % (n = 5), 87 ± 11 % (n = 5), 91 ± 10% (n = 7), and 91 ± 13% (n = 5) to that of 

blank control cells in air, hypoxic, hyperoxic and HBO-treated group respectively (Fig 

5. 10). There were neither sta tistical differences between the four groups (P = 0.97, One-

way ANOV A), nor with the blank control group (P = 0.84, One-way ANOV A). 
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Fig 5. 10 Relative absorbance intensity of treated HUVECs to blank healthy control cells in neutral red 
intake ability. Blank control cells were healthy HlJVECs without Fura-2 loading and showed above 
99% viability as counted with Eosin Y stain, and their neutral red absorbance intensity at 540 nm was 
7.5 ± 1.0 per 105 cells (means ± SEM, n = 6). Fura-2 represents cells loaded with Fura-2 before any 
treatment. Air, Hypoxia, Hyperoxia and HBO represent cells loaded with Fura-2 and exposed to 95% 
air+ 5% C02 (control Air), 95% N2 + 5% C02 (Hypoxia), 95% 0 2 + 5% C02 (Hyperoxia) and 100% 
0 2 at 2.2 ATA (HBO) for 90 min at 37 •c respectively, and then incubated for a further 60 min in air. 
The reading for the later four groups was at the end of 60 min incubation. Data were expressed as 
means± SEM of more than 5 replicates. One-way AN OVA test was performed for group difference. 
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5.4 Results 

5.4.2.3 fCa2i i Calculation from Fluorescence Intensity Ratio of 340 to 380 nm 

Calculation of fluorescence intensity ratio to [Ca2+]i was perfonned with the plate 

reader measurement. A standard curve of [Ca2ji to fluorescence intensity ratio of Fura-2 

was obtained and showed as Fig 5.1 1. At very low concentration between 8.4 to 22.3 nM, 

the fluorescence intensity ratio increased slightly from 0.17 ± 0.005 to 0.23 ± 0.002. When 

raising [Ca2Ji higher than 22.3 nM, there was a nearly linear sharp increase as the 

corresponding ratio was 0.49 ± 0.03 at 50.2 nM and 1.22 ± 0.05 at 134 nM. Our [Ca2+]i 

measurement of HUVECs were in the range between 35 nM and 85 nM, which 

corresponding to ratio of 0.30 and 0.80 respectively. Once the [Ca2+] i raised up to 11M 

level, the fluorescence intensity ratio stop increasing and became a stable line. At 8.1 6 11M 

of [Ca2ji, the ratio was 2.16 ± 0.01 , while increase [Ca2+]i to 400 j..lM, the ratio only 

increased to 2.42 ± 0.0 I. 
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Fig 5. 11 JCa2+1; calibrations from fluorescence intensity ratio of 340 to 380 nm with Fura-2 AM 
loading. Graded concentration of free calcium solution was made from Ca-EGTA buffer at pH 7.4. 
T he data was means± SEM of five replicates at each concentration, and nonlinear regression equation 
of Sigmoid was used with Sigmaplot 10.0, and r2 = 0.99. 
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5.5 Discussion 

Using a Cairn rnicrospectrofluorimeter, we have successfully recorded the real-time 

[Ca2+]; changes of single cultured HUVEC during different oxygen concentration perfusion. 

The non-H80 treated cell presented a stable fluorescence intensity ratio (340 to 380 nm) 

during control solution perfusion, and switching to hypoxic or hyperoxic solution showed 

no effects on the ratio. The H80-treated cell showed a higher initial fluorescence intensity 

ratio, but the variable ratio decrease during perfusion covered the possible effects to be 

observed when perfusion with different solutions. However, when population of HUVECs 

were exposed to hypoxic, hyperoxic and 1-180 conditions for 90 min, the 1-180 treated cells 

showed significant higher level of [Ca2+]; than that of control air treated cells, and this 

effect lasted for 60 min post-treatment under observation. There was no evidence shown 

that oxygen treatment affect cell viability as confirmed by neutral red cell retention assay. 

And finally, a standard curve of fluorescence intensity ratio of 340 to 380 nm versus a 

serial concentration of free calcium was set up, which allows us to calculate the actual 

corresponding intracellular calcium concentration. 

The resting basal [Ca2+]; in our study was at about 40 nM. In previous studies, the 

basal intracellular free calcium concentrations ([Ca2+];) of endothelial cells varies with the 

precise origin of the cells and cell cycles, and a range of [Ca2+]; of 30 - I 00 nM in cultured 

1-lUVECs have been reported (Dolor et al., 1992; Arnould et al., 1992; Berna et al., 2002). 

Our measurement is right in the range of previous studies, which confinns that the calcium 

measurements were successful. Exposure cells to hypoxia for 90 min, [Ca2+]; increased two 

fold of the pre-treatment and showed an increasing trend when comparing to air-exposed 

cells in our study. In previous studies, the amplitude and the spatio-temporal patterns of 

hypoxia-induced [Ca2+]; varied. Amould et al (1992) reported that during the first 30 min 
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of hypoxic incubation of HUVECs, [Ca2+]i only showed a very slightly increase, and 

between 30 min and 120 min, the increase was constant and more pronounced, leading to a 

concentration of around 230 nM after 120 min which represented ten fold the 

concentration of control cells whilst still had 80% viability. The same research groups 

reported a four fold of [Ca2+]; increase (220 nM) after 120 min of hypoxia incubation 

(Berna et al., 2002). Using simultaneous hypoxic and Ca2
+ -free perfusion to indicating 

Ca2
+ release from an intracellular pool, Aley et al (2005) showed a small but discernible, 

transient rise of [Ca2+]; (about 30 - 40 nM) in 85% of measured human saphenous vein 

endothelial cells. The [Ca2+]; recording were from intact mono layers of endothelial cells in 

these hypoxia experiments, and were grown to confluence on glass coverslips. Due to the 

requirement of simultaneous perfusion, the specific design of our experimental system 

made it incompatible to put an extra glass coverslip on the microscope stage in our lab, 

therefore we are unable to perform calcium measurement from monolayer of cells grown 

on glass coverslips. Instead, we used cell suspension in our single and population of cells 

study. Although there was one report of unsatisfactory [Ca2+]; measurement in suspensions 

of endothelial cells (W ickham et al., 1988), considerable studies have been using 

suspensions of endothelial cells to examine [Ca2
•]; response to variety of stimulus such as 

thrombin, calcium, ET -1 and etc (Jaffe et al., 1987; Nakayama and Matsuda, 2003; Jacques 

et al., 2005; Hadri et al., 2006). In our present study, hypoxia showed an increasing trend 

of [Ca2+]; when population of ECs were used, and no effect was observed with single cell 

recording. Similar results were found when exposing HUVECs to hyperoxia condition 

(95% oxygen). The reasons for the difference between single cell and the cell population in 

microplates are unclear, but perfusate flow rate and adhesion of the cell to the bath, the UV 

light intensity, and temperature control are factors that may contribute to the different 

results. 
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Although studies have shown that oxygen is able to regulate [Ca2j; levels in 

endothelial cells, but the signalling pathway is not clear yet. Aley et al (2005) indicated 

local 0 2 tension is a major determinant of Ca2
+ signalling in the vascular endothelium 

because hypoxia regulates intracellular Ca2
+ signalling via two distinct pathways. Firstly, it 

modulates agonist-evoked Ca2+ liberation from ER primarily through regulation of ROS 

generation from NADPH oxidase. Secondly, hypoxia liberates Ca2
+ from ER via ryanodine 

receptors, an effect requiring mitochondrial ROS generation. Consistently, Peers et al 

(2006) showed that hypoxia evoked liberation ofCa2
+ from the ER via activation of the IP3 

receptor and involves ROS generation from mitochondria because pre-treatment of 

endothelial cells with thapsigargin (an inhibitor for Ca2+ -ATPase of ER), IP3-generating 

agonists, or antioxidants, abolished hypoxia-induced [Ca2+]; increase. Study on hyperoxia 

also pointed the involvement of ROS in calcium regulation. Brueckl et al (2006) found 

continuously yet reversibly increase ROS formation and [Ca2+]; when cells were exposed 

to 70% oxygen, which were blocked by the mitochondrial complex I inhibitor rotenone 

(inhibitors of NAD(P)H oxidase); and BAPTA (intracellular Ca2
+ chelator) predominantly 

attenuated the late phase of the ROS increase after > 30 min. Thus, they implied that 

hyperoxia induces ROS formation in lung capillary ECs, which initially originates from the 

mitochondrial electron transport chain but subsequently involves activation of NAD(P)H 

oxidase by endothelial [Ca2+]; signalling. Therefore, it seems that the cross-talk between 

Ca2+ and ROS in either hypoxia or hyperoxia finely tunes the homeostasis and integrates 

functionality in different types of cells. On one side, calcium homeostasis components are 

modified by ROS (e.g. thiol oxidants increase the activity of JP3) (Bootman et al., 1992; 

Bultynck et al., 2004) and ryanodine receptors (Feng et al., 2000). The presence of 

sulfydryl groups in these receptor channels enables them to respond to low levels of 

oxidants far below those achieved during pathological states or in extreme experimental 
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conditions (Camello-Almaraz et al., 2006). And on the other side, ROS participates in 

normal Ca2+ signalling as the blockade or scavenging of ROS can modify the Ca2
+ signal 

(Hu et al., 2002; Xi et al., 2005; Camello-Almaraz et al., 2006). And functionally, the 

effect of oxidants on calcium signalling can vary from stimulating to repressive, depending 

on the type of oxidants, their concentrations, and the duration of exposure (Ermak and 

Davies, 2002). 

In our study, significant increase of [Ca2+]; was observed in HBO-treated cells, and 

this increase last up to 60 min post-treatment. There were only two studies so far that 

investigated the HBO effects on [Ca2+]; . Wang et al ( 1998) found that after HBO exposure 

at 5 AT A, the [CaH]; increased two fold in rat hippocampus, and pre-treated with 

daurisoline (a putative P-type calcium channel blocker) reduced [Ca2+]; by 56 %as well as 

delayed the appearance of CNS oxygen toxicity and increased the survival rate. Liu et al 

(1999) measured [Ca21
]; changes of eo-cultured endothelial cells (EC) and smooth muscle 

cells (SMC) in a specially designed miniature oxygen chamber. Under 1.0 MPa (1.0 ATA) 

of HBO treatment, [Ca2+]; kept stable for the first 3 min then declined; whilst under 2.0 

AT A and 3.0 AT A, [Ca2+]; increased during the first 3 min and then declined; under 4.0 

AT A, [Ca2+]; increased during the fust 2 min and then declined, some cells showed 

membrane rupture. In Liu's experiment, HBO treatment lasted for 10 min and the required 

pressure were achieved in I min, which may cause great changes of cell properties, and 

then influence the [Ca2+]; measurement. In our study, cells were treated with HBO at 2.2 

AT A for 90 m in, slow pressure increases and decreases were selected to avoid 

manipulating the cells abruptly. Simutaneously, single cell recording and neutral red 

retention test have confirmed that HBO treatment did not affect the cell integrity or 

viability. Although studies all showed that HBO treatment induce [Ca2
']; increase, it is still 

not clear what causes this changes and what signalling pathway is involved. Considering 
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our results, the mechanical stress such as pressure during HBO may contribute to the 

[Ca2+]; increase as hyperoxia treatment did not show the same effect as HBO treatment. 

Coincidently, Matsuo and Matsuo ( 1996) found that transient elevations or oscillations of 

the intracellular calcium concentration in response to the elevation of hydraulic pressure to 

20-30 mm Hg. In addition, Sato et al (2006) presented up-regulated of Ca2
+ regulatory 

proteins RyR and Ca2+ -ATPase and their genes expression in cardiac myocytes subjected 

to a high ambient pressure (200 mm Hg higher than nonnobaric pressure). On the other 

hand, due to the nature of generating ROS in HBO, it is still possible that ROS signalling 

may responsible for the [Ca2+]; increase. At present study, we conducted the prilimitary 

investigation of [Ca2+]; changes in HBO treatment. The ability of HBO treatment to 

increase [Ca2
']; of HUVECs without damaging the cells imply that calcium may serve as 

an oxygen sensor or a second messenger in HBO-induced cell events. Moreover, 

mechanical stress such as pressure may be responsible for this induction. But due to the 

complex regulatory system on calcium and limited infonnation from previous HBO 

research, further examination will be needed to investigate the calcium signalling pathway, 

as well as to distinguish the oxygen effect from mechanical stress effect (e.g. pressure, pH) 

during HBO treatment, which we believe will make a great contribution towards the 

understanding of the beneficial effects of HBO treatment. 
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6. I Abstract 

Chapter 6 

Hyperbaric Oxygen Treatment Protects 

Endothelial Cells against H20 2 - induced 

DNA Damage 

6.1 Abstract 

Hyperbaric oxygen (HBO) therapy has been reported to regulate and improve 

endothelial cell functions. However, studies have demonstrated that HBO exposure induces 

oxidative DNA damage in human lymphocytes, and the involvement of antioxidant 

defense system during this process varies from studies. In this chapter, we investigate the 

potential DNA-damaging effects of HBO treatment and further oxidative stress stimulation 

on human endothelial cells using comet assay for the first time. Meanwhile, changes of 

intracellular glutathione pool were examined to demonstrate the involvement of this 

important antioxidant scavenger. The results suggest that a single HBO exposure under 

therapeutic condition causes small but significant DNA migration extent change, and this 

change is totally repairable in HUVECs. In addition, HBO treatment protects the cells 

against H20 2-induced DNA damage, and the increase in antioxidant capacity as reflected 

in an increase in redox status of glutathione pool may be relevant to this protective 

response. 
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6.2 Introduction 

There are over 74,000 damage incidences occur in DNA per cell per day, mostly by 

oxidation, hydrolysis, alkylation, radiation or toxic chemicals that directly damage one of 

the 3 billion bases contained in DNA or create breaks in the phosphodiester backbone that 

the bases sit on (Lodish et al., 2004). The common types of DNA damages include: (I) 

Base modifications by methylation, oxidation; (2) Mispairs: mistakes in DNA synthesis; (3) 

Cross-linked nucleotides: intrastrand, interstrand covalent links; (4) single-stranded or 

double-stranded DNA breaks; (5) pyrimidine intrastrand dimer (cyclobutane); and (6) 

hydrolysis: de-amination of base (Watson et al., 2004). To protect the genetic integrity, 

cells have developed efficient mechanisms to repair DNA damage: DNA repair enzymes; 

and multiple processes such as base- and nucleotide-excision pathways exist that 

continuously monitor chromosomes to correct and repair the wide range of DNA damage 

(Friedberg et al., 2006). If the damage in a cell is too severe, the cell will be eliminated via 

committing programmed cell death (apoptosis, Friedberg et al., 2006). 

Oxidative DNA damage, caused by reactive oxidative species (ROS) attack, is the 

most frequent type encountered by aerobic cells. Oxidative DNA damage can produce a 

multiple modifications in DNA including base and sugar lesions, single or double strand 

breaks, alkali labile sites, and various species of oxidized purines and pyrimidines (Joenje, 

1989). Notably, oxidative DNA damage can be eliminated or repaired accurately and 

efficiently by strand break rejoining and base excision repair. But if left unrepaired, 

oxidative DNA damage can lead to detrimental biological consequence including cell 

death, mutations and transformation of cells to malignant cells, which is believed largely 

contributed to cancer and aging (Feig et al., 1994; Wilson and Bohr, 2006). 
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In 1984, Swedish scientists Ostling and Johanson first introduced a microgel 

electrophoresis technique for direct visualization of DNA damage in individual cells, 

which is later called "the single gel assay (SCG) or comet assay". In 1988, Singh and eo

workers modified an alkaline comet assay based on its initial version of neutral lysis and 

electrophoresis conditions, which increased the sensitivity and broadened the applicability 

of comet assay. The advantages of comet assay include: (I) the sensitivity for detecting 

low levels of DNA damage; (2) the requirement for small numbers of cells per samples; (3) 

flexibility; ( 4) low costs; (5) ease of application; and (6) the relatively short time period (a 

few days) needed to complete an experiment (Tice et al., 2000). 

In comet assay, the cells were embedded in a thin agarose gel on a microscope slide 

and lysed by non-ionic detergents and high salts to deplete all cell protein, and the 

remaining nucleoid DNA were characterised of intact, negatively supercoiled and circular. 

DNA nucleoids were subsequently allowed unwinding under either alkaline or neutral 

conditions. Following unwinding the DNA is electrophoresed which was like that the 

electric current simply pulled the DNA halo to one side in electrophoretic field. After 

staining with fluorescent DNA binding dye, a cell under a microscope displayed the 

appearance of a comet, with a head (the nuclear region) and a tail containing DNA 

fragments or strands migrating in the direction of the anode. The extent of DNA liberated 

from the head of the comet was directly proportional to the DNA damage (Collins, 2004). 

And the relative tail intensity, presented the relative fluorescence intensity of head and tail, 

normally expressed as a percentage of DNA in tail (% DNA in tail), is a common way to 

evaluate and quantify DNA damage by image analysis. This parameter is relatively 

unaffected by threshold settings, and also allows discrimination of damage over the widest 

possible range (in theory, from 0 to 100% DNA in tail). In addition, it bears a linear 

relationship to DNA break frequency up to about 80 % in tail, as well as gives a very clear 
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indication of what the comets actually looked like (Collins, 2004). Nowadays, with the 

help of lesion-specific enzymes that digest a particular recognised kind of damage, it is 

possible to convert the enzyme sensitive sites to additional DNA breaks which increase tail 

intensity in comet assay. The endonuclease Ill detects oxidized pyrimidines (Collin et al., 

1993); fonnamidopyrimidine DNA glycosylase (FPG) detects the major purine oxidation 

product 8-oxoguanine as well as other altered purines (Collin et al., 1996). The 

endonuclease lli or FPG treatment has made comet assay more specific and sensitive to 

measure oxidative DNA damage. 

Comet assay has been widely used for studies on genotoxic agents, ecological 

monitoring, DNA repair (Collins, 2004). Using comet assay, HBO treatment has shown to 

induce DNA damage in whole blood samples, human lymphocytes and V79 Chinese 

hamster cells (Dennog et al., 1996; Speit et al., 1998 and 2000; Eken et al., 2005). 

Although HBO therapy has been used successfully as a conjunctive treatment to 

patients suffering severe hypoxia or inflammatory problems, exposure to high 

concentration of oxygen always raise an issue of producing more ROS, which may cause 

oxidative stress and damage cell or tissue (Jamieson et al., 1986). In mammalian cells, the 

existing antioxidant defence system is always ready to protect cell and tissue from free 

radicals' attack. But under certain circumstance, ROS level may overcome the antioxidant 

defence, which consequently cause cell oxidative damage. There is evidence that HBO 

treatment can induce oxidative damage in cells. Both in vivo and in vitro studies have 

demonstrated that a single HBO exposure (2.5 AT A, 3 x 20 m in) induces clear and 

reproducible DNA strand breaks of lymphocytes from healthy volunteers, and these breaks 

are due to the oxidative base damages (Dennog et al., 1996; Speit et al., 1998 and 2000). 

And they also indicated that HBO- induced lymphocyte DNA damage was reversible as 

DNA damage was not found 24 h after !51 HBO treatment and the following HBO 
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treatments; an increase of antioxidant defence in HBO-treated cells may contribute to these 

protective effects. Eken et al (2005) found similar changes in lymphocytes samples 

isolated from patients with hypoxia-related problems; however, they also observed a 

persistent DNA damage effect even after the lOth and 201
h HBO treatment (2.5 AT A of 3 x 

20 min for each treatment). lt is suggested that HBO treatment affects antioxidant defence 

system; the response of antioxidants enzymes and scavengers to HBO treatments really 

varies between studies. Ozden et al (2004) addressed that HBO treatment benefit the redox 

state by increasing SOD activity, GSH and Zn levels; and Kudchodkar et al (2006) 

demonstrated the increased levels of GSH, glutathione reductase (GR), Se-dependent 

glutathione peroxidase (GPx) and catalase in chronic HBO treatment. But other studies 

showed no changes or even decreased activity in some antioxidant enzyme after HBO 

exposure (Muth et al., 2004; Eken et al., 2005). Till now, whole blood or lymphocytes 

have been used in most HBO studies and other cell types have rarely been investigated. 

Lymphocytes are a part of white blood cell and work together with other types of white 

blood cells to build the natural defence system in human. They are supposed to be more 

resistant to oxidative stress than any other types of cells because of their congenital 

properties. Therefore, it is vital to investigate how other types of human cells conflict with 

HBO treatment. Endothelial cells comprise the innermost surface of blood vessels, and are 

exposed to various sources of stress. HBO therapy has been documented for benefiting 

some patients with chronic wounds by improving endothelial cell functions and 

angiogenesis in the wound site (Sheikh et al., 2000). In this chapter, we aim to study the 

effects of a single HBO treatment on DNA damage in human endothelial cells, which have 

not been investigated before. Cultured human umbilical vein cells (HUVECs) were used in 

our study because it enabled precise control of the experimental conditions and provided 

the opportunity to manipulation the media for other factors. The experimental approach 
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included positive controls to explore the sensitivity of comet assay to detect DNA damage 

of HUVECs induced by hydrogen peroxide (H20 2), which has been a frequently used 

reference toxicant to assess DNA damage in many cell types (Aruoma et al., 1989). The 

DNA migration of cell comet images to HBO treatment were then detected immediately, 

and 24 h after HBO treatment to observe the DNA damage level and repairable capability. 

Meanwhile, immediate and 24h post HBO-treated cells were further exposed to H202 to 

investigate the potential effect of HBO treatment on oxidants-induced DNA damage. 

Along with all the DNA damage measurement, we also looked at the changes of 

glutathione pool in these cells to investigate the involvement of these important antioxidant 

proteins. Glutathione (GSH) is among the most important antioxidant in cells, being used 

in enzymatic reactions to eliminate peroxides and in nonenzymatic reactions to maintain 

ascorbate and a-tocopherol in their reduced and functional forms. In these reactions, GSH 

is oxidized to its disulfide form, GSSG. The balance of glutathione pool (GSH to GSSG) 

provides a dynamic indicator of oxidative stress as well as redox signaling and control 

(Johes, 2002). Thus, both GSH and GSSG levels of HUVECs were measured in our study, 

and the ratio ofGSH to GSSG was calculated. 

6.3 Material and Methods 

6.3.1. Cell Culture 

HUVECs were cultivated in 3 ml of complete Ham's solution (refer back to 5.3.2 

where the culture is described) in Nunclon Delta SI 6-well tissue culture plates (Nunc, 

lnterMed, Denmark) and maintained in a humidified incubator at 37 °C (5% C02 + 95% 

air). The cells were used when reaching 80- 90% confluences in the 2nd to 5th passage. 
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6.3.2. Response of HUVECs to H20 2 Treatment 

Cells were exposed to a serial concentration of H202 in order to find out the sensitivity 

of HUVECs to oxidative stress. Briefly, cells were harvested with 0.25% trypsin and 

resuspended with complete Ham's solution to obtain final concentration of 2 - 5 x 104 cells 

mr 1
• The cell viability was checked by Eosin Y stain as over 98% cells were alive. H20 2 

were then added to I ml of cell suspension to obtain final H20 2 concentrations ranging 0 -

0.5 mM. After incubated for 15 min at 37 °C, cells were centrifuged at I ,000 rpm for 5 m in 

and washed twice with 0.3 ml of PBS. Comet assay was conducted, and four replicates 

experiments were performed for data analysis. H20 2 induced a dose-dependent change in 

HUVECs' DNA migration pattern. And subsequently, two concentration of l-h02 (0.1 and 

0.2 mM, respectively) approximately at the start and end of the linear range of H20 2-

induced DNA damage were selected and applied to investigate and compare the acute and 

potential influence of HBO treatment on H20 2-induced DNA response. 

6.3.3. HBO Treatment and Subsequent H20 2 Incubation 

HBO exposure was performed in a hyperbaric chamber incubated at 37 oc. Intact 

HUVECs mono layers cultured in 6-well plates were exposed to I 00% oxygen at 2.2 ATA 

(HBO) for 90 min, and cells from the same batch exposed to normobaric air (Air) were set 

as control. After exposures, cells were transferred to normal culture conditions for a further 

24 h recovery. At immediate post exposures and 24h post recovery, cells were collected by 

gently trypsinization and resuspended in complete Ham's solution to obtain final 

concentration of 2 - 5 x 104 cells mr1
• 

For detection the HBO-induced DNA damages, one microliter of HBO-treated and 

Air-treated cell suspensions were examined by comet assay right away at immediate post 

and 24h post exposure. In order to explore the effects of HBO treatment on oxidative 
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stress-induced DNA damage, another one micro) iter of above cell suspensions were treated 

with 0.1 mM and 0.2 mM of H20 2, respectively, at 37 °C for 15 m in, and then examined by 

comet assay as well. Prior to each comet assay examination, 50 J.d of cell suspension was 

taken and stain with 5 ul of 2 mg mr 1 stock Eosin Y solution, the total number of cells and 

the stained number of cells (dead cells) were counted with a hemocytometer to give a 

percentage of cell viability. 

6.3.4. Glutathione Pool Measurement 

Cells collected at the time points above were also analysed for total glutathione and 

oxidized glutathione content using the glutathione reductase (GR)-DTNB recycling assay 

described in 2.3.2. Briefly, cell suspension from above treatments was centrifuged at 1,000 

rpm for 5 min, and cell pellet was quickly mixed with 250 J.il of 3.5 % 5-sulfosalicyclic 

acid to lysis cells. The acid-cell solution was aliquot into I 00 J.il each of two 

microcentrifuge tubes. To conjugate GSH, 2-vinylpyridine was added to one of the aliquots 

to a final concentration of 0.35 M and mixed vigorously (Vandeputte et al, 1994). All 

samples were stored at -20 oc until used for glutathione measurement. 

For glutathione and protein content measurements, all the samples were thawed on ice 

and centrifuged at 10,000 rpm for 5 min at 4 oc. The protein-free supemant was collected 

for glutathione measurement. Briefly, 20 J.il supemant was mixed with 20 J.il of 10 mM 

5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) each well of 96-well plate, followed by 

adding 280 J.il of assay mixture consist of 0.17 U of glutathione reductase and 0.078 J.lmol 

NADPH solved in phosphate buffer (lOO mM potassium phosphate, pH 7.5, containing 5 

mM potassium EDTA). The change of the absorbance was read at 412 nm for 5 min at I 

min intervals using Kinetic function on plate reader. The absolute values of GSH were 

determined during each measurement with a standard curve created from 20 J.il of standard 
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amount of GSH solution (0 to 10 J..LM) in 3.5% 5-sulfosalicyclic acid. The precipitated 

protein was measured using Bio-Rad protein assay with bovine album protein as standard. 

6.3.5. Detecting HUVECs DNA Damage Using Alkaline Comet Assay 

6.3.5.1. Chemicals and Solutions 

All the chemicals are purchased from Sigma-Aldrich (Poole, UK). Solutions to make 

before comet assay include: 

(I) LM P agarose: 0.1 g low melting agarose is melt in 10 ml PBS solution. 

(2) HMP agarose: 0.1 g high melting agarose is melt in 10 ml PBS solution. 

(3) Lysis solution contains 2.5 M NaCI, 0.1 M EDTA, 10 rnM Tris, and 1% N

Lauroylsarcosine sodium salt, pH 10, and stored at 4 °C. 

(4) Electrophoresis solution contains 0.3M NaOH, I mM EDTA, and pH >13. 

(5) Neutralising buffer contains 0.4M Tris, pH 7.5; and stored at 4 °C. 

6.3.5.2. Comet Assay Protocol 

The alkaline comet assay has been modified and optimised for endothelial cells and 

the general schematic flow is shown in Fig 6.1. 
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Alkaline DNA unwinding (pH > 13, 60 min) 

Electrophoresis (20V, pH > 13, 30 min) 

Stain and Image analysis 

Fig 6. 1 General schematic flow of the alkaline comet assay protocol for H UVECs. 

One microlitre of cell suspension from 6.3. 1 was centrifuged at l ,OOOrpm for 5 min, 

and the supemants was discarded. The cell pellet was mixed well with 180 J..Ll of LMP 

agarose. Two drops of 80 J..Ll celi-LMP agarose suspension were placed directly onto a 

HMP agarose pre-coated slide, and quickly covered each with an 18 x 18 mm coverslip. 

The slides were kept at 4 oc for I 0 min to allow solidification of the agarose. Each slide 

was then lysed for I hr at 4 oc in lysis solution ( 2.5 M NaCI, 0.1 M EDT A, 10 mM Trizma 

base, 1% N-Lauroylsarcosine, with 1% Triton X-1 00 and I 0% DMSO added just prior to 

use). Next, the slides were placed in the electrophoresis solution for 40 min of alkali 

denaturation and followed by 30 min electrophoresis at 20 V using an electrophoresis 

compact power supply at 4°C. The slides were neutralized by rinsing in neutralising buffer 
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(pH 7.5) for 20 min at 4°C. Finally, the slides were stained with ethidium bromide (20 J.lg 

ml"1
) for the visualisation. To score of comet DNA, pictures of I 00 randomly selected cells 

per slide were captured at x400 magnifications under fluorescence microscope and 

examined with Komet 5.0 image analysis software, which is able to automatically analyse 

% DNA in tail for each comet image. 

6.3.6. Statistical Analysis 

Four cohorts of cultured HUVECs were used to evaluate H202 dose effect on DNA 

damage. I 00 comet images were scored per slide for each concentration of H202 (0 - 0.5 

mM) and mean% DNA in the tail(± SD) were calculated from the respective values of the 

four replicates. The EC50 was calculated by applying curve fitting function (Equation: 

Sigmoidal, Logistic, 4 Parameter) of Sigmaplot 8.0 (Systat Software lnc). DNA damages 

of HUVECs were scored by % DNA in tail and expressed as means ± SEM of replicates at 

immediate post Air or HBO treatment as well as 24 h post treatments. The content of 

cellular glutathione were presented as reduced glutathione (GSH nmol mg·' protein), 

oxidatised glutathione (GSSG nmol mg·' protein). And the glutathione ratio (% of GSH to 

GSSG) was calculated based on individual GSH and GSSG value. The means of% DNA 

in tail, GSH, GSSG and their ratio ( ± SEM of replicates) were analysed by One-way 

ANOV A test, then followed by Tukey-Kramer multiple comparisons test or unpaired Hest 

for comparisons of HBO or/and H20 2 effects. Pearson's correlation tests were used to 

compute the correlation coefficient between DNA damage and glutathione (GSH, GSSG 

and their ratio) level. For all statistical analysis, a P value < 0.05 was accepted as a 

statistically significant difference. 
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6.4 Results 

6.4.1. HUVECs' Comet Images 

As shown in Fig 6.2, the alkaline comet assay worked very well with cultured 

HUVECs. The images obtained under fluorescent microscope appeared in comet pattern 

with a bright fluorescent head and a less fluorescent tail. The extent of DNA migration in 

tail can be easily distinguished and scored by the Komet 5.0 software. Healthy HUVEC 

fanned a well defined circle in the gel as no tail discriminated by human eye, while the 

computer program evaluated as less than 5% of DNA in tail. As more DNA breaks 

occurred, comet tail increased in length as well as fluorescent intensity and it became more 

easily viewed by human eye. When the tail DNA reached more than 90%, comet image 

showed an indistinct fluorescent head with a long and bright DNA tail. 

Tail DNA <5% Tail DNA I 0% 

Tail DNA 70% Tail DNA 80% 

Tail DNA 30% 

Tail 
DNA 
50% 

Tail DNA >90% 
Fig 6. 2 H20 2-induced DNA migration patterns of HUVECs. The comet images were scored as % DNA 
in tail by Komet 5.0 image analysis software. Pictures were taken under the Zeiss fluorescent 
microscope with the setting at 400 x magnification. 
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6.4.2. Response of HUVECs to Different Dose of H20 2 

Expose HUVECs to exogenous H202 induced a dose-dependent increase of DNA tail 

migration (Fig. 6.3 and Fig. 6.4). Although no visible DNA tail were viewed by eye in non 

H20 2 treated control cells, computer scored the percentage of DNA in tail was 4.26 ± 0.42 

% (Means ± SO, n = 5). Incubation the cells with 0.05 mM of H20 2, caused little effect of 

tail DNA migration as very few cell showed cornet tail and only quantified as 6.26 ± 1.12 

% DNA in tail (Means ± SO, n = 3). When increase concentration of H202, visible DNA 

fluorescent tail were seen more frequently. The curve of% DNA in tail showed a quickly 

rise as it ascended to 15.84 ± 6.44 % (Means ± SO, n = 5) at 0.1 mM of H202 and an even 

steeper increase to 46.23 ± 6:72 % (Means ± SO, n = 5) when H20 2 concentration reached 

0.2 mM. Both of them showed statistically significances when compared with DNA 

migration level of control cells (P<0.05 and P<O.OOI respectively). The increase of DNA 

migration slowed to a plateau at about 78.65 ± 6.11% (Means ± SO, n = 4) when the 

concentration of H20 2 reached 0.5 mM. Incubation the HUVECs at a higher concentration 

of H202 (I mM), the extent of DNA damage in comet was too great to permit an accurate 

measurement. By curve fitting calculation, the EC5o for H202 was estimated to be 0.19 mM. 

The concentrations between 0.05 mM to 0.2 mM of H20 2 had significant effects on 

HUVECs DNA damage. The rapid increase of% DNA in tail between these concentrations 

were nearly lineal, which provided good working doses for investigating HUVECs' 

physiological response to oxidative stress and their radical scavenging capabilities. 
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Fig 6. 3 Comet images of HUVECs response to djfferent dose of R20 2 as A: non-H20 2 treated control 
cells; B: 0.05 mM of R20 2 ; C: 0.1 mM of 1-120 2 D: 0.2 mM of H20 2 ; and E: 0.5 mM of R20 2 ; For a 
better field viewing, pictures were taken before scoring using Komet 5.0 software with 200x 
magnification setting to fluorescent microscope. 
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Fig 6. 4 H20z-dependent response in DNA of HUVECs. Each point represents the means (± SD) of 
more than 3 replicate experiments of graded concentration H20 2• One-way ANOV A test followed by 
Tukey-Kramer multiple comparisons test were used for statistic analysis. * (P<0.05) and *** (P<O.OOI) 
indicate significantly different from control data at 0 mM H20 2• Tbe curve was obtajned with 
sigmoidal analysis with Sigmaplot 1 0.0; r1 was 0.97 and EC50 for R20 2 was calculated to be 0.19 mM. 

175 



6.4 Results 

6.4.3. DNA Migrations of HUVECs to HBO Treatment and 

Subsequent H20 2 Incubation 

6.4.3.1. Cell Viability 

It is essential to check that satisfactory cell viability is achieved (sub-lethal not lethal 

effects), so there are many representative cells available for the comet assay. The cell 

viability was tested using Eosin Y stain method prior to each comet assay. All the samples 

had reached that above 95% of cell viability, and less than 5% differences were shown 

between matching experimental samples in our study as in Table 6.1. 

Table 6. I The cell viability 

Air HBO 

Immediate post exposure 98.8 ± 0.6% (n: 9) 98.7 ± 1.0% (n: 10) 

Post+ 0.1 mM H20 2 99.5 ± 0.5% (n: 4) 98.6 ± 1.4% (n: 4) 

Post + 0.2 mM H20 2 99.5 ± 0.5% (n: 6) 99.0± I.O%(n:6) 

24 h post exposure 99.6± 0.4% (n =10) 99.0 ± 0.7% (n = 11) 

24 h + 0.1 mM H20 2 98.3 ± 1.2% (n = 4) 99.0 ± 1.0% (n = 6) 

24 h + 0.2 mM H20 2 99.0 ± 1.0% (n = 6) 98.8 ± 1.2% (n :6) 

Note: The cell viability was examined using Eosin Y stain prior to conduction comet assay. Values are 
expressed as means ± SEM of replicates, and no statistical differences were observed (P = 0.98, One
way ANOVA). 

6.4.3.2. Response of HUVECs to HBO and Subsequent HzOz Incubation 

A single 90 m in HBO treatment at 2.2 AT A was able to induce more DNA strand 

breaks than a coordinate Air treatment that more HUVECs presented visible holo patterns 

in B I than in A I of Fig 6.5. The means of% DNA in tail of HBO-treated cells (6.8 ± 0.8 

%, n = 8) was significant higher than the 4.6 ± 0.2 % (n = 8) of control air-exposed cells (P 

< 0.05, unpaired t-test). However, 24 h after exposure, HBO-treated cells showed the same 

level of % tail DNA as the control cells (4.9 ± 0.2 % and 4.6± 0.3 %, n = 6 and 9, 

respectively) (Fig 6.5C I, D I and Fig 6.6). 
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Fig 6. 5 HUVECs' comet images with HBO or Air treatment only. Cells were exposed to 100% oxygen 
at 2.2 AT A (HBO) or norbobaric air (Air) for 90 min, and followed by a 24 h recovery at normal 
culture condition. The images (200x magnification) represented DNA immigration at: immediate post 
Air treatment (AI) and HBO treatment (81); 24h post Air treatment (Cl) and HBO treatment (Dl). 
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Fig 6. 6 Extent of DNA migration (% DNA in tail) in HUVECs after HBO (dark grey column) or Air 
(white column) exposure only. Cells were exposed to 100% oxygen at 2.2 ATA (HBO) or norbobaric 
air (Air) for 90 ruin, and followed by a 24 h recovery at normal culture condition. DNA damage was 
evaluated at immediate post and 24h post treatments and expressed of means ± SEM of replicates. 
Unpaired T-test was performed between Air and HBO treatment immediate and 24h after treatments 
respectively, and * (P<O.OS) indicates significant differences to the control air t reated cells. 
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As shown in Figs. 6.7 and 6.8, the HBO-treated cells were more vulnerable to 

oxidative stress at immediate post HBO treatment, but not after 24h recovery. Interestingly, 

the responses of HBO-treated HUVECs seem having dose difference. Immediately after 

Air or HBO treatment, incubation with 0.1 mM H20 2 caused significant 66% more DNA 

strand breaks of HBO-treated cells (31.5 ± 4.0% DNA in tail, n = 4) than that of Air

treated cells ( 18.9 ± 2. 7% DNA in tail, n = 5; P = 0.03, unpaired Hest); and consistently 

incubation with 0.2 mM H20 2 induced a significant 26.4% increase of DNA strand breaks 

in HBO-treated cells than that in Air-treated cells (66.6 ± 2.7% DNA in tail, n = 5; and 

52.7 ± 1.2% DNA in tail, n = 5; P = 0.002, unpaired t-test). However, 24h post recovery, 

different DNA migration patterns were seen between additional H20 2 incubations. The 0.1 

mM of H20 2 incubation induced similar levels of DNA strand breaks in Air- and HBO

treated cells (P = 0.54, unpaired t-test); whilst the 0.2 mM of H20 2 incubation induced 22% 

less strand breaks in HBO-treated cells (44.0 ± 1.6% tail DNA, n = 9) than that of Air

treated HUVECs (56.3 ± 2.6% tail DNA, n = 9; P = 0.00 I, unpaired Hest). Another fact 

need to mention is that HBO-treated cells are more likely to be protected from additional 

oxidative stress. Additional H20 2 incubation at 0.2 mM led much less of tail DNA levels in 

24h post HBO-treated cells than that in immediate post HBO-treated cells (P<O.OO l, 

unpaired Hest); whereas additional exposure of Air-treated cells to H20 2 showed no 

differences on DNA migration patterns between immediate and 24h post treatment time 

points (P = 0.34 of0.2 mM ofH202 incubations, unpaired !-lest). 
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Fig 6. 7 Comet images with HBO or Air-treated cells after further incubation with 0.1 mM (A2-D2) 
and 0.2 mM of H10 1(A3-D3) The treatments were 90 ruin exposure to 100% oxygen at 2.2 AT A (HBO) 
or norbobaric air (Air), and then transferred to normal culture condition for a foiJowing 24h recovery. 
The images (200x magnification) represented DNA immigration of the treated cells after further 
treated with 0.1 mM and 0.2 mM of H10 1 at: immediate post Air treatment (A2 and A3) and H80 
treatment (82 and 83); 24h post Air treatment (C2 and C3) and H80 treatment (D2 and DJ), 
respectively. 
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Fig 6. 8 Effects on DNA migration after subsequent incubation wit h 0.1 mM and 0.2 mM of R20 2 of 
HBO- or Air-treated HUVECs. The treatments were 90 min exposure to 100% oxygen at 2.2 AT A 
(HBO) or norbobaric air (Air), and then transferred to normal culture condition for a following 24h 
recovery. DNA damage was evaluated at immediate post (post + O.lmM H10 2; post + 0.2mM H10 1) 

and 24h post (24h+ O.lmM H10 2; 24h+ 0.2mM H10 2) treatments, and expressed of means ± SEM of 
replicates, respectively. Unpaired T-test was performed, and * (P<O.OS) and ** (P<O.Ol) indicates 
significant differences to control air-treated cells; # (P<O.OOl) indicates very significant differences 
immediate ADO-treated cells, respectively. 
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6.4.4. Glutathione Pool Changes of HUVECs 

The overall response of glutathione pool to HBO treatment was loss of intracellular 

contents of GSH and GSSG during treatment, but after 24h recovery the glutathione pool 

was able to return to its pre-treatment levels. Meanwhile, the ratio of GSH to GSSG was 

not affected by HBO treatment. Post-incubation with H20 2 further reduced the GSH and 

GSSG contents as expected; but importantly, HBO-treated cell showed much higher GSH 

to GSSG ratio when incubation with H202 at 24h after treatment, and significance dose

effects were found between the 0.1 mM and 0.2 mM of H20 2 incubations. 

6.4.4.1. Glutathione Changes of HUVECs with Treatments 

In Fig 6.9, a single HBO treatment reduced the GSH and GSSG content of HUVECs. 

The GSH contents of air-exposed cells was I 0.5 ± I. 7 nmol mg-1 protein (n = 10), which 

was more than 2-fold that of the 4.8 ± 0.6 nmol mg- 1 protein (n = I 0) of HBO-exposed 

cells (P < 0.05, Tukey-Kramer multiple comparison test). The GSSG level showed a 

similar significant decrease (P < 0.05, Tukey-Kramer multiple comparison test) so that 

HBO-exposed cells (0. 7 ± 0.1 nmol mg- 1 protein) had about 4 7% less GSSG content of the 

air-treated cells (1.5 ± 0.4 nmol mg-1 protein). As both GSH and GSSG level decreased, 

the ratio of GSH to GSSG showed no difference between Air (7.7 ± 1.3) and HBO 

treatment (7.7 ± 1.1). However, after 24h post-treatment culture, the intracellular level of 

GSH and GSSG recovered and no differences were seen between Air (9.6 ± 0.8 and 1.0 ± 

0.2 nmol mg- 1 protein of GSH and GSSG, n = 11) and HBO treated cells (9.2 ± 1.3 and 1.0 

± 0.3 nmol mg-1 protein of GSH and GSSG, n = 11). The glutathione ratio of 24 h post 

HBO-treated cells (16.7 ± 3.7) was about 2-fold of that of immediate HBO-treated cells (P 

= 0.04, unpaired t-test). 
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Fig 6. 9 Glutathione pool changes of HUVECs after HBO or Air treatment only. The treatments were 
90 min exposure to lOO% oxygen at 2.2 ATA (HBO) or norbobaric air (Air), and then transferred to 
normal culture condition for a following 24h recovery. Samples were co llected at immediate post and 
24h post treatment for intracellular GSH and GSSG analysis, and expressed in nmol mg·• protein. For 
clear view, GSSG values are 2-fold of actual GSSG value. Data were plotted as means± SEM of more 
than 10 replicates. Left Y axis corresponds to level of GSH (white column) and GSSG (grey column) in 
nmol mg·• protein, and r ight Y axis corresponds to ratio of GSH to GSSG (grey diagonal column). 
Statistic analysis was performed with One-way ANOV A test followed by Tukey-Kramer multiple 
comparison test or unpaired t-test. * P<O.OS indicates significant difference from Ai r-treated cells ; and 
# P<O.OS indicates significant difference from that of immediate post HBO-treated cells. 

6.4.4.2. Glutathione Changes of Treated HUVECs to Subsequent H20 2Incubation 

Immediately after treatments, subsequent incubation of Air- or HBO-treated HUVECs 

to eithe r 0. 1 mM or 0.2 mM of Fh02 resulted in a consistent decrease of OSH and GSSG 

content; and the HBO-treated cells showed more decrease than that of Air-treated cells 

(Fig 6. 1 0). The GSH and GSSG level were 5.5 ± 0.7 and 1.1 ± 0.1 nmol mg·1 protein (n = 4) 

of Air-treated cells and 3.8 ± 0.3 and 0.6 ± 0.1 nmol mg-1 protein (n = 6) of HBO-treated 

cells with 0.1 mM of H20 2 incubation (Fig. 6. 1 OA). And cellular GSH and GSSG levels 

decreased more in 0.2 mM of H20 2 incubation (Fig. 6.1 OB) to 6. 1 ± 0.8 and 1.3 ± 0.4 nmol 

mg"1 protein (n = 4) in Air-treated cells; and 3.5 ± 0.3 and 0.8 ± 0. 1 nrnol mg·1 protein (n = 

6) in HBO-treated cells. The GSH and GSSG levels showed significant treatment 

differences in both H20 2 incubations (P<0.05, Tukey-Kramer multiple comparison test), 
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the ratio of GSH to GSSG in both I-120 2 incubations appeared no differences between Air 

and I-180 treatments. 

After 24h recovery, H20 2 incubation showed dose differences on glutathione pool 

changes. In 0.1 mM of I-120 2 incubation, no significant difference was shown in either 

GSH or GSSG level between Air- and I-180-treated cells (P = 0.86 and 0.5 I of GSH and 

GSSG, respectively, unpaired !-tests), but significant lower levels of GSH and GSSG in 

I-180-treated cells were found in 0.2 mM of 1-lzOz incubation (P < 0.01 and P < 0.05 of 

GSH and GSSG, respectively, Tukey-Kramer multiple comparison test). In addition, both 

the Air-treated cells and I-180-treated cells showed more decreased glutathione ratio values 

in 0.2 mM I-1 20 2 incubation ( 14.4 ± 3.5, n = 5 of HBO-treated cells and 6.2 ± 1.4, n = 4 of 

Air-treated cells) than that in 0.1 mM I-120 2 incubation (23.5 ± 8.0, n = 6 of I-180 treatment 

and 13.5 ± 6.9, n = 4 of Air treatment). But more importantly, the glutathione ratio in I-180 

cells was 74% higher with 0.1 mM I-120 2 incubation, and significantly 134% higher than 

that in Air cells with 0.2 mM 1-lzOz incubation (P = 0.56 and P = 0.04, respectively, 

unpaired t-test). Furthermore, the ratios of24h I-180-treated cells were 4-fold and 3-fold (P 

= 0.08 and P = 0.04, unpaired t-tests) as to immediately I-180-treated cells within 

subsequent 0.1 mM and 0.2 mM of I-120 2 incubation. Meanwhile, there were no time 

differences in Air-treated cells (P = 0.35 and 0.69 of 0.1 mM and 0.2 mM of I-120 2 

incubation, respectively). 
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6.4 Results 

Fig 6. 10 Glutathione pool responses to subsequent incubation with 0.1 (A) and 0.2 (B) mM of R 20 2 of 
Air or HBO treated RUVECs. The treatments were 90 min exposure to 100% oxygen at 2.2 ATA 
(HBO) or norbobaric air (Air), and then transferred to normal culture condition for a following 24h 
recovery. Air or RBO treated HUVECs were subsequently incubated with 0.1 or 0.2 mM of H20 2 at 37 
•c for IS min at immediate post treatment and 24h post treatment. Intracellular GSH and GSSG are 
expressed in nmol mg·• protein. For clear view, GSSG values are 2-fold of actual GSSG value. Data 
were plotted as means ± SEM of more than 4 replicates (n = 4 - 6). Left Y axis corresponded to level of 
GSH (white column) and GSSG (grey column) in nmol mg·• protein, and right Y axis corresponded to 
ratio of GSH to GSSG (grey diagonal column). Statistic analysis was performed with One-way 
ANOV A test followed by Tukey-Kramer multiple comparison test and unpaired t-test. * P<O.OS 
significa nt difference from Air-treated cells at the same time point; and # P<O.OS significant difference 
from that of immediate post-treated cells. 

184 



6.5 Discussion 

6.4.5. Correlations of DNA Migration Levels and Glutathione Pool 

Correlation analysis was performed using Pearson's correlation test. In Table 6.2, 

GSH and the ratio of GSH to GSSG showed significant correlation with % DNA in tai l 

(P<O.Ol and P<0.05, respectively). However, no significant correlation was found between 

GSSG level and % DNA in tail (P = 0.16). 

Table 6. 2 The correlation test results 

Index 
GSH 

GSSG 
GSH:GSSG 

r 
-.429* 
-.174 

-.292** 

p 

.000 

.155 

.013 

Note: Pearson's correlation tests were performed between DNA migration level (% DNA in tail) and 
any of glutathione pool indexes using SPSS 11.0 for Windows software (SPSS lnc, Chicago, Illinois, 
USA). r represents correlation coefficient and ranges from -1 to I. When r =Zero means that the two 
variables do not vary together at all; r = positive fraction means that the two variables tend to increase 
or decrease together; r = negative fraction means that one variable increases as the other decreases; r = 
1.0 (or -1.0) means that the two variables are perfect (negative or inverse) correlation. P value 
represents the level (2-tailed) of significance and if the P value is small (as P < 0.05), then the 
correlation is not a coincidence and more than 95% of the true population r Ues within the confidence 
interval range. *and **correlation is significant at the 0.05 and 0.01 level (2-tailed), respectively. 

6.5 Discussions 

6.5.1. HBO-induced Repairable DNA Migration Changes in HUVECs 

Using the comet assay, HBO treatment has been shown to induce genotoxic effects 

with human whole blood, isolated human lymphocytes, V79 Chinese hamster cells, and 

mouse lymphoma L5178Y cells line (Speit et al., 2002). For the first time, we have 

successfully applied the comet assay to measure HBO-induced DNA migration changes 

and repair in cultured HUVECs. The clear comet images we got can be easily recognised 

and scored by Komet 5.0 image analysis software. Our data demonstrated that a single 

HBO treatment at 2.2 A TA for 90 min had a small but significant increase on DNA 

migration extent ofHUVECs (to 6.8% DNA in tail) (Fig 6.5). Neverthless, an average 50% 

increase of tail DNA in HBO-treated HUVECs than that of Air-treated control cells seems 

185 



6.5 Discussion 

relatively very small effect comparing to other studies. Speit and his colleagues reported an 

average of 5-fold increase in DNA migration pattern of human lymphocytes after a HBO 

exposure at 2.5 ATA for 3x2Q min (Dennog et al., 1996) and Rothfuss et al (2002) 

presented a 6-fold increase in DNA migration of V79 cells after I hour HBO exposure at 

3.0 ATA. The differences among studies may indicate that HBO-induced DNA migration 

varies between HBO strategies as well as cell types. 

By comparing the extent of DNA migration at different time points, we were able to 

monitor DNA repair capability with the comet assay. At 24h after exposure, the HBO

treated cells had the same level of% DNA in tail as the air-treated control cells, indicating 

a complete repair of the induced DNA strand breaks (Fig 6.5). Our finding was consistent 

with in vivo studies where blood taken 6 h or 24 h after HBO shown no effect of DNA 

migration (Speit et al., 1998). Actually, the higher DNA migration level in human 

leukocytes from healthy volunteers after HBO exposure (2.5 ATA for 3x2Q min) has been 

confirmed due to oxidative DNA base damage (Dennog et al., 1996); and further studies 

showed that HBO-induced DNA strand breaks and oxidative base modifications were 

rapidly repaired, after I or 2 h the repair efficiency could be more than 50% and no 

difference were found between in vivo or in vitro exposure (Dennog et al., 1996; Speit et 

al., 1998). 

6.5.2. Protective Effect of HBO on H20 2-induced DNA Damage 

H20 2 is a common intermediate in a variety of oxidative stress and can efficiently 

oxidize iron-sulfur clusters and protein thiols (Flint et al., 1993; Storz and lmlay, 1999). 

But H20 2 does not directly interact with DNA to produce oxidative lesions (Brawn and 

Fridovich., 1981 ). In fact, when cells are exposed to external H20 2, the H20 2 rapidly 
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diffuses inside and oxidizes ferrous iron, thereby forming hydroxyl radicals that cause 

oxidative DNA damage (Eq 6. I). 

Fe2
+ + H

2
0

2 
+ W ~ Fe3

+ + H
2
0+ ·OH Eq 6.1 

The hydroxyl radical is powerful enough to react at diffusion-limited rates with either the 

base or sugar residues of DNA (Aruoma et al., 1989), producing base modifications, sites 

of base loss (AP site), and strand breaks, which can be captured by the comet assay. 

H20 2 has been frequently used as a reference toxicant in comet assay to assess 

oxidative DNA damage in many cell types, and the dose responses of H20 2 vary in cell 

types and origins (Aruoma et al., 1989; Visvardis et al., 1997). In our study, the DNA 

migration of human umbilical vein endothelial cells showed a dose-dependent effect, too. 

Incubation with 0.1 mM and 0.2 mM of H20 2 induced 16% and 46% of DNA in tail, those 

concentrations are the start and the end concentration points to induce a nearly linear DNA 

migration/damage curve (Fig 6.4). Although we have not found a study using endothelial 

cells to generate an EC50 calculation curve, H20 2 dose effects have been investigated in a 

couple of different cell types using comet assay. Coil in et al ( 1995) found that when 

incubated with 50 ~ H20 2, Hela (human transformed epithelial) cells and GMI899A 

(human lymphoblastoid) cells suffered considerable DNA breakage with virtually all or 

most comets in class 4 (equal to 80% DNA in tail approximately); in contrast, fresh 

isolated human lymphocytes were less severely damaged with more than 60% of comets in 

class 0 (equal to 5% DNA in tail approximately) at the same concentration of 50~ H202, 

and even at 200 J.lM H202, almost half of the comets were still in class 0. But in another 

study that fresh isolated human lymphocyte was less resistant to H202 with ECso at 20 ~ 

that led to unwinding in alkali of 50% of the DNA (Schraufstatter et al., 1988). Clearly, 

because of the variety of cell responses and experimental conditions of comet assay on 

measuring H20 2-induced DNA damages, it is essential to validate the dose effects before 
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individual experiment, which not only optimise working condition for specific cell type, 

but also set a positive control for the following experiments. 

Additional incubation with H20 2, HBO-treated cells showed more DNA migration 

than that of Air-treated cells (Fig 6.7 and 6.8). The evidence that HBO treatment caused 

oxidative DNA base damage (Dennog et al., 1996) may help to explain the higher DNA 

damage level in HBO-treated cells when further incubated with H20 2. Immediate post 

HBO treatment, the cells have been exposed to oxidative stress, so in theory, the cells are 

more vulnerable to further oxidative stress. Nevertheless, the beneficial effect of 

therapeutic HBO treatment may count on the adaptive protective mechanism triggered by 

HBO exposure again further H20 2 attack. Because in our study, with 0.2 mM of H202 

incubation, HBO-treated cells had shown a significant 22% less DNA migration than that 

of Air-treated cells after 24 h recovery. The human lymphocyte had also shown similar 

protective effects against H20 2 at both 4 hand 24 h post initial HBO treatment with 10 ).lM 

and 20 11M of H20 2 induction in vitro (Rothfuss et al., 200 I). Interestingly, in our 

experiment, incubation 24 h post HBO-treated cells with 0.1 mM of H202 was not shown 

the protection effects. In Rothfuss' study (2001), treatment with H202alone induced a clear 

and dose-dependent DNA migration effect of freshly isolated human lymphocytes as 

measured with comet assay; and pre-exposure with HBO efficiently dramatically minified 

both I 0 11M and 20 11M H202-induced DNA effects. The diminishing effect was bigger in 

20 11M of H20 2 incubation group at 4 h than 24 h after initial HBO treatment; and in I 0 

11M of H20 2 incubation group at 24 h than 4 h after initial HBO treatment. Another 

interesting thing to note in that the lymphocytes 24 h after isolation showed somewhat 

lower extent of H20 2-induced DNA damage than cells 4 h after isolation in the comet 

assay. The study indicates that some unknown mechanisms may exist to influence H20 2-

induced DNA damage, especially when it is measured with comet assay. Therefore, it is 
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possible cell specificities or experimental conditions influenced the H20 2-induced DNA 

damage in HUVECs and contributed to the diverse protective effects in our study. 

6.5.3. Glutathione: Possible Mechanism for HBO Protective Effect 

Although studies have shown the protective effects of HBO treatment, little is known 

about the underlying mechanisms and molecular basis. It is commonly recognized that 

prior to DNA damage, ROS has to overwhelm the cellular threshold of antioxidant 

capacity. The antioxidant capacity is created by the presence of antioxidant enzymes, 

scavenger molecules or the removal of the altered molecules by turnover (Gutteridge., 

1994; Remacle et al., 1995; Anderson, 1996). Reduced glutathione (GSH), the most 

abundant cellular thiol (0.5-1 0 mM), plays an important role in antioxidant defence system 

as well as regulating the intracellular redox environment (Cotgreave and Gerdes, 1998). 

Under oxidative stress, GSH is utilised directly as a proton donor to detoxify H20 2 and 

other organic peroxides to oxidized glutathione (GSSG) by glutathione peroxidase (GPx). 

Measurement of intracellular glutathione redox pool is therefore a useful dynamic indicator 

of oxidative stress as well as a monitor of antioxidant effectiveness. 

The GSH and GSSG content of HUVECs we measured was approximately at I 0 nmol 

mg· 1 protein and I nmol mg·1 protein, respectively, which were at the range of previous 

report: 5.88 to 12.1 nmol mg· 1 protein of GSH (Andreoli et al., 1986); and I 0 - 25 nmol 

mg· 1 protein of GSH and 0.2 - 1.2 runol mg-1 protein of GSSG (Carlisle et al., 2002). The 

ROS generated during HBO exposure facilitated conswnption ofGSH storage in HUVECs, 

thus a lower level of intracellular GSH was presented of immediate post HBO cells (Fig 

6.9). Unlike GSH, GSSG is usually present in cells in much smaller concentration, and 

because the activity of GPx is coupled to NADPH-dependent glutathione reductase (GR), 

which recycled GSSG back to GSH, the increase of GSSG during oxidative stress are 
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generally transient. The relatively rapid GSSG reduction and an active ATP-dependent 

GSSG export mechanism decrease intracellular GSSG content to maintain the glutathione 

balance (Sharrna et al., 1990). It is crucial for cells to maintain the redox balance of GSH 

to GSSG, studies have confirmed that changes in the ratio of intracellular GSH to GSSG 

can affect signalling pathways that participate in various physiological responses from cell 

proliferation to gene expression (Suzuki et al., 1998; Kim et al., 2004; Rahman et al., 

2005); but excessive changes such as depletion of intracellular GSH by cytotoxic stimuli 

has been shown to lead to cell apoptosis and/or necrosis (Teramoto et al., 1999; Merad

Boudia et al., 1998; Lin et al., 2007). Therefore, in non-lethal stress, as in HBO treatment, 

although GSH was consumed through reactions to remove and alter deleterious compounds, 

GSSG level was also reduced to maintain an unchanged glutathione ratio (Fig 6.9). 

However, the temporary depletion of GSH must be reversed to avoid further damages. 

Restoration of GSH can easily be accomplished by OR or by de novo GSH synthesis 

(Dickinson et al., 2003). In our study, during 24h recovery, the HBO-treated cells were 

able to recover original glutathione pool as the GSH, GSSG content returned to the same 

levels of control cells, with the ratio remained the same. The changes of glutathione pool 

during and after HBO treatment indicate that HBO treatment may be able to regulate 

'functional alteration' of glutathione pool without damage the cells. Recently, GSH content 

and metabolism changes have been related with signaling pathways, probably through 

alteration of the redox state (Dickinson et al., 2003). It is due to the fact that many proteins 

have a highly conserved cysteine (sulfhydryl) sequence in their active/regulatory sites, 

which are primary targets of oxidative modifications and thus important components of 

redox signalling. And recent data suggest that multiple modifications of cysteine residues 

may occur and leading to different outcomes in signal transduction (e.g. kinase pathways, 

transcription factors nuclear factor-K~, and ryanodine receptors (Cooper et al., 2002; 
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Rahman et al., 2005). Thus, the adaptive response to non-toxic oxidative stress as in HBO 

treatment may lead to another aspect in understanding HBO benefits. 

Another important finding in our study is the protective effects of HBO treatment on 

oxidative stress-induced DNA damage in HUVECs. The corresponding glutathione pool 

showed that 24h HBO-treated cells maintained much higher GSH to GSSG ratio than that 

of Air-treated cells after exposing to H20 2 (Fig 6.1 0); and the GSH content and the ratio 

also showed significantly correlation with the DNA migration level (Table 6.2). It seems 

that the glutathione pool regulation during HBO treatment may responsible for the 

protective mechanism against oxidative stress. The nontoxic stress-induced glutathione 

adaptive response within the cell has been proposed to be relevant to the improved capacity 

to withstand a subsequent stress that would otherwise have been lethal (Rahman et al., 

2005). The glutathione adaptive response could appear in higher intracellular levels of 

GSH itself, and/or an increased capacity for rapid synthesis. For example, pre-exposure 

macrophages and endothelial cells to oxidized low density lipoprotein leads to the 

induction of GSH and protection against oxidative stress (Shen and Sevanian, 200 I; 

Moellerin et al., 2002); and pre-treatment with NO also elicit GSH synthesis and thus lead 

to protect against a subsequent oxidative stress (Dickinson et al., 2003). In our cases, 

although GSH level was not seen obvious increase, the ratio of GSH to GSSG in HBO

treated cells did show a significant higher levels than control cells. So it is possible that a 

single HBO treatment may alter the glutathione redox status other than only increase GSH 

content. The effects of HBO treatment on glutathione content and metabolic enzymes 

varies amongst in vivo studies. Ozden et al (2004) and Kudchodkar et al (2006) addressed 

that chronic HBO treatment increased GSH, GR, and GPx levels. Eken and colleagues 

(2005) reported unchanged erythrocyte GPx levels at the end of the 1st HBO therapy and 
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the prolonged 1-180 exposure; which was supported by Muth's findings that unaffected 

GSH, GSSG levels and an even decreased GPx activity after 1-180 exposure (Muth et al., 

2004). Thus, the effect of 1-180 treatment on intracellular glutathione regulation may differ 

between in vitro or in vivo experiments. Since H80 treatment provides an ideal model for 

non-cytotoxic oxidative stress study and is capable to regulate glutathione pool; it will be 

informative to continue the in vitro endothelial cells study on glutathione and its metabolic 

enzymes (e.g. GPx, GR) response with different H80 strategies, and research of these 

aspects in clinical trials will also be very helpful for a better understanding of the 

antioxidants' functions in 1-180 treatment. 

6.6 Conclusion 

In this chapter, using alkaline comet assay, we demonstrated that l-h02 induced DNA 

damage in 1-lUVECs showed a dose-depended effect. Secondly, a single 90 min 1-180 

treatment at 2.2 AT A induced a small but detectable increase in DNA migration pattern, 

and this change was totally recovered after 24h incubation in normal culture conditions, 

indicating an efficient DNA repair after therapeutic 1-180 treatment. Thirdly, pre-1-180 

exposure showed a protective effect on HUVECs against subsequent 1-120 2-induced DNA 

damage, which may be concentration-related and more investigation is needed. The 1-180 

treatment is able to regulate glutathione pool in HUVECs, which is especially 

demonstrated in the ratio of GSH to GSSG. The GSH content and the ratio of GSH to 

GSSG showed consistent changes with DNA migration pattern. The increase in the 

glutathione ratio may reflect the increased antioxidant capacity after 1-180 treatment, which 

is quite possible contribute to the protective response. 

192 



7.1 Swnmary of the Project 

Chapter 7 

General Discussions and Future Work 

In this chapter, the thesis is concluded with a summary of the main results and 

achievements obtained from this project. Furthermore, the limitations of the work are 

identified, and the perspectives for future work are presented. 

7.1 Summary of the Project 

Hyperbaric oxygen therapy (HBOT) is a medical treatment during which the patients 

are placed in an airtight chamber at more than one atmospheric pressure and are usually 

breathing I 00 percent pure oxygen. This treatment either as a primary or adjunctive 

treatment has proven relatively effective for a number of different medical and surgical 

conditions. Although nowadays HBOT has been clinically accepted and used, it seems that 

scientific explanation for the benefits of HBOT lags behind the booming application of 

HBOT. Hence, more scientific research is required to provide sound evidence for clinical 

application, and more importantly to explore the underlying mechanisms of HBOT in order 

to benefit more patients by improving and directing HBOT strategy. 

As a matter of fact, one of the successful applications that HBOT has achieved is to 

facilitate problem or chronic wound healing as a conjunctive treatment to traditional 

therapies. Chronic wounds are common and present a health problem with significant 

effect on quality of life. The application of HBOT has been shown to reduce the costs 

involved with wound management and decreases the incidence of amputations (Kranke et 

al., 2003). Wound healing is a highly regulated and complex process involving several 
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main medical conditions such as inflammation, angiogenesis, proliferation, and 

remodelling process. Angiogenesis, the formation of new blood vasculature from pre

existing vessels, is crucial for granulation tissue formation and proper wound healing. 

Appropriate oxygen levels are required for angiogenesis so that the cells involved can 

generate A TP and perform multiple physiological functions. However, the various 

pathologies of chronic wounds may cause tissue breakdown, including poor blood supply 

resulting in inadequate oxygenation of the wound bed. HBOT has been suggested to 

reverse local wound hypoxia and set up beneficial oxygen gradients across the wound 

space to promote wound angiogenesis and therefore improve their healing. Although both 

in vivo and in vitro studies have demonstrated that HBOT accelerates wound angiogenesis, 

the mechanisms are far from elucidated. 

Regulation of angiogenesis factors is a key field in HBO studies. HBO treatments are 

able to experimentally manipulate the production of angiogenesis factors at the molecular 

and cellular levels, but the effects (positive/negative) are dependent on the wound model 

being used, cell types, as well as the details of the HBO strategies. During the past twenty 

years, with the development of cellular and molecular techniques, researchers have been 

able to find out more about the physiological and pathological properties of ROS and 

oxidative stress. For a long time it was believed that ROS and oxidative stress would 

damage tissue and cell, even cause cell death. Thus, recent studies have confirmed that 

mild oxidative stress and oxidant challenge can serve as signalling messenger and then 

enhance cell functional activity. This recognition is consistent with the clinical and 

scientific evidence that HBO at very high pressure (over 5 ATA) causes more side effects, 

while at therapeutic pressure HBOT brings more beneficial effects. Therefore, in this 

project, we focus our study on the response of ROS, oxidative stress, angiogenesis factors 

and cell injury during and after a single therapeutic HBO treatment. First of all, at tissue 
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level, direct effects of HBO treatment were investigated on blood vessel in vitro; and the 

ROS and oxidative stress initiation and angiogenesis factor responses were evaluated in 

both physiological and pathological conditions. Secondly, at cellular level, response of 

cultured endothelial cells to HBO treatment was measured. Changes of intracellular 

calcium concentration were investigated during HBO treatment with both single cells, and 

populations of cells. Next, HBO-induced DNA damage and the potential effects of HBO 

treatment against further oxidative stress were measured; meanwhile, response of 

glutathione pool in the process were examined. In all the studies, the possible damaging 

effects of HBO were investigated. 

7.1.1. Main Findings of the Project 

The main findings of tissue treatment are: 

• A single therapeutic HBO treatment (at 2.2 ATA for 90 min) does not damage 

blood vessels tissues in physiological conditions (Fig 3.1 and 3.2); while m 

pathological condition, HBO treatment induced more cell injury (Fig 4.1 ). 

• In physiological conditions (blood vessel incubated in physiological salt solution), 

HBO treatment does not induce oxidative stress as the total glutathione and 

hydrogen peroxide production was very low in the medium (Fig 3.4 and 3.5). 

However, in pathological condition (blood vessel incubated in high lactate

contained physiological salt solution), HBO treatment induced more ROS 

generation and oxidative stress as H202 and total glutathione levels showed 

significantly higher values than that of either the air treatment or to the controls in 

physiological solution (Fig 4.2 and 4.3). 

• Although supplements of L-arginine and/or sodium L-lactate to the incubation 

buffer increased nitric oxide production, there was no evidence shown that HBO 
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treatment alone or synergically promoted NO production in either physiological 

or pathological conditions (Fig 3.6 and Fig 4.4). 

• VEGF content was not affected by HBO treatment in either physiological or 

pathological conditions (Fig 3. 7 and Fig 4.5). 

• Exposure of blood vessel to normobaric pure oxygen showed similar effects as 

HBO treatment on the above indexes. 

The main findings of endothelial cell treatment are: 

• A single HBO treatment (at 2.2 AT A for 90 min) does not induce cytotoxic 

damage of human umbilical vein endothelial cells (Fig 5.10 and Table 6.1 ). 

However, measured with comet assay, HBO treatment causes small but 

significant change in DNA migration extent at immediate post treatment, but this 

change is repaired after 24 hours (Fig 6.6). 

• HBO treatment induces sustained increase of cytosolic free calcium level m 

HUVECs (Fig 5.9). 

• HBO treatment successfully protects HUVECs against H202-induced DNA 

damage as measured with comet assay (Fig 6.8). An increase in antioxidant 

capacity as reflected in an increase in redox status of glutathione pool (Fig 6.1 0) 

may be relevant to this protective response. 

7.1.2. Technical Contributions 

This project not only provides in vitro scientific evidence to enrich basic research of 

HBO treatment, but also makes contributions to biological experimental techniques. 

To our knowledge, we are the first to successfully establish an in vitro blood vessels 

model to HBO treatment. Meanwhile, biochemistry methods for measurement of in situ 

H20 2 generation, total glutathione release and ELISA measurement of vascular VEGF are 
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all modified and optimized to apply in the in vitro blood vessel model. Secondly, we 

successfully recorded real-time calcium changes in single HUVEC; and also accomplished 

calcium measurements on populations of HUVECs with a fluorescent plate reader. Thirdly, 

using the comet assay, for the first time we demonstrated the dose effect of hydrogen 

peroxide-induced DNA damage in HUVECs; and showed the HBO treatment effect on 

DNA migration extents in HUVECs as well. 

7.1.3. General Discussion 

The vascular system distributes in every tissue and organ of the human body, besides 

delivers nutrients and oxygen to tissue, it also experiences local physiological and 

pathological environmental changes and adapts simultaneously to protect and repair 

affected cell and tissue. One of these adaptations is to generate new vasculature. The 

angiogenesis process is regulated by many growth factors from various kinds of cells, and 

the VEGF seems the critical one in all sorts of angiogenesis studies. The regulation of 

VEGF production is complex, although hypoxia is conventionally accepted as a VEGF 

regulator, more and more evidence have shown that ROS and lactate are able to regulate 

VEGF as well. Interestingly, nitric oxide (NO) is not only considered as a free radical, but 

also works as an angiogenesis regulator, which is particularly involved in the VEGF

regulated angiogenesis pathway. Since therapeutic HBO treatment demonstrates the 

beneficial effects on chronic wound angiogenesis, the mechanisms involved have drawn 

scientific attention, especially to the relationship between HBO treatment, ROS, NO and 

VEGF. In vitro and in vivo studies have provided controversial results on this subject, the 

literature remind us that a major breakthrough should be on the diversity of ROS formation 

in HBO treatment. From the day that high concentration of oxygen was first used for 

clinical purpose, there was argument about the therapeutic effects and side effects. The 
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reactive oxygen species (ROS) generation in HBO treatment has long been considered as 

the deteriorative factors to induce unexpected damage to tissues and cells. But recent 

scientific developments in ROS research have shown that the ROS level is balanced with 

antioxidant defence systems, and this balance is important to the cell redox state and redox 

signalling systems. So at a moderate level, ROS is able to regulate multi-functions in cell 

physiological activity, which includes angiogenesis regulation. 

In our initial study, we investigated the effects of a single therapeutic HBO treatment 

on the responses of oxidative stress and angiogenesis factors in an established healthy in 

vitro blood vessel experimental system. Preliminary experiment showed that it is safe to 

incubate aorta segments in our physiological salt solution for up to 8 hours. Therefore, the 

comparison experiment was done by exposing aorta segment to a single 90 min treatment 

of nonnobaric air, nonnobaric pure oxygen or hyperbaric oxygen (2.2 ATA) and followed 

by 4 hours recovery in this solution. The histological and biochemical index (LDH release) 

examination confirmed that aorta segments were not damaged throughout HBO treatment, 

and HBO treatment induced neither oxidative stress, nor more nitric oxide and VEGF 

production of aorta segments. Interestingly, VEGF level was significantly correlated with 

concentration of lactate and nitrite; and the cumulative H20 2 and LDH levels in the 

medium, which may indicate that VEGF generation is responding to levels of damage in 

cell or tissues and redox stan1s changes. The Krebs-ringer solution used in initial 

experiment met the basic physiological requirement of blood vessels. However, 

elimination of the naturally existed precursor for nitric oxide production, L-arginine, may 

gloss over some potential effects amongst NO, VEGF production and HBO treatment. 

Meanwhile, adding sodium L-lactate to the incubation medium will mimic the pathological 

environment of chronic wounds and simulate reactions of blood vessel to HBO treatment 

in these adverse conditions. Thus, in the following experiments, we added L-arginine 
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or/and sodium L-lactate to the medium. In these specific media, we found that HBO 

treatment induced more ROS and oxidized glutathione production, which was 

accompanied by more LDH release. So, under pathological conditions, HBO treatment 

showed the ability to induce more oxidative stress of aorta segment, which in turn 

damaged the tissue. The high level of tissue damage quite possibly interferes with the 

autocrine mechanisms in blood vessels as well, because L-arginine or/and sodium L-lactate 

supplement decreased VEGF level in HBO-treated samples after 4h recovery. On the other 

hand, although the oxidative state may reduce VEGF production in blood vessel cells, the 

damaging signals may cause paracrine mechanisms to increase VEGF generation from 

other types of cells in the wound sites. For example, studies on macrophages, fibroblasts 

and in vivo chronic wound models have reported that HBO treatment increase VEGF 

production (Sheikh et al., 2000; Gimbel and Hunt. 1999; Kang et al., 2004). The oxidative 

state not only affects growth factor secretion, it also regulates NO production. The 

administration of L-arginine increased NO production, and increased NO production was 

accompanied by a high level of tissue damage in our study. In the case of oxidative stress, 

NO is known to react with 0 2- to generate more toxic ONoo· and OH·, that may explain 

the high level of tissue damage of aorta segment in L-arginine media to HBO as well as 

nonnobaric pure oxygen treatment. In our study, no synergic effect on NO production was 

found with HBO treatment and the L-arginine supplement. A number of previous studies 

showed that HBO treatment was able to affect NO production in controversial ways. 

Increase of NO levels are suspected to be involved in HBO-induced toxic effect in central 

nerve system, and alternatively, inhibition of NO in some pathophysiological conditions is 

believed to contribute to the anti-inflammatory effect of HBO treatment (Oury et al., 1992; 

Wang et al., 1998; Demchenko et al., 2003; Kurata et al., 1995; Sunakawa and Yusa, 1997; 

Huang et al., 2005; Chu et al., 2006; Chang et al., 2006). Therefore, the controversial effect 
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of HBO treatment on NO production reflects the controversial roles of HBO in the 

particular circumstances, and the decisive factors may be the HBO strategies and the NO 

origination. This concept may also apply to the controversial effect of HBO treatment on 

VEGF regulation. The physiological condition is like the surrounding healthy area of the 

wound, therapeutic HBO induces rational level of ROS formation, which is within the 

control range of antioxidant systems, so no harm is observed in tissue and cells. While the 

pathological condition is like the centre of wound site, HBO treatment induces more ROS 

formation, although it is toxic to part of the cells, the ROS is effective in antibacterial 

actions; and alternatively, the signal of oxidative state and metabolic gradient may pass to 

surrounding healthy tissue and cells to initiate all kinds of protective and proliferate 

activities (e.g. immune responses and angiogenesis). In clinical experiments, the re

vasculature pattern in wound centre site seems to support the above ROS signalling 

transfer theory. Myers and Marx ( 1990) observed that although the tissue in the peripheral 

non-wounded field had a stable level of oxygen supply and vascular structure throughout 

HBO treatment, the centre site of wound showed no measurable angiogenesis but reflected 

capillary budding, which is defined as the lag phase of angiogenesis. Then a rapidly 

growing new vessel followed. During this period of rapid change, an increase to 82% of 

oxygen-supply in the non-wounded surrounding tissue was observed, and the geometric 

rise in oxygenation was due to capillary budding from pre-existing vessels in adjacent 

tissues. When neovascularisation is accomplished, the centre wound field has been 

converted from hypovascular tissue to a more vascular tissue area. Finally, a plateau phase 

is presented when the Tc02 measurement levels of at 80 - 85% of the level in non

wounded surrounding tissue. 

Now consider the response in segments of aorta: the aorta segment is composed of 

endothelial cells, smooth muscle cells and connective tissues, as shown by histological 
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morphology (Fig 2.1 ). The investigation of aorta segment represents an integral response 

of blood vessel to HBO treatment, and we are unable to distinguish the respective cellular 

events with our measurements. However, an intact blood vessel model does allow 

angiogenesis factors via intracellular signalling messengers to deliver proliferative 

information to endothelial cells of blood vessels. And then a complex series of cellular 

events can occur, such as penetration and migration of endothelial cells into the 

extracellular matrix, proliferation of endothelial cells to form tubes, and finally smooth 

muscle cells migrate and associate with these tubes to accomplish the micro-vessel 

fonnation (Folkman and Shing., 1992; Risau., 1997; Beck and D' Amore, 1997). So, 

subsequently, studies on endothelial cell with HBO treatment seems necessary to follow up 

the findings in blood vessel tissue. 

Intracellular free calcium, as a ubiquitous intracellular signal, is responsible for many 

endothelial cell functions (Berridge et al., 2000). Oxygen level seems to regulate Ca2
+ 

signals via a mechanism that involves ROS (Ermak and Davies, 2002). To get it started, we 

established a real-time single cell Ca2
' recording system. At first, a stable fluorescence 

ratio (as an expression of [Ca2+];) was obtained, but further exposure of cells to hypoxic or 

hyperoxic solutions did not shown any effects on [Ca2+];. The unaffected [Ca2l; during 

either hypoxia or hyperoxia may be a genuine response, or could due to cell diversity or 

the perfusion system, which will need more investigation. Meanwhile, HBO-treated cells 

showed a higher average [Ca2+]; than that of non-treated control cells. Besides the single 

cell recording, we also recorded the [Ca2+]; changes of populations of endothelial cells with 

fluorescent plate reader. In the later study, [Ca2+]; increased after exposing to hypoxic, 

hyperoxia and HBO treatments, which lasted for at least 60 min. More importantly, only 

HBO treatment showed the significant higher level of [Ca2+]; than that of air treatment. To 

exclude the conventional theory that [Cil; increase was responsible for cell injury, we 
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checked the cell viability and confirmed neither of the treatments induced cytotoxic effects. 

To our knowledge, there have not been a study comparing the [Ca2+]; response to different 

oxygen levels. Although there is only two studies investigated the changes of [Ca2+]; during 

HBO treatment, several studies have shown that the elicit of [Ca2+]; in hypoxia has related 

with ROS pathways (lkeda et al., 1997; Aley et al., 2005; Peers et al., 2006) and 

mechanical factors such as pressure were able to increase [Ca2+]; as well (Matsuo and 

Matsuo., 1996; Sato et al., 2006). Due to the fact that HBO treatment contains both effects 

from high oxygen tension and high pressure, it is quite possible that the calcium increase 

observed can be due to either of these two factors. Therefore, further investigation is 

needed to work on this aspect. 

In spite of the fact that HBO treatment increased [Ca2l; without inducing cytotoxic 

effects, it does not mean there is absolute no potential damage to endothelial cells such as 

effects at genome level. Other studies have shown that HBO treatment induced genotoxic 

damage in lymphocytes as well as other cell types (Dennog et al., 1996; Speit et al., 1998 

and 2002). Thus, we used the comet assay to investigate the genotoxic effect of HBO 

treatment on endothelial cells (which have not been done before). Our results indicated that 

HBO treatment induce repairable DNA modification because a slight but significant 

migration changes in DNA of endothelial cells were seen at immediate after HBO 

treatment, which were totally reversed after 24 hours. To further investigate the potential 

adaptive or damaging effects of HBO treatment on endothelial cells, we exposed HBO-

treated cells to subsequent oxidative stress. HBO-treated cells showed less DNA damage 

than non HBO-treated cells, which indicates protective mechanisms occurred. Examination 

of the intracellular glutathione pool suggested that the redox glutathione balance may be 

responsible for the protective effect. With the data presented throughout the studies in this 
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project, we hope to provide scientific in vitro evidence to support clinical application and 

contribute to the mechanism research of hyperbaric oxygen therapy. 

7.2 Limitations of the Current Work 

Although every effort has been taken to ensure a comprehensive work, we are aware 

of the following limitations, some of which may be addressed in the future work. 

7.2.1. Limited Considerations on Pathological Conditions 

Most of the chronic wounds are mainly characterised by hypoxia, low pH and 

containing high level of lactate. In our study to mimic the pathological wound conditions, 

we have investigated one aspect of pathological conditions with high level of lactate 

supplement. Because of lack of sealed chamber and unable/difficult to control the 

experimental conditions, we were unable to proceed other independent experiments to 

investigate the HBO effects on blood vessel in other pathological conditions. 

7.2.2. Limited Validation of ROS Functions 

In our study, the ROS formation has been directly detected and the relationship 

amongst ROS, cell damage and angiogenesis factors was analysed, but the role of ROS 

was more like to be deduced from our data and previous references, and direct validation is 

needed to provide more experimental evidence. 

7.2.3. Limited Work of in vivo Investigation 

This thesis is based on in vitro experiment to study the HBO treatment, due to the time 

restriction and long procedure to get ethical approval; we are unable to investigate the 

effects of in vivo HBO treatment. For example, studies on the biochemical indexes and 
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genotoxic effects of HBO treatment to patients with chronic wounds will greatly help to 

partially fulfil the gap between clinical trial and basic scientific research. 

7.3 Future Work 

In light of the limitations of the current work and the possible extensions, the 

following selected projects may be undertaken as future work. 

7.3.1. Effects ofHBO Treatment on Hypoxia Condition 

Hypoxia, is an important factor to delay healing in chronic wound and it is well 

known to regulate angiogenesis process. Study to investigate the effects of HBO treatment 

on acute or chronic hypoxia tissue or cells samples will help to understand another 

important aspect of pathophysiological changes in chronic wounds. 

7.3.2. Antioxidants Implication to Validate ROS Function 

Another natural extension of the current work is to further explore the ROS function 

using direct experimental methods such as implication of antioxidants in our experimental 

system. Furthermore, it is worthy examining the antioxidant enzymes changes during and 

after HBO treatment, which may provide extra evidence of the HBO function to 

antioxidant defence system. 

7.3.3. Calcium Changes in HBO Treatment 

In Chapter 5, we have demonstrated that HBO treatment elevate intracellular calcium 

concentration. However, it is desirable to devise experiment to find out the resource and 

the possible mechanism of the correlation of calcium changes with the ROS formation in 

1-180 treatment. And in addition, the association of the calcium signalling system with 

cellular events during HBO treatment also deserves further study. 
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7.3.4. In vivo Experiment of HBO Treatment 

In Chapter 6, we have demonstrated that in vitro HBO treatment induces repairable 

DNA damage, and more importantly, it provides protective effects against subsequent 

oxidative stress. Although similar finding have been reported with in vivo HBO treatment 

to healthy volunteers, it is necessary to investigate in patients with chronic wounds for the 

acute as well as long-term effects of HBO treatment on DNA damage, which will provide 

valuable infonnation for HBO therapy protocol selection. 

7.4 Conclusion 

In this thesis, we have shown a systematic study on the effects of HBO treatment. The 

numerical results and analyses have indicated that a single therapeutic HBO treatment 

showed different effects on oxidative stress and tissue toxicity to blood vessel in 

physiological and pathological conditions. In physiological condition, HBO treatment 

induces neither oxidative stress nor toxic effect; while in pathological condition, HBO 

treatment induces oxidative stress and toxic effect. No evidence from our studies has 

shown that a single HBO treatment is able to induce vascular endothelial growth factor and 

nitric oxide production in blood vessel tissue. In another aspect, a single therapeutic HBO 

treatment elevates intracellular calcium levels in endothelial cells without injury to the 

cells, and more importantly, HBO treatment is able to protect cells from subsequently 

oxidative stress. The intracellular glutathione pool changes may contribute to this 

protective effect. 

This project contributes to the pioneering work of a serial hyperbaric oxygen therapy 

research supported by Diving Diseases Research Centre, Plymouth and the University of 

Plymouth. With little preliminary work to reference in this field, we expect that our work 
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through ihis project 1has advanced the 'knowledge of-understanding :the physloio~lcaii roies. 
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