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EROSION AND ELECTRODE ENERGY DISTRIBUTION IN SWITCHES WITH Ag Cd-0 CONTACT 

by 

HASSAN NOURI 

ABSTRACT 

The cathode and the anode fall of the DC arcs are measured by fast oscilloscope 
for Ag-CdO contacts over a range of gap-lengths from 0.05 mm to 1 mm, and 
currents of 4-10 Amps at atmospheric pressure, with a known electrode closing 
speed, using the Moving Electrode Method. 
It was observed that the anode fall can occur in a few places within the arc 
voltage waveform, and is dependent o~ the elec·trodes' surface condition. · Both 
cathode and anode falls increase with gap-length and decrease with current. 
It was found that when arc length is shorter than electrode separation, 
discontinuity within the arc voltage waveform during closure is _; ·--- caused, in 
many cases, by vapourisation of the first point of contact or.by a high electric 
field set up between the two electrodes. These discontinuities are named as 
Voltage Step Phenomena. These voltage steps are related to the cathode and 
anode fall voltages, and their regular occurrences are a function of surface 
roughness. 
The fluctuations in the arc voltage waveform are thought to originate mainly 
from the cathode. 
A technique has been developed to measure the temperature of the electrodes 
accurately by using a T-type thermocouple, 0.075 mm diameter, in conjunction 
with a DC amplifier with a gain of 247. 
The thermocouple is placed as close as possible under the electrode surface 
(200 11m). This enables the temperature of the contact to be measured, after 
breaking contact, for an arc-duration even as short as 1ms. 
The time-constant of the probe (contact containing the thermocouple) is measured 
to be approximately 18ms. With this technique the temperature of the electrodes 
are measured for currents and gap-lengths ranging 4-10 Amps and 0.05-1 mm 
respectively. 
The effect of contacts being new and change of polarity have been investigated. 
From these results it is concluded that the co-existence of layers of foreign 
material on one, or both, surfaces causes the temperature of the electrodes to 
be high for the first 50-100 operations, before reaching to steady-state 
conditions. Change of polarity suggests that the moving electrode, either anode 
or cathode, due to the effect of air movement over its surface, is cooled 
relative to when fixed. 
The power transfer to the electrodes is calculated for various currents and 
gap-length using thermal analogue formulae derived from the transient response 
of an RC circuit to a d.c. pulse. 
The results show that below 0.2 mm the sum of the anode and cathode power is 
approximately equal to the arc power, and hence losses are negligible. At 
around 0.125 mm, for currents of about 6A and 12A, they both receive an equal 
amount of power from the arc. This has been related to the thermal energy of 
the electrons being negligible, at such separation, at the anode end of the 
plasma column. 
The power balance equations are solved to calculate the positive ion current to 
the cathode, and the thermal energy of the electrons in the plasma column, under 
various test conditions. 
In the investigation of erosion, the S.E.M. studies show that most of the power 
dissipated on the surface of the electrodes is used in melting and evaporation. 
The x-ray analysis shows that the melted metal is composed mostly of Silver. 
To operate the test rig and collect the generated data automatically, a 
computerised test system, with a mini data acquisition system, has been designed 
and constructed here. 
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Figure 1.1: Photograph of Typical Snap-Action Switch 
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CHAPTER ONE INTRODUCfiON 

Electrical contacts have been known since the beginning of the 18th century and 

have been used extensively for a wide range of applications. In 1803 Petroff (1) 

and then in 1812 Sir Humphrey Davy (2) were probably the first who successfully 

observed an arc between carbon electrodes, and In the beginning of the nineteenth 

century Mrs H. Ayrton (3) was possibly the first to establish a relationship between 

the arc characteristics. The purpose of all electrical contacts is to perform the three 

operations of breaking the circuit, making the circuit and maintaining the circuit. 

These operations may take place at intervals of milliseconds in some cases and in 

others as long as years. The electrical contacts can be classified in the three main 

groups, depending upon the magnitude of the voltage and current at which they 

operate. These groups are: 

(1 ) High f'ower Con 1-ae 1-S 

(2) Medium Powe-r Connu:ts 

(3) Low f'ow«.r (or'\~'IC~. -. 

The fundamental process of the arc behaviour and the physical phenomena which 

occur in electrical contacts are described in standard literature(4-10). 

The research described in this dissertation belongs to the third group above. 

The electrical contact under investigation is a typical snap-action switch used in 

temperature controlled equipment and is shown in figure (1 .1 ). These switches can 

be thought of as a topological variation of an electric contact which have found some 

specialised application in everyday life in domestic and commercial equipment. Since 

these switches must function reliably over a long period of time, especially for 

equipment which is designed to operate consistently, it is essential to increase their 

durability and reliability. For this reason, manufacturers are keen to optimise the 

performance of these switches for their own reputation through the consumers 

satisfaction. The unsuccessful operation of nearly all types of switches may be due 

to mechanical wear, chemical corrosion or electrical erosion. Of these, electrical 
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erosion is probably the most predominant factor, which is due to the amount of 

power being dissipated on each electrode during arcing (make or break). 

The repeated operations of the switches results in metal being transferred from 

one electrode to the other. This produces a pip and crater on the electrodes. 

The disfigurement of the electrode surface may cause a switch to operate defectively 

and this may distort a waveform or eventually even fail to conduct a current. This 

is a common problem in telecommunication devices. The pip may also lock into the 

crater and prevent the switch to break. 

In order to produce durable switches, a thorough understanding of the 

mechanisms underlining contact arcing is necessary. 

There has already been substantial research in this area. For example, M. Sato 

(11) has investigated the welding of electric contacts for various metal and alloys. 

He concluded that the characteristics of the contact arcin~ mostly depend upon the 

softening temperature, melting temperature, specific heat, minimum voltage and the 

current necessary for a stationary arc to exist. Germer (12) has calculated the 

amount of heat dissipation at the electrodes on closure from a temperature difference 

measured by thermocouples. He deduced a relationship between contact erosion and 

heat dissipation. H.W. Turner (13) et al suggested ways of reducing the temperature 

rise in the contactor. The factors examined included not only the temperature rise 

due to carrying a steady current, but also the effect of arcing due to frequent 

switching of the contactor. Recently, with the development of powerful computers, a 

number of theoretical investigations into the effect of arcing on electrodes have been 

published (14,15). In the last decade, due to rapid technological progress, some of 

the electromechanical switches which have been employed in specialised equipment 
-\\-

have been replaced by solid-state switches. A recent report byAEiectronic Engineer 

Journal (16) states that over 50% of the switch market has been taken over by 

solid-state switches. The report by the Electrical Research Association suggests that 

in spite of the strong demand for solid-state switches, cost and flexibility 

considerations dictate that electromechanical switches will share the market for the 
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foreseeable future. 

The switch model used for this research was especially built in the laboratory, 

and it has been described in section (3.3). It is similar to snap action switches in 

all functional aspects. The contacts were provided by RANCO Controls Ltd. of 

Plymouth, Devon. RANCO produces these switches at a rate of 200,000 per month 

for use in equipment requiring temperature control. These switches operate at 240 

volts, at a current of up to 16A, for an average life time of 15 years, assuming a 

nominal usage of about 10,000 operations per year. 

proportion of switches. 

This is typical of a very large 

Initial impetus for the present project arises from continuing and successful 

Industry, SERC and local Education Authority-funded research, which started in 1974 

with the collaboration of RANCO. The research has concentrated on the special 

properties of electric arcs which occur when switch contacts separate rapidly in 

snap-action switches controlling the temperature inside domestic refrigerators. 

Here the need is for a means of providing a condition under which the operating 

characteristics can be adjusted so that the net contact erosion can be significantly 

reduced, hence leading to a major advance in switch technology which may be 

important not only for referigerator switches, but also to the main research field of 

electrical interruption. Therefore, the project seeks to investigate the relationship 

between contact erosion and the energy dissipation due to arcing at the contacts. 

This arcing leads to the development of cathode and anode fall regions (Voltage drop) 

where power is developed to locally boil the contact material. Material transfer then 

occurs as a function of the polarity of the contacts and the energy dissipated at each 

contact surface, which in turn depends on the arc length and the current. 

Research to date (18) has shown that the direction of material transfer can be 

reversed depending on the arc length, current and contact geometry. Recently 

published arc length/voltage/current data (19) suggests that the critical contact 

separation for equal contact power dissipation could be less than 0.2mm. 

The initial approach to this investigation was to measure the anode and cathode 
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fall voltages for various currents and gap-lengths, using the method of Dickson and 

Von Engle(20), by drawing an arc and closing the contacts. Then to develop a 

technique to accurately measure the anode and cathode temperature rise during arcing, 

by placing a thermocouple of negligible thermal mass as close as possible under the 

electrode surface, before appreciable heat diffusion takes place. Because the duration 

of the arc is in the order of only 2 - 10 ms, the contact body does not reach , a 

steady temperature. · 

Next, from the above measured data, to devise a power balance relation between 

electrical and thermal power. The degree of the difference in the correlation 

between them indicates the erosion rate, which may enable one to optimise the 

performance of these switches, as used in domestic appliances. 
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CHAPTER TWO 

2.1 INTRODUCfiON 

There are some general properties of arc discharge phenomena which are 

applicable to snap-action switches. A detailed survey of these phenomena which are 

relevant to the present investigation is described in this chapter. 

2.2 THEORY OF ELECfRIC ARC 

An arc is defined as a discharge of electricity between two charged electrodes in 

a gas which is often called a space charge phenomenon. The term arc is only 

applied to a stable or quasi-stable discharge, and . it has been regarded as the ultimate 

form of discharge (Dark discharge to glow discharge) and it is characterised as a 

continuous discharge phenomenon. 

The process is derived from non-self sustaining discharge which relies for its 

maintenance upon external effects such as thermionic or non-thermionic emission to 

self-sustaining discharge in which the key mechanism for discharge formation is the 

magnitude of current through the gas, typically few tens of p.A. This is beyond the 

saturation value. 

The process involved in development of arc discharge has been discussed in 

several booksCl-3) and by several workers(4,5). A feature of the arc discharge 

which is of importance in electrical contacts is that it is not self-starting and must be 

initiated by separation of the contacts when carrying current or by approaching two 

charged electrodes. 

and 2.2.2. 

Each of these mechanisms will be discussed in sections 2.2.1 

It is well known that the occurance of the arc depends on various factors such 

as contact resistance, pressure, speed, contact metal, contact geometry, ambient gas, 

voltage, current and circuit components. 
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The laws governing the circuit components are Ohm's Law (electrical resistance), 

Lenz' Law (electromagnetic inductance) and, finally, capacitance. A detailed study 

on the effect of each of these circuit components has been discussed fully by 

G. Windred(S). 

Since the occurrence of the arc to a large extent depends on voltage and 

current, F. Llewllyn-Jones(l) suggests that in high power contacts there is always a 

sufficient voltage across the gap to cause ionisation and this is especially true in the 

D.C. case as opposed to A.C. where the arc may be broken at the instant when the 

current is zero. This is because the residual ionisation tends to disappear at the 

moment of zero crossing. However, at high current, the current density exceeds the 

minimum required for arc maintenance. 

The essential requirements for the arc maintenance are as follows: 

(I) Sufficient electron emission from the cathode 

(il) Sufficient gas ionisation. 

An arc may be regarded as a special form of discharge. It occurs in various 

types and has been classified as Short, Long and Transient Arcs. 

discussed in sections 2.2.3 - 2.2.5. 

2.2.1 THE ARC AT BREAK 

These are 

When the two electrodes with voltage and current which are greater than the 

minimum voltage (Vm) and minimum current (Im) are pulled apart with decreasing 

load the contact area diminishes and contact resistance increases. Consequently, an 

arc occurs in the gap. 

minimum current. 

The arc extinguishes as the current descends past the 

The minimum current is defined as the maximum current for a given voltage for 

which arc does not take place. The minimum voltage is defined as the voltage 

below which a current of any magnitude can be interrupted without arcing. 

Minimum votage and current are both functions of cathode materials and Vm in 
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general lies between 10-15 volts for most materials. The minimum arcing current is 

also found to be dependent on the shape of the contacts. 

The values of Im and Vm in normal atmosphere found by various observers 

(when electrode diamQ.tu > > diameter of cathode spot, which is the seat of electron 

emission) is given by Holm(6). In order to understand the processes of the arcing it 

is important to have knowledge about the formation and rupture of a Molten Metal 

Bridge. 

MOLTEN METAL BRIDGE: 

In general when two electrodes are at rest mechanically, the area of contact is 

very much smaller than the cross section of the electrodes(6), and as a result of the 

flow of current from one electrode to the other is constrained through the microscopic 

contact area. F. Llewellyn Jones(7) and Greenwood CS) give a detailed calculcation 

of constriction resistance for various shapes and for a random distribution of the 

microscopic contact spots. 

As the electrodes are opened with decreasing load, there is an elastic and plastic 

relaxation of the area of the contact. Thus there is no immediate jump from the 

contact resistance to infinite resistance. The voltage across the contacts increases 

during this period until it reaches a value >1 volt when the current is forced to now 

through one very small area where the current density is so high that melting of 

contact material occurs. This molten metal between the two electrodes is called the 

Molten Metal Bridge. 

However, further decrease in contact load will not interrupt the current now due 

to the Molten Metal Bridge, but continuous separation of the electrodes will draw out 

and lengthen the Bridge and so increases its resistance. Here, if the current is 

constant, the voltage across the bridge rises causing the temperature of the bridge 

(melting temperature) to reach the boiling temperature of the metal, when 

"'" consequently the bridge breaks (ruptures) and sets up A induced e.m.f. across the gap. 

As soon as this induced e.m.f. reaches the minimum arcing voltage a sufficient gas 
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ionisation will take place and thus an arc discharge will take place in the metal 

vapour. 

The spectroscopic studies by ThomasC9) of the arc with Pd contacts have shown 

that the characteristics of the arc produced in the atmospheric air are not appreciably 

different from those of the arc in a vacuum. This result supports the view that the 

arc is Initiated and maintained in metal vapour. 

However, if the pressure of the metal vapour is not too high the discharge 

mechanism is known as Short arc, and as the gap between the electrodes increases 

the situation exhibits a Long arc. Both Short and Long arcs are discussed in 

sections 2.2.3 and 2.2.4. 

The initiation and development of arc after rupture of the bridge has been 

studied by ~veral workers (9,10) by means of simultaneous oscillographic recording of 

the variations of contact voltage and of current. Llewellyn Jones and Cowburn (12) 

and Thomas(9) have also studied bridge rupture by means of time resolved 

spectroscopic measurements of the radiation emitted by the arc. 

In the study of molten metal bridges, Llewellyn Jones (7) has calculated the maximum 
-\ka. 

temperature of the bridge at rupture using A 1/;,8 theorem. Howeve, other 

researchersC13-15) suggest that if the electrodes are opened more rapidly, the 1/;,0 

relationship will no longer be valid. 

Koren et al(16) have introduced the life of bridging into three periods, which are 

Melting period, Stable period and, finally, Unstable period, where eventually the 

bridge ruptures. They suggest that during the Unstable period the voltage can rise 

as high as the arc voltage, at which time a short duration arc is formed and can 

drop to a value as low as the melting voltage where the bridge reforms. 

The occurrence of rebridging was first suggested by Jones(17) and confirmed by 

Slade(18) in oscillographic studies. This phenomenon was also studied by ThomasC19) 

by means of high speed photography in which he suggested that each new bridge is 

formed from a droplet of molten metal from the previous bridge which is on the 

surface of the electrodes. 

- 14 -



JenkinsC~O) has suggested that the number of rebridgings and their life times is 

dependent on the circuit parameters. 

The evidence linking boiling of bridge material with rupture was studied by 

Jones(17), Thomas(19) and Cowburn(21). 

Price and Llewellyn Jones(23), Thomas(22) and Cowburn(21 ), by high speed 

photographic studies, showed that a bridge breaks explosively and, as a result, the 

metal vapour and droplets of molten metal are present between the electrodes after 

the rupture of a bridge. 

Boddy and UtsumiC24) have related the cause of fluctuation of the arc voltage 

with metal vapour present after the rupture of a molten metal bridge. 

HoJm(6) has introduced the concept of Short and Long bridge. A bridge is 

called Long when its length and its diameter are equal and their rupture can be 
t ie.d~"\1. ~ ... (i'o.ca~ .. ~ .......... "'•o\1-) 

caused by boiling in the hottest section, but probably more mechanciallyl\ • A bridge 

is called Short when rupture occurs at a length small compared with its diameter. 

The rupture of such a bridge is not always accompanied by boiling or an arcC25). 

Nowadays it is customary to v.S~t- some knowledge of the arc properties in the design 

of switches. The arc properties are defined as V-1 characteristics and are outlined 

in the following: 

V-1 CHARACTERISTICS: 

These are curves in which the voltage of the arc is plotted against the current 

with the arc length as a parameter. V-1 characteristics have been published by 

several workers(26,27). Holm(6) produced a set of constant arc length curves at 

different voltages and currents, using silver electrodes in air. The observations refer 

to arcs shorter than 2mm and measurements were taken from an Ohmic circuit in 

which the arc was drawn at a rate slow enough to represent stationary conditions. 

At any point in time the velocity of the contact was 200mm/sec which has been 

suggested by Fink et aJ(29) as having a negligible effect on the arc characteristic. 

Aida(30) using Holm's arc voltage-current characteristics presented a general 
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- 16 -



formula for the arc duration at breaking operation of the contacts (gold, silver, 

copper, carbon and tungsten) as a function of arc voltage, current and breaking 

speed. 

Sato et aJ(31,32) have produced some equations defining the arc voltage and 

current in terms of circuit parameters at a constant opening velocity. By varying 

the values of the supply voltage and current, they produced different arc durations 

and obtained corresponding arc length by assuming a constant velocity characteristic. 

In the study of snap-action switches where the opening characteristics are non 

linear(33). The chart of V-1 characteristics has been produced by White(33) in 

which he adopted Holm's and Sato's methods. This is shown in figure 2.1. The 

data was obtained using high-speed camera and transient recorder. The film from a 

high-speed camera allows the arc length at any given time to be known and a 

transient recorder stores the simultaneous arc voltage and current. Since durability 

of switches up to a large extent depends on the duration of the arc between the 

electrodes, the factors affecting the life of the arc have been studied by several 

workers (34-37). 
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2.2.2 THE ARC AT MAKE 

Since electrons are always present between two electrodes' gap or at the cathode 

surface due to a cosmic radiation or light, an initial avalanche of electrons can take 

place by introducing a voltage across the gap which eventually results in a transition 

from glow discharge to an arc. 

The electric breakdown is known to be governed by Paschen's law which is a 

function of the electrode gap and gas pressure. In Paschen's law the minimum 

voltage required for d>to-2cm and pd=7xto-4 (atm x cm) at room temperature is 

330 volts. This is known as break down or sparking potential (Vs). 

Germer and Haworth(38), in an experiment with the gap, reduced to 

However, 

-s 
I o '"" , 

discovered that at atmospheric pressure arc ignition occurs with Vs smaller than 330 

volts, even down to 50 volts. 

Several theories have been put forward for the initiation of arcs at make. 

HoJm(6) assumed that the arc at closure is initiated with preceding contact of asperity 

peak. The peak metal immediately evaporates by high current whereby the arc 

ignites in the heated and ionised vapour. He also observed a transition voltage drop 

to zero which indicates the contact make with the peak and the high current flows 

between two asperities in contact before vapourisation. However, Germer(38,39) 

observed ignition without any transition voltage drop to zero (or was performed 

without preceding conta'ct). They suggest that this is due to an enhanced field in 

which arc is initiated by field emission and its current density is higher than regular 

arc. 

They also noticed that arc ignition appeared more readily at low voltages if the 

contacts were activated. 

This high field emission has been confirmed by Llewellyn Jones(40), who stated 

that a layer of thin tarnish increases electron emission by a power of ten. Such a 

film also shortens the time Jag of arc ignition. 

Kisliuk(41) considered a phenomenon called I -effect as an explanation to Germer 
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et al's(38,39) experiment in which ignition occurs without preceding contact. 

Later, the concept of Whiskers was proposed by Holm(6) as an explanation of 

Germer's experiment and it has been described as follows: 

At high field the surface asperities form into a peak which is hair-like. At 

this situation as the contacts approach and the Whiskers come into contact, it is 

immediatley heated to explosion with ignition of an arc in the vapour. 

Contact at Whisker has a much smaller cross section compared with contact asperities 

and hence higher resistance and the transient current which flows before vapourisation 

is less than that which flows between two asperities in contact and consequently can 

not transiently lower the contact voltage to zero. 

The concept of Whiskers has also been studied by other workers(42,43). For 

example, Lawson(42) working with A.C. switches at 15 ampere and 120 volts describes 

the process of the arc as follows: 

An initially drawn arc produces metal vapour in which Whiskers form in a 

fraction of a second, seemingly arranged along the field lines. The Whiskers 

short-circuit the gap, causing explosive breakdown and ignition of a new arc. 

The arc ignition at closure before contact may be followed by a phenomenon 

which is named F1oating(6). Here electrodes are held separated by the high vapour 

pressure produced by an arc in spite of mechanical load. Floating may also occur 

when contacts are made and at rest, because the contact area is not able to increase 

to accommodate the inrush current. 

Hueber in a series of papers(44,45) has studied the initiation of Floating and its 

characteristics in different atmospheres. 

Arcs at contact may also occur at rebound, since contact usually comes to a 
-lk... 

complete rest position after several make and breaks. In the study of 1t arc at 

closure, Phoney(46) with the aid of a t"d" <.\ocda. oscilloscope has distinguished three 

types of closure phenomena. 

oil+ 
(I) Arc discharge withAprecedlng contact due to field emission. 

(11) Arc discharge with preceding contact, either Whisker or 
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asperity, followed by vapourisation to an arc. 

(ill) Closure with no arcing. 

GermerC47) classified two types of arc discharge at closure, namely anodic arc 

and cathodic arc. These will be discussed in the next section. 

2.2.3 THE SHORT ARC 

The rate of ionisation for the occurrance of an arc is dependent on the contact 

gap. The minimum length required for considerable ionisation to take place is of 

the order of a few electron mean free path lengths. 

In general it has been agreed that the short arc is initiated at a separation value 

less than the mean free path of an electron (or alternately where the mean free path 

of electrons exceeds the arc-length). 

Since at separation of :::) o-4cm the probability of ionisation of most atoms at 

energies near the ionisation potential is low :::7-10%(40), a large number of electrons 

(about 90%) do not ionise and gain energy from the electric field travelling with high 

speed (105cm/sec) towards the anode where they dissipate their energy as heat. This 

energy quickly raises the temperature of the contact to boiling point, creating a dense 

vapour at the surface to supply the arc with ions. The first molecule to leave the 

anode must be evaporated by the heating due to field emission electrons. 

PruttonCSO), in the study of surface properties, has explained fully the behaviour 

of the surface due to heating. 

In general the short arc is characterised by its constant arc voltage, which is of 

the order of the ionising potential of the contact materiat(Sl) and also, as has been 

suggested by Kisliuk( 48), is a little greater than the sum of the ionisation potential of 

the metal vapour and the work function of the cathode surface. The current 

densities in such an arc are extremely high(49), at least 3 x 107 Ncm2, and field 

emission possibly enhanced by the effect of the fields of individual ions approaching 

the cathode(52) is probably capable of supplying the cathode electron currentC48). 
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Germer and Boyle In a series of papersC53,54) suggest that the essential 

requirement for the maintenance of the arc is the metallic vapour which has been 

produced as the result of electron/ion bombardment on the electrodes. The same 

authors have also shown that two types of short arcs may exist which they named 

anode and cathode arcs. The defined anode arcs as being where ions are supplied 

chiefly by metal vapourised from the anode as a result of electron bombardment. 

However, in the cathode arc, metallic vapour is evaporated from the cathode, 

apparently by the blowing up of small points on the cathode by joule heating. 

Their classification of the short arc is based on their observations in which in a single 

anode arc a pit is seen on the anode and a roughened area on the cathode. 

However, in the single cathode arc, a widely dispersed array of individual pits 

appeared on the cathode and in many cases no mark was found on the anode. 

They have also reported on the experiment with different metals that the arc voltage 

of the cathode arc is higher than the anode, and they suggested that factors 

determining the types of arc are the potential between the electrodes and the nature 

of the cathode surface, but not the size of arc current. Short arcs initiated by 

voltages between the electrodes =50 volts are predominantly of the anode type, whilst 

those initiated by a voltage =400 volts are almost entirely of the cathode type. 

In the cathode arc, transfer of metal is from the cathode to the anode only. 

In an anode arc, the metal is transferred in both directions, but the net transfer is 

from anode to cathode. 

Smith and BoyJe(SS), in an experiment on a pair of gold electrodes at make 

with operating conditons of 200 volts, 2 ampere and an arc duration of 1 ps, suggested 

that if sufficient energy was applied to the anode arc the electrodes would be welded. 

Recently Fujiwara and Yamaguchi(56), in an investigation of short arc on closure, 

suggested that the weld can occur on some materials and this is independent of the 

contact force. They also reported that on some materials, such as Ag-60 Pd, the 

weld will never occur as the velocity of closing varied from 1 mm/sec to 200mm/sec. 

Instead, adhesion takes place at the anode arc. However, this does not appear to 
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occur at the cathOde arc in air because of surface oxidation. The phenomenon of 

adhesion has been explained thoroughly by HoJm(6). 

In studies of arcing on opening contact, Hopkins and Jones(57) suggested that the 

short arc occurs after the explosion of the molten metal bridge provided the contact 

voltage can rise quickly to the ionisation potential of the atoms of the vapour. The 

pressure of the vapour in such an arc is shown by Slade(58) to be typically 6-8 

atmospheres. The separation of the electrode surface at this stage may be 

comparable with the electron mean free path in the metal vapour. The electron 

crossing the gap will make few ionising collisions. The contact current will be 

carried mainly by electrons which will dissipate their energy in the form of heat at 

the anode. 

Slade(58) in his test has suggested that the duration of the short arc is the 

product of local inductance and the current at bridge rupture. 

Allen(59) has suggested that the conditions typical of a long arc may also be 

obtained immediately after rupture of the bridge due to vapour being produced at 

high pressure (typically 40 atmospheres) by the rupture of the bridge. An arc of 

this kind is known as a reverse short arc. This high pressure vapour initially may 

give a reverse short arc and then may diffuse into the surrounding atmosphere, 

quickly producing a condition for a short arc. 

HoJm(6) has introduced the concept of anodic and cathodic dominated arcs in 

opening contacts, and remarks that since the anode spot increases with the gap, the 

transition from anode to cathode dominated arcs appears when the gap-length 

surpasses a critical value. 

It seems from the review of the above literature that the short arc at Make is 

commonly called the Very Short or Extremely Short arc, and at Break is called the 

Micro arc. Since the short arc has been classified into two groups, at Make, being 

""'"-
called the Anode arc or A Cathode arc, and at Break, the Anode and Cathode 

Dominated arc. 
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2.2.4 THE LONG ARC 

When separating two touching electrodes between which a current is flowing, the 

final points of contact between the electrodes. become very hot and may melt forming 

a liquid bridge between the electrodes. The nature of the bridge has been described 

in section 2.2.1. As the electrodes are drawn apart the bridge finally ruptures 

explosively, either by boiling at the hottest part or because of the failure of surface 

tension to maintain a stable liquid bridge. Nter rupture an arc discharge takes 

place between the electrodes. The first arc will usually be a short arc, like that 

described in section 2.2.3 which strikes when the distance between the electrode is 

As separation between the two ·electrodes increases, if a sustained arc is to be 

formed, the short arc must change into a long arc in which the arc lengthens and 

electrons crossing the gap make more ionising and elastic collsion with the gas atom 
-1-1<.. -1ka. 

which creates the ions. These positive ions under /I influence of,i electric field drift 

across the gap and produce the cathode fall and the column. This is the most 

characteristic feature of the long arc. In general, the long arc is defined where the 

arc length is greater than mean free path. 

The cathode is only required to replace the lost electrons during ionisation. 

Those electrons which do not ionise an atom will continue their journey through a 

potential drop towards the anode in which they have lost most of their energies. 

The arrival of these low energy electrons at the anode is much less severe since their 
"'-'"' of~ 

maximum energies lies within less than I\ free path A electrons and' so the sudden 

evaporation is much less. On the other hand, the high field of the cathode fall 

results in the acceleration of some positive ions and consequently the cathode suffers a 

severe bombardment by massive positive ions which is likely to do greater damage. 

It seems when breaking two electrodes, both electrodes lose matter by 

evaporation, first the anode and then the cathode, but in general it has been agreed 
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that the net transfer is from the cathode to the anode. 

Holm(6) classified the arc with duration of ;>3ps as Long arc and an arc with 

duration of > 1 ms as Normal arc. 

with the arc duration and current. 

He also reported that the anode gain decreases 

However, the material transfer is still from the 

cathode to the anode. Unless a sufficient anode fall is developed which is 

otherwise, this is as a result of the thin shape of the anode in which the anode spot 

is poorly cooled and little heat conduction takes place. 

Uewellyn Jones (7) in a long arc discharge erosion suggests that for a low rate 

of erosion the electrodes should have metal with a high boiling point, high density 

and a high thermal conductivity. 

2.2.5 DISCHARGE TRANSIENT 

The arc will ignite and sustain provided the supply voltage is greater than the 

ionisation potential and the steady current is large enough. 

However, in 1940 at Bell Laboratory, Curtis(60), in the study of telephone 

switching circuits where the steady circuit current was about 0.1 ampere, observed the 

phenomenon and named it Discharge Transient. His explanation is as follows: 

The lead which constitutes a capacitance, inductance and a resistor will set up a 

mechanism in which the current flow from the inductance is used to charge the 

capacitance of the lead, causing the voltage of the separating contact to increase to 

300 volts. This is enough to ignite a glow in the gap. The transition from glow 

to arc takes place as soon as the current is strong enough for the maintenance of an 

arc. The duration of the arc depends on the discharge capacitance time. This 

process is repeated several times until the gap becames too large for break-down and 

consequently the remaining capacitive. and inductive energy is dissipated in damped 

low frequency oscillations around the circuit. 

Transient discharge similar to Curtis has also been observed by Martin and 

StaussC61) and Mill(62). 

- 24 -



Germer(63) has discussed fully the influence of the lead capacity on the transient 

arc and also recently Sawa et al(64) studied the effect of atmospheric pressure on this 

kind of discharge. 

The discharge transient has also been called the Transient Showering Arc or just 

Showering Arc. 

2.3 THEORIES OF CATHODE EMISSION 

A solid metal consists of atoms. The atoms may be pictured as arranged in 

regular order in the crystalline structure forming the metal. There are 10 2 3 atoms 

per cm 3 of a metal, each atom consisting of a nucleus surround by its system of 

electrons, inner and outer, which, with the nuclei, form the ions, that is an atom 

minus one of it electrons. 

The outermost (valence) electrons which are placed in orbits remote from the 

nucleus are bound to the atoms loosely and can move about freely at random and at 

high speed. They frequently change places. The atoms are also in motion, but 

their movement is so slow that they are practically sationary compared with the free 

electrons. The free electrons move through the electric field of the ion-lattice, but 

on average the resultant force on an electron is zero as it moves within the body of 

the metal. 

neutrality. 

So, to the outer world, the metal presents an appearance of electrical 

When a voltage is applied to the ends of the metal conductor, there is a 

migration of electrons towards the point of highest positive potential. This 

constitutes the electric current in the conductor. Now consider the conditions in the 

space between two metal conductors, namely the anode and the cathode. 

Since the electrons are in random motion inside the metal conductor, when they 

reach the surface and get ready to take off into space they come across a problem in 

which those that fly out beyond the surface will be returning back, as the result of 

leaving the atom positively charged, which creates electrostatic forces. To escape 
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Non Thermionlc Thermionic 

Generally operate at Generally operate at 

temperature less than temperature greater than 

" 0 

3000K 3500 K 

Relatively high current Relatively low current 

density In range of density In range of 
~ l 2 3 ~ 

10-10 A/cm 10-10 A/cm2 

Pressure on cathode spot No evidence of excess 

In excess of ambient, as pressure on cathode spot 

evidence by depression 

of liquid metal 

Table (2.1) Characteristics of non thermlonlc and thermlonic 

arc cathode given by Guile (83) 
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from the metal (Fermi levels) an electron must, therefore, have a kinetic energy at 

least equal to the work which it must do against this retarding (inward) force. This 

work is known as the Work Function, and must come from the cathode, which is 

consequently cooled. The work function is characteristic of a given material, and is 

generally quoted in electron volts or volts. 

The process whereby the electrons leave an electrode is called Electron Emission. 

There are a number of mechanisms which can produce electron emission from 

metallic surfaces and these are as follows: 

(I) Thermionlc emission 

(ii) Field or cold emission 

(Ill) Field-Assisted thermionlc emission, known as Schottky or 

T-F emission 

(iv) Photo-electric emission 

(v) Emission by positive ion and excited atom impact 

The emission of electrons as a result of positive ions or photons impinging on 

the cathode is unlikely to play a significant roll in arcs, because the yield of electrons 

per positive ion or photon is much too small. In an arc, more efficient methods of 

production are essential in order to achieve the necessary transfer of current. These 

efficient methods are Thermionic and Field emission which will be discussed in the 

following sections. Here a comparison characteristic of Thermionic and Non 

Therm ionic arc cathode is shown in table (2.1 ). 

2.3.1 THERMIONlC EMISSION 

This emission occurs when a sufficiently hot cathode is at a temperature below 

the boiling point of the cathode material. This is possible when the cathode is a 

member of the refractory (high boiling-point) materials. 

Under this condition the conduction electrons are in constant motion inside the 
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cathode metal and have individual speed and hence energies. Their speed is from 

the violent thermal lattice vibration in the solid. A proportion of the electrons with 

enough energy could overcome the natural potential bar.rier which is known as the 

work function and then boils off the surface material uniformly. If there is a 

suitable electric field in the space they are swept away, otherwise they return to the 

cathode and an equilibrium is set up between those emerging and those returning. 

At room temperature the numbers involved are small, but if they ionise the gas in 

their path this may lead to other processes to enhance the emission. 

The metal temperatures required for thermionic emission may be in the range of 

1500-2500 K. The maximum current of electrons which could pass through a given 

surface at a given temperature is given by the Richardson-Dushman equation which is 

based upon consideration of the concentrations of electrons inside and outside the 

cathode surface. 

J = AJ2 e-b/T 

A Constant, has a value of about 60 A cm- 2 K2 

for most niateri·als 

b 'l'o e/K 

'l'o Thermionic-work function of the cathode surface 

e Electron charge 

K Boltzman's constant 

T Temperature of the electrode metal 

The abOve relations show that the current density is a function of 'l'o and T. 

It increases with decreasing work function and increasing temperature. 

The energy required to maintain the cathode surface at a sufficiently high 

temperature may be supplied by the impinging positive ions which have been 

accelerated in the cathode fall, or it could be supplied from an external source. 

However, these days, inspite knowing the work function and boiling temperature of 
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some materials, thermionic emission which should occur has not been observed(2). 

Waymouth(65) in his paper has described methods of measuring thermionic emission. 

2.3.2 FIEL0 EMISSION 

When non-refractory materials (low boiling-points) ·are used as a .cathode, 

thermionic emission will not occur, because their boiling points are below the 

temperature at which appreciable thermionic emission would be expected. These 

materials are called Cold-cathode materials or Non-Thermionic. Electrons may be 

drawn out of the surface of such materials by very high electric field in a range of 

106-JOS voltslcm(2). 

Froom(67...:71) has shown that the cathode current density on mercury, sodium 

copper and liquid sodium - potassium alloy are of the order of 10 6 A/cm 2 • 

Cobine et alf72) have found values of 10 s - 10 6 A/cm 2 on various metallic 
-\\-

cathodes. Seeker and George(73) usedAscanning electron microscope to estimate the 

sum area of emission site and hence the current density. 

ItoyamaC74), using ~igh speed camera techniques, has concluded that the current 

density of the cathode spot varies inversely with time at the initial stage of arcing 

and also that electrons are only emitted from a· .few sites in the cathode spot, whereas 

the positive ions enter the cathode spot uniformly. This confirms the early 

investigation of SomervilleC2) on copper (2582 oc boiling) and mercury (375 °C) in 

which he suggests that the cathode behaviour of such arcs is characterised by an 

extremely high cathode current density 10 6 Ncm 2 and by irregular movement of the 

cathode termination over the cathode surface, which often occurs by the simultaneous 

cir successive existence of several cathode spots which increase in number with the 

increase of the current. This rllay be due because electrons from the cathode 

electrode can only escape from side where work function is locally reduced as 

temperature increases. 
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Djakov and -HolmesC75) studied. ·the cathode spot division in vacuum arcs with 

solid metal cathodes of Zinc, Copper, Aluminium, Lead and Bismuth for discharge 

current of 5-1'50 A. They concluded that above a certain current the number of 

spots increases linearly with current, except for Bismuth. 

Various t}Jeories and explanations have been put forward for the mechanism of 

electron emission in .cold cathode arcs as the result of strong fietd(76,77). 

Langmuir(70) has suggested that the strong field is produced by the space charge of 

the positive ions in the cathode fall space, and the major parts _of cathode current 

are carried by electrons. Strong field may also occur when the metal is covered by 

a thin insulating layer (Oxide film) on which positive ions collected near or on the 

film(79,80). 

Meyer et at(81) have shown that lack of Oxide and some destruction of the 

cathode surface leads to extinguishing of the arc. 

Robson and Von EngeJ(82) suggest that electrons may be drawn out of the 

cathOde of cold-cathode arc by the action of excited metal vapour atoms which 

diffuse back to the cathode in which their energy being used to extract electrons from 

the cathode surface. These electrons have sufficient energy to excite and ionise 

atoms and hence produce positive ions. The metal vapour atoms are produced by 

the impact of positive ions which gain sufficient energy in the cathode fall region. 

2.4 THE ARC CHARACTERISTICS 

If a current of more than a few micro-amperes flows through a self-sustained 

discharge, a nonuniform potential gradient between the electrodes will occur as is 

shown in figure (2.2). 

This nonuniform characteristic is defined into three separate regions, namely 

electrodes fall (cathode, anode) and column. The former is the region of 

sharp-transition and discontinuity, electrically and thermally, between metallic and 

gaseous conductor. The condition in this region is less understood compared to the 
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arc column which Is a region of gaseous conductor and Is sandwiched betwen the 

electrodes region. 

However, in the electrodes region, electrically a transition must take place in 

which the current is carried solely by electrons to a gaseous conductor where both 

electrons and ions are involved. Also there is a sharp drop in potential as shown in 

figure (2.3) and Is known as the cathode and anode falls, where the former is larger 

than the latter, which mily sometimes be absent altogether. 

The characteristics of these drops are more dependent on the electrode materials 

and current than the ambient gas and the type of emission at the cathode. The 

actual drop is proportional to the arc length. 

In the electrodes region, the anode presents less problems because electrons may 

enter the electrode freely from the gas, but in general ions do not eneter the gas 

from the metal.· 

The other transition which must take place in the electrodes region is thermal 

transition, and it is gas pressure dependent. For example, at high gas pressure the 

transition is from relatively cool electrodes to a very hot plasma, and at lower gas 

pressure the situation is reversed. 

The column (or as it is sometimes called, positive column of the arc) is the 

region of gaseous conduction and it is the most visible and longest part of the arc. 

Since the current flowing through it has to make the transition from gas to metal at 

both electrodes, such a channel must be electrically quasi-neoAtr .. l., having 

approximately equal densities of positive and negative charge, where a net space 

charge is zero in a gas or Ni=Ne=N. Such a quasi-neutral is known as a Plasma. 

In such a Plasma the current density is of the order of 10-100 Nmm 2 and since it 

is composed of molecules, ions and electrons, in thermal equilibrium, it exhibits the 

Maxwellian energy distributionC6), Since electrons have a faster rate of mobility than 

the ions, the current in the column is carried substantially by the electrons, the ions 

essentially serving to neutralise their space charge. However, if positive charge be 

absent in almost exactly equal density, a force of thousands of tons weight will be 
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acting on the electron in each cmJ(2). 

The arc column has also a potential gradient along its length which is a function 

of gas property in which the arc occurs, and its magnitude is typically 1-2 volts/mm 

in air and it is current dependent. The length and its cross section is arc 

dependent. For example, in the short arc where the electrodes are close together, 

the arc column is unable to develop to full cross-section and by reservation it can be 

said that short arc can exist without column. 

0 0 
The temperature of arc column can reach 5,000 K - 50,000 K -. It is 

dependent on gas presssureC83) and usually it has a certain minimum temperature to 

maintain, Saha 's thermal ionisation, which is a consequence of the Maxwellian 's 

distribution of energy. 

The most characteristic feature of an arc is the low value of cathode fall, which 

generally lies between 8-20 volts, which is of the order of the excitation potential· of 

the electrode vapour and in which the current flowing at atmosphere pressure is 

typically 30mA. At currents below this a glow discharge may occur with a voltage 

drop of about 300 volts. The glow and arc discharge are not completely separate 

phenomena as have been explained by(84,85). Finally, there is a voltage drop at an 

arc anode which for metals generally lies between 1-12 volts, but it can be higher for 

some arcs with pure Carbon electrodes. 

Since there are several discharges which are more or less alike, but lacking a 

common physical mechanism, it has been agreed that the arc be defined in terms of 

current and voltage drop only. The voltage drop of electrodes will be discussed in 

the next sections. 
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2.5 THE ELECTRODES FALL 

After the discovery of the arc in 1803 by Petroff(86), attention was focussed on 

the nature of the charge carriers and on how the current passes from the anode 

through the intervening gas into the cathode. To explain this, in 1903 Mitkewicz(87) 

showed that the current Is carried mainly by electrons moving towards the anode. 

This suggestion was confirmed a year later by Stark(88). They both suggested that 

these electrons originated from the hot spot on the cathode surface. 

of electrons from the cathode has been described in section 2.3. 

The emission 

As previously discussed in section 2.4, there are in general three regions in the 

arc. However, research into the understanding of each region has led to the 

discovery of voltages drop within the electrode region (89,26) Since then there 

have been many attempts to measure the fall voltages. The principle methods used 

have been the Probe method and the Moving Electrodes fiVethod. 

The Probe method has been used in a few different ways. Some researchers 

have used the method to measure the potential difference between a wire probe and 

an electrode in order to determine the anode and cathode fall by linear extrapolation 

of the observed probe potentiat(90-94), and others by measuring the potential 

difference which exists along the entire length of the arc and the potential being 

found by extrapolation(95-97). 

The above approach was tedious and discrepancies were observed among the 

results of different workers. These were largely due to the disturbance of the arc 

column by inserting a probe resulting in an increase of the arc voltage or due to 

cooling of the gas, and also to charge neutralisation at the probe surface and its 

holder. Other disturbances may be due to movement or melting of the probe. 

So, this method has, therefore, met with only limited success. 

In the Moving Electrode Method, the magnitude of the last sudden voltage 

change which occurs when the electrodes are brought together, is measured. This 

idea was taken from observations by Gunthershulze(98) on a glow discharge in 
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hydrogen at low pressure and currents of 1 mA in which the discharge voltage varies 

with lengths, and as the discharge length is reduced below a certain value the voltage 

{V) across the glow discharge drops suddenly by about 10-20 volts. Since this drop 

is small compared with cathode fall, which is in the order of 300 volts, this voltage is 

considered to be the anode fall, because its value Is in the order of the ionisation 

potential in the glow discharge. 

Since the arc discharge retains certain features of a glow discharge from which it 

can originate, Von Engel{99), by using Blondei-Buddel moving coil oscillograph 

{mirror-oscillograms), observed the existence of a minimum arc voltage as the length 

of the arc is reduced. The arc voltage decreases continuously by reaching a 

minimum value {Vm) just before the electrodes touch and the voltage becomes zero. 

Vm was taken to be equal to the sum of the anode and cathode falls. He 

suggested that it is possible to separate these falls in a single experiment by the use 

of two different electrode materials. 

The value of Vm which is equal to the sum of anode and cathode fall in case 

of when electrodes are moved close together have been confirmed by Bauer et 

at(100). These authors also devised a method for the separation of Va and Vc by 

observing the difference between the electrode temperatures for D.C. and A.C. arcs, 

the electrodes having a fixed polarity in the first case and acting alternatively as 

cathode and anode in the second. Their method was only applicable to enclosed 

arcs in various gases at variable pressures. 

More attempts have been made to measure these 

individually{101,102), but the values obtained were low. 

fall voltage 

The early method of Von Engel using the mirror (Blonde!) oscillograph may have 

been too slow to record the fall steps of short duration, but in 1967 Dickson and 

Von Enget(103) succeeded in a single experiment using a high speed cathode ray 

oscilloscope to separate the falls. 

towards the stationary cathode. 

The arc first being established, its anode is driven 

They suggested that the first discontinuity in arc 

voltage corresponds to the anode and the second as cathode fall where the arc length 
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Figure 2.4: Standard Field Theory Shows the Potential Gradient 

between Two Electrodes \Hthout/Wi th Arc. 
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is reduced to zero. 

However, more recently Boddy and Utsumi(24) and Gray(104) have also found a 

similar discontinuity in the arc voltage when the closed electrodes are separated. 

They attributed this to a transition from the vapour arc to an arc with gaseous ions. 

The theory of anode and cathode fall is discussed in the following section. 

2.5.1 THEORY OF FALL VOLTAGES 

If one considers the electrodes (anode and cathode) are separated by a distance 

d, then according to well known standard field theory, the potential gradient is as 

shown in figure (2.4a). 

Since the arc introduces charges in between the electrodes, the redistribution of 

these charges along the arc length results in discontinuities in the potential as shown 

in figure (2.4b). 

Many explanations have been put forward for these discontinuities (83,108-111 ), 

each of which deals with test conditions. 

follows: 

Here these discontinuities are defined as 

The stream of electrons from the cathode are accelerated in the axial direction 

along the potential gradient. However, electron/atom collision reduce this axial 

velocity component and increase the transverse random component velocity distribution 

which results in accumulation of charges. The domination of positive ions(109) in 

the transition leads to a sharp drop in potential in cathode fall region. This is 

because the balance between positive ions and negative space charge requires copious 

emission of electrons from the cathode and also requires the width of this region to 

be equal to the column region and not small(2). 

In the plasma of the arc column, the electron and positive ion densities are 

equal, resulting in a uniform potential gradient. As the electrons leave the column 

end of the anode, they gain a randomised velocity component and electrons dominate 

over ions(109), though not as much as ions dominated in the first region. This 
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Cathode 

Hg 

Hg 

Hg 

Hg 

Cu 

Hg 

Cu 

Cu 

Cu 

Mercury 

Mercury 

Table (2.2) 

Cathode Fall Method of Measurement 

VC (volts) 

10 probe 

9-11.3 probe 

10 probe 

8. 1 Moving electrode 

11.3 Moving electrode 

7.8-8 Moving electrode 

11-13 Probe 

20.5 Probe 

10.5-14.5 Probe 

7.5-8.5 Moving electrode 

8.6 Moving electrode 

Catalogue of cathode fall voltage for various 

workers and various methods. 
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results in a smaller space charge field throughout the anode fall region. 

It has been observed that the anode and cathode fall occur within a few 

microseconds of each otherC103) and over a very short distance between the electrode 

surfaces, in which the electric field in these regions is extremely high(83). 

Somerville(2) has suggested that the existence of electrode falls is due to space charge 

accumulation associated with the conditions required for the passage of a current 

across the junction between a metallic and a gaseous conduction, or it is a 

consequence of the passage of current across boundaries of conducting media. 

A catalogue of measurements is shown in table (2.2). 

2.5.1.1 THE CATHODE FALL 

In general at the cathode of an arc there must exist a cathode fall of 

potential in order for the mechanisms responsible for regenerating the charged 

particles to be maintained, otherwise the discharge will extinguish. 

The value of this fall which is thought to be of the order of the excitation potential 

of the electrode vapour (typically 8-20 volts) has been considered to be the most 

characteristic feature of the arc discharge. It is clear that the cathode has a more 

critical role in effecting the behaviour of the arc than the anode. 

The nature of electron emission was found(83) to have a slight effect on the 

cathode fall values. For example, for thermionic mode V c is higher than for the 

non thermionic mode. 

fall regions. 

Also, there is always a high temperature gradient across the 

These days, due to the availability of fast storage oscilloscopes or similar 

equipment, most of the cathode fall measurements are based on the method of Von 

Engel and Dickson(103), 'The Moving Electrode Method'. 

Dickson and Von EngeJ(103), using Tin cathode (flat shape, fixed) and Carbon 

anode (hemispherical shape, moveable), both of diammeter 1 cm with the two 

electrodes 4 mm apart in Argon gas at 1 atm pressure and with the current range of 

10-60 A, concluded that Vc is constant for currents up to about 30 A, but rising 
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Cathode 

Sn 

Sn 

Sn 

Sn 

Cu 

Cu 

w 

c 

c 

Sn 

Sn 

Cu 

Table (2.3) 

Anode Gas Pressure Current Vc V a 

(mm Hg) (A) (v) (v) 

c Ar 1-760 10-30 11 4 

Sn Ar 760 10 11 2 

w Ar 760 10 11 3 

Cu Ar 760 10 11 4 

Cu Ar 760 10 12 5 

Cu Ar 760 10 12 3 

w AIr 760 10 15 3 

c Ar 760 10 * * 

c Air 760 10 4 11 

Cu N2 769 10 11 3 

Cu N2 10-80 10 10 10 

Cu N2 60-150 10 16 10 

Measured values of cathode and anode fall voltages by 

Dlckson and Von EngeJ(103) as function of Current, 

Gas, Pressure and Material. 
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Metal Experimental values Theoretical values 
Vc (vo Its) Vc (volts) 

Cs 6.2 6.34 

K 6.7-7.4 7.21 

Sr 8.4-9.2 9.59 

Bi 8.4-8.7 14.91 

Cd 8.6-10.2 13.91 

Na 8.7-9.0 8.65 

Pd 8.8-10.2 13.27 

In 9.5-11.9 12.02 

Zn 9. 8-11. 1 14.67 

T1 10.5-11.5 11.64 

Sn 10.6-13.0 14.42 

ea 10.8-11.4 10.30 

Ll 11.1-11.7 9.83 

Te 11-12.4 15.31 

Mg 11.6-13.0 12.48 

Ag 12.1-13.6 14.44 

Au 13.1-14.8 17.17 

Cu 14.7-15.4 15.52 

c 15.2-18.9 22.85 

w 16.2-22.6 20.65 

AI 17.2-18.6 13.05 

Be 18.6-19.2 17.39 

Nb 19.9-21.6 18.62 

Table (2.4) Vijh's(113) experimental and theoretical fall 

voltages values for various metals. 
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slowly as the current in increased. They also have carried out the fall 

measurements on various electrode materials with different currents, ranging from 

10-30 A, with different gases at pressures between 10-750 mm Hg. The results 

shown in table (2.3) demonstrate that Vc is independent of the anode material. 

Boylett and MacleanC108) on the oscillogram study with liquid Mercury cathode 

and Brass anode, at constant current of 10 A, observed a cathode fall of 7.5-8.5 

volts, which is in good agreement with the Von Engel and Robson(110) calculation of 

the cathode fall. 

Capp(112) in his work on the power balance in electrodes, on the basis of 

numerical work, has concluded that the cathode fall is constant as the gap-length is 

increased. 

The cathode fall has also been calculated, based on electrochemical theoryC113) 

in which the comparison between experimental and theoretical values for various 

·metals is shown in table (2.4). 

More recently, Zhu and Von Engel(109) have confirmed the use of fast 

oscilloscope for separation of falls. They concluded that the cathode fall for Copper 

electrodes is the same in Argon as in Air. 

dominant medium in the fall region. 

This suggests that Copper vapour is the 

The separation of falls using Graphite electrodes does occur when the cathode tip 

is uniformly covered with a thin layer of Copper powder. They also suggested that 

when a fast moving anode is mechanically reflected from the cathode, the arc which 

forms from a broken liquid bridge will generally exhibit two steps in the voltage 

trace. This is in agreement with the observation of Utsumi and Boddy(24). 

However, they ascribe these discontinuities to the absence of asperities in the arc. 
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2.5.1.2 THE ANODE FALL 

In general, the existence of the anode fall is due to accumulation of 

negative space charge near the anode. Since the vital role of the anode is to 

preserve the current continuity by receiving an electron flow, it has less influence on 

the maintenance of the arc compared to the cathode. 

The magnitude of anode fall depends on the number of positive ions present 

near the anode and, in fact, the actual value is determined by the energy requirement 

for their production. However, the energy required for the production of electrons 

and ions at the anode is much smaller at the anode than at the cathode. 

The detailed theoretical investigation leading to the recognition that the function of 

the anode fall is the production of positive ions has been published in a series of 

papersC114-118) by Bez and Hocker. 

The measurement techniques of the anode fall are similar to the cathode, and 

the results vary widely from observer to observer, but mostly depend on arc 

parameter and conditions. The variation is as little as 1-2 volts at very high 

currents and up to 12 volts for low currents. 

In the arc with pure Carbon anode at low current the fall of 35 volts occurring 

in two steps has been observed(2), in which the larger value of 20 volts is very close 

to the anode, and 15 volts between this and column. 

Finkelnburg(119), in a series of experiments, has concluded that if the anode is 

not pure Carbon, but has a core containing metallic Salts, the anode fall is much 

lower at low current, being of the order of 10-15 volts, and decreasing if the anode 

is made of Cadmium Oxide or Fluoride; the anode fall rises sharply with increasing 

current. But, when the anode is purely metallic, the anode fall is usually less than 

12 volts at low current and may fall to only 1 or 2 volts at high currents. 

The anode fall has also been estimated from subtracting the total arc voltage 

from the sum of the cathode fall and column voltage, using probes method , and has 

also been deduced from the power dissipated at the anode measured by water cooling. 

The values given are in the range of 5-10 volts (120,121). 
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Sugawara(122) determined the anode fall in Argon gas at atmospheric pressure by 

measuring the length of copper wire anode melted. The estimated value was 4.2 

volts at 10 A arc. Dickson and Von EngeJ(103) observed that the anode fall has a 

constant value up to a current of 60 A, which is in good agreement with the 

Denney(123) suggestion that the anode fall voltage does not vary with the arc current 

up to a critical value. However, if the current is above this value, vaporisation may 

occur. This has been confirmed earlier by Cobine and Burger(124). They also 

suggested that any increase in the current tends to decrease the anode fall voltage. 

Capp(112) has numerically deduced the dependence of the anode fall with gap 

and hence arc voltage. He shows that the anode fall increases as the gap increases. 

2.6 EROSION 

Erosion due to the arc discharge occurs at break and make when the two 

charged electrodes are separated or brought together, in which case the arc energy is 

dissipated instantaneously in the form of heat on the contacts' surface. However, if 

the rate of generation of energy on the contact surface exceeds the rate of 

dissipation, then some energy will be used for evaporation of the contact material 

from the hot spot. The evaporated metal is displaced in the direction of the field. 

In general, whichever way the contact material is liberated, the transfer of 

material from one contact to another is called erosion. 

In D.C. operation the transfer material creates a pip on the anode and a crater 

on the cathode and it has been agreed that in general the transfer is from cathode to 

anode. But, in A.C. operation it is a function of polarity. 
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(Solid) 

Name Thermal Thermal Melting point Bo Ill ng poInt 
0 0 

capacity conductIvity K K 
• • J/Kg/k W/m/K 

AI 903 238 933 2720 

Bl 122 8.5 544 1810 

Cd 232 92 594 1037 

Fe 449 82 1808 3160 

Ag 236 418 1234 2466 

w 133 170 3653 5800 

Cu 385 400 1356 2855 

c 509 1.56 3820 5100 

Au 129 311 1336 3090 

(Fluid) 

Air 1010 0.026W/m - -

Ar 520 0.016 84 87.29 

Hg 140 10.3 234.29 629.87 

Nz 1040 0.027 63.30 77.36 

02 920 0.027 54.8 90.180 

Table (2.5a) Thermal properties of solid element and fluid 
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Density 

(p) 

Kg/m 3 

2700 

9750 

8650 

7870 

10500 

19300 

8960 

3000 

19320 

-
1.784 

13540 

1.250 

1. 429 



Element Ionisation Work 

ev ev 

Aluminium (AI) 6.0 4.20 

Argon (Ar) 15.8 -

Bismuth (BI) 7.3 4.25 

Cadmium (Cd) 9.0 4.11 

Carbon (C) 11.3 -

Copper (Cu) 7.7 4.84 

Gold (Au) 9.2 4.83 

Iron (Fe) 7.9 4.63 

Mercury (Hg) 10.4 4.53 

Nltrogran (N 2) 14.5 -

Oxygen (02) 13.6 -

Silver (Ag) 7.6 4.54 

Tin (Sn) 7.3 4.31 

Tungsten (W) 8.0 4.57 

Zinc (Zn) 9.4 4.34 

Table (2.5b) Electrical properties of the elements. 

Table (2.5) Table of thermal and electrical properties of the 
elements extracted from physics handbook by C. Nordling 
and J. Osterman. 
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2.6.1 EROSION DUE TO BREAK ARC 

The erosion which occurs when the contacts break is due to the following: 

(i) Erosion due to molten metal bridge. 

The bridge transfer usually takes place when current flow is about to be 

interrupted by separating two electrodes at the last point of contact, where the current 

density is extremely high. This results in local melting of the point at which the 

molten metal is fanned, where some of the metal is displaced from its original 

position, and when the maximum temperature of the molten bridge reaches the boiling 

point of the metal then the bridge bursts. 

Table (2.5) shows the melting and boiling temperature of various materials. 

The bridge transfer has also been named as the fine transfer (6) because the amount 

of material displaced per operation is small. This does not mean that their effect 

can be ignored in devices such as relay switches in which a large number of 

operations take place per day, and, in fact, this is thought to be one of many factors 

determining contact performance. 

The direction of material transfer is debateable since the bridge bursting can 

occur near one of the contacts or at the centre of the bridge (1 ). 

However, the significant effects of bridge transfer on low inductive circuit and 

cur~ent are studied by several workers(19,21,25,57). The nature of the bridge 

fonnation and its transfer has been discussed by Lander (13). 

(ii) Arc Transfer. 

Arc transfer is the result of the bombardment of ions and electrons at the 

contact surface in which the unionised material is removed and lands on one of the 

electrodes in the direction of the field. 

Turner et aJ(l25) in the study of arc erosion have suggested that the main 

factors influencing arc erosion are current and arcing time. The contact erosion at 
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break occurs in succession from the bridge transfer to arc transfer. They also 

defined a region in their erosion plot as a discontinuous region in which for pure 

c:.opper there is a sharp jump in erosion rate compared to more a gradual one of 

Ag-ed 0. They ascribed this to either melting of Silver in the surface resulting in 

a higher percentage of Oxide which retards further melting, or the movement of the 

arc around the Oxide spots restricting local heating but consuming Oxide. This 

suggestion has been modified later{l26) by stating that the discontinuous erosion is as 

a result of transition from mainly evaporated loss to droplet loss. Their later 

suggestion comes from the concept which they introduced as Structural erosion. This 

was defined by a disintegration of the structure of the compound along weak 

boundaries, where particles of contact material detatch . themselves from the surface. 

More recently, the same authors{127) have distinguished two types of material 

transfer in the study of high and low current erosion. They suggested that at low 

current pip and crater formation is the result of bridge transfer. Arc duration plays 

a less significant role in erosion, whereas at high current the bridge formation serves 

only to provide a means of arc initiation and the transfer is mainly arc transfer. 

Kim and Peter{128) have studied the influence of Cd 0 on the rate of erosion 

from investigations into the microstructure of Ag-ed 0 from a metallurgical point of 

view. They suggest that for a high energy arc, a high concentration of Cd 0 or a 

larger particle size is more favourable for low erosion. However, in the case of low 

energy application this suggestion is reversed. 

El Koshairy et at(129), on the study of arc erosion by varying current and arc 

length, suggest that the rate of erosion is dependent on the contact gap. As they 

reduced the separation they observed reduction in losses particularly from the cathode. 

They related this to the fact that as the gap decreases, more metal vapour condences 

back onto the contact surface. 

Sato(32) has related the direction of material transfer in the A.C. condition to 

the peak current value. In the D.C. condition (40 volts, 1-50 A) he defined a 

transition region in current, in which the direction of material transfer is reversed. 
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His statement is derived from observation of Silver Cadmium Oxide contacts with an 

opening velocity of 63 mm/sec. The transition occurs at a current 6.5 A. For 

currents below this, material transfer was measured from cathode to anode, and for 

values above this anode to cathode. 

directional transfer of metal occurred. 

However, in the transition region no net 

The transition region in arc transfer has also been observed by Slade and 

Holmes(130), but with different operating conditions and opening velocity (slow, 

0.4mm/sec.). These workers state that for the current in the range of 5-12 A the 

transfer is mainly from cathode to anode, which results in formation of pip on the 

anode and crater on the cathode. 

In the study of erosion in snap-action switches where the opening velocity is 

non-linear, White (33) with operating conditions of 40 volts d.c., current range of 

4,12 and 8 A, has shown that at 4 A net material transfer is from cathode to anode, 

at 12 A net material transfer is from anode to cathode, but at SA he observed no 

movement of material transfer. This region is called the transition region which is 

in good agreement with Sato•s(32) experiment. However, the opening velocity of 

Sato's experiment is 63 mm/sec., and gives an arc duration of 15 ms, which is seven 

times the arc duration in toggle switches. This suggests that more energy is 

dissipated in the arc in Sa to's case. 

WhiteC33) also suggested that there is 40% reduction in energy dissipated in the 

arc when the contact gap is. reduced from 2 mm to 0.2 mm. 

was 240 volts, 10 A peak, resistive load. 

2.6.2 EROSION DUE TO MAKE ARC 

The erosion at make can be categorised as follows: 

(i) Erosion due to bounce or 'bounce erosion'. 

His test condition 

Bounce occurs when the kinetic energy of the moving contact is not 
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absorbed by the fixed contact as energy. In sue!) a case the contact will go through 

the complete switching processes, but with different characteristics of break and make 

operation. 

Since bounce involves drawing a molten metal bridge with consequent rupture and 

arcing, the contacts come to rest onto the molten material. However, if the rate of 

heat dissipation exceeds the rate of heat generation the contacts weld together. This 

is one of the main problems in telephone switching devices. 

The number of bounces also depends on the strength of the weld after the first 

bounce. The weld strength has been the subject of studies by several 

workersC131,132). These studies suggest that the weld is dependent on the contact 

material, arc voltage during bounce and size of contact. 

In the study of contact material, the same authors (131 , 132) found that 

Ag Cd 0 (SS/12%) has the lowest energy dissipation, due to its low arc voltage 

during bounce - typically 10-12 volts. 

Koepk and George(133) have observed that the Oxygen has a great influence on 

decreasing the weld strength on silver contact. They showed that when silver is in 

the molten state it absorbs Oxygen, which leads to the creation of an Oxide layer on 

the surface. This suggestion has been confirmed by Heweu(134). 

(ii) Erosion due to breakdown voltage. 

This is due to arc before the contact takes place. The arc is thought to 

be initiated by field emission of electrons from the cathode(47,135). 

Germer and Haworth(49) have related the arc erosion at make to inactive and 

active surfaces. They found that for inactive surface at SO volts, an arc does not 

occur if the inductance is greater than 3 pH. However, if the potential circuit is 

more than SO volts, more than one arc discharge may take place. In general, 

transfer is to negative electrodes which is in good agreement with the suggestion made 

by HotmC6). For an active surface in which foreign substances are present, the arc 

can occur in every closure, even when the inductance is very high. 
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They report that as the substance of the active surface may disappear due to 

arcing, this reduces the consistency of arcing during every closure after use. This 

leads to the suggestion that when there is no arc there is no erosion, but the energy 

of local capacity of the gap will be dissipated in the resistance of the circuit. The 

energy dissipated on the contacts surface is measured with the aid of a 

thermocoupJe(136), which is related to erosion. 

In general, from the above literature review on erosion at break and make, one 

can conclude that the erosion is influenced by parameters such as circuit parameters 

(supply voltage, current, resistance and reactance), arc parameters (arc voltage, 

current, duration and length), and, finally, switch parameters (contact gap, velocity, 

shape, size and material). 

Other parame. ters which are important are the thermal and electrical 

conductivities of the metal. Silver has a better thermal and electrical conductivity 

compared to Copper. Both have a low boiling point which means that evaporation 

can be excessive under arc. 

It has been shown that Ag has less tendency to melt than copper but is also 

more expensive. Both metals may be combined by using a composite material with 

silver on a heavy Copper body as electrode. 

customary to use the following techniques: 

(I) C.R.O. V,l measurement. 

To asses the rate of erosion it is now 

(11) S.E.M. surface examination. 

(ill) Weighing material transfer evaluation. 

(lv) Talysurf height and width of the pit and crater 

measurement. 

The erosion of the contacts has also been studied from the analysis of the 

emission spectrum and measurement of arc duration(137). 

Since the development of erosion is a result of arcing, numerous studies have 

been made to find a correlation between the arc energy and contact erosionC138-141). 
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Author Supp:lled Power Used Power 

Reference 

6 2Vcl+i1(VJ.-2Vcl-Val) ~~cl+4ac~(T-T 1 )+lwr 

110 Vc ~c+C+E+R+E 

(1-7J)e~+( 1-f) I (Vc+Vt·-!pc) I (C+E) 

112 p(Vc+Vi)+Cp l'(~c+Vch) 

' 124 JpVc Je~c+Pv 

146 J-t(Vi+Vc-~c) Pv+Pc+Pr+Pe 

Table (2.6a) Power balance equations at the cat·hode 

Aut'hor Supplied power Used power 

Reference 

' 
'. 

6 Val+( 1-i1)(VI-2Vci+-Val )~81) 4aa~<Ta-T 1 )+lwar 

'. 

1'12 I (Va;npa+Ve)+Cp . ' Vahl 
' 

124 Ja<Va~aVr)+Pn+Pr -

Table (2.6b) Power balance equations at the anode 

Table (2.6) Power balanc* equations at the electrodes 

given by vari·ous workers 
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A true correlation has not yet been revealed by workers. This may be due to the 

fact that some of the arc energy is used somewhere else within the arc region, 

especially in the column (which is the longest region of the arc) in the form of 

radiation and convection to the surrounding. This may suggest that only that part 

of arc energy generated very close to the electrodes can have profound influence on 

erosion, and it leads to the investigation of power balance at the electrodes to which 

the next section is devoted. 

2.7 POWER BALANCE AT THE ELECTRODES 

Disfigurement of an electrode's surface Is a result of energy supplied close to its 

surface. This suggests that a balance must exist between supplied and used energies: 

Since the duty of each electrode is different, their supplied and used energies are 

different. These will be discussed In the next sections. 

The power balance at the electrodes also gives a picture of arc distribution 

within the gap, since some of this energy is used in elastic (thermal) and inelastic 

(exciting) collisions with the gas atoms in the gap. Some is used by thermal 

conduction through the metal, and, finally, some is used in evaporation of the metal 

from the surface. 

Numerous studies have been made to correlate the energy supplied with that 

used, but it seems the results vary widely from worker to worker. 

these studies is tabulated and shown in table (2.6). 

A catalogue of 

Experimentally, the amount of energy supplied to the electrodes is measured from 

surface temperature. For example, Somerville et aJ(142) and BlevinC143) have 

calculated the average surface temperature from the depth of melting into the 

electrodes, resulting from arcing of known duration. In their experiments the 

electrodes are made from metal foils with varying thickness. 

Bolanowski(144) has studied the power given to the contact by arcing at break 
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from the contact surface temperature measurement. He derived an empirical relation 

between power received by the contact and arc power in terms of arc duration and 

arc current. This is shown in the following 

PK = Pare [K -
1.5 

1 larc ] 
---,....-- + 0. 6 --

(1.5) 10-3 
tare 

K - 1 - 0.38 tare •• 0 •• 0 0. 0 ••• 0 0 •••• for 

K - 6 :!: 0.62 tare ••••••• 0 •• 0. 0 0 •••• for 

tare - arc time In ms 

larc arc current In Amperes 

Pare arc Power 

PK - Power absorbed by contact 

tare < 1ms 

tare :> lms 

The power of the arc was measured from oscilloscope readings. The empirical 

formula allows the calculation of the input power to the contact with accuracy of 

:!: 20%. He also showed that the arc power is Inversely proportional to the 

breaking speed. The speed of opening was in the range 250-700 mm/sec and arc 

current in the range 20-300 A. 

Capp(112) has also calculated the power absorbed by the electrodes due to arcing 

at break from contact surface temperature measurement. The electrodes were 8 mm 

in diameter and made of Cadmium or Zinc for cathode, and Tungsten for anode. 

They were mounted 
b.~ 

The A operating 

in a chamber containing Nitrogen at atmospheric pressure. 

conditons were (0-80 volts, 0-5 A) and the arc was 

drawn up to a length of 2 mm, for a duration of 20 seconds. He found that as 

the gap increases, the power conducted into the anode increases at a greater rate 

than the corresponding rate into the cathode. He ascribed this to the fact that the 

anode fall voltage increases with gap and with arc voltage, as the cathode fall remains 

constant. He related the slow rate of increase in cathode power to an increase in 
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the thermal heat conducted to the cathode from the column. 

He also suggested that the levelling off of this increase at the larger separation 

(about 8 mm) is the result of heat loss from the plasma column not going to the 

electrode and, instead, being lost to the surroundings. His arc model is used to 

explain the influence of energy transfer in flammable atmosphere such as underground 

mines. 

More recently, the relation between contact surface temperature and power 

dissipated on the contact has been studied by Kubono(145). He showed that the 

cathode spot temperature and radius are dependent on cathode fall voltage and arc 

current. He also calculated the cathode loss from a relation between contact surface 

temperature and evaporation rate. 

Since arc durations in snap-action switches are typically in the region of 2-3 ms 

and within this period the bulk of the cathode or anode materials do not reach steady 

state temperature, this implies that the transient conditon exists for power balance 

investigations. 

2.7.1 POWER BALANCE AT THE CATHODE 

2.7,1,1 SUPPLIED POWER 

( i) Thermal energy (P.E.) of positive Ions 

( il) Kinetic energy of ions which they gain in 

passing the electric fie Id of the cathode fa 11 

region (lp Vc) 

( i i I ) Part of total neutralisation energy of ions 

[e(Vp.,o)] 

( iv) Heat conduction and radiation from the column 

(v) Joule heating of the cathode material 

- 55 -



2.7.2 

2.7.1.2 USED POWER 

(I) Energy for electron emission e~jelectron 

(11) Energy for vaporisation of cathode material 

(Ill) Radiation from hot spot on the cathode 

(lv) Heat conduction to the cathode 

POWER BALANCE AT THE ANODE 

2.7.2.1 POWER SUPPLIED 

'(I) Potential energy of electron In which each 

electron is giving to the anode (e~) 

(11) Kinetic energy of electron In the anode fall 

region (I Va) 

(Ill) Heat conduction and radiation from the column 

(lv) Joule heating of anode material 

2.7.2.2 USED POWER 

(I) Energy lost by the vaporisation of metal atoms 

(11) Radiation from hot spot 

(Ill) Heat conducted away through the anode structure 

(lv) Energy lost due to ion emission, if any 
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CHAPTER THREE THE DESIGN ANB CONST>RUCTION OF 

EXPERIMEtffAL APPARAT>US 

3.1 INTR0DlJCTI0N 

This chapter comprises six interconnected sections, each concerned with a 

particular phase of the research. 

(l) The equipment 

They are organised as follows: 

(il) Des~lgn of test rl'g 

(i l'i) Destgn of constant current source In conjunction with 

timers 

( iv) Techniques of thermocouple probe construct ion 

(v) Thermocouple probe cal librat Ion system 

(vi) Computer control work station 

Most emphasis is made on the tools which are directly relevant to the series of 

experiments that form the core of this investigation. 

3.2 THE EQUIPMENT 

The equipment which has been u5ed for determining the speed of break and 

make operation of the test rig (Hyspeed camera), measurement of contact surface 

roughness due to the arc (Talysurf) and analysis of surface (scanning electron 

microscope) for study of contact erosion are similar to those used by White (1 ). 

The purpose of this section is not to describe this standard equipment. 

However, these days, due to development of high technology, the burden of 

developing the hyspeed camera film can be replaced by more modern systems such as 

Kodak 100o(2) which can capture 6000 pictures per second, the information being 

stored on a video tape which can be analysed more easily. Similarly, for 
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determining. roughness and· surface profile of small dimensions such as used in contacts 

in this research, which requires precision accuracy· and low force diamond stylus, it 

can be replaced by SF220 computerised surface profiling(3) in which the results are 

stored on the disc and displayed on VBU. Both of .the above reduce the operating 

time and the potential damage to the sample respectively. 

3.3 DESIGN OF TEST RIG 

The test rig is shown in figure (3.1 ). The arc can be drawn horizontally 

between a fixed and a moveable contact. Both with diameter of 4' mm. 

The contacts were mounted. in a test jig in which they were held by collets 

which provided an adequate electrical connection, and also were designed to have a 

reasonably high thermal resistance to the contact. This ensures a fairly lorig time 

constant ("" 1 second) for the temperature fall of the contact. 

The moveable rod was free to slide between supports and it is driven away from 

the fixed contact by a solenoid against a compressive spring wiih spring constant of 

Q,S kg/cm. 

The contacts are· normally brought together when the spring has been released as 

the result of solenoid de-energisation. The end rod of the fixed contact was held 

against a compressed spring to absorbe the impact force and so to reduce the number 

cif bounces. 

The contact spacing could be set accurately for the required value by means of a 

micrometer (displacement ·transducer) which is provided with the jig. 

The test rig has been used throughout the investigations and it simulates 

functional aspects of switches. 
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3A DESIGN OF CONST ANTf CURRENT .SOURCE IN. CONJl!JNCTION WHH 

:riMERS. 

It is well known that the erosion of contacts is a function of current and is 

more severe under D.C. operating conditions compared to A.C. where the arc can 

only be sustained for a maximum of half the cycle of, the waveform before a zero 

crossing point causes extinction. 

To obtain a full picture on the development of erosion the operating conditions 

must be extreme (D.C.) and the current should be kept constant, since at a known 

applied voltage the· resistance of the arc increases as the gap increases and 

consequently the current decreases. To achieve this a constant current source device 

is designed for operating conditions in the range of 40 volts (d.c.) and current of 10 

A, similar to the range used by SatoC4) and• WhiteC·l'), in which they observed the 

change of phase in transfer at a current in the range of 6-8 A. 

This device is based around four bipolar power transistors (2N5658) and all 

connected in parallel in which each carries a maximum current of 2.5 A. 

To drive these transistors satisfactorily within the design range, it was necessary 

to design driving circuitry which could produce fast switching current pulse to the ·base 

of these transistors. The driving circuit is based on a 2N3055 bipolar power 

transistor with its base connected to a multi-turn resistor (470 ohms). This in turn 

is in series with 620 ohms resistor to determine the transistor (2N3055) switching time 

pulse and; is also used to provide the arc current to the required value. 

Another parameter which controls the development of arc erosion is the arc 

duration. ThiS was controlled by a variable monostable circuit which interrupts the 

arc current after a pre-set period (typically ~-50 ms). This monostable circuit is 

connected to the constant current source via a BCI 08 transistor and it is triggered 

from· the anode side of zener diode by the initial rise in voltage between the contacts 

when the arc is started. 

The zener diode provides a fixed reference voltage and its breakdoWn region is 
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protected at breakdown voltage by a series of resistors which limit the current to a 

safe value. 

Moreover, it is crucial that the electrical current pulse (trigger pulse) to the 

timer has the exact amplitude and width each time the contacts open. This ensures 

that there Is simultaneous correlation between the start of the arc and the functioning 

of the monostable circuit (since this can be affected by the fluctuation of the arc 

voltage). It must also be emphasised that the duration of break and make must be 

much smaller than the set time on monostable 2 in order to avoid retriggering of 

monostable 1 . 

The details of the circuitry developed to produce constant current . and to provide 

arc duration are shown in figure (3.2). The above system was used in all the tests 

where control of current and arc duration was required. 

3.5 TECHNIQUES IN THERMOCOUPLE PROBE. CONSTRUCTION 

This section reports on temperature measuring techniques of contact surface due 

to transient heat dissipation of arcs in switches. Various methods for construction 

and mounting of the thermocouple sensor were investigated. It was found that for a 

very accurate measurement, the fastest heat transfer from contact surface to the sensor 

must be achieved. This requires the sensor to be placed as near as possible to the 

contact surface where the arc strikes. 

The measuring equipment and the type of thermocouple used are described and 

the effect of each technique and the problems associated with it in mounting and 

methods of constructing sensors are detailed. Finally, the development of a 

technique for accurate temperature measurement is fully discussed. The transient 

heat defined as the time taken for contact body to reach steady state is much greater 

than the duration of the arc. 
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Conductor Combination Approx. British 

Working Standard 

CODE 

+ Leg - Leg 

E Nickel Constant an 

Chromium or 

Copper 

Nickel 

J Iron Constant an 

(Magnetic) 

K Nickel Nickel 

Chromium Aluminium 

T Copper Constant an 

{* -American Standard ** 

Temperature 
0 c 

0-850 

0-850 

-200-1100 

-250-400 

Blue (+ve) 
Red (-ve) 

+ Leg 

Brown 

Yellow 

Brown 

White 

* 

Table 3.1: Typical family of standard thermocouples available 

on the market. 
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3.5.1 SENSOR CONSTRUCfiON 

A type 'T' thermocouple was chosen due to its high sensitivity, linearity of 

characteristics, negligible thermal mass and having adequate mechanical strength to 

withstand the break and make operation when it is connected to the contacts. 
of_.\\-.... 

Table (3.1) shows familyt\standard thermocouples available on the market. 

However, because of the small physical size of the contacts, as shown in figure 

(3.3), the diameter of the wires (Copper/Constantant) chosen was 0;075 mm and was 

insulated with a covering of P.T.F.E. (Teflon coated) and outer diameter of 0.25 mm. 

Thermocouple was calibrated with traditional Dewer fiask method in terms of e.m.f. 

generated at the measuring junction relative to the reference junction which is kept at 

zero degree centigrade, 

From the abo.ve calibration it was found that 40 p.V is equivalent to 1 oc. The 

thermocouple welded junction was achieved by twisting one centimeter (cm) of the 

bared wires together and discharging the capacitor momentarily between the carbon 

electrode and the twisted end of the thermocouple as shown in figure (3.4). 

The twisted end must be placed vert!cally to form a ball weld subject to gravity. 

The ball weld diameter in general is in the range of 150 to 175 ~tm. 

However, the welding processes should be carried out in an Argon gas to reduce 

oxidisation and contamination, but this was dispersed during trial runs. 
b .. , .. l 

On completion of weld, the A wires must be untwisted and ·insulated from each 

other to achieve a Spot thermocouple, since leaving the twist in, will cause 

temperature averaging over the whole one centimeter (cm) twisted length. 
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Thermocouple 

Half-way Drill Mounted Thermocouple 

a: Schematic Diagram of Method I 

b: Photograph of Method I 

Figure 3 . 5: Complete Schematic Diagram and Photograph of 

Method I Sensor 
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3.5.2 SENSOR MOUNTING 

Three methods have been used for sensor mounting and these are as 

follows: 

METHOD I 

A 0.4 mm diameter hole was drilled in the slit (side) of contact with 

200 p. away from the surface. The hole was drilled half way and the weld end of 

thermocouple secured in the slit using various adhesive bonding agents, such as 

ceramic adhesive, nail varnish, laquer and super glue (cyamo-acrylate CN). 

insulators gave reasonable thermal contact, but unreliable electrical insulation. 

These 

To improve electrical insulation, the welded end was placed in a capilary tube 

with epoxy resin around it and was placed in the slit of the contact with the heat 

sink compound, but it was found that the thermal conductivity was considerably 

reduced, despite the clearance distance between the capillary tube, thermocouple wires 

and the slit wall kept 0.1 mm to give very fast time response. The slit diameter 

(0.4 mm) affects the local loss distribution, but the . effect on the results will be 

negligible since a very small amount of material is removed and this is constant 

throughout all such tests. 

The poor thermal conduction may be due to air pockets in the slit and 

inconsistency of the temperature characteristics may be due to poor electrical 

insulation between sensor and contact body in the blind hole. 

the complete sensor with the contact. 

METHOD 11 

Figure (3.5) shows 

The thermocouple sensor was passed through the hole and secured in 

place in the centre with epoxy resin and then placed in a vacuum oven to cure and 

eliminate the air pocket or air bubble trapped. 
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in Positio n wi t h Epoxy Resln 

Full-way Drill 
Mounted Thermocouple 

a: Schematic Diagram of Method II Sensor 

b : Photograph of Method II Sensor 

Fig ure 3. 6 :Complete Schematic and Photograph of Method II 

Sensor Construction 
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a: Schematic Diagram of Spill Construction 

b: Photograph of Spill of Contact 

Figure 3.7: Shows Schematic and Photograph of Probe Position 
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Brass Tube 

a: Schematic Diagram of Probe Construction 

Photograph of Probe of Method III 
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octite Adhesive 

c: Complete Schematic Diagram of Method III Sensor 

d: Photograph of Method III Sensor 

Figure 3.8: Shows Complete Process jn Construction 

~Mounting of Method III 
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This method in general also proved . difficult to maintain good .thermal 

conductivity and electrical 'insulation. 

figure (3 .6). 

METHOD III 

A typical mounting of the sensor is shown in 

In this method, a hole was machined centrally through the spill 

(ba~k) of the contact, and the end faced off. The depth of the hole could be 

accurately controlled and. the distance from the suriace set at 150-200 J.lm, as shown 

in figure (3.7). To ensure the thermocouple weld was centred in the hole and, to 

achieve maximum thermal conductivity, a jig was made from brass. tube 4 mm in 

length with outer diamter 1.35 mm and inner diameter 1 mm. 

Two thirds of this tube was filled with Araldite MY750, with hardener HY917 and 

accelerator [)Y070, which is usually used for laminating and impregnating the system. 

After its curing in a vacuum oven, it was drilled with a 0.5 mm drill. 

The thermocouple was positioned centrally in the tube through the drilled hole 

and then the rest of the tube was filled with quick set epoxy resin. This ensures 

the thermocouple in the centre. The sensing end of the tube was filed down to 

expose the· maximum area of the weld. The jig was bonded into the hole in the 

spill of contact, using Loctite 384 with thermal conductivity 0.815 watts/m OC and 

dielectric strength 23 KV/mm. To achieve good thermal conductivity for fast 

response before diffusion along the contact body takes place and electrical insulation, 

the jig was maintained under pressure until the adhesive cured. See figure (3.8). 

However, the construction of the thermocouple probe proved far more difficult 

and time consuming than anticipated. The techniques of mounting a thermocouple 

in method I and 11 proved unreliable and inconsistant with respect to the electrical 

insulation and thermal path (conductivity) which resulted in the peak of the 

temperature characteristic not occuring at the time when the arc duration was 

terminated, despite thermocouple being very close to the surface. Method Ill 

performed far better than I and 11, the only unknown variable being the thickness of 
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the thermally conductive adhesive between the probe and the underside of the contact 

surface. 

A typical characteristic of temperature-time obtained from each method at the 

same known parameters (current, voltage, speed of break and make and gap) is shown 

in figure (3,9). 

The output of thermocouple is measured from thermocouple amplifier with gain 

of 246.48 and this is shown in figure (3.10), Finally, ·the leads had been twisted 

tightly together and a small adjustable loop included in the circuit to cancel any 

residual induction transient. The electrical' insulation has been checked by measuring 

the resistance between thermocouple wire and contact body. 

3.6 THERMOCOUPLE PROBE CALIBRATION SYSTEM 

Although the procedure for the construction of the thermocouple probe and its 

mounting into the spill of the contact is the same, it was found that not necessarily 

all will have the same response at a fixed test condition '~· . -. due to the time 

constant of the probe. The differences may have been caused by the following: 

(I) Air pocket between probe and contact as a result of 

poor bonding between them. 

(Ii) Vari•tion in the thickness of adhesive used for bonding 

which was also used as good electrica·l insulator and 

thermal conductor. 

(ill) Vari•tlon in the centreness (position) of the weld 

junction in the brass tube and its diameter (size). 
li.- i.~t) 

However, some of the above reaonskare unavoidable in the construction of the probe 

sensor. 
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For consistance comparison the characteristics (gradient and peak) of each pair of 
~ 

contacis withA thermocouple probe must be the same. Therefore, a system has been 

devised to ensure the above condition before test on the arc rig. This is called the 

calibration system which, in fact, simulates the test rig performance without actually 

arcing. 

The above system comprises a contactor structure and a hot body. The hot 

body is made of iron with mass of 113.88 grams which is insulated by good insulating 

material all over except where the stationary contact is placed. 

The heat input to the hot body is provided by a temperature control soldering iron 

which is placed inside the iron. The sensor (contact with thermocouple) under 

calibration is placed on the armature of contactor. 
0\ 

The calibration test is carried out when the hot body reaches~ steady state 
~ 

temperature and this is observed from the output ofAthermocouple which is fixed to 

the stationary contact. 

The characteristic of the sensor under investigation is obtained, from, the 
o.frf"'t 

thermocouple amplifier A on the oscilloscope. "fhe details of calibration system and its 

control circuit are shown diagrammatically in figures (3.11) and (3.12). 

However, the above system has a limited capacity, since the maximum operating 
tj..... 

0 

range of,\'SOidering iron is 400 C 

LED 
3.7 COMPUTER CONTROLA.WORK STATION 

To evaluate the degree of erosion after so many numbers of operations involved 

the operation of test rig and collection of data from numerous equipment (e.g, 

voltmeter,. ammeter and thermocouple amplifier, etc.). This is obviously a very 

lengthy perfomailce mannually. 

However, replacing manual with automatic operation reduces the test time. 

This procedure eliminates human errors, since the speed of break and make and time 
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interval between successive operations also have important roles in the build up of 

erosion. 

To achieve automation, a BBC microcomputer is employed as controller and 

IEEE 488 bus for communication. A disc drive is used to record the voltage, 

current- and temperature waveform, and a printer and plotter to output the data 

stored on the floppy disc whenever needed. 

As ·it has been mentioned previously, the test rig is driven by a solenoid .and a 

contactor to provide the pre-switching. Both. of these in turn are linked to the 

microcomputer through PlO. Figure (3.13) shows the interface circuity. 

The communication between oscilloscope and computer is through IEEE 488 bus 

and between controller, solenoid and contactor is through PlO interface box. 

'J:he input resolution of high speed Philips storage scope (50 MHz) is ten bits (1024) 

per channel. 

resolution = full scale x 1/(no of bits) 

"""'-
The oscilloscope is triggered externally when,.t. contactor is active and the current 

is detected across a 0.1 ohms resistor. Figure (3.14) shows the complete test station 

schematically. However, in order to control, collect and process the data, the above 

hardware requires software. The main software is written in BA<ilC in a way that 

easily can be modified by anyone who wishes to use the existing program for sending 

instruction to the hardware and receiving, and processing the data into an acceptable 
-\\.... 

form, since 1024 digital data values from each channel of/1. oscilloscope are stored in 

an array on the floppy disc. 

Other options within the above program are for plotting the data stored on VDU 

and also sending the stored data directly to the main computer (PRIME) via RS232 

since the floppy has maximum capacity of 640 K memory. 

Finally, a check has been made on several waveforms in order to verify the 
~ 

computer generated values of the data with those onA oscilloscope. The overall 

accuracy of data redorded on the disc depends on the resolution of the oscilloscope 

and the power of the software. The block diagram of the program is illustrated in 
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figure (3.15) and the program listing is in app~ndices I and IL 

development is used as a tool throughout investigation. 
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CHAPTER FOUR EXPERIMENTAL INVESTIGATION 

4.1 INTRODUCTION 

This chapter covers mainly the experimental work which has been carried out to 

build up an understanding of the effect of arcing on the contact surface. 

The experimental work, which is interdependent, comprises speed measurement on 

the test rig during closing and opening operations, electrode fall voltages, and contact 

temperature due to arcing, from which a correlation between electrical and thermal 

energy is obtained. 

4.2 SPEED MEASNREMENTS 

The mechanical characteristics of the test rig are shown on a separation versus 

time curve, which enables one to obtain a more complete understanding of its 

performance for a particular electrical duty and also explains the nature of the 

phenomena which occur during break or make operations, which is important for the 

analysis of the results obtained from the test rig, 

The initial experimental work undertaken was on the earlier test rig which was 

similar to the present one shown in figure (3.1) of chapter three, but it had some 

limitations in other areas of research, therefore the present test ·rig has been 

especially designed and built. Its operational procedure is discussed in section (3.3). 

The operating and closing characteristics of the test rigs are discussed in the 

following sections. 
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Figure 4.1: Shows the elapse time in seconds for roo feet of 
Hyspeed camera film; extracted from John Hadland 
Photographic Instrumentation Ltd. 
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4.2.1 OPENING SPEED 

The opening characteristics of the test rigs were measured using a Hyspeed 

camera. 

To enable the contact motion to be filmed, the Hyspeed camera is focused 

within the distance in which the contact travels. The film used is Eastman 4x 

negative 72224, 100 foot long, black and white, and the picture is taken at a speed 

of 5000 p.p.s. (picture per second). From figure (4.1) one can see that a speed of 

5000 p.p.s. is possible towards the middle of the film. Since this speed is reached 

in the last 50 feet, approximately 10 feet of the ·film is lost due to film backlash and 

exposure to daylight, and the test rig is operated automatically by a solenoid which in 

turn is triggered by the event control switch in the camera, thus allowing for the 

switch and solenoid movement. The event was set to start at 40 feet which allows 

approximately 50 feet. for the event. 

A time base for the films shot is provided by the camera system. This 

imposes an illuminated dot on the edge of the film frame at equal time intervals 

which enables one to analyse the film, frame by frame, on a microfilm reader in 

which the separation can be measured on each frame. 

The information from Hyspeed fiim is plotted against time asA shown in figure 
lS<>o ... ..,J) 

(4.2) which represents the opening characteristics of the test rigsA . The gap is set by 

a micrometer which is coupled with the fixed contact. 

Figure (4.2) indicates that the moving contact accelerates until it reaches the 

maximum separation between contact centres after 2.75 and 3.5 ms and then 

continues to oscillate, as a result of the transfer of the potential energy of the spring 

to kinetic energy, about ihe final rest position (this is the actual gap set by 

micrometer (1 .3 mm)). Generally the results show that the earlier test rig has the 

larger acceleration, and hence oscillations, compared to the later one. The 

difference between them is sufficiently small that it can be assumed to be practically 

negligible. 

Since the contact performs oscillations of a sinusoidal form and the amplitude 
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decay of these oscillations appears as exponential, White(l) used a computer 

programme to obtain a best fit of characteristics, where a general equation is obtained 

to define this sort of response. 

4.2.2 CLOSING SPEEEl 

The closing characteristics of the test rig are obtained by measuring on the 

oscilloscope screen . time taken for the contacts to close .from various separations. 

The separations are adjusted by moving the ·fixed electrode via the micrometer, 

leaving the driving mechanism and the moving electrode unaltered. The information 

for plotting separation against time is obtained by subtracting the time taken of each 

consecutive separation from the first separation (the largest chosen separation, (3mm)). 

The consecutive separations decrease. This approach approximately simulates the 

closing characteristic of the test rig from the information taken by the Hyspeed 

camera. Figure (4.3) shows the closing characteristics of the test rig at various 

speeds (200 mm/s to. 5QO mm/s), and the graph for each speed indicates that there is 

an initial acceleration period of the moving contact for the first 2.5 ms of travel, 

then it drops more gradually as separation decreases, and finally it comes to rest with 

the fixed contact. 

4.3 ELECTROElE VOLTAGE FALL MEASUREMENT 

It is known that the erosion of contact is due to the amount of power 'being 

dissipated at the contact surfaces from which contact material is boiled away and this 

amount is a function of the voltage drop near the electrodes. This suggests that for 

the study of erosion from the power balance relation, the voltage drop for various 

test conditions must be obtained. 

The theory of electrode voltage fall and the techniques used to measure these 

falls are described in chapter two, sections (2.5) and (2.5. t.). The present work is 

confined to arcs between solid electrodes (Ag-ed 0) in air using the Moving 
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Electrode Method in conjunction with a fast oscilloscope. In the moving electrode 

method the magnitude of the last sudden voltage step which occurs when the 

el~ctrodes are 'brought .together is measured; this takes place just before the 

approaching, electrode makes contact with. the fixed one(2). 

Here the effect of various parameters, such as speed of closure, operating voltage 

and the number of operations, on the magnitude of the voltage falls and over the 

distances which these steps occur have been. investigated. Therefore the anode and 

cathode fall and arc voltages have been measured under the test conditions of 40 

Volts. d.c., 4 to 10 Amperes and gap-length of 0.05 and l mm, with opening speed 

of 300 mm/s. 

4.3.1 EXPERIMENTAL DETAILS 

The experimental apparatus used to determine the voltage drop is shown 

schematically in figure (3.1) of chapter three. . The cathode and anode electrodes 

both have a diameter of 4 mm and rounded shape. They are held by a collet to 

the shaft; both are mounted. horizontally. The fixed contact is the cathode. 

The gap was set when an energised solenoid held the anode against a compressed 

spring, and the current was adjusted to a suitable value with electrodes in contact. 

The event was started by energising the solenoid which travelled up to the previously 

set gap. An arc was drawn across the gap, and after a predetermined delay of a 

second, set up by computer programme, the current into the solenoid was interrupted, 

the anode was released towards the cathode, and the characteristics of voltage versus 

time were recorded on the oscilloscope. The oscilloscope used was a 50 MHz 

Philips PM3055, and it was triggered externally. Each test was carried out on the 

new pair of contacts. 
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(a) For a current of 3A, gap-length 3mm and speed 
of closure at 75mm/s . 

Anode fall 
voltage 

~----Cathode fall 
voltage 

~-

lOV 

I 

-~.J~ ... ~.__-
200~s 

(b) For a current of 4 amperes, gap-length of 3mm 
and speed of closure at 75mm/s. 

Anode fall 
voltage 

~-- Cathode fall 
voltage 

f 
I 
t I 

~ .. ~--
500~s 

Figure 4.4: Photographs (a) and (b) represent the anode and the 
cathode fall voltages between Ag-Cd 0 electrodes , 
when contacts are closed after first establishing 
an arc between them at a fixed operating voltage of 
40 volts. 

- 113 -



l OV r 

(a) The full event of the arc from initiation 
to extinction . 

I 
~ 

20ms 

(b) Portion of the above arc with expanded time scale 

~-- 2nd anode 
fall voltage 

1st anode fall 
voltage 

----- Cathode fall 
voltage 

lOV 

r 
___.J 5ms '+--

Figure 4.5: The oscilloscope record of the electrodes fall 
vpltage measurement between Ag-Cd 0 contacts, 
as the anode is separated from the cathode and 
then driven back; at test co~ions of 3mm gap-length, 
closure speed of 75mm/s, in atmospheric pressure and 
operating vol tage of 40 volts. 
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(a) With a time scale of ~OO~s/Div . 

(b) With a five times faster time scale (lOO~s/Div . ) 

(c) With a ten times f aster time s cale (50~s/Div.) 

~--
f -

Figure 4 . 6 : The anod e and the cathode fall voltages versus 
t ime for t he test condi t ion of 50V , current of 
4A , gap- length of 3mm and wi t h a c losing speed 
of 75mm/sec. 
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I 
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14 

I' 

Arc voltage 

2nd discontinuity 
(or 2nd anode fall 

voltage) 

,----1st discontinuity 
(or l'st anode fall 

voltage) 

: "'c 1 li J, Cathode fall 
1* __ ......;._ci~,--...a voltage 

"-----oV I 

eh. 
.... 

Figure 4.7: This represents diagrammatically the anode falls, 
the cathode fall and the distance in Which the 
anode fall occurs from the cathode. 
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4.3.2 RESULTS. OBSERVA:fiONS ANI!> I!>ISCUSSI0N 

A typical oscillogram of. voltage when the anode 'is accelerated towards the 

cathode is shown in figure (4.4), in which the arc length decreases with diminishing 

electrode separation and discontinuity takes place in two steps. They occur very 

close to the electrodes and hence at a very short time from each other. The first 

is ascribed by I!>ickson et aJ(2) to the anode fall and the second to the cathode fall. 

The above confirms the earlier workers' observation. 

The oscillograms of figure (4.4) are for the test conditions of 40'- '- volts, 

current of 3-4 A and gap-length of 3 mm with speed of closure 75mm/s. It was 

observed that at this speed (75 mm/s) the occurrence of 'discontinuity becomes inore 

regular when contacts have already performed over 1000 operations. 

related to surface conditions, or conditions whithin the arc. 

This may be 

From careful observations of the photograph (figures 4.4-4.6) one can conclude 

that the amplitudes of cathode and anode fall voltages decrease slightly with increases 

in the currents for the same test conditions, but variations in amplitude of the falls 

were not detected at the above operating voltages. 

The photograph of figure (4.5) illustrates the oscillogram of a full event of 

opening and closing, which reveals that at the moment the anode (moving contact) 

changes its direction, moving towards the cathode, the arc voltage decreases and then 

cur:ves, and the two discontinuities occur away from the cathode fait The ,first 

(nearer to the cathode) occurs at a distance of 18_0 J!m from the cathode- and the 

second at 750 J!M 

The anode fall voltage, the cathode fall voltage and the distance in which anode 

fall occurs from the cathode are shown in figure 4.7. 

Research into the effect of -speed (75 and 300 mm/s) on the occurrence of these 

discontinuities •has also been considered, and the results are shown graphically in figure 

(4.8a), for the test condition of 40 Volts, 4 A and 1 mm gap-length, with over 30 

tests at each speed. 

Figure (4.8a·) shows that speed has n·o influence on the distance of the first step 
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Distance (uM)(40 V , 4A, 1mml 
600~~~~~--~~~---------------------------, 

400-

300' 

200 

100 ~~ 
49 

•@- - -· g 
' I ' 

0 100 200 300 400 
Closing Speed (mm/ S) 

G) 1at atep· (d1) $ 2nd atep (d2) 

Figure 4. Sa: Shows the average value of d1 and d2 . taken from 30 
operations for each speed; all on the same contact. 
(dl and d2 are the distance from the cathode.) 

Distance (uM)(300 mm/S, 4 A, 1mm) 
80~--------------------~----------------------, 

60 

40-

20-
.E) 

04-----------.----------~.---------,,----------~.-.--------_J 
0 20 40 60 80 100 

Supply Voltage (V) 

0 1at St~p (d1) 9 2nd Step (d2) 
Figure 4. 8 b: Shows the average value of the ils't and 2nd steps,. taken 

from 30 tests for each voJ..tage; all on the same contact. 
(dl and d2 are the distance from the cathode.) 



Figure (4.10): Graphsof (a-d) show variation of anode and cathode fall voltages 
with number of operations at a test condition of 80 volts, current 
of 4-BA, and gap-length of l-2mm. 

4.10a : Electrodes fall voltage versus the number of 
operations at a gap-length ol 1mm and a current of 4-8A. 

Electrodes fall voltage (Volts) 
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4. 10b : E:lectrodes fall voltage versus the number ot 
operations at a gap-length of 1.25mm and a current of 4-SA 

Electrodes fall voltage (Volts) 
16~--------------------------------------~ 
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4. 10c : Electrodes fall voltage versus number of operations 
for gap-length of 1.5 mm. 

Electrodes fall ,voltage (Volts) 
16~--------------------------------------~ 
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Figure 4. 9: Shows the amp·l:i tude and the number of occurences of the 
anode falls against the number of operations at test 
conditions of 80 voits, current of 4A, gap-length of 1.7mm, 
with a speed of closure of 300mm/s. 
Samples 1, 2 and 20 show the anode fall is absent. 
Samples 5, 25 and 54 show the anode fa:n can occur in 2'-s.teps. 
Sample.-·72 shows ·Small ,potential drop at the moment .electrodes 
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4.10d : electrodes talil voltage versus the nul!mber art 
ope~atJons tor a gap"'"',lengthJ, of 2mm and a current 01f 4-8 A 

rEiectliodes fall voltage (Volits) 
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(Le. dl) from the. cathode; but the second discontinuity (2nd anode fall) at the 

faster speed (300 mm/s) occurs within a few tens of microns, as opposed to a few 

hundreds of microns, for slower (75 mm/s) closing speed. So this suggests that the 

speed determines where the second discontinuity should occur. Also, observations on 

the large number of oscillograms revealed that speed has no effect on the magnitude 

of the falls. 

The effect of higher operating · voltages on the distance over which these 

discontinuities occur has been considered for the test conditions of 40, 50 and 80 

Volts, 300 mm/s, 4 A and 1 mm gap-length. The average distance from 30 tests 

for each operating voltage on the same contacts is shown graphically in figure· (4.8b). 

These graphs suggest that different operating voltages have no influence on the 

occurrence of these discontinuities, 

To study the effect of the number of operations on the fall values, a series of 

tests at 80 V, 4 A, 1.7 mm with speed of 300 mm/s was carried out. The results 

are shown in figure (4.9). They are interesting in that anode fall in some cases is 

absent or occurs in the form of single or double discontinuities. Therefore it was 

decided' that for the test conditions of 80 Volts, 4 to 8 A and gap-length of 1 to 

2 mm, the readings of the anode fall and the cathode fall be taken over 30 samples 

(tests). This information was then plotted against the number of operations (tests) 

from which the average values are obtained. 17he spread of values is small enough 

for the average value to be taken as representative. l!hese results are shown in 

figure (4.•10), The same method' is used' ·for every test condition. Figures 

(4,11-4.12) show the plots of the medians value of electrodes fall against current and 

gap-length, for operating voltage of 80 volts. 

Observations of ·figures (4.11-4.12) suggest that the anode and cathode falls are 

increasing with gapHength and decreasing with currents, but the increase of the 

cathode fall is slight compared to the anode, in fact one can assume it is negligible. 

Finally, a. series of tests similar to the above have been carried out to measure 

anode fall, cathode fall and arc voltage for 40 V, 4 to 10 A and 0;05 to 1 .mm, 
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Figure ( 4. 11:) : Represents electrodes fa11!1 voltage versus 

currer~ts for 80 volts supply and a gap-lengith of 1-2r:lilm 
E11ec,trodes fall! voltage (Volts~) 
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F'l:gure( 4. 12) : Shows electr.odes fall I voltage against 
i 

gap-lengths for a supply voltage of 80 and a current of 4-SA '· 
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r i gme( 4. 10) : l:::lect rodes tal!l. voltage ver sl!ls gap-lengths 
for a supply voltage of 40V and a current o·f 4-10A. 

Electrodes fall voltage (V) 
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l-igure(4.14) : :::>hows the anode talil voltage versus c.urrents 
for a supply voHage of 48V and a gap""'l.ength of 0.05-1mm. 
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Figure( 4. 15) :Shows. the cathode fall vol'tage versl!ls curlents 
for a supply voltage ·Of 4:0V and gap-length of 0.05-1mm. 
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with speed of 300 mm/s. This is the condition .used for temperature measurements 

from which, in the power balance relation, the electrical power for each gap-length 

has been evaluated. The results are shown graphically in figures (4.13-.,4.17'). 

Figures (4.13-4.15), exhibit similarities to figures (4.1'1 and 4.12); the anode and 

cathode fall voltage increasing with the gap-length· arid decreasing with the current. 

But, the values of cathode and anode fall are less at 40 Volts compared to at 80 

Volts. This' may be due to a difference in the number of positive and negative 

charges in the transition regions. 

Why the electrode fall increases with the gap and decreases with the current may 

be due to the following explanation: at larger gaps, charges between the electrodes 

tend to ·have a wide distribution in the transition regions, as a result there are higher 

differences 'between the numbers of these charges in those regions, which consequently 

leads to higher voltage drops across these transition regions (this process is shown 

schematically in figure 2.4, and discussed in section 2.5.1 of chapter two). 

The decrease of fall voltages with increase of current for a fixed test condition 

may be due to that at higher current the current density on the cathode is high, so 

that less cathode fall voltage is essential for maintenance and initiation of the arc. 

Similarly, less anode fall voltage may be required for the continuity of the arc. 1f 

this is ,the case that may ·be the reason why at higher current the anode fall in most 

cases occurs in one step or is totally absent. 'I'herefore, at lower current, Va has. a 

more important role to play for continuity of the arc .than at higher currents. 

Maecker(3) suggests that at larger currents an intense jet from ·the cathode 

develops, which has a high velocity, to retard the positive ions moving towards the 

cathode. Hence, because of ·neutralisation of the electron space .charge by 

slowed-down positive ions, the development of anode ,fall may become· ·limited, or not 

take place at all. 

Zhu and Von Engel(4) suggest that the ·reeason anode fall .is small. is possibly 

due to the presence of high vapour density close to the cathode which limits its 

development and range. 
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l-~igure(4.1t>) : Arc voltage versL:Js electrodes seperatior:ls tor: 
a circt~i t voltage of 40 volts and a current 01f 4-10A. 
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F-igure(4.11): Arc voltage versus cl!Jrren1ts tor a clrcuii't 
voltage of 40V and a speed 01f openif7l.g of 300mm/s. 
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A close inspection of samples l, 2 and 20, figure (4.9), reveal that the anode 

fall is absent, or it is so small that it is not possible to detect it (in the order of 

fluctuation voltage magnitude). Dickson et aJ(2') have suggested that, when the 

electrode separation becomes so small the electron carrying the arc current ·can reach 

the anode, without .positive ions being repelled' from its surface, this is due to the 

electrons very close to the anode not having a sufficiently large uniform axial velocity 

component. The magnitude of the anode fall depends on the energy used for 

repelling .ions, therefore anode ·fall cannot be developed. 

Zhu and Vori EngJe(4) also .related: the absence of the anode fall to variations 

occurring on the electrode surfaces, Figure (4.9), which represents typical 

characteristics of the fall measurements; shows that the anode fall can occur in· two 

steps~ In general those occurring ver.y close to each other are .from 10 to a few 

·tens of microns from the cathode, and· in those which are not ver.y close to each 

other the first step is about rs Jlffi, and the second; about I 00 11m, from the cathode 

surface. So, it may be possible to classify them in a way that those occurring at a 

few tens of microns from the cathode surface belong to the second step. The first 

may have taken place within 1'5 llffi, but because its value is similar to the fluctuation 

voltage, it is difficult to distinguish it. 

Another observation is ·that since ·for a particular gap or current the anode fall' is 

constant, if it occurs in the form of two discontinuities, its total: value. is the sum of 

those two discontinuities. 17ypical examples are shown in samples 5·, 25 and 54, of 

figure (4.9). 

The· reason why anode fall voltage occurs in one or two distances from the 

cathode may be· explained as follows: since the value of the anode fall voltage 

depends upon the energy required to repel the ions from. the anode, and the existence 

of ions ensures the continuity of the arc, one may assume that where the above 

condition prevails, in which there is lack of ions, the anode fall voltage Will occur,. 

So, according to the above hypothesis, the anode fall can occur in many steps if 

it is required by the condition of the arc; but ·the maximum discontinuities obser,ved 
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were two. Finally, observations on all sets of graphs at different current and 

gap-length confirmed that at speeds of 300 mm/s the first anode fall voltage occurs at 

a distance of about 151L"l and the second at a distance of a few tens of microns, 

which is in complete agreement with the earlier statement that speed determines the 

distance at which the anode fall occurs from the cathode surface. 

Zhu et aJ(4), in their experiments, found that the cathode fall voltage, and its 

space value, are independent of the velocity of the moving anode. 

During the course of fall measurements, voltage fluctuation has also been 

observed in some voltage traces with magnitude of 2 to 3 Volts. A typical example 

can be seen clearly in figures (4.6) to (4.9). 

Dickson et aJ(2) have suggested since the fluctuations are absent with arcs 

between carbon electrodes but present in metal vapour arcs, therefore they are due to 

cathode processes such as erratic spot movements or ejected lumps of metal ·crossing 

the cathode fall space. Boddy and UtsumiC5) suggested that the fluctuations of arc 

potential are caused by metal vapour diffusion in arcs. Boylett and MacleanC6), in 

their work on mercury arcs, suggested that the small fluctuations, which were found to 

persist up to the instant of electrical contact between the electrodes, were about 

0.3 Volts in magnitude, and were believed to have been caused by small movements 

of the cathode spot, or variations in the rate of evaporation of mercury from the 

cathode surface. 

A closer inspection of the voltage traces of figure (4.9), samples 7, 25 and 72, 

indicate that a small potential drop persists at the moment when the electrodes touch. 

Dickson et at(2) related this to a constriction resistance of the microscopic points 

making the contact. The findings of the other researchers about the present 

investigation are discussed in chapter two, sections 2.5.1.1 and 2.5.1.2. 
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Figure 4 .18·: Shows a photograph of a typical :voltage step 

observe~ at d!osure for an operating voltage 
of 50 volts, a cqrrent of 5A and' a· speed of 
500mm/ Eb. 
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4.4 ARCING AT CONTACTS ON SNAP-ACTION SWITCHES 

ON CLOSUREWOLTAGE STEP PHENOMENA 

Oscilloscope records of the potential across the contacts of a model switch used 

in this reasearch, on closure, have yielded a phenomenon in which discontinuity is 

observed within the drop voltage before closure, and this is named as the Voltage 

Step phenomenon. Figure (4.18) shows a typical voltage step. The above 

phenomenon was observed during measurments of anode and cathode fall voltages at 

"""'--operating voltage of 40 Volts, and a gap-length which was greater thanAarc length, in 

which case the fall measurements when the contacts break is· not possible. However 

arcing on closure of electric contacts has been known since the beinginning of this 

century and it Is recognized that this is the main cause of material transfer from one 

electrode to the other, but, despite its catastrophic effect, the nature of this arcing is 

not yet fully explained. 

Various arguments have been put forward, for example EarhartC7), ShawCS) and 

Pearson(C9) have suggested that arcing over a very short gap on closure is not due to 

voltage breakdown. 

ComptonClO) and Mackeown(ll) from a series of tests have suggested that for 

mercury arc and for arcs of low boiling point metals the discharge occurs by field 

emission. 

In 1949 Bell Laboratories' Germer and Hawarth(12), in the study of erosion on 

make in low voltage relay contacts used in the telephone system, observed the effect 

of a capacitor which had been connected across the relay for the purpose of 

minimising the voltage rise when they separate. They found that when the contacts 

are brought together, the capacitor across them is discharged and this is the main 

cause of erosion in telephone switching systems. Since these arcs occurred in air at 

potentials as low as 30 Volts, which is far below values of minimum sparking 

potential, their attention was directed to find out the nature of this discharge. They 

use crossed wires of the contact metal under investigation as their tool of research, 
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which were separated and brought together about 60 times per second by means of a 

magnetic I oudspea~er unit. In the first approach (13) the effect of various circuit 

parameters such as capacitor, inductor and resistor were investigated. 

They describe that the effect of inductance is to limit the discharge current from 

the capacitor and the discharge time is determined solely by fixed circuit parameters. 

They observed that in some cases several discharges took place before final 

closure. They related this to the capacitor being repeatedly recharged from the 

voltage source and the successive discharges depend on the values of capacitance, 

inductance, and resistance in the circuit, and the voltage source. Their view was 

supported by use of a camera from which photographs showed drop and opening in 

voltage traces. They also suggest that the natural capacity of wires may be 

sufficient for the above occurrance. 

Since these discharges take place at separation of 1000 - 2000 A (o.\r .... -o·"l.f••..) 
I> 

(1 A = 10- 1 0 m = 10- 4 llm), and corresponding fields of 

10.16 x 106 V/cm - 5.1 x 10s V/cm which showed that a progressively higher field 

was required for successive discharges. They related this to smoothing out or 

roughness on the cathode by each discharge which requires a different field in which 

case the discharge may be initiated by field emission of electron from the cathode 

due to the high field at the cathode. On the other hand, because of successive 

discharges these fields are 6 ~ 200 times smaller than known values for field emission 

to occur. So they decided to investigate the concept of the metal thrown up from 

the anode pit bridging completely across to the other electrode. This led to a new 

interpretation that if the metal bridge is so narrow, the flow of current through it 

promptly burns out this bridge, and as a result an arc of brief duration will follow 

and therefore the succes5ive discharges may be due to more than one closure taking 

place and the bridge being burned out by the current flowing through them. In the 

AC case they observed that if a closure lasts more than 1/2 cycle it becomes 

permanent; but most burn out within a 1/2 of the 1/2 cycle. 

They concluded that the concept of thrown up metal is not the usual way for a 
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closure arc to start, at least ·at the voltage they were experimenting with. 

In most cases the ai:c is initiated by field emission current when electrodes are 

still relatively far apart. Often the arc is over before the contacts touch first time. 

However, this view supports the early work of Germer(14) in which he observed 

that most of the energy is dissipated upon the anode, by measuring heat dissipation 

on each contact, with the aid of a thermocouple, in which he concluded that the 

capacitor is discharged before physical contact of the electrodes by an electron current 

which bombards the anode (field emission current due to high field). 

This energy is dissipated upon the anode in an extremely short time, of the 

order of 1 o- 7 second or less. 

In other investigations(15;16), they decided to consider the concept of Active and 

Inactive surface. Active surface is defined when the surface is covered by foreign 

substances which are like an insulating film. The outer surface of this film becomes 

charged by +ions which creates a high field at the cathode across the insulating film, 

and its addition with the electric field is effective in drawing out electrons from the 

cathode: 

This view has been supported by Kisliuk in a series of papers(l7,18), in which 

he says that the initiating field is strongly dependent on surface contamination, which 

in addition to affecting the emission of electrons from the cathode, supplies the initial 

atoms for ionisation when the contacts are in open air and at high fields. Electrons 

may be liberated by tunnelling through rather than passing over the potential barrier, 

or, when a single ion in approachi ~ng the cathode surface creates a "pass" by 

decreasing (thinning) the width of the potential barrier. 

In the investigation of Active surface they also considered the concept of greasy 

surface due to finger grease in which case for the first few break operations a 

quantity of soot is created on the surface and this sooty material, which may be oxide 

on the surface, causes arcing on every closure. 

surface active. 

Or, in other words, they make the 

They found that the electrode separation at which an arc strikes is much greater 
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Figure (4.21): (a-g) shows the effect of operating voltages ranging 20-50 volts on 
various parameters, such as height, over the distance from the 
cathode which they occur, the electric field for a fixed speed of 
closure 500mm/s and various· currents ranging 1-5A. 

4.L1a 0hows dependency ot height ot the 1st step(v1) on 
circuit voltages for currents ranging from 1 to 5 A. 

Height of 1st Step (V1) Volts 
25~------------------------------------~ 

20 

15 - 1 A 

-A- 2A 

-e- 3A 

...s;;- 4A 

10 + 6A 

5 

o~----~------~----~------~------L-----~ 

0 10 20 30 40 50 60 
Circuit Voltage (V) 
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4.L1b : t>hows the height at Lnd (or sum at Lnd and 0rdJ step 
versus circuit voltages for a current of 1-5 A. 

(V2+V3) volts 
25~--------------------------------------~ 

20 

15 - 1 A 

-A- 2A 

-e- 3A 

--9- 4A 

10 * 6 A 

5 

o~----~----~------~-----L------L-----~ 
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4.L1C : I he height at the last step( VL) versus various 

circuit voltages for a current of 1 to 5 A 

Height of Last Step (VL) 
25.--------------------------------------. 

20 

15 -- 1 A 
-A- 2A 
-e- 3A 
...s;;z- 4A 

10 ....... 6A ii .....--- ~ ~ i 

5 
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0 10 20 30 40 50 60 
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4.~1d: 0hows t'he distance ot the 1st step tram the cathode 
versus circuit voltages for a current of 1-5 A. 

Distance of 1st step(V1) fr:om cathode d1 
16.---------~----------------------------~ 

um 
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4.~1e : :::>haws the distance In which the ~nd step occurs tram 
the cathode versus circuit voltages for a current of 1-5A. 

Distance of 2nd step(V2) from cathode d2 
16~--------------------------------------~ 
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4.21t : Hepresents the electric tield strength ot the 1st 
step against circuit voltages for a current of 1 to 5 A. 

Electric field strength X 10e6 (V /cm) 
0.12r-----------------------------------~ 
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4.~1g : I he graph shows the electric Neld strength ot the 
2nd step versus circuit voltages for a current of 1 to 5 A 
with speed of closure at 500mm/s. 

Electric f·ield st-rength X 10e6 (V /cm) 
0.12~-------------------------------------. 

0.1 

0.08 

- 1 A 

-A- 2A 

0.06 -e- 3 A 

...s;J- 4A 
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0.04 

0.02 

o~----~----~------~----~----~----~ 

0 10 20 30 40 50 60 
Circuit Voltage (V) 

- 148-



for active electrodes than for inactive. For example, for active silver or rough 
0 0 

. surfaces, the separation is about 6000 A, and for inactive 1600 A. T<he 

corresponding fields for active is 0.58 x 10 6 V/cm and inactive 0.67 - 2.2 x 10 6 

V/cm. Finally they concluded that at lower inductance the repeated discharge and 

charge are in the form of an oscillation which they related to partial discharge of the 

oscilloscope plate capacity, and after a number of oscillations the discharge ends up as 

an arc of constant value which is characteristic of the metal electrode, and they called 

it the normal arc or metal arc. However, as inductance is increased the number of 

oscillations decreased; for example for inductance of 12 Henrys they observed 

discontinuity similar to that shown in figure (4.18). 

Arcing on closure has been discussed in chapter two, section 2.2.2. Here 

attention has been drawn to the conditions where no capacitor is connected across the 

switch model and the only capacitance and inductance is _the natural capacitance and 

inductance of the leads and oscilloscope probes; also in general the first arc strikes 

(step voltage) at a separation which is 50 times greater than the separation observed 

by Germer and his co-workers(33,36), To find out the cause of the. formation of 

these steps and their nature, a series of experiments are carried out at various values 

of the parameters of voltage, current, impact velocity, number of operations, change 

of polarity and surfac~ ro.ughness, which eventually may lead to a fundamental insight 

into the understanding of this phenomenon. 

4.4.1 THE EXPERIMENT 

The experimental apparatus· used here and its procedure is similar to the 

one discussed in section 4.3.1. 

4.4.1.1 Dependence of the steps on supply voltage and current 

To study the effect of voltage and current on the occurrence of 

these steps, a series of 500 tests was carried out with oscilloscope at each supply 
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Figure (4.22'): (a-e) show effect of various speeds of closure 200~500mm/s on 
height, over the distance which they occur from the cathode, 
electric fi'el!d and percentage occurrence of steps for a test condition 
of 40V, and currents of 2-8A, (Readings are median values of 500 tests). 

4.22a Shows the height of the steps against various 
speeds of closure for a current of 2-BA. 

Height of steps (Volts) 
30.-------------------------------------------~ 

25 

20 1st - 2 A 

+ 4A 
step 
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+ a A 

15 -* 2 (A) 
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~ 2,4,8 A last 
10 18:1 181 ~ step 

last step 

2nd 

5 
step 

OL-----~-------L------~------L-----~------~ 

0 100 200 300 400 500 600 

Speed of Closure mni/ s 
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4.22b: Shows the distance in which the steps occur from the 

cathode surface against speeds of closure for a current of 
2 to 8 A. 

Distance of steps from cathode (urn) 
20~------------------------------------------~ 

15 

- 2 A 

'""*" 4 A 
1st step 

-A- a A 
10 -e- 2 (A) 

-r 4 (A) 
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0 100 200 300 400 500 600 

Speed of Closure mm/ s 
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4.22c : The electric field strength of the 1st and the 2nd 
steps versus speeds of closure for a current of 2-BA. 

Electric field strength X1 Oe6 ( v /cm) 
0.06r------------------------------------------, 

0.05 

0.01 

OL------L------~----~-------L------L-----~ 

0 100 200 300 400 500 600 

Speed of Closure mm/ s 
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4.22d : Shows the percentage at whi'ch the steps occur at 
various speeds of closure for a current of 2 to B A. 

Percentage occurence of steps 
100.------------------------------------------. 
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4.22e Shows the percentage occurence of the steps against 
various speeds of closure for currents of 2 to B A. 

Percentage occurence of steps 
2 ~----~--------------~--------~ 

1.5 

- 2~ 
~ 4 A· 2nd 

[I] Jstep 
8 A 

1 
ffiffi] . 2 A 

D 4 A 3rd 

li§l 8 A 
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0 
200 300 500 

Speed of Closure mm/ s 
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voltage of 20, 30, 40 and 50 Volts, and currents of I to 5 Amperes, The 

operating velocity and .gap-length were respectively 500 mm/s and 3 mm. A typical 

sample of results at. each supply voltage and current is represented in ·figure (4.19). 

From inspection of figure (4.19) one can see the discontinuity within the arc before 

closure. However, these discontinuities in most cases are occurring in two steps and 

occasionally in three steps: the voltage drops associated with these are labelled VI·, 

V2, V3 and VL. They are shown diagramatically in figure (4.20). 

Close examinations of the above photographs revealed that at higher voltages the 

magnitude of VI and V2, or the sum of V2 + V3 (where three steps occurred) is 

increased, by VL at each supply voltage and. current remained constant; typically 

10 Volts. Also the current in general has no influence on the magnitude of VI but 

at higher currents, when supply voltage is high, V2 (or sum of V2 + V3 when VJ 

occurs) is .slightly decreased. This probably is due to the slope of the first or 

second step, or a combination of them. 

Figure (4.2lc) which is representative of Figure (4.19) shows graphically the 

varitions in magnitude of VI and V2 (or V2 + V3), over the distance they occur, 

and their electric field with respect to current for different operating voltages, 

Figure ( 4.21) shows that at lower voltage in general the steps occur at larger 

distances, typically 2 to 16 p.rn from the cathode, and the average electric field is 

0.03 x lQ& V/cm, compared to 0.05 x 10 6 V/cm at higher voltages. 

4.4.1.2 Deoendency of steps on speed 

A series of 500 tests have been undertaken at speeds of 200, 300 

and 500 mm/s, and :currents of 2 to 8 Amperes, with fixed operating voltage of 

40 Volts. The median values of the amplitude of steps, over the distance that they 

occur from the cathode, the electric field, and the percentage occurrence of the steps, 

have been plotted against current, as shown graphically in figure (4.22). The results 

suggest that the magnitude of Vt (i.e. the first step) remains constant for various 

currents at a fixed· speed but increases at lower speed. However, VL (last step) 
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Figure 4.23: Shows the effect of an unroughened (new) surface of electrodes on the 
steps for a test condition of 4 amperes, gap-lengths of 3mm and voltage 
40 volts at various speeds of closure. 
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always remains constant. 

Observations from 500 tests at each speed and current confirmed that at lower 

speed the duration of the last arc (tL) is longer than at higher speed. Howeve~. at 

higher speed of closure the duration of the transient arcs (t2 or 13) is longer 

compared to lower speed. 

Figure (4.22c) reveals that the average electric. fie-. Id for the steps lies in the 

range of 0.01 to 0'06 x 10s V/cm. This is far below breakdown voltage. 

Also, it was observed that at faster speeds and higher currents the occurrence of 

two or three steps is more frequent compared to slower speeds and lower currents; 

it seems at lower speeds and lower currents many tests are required before they 

occur. ""Phis suggests that speed and current have a great role in affecting their 

occurrence, and hence numbers. This is clearly shown, in figure (4.22d), as a 

percentage occurrence of steps against speed of closure, over 500 tests, for various 

currents. However, at higher speeds and currents the two steps in general are more 

numerous than three; but still over 90% closure""'without-arc (NO STEP) was 

observed. This is thought to be due to absence of a foreign layer on the cathode 

surface, or probably the point of contact is covered by a good insulator, so that there 

was no arc. 

4.4.1.3. 0ependence of steos on surface conditions 

Disfigurements of the contact's surface is the result of the amount of 

povier being dissipated between the electrodes, and this amount is a function of the 

operating current and voltage. In the previous section it was. observed that at a 

higher current and voltage the steps become apparent earlier, as the ·number of tests 

increased, than. at lower speed and lo1Jier current. This may suggest that the 

occurrence of steps is dependent on the state of the surface. 

For this reason, experiments have been carried out from higher current to lower 

and from -faster to slower speed. For each test the surface of a new pair of 

contacts has been roughened manually (contacts roughened using abrasive paper in two 
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directions at right angles) in order to test the above statement and also .to observe itS 

effect on the number of steps, of which up to now a maximum of three have been 

observed. 

The results from 3000 tests, for operating condition of 40 Volts, 2 and 8 

Amperes and speeds of 200 to 500 mm/s, reVealed that the steps occurred from the 

first operation, and in most cases occurred in twos and occasionally threes, similar to 

those observed earlier, where V1, for a fixed speed and voltage, remained constant. 

A sample of results obtained at current of 4 Amperes and speeds of 200 -

500 mm/s, using unroughened and roughened contacts, are shown in figures (4.23) and 

(4.24) respectively. 

Also for a current of 4 Amperes and a speed of 300 mm/s, before and after a 

single operation tests, the Talystirf has been used to compare the peak obtained with 

the distance obtained from the oscilloscope. This approach has not revealed much 

information. This is shown in figure (4.25). 

The observations of the voltage characteristic on closure, on the oscilloscope, also 

revealed that the cathode fall is slightly less when the surface is roughened compared 

to previous tests (unroughened), where it was 10 Volts, This may be due to a 

reduced work function for the emission of the electrons because the surface state is 

changed. This can also be seen from figure (4.24). The most interesting 

conclusion obtained from the above tests is that the roughness increases the number 

of occurrences, but not the number of steps. 

4.4.1.4 Dependence of steps on change of polarity 

From the above section it can be understood that the surface 

roughness has a great influence on the occurrence of the steps. 

However, in this section the investigation is to find out whether the occurrence 

of steps is due to the surface condition of the positive electrode or negative electrode 

in order that the cause of the initiation of the arc becomes clearer. The change of 

polarity on a pair of contacts which already have performed 1000 operations revealed 
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that it can occur in both cases with the same arcing time. This suggests that the 

surface condition of either eiectrode contributes to the occurrence of' steps. 

The above conclusion has been proved by two sets of experiments; in the first, 

the positive electrode has 1been roughened, and, iil the second, the negative electrode. 

In each case for the same test condition no change in arcing time and number of 

steps has been observed. 

It is known that the surface of ·an electrode which has performed a large number 

of operations, or has been roughened, is usually covered with spikes. 

of spikes is described in the next ,section. 

The formation 

4.4.2 DEVELOPMENT AND FORMATION OF SPIKES 

The spikes are usually known to be the first point of contact (microscopic 

point area of contact) during closure before the metallic contacts take place. These 

spikes can be created by roughening the electrodes' surface or they can develop as 

the result of arcing during break and make after a single or many operations; 

depending on the working circuit condition. 

At break, after termination of the arc, or during arcing,· the rim which 

surrounded the pit on the anode or the mound of metal which is thrown about the 

pit, or the mound of metal which has been sputtered over the ,cathode becomes solid 

and forms the microscopic points of contact (spikes). 

However at make the contacts get in touch at these microscopic point areas of 

contact. There is an elastic and plastic relaxation of the area of contact and as 

contact pressure is increased, heating first softens these areas and then the contacts 

sink together. These processes may increase the area of the contact and also create 

a situation for new miscroscopic points. 
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4.4.3 THEORY OF THE AR€ AT CLOSURE 

Here the .theory of the arc on closure has been developed from the 

tentative conclusions derived from the observations on the oscilloscope and the 

recorded output. From observations and the results obtained, one may postulate that 

the steps and the initiation of the arc are due to momentary points of contact, or 

they are as. the result of field break-down due to. the state of the electrodes surfaces. 

The momentary points of contact take place when these microscopic points 

(spikes) are .covered by a layer •Of insulating material. In these circumstances, since 

the contact area is small, contact pressure is light and current density is high, the 

rush (surge) of current through these points will vaporise them and then the arc is 

established. 

Each point of contact will produce a traverse to zero voltage so quickly :that it 

may be beyond the speed of resolution of the oscilloscope, and therefore it may not 

be noticeable on the oscilloscope trace. Holm(19) states that there can be no 

closure arc at a low voltage and if the first point of contact is so substantial that it 

is riot burned out. The photograph of figure (4.26) shows that the voltage dropped 

from 40 Volts to zero and then rose to a certain value. 

evidence of point of contact. 

This also shows the 

The field breakdown takes place when an 'intense field builds up between two 

electrode ·surfaces as they get closer (probably between spikes). But whichever 

causes the initiation of the arc, after initiation (first arc) both have the same 

characteristics until the two contacts come to rest on each other. That is voltage 

collapses suddenly to a value named here as VI (defined In figure 4.20), and as the 

arc starts, the potential across .the electrodes decreases in steps from voltage Vl to a 

steady value, which is characteristic of the metal electrode, and is called the Normal 

arc. The Normal arc has a steady value in the order of 10-11 Volts, and it is also 

known as the final arc or the arc before closure. 

The first arc has a duration typically in the range of 0.5 - 2 /lS. it is named 
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here as the transient arc. 

Since the Normal arc voltage value (VL, defined in figure 4.20) in any test 

condition remains constant at about 10 to 11 volts, which is characteristic of th-e 

metal electrode, this suggests that its mechanism is unique. In most cases the 

Normal arc folloWs after a transient arc, the transition period between them is 

extremely short, and the whole process becomes continuous. This indicates that 

there is inter-relation between V2, V3 and VL. VL exists whenever there is an 

arc. 

The parameter required for the continuity of .the arc is known to be Anode Fall. 

"rhe voltage drop across the anOde vaporises metal from the anode in sufficient 

amounts to proVide ions. The ions charge the outer surface of the cathode and as 

a result create an intense field. Its addition with the electric field, when the 

electrOdes come closer together, -is sufficient to drag out electrons from the cathode 

for the maintenance of the arc. 

electrons. 

So the Normal arc is due to the field emission of 

4.4.4 RESULTS AND DISCUSSION 

Investigations -into the effect of various parameters, such as current, 

voltage, speed, roughness and number of operations may have opened an explanation 

into the cause of these steps and proVided further insight into the mechanism of the 

arc. 

The .parameters which determine the nature of the arc are the separation at 

which these discontinuities take place, and their electric field. The data on 

separations and the electric fields are obtained solely from the oscilloscope and the 

speed of closure. 

The separation at which the first discharge takes place is variable and depends 

on the height of spikes. These spikes too depend on the condition of the surface. 

The surface condition is dependent on current, voltage, gap-length, speed, arcing at 

break and number of operations. 
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Data on the .distance separatiqns of the steps from the cathode, and their 

corresponding fields, for various test conditions are shown in figures (4.2I) and {4.22). 

From examinations of a large number of oscilloscope traces, .it is found that the 

time between the first transient discharge and the final closure varies considerably, and 

hence also their separations from- the cathode surface. 

It was found that the initiation of the arc is strongly dependent on the state of 

the electrode's surface. For example, on clean contacts, arc will not occur at least 

for the first few operations. However, if it takes place it may be as one step and 

this is thought to be due to rthe presence of foreign layers on the surface. Foreign 

layers can be contamination, by finger grease, or some organic substance which has 

been deposited on the electrodes from the air. When the surface is roughed 

manually or after a large number of operations, the steps occur regularly. This may 

be due to spikes or build-up or asperities on one or both electrodes which 

short-circuits to the other, or creates a situation for field breakdown to occur. 

Speed is another parameter which effects the duration of the arc, and the 

magnitude of V2 (or V2 + V3), second and third steps. For example, at lower 
1( ..... ~; .. .;\-

speed, the duration of thet\arc is longer and V2 (or V2 + V3) is smaller, but VI 

remains constant for the same test conditions, Soi if 
(' 

V2 is recognised as anode fall, 

this suggests that at lower speed the erosion rate is less on the anode. 

At lower speed it was also observed that it takes a longer time to build up a 

situation where two steps can be seen. But at the same speed when the surface is 

roughened the two 
(W 

last arc /I, is longer. 

steps phenomenon occurs immediately, and also the duration of the 
V\o-

It was observed that at higher currents the number O'l\_ steps 

reduces and the number of one and two steps increases. 

At various operating voltages, and fixed speed, the magnitude of VI increases 

with the voltage and so does V2 (or V2 + V3). The normal . arc voltage (VL) 

seems to be 'independent of current, speed and applied voltage, but not roughness, 

and occurs within a few ~tm from the cathode. 

The duration of the last arc in general is greater than the duration of the first 
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Figure 4.28 : The supply voltage shows the oscillation during 
closure before it drops to zero; at a test 
condition of 40 volts , gap-lengthof 3mm, a current 
of 4A and a speed of closure at 300mm/s. 
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(t2) or second (t3) arc. In some cases it was observed that the duration of the first 

or the last arc, or the second arc, is so brief that it escapes detection on the 

oscilloscope, with such a time scale as has usually been used here (5 ps/DIV). A 

sample of such phenomena is shown in figure (4.27). It must be noted that 

whenever the first transient arc occurs, the Normal arc also occurs. 

arc is characteristic of metal electrodes. 

The Normal 

Sometimes it is observed that there is just Normal arc. Here one could 

interpret this as being due to field emission before a metallic contact takes place, due 

to surface impurities as Germer and co-worker(16) suggested. 

the electrodes are still relatively far apart. 

This arc occurs when 

In some cases closure without arc (closures which are not preceded by an arc) 

was observed. One can assume that the first point of contact is covered by a good 

insulator, so that it did not arc. Or it was due to absence of a foreign layer· on 

the cathode surface. It has been observed in some cases that it takes about 1 ps 

for the current to vaporise the first point of contact and then the voltage rises, and 

then drops back to a value which is characteristic of the metal electrodes. It was 

also observed that within the last step, the arc voltage sometimes goes to zero. 

This might be as a result of metal which has been thrown out shorting the circuit, 

which then vaporises and arcing continues. 

Another pattern observed was oscillation before the drop of supply voltage to Vl. 

This is observed when a faster time base has been used (500 ns/DIV) and it is shown 

in figure (4.28). The cause of this oscillation may be due to the oscilloscope probe 

leads, or natural capacity and inductance of wires in the circuit. 

not always been observed, and has not been investigated here. 

This oscillation has 

Throughout the tests, the maximum number of steps observed was three, and the 

transient arc is always followed by the Normal arc, and V2 (or V2 + V3) decreases 

with current. This is especially · noticeable at higher voltages. What happens 

between the first and the last arc is recognised as anode fall, because anode fall is 

necessary to the continuity of the arc. The values of V2 (or V2 + V3), second and 
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third steps respectively, are consistant with the previous measurements, the only 

difference is the distance the 2nd step occurs from the cathode. For example, for a 

speed of 300 mm/s. it occurs at 90 ~tm. as opposed to 10 to 20 1tffi in previous tests 

(see section 4.3), but the first step for both cases is the same, about 15 ~tm. The 

difference may be due to the way the arc is established. 

All the experiments reported here have been made on Ag-ed 0 electrodes. 

The uniform progression of the tests was important for the understanding of these 

voltage steps. The above finding, that V2 (or V2+V3) (second step) is equivalent to 

the anode fall voltage, may introduce a new way for the measurement of cathode and 

anode fall voltages. 
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Figure 4.29: Shows a typical remperature-time curve of the 

electrodes (anode and cathode) due to arcing; 

at a test condition of 40 volts, current of lOA, 

gap-length of 0.5mm and arc duration of 4ms. 
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4.5 TEMPERATURE-TIME CURVES OF THE ELECTRODES 

These are defined as the means of measuring the amount of arc power being 

dissipated on the surface of the electrodes for various parameters such as current, 

gap-length and arc duration, and are recorded from the thermocouple output. 

Since the duraiion of ,the arc in snap-action switches at break is usually short 

(typically 3 ms, depending on opening speed), and within these periods the contact 

body does not reach to a steady state, these measurements have been taken 

immediately after .the contacts have opened in order to prevent appreciable heat 

diffusion to its surroundings. 'fhis has been achieved by placing the thermocouple in 

the centre of the contact, where in most cases this is seen to be the active area of 

the arc, and as close as possible to the surface in order to .obtain the correct 

temperature measurement. 

4.5.1 PROCEDURE IN TESTING 

The experiments were performed on the test rig shown in figure (3.1 ). 

The current was adjusted with the constant current source, the arc duration with the 

timer and the gap-length with a micrometer, and the rig operated by the computer. 

All these are explained fully in sections 3'.3. 

For each parameter such as current, gap-length and arc duration the temperature 

rise at the contact due to joule heating has been measured with· the aid of a T-type 

thermocouple using technique III as has been described in section 3.5.2. 

The e.m.f. generated in the thermocouple is fed to an• amplifier with gain of 

246.47. In temperature measurements it is customary to refer .the thermo-e.m.f. of 

the hot junction to a cold junction which is kept at a known temperature (reference 

junction). Here the known temperature has been chosen to be room temperature. 

Before the start of the· tests the thermocouple differential amplifier output has been 

aligned with the ground level of the oscilloscope, and after each test the signal was 
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Figure 4 .. 30: (a & b) show that differences exist between the 
output response of the thermocouple probes ( 1-5), - 113-

which have the same method of construction; for 
a fixed test condition. 
(The timer pulse determines the duration of the arc.) 
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Figure 4.31: Shows the characteristics of the ,probes A and 8 
obtained fr.om the caJ:ibration system; for a fixed 
test condition. 
(These two probes have been used for all the 
temperature-time experiments here .. ) 
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Figure 4 •. 32: Shows the characteristics of the probes A and 8 
on the test rig, in which each has been used as 
the anode for a fixed test condition. 
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allo.wed to settle to its original position. This enables one to detect accurately a 

small temperature rise of the contact ·body which otherwise would not be detected. 

A typical temperature-time curve is shown in figure (4.29) for test conditions of 

40 V, 10 A, 0.5 mm, and arc duration of 4 ms. 

4.5.2 CALIBRATION OF THE SENSOR 

Temperature-time characteristics of ·several tens of sensors have shown that 

although the method of their construction and the materials used for each are the 

same, the response of each for a fixed test condition is different. Typical examples 

are shown in figures (4.30). These figures reveal that the gradient of the curve, the 

amplitude of the peak and• its timing are different from each other. 

Use of any pair of these sensors will mislead one as to the interpretation of the 

results and hence a meaningless relation between thermal and electrical power. For 

this reason the probes (contact with thermocouple) under investigation for fixed test 

conditions must be identical in every aspect, such as time constant, amplitude and 

timing of peak. 

To ensure the above conditions before the test, a number of probes have been 

calibrated· on the calibration system designed and constructed here. (This facilitates 

testing and reduces damage to the contacts before the actual test.) Two probes, 

named here as A and 8, which had identical characteristics, as shown in figure (4.31) 

haw• been chosen. Their performance h~s. also been checked on the Test Rig, in 

which each has been used as anode for a fixed test condition. This is shown in 

figure (4.32). 

All temperature-time experiments for various test conditions and parameters have 

been carried out on these two probes, 
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•Figure (4·.33): 
I 

I 

I 

Graphs of (a-'e) show variation of e1:ectrode temperatures w:i'th arc 
duration at a. test cond.Ltion of 0.05-lmm gap-length, 40 volts 
supply, 300mm/s speed of opening and currents ranging 4-lOA. 

I 

4.33a Electrodes temperature versus arc duration for a 
gap-length of 0.05 mm and a current of 4-10 A. 
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4.33b : Electrodes temperature versus arc duration for a 
gap-length of 0.1 rnm and a current of 4-10 A. 
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4.33c : Electrodes temperature v:ersus arc duration for a 

gap-length ol 0.2 mm and a current of 4-10 A. 
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4 .. 33d : Electrodes temperature v:ersus arc duration for a 
gap-leng,th of 0.5 mm and a current of 4-10 A. 
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4.33e : Electrodes temperature versus arc duration for a 
gap-length of 1 mm and a current of 4-10 A. 
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Figure 4.34: Shows the effect of a slower initial acceleration 
of the solonoid on the arc voltage waveform; 
for a test condition of 30 volts, current of 8A, 
speed of opening 300mm/s and gap-lengths of 0.1mm. 
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Figure 4.35: Show that from the moment the contacts come to 
rest, the cathode temperature rises by the 
amount as the anode temperature decreases; 
this condition the supply voltage i.s off. 
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4.5.3 RESULTS AND DlSCUSSlON 

Using the two calibrated probes A and 8, the temperature cif the 

electrodes (cathode .and anode) for various test conditions such as current, gap-length 

and arc duration for an operating voltage of 40 Volts and speed of 300 mm/s at 

break has been measured. A sample of characteritistics of these electrodes for 

various parameters can be seen in appendix Ill. However, the responses of these 

electrodes (which are representative of the actual temperature) for current of 4-SA 

and gap-length of 0.05-1 mm are plotted against arc duration and are shown in figure 

(4.33). 

From figure (4.33), one can observe that the temperature difference between the 

electrodes for a gap of below 0.2 mm is insignificant compared to that for a higher 

gap-length. This is especially true for· current below 8 A and arc duration below 

6 ms. 

Also the temperature of the electrodes at different current and gap-length has a 

linear relation to the arc duration and increases from room temperature to 

approximately 30 ° C over a range of current, gap-length and arc duration extending 

from 4-10 A, 0.05-1 mm and 2-10 ms respectively. 

From figure (4.33), one could also observe that in some cases the temperature of 

anode, or cathode, or .both, at higher current are smaller than that at lower. One 

can relate this to non-uniform mo.vement of the arc, or the arc not occuring at the 

. 
same place where the previoiJs arc occurred (i.e. the arc occurred at a place remote 

from the thermocouple), or a change in the initial acceleration of the solenoid (slower 

compared to previous), which affects the arc voltage waveform. A typical example 

obtained for an operating voltage of 30 V, current of 6 A and gap-length of 0.1 mm 

is shown in figure (4.34). 

The graphs in appendix Ill show that for gap-length greater than 0.2 mm the 

anode temperature is higher than the cathode temperature. This can also be 

observed from figure (4.35) which shows that when the contacts come together (the 
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4.36(i): 4A, 0.5mni, 4ms. 
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4.36(ii): 4A, 0.5mm, Bms. 
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Figure 4.36: Graphs of (i-iv) show the effects of contact newness 
and polarity change for four pairs of contacts against 
the number of operations at the following test conditions: 

(i) Current 4A, gap-length .. of 0.5mm and arc duration 4ms. 
(ii) Current 4A, gap-length of 0.5mm and arc duration Sms. 

(iii) Current 4A, gap-l!ength, of lmm and arc duration 4ms. 
(iv) Current 6A, gap-J.:ength of lmm and arc duration 4ms. -183-
0bserved operations are 1-10 step 1, 11-100 step 10, 101-500 
step 50 and then ,polarity has reversed'. 



16 

12 

4.36(iii) :, 4A, lrnm, 4ms. 
0 

Electrodes Temp( C) 

1-

8 .L- ( +Ve) 
T 

: ~. 

~bl;, LL::!:- ...._ 
"T" 'T T 

4 

0 
0 

. 
. . (;-ve) 

"" -' -.: 

I I 

200 400 

J,l.LL '• 
(+ve) 

-'- -'-
w~.,... 

' 
~~ (-ve) .... 

I _I 

600 800 

~CONTACT (e) -+-CONTACT (f) (FIXED) 

4.36:(iv): 6A, lmm, 4ms. 

(+ve) 

8 

(-ve) 

4 
! : 

-'- ..L. . 
: 

1000 . 

0~------~--------~--------~--------~------~ 
0 200 400 600 800 1000 

~ CONTACT (g) -+- CONTACT (h) (FIXED) 

- 184 -



12 

(I) 
Ill ..... 
S..· 

8 
(I) 
s.. 
::1 

+> 
t1l 
s.. 
(I) 

~ 
~4 

0 

0 4. 8 (ms) 
Arc duration· 

4.37(i): For an arc duration of 2-lOms, gap-length of O.lmm, 
current of 5A and operating voltage of 40V. 

Figure 4.37: (i-iii) show the temperature-time response of 
probe (A) which is the same as probe (B) at the 
following test conditions: 

( i) 
( i i) 

( iii) 

Current 2-lOA 
Gap-length 0.05-0.2mm 
Arc duration 2-lOms 
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4.37(iii): ·For a gap-length of 0.05-0.2mm,arc duration of 
lOms, current of 5A and operating voltage of 40V. 
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supply being off) the cathode temperature rises by the same amount that the anode 

temperature decreases. 

The effects of .contact newness .and polarity change for four pairs of contacts 

have been studied at various current, arc duration. and gap-length. The results 

obtained are plotted against the number of operations and are shown in figure (4.36). 

These results also suggest that when the contactS are new there is inconsistency in the 

value of electrode temperatures and after about 50:-100 operations, depending on 

circuit conditions, the electrode temperatures reach to steady values. This may be 

the reason why where these contacts are used in switches for the temperature control 

of electrical appliances such as refrigerators, before their employment a high level 

D.C. arc Is drawn between them, probably to burn off poorly-conducting surface 

deposits which are often found on metal components, which would otherwise adversely 

affect .the temperature-control function. of the switch. 

Figure (4.36) also shows that where the change of polarity occurs after 500 

operations, the contact which now acts as anode (fixed contact) has a higher 

temperature than previously and the situation is reversed for the contact which now 

acts as cathode (moving contact), its temperature now being lower than previously. 

This may be due to the •moving contact causing a flow of air over its surface. 

If ,the. above argument is true, one can conclude that in D.C. operating 

conditions, making the cathode the moving contact may reduce the life expectancy of 

the switches. 

Finally; in order to complete the set of temperature-time characteristics of the 

above used electrodes, in relation ·to the development of thermal power modelling, the 

responses of the probe (A), which is the same as probe (B), for various currents, 

gap:-length and arc duration are represented graphically in figure (4.37). 
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4.6 POWER BALANCE AT THE ELECTRODES 

"fhe performance and the reliability of the switches depends upon the erosion of 

their contacts. Contact erosion is caused by joule heating on the contact surface. 

In order to understand the mechanism of the :contact erosion, it is important to know 

the distribution of the arc .power to the contacts. 

comparison of electrical and thermal power. 

This can be assessed from a 

The electrical power which is the input power, is the product of current and 

voltage drop in front of the contact surface which then raises the electrode 

temperature. The thermal power consists of some of the power absorbed .by the 

contact and power used in the melting and evaporation of contact material. 

In section (2.7) the models for the power balance relation at the electrodes of 

several workers are explained and their derived equations are shown in table (2.6). 

Here the power balance relation has been derived from temperature-time 

characteristics of the electrodes, measurements of cathode and anode fall voltage, 

Capp•s(20) derived expression and network response technique. 

It is assumed that the power to the electrodes is transferred by the ion and 

electron current in the fall regions. 

4.6.1 El!..ECTRICAL MODEL 

Since the duty' of each electrode is different from each other, the power 

balance at the cathode and anode electrodes have been considered separately. 

4.6.1.1 Power balance at cathode 

Due to electric field or thermal excitation, electrons in the atoms on 

the cathode surface become excited and they move to higher shells. The force of 

attraction between nucleus and electrons reduces, and as a result the electrons are 

liberated. 

- 188 -



Cathode Fermi 
level 

Figure 4.38: 

~ode .Fermi level 

--- -----

4>a 

V arc 

Capps' Electron Potential in the Arc. 

Vi(t) volts 

' 

I •• 

----.L...-------.,----L--• :----- t(ms) 
0 t 

F:i:gure 4.39: The d.c pu1se, of width T and amplitude Vi(T) to the RC network. 
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These electrons in the cathode fall region ionise the excited and uncharged atoms 

(neutral atom), as described by Capp(20). This region is also described by Von 

Engel and RobsonC2) as a source of positive ions, due to multiple collisions of excited 

atoms. 

Considering that the dominant mechanism of energy transfer to the cathode is 

positive ion bombardment and the energy loss from collision of these +ve ions with 

atoms in .the ionisation region is negligible(20) and using the simple outline of the 

potential in the different regions of the. arc as shown in figure (4.38), it can be 

proposed that the cathode is heated up by the power from the voltage drop across 

the cathode fall (Ip.Vc); power from the ionisation region ('Ip.Vi), which is assusmed 

. to be thin with a small voltage drop across it; and power from the hot column by 

thermal transfer. 

In the plasma column, the power generated is I. Vp, since electrodes separations 

are sinall compared with the diameter of the electrodes and the diameters of the 

electrodes are much greater than the diameter of the column, and the plasma is a 

good conductor, it can be assumed that half of its heat is conducted to each 

electrode. Thus radiation, convection and conduction losses through the plasma to 

the exterior surroundings are ignored. 

The power losses .from the cathode surface are: the conduction power (Pc h); 

evaporation power (Pev); convection power (Pcov); and the power loss to the 

escaping electroncs (Icpc) moving out from the cathode (which is known as the 

Work-Function). In view of the above assumptions, the power balance equation for 

the cathode is as follows: 

Ip.Vc + Ip. Vi + !.(0.5). Vp = I.cpc + Pch + Pev + Pcov (1) 

Let 'Y = Ip/I . . . ratio of positive ion current to total current. 

Therefore (1) can be written as 

- 190 -



1(-y.Vc + )'.Vi + ·0.5.Vp - .,oc) = Pch + other losses (2) 

-\ot .. \ 
Let VCE = 'Y Ye + -yYi + 0.5 Vp - .,oc ~oltage drop in front of cathode). 

Power Balance at" Anode 

The electron current is assumed to be the dominant mechanism of 

the beat transfer to the anode, and le.=' I (approx.). The heat received by the 

anode .is from: the fall region (I.Va); thermal power of the electrons (LYe); the 

power conducted from the hot gas (column) (05 Vp.l); and power given off by the 

electrons absorbed by the anode. 

The heat losses from the anode surface are: the conduction heat now; 

evaporation power; and. convection power. The power balance for 'the. anode is 

then: 

I. V a + I. Ve + I (0.5 Vp) + l..pa = Pah + Pev + pcov (3) 

or 

I(Va + Ye + 0.5. Vp + .pa) = Pah + other losses (4) 

Let V AE = V a + Ye + 0.5 Vp + .pa (total voltage drop in front of anode). 

4.6.2 THERMAL MODEL 

For the purpose of calculating the amount of power being dissipated on the 

surface of each electrode from the thermocouple output which is placed approximately 

200JL\V\ away from the centre of the electrode, the response of the thermocouple in 

the contact with respect to constant heat now is simulated by the response of an RC 

circuit to a d.c. pulse. 
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Figure 4.40: A simple RC circuit, which simulates the response of 
the thermocouple in the contact· with respect to a 
constant heat flow. 

Vo(t) volts 
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Figure 4.41: The charging and discharging characteristics of the 
figure 4.40. 
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Consider a pulse of width T and amplitude Vi as shown in figure (4.39) 

generated by the circuit of figure (4,40). 

Initially the switch sweeper is in: position 1, which is open-circuit and no current 

is flowing. To start the sequence the sweeper is switched to position 2. It is 

assumed that at the instant at which the switch is closed the capacitor is initially 

uncharged. 

Applying Kirchhoff's voltage law to the circuit (4.40) for t = T the charging 

voltage is as follows: 

- e (5') 

The CR is ·known as time constant of the circuit and is denoted by a. 

·If T =et, equation <.f) becomes as V0 = VJ:(t-e) = 0.63Vi, so that the 
·' 

time constant -of the circuit can be defihed as the time for the 

capacitor voltage to Increase approximately 63% of its final value. 

For t > T, when swl•tch Is turned to position 3, the new time origin 

becomes t = T; that Is t' = t - T, In which case, the charged 

capacitor Is discharged through a resi~tor, R. The discharge equation 

Is as follows·: 

[ 
t ] [ T ] - CR CR 

V0 = Vj e e - 1 (6) 

From equation (6) one can say that for t > T the voltage decays 

exponentlally to zero from a value V0 . The ch-arge and dischar.ge 

characteristics are shown in figure (4.41). 

The d1ffe~ent electric circuit parameters and their analogue in: the 

thermal system :are: 

0 

Current flow i (A) Heat flow Q (J/s or W) 

Electrical capacity Ce(F) Thermal capacity C4.= cpv(J/k) 
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Figure 4.43b: 

I· ·~ 

Figure 4.43c: 

Shows equivalent ·.circuit of 
fig Lire 4. 43a. 

Represents the simplified equivalent 
circuit of figure 4.43b. 
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Electrical resistance R (D) 
LIX 

Thermal resistance Rth = -
KAs 

• Electrical potential (V2-V1) (V) 'Fhermal potential (o2-o,) (K) 

• 
where Cp = specific heat of contact J/Kg /K 

p = density of contact kg/ml 

V = volume of contact m3 

0 

o = average temperature of contact K 
0 

K = thermal conductivity W/m/K 

As = surface area of contact m2 

... 
(KfW) 

To apply equations (5) or {6) to the thermal system {contact containing 

thermocouple), the potential field of the thermal system must be fully understood in terms 

of equal flux lines and equal voltage lines. 

The analogue of equal current flow line is heat flow line and. equal voltage line is 

isotherm. the isotherm and heat flow lines are perpendicular to each other at any point. 

It is assumed that, since the diameter of the contact is much greater than the 

gap-length, durfug heating {arcing) heat ·lost to the surroundings is negligible and once the 

intermediate layer of the contact surface {arc seat) is heated to an equilibrium temperature, 

most of .the heat entedng the contact flows from one cell {curvilinear square). into the next 

cell and is received by the thermocouple. The isotherms and heat flow lines for the 

contact with the thermocouple are shown in figure {4.42). 

The electrical analogue of figure {4.42) is shoWn in figure {4.43a), in which each 

isotherm is represented by an equivalent series of resistance and capacitance. These 

equivalent resistances and capacitances are the electrical .analogue of the cells. 

In figure {4.43a), RI and R2 are the thermal resistances of the Silver and the Loctite 

adhesive respectively, Cl and C2 their thermal capacitances, CO the thermal capacitance 

of the thermocouple, R3 and C3 the thermal resistance and thermal capacitance of those 

parts of t~e contact which do not contribute to heating up of the thermocouple. 

Figure {4.43a) could be simplified further by considering its equivalent circuit ·as 
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1 

2 

(a) Physical system of figure 4.42 

1: interface of air and contact 

2: interface between Ag and adhesive 

3: interface between adhesive and 
thermocouple 

(b) Temperature distribution along r"t··J stt."' 

Figure 4.44: (a) and (b) show the physical system of the 

thermal model and its temperature distribution· 

_,. .. 
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The time constant of the probe (contact with ,thermocouple) is calculated' from ,the 

following relations: 

a -= Crh . rrh 

= (Cth · rrh)_·A +- (Cth · Tth) Loc · 8 we 

(9) 

[ 
.d' X ] where V =z As 

The the~mal conductivities, heat capacities, densities and the thickness of Silver and 

Loctite adhesive are as follows: 

0 0 

K = 419 W/M/K K = 0.815 W/M/K 

0 0 

Cp = 236 JjKg/K Cp = 970 JjKgjK 

Ag 
10500 Kg/Ml 

Loctite 
1640 Kg/Ml p = p = 

.dX' = 200JJ-m .dX = 120 )lm 

Substituting the above data into equation (9) gives the time constant for Silver 118 

JJ-S and for Loctite 1'4ms which is in good agreement with the measured one ( 1'8ms). ..1X, 

thickness of Silver and Loctite are obtained from figure (a) page A20, 
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Figure( 4.45): Semi-log plot of heating and cooling curve 
for current of 6A, Voltage of 40V, arc duration of 6 ms 

and gap-length of O.lmm. 
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l-igure(4.4t>): ohows variation ot electrodes power with 

arc dureatlon for a test condition of 0. 1mm of gap-length 
WATTS ,current of 6A and operating voltage of 40 volts. 
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4.6.3 RESULTS AND DISCUSSION 

TO. calculate the power dissipated on the contact surface by the arc one 

could use equation (7) or (8) derived from the thermal model. The log-linear 

(semi-log) plot of the heating curve, a typical example is shown in figure (4.45), 

reveals that it is not truly exponential, but in the semi-log plot of the cooling curve, 

as shown in figure (4.45), although at some point there is a kink (perhaps due to 

extra heat loss to the surrounding air at that time) in' the graph, one could assume 

that it satisfies the requirement for using equation (8). 

The kink in the semi-log of the cooling curve shows that heat is lost not only 

to the contact body but also to the air. This occurs in most cases at the mid-point 

of cooling, just for a few ms. In reality one should be able to use the temperature 

of cooling curve at any time in order to calculate the input power, but that for the. 

above reason when the temperatures at the beginning and at the end, before the 

cooling curve reaches steady state, have been put into equation (8), it ·was found that 

the highest heat-flow rate was obtained using the temperature right at the start of 

cooling. 

This has been followed in all the calculations of input power to the electrodes 

for various current, gap-length and arc duration using their temperature-time curves 

obtained from thermocouple output. The results show that for a fixed gap and 

current with different arc durations, there are differences in the value of input power 

obtained from each curve, when one would expect them to be the same. 

result is shown in figure (4.46). 

A typical 

The differences are thought to be caused by variations in the mechanical 

parameters of the switch model (initial acceleration of opening contacts as shown. in 

section 4.2.1 speed has non-linear characteristics) which affects the shape of the arc 

voltage waveform; two such typical waveforms are shown in figure (4.34). Or they 

may be caused by the arc ciccuring remote from the thermocouple position on one or 

both electrodes which would change the time constant of the thermal system. 
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Figure (4.47): (a-e) show variation of power transfer to the electrodes with 
current, for a gap-length of 0.05-lmm and supply voltage of 
40 volts. 

4.47a : Shows variation of power transfer to the electrodes 
with current for a gap-length of 0.05mm and supply voltage 

of 40 volts. 
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4.4 fb: 0hows variation ot power transter to the electrodes 
with current for a gap-length o,f 0.1 mm and supply voltage 

of 40 volts. 
(WaUs) 
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4.47c: Shows variation of power transfer to the electrodes 
with current for a gap-length of 0.2mm and supply voltage of 

40 volts. 
(Watts) 
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4.47d: Shows va1riatlon· o.f power tra1nsfer to tl'ile electrod·es 
wlith current for a gap~length o.f 0.5 mr;n and supply voltage 

of· 40 volts. 
(Watts> 
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4.47e: Shows variation of power transfer to the electrodes 
with current for a gap-length of 1 mm and supply voltage of 

40 volts. 
(Watts) 
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_ . .:;'~. 

Another cause could be the arc being of longer period, which Would· change the 

surface condition of the electrodes and hence the time constant. Spurious triggering 

of the first timer, which controls the arc duration, may provide a duration slightly 

greater than its preset time. 

These differences lie within 5 to 1 OOA> of the highest value calculated, and for 

this reason at each gap, for a constant current, the highest value of the input power 

to the electrodes has been chosen. 

These values, their sum and arc power, are plotted ;tgainst current and 

gap-length as shown in figures. (4.47;-'"f·lfi) 

Figures (4.47) suggest that for gaps of 0.05 and 0. 1 mm, and for current from 

4 A to 8 A, the sum of cathode and anode power are equal to the arc power. 

For 0.2 mm this is only true for current of 4A. 

For 0.05 mm at 6 A the anode and cathode power are nearly the same. For 

0.1 mm, below 6 A the cathode power is higher than anode power, and then the 

curves cross over each other at { 5 · A. If one extends the curves of anode and 

cathode power at 0.1 mm beyond 10 A, one can notice that they cross each other 

again around 11 to 12 A. For any other gap the anode power for every current is 

higher than the cathode power. 

The above results agree with White•s(1) suggestion that below 0.2 mm the net 

power causing erosion is virtually the same as the net arc power. Sato(23) and 

White(l) from experiments on switches with Ag Cd-Q contacts and with electrical test 

conditions similar to here (i.e. 40 V d.c., currents of 2-10 A) but with different 

speeds of opening of· 63 mm/sec and 1500 mm/sec respectively, by using Talysurf and 

weighing techniques have defined a transition region in which material transfers from 

the electrodes change their direction. 

White •s(l) transition region is at 8 A. Material transfer direction below 8 A is 

cathodic loss, anodic gain and above 8 A is cathodic gain, anodic loss. With 
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Figure (4.48): Graphs of (a-d) show power transfer to the electrodes versus 
gap-length for a current of 4-lOA and circuit voltage of 
40 volts. 

4.4ea: f-Jower transter to the electrodes versus gap-length 

for a current of 4A and circuit voltage of 40 volts. 
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4.4eb: fJower transter to the electrodes versus gHp-leng~th 
for a current of 6A and ci'rcuit voltage of 40 volts. 
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4.4ec: f-Jower transfer to the electrodes versus gap-length 
for a current of BA and circuit vol'tage of 40 volts. 
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4.4ed: f-Jower transter to the electrodes versus gap-length 
for a current of 10A and clrcul t voltage of 40 volts. 
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SatoC23), the material transfer occurs in the direction from cathode to anode at a 

testing current of 6;4 A, but in the opposite direction from anode to cathode around 

10 A. 

Here it. was found by calculation, that for separation of 0.1 mm, the power 

dissipated at cathode and anode is the same at the currents 6 • 5 Ampere, and 

of around 11 A - in this case extending the power curves. 

For gaps of 0.2 mm and 0.5 mm, one can observe from figure (4.47) that the 

cathode power decreases from 6 A upwards, but anode power is still increasing. 

The decrease of cathode power for gap of 0.5 mm starts from 8 A. For 1 mm 

gap the anode and cathode power both decrease from 8 A. This suggests that the 

significant loss of cathode power starts earlier than for the anode power. 

Figure (4.48) suggests that for currents of 4 A, 8 A and 10 A the power curves 

of cathode and anode have similar patterns . before and after 0.1 mm .of gap. But 

for 6 A the difference is reversed below 0.1 mm gap, and as a result they cross each 

other at around 0.125 mm of gap. 

As shown in figure (4.49), the cathode fall remains constant, so any increase in 

the power conducted into the cathode is as a result of increased power dissipation in 

the arc column. 

Figure (4.47) also shows that at some currents the sum of anode and cathode 

powers are not equal to the arc power. This can be related to the losses from the 

contacts which take place in the form of evaporation, or conduction to the air, etc. 

Examinations of the contact surfaces, for all the different test conditions, by a 

Scanning Electron Microscope (S.E.M.), have revealed that most of the arc power has 

been used for melting and evaporation, and the resulting debris is scattered over the 

electrode surface. 

A typical S.E.M. photograph of a contact, for a current of 6 A, arc duration of 

8 ms, operating voltage of 40 V and gap of 0.1 mm, after completing 10 operations, 

is shown in figure (4.50). In figure (4.50) photgraphs 1-3 are of the cathode and 

4-6 of the anode. 
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Figure (4.49): Graphs of (a-d) show .components of the arc voltage against 
electrode separation for a current of 4-lOA and operating 
voltage of 40 vol!ts . . 

4.4'9a: Components of the arc voltage against electrode
seperation for a current of 4A and operatiing voltage of 40v. 
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4.41::1b: Gomponents ot the arc voltage against electrode
seperation for a current of 6A and operating voltage of 40v. 
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4.49c: Components of the arc voltage against electrode
separation for a current of SA and operating voltage of 40v. 
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4.49d: Components of the arc voltage against electrode
separation for a current of 10A and operating voltage of 40. 
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Figure ( 4 . 50) : Shows S.E . M. photographs of the electrodes' s urface after completing 10 operations at a 
current of 6A, arc duration of 8ms , operating voltage of 40 volts and gap- length of O. lmm . 
Photographs l - 3 are of the cathode and 4- 6 are of the anode. 
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Shows an X-ray analysis of the cathXfusurface after 
completing 10 tests at a current of 6A, arc duration 
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Figure (4.5lb): Shows an X-ray analysis of the anode surface after 
completing 10 tests at a current of 6A, arc 
duration of Bms, operating voltage of 40 volts and 
gap-length of O.lmm. 
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From figure (4.50) one can observe that the cathode surface has low mounds arid 

a fine surface roughness. The anode has a developed rim,. surface cracks with 

holes, and is severely roughened. These cracks are. probably formed; by thermal 

stresses due to the mixed materials of the contact surface. 

The above observation of the lack of cracks or a crater on the cathode surface 

suggests that the cathode ;spot must be mobile (because the heat does not concentrate 

on one area), and this has been suggested by Mapps et aJ(21) and Slade et aJ(22). 

However, both electrode surfaces exhibit the appearance of molten lava. The 

x-ray analysis of the electrode surfaces have revealed that the quantity of material 

making up this 'lava' at the anode is higher than at the cathode. This is shown in 

figure (4.51 ). 

The losses from the electrodes can be calculated by knowing i' and Ve in 

equations (2) and (4). Here i' and Ve are calculated using power balance ettuutions 

(1) and (3). and the relevant data from figures (4.47) and (4.49) for conditions where 

the sum of anode and cathode power is equal to the arc power, in which case no 

loss takes place. 

It was found that in general where anode and cathode power are equal, or 

approximately equal, then i' is in the range of 0.51-D.54, and the thermal energy of 

the electron (Ve) is negligible, but where anode power is much greater than cathode 

power, i' is in the range of 0.47-D.S, and. thermal energy of the electron is about 1.2 

eV. 

From the above results it can be concluded that for a relatively small gap (below 

0,2 mm), where anode voltage is small and cathode voltage is almost equal to the arc 

voltage, then the value of thermal energy of electrons and the ratio of positive ion 

current to electron current (i'=Ip/1) play an important role in power balance relations. 

The reasons why 't and Ve change in relation to gaps of below 0.5 mm has not 

been investigated. 

In the thermal model, by using finite-element approach (as shown in appendix 

IV), it was assumed that all the heat e"'-\-Q.<~ ... d t-o the contacts was received by the 
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Figure (a) : Shows a cut section of the probe. 

---~ 

Figure (b): Shows generated 3-D volume of the model , tilted at 30 degrees . 

Also the contour of heat distribution for 100 watts and lOms . 
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APPENDIX IV 

Modelling heat transfer in the contact body using FINil'E EL.EMENTS 

Heat which flows in the contact due to arcing is very difficult to model directly 

using 3-D volume Finite Elements, as thermal' capacity, thermal conductivity and 

density of the materials make the contacts change with input heat and internally 

generated heat. 

The problem has been solved by assuming that no internal heat generation has 

taken place, no heat has been lost to the surrounding air under transient condition 

(no boundary condition} and *"'- ha...t "-l<..~<L"'-~ ~.'y e.~yo~c.\.'•"' .....,\ -.\ \-:"'"l on the surface 

of the electrodes. cl oti ~.,+ eo"'\(,.\, J~ to \\.... ~\ ~ \,w ~ .... \k c.o ... ..\..ct ~""';"~""'C..:";}. 
The dimensions of the required data, such as diameter and height of 

thermocouple weld junction, adhesive and etc ... , are obtained from figure (a): 

Figure (a) is a cut section (axially cut) of the probe (contact with thermocouple) 

which exposes more details of the construction. 

The package used was PAFEC-FE. With this package the contact is modelled 

by giving the co-ordinates (nodes) of the half section of the contact which is assumed 

to be asymmetrical about global x and y axis. This is then divided into four 

sections. The generated 3~0 volume of this model which is tilted at 30 degrees is 

shown in figure (b). 

Figure (b) also shows a typical contour of heat distribution within the contact for 

heat input of 100 watts which applied at the centre of the contact for duration of 

tOms. 

The observation of figure (b) suggests that most of the heat is concentrated 

within the line of contact (where the heat impulse is applied) and that at points 

reJ11ote from the impulse heat there is no rise in the temperature of the contact body 

from the room temperature. 
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APPENDIX m 

A sample of temperature-time curves of the anode and the cathode electrodes 

obtained by ·probes A and B respectively (these two probes are discussed in section 

4.5.2) for a gap length of 0.05-l·mm, and. a current of 4-10 Amps at a supply 

voltage of 40 V. 

(A) Anode 

(C) Cathode 
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1J40D~~W N~,TRl\Nhi 
lJSON~XT NI. 
1360ENDPROC 
1J70REM @@@@@@~@@~@~~@@~@J~~Y@@@@~@@@ 
l360DE.FPROCheade r 
l390VDU 2 
1400PRINT''Test results for filenam~ '';fllename$ 
1410PRINT"S~ev" ;TAB\ 10,, "Time tu" ;TABi.25J; "Volta,se" 
1420PRLNT" No."; TAB( 12 J; "s tev"; TAB\ 27 J; "step" 
14JOPRINT; TABd2 J; '\ uSJ .. ; TAB( 28); .. (V;'' 
1440PRINT:VDU J 
14SOENDPROC 
1460REM @@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
1470DEFPROCprlnt 
1430VDU 2 
1490FOR SI.= 1 TO \step%-1) 
1500PRINT;TAB~2 1 ;S%;TAB,l2J;timl!\S7.J;TAB,27);voltstep\S% 1 
lSlONEXT SI: 
1520PRINT:VDU J 
lSJOcNDPROC 
1540REM @@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
lSSODEFPROCfront 
1560PTR0Y=l 
1570FOR Pl%=1 TO Ll 
1580F~~PlZJ•BGETUY:NcXT PlZ 
15.20$NUPROG 
i600REM @@@@@@@@@@@@@@@@@@@@@@@@@@~~@ 
1610DEFPROCdump 
1620PRINTTAB\S,JOJ;" 
1630*GDU~lP 
1640PRINT CHR$(12j:REMpage feed 
16SOENDPROC 
1660REM @@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
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720LOCAL AZ,L~,PZ,PLZ 
1JUKEM GLOBEL PYZ,SPACE:,xz 
740IF iHD$~F$.,1,1,~"R"THC:N X%=1 ELSE XI.~O 
750P9Z=LEN\FS;:IF X%=1 THEN P9Z=PYZ-2 
760P9i.=P9Z/2 
770IF X%=1 THEN P1.=J ELSE P%=1 
780L7.=LEN(F$;-1 
790FOR PlZ=P% TO ~~ STEP 2 
800A$=l1ID$ \ F$, P 1·%, 2; 
810AJ.=EVAL\".S."+ASi 
820~,SPACEZ+(PlZ-P%;/2 1 =AZ 
8:30NEXT Pl% 
ll40ENDJ.>ROC 
81l0DEFPROCinvest 
890step%=1:start%=1 
900P%=1 
910REPEAT 
920Dk=ABS,TRl,P%;-TR1(P7.t-J); 
930IF D%>5THEN PROCstep 
940P%=PZ+l 
950UNTIL P/.=122 
960ENDPROC 

lOOODEFPROCstep 
1010REPEAT 
1020P1.=P%+1 _. 
1030D%=A:BS ( TRll P% J -TR1 \ P7.+ 1 J; 
l046UNrtL Di.>4 
1050time,stepZ,=(PZ-startZ;*timescale 
1060start%=P% 
1070REPEAT 
1080P%;=P%+1 
1090DY.;=ABS ( TRl \ PZ;-TR1 ,·PZH.;; 
llOOUNTIL .DZ<:4 
lll0voltstep,step%;=1NI\(TR1\starti.J-TR1,PZJ)*voltscale*l000/255;/1 

00 
ll20start%=PZ:step%=step%+1 
ll30ENDPROC ' 
ll40REH @@@@@@@~~~@~Q@@@@@@@@@@@Ii!li@@@ 
ll50DEFPROC!abel 
H60PRINTTAB,l0,20j;"Step","Time to","Vulta&e" 
ll'70PRINTTAB,l0,21;; "No.", "step"·, "stea>" 
1175 PRINT;Tft;8(20i;"tuS;",''(V 1 " 

1180FOR S%=1 TO ~stepZ-1 1 
ll90PRINT;TAB(l0j; S1.;TAB,22;; timet Si.; ;TAB,Jl;; voltstep,SI.; 
l200NEXT Si. 
l2t0INPU.TTA8\5,28).; "DUMP GRAPH TO PtUNTER , Y or NJ";O:; 
1220IF O$="Y" THEN PROCduma> 
12JOENOPROC 
1240KEH @@@@@@@@~@@@@@@@@@@@@~@@@~@@ 
l250DEFPROCgraph· 
1260GCOL 0,2 
L270MOVE 1,TRltlJ 
l280FOR NI.= 2 TO 125 
12 90DRAW NI., TR1, N;; 1 
LJOONEXT N:; 
1 :a·occoL o , 1 
l320MOVI:: L, TR2, 1; 
lJJOFOR N~= 2 TO 125 
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Appendix II 

DATA Analysing Pro!lralll Listing 
80DU1Rl $ ( 2 J , F 1$ i.1

1 
, R$( 2 J , FS \ 11 , TR1 ( l:l3 J , TRL, 12 5 j , t i.n<! 1. SO 1 , volts te 

pi, SO}, Fi.{l1 j 
90CLS:PR!NTTAB(10,10J;"Enter data filenallle" 

lOOINPUTTAB( 16 ,14); fi1:et\ame~ 
llOCLS:PR!NTTAB~S ,6); "Enter volltag~ scale, VoHs/Div 
120INPUTTAB(l8,10);voltscale 
130PR•l!NTTAB.\7,14);"Enter time scale, uS/salllp1e"; 
140INPUTTAB( 18 ,l!l'); tlm<!scale 
lSOl10DE 1 
160Y•OP~NUP f1lename$:PTRIY=O:samples=BG~r#Y:CLOSEIY 
170PROCheader 
180FOR TX= 1 TO samples 
190CLS:GCOL 0,3 
200PROC READ 
210PROCaxes 
220PROC:;raph 
230PROCinvest 
240P.ROClabe1 
250PR0Cprint 
260NEXT Tl. 
2 70i10DE 7 
280PRINT"ANALYSIS COill'LETt:" 
290END 
JlODEFPROCaxes 

. ~20*SCALE -20,-140.,140,140 
330 PRINTTABi,20,2J;''Samp1:e No: '';T% 
3.40i10VE -20,0:DRAW 140,0 
350l10VE o;-~40:DRAW 0,140 
360MOVE 0,0 
J70fOR S=-128 TO 128 STEP 25.6 
380t10VE -2, s•: DRAW 2, s 
J90NEXT S 
400FOR SI. =-25 TO 140 STEP 25 
410MOVE S%,-2:DRAW Si.,2 
420NEXT Si. 
430ENDPROC· 
440FOR S%=-140 TO 140 STEP'20 
450MOVE -10,S/.:PR!!NT S/. 
460NEXT S/. 
4 70fOR S% = -20 TO. 140. STEP 20 
480MOVE SZ,-6:PR!Nf SZ 
490NEXT Si. 
500V,DU 26 
SlOENUPROC 
550DEFPROC READ 
560*DISC 
57·0Y=OPENUP f ilename$,::R£M name of file 
590PTRIY=tT%-1J~250 +U2 
600FOR Pl%=1 TO ~2S:TRhPt:%,=BGt::TIY 
610~F TR1~PL/.) > 127 THEN TR1,P1i.J=TR~,P1Z,-256 
62QtH~ltl Pl% 
630FOR P1i.·~ TO 1tS:TRZlP1ZJ•BGEThY 
640IF TR2~Pl'7.j > 127 THEl~ TRL,Pl1.)=Ttl.2,.NI.r256 
650NEXT Pl% 
660CLOSEUY':.R£M closes file 
670E.NDP.ROC 
7 10DEFPROC _ CON.l!NT, FS J 
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APPENPIX 11 

Shows program listing for the software used to retrieve the data previously stored 

on floppy disc, as illustrated in Appendix I, for analysis and printing. 
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JJ200EFPROCf .i.le 
JJJObytes•(no test/ratlo+5J*250+l2 
JJ40L~=STR~-(byteSJ 
JJSOTS=6A80 
3J60$TS•''*SAVK ''+fllename$+'' 0000 ''+L$ 
J370X7.=TS MOD 256:Y%=TS OIV 256 
J380CALLHFF7 
JJ90X=OPKNUP filename$ 
3400PTKHX=0:8PUTUX,O:CLOSEHX 
J410KNDPROC 
3420DEFPROCfront 
J430PROC CONINT,F$J 
J440FOR Pl%=0TO P91.-l:BPUTHY,?(SPACE%+Pl%) 
3450NI::XT Pl/. 
3460ENDPROC 
3470REM @@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
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2810PRINTTArl\0,15J'' 
2t!20PR1NTTI\ll(0, iS)CHR;,;t 1]1 J"Suj>ply"CHR$\ 129J" ON "CHIC/\ lJ1 /' 
Contacts''CHR$~1JOJ''OPEN'' 

28JO?&FCC1•J:RiM contactor CLOSEO sole<loid ENiRGISEU 
2840ENiJPROC 
2850KEM @@@@@@@@@@@@@@@@@@@@@@@@@@@ 
2860REM @@@@ CONTACTORS CLOSED @@@@ 
2J70REM @@@@ CONTACTS CLOSED ~!!@@@@ 
2880REH @@@@@@(:!@@@@@@@@@@@@@@(1(:1@@@@ 
2890DEFPROC ConRoff 
Z900PRINTTAB(0,15J" 
2910PRINTTAB( 0,15 ,CHR$ ( lJ!,"Supply"CHR$ ( 129 J" ON "CHR:;i( lJ l1" 
Contacts"CHR:;i(129J"CLOSED" 
2920?&FCC1=2:REH contactor CLOSED solenoid DE-ENERGISED 
29JOENDPROC 
2940i~M @@@@@@@@@@@@@~@@@@@@@@@@@@@ 
2950RE:i @@@@ CONTACTORS OPEN @@@@@@ 
2960REM @@@@ CONTACTS CLOSED @@@@@ 
2970REM @@@@@@@@@@@@@@@@@@@@@@@Q@@@ 
2980DEFPROC CoffRoff 
2 990PRINTTAB(O, 15 J" 
JOOOPRINTTAB\0, 15 JCHR$ ~ lJ 1 )" Supply"CHR~ ( lJO J" OFF "CHR$ \ 131 J" 
Contacts"CHR$(129)"CLOSED" 
J010'!&FCC1=J:REM contactor CLOSE solenoid DE-ENERGISED 
3020ENDPROC 
JOJODEFPROC paus~ 

3040TIME • 0 
JOSOtlme=TIM£+150 
J060a£PEAT 
J070P~INKEYt0J 
3080UNTIL P=800R TI~ffi~=time 

J090IF P=80TH£N GOTO JiOO ELSE IF p._:)t!O THEN ENDPROC 
J lOOPRINTTAlh 0, 20)" 
":PRINTTAB\0,20jCHR$tlJ1J"Press"CHR$(135)"'c;'"CtiR$\l31)"to 
continue.":Y$=GET$ 
JllOIF 'i$="C" THEN PRINTTAB(0,20J" 

":PRINTTAB'( 0, lO JCHR$( 13 l J" Press" CHR$ \US J "' P~ "CHR$\ lJ 1 J" to PAUSi:: 
theprogra111.":ENDPROC 
3l20ELSE IF Y$0"C" THEN ENDPROC 
Jl30ENDPROC 
3140REi1 @@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
3150REM @@@@@@ CONVERSION @@@@@@@@ 
3160R.EH @@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
3170DEFPROC CONINT~F$J 
31~0LOCAL AX,L7.,P/.,P17. 
3l90REM GLOBEL P9%,SPAC£%,X/. 
3200IF NID$\F$,1,1J="R"THEN X%=1 ELSE X%=0 
3210P9/.=LEN(F$J:IF X/.=1 THEN P9%=P9Z-2 
3220P91.~P9;':/ 2 
32JOIF X%=1 THEN PZ=J ELSE PZ=l 
)240L/.=LEN\F~J-l 
3250FOR ~1/.•PI. TO LX STEP 2 
l260A$•MID$lF$,P17.,2, 
:J270AX•EVALl"~>"+A~J 

3l80?(SPAC£%+\P17.-PI.J/2,=AI. 
32 90NL::XT P 1% 
JJOOENUPROC 
JJ lOKEH tN@tN@@@@@@@@@@@@@@~@tNJ@@@(:I 
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L240CLOSE#Y:R~M ~loses file 
2250ENDPROC 
2:l60REM ~@@@@@@@@@@@@@@@@@(!!@@@@@@@@ 
Z270RC:M @@@@READ F:ROM FILE @@@@@@@@ 
22BOREM ~~~@@@@@@@@@@@@@@@@@@@@@@@@ 
Z290DEFPROC READ 
2300*DISC 
23l0Y=OPENUP "FILE":REM name of file 
2320VDU2 
2330FOR Pl%=0 TO P9%-l: INPUTIIY I 'I(SPACEY.+Pll.) :PRINT "I(SPACE%+Pl%) 
2340NEXT Pi% 
2J50FOR Pli.=O TO P':l%-l:INPUTIIY 1 ?~SPACE%+Pl7.) 
2360PR·I:NTR$ t1) 
23~0FOR Pl%=0 TO P9%-l:lNPUTI'{,?~SPACEZ+PlZj 
2380PRINTR$ ( 2): PRINT 
2390VDU3 
2400CLOSEIIY: REM closes file 
2410END!'ROC 
2420REH @@(<!@@@@@@@@@@@@@@@@@@@@@@@@ 
24JOREH@@@@ CONTACTOR ~@@@@@!2@@@ 
2440REM ~@@@@@@@@@@@@@@@@(!!@@@@@@(:!@@ 
2450DEFPROC CONTACTOR 
2460REM •to change delay time chan,se value in UNE No.204':10, 111 201!!0= 
2470PROC setup 
2480PROC-CoffRon 
2490PROC-paus~ 

· 2500PROC-ConRon 
25-lOPROC=pause 
2520PROC ConRoff 
2530l'ROC-pause 
2540PROC-SETFRONT 
2550PROC-CoffRoff 
2560PROC-pause 
25 70l'ROC-CoffRon 
2580PROC.,...pause 
2590PROC-CoffRoff 
2600REM @@@@@@@@@@@@@@@@@@@@~@@@@@@ 
2610REi1 @@@ OUTPUTS LOW @@@@@@@@@@@ 
2620REH @@@@@@@@@@@@@@@@@@@@@@@@@@@ 
2630DEFPROC setup 
:l640?&FCC3=&"FF:REM set:; PORT A to .OUTPUTS 
2650?&FCC<=0:REN :;ets ALL OUTPU:rS LOw 
2660ENDPIWC 
2670REM @(<!@@@@@@@@@@@@@@@@@@@@@@@@!!! 
261l0H.EM @@@@ CONTACTORS OPEN @@@@@@ 
2690REii @@@@ CONTACTS OPEN •@@@@@@ 
l700REM @@@@@@@@@@@~@@@@@@@@@@@@@~@ 
27TOD~FPROC CoffRon 
2 7 20PtUNTTAll(O ,15 j"' 
27 JOPRINTTAB(IO 1 15 )CHit$llJ I )"'S upply"CIR$ ( 130;" OFF "Ci!R:,), d L;" 
Contacts" CHit:;>\ 1)0; "OPEN" 
l74u?O.FCCl=l :Rii·l ~o.ntac·tor OPEN sole11oid C:Nt::KCLSI::U 
:.! 7 !IOC:NI)I'ItoC' 
2/60RE~l @@@@@@@@@@@@@@@@@@@@t:!@@Q(1@@ 
2770Rl'::-t @@@@_CONTACTORS CLOS£D @@@@ 
27130REI·i @@@@ COIHACTS OPEN @@@@~~ 
27 90REN @@@@@@@@@@lt@@@@@@@Q@@@~@@~@ 
2800DEFPROC ConRon 
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l61:l0NEXTI 7. 
l6':10NEx:I'L% 
l700FOR I%=1TOJ 
lllOIN!'UT#datai.,sl~:R£!1 sl$ iS LAST J*2 BYTES OF UAl'A 
1720NEXTI% 

l730PRINT#cmd4, "UNTALK" 
l740P,RINT#cmd%,"GO TO LOCAL",croi.,"EXECUTE" 
l750CLOSE/Icro% 
l760ENDPROC 
l770REH @@@@@@~@@~@@@@@@@@@@@@@@@@@ 
c780REN @@@@ STORE 3 @@@@@@@@@@ 
l7YOREM @@@@@@@@@@@~@@@@@@@@@@,@@@@@ 
1800DEFPROC STOJ 
1810PROC IEEEBUSINn 
l820N$=CHR$(27 J+"ORNOO":REM COMMANiJ TO 0/P ST02 
l830P~INT#cmdi.-,"UNLISTEN'' 
l840PRINTI/cmd%., "LISTEN", cro1., "EXECUTE" 
l850PRINT#clataZ,B$,N$ 
1860PRINTI/cmd%, "UNLISTEN" 
li:I70PRINTIIcmd%, "TALK", cro% 
1880FOR lZ=lTOl2 
1890INPUT#dataZ,G$ 
l900F3$=F3$+G$:illiM F3$ IS FRONT PANEL SETTING 
l910NEXTI% 
l920FOR I%=1TOJ 
1930 INPUT/I datal., sS: REM sS FIRST 3 *2 llYTES OF DATA 
1940f.IEXTI% 
l950FOR L7.=1TO 2 
l960FOR I%=1T0125 
l970INPUT#dataZ,R3$ 
l980il.3$(LZJ=R3$(L%)+R3$ :REM R3$\lJ IS FIRST 125*2 ilYTES OF TRACE 
R3$,.2JIS LAST 125*2 BYTES OF TlU\CE 
l990NEXTI% 
2000NEXTL% 
20 lOFOR IZ= J:TOJ 
2020INPUTI/dataZ,sl$ :REH sl$ IS LAST 3*2 BYTES OF DATA 
2030NEXTIZ · 
2040PRINTIIcmdZ,"UNTALK" 
2050PRINTII~mdZ,"GO TO LOCAL'',croZ,"EXECUTE'' 
2060CLOSEI/croZ 
20.70ENDPROC 
2080REM @@@@@@@@@@@@@@@@~@@@@@@~~(]@ 
2090REN @@@@ WRITE TO FII:.E @@@@@@ 
2100REN @~@@@@@@@@@@@@@@@@@@@@@@@@@ 

. 2UODEFPROC WRITE 
2120REM filename$ contaiusthe aame of the file and MUST NOT ~:<..:eed I 
characters 
21JOY=OPENUP f ilename$: REM name of file 
2140PTRIIY=O: po b1te r=llGETIIY 
2150IF S~=1 THEN PROCfront 
2160PTRIIY= ( poi n te r*2 50+12 J 
2170!'ROC COM~NT(R$(1JJ 
2ld0FUR JlZ=O TO P9%-l:UPUT0Y,1,S!'ACEZ+!'l~J 
2190NEXT Pll'~ 

2200PROC CONI oH, R~ ( 2 )') 
22iOFOR PlZ~u TO P':l%-1 :BPUTIIY. ?,sPAct::Z+Pli: 1 
2220NEXT Pl% 
22JOpo'inter=po'inter+UPTRIIY'=O: tJ!'UTIIY, pu•i-nter 
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ll20CLOSEI/cro:~ 
1 UOENIJPROC 
ll40REM @~@@@@@@@@@@@@@@@@@@@@@(:!@@@ 
ll50REM @@@@@@ STORE 1 @@@@@@@ 

ll60REM @@@@@@@@@@@@@@@@@@~@@@@@(:!@@ 
ll701JEFPROC STOl 
ll80PROC I.t::EEBUSINH 

1190L$=CHR$(27)+"0RLOO":REM COMMANU TO 0/P STOL 
1200PRINTI/cmd%, "UNLISTEN" 
l210PRINT0cmdZ,"LiSTEN'',cro%,'~EXECUTE'' 
1220PRINT0data%,B$,L$ 
1230PRINTIIcmd%, "UNLISTEN" 
1240PRINTIIcmd%, "TA1.K", cro% 

1250f.l$="" :Rl$="" :G$=""':RL$0J="": Rl$(2J="" 
l260FOR IZ=lTOL2 
1270INPUTOdataX.,G$ 

1280Fl$=Fl$+G~ :REM Fl$ LS !"RONT PANEL SETTING 
1290NEXTI% 
1300FOR. I%=1 TO) 

131:0INPUTIIdata%,s$:REM s$ FIRST J*2 BYTES OF DATA 
1320NEXTI% 
1330FOR L%=lTO 2 
1340FOK I%=1T0125 
l350INPUTUdac•%,Rl$ 
1360Rl_$(L%;=Rl$(L%j+Rl$:REM R1$(1J IS FIRST 125*2 BYTES OF TRACE 
.IUH2}IS LAST 125*2 i3YTES OF TRACE 
1370NEXTI% 
UaONEXTL% 
U90FOR rz=tToJ 
l400INPUT{Idata%,sl$:REM sl$ IS LAST 3*2 BYTES OF DATA 
14tONEXTl% . 
l420PRINTIIcmd%, "UNTALK" 
1430PRI:NTI/cmd%, "GO TO LOCAL",cro%, "EXECUTE" 
1440CLOSEUcro% 
1450ENDPROC 
1460REM @@@@@@@@@@@@@@@@@@@@@@@~@@@@ 
14 70REi1 @@@@@@. STORE 2 @@@@@@@@@@ 
1480REI1 @@@@@@@@@@@@@@@@~@@@@@@@@@@@ 

14901JEFPROC S.T02 
1500PROC IEEEBUSINIT 
1510t1$=CHR$(27 J+"ORNOO": REM .COMMAND TO 0/P ST02 
l520PRINT0cmd%,"UNLISTEN'' 
l530PRINTIIcmd%, "LISTEN", c ro%, "EXECUTE" 
1540PRINT0da ta/. ,·B$, M$ 
l550PRINTI/cmd7., "UNLISTEN'' 
l560PRINTIIcmd%, "TALK" ,cro7. 
1570FOR IZ=1TOL2 
l 580 INPUTIIda ta%., G$ 
1590F2$=F2$+G$:REM F2$ IS FRONT PANEL SETTING 
t'600NEXTI% 
t•6JIQfOR L1.= l TOJ 
L620INPUTI/da ta%, s$: REM s$ FIRST 3 * 2 BYTES OF DATA 
i 1630NEXTII. 
~64UFOR L~=lTO 2 
t650FOR I%=1TOI25 
l'660IHPUTIIdata1. ,R2$ 
l•b7.0R2$(UJ=R2$(Li.;+R2$:REM R2$~1J lS fiRST 125*2 BYTES OF TRACE 
R2$t2;,IS LAST 125*2 BYTES OF TRACE 
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565PRINTIIcmd%,"SERIAL POLL" ,cru%,1 
566INPUTI/cmdl., s ta tus~.:.PRWTTAB( 0, 7) status:;> :.FORQ= 1 TO 1000: NEXT~ 
5 70PRINT/Icwd%, "UNLlSTEN" 
580PR:ijNTI/..:Uldl., "LISTEN" ,era%, "EXECUTE" 
590PRLNTIIdata7., B$':'R£M UcLI:MlTER 
600PRI:NT0datai. ,A$+"000U64033810.EE70 1 EF00009" 
610PRI:NT11cmd%_, "UNLISTEN" 
620CLOSEIIcro% 
il30ENDPROC 
640REH @@@@@@@@@@@@@@@@@@@@@@@@@@~ 
650REM @@@@ READ FRONT (:!@@@@@@@@@@ 
o60REM @@@@@@@@@@@@@@@@@@@@@@@@@(:!(:! 
670DEFPROC READFRONT 
680DIMfr$(l3):REM· TO SAVE FRONT PANEL ARRAY 
690A$=CHR$(27)+"0MT00":REt1 COI1:1AND FOR 0/P OF FRONT 
700PRtNT0..:Uld%,"UNLISTEN'' 
710PRUiTI/cmd%, "LISTEN" , c ro%, "EXECUTE" 
720PRINTUdata%,B$,A$ 
730PRINTIIcmd~,·'UNLISTEN'' 

740PRlNTIIc~t~d%, "TALK", era% 
7.50FORI%=1 T013 
760INPUTIId!ta%,fr$ 
770FR$=FR$+fr$ 
780NEXTI% 
7 90PRIN,TI/cmd7., "UNTALK" 
800CLOSEI/cro% 
8iOENDPROC 
820REM @@@@@@@@@@@@@@@@@@@@@@@@@@@ 
8JOREM @@@@ ACCU @@@@@@@@@@@ 
840REM @@@@@@@@@@@@@@@@@@@@@@@@@@@ 
850DEFPROC REG 
860PROC IEEEBUSINIT 
870K$=cflR$(27 ;+"ORKOO": REN COMMAND TO O/P ACCU 
880PRINTUc~d%,''UNLISTEN'' 
890PRINTUcmd%,"LISTEN'',cro%,"EXECUTE'' 
900PRINTUdata%,B~,K$ 
910PRINTIIc~dZ,·''UNLISTEN'' 

920PRINTI/cmd%, "TALK", era% 
930F$="":R$="":G$="":R$(1)="":R$(2;="" 
940FOR I%=1T0!2 
950INPUTIId~taZ,G$ 

960F.;;=F$+G$ :REM F$ I•S 'FRONT PANEL SETTING 
970NEXTIY. 
980FOR li..=l T03 
990LNPUTIIdataY.,s~.:·REN s$ FIRST J"'2 BYTES OF .DATA 

l'OOONEXTIZ 
l•Ol:U!'OR L%= l TO 2 
~020FOR IZ=lTUl25 
V030INPUT0dataZ,R$ 
l040RHLI.)=R-$(U;;+R$:REt1 R~\li LS HRST 125"'2 BYTES OF TRAC:O: R:,;(L; 

IS LASTL25*2 BYTES OF TRACE 
l050HEXTlZ 
1060NEXTLY. 
10 7 0 FOR I: I.= lTOJ. 
1080LNPUTI/data7.,s:;>:REN s:;> IS LAST J"'2 UYTC:S OF DATA 
1090NEXTI% 
llOOP,RI·N:rllcmd%, "UNTALK" 
lllOPR{NTIIctad%, "GO TO LOCAL" ,,era%, "EXECUTt:" 
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Appendix I 

DATA Colle~tion Prugram Listir•J 

10REI1 PROGRAM T.O COLLECT UATA FROM 
:lOREli TltE Pltll.ii..IPS CRO 
JOREM @@@@@@@@@@@@@@@@@@@~~@@@@@@@ 
40REM @@@@@@@@@@@@@@@@!.!@@(:!@@@@@@@(!!@ 
50REM @@@@ DIMENSION ALL @~@@@@(:!@@ 
60REH @@@@ VARIABLE @@@@@@@@@@@ 
IOREM @@@@@@@@@@@@@i!!@J@@@(:!@@t!@@@~@@ 
BODIM ~l$(2J· 1 Fl$(1) 1 R$(2; 1 F$(1; 1 SPACE% 125 
90R.EM CLR 

!OOCLS 
llO*DISC 
120PRINTTA!l\8 18); "Enter f ilename for data" 
iJOINPUTTAB~ 16 I ro) if ilename$ 
140PltiNTTAB\5,12)'; "Enter number of tests required" 
150INPUTTAB,l8 1 14;;n~ test 
l60INPUTTAil~9,18);"Sa'iiipl:e/Test ratio= 1/";.:atio 
170CLS:no samplas=INT~no test/ratio; 
180PRINTTAB~l2 1 18 j; ''Test-number: " 
190PROCf i:l.e 
200number=O 
210FOR 51.=1 TO ao_samples 
220*I£EE 
2:JOFo'R N%=1 TO ratio 

~ · 24.0uumber=numberd 
250PRINTTABi.26 113); number 
260PROC IEEEBUSINIT 
2 70R$="." :•F$="" 
28i.JPROC CONTACTOR 
2 90PROC --:R.EG 
JOOHEXT NI. 
JlO*DISC 
J20PROC WRITE 
330NEXT S% 
340PRINT''JESr FINISHED'' 
350t:ND 
360REH @@~@@@@@@@@@@@@@@@@@@@@@@@@@@ 
J70REH @@@@ IEEE BUS @@@@@@@@@@@@@@ 
380REM @@@@@@@@@@~@@@@@@@@@@@@@@@@@@ 
390DEFPROC IEEEBUSINIT 
400*IEEE 
410cmd%=OPENIN( "COi1MANO") 
420datai.=OP,ENIN("DATA"J 
430PRINT/Icmd" I "BBC uEVICE iW" 10 
440PRINT1/c10d1.; "CLEAR" 
450PRINTflcmd1. 1 "REMOTE ENABLE" 
460PRINT/Icmd% 1"END OF STRINc··~~HR$,~3; 
470croi.=OPENIN("5") 
480PRINT1Jcmd/. 1 "SERIAL POLL" 1 cro~: 11 
490INPUT0tmdi. 1 status$:PR1NTTAH(0 1 5;status~:FORQ=L TO lOOO:N~XTQ 
500AS=..:rllt:;;(27;+"0rn"' :REM PART OF FRONJ St::T STRING 
5·1'01l$=CHRSl27 j+"ODDO"+CHR$UJJ :·RH! OELHilTEi( .COHJ\NU 

·520i::NOPlWC 
5JORE~ ~@~~~~@@W@~@@@@@@@@~~@@@@@@ 
S40RH! ~@@@ SC:T FRONT J@L!@L!~@@(:!@ 
SSOREN (!I@@(!~@~@@L!~J@@@~@(J@@@@@@l}@@ 
5600EFPROC S£TFRONT 
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thermocouple, and then, with the aid of electric, circui~ analogy, a general r~lation between 

input power and measured temperature is obtained. 

Since the degree of erosion depends upon the difference between the sum of the 

power absorbed by the electrodes and the arc power, the result obtained above (d.c. test) 

shows that the minimum contact erosion can, be achieved if ,the maximum contact 

separation be in the region of O.lmm. 

H~~ver, minimum contact erosion between contacts used in a~c. switches (where the 

maximum separation between contacts is around 2mm) could only be achieved if the 

separation be maintained at or below 0.1 mm for the first half-cycle~ 
..:::;p 
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CHAPTER FIVE OJSC,U.SSI ... QJ:,rN::~........_...JF!.:.UT~·~· ~URE~~...lW:u.O~RK~.-.c.A:uN;:u.:Q:.,_.~oC.!iQ.!JN~(;;a:L~U!.>SOIJ!L.!O:!INS::w... 

5.1 OIS(l.LS,C,ION 

This thesis has presented a comprehensive investigation into the distribution of 

the arc power to .the contacts at break using a power balance relation. 

To achieve this objective the following were required: (a) to devise an accurate 

technique for construction of the probes (contact with thermocouple) for measurement 

of contact temperature due to arcing, (b) to measure anode and cathode fall voltages 

using the technique of Von Engel et al (reference 2, chapter 4) for Ag Cd-0 contacts 

and (c) To develop a power balance model, since the degree of the differences in the 

correlation between the two ~p?J)i;/e':rsc'' is related to the erosion rate. - -· ·-

The information obtained from (a) and (b) was subsequently applied to the 

relation obtained in (c) with a view to characterising the erosion rate and then 

attempting to reduce it. This data could be used for future design work and also 

give more insight into understanding the arcing effect between contacts of toggle 

switches used in thermostatically-controlled electrical appliances, e.g. refrigerators. 

(i) Temperature-Time Characteristics of the Contacts: 

The technique devised for the construction of the probe (contact with 

thermocouple, see section 3.5.2, figure 3. 7) ensures that under transient conditions 

(defined as a condition in which, within arc duration of 2-10 ms, the contact body 

does not reach to a steady state) the temperature rise of the contact can be measured 

immediately before appreciable heat diffuses to its surroundings. The accuracy of 

the probe response was found to be subject to the degree of proximity of the arc 

contact-point to the probe. 

The construction of the probe (contact with thermocouple) and the contact 

temperature measurements were found to be tedious and not straightforward. 

Results obtained from temperature-time curves of anode and cathode sensors for 
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various test parameterS such as current, gap-length and arc duration, at 40 Volts d.c. 

with speed of separation 300 mm/s, are .detailed in section 4,5.3. These indicated 

that in most cases the anode is hotter than the cathode (see appendix Ill and figures 

4.33 and 4.35). This is thought to be due to the cathode losing heat by way. of 

latent heat of evaporation· of lost metal. 

The results also show that the temperatures of the electrodes at different current 

and gap-length have a linear relation to the arc duration, and that the temperatures 

" increase from room temperature to approximately 30 C, over a range of currents, 

gap-lengths and arc durations extending from 4-10 A, 0.05-1mm, and 2-10 ms 

respectively, as shown in figure (4.33). 

The results of the measurements of the effects from contact newness show that 

initially there is inconsistency in ·the value of electrode temperatures and after about 

50-100 operations, depending on circuit conditions, the electrodes' temperatures reach 

to steady values (figure 4.36). 

This may be the reason why, where these contacts· are to be used in switches for 

the temperature control of electrical appliances such as refrigerators, before their 

employment, a high level D.C. arc is drawn between them, probably in order to burn 

off the poorly-conducting surface deposits often found on metal components, which 

would otherwise adversely affect the switching function of the switches. 

Results from tests on a pair of new contacts, under fixed test conditions, showed 

that the initial temperatures of both electrodes are high and that these temperatures 

decreased as the number of operations increased and eventually reached to a steady 

value (figure 4.36). 

Where the change of polarity takes place after 500 operations, the contact which 

acts as anode (fixed contact) has a higher temperature than previously and the 

situation is reversed for the contact which now acts as cathode (moving contact), its 

temperature now being lower than previously and hence the difference between the 

temperature of the electrodes increases. This may be due to the moving contact 

causing a flow of air over its surface. 
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Ciil Electrodes Fall Voltages 

A typical trace of the electrodes fall voltages, as observed on an oscilloscope, is 

shown in figure (4.4). 

The results of fall measurements suggest that cathode and anode fall voltages 

decrease slightly with increase in the current, for the constant test conditions (figures 

4.11, 4.14 and 4.15), and increase with increase of gap-length (figures 4.12, 4.13 and 

4.17). The increase of the cathode fall is slight compared to the anode fall, to 

such an extent, in fact, that one can assume it is negligible. This may be because 

the difference in the number of positive and negative charges (which is basically a 

function of the cathode metal) in the cathode transition region does not vary 

significatnly with the increase of the gap-length. 
•J 

in section 2.5, and illustrated in figure 2.4.) 

(The transition regions are defined 

The results (figures 4.5b · and 4.9) also show that the anode fall voltage can 

occur in a few steps (Voltage drop) within the arc. There are less steps at higher 

currents, or perhaps their magnitude is similar to fluctuation voltage, and they are not 

all distinguishabte. Since for a particular gap-length or current the anode fall 

voltage is constant, if it occurs in steps, the sum of the steps value is equal to the 

fall voltage value (figure 4.9, samples 5, 25, 54). 

The distance at which the second step (d2), third step (d3), etc. occur after the 

first drop (step) from the cathode surface is found to be dependent on the speed of 

closure (figure 4.8a). For example, at the faster speed (300 mm/s), the second step 

occurs within a few tens of microns, as opposed to a few hundreds of microns for 

the slower (75 mm/s) closing speed. The first step usually occurs within S-1 5 pm 

from the cathode. Results (figures 4.4 and 4.9) also showed that speed has no 

influence on the magnitude of the electrodes fall voltages. 
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(iii) Arcing on Closure (Voltage Step Phenomenal 

Arcing as a result of contact closure was observed from the oscilloscope trace 

(section 4.4), 

A typical voltage characteristic is shown in figure (4.I8), for test conditions for 

50 volts, 5 A, and speed of closure 500 mm/s. 

The steps within the arc voltage which resulted from contact closure are shown 

diagramatically in figure (4.20). 

In order to define these steps, e.g. VI {1st Step Voltage), V2 (2nd Step Voltage) 

and VL(l..ast Step Voltage), and to identify the main causes of arcing, experimental 

work was concentrated on the influence of the parameters of operating voltages, 

currents, speeds of closure, and surface roughness, 

The effect of various operating voltages (4.4.I.I) is that the amplitudes of VI, 

V2 and V3 (where existing) are increased with increase of operating voltage, but. VL 

remains constant, typically at I 0 volts (figure 4.I9). 

Observations of the effect of roughened surface (section 4.4.1.3) indicated that 

the steps can be seen at first operation for any fixed test condition (current, speed 

and voltage), whereas the surfaces of a new pair of contacts have to perform a great 

number of operations (i.e. they become disfigured) before steps can be seen. 

This increased roughness also slightly decreases the cathode fall voltage (figure 

4.24), which may be due to a reduced work-function required for the emission of the 

electrons because the surface state is changed. 

The most interesting results obtained were that with the surface which had been 

roughened, an increase in the number of occurrences of steps was observed, but not 

in the number of steps (the maximum number of steps observed was three). 

Having identified that the occurrence of steps increased at higher currents and 

faster speeds, and as it is known that these two parameters contribute to disfigurement 

of the contact surfaces (plastic deformation), and having also experimented with 

contacts having roughened surface, which showed that the steps occurred at every 

operatrion, so it was concluded that the initiation of the arc is strongly dependent on 
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the state of the electrodes' surfaces. It is postulated that the initiation of the arc is 

due to momentary points of contact, or it is as the result of field break-down due ,to · 

the state of the electrodes' surfaces. 

Whichever causes the initiation. of the arc, in most cases after initiation, VI, V2, 

V3 and VL exist within the arc (these are defined in figure 4.20) until the two 

contacts. come to rest on each other. 

Since VL has a steady value in the order of 10-11 Volts, which is characteristic 

of the metal electrode, it is considered to be cathode fall voltage. In most cases 

VL follows after V1, V2 and V3 and the whole process becomes continuous. This 

indicates that there is inter-relation between them. The parameter required for the 

continuity of the arc is known to be the. anode fall voltage (section 2.5.1.2). 

When closure proceeds -with steps (Vl, V2, VL), it is thought that field 

breakdown takes place. This is due .to an intense field building up between the two 

electrode surfaces as they get closer (probably between spikes). 

Closure which proceeds just by norma), arc (VL) as shown in figure (4.27a), is 

due to a first point of contact vaporising sufficient amount of metal from the 

electrode to provide ions. These ions charge the outer surface of the cathode and 

as a result create an intense field which is sufficient to drag out electrons from the 

cathode for the maintenance of the arc. 

Such closures which proceed just by normal arc (figure 4.27a), can be interpreted 

as being due to field emission before a metallic contact takes place, as described 

above, or they may be perhaps due to surface impurities, as has been suggested by 

Germer et al (reference 16, chapter 4). 

Those closures which are not preceded by an arc (figure 4.27d), can be 

explained as perhaps due to the first point of contact (e.g. spike) being covered by a 

good insulator, so that it did not vaporise. Germer, et a1Cl6) suggest it may be due 

to the absence of a foreign layer on the cathode surface. 

The traverse of the arc voltage to zero (figure 4.26(b and d) during closure is 

related to metal being thrown out, shorting the circuit, which then vaporises and 
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arcing continues. 

The oscillation (figure 4.28) before the drop of supply voltage_ to VI is related to the 

natural capacity and inductance of the oscilloscope proble, or wires in the circuit. 

Since these values (V I, V2, VL) are in the range of valus obtained .from the 

measurements. described in section 4.3, and also since the mechanism of the arc on closure 

has become clearer, one may be able to study the erosion of the contacts on closure in 

more detail, which is of great interest to the electrical contacts community. 

(iv) Power Balance at the Electrodes 

Contact erosion is assessed from a comparison of electrical and thermal power. 

The electrical power, which is the input power, is the product of current and voltage 

drop between the contact's surfaces .. The_ thermal po_wer consists of power absorbed by 

the contact in raising the electrodes' temperatures and power used in the melting and 

evaporation of contact material. 

Electrical power has been modelled using the euqations derived by Capp (reference 

20, chapter 4, section 4.6.1 ), and the thermal model is based on a simulation consisting of 

the response of an RC circuit to a d.c. pulse (section 4.6.2). 

T!1e equations derived from the electrical model were as follows: 

Voltage drop in front of cathode: 

Voltage drop in front of anode: 

VCE = -,N.c + :rVi + '/Np- ;pc 

VAE = Va + Ve + 1hVp + q,a 

In the thermal model it was assumed that all the heat entering the contacts was 
' 

received by the thermocouple, and then with the aid of electric circuit analogy a general 

relation between input power and measured temperatures was obtained which is as 

follows: 

Input power to contact (heating curve): 

' 
Input power to contact ( cooling curve): 

0 00 
Q;=--

L~rJ 

00 0 
Q;=-------

The equations of the above heating and cooling curves are truly exponential. 
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The log-linear (semiHog) plot of the heating curve (figure 4.45) revealed that it 

is not truly exponential, but the semi"'"log plot of the cooling curve as shown in figure 

(4.45), although in some cases at the mid-point of the cooling curve there was 

a kink (perhaps due to extra heat loss to the surrounding air at that time, etc.), it 

does satisfy the exponentiality required in order to use the equation of the cooling 

curve for the calculation of the input power. 

The highest heat-flow rate was obtained using the points right at the start of the 

cooling curve. This has been followed in all the calculations of input power to the 

electrodes. 

The results obtained from the thermai model showed (figure 4.47) that for gap 

of- 0.05 mm and current. less than 6 A, cathode power was less than anode po\Ver, 

for current of 6 A both cathode and ~node power were the same, and for current 

greater than 6 A cathode power is less than anode power. 

For gap of 0.1 mm and current less than 6.5 A cathode power was greater than 

anode power, for current 6.5 A they both had the same value, for currents greater 

than 6.5 A and less than 11 A, cathode power was less than _anode power, at 11 A 

(by interpolation) they both had the same value, and for the currents greater than 

11 A, the cathode power was always greater than the anode power. 

At any other gaps (e.g. 0.2, 0.5 and 1 mm), for any current, the cathode power 

was always less than the anode power. 

The results (figure 4.47) also showed that for gaps of 0.05 and 0.1 mm, up to a 

current of 8 A, the sum of cathode and anode power were equal to the arc power; 

in these cases it was thought no loss took place. 

These findings agreed with the suggestion of White (reference 1, chapter 4) 

which is that, below 0.2 mm, the net power causing erosion is virtually the same as 

the net arc power (the study presented here was an extension of his investigations). 

For conditions where the slim of anode and cathode power was equal to the arc 

power, 'Y and Ve were calculated using power balance equations (1) and (3) and with 
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the aid of data from figures (4.49) and (4.47). It was found· that, in GENERAL, 

for the situation where anode and cathode power were equal, or approximately equal, 

then 'Y was in the range of 0.51- 0.54, and the thermal energy of the electron (Ye) 

was negligible, but where anode power was not equal to the cathode power, 'Y was in 

the range of 0.47-o.5, and the thermal energy of the electron was around 1.2 eV. 

The results .(figure 4.49) obtained for components of the arc voltage at 40 volts 

suggested that, since the cathode fall remained constant for any current and any 

gap-length, any increase in the power conducted into the caihode was as a result of 

increased power dissipation in the arc column. 

The examination of Scanning Electron Micrographs of the contact surfaces has 

suggested that the arc has caused melting and evaporation. A typical example is 

shown in figure (4.50); the lack of cracks on· the cathode surface shown in this 

figure was thought to be due to the cathode spot being mobile (i.e. the heat does not 

concentrate on one area). This agrees with the suggestion of Mapps et al (reference 

21, chapter 4) and Slade et al (reference 22, chapter 4). 

However, the x-ray analyses of the electrodes' surfaces have shown that the 

melted metal was composed mostly of silver. 

(4.51 ). 

A typical example is shown in figure 

The degree of erosion depends upon the difference between the sum of the 

powers absorbed by the anode and cathode, and the arc power. Therefore the 

minimum contact erosion can be achieved if the maximum contact separation be in 

the order of up to 0.1 mm. 

The adoption of this separation between contacts is not feasible for switches used 

in d.c. circuits due to electrical breakdown between the contacts of the switch. 

In a.c. circuits the benefit of reduced contact erosion is made possible by 

reducing the initial rate of separation of the contacts, so that for the first half cycle 

(10 ms, which is the maximum possible duration of the arc in a.c. circuits) the 

contact separation only reaches to around 0.1 mm. Nter the occurrence of a 

zero-croSsing during this 10 ms, the contacts can continue to separate to any required 
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gap. 

It was thought that an opening velocity of 10 mm/s for the first 10 ms would 

achieve the above separation. 

Finally, all the aspects of the proposed research have been studied in detail, but 

further research is desirable before an overall assessment of the above finding can be 

made. 

5.2 FUTURE WORK 

Here the results obtained with d;c. over a range of parameters (current, 

gap-length and arc-duration) relevant to the a.c. (mains) represents a foundation on 

which future work can be developed and progressed .for optimising the design criteria 

and improving the performance of the· switches. The proposed work is as follows: 

(a) To investigate the effect of initial separation velocity of 10 mm/s for the 

first 10 ms on the erosion rate on switches which have separation of 2-2.5 mm, and 

also to find a suitable speed for them after the initial 10 ms. 

(b) To develop a relation between contact erosion, arc duration and input 

power, using FINITE ELEMENT APPROACH. For designers, this will provide a 

rational method of predicting the erosion rate for specific working conditions. 

(c) To investigate the effect of smaller size of contact on the performance of 

switches which have the above recommended characteristics. This may lead to the 

use of less silver on each contact, and hence a reduction in the material cost of each 

switch, which is of great interest to the manufacturers. 

(d) The effect of the various shapes of contact (flat, round) on the distribution 

of the heat due to arcing is worth further study. 
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5.3 CONCLUSIONS 

;(i) Temperature-Time curves 

('1) In general the .anode temperature is hotter than the cathode temperature except 
for gaps below0.2 mm, they are the same. Appendix (ill) and figure (4,29). 

(2) The effects from contact newness show that initially there is inconsistency in 
the value of electrode temperature before reaching to steady values, figure (436). 

(3) l'he effect of change of polarity reveales that the moving contact is always 
cooler compared to a situation where the same polarity acts oh the fixed contact, figure 
1(4.36). 

· (ii) Electrodes Fall Voltages 

I- {1) Cathode and anode fall voltage decrease slightly with increase in the current, 
I and increase with increase of gap-length, figures (4.11-'4. 17). · 

(2). The distance in which the anode fall occurs from the cathode surface is 
dependent on the speed of closure, also the anode fall can occur in a few steps. However, 
lspeed has no influence on the magnitude of the electrodes' fall voltage, figures (4.9 and 
4.5b). 

, (iii) Arcing on closure (Voltage Step Phenomena) 
I 

I 

(I) The magnitude of lst step (VI), 2nd step (V2) and 3rd step (V3) are directly 
proportional to the magnitude of operating voltages, but the magnitude of last step voltage 

1 {VL) remains :constant, figure ( 4.21 ). 
(2) Current has no influence on the magnitude of 1st step (VI) see figure (4.19), 

but the magnitude of the first step (VI) is inversely proportional to the speed of closure, 
figure (4.22). 

(3) The surface roughness decreases the magnitude of the cathode fall voltage, 
.figure (4.24), and on closure -the initiation of the arc is strongly dependent on the state of 
the electrodes' surface. 

(4) In general arc on closure is due to momentary point of contact or it is as the 
result of a strong field which may exist between the electrodes. 

(5) The absence of the arc on closure is related to the absence of the foreign layers 
on the cathode surface, figure (4.27d). 

(iv) Power Balance at the Electrodes 

(I) In general for the situation where anode and cathode power are equal or 
approximately equal, figures (4.47a and· 4.47b), the ratio of positive ion current to total 
current (r) is in the range of 0.51 - 0.54, and the thermal energy of the electron (Ve) is 
negligible, but where anode power is not equal to the cathode power, y, is in the range of 
0.47- 0.5, and the thermal energy of the electron is around 1 .2eV. 

(2) The minimum contact erosion can be achieved if the maximum contact 
separation be in the order of up to O.lmm. It is thought that in a.c. circuit an opening 
velocity of 1 Omm/s for the first I Oms would achieve the above separation. 
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APPENDIX I 

Shows the program listing of the data collection software, which is wr;tten in 

~ASIC, for the communication of the BBC Microcomputer with the Philips 

Oscilloscope through the IEEE bus and controller of the test rig, through the PlO 

Interface box (which energises the solenoid, contactor, etc ... ), and hence the test rig 

operates as a switch. This program also includes some software for transferring the 

digitised waveforms captured by the oscilloscope to the floppy disc. 
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