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The conseiVation and ecology of the heath lobelia, Lobelia urens L. 

Janet Mary Dinsdale 

ABSTRACT 

This programme of research examines the ecology of the threatened perennial Lobelia w-ens L. 

(the heath lobelia) which reaches the northern limit of its distribution in the southern coastal 

counties of England. A survey of the historical evidence of the distribution of the species in 

England is presented. Restricted to such a small area, L. w-ens has always been rare in Britain. 

The six remaining populations were surveyed to describe the phytosociology of communities 

containing L. urens and the variability of the environmental factors controlling its distribution. 

L. urens is shown to be a member of rough grass-heath communities dominated by Molinia 

caenilea and situated on seasonally waterlogged, moderately acidic, nutrient-poor soils. 

Studies of the demography of L. w·ens focused on two extant populations. Experimental 

research was carried out to support these demographic studies both in the field, on plants grown 

in a common garden, and under the controlled conditions of the glasshouse and laboratory. This 

infonnation on the ecology of L. urens was used to construct stage-structured population 

matrices. 

Recruitment success in L. tu·ens is shown to be very low in Britain and results suggest that this 

controls the density of British populations. The availability of seed does not regulate the rate of 

gennination. Instead, recruitment of L. urens at the northern edge of its range is restricted by 

its specific habitat requirements, along with low summer temperatures and the short growing 

season. Establishment from seed is facilitated by micro-habitats that provide high light 

intensities and, more importantly, protection against soil moisture loss. 

Whilst winter disturbance by herbivores is shown to be essential for successful recruitment, 

adult growth and survival is better in ungrazed communities. However, even the small plants of 

the grazed areas are very fecund. The seed fonns a large persistent bank that em bodies a 

reserve of individuals and genetic variability which offers protection against extinction. 

The thesis concludes that the soil moisture status and disturbance regimes at Redlake and 

Andrew's Wood are limiting the growth rates of the L. urens populations. In order to maintain 

populations, the redirection of drainage water is prescribed to increase the soil moisture status. 

L. w·ens is suited to intenn ittent soil disturbance, the timing and intensity of which was shown 

to be important, whilst the duration between grazes was seen to be less critical. Results suggest 

that the habitat created by occasional heavy winter grazing of fattening cattle would be very 

favourable to L. urens. 
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ONE 

Introduction 

This thesis aims to investigate the ecology and conservation of Lobelia urens L. in southern 

England. The principal objectives are, first, to describe the life cycle and population biology of 

L. urens and; second, to define the specie's interactions with environmental and biotic factors. 

Such ecological knowledge provides the correct foundation for conservation management plans. 

A prerequiste of this research is the examination of L. urens species biology. 

1.1 Species Biology 

The relationship between a species and its ecosystem, the species niche, is easier to define, 

interpret and discuss if something of the basic biology of the species is known. 

1.1.1 Taxonomy 

Family: 
Genus: 
Species: 
English common names: 

Campanullaceae 
Lobelia 
L. urens 
the heath lobelia, acrid lobelia 

1.1.2 Morphology (Brightmore, 1968; Clapham, Tutin & Moore, 1987) 

L. w·ens is a nearly glabrous, perennial, rhizomatous herb. The rhizome develops a number of 

rosettes through late autumn to early spring. The median number of roselles is two or three but 

plants can have as many as twenty (personal observation). The roselle leaves are obovate, sub-

petiolate and irregularly dentate. The average roselle is made up of ten to fifteen leaves each of 

which is 50-100 mm long. Each rosette produces an erect slender spike that grows to 
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Plale 1.1. The 
morphology of 
L . urens 
(a) large plant in 
flower at Andrew's 
Wood, July , 1995, 
(b) detail of 
individual flowers, 
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10-100 cm (Plate l.la). The spike may be simple or branching with bracts much narrower and 

shorter than the rosette leaves. The inflorescence is rather lax and typically has forty to eighty 

purplish-blue flowers between June and October. The flowers are henuaphrodite, zygomorphic, 

resupinate, pentamerous and entoruophilous. The calyx tube is cylindrical, up to 12 mm long 

and distinctly ribbed with almost linear teeth which are shorter than the tube. The corolla is I 0-

15 mm long, purplish-blue in colour and bilabiate. The upper lip is bilobed, almost cleft to its 

base and the lower lip trilobed; all lobes have recurved acute apices (Plate 1.1 b). The stamens 

have free filaments attached to base of the corolla tube. The anthers are black with whitish 

hairs and shortly exserted, while the two lower anthers are bearded. The style is slender; the 

stigma capitate and weakly bilobed. The ovary is bicarpellary and inferior with numerous 

ovules of axile placentation. The capsules are held erect on the stem, they are elliptical [8 x 20 

nuu], brown in colour and finely striate. A typical capsule contains around 200 seeds, each less 

than I mm in length, light brown and rather shiny (Plate l.lc). These seeds are dispersed a 

short distance when the dry capsule dehisces loculicidally by two apical pores. In late autumn, 

after seed ripening, the flowering spikes die back and new roseltes emerge from the rhizome. 

1.1.3 ftfeflicinal uses of the Lobeliaceae 

The Lobeliaceae have been used as drugs throughout history (Holliday, 1969). Their medicinal 

properties are due to the latex which contains alkaloids such as lobinaline, lobelanine and 

lobeline (Mascre & Crete, 1932; Krochinal et al., 1972a). Of these, lobeline has been 

prescribed most commonly and it is said to resemble nicotine and coniine in its action as a 

powerful emetic and respiratory stimulant (Edmunds, 1904: MAFF, 196!!): it has been used 

throughout history to induce spasms (Grieve, 1971) and for the treatment of asthma and 

bronchitis (Howes, 1974). The central phanuacological action of Lobeline today is as an 

expectorant (Perlill, managing director of Gerard House, personal communication). All the 

Lobeliaceae contain the above three alkaloids but L. inflata has the highest lobeline content 

(Krochinal et al., 1970, 1972b) and has been cultivated to increase the yield per plant (Krochinal 
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et al., l972b ). 

1.1.4 Geographical and altitudinal distribution 

L. urens shows a Lusitanian distribution in Europe and North Africa that extends from Morocco, 

Madeira and the Azores, in the south, along the Atlantic coast through Portugal, Spain and 

France as far as Belgium (Forbes, 1846; Brightmore, 1968; Tutin et al., 1976; Daniels, 1990). 

In the extreme south of Europe L. urens is of frequent occurrence in the mountains west of 

Gibraltar (Wolley-Dod, 1914). In Madeira, the plant is mainly found between 600-915 m 

(Brightmore, 1968) and in the Azores, where it occurs on the islands of Terceira and Faila, it is 

found above 300 m in grazed pasture (Sjogren, 1984 ). Further north, in west Spain, the main 

locations are in upland valleys, reaching 830 m in the Monies de Toledo and extending to the 

southwest into the Guadiana valley (Brightmore, 1968). In Portugal it is present in the coastal 

plain, passing inland up the valleys of the wetter northern provinces to 800 m. L. w·ens is 

found in the Pyrenees but further north in France it is restricted to lowland coastal areas. L. 

urens reaches its northern distributional limit in Britain and is confined to the southern coastal 

counties of England: Cornwall, Devon, Dorset, Hampshire, Sussex and Kent, with a single 

record for a colony in Herefordshire (section 2.2). In Britain it is a lowland species (Wilson, 

1949) with an altittudinal range from 25 m in the New Forest to 210 m at Yarner Wood, Devon 

(section 2.2). 

Climate exerts the predominant controls on the world distribution of species (Cain, 1944) and 

temperature is the major climatic detenninant of species distribution (Coope, 1977: Atkinson et 

al., 1987). The physiological mechanisms by which temperature operates on species 

distributions are incompletely understood (Grace, 1987). Plants have a optimum temperature for 

growth and also absolute temperature limits to survival (Wilson, 1949; Grace, 1987; Beerling, 

1993). Brightmore (1968) interpreted the 5°C January isothenn as the lower temperature limit 

for L. w·ens but such hard two dimensional temperature limits are improbable (Jeffree & Jeffree, 
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1994): first, because individuals are not genetically identical and show phenotypic variation in 

their tolerance of temperature; and second, because response to low winter temperature is 

affected by the preceding summer temperatures and consequently shows variation with 

geographic location (Jeffree & Jeffree, 1994). Furthermore, the edaphic environment must be 

given full consideration, since sandy soils and soils over free-draining baserock, such as 

limestone or chalk, are more easily wanned than those of a contrary character such as clay. In 

porous soils, plants may attain a higher altitude or a more northerly distribution than in soils 

which are heavy, wet and cold (Wilson, 1949). Throughout its range, L. urens is found in 

infertile, siliceous acid soils (Brightmore, 1968). At its northern limit, these soils are mainly 

argillic and lie over more clayey horizons. As a result, they are badly drained areas that are 

waterlogged for at least part of the year and this can intensify the effects of low temperatures. 

L. urens is rare in Britain and is listed in the British red data book (Perring and Farrell, 1977). 

The species has a clumped distribution, with records for only nineteen sites, yet populations are 

represented by many individuals where they arc found. Although species populations are 

usually more fragmented towards their distributional limits (Griggs, 1914; Hengevelt & Haeck, 

1982; Carter & Prince, 1987), it is not known how L. urens dispersed to these disjunct sites, 

leaving no intermediate occurences. There arc however many, more mysterious, examples of 

disjunct plant distribution such as how a single tree of the whitty pear (Sorbrts domeslica) got 

into a remote spot in Wyre forest, Worcestershire at some time before 1600, when its nearest 

locality was in Brittany (Pill, 1678)? Or how }uncus phmifolius came to be known from the 

South Pacific, Hawaii and one particular remote lough in western Ireland (ScannciL 1973 )"1 

1.2 ConsctYation 

Landscapes without human disturbance epitomise naturalness, yet under this criterion there is 

nothing even near natural left in Britain. What is seen as nature conservation here in Britain is 

really aesthetic historic conservation (Rackham, 1980). The historic records of different ages of 
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human disturbance give Britain's landscapes diversity, not merely genetic diversity, but habitat 

diversity offering relief in an homogeneous world of concrete and monospecific crops. Leopold 

(1949) first introduced the concept that all species including Homo sapiens are equal and started 

the movement away from anthropocentric conservation. People can make their mark on the 

landscape, just as oak trees make theirs, and that landscape will still be natural. The division 

between the effects of humans and those of other species is that the ever increasing 

requirements of the growing human populations threaten the majority of plant and animal 

communities. It is this difference that advocates conservation. Areas chosen to be protected 

from human exploitation need to be conserved carefully; frequently they cannot be preserved 

with no further interference, as they are restricted to small isolated patches, where they do not 

function naturally. 

The conservation of rare or endangered species is important, not only as a part of this overall 

plan to maintain an aesthetically enriched environment, but also because it provides essential 

opportunities for developing methodologies for effective environmental planning and 

management on a small scale, that may then fonn the basis of community or ecosystem 

conservation. 

The 1947 Report of the Wildlife Conservation Special Committee 'Conservation of Nature in 

England and Wales' called for population studies be undertaken on rare plants. The need for 

such studies is continually reiterated (Perring & Farrell, 1977; Baskin & Baskin, 1978; 

Bradshaw & Doody, 1978; White & Bratton, 1981; Harvey, 1985; Palmer, 1987; Lesica, 1992; 

Primack, 1993), yet to date, there have been few examples of such research (Given, 1994 but 

exceptions include Meredith, 1978; Wells, 1981; Zhang, 1983; Bullard et al., 1987; Hutchings, 

1987a; b; Mehrhoff, 1989; Charron & Gagnon, 1991; Lesica, 1992). This paucity of research is 

largely because of the enonnous investment of time needed to monitor the demography of a rare 

plant (Davy & Jefferies, 1981; Hutchings, 1990). 
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L. urens is of particular interest, since it lives up to people's expectations of a rare species. lt is 

elegant and, where it persists, it is very conspicuous in flower, giving a purplish haze to the 

pastures. Little is known about the status of L. urens in continental Europe. Further weighting 

will be added to its value if it is rare on the continent or if the British populations are shown to 

be genetically distinct from those of Europe. 

1.2.1 Ecology as the basis for conservation 

At the core of conservation is the science of ecology (Dansereau, 1970). The successful 

conservation or restoration of a rare species relies on fundamental autecological knowledge 

(Baskin & Baskin, 1978; Sober6n, 1992), which requires rigorous ecological investigation into 

the species' habitat requirements, life history, population viability, evolution and genetic traits 

(Warren & Goldsmith, 1974; Gilpin & Soule, 1986; Lande, 1988; Menges, 1991). The history 

of a species, the composition of its associated communities and its principal relationships with 

environmental variables fonn part of the ground work for autecological studies (Sheail, 1974; 

1980; White & Bratton, 1981; Kent & Coker, 1992). However, demographic monitoring is the 

key to understanding the ecology of all plant species (Harper, 1977; Menges, 1986; Hutchings, 

1990; Owen & Rosentreter, 1992; Primack, 1993; Given, 1994: Pavlik. 1994 ). When 

demographic monitoring is incorporated into a field experiment, existing habitat conditions or 

management techniques can be evaluated, and altemative techniques can be designed to hasten 

population recovery (Harvey, 1985; Mcngcs, 1986; Pavlik, 1994). Unfortunately, for many rare 

plants, much of this infonnation is lacking when conservation plans are considered (De Mauro, 

1994; Pavlik, 1994). As a result, the plans are often standardised, and the recommended 

research and management actions ore too broad or are unrelnted to immediate population 

survival (Cook & Dixon, 1986). This thesis aims to use ecological theory in the fonnation of 

cogent management plans for the conservation of L. w·ens. 
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1.3 Thesis aims 

The first objective of this research is to detennine the status of L. urens in Britain: it is known 

to be rare and threatened (Perring & Farrell, 1977) but what is its present day distribution and to 

what extent is it endangered? The study aims to detail infonnation on the life cycle and 

population biology of L. urens, and its relationship with environmental and biotic factors, in 

order to understand the ecology of L. urens at both the community and population level. 

The basic philosophy behind the thesis is that factors operate during the life cycle of L. urens to 

regulate the perfonnance of the British populations and thus cause the plant's rarity (Sagar & 

Mortimer, 1976). The ultimate objectives are to complete a transition matrix for L. urens using 

demographic data, which will reveal the present growth rates of the populations studies and to 

use elasticity analyses to divulge the life history phases or interphases which restrict population 

growth (Manders, 1987; CaS\\·ell, 1989; Crawley, 1990). Monitoring of areas under different 

grazing regimes and contrasting these with ungrazed control plots allows an evaluation of 

grazing management (Palmcr, 1987; Pavlik & Barbour, 1993). Such ecological knowledge 

provides a finn basis for optimal conservation management plans for sites (Darwin, 1872; 

Zhang, 1983) and thus is the key to protecting and managing a rare species (Primack, 1993; 

Bowles & Whelan, 1994 ). The final goal is to prescribe management plans for two L. ru-ens 

sites that will incorporate means of improving this species' status in southem England. 
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TWO 

Historical ecology and biogeography 

2.1 Introduction 

The conservation of rare plant species requires an investigation into their biogeography 

including the distribution of the species, limiting environmental factors and the impact of human 

activity both past and present It has been argued that historical evidence should be disregarded 

in ecological studies, since individual events can never be fully verified and the history of a site 

or species is invariably incomplete (see Sheail, 1974; 1980). However, this is a short sighted 

view, because the history of a species is fundamental in detenuining its present-day ecology 

(Sheail, 1974; 1980). Prior to the work described here, the most complete record of the status 

of L. urens in Britain was provided by Perring & Waiters (1982) who listed twelve sites a! 

which L. urens had been recorded (Figure 2.1 ). Today, historical records have been found for 

nineteen sites and plants occur at only six (Figure 2.2). This contemporary account of the 

historical ecology of L. w·ens in Britain is still fragmentary but fonus a very important 

foundation for the study of the species' requirements. 

Species populations are usually more fragmented towards their distributional limits (Griggs, 

1914; Hengevcl! & Haeck, 1982; Carter & Prince, 1987) and are particularly susceptible to 

extinction here. In Britain, the remaining L. urens populations are clearly fragmented and half 

are small, with less than I 00 plants. Small populations are at risk from demographic 

stochasticity, genetic drift and inbreeding depression, all of which are exaggerated by habitat 

and population fragmentation (Franklin, 1980; Soulc, 1985; 1987; Burgman et al., 1993; Bowles 

& Whelan, 1994; Caughley & Sinclair, 1994). 

The biogeography of a species should also fonn a part of the ground work for autecological 
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Figure 2.1: The status of L. w·ens in Britain according to Perring and Waiters (1982). 

Figure 2.2: The past and present distribution of L. w·ens in southern 13ritain based on documentary and 
archive sources and present-day survey. 
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studies. The understanding of the ecology of a plant community requires a description of the 

floristics, how the community evolved and its principal relationships with environmental 

variables (Sheail, 1974; Kent & Coker, 1992). However, single species studies do not generally 

include research into the characters and composition of associated communities. These details 

must provide a valuable insight into the species ecology, particularly for rare or threatened 

species, as the plant's community specificity and the specificity of the community's 

environmental requirements are major detenninants of the species vulnerability to extinction. 

There are three aims to this chapter: 

(i) to review the historical records and present-day distribution and abundance of L. 

w·ens in southem England, to detennine the status of the species over the past 200 

years, the causes of its rarity and its potential to be endangered or threatened; 

(ii) to investigate the floristic composition of the plant communities within which the 

extant L. urens populations survive; 

(iii) to assess the relative importance of environmental factors in controlling the 

composition and distribution of communities containing L. urens. 

2.2 Histo1icul ecology 

The aim of this section is to present the documentary evidence for the past and present 

distribution of L. w·ens in southem England. 

Historical records exist for 19 sites in the south but nowhere else in England (Figures 2.1 & 

2.2). For the six extant sites, a summary of their recent history and population numbers of L. 

urens is presented in Table 2.1. The infonnation available on both the extinct and extant 

populations is as follows: 

33 



2.2.1 Cornwall and Devon 

Historically the British L. urens populations have been concentrated in Devon and Cornwall and 

eleven of the nineteen sites containing L. urens in southern England are located in these two 

counties. The earliest record is from Axminster in east Devon and reads: 

"Supra Shute Common inter Axminster et Honiton. D. Newbury," (Ciarke, 1778). Also, 

Andrew's Wood in south Devon, contains the largest extant population. 

Populations at eight of the eleven sites are now extinct; one was an unsuccessful introduction 

and three were lost due to afforestation. The cause of species loss from the other four sites is 

unknown. The three extant populations are indigenous and two are within designated local 

nature reserves. 

Extinct sites (Figures 2.1 and 2.2) 

Near Penzance, Cornwall 

L. urens was recorded at this site on a single occasion (Tempere, 1876). No habitat infonnation 

was presented and Davey (1909) believed that the identification was a mistake. 

Ventongimps Moor, Cornwall 

In 1968, nine plants were introduced from the population at Redlake, Cornwall under the 

supervision of J.F. Archibald. It is not known how long they persisted or exactly when they 

became extinct. 

Yamer Wood, Devon 

L. w·ens was first recorded here, amongst stunted oaks and bilberry, by Rev. Keeble Martin 

(Martin & Fraser, 1901). The population thrived from 1901 to 1913 (Keeble Martin, 

unpublished) but it had vanished by 1920. L. w·ens reappenred at Yamer Wood, Devon in 

1958, after an acre of woodland was cleared for replanting. In 1959, there were 34 plants, but 

by 1963, there were only four and one or two persisted until 1969. In an unsuccessful attempt 
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to encourage germination from the seed bank, the trees and ground layer were removed around 

the former locations of L. w-ens in 1980. 

Little Bradley, Devon 

In 1981, Dr. B. Merritt recorded L. urens in the marshy area of a local nature reserve at Little 

Bradley near Bovey Tracy, Devon. This is the only record. The close proximity of this site to 

the former Yamer Wood population (Figure 2.2) makes natural colonisation a distinct possibility 

but there is also a chance that seed was carried on the boots of conservationists from Andrew's 

Wood, Devon, since both sites are reserves managed by the Devon Wildlife Trust. 

Shute Common 1, Devon 

The birch woodland on Shute Common, in which L. urens thrived throughout the nineteenth 

century, was felled in 1960-2 and this site was replanted with Western Hemlock (Tsuga 

heterophylla), bordered with amenity plantings of various hardwood species. The L. urens 

population was greatly reduced by this change in land use: 41 plants were recorded in 1963, 

declining to 24 in 1967, seven in 1969 and only one in 1990 (Tucker, unpublished). L. urens 

may be surviving in small numbers in the border, where the light intensity is higher but no 

plants were seen in the present survey. 

Shute Common 2, Devon 

L. urens flourished beneath birch, probably appearing in the small clearings resulting from 

natural tree fall. The woodland was felled in 1960-2 and this area was replanted with douglas 

fir (Pseudotsuga menziesii) and hybrid larch (Larix x. eurolepis). The population suffered 

dramatically from this change in land use. Until 1965, 50-60 plants survived but no plants have 

since been recorded in the plantation. 

Field to the north of the A35, Kilmington, Devon 

Mr. W. Tucker counted approximately 100 plants in a field here in 1964 and a few remained 
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until 1969. No plants were found in the present survey, although the habitat is assumed to 

remain unchanged. 

Branscombe, Devon 

Dr. Stansfield of the British Pteridophyte society saw L. urens on the outskirts of Branscombe in 

the early 1930s. An attempt by the British Pteridophyte society to relocate the population in 

1937 was unsuccessful (Cranfield & Stansfield, 1937). 

Extant sites (Figures 2.1 and 2.2; Table 2.1) 

Redlake, Comll'all 

Webb (1879) suggested that L. urens was not to be found in Comwall. However, Briggs (1883) 

was told that the plant hnd been gathered by a Miss Woods on a moor between Lostwithiel and 

St.Veeps in 1878. In 1883, Mr. Briggs set out to locate this site. He wrote: 

"Hitherto considered to grow in the United Kingdom in the county of Devon only ... l 
found the L. urens in two places, a couple of miles apart ... One of the stations, an 
enclosed, though unbroken, rough pasture of about five acres, with a stiff clayey soil, 
producing short grass and sedge, with Salnoid succisa and patches of furze and some 
heath. Here were dozens of specimens still in flower...probably hundreds over a 
considerable area, ... m any cropped by cattle... The other station is a small enclosure of 
about an acre consisting partly of undrained bog with Menyanthes. Juncus aculifolia, 
Molinia etc. Here it occurs for ten to fifteen yards by a small lushy ridge near the bog 
and also on the damp lower portion of the hedge-bank, but altogether appears only 
sparingly. It is associated with A quilegia, Hypericum rmdulatum, Viola lac/ea, 
Hydrocotyle. Serratula, Bartsia viscosa. Salix repens, and a few bushes of Myrica with 
brambles and furze (Briggs, 1883, p359). 

During the late 1920s and early 1930s, L. w·ens was recorded from a number of different sites 

in the St.Veeps/Lcrryn/Lostwithiel area, largely by W. Magor. Apart from Redlake Cottage 

Meadows, all sites have since been taken into agriculture (Jcnkins et al., 1984 ). 

Redlake Cottage Meadows was originally used for the rough grazing of ponies and cattle but 

unfortunately there are few records available regarding the number of plants at Redlake at that 

time. The lirst counts in the early 1960s only recorded a handful of plants, but since the 1970s, 

records generally show numbers to be within the range of I 00-200 plants. In 1984, numbers 

rose to over 1200, which may be connected with management by the Comish Trust for Nature 
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Ye at Redlakc, Comwall. Andrcw"s Wood, Devon. Kihnington, lkvon. 

Count Location and n\JIJlag~ment details Count l...ocation and management details Count Location and managemenl det.ails 

1%3 30-40 Scanered along upper boundary of a 
steep sloping unimproved meadow 
bordering a conifer planlalion. 

1964 20-30 30-40 

1965 ca.l2 ~0 

1966 lOOt 16 

1967 18 

1968 250 760 22 

1969 17 

1972 60-70 220 

1973 169 

197.11 257 Bullocks broke into reserve mld· 
sumnl('t, canle in over winter. 

1975 2560 l...arge increase in comp:ntment C. 

1976 4897 

1917 5325 

1978 180 L. uren.r n1ainly in field 6 and 7. 2315 

1979 138 dino. 3915 lncrca..sc due to inclusion of new 
field to reserve (D) which contained 
large numbe-rs of L. unm.r. 

1980 3970 

1981 3028 

1982 }602 Increase in companment D. 

1983 IJ7 L. auen.r mostly in north of field 6 5696 lncr~ in D and A. 

Commencement of management by 
CTNC. 

1984 1221 L. uren.r largely in fields 4 and 6, 2%5 Decline in D but increase in A 
thriving in trampled areas. 

1985 745 L. urenJ largely in fields 6, fewer 2191 
in I, 4, and 7, lhriving in trampled 
areu. 

1986 265 L. 11rens in fields 6, 7 and 4. 2 2144 
ho~ in March, many visitors in 
summer, 20 cattle in September. 
Plants not in heaviest poached 
areas. 

1987 507 Majority of L. urens in r~ld 6, 842 Low count since no record for D 18 
small populations in 7 and 4. this year. 

1988 572 1520 Decline in D but increase in A. 

1989 612 3183 Large increase in D. 

1990 544 5308 Large increase in D. 

1991 221 4948 

1992 207 L. ureiU largely in fields 6 and 7, 3772 
small population in 4. 

1993 197 4 Ennoor ponies plll onto site ovtt 2637 Mainly due to decline in D. 24 In very similar position to first 
wintc:r. count. 

1994 142 4217 Large increase in D. 

Table 2.1: Summary of population numbers and the recent history of L. m·ens. at the six extonl sites in 
southern England. 
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Y.:;'lr llun.l ll.:alh, l>on..::l. llinlon Admir.il, lbmp10hir.::. Flimw.::ll, Su:ss..:x 

Couul Location aud managcmcnl dclails Counl Location and man:a~gemcnl d.:l<~ils Counl Localion :111d management d~1ails 

1945 I On edge of remnant hcalhla.nd. 

1946 l~w ll1inly scattcr.:=d on 1..hc o::dgo::s of 
rides wilhin cho::slnul coppice. 

1952 fc"· dino. 

1956 12 Cat PlanLation, amongsl conifers. 

19H 4-5 lklwccn 1ussocks of long grass. 

1959 /~w dillo 

1961 8 dino. 

1965 5 ea. I 50 Fire in Cat Planlalion. 

1967 80 Along bell, 15 m.:tr<es wide, cleared 100• Bracken beginning lo smolh.::r 
for drai11 r~S1oratiou. plants. 

1968 ea. I 50 diuo. 

1970 ea. lOO No plants in planlalion. no:w sil.: 111 
h~alh)' paslure. 

1971 ]{J.!'!'(J (\mtin.:d In rid~·~. dh:~lllllb ~-lfJ 

y.:an. llld 

1973 1629 lu 'gardeu.:d' area. c.a.JOO Majorily iu nonh-.:.asl com.:r t~t" 
paslure. 

1974 2101 ditto. 44 Confined \o ricks. 

1976 

1977 27 Paslurc now divided inlo 2, 

soul hem h.alf gra.zd, 10 L. wt~ru 
Northern half not., 17 L. 111-tns. 

1978 43 All in I clump on north-cast edge 
of pasture adjoining planl;'lli{lll. 

1980 26 1 on north-cas! edge. 11 in newly 
.:ul ditch along fcn.:e. 8 in ungraL.:d 
nonhcm h.alf. 

1981 18 Mostly along dilch. 

1982 8 In north.:'m so=.:! ion of pa~\UI.! 

1981 

1985 60 0 

1986 164 S7 in now ungraz.::d soulh.:m hair. lOO Treo!s Idled. t_ wrn~ wid..~pro!aJ 
.almosl all along whc:.:l ruts 3 in lhrough wood. 
nonhem !><clion. 

1988 c.a.250 

1990 Site devc:loped as a bird park. 

1991 ca.l20 

1993 114 In southcm section, almost .all in ca."2500 Scan.:ud throughout bird parl;.. 
dilch. 

1994 similar Still almos.l all containd wilhiu 
10 "74 'gardened' area. 

Table 2.1 (continued): Summary of population numbers and the recent history of L. urrms. at the six 
extant sites in southern England. 
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Conservation (now the Cornwall Wildlife Trust) which began in 1983. Since 1983, there have 

been annual counts of the numbers of plants in each field within the reserve. The majority of 

the population has always been in one field in particular, mainly within the heavily poached 

areas, with fewer plants in the other fields. There has been little grazing between I 986 and 

1993, and numbers have declined steadily since the mid 1980s (Table 2.1). 

Anc/rew's Wood, Devon 

Capt. Harris-Wise first recorded L. urens on Stanton Moor in 1889 over a large expanse of 

heathy meadow (Martin & Fraser, 1901). In 1894 Sir H. Low recorded 50-80 plants in open 

places amongst gorse bushes (Martin & Frascr, 190 I). The vast majority of this rough ground 

remained unimproved until the 1950s and the fields lying to the south and east of what is now 

Andrew's Wood reserve maintained large numbers of L. urens (Archibald, 1971). These fields 

were drained and ploughed after the Second World War for use as arable or Icy, leaving 

Andrew's Wood as a last refuge for L. urens. 

The wood was declared a Site of Special Scientific Interest (SSSJ) in 1952 and has been a 

reserve since it was leased to the Devon Trust for Nature Conservation (now the Devon Wildlife 

Trust) in I 965. The Friends of Andrew's Wood, a group of local volunteers with interests in the 

wood and its natural history, managed the site from that time until 1988, when the Devon 

Wildlife Trust took over the running of the reserve, having purchased it in 1986. Up until 1965, 

the reserve was grazed regularly, but since then, grazing has been sporadic and there has been 

annual cutting to control the scrub invasion. There are few available records regarding plant 

numbers until 1965 but subsequent annual records, which detail the number of L. urens plants in 

each of the three large clearings on the reserve (Table 2. I), show a great variation in population 

numbers. The field that probably always contained the most L. w-ens was not part of the 

reserve until I 979, which makes overall counts before this date appear artificially low. 

Population nu m hers still range between I 500 and 5500 plants. 
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Lobelia Cottage, Kilnrington, Devon 

Lobelia Cottage is the remaining extant population of the four originally recorded in the locality 

of Kilmington Hiii/Shute Common (Figure 2.2). The first British record of L. urens was from 

this area (Ciarke, 1778) and over a hundred years passed before the plant was recorded 

elsewhere in the country, during which time several accounts of the Shute common populations 

were written (Withering, 1787; 1796 in Edwards, 1862). Plants were seen in the area by Mrs. 

M. Bolitho in 1954 but records of the number of plants are only available for the 1960s, when 

J.F. Archibald visited annually and for the present survey in 1993. These scanty records show 

that the population has remained small at less than 50 plants and in almost the exact same spot 

for forty years (Table 2.1 ). 

2.2.2 Don.·et a/Ill Hampshire 

There were four sites of L. urens in Dorset and one in Hampshire. Three of the Dorset sites 

have been lost, two as a result of cultivation. The populations at the two extant sites in both 

counties are indigenous. They are both pri\'ately owned, though one is designated a wildlife 

advisory site managed by the Dorset Wildlife Trust. 

Extinct sites (Figures 2.1 and 2.2) 

Putldletown, Dorset 

There is a single record of a population here, without an exact location (Lawn, 1956 ). 

Culti\'ation led to the extinction of the population some time before 1965 (Archibald, 

unpublished). 

Mort/en, Dorset 

L. w-ens was recorded here by Sir H.C. Hawlcy in 1920 on a grassy heath. By 1965, the site 

had been culti\'ated and the population was extinct (Archibald, unpublished). 
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Lytchett Malravers, Dorset 

L. urens was also first reported here by Hawley ( 1920) and was seen to be flourishing between 

1939 and 1945 (The Lord Rochley, personal communication). In 1965, Archibald saw six or 

seven plants in flower in a small woodland glade. The population was extinct by 1988 

(Fitzgerald & Everell, 1989). 

Extant sites (Figures 2.1 and 2.2; Table 2.1) 

Hurst Healh, More/on, Dorset 

The first report of L. urens at Hurst Heath was an uncertain record of a single plant in 1945 

(Good, 1945). In subsequent years, plants were occasionally found here at the edge of remnant 

heathland. The heath borders climax woodland community, with Pinus syll'estris and Betula 

pubescens as eo-dominants. There are still some poplars standing which were planted in 1880, 

although part of the wood was burnt in a fire in 1949-50. Adjacent is an arable field which was 

tile-drained in 1861. In 1957, Dr. J. Hasler saw only four or live specimens in between 

tussocks of long grass (Good, 1945). In the early 1960s, part of the original drainage system 

became blocked and during restoration, the vegetation was cleared from a 15 m wide strip, 

running east-west across the heath. This disturbance lead to a flush of plants from the seed 

bank (Table 2.1 ). 

Although the land is still privately owned, Hurst Heath became a Dorset Trust for Nature 

Conservation Wildlife Advisory Site in 1972. Since then, a sun'ey of both seedlings and 

established plants has been pcrfonned annually by volunteers using a grid system to divide up 

the 480m 2 site into 120, 2 x 2 m squares. 

Initially, work was purely observational but the continual decline in numbers motivated the 

volunteer group to experiment with management techniques. In 1981, an area was treated with 

herbicide and in 1986 a 240 m2 patch, representing half the site, was rotovated. Both treatment 

plots had significantly more plants than the controls (Bates, 1992). On the basis of these 
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results, the decision was taken to rotovate a quarter of the area eve!)' fourth year. Plots of 120 

m 2 were disturbed in 1991 and 1993. This rotation ally ·disturbed' area constantly maintains a 

large population size (Table 2.1 ). 

A sub-population of L. urens was found less than a mile away from Hurst Heath by Mr. P. 

Wilson in 1970. In 1972 there were 110 plants but in 1973 there were 31 and by 1974 only 

two remained. The field was then cultivated, but in 1978, plants were located in a ditch 

between the field and a strip of woodland bordering the road. At the time, cattle had access to 

the area and were seen to trample into the ditch. Mrs. G. Hobson counted 742 plants in 1980 

but in the 1993 survey no individuals were found and the hedge was very overgrown with 

brambles. 

Hiuton Admiral, Hampshire 

Mr J. Vorse was the first to record L. 111·ens here, the only population in the county: 

"In July 1903 or '04 a school girl had a bunch of wild flowers. When asking her to 
name as many as she could, I was astonished to see she had a sprig of L. urens. She 
showed me where it had grown. There were perhaps five or six plants in a little clump 
or patch, in an opening amongst the firs. Subsequently in the same year I found a few 
more plants perhaps fifty yards away from the first lot. From these have sprung the 
many hundreds of plants which now fill the wood" (Linton, 1919 in Archibald, 
unpublished). 

At the time, the site was described as a piece of heathy woodland (Rayner, 1929) but it was 

replanted with Pinus syl1•estris in 1949. Several records, each of a handful of plants, exist from 

the 1950s. In 1965, the plantation was destroyed by fire and this disturbance led to a flush of 

L. urens (Table 2.1) on the cleared ground and amongst the charred pines, especially associated 

with dense beds of Teucriwn scorodonia on a fine grass carpet of A gmstis canina. A. setacea 

(curtisii) with Cm·ex pilulifera, (Bowman, unpublished). 

By 1970, the community within the plantation had recovered and L. 111·ens was lost from here. 

Simultaneously the plant appeared to the south of the plantation in a small area of heathy 

pasture. The population has been confined to the pasture since then, with plants appearing 
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largely along ditches or wheel ruts. The larger population numbers coincide with years when 

three or four clumps of L. urens appeared around the pasture and in less successful years L. 

urens was restricted to one cluster (Table 2.1 ). 

2.2.3 Sussex am/ K ef/1 

One extant site remains in Sussex and records exist for at least one site in Kent. These counties 

are well-known as outposts of the Atlantic species. L. urens is one of a group of Lusitanian 

plants found in the Weald of Sussex and Kent that includes Hymenophyllwn tunbrigense, 

Ranunculus lriparli/us. Lotus cmguslissimus and Sibth01pia europaea. 

Extinct sites (Figures 2.1 and 2.2) 

A shford, K ef/1 

"Living specimcn ... presented ... Rev. J. Dix of Charing. Found by Mrs. Dix in a wood 
near Ashford on 27 August last • usually supposed to be a Devon plant, and therefore its 
discovery in Kent is certainly worthy of record. Mr. Dix infonns mc that the plant grew 
about a yard from the path, in a chestnut wood which had been cut down, that it was in 
full vigour, and that its centre fonned a superb spike of flowers. He added that there is 
no apparent possibility of its having been placed there by man's instrumentality," 
(Thompson, 1850, pI 051 ). 

More recent writers believe that L. urens was introduced to the site (HanbUI)' & Marshall, 1899; 

Philp, 1982). However, the habitat in the area is VCI)' similar to that of the Flimwell colony in 

Sussex, thirty kilometres away in the Weald, where damp ghyll woodlands create a locally 

oceanic climate. There seems no reason to doubt the records of this Ash ford population and it 

is possible that L. urens may occur at other similar sites in the region. An interesting letter 

among The Atlas of 81ilish Flora correspondence in Maidstone refers to an unconfinned record 

for Penshursl. The writer says: 

"I fear with the drought it may not have flowered this year ( 1976) ... Lady Hardinge (who 
identified the plant) is quite a knowledgeable botanist who used to go out with Dr. 
Druce, so I think it must be a genuine record" 
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Unfortunately Lady Hardinge died in 1979 and the site has never been identified (Fitzgerald & 

Everett, 1989). 

Extant site (Figures 1 and 2; Table 2.1) 

Flinrwe/1, Sussex 

L. 111-ens was first noticed here in 1922 by Mrs. E.E. Johnston (Wolley-Dod, 1970) amongst 

Castanea saliva, which was under rotational coppice. The combination of this geographically 

unexpected location and its late discovery might suggest an introduction but Wilmolt ( 1925) saw 

no reason to doubt its natural origin. The species must have been well-established when first 

noticed by Mrs Johnston, since she comments on the annual fluctuations of the population with 

the weather (Hall, 1980). The population also fluctuated in response to the coppice cycle, 

surviving along the rides when the trees were mature and then flourishing after they were felled 

(Table 2.1 ). In 1990, the site was developed as a bird park. The construction of pens, ponds 

and paths created large scale disturbance which is perpetuated by bird grazing and visitor 

trampling. In 1993, upwards of 2500 plants were to be seen scattered throughout the bird park 

(Table 2.1 ). 

2.2.4 Herefordshire 

All the British L. w·ens populations arc found along the south coast of England with the 

exception of a single record for a population in Herefordshire which is now extinct. 

Extinct site (Figures 2.1 and 2.2) 

Llatlrothal, Herefordshire 

L. urens was discovered at Llanrothal by Mrs. P. Wiscman (Hyde, 1936). The site was 

described as: 

"a neglected hcathy pasture at about 300 ft altitude, on a moderate slope facing 
west. The vegetation consisted of Festuca ovina, and Rubus sp., together with 
Juncus 'communis', Calluna vulgaris, Teucrium scorodonia, and other species 
including seedlings of Crataegrts m onogyna and A cer pseudoplatmws. I saw 
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perhaps a dozen plants of the L. urrms scattered in small groups over an area of 
about on acre. The tallest plant was about one foot high: some heads appeared 
to be grazed. The locality was in a thinly populated rural district well off the 
nearest road (a narrow country lane), and quite away from houses," (Hyde, 
1936, p354). 

Hyde suggested that the species occurrence was natural, although he pointed out that this new 

site represented a greater discontinuity in the distribution of the species in southern England 

(Figure 2.2). 

The area was searched in 1953, 1954 and 1968 but no plants were found (Whitehead, 1976). 

During the war, large areas around and including the site were cultivated and all remain under 

cultivation or as improved grassland. There has also been planting of conifers in what were 

presumably the less well-stocked parts of the woodland (Archibald, unpublished). 

There is some controversy regarding the origins of the Llanrothal population. Perring and 

Waiters (1962) classify the Llanrothal population as indigenous after Hyde (1936). However, 

both S. Thomson (BSBI recorder for Hereford, personal communication) and J.F. Archibald 

(unpublished) strongly suspect that it was an introduction, perhaps thrown out of a garden. In 

the absence of both plant and original habitat it is now impossible to be more conclusive. 

2.2.5 Summary of the historical records 

The historical evidence indicates that L. w·ens has tended to flourish in wet grassy heath and 

grassland communities within clearings in or adjacent to present or former wooded sites. The 

most striking and common feature of the various historical accounts is the revival of the species 

following site disturbance. While many extinctions are a direct consequence of land use change 

and the taking of fonner woodland and pasture into agriculture, given its common occurrence in 

woodland, it is likely that L. w·ens prospered when coppicing was much more widely practised 

and there was significant disturbance to the ground flora and a change to the light clim ale at 

regular inten'als (Rackham, 1986; Peterken, 1993). Decline in coppicing has thus resulted in 
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the gradual extinction of L. urens on many sites. Similarly, in grazed pasture, the species 

survives best where there has been trampling and disturbance by animals. 

2.3 SuJVey of Jlrcsent-dny noristic com11Dsition lllld cm•ironmcntal controls of 11lant communities 
containing L. urens 

The conservation of L. urens requires an appraisal of the range of plant communities in which it 

grows and the environmental factors that detennine the distribution of those communities. Thus 

a full survey of all six extant L. urens sites in southern England was completed in 1993. 

2.3.1 Sampling 

At each of the survey sites, a stratified sampling technique was used to ensure that the full 

ecological variation present was described (Kent & Coker, 1992). On a brief reconnaissance, a 

map of the site was sketched (e.g. Figure 2.3). This was then divided up into major communit)' 

types on the basis of the vegetation strncture and dominant species. The areas of L. urens were 

identified and marked on the site map (e.g. Figure 2.3). 

Two quadrats were then allocated to each conununity type that contained L. urens as defined on 

the site map, one within the L. rtrens patch and a second outside, for comparison. Each 

community type that did not contain L. urens was allocated a single quadrat. Quadrats were 

placed in representative areas within the communities and sampling was thus deliberately biased 

in order to describe the maximum observed variation. The number of quadrats recorded per site 

were as follows: Redlake, 13; Andrew's Wood, 40; Kilmington, 4; Hurst Heath, 14; Hinton 

Admiral, 8; Flim well, 16. 
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Figure 2.3: Sketch map of site of extant L. rll"ens population near 1-!inton Admira l, Hampshire. 

2.3.2 Collection of jloristic data for phytosociology 

Data were collected on the floristic composition in order to define the range of community types 

within which L. urens occurs in southern England . 

The percentage cover of each species of higher plant present with in a 0.5 x 0.5 m quadrat was 

recorded using an 11 -point Dom in scale. This subjective assessment of species abundance was 

chosen for speed and re lative accuracy of measurement (Causton, 1988 ; Ken t & Coker, 1992). 
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2.3.3 Environmental tlata 

Environmental data were collected at each quadrat in order to detennine the principal factors 

controlling the distribution and abundance of L. urens within those communities where it 

occurred. Data were gathered on interval, ordinal and nominal scales. Although nominal and 

ordinal data are weak in explaining variability when compared to interval data, they are still 

useful in characterising controlling environmental factors and in particular those variables 

measuring biotic pressure (Kent & Coker, 1992). 

The following variables were recorded and a standard data record fonn (Figure 2.4) was 

completed for each quadrat. The survey was carried out during July 1993. 

SITE RECORD fORM 

Site Cirid Rd. 

Date Owner 

Area Ahitudc 

Prc1oen1 U!iC/am~rvatiOI1 l>UIU~ 
Adjacent lan Si!uation 

broldle-.1 o.ood 

I 
mi1~d 1I'OOd 

I 
nt1o::y1ode 

~ 
lliiii.IOf'C 

~ rnnifuM:)(I(I •Nb 1111\cyboi!OI'II hill lop 
lo-o.l•nd&rns parU•nll "'"'" CWIJIII 

kJo.tlndl'lulh on: hard !flatu" inland 
uphnd ~u anblc/ky 
upland hu1h """' bo&f~!land '" moo-in& W3Tu ,,,11 •11CI 

butl~i~p rwd/n•"""~r 
Lobelia wr1u Management hi~tnry 

8timation nf rop" size Time ~incc la~t ~raJ.t~d 

l)q;rft or dumping: r,.<J ,.,. linr inrr-n~ilv 

SUL indc1 Spacin,:: indc~ Present rrra1jnp intcn.sitv 
Nole.s: 

(jr;.,in•• \.'Cri.!."''-

Time .since last soil dislurbance 

PM! disturbance intcnsitv 

p..,~, diMurhancc (vnt" 

""~"' .;,,,.,, ,;,. 

rrc~nl disturl1ancc IVIV' 

Artificial cnrichmcnl 

Figure 2.4: (a) Site recording sheet for floristic and environmental survey of L. urens sites. 
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OUADRAT RECORD FORM 
2. VASCULAR PLANT SPECIES 

I ENVIRONMENTAL DATA Abundance inda 

()uadnr No. Wurher "'""' Ouadnd No. 

- Dnlna£t- ..,_~ 

S..l"d hci&hl "'"" Minolopognphy 

Um:r &bunchrm:: Type olllnrr Dryophylc rover 

l\ln: &ro11nd ln~rer1etll'llltl Vcncbntes 

Oa!!iii'lcarion 

Tcr~un: 

NOTa.: 

l.qhclig f(ft/!1 

l.llhe:lta ahscnr I .. CiiUirtn: 10 nu~ plarn 

l.nhchl f'll'tloCIII I ....... _1\hundann: indu 

No. IOSCIICI KO. bn~nrha III.Oflpilr.e 

Figure 2.4 (cont.): (b) Quadrat recording sheets for floristic and environmental survey of L. urens sites. 



Microclimntc atnd habitnt 

(/) Ratio of red to far-rei/light Light which passes through the leaves of photosynthesizing 

plants exhibits a strong peak in the far-red region, centred on 730 nm (Smith, 1982), due to the 

chlorophyll absorption in the red region of the spectrum. As the total radiation decreases with 

sward/canopy thickness, the relative amount of far-red increases (Goodfellow & Barkham, 

1974). Thus the ratio of red to far-red gives an index of the degree of canopy shade. This was 

measured using a Sky SKR I 00 light meter. 

(2) Height of the dominant vegetation Recording the height of the vegetation using a metre rule 

gave an indirect measurement of the degree of shade. 

(3) Aspect Aspect affects the amount of sunlight received; Grace (1987) reports that there is an 

average temperature difference of 3°C between a north and a south facing slope and that this is 

equivalent to o latitudinal shift of I 00 km. The aspect of sloping quadrats was recorded on an 

8-point nominal scale representing compass bearings. 

(4) Slope Slope affects drainage and is also connected with aspect, both of which directly affect 

temperature. A clinometer was used to measure the slope to the nearest degree. 

(5-9) Bare ground, bryophyte co1•er, litter ahumlance, litter ~l'pe am/ microtopograplry These 

five variables were chosen as measures of small-scale variations in the environment which may 

limit the availability of 'safe-sites' for the gcnnination and establishment of seedlings. Bare 

ground can be used as a simple measure of sward density, since it was taken to be the 

proportion not covered by higher plants and did not include litter or bryophyte cover. 

Bryophytes alter the light and moisture availability of seedlings. Plm71 !iller also affects light 

along with soil structure and is known to restrict gcnn in at ion in some species (Goldbcrg & 

Wemer, 1983), as is microtopography (Harper et al., 1965). The percentage cover of bare 

ground, bryophytes and litter was recorded on a Domin scale partitioned into six cover classes 
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as follows: +less than 1%; I 1-4%; 2 5-24%; 3 25-49%; 4 50-74%; 5 75-100%. The dominant 

species of the litter were also recorded. Microtopography was recorded on a I to 5 ordinal 

scale ranging from: I, flat; through 3, uneven; to 5, deeply rutted/poached. 

(10) Exposure The hypothesis that L. urens thrives in small woodland clearings was 

investigated in tenus of exposure to the weather. A 5-point ordinal scale was used ranging 

from: 1, open; to 5, sheltered. 

Soil variables 

A screw auger was used to remove a soil core down to 40 cm and horizon depths were 

measured to the nearest cm. 

(11) Soil texture Soil texture refers to the size distribution of the particles that make up the 

soil. ·Hand-texturing', using the tactile characteristics of the three main particle sizes, sand, silt 

and clay, was used as a measure soil texture. Following Courtney & Trudgill (1984), soils were 

categorised on a 6-point scale: sand, loamy sand, sandy loam, silly loam, clay loam, clay. 

(I 2) Soil .~tructure Increased compact ion of soils is negatively correlated to root penetration, 

water availability and aeration. The degree of structural development was noted using the 

following scale: 

Structureless: No obsen•able peds; massive if coherent and single-grained if non-coherent 

Weak: Indistinct peds; when disturbed the soil breaks into much aggregated material 

Moderate: Well fonned pcds; little unaggregated soil when disturbed 

Strong: Peds distinct in place; soil remains aggregated when disturbed 

Soil bulk clensi~l' Bulk density is defined as the ratio of mass to bulk or macroscopic volume of 

soil particles plus pore spaces in a sample (Rowell, 1994). In this study, bulk density was 

employed to convert the proportion by weight of nutrients, organic m alter and soil moisture to 
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content by volume. Since first, a number of widely differing soils were being compared, and 

second, plants exploit a volume of soil, not a weight. Five samples per site were positioned in 

order to describe within-site variability. A bulb planter was used to remove a core of earth 

approximately 10 cm long and 7 cm in diameter. The exact volume of the excavation was 

determined by filling the hole with sand, of which the volume per unit mass was known. The 

earth removed was air-dried and weighed and the mass expressed per unit volume (gcm"3
). 

(13-22) Soil nutrient analyses The top I 0 cm of cores extracted for the soil description were 

retained and air-dried for eh em ical analysis. The available ions were measured using acetic acid 

solution, a weak liberator of cations at exchange sites, since this extractant allows both the 

cations and phosphorus to be detenu ined in the one extract (Alien, 1989). 

Five grams of air-dried soil, milled to pass a 2 nun sieve were shaken with 50 ml of 5% glacial 

acetic in a 250 ml conical flask for 15 minutes. The solution was allowed to settle then filtered 

through a fluted Whatman qualitative no. 540 into a 100 ml volumetric flask. Further aliquots 

of acetic were added to the soil, swirled and allowed to settle, before filtering into the 

volumetric flask. The filtrate was then made up to I 00 ml. 

Several of the more important macro-nutrients were chosen to represent the underlying soil 

status: calcium, potassium, sodium, magnesium, and phosphorus. Data on nitrogen were not 

collected, due to the modifying effects of collection, transportation and storage (Alien, 1989). 

Calcium, potassium, sodium and magnesium were all analyzed by flame atomic absorption using 

a Varian 975 series atomic absorption spectrophotometer with auto-sampler. All samples were 

diluted I 00 fold to reduce concentrations to within the scale of the spectrophotometer. 

Colorimetry was used to estimate the amount of dissolved reactive phosphorus in the soil 

extract. The method used follows the manual molybdenum blue method using stannous chloride 

reduction (Alien, 1989) and is particularly sensitive (Alien, 1989; Olsen & Sommcrs, 1982). 
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Since significant differences in soil bulk density were found between sites, the results were 

expressed both gravimetrically (mg per g of the element in air dried soil) and volumetrically 

(mg per cm 3 in air dried soil), using bulk density values for conversion. 

(23) Soil pH Soil pH was measured on the same air dry san1ple from which the extracts had 

originally been taken. The method used a soil:water ratio of approximately I: I by volume, 5 g 

of soil to 12.5 ml of deionised water. Samples were placed on an automated shaker for 15 

minutes, then allowed to stand for a further 15 minutes. The pH was then detennined using a 

Russell 640 digital pH meter with automatic temperature correction. 

(24-25) Organic matter content of soil Evaluation of the organic matter content of the soil was 

measured by loss on ignition following the method of Ball ( 1964 ). The weight loss following 

combustion of the soil sample was taken as an indication of organic matter content and was 

expressed both gravimetrically and volumctrically, using bulk density values for conversion. 

(26) Drainage Drainage is an measure of the water retentive capacity of the soil. A 5-point 

scale was used to describe the drainage conditions at the sites sampled: I Very free; 2 Free; 3 

Imperfect; 4 Poor; 5 Standing water. 

(27-28) Soil nroist11re content Soil samples were collected from the surface horizon of all sites 

after heavy rain followed by a 48 hour drainage period (Casscl & Nielsen, 1986) on October 20 

and 21 1993. Moisture was detenn ined by oven drying and results were expressed both 

gravimetrically as gram of water per gram of fresh soil and volumctrically (gcm"3
), using the 

bulk density data for the conversion. 
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2.4 Data analysis 

A total of 95 quadrats were collected from the six L. w-ens sites. These contained 122 species 

of higher plant including L. ure11s (Table 2.2). 

Achillea m illefo/ium 
Achillea plarmica 
Agrostis canina 
Agrostis capillaris 
Agroslis curtisii 
A groslis stolonifera 
A juga replm1S 
A nagallis re ne/la 
Angelica sylvestris 
A nthoxanthum odora/um 
A thyrium filix-fem ina 
Betula pubescens 
B lechnum spicanl 
Callitriche stagna/is 
Calluna vulgaris 
Carduus crispus 
Cm-ex bine•vis 
Cm-ex echinata 
Cm-ex flacca 
Carex hostiana 
Castanea sati,,a 

Centaurea nigra 
Centaurium e•ytllraea 
Chamerion angustifoliunr 
Circaea /utetiana 
Cirsium dissectwn 
Ci1-sium palustm 
Crepis biennis 
Cynosums cristatus 
Dactylorhiza macula/a 
Dactylorhiza praerennissa 
Dactylis glomera/a 
Damhot1ia de cum bens 
Deschampsia flexuosa 
Digitalis pwpurea 
DI}'Opleris dilatala 
D•yopteris filix-mas 
Epi/obium hirsutum 
Epilobium motltmwm 
Erica cinerea 
E1ica letralix 

Eupato1i11m cannabinum 
Fragaria vesca 
Festuca mbra 
Filipendula rilmm·ia 
Galium paluslro 
Genista anglica 
Geranium roberlianum 
Hedera helix 
Hierocium pilosella 
Ho/cus /ana/us 
Hydrocotyle vulgaris 
Hypericum androsaem um 
Hypericum hum ifusum 
Hypericum pulchmm 
Hypericum tetrapte111m 
Hypericum undulatum 
Hypochoeris glabra 
Hypochoeris radicata 
Juncus acurij1oms 
Juncus articulatus 
}uncus bufonius 
Juncus conglomeratus 
}lltiCUS efjiiSI/S 

Lam ium pwpureum 
Leontodon hispidus 
Leucanrhem um vu/gore 
Lorus comicula/lls 
Lotus uliginosus 
Lonicera peric/ymenum 
Luzula campestris 
Luzula mu/rif/ora 
Lychnis j1os-cuculi 
Lysimachia IICntOiltm 

M en/ha aqualica 
M o/inia cae111/ea 
Plantago lanceolata 
Plat1tago major 
Poa trivia/is 
Po(1•gonum hydropiper 
Potentilla erecta 

Table 2.2: Associates or L. urem in southern England. 
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Pmnel/a ••ulgaris 
Pteridium aqui/inum 
Pulicaria dysenlerica 
Que1-cus robur 
Ranunculus acris 
Rammcu/us flcoria 
Ranunculus flam m ula 
Ranunculus rope11s 
Raphanus mphanistn1m 
Rhododendron ponticum 
Rosa canina 
Rubus fmticosus agg. 
Rumex acetosa 
Rumex acerosella 
Salix aurita 
Salix cinerea 
Salix repens 
Sci1p11s sylvaticus 
Scurellaria m in or 
,')'cucciu jacubaetJ 

Senecio l'lilgmis 
Senntula tinctoria 

Solanum dulamara 
Stachys officina/is 
Stellmia a/sine 
Srellaria gram in ea 
Succisa pralensis 
Taraxacum officinale ogg. 
Teucrium scorodonia 
Trifolium repens 
Ulex europtJeus 

Ulex minor 
Urrica dioica 
Veronica chamoedi)'S 
Vero11ica montana 
Veronica scurellara 
Vibumum opu/us 
Viola lac rea 
Viola palusrris 
Viola riviniana 



Community clnssilication and 11hytosociology 

Classification of floristic data is based on the idea that community types exist and that these can 

be identified by characteristic species combinations. The aims of classification are to give 

infomtation on the concurrence of species, to establish community types for descriptive studies 

(phytosociology) and to detect relations between these community types and the environment by 

external analysis (van Tongeren, 1987). In order to define and examine the variability of the 

plant communities in which L. urens occurs, the floristic data were classified using Two-Way 

Indicator Species Analysis and the computer program TWINSPAN (Hill, 1979a). The 

TABLEFIT program (Hill, 1993) was then used to link the resulting communities to the 

categories of the National Vegetation Classification (NVC) (Rodwell, 199la; b). 

Ex:unination of envimnmcntal gmdients (onlinution) and con-clutions with community and 

species distributions 

In contrast to classification, the emphasis of ordination lies on individual quadrats or species and 

the variation between them. The data are ordered along a gradient which shows the maximum 

variation among them. The ordering is continuous rather than discrete. The gradient(s) 

produced are correlated, either directly or indirectly, to underlying environmental factors. 

Indirect ordination methods (Hill, 1973; 1979b; Hill & Gauch, 1980) distribute floristic data 

along two or more axes which represent the gradients of maximum variation in the data set. 

Most interpretation is carried out by superimposing environmental data onto the axes of the 

quadrat ordination diagram. Multivariate direct gradient analysis was developed recently as :m 

extension of the indirect gradient analysis (Jongman et al., 1987; ler Braak, 1987). It is a 

constrained ordination technique since the floristic ordination axes arc restricted to be linear 

combinations of the environmental variables. The amount of variation within the data that is 

accounted for by each axis is described by an eigenvalue, on a scale of 0-1. 

The statistical validity of the resulting environmental axes and the ordination as a whole can be 

evaluated by an unrestricted Monte Carlo pennutations test (ter Braak, 1987). The test is 
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carried out by randomly pennutating the sample numbers in the environmental data and then 

recalculating the first eigenvalue and the sum of all eigenvalues (trace). If the species 

abundances are significantly related to the examined environmental variables then the values 

calculated from the original data are among the highest 5% of the values calculated from at 

least 100 random data sets. The first eigenvalue is used for testing the importance of the first 

ordination axis. The trace is used for an overall test of the effect of the environmental variables 

on the species. 

Canonical Correspondence Analysis (CCA), using the CANOCO computer program (ter Braak, 

1986; 1987; 1992; Jongman et al., 1987) was applied to the floristic and environmental data, 

with Principal Component Analysis (PCA) being used to examine redundancy and 

intercorrelation among the environmental variables. 

Data were analysed through TWINSPAN and CCA programs in two fonnats: 

(i) regional analyses, on the full data set across all six sites; 

(ii) local analyses, for each site individually. 

2.5 Results 

2.5.1 Regional ana(t•ses 

Vmiability of envimnmenlltl facto111 between sites 

Table 2.3 presents summary data for the environmental factors from the six sites individually 

and across all sites. Some factors show comparatively little variation between the sites. For 

example, the average pH across all sites is at 4.86, with the means of the six sites ranging from 

4.25 to 5.06. Similarly, most of the soil chemistry variables are relatively unifonn. The overall 

picture is of a species growing on seasonally wet, moderately acid and nutrient-poor soils, 

within sheltered low-sloping sites distributed across a range of aspects. In contrast, other 

measured environmental factors show greater differences. L. urens grows within a full range of 
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Table 2.3: Means, standard deviations, maxima and nunoma of the 28 variables measured in the survey of 
L. urens at the six sites in southern England. Asterisk denotes variables used in final analyses (sec p. 
67). 
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Table 2.3 (continued): Means, standard deviations, maxima and minima of the 28 variables measured in 
the survey of L. w·ens at the six sites in southern England. Asterisk denotes variables used in final 
analyses (see p. 6 7). 
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soil texture and structures in the surface horizons. Organic matter content is also highly 

variable across sites. L. lll'r!ns show no relationship with the cover of bryophytes or plant litter, 

proportion of bare ground, microtopography, aspect or sward height. 

lntci'JUCtation of two-way indicator SJiecies analysis and definition of Jlhmt communities at the 
regional scale 

The classification groups resulting from the TWINSPAN analysis are shown in Table 2.4. Six 

quadrat groups were defined (A-F). 

Groups A and B were the rough grassland communities of Redlake, Comwall and Andrew's 

Wood, Devon. The TABLEFIT program indicated that these were typical of M25c - Molinia 

caem/ea-Polenlilla erecla m ire containing L. 111'1!11S with varying associated species (Table 2.5 ). 

In Group A, Molinia caem/ea, R11b11s fmlicoslls, Holc11s lema/lis, Lo111s 111iginosl/s, Polenlilla 

ercc/a, Men/ha aqualica. P111icaria dysenlerica and Pla/1/ago lanceolala were common. In Group 

B, Molinia caentlea and Polenlilla Cl'r!Cia were again the key indicators, but the main associated 

species were Cirsium palus/re, Juncus conglomeralus and Angelica sylvestris. Belli/a pubescens 

was an important shrub species. 

Group C was a small group of quadrats at Andrew's Wood, Devon in which Molinia caendca 

and Potent ilia ercc/a were poorly represented and where Rubus fntlicosus and Hedera helix 

dominated. This indicated woodland communities from which L. urem was excluded except in 

more open areas, corresponding to NVC types W23 and W24 (Table 2.5). Again, Belula 

pubesccns occurred in a number of quadrats. 

The eastem quadrats from Kilmington, Devon; Hurst Heath, Dorset; Hinton Admiral, Hampshire 

and Flimwell, Sussex were split between groups D and E (Table 2.4). Group D was a large and 

relatively unifonn group dominated by Molinia caemlea and Polentilla erecta with L. umns 

occurring as a preferential species. A large nu m bcr of associated species occurred with few of 

the common m em bcrs of the westem sites at Red lake, Comwall and Andrew's Wood in Devon. 
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Spcci..:s 

63. Juncus orflculatus 

81. Poa tnviolls 

86. Pulocana dyunterica 
90. Ranunculus flo~t~mula 

108. Stellana al.srne 

8. A nago/lls tenet/a 

77. Mentha oquot/ca 

18. Crrc~a lutetiana 
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-u Lotus com~eu ((ltus 
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S uccua protensrs 
A juga reptans 
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Callunche su~na/rs 
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Coru hosttana 

Dryoptens f•lu:-mas 
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Leo ntodon /us1ndus 

f .UIU.\ CtllntCtdCI/IU 
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l ' tuh't fUJu$111-l 

A ng~hcu :t) h·t>~·ms 

Cwsuuu p cJus" l! 
Gallum polustre 

Sa/a cme1.:a 

Festuco robra 

Juncus acutiflon.~.s 

Geramum robert10num 

A clultta ptanutco 

A grost1.s s tolomfera 

C an:Juus ens pus 

Dt~t:tylodu:a nroculata 

Dcx:tylurlu: u 1ur.:tenutl~U 

Dactyl•s glomerota 
Ftftp~ndulo ulmono 

llydnx:otyle ,·ulgans 

Lu:ula C0111pettns 

Ranunculus ocns 

Ranunculu.s flea-to 

V eromco scutetlato 

Centaut-eo mgra 

llotcus lanotus 

Lotus ulrgmosus 

rtcrntago lc.ncco (Oio 

R uHir:c acetosa 

lt~Jt:m lu~tu 

Uuhru jmiiC''" ''' 
StJu uunlu 

I fti'UniCU IIIUnltllfU 

Lomccra f~enclytt•enum 
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Eprlobntm mo ntanun1 
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flyJICI'IC IIIII pufciJium 
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Table 2.4 : Species composition o f the six community types defined by ll\'ll·llay indicator spt!ci..:s unu lysis 
o f th e quadrat data from the s ix ex tnnt s ites of Lobelia rwens L. in sout hern England. T he firs t column 

corresponds to species constancy within each TWIN SPAN group (I = 5% or le ss; 11 = 6-20%; I 11 = 21 -

40%; IV= 41-60%; V= 61 -80%; VI= 81-100%). The second column indica tes average spec ies 

abundance for each group on the domin sca le . 
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Sp~cies 

16. Clmmenon angusufollum 
67. Laruium pwpureum 

4. Agrostis copil/aris 

3. A groslis can in a 

15. Centaun·um erythraea 
}7. Leucanthemum vu/gore 

3}. Cynosutus Clistatus 
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Sp~cies 

Chamenon llngustifolnuu 

LamiUnt purpun:um 

A grostis copti/Oiis 

.ool gmstrs canma 

Centaun um e1y1hroea 
Leucantltemum \'ulgare 

Cynosutus cristalus 

Hypochoens glabra 

Hypochoens rodicata 
Prune/la ,~ulgans 

Scu7Jru sy lvaltcus 
S l!nt!CIQ .J(ICUb(ll:{l 

Sem:c1u ,·u/g(lllJ' 

S f!ll'UirliCI llnc lul'lu 

Tnfulmm rt!pens 

8/ecltnum sprctml 

G emst(l angllca 

Rhododendron ponllCIIItt 

Jw1C1ts effu.sus 
Rosa canrna 
Scutellana mmor 

Agmstrs cw11SII 

Carex bmetvr.s 
C Ott!X flacca 
Crn·mm d1ssectum 

Crep1s b1enms 

Enca cmerea 
Enca tetroltx 

Eupatunwn cannClhmum 

H1erOCtU111 ptlosella 

Hypencum undulatum 

Lu:ula multiflora 

Raphanus rophan1s1nuu 
Rumex acetosella 

Saltx repens 

Danthoma decumbens 

U/ex mrnor 
f.'~t'UniCQ ChClJut:Mtdtys 

l 'wla lactetJ 

Jr 10 /0 ll"'niOna 

8 etula pube.scens 

Calluna ,·ulgans 

U/ex eumptteru 
D 1gllalu purpurea 
Hypencum lrumtfu.~um 
Quercus robur 

T eucnum scorodonw 

A ntltoxanthum odorarwn 

Table 2.4 (continued): Spec ies composition of the six community 1ypes defined by two-wav indicator 
species ana lysis of the quadra t data from the six extant sites of Lobelia w ·ens L. in southern England. 

The first column corresponds to species constancy within each T WJNSPAN group (I = 5% or less; 11 = 6-

20%; lil = 2 I -40%; IV = 4 I -60%; V = 6 1-80%; VI = 81- 1 00%). The second column indicates average 
spec ies abundance for each group on the domin sca le. 
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Two-way indicator species 
group 

A 

B 

c 

D 

E 

F 

Site 

Redlake, Cornwall. 

Andrew's Wood, Devon. 

Kilm ington, Devon. 

Hurst Heath, Dorset. 

Hinton Admiral, Hampshire. 

Flimwell, Sussex. 

NVC Communities 

M25 - Molinia caenliea-Polenlilla erecla mire 

M25c - Molinia caenliea-Potenlilla erecta mire 

W23 - Ulex europaeus-Rubus fntlicosus scrub 
W25 - Pleridiztm aquilinum-Rubus fmlicosus under scrub 

M25 - Molinia caentlea-Polentilla erecta mire 
H3 - Ulex minor-A grosilis curlisii heath 

W23 - Ulex ewvpaeus-Rubus fmlicosus scrub 
W25 - Pleridium aquilinwn-Rubus fnllicosus under scrub 

W23 - Ulex europaeus-Rubus fnllicosus scrub 

NVC Communities 

M25 - Molinia caemlea-Polenlilla erecla mire 
W23 - Ulex europaeus-Rubus fntticosus scrub 

M25 - Molinia caent!ea-Polenlilla erecla mire 
W23 - Ulex eumpaeus-R ubus fmticosus scrub 

M25 - Molinia caemlea-Polelllilla erecla mire 
W25 - Pleridium aquilinum-Rubus fmlicosus under scrub 

H3 - Ulex minor-A gmsilis curlisii heath 
W25 - Pleridium aquilinwn-Rubus fmlicosus under scrub 

H3 - Ulex minor-A grosilis cw1isii heath 
W25 - P1e1idium aquilinum-Rubus fmlicosus under scrub 

M25 - Molinia caemlea-Polenlilla erec/a mire 
W25 - Pleridium aquilinum-R ubus fmlicosus under scrub 

Table 2.5: NVC communities matched with the two-way indicator species analysis groups and the NVC 
communities present at each of the six survey sites. 

This community was more heathy than typical M25, a mixture of NVC types M25 and H3/H4 

(Table 2.5 ). 

The 13 quadrats which made up group E were from woodland/scrub communities across all the 

sites. Characterised by Lonicera pe1iclymenum, Pleridium aquilinum, Rhododendron ponlicum, 

Rubus fmlicosus and Ulex europaeus, they were classified as NVC W23 and W25, underscrub 

communities (Table 2.5). L. urens occurred in only two of the quadrats in this group and most 

quadrats thus represent samples taken adjacent to but not containing L. urens plants. This 

indicates the preference of L. urens for heathy clearings or gaps within woodland and 
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demonstrates that it does not grow in association with these more typical acidic woodland 

ground flora species. 

The outlying group F was produced by the first TWINSPAN division, comprising quadrats 72 

and 87 (Table 2.4). Both were dominated by scrub, with no L. urens present. Quadrat 72 was 

characterised by Ulex europaeus, Cal/una l'lllgaris and Quercus robur, corresponding to NVC 

group HI - Calluna l'ulgaris-Festuca Ol'ina heath. In contrast, quadrat 87 contained Digitalis 

purpurea, A nthoxanthwn odoratum and Betula pubescens, corresponding to NVC group W23c: 

Ulex europaeus -Rubus fmticosus scrub Teucriwn scorodonia sub-community. 

The phytosociological analyses show that L. w·ens is a species of heathy and acid grassland 

communities, typically dominated by Molinia caendea within woodland and scrub. L. urens is 

not, however, a true ground flora species of acid woodland. This characteristic may explain its 

present situation as a threatened species, since with changes in woodland management, the open 

grass-heath areas within such wooded sites have become either overgrown in the absence of 

woodland management and coppicing, or have been drained and reclaimed for agriculture and 

grazmg. 

Interpretation of the regional din::ct onlination using camonical cont:S(JOII!Icncc amalysis 

Initially, in order to examine relationships between floristic variation and environmental factors, 

the full floristic and environmental data sets (95 quadrats, 122 plant species and 28 

environmental variables) were unulysed by CCA. Figure 2.5 illustrates the first two axes of the 

resulting biplot of the quadrats combined with the environmental variables. The eigenvalucs 

were 0.503 for the first axis und 0.445 for the second. The Monte Carlo penn utations test (ter 

Bruak, 1987; 1992) showed that these twenty-eight environmental variables explained a 

significunt proportion of the variation present (P<O.O I). 
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Figure 2.5 : Quadrat-cnvironmcntnl biplot from canonical correspondence analysis of the 95 quadrats from 
the s ix sites, using all 28 environmental va riables (Ca, K, Mg, Na and P = soi l nutrient status; S.O.M. = 
organic matter content of soil ; f. .C. = soi l moisture content at field capacity ; (grav) = results expressed 
gravimetrically; (vol) = results expressed volumetrically). 
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Removal of redundtmt em•imnmental variables 

The analysis also indicated, however, that a number of the environmental variables were 

contributing very little to the overall variance explained or were highly inter-correlated and thus 

redundant. 

Using the quadrat/environmental biplot from CANOCO (Figure 2.5), the correlation matrix 

(Table 2.6) and the results of a Principal Component Analysis (PCA) of the 28 environmental 

variables (Figure 2.6), a number of variables were removed from the analysis. 

a) Those shown to have a low explanatory power: 

I. R:FR; 

6. bryophyte cover. 

b) Those variables measured on a nominal scale which contributed little explanation: 

3. Aspect; 

8. litter type. 

c) Those shown to be highly correlated with another variable (in parentheses): 

13. Calcium gravimetrically (volumetrically); 

14. potassium gravimetrically (volumetrically ); 

15. sodium gravimetrically (volumetrically); 

16. magnesium gravimetrically (volumetrically); 

17. phosphorus gravimetrically (volumetrically); 

25. organic matter content gravimetrically (volumetrically); 

26. drainage (with soil moisture content); 

27. moisture at licld capacity gravimetrically (volumctrically). 
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-0.34 Soil struciUre 

-0. 13 -0.09 -0.04 -0.00 -0.04 -0.08 -0.13 -0. 17 -0.2 1 -0.26 -0.30 -0.34 

A:..is I 

f-1gurc 2.6 Plot of cnv1ronnll:nwl ,·,.nabl<!s from pnnc1pal component otnah s1s of tdl 21! vunablo.:s 111 the 
95 quadrats (Ca, K, Mg, N:1 and P =sod nutncnt st:l tus: S O.M = organ1c matter content of so d . F C = 
sod lllOIStun: content tit field capacitY , lgwv) = rcsuhs c"prcsso.:J g.ra\llliCtnc;dl\ . l'·ol) = rcsuhs C'- IJrCs~cJ 
\"\)I Ullll!trLCtdly) 

CCA was then rerun with these 12 \'anablcs rcmo"ed. The orientation o f the resu ltmg b1p lot 

(Figures 2.7 and 2.8) was a mirro r image of the 111 it •a l biplot but the quad rats were in s i m li ar 

positions relative to o ne anothe r and thus the s i1e and TWINSPA N g roups have much th e same 

d iscre teness. Fewer environmental vanables resulted in ltllle decrease in the e igen\'a lues: 0 .434 

for axis I and 0.407 for the second . Fu11henn ore. the Monte Carlo test showed th at the removal 

of these 12 variables did not reduce the s ign ificance of the first canonical ordinatio n axis or the 

trace statist•c (P<O.O I) 

Conclat.ions between axes of flori sti c va.1ation :UH1 cnvimnmental facto1s 

The most high ly corre lated variable wit h the firs t a" is of fl orist1c variatton was pH , fo ll owed by 

organ ic matter content and soil calc ium and m agnesium (Figu re 2.7). On the second axis , soil 

texture had the highest corre lation, fo llowed by so il potassi um and sodium . Soil moisture _ 

microtopography and soil structure had significant correlations but were even ly sp lit be tween the 

two axes. 
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Distribution of the six sites on the quadmt onlination dinga~un (Figure 2. 7) 

The quad rats of each of the six sites fonned quite distinct groups with little overlap (Figure 2. 7 

and Tables 2.4 and 2.5). Those from Andrew's Wood, Devon (A) exhibited the widest 

variation, since it had the largest area and the most sampling. Nevertheless, they were 

distributed almost entirely to the right centre of the plot. The quadrats from Redlake, Cornwall 

(R) were largely contained within the distribution of Andrew's Wood, showing they were very 

similar sites, although the centroid of the cluster had a higher first axis co-ordinate reflecting 

higher swards, areas of steeper ground and higher available soil phosphorus at Redlake. 

The four quad rats from Kilm ington, Devon (K) fonned a close group characterised by low 

percentage bare ground, high litter abundance and flat terrain, coupled with acid soils and lower 

soil moisture content. 

The group from Hurst Heath, Dorset (H) lay in a fairly tight group to the lower left of Figure 

2.6, indicating lower pH, less bare ground and low relief, both in tenns of slope and micro­

topography, compared to Andrew's Wood and Redlake. The soil of Hurst Heath contains a 

greater proportion of sand and is more acidic. 

Quadrats from Flimwell, Sussex (F) fonned a clear group in the upper left and centre of the 

plot. The high clay content of soil is important at this site and is reflected in the importance of 

soil texture on the second axis. 

Quadrats from Hinton Admiral, Hampshire (HA) were located towards the left of the first axis, 

reflecting sandy soil texture, relatively acid soil conditions and high available potassium content 

combined with low relief, high swards and abundant litter. 

The biplot suggested a degree of geographical ordering of the sites (Figure 2.2) along the first 

axis of the ordination (Figure 2. 7) from Flim well in the east (left of plot) to Red lake and 
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Andrew's Wood in the west of England (right of plot). The main factors producing this gradient 

between sites was the variation in soil pH and organic matter content. 

Distribution of TWINS PAN groups on the quadmt ordination diagnun (Figure 2.8) 

Figure 2.8 illustrates the biplot of the quad rats labelled according to the TWINSP AN 

classification. The six TWINSPAN groups provided a similar pattern of grouping as the sites 

on the biplot (Figure 2.8). Each group was distinct, yet it met with the next to form a 

continuum without any separate clusters. Group F contained the two outliers. Groups A, B and 

C originated from just two sites, at Andrew's Wood (Devon) and Redlake (Cornwall). They 

formed tighter clusters than groups D and E which had a large spread along the second axis 

reflecting a wide range of soil textures. Group E quadrats were scattered within woodland/scrub 

communities (Table 2.4) and were characterised by high swords, abundant litter and 011 acid soil 

with a low organic content but with high concentrations of available potassium (Table 2.3). L. 

w-ens is not generally a member of this community type although it was present at quadrats 81 

and 16. These were on the edge of woodland/scrub communities, in more open areas. 

Group D has the most members and covers virtually the full spread of the second axis, denoting 

a wide range of soil textures, from the sandy loam at Hinton Admiral to the Sussex clay of 

Flimwell (Table 2.3; Figure 2.8). The group is, however, limited to the left-hand side of the 

biplot, differentiating it from groups A, B and C in tenus of soil pH: group D consisted largely 

of quadrats from the eastern sites of Flimwell, Hinton Admiral 011d Hurst Heath, whose soils 

were more acidic than those of Andrew's Wood and Redlake, which made up groups A, B and 

C, that were situated on the right of the biplot (Table 2.3). Group C included some of the most 

wooded quad rats from these two sites and hence the group had characteristics similar to group E 

and was situated closest to it on the biplot. 

Two quadrats were allocated to each community which contained L. w-ens (section 2.3.1) (e.g. 

quadrats 73 & 74, Figure 2.3). To investigate the direct effect of the environment upon the 
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ab unda nce of L. urens the biplo t o f q uadra ts was labelled accordi ng lo L. 111·ens abundance 

(Figure 2.8). The location of the L. urens quadrals was nol dist inct fro m those quadra ls without 

L. urens, the two were in ter-dispersed. The connections between com munity pairs showed no 

di rectional trends across all s ix of the s ites but the pairs were genera lly close together. 

0 

0 

0 

0 0 

4 Ill 

0 

0 

0 

Figure 2.9: Quadrat biplot from canonical correspondence analysis of the 95 quadrnts using the reduced 
data sel (16 variables) with the L. urens abundance superimposed and the pairs of quadrats within the 
same communities connected (numbers denote number of L. w·ens plants per quadrat). 
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2.5.2 Local analyses 

The classification groups resulting from the TWINSPAN (TSA) analyses are shown in Tables 

2.7, 2.9, 2.11, 2.13 & 2.15. CCAs were run using the reduced environmental data set (16 

variables), omitting variables from sites where they were homogenous. Quadrat-environmental 

biplots are shown in Figures 2.11, 2.13, 2.15, 2.17 & 2.19. 

Rcdlake, Comwall (13 quadrats). 

The Redlake quadrats were all classified into groups A and B; the rough grassland M25-

dominated communities (Table 2.4). The individual site TWINSPAN analysis (Table 2.7) 

identified group v on the first division, those quad rats, I, 4, and 6, on the drier banks with a 

softer grass/scrub community. Group I' were restricted to the right of the quadrat biplot (Figure 

2.11 ), since they were on steeply sloping ground with low soil moisture content. Percentage 

soil moisture was positively correlated with micro-topography at Redlake (Table 2.8); dry 

ground is less susceptible to poaching by grazing animals. L. urens was not a member of this 

community (Table 2.7). Quadrat 5 was singled out to fonn group i. taken on a large bare patch 

created by a recent bonfire which was dominated by Lolus uliginosus and Juncus 

conglomeralus, where no L. urens grew (Figure 2.10 & Table 2. 7). The remaining quadrats 

were more similar, all M25 dominated by Molinia caemlea. Cirsium paluslre. Belula pubescens 

and Lolus uliginosus (Table 2.7). Quadrats 12 and 13, from field 7 (Figure 2.10), were 

separated from the rest as group i1• (Table 2. 7). The M. caemlea was more tussocky in field 7 

and thus it provided dry islands separated by wetter furrows in which Pulicaria dysenlrica and 

Succisa pralensis were present. Figure 2.11 shows that the split between the remaining two 

communities, groups ii and iii. was due to soil moisture content. Group iii was characterised by 

Men/ha aqualica and Sculellaria minor, whereas the dominants in group ii were Polenlilla erec/a 

and Bewla pubescens. L. ltrens was more prominent in the drier of these two communities, 

namely ii. Although the axes of the biplot explain a reasonable amount of the variation present 

(eigenvalues: axis I, 0.51; axis 2, 0.36), a large number of the environmental variables 

examined at Redlake were highly correlated to one another (Table 2.8) and, hence, soil moisture 

may not have been the only major significant factor differentiating community groups ii and iii. 
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Twinspan group 

Species ii iii iv V Species 

Da:l)•lis glomsrata IV 2 IV 2 DactyiU glomerata 

Rume:c acetosa IV 2 IV 2 Rume:c ocetosa 

Hypericium androsoemum IV 2 Hypericium androsaemum 
Puliccuia dysentrica VI 2 Pulicaria dysenrn·ca 

Succisa prateruis 1112 VI 2 Succisa pratensis 

T araxa:um officinale agg. IV 2 T arm:a;um officinale agg. 

Galium palustre IV 2 IV 2 Oalium palustre 

Potentilla erecta IV 3 IV 2 VI 2 Potentilla erecta 
Betula pubescens IV 3 1113 Betula pubescens 

Cirraea lutetiana 1111 Cirraea lutetiana 
Dryopteris dilatata 1112 Dryopteris dilatata 

Dryopleris fillx-mm III2 Dryopteris fillx-mm 

Lyclmil flos-cuculi Ill I Lychnis flos-cucu/i 

Ule.x europaeus 1112 Ulex europaeus 
Juncus acutiflorus V 3 IV 4 VI 2 Juncw acutiflonu 

Lobelia urens V2 1112 IV 2 Lobelia urens 

Salix aurita V3 III3 IV 2 Sa/ix aun'ta 

Desclrampsia fle.r:rlosa V2 V 2 Deschampsia fle:cuosa 

Juncus effusus 1113 Juncus effusus 

Mentlra oquatica III2 V 2 .Afentlra aquatico 

Polygonum hydropiper Ill I Polygonum hydropiper 

Scutellaria minor IV 2 Scutellaria minor 

Cirsium palwtre V 2 VI 2 IV 2 Cir.!ium palustre 

Juncus conglomeratus IV 3 V 2 V 2 )uncus conglomeratus 

AI olinia cae1ulea VI 3 VI 3 V l A·/ olinia coerulea 

Lotus uliginosuJ IV 3 V 2 VI 2 VI 3 VI 2 Lotus uligmosus 

Rubus {rolicosus V 3 IV 2 VI 2 V 3 Rubus fruticosus 

Angelica sy/,•estris IV 2 1112 Angelica syl,•estris 

Ho/cus /onatus Ill 3 IV 3 V 3 Holcus lanatru 

Centaurea nigro 1111 IV 2 VI 3 Centaurca nigl'o 

A grostic currlsil 1113 1111 V 3 Ag,.ostic cur1isii 

A grostU sto/onifera 1113 A grostis sto/onifem 

Plantago /anceo/ata V 2 VI 3 Plantago /anceofata 

Stellaria gram inea 1111 Ste/laria graminea 

Table 2.7: Species composition of the five community lypes derincd by lwo-way indicator species 
analysis of lhe data from the 13 Redlake, Cornwall quudrnls. The firsl column corresponds lo species 
constancy wilhin each TWINSPAN group (I = 5% or less; 11 = 6-20%; Ill = 21-40%; IV = 41-60%; V 
61-80%; VI= 81- 100%). The second column indicates average species abundance for each group on the 
domin scale. 
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Table 2.8: Correlation matrix from canonica l correspondence ana lysis o f data from 13 Redlake, Cornwall 

quadrats using IS environmenta l variables (Ca, K, Mg, Na and P = soil nutrient status; S.O.M. = organic 
matter content of soil; F.C. = soil moisture content at fie ld capac ity; (grav) = results expressed 

gravimetrically) . 
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Andrew's Wood, Dc,•on (40 quadrnts). 

Three major plant community types were identified at Andrew's Wood (Figure 2.12). The first, 

classified as group iv (Table 2.9) and within group C (Table 2.4 ), was that of recently cleared 

woodland or scrub which was characterised by a combination of woodland features: an 

impoverished ground flora dominated by Rubus fmticosus and Lonicera peric/ymenum (Table 

2.9) and a high proportion of bare ground, with the low soil organic matter content typical of 

disturbed ground (Figure 2.13 ). L. urens is not generally a member of this H4 - V lex ga//ii-

A groslis curlisii heath community type (Table 2.9). Molinia coentlea dominated the remaining 

two communities. One community, group ii (quadrats 17-24, 27+28, 32-35, 43+44)(Table 2.9), 

classified largely within group B (Table 2.4), having Potentilla erec/a, Angelica sylvestris and 

Cirsium palustre as eo-dominants, was strictly M25c- Mo/inia coentleCI-Potentilla erecta, sub­

community Angelica sylvesllis. The second community, group i (Table 2.9), encompassed a 

more diverse group of quadrats which occurred in the southern areas of fields D and C3 (i.e. 

quadrats 29, 36-38, 45-53). This community was a cross between a M23 - Juncus 

effususlacutifloms-Galium palustre rush-meadow and a M24 - Molinia caemlea-Cirsiwn 

dissec/1/m fen-meadow, with no Potent ilia erecta, and I ill le Angelica sylvestris. Instead, the eo­

dominants were Pulicaria dysentrica. }uncus articulatus and Rubus fmticusus. Figure 2.13 

shows that these two plant communities were separated on the basis of calcium availability in 

the soil, closely correlated with soil pH and moisture content, and the abundance of litter on the 

soil surface (Figure 2.13). L. urens was scallered through both of these communities. Group iii 

consisted of quadrats 39 and 40 (Table 2.9) which were both outlicrs brought together by \'irtuc 

of their tall swards (Figure 2.13); quad rat 39 was beneath bracken and quad rat 40 was an area 

which was cleared from woodland a couple of years ago (Figure 2.12). These two quadrats 

were as species poor and as bare as those of the recently cleared woodland, group iv, but did 

not contain of the same shade-tolerant Lonicera peric/ymenwn and Rubus fmticusus (Table 2.9). 

Quadrat 40 had a high L. urens abundance (Table 2.9). 
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Ranunculus acns 
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Go/rum po/ustre 
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Hedero htltx 
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Stacii)S officmalrs 

H)'p~ncrum lt!li"OfJietYnt 

Loorturu putpureun• 
LontcettJ penci)' IUenum 
T eucnum JCOfodoma 

A tll.' 'num frlu·femma 
On uptens fllu ·mm 

Rubus ftuttcosus 
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Juncus bufonru..s 

M entho aquatiCD 

./uncus m fculatus 

A)'~go reptan.s 
C aTU h<miana 

Docrylorltiza pmetemri:Jso 

Eprlobuurr • •o nlc.'lu"' 

Ouamunr roben amunt 

H)'drocotyle vulgons 
Lotus ulmgwsu.s 
Plantago lanceol01a 

Pul~eano dysentenco 
Ranunculus Deru 

Stel/(lfo alsme 
A nogai/Js tenello 
Calbtnche stognolu 
Carduus cnspus 

CentOIIIYD ntgm 
Doctylorhr:o ••oculota 
Flltpendulo uln1ana 

Lu:ula COiflptsln"s 

Rarmnculus f~eono 
Ranunculus flomnl~tlo 
Rumt'f ocetusa 
l'('tl)ntca scutelfuto 

.\lulrmo cutHuleo 
I/ ulcus ltllfOIIIS 

L onu cot-ntculatru 
i..I'SIIIIOCIJU.t neniUI'UHI 

Plantago n/tgOr 

Soh'f aunto 

T arr«acum offirua/e ogg. 
CtrJtlllfl pa/u.strt 
Fragono ,~e.sco 

Ranunculus n:pens 

Solanu"1 Julc.Ja-a 

(.,'le-' eu"'poeus 
C(ltt:'f echm01o 

Leontodon hul ''dw 

E1'1lobnmr hrnulum 
£net~ t('tro/u 

Urttca drutco 

l 'tbumum opulus 

A rlullt!u m llhfulmm 
Achillea pUulUICO 

Pou ltn· raltl' 

Pnmello ' 'ulgans 

Qucrt'ld tl)bur 

Dt*sC'It0111psw fl~,·uulll 

f~5111Ct) m bm 
/f1 J'C'IlCfliJI J'Uiclml•l 

$uccuu pruunsu 

Pult'"""" t l l!-Citl 

A ng.,.llo syl··~stns 

/Jt>tulapuhrlCtn.t 

)UIICU f cungfolllt' IUIU--' 

Ptcndmm CJ411lmuHI 

J.ob~lw wt'ns 

Galmm polustrc 

l 'tolapolustrr 

1/rdt•ro helL' 
l 'eronlcll u1ontono 

Staclrys officmolu 

II.IJ~IlCtlll/1 lt!II'Clflll!lllnl 

Lnmnuu JlliiJIUI'I!Unl 

Lunrcctn JIC11C(ntutnwu 
Trucnum scorodunw 
AtiJJ•num {tlu-feruma 

ni)'UJ'I tllS fl/t.\' ·IU{I.\ 

llubus fnrltctJsus 
Suln cmt!n:a 

Table 2.9 : Species composition of the four community types defined by 1\\ o-way ind ica tor spec ies 
analysis of the da ta from the 40 Andrew's Wood, Devon quadra ts. The first co lumn corresponds to 
species constancy within each TWIN SPAN group (I = 5% or less; 11 = 6-20%; IIJ = 21-40%: 1 V = 4 1-
60%; V = 61-80%; VI= 8 1-100%). The second co lumn indica tes average spec ies abundance for each 
group on the domin sca le . 
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Soil st n~ctu rt 

Bar< ground 

f-igure 2.13: Q uadrat-environmenta l biplot from canonica l correspondence a na l~· st s of th<:: 40 quadrats at 
Andr<::w's Wood , Devon us ing I 5 envm)llmental variables with the dtstribu twn ui' TWINS PAN 
community groups superimposed (Table 2.9) (Ca, K, Mg, Na a nd P = so il nutncnt status: S O.M 
organic maller content o f soil; F.C = soi l moisiUre content a t field capacity) 
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Exposure -0.39 

Vcgetauon hcaghl -0.15 -009 

M1crotopography 0.33 -0.43 -0.21 

Litter abundance -0.00 0.46 0 .35 -0 34 

Bare ground 0.03 0.08 0 .13 0 .12 0 .22 

Soal strucrure -0.08 -0.2 1 0 .16 -0.37 0 .06 -0.06 

pH 0 .06 -0.42 0 .01 0 .28 -0.51 0 .06 0 .14 

SO.M. 0 .16 -0.43 0.04 0 .01 -0.11 -0 26 0.43 0.43 

F.C . 0 .13 -0 56 -0.05 0.31 -0.39 0 .12 0.18 0.62 0.60 

p -0.13 0.19 0.11 -0.07 0.22 0 17 0.10 0.09 -0.0 7 -0 13 

c. 0 .29 -0.33 -0,04 0.~3 -0.34 005 -0.06 0.57 0 .35 0 .38 -0 .03 

Mg -0.00 0 .06 -0.02 -0.03 -0.29 0.01 0.02 0.41 0.3 1 0.40 -0.03 0.33 

No 0 .33 -0.17 0.21 0.08 -0.03 0.23 -0.0-1 0.32 0 .35 0.38 0 .14 0.29 0.51 

" -01 4 -0.0 1 -0.02 -0.08 -007 -0.07 -0.03 -0.33 -0.18 -0.13 -0. 10 -0.1 7 -0.08 -003 

Table 2. 10 : Corre lation matrix from ca nonical correspondence analysis of the 40 Andrew's Wood, Devon 
quadrats using 15 environme ntal variables (Ca, K, Mg, Na and P =soil nutrient status; S.O.M. = orga nic 
matter content of soil; F.C. = soil mo isture content at field capacity). 
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Kilmington, Devon (4 quadrats). 

An individual analysis of this site was not possible since only four quadrats were sampled. 

Hu~t Heath, Do~ct (14 quadrats). 

The first two axes on the individual site biplot (Figure 2.15) accounted for 77% and 64% 

respectively of the variation present within the Hurst Heath data. All but two of the Hursl 

Heath quodrots were classified into group D (Table 2.4). A small area of Hurst Heath was 

rotovated, thus maintaining an open sward to help to sustain the L. urens population (sec section 

2.2). Data were collected in and around this rotovated patch (Figure 2.14). Groups i, ii and v 

(Table 2.11) were all situated either on the edge of the rotovated area or outside within the 

Pimts-Bewla mixed woodland. Quadmt 71 was singled out as group 1', since it occurred in an 

area dominated by Pteridium aquilinum (Table 2.11) which consequently had a modified soil, 

being more acidic and with a greater proportion of organic muller (Table 2.12) and a stronger 

structure (Figure 2.15). Quadrats 69 and 70, group ii, were species-poor quadrats beneath 

woodland, dominated by Molinia caemlea but with no L. urens (Table 2.11 ). Quadrats 64 and 

67, group i, occurred on the wellest edge of the disturbed plot and represented communities 

similar to the M25 of Andrew's Wood and Redlake. Salix repens had invaded and fonned a tall 

sward in conjunction with other species common to wetland such as }uncus conglomeratus. 

}uncus acutifloms. Eupatorium cmmabinum and Hypericum unclulatum (Figure 2.14 & Table 

2.11). The remaining quadrats were all much more heathy- H3, Ulex minor-Agrostis curtisii 

heath. They were largely contained within the cultivated plot, and were split on the basis of 

time since last disturbance. Quadrats 62 and 63, within group iii, were rotovated in the winter 

of 1992 (Figure 2. 14). The group was characterised by Veronica chamedi)•S and Violalactea 

(Table 2.11 ). Group iv (quadmts 58-61, 65, and 68) occurred in the areas which were open but 

had not been subjected to recent disturbance, and where heath species Ericatetmlix and Ulex 

minor had established. L. urens was restricted mainly to the cultivated plot with large numbers 

of plants established in the sections rotovated in 1986 (group iv). However, a few plants did 

survive in clearings within the woodland e.g. quad rat 68 (Table 2.11 ). 
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Mixed woodland 
Molinia c:«rtilta 

Area of woodland ~ 27.24 ha. with 20 x 24 m cultivated. 

Key 

/ 

Arable 
field 

Plcridium 
r.quilinum 

Mixed woodland 
Molinio couu/~o 

LWMJ 

19 • Qu.adnt ftQ. 

D • RcogH.11\II TSA COI1WlUttl)' 
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Figure 2. 14 : Si te sketch map with lhc 14 quadra ts of Hurst Heath , Dorset. The regiona l and loca l 
TWINSPAN (TSA) quadrat groups are indica ted. 
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Twinspan group 

Species ii I ll iv V Species 

Scutellana minor VI 2 V 2 Scutel/ana m mar 

Cll">ium palustre IV 2 Cif3ium palustre 

Eupatonum cannabinum IV 3 Eupatorium cannabinum 

Hypericum undulatum IV I Hypericum undularum 

)uncus acutiflorus VI 2 Juncus acutiflonls 

Juncus conglomeratus IV 2 Juncus conglomerallls 

Lysrmachia nemorum IV 3 Lyst~uaclua nemorum 

Sa/it re pens IV 2 SalLt repens 

Carex binervrs IV 2 V 2 Ill Carex brne1vu 

Lobelia urens IV 2 VI 4 Il l 2 V 2 Lobelia urens 

Molmia coe/llleo VI 3 VI 2 V 3 VI 3 Alolima coe1ulea 

Porentilla erecta VI 3 IV 2 VI 3 VI 3 Potenrilla erecta 

Lomcera periclymenum Lomcem penclymenum 

Agrostis cwtsii 1113 Agroslis curts11 

.-1 ngelica sylvestns 1111 A ngehca sylvestris 

Hypericum pu/chrum 111 2 Hypericum pulchlllm 

Hypochoens glabra 111 1 ffypochoeris glabra 

Veronica chamaedi)•S VI I Vemmca cham aed1ys 

V iola /actea V 2 11 2 V la/a /actea 

Festuca rubra 111 2 11 2 Festuca 111bra 

1/ieracium pilosella 111 3 111 2 If ieraci11m pilosel/a 

Taraxacum offic inale agg. 111 2 1112 Tamtacum officrnale agg. 

Rubus Jiutrcosus V 2 V 2 Rubus Jiuticosus 

Danthonia decumbens 1113 1113 Danthoma decum be m 

V iola nviniana Ill 2 V 2 Vrola nvrniana 

Centaur-ea nigra 11111 2 Centaw-ea mgra 

Genista angelica 1112 Genis ta angelica 

Luzula multiflora Ill Luz ulo multiflora 

P111nel/a vulgaris 11 2 Piunella vulgans 

Ulex minor V 2 Ulex mrnor 

Carex flacca 11 2 Carex flocca 

Ci-epis biennis VI I Crepis bienms 

£ iica tetra/ix V 3 Enca tetrahx 

Gahum palusti-e 1113 Ga/111m pahutrc 

Cll .. iUIIi dissectum Ill V 2 Cif3 ium dis.sectum 

Betula pubescens IV 2 Ill 11 I VI 3 8et11la pubescens 

Hedem helu· VI 3 1/edem helL< 

Prendium aq11ilmum Il l 2 VI 4 Prend111m aqwhnum 

Table 2.11: Species composition of the five community types defined by two-way indicator species 
analysis of the data from the 14 Hurst Heath , Dorset quadrats. The first column corresponds to species 
constancy within each TWINSPAN group (I = 5% or l ess ~ 11 = 6- 20%~ Ill = 2 1-40%: IV = 4 1-60%; V = 
6 1-80%; VI= 81 -1 00%). The second column indicates average species abundance for euch group on the 
domin scale. 

83 



67i 

Vegetation hdght 

K 

Figure 2. 15 : Quadrat-environmental biplot from canonical correspondence ana lysis of 14 quadrats a t Hurs t 

Heath, Dorset using 14 environmen ta l va riables with the distribution or TWINSPAN community groups 
superimposed (Table 2. 11 ) (Ca, K , Mg, Na and P =soil nutrient sl!ttus; S.O.M. =organ ic matter content 
of soil ; F .C . = soi l moisture content a t field capacity). 
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Microtopography -0.16 

Litter abundance 0.72 0.10 

Bare ground -0 71 0 44 -0.24 

Soil texture 0.13 0.47 0.52 0 21 

Soil structure 0 28 -0.61 0.15 -0.27 -0 11 

pH -0.47 -0.10 -0.66 0.26 -0.38 -0.37 

S.O.M. 0.13 0.04 0.32 -0.14 0 27 0.36 -0.76 

F.C. 0.44 -0.09 0.15 -0.61 -0.24 0.09 -0.07 -0.10 

p -0.24 0.60 -0. 10 0 55 0.47 -0.43 0.23 -0.10 -0 62 

Ca -008 -0.06 -0.25 0.10 -0 30 -0.18 0.63 -0 32 010 0.24 

Mg -0.43 -0.17 -0.40 0.36 -0.17 -0.16 0.76 -0.27 -0 22 0.27 0.77 

Na 0.36 -0.33 0.54 0.12 019 0.49 -0.22 014 -0.20 0.03 0.29 0.18 

K -0.19 -0.36 0.02 OIS -0.25 0.05 -0.10 001 -0.39 -0.30 -0.17 -001 0.26 

Table 2. 12: Correla tion matrix from canonica l correspondence analysis o r data fmm 14 Hurst lleath , 

Dorset quadrats using 14 environmenta l variables tCa, K, Mg, Na and P = soi l nutrient sta tus: S.O .M 
organic matte r content o r so il ; F.C = soil moisture content at lield capaci ty). 
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Hinton Admir.ll, Hampshire (8 quadrats). 

L. urens was found within a heath community dominated by Molinio coem/eo and Potentilla 

erecta at Hinton Admiral (Figure 2.16). Quadrats 73 , 74 , 75 and 77, group ii (Table 2.13), 

represented this rough grassland comm unity and were classified thus in the overall TWINSPAN 

(Table 2.4). Quadrats 72, 76, and 78, group iii, corresponded to a scrubland community 

dominated by Col/uno vulgaris, V lex europem1s and Rubus fmticosus (Table 2.13 ). Quadrat 79 

was singled out in the local analysis to fonn group i , as it was si tuated in a dense, grassy sward, 

dominated by A grostis spp .. However, quad rat 79 was not separated from the main grassland 

community, group ii, in the regional analys is (Table 2.4). The two major plant communities of 

Hinton Admiral, grassland and scrubland, were distinct in tenn s of their environment. Figure 

2.17 shows the grassland community on the left, characterised by a short sward, which was 

strongly correlated with a number of other variables, including pH, and the concentration of P, 

Na, and Ca in the soi l (Table 2.14 ). 
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Figu re 2.16: Site sketch mnp with the 8 qundrnts of Hinton Admira l, Hampshire . The regional and local 
TWJNSPAN (TSA) quadrnt groups arc indicated. 
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Twi nspan group 
S~ci~s ii iii Species 

A nthoxanthum ordorotum IV 3 A nthoxanthum ordoratum 

Cenlwnum erythraeo 1112 Centourium erythroco 

C1nrum dusectum 
"' 2 

Cinium dusectum 

Encocmereo 1113 Enca cinerea 

Enco tetro/ix 1113 Enca tetralu: 

Hy~ricum pu/chrum 111 2 Hypericunr pulchnmr 

Hypochoeris rodicoto 1113 Hypochoens rodicoto 

Lobelia urens IV 3 Lobelia wens 

Lotu.s ulmginosus 111 2 Lotus ulmgmosus 

PotMIIIIa erecta V 3 Potent ilia erccta 

Rosa ctznina 111 2 Rosacanma 

Rumex ocetosel/o IV 2 Rumex ocetosel/a 

Agroslis copillaris VI 2 A grostrs capll/ans 

Agrostis curuii VI 3 A grostLS cunsri 

)uncus effusus VI 2 111 3 Juncus effusus 
Molmra coorula VI 2 VI 3 Ill J Molmia caerulo 
Rubus fluttca•us 111 2 V3 Rubus fru trco•us 

T eucnum scorodoma VI 2 111 2 Teucnum scorodonra 

Col/una vulgans V 3 Col/una vulgans 

Ptendrum oqutlmum 1113 Ptendium oquilmum 

Quen:us robur 1113 Quen:u• robur 
Solu: ounta 1113 Soli< aur1ta 
Ulex europaeu• V 3 Ulex europoous 

Table 2. 13 . Spec ies composition or the three community types defined by two-way indicator speCICS 
ana lysis or the daw from the 8 Hinton Admiral, I Ia mpshirc qundrats. The first column com :sponds to 

spec1cs constancy within each TWIN SPAN group (I = 5% or less·, I I = 6-20%; I I I = 2 1-40% . I V = 4 1-
60%; V= 6 1-80%, VI= 8 1-100%). The second co lumn ind icntes avera ge spec ies abundance for each 
group on the do m in sea le. 

79i 

S.O.M. 

pll 

Ca Microtopography 

Figure 2. I 7: Quadrat-environmental b iplot from ca nonica l correspondence ana lysis of I he 8 quadrats from 

Hinton Admiral, Hampshire using 13 e nvironmental variables with lhc distribution of TWINSPAN 
community groups superimposed (Figure 2. 13b) (Ca , K , Mg, Na and P = soil nutrient sta tus: S.O.M. 

organic mauer content of soil; F.C. = soi l moisture content a i fie ld capacity) . 
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Sward height 0.09 

Microtopography O.SJ ·0.18 

Liner abundance 004 0.36 0.34 

Bare ground OAO 0.61 0.35 0.63 

pH -0.21 -0.16 0.28 0.07 -0.4S 

S.O.M -0.17 0.46 -0.50 0.44 0.02 -0.04 

P.C. 0 .52 0.06 -0.20 -0.09 0.11 -0.13 0.35 

p -0.08 -0.64 0.04 -0.17 -0.20 0.58 -0.35 0.24 

Ca -0.14 -0.62 0.27 -0.49 -0.35 0.42 -0.60 -0.54 0.12 

Mg 0.16 0.16 -0.34 -0.25 0.2S -0.21 0 23 0.48 -006 0 .10 

Na O.ol 0.82 -0.49 0.35 0.62 -0.59 0.49 0 31 -0.19 -0.59 0.49 

K 0.44 0.47 -0.22 -0.28 0.44 -0.66 -0.20 0.29 -0.07 -0.09 0.49 0.60 

Table 2 . 14 : Corre la tion matri x from canonica l correspondence analysis o f data from 8 Hinton Admiwl, 
Hampshire quadrats using 13 environmenlll l variables (Ca , K, Mg, Na and P = sutl nutncnl s tatus: S.O .M. 
=organic muller content of so il ; F.C . =soi l moislUrc conlcnl al field capacity). 

Flimwcll , Sussex (16 quadrats). 

Tradi tionally this site was managed as a sweet-chestnut coppice, which produced two major 

communities: the mature chestnut woodland and open areas such as rides and recent ly cut 

sections: L. urens was a member of the latter community type (sec section 2.2). The mature 

chestnut woodland community still ex ists (Figure 2.18), as represented by quadrats 81 , 82. 84 

and 85 which fanned group i (Table 2.15) and were part of the woodland comm unity group E 

(Table 2.4). This community was characterised by an impoverished ground fl ora and was 

dom inated by Castm1eo sotivo, Rubus fmticosus and 8 etulo pubescens. It did not contain L. 

111·ens (Table 2. 15). In Figure 2.19 these woodland qu adrats form a distinct group, having a high 

percentage litter cover, closely correlated with high soil organic m otter conten t (Table 2.16 ), 

coupled wi th a high proportion of bare ground and even surface. The original community for L. 

urens at Flimwell ; disturbed, open areas wi th in the chestnut woodland, has been enlarged 

recently by the development of a bird park (see section 2.2). Group ii, (quadrats 80, 81 , 83 , 86, 

93 and 94 ), which were taken from within and around the edge of the bird park (Figure 2.14a), 
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represented this original L. urens community, a relatively species rich M25 community 

dominated by Juncus effusus, Molinia caemlea and L. urens (Figure 2.18). These quadrats were 

part of group D, the rough grassland community in Table 2.4 . 

A further two community types were identified within the park (Table 2.15): quadrats 90 and 91 

(group lv) were singled out due to their very different community structure. The quadrats were 

on the banks of one of the parks largest ponds (Figure 2. 18), which were heavily disturbed and 

grazed by birds, so that the community was species poor with only Raphanus raphanistmm. 

Epilobium montanum and L. tu·ens persisting (Table 2.15). The pH of the soil here, at around 

6, was much more alkaline than the rest of the bird park or the surrounding woodland (Figure 

2.19). The remaining quadrats, 87, 88, 89, 92 and 95 (group iii) were part of grassy woodland 

edge communities dominated by B elula pubescens. A nthoxanllwm odoratwn and Teucriwn 

scorodonia (Table 2.15). The environmental variables did not separate groups ii and iii (Figure 

2.19), although the plant communities were obviously different. 
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Twinspan group 

Species ii iii iv Species 

Betula pubescens V2 VI 2 VI 2 Betula p11bescens 
Pteridium aquilinum Ill2 11 2 Pteridium aquilinum 
Cmtanea saliva VI 3 Castanea saliva 
Chamerion angustifolium V 3 Chamerion angustifolium 
Rhododendron ponlicum V 3 III 3 11 1 Rhododendron ponticum 
Rubus fruticosus V3 III3 Rubus fruticosus 
En·ca cinerea Ill1 11 2 Erica cinerea 
A nlho:ranlhum odoratum 11 2 V 2 A nthoxanthum odoratum 
Cinium palus/re 11 2 Ill3 Cirsium palustre 
Lotus ulinginosus 11 2 Lotus ulinginosus 
Senecio vulagris 11 2 Senecio \•ulagris 
Teucrium scorodonia V 2 Teucrium scorodonia 
Trifolium re pens 11 32 Trifolium repens 
Lyslmachia nemorum Ill2 Lysimaclua nemorum 
Ranunculus repens IV 3 Ranunculus repens 
Solanum dulamara 11 3 Solanum dulamara 
U11ica dioica 11 2 U11ica dioica 
Digitalis purpurea II 2 11 3 Digitalis purpurea 
Hypericum l111mi[usum II I 11 I Hypericum hwnifusum 
Scute/larla minor II 2 11 2 Scule/laria minor 
Cinium dissect11m III 2 11 2 Cirsium dissecrum 
Juncus effusus V 3 Ill 3 Juncus effiuus 
P11me/la vulgaris lll 2 11 2 P11mella vulgaris 
Sctrpus supinus IV 2 Ill 2 Scitpus suptm/S 
Blechnum spicant III 2 8/echnum spicanl 
Hypericum pu/chrum 1112 Hypencum pulchmm 
S a/i:r aurita 1112 S alix aurita 
Galium palus tre II 1 Gali11m pa/11sln! 
Holcus lanatus 1113 Holcus lanatus 
Molima caerula V 2 II 2 Molinia caet11la 
Plantago major IV 2 Plantago major 
Potenti/la erecta 1112 II Potenttlla erecta 
L obelia urens V 2 III2 VI 2 L obelia urens 
Centaurium erythraea VII 2 II 2 IV 2 Centounum erythraea 
Epilobium man/anum VI 2 Epilabium montanum 
Raphanus raphanistrum VI 3 Raphanus raphanistmm 

Table 2.15 : Species composition o f the three community types defined by two-way indica tor species 

analysis of the data from the 16 Flimwell , Sussex quadrats. The first column co rresponds to species 
constancy within each TWINSPAN group tf = 5% or less; 11 = 6-20%; Ill = 2 1-40%: IV = 41-60%: V 

6 1-80% ; VI= 81-1 00%). The second column indicates average species abunJancc for each group on the 
domin sca le . 
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Table 2.16 : Correlation matrix from canonical correspondence analysis of data from 16 Fltmwell , Sussex 
quadrats using 15 environmenta l variables (Ca, K, Mg, Na and P = soil nutrient sta tus, S.O .M. = organic 
matter content of soil ; F.C. = so il moi sture content at field capacity). 
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2.6 Discussion 

L. urens is in decline in Britain, with ten populations having been lost this century. The 

remaining L. urens sites are environmentally heterogeneous in a number of ways (Figure 2.6). 

L. urens tolerates a full range of soil textures in the surface horizons. The six sites extend from 

the Curtisen clay of Sussex, through the silly brown-earths of the Yeolland Park association in 

the West Country, to the well drained Efford I sandy loams of Hampshire. Moisture content at 

field capacity is also highly variable ranging from a mean of I 0.6 gcm·3 at Kilmington to 34.3 

gcm·3 at Andrew's Wood (Table 2.3). These variables do not, however, explain the rarity of L. 

urens within southern England. No single environmental factor was solely responsible for the 

regional abundance of L. urens (across all six sites) (Figure 2.8). L. urens is less tolerant, 

however, of variation in pH and soil nutrient status, since all the sites are on moderately acidic 

pH 4 - 6 (Table 2.3) nutrient-poor, unimproved soils set in low-lying terrain, frequently in 

valley bottoms. The soils of such areas arc often seasonally waterlogged and although the 

surface horizons at Kilmington, Hurst Heath and Hinton Admiral were predominantly free­

draining sandy loams, they arc all argillic and lie over more clayey horizons, such as the Barton 

clay at Hinton Admiral (Findlay et al.. 1984; Jarvis et al .. 191!4). Such undraincd, unimproved 

low-lying land is a rarity itself in southern England and may partly explain the species' scarcity 

in this part of the country. 

Bare ground, percentage litter cover and exposure showed less inter-site variation than the 

aforementioned variables, and they separated the woodland and grassland communities of each 

site. Within the fairly specific edaphic requirements. L. w·ens was also found more frequently 

in the grassland. In southern England, L. urens is a member of rough grassland communities. 

largely M25 - Molinia coemlea-l'otentillo erectomire (Tables 2.4 & 2.5), but also occurs in 

more heathy communities in Hampshire and Dorset. Local analyses of Hurst Heath and 

Flimwell (Figures 2.14 & 2.18) showed how disturbed open areas within the woodland 

community, for example those provided by tree fall, supported small numbers of L. urens plants. 

However, without further soil disturbance, Molinia caemleo grows very vigorously and the M25 
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community generally provides a dense herbaceous cover (Rodwell, 199lb). These grasslands 

are bordered by mature woodland communities (Figures 2.10, 2.12, 2.14, 2.16 & 2.18 & Tables 

2.4, 2.5, 2.7, 2.9, 2.11, 2.13 & 2.15) which, until the middle of this century, were all deciduous 

(Table 2.1 ). The grasslands are thus susceptible to scrub invasion from the bordering 

woodlands, resulting in tall swards (Table 2.3). Mature plants are able to tolerate the dense, 

high summer swards of the associated plant community (Table 2.3). 

Contemporary evidence of the existence of a seed bank which responds to soil disturbance 

comes from most of the extant sites. Many plants were seen in heavily poached areas at 

Red lake (Cornwall) and Andrew's Wood (Devon) (Table 2.1) and the population at Flimwell 

increased dramatically from less than 200 plants to over 2000 after the construction of several 

ponds, when the site was developed as a bird park (Table 2.1 & Figure 2.1 8). The number of 

L. w·ens plants at Hurst Heath rose from 5 to over 150 following the clearance of a narrow strip 

of land across the heath and numbers arc now maintained at around 2000 plants by soil 

rotovation (Table 2.1 & Figure 2.14). Under the traditional coppice regime at Flimwell, L. 

111-ens nourished immediately after felling (Table 2.1 ). At Andrew's Wood 'scalloping' or cutting 

of the border between woodland and grassland communities to enlarge the transition, resulted in 

a flush of plants from the seed bank, which grew to an unprecedented size of up to 11 rosettes 

per plant a year after gennination. Similarly, when an acre of woodland was cleared for 

replanting at Yamer Wood (Devon), L. w-ens reappeared after 40 years of absence. The plants 

lasted I 0 years, probably only a single generation. Again, a fire in the plantation at Hinton 

Admiral produced a similar short lived population increase (Table 2.1 ). 

Such soil disturbance brings the donnant seeds of the seed bank to the surface and into 

conditions favourable for genn ination (Harper, 1977). The decline in L. w·ens would thus 

appear to be partly due to the absence of soil disturbance following changes in land use and 

agricultural practice in this centur)'. Firstly, the abandonment of coppicing as a woodland 

management practice (Rackham, 1986; Peterken, 1993) and secondly the cessation of the use of 
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rough pasture for grazing horses and cattle with the accompanying exposure of bare soil created 

by the physical action of trampling during wet months. 

This study has shown that L. urens is highly threatened in Britain. Restricted to southern 

England, it is a member of rough, grassy heath communities dominated by Molinia caentlea and 

is situated on seasonally waterlogged, moderately acidic, nutrient poor soils with a history of 

disturbance events. Conservationists do not necessarily aim to increase the abundance and 

distribution of naturally rare species (Morse & Lawyer, 1981 ). However, L. urens is not only 

rare but it is threatened by human activity. Seven of the ten indigenous populations to go 

extinct this ccntUI)' have been lost through change in land use. At least three of the extant 

populations (Kilmington, Hurst Heath and Hinton Admiral) are restricted to tiny areas of 

suitable habitat less than 1000 m2 (Figures 2.14 & 2.16). There is thus a need to protect and 

manage L. w-ens in Britain and existing populations will only be maintained and expansion of 

the present species distribution occur if conservationists devise suitable management plans to 

improve regeneration. This research suggests high seasonal soil moisture contelll may be critical 

for the gennination and establishment of L. w-ens and that the species requires sporadic soil 

disturbance to slim ulate emergence from the seed bank. This link between historical ecology, 

present-day distribution and consen'ation management would appear vel)' important. The 

correct foundation and context for the fonnulation of optimal consen'ation management plans 

for rare and threatened species should be laid by a comprehensive biogeographical study as has 

been presented here. 
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THREE 

Demographic monitoring 

3.1 Introduction 

Although habitat loss is certainly a major cause of modem extinctions (Frankel & Sou le, 1981; 

Ehrlich, 1988), demographic and genetic factors make some species especially sensitive to 

change in habitat management and environmental pcrturbations (Frankel & Soule, 1981; Gilpin 

& Soule, 1986; Lande, 1988). These factors restrict basic demographic processes (Pavlik & 

Manning, 1993) such as seed gcnuination (Menges, 1991), seedling establishment (Meredith, 

1978; Pavlik & Barbour, 1988), or reproductive output (Griggs & Jain, 1983; Weller & Omduff, 

1991) and thus limit population growth. Such limitations impair the ability of species to recover 

from having too few individuals (Pavlik & Manning, 1993) and can then be the cause of rarity 

or induce danger of extinction. In order to protect demographically sensitive species, it is 

necessary to understand their demography and then to identify the vulnerable stages of their life 

cycle and the kinds of perturbations by which they are threatened (Bradshaw & Doody, 1978; 

Davy & Jefferies, 1981; Han•ey, 1985; Lesica, 1992; Primack, 1993). The key to gaining this 

understanding is to monitor repeatedly individuals in the field over time (Davy & Jefferics, 

1981; Marcot et al., 1986; Hutchings, 1990; 1991; Primack, 1993). Demographic monitoring is 

an essential requirement before sensible decisions can be made as to the best fonn of 

management for the conservation of rare plant populations (Harper, 1977; Menges, 1986; 

Hutchings, 1990; Owen & Rosentreter, 1992; Primack, 1993; Given, 1994). Demographic 

studies of the rare Ranunculus ophioglossifolius provided the basis for a management policy 

whose effectiveness has brought the species back from the brink of extinction (Frost, 1981 ). 

Demographically restricted populations often occupy only a fraction of the a\·ailablc habitat, 

whereas an optimally managed population would be larger, occupying most of the suitable 

habitat, and more likely to contain the diverse genetics and ecological elements necessal)' for 
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long-term persistence (Synge, 1981; Schonewald-Cox et al., 1983; Lande & Barrowclough, 

198 7; Prim ack, 1993 ). 

This study aimed to investigate the demography of L. urens in southwest England. 

Demographic analyses bring plant ecology within the hard predictive sciences, since they 

explore the mechanisms that regulate population size (Harper & White, 1974). However, many 

demographic studies pay little attention to the heterogeneous nature of the habitat, as 

experienced by the individual plants in populations and therefore the calculated population 

parameters are often over general and poorly defined (Law, 1981 ). Here, the populations at two 

geographically distinct sites, Redlake and Andrew's Wood (Figures 3.1 & 3.2), were monitored 

to allow both inter- and intra-population variation to be observed. The latter is especially 

significant at Andrew's Wood, where the disjunct sub-populations occupy separate fields which 

have quite different management histories and environmental conditions. In addition, light 

annual grazing was recently reintroduced into the management of Andrew's Wood: herbivory 

has been found to affect virtually all phases of plant life cycles (Crawlcy, 1983; 1989). 

Demographic parameters can ultimately be used to judge management success by comparing the 

demography of control populations with those of populations subjected to altered management 

(White & Bratton, 1981; Ehrlen, 1995). However, information on herbivory has only rarely 

been combined with demographic data in order to assess its effects on the population 

demography of perennial plants (Crawley, 1989). To observe the effect of grazing on L. urens, 

three exclosures were erected at Andrew's Wood in April 1992, before the cows were let on to 

the reserve for the first time in ten years. 

A group of friend's of Andrew's Wood have conducted an annual census of the L. urens 

flowering population on the reserve since 1972 and a similar census has taken place at Redlake 

since 1983. Such annual counts of rare species are often the most sophisticated type of data 

collected for interpreting the efficiency of management. While these data show trends in 

population size between the two sites and their respective sub-populations over the years, they 
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long-tenn persistence (Synge, 1981; Schonewald-Cox et al., 1983; Lande & Barrowclough, 

1987; Primack, 1993). 

This study aimed to investigate the demography of L. urens in southwest England. 

Demographic analyses bring plant ecology within the hard predictive sciences, since they 

explore the mechanisms that regulate population size (Harper & White, 1974 ). However, many 

demographic studies pay little attention to the heterogeneous nature of the habitat, as 

experienced by the individual plants in populations and therefore the calculated population 

parameters are often over general and poorly defined (Law, 1981 ). Here, the populations at two 

geographically distinct sites, Redlake and Andrew's Wood (Figures 3.1 & 3.2), were monitored 

to allow both inter- and intra-population variation to be observed. The latter is especially 

significant at Andrew's Wood, where the disjunct sub-populations occupy separate fields which 

have quite different management histories and environmental conditions. In addition, light 

annual grazing was recently reintroduced into the management of Andrew's Wood: herbivol)' 

has been found to affect virtually all phases of plant life cycles (Crawley, 1983; 1989). 

Demographic parameters can ultimately be used to judge management success by comparing the 

demography of control populations with those of populations subjected to altered management 

(White & Bratton, 1981; Ehrlen, 1995). However, infonnation on herbivol)' has only rarely 

been combined with demographic data in order to assess its effects on the population 

demography of perennial plants (Crawley, 1989). To observe the effect of grazing on L. w·ens, 

three exelosures were erected at Andrew's Wood in April 1992, before the cows were let on to 

the reserve for the first time in ten years (Figure 3.3). 

A group of friend's of Andrew's Wood have conducted an annual census of the L. urens 

flowering population on the reserve since 1972 and a similar census has taken place at Red lake 

since 1983. Such annual counts of rare species are often the most sophisticated type of data 

collected for interpreting the efficiency of management. While these data show trends in 

population size between the two sites and their respective sub-populations over the years. they 
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provide no infonnation on individual perfonnance. Furthennore, the observed net population 

flux may be merely a damped reflection of reality, due to compensation between individual 

mortality and recruitment. Counts provide no clues to the way to manage most perennial 

species (Owen & Rosentreter, 1992) and, in some cases, result in incorrect conclusions about 

the condition of the population (Hutchings, 1990). As part of this study, annual monitoring of a 

number of the flowering individuals at Andrew's Wood and Redlake was undertaken for four 

years using pennanent quadrats. Following individual plants from year to year offers the 

advantage of providing data on growth and longevity, which can then be used to assess the size 

structure of populations and sub-populations and to detennine the relationship between 

morphology and survival (e.g. Wemer, 1975). 

An annual census of flowering individuals monitors only one phenological stage of the life 

cycle of a perennial plant. It can underestimate the true population size and it does not reveal 

infonnation on the timing of mortality or reflect the rate of tumover in a population. 

Fortnightly mapping of all individuals within a smaller area of the fifteen pennanent quadrats 

was conducted for twenty-four months at Andrew's Wood and twelve months at Redlake. 

Frequent close censusing is both rare and valuable (Hutchings, 1990), providing information on 

phenology, recruitment rates, vegetative growth, flowering and fruiting and on sun'ivorship and 

the fate of individuals. Together, the two types of census generated the data for the matrix 

model. Several components of demographic characteristics of long-lived perennials arc, 

however, difficult to establish in the four years of this annual census (Zhang, 1983 ). The 

longevity of L. w·ens in the field has not been accurately detennined but it is believed to be 

approximately six to eight years (Brightmore, 1968; Archibald, 1971 ). At least another four 

more years of annual census data are required for a complete demographic account of mapped 

individuals. Long-tenn demographic studies are still rare, but are crucial to the proper 

understanding of the population dynamics of species (Crawley, 1990). 
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3.2 Study sites 

3.2.1 Andrew 's Woof/, Devon (Figures 3.1 & 3.3) 

Grid Reference: sx 707515. 

Conservation status: The site has been a SSSI since 1952 and a LNR since 1965. It has been 

owned and managed by the Devon Wildlife Trust since 1972. 

Area of reserve: 58.68 ha (4.42 ha under grassland). 

Altitude: 140 Ill. 

Situation: On the very edge of moorland in a wide and shallow valley. 

Adjacent land-use: Bordered by streams, in an area of arable and improved grassland. 

Soil: Silly brown earths of the Yeolland Park Association. Typical Munsell 

calor- I OYR 612 - 513. The acidic (pH 4-6), nutrient poor surface 

horizons are waterlogged through winter and remain moist (25-48 g 

water cm'3 soil) in the summer months. They have a variable organic 

content (4-30 gcm'3) and a mean bulk density of 0.86 gm'3. 

Geology: River gravel and head overlying Meadfoot group (slates with grit) of the 

Lower Devonian. 

Associated 
plant community: Unimproved, wet, acidic grassland. NVC - M25 Molinio coentleo-

Potentillo erecto mire, Angelica sylvestris sub-community. 

Management history: The reserve is a system of old fields with a small area of ancient 

woodland. AS was ploughed in the mid 1960's. The clearings in areas 

C and A were grazed and bumt regularly up until 1965 and C was 

grazed again over the period 1973-76. Com partmcnt D was grazed 

regularly up until 1980. Since they purchased the reserve, The Devon 

Wildlife Trust have used annual cutting to abate the scrub. There has 

been some drainage in C but there are no records of any artificial 

improvement to the nutrient status across the reserve. 

Recent grazing : During the study period, compartments C and D were grazed lightly 

between October and December by Guemsey cattle 
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Population size: Fluctuating from I 00 plants to 5600. 

3.2.2 Red/ake Cottage Meadows, Cornwall (Figures 3.2 & 3.3) 

Grid Reference: sx 126592. 

Conservation status: Owned by the Notional Trust, the site has been a LNR managed by the 

Cornwall Wildlife Trust since 1983. 

Area of reserve: 12.50 ha (2.81 ha under grassland). 

Altitude: 65 m. 

Situation: On low-lying terrain in a shallow valley. 

Adjacent land-use: Bordered by streams, in an area of lowland grassland. 

Soil: Silty brown earths of the Yeolland Park Association. Typical Munsell 

col or - I OYR 5/3. The acidic (pH 4.5-6), nutrient poor surface horizons 

which are partly waterlogged through winter and damp ( 12-28 g water 

cm·3 soil) in the summer months. They have a variable organic content 

(5-16 gcm"3
) with a mean bulk density of 0.53 gm·3

. 

Geology: Alluvium, head and valley gravel overlying Meadfoot beds (calcareous 

slates, grit with thin limestone) of the Lower Devonian. 

Associated 
plant community: Unimproved, damp acidic grassland. M25 Molinia caemlea- Polenlilla 

erec/a mire, Angelica sylveslris sub-community. 

Management history: The reserve is a system of old fields which were traditionally used for 

rough grazing. Several drainage pipes nm across the reserve from east 

to west and into the stream. There are no records of any artificial 

nutrient improvement across the reserve. The reserve saw no active 

management between 1963 and 1983 but in 1983 a light grazing regime 

was adopted by the Trust. 

Recent grazing : During the study period the resen·e was grazed from October 1993 to 

May 1994 by three Exmoor ponies. 

Population size: Fluctuating between I 0 plants to 1200 but presently on the decline. 
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Figure 3. 1: The loca tion of Andrew's Wood based on the Ordnance Survey I : I 0560 map. 
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Figure 3.2: The loca tion of Redla ke Cottage Meadows based on the Ordnance Survey I: 10560 map. 
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Figure 3.3 : Detailed maps of Andrew's Wood and Redlake Cottage Meadows showing individual f1eld 

numbers and positions of pe rmanent quadrats. 
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3.3 Methods 

3.3.1 Annual census 

The pennanent quadrats measured 5 x 5 m. Five quadrats were erected at Redlake, Cornwall, 

one in each patch of L. m-ens present in 1992 (Figure 3.3). The larger population at Andrew's 

Wood was monitored using eleven quadrats. Four quadrats were placed in compartment D, two 

exclosed controls and two in areas open to grazing. There were four quadrats in compartment 

C, one control, two grazed and one erected in 1993, after an area of woodland was cleared. 

There was no access for grazers into compartment AS, where there were three quadrats (Figure 

3.3). The quadrats were positioned to encompass the maximum number of plants and marked 

out with 500 nun lengths of metal piping sunk flush to the ground to ensure against any 

movement once in place and against any grazing bias that can be induced by posts protruding 

above ground. Each individual flowering plant occurring within these quadrats was monitored 

annually for four years beginning in 1992. Recording was carried out in m id-July each year in 

order to minimized variation arising from phenology and life-cycle (Davy & Jefferies, 1981 ). 

Various methods exist to re-identify plants for repeated censusing, whilst invoking minimal 

interference with the population directly or indirectly via the immediate environment. The 

relatively large plot size, the very variable density of the study plants, the high, coarse 

surrounding vegetation, the extremely wet nature of the soil and proximity to public access were 

considered carefully when choosing a suitable census technique. The options available and their 

respective value to this study were as follows (see Hutchings, 19!16): 

(i) Labelling: Individuals could not be marked using rings since L. w·ens has no penuanent 

aerial structures. Labels which push into the ground would be short-lived, as both sites are 

waterlogged for much of the year, plus there was the potential for damage from the cattle and 

pomes. 

(ii) Photography: This technique can only be applied unambiguously for either small areas 

where the vegetation is sparse and essentially single-layered (e.g. Law, 1981) or on a VCI)' large 

scale using aerial photographs (e.g.Pigott & Wilson, 1978). 
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(iii) Mapping: Sophisticated automated methods of recording population units involve the use 

of pantographs and mapping tables (e.g. Sarukhan & Harper, 1973; Hawthorn & Cavers, 1976) 

but these are only accurate when the vegetation is short. Automatic devices such as field 

digitizers otTer great precision, whilst saving time and labour (Mack & Pike, 1979), but 

regrettably their use is limited due to their expense. 

A simple mapping technique was adopted. The penuanent quadrats were divided into a grid of 

100 smaller squares, each 0.5 m x 0.5 m, using nylon strings held in place by bamboo canes 

(Figure 3.4a). This grid was reproduced on a recording sheet and the position of each plant was 

sketched in the corresponding square of the sheet (Figure 3.4b). The number of rosettes and the 

flowering spike heights were recorded on a separate sheet, using the square coordinates to 

identify each individual (Figure 3.4c). If more than one plant occupied the same square, then 

each plant was identified by a letter e.g. 7, 3a and 7, 3b (Figure 3.4). 

Some subjectivity was necessary, using knowledge of the behaviour of the plant to detennine 

whether individuals encountered close to the location of a plant the previous year were newly 

established successors or the previously recorded plant. The rosettes of L. urens appear from 

new rhizome buds each year but the rhizome of L. w·ens is less than 200 nun (Figure 6.6), so it 

does not make a large contribution to plant movement. Individuals of many species which do 

not reappear one particular season can still re-emerge in succeeding years (Wells, 196 7; 1981: 

Tamm,l972; Epling & Lewis, 1952). Field observations have shown that L. urens is not one 

such species, and that generally, once it is established, it flowers every year until its death 

(section 6.3.1 ). Complications with re-identification were largely due to the very uneven soil 

surface and obstruction by shrubs. Although in theory, placing the unit dividing tape closer to 

the ground increases the accuracy, the tussocks of Molinio coemleo caused many problems. As 

a result, accuracy was only to within 15 cm but this was the best possible compromise, 

considering the size of the plot and rigours of the habitat. 
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Figure 3.4 : The annual census procedure (a) diagrammatic illustration, (b) mapping sheet, (c) data 
recording sheet. 
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3.3.2 Fortnightly census 

Detailed monitoring was perfonned on all individuals within a single 0.5 m x 5.0 m area 

adjacent to the edge of each of the original fifteen pennanent quadrats (Plate 3.1a). The quadrat 

erected in compartment C to monitor the recently cleared area of woodland was not monitored 

fortnightly. To minimise interference of the study area by the researcher, an edge was chosen 

to enable the observation to be carried out from outside the plot (Plate J.lb)_ Second, a smaller 

area enabled more accurate mapping of individuals due to the decrease in the degree of 

marginal error. Third, the study area was limited by search efficiency, given the minute size of 

the seedlings of L. urens and the coarse nature of the grassland. 

Data were usually recorded at 14 day intervals but recording was less frequent during periods 

when changes were obviously small (i.e. November to February). Although more frequent visits 

would have perhaps given a more accurate picture of the flux in the seedling population, a 

compromise was reached to minimise interference. Over-handling of growing plants is known 

to increase their respiration (Evans, 1972), the effect is additive and continuous handling results 

in reduced plant growth (Hutchings, 1986). 

The coordinates of each plant present were measured using two unit dividing tapes in parallel. 

stretching the length of the 5m quadrat, half a metre apart (Plate 3.1 a)_ The distance from the 

outside edge of the quadrat to the plant was measured using a metre rule at 90° to the tapes. 

Emergence and mortalities were monitored along with changes in vegetative and flowering 

morphologies. 

Although the habitat imposes the same obstructions on the fortnightly re-identification of 

individuals as encountered with annual mapping, the smaller area increased mapping accuracy 

and re-identification was aided by comparisons of individuals leaf length and leaf number. 

Complications were introduced when grazing and senescence caused a decrease, rather than the 

expected increase, in size from one census to the next and when trampling, heavy rain, soil 

invertebrates or other disturbance factors moved seedlings. The accuracy of this smaller scale 

census was to within 2 cm and was thus much improved over the annual census. 
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(a) 

(b) 

Plate 3.1: The fortnightly census procedure (a) the study area of an exclosed quadrat at Andrew's Wood 
and (b) observations were carried out from outside the plot. 
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FOUR 

Germination 

4.1 Introduction 

Understanding how environmental factors control population density is a major goal of ecology. 

Often the dominant factors are not the same across the stages in a species life history. Thus, it 

is useful to separate the stages. This chapter describes the limitations on the gennination of L. 

urens. 

A seed is often said to "bet its life" on the favourability of the environmental conditions under 

which it genninates (from Angevine & Chabot, 1979). Survival chances are improved when the 

initiation of gennination is subject to environmental control (Koller, 1964; Bergleson & Perry, 

1989). However, the specilicity of the genn ination requirements is very important; of the 

enonnous amount of seed present in and on the soil, only a small fraction ever genn in ate 

(Harper, 1977) and the majority of seeds arc thus assumed to never be presented with a suitable 

environment for gennination (Harper et of., 1961 ). Donnancy, a property which / .. urens can 

utilise for long periods in the soil (section 7.3 ), enhances the resistance of a species to 

environmental hazards. By prolonging seed survival, donnancy increases the probability of a 

seed experiencing conditions suitable for gcnnination and establishment. 

The ripening, dormancy and gennination of seeds is sensitive to a diversity of factors (Angcvinc 

& Chabot, 1979), including temperature, moisture, light, gases and minerals. There arc 

numerous reviews of the wealth of laboratory data on the environmental cues involved in the 

initiation of gennination (Heydecker, 1973; Koller, 1972; Mayer & Poljakoff-Mayber, 1982; 

Harper, 1977; Bewley & Block, 1982). A knowledge of a species gennination cues provides an 

insight into the geographical distribution and habitat preferences of the plant (Thom pson & 
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Band, 1993). 

Tenrperalure cues 

The range of temperatures over which a species is capable of gennination is a fundamental 

detenninant the geographical distribution of the plant (Thompson and Band, 1993), since 

gcnnination is limited to those climatic regions that have suitable temperatures. Exposure to 

diurnally fluctuating temperatures is required to induce many species to gern1inate (Bewley & 

Black, 1982; Thompson & Grime, 1983; Leek, 1989; Thompson, 1993c) and such sensitivity to 

varying temperature in the light is thought to synchronize gennination of wetland species such 

as Rorippa islcmdica and Gnaphalium uliginoswn with the falling water table in spring 

(Thompson, I993c). Sensitivity to fluctuating temperatures may also function as a depth­

sensing mechanism (Thompson, 1993c) and could partly detect disturbance via the removal of 

the insulating effect of vegetation and litter (Miles, 1974; Thompson & Grime, 1983). 

Liglrt cues 

Light is one of the principal factors controlling donnancy in seeds (Pons, 1992), the response to 

which divides seed into four categories, namely, those which genninate: 

(i) only in the dark; 

(ii) only in continuous white light; 

(iii) after being subjected to only a brief illumination and 

(iv) those which are indifferent (Mayer & Poljakoff-Mayber, 1982). 

Such a classification is an oversimplification, as seeds are sensitive to not only light intensity 

but also light quality. For example, far red light (>700 nm) and light below 290 mn are 

inhibitory in their action (Bewley & Black, 1994) and seeds such as Stachys syll'atica, which 

mature within photosynthetically active capsules, require the stimulus of light to genninate. 

Conversely, capsules which senesce earlier (e.g. Helianthemum chamaecistus), expose their 

ripening seed to unfiltered light, activate seed phytochrome and thus remove the requirement for 

light (Cresswell & Grime, 1981 ). The light requirements of the seed of many species change 
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witl1 age (Bewley & Black, 1994) and burial often reinstates the seed's requirement for light to 

induce gennination (Wesson & Waring, 1967). 

Moisture cues 

The germination ability of L. urens seed floating in water is of interest, since the sites of extant 

populations of L. urens are all waterlogged to some extent over winter. Seeds must be fixed for 

establishment (Sagar & Mortimer, 1976) and water affects gas exchange. Specifically, water 

may reduce the oxygen available to the immersed seed and increase the carbon dioxide 

(Gulliver & Heydecker, 1973; Meredith, 1978). Both these changes can lower the number of 

genninating seeds (Mayer & Poljakoff-Mayber, 1982). 

Seetl tlomrancy 

Innate donnancy (sensu Harper, 1957) is common in small-seeded temperate species such as L. 

urens which accumulate persistent seed banks (section 7.3) (Thompson & Booth, 1993) and the 

gennination requirements of such seed is very explicit (Angevine & Chabot, 1979; Probert, 

1992). After-ripening or dry storage often reduces the proportion of seeds with innate donnancy 

and thus the specificity of the gennination requirements (Harper, 1967; Thompson & Booth, 

1993). In other cases, genuination timing is synchronised with a favourable season through a 

requirement for stratification followed by high temperatures (Meredith, 1978). Donnancy is 

imposed in some species by the physical restrictions of the seed coat (Sculthorpe, 1967). Such 

seeds will not imbibe on contact with water and the testa must be breached to induce 

gennination (Leek, 1989). 

Tire interaction between factors 

The environmental control of gennination is often a complex process invoh·ing the interaction 

of a number of factors. For example: 

(i) full light may substitute a requirement for fluctuating temperatures (Tottudel & Roberts, 

1980); 
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(ii) a seed may be light-requiring at one temperature but not at another (Pons, 1992); 

(iii) cold stratification may alter the light and temperature requirements (Baskin & Baskin, 1985; 

Probert et al., 1989; Wulff et al., 1994). 

In the field, the temperature, moisture and light environments that are so critical to seed 

gennination are largely controlled by micro-habitat features at the soil surface (Eldridge, 

Westoby & Holbrook, 1991 ). Hence, seed gennination and establishment are highly responsive 

to small-scale differences in the soil surface habitat (Harper et al., 1961; Harper et al., 1965; 

Sheldon, 1974). Regeneration may be affected by physical differences in microtopography 

(Harper et al., 1965) and by the local abundance of both leaf litter and plants (Goldberg & 

Werner, 1983; During & van Tooren, 1990; Facelli & Pickett, 1990). Micro-habitats that were 

found to favour the gennination and/or the survival of seedlings have been named "safe-sites" 

(sensu Harper et al., 1961). Since this early work, patterns of emergence and survival have 

been shown to vary in a complex fashion, not only between species, but also within a species, 

between years and cohorts (Fowler, 1988; Eldridge et al., 1991 ). 

Laboratol)' studies of genn in at ion responses under controlled conditions are instructi,·e in 

showing how complex temperature, moisture and light requirements exist and interact. They arc 

not, however, sufficient to predict when and where a seed is capable of genu inating and 

establishing in the field, since the pattern of emergence within a habitat can be achieved by a 

variety of physiological mechanisms (Angcvinc & Chabot, 1979). Thus, in this research, the 

classic laboratory approach was combined with demographic monitoring of emerging individuals 

to relate laboratOI)' observations to the behaviour of seeds in their natural habitat (Harper, et al., 

1965; Harper, 1977; Maycr & Poljakoff-Mayber, 1982; Paronc & Reader, 1982). 
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4.2 Methods 

4.2.1 Controlled lahoratory studies 

Seed of L. urens was collected in autumn 1993 from arbitrarily chosen points on flowering 

spikes of at least fifty individuals from Andrew's Wood. The seed was dried in a desiccator, 

then stored in paper at room temperature for at least nine months: seeds are generally fully 

ripened after three months (Thompson & Booth, 1993). The seeds of L. urens were not stored 

in the dark, since they are exposed to unfiltered sunlight through the capsule whilst ripening on 

the plant. 

The range of constant temperatures over which L. urens is capable of germination was 

investigated on a thermogradient bar between 5-35°C at the Unit of Comparative Plant Ecology, 

Sheffield. Seeds were kept moist throughout and light was provided for 13 hours per day by 

incandescent strip lights at an intensity of 6 11mol m·2 sec· 1
• The germinating seedlings were 

counted daily, using protrusion of the radicle as the criterion for gern1ination and the final 

germination percentages were detennined after twenty-five days incubation. The results of the 

thermogradient bar tests indicated that the optimum constant temperature for gennination was 

29°C (Figure 4.1). 

Since germination is usually more enhanced by alternations at sub- rather than supra-optimal 

temperatures (Thompson, 1993c), the response to alternating temperatures was than tested at 

13°C:6°C, 20°C:9°C, and 29°C:l5°C (14:10 hrs synchronised with photoperiod). These 

temperatures approximate to the mean daily maximum and minimum temperatures in southern 

England in spring (13:6°C) and summer (20:9°C) (unpublished Plymouth meteorological office 

data 1970-1995) and an alternation which is of similar amplitude and uses the optimum constant 

temperature (Figure 4.1) as the daytime (29: I5°C). This highest temperature is comparable to 

summer-time in north-central Spain (Pearce & Smith, 1984), the centre of the range of L. urens. 
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Figure 4.1: Total germination of L. lll'ens seed over a range of constant temperatures (Unit of 
Comparative Plant Ecology, Sheffield). 

A single lot of 100 seeds was sown under each treatment; each lot on a cot1on wool pad 

covered with a Whatm an No. I filter paper in a 60 mm glass petri-dish, the pad standing in 2-3 

mm of water throughout. The petri-dishes were used upside down wi th the smaller half. which 

is conventionally the base, functioning as the lid so that the water condensing on the upper 

surface was directed back into the dish. Together, these two measures ensured that, although 

not standing in water, the seeds were never allowed to dry out. Genn ination tests were 

perfonned in a Sanyo MIR - !52 incubator. Light was provided for 14 hours per day by (cool 

white) fluorescent light at an intensity of ea. 20 ~m ol m ·~ sec·1 (400-700 nm ) referred to as 

14: I 0 hrs from now on. The dishes were checked for water and the genninating seedl ings 

counted daily. The final gennination percentages were detenn ined after 30 days of incubation . 

Within the three altemating temperature treatments, a further two parameters were investigated: 

(i) comparison of the genni nation of flooded seed with those kept moist. Seed \\ as S0 \\11 in to 

petri-dishes without cotton or fi lter paper. A circle of stiff nylon gau ze (0.25 nun gauge) was 

inserted above the seed. The dish was fully imm ersed in water and the lid (smaller half) was 

lowered to rest on the gau ze; care was taken to ensure no air was trapped in the lid . The dish 

was then taken out of the water and placed in the incubator. The gauze prevented the seed from 

escaping whi lst the dish was submerged but sti ll allowed them to float (Figure 4.2). 
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Figure 4.2 : The method of submerging seed in water. 

(ii) observation of the effect of full darkness on germination. Dishes were covered in a double 

layer of aluminium foil. For a 30 day incubation period, I 0 dishes were set up and every third 

day, a dish was uncovered to count genninating seeds. Once exposed to light, the dishes were 

discarded. 

The requirement of L. 11rens seed for after-ripening and stratification was investigated at a single 

alternating temperature treatment, 20°C:9°C (14:10 hrs). This combination was chosen, since it 

approximates the average temperatures that seed wou ld be subjected to on ripening in southwest 

England in August-Septem ber (unpublished Plymouth meteorological office data 1970-1995 ). 

(i) invest igation of the need for after-ripening. 200 early-ripening seeds were collected on 

August 1 1995 at Andrew's Wood . The seed was dried in a desiccator for 24 hours and 

incubated as described above, wi th 100 in darkness and I 00 under a fixed photoperiod at 

20°C:9°C (14:10 hrs). The final germ ination percentages were detcnnined after 21 days of 

incubation. 

(ii) assessment of the need for stratification. Two hundred seeds were spread on cotton pads, 

constantly soaked in 2-3 mm of water, covered in Whatm an No. I fi lter paper and kept in the 

refrigerator at 4-5°C. Chilling is effecti ve in light or darkness (Thompson & Booth , 1993), 

hence seeds were not shaded from the light. The maximu m period required for the stratification 
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of the vast majority of species is 13 weeks (Thompson & Booth, 1993). Thus, after 13 weeks 

of this pretreatment, the seeds were incubated (I 00 in darkness, I 00 under a fixed photoperiod) 

under the 20°C:9°C (14: I 0 hrs) regime. The final gennination percentages were detennined 

after 21 days of incubation. 

4.2.2 Field demography 

The emergence of seedlings was recorded as part of the fortnightly census described in section 

3.3.2 and this included a record of the nature of the soil surface beneath the new recruits. 

Quantification of the soil surface micro-habitat is very difficult, especially at small scales 

(Sanson, Stolk & Donnes, 1995) and consequently the four chosen factors, ground cover by 

higher plants, litter, moss and soil surface depressions, were categorised on their presence or 

absence. In addition, in 1994 the interference from higher plants was quantified at both sites as 

the proximity to the nearest neighbouring adult plant of the same or of a different species, 

referred to as the nearest neighbour distance (NND). The frequency of the soil surface micro­

habitats and the distance to nearest neighbours in each quad rat was recorded using I 00 

randomly positioned pins per census quadrat at Redlake and Andrew's Wood in July 1994 and 

again in July 1995. 

4.2.3 Experimental Jeed bed 

An experimental seed bed was used to investigate further the effect of the different micro­

habitals on gennination and survival. The bed consisted of a wooden box 900 n11n x 1200 mm 

and 200 n11n deep, housed in an unheated glasshouse, filled with John Innes No. 2 compost and 

watered from below using capillary matting fed from a reservoir (Plate 4.la). The effects of 

four soil surface factors were investigated: shade, litter, moss and depressions. Shade was 

provided by a double layer of green nylon glasshouse shading mesh, which reduced light 

intensity in full sun from 1032 IIIIIOlm-2 sec· 1 to 26 IIIIIOI m·2 sec- 1 (i.e. 25% full daylight). 
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The bryophyte species used to create the moss layer were Pseudoscleropodium puntm and 

Rhylidiadelphus squarrosus, two species found commonly in Andrew's Wood and the litter was 

that of Molinia caentlea, the most abundant litter producer at both Andrew's Wood and Redlake. 

To simulate the effect of poaching on soil surface topography and compaction, a plant pot was 

pushed into the compost creating a depression 50 n1111 in both diameter and depth. 

Dividing the bed into two blocks of 24 150 mm 2 plots allowed an analysis of the difference in 

soil moisture between the ends closest to and furthest away from the reservoir. Within the two 

blocks a nested design pemtitted the analysis of all the possible interactions between the four 

soil surface factors. The design was such that the greatest number of degrees of freedom were 

attributed to the most important factors, as suggested by field obsen ations (Table 4.1 ). In each 

of the 48 plots, shade, moss and litter were either present or absent (Plate 4.1 b). There were 

three levels of soil surface topography: flat and with one or two depressions. This allowed an 

analysis of the effect of both a depression and of the raised area created between two 

depressions. 

Seed was collected and stored as described previously (section 4.2.1 ). Before germinating seed 

for an experiment, it is necessary to be aware of its viability (Booth & Hendry, 1993). Since 

the experiment was to be run in the glasshouse at ambient temperatures from mid-May to mid­

July, viability of the seed at these seasonal temperatures wasu tested by running five replicates 

of I 00 seeds each, in petri-dishes containing two filter papers kept damp with deionised water. 

The dishes were checked for water and gen11inated seed counted daily. After 30 days, 

gen11ination was 20%. Using this gen11ination rate, to obtain a density of seedlings sufficient to 

detect variation with micro-habitat, without invoking density dependent stress (estimated to be 

40 seedlings per ISO mm 2 plot) required a total of 9600 seeds for the 900 111111 x 1200 mm seed 

bed. As the average weight of a seed was 18.3 J.llll , 175.7 mg of seed was required. The seed 

was mixed with sand of similar dimensions and then divided into four equal portions. One 

quarter was scattered from each edge of the bed to give an even density over the plots. 
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(a) 

Seed bed 

Capillary mulling 

Water reservoir 

(b) 

Plate 4.1: Seed bed experiment (a) set-up and (b) 48 individual plots with combinations of the four soil 
surface factors. 
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residual residual 
d.f. d.f. d.f. d.f. 

s M 

B L M X s 
SxB MxD 2 

M X s X D 2 

D 2 M XL 

DxS 2 M X s X L 

D x B 2 

I4 
MxSxLxD 2 

DxS x B 2 M X B 

M X s X B 

L MxDxB 2 

LxS MxLxB 

LxD 2 MxSxDxB 2 

LxSx D 2 MxSxLxB 

LxB Mx DxL xB 2 

LxSxB MxSxDxLxB 2 12 

LxDxB 2 

LxS xDxB 2 6 

Table 4.1: Allocation of degrees of freedom (d. f .) to each of the four soil surface types used in the seed 
bed (S = shade, M = moss, L = litter, D = depressions and B = block). 

Seed was sown on May 21 1994 and gennination began on June 6. Emergence was mapped 

and survival followed every other day for the duration . Germ in at ion tailed off after 63 days and 

the experiment tenninated on July 23 1994. 

4.3 Results 

4.3.1 Controlled laboratory studies 

L. urens is capable of genn inat ing between the constant temperatures of I4°C and 32°C (Figure 

4.1). The optimum constant temperature for the species is 29°C (Figure 4.1). 
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Between the constant temperatures of 23°C and 32°C, gennination commenced after four days 

incubation and was largely complete after ten days. The gennination rate was much slower at 

temperatures lower than 23°C (Figure 4.3). 
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Figure 4.3: Germination rate of L. 111 ·ens seed over a range of constant temperatures. 

Gennination at sub-optim al altemating temperatures did not produce any increase in percentage 

gennination or rate compared to constant temperatures (Figure 4.4). An increase in percentage 

genuination was seen with an increase in temperature over the three altemating temperatures 

investigated (Figures 4.4, 4.5 & 4.6). 
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Figure 4.4 : Germination rates of L. rll'ens seeds kept moist at three alternating tempera tures ( 14 : I 0 hr 
thermo- and photoperiod). 
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Figure 4.5: Germination rates of seeds kept moist and 
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Figure 4.6: Germination rates of seeds flooded at 
three alternating temperatures ( 14 : I 0 hr thermo- and 
photoperiods). 

L. urens is light-requiring at 13 :6°C and 20:9°C but percentage gennination in darkness at 

29: 15°C was at a similar level to that in the light (Figures 4.4 & 4.5). Seed can genn inate 

when floating in the water colum n in the light (Figure 4.6) and at 13 :6°C and 2U:9°C, 

percentage gennination is similar between flooded and moist treatments (Figure 4.4 &4.6). At 

29: 15°C, flooded seeds have a higher percentage gennination than at 20 :9°C but show a reduced 

success compared to their moist counterparts (Figure 4.4 & 4.6). 

L. w ·ens seeds began to swell two to four days after moistening. There was therefore no 

requ irement for scarification. The percentage gennination of fresh seed was not different from 

seed which had been in dry storage for two years. Thus, there was no requirement for after-

ripening (Figure 4 .7). Stratification did not affect percentage gennination in darkness , which 

was still inhibited, but it did induce a considerable improvement in gennination under the 

photoperiod (Figure 4. 7). 

4.3.2 Field demography 

Emergence peaked at Andrew's Wood in June both in 1993 and 1994 (Figure 4.8). Fortnightly 

censusing was only undertaken at Redlake in 1994 (section 3.3.2). In 1994, emergence at 

Red lake was restricted to the months of June and July, which coincided direct ly with the 
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Figure 4.7: Germination rates of seeds under 20:9°C (14 : 10 hr thermo- and photo periods) with different 
pretreatments (Dark = stratified, dry stored and fresh seeds incubated in darkness). 

removal of the ponies in May 1994 (section 3.2.2). Within Andrew's Wood, the grazed areas of 

compartments C and D (Figure 3.3) both had moderate levels of recruitment (mean ::::2 seedlings 

m·2 month.1
) across 1993 and 1994 (Figure 4.8). In June and July 1994, emergence in 

compartments C and D was comparable to Redlake (Figure 4.8). In contrast, the equivalent 

quadrats within the ungrazed exclosure of these same compartments recruited virtually no new 

plants. No new seedlings emerged from ungrazed C and only four seedlings, over the 20 month 

census, were found in the ungrazed D (Figure 4.8). 

Compartment A8 showed similar emergence to the grazed quadrats of com partments C and D in 

1993. However, in 1994, emergence in A8 soared (Figure 4.8). There were no changes in the 

managem ent of A8 during 1992-1994 which could explain this increased emergence. Figure 4.9 

shows that summer 1994 was wanner than that of the previous year. The major difference 

between A8 and compartm ents CID is that A8 is not grazed but still maintains a more open 

sward (Figure 4.1 0) through which a higher ratio of red to far-red light passes to ground level 

(Table 4.8) and, higher ground temperatures may be reached. A8 is less exposed and also 

slightly drier than C and D (Table 4.2). 
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Figure 4.9: Comparison of mean daytime maximum, night-time mjnimum and twenty-four temperature in 
Plymouth, April to October 1993 and 1994. 

Small numbers of seeds germinate throughout March to November but the total emergence at 

Andrew's Wood has a main pulse which commences as temperatures rise in May and continues 

through to June. A lthough temperatures remain hig h through July and August, emergence tails 

off until a second cohort emerges later on, in A ugust in 1993 and October in 1994. 

Compartment A8 is largely responsible for th is two cohort phenomenon. 
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Compartment 
Environmental variable 

D c A8 

R:FR 0.62 0.69 0.74 

Vegetation height (cm) 36 32 25 

Slope 5.6 5.0 3.5 

Bare ground 3.1 3.5 3.2 

Bryophyte cover 1.3 1.6 2.1 

Litter abundance 2 2.4 4.2 

Micro-topography 3.3 3.1 2.4 

Exposure 4 4 5 

Soil texture 4 4 4 

Soil structure 2 2 2 

Soil pH 5.5 5.0 4.78 

Organic matter content(% mg cm·3) 20.6 11.2 11.9 

Drainage 3.6 2.8 2.4 

Moisture content (% mg cm·3
) 40.3 33 .8 30.2 

Table 4.2 : Mean environmental values for compartments C, D and A8 of Andrew's Wood (for explanation 
of scales see section 2.3.3) 

The m icro-habital frequency census at Andrew's Wood recorded no occurrences of the presence 

of higher plants (G) in conj unction with soil surface depressions (D): comparison of data for 

1994 and 1995 showed little difference between the two years (Table 4.3). In contrast, there 

was a shift in micro-habitat availability at Redlake. Micro-habitats with all four factors present 

were less frequent , as was the presence of ground cover by higher plants with litter, whilst only 

ground cover by higher plants, and moss or only depressions were more comm on (Table 4.3). 

The counts of the number of seedlings emerging under each micro-habitat type at Andrew's 

Wood in 1993 and 1994 and at Redlake in 1994 were used in conjunction with the data on 

micro-habitat frequency for 1994-5 (Table 4.3) in the following fonnula to give the relative 

emergence for each micro-habitat ty pe: 

Relative emergence = 

micro-habitat emergence count 
micro-habi tat frequency x total emergence 
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Favourable micro-habitats have scores greater than one and those which are unfavourable less 

than one. 

micro-habitat Frequency 

Andrew's Wood Red lake 

G M L D 1994 1995 1994 1995 

1 0 0 0.033 0.013 

l 0 0.020 0.016 0.073 0.047 

0 0 0 0 0 

1 0 0 0.008 0 0.007 0.100 

0 0 0 0.127 0 

0 0 0.448 0.508 0. 133 0.107 

0 0 0 0 0 0 

0 0 0 0.152 0.130 0.127 0.153 

0 0.012 0.008 0.033 0.033 

0 0 0.088 0.076 0.053 0.067 

0 0 0.006 0.010 0.047 0.053 

0 0 0 0.026 0.024 0.0 13 0.027 

0 0 0.070 0.076 0.100 0.113 

0 0 0 0.138 0.120 0.107 0.140 

0 0 0 0.002 0 0.033 0.053 

0 0 0 0 0.030 0.032 0.120 0.093 

Table 4.3 : Random point frequency of soil surface micro-habita ts produced from the presence ( I) or 
absence (0) of all combinat ions of four surface types (G = ground cover by higher plants, M = moss, L = 
litter, D = depressions) at Andrcw's Wood (A W) & Redlake (RL) 1994- 1995. 

No statistical analyses could be applied to these relative emergence figu res, since emergence 

was too frequently zero to use a multifactor ANOYA. Ch i-square tests for association, G-tests 

and log-linear models can on ly be carried out using frequency counts. When used alone, counts 

of the number of seedlings emerging under each micro-habitat were of little value, as they did 

not take into consideration the micro-habitats frequency and hence a high count may have 

indicated the favoura bili ty or prevalence of a habitat. The results expressed as relative 

emergence (Table 4.4) were considered important, especially when consistent over two years of 

census and across both sites, and were sufficiently straightforward to be of use. 
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micro-habitat Relative emergence micro-
habitat 

G M L D AW93 AW94 RL94 rating 

0.000 0.000 0.000 X 

0 0.510 2.504 0.926 

0 0.000 0.000 0.000 

0 0 3.508 1.836 0.463 

0 0.000 0.000 0.000 X 

0 0 0.030 0.059 0.000 X 

0 0 0.000 0.000 0.000 

0 0 0 0.000 0.167 0.000 X 

0 13 .818 2.671 0.617 

0 0 4.435 4.048 3.333 ~ 

0 0 6.803 1.836 1.1 11 ~ 

0 0 0 8.144 2.727 8.769 ~ 

0 0 0.182 0.238 0.4 12 X 

0 0 0 0.444 2.170 0.337 

0 0 0 7.653 2.671 0.617 

0 0 0 0 1.700 4.090 0.265 

Table 4.4 : Relative emergence under differing soil surface micro-habitats produced from the presence (I) 
or absence (0) of all combinations of four surface types (0 = ground cover by higher plants, M = moss, L 
= litter, D = depressions) at Andrew's Wood (AW) & Redlake (RL) 1993-1 994. Micro-habitat ra ting key 
(-) absent, (-) inconsistent with respect to emergence, (vi) fa vourable to emergence (relative emergence 
a l ways ~ I) and (x) unfavourable to emergence (relat ive emergence always< I ) . 

Three of the five unfavourable micro-habitats featured litter wi thout moss. All three favourable 

micro-habitats featured the presence of moss without ground cover by higher plants. There 

were six habitats with inconsistent emergence resu lts: four of these were favourable to 

emergence at Andrew's Wood but not at Redlake. Only 54 seedlings emerged at Redlake during 

the single census year of 1994 compared to I 087 at Andrew's Wood over the two years census 

1993- 1994. Therefore the Redlake results were of less value. The presence of litter and ground 

cover strongly inhibited the gennination of L. urens seedlings whilst moss was facilitative. The 

effects of topography were not clear from these results (Table 4.4 ). 

The fie ld observations of the frequency of distances to each emergent seedling's nearest 
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neighbouring adult (NND) were not significantly different between 1994 and 1995 (two sample 

comparison, Mann-Whitney U, test statistic, Z = - 0.49). Compartment D had the highest 

occurrence of NND = Ocm, i.e. the tightest sward, with ungrazed quadrats being slight ly tighter 

than the grazed (Figure 4.10e & f) . Redlake and Compartment AS has the least occurrences of 

NND = 0 cm and proportionate ly more NNDs greater than 4 cm , i.e. the most open sward 

(Figure 4.10b & g). 

Table 4 .5 shows chi-square test for association be tween distance to nearest ne ighbour (NN D) 

and the observed number of seedlings emerging at Redlake and Andrew's Wood and for each of 

the compartments within Andrew's Wood. Data from the survey of the NND to random points 

(Figure 4 .1 0) were used to calculate the expected values (re lative abundance of each NND in 

that reserve/compartm ent x total number of emergent seedl ings in that reserve/compartment). 

(a) 

NND (cm) 

Observed 

Expected 

0 

85 

400 

24 

9 

2 

76 

38 

3 

84 

53 

4 

68 

39 

Andrew's Wood, 1994. /._1 =99 1, dJ. = 9, P < 0.00 I. 

(b) 

NND (cm) 

Observed 

Expected 

0 

8 

25 

1-3 

48 

14 

4+ 

0 

5 

Redlakc , 1994. x2 = 109, d.f. = 2, P < 0.001. 
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5 

72 

32 

6 

45 

18 

7 

16 

11 

8 

30 

13 

9+ 

133 

23 



N e a r e s t n e i g h b o u r d i s t a n c e (cm) 

Figure 4 . 10: The relative abundance of nearest neighbour distances observed in 1994 in (a) the whole of 
Andrew's Wood, (b) Redlake, and within Andrew's Wood (c) the grazed area of compartment C, (d) 
ungrnzed compartment C, (e) grazed compartment D, (I) ungrnzed compartment D und (g) compartment 
A8. 
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(c) 

NND (cm) 

Observed 

Expected 

0 

50 

252 

14 

10 

2 

39 

42 

3 

58 

39 

4 

61 

22 

5 

42 

42 

6 

4 1 

22 

Compartment A8 in Andrew's Wood 1994. X2 =907, d.f. = 9, P < 0.00 1. 

(d) 

NND (cm) 

Observed 

Expected 

0 

14 

42 

1-3 

26 

14 

4+ 

29 

13 

7 

16 

16 

8 

19 

16 

9+ 

129 

19 

Compartment C (grazed census quadrats) in Andrew's Wood 1994. X2 =49, d.f. = 2, P < 0.00 I. 

(e) 

NND (cm) 

Observed 

Expected 

0 

19 

50 

l -3 

40 

8 

4+ 

2 

11 

Compartment 0 (grazed census quadrats) in Andrew's Wood 1994. X~ = 14 7, dJ. = 2, P < 0.00 I. 

Table 4.5 : Observed and expected number of L. w·ens seedlings emerging at increasing distance from 
neighbouring plants 

A gap in the sward was a more favourable habitat than closed sward for the emergence of L. 

urens seedlings (Table 4 .5). Nearest neighbour distance (NND) was strongly associated wi th 

emergence across Red lake and the who le of Andrew's Wood in 1994 (Table 4 .5 ), although there 

were insufficient seedlings to test for association in the ungrazed census quadrats. There were 

fewer emergers beneath closed sward (i.e. NND is Ocm) and in AS. the on ly compartment with 

sufficient large gaps to separate out the remaining distance classes statistically, the larger the 
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gap the more seedlings were recorded than expected (Table 4.5c). 

4.3.3 Experimental seed bed 

The seed bed experiment was designed to allow an analysis of all the possible interactions of 

the four micro-habitat factors using a nested parametric ANOV A. The unexpected result of 

seedlings emerging from only fifteen percent of the plots meant that this analysis could not be 

employed. An ANOVA assumes data are nonnally distributed and it was not possible to 

transfonn the binomially-distributed data to give a nonnal curve because of the large number of 

zeros (empty plots). Due to these statistical difficulties, a two-sample Mann-Whitney U was 

used to show no significant difference in the blocks (test statistic, Z = -0.43 ). The blocks were 

then combined to show that gennination was restricted to four micro-habitats, the most 

favourable of which were those with soil surface depressions alone (Plate 4.2, Table 4.6). 

Adding shade over depressions impaired emergence. 

An interesting effect was seen in the positioning of seedlings within the plots. Although soil 

surface depressions appear to be necessary for gennination, when the micro-habitat is shaded, 

seedlings emerge on the flat surface around depressions (Figure 4.11 ). 
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(a) (b) 
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• 

Figure 4. 11 : Map of seedling emergence in plots with two depressions and no lltter or moss (a) unshaded, 
(b) shaded. 

Plate 4.2· Emergence restricted to soil surface depression 
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Micro-habitat Number 

s M L D emergmg 

2 0 

0 

0 0 

0 2 0 

0 0 

0 0 0 

0 2 0 

0 0 

0 0 0 

0 0 2 40 

0 0 34 

0 0 0 0 

0 2 0 

0 0 

0 0 0 

0 0 2 0 

0 0 0 

0 0 0 0 

0 0 2 0 

0 0 0 

0 0 0 0 

0 0 0 2 52 

0 0 0 43 

0 0 0 0 0 

Table 4.6: Showing total seedling emergence under differing soi l surface m1cro-habitals sJmulateJ. 111 a 
seed bed, from the presence ( I) or absence (0) of all combinatiom of four surface types tS = shat.lc , M = 

moss, L = !iller, D = Jepressions). 

4.4 Discussion 

The vel)' high optimum genn in at ion temperature of L. w·ens suggests that it is better suited to 

more southem climes: gennination temperature is, thus, at least partly responsible for restricting 
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the distribution of L. urens in Britain. Even on the low-lying land along the south coast of 

England, where the minimum temperatures required for gennination are met, the percentage of 

seed able to genninate below 23°C is very low and the gennination rate is slow. Gennination 

success under the British climate is poor compared to that characteristic of central Spain. 

Temperature is probably the main factor restricting gennination to the period between March 

and November at the two reserves in southwest England. The average daytime air temperature 

during December and January, 9.4°C (unpublished Plymouth meteorological office data, 1970-

1995), is well below the minimum constant temperature for gennination (I4°C). Within this 

time, when temperature is amenable, the seasonal diphasic gennination in compartment AS, 

summer and autumn, could be a result of the lack of an after-ripening requirement for L. urens 

seeds. Thus, the first pulse is seed from previous years which finds itself on suitable sites and 

genuinates as soon as the temperatures arc high enough (May-June). This "old" seed at the soil 

surface is expended and there is then a lull in gennination. The second pulse occurs from fresh 

seed immediately after dispersal (August-October) and tails off as temperatures fall. A possible 

suggestion as to why this phenomenon should occur only in compartment AS would be that 

autumn grazing in compartments C and D removed the second cohort through regular trampling. 

At Redlake, regular trampling prevented spring seedlings from surviving long enough to be 

recorded in the fortnightly census. No recruitment was observed whilst ponies were grazing the 

reserve, but only a fortnight after the animals were removed, recruitment rates soared. The only 

major environmental change in those two weeks was the removal of the ponies. 

There is an alternative hypothesis for the two cohort phenomenon seen in AS of Andrew's Wood 

based on the requirement of L. urens seeds for a high soil moisture content. This was first 

suggested in Chapter 2 and is further supported by results from this chapter which show that 

gennination is little impaired when seeds are fully immersed in water. The lull in gennination 

over late summer could be a response to reduced soil moisture status, which would be more 

marked in the drier sheltered compartment AS. The distinct edaphic climate of AS also offers 
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an explanation for the huge peak in emergence seen in the compartment in 1994 that could be a 

result of the drier, more sheltered soil reaching a critical temperature in the wanner summer of 

that year, which might override the lack of water in the soil. 

In the seed bed experiment, genn ination was restricted to surface depressions. This could also 

be attributed to a need for a moist environment, since the depressions brought seed closer to the 

water source, reduced soil insolation and air flow and thus kept humidity and soil moisture 

higher than on a flat surface (Sheldon, 1974; Harper, 1977; Eldridge et al., 1991). Similar seed 

bed experiments to investigate the effect of heterogeneity in soil surface microtopography on 

germination were carried out by: Harper, Williams & Sagar (1965), who worked on three 

Plantago species; Sheldon (1974), who studied a range of Compositae; and Smith & Capelle 

(1992) who used Cichoriwn intybus. Each found that those microtopographical features which 

protected against moisture loss, e.g. depressions, plastic or polythene strips, had the most 

pronounced increase in percentage gennination. The reason why the favourability of 

depressions in the seed bed was not reflected in the field is unclear. The dimension of 

depression which provides favourable conditions may be critical. Thus field depressions which 

were too large would have weakened the relationship. 

There is a paucity of infonnation on the effects of bryophytes on vascular plants, but there have 

been obsen•ations of a change in germination or emergence success of vascular species in 

bryophyte colonies (During & van Toorcn, 1990). More successful emergence within bryophyte 

colonies has been reported in harsh environments such as dunes (Bonnot, 1971) and desert 

crusts (St Clair et al., 1984), whereas reduced emergence "·as found in communities more 

similar to that associated with L. urens i.e. grassland (Rabotnov, 1969) and heath (Mallick et al., 

1984). In this field study, the presence of a moss layer increased the emergence of L. urens 

seedlings. The most likely mechanism responsible for this is the moisture retentive quality of 

mosses (Johnson & Thomas, 1978; Chemov, 1985). An indirect facilitative effect could be 

occurring, since bryophytes occupy the 'niche space' that is left by vascular plants (Looman, 
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1964) which inhibit emergence (see below). A previous study found seeds of Cerruli11m 

se m idecandntm L. suffered less predation in taller moss colonies (Hypn11m c11ppressijorm e 

Hedw. and Campylop11s inlroflexlls (Hedw.) Brid.) than in lower turf species or on bare ground 

(During & van Tooren, 1990). The seeds of C. semidecandnun are 0.4 nun - 0.5 nun long 

(Clapham el al., 1987), which is a similar size to those of L. 11rens. lt is less likely that L. 

11rens seeds would be protected by Rhytidiadelphus squarros11s (Hedw.) Warns!. and 

Pse11doscleropodium puntm (Hedw.) Fleish., the most common species at Andrew's Wood and 

Redlake, since these are pleurocarpous and occurred as scattered stems rather than acrocarpous 

tall cushions. Moreover, it is not believed that predation is a major limiting factor to such 

small-seeded species (Janzen, 1969; Silvcrtown, 1982; Crawley, 1983; Fenner, 1985). The 

growth fonn of the two dominant moss species could help to explain why moss was facilitative 

to L. urens (following Rabotnov, 1969; Mallick el al., 1984). The genuination of Rhododendron 

ponticmn L. in Irish woodlands was seen in 111 icro-habitats with scattered strands but not in the 

presence of an excessively thick moss layer, which reduced the light levels considerably (Cross, 

1981 ). 

The positive effect of moss on gennination observed in the field was not repeated in the seed 

bed experiment. The effect of moss in the seed bed resembled that of litter, since it did not 

establish itself, was not living and therefore it provided neither sufficient increase in soil 

moisture nor indicated open areas devoid of higher plants. 

It has been reported in other studies that micro-habitat quality over-rides the effects of 

neighbouring juveniles on genn in at ion (Fowler, 1988; Donovan et al., 1993 ). This appeared to 

be the case in this study, with the density of seedlings increasing in response to the size of the 

gap in the sward, measured as the distance to the nearest neighbour. However, the critical 

density to cause self-thinning may not have been reached. The gennination of L. urens, like 

many plant species (Sagar & Harper, 1961; Putwain & Harper, 1970; Gross, 1980), was 

improved by an opening in established vegetation. In this study, the quality of the opening was 
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seen to be important with a greater density of seedlings emerging in larger gaps in the sward. 

Goldberg & Werner (1983) did not find such a straight-fonvard relationship between gap size 

and emergence for their two Solidago species, but they did report significant rank correlation 

between percentage survival and opening size that they attributed to the effects of canopy­

filtered light. The shading in the seed bed experiment reduced, but by no means halted, 

gerntination. This neutral seed bed shading mimicked the quantity of light present at ground 

level in the field but did not reduce the light quality as plant cover does. The lower light 

intensities caused by a combination of litter and canopy shade may have inhibited genuination 

below higher plant cover in part. However, there are very low red to far-red ratios beneath the 

swards of Andrew's Wood and Redlake (Figure 6.13) and results from the seed bed suggest that 

it was the quality of light that suppressed genu ination in the field. The restricted gennination of 

Lo/ium m u/tiflonun (Deregibus et al., 1994 ), A mhyl/is vulnemria and R eseda /!Ilea (Silvertown, 

1981) beneath a closed sward has been at least partly allributed to phytochrome perception of 

low red to far-red ratios. 

Seed genuination has been studied in several species of lobelia with special emphasis on the 

light requirement. In addition to L. urens, other lobelias have been found to have a light 

requirement for seed genuination. The seeds of L. inf/a[(l. L.siphililica. L. cardina/is (Muescher, 

1936) and L. gattingeri (Baskin & Baskin, 1979) failed to genuinate when incubated in 

darkness. However the seeds of L. dortmmma, L. elinus and L. tenuior genuinated equally well 

in light and continuous darkness (Muescher, 1936). 

Cover by higher plants affects other environmental factors besides light. Fenner (1978) 

suggested that a requirement for alternating temperatures m ay restrict genu ination in the closed 

sward but since L. urens does not require alternations to induce germination, this is not the case. 

Competition for moisture is a more likely restriction for a species suited to high soil moisture 

conditions; even the slightest water tension restricts the genu in at ion of the corn-cockle 

(Agrostemma githago) (Harper & Benton, 1961). A further negative effect could be induced by 
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higher plant cover indirectly through the production of leaf litter. 

In this experiment, there was a lack of recruitment beneath Molinia caem/ea litter, both in the 

field and the seed bed. Hence a safe site for L. urens must be free, or almost free, of litter. As 

mentioned above, this negative effect of litter m ay be partly caused by a reduction in the light 

intensity but litter is often inhibitory through other effects (see Facelli & Pickett 1990 for a 

review). Even a sparse scattering of litter, insufficient to cover the surface, significantly 

reduced the survival of seedlings of two grass species, A ristida longiseta and Boulesova 

rigidiseta (Fowler, 1988). Litter may reduce genuination by obstruction of the dispersal of seed 

to the soil surface (section 7.3) and by restriction of soil-to-seed contact (Andersen, 1967; 

Fowler, 1988). In addition to the changes to the physical environment brought about by litter, 

there are the secondary effects induced by its presence as well as the physiological effects 

exerted by its decomposition. These include the increase in both invertebrate damage and 

pathogen attack (Eidridge et al., 1991; Facclli, 1994), the immobilisation of plant nutrients and 

the production of phytotoxic by-products (Harper, 1977; Rice, 1984; De Jong & Klinkhamer, 

1985; Pastor et al., 1987; Bosy & Reader, 1995). Litter has been seen to be favourable to the 

gemtination and establishment of some species, since it alters the thennal. amplitude of the soil 

by intercepting solar radiation and by acting as an insulator. Litter also increases soil moisture 

by reducing evaporation (Knapp & Seastedt, 1986; Holland & Col em an, 1987). However, for 

small-seeded species like L. urens, the presence of litter usually hinders gennination (Molofsky 

& Augsperger, 1992). Baskin & Baskin (1979) attributed the failure of Lobelia gattingeri seeds. 

to genninate to the presence of the litter of Sporobolus vaginifloms, an annual grass, on the soil 

surface. 

Historical records of dramatic increases in the size of several populations in response to soil 

disturbance (section 2.2) is likely to be a result of bringing the donnant seeds out of the bank 

(Harper, 1977). L. urens does not respond to diurnally fluctuating temperatures, unlike most 

small-seeded wetland species, which fonn persistent seed banks and are thought to respond to 
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disturbance (see Thompson & Grime, 1983; Leek, 1989; Thompson, 1993c). Thus, it is not a 

requirement for alternation that suppresses gennination in the soil. The light requirement of L. 

urens seed enforces donnancy in the soil and pemtits the fonnation of a large persistent seed 

bank; a common trait in small-seeded species (Grime et al., 1981; Pons, 1992). To gemtinate, 

the seed must somehow be brought to the surface to expose it to the light. The lack of 

recruitment in the ungrazed quadrats at Andrew's Wood and Redlake, other than after heavy 

grazing, could be a result of the immobility of seeds in the bank through lack of poaching and 

soil disturbance. The results described from these experiments suggest two further means by 

which grazing can increase the percentage gennination of L. urens: first, by creating gaps in the 

vegetation through poaching and defoliation, which improve the light and moisture environment 

for gennination; and second, through disruption of the litter layer and subsequent incorporation 

of the litter into the soil, removing its many deleterious effects. Both these processes enhance 

emergence and it is often difficult to separate them in the field (Hobbs & Hucnneke, 1992). 

The soil compaction produced by poaching often poses a problem for gennination (Scholefield 

& Hall, 1985 ). Sheldon ( 1974) saw that a weight dropped onto a pot compacted the soil and 

reduced the gennination of Compositae species by homogenizing the surface topography and 

thus removing the safe sites. Compact ion may have been minimal in the wet soil of An drew's 

Wood and Redlake, or insufficient to outweigh the advantage of increased soil moisture. The 

latter is more likely, since there is some evidence that water-filled pores are no more resilient to 

compression than air-filled (Scholelield, 1986). 

Over two years, this study has shown sensible, consistent relationships between seedling 

emergence and microhabitat. Other recent work on safe sites showed the recruitment of 

A trip/ex vesicaJia varied significantly between different categories of soil surface micro­

environments but with no consistency between cohorts as to which habitat supported the greatest 

emergence (Eldridge et al., 1991). Similarly, the emergence of two grasses, A ristida longiseta 

and Boulesova rigidiseta, varied in a complex fashion between years, cohorts and species 
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(Fowler, 1988). This could be because those relationships which change between years and 

cohorts depend upon fine-scale seasonal changes in environment. For example, in a dry season, 

habitats which help retain soil moisture may be favourable, whereas in a cool year, temperature 

might override a moisture requirement. There was some evidence of complexity in the 

emergence patterns of L. urrms but its relationship with micro-habitat was more robust. At the 

northern extreme of its distributional range, whatever the weather, a combination of higher 

temperatures with more soil moisture would improve the gennination success of L. urens. 
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FIVE 

The fate of seedlings 

5.1 Introduction 

The gem1ination of L. urens in Britain is restricted by the need for a moist environment 

combined with high temperatures. Light is also a requirement; seeds must be brought out of the 

bank onto bare soil. Both living and dead plant material inhibit the emergence of L. urens. In 

spite of these controls on the gennination of L. urens, plant distribution and abundance is 

detennined largely by the number of seedlings which establish (Harper, 1977; Grubb, 1977; 

Reader, 1993). The seedling stage is the most vulnerable time in the life cycle of a plant 

(Darwin, 1859; Harper, 1977; Caver, 1983), because seedlings have few reserves to call upon in 

the face of unfavourable conditions (Angevine & Chabot, 1979). The comparatively small seeds 

of L. urens contain minimal energy reserves and this increases the plant's vulnerability during 

the establishment phase. 

Seed size affects many aspects of a plant's ecology (Schimpf, 1977). Positive correlations 

between seed size and seedling size have been demonstrated for a number of monocarpic 

perennials (Gross, 1984) along with Calcnnoulfa /ongifolia (Zhang & Maun, 1993) and ViJV!a 

koschynyi (Gonzalez, 1993). Correlations have also been found between seed size and the 

growth rate of seedlings of Rumex crispus, Rumex obtusifolius (Cideciyan & Malloch, 1982), 

Rumex acetosella (Houssard & Escarre, 1991) and Raphanus raphanist111m (Stanton, 1984). 

Through its effect on seedling vigour, seed size influences the hardiness of seedlings to 

perturbations (Grieve & Francois, 1992; Maun, 1994) such as defoliation (Russi et al., 1992; 

Ann strong & Westoby, 1993) and cover by litter (Vazguez & Orozco, 1992). Smaller seeded 

species, Verbascwn thapsus and Oenothero biennis, showed poorer establishment in vegetated 

cover than on bare soil (Gross, 1984) and similarly the sensitivity of seedling growth to shading 
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was significantly negatively correlated with the mean seed reserve weight for twelve rain forest 

species in northern Queensland (Osunkoya et al., 1994). Small seed size is generally assumed 

to competitively disadvantage seedlings (Harper et al., 1970; Baker, 1972; Howe & Richer, 

1982) and one of the most obvious disadvantages may be in drought tolerance. A large number 

of small-seeded species are especially vulnerable to drought (Schimpf, 1977: Evans & 

Etherington, 1991; Leishman & Westoby, 1994a), a phenomenon which is of particular interest 

to this research, since all extant British populations of L. urens are situated in the lowland 

regions of the southern coastal counties, on soil which is prone to winter waterlogging (section 

2.6). 

Lack of the specific habitat required for establishment has been cited as the major limiting 

factor in a number of rare plant species. For example, Orothamus zeyhers, a montane species, 

restricted to seventeen sites on the cape of South Africa, requires open areas created by burning 

to rejuvenate (Boucher, 1981 ), while the average establishment success from seedlings of 

Peucedanum palustre, a fenland species which is very rare in Britain, was less than one percent, 

since it can only establish successfully in areas that have been recently cut (Me red ith, 197!1 ). In 

this study, seedling size and survival were used to measure the degree of favourability of 

different environmental conditions and micro-habitats to establishment. Initially, there were 

three aims. First, to detennine the relationships between gennination date and seedling success 

at Andrew's Wood and Redlake. Second, to identify the favourability of the various micro­

habitats at the two resen•es and under the experimental conditions of a seed bed, especially the 

moss layer and soil surface depressions, which are beneficial to gennination (section 4.3.3). 

The third aim was to investigate the effect of moisture and frosting on establishment in 

laboratory studies, in order to relate the results to the demographic patterns of sun•ival in the 

field and to the national distribution of L. urens. 

139 



5.2 Methods 

5.2.1 Field demography 

The survival of seedlings which emerged in the census quadrats was monitored as part of the 

fortnightly census described in section 3.3.2, while the method used to record the micro-habitat 

of these seedlings is outlined in section 4.2.2. 

5.2.2 Experimental seed bed 

The design of the seed bed is described in section 4.2.3. The survival of seedlings which 

emerged from the bed was followed every other day from June 6 to July 23, 1994. 

5.2.3 Respo11se to waterlogged co11ditions 

Seed taken from the pool collected in autumn 1993, as described in section 4.2.1, was sown on 

May 3 1994 into forty compartment seed trays filled with sterilised soil from Andrew's Wood 

and genuinated in an unheated glasshouse. The soil was kept moist and, following genuination, 

seedlings were thinned to one individual per compartment. Seedlings were grown on until 28 

days old, when the second true leaf was beginning to show, to guarantee that the experimental 

effect was exerted on the establishment phase and not on genn ination. The two treatments used 

were developed from Voesenek et al. ( 1993 ). The trays were arranged in a Iatin square on the 

centre bench of a glasshouse to incorporate variability in the light and temperature environment. 

The waterlogged plants were submerged in water to soil surface height and the water was 

changed weekly. Plants under the damp treatment were watered from above twice a day and 

more frequently when necessary. In total, 120 plants were exposed to each treatment. Twelve 

seedlings, chosen at random, were removed from each treatment every five days and placed in a 

recovery area, where they were watered from above, twice a day, and more frequently when 

necessary. 
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The experiment ran for 50 days, after which plants were removed from the soil; seedlings were 

then 78 days old. The number of survivors was recorded, roots were washed and plants dried at 

80°C in a fan oven for 24 hours. After allowing to cool in a desiccator, dried plants were 

separated into roots and shoots. All handling was perfonued using forceps to prevent any 

moisture from the hands affecting the final weights. The dry weight was detennined using a 

Sartorius 2001 MP2 balance. 

5.2.4 Response to frosting 

Seed taken from the pool collected in autumn 1993, as described in section 4.2.1, was sown on 

March 15 1995 in 40 nun diameter pots filled with John lnnes No. 2 and genninated in a Sanyo 

MIR-152 incubator at 29·c. Following gennination, treatments developed by Thorpe, Hendry & 

Duran (1993) to test plant response to short incidents of low temperature were used and were 

adapted to investigate the lethal low temperature for L. urens. Five replicate plants for both 

treatments were grown in an unheated glasshouse under a 14 hour day at 2s·c and a I 0 hour 

night at Is·c (range ±3.C). The pots stood in I 0 mm of water which was changed weekly. 

Five control plants were maintained under these conditions throughout. At 21 days old five 

plants were exposed to three days at I4°C:9°C (day:night), followed by four days at 5°C: I °C. 

These chill-stressed plants were then returned to the glasshouse. At 21 days old five plants 

were exposed to two days at I4°C:9°C (day:night), followed by two days at 5°C: I °C, three days 

at 2°C:-2°C, and finally two days at I4°C:9°C. These freeze-stressed plants were then returned 

to the glasshouse (Thorpe, Hendry & Duran, 1993). After exposure, all plants were grown on 

until 42 days old, then harvested using the same method as for the waterlogging experiment. 

The dry weight was detenn incd using a Calm 29 automatic electrobalance. 

To identify the lethal low temperature, two replicates were exposed to each of the adapted 

freezing regimes. The first substituted -4·c nights for -2"C nights and the second lowered this 

to -6·c. After exposure, the plants were grown on until 50 days old and the dmnagc assessed 

visually. 
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5.3 Results 

5.3.1 Field demography 

Over the two years the fate of I 087 seedlings was monitored at An drew's Wood and of these. 

nineteen, 1.75%, survived to flowering (Table 5. 1 ). None of the 65 seedlings which emerged in 

the monitored area at Redlake survived for more than two months. 

1993 1994 

Emerge Survive Emerge Survive 

January 0 

February 0 0 

March 19 4 14 

April 63 2 60 0 

May 55 18 1 0 

June 9 1 3 199 3 

July 38 86 4 

August 54 0 46 0 

September 28 0 26 0 

October 28 0 60 0 

November 23 0 15 0 

December 0 0 

Table 5. 1: Monthly surviva l success of L. urcns seedlings emerging from the period March 1993 to 
November 1994 at Andrew's Wood 

Seedling survival was too low to com pare the establishment success of individual monthly 

cohorts or compartments within Andrew's Wood (Table 5 . I). In both years , however, there was 

a clear bisection with a low establishment success from March to July (early), whilst no 

seedlings established August to February (late). This consistency meant seedlings could be 

categorized across the years into a early and a late cohort, that gave sufficient counts to perform 

a chi-square test for association (Table 5.2). The null hypothesis that there was no association 

between survival and cohort was rejected, P < 0.05 with Yates correction. 
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Survival to adult 

+ -
Early 19 (14) 787 (792) 806 
cohort 

Late 0 (5) 281 (276) 281 
cohort 

19 1068 1087 

Table 5.2: Chi-square test for association between emergent seedl ings survival to adult and seasonal 
germination cohort. Observed values in bold, expected va lues in bracke ts. X2 = 5.4, d .f. = I, P < 0.05. 

Determining the fate of seedlings presented fonnidable problems. A large proportion simply 

disappeared in the intervals between monitoring and may have been eaten (Andersen, 1989), 

washed away or trampled into the soil. Even when there were shrivelled rem ains, it was 

impossible to ass ign a cause of death ; drought, grazed roots, disease or even gene tic defect were 

all possib ilities (Fenner, 198 7). 

Figure 5. 1 shows that the initially very steep surv ival curves levelled out, denoting that the 

probability of surv ival increased with seedling age. However, there d id not appear to be a 

critical time of year or a common pos t-emergence period after which this improvement occurred 

(Figure 5. 1 ). 

T he size of the plants might yield more infonnation on the ir surv ival , since reaching a critical 

size can endow seed lings with an improved survival (Wemer, 1975b). Plant size was monitored 

as part of the fortnightly census in terms of average leaf length and leaf number (section 3 .3.2). 

The medians of each monthly cohort showed sim ilar trends over tim e but leaf leng th gave a 

smoother curve because, within the gradual increase in size described by the curves, there was a 

fluctuation caused by the death of plan ts. The loss of a number of relatively small plants 

between censuses caused a sharp rise in the median, whereas the death of large plants could 

result in a sudden drop (Figure 5.2). Median leaf length was more robust aga inst the 

fluctuations and was therefore a more useful measurement of plant s ize. Individuals were 
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categorised on the basis of flowering in first year, since flowerers and non-flowerers had such 

different size curves (Figures 5.3 & 5.4). The slope of the size curves provided a measure of 

growth rate. There appeared to be no consistency between the initial growth rate and the 

survival of cohorts (Figures 5. 1 & 5.3), however, the slopes of the curves were still partially 

obscured by the fluctuations . In the initial stages, these fluctuations were caused by the large 

numbers of deaths (Figure 5.1) and latterly, they were a function of the small sample size, since 

cohorts were often reduced to less than five individuals. ln general, relative g rowth rates 

brought to bear on the total dry weights of the plants provide a far more infonnative comparison 

of the plants' perfonnance than size alone (Hunt, 1982). However, such calculations require 

destn1ctive sampling, which was not feasible in this field study. Converting the direct 

measurements of leaf length that were obtained into a relative growth rates would not have 

provided more infonnation than these size curves. 

Of the 1087 seedlings monitored over the two year period, only 1% reached flowering in their 

first year. These nine plants originated from the March, April and May cohorts in both 1993 

and 1994 and reached a much larger size than those which remained vegetative throughout their 

first year (Figures 5.3 & 5.4). Of those remaining vegetative, the earlier cohorts , given a longer 

growing season, reached a larger size (Figures 5.2 & 5.3). 

The growth curves of the flowering individuals differ in shape behveen years . In 1993, plants 

of the three cohorts reached a similar size, peaking in August then senescing during October, 

whilst being replaced by new rosettes. Although the Apri l cohort of 1994 had a similar curve to 

this, the March cohort reached their maximum size earlier in July, senesced th rough August and 

September and thus there was a short period wi th no vis ible above ground tissue before new 

rosettes budded from the rhizome in October. The individual which emerged in May 1994 and 

flowered in its fi rst year died in the October. 

Seedlings survived to adulthood in only fou r of the seven habitats favourable to emergence 

(Table 5.3). Habitats with only moss or with moss and ground cover by higher plants were 
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Habitat AW93 AW94 

G M L D Habi tat Emerge Survival % Emerge Survival % Habitat 
avai lability counts counts survival counts counts survival rating 

1994-95 

0.000 0 0 0 0 0 0 

0 0.018 4 0 0 34 0 0 

0 0.000 0 0 0 0 0 0 

0 0 0.005 12 8 14 2 14 ././* 

0 0.000 0 0 0 0 0 0 

0 0 0.477 5 0 0 18 0 0 

0 0 0.000 0 0 0 0 0 0 

0 0 0 0. 141 0 0 0 17 0 0 
~ 
\0 0 0.010 66 2 3 18 6 ././ 

0 0 0.083 154 3 2 222 2 ././ 

0 0 0.008 17 0 0 14 0 0 ./ 

0 0 0 0.026 84 2 2 56 5 9 ././* 

0 0 0.07:1 5 0 0 12 0 0 

0 0 0 0. 129 25 0 0 209 0 0 

0 0 0 0.001 6 0 0 18 0 0 ./ 

0 0 0 0 0.03 1 21 0 0 56 0 0 ./ 
Table 5.3: Survival to adult under dlffenng sod surface m1cro-hab1tats produced from the presence ( I) or absence (0) of all combmat10ns of four surface types (G =ground 
cover by higher plants, M = moss, L = litter, D = depression) at Andrew's Wood 1993 -1994. Micro-habitat key rating (./) favourable to emergence, (././) favourable to 
emergence and survival , (././*) show greatly improved emergence and surviva l. 



most favourable (Table 5.3). No seedlings survived to become adults at Redlake in 1994 and 

only ten did so at Andrew's Wood. As a result of this very low survival rate, it was not 

possible to test statistically for an association between distance to nearest neighbour (NND) and 

survival. However, two of the ten censused seedlings to reach adulthood emerged in a closed 

sward (NND = 0). 

5.3.2 Experimental seed bed 

Four habitats facilitated the emergence of L. w·ens (Table 4.9). There was no significant 

difference in the survival success of seedlings between the two repl icate blocks (two sample 

comparison, Mann-Whitney U, test statistic, Z = 0.62). Therefore, data from the two blocks 

were combined and a Kruskal-Wallis test used to look for differences between habitats . There 

was a difference between the four habitats in which seedlings genninated (Kruskal-Wallis, test 

statistic= 43 .54, P < 0.001); survival followed the same habitat trend as suitability for 

gennination. Soil surface depress ions alone provided the most favourable habitat and sun,ival 

was impaired by the addition of shading (section 4.3.3, Figure 5.5) . 

.. .... 
~ 20 

0 

I 1 ~ Deprusions 
Unsbaded Shaded 

Figure 5.5: The mean number of days L. rll'ens seedlings survived (± I standard error of the mean) in the 
seed bed under shaded and unshaded micro-habitats with one or two soil surface depressions. 
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5.3.3 Response to waterlogged conditions 

A waterlogged soil increased the d ry weight gain of L. urens seedlings when grown under 

glasshouse conditions (Figure 5.6). Waterlogged seedlings were significantly larger than those 

kept damp (F = 31.19, P <0.001) (Table 5.4). The difference was manifested when seedlings 

were subjected to more than twenty-five days treatment (Figure 5.6). Both shoots and roo ts of 

waterlogged plants were significantly larger than those of the damp plants, however, the greatest 

difference was between the roots (F = 17.44 & F = 31 .81 respectively). 

--Waterlogged 
--o- Damp 

400 

,...., 
300 bl) 

8 
'-' 

.... 
~ 
bl) .... 200 
u 
~ 

~ 
M 

Cl 100 

0 
0 10 20 30 40 50 

Days of treatment 

Figure 5.6: The mean change in dry weight (± I standard error of the mean) of L. 11rens seedlings 
maintained, over fifty days, under either waterlogged or damp conditions. 

Total dry weight 

Dry weight of shoots 

Dry weight of roots 

d.f. 

*P < 0.05, .. p < 0.0 I, • .. p < 0.00 I 

MS 

609739.20 

76398.02 

234275.00 

F 

3 1.1 9*** 

17.44*** 

31.82*** 

Table 5.4 : Resu lts of three one-wny ANOV As on the change in dry weight of L. w·ens seedlings 
maintained, over fifty days, under either waterlogged or damp conditions. Degrees of freedom (dJ.), 
mean squares (MS) and F -ratios are indicn ted. 
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5.3.4 Response to frosting 

The total plant dry weight was significantly affected by chilling and by freezing (F = 24. 77, P < 

0.001) (Table 5.5). The roots showed significantly more damage than the shoots (F = 45.04 & 

F = 8.18 respectively) (Table 5.5, Figure 5.7). The lethal regime for seedlings was -6·c. 

20 

f 
• Total 

• Shoot 
bO 15 - a Root a ......... 
.... 
~ 10 - r 
~ 

~ 
I >. .... 5 - I 0 
~ 

0 -

0 Control Chill Freeze 1 
Treatment 

Figure 5.7: The mean dry weight (± I standard error of the mean) of L. 11rens seedlings after exposure to 
chill ing and freezing regimes. 

d.f. MS F 

Total dry weight 2 191.80 24.77*** 

Dry weight of shoots 2 29.84 8.18*** 

Dry weight of roots 2 70.73 45.04*** 
*P < 0.05, **P < 0.0 1, ***P < 0.001 

Table 5.5: Results of three one-way ANOV As on the effects o f chill ing and frccz 1ng regimes on the dry 
weight o f L . w·ens seedlings. Degrees o f freedom (d.f.), mean squares (MS) and F-ra tios are ind icated. 

5.4 Discussion 

The losses in dry weight shown by L. 11rens in response to short incidents of low temperature 

were most similar to those species of lowland cold-temperate latitudes (Tab le 5.6 ). The lethal 

regime for seedlings was -6·c, a temperature rarely experienced within the range of L. 11rens in 

Britain, but one frequent furth er north (Meterological Office, 1976). Therefore low temperature 

could be enforcing the northern distribution limit of L. w ·ens within Britain , through seedling 
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establishment. Low temperature is one of the most limiting factors of natural plant distribution 

(Parker, 1963). Temperatures below -6·c are, however, common in the upland valleys of the 

Pyrenees and Monies de Toledo, where L. urens thrives (Brightmore, 1968). As adult plants are 

completely frost tolerant (Brightmore, 1968), it seems likely that factors such as the shorter 

growing season and lower summer temperatures (Pearce & Smith, 1984) limit establishment and 

growth rate at the northern edge of its range and thus L. urens seedlings do not reach the size 

necessary to withstand the low temperatures of winter. 

The small compact seed of L. urens has improved dispersal (Thompson, 1993b) and persistence 

(Thompson, 1993a; Thompson et al., 1993) (see section 7.3), rather than the superior 

establishment and growth associated with large seeds (e.g Howe & Richer, 1982; Cicidiyan & 

Malloch, 1982; Stanton, 1984; Wailer, 1984). With less energy embodied in L. urens seed, 

large numbers can be produced which can compensate for the enonnous wastage of individuals 

through inefficient establishment (Salisbury, 1975; Cavers, 1983). Considering this, the sun·ival 

success of L. w·ens at Redlake and Andrew's Wood is still VCI)' low and it is likely to be 

contributing to restrictions on population size. At 3%, survival from gennination was much 

lower than that recorded in demographic studies of three common species: Medicago lupulina, 

4 7% (Parone & Reader, 1982), A ristida /ongiseta, 32-50%, and Bortle/orw rigidise/a 38-65% 

(Fowler, 1988). Establishment success was even lower than that of Orothmn us zeyhers, a rare 

montane species of South Africa whose rarity was attributed to a 'low' establishment of I 0% 

(Boucher, 1981 ), but is not as low as that of Peucedanwn pa/ustre which had an average of 

0.9% (Meredith, 1978). 

At Andrew's Wood, the seeds of L. urens exhibit two annual emergence pulses, one in summer 

and the second in autumn (section 4.3.2). Demographic studies of natural populations have 

shown gennination date to have an important influence on seedling survival (Ten·is, 1958: 

Baskin & Baskin, 1972; Gross, 1980). The early emergers often benefit from the full extent of 

the growing season, have a reasonable establishment rate and reach a large size (Marks & 
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Maximum recorded Loss in dry weight 
altitude in Britain (m) as % of control 

Species Chill Freeze 

Festuca ovina L. 1310 40 36 

Poa annua L. 1200 42 77 

Festuca mbra L. 1080 28 45 

A rrhenathentm efalius Beauv. 550 49 57 

Loliwn perenne L. 490 26 31 

Brachypodium pinnatum Beauv. 380 47 63 

B rom us erectus Huds. 310 65 48 

Desmazeria rigida L. 300 44 74 

Lobelia urens L. 213 39 73 

Triticum aestivwn L. cv Mercia • 0 37 

A vena saliva L. cv Image • 26 73 

Zea mays L. cv Fiesta y 62 •• 
Oryza saliva L. cv IR 36 I; ** ** 

* Culttvnr of North Europe (cold temperature lallludes), y Cuhtvar of South Europe (warm temperature 
latitudes), I; Cultivar of sub-tropics, • • < 20% survival. 

Table 5.6: Growth response of thirteen species to chilling and freezing (Data, except L. rll'ens, from 
Thorpe, Hendry & Duran, 1993). 

Prince, 1981; Fenner, 1987). Seedlings of Lobelia gallingeri that emerged in late summer were 

devastated over winter, whilst spring recmits had a good chance of survival (Bask in & Bask in, 

1979) and very similar trends were seen for Bromus tecto/7/m (Mnck & P~·kc. 1983). Only one 

pulse of Papaver dubium (Arthur et al., 1973) and Dmtcus carota (Lacey, 1982) seedlings 

established each year. Similarly, gennination timing has a profound effect on the survival of L. 

urens seedlings, with the whole of the autumn cohort lost over winter. 

Historically, L. urens displayed a preference for seasonally waterlogged soil (section 2.6) and 

the most dense stands of L. w-ens at Andrew's Wood are confined to the wellest soils (Clements, 

1993). Experiments described in this and the previous chapter have shown that sensitivity to 

soil moisture occurs at both the gennination and seedling stage of growth: L. w·ens genninated 
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well and established better in waterlogged than in moist conditions. The more extensive root 

system of the waterlogged plants may have been a response to nutrient deficiency caused by the 

flushing of water through the experimental system. The resultant weights of the two treatments 

may have been even more different if all the plants had been fed during the experiment. Small 

seeded species such as L. urens are generally confined to wetlands as larger seeds are needed to 

tolerate drier environments. Schimf (1977) attributed the association between seed size and soil 

moisture in A me m thus retroflexus to the capacity of larger seeds to establish seedlings from 

deeper soil horizons where moisture is more reliable. However, the mechanisms responsible 

might be more complex. The characteristics of the rainfall event and the soil conditions may 

provide selection pressure for larger seed size in dry soil conditions (Leishman & Westoby, 

1994a). 

Moss featured in all four micro-habitats favourable to survival, although, for reasons outlined in 

section 4.4, the moss layer of the experimental seed bed did not mimic this effect. This 

observation offered further support for the dependency of L. urens seedlings on soil moisture for 

successful survival, since a layer of moss reduces rates of moisture loss from the soil (Johnson 

& Thomas, 1978). Detailed observations show that seedlings situated in bryophyte patches 

suffered less predation by herbivores than those on bare ground (M. van Dijk, unpublished data 

cited in During & van Tooren, 1990). Such seedling predation had a pronounced effect on the 

survival rate of the small-seeded species Brafsica napus (Bodnaryk & Lamb, 1991). 

The effect of depressions on the survival of L. urens seedlings was unclear. In the field, 

depressions featured in only one of the four favourable micro-habitats. In the seed bed, 

gennination only occurred in depressions, removing the opportunity to look at their effect on 

survival. Although depressions increase the moisture content of soil (Sheldon, 1974; Eldridge el 

al., 1991), they are associated with soil compaction (Scholefield & Hall, 1985), which reduces 

pore space, increases soil rigidity and offers a mechanical barrier to radical penetration 

(Sheldon, 1974). 
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Cover by higher plants and Mo/inia caemlea litter were impediments to survival as well as 

emergence of L. urens, and litter was absent from the two micro-habitats most favourable to 

recruitment in the field. Emergence did not occur beneath litter in the seed bed. Hence, 

survival could not be investigated there. The negative effect of litter on survival may be 

implemented through reduced soil-to-seed contact (Sydes & Grime, 1981 ). Litter may act as a 

mechanical barrier to the extension of newly gemlinated seedlings because of its weight and 

density (At-Mufti et al., 1977; Bosy & Reader, 1995) The small seed reserve means L. urens 

cannot avoid the unfavourable aerial environment below litter through rapid shoot extension 

(Vasquez & Orozco, 1992; Leishman & Westoby, 1994b). 

L. urens, like many plant species (Sagar & Harper, 1961; Putwain & Harper, 1970; Gross, 1984; 

Weiner, 1982), requires an opening in established vegetation for the successful recruitment of 

new seedlings. Eighty percent of seedlings surviving to adulthood emerged from micro-habitats 

without ground cover by higher plants. Golberg & Wemer ( 1983) had significant rank 

correlations between percentage survival and opening size of Solidago spp. and similar results 

were seen for Cirsiwn vulgm-e (Silvertown & Smith, 1989). Although the fate of almost 1000 

seedlings was followed, the very low survival success of L. urens meant there were insufficient 

data to analyse for correlations between survival and distance to nearest neighbour. Shading 

explains the negative effect of higher plant cover in part, since shading impaired survival in the 

seed bed experiment. A previous study of twenty-three species showed small seeded species to 

be disadvantaged by micro-habitats such as cover by higher plants, where there was a steep 

gradient of light (Leislunan & Westoby, 1994b). Competition for moisture is also likely to 

contribute to the restriction on establishment beneath plant cover, since waterlogging improved 

the growth of L. urens seedlings. It was surprising, therefore, to see that as many as twenty 

percent of surviving seedlings emerged from a closed sward (NND = 0). It might be that for 

such small seedlings, even a gap less than I cm offers some solace from competition. Some 

studies have shown complex interactions of the positive and negative effects of neighbouring 

individuals on survival. Aguiar et al. (I 992) indicated how plant cover trapped dispersing seed 
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and resulted in a larger seed bank below vegetation. Adults also have a positive effect in 

hostile environments, for example, the marsh elder (Jvafrutescens) affords aerial protection to 

seedlings on salt marshes (Bertness & Yeh, 1994). 

In summary, the survival of L. urens from genuination is very low and it is likely to be 

contributing to controls on the density of British populations. Seedlings that emerge late in the 

year could not survive the winter. In spring, the recruitment of individuals from seed was 

improved on wet soil which lacked cover from both higher plants and their litter. 

For those individuals which do establish, the duration until first flowering, often tenued the 

juvenile period, is very variable (Hutchings, 1986). Of those individuals followed through 

1993-1995, nineteen reached adulthood. Nine of these did so in their first year, i.e. at three to 

four months old, and ten in their second year. Of the nine plants flowering in their first year, 

five survived to flower the following year. This is a similar survival rate to that for all 

flowering individuals (0.60) (section 6.3.1 ). Hence, with regards to survival, once a plant has 

flowered, it has truly reached adulthood, even if it does so in its first year. 
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"' 

s_r_x ____________________________________ ~~~~--
Adult autecology 

6.1 Introduction 

The adult stages of most higher plants encompass the broad phases of growth, reproduction and 

post-reproduction (Bazzaz & Ackerly, 1992). The growth rate of an individual is very important 

to its population dynamics, since rapid plant growth aids population recovery rates and thus 

improves the resilience of populations to sporadic disturbance events (Silvertown, 1982). 

Breeding system failure is a common cause of rarity (Weller, 1994). Genetic studies of the 

reproductive success of rare species have emphasised inbreeding depression and homozygosity 

(Weins et al., 1989). Despite the potential most flowering plant species have for self-

fertilization, diverse mechanisms have evolved to promote out-crossing, presumably to avoid the 

loss of fitness that often results fr01i1 self-fertilization (Weller, 1994). These mechanisms 

include the spatial or temporal separation of pollen and stigmas, such as protandity or dioecy. 

for example, populations of the buffalo gourd, Cucurbilafoelidissima, a perennial native to 

southwestern America and northern Mexico, contain both female and hennaphrodite plants. 

Seeds from females survive their first year almost three times more frequently than seeds from 

hern1aphrodites, apparently because seeds from hern1aphrodites are mostly self-fertilized, which 

severely reduces seedling survival (Kahn, 1988). Alternatively, self-mating is prevented through 

self-incompatibility. The latter is a blanket tenn used to cover any selection for cross pollen or 

cross-fertilized seed over self (Bateman, 1956; Crowe, 1971; Charles worth & Charlesworth, 

1987; Bertin & Sullivan, 1988; Barrett, 1988). Inbreeding does not dominate breeding system 

failure. A self-incompatible species with a specialised pollen vector can become rare as a direct 

consequence of the infrequency of pollination events (Bierzychudek, 1981; Weller, 1994 ). The 

seed set of Lobelia deckenii, an endemic giant rosette species of Mount Kilimanjaro, Tanzania 
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is pollinator limited (Burd, 1995). Dedeckera eurekensis, a highly heterozygous shrub from the 

Californian desert, is thought to have lost its reproductive capacity through genetically mediated 

embryonic abnonnalities that lead to development failure and may ultimately result in its 

extinction (Weins et al., 1989). Faults in a species breeding system can be manifested in many 

ways (Weller, 1994). Therefore, in this study, a large number of reproductive characters 

including capsule number, seed number, seed weight and dimensions were measured to explore 

the full extent of reproductive success of L. urens. 

In many plant fom1s, for example, trees and annuals, the post-reproductive phase is clearly 

marked but in perennials, it can become confused (Harper, 1978). All diiTerentiated cells have 

restricted lives and undergo senescence. However, meristems are potentially immortal 

(Salisbury & Ross, 1985). Thus perennial species have the potential for new units to develop 

juvenile vigour at any time, given favourable conditions, and juvenility, maturity and senescence 

are reflections of community condition rather than real age (Harper, 1978). 

Few long-lived perennials have been subject to demographic study because of the complications 

of overlapping generations and long life cycles that are without clear structure (Harper, 1977; 

Bierzychudek, 1982; Ehrlen, 1995). However, a detailed description of a species life history is 

an essential requirement before the regulating mechanisms which affect populations can be 

understood (Pifiero et al., 1984) and before sensible decisions can be made as to the best fonn 

of management, whether designed to restrict or promote a species (Usher, 1972; Given, 1994 ). 

Since early studies by Sarukhan on Rcowncu!rts (Sarukluin & Harper, 1973; Sarukluin, 1974; 

Sarukhan and Gadgil, 1974), there have been a handful of successful demographic studies of 

perennial herbs. These include those of Bierzychudek (I 982) who studied A risaema triphyllwn, 

a species whose life histOI)' is further complicated by its ability to change sex, and Ehrlen 

( 1995) whose study of Lathy111S vemus included the eiTects of hcrbivOI)' on the species 

population dynamics. There have been but a few studies of rare perennials, mostly in North 

America, the best examples arc that of lsotria mede/oides, one of the rarest orchids endemic to 
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eastern North America (Mehrhoff, 1989) and Panax quinquefolium, also endemic to North 

America and threatened by harvesting and habitat destruction (Charron & Gagnon, 1991 ). 

Annual data from four years of census (section 3.3 .I) have been used in this chapter to 

investigate the demographic parameters of L. urens at Andrew's Wood and Redlake. Statistics 

of individual growth, longevity and reproductive capacity were analyzed together to show 

population structure and turnover. In the past, research in plant demography has described 

populations by detern1ining the relative proportions of individuals of different calender ages (see 

Harper & White, 1974 for a review). However, it is often impossible to establish the age of 

herbaceous perennials, except by following them from genn ination onwards. More importantly, 

size, reproductive capacity and the plant's role in the community are often not detennined by 

age (Harper, 1977; Gatsuk et al., 1980). It is now recognised that the most appropriate method 

for understanding the population dynamics of perennial herbs is to focus on size, rather than 

age, since size is more often strongly correlated with demographic success (Fortanier, 1973; 

Kawano, 1975; Kawano & Nagai, 1975; Barkham, 1980a, b; Solbrig et al., 1980; Gatsuk et al., 

1980; Zhang, 1983; Piiiero el al., 1984; Moloney, 1988; Mehrhoff, 1989; see Caswell, 1989 for 

a review; Charron & Gagnon, 1991; Silva et al., 1991; Aberg, 1992; Ehrlen, 1995). 

All plants have evolved in heterogeneous environments under a range of intensities and 

predictabilities of various abiotic and biotic disturbances, the extremes of which create differing 

life histOI)' strategies (Pavolvic, 1994). At both Redlake and Andrew's Wood, L. urens is a 

member of wet heath land communities that were traditionally maintained by sporadic cattle 

grazing. For rare plants with specialized adaptations to natural disturbance regimes, variation in 

the type and scale of disturbance can have significant effects on the population response 

(Menges, 1991; Hobbs & Huenneke, 1992; Bullock et al., 1994 ). Since L. w·ens is adapted to a 

disturbance regime for regeneration from seed (sections 4.4 & 5.4), an assessment of the 

sensitivity of the adult life stages, especially growth and reproduction, to hcrbivol)' and 

disturbance was undertaken. This assessment was largely field-based but included an analysis 

of the effects of light quality on both the demography of census plants in the field and on 
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photosynthetic rate in the laboratory. Although field research on the effects of management on 

plant demography is preferred (Pavlovic, 1994), photosynthetic light responses are extremely 

useful in determining species native light environments (Salisbury & Ross, 1985). 

6.2 Methods 

6.2.1 Growth and longe11ity 

Population counts and structure 

Annual counts of the flowering spikes of L. urens have been carried out for more than a decade 

at Andrew's Wood and Redlake as described in section 3.1. Monitoring of the flowering 

individuals within sixteen pennanent quadrats at Redlake and Andrew's Wood was undertaken 

for four years, beginning in 1992. This annual census yielded infonuation regarding the 

population structure of L. urens at the two reserves. The census methods arc described in 

section 3.3.1. 

Rhizomnl dcvcloJiment 

Soil was collected from Andrew's Wood, Devon on March 8 1993, spread to a depth of 3 cm 

over a layer of sand on seed trays and placed in a glasshouse. The glasshouse provided 

thennostatically controlled minimum heating as a precaution against late frosts and continual 

watering from below by capillal)' matting linked to an automatic reservoir. Gennination of L. 

urens from the seed bank within this soil began on March 23 1993. Seedlings were pricked out 

afier nine weeks into 2 cm pots filled with 3: I Levington's peat based and John lnnes seed 

compost and watered as required. On July 12 1993, 250 individuals were planted out into a 

rotovated plot at 80 cm intervals. Batches of ten were dug up every three months, commencing 

in November 1993, to observe the development of the rhizome. The number of rosettes were 

noted and the diameters of the rhizomes were calculated using vcmicr callipers. An attempt 

was made to follow the development of the rhizome buds. 
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6.2.2 Reproduction 

Fecundity 

A fecundity survey was undertaken using a total of 85 plants. In 1993, 50 plants were used, 

five from each of the ten original pennanent quadrats at Andrew's Wood. In 1994, the survey 

was carried out on all of the flowering plants within the fortnightly census quadrats, 

representing ten plants from Redlake and 25 from Andrew's Wood. Plants were classified on a 

binary scale of either young or old. Young individuals were in their first year, ascertained by 

using plants that were both in a position which had not been occupied by a L. urens plant the 

previous year and seen as a seedling that spring. An old plant was more than one year old and 

thus had been in a position that had been occupied by a L. urens during plant the previous year 

and had appeared as a rhizome bud that spring. In 1993, an even number of young and old 

plants were selected. The vegetative morphology of all the plants was quantified as the number 

of rosettes that a plant possessed and the mean length of the lam in a of three rosette leaves, 

referred to from now on as leaf length. The method of identifying three leaves was to select the 

first arbitrarily, the second was situated 120° round the stem from this and the third a further 

120° around. The mean height of the plant's flowering spikes, the number of branches on a 

single arbitrarily chosen spike and the mean length of those branches were used to quantify 

various aspects of the plants reproductive morphology. 

Five capsules were harvested from each plant to represent the top, middle and lower part of the 

main spike and proximal and distal points of a branch. The seeds were collected on ripening, 

whilst the capsule was still intact and stored in a desiccator. Capsules were opened carefully 

after drying and the seeds separated from any capsule debris. The number of seeds per capsule 

was calculated using a Quantimet 570 image analyser. The average of the five counts was also 

calculated to provide an estimate of the average number of seeds produced per capsule and 

enumeration of the calyx scars per plant at the end of the season gave nn alternative measure of 

fecundity in tenus of capsule production. In 1993, the seed collected was grouped according to 

mntemal origin and seed from the five positions were mixed thoroughly. Ten replicate batches 
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per plant, each of I 00 seeds, were weighed using a Calm 29 automatic electrobalance to five 

decimal places. The length, width and depth of ten seeds were measured using a calibrated eye 

piece graticule on a Kyowa Optic SDL-PL microscope. In 1994, seed from each capsule was 

divided into two. Half the seed from each plant was used, as in 1993, to observe the variation 

in seed size with maternal morphology, for example the number of rosettes or the spike height. 

The remaining half was classed across all plants within each reserve according to the position 

on the spike (bottom, middle, top, proximal and distal). This yielded data on the variation in 

seed size with its position on the flowering spike. 

Flowering 11henology 

The timing of the emergence of the first flowering spike and the opening of the first flower of 

each plant was recorded at Andrew's Wood in 1994 as part of the fortnightly census (section 

3.3.2). 

Poiiinntion 

The stamens and style of L. urens are fused, which dismissed the use of emasculation to prevent 

self-pollination, and thus prevented the observation of purely outcrosscd plants and of all 

combinations (manually outcrossed, manually self-fertilized and open) on a single individual. 

Investigations were carried out on the seed set of manually outcrossed, manually self-fertilized 

and isolated individuals. Seed was sown in March across the surface of 24 cell seed tray inserts 

filled with a ratio of John Innes Seed to Levington's Multipurpose compost and incubated in a 

glasshouse. The glasshouse provided thennostatically controlled minimum heating as a 

precaution against late frosts and continual watering from below by capillary m ailing linked to 

an automatic reservoir. Gennination commenced after two weeks and seedlings were thinned at 

intervals to leave one individual per cell. Thirteen weeks after gennination, on fonnation of a 

root ball, sixty seedlings were transferred to 6 cm pots containing 4: I Levington's to John lnnes 

Number 2 compost. The experiment commenced on June 14 1993. The 20 manually 

outcrossed plants remained in the glasshouse. Material that prevented the passage of 15 11111 
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pollen grains between plants but offered no obstruction to water vapour and light could not be 

obtained. Hence, the 20 manually self-fertilized and 20 isolated plants were separated by 

placing one per room on the west-facing sills of an eight-storey university building. Paint 

brushes were used to move pollen from newly dehisced anthers to receptive stigmas twice 

weekly for both manual regimes. Isolated plants were left untouched, with insect interaction 

being prevented by swathing in horticultural fleece. The fleece reduced light levels to 58% of 

ambient and, therefore, its effect was investigated on five manually crossed plants versus five 

controls in the glasshouse. All plants were positioned to obtain maximum available light and 

stood in 10 mm of water which was replenished every other day. The experiment ran until 

October 28 1993. 

Five capsules were harvested per plant from arbitrarily chosen points at the top, middle and 

lower part of the main spike and at proximal and distal points on a branch. These were 

collected in vials as the individual capsules dried and showed transparency but whilst they were 

still intact. Vials were stored with the lids removed in a desiccator to ensure that the seeds 

were dry. Capsules were opened carefully after drying and the seeds separated from any 

capsule debris. The number of seeds per capsule was calculated using n Quantimet 570 imngc 

analyser. Seeds were then classed together according to their treatment: crossed, selfed and 

isolated, and mixed thoroughly. Ten batches of 100 seeds, from each of the three treatments 

were weighed using a Calm 29 automatic electrobalance to five decimal places. The length, 

width and depth of thirty seeds from each treatment were measured using a calibrated eye piece 

graticule on a Kyowa Optic SDL-PL microscope. Counts of the number of calyx scars at the 

end of the experiment enabled an estimation of the total seed production per plant under each 

regime. 

The viability of the seed was tested under the 29: !5°C alternation ( 14: I 0 hour thermo- and 

photoperiod) following the procedure outlined in section 4.2.1. This regime was chosen, since it 

had been found to oplimize percentage gennination in section 4.3.1. 
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6.2.3 The effects of environmental variation on adult demography 

The effects of herbivores 

The effect of herbivores on the demography of plants at Andrew's Wood was observed as part 

of the annual census (section 3.3.1). However, over the census period, there was no control 

over grazing intensity. The reserve was grazed over the autumn-winter period and the intensity 

varied from four animals from October to December in 1993, to 13 animals for two weeks in 

October 1994. A manipulative field experiment was perfonned to observe the effect of 

defoliation intensity, as in situ research continues to be a good place for understanding the 

relationship between management and species life history (Pavlovic, 1994 ). On May 8 1995 a 5 

m2 plot was marked out at Andrew's Wood with wooden stakes. Thirty-six plants, of two size 

classes (one roselle = small, and three to twelve = large plants), were subjected to three 

different treatments. The treatments were: 

(i) unclipped (control), 

(ii) clipped to leave 20 nun of lam in a and 

(iii) clipped to leave 10 mm of lamina. 

The effect of treatment on plant size, number of roselles, mean leaf length and mean spike 

height of the plants were recorded on 18 July 1995. 

The effects of the light environment 

(i) Experimelllal 

Seed taken from the pool collected in autumn 1993, as described in section 4.2.1, was sown on 

May 3 1994 in 40 compartment seed trays filled with sterilised soil from Andrew's Wood and 

genninated in an unheated glasshouse. The soil was kept moist. Following gennination, 

seedlings were thinned to one individual per compartment. Ten weeks after gennination, on 

fonnation of a root ball, twenty seedlings were transferred to 6 cm pots containing 4: I 

Levington's to John lnnes Number 2. At 17 weeks old, when plants were in full flower, the 

photosynthetic rate of ten individuals at a range of light intensities was measured using an Infra­

Red Gas Analyser (IRGA, Analytical Development Company, Series 225) with an open air 
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circuit. Roots were washed, plants stood in conical flasks filled with water, and stems 

supported by cotton wool at the flask neck. Light was provided by a 6 kW xenon arc lamp, 

giving a maximum photon flux density (PFD) of about 665 11M m·2 s·1 at the foliage surface 

(although, because of the vertical gradient of PFD, PFD was not the same on every leaf). The 

PFDs of 1.2, 9.9, 19.4, 76.0, 156.0, 290.0, and 487 11M m·2 s·1 were provided by screens with 

differing numbers of layers of butter muslin. Afienvards, leaf areas were measured with a Ll-

3000 area meter. 

(ii) Field 

The ratio of red to far-red light gives an index of the degree of canopy shade (section 2.3.3). 

This was measured, along with vegetation height, as part of the fortnightly census (section 

3.3.2). Readings were taken at 50 cm inten•als along the border of each quadrat and the 

average of the I 0 readings per quad rat calculated to show variation between grazing treatments, 

compartments, sites and years. 

6.3 Results 

6.3.1 Growth and Longevity 

Po1mlation counts 

Between 1975 and 1995, there were large fluctuations in the size of the L. urens populations of 

both Andrew's Wood and Redlake (Figure 6.1a). There was no correlation between the counts 

of flowering spikes at the two reserves, nor between counts of the compartments within 

Andrew's Wood (Table 6.1). The number of spikes in compartment D shows wide fluctuations, 

for example, rising from 187 plants to 3822 in two years (Figure 6.1b). The number of spikes 

in compartment C gradually declined from 1976 until 1992, when scalloping, or culling of the 

compartment's woodland boundaries to enlarge the transition, was introduced (Figure 6.1 b). In 

compartment AS, the number of spikes has increased since a dramatic decline in numbers in 

1986 (Figure 6.1b). There was a significant correlation between the number of flowering spikes 
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in C and AS between 1975 and 1995 but this was negative which made no sense (Table 6.1 ). 

Andrew's Wood 

c 
AS 

**P<.l. 

Red lake 

-0.45 

D 

-0.20 

0.3S 

c 

-0.67** 

Table 6.1: Speannan rank correlation coefficients between the counts of flowering spikes at Redlake and 
Andrew's Wood and within the three grassland compartments of Andrew's Wood (D, C, and AS). The 
data were collected for tbe majority of years between 1975 and 1995 and analyzed using pair-wise 
deletions. 

The consistently smaller population size at Red lake over the past twenty years (Figure 6.1 a) 

could partly be ottributed to the smaller area under grassland at the reserve: 2.81 hectares 

compared to 4.42 ha ut Andrew's Wood's. Data from the annual census of plants within 

pennanent quodrats showed no significant difference in the number of plants per m2 between the 

four years of census data (P > 0.05, Table 6.2). However, there was a significant difference in 

plant density among the sites/compartments (P<O.OOI, Table 6.2). 

Years 

Sites/compartments 

••• P < 0.00 I 

dJ. 

3 

6 

MS 

13.67 

110.01 

F 

0.40 

11.0 , ••• 

Table 6.2: Results of two one-way ANOVAs of number of !lowering plants per square metre of census 
quadrats. Degrees of freedom (d.f), mean squares (M.S) and F-nttios arc indicated. 

Focusing on 1995, the quadrats of Redlake had significantly less plants per m 2 than 

compartments AS and D of Andrew's Wood (Figure 6.2). Within Andrew's Wood there was a 

significant difference in plant density between compartments and grazing treatments: 

compartment C had a lower density than compartment AS and the grazed areas of compartment 

D which in tum had fewer plants that the ungrazcd quadrats of compartment D (Figure 6.2). 
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and compartment A8, 1995. Bars show one standard error or the mean. 

Population structure 

Emergence was low and the death rate high in compartment C, which indicated that the sub-

population in this compartment was in decline: all plan ts in the ungrazed quadra ts had died by 

1995 (Figure 6.3). Redlake also had very little emergence, but a lower death rate meant the 

population was more stable (Figure 6.3 ). The proportion of deaths was consistently lower in the 

ungrazed quadrats than the grazed areas of compartment D but over the four years of census, 

emergence in the ungrazed quadrats fell from twenty percent to vi rtually zero (Figure 6.3). 

Emergence in A8 was always high but the death rate decreased over the census period (Figure 

6.3) resulting in population growth. The recently cleared areas of compartm ent C showed the 

pattem of tumover characteristic of recent colonisation following disturbance, that is new 

emergence fo llowed by a high death rate before the population stabilizes (Figure 6.3). Overall , 

the tumover at Redlake was much lower than Andrew's Wood: 86% of flowering plants present 

at end of study were there at the beginning at Redlake compared to only 35% at Andrew's 

Wood. Within Andrew's Wood, ungrazed compartment D had a much lower tumover. 65%, 
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than the g razed compartment D 29%. On average, over both reserves, an established plant had 

a 63% chance of survival to the following year. There was no evidence of established plants 

"missing " years by not producing above ground structures or flowers for one year and then 

returning. 

Kruskal-Wallis tests were app lied to data on the number of rosettes per p lan t grouped into the 

seven compartments/grazing treatments: Redlake, Andrew's Wood compartments D (grazed, 

ungrazed), C (grazed, ungrazed and recently cleared) and AS across the years 1992-1995. 

Analyses for differences between site/grazing treatm ents at the initiation of the study and for 

significant changes in the number of rosettes within each si te/grazing treatment , over the four 

years of the study, were undertaken . Initially in 1992, there was a significant difference in the 

rosette number per plant between sites (Kruskal-Wallis test statistic= 27.36, P<O.OO I ). All 

compartments/grazing treatm ents in 1992 had a median rosette number of o ne , except A8 , which 

had a med ian of two. Over the duration of the study, there was no significant change in the 

median number of rosettes per plan t in the orginal areas of compartment C (P>0.05, Table 6.3). 

However, the other compartments/treatments showed significant differences in rosette number 

between years (Table 6.3). In the ungrazed quadrats of compartment D, the recently cleared 

area of compartment C and at Redlakc, the median number of rosettes per p lant increased 

steadi ly over the four years (Table 6.3 ), whilst the median rosette number per p lan t decreased in 

AS (Table 6.3). Although there was a significan t difference in the number of roseues per plan t 

in the grazed area of compnrtment D, this was not consistent with time since treatment began 

(P<O.OO I , Table 6 .3). 

An increase in the median rosette number of a population may be a manifestation of a rapid 

adult growth rate or a paucity of emergence (decreasing the numbe r of plants with few rosettes), 

whilst, in contrast, a decrease in the median can result from the loss of large plants or from a 

high emergence. To investigate the meaning of the c hanges seen in the quadrats over the four 

years, it was necessary to look at rosette number frequency distribution curves. Figure 6.4 
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shows that the changes in median rosette number of plants in AS and Redlake resulted from a 

change in the number of plants with only one rosette, whilst the frequency of large plants stayed 

the same (Figure 6.4a & b). The higher median rosette number in 1994 from plants of the 

grazed areas of compartment D (Table 6.3) was the result of there being fewer plants with one 

or two rosettes that year (Figure 6.4c). The increase in the median rosette number of plants in 

the ungrazed quadrats of compartment D was a product of both a decrease in the number of 

plants with one or two rosettes and an increase in the number of plants with more than three 

rosettes (Figure 6.4d). 

Year Red lake C(g) C(ug) C(rc) AS D(g) D(ug) 

1992 2 

1993 2.5 2 2 

1994 2 2 2 3 2 3 

1995 2 3 3 

test stat. I 0.01* 4.55 4.66 8.24** 14.60** 23 .30** 140.71 *** 

• • P<O.O I , • • • P<O.OO I 

Table 6.3 : Kruskal-Wallis test of change in median number of rosettes per plant over the four year 
census period at Redlake and wi thin Andrew's Wood in compartments D and C (grazed (g) , ungrazed 
(ug) and recently cleared (re) quadrats) and compartment AS, 1995. 

In contrast to rosette number, there was no consistency in spike height across compartments or 

grazing treatments (Table 6.4). Plant from grazed quadrats did not have shorter or longer spikes 

than those from ungrazed areas. Although the ANOYAs among years were highly significant, 

the mean spike height of each compartment/grazing treatment showed no constant trends among 

years (Table 6.4). Phenological assynchrony in spike height was demonstrated . For example, in 

July, when annual censuses were carried out, the spikes of plants in AS were higher in 1993 

than 1994 (Figure 6.5). However, in August of 1994, the spikes in AS surpassed any height 

reached in 1993 (Figure 6.5). The situation in July did not reflect that of the full year because 
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of climatic variations between the two years. Perhaps favourable weather early in 1993 

promoted an early peak in spike height or, altematively, a longer growing season in 1994 

pennitted continued spike growth. Annual maximum spike height could be a useful measure of 

plant size. However, identification of a maximum height would require a number of censuses 

rather than one annual census. 
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Figure 6.4 : Number of rosettes per plant censused between 1992-1995 in (a) compartment A8 of 
Andrew's Wood, (b) Redlake , (c) grazed areas of compartment D, Andrew's Wood and (d) ungrnzed areas 

o f compartment D, Andrew's Wood. 

Overall, there was an associat ion between possessing more than one rosette and increased 

survival chances across Redlake and Andrew's Wood (Table 6.5). Individual analyses showed 

this association occurred in compartment A8 and the ungrazed quadrats of compartment D but 

there was no sensible relationship between rosette number and surv ival in the grazed areas of 

compartment D (Table 6.5). The number of plants in compartment C and Redlake were too low 

to perfonn individual analyses. 
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Means of compartments and sites 

Date Red lake C(g) C(ug) C(rc) D(g) D(ug) AS 

1992 64.55 30.63 36.15 36.66 43 .97 47.75 

1993 68.15 25.84 40.59 42.25 30.67 63 .75 41.89 

1994 44.53 36.04 41.33 51.68 35.22 60.23 43.26 

1995 53.48 36.00 52.44 44 .35 61.51 39.2 1 

d.f. 3 3 2 2 3 3 3 

MS 9286.47 554.57 223. 13 2041 .85 3250.79 21620.74 3070.00 

F 57.26*** 5.84*** 0.84 9.59*** 16.76*** 102.73*** 10.33*** 
•••P<O.OO I 

Table 6.4 : Results of seven one-way ANOVAs of change in spike height owr four year census period at 
Redlake and within Andrew's Wood in compartments D and C (grazed (g), ungrazed (ug) and recently 
cleared (re) quadrats) and compartment A8. 
are indicated. 
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Figure 6 .5: Temporal varia tion in spike height in compartment A8 of Andrew's Wood 1993 and 1994 . 
Bars show one standard error either side of the mean. Equations for fi tted curves are : 1993 y = 0 .07x1 

-

2.8lx2 + 22.00x - 18.46, r2 = 0.97 and 1994 y = -0.39x3 + 3 .52x~ + 1.69x + 4.92, r2 = 0 .99. 
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Rosette number Total of Andrew's Wood and Redlake AS 

Survive Die Survive Die 

401 (454) 359 (306) 125(134) 98 (89) 

2 216 (206) 129 (139) 47(40) 20 (27) 

3 104 (94) 54 (64) 18 ( 18) 12 (12) 

4+ 167 (133) 56 (90) 37 (35) 21 (12) 

r! 107.85*** 56.78*** 

D(g) D(ug) 

Survive Die Survive Die 

74 (75) 75 (74) 136 (168) 91 (59) 

2 32 (40) 48 (40) 104 (93) 21 (32) 

3 25 (22) 18 (21) 48 (43) 10(1 5) 

4+ 22(16) 10 (18) 80 (64) 7 (23) 

' x- 12.74** 37.45* ** 
•• p < 0.0 1, ... p < 0.00 1 

Table 6 .5: Chi-square tests for assoc iation between number of rosettes across both Andrew's Wood and 
Redlake and within Andrew's Wood in compartment 0 (grazed (g), ungrazed (ug) quadrats) and 
compartment A8 and surviva l to following census. Observed (ex pected) values, 3 degrees of freedom. 

There was also an association between the change in rosette number and survival across 

Redlake and Andrew's Wood: plants with an increasing number of rosettes and those wi th a 

fluctuating rosette number were more likely to survive than expected (Table 6.6). Again , this 

relationship occurred in the ungrazed quadrats of eo m partment D but was less clear (and less 

significant this time) in the grazed areas of compartment D (Table 6.6). The number of plants 

in compartments C and AS and at Redlake were too low to perfonn individual analyses. 
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Change in Total of Andrew's Wood and Redlake 
rosette number 

Survive Die 

< 115 {llO) 45 (50) 

> 33 (44) 31 (20) 

74 (84) 49 (39) 

80 (64) 13 (29) 

·t! 35.84* .. 

D(g) D(ug) 

Survive Die Survive Die 

< 14 (12) ll (13) 63 (17) 11 (57) 

> 6 (9) l2 (9) 8 (14) 10 (4) 

7 (9) 10 (9) 18 (23) ll (6) 

16(12) 7 (11) 29 (24) 2 (7) 

x2 8.14* 37.16··· 

• P < 0.05, oh P < 0.00 I 

Table 6.6: Chi-square tests for association between change in the number of roscllcs ucross both Andrew's 
Wood and Redlake and within Andrcw's Wood in compartment D (grazed (g), ungrazed (ug) quadrats) 
and survival to following census. Observed (expected) values, 3 degrees of freedom (< increasing, > 
decreasing, - sialic, and - fluctuating rosclle number). 

Rhizomal development 

There was no relationship between position of a bud on the rhizome and its propensity to 

develop into a root or a shoot. Roots and shoots were inter-dispersed on the rhizome (Plates 6.1 

& 6.2). Rhizome morphology can be estimated from the plants age or vegetative size in a 

number of perennial species (Silvertown, 1982; Sutherland & Walton, 1990). A Kruskai-Wallis 

test was applied to look for variation among the diameters of L. urens rhizomes over three 

monthly intervals from November 1993 to November 1994. The diameters of the rhizomes 

decreased slightly during the year of measurement although this difference was not significant 

(Kruskai-Wallis test statistic= 6.11, P>0.05, Figure 6.6). The reason for this decline in median 

size was that the rhizomes of a number of plants divided to form up to five clonal individuals in 

the autumn of their second year (Figure 6.6 & Plate 6.2), each of which was measured 
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Plate 6.1: Rhizome of a six month old L . urens plant, November 1993. Note that new rosettes for Lhe 
following year are already formed and that these can emerge from the rhizome below the roots. 
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Plate 6.2: The rhizome of an eighteen month old L. urens plant, November 1994, showing division into 
two individual plants. 
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separately . There was no correlation between the number of clonal individuals the parent 

d ivided into (ramets) and the number of rosettes per gamet (Speannan's rank correlation 

coefficient = -0.58, P>0.05 ). It had been planned to continue observation of the rhizomes of 

these plan ts for a furth er year. However, too few survived the second winter to continue the 

investigation. The cause of death was unknown. 
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Figure 6 .6 : Rhizomal deve lopment in terms of median di ameter and mean number of d ivisions measured 
from garden plants dug up a t three monthly intervals. 

6.3.2 Reproduction 

Fecundity 

Full data sets were obtained for 6 1 plants, from Andrew's Wood, 35 in 1993 and nineteen in 

1994, and from Redlake, seven in 1994 . The spikes of the remaining plants were separated 

from the rosette by wind, rain or trampling before all the data had been collected. Using the 

combined data collected in 1993 and 1994 from both Andrew's Wood and Red lake, on an 

individual inflorescence, there was no corre lation between the number of capsules per plant and 

the mean number of seeds per capsule or the size of the seeds within the capsules . Neither was 

the number of seeds per capsule corre lated with the ir s ize (Table 6.7). Significant correlations 
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only existed between seed weight and width and between length and depth . The number of 

capsules on a spike, the number of seeds per capsule, the weight and the length of individual 

seeds all gave separate measures (Table 6.7). Hence, these four characters were used to 

investigate variation in fecundity . 

No. of Ave.seeds/ Seed Seed length Seed depth Seed width 
capsules/ capsule weight 

plant 

Ave. seeds/capsule 0.3 1 

Seed weight 0.05 -0.02 

Seed length 0.33 0.00 0.32 

Seed depth 0.21 0.17 0.1 3 0.43* 

Seed width 0.04 -0.24 0.45* 0.27 -0.15 

Means 34 142 18.30Jlg 50 1.96Jlm 296.15Jlm 193 .08Jlm 

• p < 0.05 . 

Table 6.7: Speam1an rank correlntion coefficients for five measures of the fecundity of L. urens applied to 
combined da ta collected from Andrew's Wood in 1993 nnd 1994 , nnd from Redlnke in 1994. 

There was no significant di fference in fecundi ty between 1993 and 1994 or between Andrew's 

Wood and Red lake, when measured in tenns of the number of capsu les per plan t or the length 

and weight of seeds. However, plants in 1993 at Andrew's Wood produced sign ificantly more 

seeds per capsu le than those from either Andrew's Wood or Red lake in I 994 (Table 6 . ~) . With 

so few replicates, the variation in fecundi ty between compartments of Andrew's Wood could not 

be investigated. 

No. of Capsules 

Average seeds/capsu le 

Seed weight 

Seed length 
... p < 0.001 

Test slat. 

0.56 

14.45*** 

1.30 

0.22 

Table 6.8: Kruskni-Wnllis test stntistics for diffe rences in L. ru-errs fecundity between Andrew's Wood in 
1993 and 1994, nnd from Rcdlakc in 1994. 
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There was a developmental hierarchy at both Andrew's Wood and Redlake in 1993-4 with the 

tenninal capsules containing significantly fewer seeds (Figure 6. 7). However, seed collected 

from Andrew's Wood in 1994 from the tenninal capsules (top and distal) were significantly 

lighter (Kruskal-Wall is test statistic = 20.99, P<O.OO 1) and shorter (Knaskal-Wall is test statistic 

= 100.02, P<O.OO l) than those from lower down the spike, whereas seed collected from Red lake 

in the same year from top and distal capsules were heavier (Knaskai-Wallis test statistic = 14.30, 

P<O.OO 1) and longer (Kruskai-Wallis test statistic = 28. 73 , P<O.OO I) than those from lower 

down the spike (Figure 6.8). 
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Figure 6 .7: Median seed number per capsule classed according to position on ll011 cring spike (a) 
Andrew's Wood, 1993, (b) Andrew's Wood, 1994, and (c) Redlakc 1994. 

Of the six morphological charncteristics measured as part of the fecundi ty census. branch 

number was strongly correlated with branch height, spike height and leaf length across both 

years and sites (Table 6.9). Hence, these th ree charac ters could be discarded from fur1her 

analyses, with branch number taken to be representative of all of them. Branch height and leaf 

length were discarded . However, spike height was retained, since it was the only measure of 

inflorescence size recorded in the annual census and its association wi th fecundity was of 

interest in the matrix analys is (section 8.2.1 ). Leaf number was retained in analyses as an 
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independent measure of plant size (Table 6.9). Rosette number was also retained, although it 

was correlated with other characters at Redlake, since these correlations were only marginally 

significant and were not consistent with results from Andrew's Wood (Table 6.9). 
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Figure 6 .8 : Variation in (a) seed weight and (b) length with position on flowering spike (b = bollom of 
main spike, 111 = middle of main spike, I= top o f main spike, p =prox imal position llll brun..:h , u = ui stal 
positio n on brnnch) for Andrew's Wood (A W) and Red lake tRL ) , 1994. Bars show one standard error 

above the mean. 

Rosette Leaf Leaf Spike Branch 
number number length height number 

Leaf number AW93 

AW94 0.26 

RL94 -0.77* 

Leaf length AW93 0.15 

AW94 0.10 0.15 

RL94 0.46 0.59 

Spike heigh t AW93 0. 12 0.64*** 

AW94 0.32 0.01 o.n•• 

RL94 -0.78* 0.54 0.24 

Branch number AW93 0.13 0.63*** 0.66*** 

AW94 0.23 0.35 0.35* 0.63** 

RL94 -0.44 0.60 0.80* 0.77* 

Branch height AW93 0.23 0.69*** 0.64** o.ss••• 
AW94 0.35 0.03 0.29 0.64** 0.76*** 

RL94 -0.70* 0.61 0.25 0.78* 0.80* 
• p < 0.05, .. p < 0.0 1, ... p < 0.001. 

Table 6.9: Spearman rank correlation coefficients for six measures of the morphology of L. w·ens applied 
to da ta fro m Andrew's Wood, 1993 (AW93), and 1994 (AW94) and from Redlake, 1994 (RL94). 
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The vegetative size (rosette number, leaf number) of L. urens was not correlated with the 

number of capsules, the number of seeds nor the weight of the seeds the plant produced . There 

were significant correlations between fecundity and plant morphology at Andrew's Wood and 

Redlake but these were not consistent across the two sites. At Andrew's Wood, a taller, more 

branched spike produced both more capsules and more seeds in those capsules for both years, 

whereas , at Redlake in 1994, inflorescence size was not related to capsu le or seed number 

(Table 6. 1 0). Seed length was the only measure of fecundity to be significantly correlated with 

plant morphology at Redlake, but seed length was not correlated with plant morphology at 

Andrew's Wood (Table 6.1 0). Seed weight was not correlated with plant morphology at either 

Andrew's Wood or Redlake in 1994. 

Plants in their first year were no less fecund than o lder plants (Table 6 .11 ). However, age may 

be a weak predictor of seed length, si nce, that year's seedlings tended to produce fewer rosettes 

than well established plants (Table 6. 11 ). 

Rosette 
number 

Number of capsules AW93 -0.23 

AW94 0.40 

RL94 -0.69 

Average seeds/capsule AW93 0.33 

AW94 0. 12 

RL94 -0.54 

Seed weigh t AW94 -0.05 

RL94 0.17 

Seed length AW94 0.03 

RL94 -0.45*** 
* p < 0.05 , ** p < 0.01, *** p < 0.001. 

Leaf 
number 

0.24 

0.94 

-0.01 

0.35 

-0. 13 

0.04 

0.03 

0.5 1*** 

Spike 
height 

0.36* 

0.73* 

0.59 

0.33 

0.38 

0.05 

-0.01 

-0.10 

-1.21*** 

0.37*** 

Branch 
number 

0.5 1** 

0.80*** 

0.55 

0.42* 

0.59** 

0.48 

-0.04 

-0. 15 

0 .0 I 

0.14*** 

Table 6 .10: Spearman rank correlation coefficients for four measurements of the morphology o l' L. w ·ens 

plants against four measurements of fecundi ty at Andrew's Wood, 1993 and 1994 and Redlake , 1994 . 
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z 
No. of capsules -0.48 

Ave. seeds/capsule -0.30 

Rosette number -2. 15* 

Leaf number - 1.91 

Leaf length -0.54 

Spike height 1.33 

Branch number 1.58 

* p < 0.05 

Table 6.11 : Two sample comparison, Mann-Whitney U test stati stics (Z) showing differences in two 
measures of fecundity and five measures of plant morphology between old and young individuals at 
Andrew's Wood, 1993 and 1994, and Red lake, 1994. 

Flowering llhcnology 

At Andrew's Wood in 1994, L. w·ens began to extend flowering spikes on May 16 and the first 

flower opened on July 11. Of the 34 census plants which flowered that year, all ( I 00%) 

extended spikes in May and twenty-s ix (76%) began flowering in the month of July. There was 

no significant correlation between the timing o f e ither spike extension or flowering and plant 

size (Table 6.12). 

Tim e of spike extension 

Time of first flowering 

Rosette number 

0.08 

-0.04 

Leaf length Spike height 

-0.13 

-0.20 -0.30 

Table 6 .12 : Spearman rank correlation coc llicicnts or time or spike cxtcllS illll anJ first !lull cnng. \II th Sl/.l' 

at that time for plants at And rew's Wood, 1994 . ?>0.05 . 

Pollination 

L. w·ens can self-poll inate successfully. There was no significant difference in the fecundity of 

plants swathed in fleece compare to controls (Mann-Whitncy U, test statistic Z = 0.58 , ?>0.05 

for seed numbers per capsule and 0.53 , ?>0.05 for capsule numbers per plant). A similar 

number of capsules per plant (Table 6.13) verified that plants of the three treatments had been 

kept under equivalent conditions. The number of seeds per capsule was significantly lower for 
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isolated plants than for those which had been fertilized manually (median seeds per capsule, 

crossed (C)= 33, selfed (S) = 20, isolated (I)= 0) (Kruskai-Wallis test statistic = 42.16, 

P<O.OOl) but there was no significant difference between crossed and self-fertilized plants 

(Kruskal-Wallis test statistic= 0.84, P>0.05). There was very little difference in the number of 

capsules or in the seed dimensions of self-fertilized, crossed or isolated plants (Table 6.13 ). 

Seed which had been cross-fertilized was shorter, deeper and wider than selfed and isolated seed 

(Figure 6.9a) and, although these differences were not significant (Table 6.13), as a result, 

crossed seed was significantly heavier than selfed and isolated seed (Table 6.13 & Figure 6.9b ). 

This difference in weight did not affect seed viability, which was not different between 

treatments (Figure 6.1 0). 

MS F 

No. of capsules 3743.54 0.12 

Seed weight 0.17 8.95*** 

Seed length 266 1.90 3.00 

Seed depth 667.00 1.09 

Seed width 3 133.96 2.35 

*** P<O.OOI 

Table 6. 13 : Five one-way ANOVAs, each with two degrees of freedom , showing difference in fecundity 
between crossed, se lfed and isola ted plants of L. w·ens. Mean squares tMS) and F -ratios are indicated. 
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Figure 6.9: (a) Size and (b) weight of seeds from differe nt "po llination" treatments tC = crosst!d, S = 
selfed, I = isolated). Bars show one standard error either side of the mean. 
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Figure 6 . 10 : Ge rmination ra te of L. 111·ens seed fert ilized under three trea tments (C = crossed, S = sdfed, I 
= isolated) incubated at 29°C for thirty days. 

6.3.3 Comparison of the plants perfomzance in terms of vegetative and sexual reproduction 

There was no variation in weighting between vegetative and reproductive structures of L. za·ens 

with grazing treatment in 1995, four years since the imposition of management. The ungrazed 

quadrats of compartment D had both the largest median rosette number and largest mean spike 
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height and Redlake followed second in both characteristics (Table 6.14). 

D(ug) 

Red lake 

D(g), C and AS 

Median rosette number 

3 

2 

Mean spike height 

61 

53 

36 - 44 

Table 6. 14: Comparison of vegetative and sexual reproductive characters for plants at Redlake and within 
Andrew's Wood in compartments D (grazed (g) and ungrazed (ug)), C and A8. 

6.3.4 The effects of environmental variation 011 adult demography 

The effects of he1iJivores 

There were no significant differences between defoliation treatment in term s of rosette number 

in July 1995 (Table 6.15 & Figure 6.11 a) Defoliation exerted a significant effect on the leaf 

length and spike height of plants (Table 6.15). However, the difference was only manifes ted 

when the smallest plan ts ( I rosette) were clipped down to the 10 nun level (Figure 6.11b & c). 

Large plants (3- 12 rosettes) and those clipped to the 20 nun level showed little variation in leaf 

length and spike height from contro ls (Figure 6.11 b & c). 

Rosette number 

Leaf length 

Spike he ight 

d.f. 

2 

5 

5 

MS F 

7.9 1 0.90 

1190.74 12.31*** 

675 .03 5.03*** 

Table 6.15: Results of three one-way ANOVAs on the effects of experimentally controlled spr ing 
defoliation on summer rosette number, leaf length and spike height. Degrees of freedom (d.f), mean 
squares (MS) and J7 -ra tios arc indicated. 
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Figure 6 .11 : Effect of two levels of spring defoliation on plants of two size categories (small and large) 
(a) rosette number, (b) leaf length and (c) sp ike he ight in following summer. Bars show one standard 
error either side of the mean. 

The effects of the light environment 

The photosynthetic rate (mg C02 cm·2 h"1
) was ascertained using IRGA data in the following 

equation: 

[defl ection (pp m) I[ flow rate(m m·')J( 44 )(60 000) 
( I 000 000)(22.4)[1eaf area(cm)] 

A monomolecular curve was fou nd to give best fi t to data (Causton & Dale, 1990). The light 

compensation point (irradiance at which photosynthesis j ust balances respiration) occurred at a 

low photon Dux density and there was little variation in the photosynthetic rate between the firs t 

three light levels (1-20 11m photons m·2 s· ') (Causton, personal comm unication)(Figure 6. 12). 

There was a difference in light quality between Redlake, Andrew's Wood and the com partm ents 

wi th in Andrew's Wood (Figure 6.13). In the grazed areas of compartments C and D. Andrc\\"'s 

Wood, the mean red to far red ratio was always above 0.70 in both summer and winter, 1993 

and 1994. There was more seasonal variation in the ungrazed areas, although light quality was 

similar in the winter. In summer, quality in ungrazed areas of compartments C and D and that 

of A8 and Redlake fe ll from unshaded (> 1.00) to around 0.50-0.60 (Figure 6. 13). The quality 

of the light environment was significantly correlated with the height of the surrounding sward 
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(Table 6.16). 
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Figure 6. 12: Variation in the photosynthetic rate of L. urens plants under six light intensities. Bars show 
one standard error either side of the mean. 

Year compartment correlation 
coefficient 

1993 C(g) -0. 14 

C(ug) -0.72*** 

D(g) -0.48*** 

D(ug) -0.70*** 

A8 -0.56*** 

1994 Red lake -0.70*** 

C(g) -0.40** 

C(ug) -0.7 1*** 

D(g) -0.57*** 

D(ug) -0.52··· 

A8 -0.48*** 

Table 6.16: Spearman rank correlation coeffic ients of r:fr light reading and sward he ight within Andrew's 

Wood in compartments C and D (grazed (g) and ungrazed (ug)), nnd A8, 1993 and 1994 and at Redlake, 
1994. 
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6.4 Discussion 

6.4.1 Growth and Longcl'ity 

The survil'al of L. urens after gennination is very low in Britain. Thus, the flux of individual 

plants into and out of sub-populations is substantial in some sections of Andrew's Wood. 

Seedling survival is profoundly affected by season but the majority only survive for very short 

periods (section 5.3.1) and therefore they have little impact upon population processes. L. urens 

is a relatively long-lived perennial: of plants present at the end of the fourth annual census, 63% 

had been there initially, which was very similar to the retention of Primula scolica at 60% 

(Bullard et al., 1987). Demographic studies have shown the populations of other rare perennial 

herbs to be even more static: 90% of Peucedmmm palustre individuals remained over a period 

similar to this study (Meredith, 1978) and 75% of Spirmllhes spiralis (Wells, 1981). 

The counts of flowering spikes undertaken by the friends of Andrew's Wood and the Comwall 

Wildlife Trust give a useful overview of the long-term trends in population size. The flux in 

spike counts closely matched the tumover of censused plants at Redlake 1992-1995. Both 

showed the population to be declining rapidly (Figures 6.1 and 6.3 ). The 40% increase in the 

number of spikes 1993-4 at Andrew's Wood (Figure 6.1) was, however, not a reflection of the 

change in the number of census individuals (Figure 6.3) nnd therefore must hm·c been the result 

of an increase in the median number of spikes per plant at the reserve that year. Although it is 

necessary to be aware of the limitntions of such data (section 3.3.1), the counts show the 

populations to be fluctuating widely, which is of interest for two rensons. First, such 

stochasticity increases the vulnerability of a population to extinction (Shaffer, 1981 ). Second, 

four years is a vcr)' short period on the time scale of these fluctuations and thus the 

demographic behaviour observed over the four-year census was likely to be specific to the 

populations during a particular part of their cycle, for example, recovery, decline or plateau 

(Law, 1981). 

The lack of synchrony between population size at Rcdlakc and Andrew's Wood and even 
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between the constituent parts of the Andrew's Wood population, despite similar habitats and 

associated communities (section 2.5.1) suggests that the fluctuations may be a result of major 

management events. This hypothesis is supported by the implementation of recent management 

that has been well recorded. The population in compartment C exhibited a pronounced response 

to scalloping from the first year it began in 1992. A lack of such favourable intrusion at 

Redlake has seen numbers fall dramatically since 19S6, when a large scale scrub clearance was 

last undertaken. 

Within compartment D of Andrew's Wood, the ungrazed quadrats supported more plants per m 2 

than the grazed areas. There was, however, greater variation between compartments than 

between grazing treatments. Compartments D and AS had much larger numbers of plants than 

C. There were so few plants in the quadrats of compartment C, that they were of little use in 

the grazing comparisons. All plants within the ungrazcd quadrats of compartment C died during 

the census and very few remained in the grazed areas. Plants at Redlakc (S6%) and in the 

ungrazcd quadrats of Andrew's Wood (65%) showed better chances of survival than the grazed 

quadrats of Andrew's Wood (29%). These lower death rates meant that initially the ungrazed 

areas had a higher density of plants but this density would not have been maintained. The 

proportion of emergence in the quadrats was falling and had reached zero after four years as a 

result of the very low gennination and establishment success of L. urens in a closed sward 

(section 4.4 & 5.4). 

At Red lake, the increase in median rosette number between 1993 and 1994 was due to the loss 

of a large nu m bcr of plants with 1-2 rosettes when the ponies were grazing that year, rather than 

the result of individual growth. In contrast, plants in the ungrazed quadrats of D grew larger, 

both in tenus of vegetative structures and inflorescence. Large plants arc usually better 

equipped to survive and arc more fecund (Ciauss & Aarssen, 1994). The median rosette number 

was kept low in AS by high emergence but there were many large plants. By comparison, the 

proportion of plants with four or five rosettes in the grazed area of compartment D was lower 
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than any of the other quadrats: plants in grazed quadrats did not reach such a large size as those 

in quadrats which were not grazed. 

The growth of individuals in the ungrazed quadrats of Andrew's Wood indicated that L. urens 

must be tolerant of the crowded, ungrazed community. In particular, the red to far-red ratios 

reaching the basal rosette leaves of L. w-ens in these ungrazed quadrats during the summer 

months (June-September) were often as low as 0.50 or 0.60. Further support was offered from 

the IRGA results with the low light compensation point, little variation in photosynthetic rate 

between I and 20 11m photons m·'s" 1 and low photosynthetic rate even under bright light, which 

together indicated L. urens to be a shade tolerance species (Salisbury & Ross, 1985). The 

results were more similar to the woodland Veronica species, V. chamaed1ys and V. montana 

than V. officina/is, that is restricted to grassland habitat (Causton & Dale, 1990). 

In ungrazed quadrats of Andrew's Wood, increasing rosette number meant improved survival 

chances. This relationship between size and survival was not as strong in the grazed quadrats, 

which suggested the input of an indiscriminate force. Defoliation only affected the very 

smallest plants when clipped to the I 0 nun level. This defoliation was more extreme than 

grazing as tissue was only removed from L. urens and not from its neighbouring sward, which 

exaggerates the severity of the effects (Hendrix, 1988). Spring was also the most deleterious 

time for the defoliation, since L. rtrens depends on stored photosynthate for precocious early 

growth and in spring food reserves have been depleted (Wells, 1969: Staller & Serrao, 1983 ). 

The major differences in adult demography seen between the grazed and ungrazed areas of 

compartment D must have been the result of physical damage, other than defoliation, which was 

incurred through the physical presence of the animal. Grazing animals frequently sit, lie, 

scratch and paw on the pasture in addition to walking, running and jumping on it (Spedding, 

1971). These activities may damage the plants, usually in a patchy manner, but are not 

generally of major significance. Treading, however, can certainly influence both growth and 
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botanical composition of grassland through disturbance (Edmond, 1966, cited in Spedding, 

1971 ). The degree of disturbance varies with the structure of the sward, the nature of the soil, 

and some plant species are more susceptible to the direct physical effect of poaching than others 

(Crawford & Liddle, 1977). Hooves not only possess sharp cutting edges but they carry the 

weight of the animal on a very small surface area. This results in surprisingly high downwards 

pressures when ungulates walk e.g. Jersey cattle 1280-1460 g cm·3
, South Devon cattle 1430-

1600 cm g·3 (Kubo & lsobes, 1975). L. ru-ens appeared to be a sensitive species and further 

support for this was offered from incidental observations at Redlake. Many established plants 

were lost during the winter graze of 1993-4, but very few plants were seen to have been 

defoliated. This avoidance was more likely to be due to the small vegetative size of over­

wintering plants rather than active preferential grazing. Cattle have little fine-scale control in 

plant selection from an intimately mixed sward (Harper, 1977) 

Studies of rhizome development have shown that the dimensions of the rhizome cannot be 

predicted from the plants age or vegetative size in L. urens. The dimensions of individual 

rhizomes are continually changing as the plants may divide beneath ground into a number of 

physiologically independent modules. This splitting protects against disease, but prevents 

resource sharing (Harper, 1978). There was no correlation between the number of rosettes and 

the number of divisions in the rhizome of L. urens. Hence, in the field, there was a problem 

with using rosette number as a measure of plant size, since the meaning of rosette number was 

not fully understood. It was not possible to predict the number of individuals that made up the 

local clusters of rosettes and it was necessal)' to treat them as one plant. The number of 

divisions in the rhizome may increase with age: there was an increase in the number of 

divisions between plants in their first and second year. However, the experiment was not 

continued and results were inconclusive. 
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6.4.2 Reproduction 

L. m-ens produces a large amount of minute seed. The development of most angiospenu seeds 

can be divided into two stages: enlargement and filling (Bewley & Black, 1994). Enlargement 

is the result of cell division, followed by an influx of water which drives cell extension. Filling 

occurs as the reserves are deposited within the endospenn. The seeds of L. urens are very small 

and therefore contain few reserves (Bryant, 1985 ). Length and depth were fixed at an early 

stage of development (personal observation) and seeds fonned flat discs. Presumably this fom1 

coincided with embryonic development, as later seeds swelled to their final weight and width. 

Seed weight was the most constant of all the reproductive measures taken of L. urens. Instead, 

variation in maternal resource status was reflected in seed number which was consistent with 

findings for Lobelia cardinalis (Devlin, 1988) and a large number of weedy species (Harper & 

Gajic, 1961; Pahnblad, 1968; but see Harper et al., 1970 for a review). Seed size, within a 

species, is genetically controlled to a very narrow optimum (Harper et al., 1970). Seed weight is 

often correlated with seedling weight (Gross, 1984; Zhang & Maun, 1993; Gonzalez, 1993) and 

establishment success (Cidcciyan & Malloch, 1982; Morse & Schmill, 1985; Houssard & 

Escarre, 1991 ). Therefore, fewer normal sized offspring have a better chance of sun·ival than 

the combined prospects of a large number of 'runts' (Lack, 1954; Cody, 1966). These 

advantages are offset by the fact that larger seeds do not disperse as far (Morse & Schm ill, 

1985; Willson, 1992; Thompson, 1993b) and may be more apparent and valuable to herbivores 

(Janzen, 1969; Silvertown, 1982; Crawley, 1983; Fenncr, 1985; Louda, 1989) than small seeds. 

Variation in seed number was accommodated through change in number of seeds per capsule 

rather than through number of capsules per plant. In some species, the number of seeds in a 

capsule is controlled through nectar production (Pieasants, 1983; Devlin et al., 1987), whereas in 

others, seed abortion plays a major role (Bawa & Webb, 1984; Marshall & Ellstrand, 1985). 

The similar fecundity of plants at Red lake and Andrew's Wood over two years is of interest. 

Redlake and Andrcw's Wood were grazed at very different intensities over the study period and 

the relative importance of fecundity over vegetative growth has been seen to increase with 
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grazing intensity (Murphy, 1968; Schaffer, 1974). However, this study predicts little difference 

in the fecundity of L. urens with grazing treatment. 

L. urens shows indetenn in ate reproductive development and in both 1993 and 1994 at Andrew's 

Wood, the lower section of the inflorescence, which was flowering in July, was of primary 

importance in tenus of seed production. Capsules produced later in the year contained fewer, 

smaller seeds. These later seeds may not have had sufficient time to reach maturity or their 

flowers may have functioned primarily as pollen donors (Ehren, 1991 ). At Red lake, however, 

although the tenninal capsules contained fewer seeds, these were larger than those produced 

earlier in the year. Variation in seed size and morphology with position on mother plant, and 

even with position in fruit has been seen in a great number of species including Lobelia 

cm·dinalis (Devlin, 1989) (see Guttennan, 1992 for a review) and is of interest, although in this 

study it was not important to the overall fecundity of the two populations. The timing of 

flowering at Redlake and Andrew's Wood was synchronous (personal observation), and it was 

unlikely, therefore, that the difference was a result of climatic variation. Fertilization may have 

provided the variation, as cross-pollinated seed was longer than selfed seed. The vegetation at 

Redlake, being denser than Andrew's Wood, could have restricted pollinators and thus the lower 

seed would be predominantly self-fertilized. However, were this the case, more empty capsules 

would have been expected, as seen with isolated plants in pollination experiment. Work on 

Eichhomia pcmiculata, which, like L. urens, is a self-compatible entomophilious species with a 

vertical inflorescence, has shown that the behaviour of the pollen vector affects the distribution 

of crossed and selfed seed on the inflorescence. E. paniculata is bee-pollinated and the bees 

foraged upwards on inflorescence which increased in the fraction of self-fertilized seed from 

bottom to top flowers within an inflorescence (BarrcLL et al., 1994). The major pollinating 

species may have varied between Andrew's Wood and Redlake and thus have produced the 

variation in seed size with floral position. Little is known about the pollinating species, but if 

L. urens was visited by a positively geotactic pollinator at Redlakc and by a negatively geotactic 

species at Andrew's Wood, then this would have produced a similar pattern. Flowers at Redlake 
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would have increased chance of cross-fertilization higher on inflorescence and flowers at 

Andrew's Wood, lower on inflorescence. L. urens is not a mass bloomer, only a few flowers 

open on a spike at any one time, but the general distribution of crossed and selfed seeds is 

feasible (Plate 6.3). Alternative hypotheses for this variation in seed size with position on 

inflorescence are possible. First, that the denser vegetation of Redlake reduced heat and light 

which limited seed ripening. Shaded branches of Lindera benzoin, an understory shrub, 

produced lighter seeds than those exposed to full sun (Niesenbaum, I 993) and a reduction in 

yield accompanied the shading of Zea mays L. (Earley e/ al., 1967). Variation in the 

environment with depth in sward might be a possible explanation for difference in seed weight 

but not length. Second, seasonal environmental stress during the development of these early 

seeds could have temporally restricted resources available for seed investment. Interpretation 

must be carried out with caution, as Redlake data are from one year's seed production. 

The analyses of the variation and correlations of fecundity with plant morphology re,·ealed a 

number of relationships, many of which were not consistent between Andrew's Wood and 

Redlake, or between data collected in 1993 and 1994. The fecundity characters that were most 

plastic in response to resource status, as opposed to those that were invariably constant, were 

not pre-established and, therefore, a large number of correlations were undertaken. The 

derivation of a delinative result was difficult using correlation techniques as, lirstly, correlation 

does not imply causation and, secondly, a large number of data sets were analysed for 

associations, hence the chance of spurious correlation was high. 

At Andrew's Wood, innorescence size was strongly correlated with capsule number and seed 

number. Larger innorcscence would be expected to yield more capsules and daily innoresccnce 

size, the number of nowers open on a particular day, has been seen to increase seed number 

through pollinator attraction in m any species of various life-fonns from the herbaceous shrubs 

Hybamhus pnifolius (Augspurger, 1980) and Aralia hi.1picla (Thom pson, 1988) to the evergreen 

Metrosideros collina (Carpenter, 1976) and the perennial herbs lpomopsis aggregata (De Jong et 
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al., 1992) and Eichhomia paniculaJa (Barrelt et al., 1994 ). 

Vegetative size in plants reflects maternal resource status and hence is often correlated with 

reproductive output (Aarssen & Clauss, 1992). Therefore, it was surprising that there were no 

correlations between vegetative size and fecundity at Andrew's Wood in either 1993 or 1994. 

This could result from the dividing of the rhizomes, with rosette number representing a measure 

of parental resource status but not a measure of the resource status of individual clones which 

may have split from the parent plant. At Redlake, all of the vegetative morphological characters 

investigated were strongly correlated with seed length and there were no other correlations with 

measures of fecundity. There may be a connection between the proportionately longer seeds of 

the tem1inal capsules and the correlation between large plants and long seeds at Redlake, but 

verification would require a specifically designed study. 

The complex variation and correlations of the seed yield of L. urens at Andrew's Wood over the 

two years show that the reproductive allocation of plant populations can vary over a very small 

spatial and temporal scale. Many studies have shown substantial variation in demographic 

parameters induced by small-scale variation in the environment or merely from one year to the 

next. The reproductive allocation of Plantago coronopus varied with plant density within 

populations (Waite & Hutchings, 1982) and in a 10-year study the rates of clonal growth and 

seed production of the wild daffodil (Narcissus pseudonarcissus), within an ancient woodland in 

Cumbria varied with woodland management (Bark ham, 1980a; b). Mack & Pyke (1983) saw 

little inter-population variation for Bromus tectonun. The major flux in the reproductive 

parameters of all three study populations resulted from annual environmental variation in 

climate, and predator density and variation in reproductive parameters of A risaema lriphyllum, a 

forest perennial, were also seen to vary as a result of year to year environmental variability 

(Bierzyehudek, 1982). Unfortunately, an underlying assumption of many demographic analyses 

is that paran1eters do not vary with time and space and this can lead to mistaken conclusions 

about the demographic status of a species (Moloney, 1988). 
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L. urens is entomophilous (Brightmore, 1968). A loose raceme, small flowers and purple petals 

together suggest that Diptera may be common visitors (Proctor & Yeo, 1973). This was 

confirmed by Brightmore (1968), who found that Syrphidae were particularly common 

pollinators. Microlepidoptera (Swanson, 1991 ), large (Ochlodes verara) and smal l (Thy m elicus 

sylvesrris) skippers (Spalding, personal communication) (Plate 6.3) and Plusw gamma 

(Brightmore, 1968) have also been seen nectaring on L. urens. 

(b) 

Plate 6.3: (a) Ochlodes verata and (b) Thymeltcus sylvestris nectaring on L. urens at Redlake 
(Photographs taken on 10.7.92 by A. Spalding). 

Although the frequency of pollinator visits in unknown, hand pollinated plants produced sunilar 

numbers of seeds to plants in the field in 1994, which indicated that seed production was not 

pollen limited. [solated plants produced few seeds as L. w·ens partially guards against au togam) 

by the temporal separation of pollen and stigma maturity (Brightmore, 1968). There are very 
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few species with hennaphrodite flowers, where it is completely impossible for pollen to reach 

the stigma of the same flower and if insect visits fail, it is usual for at least some self­

pollination to take place (Proctor and Yeo, 1973). Furthennore, structural features do not 

decrease the probability of a flower receiving pollen from another on the same plant. Rather, 

protandry increases the chance of geitonogamy, since it allows fresh pollen to fall from younger 

flowers directly onto those older ones with receptive stigmas below, and this geitonogamy is 

genetically no different from autogamy (Proctor & Y eo, 1973 ). 

L. urens displayed a high level of self-compatibility. Fewer seeds were produced by isolated 

plants, since less pollen was introduced to the stigma but manual self-pollination did not reduce 

seed yield or decrease gcnnination. However, seed was lighter than cross-pollinations. Classic 

studies of pollination presumed that self-compatibility was controlled by a single allele and that 

plants were either capable of self-fertilization or completely resisted it, in other words, seed set 

following self-pollination and fertilization was generally considered to be a demonstration of 

self-compatibility (Weller, 1994 ). As more studies have been undertaken, it has become 

increasingly clear that there are many degrees of self-compatibility (Crowc, 1971: Galen & 

Kevan, 1980). Even if, as seen here, full seed set is achieved upon exclusive self-fertilzation, 

weak self-incompatibility reactions may be present that are only detectable when foreign pollen 

competes with self pollen of its own stigma, a condition defined as cryptic self-incompatibility 

(Bateman, 1956; Seavy & Bawa, 19!16; Bertin & Sullivan, 198!1). Besides such incompatibility 

phenomena, there are also post-zygotic inbreeding effects of partially self-fertilizing species 

(Charlesworth & Charlesworth, 1987; Barrett, 1988). A much more useful insight into the self­

compatibility of L. urens may have been gained had self-fertilized seedlings been grown on to 

observe for depression of establishment and growth. If self-fertilization occurs over several 

generations, the individuals arising arc homozygous and natural selection is not effective (Lewis, 

1979) and, in theory, less critical levels of self-fertilization can lead to inbreeding depression 

(Charlesworth & Charlesworth, 198 7). Self-fertilization could explain the poor establishment 

success of L. w·ens seedlings at Redlake and Andrew's Wood. 
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Herbivore exclusion at Andrew's Wood provided a very shady habitat and limited the 

recruitment of L. urens from seed (sections 4.4 & 5.4) but it afforded the best environment for 

large, robust and fecund adult plants. Over the four years of census, the ungrazed constituents 

of the population at Andrcw's Wood showed a regressive structure with little emergence and a 

high proportion of large plants. Although grazing through until spring at Redlake created large 

gaps in the vegetation (section 4.3.2 & Figure 4.1 0) that facilitated emergence (section 4.3.2 & 

Figure 4.8), none of the seedlings survived more than two months (section 5.3.1). This was 

partly a result of the timing of their emergence, but the short growing season was accentuated 

by the low summer light quality. The light quality at Redlake following the graze was still as 

low as the ungrazed areas of Andrew's Wood (Figure 6.13), probably because the removal of 

the Belula scrub was ineffective (personal observation). The establishment of seedlings was 

most successful in the winter grazed areas of Andrew's Wood. The presence of herbivores feet 

are essential for the recruitment of L. urens but the same presence limits the growth and 

survival of the adult plants. Irrespective of grazing treatment, at both Andrew's Wood and 

Redlake, L. w·ens was very fecund. 
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SEVEN 

Seed ecology 

7.1 Introduction 

The potential for recruitment from seed depends upon the efficiency of dispersal and the 

ensuing fate of the seeds. Poor dispersal, excessive losses to predators or pathogens and the 

paucity of successful emergence from the seed bank may all limit the population density of L. 

urens. 

The dispersal of seed may serve several functions . Efficient local dispersal to "safe-sites" 

avoids competition between seed and parent (Harper, 1977) or inbreeding (MacDonald & Smith, 

1990) and provides an escape from density or distance-responsive seed predators (Janzen, 1969), 

pathogens (Augsperger & Killey, 1984) and parasites (Willson, 1992). Failure to reach such 

'safe-sites' may restrict the gennination and establishment of seedlings (Grubb, 1977; Harper, 

1977). Long-range dispersal is required for the colonisation of new areas and thus is becoming 

increasingly important in the face of severe habitat fragmentation. The dispersal characteristics 

of a species give an indication of the degree of habitat permanence and disturbance to which it 

is most suited (Hodgson & Grime, 1990). Long-range dispersal is of particular importance to 

early successional species for reaching the sporadically opening patches or disturbed habitats 

they require, whereas dispersal efficiency is less critical in more stable communities (Ridley, 

1930; Howe & Smallwood, 1982; Sacchi, 1987). Clearly, seed dispersal is a critical stage in the 

life-history of plants and the study of plant population dynamics (Harper, 1977; Sacchi, 1987; 

Thom pson, 1993b ). 

The fates which may befall seed, once it lands on the soil, can be categorized broadly as: to 

genninate, be donuant, fonn a seed bank, or die (following Harper, 1977). The phenology of 
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dispersal has a profound effect on its efficiency and the ensuing fate of the seeds. Ideally, seed 

maturation and dispersal would be timed to match availability of dispersal agents and good 

genu ination conditions, but these ideals are constrained by selection for flowering time as well 

as period required for fruit maturation (Willson, 1992). 

Most plants produce an enomwus amount of seed but exhibit a paucity of emergent seedlings 

(Sarukhan, 1974; Sagar & Mortimer, 1976; Watkinson, 1978; Crawley, 1992). This leaves the 

fate of the majority of seeds undetennined. Cavers (1983) suggests that the highest rates of 

mortality for many species occur at the seed stage. The factors responsible for the depletion of 

seed from the soil are not well understood (Warr et ol., 1992). In the absence of other evidence, 

the fate of most seed in the soil is assumed to involve degradation by microbial decomposers or 

by seed-ingesting soil fauna, although viability may have been lost earlier through molecular 

oxidative processes (Hutchings, 1986; Hendry, 1993a). The chcmistf)' of seeds plays an 

important role in their differential fate (Baker, 1989). Research carried out on the chemical 

defences of seed against herbivores and soil micro-organisms has shown that many seeds 

contain protective chemicals in their coats (Forrest & Bendall, 1969; Warr et o/., 1992; Hendry, 

1993b; Hen dry et ol., 1994 ). 

A seed bank is the reservoir of buried seeds in the soil (Harper & White, 1971 ). Viable seeds 

falling from the parent plant will enter the seed bank if they do not either genninate on the 

surface or succumb to the attack of predators or pathogens (Harper, 1977). Incorporation into 

the soil occurs slowly by burial beneath litter (Oosting & Humphreys, 1940) and by integration 

during natural soil movement aided by water percolation (Hutchings, 1986), or more rapidly 

because of the activities of soil animals (McRill & Sagar, 1973; McRill, 1974; Harper, 1977). 

Once in the soil, seed varies in its persistence (Thompson & Grime, 1979; Thompson, 1993a). 

The seed of some species is transient, lasting only a year or so, whereas other very persistent 

seed is able to remain in the soil for an almost infinite number of years, awaiting suitable 

environmental conditions (Thompson & Grime, 1979). 
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Seed banks have been the object of much research which has been extensively reviewed (e.g. 

Kropac, 1966; Harper, 1977; Grime, 1979; Cook, 1980; Roberts, 1981; Vyvey, 1988; 1989; 

Leek et al., 1989; Warr et al., 1993). Any attempt to discuss the population dynamics of an 

individual species in the context of its conservation must include quantified studies of the seed 

bank (Parone & Reader, 1982), since the bank represents a demographic reserve of propagules 

which dampens between year fluctuation in population size, thereby reducing the risk of 

stochastic extinction (Sarukhan, 1974; Baskin & Baskin, 1978; Brown & Oosterhuis, 1981; 

Harper, 1981; MacDonald & Watkinson, 1981; Leek et al., 1989; Levin, 1990; Baskin & 

Baskin, 1991; Given, 1994). A long-lived soil seed bank also embodies a reserve of genetic 

variability for a population and hence increases the range of genotypes on which natural 

selection can act (Gottlieb, 1974; Harper, 1977; Baskin & Baskin, 1978; Lande & 

Barrowclough, 1987; Baker, 1989; McGraw, 1993). Such diversity could have important 

evolutionary consequences (Levin & Wilson, 1978; Leek et al., 1989), particularly if the adult 

population is severely depleted, when diversity may provide a buffer against genetic drift and 

bottle-necking (Levin & Wilson, 1978; Levin, 1990). In larger populations, however, this 

genetic memory may be detrimental to population growth dynamics by adding material 

maladapted to the present environment (Levin & Wilson, 1978; Bennington et al., 1991 ). A 

seed bank also offers a second chance, when the above ground population goes extinct (Moore, 

1983): populations which have been considered extinct can still be recovered from seed which 

has remained donnan! (e.g. Waiters, 1974; Rowell et al., 1982; Rowell, 1984). 

Seed from L. urens is \'Cl)' small and does not possess any specialised morphological attributes 

for wind or animal dispersal (Plate 1.1 a). The character which has been used most frequently to 

quantify the dispersability of such seed is their tenninal velocity. Slow-falling seed shows 

improved dispersal through a longer exposure to the wind (Sheldon & Burrows, 1973; Sheldon 

& Lawerence, 1973; Augsperger, 1986; Green & Johnson, 1990; Schulz et al., 1990: Andersen, 

1991; Thompson, 1993b). Tenninal velocity, chosen for its ease of detennination in the 

laboratory, is simply the rate of fall of seed under negligible air currents. The method allows 
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the height seed is released to be altered and a greater height is known to improve dispersability 

(Sheldon & Burrows, 1973; Burrows, 1975). Results obtained using this method must be 

treated with caution. Seed will rarely be dispersed in still air conditions (Hutchings, 1986) and 

may demand a specific minimum wind speed for release (e.g. Meredith, 1978). Indeed, given 

variable wind speed, the tenninal velocity of seed is not correlated with the final distance the 

seed attains (Morse & Schmitt, 1985). Moreover, the wind dispersal distances achieved by 

seeds are also influenced by vegetation obstruction and topography. Secondary transport of 

seeds along the soil surface must also be taken into account (Matlack, 1989). Seeds can be 

moved across the soil by both wind and water but the most efficient vectors are animals. For 

example, ants can move individual seeds up to 37 cm per day (Mortimer, 1974). 

Previous workers have employed two field methods which provide a fuller, more accurnte 

picture of seed dispersal than purely a measure of tenninal velocity. The first, entrapment of 

seed as it reaches the soil (e.g. Levin & Kcrster, 1969; Wemer, 1975; Meredith, 1978; Marlette 

& Andersen, 1986), includes the obstruction by vegetation as a factor influencing dispersal 

distance, but gives a misleading picture since the secondary dispersal is restricted. The second 

method follows individual seeds from source to landing (e.g. Watt, 1919; Yocom, 1968; Levin 

& Kerster, 1969; Plait, 1975; Morse and Schmitt, 1985) and this tracking can be assisted with 

the use of dyes or radioactive traces (e.g. Wemer, 1975; Watkinson, 1978). This provides the 

most complete picture of dispersal efficiency but such studies only have a reasonable recovery 

level if the majority of the dispersal distances are shon and the technique is not, therefore, 

suitable for studies of long-range dispersal. A combination of seed tracking in the field and a 

laboratory-based dispersability study provides the fullest results of short-range dispersal ability 

(e.g. Morse and Schmitt, 1985). With regards to local dispersal, however, it is generally felt 

that most seeds fall in leptokurtic distributions in relation to the parent (Sheldon & Burrows, 

1973; Levin and Kerster, 1974; Wemer, 1975; Marchand & Roach, 1980; Hutchings, 1986; 

Suzuki & Kohyama, 1991; Will son, 1992) with the majority moving only short distances, within 

I m2
, from the mother plant (Sheldon and Burrows, 1973; Silvertown, 1982; Fischer, 1987). In 
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contrast to the majority of contemporary studies, classic surveys of seed dispersal (Ridley, 1930; 

van der Pijl, 1969) were far more concerned with the rare events of long-distance colonisation 

than quantifying the day-to-day happenings in more nom1al ecological situations. The role of 

animals, particularly birds, in transporting occasional founders to new sites is probably very 

significant (Silvertown, 1982; Schemske et al., 1994). These incidents are very important to 

colonisation but are extremely difficult to quantify. 

The seed of L. 111-ens can be hypothesized as being long-lived and fanning a large bank below 

extant populations. Its small and compact shape is associated with reduced rates of decay 

(Toole & Brown, 1946; Harper et al., 1970; Fenner, 1985; Thompson, 1987; Thompson et al., 

1993). Furlhennore, the acidic, waterlogged habitat characteristic of L. Jll-ens is known to be 

conducive to long seed life (Champness & Morris, 1948; Lewis, 1961; Schafer & Chilcote, 

1970; Hodgson & Grime, 1990). Additional support is provided by historical records: L. w-ens 

reappeared at Yamer Wood NNR, Devon in 1958 after thirty years of absence (section 2.2.1); 

Archibald (1971) reported the possibility that any soil disturbance will lead to resurgence of L. 

w·ens for at least thirty years after the last plant has died: Brightmore (1968) stated that seed 

stored at room temperature remained viable for eight years and viability in the soil would 

certainly be much longer. 

This study of the seed ecology of L. 11rens conccnlraled upon two factors which arc of interest; 

the density of genninable seeds below an extant population and the persistence of seeds in the 

soil. 

7.2 Methods 

7.2.1 The hank of L. urcns seed below an extant site 

Seeds are irregularly clustered within the soil, both in the horizontal and the vertical plane 

(Thompson, 1986; Big wood & lnouye, 1988; Dessaint et al., 1991; Lavorel et al., 1991 ). 
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Workers agree that a large number of soil samples must be collected in order to overcome the 

variation in seed content and to obtain a stable estimate of density (Champness, 1949; 

Rabotnov, 1958; Kropac, 1966; Roberts, 1981; Thompson, 1986; Benoit et al., 1989; Gross, 

1990). Exactly how many samples are required is under debate and ranges from 200 

(Champness, 1949) to 15 (Gross, 1990). In this study, only 15 samples were taken since 

enumerating the seed from such a large number of samples is labour, time- and space-intensive 

(Thompson, 1993a). Although more samples would be needed to ensure precise estimates of 

seed density, sufficient were taken to test the hypothesis that L. urens fonns a large seed bank. 

The time of year at which samples arc taken can have a marked effect on results. In this survey 

samples were collected on March 8 1993, since spring sampling allows seeds to be naturally 

chilled ovenvinter, thus reducing error through donnancy (Raynal & Bazzaz, 1973; Leek & 

Graveline, 1979) and also catching seed before the gennination peak in May-July (Warr et al., 

1993). 

Sample points were located at random with the southwest comer of compartment D of Andrew's 

Wood, an area densely occupied by adults. A bulb planter (see Warr, 1991) was used to 

remove soil cores of 6 cm diameter and I 0 cm depth. Soil was washed from the tool between 

taking each sample to minimise transferal of L. w·ens seeds. Each core was subsequently 

divided into two sections, representing depths of 0-5 cm and :i-1 0 cm, giving a total of 30 

samples representing an area of 424 cm 2 

There are two widely adopted techniques for estimating the composition of seed banks. The 

most suitable to study the bank of L. urens seed involved glasshouse incubation of the soil 

followed by identification and enumeration of emergent seedlings to dctennine the density of 

genninable seeds in that sample (Brenchley & Warington, 1930; Champness, 1949; Major & 

Pyott, 1966 ). The alterative technique requires seeds to be isolated from the other material by 

floatation and subsequently, their viability to be tested by staining with tetrazolium salts (e.g. 
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Malone, 1967; Moore, 1972). This method is not suitable for small seed (Roberts, 1981; 

Moore, 1972; Hutchings, 1986). Perhaps the greatest defect of the method chosen results from 

the selective gennination imposed upon seeds in the glasshouse (Major & Pyoll, 1966; Malone, 

1967; McGraw et al., 1991; Brown, 1992; De Villiers et al., 1994). The density estimate may 

be less than the actual density and it is generally accepted that an unknown number of viable 

seeds do not genninate (Thompson & Grime, 1979; Thompson, 1986). 

The soil was broken up and the stones and roots removed with the use of a coarse (I cm) sieve. 

No chilling treatment was applied. The samples were spread out on the seed trays over a layer 

of sand and placed in a glasshouse. The glasshouse provided thennostatically controlled 

minimum heating as a precaution against late frosts and continual watering from below by 

capillary matting linked to a automatic reservoir. A further seed tray containing sterilized 

polling compost was provided as a control to detect any wind dispersed seed, although, in the 

event, none were found. Once gcnnination began, seedlings were identified and removed at 

intervals over a 49 day period (following Thompson & Grime, 1979). With practice and the aid 

of Chancellor (1966), Hanf (1974), and Muller (1978), it became possible to identify virtually 

all seeds at an early stage of development. Unidentified seedlings were transferred into pots and 

grown, where necessary, until flowering. The smnples were stirred on April 5. 28 days after 

commencement, to increase genu ination (Hill & Stevens, 1981: Forcella, 1984 ). A genu in at ion 

pulse occurred after 14 days, few genuinated between 28 and 41 days and genuination was 

negligible after 41 days. It is possible that more seeds may have been discovered if the soil had 

been kept longer (Roberts, 1981; Brown, 1992). The decision to tenn in ate was made, since the 

detection of L. 11rens was the main focus of this trial and emergence of this species had 

occurred solely within the first two weeks of the experiment. 
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Seed density (m-') 

Species 0-5cm 5-lOcm 

Cardamine pratense 71 

Circium a111ensis 142 142 

Circiwn palustre 213 

Lobelia urens 12425 5112 

Lotus uliginosus 71 

Lysomachia nemontm 2983 1491 

Plcmtago lancolata 3555 213 

Pnmella vulgaris 639 42 

Pulicaria dysentrica 1633 71 

R mwculus jlmn uta 284 994 

R mwnculus re pens 71 

Veronica montmw 994 355 

Veronica persica 1349 127 

Table 7.1: The number of genninnblc seeds (per m' of surface area) 111 Andrew's Wood, o-;cm and ;.J 0 
cm soil depths. 

7 .2.2 Tile persistence of L. urcns seell in tile soil 

To date, a method for estimating the longevity of buried seeds by censusing individuals has not 

been devised (Hutchings, 1991 ). It is possible to monitor the emergence of seedlings in an area 

into which the immigration of fresh seed is prevented (e.g. Roberts, 1962; Sarukhan, 1974) but 

such work must, by its nature, be long-tenn (Moore, 1983). The rate of loss of seeds from 

samples sown into sites, or cohorts of seeds have been calculated by spraying the seeds with 

paint or dye, or radioactive labelling (e.g. Watkinson, 1978) but this is not suitable for small 

seed in dense vegetation. A more frequently used technique entails burying fresh seed and 

retrieving samples at intervals e.g. Dr. Seal's experiment (Kivillan & Bandurski, 1981 ). This 

can also be a lengthy process but it does lend itself to adapt ion. Conn ( 1990) monitored the 

annual losses in viability incurred in seeds buried over five years and used this to estimate 

longevity. 
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A definitive way to test the hypothesis that L. urens has a long-lived bank is to sample below 

an extinct population. A suitable site must have held a self-sustaining population for a number 

of years to ensure a bank of seed had accumulated and have been isolated from any fresh seed 

source since the extinction of that population. Yamer Wood NNR, Devon provided the most 

promising option for fulfilling these criteria (section 2.2.1 contains a site history). The site is 

owned and managed by English Nature. L. urens reappeared in 1958-1968 in four locations all 

within a 15 m radius, covering a total nren of I 00 m2
• These locations were nccurately mapped 

at the time and nre identifiable by means of compass bearings from a fixed point post. One 

hundred samples were collected on June 8 1993, 25 from each of the fonner locutions. The 

samples were randomly located and removed using the same method employed previously at the 

extant site. Due to the poor stmcture of the soil, lack of moisture and the large amounts of 

stone and roots present, it was not possible to separate the core into two depths .. Samples were 

bulked together distinguishing between the litter and soil and the four quadrats to give twenty 

aggregate soil samples and eight aggregate litter samples representing a total area of 2827.4 m2
• 

The methods of soil preparation follow that described earlier. The seed trays were placed in a 

polythene tunnel and watered from above at least twice a day, and more frequently when 

necessary. The trial ran for 12 months and was tenninated on June 6 1994. 

No genninable seed was detected in the soil, 25 years after extinction. This is an unexpected 

result, since historical evidence suggests that the seed of L. w·ens persists for longer than 

twenty-five years (Archibald, 1971). The seed bank may have been too small or too highly 

aggregate, as a result of poor dispersal, to be detectable by the sampling method employed. 

7.3 Discussion 

There has not been a fonnal study of the dispersal ability of L. w·ens but existing evidence 

strongly suggests that the seed is adequately dispersed locally to reach suitable safe sites. The 

height of the associated plant communities, averaging 40 cm (Table 2.3) combined with large 
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quantities of Molinia caenllea litter (Table 2.3) may obstruct seed from reaching the soil surface 

(Andersen, 1967; Fowler, 1988). However, the seeds of L. urens are very dispersable in wind, 

simply by virtue of their small size (see Willson, 1992; Thompson, 1993b) and are held at least 

as high as the surrounding sward thus further facilitating dispersal. Furthermore, lying dormant 

in the soil facilitates the seeds dispersal in time and is often a substitute for dispersal in space 

(Harper et al., 1970). 

Today, L. urens is restricted to six locations along the south coast of Britain (section 2.2), 

although there are many other very similar possible locations in the region (section 2.6). The 

lack of obvious structural modifications to aid dispersal may hinder colonisation of these 

disjunct but potentially suitable habitats. Indeed, the habitats of L. urens are bordered by 

woodland (section 2.5), which may interrupt any long-range dispersal. The rarity of such events 

deems their study impossible; Little Bradley was the only recorded successful colonisation of a 

new site in the last 50 years. 

The dispersal of L. urens seed in Britain is ill-timed. The erect capsule dehisces by two apical 

pores throwing the seeds out a short distance (Brightmore, 1968). Often, however, this 

autochory is very inefficient, especially in the absence of dry weather, and a large number of 

seeds remain in the capsule for months until disintegration of the thin parts of the wall permits 

their dispersal (Brightmore, 1968). Alternatively, the whole flowering spike falls to the ground 

with many of its capsules still intact (personal observation). In Portugal, L. urens sets seed in 

early June (Daniels, personal communication) but in Britain, restricted by a shorter growing 

season, seeds are not ripe until early September. By this time, it is often too late for the fine 

weather necessary to promote dehiscence and also too late for those seeds which genninate 

immediately to establish (section 5.3.1). Poor dispersal is not a problem in itself as the 

enormous seed bank dispenses with the requirement for effective local dispersal. 

Over the two-year detailed demographic study (section 3.3.2), although L. urens produced an 
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enonnous amount of seed, few emerge as seedlings (section 4.3.2). A great many studies have 

documented the impact of predation on plant fecundity (see Silvertown, 1982; Louda, 1989 and 

Crawley, 1992 for a review). These show that the most vulnerable seeds are large, conspicuous, 

high energy packages (Louda, 1989) and that active predation of such small seed as that of L. 

w-ens is unlikely (Janzen, 1969; Silvertown, 1982; Crawley, 1983; Fenner, 1985). Furthennore, 

should accidental consumption by indiscriminate grazers occur, small seed can pass through the 

digestive system and still remain viable (Stainforth & Cavers, 1977). Seed which does enter the 

bank may succumb to pathogen attack. The chemistry of the seed coat of L. w-ens has not been 

investigated, but persistent seeds usually do not have chemical defences (Janzen, 1969). Many 

L. w-ens seeds that fall to the ground still encapsulated may have an increased incidence of 

fungal attack from the multitude of organisms already living on the capsule but the number of 

seeds which enter the bank indicates that this is not a significant fate. 

The estimates of the size of the seed bank of L. urens arc of a staggering magnitude (Table 

7.1 ). lt was four times greater than any other species in the samples and over 17 times greater 

than the most common species found by Thompson ( 1986) below his acidic grassland in Devon 

(Danthonia decumbens with 703 seeds m·'). The quantity of L. urens is more comparable with 

Chippendale & Milton's ( 1934) estimate of Col/una vulgaris beneath a hill pasture dominated by 

Nardus stricto in Wales (ea. 12000 seeds n!"') and other pasture species (3700-55000 seeds m·', 

Paronc & Reader, 1982). Although the estimates of seed densities may be imprecise due to the 

small number of samples taken, L. urens obviously has a large buried seed population. 

L. urens fonns a persistent seed bank. The experiment at Yamer Wood did not confinn this but 

the observation of seeds in the lower strata (5-I Ocm depth) below the extant population at 

Andrew's Wood gives an indication of its persistence (Chippendale & Milton, 1934; Moore & 

Wein, 1977; Kellman, 1978; Hill & Stevens, 1981; McGraw, 1987; Thompson, 1993a). Short­

lived seeds lose their viability before reaching the lower soil layers and tend to be present only 

near the surface whereas long-lived seeds occur in both the upper and lower layers (Warr el al., 
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1993). Further support is provided by a predictive too l based on the aforementioned 

relationship bet\veen seed size and persistence in the soil using forty British species (Thompson, 

1993a; Thompson et al., 1993). When the weight of the seeds are plotted against the variance 

of their three linear dimensions, persistent seeds consistently appear in the lower left region of 

the figure (Figure 7.1 ). Using the size averages from over 1000 seeds from An drew's Wood 

(section 6.3 .2), this index places the light and compact L. w·ens seed, well within the domain of 

those which persist over five years (Figure 7.1 ). 
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f-igure 7 . I: Weight plo tted against variance of the length , width and breadth of tht: st:t:ds of 40 spt:c1es tu 
give an indication of persistence in soi l (adapted from Thompson, 1993a). 

An unspecialised dispersal mechanism , when combined with a seed bank , is characteristic of the 

flora of pennanent but unpredictably disturbed habitats (Roberts , 1962 ; Cohon , 1966; Kropac, 

1966; Cohon ,1967 ; MacArthur, 1972; Wilcotl, 1973 ; Mercdith. 1978 : Thompson & Grime. 

1979; Yenables & Lawlor, 1980; Cavers, 1983; Ritland, 1983; Ellner, 1985a: b; Yenab1es, 1985: 

Si1vertown, 1988; Schulz et al., 1990; Hodgson & Grime, 1990: Putwain & Gillham , 1990; 

Thompson, 1992; Thompson , 1993b). L. w·ens is suited to such habitats. With a huge potential 

for recruitment from the seed bank, L. urens is able to exploit opportunities for establishment 

which are widely and unpredictably dispersed in time. 
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EIGHT 

The population matrices 

8.1 Introduction 

A matrix is a special grouping of numbers designed to manipulate and store large sets of data 

(Usher, 1972). Entries into a population matrix summarize demographic infomtation on the 

ways in which survival, growth, development and reproduction change the composition of a 

population over a given time interval (Begon and Mortimer, 1986). The use of matrix 

mathematics in models of population behaviour was fonualized by Leslie (1945; 1948). The 

Leslie matrix is an age structured model based on the fecundity and survivorship of discrete age 

classes in a population. However, size is often a more important detenuinant of demographic 

behaviour than chronological age (section 6.1 ). Lefkovitch ( 1965) extended the use of matrices 

to populations classified by stages (instars of insects). The Lefkovitch matrix penuits a greater 

range of transition classes, including changes from larger size classes to smaller ones. For some 

organisms, such as non-woody perennial plants, this is essential for the development of a 

realistic matrix (Moloney, 1986). Stage or size classified transition matrices are easily adapted 

for modelling the population dynamics of plants and have become an increasingly popular tool 

(van Groenendael et al., 1988). Investigations using stage classed matrices include the 

demography of annual (Leverich & Levin, 1979), biennial (Wemer & Caswell, 1977; Caswell, 

1978) and perennial (Saruklu\n & Gadgil, 1974; Ehrlen, 1995) herbs, as well as grasses (Law, 

1983; Mack & Pyke, 1983; Moloney, 1988) and trees (Maillcttc, 1982; Pi1iero et al., 1984; 

Huenneke & Marks, 1987). Cas well (1982; 1985) adapted matrix methods to the demography 

of organisms with complex life cycles, including those capable of both sexual and clonal 

reproduction. His methods have since been used in a number of studies including that of the 

clonal shrub A In us incada ssp. mgusa (Huenneke & Marks, 1987) and A risaema triphyllwn, a 

herbaceous perennial that changes sex (Bierzychudek, 1982). 
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Transition matrix models have been used in the conservation of rare or endangered species such 

as that of loggerhead turtles (Caretta caretta) (Crouse et al., 1987}, Widderingtonia 

cedarbergensis (Manders, 1987) and Mariposa lilies (Calochortus)(Fied1er, 1987). Matrices also 

play a very important role in management (Bradshaw & Doody, 1978; Zeedyk et al., 1978; 

Davy & Jefferies, 1981; Charron & Gagnon, 1991; Burgman et al., 1993; Ehrlen, 1995) and are 

often used to determine species life history aspects that play a key role in the regulation of 

population numbers (Usher, 1972; Caswell, 1978; Vandem1eer, 1978). Complex studies on the 

variation in matrix transitions with micro-habitat (Hub bell & Wemer, 1979) and with 

disturbance regimes (van Groenendael & Slim, 1988) have been undertaken. Through the 

comparison of such matrices for different populations or management treatments, suggestions 

can be made for appropriate management strategies, with the aim of overcoming the constraints 

on population size (Usher, 1972; Menges, 1986; Manders, 1987). 

The previous seven chapters provided infonnation on the ecology of L. urens in Britain. A 

study of the historical ecology of the species, along with its associated plant communities and 

principal relationships with environmental variables was undertaken in chapter two. Chapters 

three to six described a four-year study of the demography of L. urens within two populations in 

southwest England. Chapters four and five included details of the number of seedlings 

emerging, their rates of growth and probability of survival. These three characters were found 

to vary with the micro-habitat in which seedlings emerged. The presence or absence of moss, 

litter and depressions at the soil surface and the size of the opening in the established vegetation 

were investigated. The structure of the two populations and the effects of plant age and size on 

survival and fecundity were examined as part of chapter six. The variation in the life history 

characteristics of L. urens between and within the two sites were considered throughout. The 

population response to grazing intensity and frequency at the two sites were compared to 

ungrazed control plots. Experiments were carried out to support this demographic study. 

Control laboratory studies explored the donnancy and after-ripening requirements of seeds along 

with the effects of the light, temperature and moisture environment on gennination. The 
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response of the seed recruitment phase to soil surface micro-habitat, waterlogging and frosting 

was investigated in glasshouse experiments. Garden studies revealed the development and 

structure of the rhizome and field experiments looked at the persistence of seed in the soil, the 

size of the seed bank and the response of adult plant size to intensity of defoliation. All of this 

information on the demographic characters of L. urens is brought together in this chapter to 

construct population matrices. 

Data from chapter six showed size to be more import ant than age in the determination of the 

demographic behaviour of L. urens (section 6.1 & Tables 6.5, 6.6, 6.1 0, 6.11) and that the rate 

of clonal growth can not be ascertained without disturbing the plants (section 6.3.1). In the 

light of these two observations, a basic Lefkovitch matrix was adopted to address the following 

questions: 

(i) Were the populations stable, expanding or declining?; 

(ii) which characters of the life history had most effect on the population growth rate (A.)?; 

(iii) what effect did grazing have on the population demography? 

Answers to such questions may provide the knowledge necessary for the effective conservation 

of this plant in Britain. 

8.2 Methods 

8.2.1 Determination of she classes 

Development of a classification scheme for assigning individuals to size categories when the 

character shows continuous variation within a population was not easy (Moloney, 1986). 

Individuals within the populations had to be classified according to characteristics important to 

the model, with similar plants being classed together. The analysis of more than one hundred 

plant species showed consistently recognisable biological stages: seed, seedling, infant, juvenile, 

virginal, reproductive and senile (Gatsuk et al., 1980). The majority of these stages were 
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recognised in L. urens. However, juvenile and virginal stages were not separated for this matrix 

as the resultant classes would have been very small (<10). The senile phase of L. urens was 

omitted, as it was indistinct (section 6.1). The selection of the size class limits can cause two 

sources of error in the transition probabilities (Vandermeer, 1978; Moloney, 1986; Manders, 

1987). The first involves the error of estimation (sample error), which occurs in categories that 

are too small and contain too few individuals. However, a balance must be struck, since the 

second source arises from the matrix's assumption that individuals within each category are 

identical (Vandermeer, 1978; Moloney, 1986). Thus, as a category increases in size, the 

variation between individuals within it also amplifies. Mathematical techniques for equating 

these two sources of error have been suggested (Vandermeer, 1978; Moloney, 1986), however, 

in this study, whilst still taking due consideration for the causes of error, a less formal approach 

was adopted. The survival curves of immature individuals (Figure 5.1) were used in 

conjunction with growth curves (Figure 5.3) to make subjective selections of the leaf length 

classes, within which survival chances were similar, and to identify changes in leaf length class, 

which were associated with an improvement in survival. Similarly, morphological indicators of 

change in survival and fecundity were used to denote adult classes. 

Seed bank estimates 

(i) From fecundity estimates 

The number of seeds made available to the bank was estimated using the density and fecundity 

of adult plants. Analysis of variance showed no significant change in total plant density at 

Andrew's Wood and Redlake between the years 1992 to 1995 (P>0.05, Table 6.2), nor in the 

number of seeds produced per plant in Andrew's Wood 1993 or 1994 or Redlake in 1994 

(P>0.05, Table 8.1). However, significant variation in the density of plants among the seven 

compartments/grazing treatments (Redlake and Andrew's Wood compartments C and D (grazed, 

ungrazed and recently cleared) and AS (P<0.001, Table 6.2 & Figure 6.2)) suggested spatial 

variation in the number of seeds made available to the seed bank. Insufficient data were 

collected to analyze for this among the individual compartments of Andrew's Wood (section 
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6.3.2) but the seeds made available to the bank at Redlake and Andrew's Wood were assessed 

separately for the purposes of the transition matrix. 

d.f. MS F 

Number of seeds per plant 2 133020000.00 1.26 

Table 8.1 : Results o f a one-way ANOV A between the number of seeds per L. w·ens plant at Andrew's 
Wood (A W) in 1993 and 1994 and al Redlake (RL) in 1994. 

The average number of seeds per plant, 1993- 1994 was 

and the average number of plants per square metre in 1993- 1994 

therefore, seed production per square metre in 1993-1994 was 

AW & RL = 

AW = 

6749 

4.73 

RL = 1.28 

AW= 31923 

RL = 8639 

These figures were adjusted fo r a viability of 50% (Figure 4.4), and the resulting estimates o f 
seeds made available to seed bank per metre2 in 1993- 1994 (to the nearest I 00) were 

AW = 16000 

RL = 4300 

(ii) From seed hank study 

The size of the seed bank within compartment D of Andrew's Wood was estimated to be 17537 

seeds in the top 10 cm of soil per m2 in 1993 (Table 7.1). This was very similar to estimates of 

seeds made available to the seed bank 1993-4 (i above). The number of seeds in the bank was 

expected to be much larger than the annual input as the seed of L. urens is long-lived in the soil 

(section 7.3) and it is not clear why these two estim ates are so close. The seed bank samples 

were collected in spring and incubated for 41 days thus reducing error through donnancy 

(RaynaJ & Bazzaz, 1973; Leek & Graveline, 1979) and also catching seed before the 

gennination peak in May-July (Warr et al., 1993). 

From a combination of these two estimates, the final evaluations of the seed bank were taken to 

be 16000 seed m·2 at Andrew's Wood and 4300 seed m·2 at Redlake. 
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As no genninable seed was detected in the soil of past L. urens sites (section 7.2), estimate of 

losses from seed bank had to be academic. Although this was of potential concern, all evidence 

pointed towards long-tenn persistence (section 7.3). An annual loss of I 0% was chosen, as this 

would approximate a half-life of seven years and Thompson ( 1993a) defined seeds remaining in 

the soil for more than five years as Iong-tenn persistent, while historic evidence suggested L. 

urens to be much longer lived than this (section 2.2). The matrix transitions associated with the 

seed bank are so large in comparison to the numbers moving in and out of other classes that 

there is a reasonable margin for error. 

Immuture tlcriod 

The immature period covers the vegetative states of L. urens from emergence to flowering, 

hence classification of individuals to within this period was straightforward. The length of the 

immature period in herbaceous perennials is very variable (Hutchings, 1986) and L. urens may 

flower in its first or second year (section 6.3.2). Those plants which flowered in their first year 

had a similar survival rate to all flowering individuals, thus, L. lll'f!ns plants were classified as 

adults from the time of first flowering (section 5.4 ). 

Within the immature period of L. 11/Y!ns, three classes were recognised: seedling, infant and 

juvenile. Classes were identified by the average length of the leaf lam in a (leaf length section 

6.2.2). Plants were classified as seedlings, from emergence until their first true leaf reached a 

length of 2 mm. Plants with an average leaf length of between 2 and 9 nun were placed in the 

infant class and once the average leaf length was more than 9 mm, they moved into the juvenile 

class. The classes were arbitrarily selected without mathematical procedures, but were chosen 

by comparing improvement of survival chances of individuals over time (Figure 5.1) and their 

size (Figure 5.3) and taking due consideration of the two sources of error outlined in section 

8.1. The first class was restricted to a relatively small size range, as a large proportion of the 

losses occurred at this early stage. 
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Within each of these three classes were two further sub-classes characterised by time of 

emergence: March-July = early cohort and August-February = late cohort. Timing of 

emergence had a profound effect on the survival of L. urens seedlings (section 5.3). A number 

of other demographic studies have demonstrated differences in the behaviour of individuals 

which initiated growth at different times of the year (section 6.4). 

Adult period 

Rosette and branch number, two independent measures of morphology (Table 6.9), were most 

important for survival and fecundity of L. urens. Both number of rosettes and change in this 

number were correlated with survival (Tables 6.5 & 6.6). However, a count can be obtained in 

a single census and, therefore, is of more practical value than a transition, which requires at 

least two censuses to detennine. Plants with more than one rosette had increased chances of 

survival across both Andrew's Wood and Redlake (Table 6.5). Branch number was correlated 

with both the number of capsules per plant and the average number of seeds per capsule at 

Andrew's Wood in 1993 and 1994 but no morphological characteristics were correlated with 

these measures of fecundity at Redlake (Table 6.10). Branch number was not recorded ns part 

of the annual census, thus, spike height was the only measure of inflorescence size available for 

this data set (section 3.3). Spike height was also independent of rosette number (Table 6.9) and 

was not a mere elongation response to sward height. Spike height was not significantly 

correlated with sward height across Andrew's Wood and Redlake (Speannan rank correlation 

coefficient 0.55, P>0.05). However, there was some indirect association between sward height 

and spike height as shown by the relationship among compartments (Figure 8.1 ). The outliers 

were compartments A8, where plants had high spikes despite a low mean sward height, and the 

ungrazed quadrnts of compartment C, where, although the sward was high in 1994, the spikes 

were short. There were no plants in ungrazed quadrnts of compartment in 1995. Therefore, it 

is likely that in 1994 these plants were struggling. The relationship between the remaining four 

points reflected grazing management. The grazed areas of compartments D and C had both 

short swards and spikes while those at Red lake and the ungrazed quadrats of compartment D 
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were both long. 

,...... 
60 - •RL El 

() • D(ug) .._, 
.... 

..c:: 
bO 50 -·o 

..c:: 
• A8 

~ 
.!>4 40 -·c. • C(ug) Ill 

~ • D(g) 
bO 

"' 30 - 11 C(g) .... 
~ 
> 
< 

20 I I I I 

20 25 30 35 40 45 
Average sward height (cm) 

Figure 8.1 : Relationship between the average height of L. rll'ens !lowering spike with sward height in 
compartments D, C (grazed (g) and ungrazed (ug)) and A8 of Andrew's Wood and a t Redlake (RL) in 
1994. 

Spike height was a true measure of reproductive effort , correlated with the number of capsules 

per plant, but not wi th the average number of seeds per capsule (Table 6. 10). Adults were 

assigned to two classes: those with an average Oowering spike less than 50 cm and those which 

were equal to and greater than 50 cm (Figure 8.2). This classification was more satisfactory in 

1994 than in 1993 . In both years, tall plan ts were generally variable but plants wi th floweri ng 

spikes of less than 50 cm produced fewer capsules (Figure 8.2). The average fecund ity of two 

classes at both Andrew's Wood and Redlake were estim ated (Tab le 8.2). 
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Spike height (cm) 

Site/year 
Fecundity character 

<50 2: 50 

Andrew's Wood 1993 Capsules/plant 27±6 84±36 

Seeds/capsule 68±12 94±9 

Seeds/plant 1836 7896 

Andrew's Wood 1994 Capsules/plant 20±5 52±6 

Seeds/capsule 114±18 157±12 

Seeds/plant 2280 8164 

Redloke, 1994 Capsules/plant 18±0 37±6 

Seeds/capsule 15±0 155±24 

Seeds/plant 270 5735 

Rough estimate for fecundity of Andrew's Wood I 000 seeds/plant 4000 seeds/plant 
(adjusted for 50% viability) 

Rough estimate for fecundity of Redlake 150 seeds/plant 3000 seeds/plant 
(adjusted for 50% viability) 

Table 8.2: The average number of copsulcs per plant and seeds per capsule were used to determine rough 
estimates for fecundity of short (< 50cm) ond tall (2: 50cm) L. w·ens plants at both Redlake and Andrew's 
Wood, 1993 and 1994. 

The separation of adult plants in tenus of fecundity was the most arbitrary dichotomy in the L. 

urens population matrix. Nevertheless, a 50 cm spike height limit (i) divided plants with low 

fecundity from those with the potential for a higher seed yield and (ii) gave similar numbers of 

individuals in each class. The probability of an adult producing seed was so high compared to 

the probability of moving to another adult class that such error in the fecundity calculations was 

considered to be of little real importance. 
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Summary of classes 

In all there were eleven size classes (Table 8.3). 

Class Abbreviation 

Seed s 
Early seedling SdJ(o) 

Late seedling Sdl0> 

Early infant '(•) 

Late infant I m 

Early juvenile J(e) 

Late juvenile JQ) 

Adult one AI 

Adult two A2 

Adult three A3 

Adult four A4 

Definition 

Seed 

Plant, which emerged between March and 
July, whose first true leaf is still <2 mm 

Plant, which emerged between August and 
February, whose first true leaf is still <2 mm 

Plant, which emerged between March and 
July, with an average leaf length of 2-9 mm 

Plant, which emerged between August and 
February, with an average leaf length of 2-9 
mm 

Plant, which emerged between March and 
July, with an average leaf length >9 mm 

Plant, which emerged between August and 
February, with an average leaf length >9 mm 

1 rosette and spike height < 50 cm 

I rosette and spike height ~ 50 cm 

> I rosette and spike height < 50 cm 

> I rosette and spike height ~ 50 cm 

Table 8.3: Summary of the eleven matrix size classes for L. urens. 

8.2.2 Construction of transitio11 matrices 

A transition matrix should be constructed from data obtained over fixed discrete intervals of 

time (Manders, 1987). However, in this study, matrices had to be constructed using overlapping 

periods, since data from both the annual census of adult plants and the fortnightly detailed 

census of immature plants were combined. The adult census was undertaken annually from 

1992-1995 and transitions covered periods from July to July, while the fortnightly census of 

immature individuals covered 21 months from March 1993 to February 1995 (Figure 8.3). 
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Immature 

Adult 

F-igure 8.3: Explanatory sketch showing overlapping transition periods of adult nnd immature censuses. 
Shaded area denotes most important census period. 

The daytime temperatures in southwest England during January and February are well below the 

minimum temperature for the gennination of L. urons (section 4.3), so it was not important that 

the immature census did not begin until March 1993. The adult census had to be carried out in 

the summer to measure flowering perfom1ance. However, the immature census was only carried 

out March 1993 to Februal)' 1995 and therefore the matrix had to be made using overlapping 

data. It was most important for the matrix that the period March to July was common between 

the two censuses (Figure 8.3), since this was the important gennination and establishment period 

for L. 11rens at both Redlake and Andrew's Wood (section 4.3). Individuals genninating within 

the period August to Februal)' made no contribution to the population dynamics (section 8.3). 

Hence, the 1993 transition matrix was constructed of data from the July 1992 to July 1993 adult 

transitions, combined with the March 1993 to Februal)' 1994 seedling transitions, whilst the 

1994 transition was constructed of data from July 1993 to July 1994 adult transitions and the 

March 1994 to Februal)' 1995 seedling transitions. 

The life cycle of L. w·ens over each calender year was described by a life cycle graph (Hubbell 

& Wemer, 1979) (Figure 8.4). From this graph, a transition count matrix was derived that 

identified the number of censused plants of each class which stayed in the same class, moved to 

other classes, or died (Caswell, 1989) (Table 8.4). The immature census covered an area of 5 

m2
, whilst the adult census area was I 0 times larger. Hence, adult counts were divided by I 0 to 

make the number in the transition count matrix comparable. Transition probabilities were then 

estimated as the proportion of plants moving between or staying within each of the size classes 

(Table 8.5). 
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The diagonal elements represent the probability that a plant remained in the same size class 

from one year to the next. Neither early seedling nor early infant classes did this but 6.6% of 

early juvenile plants remained static and flowered the following year. The probability of growth 

between consecutive size classes is represented by those entries directly below the diagonal in 

the adult section of the matrix and, because of the early and late sub-classes, by the entry two 

elements below the diagonal in the immature section. Most movement in the immature section 

was between consecutive size classes but it was possible for seedlings and infants to move 

through two or three classes in a single year (Table 8.5 ), although, of course, it was not possible 

to move between early and late sub-classes. Adults moved freely between any of the four 

classes in a year, but the majority of individuals were static or moved only a single class (Table 

8.5). The fecundity of each size class was described in the first row of the matrix; that is, 

transitions from established individuals to seed recruits. 

Thirteen matrices were produced in all: one representing the whole of Andrew's Wood in 1993 

and one in 1994, and within the reserve for each of these two years, one for compartment D and 

C (both grazed and ungrazed components separately) and for AS. There was only one matrix 

for Redlake, which represented the population transitions in 1994, the only year in which 

immature plants were censused there. 

Understanding of all aspects of matrix algebra is not necessary to show how transition matrices 

are constructed, but it is vital that the basic concepts are clearly understood. A matrix is simply 

a group of numbers arranged in columns and rows. In transitional studies, the population 

structure at any given time, when organised into the defined size classes, is written as a single 

column matrix. The number of elements depends on the number of classes, the matrix for L. 

urens had eleven classes, thus at the beginning of 1993 the population structure 

(N) could be written: 
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N 
N 

"" 

Figure 8.4: Life cycle graph where size of arrow head deno tes number of plants making each transition at Andrew's Wood, 1993 (S = seed, Sdl =seedling, I= infant, J = 
j uvenile, (e) = early, (I) = late; for furthe r explanation see Table 8.3). 



s SdJ(e) Sdlc1> J(e) I (I) J(e) J (l ) AI A2 A3 A4 

s 359288 1000 4000 1000 4000 

Sdl,., 266 

Sd ICI) /33 

1,., 118 73 

1(1) 106 74 

J,. , 45 38 38 3 

Jn, 32 32 32 
N 
N 
00 

AI /0 7 7 7 2 1 3 1 

A2 0 2 l 1 6 

A3 0 3 6 

A4 0 11 1 3 11 

Die 40000 148 27 73 7-1 35 32 11 6 9 27 

Total 400000 266 133 118 /06 45 32 17 10 18 51 

Table 8 4 : T ransition count matrix for Andrew's Wood, 1993 , from immature census, adult census and fecundity census/seed bank study . 



s Sdl<•> Sdl<1> J(e) I (I) J (e) J(l) AI A2 A3 A4 

s 0.89823 1000.0 4000.0 1000.0 4000.0 

Sdl<•> 0.00066 

Sdl(l> 0.00033 

I<•> 0.00029 0.27444 

I (I) 0.00027 0.55639 

J (• ) 0.000 13 0.14286 0.32203 0.06667 

J (l ) 0.00008 0.24060 0.30189 
IV 
IV 
\0 

AI 0.00003 0.02632 0.05932 0.15556 0.12139 0.05882 0.14365 0.01961 

A2 0.12717 0.13725 0.05525 0.11765 

A3 0.04046 0.10784 0.15470 0.11765 

A4 0.06936 0.13725 0.16022 0.21569 

Die 0. I 0000 0.55638 0.20301 0.6 1865 0.69811 0.77777 0.64162 0.55884 0.48618 0.52940 

Table 8.5 : Transition probability matrix for Andrew's Wood, 1993 . Empty ce lls denote transitions with a zero probability. 



400000 
266 
133 
I J 8 
106 

N 199, = 45 
32 
17 
10 
18 

Matrices with only a single column are called column vectors. Transition matrix, A, can be 

used to show changes in population numbers (N) from timet to time t+l lly calculating 

N,., =AN,, 

The multiplication of the initial population stmcturc occurs according to the mlcs of matrix 

multiplication (Table 8.6). The population size vector can be iterated (i.e.rcpeatedly multiplied) 

by A, and the population eventually stabilizes at a constant ratio of size classes, such that 

where A. (the eigenvalue) denotes population growth rates, such that when '" = 1.0, the total 

population size is not changing and A. > 1.0 indicates population growth, while )" < 1.0 indicates 

population decline (Usher, 1972). Matrix algebra can be used to detemtine a quadratic equation 

for A. (the eigenvalue) from 

Ax = A.x 

which yields two possible eigenvalues. Each of these values can be reapplied into the equation 

to give a corresponding solution to x, these are in the fonn of column vectors and are called 

eigenvectors. These solutions are vectors for which multiplication by the matrix (A) is 

equivalent to multiplication by a single number, the eigenvalue (A.). The right eigenvector is the 

stable size structure of the population and the left eigenvector, the stable reproductive values for 

each size class. These are of interest in themselves (Silvertown e/ al., 1993) but they may also 

be multiplied together to calculate the sensitivity of each element in the matrix (Caswell, 1978). 

Each element of the sensitivity matrix is the reproductive value of the size class, weighted by its 

relative abundance. The sensitivity matrix evaluates the relative importance that different stages 
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N 
w 

0.89823 

0.00066 

0.00033 

0.00029 0.27444 

0.00027 0.55639 

0.00013 0.14286 0.32203 0.06667 

0.00008 0.24060 0.30 I 89 

0.00003 0.02632 0.05932 0.15556 

(0.89823)(400000)+( 1 000.0){1 7)+(4000.0)( I 0)+( I 000.0)( 18)+(4000.0)(5) 
(0.00066)( 400000) 
(0.00033 )( 400000) 
(0.00029)( 400000)+(0.2 7444 )(266) 
(0.0002 7)( 400000)+(0. 55 639)( 13 3) 
(0.000 13 )( 400000)+(0. 14286')(266 )+(0.32203 ){I 18 )+(0.0666 7)( 45) 
(0.00008)(400000)+(0.24060)( 133)+(0.30 189)( I 06) 

1000.0 4000.0 1000.0 4000.0 

O. I2I39 0.05882 0.14365 0.01961 

0.127 17 O. I3725 0.05525 0.11 765 

0.04046 0. 10784 0.15470 0.11765 

0.06936 0.13725 0.16022 0.21569 

(0.00003 )( 400000)+(0.02632)(266 )+(0.05932)( II 8 )+(0 .I5556)( 45)+(0. 12139)( I7)+(0.05882)( I 0)+(0.14365 )( I8)+(0.0 1961 )(5) 
(0.12 71 7)( 17)+(0.I3725)( I 0)+(0.05525 )(J 8)+(0.1 1765)(5) 
(0.04046)( I 7)+(0.1 0784)(1 0)+(0. 154 70)(18)+(0.II 765)(5) 
(0.06936 )( 17)+(0.13725)( 1 0)+(0. 16022)(18 )+(0.2 1569)(5) 

Table R.6 : Multiplication of 1993 population structure vector of L. urens at Andrew's Wood by 1993 transition matrix . 

X 

400000 

266 

133 

118 

106 

45 

32 

17 

10 

18 

5 

454292 
264 
132 
189 
182 
13I 
96 
38 
5 
5 
7 



have on the finite rate of increase of the population. These sensitivity values can be 

standardized to allow for the fact that elements representing survival probabilities can only 

range between zero and one, whereas an element representing fecundity can have any value. 

Thus, elasticity values (De Kroon et al., 1986), represent the proportional sensitivities. Values 

for each matrix sum to 1.0, thus allowing comparisons between classes and between matrices as 

to those elements which are most important to population increase and those which are 

constraining the population. Furthennore, selected regions of the elasticity matrix may be 

summed in order to examine the overall impact of, say, fecundity, growth or a particular size 

class to J... (De Kroon et al., 1986). 

When looking for a stable size class distribution to calculate I. and carrying out elasticity 

analyses, the initial column vector N, is unimportant. Whatever values are in this initial vector, 

when multiplied by A repeatedly, the resultant vectors will converge to the same stable size 

class distribution. However, rather than repeatedly multiplying a random vector by the 

transition matrix until a stable size distribution is reached to yield infonnation on present 

population status, the column vector representing the number of plants in each a given size class 

at time I can be multiplied by the transition matrix a known number of times, to predict the 

state of that population at a given time in the future. This method assumes that the transition 

matrix remains constant over time. 

8.3 Results 

Emerging as a seedling late in the ycnr was of no value to I. throughout Andrcw's Wood and 

Redlakc (Tables 8.5 & 8.7-8.10). Therefore, it was not important that the period August to 

December of the immature census was out of synchrony with the adult census (section 8.2.2). 

Overall, the L. 111-ens population at Andrew's Wood was growing throughout 1993 and 1994 (1. 

= 1.32 & 1.38, Tables 8.7 & 8.8). In 1994, there were no transitions out of the infant class in 

the population at Red lake (Table 8.1 0) and therefore the life cycle was not complete, which 
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meant that the matrix iteration did not reach a stable population distribution and it was not 

possible to obtain a value for /.. or an elasticity matrix. 

Elasticity analyses of Andrew's Wood revealed that the seed class had the highest impact on the 

population making up 40-50% of the total contribution to /... The majority of this contribution 

was made by seed staying in the bank (25-40%) but fecundity was also of considerable 

importance (Tables 8.5 & 8.7-8.9). The first adult class made a larger contribution to the 

population growth rate (/..) (around 20%, Tables 8. 7 & 8.9) than classes two to four, since 

emergers all moved to this class first. Across Andrew's Wood, L. urens was characterised by 

low elasticities for movement in many of the adult classes in comparison to fecundity, 

gennination and growth through immature classes (Tables 8.5 & 8. 7-8.9). 

The matrices of Andrew's Wood (Tables 8.5 & 8.7-8.9) provided an overview of the life cycle 

of the L. urens population across the entire reserve but they must be considered with an 

awareness for the difficulties of understanding an entire species from a single patch or number 

of patches (Fiedler, 1987). The spatial heterogeneity in demographic rates within the population 

at Andrew's Wood was considerable. The decline of the sub-population in compartment C was 

evident from the lack of successful recruitment from seed, even in the grazed areas, combined 

with a high adult death rate (Tables 8.18 & 8.21 ). At the same time, the sub-population of AB 

was thriving with a growth rate of 1.2-1.4 (Tables 8.22 & 8.24). 

The effect of grazing management on the population growth rates of L. urens was illustrated by 

the changing values of the elasticity matrix elements and the resultant I. values. Elasticities for 

the grazed areas of compartment D were similar in 1993 and 1994 (Tables 8.12 & 8.14). They 

were characterised by the relatively large contribution to /.. made by seed staying in the bank 

and by the positive transitions between seedlings and the immature classes and from these to the 

adult class one. The adult transitions made little contribution save stasis in classes one or two 

or moving up from class one to two. As most adults were within class one, this class made the 
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largest fecundity contribution (Tables 8.12 & 8.14). In 1993, the ungrazed quadrats of 

compartment D had similar emphasis on emergence and growth through immature classes as the 

grazed areas (Table 8.16). However, staying in the juvenile class for a year and flowering the 

following year was not a feature of the ungrazed population, and stasis in adult classes one, two 

or three made very little contribution to A. (Table 8.16). Instead, the most important transitions 

of the ungrazed area were those from any of the adult classes up to adult class four (Table 

8.16). In an ungrazed community, adult L. w-ens plants had the ability for rapid growth, 

skipping a number of classes (Table 8.15). Class four made the largest contribution to A. as a 

result of the number of individuals moving into the class, combined with the larger fecundity of 

individuals in this class (Table 8.16). Thus, large plants were very important in the ungrazed 

community. In the ungrazed area in 1994, as seen at Redlake, no transitions were made out of 

the immature section, the life cycle was not complete, the matrix iteration did not reach 

equilibrium and it was not possible to obtain an elasticity matrix (Table 8.17). This was also 

the case in compartment C of Andrew's Wood (Table 8.18-8.21). In compartment A&, again 

there was little difference in transitions between the years (Tables 8.22 & 8.24), although there 

were more individuals in adults classes three and four in 1994 and, as a result, the fecundities of 

these classes made larger contributions to /, than in 1993 (Tables 8.23 & 8.25 ). I. was 

particularly large in AS, 1994 (1.40) and concurrently, seed that stayed in the bank was less 

important, whilst seed which reached adult class one played a significant role in detenu ining 

long-tem1 population growth rates (Table 8.23). For both years in A8, moving from adult one 

to larger adult classes was the most critical part of the life history outside the seed bank but 

other adult transitions were of considerably less significance (Tables 8.22 & 8.24 ). 
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s SdJ(e) Sdl(l> I( e) I<I> J(e) J(l) AI A2 A3 A4 sum 

s 0.34952 0.07979 0.04720 0.00432 0.03398 0.51481 

Sdi(c) 0.05718 0.05718 

Sdl(l> 

I( e) 0.04I49 0.0 1569 0.05718 

1(1) 

J(e) 0.02575 O.O I574 0.02169 0.00326 0.06645 
IV 
V-l 
Vl 

J(l ) 

AI 0.04086 0.02576 0.03550 0.05992 0.0 1694 0.00097 0.00109 0.00023 O.I8I27 

A2 0.05I83 0.00662 0.00122 0.00408 0.06375 

A3 0.00659 0.00208 0.00137 0.00163 0.01167 

A4 0.02938 0.00688 0.00368 0.00776 0.04770 

Table 8.7: Elasticity matrix for L. urens at Andrew's Wood, 1993 . A.= 1.32. 



s Sdl(e) Sdl0> J(e) 1(1) J (e) J(l) Al A2 A3 A4 

s 0.89764 1000.00 4000.00 1000.00 4000.00 

Sdl(e) 0.00135 

Sdl0, 0.00037 

I( e) 0.00026 0.09630 

Io> 0.00015 0.16326 

J(e) 0.00013 0.07778 0.40385 

N 
w 
0\ 

J(l) 0.00008 0.23129 0.58621 

AI 0.00003 0.01852 0.0961 5 0.19231 0.26667 0.04396 0.10811 0.03125 

A2 0.08148 0.20879 0.06757 0.06250 

A3 0.05183 0. 15385 0.36486 0.10417 

A4 0.08148 0.25275 0.16216 0.68750 

Die 0.10000 0.80740 0.60545 0.50000 0.41379 0.80769 1.00000 0.51854 0.34065 0.29730 0.11458 

Table 8.8: Transition matri:-.: for L. urens Andrew's Wood, 1994. A. = 1.38. 



s Sdl(e) Sdl(l> l(e) I (I) J(e) J(l) Al A2 A3 A4 sum 

s 0.28674 0.06706 0.02772 0.00538 0.05548 0.44238 

Sdl(e) 0.05240 0.05240 

Sdl(l> 

l(e) 0.03850 0.01390 0.05240 

I<I> 

J(e) 0.02432 0.0 1418 0.01930 0.05780 

N 
w 
~ 

J(l) 

A I 0.04041 0.02432 0.03310 0.05781 0.03771 0.00051 0.00123 0.00073 0.19582 

A2 0.03550 0.00752 0.00236 0.00451 0.04989 

A3 0.01026 0.00252 0.00579 0.00341 0.02198 

A4 0.04528 0.01161 0.00723 0.06322 0.12734 

Table 8.9 : Elastic ity matrix for L. urens Andrew's Wood, 1994. 



s Sdl(c) Sdl0, I( e) lo> J(e) J(l) A1 A2 A3 A4 

s 0.89959 150.000 3000.00 150.000 3000.00 

Sdl(e) 0.00031 

Sdl0, 0.00001 

l(e) 0.00009 0.30159 

1(1) 

J(c) 

N 
J(l) w 

00 

AI 0.04 167 

A2 1.00000 0.08333 0.10526 

A3 0.08333 

A4 0.20833 0.57895 

Die 0.10000 0.6984 1 1.00000 1.00000 0.58334 1.00000 0.31 579 

Table 8.10: Transition matrix for L. urens at Red lake, I 994. Not a complete cyc le. 



s Sdl(e) Sdlcn l(e) 1(1) J(e) J (l) AI A2 A3 A4 

s 0.89706 1000.00 4000.00 1000.00 4000.00 

Sdl(e) 0.00165 

Sdi0> 0.00036 

l(e) 0.00060 0.26515 

1(1) 0.00007 0.79310 

J(e) 0.00016 0.08333 0.229 17 

N 
w 
1.() 

J(l) 0.00006 0.17241 0.17857 

AI 0.00002 0.01515 0.04167 0.15385 0.26087 0.13333 0.21429 

A2 0.04348 0.13333 0.02857 0.16667 

A3 0.04348 0.26667 0.17143 0.16667 

A4 0.01429 

Die 0.10000 0.63637 0.03449 0.72916 0.82143 0.74615 1.00000 0.652 17 0.46667 0.57142 0.66667 

Table 8 . 11 : Transition matrix for L. urens in the grazed area of compartment D Andrew's Wood, 1993. A.= 1.23. 



s SdJ(c) Sdl11) l(c) I (I) J(c) J(l) Al A2 A3 A4 sum 

s 0.40859 0.12214 0.02498 0.00626 0.00036 0.56233 

Sdl(c) 0.06502 0.06502 

Sdl(l) 

I(c) 0.04088 0.02414 0.06502 

I (I) 

J(c) 0.02388 0.01662 0.02644 0.06694 

N 
~ 
0 

J(l) 

AI 0.02396 0.02425 0.03858 0.06695 0.04 190 0.00088 0.00176 0.19828 

A2 0.02677 0.00336 0.00090 0.00006 0.03109 

A3 0.00747 0.00187 0.00151 0.00002 0.01087 

A4 0.00044 0.00044 

Table 8.12: Elasticity matrix for L. urens in the grazed area of compartment D Andrew's Wood, 1993. 



s Sdl(e) Sdl<1> J(e) Io> J(e) J(l) Al A2 A3 A4 

s 0.89880 1000.00 4000.00 1000.00 4000.00 

SdJ(e) 0.00072 

Sdl0> 0.00026 

I(e) 0 .00022 0.18966 

I<ll 0.00007 0.09524 

J(e) 0.00009 0.10345 0.33333 0.28571 

N 
~ 

J(l) 0.00005 0.19048 0.66666 

AI 0.00004 0.01724 0.05556 0.14286 0.31373 0.05263 

A2 0.03922 0.28571 0.02632 

A3 0.23529 0.42857 0.39474 1.00000 

A4 0.0196 1 0.07985 

Die 0.10000 0.68965 0.71428 0.61 111 0.33334 0.57143 1.00000 0.39215 0.28572 0.44646 

Table 8.13: Transition matrix for L. urens in the grazed area of compartment D Andrew's Wood, 1994. A.= 1.27. 



s Sd1(e) Sd10> l(e) I (I) J(e) J(l) A1 A2 A3 A4 sum 

s 0.36848 0.08602 0.02103 0.02881 0.01562 0.51996 

Sd1(e) 0.04185 0.04185 

Sd10> 

I(e) 0.02781 0.01361 0.04142 

1(1) 

J(e) 0.02017 0.0 131 6 0.01930 0.01530 0.06793 

N 
~ 
N J(l) 

A1 0.06164 0.0 1508 0.02212 0.05262 0.05072 0.00285 0.20503 

A2 0.02001 0.00713 0.00450 0.03164 

A3 0.03907 0.00348 0.02195 0.00603 0.07053 

A4 0.00922 0.01243 0.02165 

Table 8.14: Elasticity matrix for L. urens in the grazed area of compartment D Andrew's Wood, 1994. 



s Sdl(e) Sdlcn I( e) Io> J(e) J(l) AI A2 A3 A4 

s 0.89985 1000.00 4000.00 1000.00 4000.00 

Sdl(e) 0.00005 

Sdl(l) 

J(e) 0.00005 0.50000 

I (I) 

J(e) 0.00002 

N 
~ 
w 

J(l) 

AI 0.00002 0.50000 0.50000 1.00000 0.06780 0.03704 0.06818 

A2 0.25424 0.11111 0.18182 0.25000 

A3 0.05085 0.05555 0.04545 0.10000 

A4 0.20339 0.24074 0.54545 0.30000 

Die 0.10000 0.50000 0.42372 0.55556 0.15910 0.35000 

Table 8.15: Transition matrix for L. urens in the ungrazed area of compartment D Andrew's Wood, 1993. A. = 1.37. 



s Sdl(e) Sdl0l l (e) I (I) J(e) J(l) A1 A2 A3 A4 sum 

s 0.31537 0.04247 0.05733 0.00304 0.06114 0.47935 

Sdl(e) 0.05257 0.05257 

Sdl0l 

l (c) 0.03849 0.01407 0.05256 

I (I) 

J(e) 0.03080 0.03080 
N 
~ 
~ 

J(l) 

AI 0.04212 0.03849 0.05257 0.03080 0.00865 0.00128 0.00062 0.17453 

A2 0.05914 0.00698 0.00303 0.01674 0.08589 

A3 0.00927 0.00273 0.00059 0.00525 0.01784 

A4 0.05500 0.01757 0.01056 0.02336 0.10649 

Table 8.16: Elasticity matrix for L. urens in the ungrazed area of compartment D Andrew's Wood, 1993. 



s SdJ(e) Sdlc1> l(e} 1(1) J(e) J(l) A1 A2 A3 A4 

s 0.89977 1000.00 4000.00 1000.00 4000.00 

SdJ(e) 0.00014 

Sdlcl) 0.00005 

J(e) 

1(1) 0.00002 

J(e) 1.00000 

N 
.::. 
'-" 

J (l) 0.00002 

AI 0.21053 

A2 0.21053 0.21429 0.08333 

A3 0.26316 0.07143 0.27273 0.02778 

A4 0.26316 0.33929 0.54545 0.80555 

Die 0.10000 1.00000 1.00000 1.00000 0.05262 0.37221 0.18182 0.08332 

Table 8.17: Transition matrix fo r L. urens in the ungrazed area of compartment D Andrew's Wood, 1994. Not a complete cycle. 



s Sdl(e) SdlO) l(e) 10) J(e) J(l) Al A2 A3 A4 

s 0.89754 1000.00 4000.00 1000.00 4000.00 

Sdl(e) 0.00062 

Sdl0l 0.00059 

J(e) 0.00029 0.40000 

I (I) 0.00044 0.48936 

J(e) 0.00037 0.06000 0.13043 0.16667 
N 
~ 
0\ 

JO) 0.00015 0.25532 0.34286 

Al 0.08696 

A2 

A3 0.04545 1.00000 0.30435 

A4 

Die 0.10000 0.54000 0.25532 0.86957 0.657 14 0.83333 1.00000 0.95455 0.60869 1.00000 

Table 8. I 8 : Transition matrix for L. urens in the grazed a rea of compartment C Andrew's Wood, 1993. Not a complete cycle. 



s Sdl(e) Sdi0, l(e) Io> J(e) J(l) AI A2 A3 A4 

s 0.89849 1000.00 4000.00 1000.00 4000.00 

Sdl(e) 0.00056 

Sdl<t> 0.00034 

l(e) 0.000 I8 0.24444 

Io> 0.00005 0.14815 

J(e) 0.00038 0.06667 0.21429 

N 
~ 
-...1 

J(l) 

AI 

A2 

A3 

A4 

Die O. I 0000 0.68889 0.85I85 0.7857I 1.00000 0.50000 0.50000 1.00000 

Table 8 .19: Transition matrix fo r L. urens in the grazed area o f compartment C Andrew's Wood, 1994. Not a complete cycle. 



s Sdl(e) Sdlm l(e) Io> J(e) J(l) Al A2 A3 A4 

s 0.90000 1000.00 4000.00 1000.00 4000.00 

SdJ(e) 

Sd10> 

l(e) 

1(1) 

J(e) 

N 
~ 
00 

J(l) 

AI 0.10000 0.10000 

A2 0.10000 

A3 0.05000 0.33333 

A4 0.20000 

Die 0.10000 0.75000 0.66667 0.70000 

Table 8.20: Transition matrix for L. urens in the ungrazed area of compartment C Andrew's Wood, 1993. Not a complete cycle. 



s Sdl(e) Sdl(l) I(o) I Cl> J(o) J (l) Al A2 A3 A4 

s 0.90000 1000.00 4000.00 1000.00 4000.00 

Sdl(o) 

Sdl(ll 

I (e) 

I (I> 

J (e) 

N 
~ 

"" J(l) 

Al 0.25000 0.20000 

A2 

A3 0.25000 0.80000 

A4 

Die 0.10000 0.50000 

Table 8.21 : Transition matrix for L. urens in the ungrazed area of compartment C Andrew's Wood, 1994. Not a complete cycle. 



s Sdl(c) Sdl0, l(e) Io> J(e) J (l) AI A2 A3 A4 

s 0.89813 1000.00 4000.00 1000.00 4000.00 

Sdl(c) 0.00068 

Sdl0> 0.00047 

}(e) 0.00041 0.23171 

I (I) 0.00036 0.35088 

J(c) 0.00025 0.30488 0.51020 0.10000 
N 
VI 
0 

J (l) 0.00012 0.263 16 0.34884 

AI 0.00004 0.02439 0.04082 0.06667 0.11539 0.06897 0.14706 0.04000 

A2 0.11538 0.20690 

A3 0.06897 0.20588 0.12000 

A4 0.03448 0.08823 0.20000 

Die 0.00001 0.43902 0.38596 0.44898 0.65116 0.83333 1.00000 0.76911 0.62068 0.55883 0.64000 

Table 8.22 : Transition matrix for L. w ·ens in compartment A8 Andrew's Wood, I 993 . A.= 1.22. 



s Sd1(e) Sd1cl) I<•> Io> J,., J(I) AI A2 A3 A4 sum 

s 0.43990 0.09845 0.05607 0.00082 0.00225 0.59749 

Sd1(e) 0.04474 0.04474 

Sd10, 

J(e) 0.03426 0.01079 0.04505 

I (I) 

J (e) 0.02131 0.01449 0.01922 0.00491 0.05993 

N 
V. 

J (I) 

A1 0.05727 0.01947 0.02583 0.05502 0.01660 0.001 13 0.00018 0.00003 0.17553 

A2 0.06046 0.01235 0.07281 

A3 0.00127 0.00028 0.00009 0.00164 

A4 0.00199 0.00037 0.00046 0.00282 

Table 8.23 : Elasticity matrix for L . urens in compartment AS Andrew's Wood, 1993. 



s Sd1(e) Sdl(l> I(e) I (I) J(e) J(l) Al A2 A3 A4 

s 0.89400 1000.00 4000.00 1000.00 4000.00 

Sd1(e) 0.00079 

Sdl0> 0.00061 

l(e) 0.00038 0.07260 

1(1) 0.00035 0.18947 

J(e) 0.00023 0.09368 0.54794 0.16667 

IV 
Vl 
IV J(l) 0.00013 0.29474 0.60870 

AI 0.00007 0.00468 0.02740 0.04762 0.25424 0.11538 0.24000 0.11765 

A2 0.08475 0.19231 0.12000 0.00000 

A3 0.10169 0.23077 0.32000 0.17647 

A4 0.06780 0.15385 0.12000 0.47059 

Die 0.10000 0.82904 0.51579 0.42466 0.39130 0.78571 1.00000 0.46152 0.6923 1 0.20000 0.23529 

Table 8.24 : Transition matrix for L. urens in compartment A8 Andrew's Wood, 1994. A.= 1.40. 



s SdJ(e) Sdl<l) I(e) Io> J(e) J(l) Al A2 A3 A4 sum 

s 0.30898 0.08405 0.03500 0.01087 0.04365 0.48255 

SdJ(e) 0.03621 0.03621 

Sdl0> 

I( e) 0.02784 0.00845 0.03629 

I (I) 

J(e) 0.01777 0.01213 0.01584 0.00620 0.05194 

N 
V. 
w 

J(l) 

AI 0.09175 0.01564 0.02045 0.04573 0.04052 0.00153 0.00495 0.00195 0.22252 

A2 0.040 12 0.00758 0.00735 0.05505 

A3 0.02278 0.00431 0.00928 0.00411 0.04048 

A4 0.03505 0.00662 0.00803 0.02527 0.09497 

Table 8.25 : Elasticity matrix for L. urens in compartment A8 Andrew's Wood, 1994. 



8.4 Discussion 

Gem1ination and establishment were the critical phases of the life history of L. w-ens at 

Andrew's Wood and Redlake throughout the study period. Many species are known to have a 

poor establishment rate. For example, of the 10000-20000 Taraxacum achenes dispersed per 

square metre, only 0.5% establish successfully (Hofsten, cited in Sheldon, 1974). The 

gemlination and establishment of L. urens were consistently poor. In the ungrazed area of 

compartment D, only two seedlings established from an approximated source of 160000 

(0.0013%) and even in the adjacent grazed quadrats where 240 genninated, only eight (0.005%) 

made it to adulthood. Thus, it was important to look at establishment from seed in detail. 

However, as L. w-ens is a perennial species, analyses of the adult stage had to encompass annual 

transitions. Hence the life history phases of L. w·ens were observed at two scales and this 

resulted in a novel two-tiered population matrix. 

Matrix analysis can be used to predict the future of populations (Bierzychudek, 1982; Manders, 

1987; Menges, 1992) but a major assumption of such models is that transition rates remain 

constant year after year. This assumption did not hold true for L. urens. The innuences of 

temporal changes in the environment on the transition rates of L. w·ens were less apparent than 

in studies of some species (Moloney, 1988; Svensson et al., 1993, section 6.4.2) but there were 

annual variations in the transitions of both immature and adult plants. For example, in the 

grazed areas of compartment D, more individuals moved from seed to seedling in 1993 than in 

1994 and more adults moved from classes one and two to higher classes in 1994 than in 1993 

(Tables 8.11 & 8.13). In maintaining constant transitions, the matrix model implies that there 

are no effects of density on population growth. Ultimately this cannot be true, as populations 

do not continue to grow at a constant rate unregulated (Waite, 1984). In the light of this 

unfounded assumption, transition matrix models did not provide realistic projections of the long­

tern! population future of L. urens. However, there is no doubt about the general usefulness of 

matrix models as indicators of current demographic trends, even of plant species with quite 

complex life histories (Huenneke & Marks, 1987; van Groenendael & Slim, 1988; Charron & 
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Gagnon, 1991). Large data sets can be condensed and evaluated by the means of a few key 

demographic parameters that are easily calculated from the model. 

A population matrix allows demographic data to be represented in a standard fonnat (Silvertown 

et al., 1993). Thus, comparisons can be drawn between studies and species. The population 

growth rates of L. wr:ns were above the maximum rates of perennial herbs from stable 

woodland environments e.g. Panax quinquefoliwn, 'J... = 1.19 (Charron & Gagnon, 1991 ), 

Chamaelinwn luteum, 'J... = 1.06 (Meagher, 1982) and A risaema serratum, 'J... = 0.99 (Kinoshita, 

1987). The 'J... values for L. urens were more similar to those of herbaceous species from less 

stable grassy habitats, however, these have produced extremely variable values of 1..: 0.58-1.81 

for Pedicularis furbishiae (Menges, 1990); 0.28-2.61 for Dipsacus sylvestris (Wemer & Caswell, 

1977) and 0.60-1.43 for Danthonia sericea (Moloney, 1988). It would appear that this 

variability is associated with open habitats and ruderal species. 

Reproduction and survival made equivalent contributions to the ). of L. urens throughout 

Andrew's Wood (Tables 8.7 & 8.9). A similar trend was found in some herbaceous perennials 

(De Kroon et al., 1986) but not in climax-forest species A risaematriphyllum (Biezychudek, 

1982) or the tropical savanna grass A ndropogon sem iberbis (Silva et al., 1991) where survival 

contributed much more. It has been suggested that a relatively high elasticity value for 

fecundity might be more typical of fugitive species, whilst the emphasis lies on growth and 

survival for long-lived slow growing plants (Sarukluin & Gadgil, 1974: Caswell, 1986: 

Silvertown et al., 1993 ). 

L. urens may be essentially a ruderal species that adopts a perennial life cycle in Britain. Life 

history theory has demonstrated that iteroparity may evolve in response to environmental stress 

(Cohen, 1966; Ellner, 1985a; b; Venables & Brown, 1988). Annual mortalities were higher for 

immature classes (0.2-1.0 individual individuar') than for adult classes (0.0-0.65 individual 

individual·', Tables 8.5 & 8.7) but both were extremely variable. Chapter five suggests that this 
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high juvenile mortality may be specific to populations at the northern limit of L. urens' 

distribution. A similar phenomenon was suggested for the herbaceous forest perennial Panax 

quinquefolium (69-92%) at its northern distribution limit (Charron & Gagnon, 1991 ). Poor 

juvenile establishment favours the adoption of a perennial life fonn (Pavlovic, 1994 ). 

Confinnation of this in L. urens would require a study of the plant's demography towards the 

centre of its range. 

The large seed bank of L. urens dominates its population matrices. Seed donnancy is important 

to L. urens, as recruitment from seed is the life history phase most vulnerable to environmental 

variability and persistent seed is required to obtain sufficient micro-sites after a period 

unsuitable for reproduction (Pavlovic, 1994). Adult longevity and seed donnancy are viewed as 

alternative ways of dealing with environmental uncertainty (V enables & Brown, 1988) and there 

is often a negative relationship between them (Rees, 1994 ). With a long tenn seed bank, L. 

m·ens can persist through unfavourable times. Thus the requirement for adult longevity would 

generally be less critical. The coexistence of both dormancy and adult longevity as life history 

characters in the British populations of L. urens may also compensate for poor juvenile 

establishment. 

lt is of interest that the compartments of Andrew's Wood whose analyses reached equilibrium 

were growing at such similar rates, whilst the life cycles of the other sub-populations were 

incomplete; there were no intennediate declining sub-populations. Although two successive 

transition matrices can be enough to make preliminary analyses (Menges, 1986), they arc 

inadequate to assess how variable life history parameters are in time (Menges, 1990). 

Within Andrew's Wood, sub-populations with incomplete life cycles and sub-populations which 

are increasing in size coexist. The extent and timing of emergence from seed and the density of 

plants within each compartment fluctuated separately (Figures 4.8 & 6.1 b). The sub-populations 

of the three compartments may have been functioning as n metapopulation (Levins, 1969; 
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Figure 8.5: Life cycle graph showing elasticity of transitions between classes in grazed areas of compartment D, Andrew's Wood. Size of arrow head denotes importance to A.. 



N 
V. 
00 

Figure 8 .6: Life cycle graph showing elasticity of transitions between classes in ungrazed areas of compartments C & D, Andrew's Wood. Size of arrow head denotes 
importance to A.. 



Figure 8.7: Life cycle graph showing elasticity of transitions between classes at Redlake. Size of arrow head denotes importance to A.. 



Bleich et al., 1990; see Hanski & Gilpin for a review; Perry & Gonzalez-Andujar, 1993; Doak 

& Mills, 1994; Hanski & Thomas, 1994). Seed may have dispersed among the compartments, 

especially between C and D, which were divided by a single line of trees (Figure 3.3 ). 

Exchange of seed between CorD and A8 was less likely, as AS was separated by a substantial 

expanse of unsuitable habitat (Figure 3.3), although it is improbable that A8 was genetically 

isolated. The metapopulation alTects population persistence through dispersal (Schemske et al., 

1994). Over the study period, the sub-population in compartment C was in decline and could 

have acted as a sink, receiving seed from the fecund plants of compartment D to subsidise the 

poor perfonuance of its own adults. This theory of the spatial functioning of a metapopulation 

is less applicable to L. urens, due to its high fecundity (irrespective of plant size) and persistent 

seed bank. The potential for recruitment is dispersed temporally and remains throughout 

population decline, limited by micro-site availability and not by seed number (sections 4.4 & 

5.4). 

The population matrices revealed conspicuous differences in the demography of L. urens with 

grazing management (Figures 8.5 - 8.7). The sub-population within the grazed area of 

compartment D, Andrew's Wood was growing rapidly, whilst the ungrazed areas and Redlake 

showed incomplete life cycles (Figures 8.5 & 8. 7). Although herbivore exclusion increased the 

size of both the vegetative and reproductive structures of adult plants, which, in turn, improved 

fecundity and longevity (Figure 8.6; section 6.3), the disturbance of winter grazing was required 

for regeneration from seed (Figures 8.5 - 8.7). The proportion of adult deaths was similar at 

both the areas grazed through until spring at Redlake and the winter grazed areas of Andrew's 

Wood (Tables 8.10, 8.15 & 8.17). Although spring grazing facilitated seedling emergence, it 

did not bring the benefits to establishment provided by winter grazing (section 6.4.2, Table 8.10 

& Figure 8.7). 

Population matrices provided a framework for the organisation of data in the research. 

lnfonuation derived from demographic studies, controlled laboratory experiments and garden 

260 



studies was brought together in these matrix analyses. The matrices played a descriptive role; 

rather than modelling future population dynamics, they were used to detenuine the life history 

characters important to the regulation of population numbers. The variation in matrix transitions 

with grazing management was also considered. Such knowledge of the demography and life 

cycle patterns of a rare species is essential for making informed conservation management 

descions (Usher, 1972; Menges, 1986; Manders, 1987). 
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,-4'e~ 
NINE ~ 
The implications for conservation management 

9.1 Difficulties with the design :md analysis of demognq>hic studies 

Demographic monitoring of plant species is an essential component of effective species 

management programmes (Harper, 1977; Davy & Jefferies, 1981; Harvey, 1985; Menges, 1986; 

Travis & Sutter, 1986; Hutchings, 1990; Lessica, 1992; Primack, 1993; Given, 1994). Yet 

demographic studies yield vast amounts of data, which can be of a complex fonn and very 

diflicult to analyse statistically (Owen & Roscntreter, 1992). This research aimed to investigate 

the life cycle characteristics of L. urens. Careful consideration was given to the logistical and 

statistical designs of the experiments and monitoring programmes before the studies began. 

However, the data were often less amenable than expected. For example, the emergence of 

seedlings was monitored over an area of 25 m2 for two years and the fate of almost 1000 

individuals was followed. This allowed both temporal and spatial comparisons of the numbers 

of seedlings emerging. Of those 1000 individuals followed through 1993-1995, nineteen 

reached adulthood. Such a low rate of establishment could not have been predicted, but as a 

result there were insufficient individuals to compare the probability of survivorship either 

temporally or spatially within Andrew's Wood. This made the analyses of survivorship very 

difficult, as years and sub-populations had to be combined, despite evidence from precedent 

studies of variation in life cycle characters over space and time (Wemer & Caswell, 1977; 

Bierzychudek, 1982; Pifiero et al., 1984; van Groenendael & Slim, 1988; Moloney, 1988; 

Charron & Gagnon, 1991; Bullock et al., 1994). A second example of a difliculty with analyses 

was experienced with the experimental seed bed, even though the goals of the experiment had 

been clearly and concisely outlined and the statistical analyses considered before the study was 

initiated (section 4.2.3). The unexpected micro-habitat specificity of L. urens produced 

binomially distributed data and thus analyses of interactions between the micro-habitat factors 
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could not be carried out using a nested parametric ANOVA as intended. 

Experimental studies need to be designed very carefully if they are to provide the necessary data 

(Travis & Sutter, 1986; Owen & Rosentreter, 1992). The design of monitoring programmes for 

rare plants also requires an acute awareness of the problems posed by small population size 

(Travis & Sutter, 1986). More importantly, despite care with experimental design the data will 

never be straightfonvard and a sound statistical knowledge and careful interpretation must 

always be employed. 

9.2 The 11rcscnt stntus of L. ure11s 

L. urens has always been rare in Britain as it is at the edge of its range and is restricted to a 

narrow band along the south coast of England (section 2.2). Results have suggested that this 

northern limit to its distribution is enforced by a number of life critical low temperature limits, 

including the minimum temperature requirements for flowering and seed ripening (section 

6.4.2), gennination (section 4.4) and establishment (section 5.4). The intolerance of seedlings to 

frost is at least partly responsible for enforcing the northern distributional limit of L. urens 

(section 4.4). However, the range extends to the Pyrenees and the Spanish Monte de Toledo 

(section 1.4.1 ), where winter temperatures are well below those of southern Britain (Pearce & 

Smith, 1984 ). The short growing season and low summer temperatures are more likely to 

combine to limit the establishment and the growth rate at the northern edge of its range. Thus 

seedlings do not reach the size necessary to withstand the low temperatures of winter and only 

those seedlings that genninate very early in spring have a chance of survival (section 5.4). 

Although L. urens in rare in Britain, the highest priority in consen•ation is given to those 

species that are rare and endangered throughout all of their geographical range, since they 

provide particularly important components of the overall genetic diversity of the world's biota 

(Morse & Henifin, 1981 ). There has not been a study of the present distribution of L. urens in 
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continental Europe but the plant is not thought to be endangered at the centre of its range 

(Daniels, personal communication). The next level of concern is accorded to conservation of 

sub-species and geographically distinct varieties of plants, since these reflect major aspects of 

the genetic variation within the species but contribute less to the overall genetic diversity 

(Morse & Henifin, 1981). The British populations of L. urens may well be genetically distinct 

from Europe; the two have been separated by the North Sea for 8 to 12 000 years (Birks, 1989). 

Genetically divergent British populations would be of a higher conservation value following the 

definitions of Morse & Henifin (1981 ). More importantly perhaps, if L. urens is abundant at the 

centre of its range the species status, or even its extinction in Britain is of little importance. 

9.3 The threat of extinction 

Conservationists do not aim to increase the abundance and distribution of naturally rare species 

(Morse & Henifin, 1981 ), since rarity itself is an endearing quality (Harper, 1981 ). However, 

the British populations of L. w·ens are threatened by human activity. The plant occupies the 

wetlands of lowland agricultural areas, where the pressures of change in land use are greatest 

(Hodgson, 1986). Successional displacement of the present sites has been rapid; ten indigenous 

populations have been lost this century, seven of which were a direct result of change in land 

use (section 2.2). 

Whilst habitat loss is certainly the major cause of the modem extinctions, the probability of 

extinction is accentuated by factors that limit the resilience of populations. Where L. w·ens 

persists, recruitment is nonnally low (section 4.3) and is not regulated by the availability of seed 

(section 7.3): the spatial dispersal of seed locally is adequate and is assisted by temporal 

dispersal in the seed bank (section 7.3). Instead, the gennination of seed is impeded by its high 

temperature requirement (section 4.4). At the average British spring and summer time 

temperatures, only 10-20% of the available seeds genninate. Gennination is also light-requiring 

and thus is inhibited by the shade from dead and living plant material (section 4.4). The 
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establishment phase is also restricted, with less than 3% of the seedlings moving from 

gem1ination through to adulthood (section 5.3). 

The requirements for gennination and establishment were rarely met throughout the study and 

thus these were the major limiting stages of the populations in the South West. Nevertheless, a 

huge potential for recruitment from the seed bank has been demonstrated in the past (section 

2.2). Furthennore, young plants were capable of rapid growth and had a short juvenile period 

coupled with high fecundity in their first year (sections 5.4 & 6.4.2). These life history 

characters allowed very nipid increases in the size of L. urens populations. Between 1975 and 

1976, the population at Andrew's Wood increased by over 2000 plants, and between 1983 and 

1984 numbers fell by a similar amplitude (Table 2.1). Stochasticity generally increases the 

vulnerability of a population to extinction (SchafTer, 1981 ), yet despite being the cause of these 

fluctuations in the numbers of L. urens plants above ground, the long-tenn seed bank increases 

the population's tenacity. A bank of seed acts as a butTer for a population, dampening 

oscillations of the total population size, that is the size including individuals in the bank, and 

increases persistence (Kalisz & McPeek, 1992). 

L. urens displayed a high level of self-compatibility (section 6.4.2) and this may partly explain 

the reduced seedling success. The prevalence of self-fertilization in L. w·ens remains 

unquantified but frequent self-mating can result in genetic unifonn ity within a population. 

Populations which lack genetic diversity may experience problems such as low fertility or high 

mortality among ofTspring (Lcwis, 1979; Charlcsworth & Charlesworth, 1987; Kohn, 1988; 

Hunter, 1996 ). The theories behind this expression of low fitness include that of heterosis, that 

heterozygotes arc more resistant to disease, grow faster and survive longer than homozygotes 

(Packer, 1979; Lcdig, 1986) and the thcOI)' closely linked to evolutionary potential which states 

heterozgeneous populations are better able to survive in unpredictable environments because of 

the variation among individuals (Williams, 1966; Allendorf & Leary, 1986). 
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L. w-ens is a long-lived species. The adult stages of L. urens consist of a number of basal 

rosettes which fom1 through late autumn to early spring (section 1.1.2). A storage rhizome 

pennits precocious growth early in the season, which is important at the northern limits of its 

European distribution, where the growing season is shorter. An early start also gives a 

competitive advantage through the securing of nutrients and water before conspecifics have 

produced any roots (Svensson et al., 1993). Flowering takes place from June to September and 

spikes are tall (section 1.1.2). The potential fecundity of L. urens was invariably high across 

compartments and treatments at the two reserves in southwest England (section 6.4.2). 

Although recruitment requires gaps in the established vegetation, the growth fom1 and 

phenology allow the adult stages a wider environmental tolerance. Mature plants are able to 

withstand the dense, high summer swards and encroaching scrub of the associated plant 

community. The larger plants common in the ungrazed habitats showed improved fecundity and 

probability of survival (section 6.4). 

In addition to the limits of demographic factors on the resilience of populations, the British 

populations of L. w·ens will be particularly vulnerable if there is little genetic variation within 

them. This is first because genetic variation is imperative for evolutionary adaptation to a 

changing environment (Hunter, 1996); second, there are many examples of genetic variation 

assays on rare and endangered plant populations that show a weak correlation with measures of 

population size or reproductive success (Fiedler and Jain, 1992). Thus, maintaining population 

numbers and genetic variation must be a central theme of plans for long-tenn population 

management (Lande & Barrowclough, 1987). In Britain, populations of L. w·ens may be prone 

to a paucity of genetic variation since plant populations whose numbers fluctuate from year to 

year with short periods of low population numbers, show significantly reduced genetic variation 

(Crow, 1986). However, recent work has shown the larger populations of Flimwell and 

Andrew's Wood to be genetically diverse (Daniels, unpublished). The population at Flimwcll 

fell to five plants in 1983 and by 1993 had risen to 2000 plants (Table 2.1). In 1994, there was 

more diversity in the population than could have originated from five individuals (Daniels, 
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personal communication). The seed bank embodies a reserve of genetic variability and hence 

protects that population from the consequences of homozygosity (section 7.1; Gottlieb, 1974; 

Baskin & Baskin, 1978; Baker, 1989; Levin, 1990; McGraw, 1993) 

Integrated monitoring prograntmes which combine genetic, demographic and experimental 

investigations for a single rare species are infrequent. Such studies contribute towards a 

complete understanding of the biology of a rare species and are most useful as a basis for 

conservation management (Davy & Jefferies, 1981; Lande, 1988). This research has shown that 

the British populations of L. urens have been severely depleted in recent history through change 

in land use (section 2.2). Populations move rapidly between vigorous growth and unsustaining 

phases but the seed bank offers protection from stochastic extinction. Hence the probability of 

the extinction of the remaining populations from demographic or genetic causes is low. Three 

of the remaining six sites for L. urens are managed specifically for nature conservation (section 

2.2). The populations here could be stabilized further by the prescription of suitable 

management to improve the perfonnance of individual plants and influence their probability of 

entering different life cycle stages. 

9.4 Conscn•ation m:magcmcnt 

At one time, preservation of plants consisted of measures to protect them from physical 

disturbance, with timber harvests and livestock grazing being excluded and fire suppressed 

(Hobbs & Huenneke, 1992). An oft quoted example of this practice is that of Ranunculus 

ophioglossifolius at Badgeworth Fen. In 1933, the whole marsh was full of flowering plants 

and a tall barbed wire fence was erected to protect the plant. For the following thirty years 

there were virtually no plants within the enclosure (Frost, 1981 ). Ecologists and 

conservationists have since come to recognize the need to maintain particular intensities and 

frequencies of disturbance in areas where it has long been a component of the ecosystem (Platt, 

1975; Crawford & Liddle, 1977; Grubb, 1977; Pickett & White, 1985; Klinkhamer & De Jong, 
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1988; Dolman & Sutherland, 1991; 1992; Hobbs & Huenneke, 1992). Habitat specificity is a 

common cause of rarity (Harper, 1981; Diamond, 1984; Peters, 1988) and many rare plants 

require active management in order to stabilize or enlarge protected populations (Connell, 1978; 

Pickett & White, 1985; Petraitis et al., 1989; Hobbs & Huenneke, 1992; Pavlik & Manning, 

1993). 

L. urens is rare partly because of its restrictive ecological requirements. Genu ination and 

establishment are only reasonably successful following large scale disturbance whilst 

undisturbed habitats are more favourable for adult plants. Populations of the rhizomatous 

perennial herb Hieracium pi lose/la also produced larger adult plants and a concomitant reduction 

in recruitment in ungrazed areas (Bishop et al., 1978). H. pilose/la populations were prone to 

extinction on the loss of mature plants through over-grazing, as young plants had a poor 

reproductive capacity (Bishop et al., 1978). However, L. urens populations would be more 

resilient to this situation, as young plants are capable of rapid growth coupled with high 

fecundity, even in their first year. 

In Britain, L. urens is found in habitats which have a history of intennittent soil disturbance 

(section 2. 7) and probably depended upon the natural habitats of woodland clearings caused by 

fire and wind. The plant exploited the traditional agricultural and forestry practices of rough 

grazing and coppice, opportunistically, but it is not suited to the intensive management of 

annual ploughing, drainage, fertilization and improvement (section 2.7). Today. L. w·ens is 

confined to mesic grasslands which rely on disturbance to control the invasion of trees and 

shrubs (Smart et al., 1985). 

Soil disturbance is as much a traditional part of grass-heath management as coppicing is for 

many ancient woodlands or haymaking for meadows (Dolman & Sutherland. 1991). Soil 

disturbance perfonns numerous functions that facilitate the gennination and establishment 

phases of L. rn·ens (sections 4.4 & 5.4), it: 
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(i) provides gaps in established vegetation and incorporates litter into the soil, both of which 

improve the light environment at the soil surface; 

(ii) creates depressions in the soil surface and promotes the open conditions favoured by moss 

which help to protect against soil moisture loss; 

(iii) brings seed out of the bank. Donnancy in the seed bank is enforced by a requirement for 

light and not for fluctuating temperatures as in many wetland species. Seed must be brought to 

the surface to genn in ate. 

Disruption of the soil is still less acceptable than mowing or coppicing and many nature reserves 

remain overprotected from this management. This research has identified the need for 

disturbance, but throughout, habitats have been characterised as grazed or ungrazed. This was 

an obvious oversimplification, which has made it difficult to ascertain the intensity and 

frequency of disturbance required. One of the most deeply held conservation beliefs is that 

traditional management should be continued or reinstated wherever possible (Shirt, 1987: Steel 

& Mills, 1988; Warren, 1993), since the total diversity of native species at the landscape level 

will be greatest when disturbance occurs at its historic frequency in the historical pattern (Hobbs 

& Huenneke, 1992). A knowledge of the history of a habitat (section 2.2) lends an insight into 

the requirements of a community (Dolman & Sutherland, 1991 ). However, the management 

chosen should depend on the aims for the site and not solely on tradition (Ham bier & Speight, 

1995). Often, it is not necessary to mimic the exact historic procedure to achieve similar 

efTects. For example, Breckland heath has been highly disturbed since Neolithic times by 

shifting ephemeral agriculture, turf stripping and rabbit warrening and these practices were a 

massive drain on the nutrients of the heath (Dolman & Sutherland, 1991 ). Dolman & 

Sutherland (1992) showed how rotovation mimicked the nutrient removal process without 

reinstating the traditional agricultural practices. 

Domestic cattle and horses are often used to maintain species diversity in Europe (Frost, 1981; 

van Wieren, 1991; Berendse el al., 1992). Mowing is often suggested as an alternative, but it 
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presents an interesting contrast to grazing management. Although mowing can reduce the 

growth of competitive dominant grasses, it does not create openings for the recruitment of 

seedlings as grazing does (Rizand et al., 1989; Sykora et al., 1990; van der Bos & Bakker, 

1990). Mowing at Redlake has been accompanied by reapplying the cut vegetation as a mulch 

later in the year (Cornwall Wildlife Trust 1989 Management Plan, unpublished). This would 

inhibit the recruitment of L. urens from seed. On grass-heath, grazing really is the only viable 

long-term management option (Dolman & Land, 1995). Furthermore, grazing is much less 

expensive, especially in rough habitats such as Redlake and Andrew's Wood, where mowing is 

very labour intensive, as it has to be done with a brush-cutter. 

The amount of disturbance inflicted on a community by the grazing animal depends largely 

upon its identity. Native breeds of moorland ponies (Plate 8.1a) are often available for the 

grazing of local nature reserves in Devon and Cornwall. Ponies can be very selective grazers. 

The Exmoor ponies introduced to Redlake in the winter of 1993-4 did not browse the ubiquitous 

Betula pubescens scrub. Hence, the openings created by their trampling were still shaded and 

re-encroachment of these gaps was rapid. Furthermore, ponies usually repeatedly drop their 

dung in the same area, causing problems of local nutrient enrichment. These regular dunging 

areas are also avoided by grazing ponies, with the result that they often develop stands of rank, 

unpalatable vegetation such as nettles, thistles and ragwort (Ausden & Treweek, 1995). Cattle 

would be preferred for disturbing the habitats of L. urens since they provide heavy trampling 

and are able to consume coarse vegetation (Spedding, 1971; Dolman & Land, 1995). However, 

the behaviour of cattle varies to some extent between breeds, and particularly between different 

ages (Ausden & Treweek, 1995). A herd of mature milking Jerseys (Plate 8.lb) were used to 

graze Andrew's Wood throughout 1992-1995. These animals are particularly unsuitable since 

they are both light (section 6.4.1) and sedate, thus providing minimal poaching. Young 

fattening animals, especially bullocks (Plate 8.Ic), are more excitable and therefore provide an 

increased intensity of trampling. Although the restrictions caused by the availability of graziers, 

especially to wildlife trusts (Rush & Scott, reserves officers, personal communication) 
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(a) (c) 

Plate 9.1 : Grazing animals (a) Dartmoor ponies, (b) Guernsey milking herd and (c) Friesian bullocks. 
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is appreciated, every effort must be made to obtain the most suitable animals, since their 

effectiveness at breaking up the sward is so variable. This may require paying a nominal sum 

to the grazier to compensate for the poor grazing provided for the animals or, where funds are 

available, the purchase of specific animals by the managing body. 

Despite being the most useful animal, cattle tend to stay in the raised drier areas of wet fields 

leaving the waterlogged areas significantly less disturbed (personal observation). The suggested 

method of increasing the intensity of soil disturbance in the wetter communities of Andrew's 

Wood and Redlake is to force the stock to run around these areas. The pressure exerted on the 

soil by a galloping cow may reach 0.50 MPa whilst a standing cow creates a pressure in the 

order of 0.13 MPa (Scholefield & Hall, 1985). This increase in pressure caused by the animal 

forcing its weight upon a single hoof, greatly increases the amount of soil defonnation 

(Scholefield et al., 1985). An hour of such trampling may result in more soil disturbance than 

several weeks of conventional stocking. 

For rare plants with specialised adaptations to natural disturbance regimes, variation in the scale 

of disturbance can be critical in detennining their population viability (Smart et al., 1985). L. 

w·ens is well adapted for occasional, but very large scale soil disturbance. Such events recruit 

dense populations from the buried seed bank and provide large, lasting, open spaces for 

establishment. They do not need to be frequent, since adult plants arc long-lived and able to 

tolerate dense communities and the buried seed bank is persistent. The most advantageous 

frequency of the disturbance events will be revealed by the ongoing long-tenu annual census. 

However, it is suspected that the populations of L. urens will grow most vigorously on a fairly 

short cycle of three to five years. 

The time of year at which disturbance occurs was seen to be important to Genticma 

pneumonathe because of the increased severity of the effects of fire in drier summer periods 

(Chapman et al., 1989). Similarly, winter grazing results in most poaching as the ground is 
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wettest. Winter grazing of cattle is also effective in controlling Molinia caenliea as dead litter 

and rank grass are eaten (Dolman & Land, 1995). To promote the recruitment of L. urens, 

poaching must be of sufficient intensity to maintain open spaces throughout spring as spring 

grazing is not recommended. Grazing throughout October 1993 to May 1994 at Redlake 

resulted in the loss of the whole of the spring cohort, as well as a large nu m her of established 

adults. Spring grazing encouraged the gem1ination of seed too late for the plants to become 

established before winter. 

The importance of a high soil moisture content was suggested through community analyses 

(section 2. 7). Both field and laboratory studies con finned the recruitment of L. m·ens from seed 

to be very sensitive to micro-habitat, particularly factors affecting soil moisture status. 

Emergence was facilitated by the presence of moss and depressions at the soil surface (section 

4.3). Experiments showed that gennination was little impaired in seeds submerged in water 

(section 4.3.1) and both field and glasshouse studies showed a significant improvement in 

establishment with soil watcrlogging (section 5.3). The water table of the existing sites of L. 

urens must not be allowed to fall with the drainage of the surrounding agricultural land. The 

recent management plans of both Redlake and Andrew's Wood have featured the clearance of 

ditches to improve the drainage. The drains in compartment C of Andrew's Wood and those 

crossing the fields of Redlakc should be filled to raise the soil moisture content. This would 

assist regeneration in this declining population and sub-population. 

This work has provided clear evidence that raising the water table of Redlake and some areas in 

Andrew's Wood combined with rotational heavy winter grazing would be beneficial to the 

restoration and conservation of the typical grass-heath on which L. urens depends. The spatial 

heterogeneity of the seed bank must be considered in the management of L. rtrens. A 

knowledge of the fanner positions of plants m ay be necessary to locate the areas where soil 

disturbance might bring seed out of the bank. Care must be taken, since disturbance presents a 

conundrum to conservation management by promoting invasibility of communities by non-native 
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and weedy plant species (Ewel, 1986; Hobbs, 1989 ;1991; Rejmanek, 1989; Hobbs & Huenneke, 

1992): for example Cirsium vulgare is suited to very similar conditions to L. urens (Silvertown 

& Smith, 1989). However, soil disturbance does not necessarily increase the rate of invasion 

and some plant communities are more susceptible than others (Hobbs & Atkins, 1988). A 

primary aim of the management of the wet grassy-heath at both Redlake and Andrew's Wood is 

to increase the populations of L. urens, but the main objective is to conserve the wide range of 

habitats and biota present at these reserves (unpublished management plans). Recommendations 

derived from this research for changes in management plans must be confirmed by trial 

(Harvey, 1985; Burgman et al., 1993; Hambler & Speight, 1995). Morris and Plant (1983) and 

Ausden & Treweek (1995) both advocate rotational management, which allows disturbance 

regimes to be tested and provides refuge for those organisms which do not appreciate the 

prescribed management. 
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